

Date: December 7, 2018

Automated Source Code Quality Measures

Request for Comments
__

OMG Document Number: admtf/2018-12-01
Standard document URL:
http://www.omg.org/spec/ASCQM/20181201/AutomatedSourceCodeQualityMeasures

Machine consumable files:

http://www.omg.org/spec/ASCQM/20181102/AutomatedSourceCodeQualityMeasures.x
mi
__

 1

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group (OMG) specification in accordance with the
terms, conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Consortium for IT Software Quality and its parent, Object
Management Group, Inc. (OMG), a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute
this document and to modify this document and distribute copies of the modified version. Each of the copyright
holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included
material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. CISQ AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED
WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR
USE. IN NO EVENT SHALL CISDQ, THE OBJECT MANAGEMENT GROUP OR ANY OF THE

 2

COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.287-7013 or in subparagraph
(c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.287-19 or as
specified in 48 C.F.R. 287-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R.
12.212 of the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners
are as indicated above and may be contacted through the Object Management Group, 250 First Avenue, Needham,
MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ ,
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

 3

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http:// www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm).

 4

Table of Contents

Table of Contents .. 4
0. Submission-Specific Material .. 8

0.1 Submission Preface ... 8
0.2 Copyright Waiver .. 8
0.3 Submitter Representative ... 8
0.4 Author Team ... 8
0.5 Proof of Concept ... 9

1. Scope .. 10
1.1 Purpose ... 10
1.2 Overview of Structural Quality Measurement in Software .. 10

2. Conformance .. 12
3. Normative References .. 13
4. Terms and Definitions ... 14
5. Symbols (and Abbreviated Terms) ... 17
6. Additional Information (Informative) ... 18

6.1 Software Product Inputs ... 18
6.2 Automated Source Code Quality Measure Elements ... 18
6.3 Automated Source Code Maintainability Measure Element Descriptions 18
6.4 Automated Source Code Performance Efficiency Measure Element Descriptions 22
6.5 Automated Source Code Reliability Measure Element Descriptions ... 24
6.6 Automated Source Code Security Measure Element Descriptions .. 32
6.4 Introduction to the Specification of Quality Measure Elements .. 40
6.5 Knowledge Discovery Metamodel (KDM)... 40
6.6 Software Patterns Metamodel Standard (SPMS) ... 44
6.7 Reading guide ... 45

7 List of ASCQM Weaknesses (Normative) .. 47
7.1 Weakness Category Maintainability ... 47
7.2 Weakness Category Performance Efficiency .. 59
7.3 Weakness Category Reliability.. 67
7.4 Weakness Category Security .. 95

8. ASCQM Weakness Detection Patterns ... 123
8.1 ASCQM Check Index of Array Access .. 123
8.2 ASCQM Check Input of Memory Manipulation Primitives ... 124
8.3 ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities............ 125
8.4 ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities 126
8.5 ASCQM Ban Use of Expired Pointer .. 127
8.6 ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities 128
8.7 ASCQM Check Offset used in Pointer Arithmetic ... 129
8.8 ASCQM Sanitize User Input used as Pointer ... 130
8.9 ASCQM Initialize Pointers before Use .. 131

 5

8.10 ASCQM Check NULL Pointer Value before Use .. 133
8.11 ASCQM Ban Use of Expired Resource ... 134
8.12 ASCQM Ban Double Release of Resource ... 135
8.13 ASCQM Implement Copy Constructor for Class With Pointer Resource 135
8.14 ASCQM Ban Free Operation on Pointer Received as Parameter ... 136
8.15 ASCQM Ban Delete of VOID Pointer ... 137
8.16 ASCQM Ban Variable Increment or Decrement Operation in Operations using the Same

Variable ... 138
8.17 ASCQM Ban Reading and Writing the Same Variable Used as Assignment Value 139
8.18 ASCQM Handle Return Value of Resource Operations .. 140
8.19 ASCQM Ban Incorrect Numeric Conversion of Return Value ... 142
8.20 ASCQM Handle Return Value of Must Check Operations .. 143
8.21 ASCQM Check Return Value of Resource Operations Immediately ... 144
8.22 ASCQM Ban Useless Handling of Exceptions .. 145
8.23 ASCQM Ban Incorrect Object Comparison ... 146
8.24 ASCQM Ban Assignment Operation Inside Logic Blocks ... 147
8.25 ASCQM Ban Comparison Expression Outside Logic Blocks .. 148
8.26 ASCQM Ban Incorrect String Comparison .. 148
8.27 ASCQM Ban Logical Operation with a Constant Operand .. 149
8.28 ASCQM Implement Correct Object Comparison Operations ... 150
8.30 ASCQM Ban Comma Operator from Delete Statement ... 151
8.31 ASCQM Release in Destructor Memory Allocated in Constructor ... 151
8.32 ASCQM Release Memory after Use with Correct Operation ... 153
8.33 ASCQM Implement Required Operations for Manual Resource Management 155
8.34 ASCQM Release Platform Resource after Use .. 156

9. Calculation of Quality and Functional Density Measures ... 158
9.1 Calculation of the Base Measures (Normative) .. 158
9.2 Functional Density of Weaknesses (Non-normative) ... 158

10. Alternative Weighted Measures and Uses (Informative) ... 160
10.1 Additional Derived Measures ... 160

11. References (Informative) .. 161
Appendix A: Consortium for IT Software Quality (CISQ) ... 162
Appendix B: Common Weakness Enumeration (CWE) ... 163
Appendix C: Disposition of Weaknesses from the Original CISQ Measures to This Specification 164

Appendix D: Relationship of the CISQ Structural Quality Measures to ISO 25000 Series Standards
(SQuaRE) ... 169

 6

Preface

About the Object Management Group

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit
computer industry standards consortium that produces and maintains computer industry specifications
for interoperable, portable and reusable enterprise applications in distributed, heterogeneous
environments. Membership includes Information Technology vendors, end users, government agencies
and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process.
OMG's specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-
lifecycle approach to enterprise integration that covers multiple operating systems, programming
languages, middleware and networking infrastructures, and software development environments.
OMG’s specifications include: UML® (Unified Modeling Language™); CORBA® (Common Object Request
Broker Architecture); CWM™ (Common Warehouse Meta-model); and industry-specific standards for
dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Formal Specifications are available from this URL: http://www.omg.org/spec Specifications are
organized by the following categories:

Business Modeling Specifications Middleware Specifications
• CORBA/IIOP
• Data Distribution Services
• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
• UML, MOF, CWM, XMI
• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
• CORBAServices
• CORBAFacilities

 7

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

OMG Domain Specifications

Signal and Image Processing Specifications

All of OMG‟s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications,
available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or
by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO/IEC standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report and technical or editing issues/problems with this specification to
http://www.omg.org

 8

0. Submission-Specific Material

0.1 Submission Preface

This submission is of a measure represented in compliance with OMG’s Knowledge Discovery
Metamodel (KDM), Structured Patterns Metamodel for Software (SPMS), and Structured Metrics Meta-
Model (SMM). However, its submission is independent of KDM, SPMS, and SMM to establish it as a
supported specification in its own right. This specification for four Structural Quality Measures builds on
elements already developed in OMG’s Automated Source Code Measures for Reliability, Security,
Performance Efficiency, and Maintainability Measure standards. The measures described in this
specification are an important component for achieving the mission of the Architecture Driven
Modernization Task Force by qualifying the structural quality of modernized software and its
architecture.

0.2 Copyright Waiver

CAST Software, Inc. (i) grants to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version, and (ii) grants to each member of the OMG a nonexclusive,
royalty-free, paid up, worldwide license to make up to fifty (50) copies of this document for internal
review purposes only and not for distribution, and (iii) has agreed that no person shall be deemed to
have infringed the copyright in the included material of any such copyright holder by reason of having
used any OMG specification that may be based hereon or having conformed any computer software to
such specification.

IPR Mode: Non-Assertion Covenant

0.3 Submitter Representative

Bill Curtis Robert Martin
CAST Software, Inc. MITRE Corporation
b.curtis@castsoftware.com ramartin@mitre.org

0.4 Author Team

Bill Curtis, Robert Martin
CAST Software, Inc. MITRE Corporation
b.curtis@castsoftware.com ramartin@mitre.org

Paul Seay Paul Beaudoin
Northrup Grumman Northrup Grumman
Paul.seay@ngc.com paul.beaudoin@ngc.com

 9

Paul Rainey Kevin Doyle
CGI CGI
paul.rainey@cgi.com kevin.m.doyle@cgifederal.com

Gordon Uchenick Joe Jarzombek
Synopsys Synopsys
Gordon Uchenick@synopsys.com Joe.Jarzombek@synopsys.com

Philippe-Emmanuel Douziech Guillaume Ragar
CAST CAST
p.douziech@castsoftware.com g.ragar@castsoftware.com

William Dickenson Hariharan Mathrubutham
CAST Software, Inc. Cognizant
w.dickenson@castsoftware.com Hariharan.Mathrubutham@cognizant.com

Girish Seshagiri Dan Plakosh
ISHPI Software Engineering Institute - CERT
girish.seshagiri@ishpi.net dplakosh@cert.org

S. Amitabh Sanjeev Chikodi
Tech Mahindra Tech Mahindra
samitabh@TechMahindra.com sanjeevc@TechMahindra.com

0.5 Proof of Concept

Coverity and CAST among other static analysis vendors have implemented versions of these measures
based on the set of weaknesses their technologies detect. Currently there are no industry-wide
standards for which weaknesses to include in structural quality measures or how such measures should
be calculated. Consequently, each vendor produces a unique version of these structural quality
measures.

 10

1. Scope

1.1 Purpose

This specification updates, expands, and combines four previous adopted specifications of the OMG:
 Automated Source Code Maintainability Measure (ASCMM)

https://www.omg.org/spec/ASCMM/1.0/
 Automated Source Code Performance Efficiency Measure (ASCPEM)

https://www.omg.org/spec/ASCPEM/1.0/
 Automated Source Code Reliability Measure (ASCRM)

https://www.omg.org/spec/ASCRM/1.0/
 Automated Source Code Security Measure (ASCSM) https://www.omg.org/spec/ASCSM/1.0/

The measures in these standards were calculated from detecting and counting violations of good
architectural and coding practices in the source code that could result in unacceptable operational risks
or excessive costs. Establishing standards for these measures at the source code level is important
because they have been used in outsourcing and system development contracts without having
international standards to reference. For instance, the ISO/IEC 25000 series of standards that govern
software product quality do not provide measures at the source code level.

A primary objective of updating these measures was to extend their applicability to embedded software,
which is especially important for the growing implementation of embedded devices and the Internet of
Things. Functionality that has traditionally been implemented in IT applications is now being moved to
embedded chips. Since the weaknesses included in the measures specified in this document
have been found to be applicable to all forms of software, embedded software is not treated
separately in this specification.

1.2 Overview of Structural Quality Measurement in Software

Measurement of the structural quality characteristics of software has a long history in software
engineering (Curtis, 1980). These characteristics are also referred to as the structural, internal,
technical, or engineering characteristics of software source code. Software quality characteristics are
increasingly incorporated into development and outsourcing contracts as the equivalent of service level
agreements. That is, target thresholds based on structural quality measures are being written into
contracts as acceptance criteria for delivered software. Currently there are no standards for most of the
software structural quality measures used in contracts. ISO/IEC 25023 purports to address these
measures, but only provides measures of external behavior and does not define measures that can be
developed from source code during development. Consequently, providers are subject to different
interpretations and calculations of common structural quality characteristics in each contract. This
specification addresses one aspect of this problem by providing a specification for measuring four

 11

structural quality characteristics from the source codeReliability, Security, Performance Efficiency, and
Maintainability.

Recent advances in measuring the structural quality of software involve detecting violations of good
architectural and coding practice from statically analyzing source code. Violations of good architectural
and design practice can also be detected from statically analyzing design specifications written in a
design language with a formal syntax and semantics. Good architectural and coding practices can be
stated as rules for engineering software products. Violations of these rules will be called weaknesses in
this specification to be consistent with terms used in the Common Weakness Enumeration (Martin &
Barnum, 2006) which lists many of the weaknesses used in several of these measures.

The Automated Source Code Quality Measures are correlated measures rather than absolute measures.
That is, since they do not measure all possible weaknesses in each of the four areas, they do not provide
absolute measures. However, since they include counts of what industry experts have determined to be
most severe weaknesses, they provide strong indicators of the quality of a software system in each area.
In most instances they will be highly correlated with the probability of operational or cost problems
related to each measure’s area.

Recent research in analyzing structural quality weaknesses has identified common patterns of code
structures that can be used to detect weaknesses. Many of these ‘Detection Patterns’ are shared across
different weaknesses. Detection Patterns will be used in this specification to organize and simplify the
presentation of weaknesses underlying the four structural quality measures. Each weakness will be
described as a quality measure element to remain consistent with ISO/IEC 25020. Each quality measure
element will be represented as one or more Detection Patterns. Many quality measure elements
(weaknesses) will share one of more Detection Patterns in common.

The normative portion of this specification represents each quality attribute (weakness) and quality
measure element (detection pattern) using the Structured Patterns Metamodel Standard (SPMS). The
code-based elements in these patterns are represented using the Knowledge Discovery Metamodel
(KDM). The calculation of each of the four Automated Source Code Quality Measures from their quality
measure elements is then represented in the Structured Metrics Metamodel (SMM). This calculation is
developed by counting the number of detection patterns for each weakness, and then summing these
numbers for all the weaknesses included in the specific quality characteristic measure.

 12

2. Conformance

Implementations of this specification should be able to demonstrate the following attributes in order to
claim conformance—automated, objective, transparent, and verifiable.

 AutomatedThe analysis of the source code and counting of weaknesses must be fully
automated. The initial inputs required to prepare the source code for analysis include the
source code of the application, the artifacts and information needed to configure the application
for operation, and any available description of the architectural layers in the application.

 ObjectiveAfter the source code has been prepared for analysis using the information provided
as inputs, the analysis, calculation, and presentation of results must not require further human
intervention. The analysis and calculation must be able to repeatedly produce the same results
and outputs on the same body of software.

 TransparentImplementations that conform to this specification must clearly list all source
code (including versions), non-source code artifacts, and other information used to prepare the
source code for submission to the analysis.

 VerifiableCompliance with this specification requires that an implementation state the
assumptions/heuristics it uses with sufficient detail so that the calculations may be
independently verified by third parties. In addition, all inputs used are required to be clearly
described and itemized so that they can be audited by a third party.

 13

3. Normative References

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this specification. For dated references, subsequent amendments to, or revisions of any of
these publications do not apply.

• Structured Patterns Metamodel Standard, https://www.omg.org/spec/SPMS/1.2/
• Knowledge Discovery Metamodel, version 1.3 (KDM), https://www.omg.org/spec/KDM/1.4/
• Structured Metrics Metamodel, version 1.0 (SMM), formal/2012-01-05
• MOF/XMI Mapping, version 2.4.1 (XMI), https://www.omg.org/spec/XMI/2.5.1/
 Automated Function Points (AFP), https://www.omg.org/spec/AFP/1.0/
 Automated Source Code Reliability Measure, version 1.0 (ASCRM),

https://www.omg.org/spec/ASCRM/1.0/
 Automated Source Code Security Measure, version 1.0 (ASCSM),

https://www.omg.org/spec/ASCSM/1.0/
 Automated Source Code Performance Efficiency Measure, version 1.0 (ASCPEM),

https://www.omg.org/spec/ASCPEM/1.0/
 Automated Source Code Maintainability Measure, version 1.0 (ASCMM),

https://www.omg.org/spec/ASCMM/1.0/
 ISO/IEC 25010 Systems and software engineering – System and software product Quality

Requirements and Evaluation (SQuaRE) – System and software quality models
 ISO/IEC 25020:2007 Software engineering — Software product Quality Requirements and

Evaluation (SQuaRE) — Measurement reference model and guide

 14

4. Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Automated Function Pointsa specification for automating the counting of Function Points that

mirrors as closely as possible the counting guidelines of the International Function Point User Group.
(OMG, formal 2014-01-03)

Common Weakness Enumerationa repository maintained by MITRE Corporation of known

weaknesses in software that can be exploited to gain unauthorized entry into a software system.
(cwe.mitre.org)

Contributing Weaknessa weakness that is represented as a child of a parent weakness in the

Common Weakness Enumeration, that is, a variant instantiation of the parent weakness
(cwe.mitre.org)

Cyclomatic ComplexityA measure of control flow complexity developed by Thomas McCabe based on

a graph-theoretic analysis that reduces the control flow of a computer program to a set of edges,
vertices, and their attributes that can be quantified. (McCabe, 1976)

Detection Patterna collection of parsed program elements and their relations that constitute a

weakness in the software.

Internal Software Qualitythe degree to which a set of static attributes of a software product satisfy

stated and implied needs for the software product to be used under specified conditions. This will
be referred to as software structural quality, or simply structural quality in this specification.
(ISO/IEC 25010)

Maintainability—capability of a product to be modified by the intended maintainers with effectiveness

and efficiency (ISO/IEC 25010)

Parent Weaknessa weakness in the Common Weakness Enumeration that has numerous possible

instantiations in software that are represented by its relation to child CWEs (cwe.mitre.org)

Performance Efficiency—capability of a product to use an appropriate amount of resources under

stated conditions (ISO/IEC 25010)

Quality Measure Elementa measure defined in terms of a software quality attribute and the

measurement method for quantifying it, including optionally the transformation by a mathematical
function (ISO/IEC 25010)

Reliability—capability a product, to perform specified functions under specified conditions for a

specified period of time (ISO/IEC 25010)

 15

Security capability of a product to protect information and data so that persons or other products or

systems have the degree of data access appropriate to their types and levels of authorization, and to
defend against attack patterns by malicious actors (ISO/IEC 25010)

Software Producta set of computer programs, procedures, and possibly associated documentation

and data. (ISO/IEC 25010)

Software Product Quality Model—a model that categorizes product quality properties into eight

characteristics (functional suitability, reliability, performance efficiency, usability, security,
compatibility, maintainability and portability). Each characteristic is composed of a set of related
sub-characteristics. (ISO/IEC 25010)

Software Qualitydegree to which a software product satisfies stated and implied needs when used

under specified conditions. (ISO/IEC 25010)

Software Quality Attributean inherent property or characteristic of software that can be

distinguished quantitatively or qualitatively by human or automated means. (derived from ISO/IEC
25010)

Software Quality Characteristica set of software quality attributes that affect a specific category of

software quality outcomes. (similar to but more specific than ISO/IEC 25010)

Software Quality Characteristic Measurea software quality measure derived from measuring the

attributes related to a specific software quality characteristic.

Software Quality Measurea measure that is defined as a measurement function of two or more

values of software quality measure elements. (ISO/IEC 25010)

Software Quality Measure Elementa measure defined in terms of a software quality attribute and the

measurement method for quantifying it, including optionally the transformation by a mathematical
function. (ISO/IEC 25010)

Software Quality Measurement(verb) a set of operations having the object of determining a value of

a software quality measure. (ISO/IEC 25010)

Software Quality Modela defined set of software characteristics, and of relationships between them,

which provides a framework for specifying software quality requirements and evaluating the quality
of a software product. (derived from ISO/IEC 25010)

Software Quality Rulean architectural or coding practice or convention that represents good software

engineering practice and avoids problems in software development, maintenance, or operations.
Violations of these quality rules produces software anti-patterns.

 16

Software Quality Sub-characteristica sub-category of a software quality characteristic to which

software quality attributes and their software quality measure elements are conceptually related.
(derived from ISO/IEC 25010)

Structural Elementa component of software code that can be uniquely identified and counted such as

a token, decision, variable, etc.

Structural Qualitythe degree to which a set of static attributes of a software product satisfy stated

and implied needs for the software product to be used under specified conditions—a component of
software quality. This concept is referred to as internal software quality in ISO/IEC 25010.

Weakness sometimes referred to as a software anti-pattern, is a pattern or structure in the code

(Detection Pattern) that is inconsistent with good architectural or coding practice, violates a
software quality rule, and can lead to operational or cost problems.

 17

5. Symbols (and Abbreviated Terms)

AFP Automated Function Points
ASCMM Automated Source Code Maintainability Measure
ASCPEM Automated Source Code Performance Efficiency Measure
ASCQM Automated Source Code Quality Measure
ASCRM Automated Source Code Reliability Measure
ASCSM Automated Source Code Security Measure
CWE Common Weakness Enumeration
CISQ Consortium for IT Software Quality
KDM Knowledge Discovery Metamodel
SPMS Structured Pattern Metamodel Standard
SMM Structured Metrics Metamodel

 18

6. Additional Information (Informative)

6.1 Software Product Inputs

The following inputs are needed by static code analyzers in order to interpret violations of the software
quality rules that would be included in individual software quality measure elements.

 The entire source code for the application being analyzed
 All materials and information required to prepare the application for production
 A list of vetted libraries that are being used to sanitize data against potential attacks
 What routines/API calls are being used for remote authentication, to any custom initialization

and cleanup routines, to synchronize resources, or to neutralize accepted file types or the
names of resources

Static code analyzers will also need a list of the violations that constitute each quality element in the
Automated Source Code Security Measure.

6.2 Automated Source Code Quality Measure Elements

The weaknesses violating software quality rules that compose the CISQ Automated Source Code Quality
Measures are grouped by measure in the clauses 6 and 7. Some of the weaknesses are included in more
than one quality measure because they can cause several types of problems. The Common Weakness
Enumeration repository (CWE, Appendix B) has recently been expanded to include weaknesses from
quality characteristics beyond security. All weaknesses included in these measures are identified by
their CWE number from the repository. In most cases the description of CWEs is taken from information
in the online repository (cwe.mitre.org). The mappings of the weaknesses from the previous CISQ
measures to the current measures are presented in Appendix C.

Some weaknesses drawn from the CWE repository (parent weaknesses) have related weaknesses listed
as ‘contributing weaknesses’ (‘children’ in the CWE). Contributing weaknesses represent variants of
how the parent weakness can be instantiated in software. In the following tables the cells containing
CWE IDs for parents are presented in a darker blue than the cells containing contributing weaknesses.
Based on their severity, not all children were included. Compliance to the CISQ measures is assessed at
the level of the parent weakness. A technology must be able to detect at least one of the contributing
weaknesses to be assessed compliant on the parent weakness.

6.3 Automated Source Code Maintainability Measure Element Descriptions

The quality measure elements (weaknesses violating software quality rules) that compose the CISQ
Automated Source Code Maintainability Measure are presented in Table 1. This measure contains 28
parent weaknesses and 3 contributing weaknesses.

 19

Table 1. Quality Measure Elements for Automated Source Code Maintainability Measure

CWE # Descriptor Weakness Description

CWE-1075 Control transferred outside
switch statement

The software transfers control flow outside a switch statement
(e.g., depending on the technology, by using a 'go to' statement)

CWE-1055

Class Element Excessive
Inheritance of Class Elements
with Concrete
Implementation

A class inherits from too many concrete classes (default
threshold for the maximum number of concrete class
Inheritances is 1, alternate threshold can be set prior to
analysis).

CWE-1052
Storable and Member Data
Element Initialization with
Hard-Coded Literals

The software uses a literal value to initialize a variable, field,
member, etc. (exceptions are simple integers and a static
constant variable, field, member, etc.)

CWE-1048
Callable and Method Control
Element Number of Outward
Calls

A function, method, procedure, stored procedure, or sub-
routine references too many other objects within the
application (default threshold for the maximum number of
references is 5, alternate threshold can be set prior to analysis)

CWE-1095 Loop Value Update within the
Loop

Within the body of a loop, the software updates the value of a
local variable, field, member, etc. used in the loop condition.

CWE-1085 Commented-out Code
Element Excessive Volume

A software component within the application contains too many
commented-out instructions (default threshold for the
maximum percent of commented-out instructions is 2%,
alternate threshold can be set prior to analysis).

CWE-1047 Inter-Module Dependency
Cycles

A software component within the application contains
references that cycle back to itself (for example, in JAVA this
pattern means cycles between packages).

CWE-1080 Source Element Excessive Size
A file within the application has too many logical source lines of
code (default threshold for the maximum lines of code is 1000,
alternate threshold can be set prior to analysis).

CWE-1054
Named Callable and Method
Control Element with Layer-
skipping Call

A function, method, procedure, stored procedure, or sub-
routine calls a function, method, procedure, stored procedure,
or sub-routine in a different architectural layer that violates the
allowable connections as defined in a model of the application’s
architectural layers.

CWE-1093
Callable and Method Control
Element Excessive Cyclomatic
Complexity Value

A function, method, procedure, stored procedure, sub-routine,
etc. has a Cyclomatic Complexity that is too large compared to a
threshold value (default threshold for Cyclomatic Complexity is
20, alternate threshold can be set prior to analysis).

 20

CWE-1064
Callable and Method Control
Element Excessive Number of
Parameters

A function, method, procedure, stored procedure, or sub-
routine has too many parameters in its signature (default
threshold for the maximum number of parameters is 7,
alternate threshold can be set prior to analysis).

CWE-1084

Callable and Method Control
Element Excessive Number of
Control Elements involving
Data Element from Data
Manager or File Resource

A function, method, procedure, stored procedure, or sub-
routine has too many SQL or file operations (default threshold
for the maximum number of SQL or file operations is 7,
alternate threshold can be set prior to analysis).

CWE-1081 Public member element The software should not declare an uncontrolled data element
as public.

CWE-1090
Method Control Element
Usage of Member Element
from other Class Element

A method from a class accesses a field or member from another
class.

CWE-1074 Class Element Excessive
inheritance Level

A class inheritance level is too large (default threshold for
maximum Inheritance levels is 7, alternate threshold can be set
prior to analysis).

CWE-1086 Class Element Excessive
Number of Children

The number of children of a class is too large (default threshold
for the maximum number of children of a class is 10, alternate
threshold can be set prior to analysis).

CWE-1041
Named Callable and Method
Control Element Excessive
Similarity

The number of logical instructions that have been copied and
pasted to other parts of the software exceeds a threshold value.
The default threshold for each instance of copy-pasted code
sets the maximum number of allowable copy-pasted
instructions at 10% of the total instructions in the instance,
alternate thresholds can be set prior to analysis).

CWE-561 Dead code

The software contains dead code that can never be executed.
Thresholds are set at 5% logically dead code or code that is 0%
structurally dead. Code that exists in the source but not in the
object does not count.

CWE-1061 Unreachable Named Callable
or Method Control Element

The software contains a function or method that is
unreferenced and unused by any other software element in the
application. The measure is the number of unreferenced or
unused software elements. The defined application boundary
determines the scope of the search for software elements that
could call a function or method element; exceptions are getters
and setters, as well as libraries outside the scope of the
application.

CWE-570 Expression is Always False The software contains an expression that will always evaluate to
false.

 21

CWE-571 Expression is Always True The software contains an expression that will always evaluate to
true.

CWE-1062
Parent Class Element with
References to Child Class
Element

A parent class references one of its child classes, directly or
indirectly via its methods and fields.

CWE-1087
Class Element with Virtual
Method Element without
Virtual Destructor

A class contains a virtual method, yet the class does not declare
any virtual destructor.

CWE-1079
Parent Class Element without
Virtual Destructor Method
Element

For languages in which custom destructors can be written, the
parent has no virtual destructor.

CWE-1045
Child Class Element without
Virtual Destructor unlike its
Parent Class Element

For languages in which custom destructors can be written, the
child class does not have its own virtual destructor, while its
parent class has a virtual destructor.

CWE-1051

Storable and Member Data
Element Initialization with
Hard-Coded Network
Resource Configuration Data

A variable, field, member, etc. is initialized with a hard-coded
network resource identification information

CWE-484 Omitted Break Statement in
Switch

The program omits a break statement within a switch or similar
construct, causing code associated with multiple conditions to
execute when only associated with one condition was intended
to execute code.

CWE-480 Use of Incorrect Operator The programmer accidentally uses the wrong operator, which
changes the application logic in security-relevant ways.

CWE-478 Missing Default Case in
Switch Statemen

The code does not have a default case in a switch statement,
which can lead to complex logical errors.

CWE-783 Operator Precedence Logic
Error

While often just a bug, operator precedence logic errors can
have serious consequences if they are used in security-critical
code, such as making an authentication decision.

CWE-407 Algorithmic Complexity
Remove instances where a module has references that cycle
back to itself, e.g., the existence of cycles between packages in
JAVA.

 22

6.4 Automated Source Code Performance Efficiency Measure Element
Descriptions

The quality measure elements (weaknesses violating software quality rules) that compose the CISQ
Automated Source Code Performance Efficiency Measure are presented in Table 2. This measure
contains 16 parent weaknesses and 3 contributing weaknesses (children in the CWE) that represent
variants of these weaknesses. The CWE numbers for contributing weaknesses is presented in light blue
cells immediately below the parent weakness whose CWE number is in a dark blue cell.

Table 2. Quality Measure Elements for Automated Source Code Performance Efficiency Measure

CWE # Descriptor Weakness Description

CWE-1046
Immutable Storable and
Member Data Element
Creation

A software operation inside a loop creates immutable
text data via a string concatenation (which could be
avoided by using text buffer instead).

CWE-1042
Static Member Data Element
outside of a Singleton Class
Element

The software declares static field as static, but its
parent class is not a singleton class; it does not
account for final static fields or members.

CWE-1049

Data Resource Read and Write
Access Excessive Complexity

A SQL statement with too many joins (default
threshold is 5 joins, alternate threshold can be set
prior to analysis) and too many sub-queries (default
threshold is 3 sub-queries, alternate threshold can be
set prior to analysis) accesses a very large table
exceeding a threshold number of rows (default
threshold is 1,000,000 rows, alternate threshold can
be set prior analysis).

CWE-1067

Data Resource Read Access
Unsupported by Index Element

The syntax of a SQL SELECT statement and the index
configuration of a SQL table or SQL view causes the
DBMS to run sequential searches on a very large table
exceeding a threshold number of rows (default
threshold is 1,000,000 rows, alternate threshold can
be set prior to analysis).

CWE-1089

Large Data Resource
ColumnSet Excessive Number
of Index Elements

A very large table exceeding a threshold number of
rows (default is 1,000,000 rows, alternate threshold
can be set prior to analysis) has too many indices
(default threshold for the maximum number of indices
is 3, alternate threshold can be set prior to analysis).

 23

CWE-1094

Large Data Resource
ColumnSet with Index Element
of Excessive Size

The software writes to a very large table exceeding a
threshold number of rows (default threshold is
1,000,000 rows, alternate threshold can be set prior to
analysis) and has an index whose size is too large
(default threshold for the index range is 10, alternate
threshold can be set prior to analysis).

CWE-1050

Control Elements Requiring
Significant Resource Element
within Control Flow Loop Block

A software operation that is directly or indirectly
called within a loop body or loop condition consumes
platform resources (messaging, lock, file, stream,
directory, etc.) beyond an acceptable threshold
(default threshold is XX platform resources, alternate
threshold can be set prior to analysis).

CWE-1060

Non-stored SQL Callable
Control Element with
Excessive Number of Data
Resource Access

A server-side non-stored procedure contains too many
data queries (default threshold for maximum number
of data queries is 5, alternate threshold can be set
prior to analysis).

CWE-1073

Excessive data queries in
client-side code

A client-side software operation contains too many
data queries (default threshold for the maximum
number of data queries is 2, alternate threshold can be
set prior to analysis).

CWE-1057

Data Access Control Element
from Outside Designated Data
Manager Component

The software executes a data access outside of a
dedicated data access component, thus circumventing
the intended design to deny direct data access, thus
allowing access only through dedicated data access
components. Notes:
· The dedicated data access component can be either
client-side or server-side, which means that data
access components can be developed using non-SQL
language.
· If there is no dedicated data access component,
every data access is a violation.
· For some embedded software that requires access
to data from anywhere, the whole software is defined
as a data access component. This condition must be
identified as input to the analysis.

CWE-1043

Storable and Member Data
Element Excessive Number of
Aggregated Storable and
Member Data Elements

The software contains a data element aggregated
from too many non-primitive data types (default
threshold for the maximum number of aggregated
non-primitive data types is 5, alternate threshold can
be set prior to analysis).

 24

CWE-1072

Data access not using
connection pool

The software executes a data resource management
action without using a connection pool (the use of a
connection pool is technology dependent; for
example, connection pooling is disabled with the
addition of 'Pooling=false' to the connection string
with ADO.NET or the value of a
'com.sun.jndi.ldap.connect.pool' environment
parameter in Java).

CWE-404
Improper Resource Shutdown
or Release

The program does not release or incorrectly releases a
resource before it is made available for re-use.

CWE-401
Improper Release of Memory
Before Removing Last
Reference ('Memory Leak')

The software does not sufficiently track and release
allocated memory after it has been used, which slowly
consumes remaining memory.

CWE-772
Missing Release of Resource
after Effective Lifetime

The software does not release a resource after its
effective lifetime has ended, i.e., after the resource is
no longer needed.

CWE-775

Missing Release of File
Descriptor or Handle after
Effective Lifetime

The software does not release a file descriptor or
handle after its effective lifetime has ended, i.e., after
the file descriptor/handle is no longer needed.

CWE-1071

Storable and Member Data
Element Memory Allocation
Missing De-allocation Control
Element

A method locks and unlocks an object without ever
de-referencing it.

CWE-1091

Storable and Member Data
Element Reference Missing
De-referencing Control
Element

The software is missing a dereferencing element that
operates on a pointer variable and returns an l-value
equivalent to the value at the pointer address.

CWE-424
Improper Protection of
Alternate Path

The product does not sufficiently protect all possible
paths that a user can take to access restricted
functionality or resources.

6.5 Automated Source Code Reliability Measure Element Descriptions

The quality measure elements (weaknesses violating software quality rules) that compose the CISQ
Automated Source Code Reliability Measure are presented in Table 3. This measure contains 36 parent
weaknesses and 38 contributing weaknesses (children in the CWE) that represent variants of these
weaknesses. The CWE numbers for contributing weaknesses is presented in light blue cells immediately
below the parent weakness whose CWE number is in a dark blue cell.

 25

Table 3. Quality Measure Elements for Automated Source Code Reliability Measure

CWE # Descriptor Weakness description

CWE-119 Improper reading or writing
to a memory buffer

The software performs operations on a memory buffer, but it
can read from or write to a memory location that is outside of
the intended boundary of the buffer.

CWE-120 Classic buffer overflow
The program copies an input buffer to an output buffer without
verifying that the size of the input buffer is less than the size of
the output buffer, leading to a buffer overflow.

CWE-123 Write-what-where
condition

The program allows an arbitrary value to be written to an
arbitrary location, often as the result of a buffer overflow.

CWE-125 Out-of-bounds read The software reads data past the end, or before the beginning, of
the intended buffer.

CWE-130
Improper Handling of
Length Parameter
Inconsistency

The software parses a formatted message or structure, but it
does not handle or incorrectly handles a length field that is
inconsistent with the actual length of the associated data.

CWE-786 Access of Memory Location
Before Start of Buffer

The software reads or writes to a buffer using an index or pointer
that references a memory location prior to the beginning of the
buffer. This typically occurs when a pointer or its index is
decremented to a position before the buffer, when pointer
arithmetic results in a position before the beginning of the valid
memory location, or when a negative index is used.

CWE-787 Out-of-bounds Write

The software writes data past the end, or before the beginning,
of the intended buffer. The software may modify an index or
perform pointer arithmetic that references a memory location
that is outside of the boundaries of the buffer.

CWE-788 Access of Memory Location
After End of Buffer

The software reads or writes to a buffer using an index or pointer
that references a memory location after the end of the buffer.
This typically occurs when a pointer or its index is decremented
to a position before the buffer; when pointer arithmetic results
in a position before the buffer; or when a negative index is used,
which generates a position before the buffer.

CWE-805 Buffer Access with Incorrect
Length Value

The software uses a sequential operation to read or write a
buffer, but it uses an incorrect length value that causes it to
access memory that is outside of the bounds of the buffer.

 26

CWE-822 Untrusted Pointer
Dereference

The program obtains a value from an untrusted source, converts
this value to a pointer, and dereferences the resulting pointer.
There are several variants of this weakness, including but not
necessarily limited to:
 The untrusted value is directly invoked as a function call.
In OS kernels or drivers where there is a boundary between
"userland" and privileged memory spaces, an untrusted pointer
might enter through an API or system call (see CWE-781 for one
such example).
Inadvertently accepting the value from an untrusted control
sphere when it did not have to be accepted as input at all. This
might occur when the code was originally developed to be run by
a single user in a non-networked environment, and the code is
then ported to or otherwise exposed to a networked
environment.

CWE-823 Use of Out-of-range Pointer
Offset

The program performs pointer arithmetic on a valid pointer, but
it uses an offset that can point outside of the intended range of
valid memory locations for the resulting pointer.
 While a pointer can contain a reference to any arbitrary
memory location, a program typically only intends to use the
pointer to access limited portions of memory, such as contiguous
memory used to access an individual array.
 Programs may use offsets to access fields or sub-elements
stored within structured data. The offset might be out-of-range if
it comes from an untrusted source, is the result of an incorrect
calculation, or occurs because of another error.

CWE-824 Access of Uninitialized
Pointer

The program accesses or uses a pointer that has not been
initialized. If the pointer contains an uninitialized value, then the
value might not point to a valid memory location.

CWE-825 Expired Pointer
Dereference

The program dereferences a pointer that contains a location for
memory that was previously valid, but is no longer valid.

CWE-703 Improper Check or Handling
of Exceptional Condition

Address instances where the software does not properly
anticipate or handle exceptional conditions that rarely occur
during normal operation of the software.

CWE-248 Uncaught Exception An exception is thrown from a function, but it is not caught.

CWE-391 Unchecked Error Condition Ignoring exceptions and other error conditions may allow an
attacker to induce unexpected behavior unnoticed.

 27

CWE-392 Missing Report of Error
Condition

The software encounters an error but does not provide a status
code or return value to indicate that an error has occurred.

CWE-252 Unchecked Return Value
The software does not check the return value from a method or
function, which can prevent it from detecting unexpected states
and conditions.

CWE-908 Use of Uninitialized
Resource

Address instances where the software uses a resource that has
not been properly initialized.

CWE-835 Loop with Unreachable Exit
Condition ('Infinite Loop')

The program contains an iteration or loop with an exit condition
that cannot be reached, i.e., an infinite loop.

CWE-704 Incorrect Type Conversion
or Cast

The software does not correctly convert an object, resource, or
structure from one type to a different type.

CWE-404 Improper Resource
Shutdown or Release

The program does not release or incorrectly releases a resource
before it is made available for re-use.

CWE-772
Missing Release of
Resource after Effective
Lifetime

The software does not release a resource after its effective
lifetime has ended, i.e., after the resource is no longer needed.

CWE-401

Improper Release of
Memory Before Removing
Last Reference ('Memory
Leak')

The software does not sufficiently track and release allocated
memory after it has been used, which slowly consumes
remaining memory.

CWE-775
Missing Release of File
Descriptor or Handle after
Effective Lifetime

The software does not release a file descriptor or handle after its
effective lifetime has ended, i.e., after the file descriptor/handle
is no longer needed. When a file descriptor or handle is not
released after use (typically by explicitly closing it), attackers can
cause a denial of service by consuming all available file
descriptors/handles, or otherwise preventing other system
processes from obtaining their own file descriptors/handles.

CWE-390 Detection of Error
Condition Without Action

The software detects a specific error, but takes no actions to
handle the error, for instance, where an exception handling
block (such as Catch and Finally blocks) do not contain any
instruction, making it impossible to accurately identify and
adequately respond to unusual and unexpected conditions.

CWE-662 Improper Synchronization
The software attempts to use a shared resource in an exclusive
manner, but does not prevent or incorrectly prevents use of the
resource by another thread or process.

 28

CWE-366 Race Condition within a
Thread

If two threads of execution use a resource simultaneously, there
exists the possibility that resources may be used while invalid, in
turn making the state of execution undefined.

CWE-543
Use of Singleton Pattern
Without Synchronization in
a Multithreaded Context

The software uses the singleton pattern when creating a
resource within a multithreaded environment.

CWE-567
Unsynchronized Access to
Shared Data in a
Multithreaded Context

The product does not properly synchronize shared data, such as
static variables across threads, which can lead to undefined
behavior and unpredictable data changes.

CWE-667 Improper Locking
The software does not properly acquire a lock on a resource, or it
does not properly release a lock on a resource, leading to
unexpected resource state changes and behaviors.

CWE-764 Multiple Locks of a Critical
Resource

The software locks a critical resource more times than intended,
leading to an unexpected state in the system.

CWE-820 Missing Synchronization The software utilizes a shared resource in a concurrent manner
but does not attempt to synchronize access to the resource.

CWE-821 Incorrect Synchronization The software utilizes a shared resource in a concurrent manner
but it does not correctly synchronize access to the resource.

CWE-1058

Named Callable and
Method Control Element in
Multi-Thread Context with
non-Final Static Storable or
Member Element

A control element owns an unsafe non-final static data element
while it operates in a multi-threaded environment.

CWE-1096
Singleton Class Instance
Creation without Proper
Lock Element Management

The software instantiates a singleton class without activating
any prior locking mechanism.

CWE-595
Comparison of Object
References Instead of
Object Contents

The program compares object references instead of the contents
of the objects themselves, preventing it from detecting
equivalent objects.

CWE-597 Use of Wrong Operator in
String Comparison

The software uses the wrong operator when comparing a string,
such as using "==" when the equals() method should be used
instead. In Java, using == or != to compare two strings for
equality actually compares two objects for equality, not their
values.

 29

CWE-1097

Persistent Storable Data
Element without Proper
Comparison Control
Element

Remove instances where the persistent data has missing or
improper dedicated comparison operations. Note:
* In case of technologies with classes, this means situations
where a persistent field is from a class that is made persistent
while it does not implement methods from the list of required
comparison operations (a JAVA example is the list composed of
{'hashCode()','equals()'} methods)

CWE-1098

Storable or Member Data
Element containing Pointer
Item Element without
Proper Copy Control
Element

The software contains a pointer but no dedicated copy operation
or copy constructor.

CWE-1082
Class Instance Self
Destruction Control
Element

Address instances where a class can self-destruct (an example of
a self-destruction in C++ is 'delete this')

CWE-1077

Float Type Storable and
Member Data Element
Comparison with Equality
Operator

Address instances where the float values of a variable, field,
member, etc. are compared for equality using regular
comparison operators (an example in JAVA, is the use of ‘= =’ or
‘!=’) instead of being checked for precision.

CWE-1083

Data Access Control
Element from Outside
Designated Data Manager
Component

The software executes a data access outside of a dedicated data
access component, thus circumventing the intended design to
deny direct data access, thus allowing access only through
dedicated data access components. Notes:
The dedicated data access component can be either client-side
or server-side, which means that data access components can be
developed using non-SQL language.
If there is no dedicated data access component, every data
access is a violation.
For some embedded software that requires access to data
from anywhere, the whole software is defined as a data access
component. This condition must be identified as input to the
analysis.

CWE-1088 Synchronous Call Timeout
Absence

Software allows synchronous remote resource access without
handling time-out capabilities.

CWE-682 Incorrect Calculation
The software performs a calculation that generates incorrect or
unintended results that are later used in security-critical
decisions or resource management.

CWE-131 Incorrect Calculation of
Buffer Size

The software does not correctly calculate the size to be used
when allocating a buffer, which could lead to a buffer overflow.

 30

CWE-369 Divide By Zero The product divides a value by zero.

CWE-394 Unexpected Status Code or
Return Value

The software does not properly check when a function or
operation returns a value that is legitimate for the function, but
is not expected by the software.

CWE-170 Improper Null Termination The software does not terminate or incorrectly terminates a
string or array with a null character or equivalent terminator.

CWE-672 Operation on a Resource
after Expiration or Release

The software uses, accesses, or otherwise operates on a
resource after that resource has been expired, released, or
revoked.

CWE-415 Double Free
The product calls free() twice on the same memory address,
potentially leading to modification of unexpected memory
locations.

CWE-416 Use After Free Referencing memory after it has been freed can cause a program
to crash, use unexpected values, or execute code.

CWE-459 Incomplete Cleanup The software does not properly "clean up" and remove
temporary or supporting resources after they have been used.

CWE-562 Return of Stack Variable
Address

Because local variables are allocated on the stack, when a
program returns a pointer to a local variable, it is returning a
stack address. A subsequent function call is likely to re-use this
same stack address, thereby overwriting the value of the pointer,
which no longer corresponds to the same variable since a
function's stack frame is invalidated when it returns. At best this
will cause the value of the pointer to change unexpectedly. In
many cases it causes the program to crash the next time the
pointer is dereferenced

CWE-758

Reliance on Undefined,
Unspecified, or
Implementation-Defined
Behavior

The software uses an API function, data structure, or other entity
in a way that relies on properties that are not always guaranteed
to hold for that entity.

CWE-476 NULL Pointer Dereference
A NULL pointer dereference occurs when the application
dereferences a pointer that it expects to be valid, but is NULL,
typically causing a crash or exit.

CWE-681 Incorrect Conversion
between Numeric Types

The software declares a variable, field, member, etc. with a
numeric type, and then updates it with a value from a second
numeric type that is incompatible with the first numeric type.

CWE-194 Unexpected Sign Extension

The software performs an operation on a number that causes it
to be sign-extended when it is transformed into a larger data
type. When the original number is negative, this can produce
unexpected values that lead to resultant weaknesses.

 31

CWE-195 Signed to Unsigned
Conversion Error

The software uses a signed primitive and performs a cast to an
unsigned primitive, which can produce an unexpected value if
the value of the signed primitive cannot be represented using an
unsigned primitive.

CWE-196 Unsigned to Signed
Conversion Error

The software uses an unsigned primitive and performs a cast to a
signed primitive, which can produce an unexpected value if the
value of the unsigned primitive cannot be represented using a
signed primitive.

CWE-197 Numeric Truncation Error

When a primitive is cast to a smaller primitive, the high order
bits of the large value are lost in the conversion, potentially
resulting in an unexpected value that is not equal to the original
value. This value may be required as an index into a buffer, a
loop iterator, or simply necessary state data. In any case, the
value cannot be trusted and the system will be in an undefined
state. While this method may be employed viably to isolate the
low bits of a value, this usage is rare, and truncation usually
implies that an implementation error has occurred.

CWE-484 Omitted Break Statement
in Switch

The program omits a break statement within a switch or similar
construct, causing code associated with multiple conditions to
execute when only code associated with one condition was
intended to execute.

CWE-665 Improper Initialization
The software does not initialize or incorrectly initializes a
resource, which might leave the resource in an unexpected state
when it is accessed or used.

CWE-456 Missing Initialization of a
Variable

The software does not initialize critical variables, which causes
the execution environment to use unexpected values.

CWE-457 Use of uninitialized variable The software uses a variable that has not been initialized.

CWE-480 Use of Incorrect Operator The programmer accidentally uses the wrong operator, which
changes the application logic in security-relevant ways.

CWE-424 Improper Protection of
Alternate Path

The product does not sufficiently protect all possible paths that a
user can take to access restricted functionality or resources.

CWE-833 Deadlock
The software contains multiple threads or executable segments
that are waiting for each other to release a necessary lock,
resulting in deadlock.

CWE-1087
Class Element with Virtual
Method Element without
Virtual Destructor

The software fails to include a virtual destructor in a class that
includes a virtual method(s).

 32

CWE-1079
Parent Class Element
without Virtual Destructor
Method Element

The software fails to include a virtual destructor in a parent class.

CWE-1045
Child Class Element without
Virtual Destructor unlike its
Parent Class Element The software fails to include a virtual destructor in a child class

despite the existence of a virtual destructor in the parent class.

CWE-1051

Storable and Member Data
Element Initialization with
Hard-Coded Network
Resource Configuration
Data

The software contains hard-coded values corresponding to
network resource identifications.

CWE-1066
Serializable Storable Data
Element without
Serialization Control
Element

 The software fails to fully implement serialization capabilities.

CWE-1070 Serializable Storable Data
Element with non-
Serializable Item Elements

The software contains an incomplete implementation of
serialization capabilities.

6.6 Automated Source Code Security Measure Element Descriptions

The quality measure elements (weaknesses violating software quality rules) that compose the CISQ
Automated Source Code Security Measure are presented in Table 4. This measure contains 37 parent
weaknesses and 36 contributing weaknesses (children in the CWE) that represent variants of these
weaknesses. The CWE numbers for contributing weaknesses is presented in light blue cells immediately
below the parent weakness whose CWE number is in a dark blue cell.

Table 4. Quality Measure Elements for Automated Source Code Security Measure

CWE # Descriptor Weakness description

CWE-22
Improper Limitation of a
Pathname to a Restricted
Directory ('Path Traversal')

The software uses external input to construct a pathname
that is intended to identify a file or directory that is
located underneath a restricted parent directory, but the
software does not properly neutralize special elements
within the pathname that can cause the pathname to
resolve to a location that is outside of the restricted
directory.

 33

CWE-23 Relative Path Traversal

The software uses external input to construct a pathname
that should be within a restricted directory, but it does not
properly neutralize sequences such as ".." that can resolve
to a location that is outside of that directory.

CWE-36 Absolute Path Traversal

The software uses external input to construct a pathname
that should be within a restricted directory, but it does not
properly neutralize absolute path sequences such as
"/abs/path" that can resolve to a location that is outside of
that directory.

CWE-77

Improper Neutralization of
Special Elements used in a
Command ('Command
Injection')

The software constructs all or part of a command using
externally-influenced input from an upstream component,
but it does not neutralize or incorrectly neutralizes special
elements that could modify the intended command when
it is sent to a downstream component.

CWE-78

Improper Neutralization of
Special Elements used in an
OS Command ('OS Command
Injection')

The software constructs all or part of an OS command
using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the
intended OS command when it is sent to a downstream
component.

CWE-88 Argument Injection or
Modification

The software does not sufficiently delimit the arguments
being passed to a component in another control sphere,
allowing alternate arguments to be provided, leading to
potentially security-relevant changes.

CWE-79

Improper Neutralization of
Input During Web Page
Generation ('Cross-site
Scripting')

The software does not neutralize or incorrectly neutralizes
user-controllable input before it is placed in output that is
used as a web page that is served to other users.

CWE-89

Improper Neutralization of
Special Elements used in an
SQL Command ('SQL
Injection')

The software constructs all or part of an SQL command
using externally-influenced input from an upstream
component, but it does not neutralize or incorrectly
neutralizes special elements that could modify the
intended SQL command when it is sent to a downstream
component.

CWE-564 SQL Injection: Hibernate

Using Hibernate to execute a dynamic SQL statement built
with user-controlled input can allow an attacker to modify
the statement's meaning or to execute arbitrary SQL
commands.

CWE-99 Resource injection

The software receives input from an upstream
component, but it does not restrict or incorrectly restricts
the input before it is used as an identifier for a resource
that may be outside the intended sphere of control.

 34

CWE-119
Improper Restriction of
Operations within the Bounds
of a Memory Buffer

The software performs operations on a memory buffer,
but it can read from or write to a memory location that is
outside of the intended boundary of the buffer.

CWE-120
Buffer Copy without Checking
Size of Input ('Classic Buffer
Overflow')

The program copies an input buffer to an output buffer
without verifying that the size of the input buffer is less
than the size of the output buffer, leading to a buffer
overflow.

CWE-123 Write-what-where condition The program allows an arbitrary value to be written to an
arbitrary location, often as the result of a buffer overflow.

CWE-125 Out-of-bounds Read The software reads data past the end, or before the
beginning, of the intended buffer.

CWE-130 Improper Handling of Length
Parameter Inconsistency

The software parses a formatted message or structure, but
it does not handle or incorrectly handles a length field that
is inconsistent with the actual length of the associated
data.

CWE-786 Access of Memory Location
Before Start of Buffer

The software reads or writes to a buffer using an index or
pointer that references a memory location prior to the
beginning of the buffer. This typically occurs when a
pointer or its index is decremented to a position before
the buffer, when pointer arithmetic results in a position
before the beginning of the valid memory location, or
when a negative index is used.

CWE-787 Out-of-bounds Write

The software writes data past the end, or before the
beginning, of the intended buffer. The software may
modify an index or perform pointer arithmetic that
references a memory location that is outside of the
boundaries of the buffer.

CWE-788 Access of Memory Location
After End of Buffer

The software reads or writes to a buffer using an index or
pointer that references a memory location after the end of
the buffer. This typically occurs when a pointer or its
index is decremented to a position before the buffer;
when pointer arithmetic results in a position before the
buffer; or when a negative index is used, which generates
a position before the buffer.

CWE-805 Buffer Access with Incorrect
Length Value

The software uses a sequential operation to read or write
a buffer, but it uses an incorrect length value that causes it
to access memory that is outside of the bounds of the
buffer.

 35

CWE-822 Untrusted Pointer
Dereference

The program obtains a value from an untrusted source,
converts this value to a pointer, and dereferences the
resulting pointer. There are several variants of this
weakness, including but not necessarily limited to:
 The untrusted value is directly invoked as a function call.
In OS kernels or drivers where there is a boundary
between "userland" and privileged memory spaces, an
untrusted pointer might enter through an API or system
call (see CWE-781 for one such example).
 Inadvertently accepting the value from an untrusted
control sphere when it did not have to be accepted as
input at all. This might occur when the code was originally
developed to be run by a single user in a non-networked
environment, and the code is then ported to or otherwise
exposed to a networked environment.

CWE-823 Use of Out-of-range Pointer
Offset

The program performs pointer arithmetic on a valid
pointer, but it uses an offset that can point outside of the
intended range of valid memory locations for the resulting
pointer.
 While a pointer can contain a reference to any arbitrary
memory location, a program typically only intends to use
the pointer to access limited portions of memory, such as
contiguous memory used to access an individual array.
 Programs may use offsets to access fields or sub-
elements stored within structured data. The offset might
be out-of-range if it comes from an untrusted source, is
the result of an incorrect calculation, or occurs because of
another error.

CWE-824 Access of Uninitialized Pointer
The program accesses or uses a pointer that has not been
initialized. If the pointer contains an uninitialized value,
then the value might not point to a valid memory location.

CWE-825 Expired Pointer Dereference
The program dereferences a pointer that contains a
location for memory that was previously valid, but is no
longer valid.

CWE-129 Improper Validation of Array
Index

The product uses untrusted input when calculating or
using an array index, but the product does not validate or
incorrectly validates the index to ensure the index
references a valid position within the array.

CWE-134 Use of Externally-Controlled
Format String

The software uses a function that accepts a format string
originating from an external source as an argument, but
the format string is not sanitized prior to use based on a
list of vetted sanitization functions.

 36

CWE-252 Unchecked Return Value
The software does not check the return value from a
method or function, which can prevent it from detecting
unexpected states and conditions.

CWE-434 Unrestricted Upload of File
with Dangerous Type

The software allows the upload or transfer files of
dangerous types that can be automatically processed
within the product's environment.

CWE-665 Improper Initialization
The software does not initialize or incorrectly initializes a
resource, which might leave the resource in an
unexpected state when it is accessed or used.

CWE-456 Missing Initialization of a
Variable

The software does not initialize critical variables, which
causes the execution environment to use unexpected
values.

CWE-457 Use of uninitialized variable The software uses a variable that has not been initialized.

CWE-606 Unchecked input for loop
condition

The software accepts a user input without any range check
prior to being used in a loop condition statement.

CWE-662 Improper Synchronization
The software attempts to use a shared resource in an
exclusive manner, but does not prevent or incorrectly
prevents use of the resource by another thread or process.

CWE-366 Race Condition within a
Thread

If two threads of execution use a resource simultaneously,
there exists the possibility that resources may be used
while invalid, in turn making the state of execution
undefined.

CWE-543
Use of Singleton Pattern
Without Synchronization in a
Multithreaded Context

The software uses the singleton pattern when creating a
resource within a multithreaded environment.

CWE-567
Unsynchronized Access to
Shared Data in a
Multithreaded Context

The product does not properly synchronize shared data,
such as static variables across threads, which can lead to
undefined behavior and unpredictable data changes.

CWE-667 Improper Locking

The software does not properly acquire a lock on a
resource, or it does not properly release a lock on a
resource, leading to unexpected resource state changes
and behaviors.

CWE-820 Missing Synchronization
The software utilizes a shared resource in a concurrent
manner but does not attempt to synchronize access to the
resource.

CWE-821 Incorrect Synchronization
The software utilizes a shared resource in a concurrent
manner but it does not correctly synchronize access to the
resource.

 37

CWE-672 Operation on a Resource after
Expiration or Release

The software uses, accesses, or otherwise operates on a
resource after that resource has been expired, released, or
revoked.

CWE-415 Double Free
The product calls free() twice on the same memory
address, potentially leading to modification of unexpected
memory locations.

CWE-416 Use After Free Referencing memory after it has been freed can cause a
program to crash, use unexpected values, or execute code.

CWE-681 Incorrect Conversion between
Numeric Types

The software declares a variable, field, member, etc. with
a numeric type, and then updates it with a value from a
second numeric type that is incompatible with the first
numeric type.

CWE-194 Unexpected Sign Extension

The software performs an operation on a number that
causes it to be sign-extended when it is transformed into a
larger data type. When the original number is negative,
this can produce unexpected values that lead to resultant
weaknesses.

CWE-195 Signed to Unsigned
Conversion Error

The software uses a signed primitive and performs a cast
to an unsigned primitive, which can produce an
unexpected value if the value of the signed primitive
cannot be represented using an unsigned primitive.

CWE-196 Unsigned to Signed
Conversion Error

The software uses an unsigned primitive and performs a
cast to a signed primitive, which can produce an
unexpected value if the value of the unsigned primitive
cannot be represented using a signed primitive.

CWE-197 Numeric Truncation Error

When a primitive is cast to a smaller primitive, the high
order bits of the large value are lost in the conversion,
potentially resulting in an unexpected value that is not
equal to the original value. This value may be required as
an index into a buffer, a loop iterator, or simply necessary
state data. In any case, the value cannot be trusted and
the system will be in an undefined state. While this
method may be employed viably to isolate the low bits of
a value, this usage is rare, and truncation usually implies
that an implementation error has occurred.

CWE-404 Improper Resource Shutdown
or Release

The program does not release or incorrectly releases a
resource before it is made available for re-use.

CWE-401
Improper Release of Memory
Before Removing Last
Reference ('Memory Leak')

The software does not sufficiently track and release
allocated memory after it has been used, which slowly
consumes remaining memory.

 38

CWE-772 Missing Release of Resource
after Effective Lifetime

The software does not release a resource after its effective
lifetime has ended, i.e., after the resource is no longer
needed.

CWE-798 Use of Hard-coded
Credentials

The software contains hard-coded credentials, such as a
password or cryptographic key, which it uses for its own
inbound authentication, outbound communication to
external components, or encryption of internal data.

CWE-259 Use of Hard-coded Password
The software contains a hard-coded password, which it
uses for its own inbound authentication or for outbound
communication to external components.

CWE-321 Use of Hard-coded
Cryptographic Key The software uses a hard-coded cryptographic key.

CWE-835 Loop with Unreachable Exit
Condition ('Infinite Loop')

The program contains an iteration or loop with an exit
condition that cannot be reached, i.e., an infinite loop.

CWE 778 Insufficient logging of security
events

When a security-critical event occurs, it is either not
recorded or important details about the event are omitted
when logging it

CWE-789 Uncontrolled Memory
Allocation

The product allocates memory based on an untrusted size
value, but it does not validate or incorrectly validates the
size, allowing arbitrary amounts of memory to be
allocated.

CWE-682 Incorrect Calculation
The software performs a calculation that generates
incorrect or unintended results that are later used in
security-critical decisions or resource management.

CWE-131 Incorrect Calculation of Buffer
Size

The software does not correctly calculate the size to be
used when allocating a buffer, which could lead to a buffer
overflow.

CWE-369 Divide By Zero The product divides a value by zero.

CWE-611
Improper Restriction of XML
External Entity Reference
('XXE')

The software processes an XML document that can
contain XML entities with URIs that resolve to documents
outside of the intended sphere of control, causing the
product to embed incorrect documents into its output.

CWE-502 Deserialization of Untrusted
Data

The application deserializes untrusted data without
sufficiently verifying that the resulting data will be valid.

CWE-775
Missing Release of File
Descriptor or Handle after
Effective Lifetime

The software does not release a file descriptor or handle
after its effective lifetime has ended, i.e., after the file
descriptor/handle is no longer needed. When a file
descriptor or handle is not released after use (typically by
explicitly closing it), attackers can cause a denial of service

 39

by consuming all available file descriptors/handles, or
otherwise preventing other system processes from
obtaining their own file descriptors/handles.

CWE-783 Operator Precedence Logic
Error

The program uses an expression in which operator
precedence causes incorrect logic to be used. While often
just a bug, operator precedence logic errors can have
serious consequences if they are used in security-critical
code, such as making an authentication decision.

CWE-424 Improper Protection of
Alternate Path

The product does not sufficiently protect all possible paths
that a user can take to access restricted functionality or
resources.

CWE-
1057

Circumventing data access
routines

The software executes a data access outside of a
dedicated data access component, thus circumventing the
intended design to deny direct data access, thus allowing
access only through dedicated data access components.
Notes:
The dedicated data access component can be either
client-side or server-side, which means that data access
components can be developed using non-SQL language.
If there is no dedicated data access component, every
data access is a violation.
For some embedded software that requires access to
data from anywhere, the whole software is defined as a
data access component. This condition must be identified
as input to the analysis.

CWE-480 Use of Incorrect Operator
The programmer accidentally uses the wrong operator,
which changes the application logic in security-relevant
ways.

CWE-570 Expression is Always False The software contains an expression that will always
evaluate to false.

CWE-571 Expression Is Always True The software contains an expression that will always
evaluate to true.

CWE-477
Use of Obsolete Function

The code uses deprecated or obsolete functions, which
suggests that the code has not been actively reviewed or
maintained.

CWE-643
Improper Neutralization of
Data within XPath
Expressions ('XPath Injection')

The software uses external input to dynamically construct
an XPath expression used to retrieve data from an XML
database, but it does not neutralize or incorrectly
neutralizes that input. This allows an attacker to control
the structure of the query.

 40

CWE-652

CWE-652 Improper
Neutralization of Data within
XQuery Expressions ('XQuery
Injection')

The software uses external input to dynamically construct
an XQuery expression used to retrieve data from an XML
database, but it does not neutralize or incorrectly
neutralizes that input. This allows an attacker to control
the structure of the query.

CWE-732
Incorrect Permission
Assignment for Critical
Resource

The software specifies permissions for a security-critical
resource in a way that allows that resource to be read or
modified by unintended actors.

CWE-90
Improper Neutralization of
Special Elements used in an
LDAP Query ('LDAP Injection')

The software constructs all or part of an LDAP query using
externally-influenced input from an upstream component,
but it does not neutralize or incorrectly neutralizes special
elements that could modify the intended LDAP query
when it is sent to a downstream component.

CWE-917 XML Injection (aka Blind
XPath Injection)

The software does not properly neutralize special
elements that are used in XML, allowing attackers to
modify the syntax, content, or commands of the XML
before it is processed by an end system.

6.4 Introduction to the Specification of Quality Measure Elements

Clauses 7, 8, and 9 display in human readable format the content of the machine readable XMI format
file attached to this specification. The content of the machine readable XMI format file represents the
Quality Measure Elements with the following conventions

 structural elements included in a weakness pattern are represented in the Knowledge Discovery
Metamodel (KDM)

 relations among the structural elements constituting a weakness pattern are represented in the
Software Patterns Metamodel Standard (SPMS) to compute measures at the weakness level.

 Calculation of the 4 measures are represented in the Structured Metrics Metamodel (SMM).

6.5 Knowledge Discovery Metamodel (KDM)

This specification uses the Knowledge Discovery Metamodel (KDM) to represent the parsed entities
whose relationships create a weakness pattern. The machine readable XMI format file attached to the
current specification uses KDM entities in the ‘KDM outline’ section of the pattern definitions to
represent the code elements whose presence or absence indicates an occurrence of the weakness.
Descriptions try to remain as generic, yet as accurate as possible, so that the pattern can be applied to
as many situations as possible: different technologies, different programming languages, etc. This
means:

1. The descriptions include information such as (MethodUnit), (Reads), (ManagesResource), … to
identify the KDM entities included in the pattern definition.

 41

2. The descriptions only describe the salient aspects of the pattern since the specifics can be
technology or language-dependent

Detection Patterns presented in Clause 8 use micro-KDM to provide greater granularity to their
specification of weakness patterns. Additional semantic constraints are required to coordinate
producers and consumers of KDM models to use the KDM Program Element layer for control- and data-
flow analysis applications, as well as for providing more precision for the Resource Layer and the
Abstraction Layer. Micro-KDM achieves this by constraining the granularity of the leaf action elements
and their meaning by providing the set of micro-actions with predefined semantics. Micro-KDM treats
the original macro-action as a container that owns certain micro-actions with predefined semantics.
Thus, precise semantics of the macro-action is defined. Thus, micro-KDM constrains the patterns of how
to map the statements of the existing system as determined by the programming language into KDM.

KDM is helpful for reading this chapter. However, for readers not familiar with KDM, Table 5 presents a
primer which translates standard source code element terms into the KDM outline in this specification.

Table 5. Software elements translated into KDM wording

Software
element

KDM outline

function,
method,
procedur
e, stored
procedur
e, sub-
routine
etc.

CallableUnit|MethodUnit id="ce1" ...

variable,
field,
member,
etc.

StorableUnit|MemberUnit id="de1" ...

class,
interface
definitio
n and
use as a
type, use
as base
class

ClassUnit|InterfaceUnit id="cu1" ...
StorableUnit id="su1" type="cu1" ...
ClassUnit id="cu2" ...
 Extends "cu1" ...

method ClassUnit id="cu2" ...
 MethodUnit "mu1" ...

field,
member

ClassUnit id="cu2" ...
 MemberUnit "mu1" ...

 42

SQL
stored
procedur
es

DataModel
 RelationalSchema ...
 CallableUnit id="cu1" kind="stored" ...

return
code
value
definitio
n and
use

CallableUnit|MethodUnit id="ce1" type="ce1_signature" ...
 Signature "ce1_signature"
 ParameterUnit id="pu1" kind="return" ...
Value|StorableUnit|MemberUnit id="de1" ...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
...
 Calls "ce1"
 Reads "de1"

exceptio
n

CallableUnit|MethodUnit id="ce1" type="ce1_signature" ...
 Signature "ce1_signature"
 ParameterUnit id="pu1" kind="exception" ...

user
input
data flow

UIModel

 UIField id="uf1"

 UIAction id="ua1" implementation="ae1" kind="input"

 ReadsUI "uf1"

 ...

 CodeModel

 ...

 StorableUnit id="su1"

 StorableUnit id="su2"

 ActionElement id="ae1" kind="UI"

 Writes "su1"

 Flow "ae2"

 ActionElement id="ae2"

 Flow "ae3"

 Reads "su1"

 Writes "su2"

 ActionElement id="ae3"

 Flow "ae4"

 ...

 43

executio
n path

ActionElement id="ae1" kind="UI"
 Flow|Calls "ae2"
ActionElement id="ae2"
 Flow|Calls "ae3"
ActionElement id="ae3"
 Flow|Calls "ae4"

RDBMS DataModel

 RelationalSchema ...
for loop ActionElement id="ae5" kind="Compound"

 StorableUnit id="su3"
 ActionElement id="ae6" kind="Assign"
 Reads ...
 Writes "su3"
 Flows "ae7"
 ActionElement id="ae7"
kind="LessThan|LessThanOrEqual|GreaterThan|GreaterThanOrEqual"
 Reads "su3"
 Reads "su2"
 TrueFlow "ae8"
 FalseFlow "ff1"
 ActionElement id="ae8" kind=...
 ...
 ActionElement id="ae9" kind="Incr|Decr"
 Addresses "loopVariable"
 Flows "ae6"
 ActionElement id="ff1" kind="Nop"

while
loop

ActionElement id="ae5" kind="Compound"

 BooleanType id="booleanType"

 DataElement id="de1" type="booleanType"

 EntryFlow "tf1"

 ActionElement id="tf1" ...

 ...

 ActionElement id ="ae6"
kind="GreaterThan|GreaterThanOrEqual|LessThan|LessThanOrEqual"

 44

 Reads "su2"

 ...

 Writes "de1"

 ActionElement id="ae7" kind="Condition"

 Reads "de1"

 TrueFlow "tf1"

 FalseFlow "ff1"

 ActionElement id="ff1"

checked Value|StorableUnit|MemberUnit id="de1" ...
ActionElement id="ae1"
kind="Equals|NotEqualTo|GreaterThan|GreaterThanOrEqual|LessThan|Les
sThanOrEqual" ...
 Reads "de1"

6.6 Software Patterns Metamodel Standard (SPMS)

This specification uses the Software Patterns Metamodel Standard (SPMS) to represent weaknesses as
software patterns involving code elements and their relationships in source code. In the machine
readable XMI format file attached to the current specification each weakness pattern is represented in
SPMS Definitions Classes as follows:

 PatternDefinition (SPMS:PatternDefinition): the pattern specification describing a specific
weakness and a specific detection pattern. In the context of this document, each Quality
Measure Element is the count of occurrences of the SPMS detection patterns detected in the
source code for a specific weakness related to the Quality Characteristic being measured.

 Role (SPMS:Role): “A pattern is informally defined as a set of relationships between a set of
entities. Roles describe the set of entities within a pattern, between which relationships will be
described. As such the Role is a required association in a PatternDefinition…Semantically, a Role
is a 'slot' that is required to be fulfilled for an instance of its parent PatternDefinition to exist.
Roles for weaknesses are abstractions, while the roles for detection patterns can be linked back
to the code elements.

 PatternSection (SPMS:PatternSection): “A PatternSection is a free-form prose textual
description of a portion of a PatternDefinition.” In the context of this document, there are 7
different PatternSections in use:

o “Descriptor” (“descriptor” in the XMI document) to provide pattern signature, a visible
interface of the pattern,

o “Description” (“description” in XMI document) to provide a human readable explanation
of the measure,

 45

o “KDM Outline” (“kdm outline” in XMI document) to provide an illustration of the
essential elements related to KDM, in a human readable outline,

o “What to report” (“reporting” in XMI document) to provide the list of elements to
report to claim the finding of an occurrence of a detection pattern

o “Reference” (“reference” in XMI document) to provide pointers to the weakness
description in the CWE repository

o “Usage name” (“usage_name” in XMI document) to provide a more user-friendly name
to the weakness, generally the case when the weakness original name was too strongly
KDM-flavored for the general audience

SPMS Relationships Classes:

 MemberOf (SPMS:MemberOf): “An InterpatternRelationship specialized to indicate inclusion in
a Category”

 RelatedPattern (SPMS:RelatedPattern) with 4 different Natures (SPMS:Nature) (“DetectedBy”,
“Detecting”,” AggregatedBy”, and “Aggregating”): InterpatternRelationships used to model the
relations between weaknesses and detection patterns, and between parent and child
weaknesses

 Category (SPMS:Category): “A Category is a simple grouping element for gathering related
PatternDefinitions into clusters.” In the context of this document, the SPMS Categories are used
to represent the 4 Quality Characteristics:

o “Reliability”,
o “Security”,
o “Performance Efficiency”,
o And “Maintainability”.

6.7 Reading guide

For each numbered sub-clause in clause 7:
 Sub-clause 7.x represents the Software Quality characteristic addressed by the associated

weakness patterns .
 Sub-clause 7.x.y represents the SPMS and SMM modeling associated with a weakness pattern

for a specific weakness associated with the Software Quality characteristic.
 The last sub-clause 7.x.y represents the SMM modeling associated with the quality characteristic

computation.

Weakness pattern sub-clauses are summarizing the various aspects related to a weakness:
 (SPMS) usage name pattern section, if any
 (SPMS) reference pattern section

 46

 (SPMS) roles
 (SPMS) contributing weaknesses and parent weakness, if any,

o useful for reporting of weakness pattern-level information, aggregated or detailed
 (SPMS and SMM) detection patterns,

o useful for reporting of detection pattern-level findings at the weakness level
o useful for counting the violations to the weakness, by summing the count of violations

to its detection patterns

Last sub-clauses are summarizing the computation of the quality measure scores:
 (SMM) detection patterns,

o useful for reporting of detection pattern-level findings at the quality characteristic level
o useful for computing the score of the quality measure, by summing the count of

violations to its detection patterns

For each numbered sub-clause in clause 8:
 Sub-clause 8.x represents the SPMS modeling associated with a detection pattern

Detection pattern sub-clause are summarizing the various aspects related to a detection pattern:
 (SPMS) descriptor, description, KDM outline, reporting pattern sections,

o In description and reporting pattern sections, data between angle brackets (e.g.:
<ControlElement>) identify SPMS roles

 47

7 List of ASCQM Weaknesses (Normative)

7.1 Weakness Category Maintainability

7.1.1 CWE-407 Algorithmic Complexity

Reference
https://cwe.mitre.org/data/definitions/407 Algorithmic Complexity

Roles
 - the <ControlFlow>

Contributing weaknesses
MNT-11 Callable and Method Control Element Excessive Cyclomatic Complexity Value

Detection Patterns
ASCQM Ban Switch in Switch Statement
ASCQM Limit Algorithmic Complexity via Cyclomatic Complexity Value
ASCQM Limit Algorithmic Complexity via Essential Complexity Value
ASCQM Limit Algorithmic Complexity via Module Design Complexity Value

7.1.2 CWE-478 Missing Default Case in Switch Statement

Reference
https://cwe.mitre.org/data/definitions/478 Missing Default Case in Switch Statement

Roles
 - the <SwitchStatement>

Detection Patterns
ASCQM Use Default Case in Switch Statement

7.1.3 Weakness CWE-480 Use of Incorrect Operator

Reference
https://cwe.mitre.org/data/definitions/480 Use of Incorrect Operator

Roles
- the <Operator>

Detection Patterns

 48

ASCQM Ban Assignment Operation Inside Logic Blocks
ASCQM Ban Comparison Expression Outside Logic Blocks
ASCQM Ban Incorrect Object Comparison
ASCQM Ban Incorrect String Comparison
ASCQM Ban Logical Operation with a Constant Operand

7.1.4 CWE-484 Omitted Break Statement in Switch

Reference
https://cwe.mitre.org/data/definitions/484 Omitted Break Statement in Switch

Roles
- the <SwitchStatement>

Detection Patterns
ASCQM Use Break in Switch Statement

7.1.5 CWE-561 Dead Code

Reference
https://cwe.mitre.org/data/definitions/561 Dead Code

Roles
- the <DeadCode>

Detection Patterns
ASCQM Ban Exception Definition without Ever Throwing It
ASCQM Ban Logical Dead Code
ASCQM Ban Unreferenced Dead Code

7.1.6 CWE-570 Expression is Always False

Reference
https://cwe.mitre.org/data/definitions/570 Expression is Always False

Roles
 - the <BooleanExpression>

Detection Patterns
ASCQM Check Boolean Variables are Updated in Different Conditional Branches before Use

7.1.7 CWE-571 Expression is Always True

Reference

 49

https://cwe.mitre.org/data/definitions/571 Expression is Always True

Roles
- the <BooleanExpression>

Detection Patterns
ASCQM Check Boolean Variables are Updated in Different Conditional Branches before Use

7.1.8 CWE-783 Operator Precedence Logic Error

Reference
https://cwe.mitre.org/data/definitions/783 Operator Precedence Logic Error

Roles
- the <Formula>

Detection Patterns
ASCQM Ban Incorrect Joint Comparison
ASCQM Ban Not Operator On Non-Boolean Operand Of Comparison Operation
ASCQM Ban Not Operator On Operand Of Bitwise Operation

7.1.9 CWE-1075 Control Flow Transfer Control Element outside Switch Block

Usage name
Control transferred outside switch statement

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1075 Control Flow Transfer Control Element outside
Switch Block

Roles
 - the <SwitchBlock>
 - the <ControlFlowTransfer>

Detection Patterns
ASCQM Limit Volume of Similar Code

7.1.10 CWE-1093 Callable and Method Control Element Excessive Cyclomatic Complexity
Value

Usage name
Excessive Cyclomatic Complexity

Reference

 50

https://www.omg.org/spec/ASCMM ASCMM-CWE-1093 Callable and Method Control Element Excessive
Cyclomatic Complexity Value

Roles
 - the <Operation>
 - the <ControlFlow>

Parent weaknesses
MNT-11 Callable and Method Control Element Excessive Cyclomatic Complexity Value

Detection Patterns
ASCQM Limit Algorithmic Complexity via Cyclomatic Complexity Value

7.1.11 CWE-1054 Named Callable and Method Control Element with Layer-skipping Call

Usage name
 Layer-skipping calls

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1054 Named Callable and Method Control Element
with Layer-skipping Call

Roles
 - the <Layer1>
 - the <Layer2>
 - the <Call>

Detection Patterns
ASCQM Ban Unintended Paths

7.1.12 CWE-1064 Callable and Method Control Element Excessive Number of Parameters

Usage name
 Excessive parameterization

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1064 Callable and Method Control Element Excessive
Number of Parameters

Roles
 - the <OperationSignature>

 51

Detection Patterns
ASCQM Limit Number of Parameters

7.1.13 CWE-1084 Callable and Method Control Element Excessive Number of Control
Elements involving Data Element from Data Manager or File Resource

Usage name
 Control element with excessive data operations

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1084 Callable and Method Control Element Excessive
Number of Control Elements involving Data Element from Data Manager or File Resource

Roles
 - the <Operation>
 - the <DataAccesses>

Detection Patterns
 ASCQM Limit Number of Data Access

7.1.14 CWE-1081 Public Member Element

Usage name
 Public data element

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1081 Public Member Element

Roles
 - the <PublicDataDeclaration>

Detection Patterns
ASCQM Ban Public Data Elements

7.1.15 CWE-1090 Method Control Element Usage of Member Element from other Class
Element

Usage name
 Cross element data access

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1090 Method Control Element Usage of Member
Element from other Class Element

 52

Roles
 - the <Class1>
 - the <Class2>
 - the <Reference>

Detection Patterns
ASCQM Ban Usage of Data Elements from Other Classes

7.1.16 CWE-1074 Class Element Excessive Inheritance Level

Usage name
 Excessive inheritance levels

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1074 Class Element Excessive Inheritance Level

Roles
Roles:
 - the <ClassInheritanceTree>

Detection Patterns
 ASCQM Ban Excessive Number of Inheritance Levels

7.1.17 CWE-1086 Class Element Excessive Number of Children

Usage name
 Excessive child classes

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1086 Class Element Excessive Number of Children

Roles
 - the <Class>
 - the <Children>

Detection Patterns
ASCQM Ban Excessive Number of Children

7.1.18 CWE-1041 Named Callable and Method Control Element Excessive Similarity

Usage name
 Element redundancy

 53

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1041 Named Callable and Method Control Element
Excessive Similarity

Roles
 - the <Operation1>
 - the <Operation2>
 - the <SimilarCodeElements>

Detection Patterns
ASCQM Limit Volume of Similar Code

7.1.19 CWE-1055 Class Element Excessive Inheritance of Class Elements with Concrete
Implementation

Usage name
 Excessive inheritance from concrete classes

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1055 Class Element Excessive Inheritance of Class
Elements with Concrete Implementation

Roles
 - the <ClassInheritanceDeclaration>
 - the <ConcreteClasses>

Detection Patterns
ASCQM Ban Excessive Number of Concrete Implementations to Inherit From

7.1.20 CWE-1061 Unreachable Named Callable or Method Control Element

Usage name
 Unused code

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1061 Unreachable Named Callable or Method
Control Element

Roles
 - the <Operation>

Detection Patterns
ASCQM Ban Unreferenced Dead Code

 54

7.1.21 CWE-1052 Storable and Member Data Element Initialization with Hard-Coded Literals

Usage name
 Hard-coded literals

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1052 Storable and Member Data Element
Initialization with Hard-Coded Literals

Roles
 - the <Initialization>
 - the <HardCodedValue>

Detection Patterns
ASCQM Ban Hard-Coded Literals used to Initialize Variables

7.1.22 CWE-1048 Callable and Method Control Element Number of Outward Calls

Usage name
 Excessive references

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1048 Callable and Method Control Element Number
of Outward Calls

Roles
 - the <Operation>
 - the <OutwardCalls>

Detection Patterns
ASCQM Limit Number of Outward Calls

7.1.23 CWE-1095 Loop Value Update within the Loop

Usage name
 Condition value update within loop

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1095 Loop Value Update within the Loop

Roles
 - the <LoopCondition>
 - the <LoopValueUpdate>

 55

Detection Patterns
ASCQM Ban Loop Value Update within Incremental and Decremental Loop

7.1.24 CWE-1085 Commented-out Code Element Excessive Volume

Usage name
 Excessive commented-out code

Reference
 https://www.omg.org/spec/ASCMM ASCMM-CWE-1085 Commented-out Code Element Excessive
Volume

Roles
- the <CommentedOutCode>

Detection Patterns
ASCQM Limit Volume of Commented-Out Code

7.1.25 CWE-1047 Inter-Module Dependency Cycles

Usage name
 Circular dependencies

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1047 Inter-Module Dependency Cycles

Roles
 - the <ModuleDependencyCycles>

Detection Patterns
ASCQM Ban Circular Dependencies between Modules

7.1.26 CWE-1080 Source Element Excessive Size

Usage name
 Excessively large file

Reference
https://www.omg.org/spec/ASCMM ASCMM-CWE-1080 Source Element Excessive Size

Roles
 - the <Operation>
 - the <SourceCode>

 56

Detection Patterns
ASCQM Limit Size of Operations Code

7.1.27 CWE-1062 Parent Class Element with References to Child Class Element

Usage name
Parent class referencing child class

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1062 Parent Class Element with References to Child
Class Element

Roles
 - the <ParentClass>
 - the <ChildClass>
 - the <Reference>

Detection Patterns
ASCQM Ban Conversion References to Child Class

7.1.28 CWE-1087 Class Element with Virtual Method Element without Virtual Destructor

Usage name
Class with virtual method missing destructor

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1087 Class Element with Virtual Method Element
without Virtual Destructor

Roles
 - the <Class>
 - the <VirtualMethod>

Detection Patterns
ASCQM Implement Virtual Destructor for Classes with Virtual Methods

7.1.29 CWE-1079 Parent Class Element without Virtual Destructor Method Element

Usage name
Parent class missing virtual destructor

Reference

 57

https://www.omg.org/spec/ASCRM ASCRM-CWE-1079 Parent Class Element without Virtual Destructor
Method Element

Roles
 - the <ParentClass>

Detection Patterns
ASCQM Implement Virtual Destructor for Parent Classes

7.1.30 CWE-1045 Child Class Element without Virtual Destructor unlike its Parent Class
Element

Usage name
Child class missing virtual destructor

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1045 Child Class Element without Virtual Destructor
unlike its Parent Class Element

Roles
 - the <ParentClass>
 - the <ParentClassVirtualDestructor>
 - the <ChildClass>

Detection Patterns
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor

7.1.31 CWE-1051 Storable and Member Data Element Initialization with Hard-Coded Network
Resource Configuration Data

Usage name
Hard-coded network resource information

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1051 Storable and Member Data Element Initialization
with Hard-Coded Network Resource Configuration Data

Roles
 - the <NetworkResourceAccess>
 - the <HardCodedValue>

Detection Patterns
ASCQM Ban Hard-Coded Literals used to Connect to Resource

 58

7.1.32 Maintainability detection patterns
Detection Patterns
ASCQM Ban Assignment Operation Inside Logic Blocks
ASCQM Ban Circular Dependencies between Modules
ASCQM Ban Comparison Expression Outside Logic Blocks
ASCQM Ban Control Flow Transfer
ASCQM Ban Conversion References to Child Class
ASCQM Ban Exception Definition without Ever Throwing It
ASCQM Ban Excessive Number of Children
ASCQM Ban Excessive Number of Concrete Implementations to Inherit From
ASCQM Ban Excessive Number of Inheritance Levels
ASCQM Ban Hard-Coded Literals used to Connect to Resource
ASCQM Ban Hard-Coded Literals used to Initialize Variables
ASCQM Ban Incorrect Joint Comparison
ASCQM Ban Incorrect Object Comparison
ASCQM Ban Incorrect String Comparison
ASCQM Ban Logical Dead Code
ASCQM Ban Logical Operation with a Constant Operand
ASCQM Ban Loop Value Update within Incremental and Decremental Loop
ASCQM Ban Not Operator On Non-Boolean Operand Of Comparison Operation
ASCQM Ban Not Operator On Operand Of Bitwise Operation
ASCQM Ban Public Data Elements
ASCQM Ban Switch in Switch Statement
ASCQM Ban Unintended Paths
ASCQM Ban Unreferenced Dead Code
ASCQM Ban Usage of Data Elements from Other Classes
ASCQM Check Boolean Variables are Updated in Different Conditional Branches before Use
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor
ASCQM Implement Virtual Destructor for Classes with Virtual Methods
ASCQM Implement Virtual Destructor for Parent Classes
ASCQM Limit Algorithmic Complexity via Cyclomatic Complexity Value
ASCQM Limit Algorithmic Complexity via Essential Complexity Value
ASCQM Limit Algorithmic Complexity via Module Design Complexity Value
ASCQM Limit Number of Data Access
ASCQM Limit Number of Outward Calls
ASCQM Limit Number of Parameters
ASCQM Limit Size of Operations Code
ASCQM Limit Volume of Commented-Out Code
ASCQM Limit Volume of Similar Code
ASCQM Use Break in Switch Statement
ASCQM Use Default Case in Switch Statement

 59

7.2 Weakness Category Performance Efficiency

7.2.1 CWE-401 Improper Release of Memory Before Removing Last Reference ('Memory
Leak')

Reference
https://cwe.mitre.org/data/definitions/401 Improper Release of Memory Before Removing Last
Reference ('Memory Leak')

Roles
 - the <MemoryAllocation>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Ban Comma Operator from Delete Statement
ASCQM Implement Required Operations for Manual Resource Management
ASCQM Release Memory After Use
ASCQM Release Memory after Use with Correct Operation
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

7.2.2 Weakness CWE-404 Improper Resource Shutdown or Release

Reference
https://cwe.mitre.org/data/definitions/404 Improper Resource Shutdown or Release

Roles
 - the <ResourceAllocation>

Contributing weaknesses
CWE-401 Improper Release of Memory Before Removing Last Reference ('Memory Leak')
CWE-772 Missing Release of Resource after Effective Lifetime
CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime

Detection Patterns
ASCQM Ban Comma Operator from Delete Statement
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor
ASCQM Implement Virtual Destructor for Classes with Virtual Methods
ASCQM Implement Virtual Destructor for Parent Classes
ASCQM Release File Resource after Use in Operation
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

 60

7.2.3 CWE-424 Improper Protection of Alternate Path

Reference
https://cwe.mitre.org/data/definitions/424 Improper Protection of Alternate Path

Roles
 - the <AlternatePath>

Detection Patterns
ASCQM Ban Unintended Paths

7.2.4 CWE-772 Missing Release of Resource after Effective Lifetime

Reference
https://cwe.mitre.org/data/definitions/772 Missing Release of Resource after Effective Lifetime

Roles
 - the <ResourceAllocation>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Release File Resource after Use in Operation
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

7.2.5 CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime

Reference
https://cwe.mitre.org/data/definitions/775 Missing Release of File Descriptor or Handle after Effective
Lifetime

Roles
 - the <FileDescriptorOrHandleAllocation>

Parent weaknesses
Weakness CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime

Detection Patterns
ASCQM Release File Resource after Use in Class
ASCQM Release File Resource after Use in Operation

 61

7.2.6 CWE-1073 Non-SQL Named Callable and Method Control Element with Excessive
Number of Data Resource Access

Usage name
Excessive data queries in client-side code

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1073 Non-SQL Named Callable and Method Control
Element with Excessive Number of Data Resource Access

Roles
 - the <NonSQLOperation>
 - the <DataAccesses>

Detection Patterns
ASCQM Ban Excessive Number of Data Resource Access from non-SQL Code

7.2.7 CWE-1057 Data Access Control Element from Outside Designated Data Manager
Component

Usage name
 Circumventing data access routines

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1057 Data Access Control Element from Outside
Designated Data Manager Component

Roles
 - the <DataManager>
 - the <DataAccess>

Detection Patterns
ASCQM Ban Unintended Paths

7.2.8 CWE-1043 Storable and Member Data Element Excessive Number of Aggregated
Storable and Member Data Elements

Usage name
Excessively large data element

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1043 Storable and Member Data Element Excessive
Number of Aggregated Storable and Member Data Elements

 62

Roles
 - the <AggregationData>
 - the <AggregatedData>

Detection Patterns
ASCQM Limit Number of Aggregated Non-Primitive Data Types

7.2.9 CWE-1072 Data Resource Access not using Connection Pooling Capability

Usage name
Data access not using connection pool

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1072 Data Resource Access not using Connection
Pooling Capability

Roles
 - the <Connection>

Detection Patterns
ASCQM Ban Use of Prohibited Low-Level Resource Management Functionality

7.2.10 CWE-1071 Storable and Member Data Element Memory Allocation Missing De-
allocation Control Element

Usage name
Unreleased data

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1071 Storable and Member Data Element Memory
Allocation Missing De-allocation Control Element

Roles
 - the <MemoryAllocation>

Detection Patterns
ASCQM Release Memory after Use with Correct Operation

7.2.11 CWE-1091 Storable and Member Data Element Reference Missing De-referencing
Control Element

Reference

 63

https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1091 Storable and Member Data Element Reference
Missing De-referencing Control Element

Roles
 - the <Object>

Detection Patterns
ASCQM Release Memory after Use with Correct Operation

7.2.12 CWE-1046 Immutable Storable and Member Data Element Creation

Usage name
Immutable text data

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1046 Immutable Storable and Member Data
Element Creation

Roles
 - the <ImmutableDataCreation>

Detection Patterns
ASCQM Ban Incrementral Creation of Immutable Data

7.2.13 CWE-1042 Static Member Data Element outside of a Singleton Class Element

Usage name
Static data outside of singleton class

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1042 Static Member Data Element outside of a
Singleton Class Element

Roles
 - the <StaticDataDeclaration>

Detection Patterns
ASCQM Ban Static Non-Final Data Element Outside Singleton

7.2.14 CWE-1049 Data Resource Read and Write Access Excessive Complexity

Usage name
Complex read/write access

 64

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1049 Data Resource Read and Write Access
Excessive Complexity

Roles
 - the <DataQuery>

Detection Patterns
ASCQM Ban Excessive Complexity of Data Resource Access

7.2.15 CWE-1067 Data Resource Read Access Unsupported by Index Element

Usage name Incorrect indices

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1067 Data Resource Read Access Unsupported by
Index Element

Roles
 - the <DataQuery>
 - the <TableOrView>

Detection Patterns
ASCQM Implement Index Required by Query on Large Tables

7.2.16 CWE-1089 Large Data Resource ColumnSet Excessive Number of Index Elements

Usage name
Excessive number of indices on large tables

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1089 Large Data Resource ColumnSet Excessive
Number of Index Elements

Roles
 - the <Table>
 - the <Indexes>

Detection Patterns
ASCQM Ban Excessive Number of Index on Columns of Large Tables

7.2.17 CWE-1094 Large Data Resource ColumnSet with Index Element of Excessive Size

Usage name

 65

Excessively large indices on large tables

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1094 Large Data Resource ColumnSet with Index
Element of Excessive Size

Roles
 - the <Table>
 - the <Indexes>

Detection Patterns
ASCQM Ban Excessive Size of Index on Columns of Large Tables

7.2.18 CWE-1050 Control Elements Requiring Significant Resource Element within Control
Flow Loop Block

Usage name
Resource consuming operation in loop

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1050 Control Elements Requiring Significant
Resource Element within Control Flow Loop Block

Roles
 - the <Loop>
 - the <ExpensiveOperation>

Detection Patterns
ASCQM Ban Expensive Operations in Loops

7.2.19 CWE-1060 Non-stored SQL Callable Control Element with Excessive Number of Data
Resource Access

Usage name
Excessive data queries in non-stored procedure

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1060 Non-stored SQL Callable Control Element with
Excessive Number of Data Resource Access

Roles
 - the <NonStoredSQLOperation>
 - the <DataAccesses>

 66

Detection Patterns
ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL Procedure

7.2.20 Performance Efficiency detection patterns

Detection Patterns
ASCQM Ban Comma Operator from Delete Statement
ASCQM Ban Excessive Complexity of Data Resource Access
ASCQM Ban Excessive Number of Data Resource Access from non-SQL Code
ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL Procedure
ASCQM Ban Excessive Number of Index on Columns of Large Tables
ASCQM Ban Excessive Size of Index on Columns of Large Tables
ASCQM Ban Expensive Operations in Loops
ASCQM Ban Incrementral Creation of Immutable Data
ASCQM Ban Static Non-Final Data Element Outside Singleton
ASCQM Ban Unintended Paths
ASCQM Ban Use of Prohibited Low-Level Resource Management Functionality
ASCQM Implement Index Required by Query on Large Tables
ASCQM Implement Required Operations for Manual Resource Management
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor
ASCQM Implement Virtual Destructor for Classes with Virtual Methods
ASCQM Implement Virtual Destructor for Parent Classes
ASCQM Limit Number of Aggregated Non-Primitive Data Types
ASCQM Release File Resource after Use in Class
ASCQM Release File Resource after Use in Operation
ASCQM Release Memory After Use
ASCQM Release Memory after Use with Correct Operation
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

 67

7.3 Weakness Category Reliability

7.3.1 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Reference
https://cwe.mitre.org/data/definitions/119 Improper Restriction of Operations within the Bounds of a
Memory Buffer

Roles
 - the <BufferOperation>

Contributing weaknesses
CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CWE-123 Write-what-where Condition
CWE-125 Out-of-bounds Read
CWE-130 Improper Handling of Length Parameter Inconsistency
CWE-786 Access of Memory Location Before Start of Buffer
CWE-787 Out-of-bounds Write
CWE-788 Access of Memory Location After End of Buffer
CWE-805 Buffer Access with Incorrect Length Value
CWE-822 Untrusted Pointer Dereference
CWE-823 Use of Out-of-range Pointer Offset
CWE-824 Access of Uninitialized Pointer
CWE-825 Expired Pointer Dereference

Detection Patterns
ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities
ASCQM Ban Use of Expired Pointer
ASCQM Check Index of Array Access
ASCQM Check Input of Memory Manipulation Primitives
ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities
ASCQM Check Offset used in Pointer Arithmetic
ASCQM Initialize Pointers before Use
ASCQM Sanitize User Input used as Pointer

7.3.2 CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

Reference
https://cwe.mitre.org/data/definitions/120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

Roles
 - the <BufferCopy>

 68

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities

7.3.3 CWE-123 Write-what-where Condition

Reference
https://cwe.mitre.org/data/definitions/123 Write-what-where Condition

Roles
 - the <BufferWrite>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities

7.3.4 CWE-125 Out-of-bounds Read

Reference
https://cwe.mitre.org/data/definitions/125 Out-of-bounds Read

Roles
 - the <BufferRead>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Index of Array Access

7.3.5 CWE-130 Improper Handling of Length Parameter Inconsistency

Reference
https://cwe.mitre.org/data/definitions/130 Improper Handling of Length Parameter Inconsistency

Roles
 - the <DataHandling>
 - the <LengthParameter>

 69

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Index of Array Access

7.3.6 CWE-131 Incorrect Calculation of Buffer Size

Reference
https://cwe.mitre.org/data/definitions/131 Incorrect Calculation of Buffer Size

Roles
 - the <BufferSizeCalculation>

Parent weaknesses
CWE-682 Incorrect Calculation

Detection Patterns
ASCQM Ban Buffer Size Computation Based on Array Element Pointer Size
ASCQM Ban Buffer Size Computation Based on Bitwise Logical Operation
ASCQM Ban Buffer Size Computation Based on Incorrect String Length Value

7.3.7 CWE-170 Improper Null Termination

Reference
https://cwe.mitre.org/data/definitions/170 Improper Null Termination

Roles
 - the <BufferWithoutNULLTermination>

Detection Patterns
ASCQM NULL Terminate Output Of String Manipulation Primitives

7.3.8 CWE-194 Unexpected Sign Extension

Reference
https://cwe.mitre.org/data/definitions/194 Unexpected Sign Extension

Roles
 - the <NumberSignExtension>

Parent weaknesses
CWE-681 Incorrect Conversion between Numeric Types

 70

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

7.3.9 CWE-195 Signed to Unsigned Conversion Error

Reference
https://cwe.mitre.org/data/definitions/195 Signed to Unsigned Conversion Error

Roles
 - the <NumberConversionToUnsigned>

Parent weaknesses
CWE-681 Incorrect Conversion between Numeric Types

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

7.3.10 CWE-196 Unsigned to Signed Conversion Error

Reference
https://cwe.mitre.org/data/definitions/196 Unsigned to Signed Conversion Error

Roles
 - the <NumberConversionToSigned>

Parent weaknesses
CWE-681 Incorrect Conversion between Numeric Types

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

7.3.11 CWE-197 Numeric Truncation Error

Reference
https://cwe.mitre.org/data/definitions/197 Numeric Truncation Error

Roles
 - the <NumberTruncation>

Parent weaknesses
CWE-681 Incorrect Conversion between Numeric Types

Detection Patterns

 71

ASCQM Ban Incorrect Numeric Implicit Conversion

7.3.12 CWE-248 Uncaught Exception

Reference
https://cwe.mitre.org/data/definitions/248 Uncaught Exception

Roles
 - the <ExceptionThrowDeclaration>
 - the <ExceptionCatchSequence>

Parent weaknesses
CWE-703 Improper Check or Handling of Exceptional Conditions

Detection Patterns
ASCQM Catch Exceptions

7.3.13 CWE-252 Unchecked Return Value

Reference
https://cwe.mitre.org/data/definitions/252 Unchecked Return Value

Roles
 - the <OperationCall>

Detection Patterns
ASCQM Check Return Value of Resource Operations Immediately
ASCQM Handle Return Value of Must Check Operations

7.3.14 CWE-366 Race Condition within a Thread

Reference
https://cwe.mitre.org/data/definitions/366 Race Condition within a Thread

Roles
 - the <Thread1>
 - the <Thread2>
 - the <ConflictingResource>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Creation of Lock On Private Non-Static Object to Access Private Static Data

 72

ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context

7.3.15 CWE-369 Divide By Zero

Reference
https://cwe.mitre.org/data/definitions/369 Divide By Zero

Roles
 - the <Division>

Parent weaknesses
CWE-682 Incorrect Calculation

Detection Patterns
ASCQM Check and Handle ZERO Value before Use as Divisor

7.3.16 CWE-390 Detection of Error Condition Without Action

Reference
https://cwe.mitre.org/data/definitions/390 Detection of Error Condition Without Action

Roles
 - the <ErrorCondition>

Detection Patterns
ASCQM Ban Empty Exception Block
ASCQM Handle Return Value of Resource Operations

7.3.17 CWE-391 Unchecked Error Condition

Reference
https://cwe.mitre.org/data/definitions/391 Unchecked Error Condition

Roles
 - the <ErrorConditionProcessing>

Parent weaknesses
CWE-703 Improper Check or Handling of Exceptional Conditions

Detection Patterns
ASCQM Ban Empty Exception Block
ASCQM Ban Useless Handling of Exceptions

7.3.18 CWE-392 Missing Report of Error Condition

 73

Reference
https://cwe.mitre.org/data/definitions/392 Missing Report of Error Condition

Roles
 - the <ErrorConditionProcessing>

Parent weaknesses
CWE-703 Improper Check or Handling of Exceptional Conditions

Detection Patterns
ASCQM Ban Useless Handling of Exceptions

7.3.19 CWE-394 Unexpected Status Code or Return Value

Reference
https://cwe.mitre.org/data/definitions/394 Unexpected Status Code or Return Value

Roles
 - the <ReturnValue>

Detection Patterns
ASCQM Ban Incorrect Numeric Conversion of Return Value
ASCQM Handle Return Value of Must Check Operations
ASCQM Handle Return Value of Resource Operations

7.3.20 CWE-401 Improper Release of Memory Before Removing Last Reference ('Memory
Leak')

Reference
https://cwe.mitre.org/data/definitions/401 Improper Release of Memory Before Removing Last
Reference ('Memory Leak')

Roles
 - the <MemoryAllocation>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Ban Comma Operator from Delete Statement
ASCQM Implement Required Operations for Manual Resource Management
ASCQM Release Memory After Use
ASCQM Release Memory after Use with Correct Operation

 74

ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

7.3.21 CWE-404 Improper Resource Shutdown or Release

Reference
https://cwe.mitre.org/data/definitions/404 Improper Resource Shutdown or Release

Roles
 - the <ResourceAllocation>

Contributing weaknesses
CWE-401 Improper Release of Memory Before Removing Last Reference ('Memory Leak')
CWE-772 Missing Release of Resource after Effective Lifetime
CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime

Detection Patterns
ASCQM Ban Comma Operator from Delete Statement
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor
ASCQM Implement Virtual Destructor for Classes with Virtual Methods
ASCQM Implement Virtual Destructor for Parent Classes
ASCQM Release File Resource after Use in Operation
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

7.3.22 CWE-415 Double Free

Reference
https://cwe.mitre.org/data/definitions/415 Double Free

Roles
 - the <ResourceRelease >
 - the <ResourceAccess>
 - the <ResourceUse>

Parent weaknesses
CWE-672 Operation on a Resource after Expiration or Release

Detection Patterns
ASCQM Ban Double Free On Pointers

7.3.23 CWE-416 Use After Free

Reference

 75

https://cwe.mitre.org/data/definitions/416 Use After Free

Roles
 - the <ResourceRelease>
 - the <ResourceUse>

Parent weaknesses
CWE-672 Operation on a Resource after Expiration or Release

Detection Patterns
ASCQM Ban Free Operation on Pointer Received as Parameter
ASCQM Ban Use of Expired Pointer
ASCQM Implement Copy Constructor for Class With Pointer Resource

7.3.24 CWE-424 Improper Protection of Alternate Path

Reference
https://cwe.mitre.org/data/definitions/424 Improper Protection of Alternate Path

Roles
 - the <AlternatePath>

Detection Patterns
ASCQM Ban Unintended Paths

7.3.25 CWE-456 Missing Initialization of a Variable

Reference
https://cwe.mitre.org/data/definitions/456 Missing Initialization of a Variable

Roles
 - the <VariableDeclaration>

Parent weaknesses
CWE-665 Improper Initialization

Detection Patterns
ASCQM Ban Allocation of Memory with Null Size
ASCQM Initialize Variables

7.3.26 CWE-459 Incomplete Cleanup

Reference
https://cwe.mitre.org/data/definitions/459 Incomplete Cleanup

 76

Roles
 - the <ResourceAllocation>
 - the <ResourceRelease>

Detection Patterns
ASCQM Release Memory after Use with Correct Operation

7.3.27 CWE-476 NULL Pointer Dereference

Reference
https://cwe.mitre.org/data/definitions/476 NULL Pointer Dereference

Roles
 - the <PointerDereferencing>

Detection Patterns
ASCQM Check NULL Pointer Value before Use

7.3.28 CWE-480 Use of Incorrect Operator

Reference
https://cwe.mitre.org/data/definitions/480 Use of Incorrect Operator

Roles
 - the <Operator>

Detection Patterns
ASCQM Ban Assignment Operation Inside Logic Blocks
ASCQM Ban Comparison Expression Outside Logic Blocks
ASCQM Ban Incorrect Object Comparison
ASCQM Ban Incorrect String Comparison
ASCQM Ban Logical Operation with a Constant Operand

7.3.29 CWE-484 Omitted Break Statement in Switch

Reference
https://cwe.mitre.org/data/definitions/484 Omitted Break Statement in Switch

Roles
 - the <SwitchStatement>

Detection Patterns
ASCQM Use Break in Switch Statement

 77

7.3.30 CWE-543 Use of Singleton Pattern Without Synchronization in a Multithreaded
Context

Reference
https://cwe.mitre.org/data/definitions/543 Use of Singleton Pattern Without Synchronization in a
Multithreaded Context

Roles
 - the <SingletonUse>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Non-Final Static Data in Multi-Threaded Context
ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context

7.3.31 CWE-562 Return of Stack Variable Address

Reference
https://cwe.mitre.org/data/definitions/562 Return of Stack Variable Address

Roles
 - the <ReturnStatement>

Detection Patterns
ASCQM Ban Return of Local Variable Address
ASCQM Ban Storage of Local Variable Address in Global Variable

7.3.32 CWE-567 Unsynchronized Access to Shared Data in a Multithreaded Context

Reference
https://cwe.mitre.org/data/definitions/567 Unsynchronized Access to Shared Data in a Multithreaded
Context

Roles
 - the <SharedDataAccess>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Non-Final Static Data in Multi-Threaded Context

 78

ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context

7.3.33 CWE-595 Comparison of Object References Instead of Object Contents

Reference
https://cwe.mitre.org/data/definitions/595 Comparison of Object References Instead of Object
Contents

Roles
 - the <ObjectReferencesComparison>

Contributing weaknesses
CWE-597 Use of Wrong Operator in String Comparison
RLB-4 Persistent Storable Data Element without Proper Comparison Control Element

Detection Patterns
ASCQM Ban Incorrect Object Comparison
ASCQM Ban Incorrect String Comparison
ASCQM Implement Correct Object Comparison Operations

7.3.34 CWE-597 Use of Wrong Operator in String Comparison

Reference
https://cwe.mitre.org/data/definitions/597 Use of Wrong Operator in String Comparison

Roles
 - the <StringComparison>

Parent weaknesses
CWE-595 Comparison of Object References Instead of Object Contents

Detection Patterns
ASCQM Ban Incorrect String Comparison

7.3.35 CWE-662 Improper Synchronization

Reference
https://cwe.mitre.org/data/definitions/662 Improper Synchronization

Roles
 - the <Thread1>
 - the <Thread2>
 - the <SharedResourceAccess>

 79

Contributing weaknesses
CWE-366 Race Condition within a Thread
CWE-543 Use of Singleton Pattern Without Synchronization in a Multithreaded Context
CWE-567 Unsynchronized Access to Shared Data in a Multithreaded Context
CWE-667 Improper Locking
CWE-764 Multiple Locks of a Critical Resource
CWE-820 Missing Synchronization
CWE-821 Incorrect Synchronization
CWE-833 Deadlock
RLB-11 Named Callable and Method Control Element in Multi-Thread Context with non-Final Static
Storable or Member Element
RLB-12 Singleton Class Instance Creation without Proper Lock Element Management

Detection Patterns

7.3.36 CWE-667 Improper Locking

Reference
Reference https://cwe.mitre.org/data/definitions/667 Improper Locking
Roles
Roles:
 - the <Thread1>
 - the <Thread2>
 - the <SharedResourceAccess>
 - the <Lock>
Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Incorrect Synchronization Mechanisms
ASCQM Ban Non-Final Static Data in Multi-Threaded Context
ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context
ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context

7.3.37 CWE-672 Operation on a Resource after Expiration or Release

Reference
https://cwe.mitre.org/data/definitions/672 Operation on a Resource after Expiration or Release

Roles
 - the <ResourceRelease>
 - the <ResourceAccess>

 80

Contributing weaknesses
CWE-415 Double Free
CWE-416 Use After Free

Detection Patterns
ASCQM Ban Double Release of Resource
ASCQM Ban Use of Expired Resource

7.3.38 CWE-681 Incorrect Conversion between Numeric Types

Reference
https://cwe.mitre.org/data/definitions/681 Incorrect Conversion between Numeric Types

Roles
 - the <NumericConversion>

Contributing weaknesses
CWE-194 Unexpected Sign Extension
CWE-195 Signed to Unsigned Conversion Error
CWE-196 Unsigned to Signed Conversion Error
CWE-197 Numeric Truncation Error

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

7.3.39 CWE-682 Incorrect Calculation

Reference
https://cwe.mitre.org/data/definitions/682 Incorrect Calculation

Roles
 - the <Calculation>

Contributing weaknesses
CWE-131 Incorrect Calculation of Buffer Size
CWE-369 Divide By Zero

Detection Patterns

7.3.40 CWE-703 Improper Check or Handling of Exceptional Conditions

Reference
https://cwe.mitre.org/data/definitions/703 Improper Check or Handling of Exceptional Conditions

 81

Roles
 - the <ErrorHandling>

Contributing weaknesses
CWE-166 Improper Handling of Missing Special Element
CWE-167 Improper Handling of Additional Special Element
CWE-168 Improper Handling of Inconsistent Special Elements
CWE-228 Improper Handling of Syntactically Invalid Structure
CWE-248 Uncaught Exception
CWE-280 Improper Handling of Insufficient Permissions or Privileges
CWE-391 Unchecked Error Condition
CWE-392 Missing Report of Error Condition
CWE-393 Return of Wrong Status Code
CWE-754 Improper Check for Unusual or Exceptional Conditions
CWE-755 Improper Handling of Exceptional Conditions

Detection Patterns
ASCQM Ban Useless Handling of Exceptions

7.3.41 CWE-704 Incorrect Type Conversion or Cast

Reference
https://cwe.mitre.org/data/definitions/704 Incorrect Type Conversion or Cast

Roles
 - the <TypeConversion>

Contributing weaknesses
CWE-843 Access of Resource Using Incompatible Type ('Type Confusion')

Detection Patterns
ASCQM Ban Incorrect Type Conversion

7.3.42 CWE-758 Reliance on Undefined, Unspecified, or Implementation-Defined Behavior

Reference
https://cwe.mitre.org/data/definitions/758 Reliance on Undefined, Unspecified, or Implementation-
Defined Behavior

Roles
 - the <Statement>

Detection Patterns
ASCQM Ban Delete of VOID Pointer

 82

ASCQM Ban Reading and Writing the Same Variable Used as Assignment Value
ASCQM Ban Variable Increment or Decrement Operation in Operations using the Same Variable

7.3.43 CWE-764 Multiple Locks of a Critical Resource

Reference
https://cwe.mitre.org/data/definitions/764 Multiple Locks of a Critical Resource

Roles
 - the <Lock1>
 - the <Lock2>
 - the <Resource>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Sequential Acquisitions of Single Non-Reentrant Lock

7.3.44 CWE-772 Missing Release of Resource after Effective Lifetime

Reference
https://cwe.mitre.org/data/definitions/772 Missing Release of Resource after Effective Lifetime

Roles
 - the <ResourceAllocation>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Release File Resource after Use in Operation
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

7.3.45 CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime

Reference
https://cwe.mitre.org/data/definitions/775 Missing Release of File Descriptor or Handle after Effective
Lifetime

Roles
 - the <FileDescriptorOrHandleAllocation>

 83

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Release File Resource after Use in Class
ASCQM Release File Resource after Use in Operation

7.3.46 CWE-786 Access of Memory Location Before Start of Buffer

Reference
https://cwe.mitre.org/data/definitions/786 Access of Memory Location Before Start of Buffer

Roles
 - the <MemoryAccess>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Index of Array Access
ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities

7.3.47 CWE-787 Out-of-bounds Write

Reference
https://cwe.mitre.org/data/definitions/787 Out-of-bounds Write

Roles
 - the <BufferWrite>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Index of Array Access
ASCQM Check Input of Memory Manipulation Primitives

7.3.48 CWE-788 Access of Memory Location After End of Buffer

Reference
https://cwe.mitre.org/data/definitions/788 Access of Memory Location After End of Buffer

Roles
 - the <MemoryAccess>

 84

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities
ASCQM Check Index of Array Access
ASCQM Check Input of Memory Manipulation Primitives

7.3.49 CWE-805 Buffer Access with Incorrect Length Value

Reference
https://cwe.mitre.org/data/definitions/805 Buffer Access with Incorrect Length Value

Roles
 - the <BufferAccess>
 - the <LengthParameter>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities
ASCQM Check Input of Memory Manipulation Primitives
ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities

7.3.50 CWE-820 Missing Synchronization

Reference
https://cwe.mitre.org/data/definitions/820 Missing Synchronization

Roles
 - the <SharedResourceUse>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context

7.3.51 CWE-821 Incorrect Synchronization

Reference
https://cwe.mitre.org/data/definitions/821 Incorrect Synchronization

 85

Roles
 - the <SharedResourceUse>
 - the <IncorrectSynchronization>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Incorrect Synchronization Mechanisms

7.3.52 CWE-822 Untrusted Pointer Dereference

Reference
https://cwe.mitre.org/data/definitions/822 Untrusted Pointer Dereference

Roles
 - the <PointerDereferencing>
 - the <TaintedInput>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Sanitize User Input used as Pointer

7.3.53 CWE-823 Use of Out-of-range Pointer Offset

Reference
https://cwe.mitre.org/data/definitions/823 Use of Out-of-range Pointer Offset

Roles
 - the <PointerOffset>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Offset used in Pointer Arithmetic

7.3.54 CWE-824 Access of Uninitialized Pointer

Reference
Reference https://cwe.mitre.org/data/definitions/824 Access of Uninitialized Pointer

 86

Roles
Roles:
 - the <PointerAccess>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Initialize Pointers before Use

7.3.55 CWE-825 Expired Pointer Dereference

Reference
https://cwe.mitre.org/data/definitions/825 Expired Pointer Dereference

Roles
 - the <PointerAccess>
 - the <PointerRelease>

Parent weaknesses
CWE-672 Operation on a Resource after Expiration or Release

Detection Patterns
ASCQM Ban Use of Expired Pointer

7.3.56 CWE-833 Deadlock

Reference
https://cwe.mitre.org/data/definitions/833 Deadlock

Roles
 - the <Thread1>
 - the <Thread2>
 - the <ConflictingLock>

Parent weaknesses
Weakness CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Incompatible Lock Acquisition Sequences
ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues

 87

7.3.57 CWE-835 Loop with Unreachable Exit Condition ('Infinite Loop')

Reference
https://cwe.mitre.org/data/definitions/835 Loop with Unreachable Exit Condition ('Infinite Loop')

Roles
 - the <InfiniteLoop>

Detection Patterns
ASCQM Ban Unmodified Loop Variable Within Loop
ASCQM Ban While TRUE Loop Without Path To Break

7.3.58 CWE-908 Use of Uninitialized Resource

Reference
https://cwe.mitre.org/data/definitions/908 Use of Uninitialized Resource

Roles
 - the <ResourceUse>

Detection Patterns
ASCQM Initialize Resource before Use

7.3.59 CWE-1083 Data Access Control Element from Outside Designated Data Manager
Component

Usage name
 Circumventing data access routines

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1083 Data Access Control Element from Outside
Designated Data Manager Component

Roles
 - the <DataManager>
 - the <DataAccess>

Detection Patterns
ASCQM Ban Unintended Paths

7.3.60 CWE-1058 Named Callable and Method Control Element in Multi-Thread Context with
non-Final Static Storable or Member Element

Usage name

 88

 Non-final static data in a multi-threaded environment

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1058 Named Callable and Method Control Element in
Multi-Thread Context with non-Final Static Storable or Member Element

Roles
 - the <Operation>
 - the <NonFinalStaticData>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Non-Final Static Data in Multi-Threaded Context

7.3.61 CWE-1096 Singleton Class Instance Creation without Proper Lock Element
Management

Usage name
 Improper locking of singleton classes

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1096 Singleton Class Instance Creation without Proper
Lock Element Management

Roles
 - the <SingletonUse>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context

7.3.62 CWE-1087 Class Element with Virtual Method Element without Virtual Destructor

Usage name
 Class with virtual method missing destructor

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1087 Class Element with Virtual Method Element
without Virtual Destructor

 89

Roles
 - the <Class>
 - the <VirtualMethod>

Detection Patterns
ASCQM Implement Virtual Destructor for Classes with Virtual Methods

7.3.63 CWE-1079 Parent Class Element without Virtual Destructor Method Element

Usage name
 Parent class missing virtual destructor

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1079 Parent Class Element without Virtual Destructor
Method Element

Roles
 - the <ParentClass>

Detection Patterns
ASCQM Implement Virtual Destructor for Parent Classes

7.3.64 CWE-1045 Child Class Element without Virtual Destructor unlike its Parent Class
Element

Usage name
Child class missing virtual destructor

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1045 Child Class Element without Virtual Destructor
unlike its Parent Class Element

Roles
 - the <ParentClass>
 - the <ParentClassVirtualDestructor>
 - the <ChildClass>

Detection Patterns
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor

7.3.65 CWE-1051 Storable and Member Data Element Initialization with Hard-Coded Network
Resource Configuration Data

 90

Usage name
Hard-coded network resource information

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1051 Storable and Member Data Element Initialization
with Hard-Coded Network Resource Configuration Data

Roles
 - the <NetworkResourceAccess>
 - the <HardCodedValue>

Detection Patterns
ASCQM Ban Hard-Coded Literals used to Connect to Resource

7.3.66 CWE-1088 Synchronous Call Time-Out Absence

Usage name
Synchronous call with missing timeout

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1088 Synchronous Call Time-Out Absence

Roles
 - the <SynchronousCall>
 - the <TimeOutOption>

Detection Patterns
ASCQM Manage Time-Out Mechanisms in Blocking Synchronous Calls

7.3.67 CWE-1066 Serializable Storable Data Element without Serialization Control Element

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1066 Serializable Storable Data Element without
Serialization Control Element

Roles
 - the <SerializableData>

Detection Patterns
ASCQM Ban Non-Serializable Elements in Serializable Objects

7.3.68 CWE-1070 Serializable Storable Data Element with non-Serializable Item Elements

Reference

 91

https://www.omg.org/spec/ASCRM ASCRM-CWE-1070 Serializable Storable Data Element with non-
Serializable Item Elements

Roles
 - the <SerializableData>
 - the <NonSerialibleChildData>

Detection Patterns
ASCQM Ban Non-Serializable Elements in Serializable Objects

7.3.69 CWE-1097 Persistent Storable Data Element without Proper Comparison Control
Element

Usage name
Persistent data without proper comparison controls

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1097 Persistent Storable Data Element without Proper
Comparison Control Element

Roles
 - the <PersistentData>

Parent weaknesses
CWE-595 Comparison of Object References Instead of Object Contents

Detection Patterns
ASCQM Implement Correct Object Comparison Operations

7.3.70 CWE-1098 Storable or Member Data Element containing Pointer Item Element without
Proper Copy Control Element

Usage name
Improper copy capabilities for data pointers

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1098 Storable or Member Data Element containing
Pointer Item Element without Proper Copy Control Element

Roles
 - the <ParentData>
 - the <PointerChildData>

 92

Detection Patterns
ASCQM Implement Copy Constructor for Class With Pointer Resource

7.3.71 CWE-1082 Class Instance Self Destruction Control Element

Usage name
Self-destruction

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1082 Class Instance Self Destruction Control Element

Roles
 - the <SelfDestruction>

Detection Patterns
ASCQM Ban Self Destruction

7.3.72 CWE-1077 Float Type Storable and Member Data Element Comparison with Equality
Operator

Usage name
Improper equality comparisons of float-type numerical data

Reference
https://www.omg.org/spec/ASCRM ASCRM-CWE-1077 Float Type Storable and Member Data Element
Comparison with Equality Operator

Roles
 - the <FloatNumberEqualityComparison>

Detection Patterns
ASCQM Ban Incorrect Float Number Comparison

7.3.73 CWE-665 Improper Initialization

Reference
https://cwe.mitre.org/data/definitions/665 Improper Initialization

Roles
 - the <Initialization>

Contributing weaknesses
CWE-456 Missing Initialization of a Variable

 93

CWE-457 Use of Uninitialized Variable

Detection Patterns
ASCQM Ban Self Assignment
ASCQM Initialize Pointers before Use
ASCQM Initialize Variables before Use

7.3.74 CWE-457 Use of Uninitialized Variable

Reference
https://cwe.mitre.org/data/definitions/457 Use of Uninitialized Variable

Roles
 - the <VariableDeclaration>
 - the <VariableUse>

Parent weaknesses
CWE-665 Improper Initialization

Detection Patterns
ASCQM Ban Allocation of Memory with Null Size
ASCQM Initialize Variables

7.3.75 Reliability detection patterns

Detection Patterns
ASCQM Ban Allocation of Memory with Null Size
ASCQM Ban Assignment Operation Inside Logic Blocks
ASCQM Ban Buffer Size Computation Based on Array Element Pointer Size
ASCQM Ban Buffer Size Computation Based on Bitwise Logical Operation
ASCQM Ban Buffer Size Computation Based on Incorrect String Length Value
ASCQM Ban Comma Operator from Delete Statement
ASCQM Ban Comparison Expression Outside Logic Blocks
ASCQM Ban Creation of Lock On Inappropriate Object Type
ASCQM Ban Creation of Lock On Non-Final Object
ASCQM Ban Creation of Lock On Private Non-Static Object to Access Private Static Data
ASCQM Ban Delete of VOID Pointer
ASCQM Ban Double Free On Pointers
ASCQM Ban Double Release of Resource
ASCQM Ban Empty Exception Block
ASCQM Ban Free Operation on Pointer Received as Parameter
ASCQM Ban Hard-Coded Literals used to Connect to Resource
ASCQM Ban Incompatible Lock Acquisition Sequences
ASCQM Ban Incorrect Float Number Comparison

 94

ASCQM Ban Incorrect Numeric Conversion of Return Value
ASCQM Ban Incorrect Numeric Implicit Conversion
ASCQM Ban Incorrect Object Comparison
ASCQM Ban Incorrect String Comparison
ASCQM Ban Incorrect Synchronization Mechanisms
ASCQM Ban Incorrect Type Conversion
ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities
ASCQM Ban Logical Operation with a Constant Operand
ASCQM Ban Non-Final Static Data in Multi-Threaded Context
ASCQM Ban Non-Serializable Elements in Serializable Objects
ASCQM Ban Reading and Writing the Same Variable Used as Assignment Value
ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context
ASCQM Ban Return of Local Variable Address
ASCQM Ban Self Destruction
ASCQM Ban Sequential Acquisitions of Single Non-Reentrant Lock
ASCQM Ban Sleep Between Lock Acquisition and Release
ASCQM Ban Storage of Local Variable Address in Global Variable
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities
ASCQM Ban Unintended Paths
ASCQM Ban Unmodified Loop Variable Within Loop
ASCQM Ban Use of Expired Pointer
ASCQM Ban Use of Expired Resource
ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues
ASCQM Ban Useless Handling of Exceptions
ASCQM Ban Variable Increment or Decrement Operation in Operations using the Same Variable
ASCQM Ban While TRUE Loop Without Path To Break
ASCQM Catch Exceptions
ASCQM Check Index of Array Access
ASCQM Check Input of Memory Manipulation Primitives
ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities
ASCQM Check NULL Pointer Value before Use
ASCQM Check Offset used in Pointer Arithmetic
ASCQM Check Return Value of Resource Operations Immediately
ASCQM Check and Handle ZERO Value before Use as Divisor
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context
ASCQM Handle Return Value of Must Check Operations
ASCQM Handle Return Value of Resource Operations
ASCQM Implement Copy Constructor for Class With Pointer Resource
ASCQM Implement Correct Object Comparison Operations

 95

7.4 Weakness Category Security

7.4.1 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Reference
https://cwe.mitre.org/data/definitions/119 Improper Restriction of Operations within the Bounds of a
Memory Buffer

Roles
 - the <BufferOperation>

Contributing weaknesses
CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CWE-123 Write-what-where Condition
CWE-125 Out-of-bounds Read
CWE-130 Improper Handling of Length Parameter Inconsistency
CWE-786 Access of Memory Location Before Start of Buffer
CWE-787 Out-of-bounds Write
CWE-788 Access of Memory Location After End of Buffer
CWE-805 Buffer Access with Incorrect Length Value
CWE-822 Untrusted Pointer Dereference
CWE-823 Use of Out-of-range Pointer Offset
CWE-824 Access of Uninitialized Pointer
CWE-825 Expired Pointer Dereference

Detection Patterns
ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities
ASCQM Ban Use of Expired Pointer
ASCQM Check Index of Array Access
ASCQM Check Input of Memory Manipulation Primitives
ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities
ASCQM Check Offset used in Pointer Arithmetic
ASCQM Initialize Pointers before Use
ASCQM Sanitize User Input used as Pointer

7.4.2 CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

Reference
https://cwe.mitre.org/data/definitions/120 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

Roles
 - the <BufferCopy>

 96

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities

7.4.3 CWE-123 Write-what-where Condition

Reference
https://cwe.mitre.org/data/definitions/123 Write-what-where Condition

Roles
 - the <BufferWrite>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities

7.4.4 CWE-125 Out-of-bounds Read

Reference
https://cwe.mitre.org/data/definitions/125 Out-of-bounds Read

Roles
 - the <BufferRead>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Index of Array Access

7.4.5 CWE-129 Improper Validation of Array Index

Reference
https://cwe.mitre.org/data/definitions/129 Improper Validation of Array Index

Roles
 - the <ArrayAccess>
 - the <TaintedIndex>

 97

Detection Patterns
ASCQM Sanitize User Input used as Array Index

7.4.6 CWE-130 Improper Handling of Length Parameter Inconsistency

Reference
https://cwe.mitre.org/data/definitions/130 Improper Handling of Length Parameter Inconsistency

Roles
 - the <DataHandling>
 - the <LengthParameter>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Index of Array Access

7.4.7 CWE-131 Incorrect Calculation of Buffer Size

Reference
Reference https://cwe.mitre.org/data/definitions/131 Incorrect Calculation of Buffer Size

Roles
 - the <BufferSizeCalculation>

Parent weaknesses
CWE-682 Incorrect Calculation

Detection Patterns
ASCQM Ban Buffer Size Computation Based on Array Element Pointer Size
ASCQM Ban Buffer Size Computation Based on Bitwise Logical Operation
ASCQM Ban Buffer Size Computation Based on Incorrect String Length Value

7.4.8 CWE-134 Use of Externally-Controlled Format String

Reference
https://cwe.mitre.org/data/definitions/134 Use of Externally-Controlled Format String

Roles
 - the <Formatting>
 - the <TaintedFormatString>

 98

Detection Patterns
ASCQM Sanitize User Input used as String Format

7.4.9 CWE-194 Unexpected Sign Extension

Reference
https://cwe.mitre.org/data/definitions/194 Unexpected Sign Extension

Roles
 - the <NumberSignExtension>

Parent weaknesses
CWE-681 Incorrect Conversion between Numeric Types

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

7.4.10 CWE-195 Signed to Unsigned Conversion Error

Reference
https://cwe.mitre.org/data/definitions/195 Signed to Unsigned Conversion Error

Roles
- the <NumberConversionToUnsigned>

Parent weaknesses
CWE-681 Incorrect Conversion between Numeric Types

Detection Patterns

7.4.11 CWE-196 Unsigned to Signed Conversion Error

Reference
https://cwe.mitre.org/data/definitions/196 Unsigned to Signed Conversion Error

Roles
- the <NumberConversionToSigned>

Parent weaknesses
CWE-681 Incorrect Conversion between Numeric Types

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

 99

7.4.12 CWE-197 Numeric Truncation Error

Reference
https://cwe.mitre.org/data/definitions/197 Numeric Truncation Error

Roles
- the <NumberTruncation>

Parent weaknesses
CWE-681 Incorrect Conversion between Numeric Types

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

7.4.13 CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

Reference
https://cwe.mitre.org/data/definitions/22 Improper Limitation of a Pathname to a Restricted Directory
('Path Traversal')

Roles
 - the <PathManipulationStatement>
 - the <TaintedInput>

Contributing weaknesses
CWE-23 Relative Path Traversal
CWE-36 Absolute Path Traversal

Detection Patterns
ASCQM Sanitize User Input used in Path Manipulation

7.4.14 CWE-23 Relative Path Traversal

Reference
https://cwe.mitre.org/data/definitions/23 Relative Path Traversal

Roles
 - the <PathManipulation>
 - the <TaintedInput>

Parent weaknesses
CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

Detection Patterns

 100

ASCQM Sanitize User Input used in Path Manipulation

7.4.15 CWE-252 Unchecked Return Value

Reference
https://cwe.mitre.org/data/definitions/252 Unchecked Return Value

Roles
 - the <OperationCall>

Detection Patterns
ASCQM Check Return Value of Resource Operations Immediately
ASCQM Handle Return Value of Must Check Operations

7.4.16 CWE-259 Use of Hard-coded Password

Reference
https://cwe.mitre.org/data/definitions/259 Use of Hard-coded Password

Roles
 - the <Authentication>
 - the <HardCodedValue>

Parent weaknesses
CWE-798 Use of Hard-coded Credentials

Detection Patterns
ASCQM Ban Hard-Coded Literals used to Connect to Resource

7.4.17 CWE-321 Use of Hard-coded Cryptographic Key

Reference
https://cwe.mitre.org/data/definitions/321 Use of Hard-coded Cryptographic Key

Roles
 - the <Authentication>
 - the <HardCodedCryptographicKey>

Parent weaknesses
CWE-798 Use of Hard-coded Credentials

Detection Patterns
ASCQM Ban Hard-Coded Literals used to Connect to Resource

 101

7.4.18 CWE-36 Absolute Path Traversal

Reference
https://cwe.mitre.org/data/definitions/36 Absolute Path Traversal

Roles
 - the <PathManipulation>
 - the <TaintedInput>

Parent weaknesses
CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

Detection Patterns
ASCQM Sanitize User Input used in Path Manipulation

7.4.19 CWE-366 Race Condition within a Thread

Reference
https://cwe.mitre.org/data/definitions/366 Race Condition within a Thread

Roles
 - the <Thread1>
 - the <Thread2>
 - the <ConflictingResource>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Creation of Lock On Private Non-Static Object to Access Private Static Data
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context

7.4.20 CWE-369 Divide by Zero

Reference
https://cwe.mitre.org/data/definitions/369 Divide By Zero

Roles
 - the <Division>

Parent weaknesses
CWE-682 Incorrect Calculation

Detection Patterns

 102

ASCQM Check and Handle ZERO Value before Use as Divisor

7.4.21 CWE-401 Improper Release of Memory Before Removing Last Reference ('Memory
Leak')

Reference
https://cwe.mitre.org/data/definitions/401 Improper Release of Memory Before Removing Last
Reference ('Memory Leak')

Roles
 - the <MemoryAllocation>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Ban Comma Operator from Delete Statement
ASCQM Implement Required Operations for Manual Resource Management
ASCQM Release Memory After Use
ASCQM Release Memory after Use with Correct Operation
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

7.4.22 CWE-404 Improper Resource Shutdown or Release

Reference
https://cwe.mitre.org/data/definitions/404 Improper Resource Shutdown or Release

Roles
 - the <ResourceAllocation>

Contributing weaknesses
Weakness CWE-401 Improper Release of Memory Before Removing Last Reference ('Memory Leak')
Weakness CWE-772 Missing Release of Resource after Effective Lifetime
Weakness CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime

Detection Patterns
ASCQM Ban Comma Operator from Delete Statement
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor
ASCQM Implement Virtual Destructor for Classes with Virtual Methods
ASCQM Implement Virtual Destructor for Parent Classes
ASCQM Release File Resource after Use in Operation
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

 103

7.4.23 CWE-424 Improper Protection of Alternate Path

Reference
https://cwe.mitre.org/data/definitions/424 Improper Protection of Alternate Path

Roles
- the <AlternatePath>

Detection Patterns
ASCQM Ban Unintended Paths

7.4.24 CWE-434 Unrestricted Upload of File with Dangerous Type

Reference
https://cwe.mitre.org/data/definitions/434 Unrestricted Upload of File with Dangerous Type

Roles
 - the <FileUpload>

Detection Patterns
ASCQM Sanitize User Input used in Path Manipulation

7.4.25 CWE-456 Missing Initialization of a Variable

Reference
https://cwe.mitre.org/data/definitions/456 Missing Initialization of a Variable

Roles
 - the <VariableDeclaration>

Parent weaknesses
CWE-665 Improper Initialization

Detection Patterns
ASCQM Ban Allocation of Memory with Null Size
ASCQM Initialize Variables

7.4.26 CWE-457 Use of Uninitialized Variable

Reference
https://cwe.mitre.org/data/definitions/457 Use of Uninitialized Variable

Roles

 104

 - the <VariableDeclaration>
 - the <VariableUse>

Parent weaknesses
CWE-665 Improper Initialization

Detection Patterns
ASCQM Ban Allocation of Memory with Null Size
ASCQM Initialize Variables

7.4.27 CWE-477 Use of Obsolete Function

Reference
https://cwe.mitre.org/data/definitions/477 Use of Obsolete Function

Roles
 - the <ObsoleteFunctionCall>

Detection Patterns
ASCQM Ban Use of Deprecated Libraries

7.4.28 CWE-480 Use of Incorrect Operator

Reference
https://cwe.mitre.org/data/definitions/480 Use of Incorrect Operator

Roles
 - the <Operator>

Detection Patterns
ASCQM Ban Assignment Operation Inside Logic Blocks
ASCQM Ban Comparison Expression Outside Logic Blocks
ASCQM Ban Incorrect Object Comparison
ASCQM Ban Incorrect String Comparison
ASCQM Ban Logical Operation with a Constant Operand

7.4.29 CWE-502 Deserialization of Untrusted Data

Reference
https://cwe.mitre.org/data/definitions/502 Deserialization of Untrusted Data

Roles
 - the <Deserialization>
 - the <TaintedData>

 105

Detection Patterns
ASCQM Sanitize User Input used as Serialized Object

7.4.30 CWE-543 Use of Singleton Pattern Without Synchronization in a Multithreaded
Context

Reference
https://cwe.mitre.org/data/definitions/543 Use of Singleton Pattern Without Synchronization in a
Multithreaded Context

Roles
 - the <SingletonUse>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Non-Final Static Data in Multi-Threaded Context
ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context

7.4.31 CWE-564 SQL Injection: Hibernate

Reference
https://cwe.mitre.org/data/definitions/564 SQL Injection: Hibernate

Roles
 - the <HibernateSQLStatement>
 - the <TaintedInput>

Parent weaknesses
CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

Detection Patterns
ASCQM Sanitize User Input used in SQL Access

7.4.32 CWE-567 Unsynchronized Access to Shared Data in a Multithreaded Context

Reference
https://cwe.mitre.org/data/definitions/567 Unsynchronized Access to Shared Data in a Multithreaded
Context

Roles
- the <SharedDataAccess>

 106

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
 ASCQM Ban Non-Final Static Data in Multi-Threaded Context
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context

7.4.33 CWE-570 Expression is Always False

Reference
https://cwe.mitre.org/data/definitions/570 Expression is Always False

Roles
 - the <BooleanExpression>

Detection Patterns
ASCQM Check Boolean Variables are Updated in Different Conditional Branches before Use

7.4.34 CWE-571 Expression is Always True

Reference
https://cwe.mitre.org/data/definitions/571 Expression is Always True

Roles
 - the <BooleanExpression>

Detection Patterns
ASCQM Check Boolean Variables are Updated in Different Conditional Branches before Use

7.4.35 CWE-606 Unchecked Input for Loop Condition

Reference
https://cwe.mitre.org/data/definitions/606 Unchecked Input for Loop Condition

Roles
 - the <LoopCondition>
 - the <TaintedValue>

Detection Patterns
ASCQM Sanitize User Input used in Loop Condition

7.4.36 CWE-643 Improper Neutralization of Data within XPath Expressions ('XPath Injection')

 107

Reference
https://cwe.mitre.org/data/definitions/643 Improper Neutralization of Data within XPath Expressions
('XPath Injection')

Roles
 - the <XPathExpression>
 - the <TaintedValue>

Detection Patterns
ASCQM Sanitize User Input used in Document Navigation Expression

7.4.37 CWE-652 Improper Neutralization of Data within XQuery Expressions ('XQuery
Injection')

Reference
https://cwe.mitre.org/data/definitions/652 Improper Neutralization of Data within XQuery Expressions
('XQuery Injection')

Roles
 - the <XQueryExpression>
 - the <TaintedValue>

Detection Patterns
ASCQM Sanitize User Input used in Document Manipulation Expression

7.4.38 CWE-662 Improper Synchronization

Reference
https://cwe.mitre.org/data/definitions/662 Improper Synchronization

Roles
 - the <Thread1>
 - the <Thread2>
 - the <SharedResourceAccess>

Contributing weaknesses
CWE-366 Race Condition within a Thread
CWE-543 Use of Singleton Pattern Without Synchronization in a Multithreaded Context
CWE-567 Unsynchronized Access to Shared Data in a Multithreaded Context
CWE-667 Improper Locking
CWE-764 Multiple Locks of a Critical Resource
CWE-820 Missing Synchronization
CWE-821 Incorrect Synchronization
CWE-833 Deadlock

 108

RLB-11 Named Callable and Method Control Element in Multi-Thread Context with non-Final Static
Storable or Member Element
RLB-12 Singleton Class Instance Creation without Proper Lock Element Management

Detection Patterns
ASCQM Ban Incorrect Synchronization Mechanisms
ASCQM Ban Non-Final Static Data in Multi-Threaded Context
ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context
ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context

7.4.39 CWE-665 Improper Initialization

Reference
https://cwe.mitre.org/data/definitions/665 Improper Initialization

Roles
 - the <Initialization>

Contributing weaknesses
CWE-456 Missing Initialization of a Variable
CWE-457 Use of Uninitialized Variable

Detection Patterns
ASCQM Ban Self Assignment
ASCQM Initialize Pointers before Use
ASCQM Initialize Variables before Use

7.4.40 CWE-667 Improper Locking

Reference
https://cwe.mitre.org/data/definitions/667 Improper Locking

Roles
 - the <Thread1>
 - the <Thread2>
 - the <SharedResourceAccess>
 - the <Lock>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Creation of Lock On Inappropriate Object Type

 109

ASCQM Ban Creation of Lock On Non-Final Object
ASCQM Ban Creation of Lock On Private Non-Static Object to Access Private Static Data
ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context
ASCQM Ban Sleep Between Lock Acquisition and Release
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context
ASCQM Release Lock After Use

7.4.41 CWE-672 Operation on a Resource after Expiration or Release

Reference
https://cwe.mitre.org/data/definitions/672 Operation on a Resource after Expiration or Release

Roles
 - the <ResourceRelease>
 - the <ResourceAccess>

Contributing weaknesses
CWE-415 Double Free
CWE-416 Use After Free

Detection Patterns
ASCQM Ban Double Release of Resource
ASCQM Ban Use of Expired Resource

7.4.42 CWE-681 Incorrect Conversion between Numeric Types

Reference
https://cwe.mitre.org/data/definitions/681 Incorrect Conversion between Numeric Types

Roles
 - the <NumericConversion>

Contributing weaknesses
CWE-194 Unexpected Sign Extension
CWE-195 Signed to Unsigned Conversion Error
CWE-196 Unsigned to Signed Conversion Error
CWE-197 Numeric Truncation Error

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

7.4.43 CWE-682 Incorrect Calculation

Reference

 110

https://cwe.mitre.org/data/definitions/682 Incorrect Calculation

Roles
 - the <Calculation>

Contributing weaknesses
CWE-131 Incorrect Calculation of Buffer Size
CWE-369 Divide By Zero

Detection Patterns

7.4.44 CWE-732 Incorrect Permission Assignment for Critical Resource

Reference
https://cwe.mitre.org/data/definitions/732 Incorrect Permission Assignment for Critical Resource

Roles
 - the <PermissionAssignment>

Detection Patterns
ASCQM Ban File Creation with Default Permissions

7.4.45 CWE-77 Improper Neutralization of Special Elements used in a Command ('Command
Injection')

Reference
https://cwe.mitre.org/data/definitions/77 Improper Neutralization of Special Elements used in a
Command ('Command Injection')

Roles
 - the <Command>
 - the <TaintedValue>

Contributing weaknesses
CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
CWE-88 Argument Injection or Modification

Detection Patterns

7.4.46 CWE-772 Missing Release of Resource after Effective Lifetime

Reference
https://cwe.mitre.org/data/definitions/772 Missing Release of Resource after Effective Lifetime

 111

Roles
 - the <ResourceAllocation>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Release File Resource after Use in Operation
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

7.4.47 CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime

Reference
https://cwe.mitre.org/data/definitions/775 Missing Release of File Descriptor or Handle after Effective
Lifetime

Roles
- the <FileDescriptorOrHandleAllocation>

Parent weaknesses
CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime

Detection Patterns
ASCQM Release File Resource after Use in Class
ASCQM Release File Resource after Use in Operation

7.4.48 CWE-778 Insufficient Logging

Reference
https://cwe.mitre.org/data/definitions/778 Insufficient Logging

Roles
 - the <SecurityExceptionOrError>

Detection Patterns
ASCQM Log Caught Security Exceptions

7.4.49 CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection')

Reference
https://cwe.mitre.org/data/definitions/78 Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

 112

Roles
 - the <OSCommand>
 - the <TaintedValue>

Parent weaknesses
CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

Detection Patterns
ASCQM Sanitize User Input used in System Command

7.4.50 CWE-783 Operator Precedence Logic Error

Reference
https://cwe.mitre.org/data/definitions/783 Operator Precedence Logic Error

Roles
 - the <Formula>

Detection Patterns
ASCQM Ban Incorrect Joint Comparison
ASCQM Ban Not Operator On Non-Boolean Operand Of Comparison Operation
ASCQM Ban Not Operator On Operand Of Bitwise Operation

7.4.51 CWE-786 Access of Memory Location Before Start of Buffer

Reference
https://cwe.mitre.org/data/definitions/786 Access of Memory Location Before Start of Buffer

Roles
- the <MemoryAccess>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Index of Array Access
ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities

7.4.52 CWE-787 Out-of-bounds Write

Reference
https://cwe.mitre.org/data/definitions/787 Out-of-bounds Write

 113

Roles
 - the <BufferWrite>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Index of Array Access
ASCQM Check Input of Memory Manipulation Primitives

7.4.53 CWE-788 Access of Memory Location After End of Buffer

Reference
https://cwe.mitre.org/data/definitions/788 Access of Memory Location After End of Buffer

Roles
 - the <MemoryAccess>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities
ASCQM Check Index of Array Access
ASCQM Check Input of Memory Manipulation Primitives

7.4.54 CWE-789 Uncontrolled Memory Allocation

Reference
https://cwe.mitre.org/data/definitions/789 Uncontrolled Memory Allocation

Roles
 - the <MemoryAllocation>

Detection Patterns
ASCQM Check Input of Memory Allocation Primitives
ASCQM Sanitize User Input used as Array Index

7.4.55 CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site
Scripting')

Reference
https://cwe.mitre.org/data/definitions/79 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

 114

Roles
 - the <WebPageGenerationStatement>
 - the <TaintedInput>

Detection Patterns
 ASCQM Sanitize Stored Input used in User Output
ASCQM Sanitize User Input used in User Output

7.4.56 CWE-798 Use of Hard-coded Credentials

Reference
https://cwe.mitre.org/data/definitions/798 Use of Hard-coded Credentials

Roles
 - the <HardCodedValue>
 - the <Authentication>

Contributing weaknesses
CWE-259 Use of Hard-coded Password
CWE-321 Use of Hard-coded Cryptographic Key

Detection Patterns
ASCQM Ban Hard-Coded Literals used to Connect to Resource

7.4.57 CWE-805 Buffer Access with Incorrect Length Value

Reference
https://cwe.mitre.org/data/definitions/805 Buffer Access with Incorrect Length Value

Roles
 - the <BufferAccess>
 - the <LengthParameter>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities
ASCQM Check Input of Memory Manipulation Primitives
ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities

7.4.58 CWE-820 Missing Synchronization

 115

Reference
https://cwe.mitre.org/data/definitions/820 Missing Synchronization

Roles
 - the <SharedResourceUse>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context

7.4.59 CWE-821 Incorrect Synchronization

Reference
https://cwe.mitre.org/data/definitions/821 Incorrect Synchronization

Roles
 - the <SharedResourceUse>
 - the <IncorrectSynchronization>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Incorrect Synchronization Mechanisms

7.4.60 CWE-822 Untrusted Pointer Dereference

Reference
https://cwe.mitre.org/data/definitions/822 Untrusted Pointer Dereference

Roles
 - the <PointerDereferencing>
 - the <TaintedInput>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Sanitize User Input used as Pointer

7.4.61 CWE-823 Use of Out-of-range Pointer Offset

 116

Reference
https://cwe.mitre.org/data/definitions/823 Use of Out-of-range Pointer Offset

Roles
 - the <PointerOffset>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Offset used in Pointer Arithmetic

7.4.62 CWE-824 Access of Uninitialized Pointer

Reference
https://cwe.mitre.org/data/definitions/824 Access of Uninitialized Pointer

Roles
 - the <PointerAccess>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Initialize Pointers before Use

7.4.63 CWE-825 Expired Pointer Dereference

Reference
https://cwe.mitre.org/data/definitions/825 Expired Pointer Dereference

Roles
 - the <PointerAccess>
 - the <PointerRelease>

Parent weaknesses
CWE-672 Operation on a Resource after Expiration or Release

Detection Patterns
ASCQM Ban Use of Expired Pointer

7.4.64 CWE-835 Loop with Unreachable Exit Condition ('Infinite Loop')

Reference

 117

https://cwe.mitre.org/data/definitions/835 Loop with Unreachable Exit Condition ('Infinite Loop')

Roles
 - the <InfiniteLoop>

Detection Patterns
ASCQM Ban Unmodified Loop Variable Within Loop
ASCQM Ban While TRUE Loop Without Path To Break

7.4.65 CWE-88 Argument Injection or Modification

Reference
https://cwe.mitre.org/data/definitions/88 Argument Injection or Modification

Roles
 - the <Command>
 - the <TaintedInput>

Parent weaknesses
CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

Detection Patterns
ASCQM Sanitize User Input used in System Command

7.4.66 CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL
Injection')

Reference
https://cwe.mitre.org/data/definitions/89 Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

Roles
 - the <SQLStatement>
 - the <TaintedInput>

Contributing weaknesses
Weakness CWE-564 SQL Injection: Hibernate

Detection Patterns
ASCQM Sanitize User Input used in Document Manipulation Expression
ASCQM Sanitize User Input used in Document Navigation Expression

 118

7.4.67 CWE-90 Improper Neutralization of Special Elements used in an LDAP Query ('LDAP
Injection')

Reference
https://cwe.mitre.org/data/definitions/90 Improper Neutralization of Special Elements used in an LDAP
Query ('LDAP Injection')

Roles
 - the <LDAPQuery>
 - the <TaintedInput>

Detection Patterns
ASCQM Sanitize User Input used to access Directory Resources

7.4.68 CWE-91 XML Injection (aka Blind XPath Injection)

Reference
https://cwe.mitre.org/data/definitions/91 XML Injection (aka Blind XPath Injection)

Roles
 - the <XMLHandlingExpression>
 - the <TaintedValue>

Detection Patterns
ASCQM Sanitize User Input used in Document Manipulation Expression
ASCQM Sanitize User Input used in Document Navigation Expression

7.4.69 CWE-99 Improper Control of Resource Identifiers ('Resource Injection')

Reference
https://cwe.mitre.org/data/definitions/99 Improper Control of Resource Identifiers ('Resource
Injection')

Roles
 - the <ResourceIdentifier>
 - the <TaintedValue>

Detection Patterns
ASCQM Sanitize User Input used in Path Manipulation

7.4.70 CWE-611 Improper Restriction of XML External Entity Reference ('XXE')

Reference

 119

https://cwe.mitre.org/data/definitions/CWE-611 Improper Restriction of XML External Entity Reference
('XXE')

Roles
 - the <XMLHandlingOperation>

Detection Patterns
ASCQM Secure Use of Unsafe XML Processing with Secure Parser
ASCQM Secure XML Parsing with Secure Options

7.4.71 CWE-1057 Data Access Control Element from Outside Designated Data Manager
Component

Usage name
 Circumventing data access routines

Reference
https://www.omg.org/spec/ASCPEM ASCPEM-CWE-1057 Data Access Control Element from Outside
Designated Data Manager Component

Roles
 - the <DataManager>
 - the <DataAccess>

Detection Patterns
ASCQM Ban Unintended Paths

7.4.72 CWE-415 Double Free

Reference
https://cwe.mitre.org/data/definitions/415 Double Free

Roles
 - the <ResourceRelease >
 - the <ResourceAccess>
 - the <ResourceUse>

Parent weaknesses
CWE-672 Operation on a Resource after Expiration or Release

Detection Patterns
ASCQM Ban Double Free On Pointers

 120

7.4.73 CWE-416 Use After Free

Reference
https://cwe.mitre.org/data/definitions/416 Use After Free

Roles
 - the <ResourceRelease>
 - the <ResourceUse>

Parent weaknesses
CWE-672 Operation on a Resource after Expiration or Release

Detection Patterns
ASCQM Ban Free Operation on Pointer Received as Parameter
ASCQM Ban Use of Expired Pointer
ASCQM Implement Copy Constructor for Class With Pointer Resource

7.4.74 Security detection patterns

Detection Patterns
ASCQM Ban Allocation of Memory with Null Size
ASCQM Ban Assignment Operation Inside Logic Blocks
ASCQM Ban Buffer Size Computation Based on Array Element Pointer Size
ASCQM Ban Buffer Size Computation Based on Bitwise Logical Operation
ASCQM Ban Buffer Size Computation Based on Incorrect String Length Value
ASCQM Ban Comma Operator from Delete Statement
ASCQM Ban Comparison Expression Outside Logic Blocks
ASCQM Ban Creation of Lock On Inappropriate Object Type
ASCQM Ban Creation of Lock On Non-Final Object
ASCQM Ban Creation of Lock On Private Non-Static Object to Access Private Static Data
ASCQM Ban Double Free On Pointers
ASCQM Ban Double Release of Resource
ASCQM Ban File Creation with Default Permissions
ASCQM Ban Free Operation on Pointer Received as Parameter
ASCQM Ban Hard-Coded Literals used to Connect to Resource
ASCQM Ban Incompatible Lock Acquisition Sequences
ASCQM Ban Incorrect Joint Comparison
ASCQM Ban Incorrect Numeric Implicit Conversion
ASCQM Ban Incorrect Object Comparison
ASCQM Ban Incorrect String Comparison
ASCQM Ban Incorrect Synchronization Mechanisms
ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities
ASCQM Ban Logical Operation with a Constant Operand
ASCQM Ban Non-Final Static Data in Multi-Threaded Context

 121

ASCQM Ban Not Operator On Non-Boolean Operand Of Comparison Operation
ASCQM Ban Not Operator On Operand Of Bitwise Operation
ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context
ASCQM Ban Self Assignment
ASCQM Ban Sequential Acquisitions of Single Non-Reentrant Lock
ASCQM Ban Sleep Between Lock Acquisition and Release
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities
ASCQM Ban Unintended Paths
ASCQM Ban Unmodified Loop Variable Within Loop
ASCQM Ban Use of Deprecated Libraries
ASCQM Ban Use of Expired Pointer
ASCQM Ban Use of Expired Resource
ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues
ASCQM Ban While TRUE Loop Without Path To Break
ASCQM Check Boolean Variables are Updated in Different Conditional Branches before Use
ASCQM Check Index of Array Access
ASCQM Check Input of Memory Allocation Primitives
ASCQM Check Input of Memory Manipulation Primitives
ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities
ASCQM Check Offset used in Pointer Arithmetic
ASCQM Check Return Value of Resource Operations Immediately
ASCQM Check and Handle ZERO Value before Use as Divisor
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context
ASCQM Handle Return Value of Must Check Operations
ASCQM Implement Copy Constructor for Class With Pointer Resource
ASCQM Implement Required Operations for Manual Resource Management
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor
ASCQM Implement Virtual Destructor for Classes with Virtual Methods
ASCQM Implement Virtual Destructor for Parent Classes
ASCQM Initialize Pointers before Use
ASCQM Initialize Variables
ASCQM Initialize Variables before Use
ASCQM Log Caught Security Exceptions
ASCQM Release File Resource after Use in Class
ASCQM Release File Resource after Use in Operation
ASCQM Release Lock After Use
ASCQM Release Memory After Use
ASCQM Release Memory after Use with Correct Operation
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor
ASCQM Sanitize Stored Input used in User Output
ASCQM Sanitize User Input used as Array Index
ASCQM Sanitize User Input used as Pointer
ASCQM Sanitize User Input used as Serialized Object

 122

ASCQM Sanitize User Input used as String Format
ASCQM Sanitize User Input used in Document Manipulation Expression
ASCQM Sanitize User Input used in Document Navigation Expression
ASCQM Sanitize User Input used in Expression Language Statement
ASCQM Sanitize User Input used in Loop Condition
ASCQM Sanitize User Input used in Path Manipulation
ASCQM Sanitize User Input used in SQL Access
ASCQM Sanitize User Input used in System Command
ASCQM Sanitize User Input used in User Output
ASCQM Sanitize User Input used to access Directory Resources
ASCQM Secure Use of Unsafe XML Processing with Secure Parser
ASCQM Secure XML Parsing with Secure Options
ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context

 123

8. ASCQM Weakness Detection Patterns

8.1 ASCQM Check Index of Array Access

Descriptor

ASCQM Check Index of Array
Access(PathFromDeclarationStatementToUseAsAnIndexStatement,
VariableDeclarationStatement, ArrayAccessStatement)

Description

Identify occurrences in application model where
- the <PathFromDeclarationStatementToUseAsAnIndexStatement> path
- from the <VariableDeclarationStatement> variable declaration statement
- to the <ArrayAccessStatement> array access statement using the variable as an index,
- lacks a range check operation.

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
StorableUnit id="su1"
StorableUnit id="su2"
ArrayType id="at1"
StorableUnit id="su3" type="at1"
...
ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
ActionElement id="ae3"
 Flow "ae4"
ActionElement id="ae4"
 Flow "ae5"
ActionElement id="ae5" kind="ArraySelect|ArrayReplace"
 Addresses "su3"
 Reads "su2"
 Reads|Writes ...
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

 124

ActionElement id="ae2" kind="GreaterThan|GreaterThanOrEqual"
 Reads "su2"
 Reads ...
 ...
ActionElement id="ae3" kind="LessThan|LessThanOrEqual"
 Reads "su2"
 Reads ...
 ...

What to report

Roles to report are
- the <PathFromDeclarationStatementToUseAsAnIndexStatement> path
- the <VariableDeclarationStatement> variable declaration statement
- the <ArrayAccessStatement> array access statement

8.2 ASCQM Check Input of Memory Manipulation Primitives

Descriptor

ASCQM Check Input of Memory Manipulation Primitives(MemoryManipulationCall)

Description

Identify occurrences in application model where
- the <MemoryManipulationCall> call to a memory manipulation function, procedure,
method, ... with boundary checking capabilities
- uses the length parameter without range checking its value

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PointerType id="pt1"
IntegerType id="it1"
ControlElement id="ce1" name="memcpy|..." type="ce1_signature"
 Signature id="ce1_signature"
 ...
 ParameterUnit id="pu1" type="dt1" kind="byValue"
 ParameterUnit id="pu2" type="pt1" kind="return"
 ...
...
StorableUnit id="su1" type="it1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"

 125

 ...
 Reads "su1"
 Calls "ce1"

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ActionElement id="ae2" kind="GreaterThan|GreaterThanOrEqual"
 Reads "su1"
 ...
ActionElement id="ae3" kind="LessThan|LessThanOrEqual"
 Reads "su1"
 ...

What to report

Roles to report
- the <MemoryManipulationCall> call to a memory manipulation function, procedure,
method, ... with boundary checking capabilities

8.3 ASCQM Ban String Manipulation Primitives without Boundary Checking
Capabilities

Descriptor

ASCQM Ban String Manipulation Primitives without Boundary Checking
Capabilities(StringManipulationCall)

Description

Identify occurrences in application model where
- the <StringManipulationCall> call to a string manipulation function, procedure, method, ...
without boundary checking capabilities

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" name="strcpy|strlen|..."
 ...
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Calls "ce1"

 126

What to report

Roles to report:
- the <StringManipulationCall> call to a string manipulation function, procedure, method, ...
without boundary checking capabilities

8.4 ASCQM Check Input of String Manipulation Primitives with Boundary
Checking Capabilities

Descriptor

ASCQM Check Input of String Manipulation Primitives with Boundary Checking
Capabilities(StringManipulationCall)

Description

Identify occurrences in application model where
- the <StringManipulationCall> call to a string manipulation function, procedure, method, ...
with boundary checking capabilities
- uses the length parameter without range checking its value

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

StringType id="st1"
IntegerType id="it1"
ControlElement id="ce1" name="strncpy|strncat|..." type="ce1_signature"
 Signature id="ce1_signature"
 ParameterUnit id="pu1" type="st1"
 ParameterUnit id="pu2" type="it1" kind="byValue"
 ParamteterUnit id="pu3" type="st1" kind="return"
 ...
...
StorableUnit id="su1" type="it1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Reads "su1"
 Calls "ce1"

KDM elements absent from the application model

KDM outline illustrating only the essential elements related to micro KDM:

 127

ActionElement id="ae2" kind="GreaterThan|GreaterThanOrEqual"
 Reads "su1"
 ...
ActionElement id="ae3" kind="LessThan|LessThanOrEqual"
 Reads "su1"
 ...

What to report

Roles to report
- the <StringManipulationCall> call to a string manipulation function, procedure, method, ...
with boundary checking capabilities

8.5 ASCQM Ban Use of Expired Pointer

Descriptor

ASCQM Ban Use of Expired Pointer(PathToPointerAccessFromPointerRelease,
PointerReleaseStatement, PointerAccessStatement)

Description

Identify occurrences in application model where
- the <PathToPointerAccessFromPointerRelease> path
- from the <PointerReleaseStatement> resource release statement
- to the <PointerAccessStatement> resource access statement

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="pi1" type="dt1"
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" name="free|delete|..."
 Addresses "pt1"
 Flows "ae2"
ActionElement id="ae2"
 Flows "ae3"
ActionElement id="ae3"
kind=PtrSelect|PtrReplace|Call|PtrCall|MethodCall|VirtualCall"
 Reads|Addresses "pt1"
...

 128

or

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
name="dt1"
PointerType id="pt1" name="pt1"
 ItemUnit id="iu1" type="dt1" ext="dt1 & pt1"
StorableUnit id="su1" type="dt1"
StorableUnit id="su2" type="pt1"
 HasType "pt1"
 HasValue "su1"
...
ActionElement id="ae1" name="free|delete|...|push_back|..."
 Addresses "su1"
 Flows "ae2"
ActionElement id="ae2"
 Flows "ae3"
ActionElement id="ae3"
kind=PtrSelect|PtrReplace|Call|PtrCall|MethodCall|VirtualCall"
 Reads|Addresses "su2"

What to report

Roles to report
- the <PathToPointerAccessFromPointerRelease> path
- the <PointerReleaseStatement> resource release statement
- the <PointerAccessStatement> resource access statement

8.6 ASCQM Ban Input Acquisition Primitives without Boundary Checking
Capabilities

Descriptor

ASCQM Ban Input Acquisition Primitives without Boundary Checking
Capabilities(InputAcquisitionCall)

Description

Identify occurrences in application model where
- the <InputAcquisitionCall> call to an input acquisition function, procedure, method, ...
without boundary checking capabilities

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" name="gets|scanf|..."

 129

 ...
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Calls "ce1"

What to report

Roles to report:
- the <InputAcquisitionCall> call to an input acquisition function, procedure, method, ...
without boundary checking capabilities

8.7 ASCQM Check Offset used in Pointer Arithmetic

Descriptor

ASCQM Check Offset used in Pointer Arithmetic(ArithmeticExpression,
EvaluationStatement)

Description

Identify occurrences in application model where
- the result of the <ArithmeticExpression> arithmetic expression,
- with an offset value which is not range checked
- is used to dererence the pointer in the <EvaluationStatement> evaluation statement

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
PointerType id="pt1"
StorableUnit id="su1" type="pt1"
...
IntegerType id="it1"
StorableUnit id="su2" type="it1"
StorableUnit id="su3" type="it1"
...
ActionElement id="ae1" kind="Add|Substract"
 Reads "su1"
 Reads "su2"
 Writes "su3"
...
ActionElement id="ae2" kind="PtrSelect|PtrReplace"
 Addresses "su3"
 ..

 130

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ActionElement id="ae2" kind="GreaterThan|GreaterThanOrEqual"
 Reads "su2"
 Reads ...
 ...
ActionElement id="ae3" kind="LessThan|LessThanOrEqual"
 Reads "su2"
 Reads ...
 ...

What to report

Roles to report are
- the <ArithmeticExpression> arithmetic expression
- the <EvaluationStatement> evaluation statement

8.8 ASCQM Sanitize User Input used as Pointer

Descriptor

ASCQM Sanitize User Input used as Pointer(PathFromUserInputToPointerDereferencing,
UserInput, PointerDereferencingStatement,
PointerDereferencingSanitizationControlElementList)

Description

Identify occurrences in application model where
- the <PathFromUserInputToPointerDereferencing> path
- from the <UserInput> user interface input
- to the <PointerDereferencingStatement> pointer dereferencing statement,
- lacks a sanitization operation from the
<PointerDereferencingSanitizationControlElementList> list of vetted sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process.

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

UIModel
 UIField id="uf1"

 131

 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ActionElement id="ae5" kind="PtrSelect"
 Addresses "su2"
 Reads|Writes ...
 ...

KDM elements absent from the application model

KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Flow "ae4"
 Calls "ce1"
 Reads "su2"
 Writes "su2"
...

1.1.1.What to report

Roles to report are
- the <PathFromUserInputToPointerDereferencing> path
- the <UserInput> user interface input
- the <PointerDereferencingStatement> pointer dereferencing statement,
- the <PointerDereferencingSanitizationControlElementList> list of vetted sanitization.

8.9 ASCQM Initialize Pointers before Use

Descriptor

 132

ASCQM Initialize Pointers before Use(PathToPointerAccessFromPointerDeclaration,
PointerDeclarationStatement, PointerAccessStatement)

Description

Identify occurrences in application model where
- the <PathToPointerAccessFromPointerDeclaration> path
- from the <PointerDeclarationStatement> pointer declaration statement
- to the <PointerAccessStatement> pointer access statement
- lacks a pointer initialization statement

excluding variable and platform resources

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
PointerType id="pt1"
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae2" ...
 Flows "ae3"
ActionElement id="ae3" kind="PtrSelect"
 Reads "su1"
 ...
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
ActionElement id="ae1" kind="Assign|Ptr"
 Writes "su1"
 Flows "ae2"
...

What to report

Roles to report are
- the <PathToPointerAccessFromPointerDeclaration> path
- the <PointerDeclarationStatement> pointer declaration statement
- the <PointerAccessStatement> pointer access statement

 133

8.10 ASCQM Check NULL Pointer Value before Use

Descriptor

ASCQM Check NULL Pointer Value before Use(EvaluationStatement)

Description

Identify occurrences in application model where
- a pointer is evaluated in the <EvaluationStatement> evaluation statement
- with no NULL comparison operation performed on the pointer immediately before

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
PointerType id="pt1"
 ItemUnit id="iu1"
StorableUnit id="su1" type="pt1"
ActionElement id="ae3" kind="PtrSelect|PtrReplace"
 Reads "iu1"
 Addresses "su1"

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
Value id="v1" name="NULL|nullptr"
StorableUnit id="su2"
ActionElement id="ae1" kind="NotEqual"
 Reads "v1"
 Reads "su1"
 Writes "su2"
 Flows "ae2"
ActionElement id="ae2" kind="Condition"
 Reads "su2"
 TrueFlow "ae3"
 FalseFlow "ff1"
...

What to report

Roles to report are
- the <EvaluationStatement> evaluation statement

 134

8.11 ASCQM Ban Use of Expired Resource

Descriptor

ASCQM Ban Use of Expired Resource(PathToResourceAccessFromResourceRelease,
ResourceReleaseStatement, ResourceAccessStatement)

Description

Identify occurrences in application model where
- the <PathToResourceAccessFromResourceRelease> path
- from the <ResourceReleaseStatement> resource release statement
- to the <ResourceAccessStatement> resource access statement
excluding pointers

KDM outline illustratio

KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 DataManager|FileResource id="pr1"
 ...
 PlatformResource id="pa1" kind="open" implementation="ae4"
 ManagesResource "pr1"
 PlatformResource id="pa2" kind="close" implementation="ae1"
 ManagesResource "pr1"

...
CodeModel
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae3"
 ActionElement id="ae3"
 Flows "ae4"
 ActionElement id="ae4" kind="PlatformAction"
 ...
...

What to report

Roles to report
- the <PathToResourceAccessFromResourceRelease> path
- the <ResourceReleaseStatement> resource release statement
- the <ResourceAccessStatement> resource access statement

 135

8.12 ASCQM Ban Double Release of Resource

Descriptor

ASCQM Ban Double Release of Resource(PathToResourceReleaseFromResourceRelease,
FirstResourceReleaseStatement, SecondResourceReleaseStatement)
Description

Identify occurrences in application model where
- the <PathToResourceReleaseFromResourceRelease> path
- from the <FirstResourceReleaseStatement> resource release statement
- to the <SecondResourceReleaseStatement> resource release statement

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 DataManager|ExecutionResource id="pr1"
 ...
 PlatformAction id="pa2" kind="close" implementation="ae1 ae4"
 ManagesResource "pr1"

...
CodeModel
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae3"
 ActionElement id="ae3"
 Flows "ae4"
 ActionElement id="ae4" kind="PlatformAction"
 ...
...

What to report

Roles to report
- the <PathToResourceReleaseFromResourceRelease> path
- the <FirstResourceReleaseStatement> resource release statement
- the <SecondResourceReleaseStatement> resource release statement

8.13 ASCQM Implement Copy Constructor for Class With Pointer Resource

Descriptor

 136

ASCQM Implement Copy Constructor for Class With Pointer Resource(Class, Pointer)

Description

Identify occurrences in application model where
- the <Class> Class
- owns the <Pointer> pointer resource
- but lacks a copy constructor

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PointerType id="pointerType"
 ...
ClassUnit id="cu1"
 MemberUnit id="mu1" type="pointerType"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="cu1"
 ...
 MethodUnit is="m1"
name="class|this|__construct|new|New|__new__|alloc|constructor|initialize|...
" methodKind="constructor" type="m1_signature"
 Signature id = "m1_signature"
 ParameterUnit id="p1" name="p1" type="class" kind="byReference"
 ParameterUnit id="r" name="r" type="class" kind="return"
 ...

What to report

Roles to report are
- the <Class> Class
- the <Pointer> pointer resource

8.14 ASCQM Ban Free Operation on Pointer Received as Parameter

Descriptor

ASCQM Ban Free Operation on Pointer Received as Parameter(ReleaseStatement,
Signature)

 137

Description

Identify occurrences in application model where
- the pointer is released by the <ReleaseStatement> release statement
- and was received as a parameter in the <Signature> signature

The list of release operations are technology, language dependent. E.g. with C-type
languages: free, delete.

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

...
PointerType id="pt1"
...
ControlElement id="ce1" name="free|delete|..."
...
CallableUnit kind="regular|external|stored" | MethodUnit id="ce2"
type="ce2_signature"
 Signature id="ce2_signature"
 ParameterUnit id="pu1" kind="byReference" type="pt1"
 ...
 ActionElement id="ae1" kind="Call|PtrCall[MethodCall|VirtualCall"
 Calls "ce1"
 Reads "pu1"
 ...

What to report

Roles to report are
- the <ReleaseStatement> release statement
- the <Signature> signature

8.15 ASCQM Ban Delete of VOID Pointer

Descriptor

ASCQM Ban Delete of VOID Pointer(DeclarationStatement, ReleaseStatement)

Description

Identify occurrences in application model where
- the pointer declared as a VOID pointer in <DeclarationStatement> declaration statement
- is released by the <ReleaseStatement> release statement
- without ever been casted into a non-VOID pointer

 138

The list of release operations are technology, language dependent. E.g. with C-type
languages: delete.

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

VoidType id="vt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="vt1"
StorableUnit id="su1" type="pt1"
ControlElement id="ce1" name="delete|..."
 ...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Reads "su1"
 Calls "ce1"

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
IntegerType|DecimalType|FloatType|StringType|ClassUnit id="dt1"
PointerType id="pt2"
 ItemUnit id="iu2" type="dt1"
ActionElement id="ae2" kind="TypeCast|DynCast"
 Reads "su1"
 UsesType "pt2"
 Writes "su1"
...

What to report

Roles to report are
- the <DeclarationStatement> declaration statement
- the <ReleaseStatement> release statement

8.16 ASCQM Ban Variable Increment or Decrement Operation in Operations
using the Same Variable

Descriptor

ASCQM Ban Variable Increment or Decrement Operation in Operations using the Same
Variable(VariableAssignment)

 139

Description

Identify occurrences in application model where
- the <VariableAssignment> variable assignment
- uses the outcome of increment or decrement operation on a variable
- jointly with the variable itself

e.g.: x + x++;

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

StorableUnit id="su1"
ActionElement id="ae1" kind="Compound"
 ActionElement id="ae2" kind="Incr|Decr"
 Addresses "su1"
 ...
 ActionElement id="ae3"
 ...
 Reads "su1"
...

What to report

Roles to report
- the <VariableAssignment> variable assignment

8.17 ASCQM Ban Reading and Writing the Same Variable Used as Assignment
Value

Descriptor

ASCQM Ban Reading and Writing the Same Variable Used as Assignment
Value(VariableAssignment)

Description

Identify occurrences in application model where
- the <VariableAssignment> variable assignment
- uses the outcome of an operation on a variable
- jointly with the assignment of the variable itself

e.g.: x = a + (a=2);

 140

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

StorableUnit id="su1"
ActionElement id="ae1" kind="Compound"
 StorableUnit id="su2"
 ActionElement id="ae2" kind="Assign"
 ...
 Writes "su1"
 ...
 ActionElement id="ae3"
 ...
 Reads "su1"
 Writes "su2"
 ActionElement id="ae4" kind="Assign"
 Reads "su2"
 Writes ...

What to report

Roles to report
- the <VariableAssignment> variable assignment

8.18 ASCQM Handle Return Value of Resource Operations

Descriptor

ASCQM Handle Return Value of Resource Operations(CallToTheOperation)

Description

Identify occurrences in application model where
- the platform resource management function, method, procedure, ... is called in the
<CallToTheOperation> call statement
- with no use in a conditional statement of the return value

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 DataManager|ExecutionResource|... id="pr1"
 ...
 PlatformResource id="pa1" implementation="ae1"

 141

 ManagesResource|ReadsResource|WritesResource "pr1"
 ...
CodeModel
...
 CallableUnit|MethodUnit id="ce1" type="ce1_signature"
 Signature id="ce1_signature"
 ParameterUnit id="pu1" kind="return"
 ...
 ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

StorableUnit id="su1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Writes "su1"
 Flows "ae2"
ActionElement id="ae2" kind="Switch"
 Reads "su1"
 GuardedFlow "gf1"
 GuardedFlow|FalseFlow "gf2"
...

or

StorableUnit id="su1"
StorableUnit id="su2"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Writes "su1"
 Flows "ae2"
ActionElement id="ae2"
kind="Equal|NotEqual|LessThan|LessThanOrEqual|GreaterThan|GreatedThanOrEqual"
 Reads "su1"
 Writes "su2"
 Flows "ae3"
ActionElement id="ae3" kind="Condition"
 TrueFlow "tf1"
 FalseFlow "ff1"
...

What to report

Roles to report are
- the <CallToTheOperation> call statement

 142

8.19 ASCQM Ban Incorrect Numeric Conversion of Return Value

Descriptor

ASCQM Ban Incorrect Numeric Conversion of Return Value(FunctionMethodOrProcedure,
VariableDataType, CallStatement, TargetDataType)

Description

Identify occurrences in application model where
- the <FunctionMethodOrProcedure> function, method, procedure, ...
- declared to return a value with the <VariableDataType> numerical data type
- is called in the <CallStatement> call statement
- with assignment of its return value to a variable of the <TargetDataType> second
numerical data type
- which is incompatible with the first one
- without any explicit casting

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

IntegerType|DecimalType|FloatType id="dt1"
IntegerType|DecimalType|FloatType id="dt2"
StorableUnit|ItemUnit|MemberUnit|Value id="de1" type="dt2"
...
CallableUnit|MethodUnit id="ce1" type="ce1_signature"
attribute="CheckReturnValue|..."
 Signature id="ce1_signature"
 ParameterUnit id="pu1" kind="return" type="dt1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Calls "ce1"
 Writes "de1"
...

and the numeric datatypes are not compatible.

What to report

Roles to report are
- the <FunctionMethodOrProcedure> function, method, procedure, ...
- the <VariableDataType> numerical data type
- the <CallStatement> call statement with assignment
- the <TargetDataType> second numerical data type

 143

8.20 ASCQM Handle Return Value of Must Check Operations

Descriptor

ASCQM Handle Return Value of Must Check Operations(CallToTheOperation)

Description

Identify occurrences in application model where
- the must-check function, method, procedure, ... is called in the <CallToTheOperation> call
statement
- with no use in a conditional statement of the return value

The must-check nature of a function, method, procedure, ... is technology dependent. E.g. in
Java: the @CheckReturnValue annotation

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
CallableUnit|MethodUnit id="ce1" type="ce1_signature"
attribute="CheckReturnValue|..."
 Signature id="ce1_signature"
 ParameterUnit id="pu1" kind="return"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

StorableUnit id="su1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Writes "su1"
 Flows "ae2"
ActionElement id="ae2" kind="Switch"
 Reads "su1"
 GuardedFlow "gf1"
 GuardedFlow|FalseFlow "gf2"
...

 144

or

StorableUnit id="su1"
StorableUnit id="su2"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Writes "su1"
 Flows "ae2"
ActionElement id="ae2"
kind="Equal|NotEqual|LessThan|LessThanOrEqual|GreaterThan|GreatedThanOrEqual"
 Reads "su1"
 Writes "su2"
 Flows "ae3"
ActionElement id="ae3" kind="Condition"
 TrueFlow "tf1"
 FalseFlow "ff1"
...

What to report

Roles to report are
- the <CallToTheOperation> call statement

8.21 ASCQM Check Return Value of Resource Operations Immediately

Descriptor

ASCQM Check Return Value of Resource Operations Immediately(CallToTheOperation)

Description

Identify occurrences in application model where
- a platform resource management function, procedure, method, ... is called in the
<CallToTheOperation> call statement
- with no operation performed immediately after on the return value

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 DataManager|ExecutionResource|... id="pr1"
 ...

 145

 PlatformResource id="pa1" implementation="ae1"
 ManagesResource|ReadsResource|WritesResource "pr1"
 ...
CodeModel
 CallableUnit|MethodUnit id="ce1" type="ce1_signature"
 Signature id="ce1_signature"
 ParameterUnit id="pu1" kind="return"
 ...
 ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

StorableUnit id="su1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Writes "su1"
 Flows "ae2"
ActionElement id="ae2"
 Reads "su1"

What to report

Roles to report are
- the <CallToTheOperation> call statement8.22

8.22 ASCQM Ban Useless Handling of Exceptions

Descriptor

ASCQM Ban Useless Handling of Exceptions(CatchBlock)

Description

Identify occurrences in application model where
- the <CatchBlock> catch block
- does not report on the error condition as a new throw or as a return value

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
CatchUnit id="cu1"
 ...

 146

 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
CatchUnit id="cu1"
 ...
 ActionElement id="ae1" kind="Throw"
 Throws ...
...

or

...
CatchUnit id="cu1"
 ...
 ActionElement id="ae1" kind="Return"
 Reads ...
...

What to report

Roles to report are
- the <CatchBlock> catch block

8.23 ASCQM Ban Incorrect Object Comparison

Descriptor

ASCQM Ban Incorrect Object Comparison(ObjectEqualityComparisonExpression)

Description

Identify occurrences in application model where
- the <ObjectEqualityComparisonExpression> equality comparison expression
between two objects

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="cu1"
StorableUnit|ItemUnit|MemberUnit id="de1" type="cu1"

 147

StorableUnit|ItemUnit|MemberUnit id="de2" type="cu1"
ActionElement id="ae1" kind="Equals|NotEqual" ext="de1 == de2 | de1 != de2"
 Reads "de1"
 Reads "de2"

What to report

Roles to report are
- the <ObjectEqualityComparisonExpression> equality comparison expression

8.24 ASCQM Ban Assignment Operation Inside Logic Blocks

Descriptor

ASCQM Ban Assignment Operation Inside Logic Blocks(AssignmentExpression, LogicBlock)

Description

Identify occurrences in application model where
- the <AssignmentExpression> assignment expression
- is used within the <LogicBlock> logic block

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

...
ActionElement id="ae1" kind="Compound"
 StorableUnit|MemberUnit id="de1"
 ...
 ActionElement id="ae2" kind="Condition|Switch"
 Reads "de1"
 ActionElement id="ae3" kind="Assign"
 Writes "de1"
...

What to report

Roles to report are
- the <AssignmentExpression> assighment expression
- the <LogicBlock> logic block

 148

8.25 ASCQM Ban Comparison Expression Outside Logic Blocks

Descriptor

ASCQM Ban Comparison Expression Outside Logic Blocks(ComparisonExpression)

Description

Identify occurrences in application model where
- the <ComparisonExpression> comparison expression
- is not used within a logic block

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
ActionElement id="ae1" kind="Compound"
 StorableUnit|MemberUnit id="de1"
 ...
 ActionElement id="ae3" kind="Equal"
 Reads "de1"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
ActionElement id="ae1" kind="Compound"
 StorableUnit|MemberUnit id="de1"
 ...
 ActionElement id="ae2" kind="Condition|Switch"
 Reads "su1"
 StorableUnit id="su1" type="register"
 ActionElement id="ae3" kind="Equal"
 Writes "su1"
 Reads "de1"
...

What to report

Roles to report are
- the <ComparisonExpression> comparison expression

8.26 ASCQM Ban Incorrect String Comparison

 149

Descriptor

ASCQM Ban Incorrect String Comparison(StringEqualityComparisonExpression)

Description

Identify occurrences in application model where
- the <StringEqualityComparisonExpression> equality comparison expression
between two strings

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

StringType id="st1"
StorableUnit|ItemUnit|MemberUnit id="de1" type="st1"
StorableUnit|ItemUnit|MemberUnit id="de2" type="st1"
ActionElement id="ae1" kind="Equals|NotEqual" ext="de1 == de2 | de1 != de2"
 Reads "de1"
 Reads "de2"

What to report

Roles to report are
- the <StringEqualityComparisonExpression> equality comparison expression

8.27 ASCQM Ban Logical Operation with a Constant Operand

Descriptor

ASCQM Ban Logical Operation with a Constant Operand(ComparisonExpression)

Description

Identify occurrences in application model where
- the <ComparisonExpression> comparison expression with a constant operand

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

Value id="v1"
...
ActionElement id="ae1" kind="And|Or|Xor"
 Reads "v1"
 ...

 150

What to report

Roles to report are
- the <ComparisonExpression> comparison expression

8.28 ASCQM Implement Correct Object Comparison Operations

Descriptor

ASCQM Implement Correct Object Comparison Operations(Class)

Description

Identify occurrences in application model where
- the <Class> class
- lacking the required comparison operations

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="cu1"

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

BooleanType id="bt1"
IntegerType id="it1"
...
ClassUnit id="cu1"
 ...
 MethodUnit id="mu1" name="equals|Equals|operator==|..."
type="mu1_signature"
 Signature id="mu1_signature"
 ParameterUnit id="pu1" kind="byReference" type="cu1"
 ParameterUnit id="pu2" kind="Return" type="bt1"
 ...
 MethodUnit id="mu2" name="hashCode|GetHashCode|hash|..."
type="mu2_signature"
 Signature id="mu2_signature"
 ParameterUnit id="pu3" kind="byReference" type="cu1"
 ParameterUnit id="pu4" kind="Return" type="it1"
...

What to report

 151

Roles to report
- the <Class> class

8.30 ASCQM Ban Comma Operator from Delete Statement

Descriptor

ASCQM Ban Comma Operator from Delete Statement(DeleteStatement, CommaStatement)

Description

Identify occurrences in application model where
- the <DeleteStatement> delete statement
- coumpounded with the <CommaStatement> comma statement

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

...
CallableUnit id="cu1" name="delete" callableKind="operator"
CallableUnit id="cu2" name="comma" callableKind="operator"
...
ActionElement id="ae1" kind="Compound" ext="delete x, y"
 ActionElement id="ae2" kind="Call"
 Calls "cu1"
 ...
 ActionElement id="ae3" kind="Call"
 Calls "cu2"
 ...
...

What to report

Roles to report are
- the <DeleteStatement> delete this statement
- the <CommaStatement> comma statement

8.31 ASCQM Release in Destructor Memory Allocated in Constructor

Descriptor

ASCQM Release in Destructor Memory Allocated in
Constructor(MemoryAllocationStatement)

 152

Description

Identify occurrences in application model where
- the <MemoryAllocationStatement> memory allocation statement in the class constructor
- lacking a corresponding memory release statement in the class destructor

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
ClassUnit id="cu1"
 ...
 StorableUnit id="su1" type="pt1"
 ...
 MethodUnit id="mu1" MethodKind="constructor"
 ...
 ActionElement id="ae1" kind="New|NewArray"
 Creates "dt1"
 Writes "su1"
...

or

ControlElement id="ce1" name="malloc|calloc|..."
...
ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
ClassUnit id="cu1"
 ...
 StorableUnit id="su1" type="pt1"
 ...
 MethodUnit id="mu1" MethodKind="constructor"
 ...
 ActionElement id="ae1" kind="Call"
 Calls "ce1"
 Writes "su1"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce2" name="delete|delete[]|free|..."

 153

...
ClassUnit id="cu1"
 ...
 MethodUnit id="mu2" MethodKind="destructor"
 ...
 ActionElement id="ae2" kind="Call"
 Addresses "su1"
 Calls "ce2"

What to report

Roles to report
- the <MemoryAllocationStatement> memory allocation statement

8.32 ASCQM Release Memory after Use with Correct Operation

Descriptor

ASCQM Release Memory after Use with Correct Operation(MemoryAllocationStatement,
MemoryReleaseStatement)

Description

Identify occurrences in the application model where
- the memory is allocated via the <MemoryAllocationStatement> allocation statement
- then released via the mismatched <MemoryReleaseStatement> release statement

The pairs of matching allocation/deallocation primitives and operations are technology,
framework, language dependant. E.g.: malloc/free, calloc/free, realloc/free in C/C+,
new/delete, new[]/delete[] in C+, new/Release() with COM IUnknown interface.

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="New"
 Creates "dt1"
 Writes "su1"
...
ControlElement id="ce2" name="delete[]|free|..."
...

 154

ActionElement id="ae2" kind="Call"
 Addresses "su1"
 Calls "ce2"

or

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="NewArray"
 Creates "dt1"
 Writes "su1"
...
ControlElement id="ce2" name="delete|free|..."
...
ActionElement id="ae2" kind="Call"
 Addresses "su1"
 Calls "ce2"

or

ControlElement id="ce1" name="malloc|calloc|..."
...
ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="Call"
 Calls "ce1"
 Writes "su1"
...
ControlElement id="ce2" name="delete|delete[]|..."
...
ActionElement id="ae2" kind="Call"
 Addresses "su1"
 Calls "ce2"

What to report

Roles to report are
- the <MemoryAllocationStatement> allocation statement
- the <MemoryReleaseStatement> release statement

 155

8.33 ASCQM Implement Required Operations for Manual Resource
Management

Descriptor

ASCQM Implement Required Operations for Manual Resource
Management(ObjectDeclaration)

Description

Identify occurrences in application model where
- the <ObjectDeclaration> object declaration
- declares an object with manual resource management capabilities
- which lacks the required operation.

The manual resource management capability is technology, framework, and language
dependent. E.g.: class inheritance from IDisposable in C#, and AutoClosable in Java, class
with __enter__ in python.

KDM outline illustration

KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

InterfaceUnit id="iu1" name="IDisposable|AutoClosable|..."
...
ClassUnit id="cu1"
 Extends "iu1"
 ...

of

...
ClassUnit id="cu1"
 MethodUnit "mu1" name="__enter__"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="cu1"
 ...
 MethodUnit "mu1" name="dispose|close|__exit__|..."

What to report

 156

Roles to report
- the <ObjectDeclaration> object declaration

8.34 ASCQM Release Platform Resource after Use

Descriptor

ASCQM Release Platform Resource after Use(FunctionProcedureOrMethod,
ResourceAllocationStatement, PathToExitWithoutResourceRelease)

Description

Identify occurrences in application model where
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- uses the <ResourceAllocationStatement> resource allocation statement
- excluding memory and file resources
- while there exist the <PathToExitWithoutResourceRelease> path to exit the
<FunctionProcedureOrMethod> function, procedure, method, ... without releasing the
resource

KDM outline illustration

KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 DataManager|ExecutionResource id="pr1"
 ...
 PlatformAction id="pa1" kind="open" implementation="ae1"
 ManagesResource "pr1"
 PlatformAction id="pa2" kind="close" implementation="ae2"
 ManagesResource "pr1"

...
CodeModel
 ...
 CallableUnit|MethodUnit id="ce1" name="..."
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae3"
 ActionElement id="ae3"
 Flows "ae4"
 ActionElement id="ae4" kind="Return"
 ...
 ActionElement id="ae2" kind="PlatformAction"
 ...
...

 157

What to report

Roles to report
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- the <ResourceAllocationStatement> file resource open statement
- the <PathToExitWithoutResourceRelease> path to exit

 158

9. Calculation of Quality and Functional Density Measures

9.1 Calculation of the Base Measures (Normative)

After reviewing several alternatives, a count of total violations of quality rules was selected as the best
option for a base measure for each of the four software quality characteristics covered in this
specification. Software quality characteristic measures have frequently been scored at the component
level and then aggregated to develop an overall score for the application. However, scoring at the
component level was rejected because many violations of quality rules cannot be isolated to a single
component, but rather involve interactions among several components. Therefore, each Automated
Source Code Quality Measure score is computed as the sum of its quality measure elements counted
across an entire application.

The calculation of an Automated Source Code Quality Measure score progresses as follows:

 Detection pattern score is the count of occurrences,
 Weakness score is its detection pattern score,
 Quality characteristic score is the sum of its weakness scores.

That is,
Occurrence Count of Weakness x = Σ (Occurrences of ASCQM-y)
Where x = a CWE weakness (CWE-119, CWE-120, etc.)
 y = a detection pattern for weakness x

and
Occurrence Count of Weakness Category x = Σ (Occurrence Count of ASCQM-y)
Where x = a software quality characteristic (Reliability, Security, Performance Efficiency,

Maintainability)
 y = a detection pattern for quality characteristic x

9.2 Functional Density of Weaknesses (Non-normative)

In order to compare quality results among different applications, the Automated Source Code Quality
Measures can be normalized by size to create a density measure. There are several size measures with
which the density of quality violations can be normalized, such as lines of code and Function Points.
These size measures, if properly standardized, can be used for creating a density measure for use in
benchmarking the quality of applications. OMG’s Automated Function Points (AFP) measure offers an
automatable size measure that, as an OMG Supported Specification, is standardized. AFP was adapted
from the International Function Point User Group’s (IFPUG) counting guidelines, and is commercially
supported. Although other size measures can be used to evaluate the density of security violations, the
following density measure for quality violations is derived from OMG supported specifications for

 159

Automated Function Points and the Automated Source Code Security Measure. Thus, the functional
density of Security violations is a simple division expressed as follows.

ASCxM-density = ASCxM / AFP

where x = a software quality characteristic (R, S, PE, M)

 160

10. Alternative Weighted Measures and Uses (Informative)

10.1 Additional Derived Measures

There are many additional weighting schemes that can be applied to the Automated Source Code
Quality Measures or to the quality measure elements that composing them. Table 6 presents several
weighted measure candidates and their potential uses. However, these weighting schemes are not
derived from any existing standards and are therefore not normative.

Table 6. Informative Weighting Schemes for Security Measurement

Weighting scheme Potential uses
Weight each quality measure element by its
severity

Measuring risk of quality problems such as data
theft, outages, response degradation, etc.

Weight each quality measure element by its
effort to fix

Measuring cost of ownership, estimating future
corrective maintenance effort and costs

Weight each module or application component
by its density of quality weaknesses

Prioritizing modules or application components for
corrective maintenance or replacement

 161

11. References (Informative)

Common Weakness Enumeration. http://cwe.mitre.org . Bedford, MA: MITRE Corporation.

Consortium for IT Software Quality (2010). http://www.it-cisq.org . Needham, MA: Object

Management Group, Consortium for IT Software Quality (CISQ).

Curtis, B. (1980). Measurement and experimentation in software engineering. Proceedings of the IEEE,

68 (9), 1103-1119.

International Organization for Standards (2007). ISO/IEC 25020 Systems and software engineering:
Systems and software Quality Requirements and Evaluation (SQuaRE) – Measurement of system and
software product quality – Measurement reference model and guide. Geneva, Switzerland.

International Organization for Standards (2011). ISO/IEC 25010:2011 Systems and software engineering
– System and software product Quality Requirements and Evaluation (SQuaRE) – System and software
quality models. Geneva, Switzerland.

International Organization for Standards (2011). ISO/IEC 25020:2007 Software engineering — Software
product Quality Requirements and Evaluation (SQuaRE) — Measurement reference model and guide.

International Organization for Standards (2012). ISO/IEC 25023 Systems and software engineering:
Systems and software Quality Requirements and Evaluation (SQuaRE) – Measurement of system and
software product quality. Geneva, Switzerland.

International Organization for Standards (2012). ISO/IEC TR 9126-3:2003, Software engineering —

Product quality — Part 3: Internal metrics. Geneva, Switzerland.

Martin, R.A. & Barnum, S. (2006). Status update: The Common Weakness Enumeration. NIST Static

Analysis Summit, Gaithersburg, MD Jun 29, 2006.

Object Management Group (2014). Automated Function Points. formal 2014-01-03

http://www.omg.org/spec/AFP/ . Needham, MA: Object Management Group.

 162

Appendix A: Consortium for IT Software Quality (CISQ)

The purpose of the Consortium for IT Software Quality (CISQ) is to develop specifications for automated
measures of software quality characteristics taken on source code. These measures were designed to
provide international standards for measuring software structural quality that can be used by IT
organizations, IT service providers, and software vendors in contracting, developing, testing, accepting,
and deploying IT software applications. Executives from the member companies that joined CISQ
prioritized the quality characteristics of Reliability, Security, Performance Efficiency, and Maintainability
to be developed as measurement specifications.

CISQ strives to maintain consistency with ISO/IEC standards to the extent possible, and in particular with
the ISO/IEC 25000 series that replaces ISO/IEC 9126 and defines quality measures for software systems.
In order to maintain consistency with the quality model presented in ISO/IEC 25010, software quality
characteristics are defined for the purpose of this specification as attributes that can be measured from
the static properties of software, and can be related to the dynamic properties of a computer system as
affected by its software. However, the 25000 series, and in particular ISO/IEC 25023 which elaborates
quality characteristic measures, does not define these measures at the source code level. Thus, this and
other CISQ quality characteristic specifications supplement ISO/IEC 25023 by providing a deeper level of
software measurement, one that is rooted in measuring software attributes in the source code.

Companies interested in joining CISQ held executive forums in Frankfurt, Germany; Arlington, VA; and
Bangalore, India to set strategy and direction for the consortium. In these forums four quality
characteristics were selected as the most important targets for automation—reliability, security,
performance efficiency, and maintainability. These attributes cover four of the eight quality
characteristics described in ISO/IEC 25010.
The Consortium for IT Software Quality (CISQ), a consortium managed by OMG, was formed in 2010 to
create international standards for automating measures of size and structural quality characteristics
from source code. These measures are intended for use by IT organizations, IT service providers, and
software vendors in contracting, developing, testing, accepting, and deploying software systems.
Executives from the member companies that joined CISQ prioritized Reliability, Security, Performance
Efficiency, and Maintainability as the initial structural quality measures to be specified.

An international team of experts drawn from CISQ’s 24 original companies formed into working groups
to define CISQ measures. Weaknesses that had a high probability of causing reliability, security,
performance efficiency, or maintainability problems were selected for inclusion in the four measures.
The original CISQ members included IT departments in Fortune 200 companies, system integrators/
outsourcers, and vendors that provide quality-related products and services to the IT market. The
experts met several times per year for two years in the US, France, and India to develop a broad list of
candidate weaknesses. This list was pared down to a set of weaknesses they believed had to be
remediated to avoid serious operational or cost problems. These 86 weaknesses became the
foundation of the original specifications of the automated source code measures for Reliability, Security,
Performance Efficiency, and Maintainability.

 163

Appendix B: Common Weakness Enumeration (CWE)

The Common Weakness Enumeration (CWE) repository (http://cwe.mitre.org/) maintained by MITRE
Corporation is a collection of over 800 weaknesses in software architecture and source code that
malicious actors have used to gain unauthorized entry into systems or to cause malicious actions. The
CWE is a widely used industry source (http://cwe.mitre.org/community/citations.html) that provides a
foundation for an ITU and ISO/IEC standard, in addition to 2 ISO/IEC technical reports:

 SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY Cybersecurity
information exchange – Vulnerability/state exchange - Common weakness enumeration (CWE)

 ISO/IEC 29147:2014 Information Technology -- Security Techniques -- Vulnerability Disclosure"
 ISO/IEC TR 24772:2013 Information technology -- Programming languages -- Guidance to

avoiding vulnerabilities in programming languages through language selection and use
 ISO/IEC Technical Report is ISO/IEC TR 20004:2012 Information Technology -- Security

Techniques -- Refining Software Vulnerability Analysis under ISO/IEC 15408 and ISO/IEC 18045

The CWE/SANS Institute Top 25 Most Dangerous Software Errors is a list of the 25 most widespread and
frequently exploited security weaknesses in the CWE repository. The previous version of the CISQ
Automated Source Code Security Measure (ASCSM) was based on 22 of the CWE/SANS Top 25 that
could be detected and counted in source code. In this revision, the number of security weaknesses is
being expanded beyond the CWE/SANS Top 25 since there are other weaknesses severe enough to be
incorporated in the CISQ measure. In addition, many CWEs also cause reliability problems and are
therefore included in the CISQ reliability measure. Wherever a CWE is included in any of the 4 CISQ
structural quality measures, its CWE identifier will be noted.

Since the CWE is recognized as the primary industry repository of security weaknesses, it is supported by
the majority of vendors providing tools and technology in the software security domain
(http://cwe.mitre.org/compatible/compatible.html), such as Coverity, HP Fortify, Klockwork, IBM, CAST,
Veracode, and others. These vendors already have capabilities for detecting many of the CWEs.
Industry experts who developed the CWE purposely worded the CWEs to be language and application
agnostic in order to allow vendors to develop detectors specific to a wide range of languages and
application types beyond the scope that could be covered in the CWE. Since some of the CWEs may not
be relevant in some languages, the reduced opportunity for anti-patterns in those cases will be reflected
in the scores.

 164

Appendix C: Disposition of Weaknesses from the Original
CISQ Measures to This Specification

Maintainability Measure

CISQ identifier Disposition
ASCMM-MNT-1 CWE-1075
ASCMM-MNT-2 CWE-1055
ASCMM-MNT-3 CWE-1052
ASCMM-MNT-4 CWE-1048
ASCMM-MNT-5 CWE-1095
ASCMM-MNT-6 CWE-1085
ASCMM-MNT-7 CWE-1047
ASCMM-MNT-8 CWE-1080
ASCMM-MNT-9: CWE-424

ASCMM-MNT-10 CWE-424

ASCMM-MNT-11 CWE-1093
ASCMM-MNT-12 CWE-1054
ASCMM-MNT-13 CWE-1064
ASCMM-MNT-14 CWE-1084
ASCMM-MNT-15 CWE-1081
ASCMM-MNT-16 CWE-1090
ASCMM-MNT-17 CWE-1074
ASCMM-MNT-18 CWE-1086
ASCMM-MNT-19 CWE-1041
ASCMM-MNT-20 CWE-1061

 165

Performance Efficiency Measure

CISQ identifier Disposition
ASCPEM-PRF-1 Dropped
ASCPEM-PRF-2 CWE-1046
ASCPEM-PRF-3 CWE-1042
ASCPEM-PRF-4 CWE-1049
ASCPEM-PRF-5 CWE-1067
ASCPEM-PRF-6 CWE-1089
ASCPEM-PRF-7 CWE-1094
ASCPEM-PRF-8 CWE-1050
ASCPEM-PRF-9 CWE-1060

ASCPEM-PRF-10 CWE-1073
ASCPEM-PRF-11 CWE-1057
ASCPEM-PRF-12 CWE-1043
ASCPEM-PRF-13 CWE-1072
ASCPEM-PRF-14 CWE-1071

ASCPEM-PRF-15 CWE-1091

 166

Reliability Measure

CISQ identifier Disposition
ASCRM-CWE-120 Retained -

child of
CWE-119

ASCRM-CWE-
252data

Dropped

ASCRM-CWE-
252resource

Dropped

ASCRM-CWE-396 Dropped
ASCRM-CWE-397 Dropped
ASCRM-CWE-456 Retained
ASCRM-CWE-674 Dropped
ASCRM-CWE-704 Retained
ASCRM-CWE-772 Retained -

child of
CWE-404

ASCRM-CWE-788 Retained –
child of

CWE-119
ASCRM-RLB-1 Dropped
ASCRM-RLB-2 CWE-1066
ASCRM-RLB-3 CWE-1070
ASCRM-RLB-4 CWE-1097
ASCRM-RLB-5 CWE-404
ASCRM-RLB-6 CWE-1098
ASCRM-RLB-7 CWE-1082
ASCRM-RLB-8 Dropped
ASCRM-RLB-9 CWE-1077
ASCRM-RLB-10 CWE-1057
ASCRM-RLB-11 CWE-1058
ASCRM-RLB-12 CWE-1096
ASCRM-RLB-13 Moved to

Maintainabil
ity

ASCRM-RLB-14 CWE-1062
ASCRM-RLB-15 CWE-1087

 167

ASCRM-RLB-16 CWE-1079
ASCRM-RLB-17 CWE-1045
ASCRM-RLB-18 CWE-1051
ASCRM-RLB-19 CWE-1088

 168

Security

CISQ identifier Disposition
ASCSM-CWE-22 Retained
ASCSM-CWE-78 Retained
ASCSM-CWE-79 Retained
ASCSM-CWE-89 Retained
ASCSM-CWE-99 Retained
ASCSM-CWE-120 Retained
ASCSM-CWE-129 Retained
ASCSM-CWE-134 Retained

ASCSM-CWE-
252resource

Retained as
CWE-252

ASCSM-CWE-327 Dropped
ASCSM-CWE-396 Dropped
ASCSM-CWE-397 Dropped
ASCSM-CWE-434 Retained
ASCSM-CWE-456 Retained
ASCSM-CWE-606 Retained
ASCSM-CWE-667 Retained
ASCSM-CWE-672 Retained
ASCSM-CWE-681 Retained
ASCSM-CWE-772 Retained
ASCSM-CWE-789 Retained
ASCSM-CWE-798 Retained
ASCSM-CWE-835 Retained

 169

Appendix D: Relationship of the CISQ Structural Quality Measures to ISO 25000
Series Standards (SQuaRE)

ISO/IEC 25010 defines the product quality model for software-intensive systems (Figure 1). This model
is composed of 8 quality characteristics, four of which are the subject of CISQ structural quality
measures (indicated in blue). Each of ISO/IEC 25010’s eight quality characteristics consists of several
quality sub-characteristics that define the domain of issues covered by their parent quality
characteristic. CISQ structural quality measures conform to the definitions in ISO/IEC 25010. The sub-
characteristics of each quality characteristic were used to ensure the CISQ measures covered the
domain of issues in each of the four areas. ISO/IEC 25010 is currently undergoing revision with CISQ
participation. The CISQ measures will conform with definitions in the revised ISO/IEC 25010-2 when
published.

Figure 1. Software Quality Characteristics from ISO/IEC 25010 with CISQ measure areas highlighted.

ISO/IEC 25023 establishes a framework of software quality characteristic measures wherein each quality
sub-characteristic consists of a collection of quality attributes that can be quantified as quality measure
elements. A quality measure element quantifies a unitary measurable attribute of software, such as the
violation of a quality rule. Figure 2 presents an example of the ISO/IEC 25023 quality measurement
framework using a partial decomposition for the Automated Source Code Security Measure.

Figure 2 displays the hierarchical relationships indicating how CISQ conforms to the reference
measurement structure established in ISO/IEC 25020 that governs software quality measures in ISO/IEC
25023. This structure is presented using the CISQ Security measure as an example. The CISQ measures
only use ISO’s quality subcharacteristics for ensuring that the CISQ weaknesses covered the measurable
domain of an ISO quality characteristic as defined in ISO/IEC 25010. CISQ’s weaknesses (CWEs)
correspond to ISO’s quality attributes. CISQ weaknesses are represented as one or more detection

Software
Product
Quality

Functional
Suitability Reliability Performance

Efficiency Operability Security Compatibility Maintain-
ability Portability

Functional
appropriate-

ness
Accuracy

Compliance

Maturity
Availability

Fault tolerance
Recoverability

Compliance

Time behavior
Resource
utilization

Compliance

Appropriate-
ness

Recognizability
Learnability
Ease of use

Attractiveness
Technical

accessability
Compliance

Confidentiality
Integrity

Non-
repudiation

Accountability
Authenticity
Compliance

Co-existence
Inter-

operability
Compliance

Modularity
Reusability

Analyzability
Changeability
Modification

stability
Testability

Compliance

Adaptability
Installability

Replaceability
Compliance

 170

patterns among structural code elements in the software. Variations in how a weakness may be
instantiated are represented by its association with several different detection patterns. Each
occurrence of a detection pattern represents an occurrence of a weakness in the software. Occurrences
of these detection patterns in the software correspond to ISO’s quality measure elements and are the
elements calculated in the CISQ measures.

Figure 2. ISO/IEC 25020 Framework for Software Quality Characteristics Measurement

Clause 6 of this specification lists weaknesses grouped by quality characteristic that correspond to
ISO/IEC 25020’s quality attributes. A weakness is detected by identifying patterns of code elements in
the software (called detection patterns) that instantiate the weakness. Each detection pattern equates
to a quality measure element used in calculating the CISQ quality measures. In Clause 7, quality
attributes (weaknesses) are transformed into the KDM and SPMS-based detection patterns that
represent them. The CISQ quality measures are then calculated by detecting and counting occurrences
of detection patterns, each of which indicates the existence of a weakness in the software. These
calculations are represented in the Structured Metrics Metamodel (SMM).

