Date: January 2011

sr%ﬁe ¥ 75 ,E'a-.:%
4 =N |
S ¥ | 8 S A

E SET THE STANDARD

Architecture-driven Modernization:
Abstract Syntax Tree Metamodel (ASTM)

Version 1.0

OMG Document Number: formal/2011-01-05
Standard document URL: http://www.omg.org/spec/ASTM

Associated Schema Files:
ptc/2009-09-06 -- http://www.omg.org/spec/ASTM/20090901

ptc/2009-07-08 -- http://www.omg.org/spec/ASTM/20090701




Copyright © 2008, EDS

Copyright © 2008, IBM

Copyright © 2010, Object Management Group, Inc.
Copyright © 2008, Tata Consultancy Services Ltd.
Copyright © 2008, The Software Revolution, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and specia purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or



mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TOANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk asto the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XM
Logo™, CWM™ CWM Logo™, IIOP™ [ IMM™ MOF™ | OMG Interface Definition Language (IDL)™ , and OMG
Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the



software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.



OMG’s|ssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page http://

www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/technol ogy/agree-
ment.htm).






Table of Contents

Preface ..., Y
L SCOPE e 1
2 CoNfOrMANCE ......ouiiiiiie e 3
3 Normative ReferencCes ......cocvvivieiiiiiiiieeeeeea 6
4 Terms and DefinitioNS ......ccccovviiiiiiiiiie e, 6
5 Additional Information ............ccoooiiiiiiiii 6
5.1 HOW O ProCeEd ......oovveiiiiiieiieeies et 6
5.2 ACKNOWIEAGMENTS ...ovviiiiiiiiiiiiiiic e 7
B OVEIVIEW ..oviiiiiii e e e e 9
6.1 ADSLract SYNIAX TIrEE .....uciiiieiiiiieiiiiiee e e e e 9
6.2 Abstract Syntax Tree Metamodeling Specification ....................... 10
6.3 ASTM Support and Complementation for MDA ...........ccccceeeeeeenne. 11
6.4 ADM Meta Data RePOSITOrY ........cuvveiiiieiiiiiiiiiiiiie e 11
6.5 ASTM Relationship to MOF .........ciiiiiiii e 12
6.6 ASTM Support for ADM Roadmap .......cccccevvvviiieeeeereeeiiiicie e 13
6.6.1 ASTM Complements the KDM ..., 14
6.6.2 ASTM Support for the KDM ............uuuiiiiiiiiiiiiiiiieieieieeeeee e ee e 17
6.6.3 The ADM Metadata RepoSitory ServiCes .........ccocoueeeeereeereeeeeereeeeeeeen. 17
6.6.4 The ASTM Support for Multiple Language TYPeS .....coovvvveveeeeeeeenanennn. 17
6.7 ASTM Support for OMG Specifications ...........ccccceeeeveviiiieeeeinnnnnnn. 20

6.8 Role of the ASTM in the ADM Metadata Repository
Y U] o] o Jo ] MRS T =] Y (o3 20

6.8.1 ASTM Support For ADM: Knowledge Discovery Meta-Model Package 20
6.8.2 ASTM Support For ADM: Abstract Syntax Tree Metamodel Package 21

6.8.3 ASTM Support For ADM: Analysis Package (AP) .......ccccceiveeiiinnnnn. 21
6.8.4 ASTM Support for ADM: Metrics Package (MP) .......cccvvviiiiiiriieennenn. 21
6.8.5 ASTM Support For ADM: Visualization Package (VP) ....ccccccovvvenenenn. 22
6.8.6 ASTM Support For ADM: Refactoring Package (RP) ......ccccccvvvveeeenn. 22

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 i



6.8.7 ASTM Support For ADM: Target Mapping & Transformation

Package (TMTP) oo ee e e e e eeeeeeees 22
6.9 ASTM Support for the ADM SCENAIIOS .....cccoovvviiiiiiiieiiiieiiiieeeeeeenn, 23
6.9.1 Application Portfolio Management (Scenario ) ........ccoeeeeeeieiciininnnnnns 23
6.9.2 Application Improvement (Scenario Il) .........coooeiiiiiiiiiiiiiiiies 24
6.9.3 Language-to-Language Conversion (Scenario ) ......ccceeevvvivivinnnnnn. 25
6.9.4 Platform Migration (Scenario IV) ........ciiiiiiiiii i, 26
6.9.5 Non-Invasive Application Integration (Scenario V) ........ccccccccuvvvnennnns 26
6.9.6 Services Oriented Architecture Transformation

(SCENAMO VI) oo 27
6.9.7 Data Architecture Migration (Scenario VII) ......cccccooieeiviniiinninniiinninnnns 28
6.9.8 Application & Data Architecture Consolidation (Scenario VIII) ........... 29
6.9.9 Data Warehouse Deployment (Scenario IX) ......ccccccccieieiieeeneeeeiennnnnnn. 30
6.9.10 Application Package Selection & Deployment (Scenario X) ............. 30

6.9.11 Reusable Software Assets / Component Reuse
(SCENANIO XI) oo 31
6.9.12 Model-Driven Architecture Transformation (Scenario Xll) ................ 32
6.9.13 ASTM Support for the MDA ..o, 34
7 ASTM Core CONCEPLS ..ovviviiiiiieiieii v 35
7.1 ASTM Core SyntaxX CONCEPLS ......cceeruiriiiiriiieeieie e 35
7.2 ASTM Core SemantiC CONCEPLS ....oeevvveeerriiiiieeeeeeeeeeiiiien e eeeeenens 36
7.3 ASTM Core Element Concise Definitions .........cccoeeevviiiiiiiiiinennenn. 36
7.4 ASTM Core Abbreviated BNF Definitions ..., 43
7.5 ASTM Abreviated BNF (ABNF) Specification Notation ................ 43
7.6 The ASTM Model HIierarChy ........ccccoeeiiiviiiiiiiiiiiieeeeeeciee e, 43
7.7 GASTM C0Ore CONCEPLS ..cvuuiiiiieiiiieeei ettt ea e 44
7.8 GASTM ODJECT ..o e 45
7.9 GASTM Source ODJECT ......ooevviiiiiee e 45
7.10 GASTMSemanticODJECt .........coiviiiiiiiiec e, 46
7.11 GASTMSYNtaxODJECT ....ccoviiiiiiiie e 47
7.11.1 Other Syntax ObJECT ......cvviiiiiii e e 47
7.11.2 Declarations and Definitions .............coooiiiiiiiiiiiii s 48
T.11.3 DIFECLIVES .ooeeeiiiiieiiie ettt ettt e e e et e e e e s et e e e e e e e s e 50
0 N - = R Y/ o= PP 51
7.11.5 CoNSLrUCEA TYPE ooeeieei e 52
7.10.6 STALEIMENTS ..oiiiiiiieii ettt e e e e e et e e e e e eeeeeeaaaaas 53
A0 A o (=21 (o] L 55
8 ASTM Core Specification ..........cccecevveiiiiiiiiieeiieeeeeeen, 59
8.1 High-Level (Composite) UML Diagrams ..........ccccceevvvviiiiiieeeeennnnnns 59
8.1.1 ASTM Core ODJECLS ....cceeeiieee e 59
8.1.2 ASTM Core SemantiC ObJECE ......ccovviiiiiiiiiiice e 59

i Architecture-driven Modernization: Abstract Syntax Tree Metamodel, V1.0



8.1.3 ASTM Core SoUrce ODJECT ......uuviiiiiiiiiiiiiieiiieiieer et ee e ea e aa e 60

8.1.4 ASTM Core Syntax ODJECT ........uuuriiiiiiiiiiiiiiieiieereeerieere e e eeeeeaaaaeeees 61

8.1.5 ASTM Core Preprocessor ODJECES ..........ueuuueiiieiiieiiiiiiiiieieieeeeeeeeeeeeeens 62

8.1.6 ASTM Core Definition UNit .........ooooviiiiiiiiirre e 63

8.1.7 ASTM COre TYPES ..ottt ettt ettt a e ee e 67

8.1.8 ASTM Core StatemMeNnt .....cccciiiiiiiiii e 71

8.1.9 ASTM COre EXPreSSION ....cvvviiiiiiiiiiiiiiieiieieteiet ettt 74

8.2 Low-Level (Detailed) GASTM Class Hierarchy .........cc.cccccevvnnnne... 78

8.2.1 GASTMODJECT ...cvveviieietieieie ettt ettt st se e st seenesne e 78

8.3 Specialized Abstract Syntax Tree Specifications ....................... 113

8.3.1 SASTM Extension for RDBMS Languages ........ccccceeveeveerveevienvnnnnnnn 113

Annex A - RDBMS EXteNSIONS .......cccooeveveviiieiineecineen, 115
ANNEX B - GlOSSArY ...ccovviiiiiiiei e 125
Annex C - ASTM Core Concept Bibliography .............. 133
INAEX .. e 135

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 il



Architecture-driven Modernization: Abstract Syntax Tree Metamodel, V1.0



Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://mww.omg.org/technol ogy/documents/spec _catalog.htm

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

. Business Rules and Process Management Specifications

Language Mappings
. IDL/Language Mapping Specifications
. Other Language Mapping Specifications

Middleware Specifications
. CORBA/IIOP
. CORBA Component Model
. Data Distribution
e Specialized CORBA

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 Y



Modeling and Metadata Specifications

. UML
. MOF
« XMl

. CWM

. Profile specifications.

Modernization Specifications
. KDM

Platform Independent Model (PIM), Platform Specific Model (PSM), and Interface Specifications
. CORBAservices
e CORBAfacilities
. OMG Domain specifications
. OMG Embedded Intelligence specifications
. OMG Security specifications
All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) All specifications are available in PostScript and PDF format and

may be obtained from the Specifications Catalog cited above. Certain OMG specifications are also available as SO
standards. Please consult http://www.iso.org

OMG Contact Information

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
http: //mwww.omg.org/
Email: pubs@omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Vi Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Note — Terms that appear in italics are defined in the glossary. Italic text al so represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 vii



Viil Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



1 Scope

The Abstract Syntax Tree Metamodeling (ASTM) and the Knowledge Discovery Metamodeling (KDM) are two
complementary modeling specifications developed by the OMG Architecture Driven Modernization Task Force. Their
relationship can be clearly understood by recognizing that the KDM establishes a specification for abstract semantic graph
models, while the ASTM establishes a specification for abstract syntax tree models. Thus, in contrast to other software
representation standards, such as the Knowledge Discovery Metamodel or the Unified Modeling Language, the ASTM
supports a direct 1-to-1 mapping of all code-level software language statements into low-level software models.

This mapping is intended to provide a framework for:

1. A high-fidelity invertible representation of code written in any software language (achieved by supplementation of
the ASTM with concrete syntax specifications).

2. Attachment of low-level software semantics produced by a constraint analysis, specifically scope analysis and the
defRef and ref To association between definitions and identifier usage.

This separation within the ASTM between high fidelity low-level syntax models and low-level semantic models defines
the two compliance points defined in the Conformance section.

In combination the ASTM and the KDM provide a comprehensive modeling framework for modeling software syntax and
semantics. Within this framework the ASTM provides high-fidelity low-level syntax models and their basic semantics,
and the KDM provides the higher level semantic models of software.l The UML and many other OMG specifications can
also be considered semantic graphs for modeling the semantic properties of many other aspects of software. Thus, in
essence the ASTM acts as the lowest level foundation for modeling of software within the OMG ecosystem of standards,
while the KDM serves as a gateway to the higher-level OMG models.

Unlike the KDM, UML, and other OMG specifications, the ASTM does not itself provide constructs for refinement of
low-level software conceptions into higher-level conceptual abstractions, as does the core KDM Compositional,
Conceptual, and Behavioral Packages, however, it does complement the KDM by providing a continuous framework for
mapping between low-level software models that are represented in the ASTM and higher-level conceptual views of
software that are represented by the KDM and other OMG modeling standards, such as UML. The complementary
relationship between the ASTM and the KDM is illustrated in Figure 1.1, with the ASTM depicted as the light blue
sphere and the KDM depicted as the light yellow sphere.

1. Please note that basic semantics for scope, defRef, type and relationship are included in this ASTM Specification.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 1



A

Containerer
1
Structureqogicdal
1

GASTMKDM ot

> | Data DataConceptual

Structura

Béavi oral

Figure 1.1 - ASTM + KDM

ASTM itself servesasauniversa high-fidelity gateway for modeling code at its most fundamental syntactic level. The ASTM
respects the scope of the KDM and the UML for modeling the semantics of higher-level software concepts and it therefore
includes only the most basic semantics for modeling low-level semantics that are closely associated with code (namely, code
location, scope, reference, and type). These forms of basic semantics are the foundation for most other forms of higher level
semantics and must be available at the very high-level of fidelity that only the ASTM provides. By contrast the KDM provides
the higher-level conceptual models for capturing the behavioral compositional and structural semantics of software. The
KDM isby intent more general and more abstract than the ASTM.

To provide for uniformity as well as a universal framework for extension, the ASTM is composed of a core specification, the
Generic Abstract Syntax Meta-Model (GASTM), and a set of complementary specifications that extend the core, called the
Specialized Abstract Syntax Meta-Models (SASTMs). Figure 1.2 illustrates this concept by depicting the GASTM asthe core
and two separate SASTMs whose elements derive and extend the GASTM.

L
- - = -
\

Figure 1.2 - ASTM = GASTM + SASTMs

2 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Support for syntactic modeling and basic semantics of machine-language, functional and logic programing, object-oriented
and rule-based languages will be added incrementally in the future by the supplementation of the ASTM with SASTMs for
additional families of languages, asillustrated in Figure 1.3.

2GLs/ 4GLs & 5GLs/
e StyuctureComp 3GLs/
ogicala
Contain
Lodic Structural

ﬁﬂﬂ/ﬁv K20 ﬁ%ﬁ@
GAéT; Dat _ DataConc” =7

S R Fc, coBoLovEL,
Sl:enariosl VO T~ pgﬁ“ ey ’
Vs AN - UYK2 %

NEEN g\\ ’

Behaioa| N A : " SGML, HTML,
. COBOLSQ , -

~ v/

N e — —
~

COBOLFO-_ =~ < COBOLNatural, PERL,

77777777777 N |

StructTured';;” T G‘A,'I'MS » -,
conain . 8 7 COBOLSQL, ODBC,
Lodica
: | <<
Inrll‘!' Structura GA§TM F— —
CASTWDa —pataCone—>-——~" " =4 COBOLJavalJ2EE,

Scenario
COBOLLISP, PROLOG, SMALLTALK,

Figure 1.3 - Universal Software Modeling Framework (GASTM+SASTMs + KDM)

Annex A contains an example of a SASTM for modeling Relational Data Base (RDB) manipulation languages. The RDB
SASTM provided in Annex A isanon-normative SASTM provided solely to illustrate how the GASTM is to be extended by
SASTMs such as the RDB. The RDB SASTM illustrates the process by which the core the ASTM, the GASTM can be
elegantly extended without redundancy or overlap to support comprehensive modeling of other software language families,
thus illustrating the process by which the ASTM’s GASTM and SASTMs will be extended to provide a universal framework
for modeling any and all software languages at a low-level of abstraction.

2 Conformance

The purpose of the ASTM isto provide aframework that allows tool vendors and tool clientsto build and use tools that
conform to commonly agreed upon modeling specifications for the interchange of abstract syntax models of software.
Interoperability is achieved when models can be interchanged using modeling elements that conform to those specified in the
ASTM specification. Theinternal proprietary models of tools need not conform the ASTM for atool to be considered
compliant with the ASTM. To be considered compliant atool need only adhere to the ASTM as amodel interchange
specification. Tool conformanceis concerned solely with the ability of toolsto interchange models that conform to the ASTM.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 3



e For aGAST model to conform with the ASTM it must conform to the GAST Metamodel provided by this
specification.

e For a SAST model to conform to the ASTM it must conform to both the GASTM model provided with this
specification aswell asthe SASTM model provided by some future SASTM specification.

The ASTM is a bi-dimension multi-layered modeling specification. The two dimensions of the ASTM define both
syntactic as well as the semantic properties of software. The layers of the ASTM define a core set of modeling elements,
the GASTM, that are common to many programming languages as well as a set of extensions, the SASTMs, that extend
from the core for and are used in concert with the GASTM for defining models specialized to particular programming
languages. Table 2.1 illustrates the Compliance Points of the ASTM.

Table 2.1 - ASTM Compliance Points

Level 0 Compliance - Syntactic Level 1 Compliance - Semantic
GASTM Syntax GASTM Semantics
SASTM Syntax SASTM Semantics

Compliance points are defined for the syntactic and semantic dimensions as well as for the GASTM and SASTM layers
as follows.

To achieve Level 0 Compliance (Syntactic Compliance)

e All the elements of the AST must conform to the syntactic properties of software defined by the GASTM, specifically
they must be expressed using the elements of the GASTM SyntaxObject and its subclasses. A model is compliant
syntactically with the ASTM if its syntactic properties are expressed in the syntactic modeling elements of the
GASTM SyntaxObject and the syntax elements of future SASTM syntax objects.

To achieve Level 1 Compliance (Semantic Compliance)

* The elements of the AST must conform to the semantic properties of software defined by the GASTM, specifically
they must be expressed using the elements of the GASTM SemanticObject and its subclasses. A model is compliant
semantically with the ASTM if its semantic properties are expressed in the semantic modeling elements of the
GASTM and/or the semantic elements of future SASTM semantic objects.

Tools may work together to achieve both syntactic and semantic conformance. The diagram below illustrates the
interoperability of two ASTM compliant tools that conform to Compliance Level 0 and Level 1 respectively and exchange
information via XM| documents.

4 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Level 0
Parser

Level 1
| ASTM2KDM

Mappiing

k-

XMI
Export

.

XMI XMl XMI XMI XMI
Import Export Import Export Import

S 7 /I s P f

. _

Level 1
§ ASTM2ZTRGT
Generator

Level 1
Constrainer

KDM2ZUML
Mapping

Figure 2.1 - ASTM Tool Interoperability

Figure 2.1 illustrates a classic ADM to MDA mapping scenario, in which atool chain composed of ADM and MDA tools
cooperatively carry out a complex transformation mapping from source code into target code interoperatively by
interchanging a series of OMG XMI models.

In this diagram the parser is a Level 0 compliant tool. The parser analyzes source code to generate the abstract syntax
elements for alanguage. The parser generates an ASTM model compatible with the syntactic elements of the GASTM.
The parser exports the syntactic GASTM model via XMI through an Export API. In this diagram the Level 1 compliant
tool is a constrainer. The constrainer imports the Syntactic XMI model produced by the parser through an Import API.
The constrainer analyzes the abstract syntax tree produced by the parser and augments the abstract syntax with semantic
elements. Subsequently, a Level 1 compliant tool ASTM2KDM maps the ASTM to the KDM model and exports its
model via XMI to the KDM2UML tool via XMI interchange. Subsequently a Level 1 compliant UML2ASTM tool
convertsa UML model of asysteminto aLevel 1 ASTM model, which is exported to aLevel 1 ASTM2TRGT Generator
via XMI. The ASTM2TRGT Generator generates Target Code.

Model Interchange via XMI generally needs to be undertaken only when a tool requires the services of some other tool.
Agreement upon a common interchange format facilitates construction of tool chains that cooperate by interchanging
models in commonly agreed upon formats. Model interchange via XMI can be skipped if a single tool can accomplish a
complex task without the need for the services of some other tool.

Highly complex software tasks often require cooperation between tools, and tool chains can be rapidly assembled to
accomplish complex tasks collaboratively within atool ecosystem that interchanges models via the OMG ADM MRD.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 5



Table 2.2 - Compliance Statements

Compliance Statement

transform GASTM and SASTM
syntactic models and semantic
models of existing applications

that conform to the UML model.

and SASTM syntactic and
semantic models based on the
XMI schema.

Compliance Manipulation Import API Export API

Level

LO The capability to analyze and The capability to import GASTM The capability to export GASTM
transform GASTM and SASTM and SASTM syntax models and SASTM syntax models
syntactic models of existing based on the XMI schema. based on the XMI schema.
applications that conform to the
UML model.

L1 The capability to analyze and The capability to import GASTM The capability to export GASTM

and SASTM syntactic and
semantic models based on the
XMI schema.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this

specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

« Unified Modeling Language (UML) 2. Infrastructure Specification

« Meta Object Facility (MOF) 2.0 Specification

e Architecture Driven Modernization Knowledge Discovery Meta-Model (KDM) 1.0 Specification

4 Terms and Definitions

See Annex B for this information.

5 Additional Information

5.1 How to Proceed

The rest of this document contains the technical content of this specification. Chapter 6 contains the Overview of the
ASTM specification, including how the ASTM is envisioned to support the OMG Architecture Driven Modernization
(ADM) Road Map (as defined in numerous published ADM whitepapers). It describes how the ASTM is intended to
support other relevant OMG standards, and describes how the ASTM is envisioned to support the ADM Scenarios.

Chapter 7 develops and refines the core concepts and expresses them in a compact BNF format favored by computer
language theorists for defining programming languages abstract syntax.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0




Chapter 8 continues to develop and refine the ASTM core concepts with UML diagrams with detailed description of the
structure, meaning, and intended usage of the elements.

Annex A illustrates RDBMS Extensions, Annex B provides a relatively comprehensive glossary of terms and definitions
that are widely used or understood within the computer science community to refer to the concepts that the ASTM
models. Annex C is a bibliography of sources for the terms defined in Annex B.

5.2 Acknowledgments

The following companies submitted and/or supported parts of this specification.
Submitted by:

+ EDS
« IBM
» Software Revolution
« TCS

Supported by:

» 88 Solutions

* Adaptive Technologies
* Blue Phoenix

« Composable Logic

* KDM Analytics

» Kaestre Institute

¢ Northrop Grumman

« SAIC

e Tactical Strategy Group

The following contributors either wrote or reviewed this specification.
AUTHORS

e Philip H. Newcomb, The Software Revolution, Inc.
e RavindraNaik, Tata Consultancy Services

SUBMISSION TEAM CONTRIBUTORS

« Robert Couch, Senior Computer Scientist, The Software Revolution, Inc.
e Mark Purtill, Senior Computer Scientist, The Software Revolution, Inc.

< Luo Nguyen, Operations Manager, The Software Revolution, Inc

* Roger Knapp, VP Operations, The Software Revolution, Inc.

« Howard Ramsdell, Computer Scientist, The Software Revolution, Inc.

e Shrawan Kumar, Senior Computer Scientist, Tata Consultancy Services
« Hitesh Sgjnani, Computer Scientist, Tata Consultancy Services

e Djenana Campara, KDM Analytics (formerly Klocwork)

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 7



« Nikolai Mansurov, KDM Analytics (formerly Klocwork)

e Tim W.Wilson, Distinguished Engineer, IBM Research

¢ Howard Hess, Distinguished Engineer, IBM Research

e Larry M. Hines PhD, Austin Innovation Centre, EDS.

« Michad K. Smith PhD, EDS Distinguished SE, Austin Innovation Centre, EDS
« Rich Cohen, Rich PhD, EDS Distinguished SE , Austin Innovation Centre, EDS.
» Barabara Erikson-Conner, EDS

ADM TASK FORCE REVIEWERS AND CONTRIBUTORS
e William Ulrich, Tactical Strategy Group, Inc.
* Smith, Jeff PhD, Composable Logic
¢ Vitaly Khusidman PhD, Director Enterprise Modernization, Unisys Corporation
e Vadim Pevzner, PhD, Director of Business Transformation, Unisys Corporation
* Mike Oara, CTO, Relativity Technologies, Inc
* lraBaxter PhD, CEO, Semantics Designs
« Douglas Smith, PhD, Kestrel Institute
e Kimbrell, Roy E., Northrup Grumman
e Chris Caputo, Blue Phoenix
e AlanPicard, CTO, Benchmark Consulting,

OMG ARCHITECTURE REVIEWERS
« Sridhar lyengar, IBM Distinguished Engineer, IBM
¢ Sumeet. S Malhotra, Unisys
e Peter Rivett, CTO, Adaptive Inc.
* Manfred R Koethe, CTO, 88solutions Corporation

DISTINGUISHED REVIEWERS

» Cordell Green PhD, Director, Kestrel Institute
« Chikofsky, Elliot, Entineering Management & Integration, Inc.
e David S. Frankel, David Frankel Consulting

8 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



§) Overview

6.1 Abstract Syntax Tree

Compilers, converters, and transformation tools represent programming language constructs, such as expressions,
statements and loops, as a tree structure known as an “ Abstract Syntax Tree” or AST. An AST provides a means for
creating a representation of the executable software artifact. The AST is a formal representation of the syntactical
structure of software that is more amenable to formal analysis techniques than is the concrete or surface syntax of
software. Construction of ASTs typically involves the use of parsing technologies, but ASTs can aso be constructed by
means of a generation or derivation process from some other form or specification. AST model structures permit the
expression of compositional relationships to other language constructs and provide a means of expressing a set of direct
and derived properties associated with each such language construct.

The data structures from which the abstract syntax trees are composed provide an exhaustive collection of formal
compositional elements for a language. These language constructs (or model elements) are generally defined in atype (or
class) hierarchy. There are many ways to define these ASTs. The AST may be derived from an analytical process that can
be applied to the surface syntax of the software asset or may be captured through a process that involves the application
of rewrite rules to other data structures. For instance, a common or language-neutral AST model might be generated by
the application of rewrite rules that generate a language specific AST model of some application, or a generic AST model
might be generated directly from a UML class diagram or action diagram by means of a series of refinement rules. An
AST may be an invertible representation. In other words, it may be possible to traverse the AST and reconstruct the
“surface syntax” of the legacy system or reconstitute it in textual form from the abstract structures. An AST may be
augmented, it may be analyzed and updated using additional structures that describe other properties about the software.
Common analyses that augment an AST with additional properties include constraint analysis, data-flow analysis, control-
flow analysis, axiomatic analysis, and denotational analysis. ASTs are generally augmented with additional analyses
layers, such as type analysis, control-flow analysis, or data-flow analysis (to support code optimization). Augmentation
may also support capture of software engineering metrics and documentation. Having a standard metamodel to represent
ASTs will facilitate interchange at a foundational level for all architecture-driven modernization work. Hence, the AST
provides an appropriate formalism for the derivation of properties required for detailed knowledge discovery.

Formally, in computer science, an abstract syntax tree (AST) is afinite, labeled, directed tree, where the internal nodes
are labeled by operators, and the leaf nodes represent the operands of the node operators. Thus, the leaves have nullary
operators, i.e., variables or constants. In computing, it is used in a parser as an intermediate between a parse tree and a
data structure, the latter which is often used as a compiler or interpreter's internal representation of a computer program
while it is being optimized and from which code generation is performed. The range of all possible such structures is
described by the abstract syntax. An AST differs from a parse tree by omitting nodes and edges for syntax rules that do
not affect the semantics of the program. The classic example of such an omission is grouping parentheses, since in an
AST the grouping of operands is explicit in the tree structure.

In contrast, an abstract semantic graph (ASG) is a data structure used in representing or deriving the semantics of an
expression a formal language (for example, a programming language). An abstract semantic graph is a higher level
abstraction than an abstract syntax tree (or AST), which is used to express the syntactic structure of an expression or
program. An abstract semantic graph is typically constructed from an abstract syntax tree by a process of enrichment and
abstraction. The enrichment can for example be the addition of back-pointers, edges from an identifier node (where a
variable is being used) to a node representing the declaration of that variable. The abstraction can entail the removal of
details which are relevant only in parsing, not for semantics.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 9



6.2 Abstract Syntax Tree Metamodeling Specification

The Abstract Syntax Tree Metamodel (ASTM) is the subject of this specification. The main purpose of Abstract Syntax
Tree Metamodeling specification is to enable easy interchange of detailed software metadata between software
development and software modernization tools, platforms, and metadata repositories in distributed heterogeneous
environments. The Abstract Syntax Tree Metamodel defines a specification for modeling elements to express abstract
syntax trees (AST) in arepresentation that is sharable among multiple tools from different vendors.

This specification defines a metamodel for representing information about existing software assets in the form of abstract
syntax trees for those software assets. An ASTM Metamodel describes the elements used for composing AST models. An
AST model is a model of how the statements of a software asset are structured and thus reflect the grammar of the
particular programming language. An AST is thus a model of the formal structure, but not the language- specific form of
expression of the program statements.

The ASTM specification mainly consists of definitions of metamodels software application artifacts in the following
domains:

¢ Generic Abstract Syntax Tree Metamodel (GASTM): A generic set of language modeling elements common across
numerous languages establishes a common core for language modeling, called the Generic Abstract Syntax Trees. In
this specification the GASTM model elements are expressed as UML class diagrams.

« Language Specific Abstract Syntax Tree Metamodels (SASTM) for particular languages such as Ada, C, Fortran, Java,
etc. are modeled in Meta Object Facility (MOF) or MOF compatible forms and expressed as the GASTM aong with
modeling elment extensions sufficient to capture the language.

« Proprietary Abstract Syntax Tree Metamodels (PASTM) express ASTs for languages such as Ada, C, COBOL, etc.
modeled in formats that are not consistent with MOF, the GSATM, or SASTM. For such proprietary AST this
specification defines the minimum conformance specifications needed to support model interchange.

The GAST may be derived from rewrite rules applied to a Specific Abstract Syntax Tree (SAST) or refinement rules
applied to UML class diagrams. Proprietary formats (PASTs) may be mapped into the GASTM or GASTM/SASTM as
illustrated in Figure 6.1.

P
S

1 Source Code 1 1 I Source Code n ||
Source Code Repository

Figure 6.1 - ASTM Modeling Framework

10 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



6.3 ASTM Support and Complementation for MDA

Another key goa of the ASTM is to both support and complement the MDA by establishing a standard set of platform
independent abstract syntax language elements as a common framework for analysis and for interchange of platform and
language specific programming language metamodels. The ASTM is based on three key industry specifications:

e UML - Unified Modeling Language, an OMG modeling standard
* MOF - Meta Object Facility, an OMG metamodeling and metadata repository standard
¢ XMI - XML Metadata I nterchange, an OM G metadata interchange standard

Collectively these three specifications provide foundation for object services, interchange services, and common
repository facilities as illustrated in Figure 6.2.

ADM Repository Common Facility

mor | < >‘X_T‘{ >

<J ADM Interchange Services _>

| ADM Object Services I

Figure 6.2 - OMG ADM Repository, Interchange, and Object Services

The OMG base architecture for Repository Common Facilities, Model Interchange Services, and Object Services are
obtained from the OMG MOF model and supporting MOF based extensible frameworks, such as Eclipse. These three
specifications form the core of the OMG Architecture Driven Modernization (ADM) Metadata repository (MDR)
architecture illustrated in Figure 6.2. The ADM repository Metadata Repository architecture follows and replicates the
OMG Metadata Repository architecture except as specialized for abstract modeling of software source code artifacts,
support for the ADM Roadmap packages and the ADM Modernization Scenarios to be described below. The roles of the
key architectural components of the OMG ADM Metadata Repository are described in greater detail in the section below.

6.4 ADM Meta Data Repository

The UML specification defines arich, object oriented modeling language that is supported by a range of graphical design
tools. The MOF specification defines an extensible framework for defining models for metadata, and providing tools with
programmiatic interfaces to store and access metadata in a repository. The ASTM extends MOF modeling to encompass
several existing families of languages in a uniform way. The XMI specification allows metadata to be interchanged as
streams or files with a standard format based on XML. XMI in particular lowers the barrier to entry for the use of OMG
metadata specifications.

The compl ete architecture offers a wide range of implementation choices to developers of tools, repositories, and object
frameworks. Key aspects of the architecture include:

« A four layered metamodeling architecture for general purpose manipulation of ADM metadata in distributed object
repositories. See the MOF and UML specifications for more details.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 11



¢ The use of UML notation for representing ADM metamodels and models.

¢ The use of standard information models (UML) to describe the semantics of object analysis and design models for
ADM models.

e The use of MOF to define and manipulate ADM metamodels programmatically using fine grained CORBA interfaces.
This approach leverages the strength of CORBA distributed object infrastructure.

e The use of XMI for stream based interchange of ADM metadata.

Collectively these specifications support an extensible framework for the definition of metamodels, access to, and
interchange of these metamodels as various forms and levels of metadata by ADM Modernization Tools and Repositories.
ADM Interchange Services provide mechanisms for the exchange of Metamodels and Models metadata. ADM Object
Services provide mechanisms for persistent storage of this metadata (as illustrated in Figure 6.3).

ADM Repository Common Facility

ror) €[] 6= [u]

ADM Modernization
Tools
and
Repositories

)
<_| ADM Interchange Services _>

| ADM Object Services

Figure 6.3 - OMG ADM Meta Data Repository (ADM MDR)

6.5 ASTM Relationship to MOF

In the OMG Meta Object Facility (MOF) Abstract Syntaxes are nested meta-modeling levels with each layer defining a
set of elements and conformance constraints for each subordinate layer. The nesting of the MOF metadata enables each

layer in a MOF model to serve as the meta layer for its subordinate model layers. Thus, M3 is the Abstract Syntax of M2
Abstract Syntax Trees. M2 isthe Abstract Syntax of M1 Abstract Syntax Trees. M1 is the Abstract Syntax of MO Abstract
Syntax Trees MOF uses UML Class diagrams to define Abstract Syntax. MOF platform independence comes from its use
of generators that produce software for managing models that conform to meta-models.

The ASTM in this specification is defined as a MOF model. While MOF models are constrained by the compositional,
relational, and Object Constraint Language constraints, ASTM meta-models are additionally constrained by grammar
specification constraint checkers that impose restrictions upon the relationships between language constructs derived from
the compositional constraints defined upon syntactic model elements of the language. Thus, many perfectly acceptable
MOF Abstract Syntax models would be considered malformed by the grammar specification system constraint checkers
that are commonly used for composing ASTM models. While most well-formed grammar specifications acceptable to
compilers or parser generators are likely to be MOF compatible, MOF permits more flexible construction of models that
would be regarded as incomplete, inconsistent, or contradictory by constraint checkers for ASTM models.

12 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Table 6.1 - The ASTM MOF Relationship

Layer Description ADM Examples
Meta-metamodel M3 MOF (i.e., the set of constructs used to MOF Class, MOF Attribute, MOF
define metamodels) Association, etc.
Metamodel M2 Metamodels consisting of instances of KDM UML profiles
MOF constructs GASTM UML profile
SASMT UML profile
Model Models consisting of instances of AS KDM Data Model
M1 Model of COBOL language

M2 metamodel constructs

Instances Objects and data (i.e., instances of M1 AST model instances of source code of real
examples) MO model constructs) applicationKDM Data models instance of
data base or data files

Combining MOF and the Language Parsing Approaches to Abstract Syntax and ASTs is highly powerful. Abstract
Syntaxes defined for Language Parsers can usually be modeled as MOF Models using MOF Tools. Once the MOF Models
for language models exist, MOF has generators to create XML, Java, and CORBA API support for these models.

MOF allows the model instances (ASTSs) of software applications to be modeled and interchanged via MOF Repository
technology. MOF allows the exchange of AS (metadata) and ASTs (i.e., enterprise applications treated as data) with full
machine automation.

Without MOF, the manipulation of applications in Abstract Syntax form will remain proprietary with limited penetration.
With MOF, the manipulation of programs as data (ASTs) will become universal and many hard software problems will be
solved efficiently and economically. ASTM extends MOF modeling to encompass several existing families of languages
in auniform way. A generic set of language modeling elements common across humerous languages establishes a
common core for language modeling, called the Generic Abstract Syntax Trees (GAST). Language Specific Abstract
Syntax Trees (SAST) for particular languages such as Ada, C, Fortran, Java, etc. must be modeled in MOF or MOF
compatible forms. The transformation between SAST GAST must be demonstrated without loss of meaning even though
their abstract syntax model changes during transformation between languages. The ASTM supports transformation
between GAST to SAST and transformation between SAST and GAST, and replicates and extends the MDA approach of
generating platform specific model from platform independent models.

6.6 ASTM Support for ADM Roadmap

The ASTM is supportive of the following ADM Roadmap specifications:
¢ KDM - Architecture-Driven Modernization Knowledge Discovery Meta-Model, an OM G modeling specification

The ASTM is supportive of five additional ADM Roadmap specifications that are undergoing definition, or will be
defined in future years. The ASTM also provides a language-neutral meta-model to support these future ADM
specifications.

1. The Analysis Package (AP) facilitates the examination of structural meta-data with the intent of deriving
behavioral meta-data about systems that may take the form of business rules or other aspects of a system that are
not part of the structure of the system, but are rather semantic derivations of that structure and the data.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 13



2. The Metrics Package (MP) derives metrics from the ASTM and AP to describe various system attributes. These

metrics convey technical, functional, and architectural issues for the data and the procedural aspects of the
applications of interest.

3. The Visualization Package (VP) depicts application meta-data stored within the AP and the KDM in any variety of

views as may be appropriate or useful for planning and managing modernization initiatives.

4. The Refactoring Package (RP) defines ways in which the AP, MP, VP, KDM, and ASTM can be used to refactor

applications. This includes structuring, rationalizing, modularizing, and other ways of improving existing
applications without redesigning those systems or otherwise deriving model-driven views of those systems.

5. The Target Mapping & Transformation Package (TMTP) defines mappings between the KDM, ASTM, AP, MP,

and RP models. This specification defines the mappings and transformations that may occur between existing
applications and top down, target models.

The overall structure of the ADM Metadata Repository Architecture is depicted in Figure 6.4. The ASTM s highlighted
to illustrate its position within this structure.

MDA & UML Tools, Tool Chains and Tool Suites

OMG Object Services

< - OMG Intarchange Services q >

L 1.

Activity I Sians " \ .

Diagrams | Deagra i ©
nugnm: Diagrams

I-\n-aelkn L"Ib’“‘ Eiehm L L L !-U“
Saquence State ming e
D*':l"i"* Disgram Diagram g:;rn:‘.. Diagram Diagram
ADM Roadmap

-

B T T L

OMG Repository Common Facility

L Lwor ) e | ] = | m |

Figure 6.4 - ADM Metadata Repository Architecture

6.6.1 ASTM Complements the KDM

The first specification, the Knowledge Discovery Metamodel, provides a means for capture of information from multiple
sources and its meta-model provides a comprehensive view of application structure and data, but does not represent
software below the procedure level.

14

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



The Architecture-Driven Modernization Knowledge Discovery Meta-Model (KDM) specification provides a
comprehensive high-level view of the application behavior, structure, and data, but does not represent application models
below the procedural level. The ASTM models constructs within programming languages, while the KDM models
structural, behavioral, and data information about application portfolios. ASTM is one of the sources of information for
the KDM. The ASTM is expected to complement the KDM as an element of the ADM Roadmap to express fully detailed
models of application artifacts.

The ASTM complements the KDM by modeling detailed syntactic structures using generic model elements common to
numerous languages, as well as using specialized modeling elements specific to particular languages. Combining the
KDM and the ASTM enables the exchange of metadata for applications written in multiple programming languages with
full machine automation. The ASTM establishes the necessary fine-grained models of application artifacts required for
detailed analysis and visualization, refactoring, target mapping, and transformation. Figure 6.5 depicts the relationship
between the system itself, the ASTM, and the KDM.

Business Rules
& Processes

Figure 6.5 - ASTM & KDM Complementarity

In the figure above, the level of abstraction increases as you travel out from the center of the diagram. The ASTM does
not duplicate the KDM, but complements it. Further, the ASTM is one of many sources of information for populating the
KDM. The ASTM extends the KDM to support the creation of comprehensive and detailed models of systems.

Standardizing the format of AST structures, representation, and interchange of AST models will complement the KDM by
completing a comprehensive model for the exchange of application models tools that would otherwise be prohibitive to
justify and will insure that the aggregate of vendor tools provides a comprehensive architecture-driven modernization
capability. A standard KDM complemented by a standard ASTM will enable a user of the technology to bring together a
variety of best-of-breed products to analyze, visualize, re-factor, and transform legacy applications between application
modernization tools. It will enable vendors to develop specialized modernization.

Table 6.2 illustrates the high-level correspondence mappings between elements of the ASTM and the KDM. Development
of the detailed mapping and mechanisms for automating the mapping between the KDM and the ASTM and the ASTM
and the KDM will be left to vendors who subscribe to these specifications. There are many more objects in the ASTM
than listed in the table below, and there are far more elements in the ASTM than are listed in the table below. Not all
objects of the ASTM will have a mapping to objects of the KDM, since the KDM models high-level concepts that are not
necessarily implemented in the code, or if implemented in code, not necessarily by individual low-level statements of the
code.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 15



Table 6.2 - AST to KDM Mapping

ASTM KDM ASTM KDM

Comment CommentUnit Block Compound

SourceFile SourceFile SwitchStatement Switch

SourcelLocation SourceRef Add Add

Project Project Subtract Subtract

FunctionDeclaration CallableUnit Multiply Multiply

FunctionDefinition CallableUnit Divide Divide

VariableDeclaration StorableUnit Modulus Remainder

VariableDefinition StorableUnit And And

PreprocessorElement PreprocessorDirective Or Or

NameSpaceDefinition Namespace Equal Equals

IncludeUnit IncludeDirective NotEqual NotEqual

MacroDefinition MacroUnit Greater GreaterThan

MacrocCall MacroDirective Less LessThan

DataType Datatype NotLess GreaterThanOrEqual

FunctionType CallableKind NotGreater LessThanOrEqual

PrimitiveType PrimitiveType BitAnd BitAnd

Void VoidType BitOr BitOr

Integer IntegerType BitXor BitXor

Float FloatType BitLeftShift LeftShift

Character CharType BitRightShift RightShift

String StringType Assign Assign

Boolean BooleanType Postincrement Incr

IntegerLiteral integer-literal PostDecrement Decr

StringLiteral string-literal ActualParameter ParameterUnit

CharlLiteral character-literal NewExpression New

ReallLiteral real-literal RangeExpression RangeType

BooleanLiteral boolean-literal AnnotationExpression Annotation

BitLiteral bitstring-literal EnumType EnumeratedType

AggregateType RecordType ConditionalExpression Condition
FunctionCallExpression Call
ReturnStatement Return
JumpStatement Goto
ThrowStatement Throw
ArrayReference ArraySelect
FieldReference FieldSelect
CastExpression TypeCast

16 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0




6.6.2 ASTM Support for the KDM

From the KDM perspective the ASTM is one means of populating the KDM. The ASTM extends the KDM to support
comprehensive and detailed modeling of systems. From ASTM perspective, the KDM as well as the ADM Roadmap are
MDA MOF models the ASTM populates from its highly detailed and precise models of systems. The ASTM regards the
KDM is one source for information about systems that can guide large-grained analysis, metrics, visualization, model
mapping, transformations, and refactoring that the ASTM supports. The ASTM does not directly depend upon or intersect
with the KDM for any part of its meta-model definition. Together, the ASTM and the KDM provide high fidelity support
for ADM scenarios when effectively combined.

Users of the KDM and the ASTM regard modernization from somewhat different perspectives. A KDM user regards

transformation as an augmentation strategy that is supported by a better understanding application data, structure and

behavior, and architecture and is undertaken to make legacy systems more reliable and adaptable. Transformation is a
technique needed when extracting and rationalizing data definitions, data and business rules, redesigning, and reusing
legacy rules and data within the context of strategic enterprise architecture.

From an ASTM User’s perspective modernization is a direct strategy that includes model driven mapping of data,
structure, and behavior between language feature sets (language translation), model driven restructuring of language
feature sets with replacement of undesirable features with reliable and adaptable features (application refactoring), model
driven rationalizing of data definitions, data and business rules by abstraction to MDA data views (models) that support
model-driven regeneration of specific language features, model driven re-architecting of systems by abstracting design
patterns and applying generation, transformation, and refactoring to regenerate redesigned and re-architected enterprise
applications.

6.6.3 The ADM Metadata Repository Services

The ASTM lays a foundation of repository services for the subsequent specifications in the ADM Roadmap. Compactness
and uniformity is achieved for the ADM Roadmap specifications by basing them upon the GASTM, the language-neutral
set of common AST modeling constructs. Application of these services to specific languages is achieved by the definition
of a standardized approach to defining mappings between the single generic GAST upon which ADM Roadmap packages
are based, and the myriad specialized forms of SAST used for modeling specific languages. Extension of ADM Roadmap
Services from the GAST to SAST is achieved by association relationships between the generic language constructs of the
GAST and the specific language constructs of the SASTM modeling constructs. Construction of GASTM and SASTM
models requires use of MOF and UML modeling technology. Internet Interchange of metadata conformant with these
metamodels is typically accomplished by XML or CORBA brokerage services hypertransport facilities. The transport,
management, or interchange of ADM metadata within tools (inside the box) is accomplished by vendor-specific utilities
optimized for performance and efficiency. Realization of GASTM and SASTM models results in GAST and SAST
instances that constitute persistent high fidelity models of software systems and applications, however this technical
modeling approach is not limited to software artifacts alone.

6.6.4 The ASTM Support for Multiple Language Types

In particular, the ASTM is capable of representing a broad range of software languages and language types including
2GL, 3GL, 4GL, and 5GL languages such as Ada, Assembler, C, C#, COBOL, FORTRAN, Java, Natural, Power Builder,
Refine, SQL, etc. Techniques used for defining GASTM and SASTM replicates the form of detailed language analysis
required for compiler construction, but the persistent models realized from GASTM and SASTM metamodels are often
much richer in information content than the models used by compilers for translation from higher level languages into
machine code or byte code.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 17



The ASTM Extensibility

Generally speaking, any OMG MOF metamodel defines an abstract syntax for conformant model instantiations. More
broadly the term “domain modeling” is generally applicable to the process of defining formal languages that describe
specific areas of knowledge that may be fully described by specialized vocabularies, syntax, and associated semantics.
The ASTM is an open ultra-wide spectrum architecture capable of supporting AST metamodel definition and extension,
metadata interchange and transformation and object services across any language that can be expressed using abstract
syntax as an intermediate representation or expression of the concrete (surface level) language in which knowledge is
commonly expressed.

Role of the ASTM in the ADM Metadata Repository Architecture

An essential element of the ASTM architecture is the definition of a single universal ASTM model consisting of a core,
GASTM, accompanied by a set of separately defined extensions, SASTM, for expressing the specialized abstract syntaxes
of specific languages. A single SASTM may provide language elements for multiple specific languages or dialects, but
should be restricted to the establishment of languages elements for languages within a particular language family. A
SASTM could, for example, be defined for ‘rule-based’ languages by defining a set of modeling elements for expressing
cause-effect rules consisting of conditions and actions associated with conditions with the set of modeling elements used
to represent ‘expressions’ of conditions provided by the ‘Expression’ elements of the GASTM.

In principle, the GASTM in combination with the set of SASTMs provides a set of universal language constructs
adequate for the expression of all languages. AST modeling is a common practice, and vendors and compiler devel opers
have developed AST models for many languages. The model definitions for all such proprietary AST models are called
proprietary abstract syntax trees (PAST). The meta-models for all such PASTs are called PAST meta-models, or PASTMs.
The ASTM, therefore consists of three kinds of meta models, the GASTM, SASTM, and the PASTM, where all such
models must be expressed as MOF models to become interchangeable. The GASTM s the language neutral and vendor
neutral core. The SASTM is aset of extensions of the GASTM, which are specialized to specific languages or families of
languages. The PASTMs are vendor-specific proprietary models. If a vendor wishes to interchange his PASTM as a
vendor-neutral representation it should be transformed or mapped into a GASTM+SASTM. Figure 6.6 illustrates this
concept.

Mem“Model
Model i
PAST 1% @ PAST n
Pig n
= F
'l |

L Source Code 1 | I SourceCoden |
Source Code Rsmltwy

Figure 6.6 - AST Metamodel and Metadata Repository

The GAST+SAST is capable of faithfully capturing without loss of underlying meaning the specialized abstract syntax of
the PASTs defined for specific languages. The figure above illustrates the relationship between AST metamodels
(GASTM, SASTMs, PASTMs), models (GAST and SASTs, PASTSs) and source code artifacts. This architecture requires
that mappings be defined between the PAST to the GAST+SAST to re-express the language elements of a specific (or

18 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



proprietary) language in terms of the language-neutral elements of the GAST+SAST. Conversely mappings must be
defined between the GAST+SAST and a specific (or proprietary) PAST to re-express the language elements of the generic
language in terms of the language elements of a specific (or proprietary) language. For some classes of languages the
GASTM may be sufficient, in and of itself and without an SASTM, for expressing the language elements of the language.

The mapping between the SAST+GAST and the PAST must be demonstrated without loss of meaning even though their
abstract syntax models changes during this transformation or mapping. Separation of concerns dictates the PASTM be
distinct from the GASTM+SASTM and necessitates that this mapping or transformation process be defined between the
PAST and the GAST+SASTM.

In practice, the plethora of PASTM models that already exist originated as a consequence of the separate concerns of each
of their creators. Capturing the abstract syntax of a language in the form of an AST models is a highly complex
undertaking that requires concern for efficiency of the parsing and constraining process. It is essential that the capture of
the specific details of a particular language not be encumbered by the need for conformance to a fixed reference model
such as the GAST+SAST during the definition of the PAST for any specific language. New languages are constantly
being invented as part of the natural evolution and on-going innovation of programming languages. Moreover there are
degenerate and obsolete syntactical forms in many language that are unique, and there are undesirable model elements
that are excluded from the GAST+SAST by design or by its state of maturity. Modeling of PAST models entails the
utilization of abstract syntax tree elements for modeling unique language forms for which modeling elements may not
exist (and might never exist) within the GASTM and the SASTM. Such language unique elements of PAST models must
be ‘transformed’ into standard element forms in the GAST+SAST.

The ASTM Provisional Extensibility

While the ASTM standard provides support specifically for several categories of languages, the standard must provide a
process for community extension when GASTM constructs are required to model languages to which the GASTM has not
been previously extended by the formal standardization process.

For example, Domain Specific Languages (DSL) are examples of languages with vocabularies, syntax, and supporting
semantics specialized to a specific purpose to expedite the expression of solutions within a limited problem domain or
used to define a particular aspect of a problem solution. While it is always possible to define a SASTM for any DSL, it is
possible to conceive of a DSL containing one or more language constructs that cannot be mapped into the generic
language constructs previously defined within the GASTM. Therefore it is common, in practice, for additional language
constructs to be introduced into the GASTM on a frequently recurring basis. It is not possible to establish a conclusive set
of GASTM constructs, nor is it desirable to do so, because the possible set of language neutral language construct types
is indefinitely extensible.

Therefore the ADM TF must provide for user extensions to the GASTM, and establish a process for regular review, and
publication of extended GASTM models.

Business Value of the ASTM and ADM Metadata Architecture

The ASTM greatly reduces the complexity of the technology required to support many modernization scenarios. In
particular it significantly reduces the problem of translation or transformation between multiple different programming
languages. Considering the set of all economically interesting source (S) and target (T) languages, the ASTM reduces the
O (S* T) transformation problem to an O(S+T+G), where S is the number of source languages (or models) and T is the
number of target languages (or models) + G the GASTM (G).

Standardizing the format of AST structures, representation and interchange of AST models provides a foundation for a
comprehensive model for the exchange of application models between application modernization tools that enables
vendors to develop specialized modernization tools that fit within MOF compliant tool frameworks and insures that the

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 19



aggregate of vendor tools provides a comprehensive modernization capability. A standard ASTM establishes the
foundation for the architecture of an ADM Metadata Repository that will enable a user of the technology to bring together
a variety of best-of-breed products to analyze, visualize, refactor, and transform legacy applications.

6.7 ASTM Support for OMG Specifications

The GAST is used to support other OMG modeling specifications by providing a generic set of language modeling
elements as the basis of OMG model (AST) derivation and as the basis for OMG language generation. The GASTM is
effectively an Ultra Wide Spectrum Intermediate Language Model which 2GLs, 3GLs, 4GLs, and 5GL languages.
Existing OMG generators for MOF models are limited to Java or C++ for behavior support, and XML Schema and DTDs
for structure support. Retargeting OMG MOF generators into the GASTM will extend MDA support to a much broader
spectrum of target languages than is currently supported by MOF technology. Application Models and Meta-Models (AST
and AS) will be sharable among multiple tools from different vendors with much more uniform support for analysis,
visualization, re-factoring, target mapping, and transformations across multiple languages. All ADM tools must adhere to
the specifications for software modeling, as defined by the Object Management Group (OMG).

6.8 Role of the ASTM in the ADM Metadata Repository Support Services

The ADM Metadata Repository Support Services and Architecture are defined by seven interrelated specifications,
starting with the KDM followed by the ASTM. At the time of this submission none of the service layers of the ADM
Roadmap had been adopted as OMG specifications. The ASTM is envisioned as the kernel for the ADM Metadata
Repository Support Services providing a set of modeling elements and facilities that interface directly with the source
code artifacts that are the focus of the ADM Modernization Scenarios. The KDM is envisioned as the husk of the ADM
Metadata Repository providing a multi-dimensional collection of modeling elements and modeling services that enable
ADM Modernization to be effectively utilized by the enterprise in planning and executing ADM Modernization
Scenarios. The remaining 5 ADM specifications define services for Analysis, Metrics, Visualization, Refactoring, Target
Mapping & Transformation. The roles of the 7 ADM specifications and their relationship to the ASTM are defined below.

6.8.1 ASTM Support For ADM: Knowledge Discovery Meta-Model Package

The KDM Package establishes an initial meta-model that allows modernization tools to exchange application meta-data
across applications, languages, platforms, and environments. This initial meta-model provides a comprehensive view of

application structure and data, but does not represent software below the procedure level. The KDM RFP has been issued
and six companies have submitted a total of four responses.

Abstract Syntax Tree Metamodel (ASTM)

One particular way ADM work will benefit from standardizing ASTs is by providing a foundation for other ADM sts.
ASTs are one of many sources of information for populating the Knowledge Discovery Metamodel (KDM). The KDM
provides a comprehensive view of application behavior, structure and data, but does not represent the detailed syntactic
structures of programming artifacts.

ASTM SUPPORT: The ASTM supports the KDM by providing a language neutral framework for derivation of KDM
models to the extent that these models can be derived by automation. The use of the ASTM establishes a task complexity,
O, for defining KDM support for a set of languages S to be O(M(S) + KDM(G) + KDM(S)) where M(S) is the effort to
map each language into the ASTM and KDM(G) is the effort to provide a set of Reusable KDM functions based upon the
GASTM for the set of languages, and KDM(S) is the effort to provide language specific KDM functionality for each
specific language specializations.

20 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



A set of language neutral Mapping and Transformation relationship defined between the GASTM and the KDM meta
models are complemented by transitive mappings onto language specific SASTMs or directed mappings between SASTM
and KDM meta models when specialization is required.

6.8.2 ASTM Support For ADM: Abstract Syntax Tree Metamodel Package

This ASTM builds upon the KDM Package in order to represent software below the procedural level. This effort will
allow the KDM to fully represent applications and facilitate the exchange of granular meta-data across multiple
languages. This version of the KDM establishes the foundation for subsequent analysis, visualization, and transformation
specifications.

ASTM SUPPORT: This document provides a partial description of how the ASTM supports the ADM Roadmap
packages.

6.8.3 ASTM Support For ADM: Analysis Package (AP)

The Analysis Package creates a standard that facilitates the examination of structural meta-data with the intent of deriving
behavioral meta-data about systems. This behavioral meta-data may take the form of business rules or other aspects of a
system that are not part of the structure of the system, but are rather semantic derivations of that structure and the data.

This ASTM supports the Analysis package by providing a language neutral framework for derivation of Analysis Package
models to the extent that these models can be derived by automation. The use of the ASTM establishes a task complexity,
O, for defining AP support for a set of languages S to be O(M(S) + AP(G) + AP(S)) where M(S) is the effort to Map each
language into the ASTM, AP(G) is the effort to provide a set of language-neutral Reusable Analyses Package functions

based upon the GASTM for the set of languages, and AP(S) is the effort to provide language specific Analysis Package
functionality for the language unique features of each of the specific languages specializations.

The set of language neutral Mapping and Transformation relationship defined between the GASTM and the AP meta
models are complemented by transitive mappings onto language specific SASTMs or directed mappings between SASTM
and AP meta models when speciaization is required.

6.8.4 ASTM Support for ADM: Metrics Package (MP)

The focus of the Metrics Package is to derive metrics from the KDM that can describe various system attributes. These
metrics convey technical, functional, and architectural issues for the data and the procedural aspects of the applications of
interest. These metrics support planning and estimating, ROI analysis and the ability of analysts to maintain application
and data quality. The task force envisions gaining validation for the metrics package by working with industry and
academic resources.

ASTM SUPPORT: This ASTM supports the Metrics package by providing alanguage neutral framework for derivation of
Metrics Package models to the extent that these models can be derived by automation. The use of the ASTM establishes
a task complexity, O, for defining MP support for a set of languages S to be O(M(S) + MP(G) + MP(S)), where M(S) is
the effort to Map each language into the GASTM, MP(G) is the effort to provide a set of language-neutral Reusable

Metrics Package functions based upon the GASTM for the set of language, and MP(S) is the effort to provide language
specific Metrics Package functionality for the language unique features of each of the specific languages specializations.

The set of language neutral Mapping and Transformation relationship defined between the GASTM and the AP meta
models are complemented by transitive mappings onto language specific SASTMs or directed mappings between SASTM
and MP meta models when specialization is required.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 21



6.8.5 ASTM Support For ADM: Visualization Package (VP)

The Visualization Package focuses on ways to depict application meta-data stored within the KDM. This may include any
variety of views as may be appropriate or useful for planning and managing modernization initiatives. Examples include
the use of graphs or charts, metric summaries, or standardized development models.

The set of language neutral Mapping and Transformation relationship defined between the GASTM and the AP meta
models are complemented by transitive mappings onto language specific SASTMs or directed mappings between SASTM
and MP meta models when specialization is required.

ASTM SUPPORT: This ASTM supports the ADM Visualization Package by providing a language neutral framework for
derivation of Visualization Package models to the extent that these models can be derived by automation. The use of the
ASTM establishes a task complexity for defining VP support for a set of languages S to be O(M(S) + G + VP(S)) where
M(S) isthe effort to Map each language into the ASTM, G isthe effort to provide a set of Reusable Visualization Package
functions based upon the GASTM for the set of all language, and VP(S) is the effort to provide language specific
Visualization Package functionality for the language unique features of specific languages.

6.8.6 ASTM Support For ADM: Refactoring Package (RP)

The Refactoring Package defines ways in which the KDM can be used to refactor applications. This includes structuring,
rationalizing, modularizing, and in other ways improving existing applications without redesigning those systems or
otherwise deriving model-driven views of those systems. Work on the Refactoring Package STANDARD will begin after
issuance of the Visualization Package STANDARD.

ASTM SUPPORT: This ASTM supports the ADM Refactoring Package by providing a language neutral framework for
derivation of Refactoring Package Models to the extent that these models can be derived by automation. The use of the
ASTM establishes a task complexity for defining RP support for a set of languages S to an O(M(S) + RP(G) + RP(S))
where M(S) is the effort to Map each language into the ASTM, G is the effort to provide a set of Reusable Refactoring
Package functions based upon the GASTM for each language, and RP(S) is the effort to provide language specific
Refactoring Package functionality for language unique features for specific languages.

The set of language neutral Mapping and Transformation relationship defined between the GASTM and the RP meta
model s are complemented by transitive mappings onto language specific SASTMs or directed mappings between SASTM
and RP meta models when specialization is required.

6.8.7 ASTM Support For ADM: Target Mapping & Transformation Package (TMTP)

The Target Mapping & Transformation Package defines mappings between the KDM, ASTM(GASTM <> SASTM) AP,
MP, and RP models. This standard defines the mappings and transformations that may occur between existing
applications and top down, target models. Development paradigms may vary, but will include MDA as atarget. This
standard will complete ADM task force efforts in providing a transformational bridge between existing systems and target
architectures.

ASTM SUPPORT: ADM Target Mapping & Transformation Package defines a standard defining and deriving Target
Mapping & Transformation Package models to the extent that these models can be derived by automation. The ASTM
establishes a standard language neutral framework for the ADM Package Models to which the TMTP is applied to support
transformations and mappings between the ADM Package Models and other OMG models.

22 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



6.9 ASTM Support for the ADM Scenarios

The ADM Modernization Scenarios have been defined by the ADM task force in order to provide guiddines for envisioning all
potential ADM applications. The ADM Scenarios help auser determine the tasks, tools, and use of the ADM, provide templates
for crafting project objectives, plans, and related deliverables, defines tasks necessary to complete a given modernization
initiative, and omit unnecessary tasks that would not apply to such a scenario. The Scenarios allow a user to pinpoint the types of
tools necessary to perform these tasks, identifies the universe of modernization scenarios and tasks, and provides a guide as to
the role of the ADM within modernization in general.

The ADM Modernization Scenarios
I. Application Portfolio Management
II. Application Improvement

I11.Language-to-L anguage Conversion

IV.Platform Migration

V. Non-Invasive Application Integration

V1. Services Oriented Architecture Transformation

VI1I. Data Architecture Migration

VIIl.Application & Data Architecture Consolidation
X1. Data Warehouse Deployment
X. Application Package Selection & Deployment

XI. Reusable Software Assets/ Component Reuse

XI11. Model-Driven Architecture Transformation

The ADM Modernization Scenarios are used to

« define an approach to various application improvement, migration, and redesign initiatives that an organization may
pursue,

e pinpoint the types of tools necessary to perform these tasks, and
* mix and match Scenarios based upon the organization's M odernization goals.

For example, Language-to-language conversion might be coupled with a platform migration. The ADM has defined 13
Modernization scenarios for 12 of which the ASTM relationship is outlined below. Other scenarios may be added to thislist from
time to time. This section discusses the support the ASTM provides for the ADM Scenarios.

The following section outlines each of the ADM Modernization Scenarios and discusses how the ASTM supports each of them.

6.9.1 Application Portfolio Management (Scenario )

Organizations must manage application systems as business assets and this requires portfolio analysis and management. Whether
driven by internal audit requirements or government regulations, accounting of information assets is essential. This scenario
captures and exposes technical and functional meta-data on an organization’s information systems. Further, many old systems are
poorly documented and this scenario addresses this shortcoming. The need for such a scenario is characterized as follows.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 23



e Thereis no documentation depicting information flows, system-wide data usage, or overall systems architecture.

« Management requires detailed accounting of information systemsto fulfill audit or regulatory requirements (e.g., Sarbanes-
Oxley, Basil Accord).

e IT systemswill undergo major changes or are to be outsourced.

« Modernization projects require baseline information to segment a portfolio into functional work units and provide input
to an overall strategy.

This scenario entails running systems analysis tools and augmenting the resulting meta-data with analyst expertise to
create areliable knowledge base on existing systems. Meta-data would be stored in the ADM Meta Data Repository in the
ADM Package Modds, which is centrd to the effective and ongoing ability to manage information systems as organi zational assets.
Specifically, the ADM MDR would facilitate the following portfolio management activities.

e Serveasrepository of cross-systems and cross-platform application meta-data.

« Enableanayststo visualize the rel ationship among business processes and related business artifacts with application artifacts.
« Enable analysts to incorporate evolving application and related meta-data as it changes over time.

« Allow analyststo expose ADM Package meta-data through visuaization tools.

e Support distributed or centralized meta-data viewing, including the ability to scale up or down based on organizational size,
structure, or reporting requirements.

« Support the federation of the ADM Package, based on organizational structure, size, or reporting requirements.

ASTM SUPPORT: This ASTM supports the ADM Automated Portfolio Management (APM) scenario by providing a
language neutral framework upon which APM Tools can provide a uniform and high level of automated support. The use
of the ASTM establishes a task complexity, O, for defining APM support for a set of languages S to be O(M(S) + (APM(G) +
APM(S)) where M(S) isthe effort to Map each language into the ASTM, APM(G) is the effort to provide a set of Reusable APM
functions based upon the GASTM for each language, and APM(S) is the effort to provide language specific APM functionality for
language unique features for specific languages.

6.9.2 Application Improvement (Scenario Il)

The application improvement scenario is a “super scenario” comprised of several sub-scenarios. The goal of this scenario
is to improve the robustness, integrity, quality, consistency, and/or performance of applications. Activities include the
correction of program or system flaws (e.g., recursion), source code restructuring, data definition rationalization, or field
size standardization. Organizations may address some or all of these issues depending on their objectives and basic
weaknesses in the applications of interest. This scenario involves no architectural modifications and is based on the
following requirements:

« A growing upgrade request backlog cannot be met due to system quality.

e The system is experiencing high failure rates or reliability problems.

« Thereisalong learning curve, poor IT responsiveness, and user dissatisfaction.

« System upgrade costs are not proportionate to business returns.

« Oneor more systems are being prepared to be outsourced or are being brought back in-house.

« Management has given up even trying to change the applications.

24 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Field expansion is required based on specific business requirements (e.g., uniform bar code, phone number, or revenue
growth).

The portfolio anadlysis and asset management scenario may precede this scenario, but this is not essential. ADM Packages supports
this scenario as fallows:

Store and associate application and business meta-data associated with the systems of interest for the purposes of
planning, management and execution.

Expose system and program weaknesses discovered by system analysistools.

Provide planning input to improvement tasks by linking system weaknesses with business needs, particularly across systems,
platforms and languages.

Assigt andystswith the process of rationalizing system-wide data names, atributes, records, segments and tabl es.
Assist with the change management throughout the improvement process.
Facilitate the tracking of system meta-data as it changes through the system improvement process.

Streamline the planning and execution of the validation and verification stage of the project.

ASTM SUPPORT: This ASTM supports the ADM Application Improvement (Al) scenario by providing alanguage neutral

framework upon which Al Tools can provide a uniform and high level of automated support. The use of the ASTM establishes a
task complexity, O, for defining Al support for a set of languages S to be O(M(S) + (AI(G) + AI(S)) where M(S) is the effort to
Map each language into the ASTM, Al(G) isthe effort to provide a set of reusable Al functions based upon the GASTM for each
language, and Al(S) is the effort to provide language specific Al functionality for language unique festures for specific languages.

6.9.3 Language-to-Language Conversion (Scenario Ill)

This scenario involves converting one or more information systems from one language to another language. The language-
to-language conversion scenario addresses the physical need to move from one language to another. This may be driven by avariety
of factors, but does not involve aredesign of the gpplication functionality beyond that which isrequired by the language change itself.
This scenario is driven by the following needs:

A language has become obsolete, is no longer vendor supported, is no longer understood by available programming talent or
isjust too hard to change.

Thereis abusiness requirement to enhance the functionality of the current system but the language is no longer supported or
readily adapted to change.

Systems must moveto anew platform and the new platform does not run the existing language or particular version of that
language.

A baseline system must be established from which current applications may be migrated to a strategic architecture.

ADM Packages play the following role in the language-to-language conversion scenario:

Tracks system artifacts through the planning, phasing, and staging of the conversion effort.

Facilitates discovery of high risk issues such asthe use of runtime libraries or language constructs not availablein the target
environment.

Assists with the change management process as the conversion proceeds.

Streamline the planning and execution of the validation and verification stage of the project.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 25



ASTM SUPPORT: This ASTM supports the ADM Language To Language (L2L) scenario by providing a language neutral
framework upon which L2L Tools can provide a uniform and high level of automated support. The use of the ASTM establishes
atask complexity, O, for defining L2L support for aset of languages Sto be O(M(S) + (L2L(G) + L2L(S)) where M(S) isthe effort
to Map each language into the ASTM, L2L(G) isthe effort to provide a set of reusable L 2L functions based upon the GASTM for
each language, and L2L(S) is the effort to provide language specific L2L functionality for language unique features for
specific languages.

6.9.4 Platform Migration (Scenario 1V)

Moving systems from one platform to another is driven by platform obsolescence or the desire to standardize applications to an
organizational standard. This scenario does not involve any functional or data redesign beyond that which is essentia to the platform
migration. This scenario may also be combined with a language-to-language conversion, although language conversion is not
aways required (e.g., UNIX to LINUX). The following situations typicaly drive a platform migration:

« The hardware and/or operating system is no longer supported or viable.
*  Management hasdecided to “right Sze" asystem by moving it to adistributed environment or back to amainframe.
e Thecurrent platform does not support the accepted operating system standard.
« Management has mandated a platform change.
ADM Packages play the following role in a platform migration project:

« Tracks system artifacts through the planning, phasing and staging of the migration, particularly if it hasto be phased in over
time.

» Facilitates discovery of high risk issues such asthe use of runtime libraries or language constructs not available in the
target environment.

« Assists with the change management process as the migration proceeds.
« Streamlines the planning and execution of the validation and verification stage of the migration.

ASTM SUPPORT: This ASTM supports the ADM Platform Migration (PM) scenario by providing a language neutral
framework upon which PM Tools can provide a uniform and high level of automated support. The use of the ASTM
establishes atask complexity, O, for defining PM support for a set of languages Sto be O(M(S) + (PM(G) + PM(S)) where M(S)
is the effort to Map each language into the ASTM, PM(G) is the effort to provide a st of reusable PM functions based upon the
GASTM for each language, and PM(S) is the effort to provide language specific PM functionality for language unique features for
specific languages.

6.9.5 Non-Invasive Application Integration (Scenario V)

Organizations with an immediate need to bring a graphically oriented look and fedl to end users can utilize middleware technology to
replace existing front-ends with Web-based front-ends. While a non-invasive integration project qualifies as a modernization
scenario only at the most superficid level (i.e, the user interface), this scenario is still supported by ADM Packages. The
integration scenario is characterized by the following requirements:

« Business users want to replace aging front-ends with Web-based front-ends.

» Usersgain vauefrom replacing older front-endswhile leaving core system functionality, data structures, and interfaces
essentialy unchanged.

< Anintegration project is seen as a stepping stone to subsequent modernization objectives such as an SOA migration.

26 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



In spite of the fact that this is a non-invasive approach (i.e., does not change underlying application) to providing new user front-
ends to business users, the ADM Packages play arole in the planning, execution and post-project documentation of new user
front-ends. In general, ADM Packages aid in the discovery and adaptation of existing user interfaces. ADM Packages a so supports
the post-implementation phase because middleware environments are becoming so complex. Because larger organizations are
losing track of which interfaces and systems are connected to other systems, documentation is a key aspect of integration
deployment. The following points exemplify the role of ADM Packages in a non-invasive integration scenario:

« Aidsindetermining how to create anew interface to existing businesslogic because it has high-level and granular information
about application data and processing logic.

e Allows analyststo pinpoint all user interface candidates targeted for migration to Web-based front-ends.

« Helpsidentify existing front-ends that may be redundant with other front-ends across application environments.

« Highlights front-end consolidation opportunities for redundant back-ends.

« Facilitatesthe tracking of distributed user interfaces and middleware on an ongoing basis as new front-ends are deployed.
* Ensures alignment with the OMG Enterprise Application Integration (EAI) specification.

ASTM SUPPORT: This ASTM supports the ADM Non-Invasive Application Integration (NIAI) scenario by providing a
language neutral framework upon which NIAI Tools can provide a uniform and high level of automated support. The use of the
ASTM establishes atask complexity, O, for defining NIAI support for a set of languages Sto be O(M(S) + (NIAI(G) + NIAI(S))
where M(S) is the effort to Map each language into the ASTM, NIAI(G) is the effort to provide a set of reusable PM functions
based upon the GASTM for the set of languages, and NIAI(S) is the effort to provide language specific NIAI
functionality for language unique features for specific languages.

6.9.6 Services Oriented Architecture Transformation (Scenario VI)

The transformation to services oriented architecture involves more than just attaching new front-ends to legacy user interfaces as

some analysts mistakenly believe. Because most existing application functionality is embedded in monolithic, functionally and

architecturally dated systems, application and data architectures cannot be segregated into services in any useful or meaningful

way. In addition, business logic is typically intertwined with user interface and data access logic. In these situations, a true
SOA cannot be created without retroactively applying modular design principles to existing, back-end systems. The SOA
scenario is applicable in the following situations:

« Businessfunctions embedded in monolithic batch or online applications need to be accessed in amodular, services oriented
fashion.

e System functionality islocked into backend batch processing systems.
» Complex user interface and data access logic complicates the isolation of business|ogic that may be deemed a service.
* Online applications do not update datain redl time, which resultsin a service relying on back-end batch update systems.

e Exigting front-ends rely on segmented, inconsistent, and redundant functionality in back-end systems, which is not
conducive to forming well-bounded services.

ADM Packages plays akey rolein an SOA scenario by helping identify and track relationships between the physical system,
program functionality, data usage, and user interfaces. Such a project requires the componentization of existing applicationsto facilitate
the reuse of business logic contained within them. Based on this requirement, the KDM helps as follows:

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 27



« Facilitates the front-end planning necessary to identify redundant, inconsistent and segregated functionality that needsto
be refactored to create services.

« ldentifiesthe front-ends of interest that could serve as prototypes for cresting a service that hooksinto an existing system.

¢ Allowsandyststo determine the need to consolidate and reconcile redundant and inconsistent user interfaces and program
functionality into reusable services.

< Aidsin discovery and extraction of the business logic as service candidates.
« Helpswith the discovery and adaptation of new, component level interfaces.

«  Streamlines effortsto track consolidated user interfaces and program functions throughout the service creation and
deployment process.

» Facilitates the tracking of new user interfacesinto back-end applications as a way to document post-project SOA
architecture.

« Simplifies the planning and execution of the validation and verification stage of the project.

ASTM SUPPORT: This ASTM supports the ADM Services Oriented Architecture (SOA) scenario by providing alanguage neutral
framework upon which SOA Tools can provide a uniform and high level of automated support. The use of the ASTM establishes
atask complexity, O, for defining SOA support for a set of languages S to be O(M(S) + (SOA(G) + SOA(S)) where M(S) isthe
effort to Map each language into the ASTM, SOA(G) isthe effort to provide aset of reusable PM functions based upon the GASTM
for the st of languages, and SOA(S) is the effort to provide language specific NIAI functionality for language unique features for

specific languages.
6.9.7 Data Architecture Migration (Scenario VII)

A data architecture migration moves one or more data structures from a non-relationa file or database to relational data
architecture. Many times thisis done using a“quick and dirty” approach, leaving users with performance, reliability and data
accessihility problems. Pitfalls include ignoring business requirements, sidestepping relational design techniques, not
incorporating related or redundant data in the project, not utilizing qualified data analysts or tregting the project as a straight
conversion effort. This scenario shuns the quick and dirty approach. Typical requirements are as follows.

» Usersare experiencing data consi stency, accessibility, redundancy, and integrity problems.

» Thebusinessisexperiencing an inability to get at the same types of data defined or calculated differently across different
systems.

« Exidingflat file hierarchica or networked structures are not readily accessible to distributed or new technologies
» Usersrequire more flexible views of business data.
« Older file or database structures are obsolete and being eliminated.

ADM Packages facilitate data architecture migration because they can assist with tracking artifacts impacted by such a project
including program-based data definitions, data access logic, database definition language, and the data itself. The ADM
Packages assist as follows:

« Enable analysts to define the scope of the project based on the artifacts impacted by existing data structures.
e Allow anayststoidentify al relevant and impacted artifacts based on the nature and scope of the data migration effort.
« Hepdetermineif acommon basis exists, within underlying computation and data models, to identify changes that would

dlow different systemsto produce compatible answers for the same data.

28 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



« Facilitate theisolation, consolidation, and reconciliation of data accesslogic as abasic step in simplifying
programmatic access to the newly redesigned database.

« Streamline the planning and execution of the validation and verification stage of the project.

ASTM SUPPORT: This ASTM supports the ADM Data Architecture Migration (DAM) scenario by providing a language
neutral framework upon which DAM Tools can provide a uniform and high level of automated support. The use of the
ASTM establishes atask complexity, O, for defining DAM support for a set of languages Sto be O(M(S) + (DAM(G) + DAM(S))
where M(S) is the effort to Map each language into the ASTM, DAM(G) is the effort to provide a set of reusable DAM functions
based upon the GASTM for the set of languages, and DAM(S) is the effort to provide language specific NIAI functionality for
language unique features for specific languages.

6.9.8 Application & Data Architecture Consolidation (Scenario VIII)

Many organizations have multiple systems that perform the same basic functions. For example, a merger or an acquisition may
have resulted in three separate billing systems. System cloning also contributes to these redundancies.

Redundant systems and data structures contribute to usage inconsistencies, redundant business processes, customer frustration,
integration problems, and excessive maintenance workloads. Another factor driving this scenario is the need to construct asingle
application from multiple stand-al one systems. For example, analysts may want to create a single human resources system from
separate payroll, insurance, and pension systems. The following factors drive such a scenario:

« An organization has recently undergone a merger or acquisition or has not yet fully streamlined applications from a past
merger or acquisition:

« Management wishes to consolidate redundant business areas into a single functional unit.

« Highbusinessand IT costs require the consolidation of redundant business processes and related systems.

¢ Currently running several redundant systems that essentially perform the same or smilar functions.

* Severa similar systems contain large segments of overlapping functionality.

« Related, stand alone systems process similar data redundantly and inconsistently.

 Inadequate or nonexistent sharing of data between systemsis severely limiting user service levels.

« Downstream systems have evolved to handle much of the functionality that should be defined in core systems.
« Business users get different answers to the same questions from different systems.

The application and data architecture consolidation scenario is far reaching because it involves mgjor retooling multiple applications.
This scenario does not involve model-driven transformation, language change, or platform migration. It can, however, be combined
with these scenarios. Care must be taken to make a business case for this scenario. This may not be difficult when millions of
dollars are spent on redundant business units that cannot be combined due to information systems redundancies. ADM plays
the supports this scenario as follows.

« Helps pinpoint which applications and data structures are within the project scope.

* Assgsin determining the business process, user interface, gpplication logic, data definition, and related redundancies as
candidates for consolidation.

« Enablesthetracking of application artifacts as consolidation efforts proceed and are phased into production.

« Streamlines the planning and execution of the validation and verification stage of the project.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 29



ASTM SUPPORT: This ASTM supports the ADM Application Data Architecture Consolidation (ADAC) scenario by providing a
language neutra framework upon which ADAC Tools can provide a uniform and high level of automated support. The use of the
ASTM establishes a task complexity, O, for defining ADAC support for a set of languages S to be O(M(S) + (ADAC(G) +
ADAC(S)) where M(S) is the effort to Map each language into the ASTM, ADAC(G) is the effort to provide a set of reusable
ADAC functions based upon the GASTM for the set of languages, and ADAC(S) isthe effort to provide language specific ADAC
functionality for language unique features for specific languages.

6.9.9 Data Warehouse Deployment (Scenario 1X)

This scenario builds a data warehouse of business data and creates ways to access this data. The warehouse contains data
that has been extracted, analyzed, and transformed into a common repository that users can access, but not update, as required. This
is common when organizations have the following requirements:

» Business functions require consolidated accessto certain data (e.g., customer information) to streamline user tasks.
« Usersrequire access to data that crosses organizational and application boundaries.

« Related datais defined across multiple systems, making it difficult to access user summary information.

« Thereisnot enough time or budget to integrate or modify core applications to address these data requirements.

As discussed in the data architecture migration scenario, KDM facilitates data analysis and capture from existing systems.
Further, the KDM is aligned with the OMG Common Warehouse Model (CWM), which is a standard for representing data from
disparate sources for the purposes of building and maintaining a data warehouse. The KDM helps facilitate this scenario as
follows:

* Hepsanaydsidentify the relevant dataand related data definitions that need to be andyzed, reconciled, validated, and loaded
into the warehouse.

« Facilitates the detailed analysis needed to identify data definition discrepancies across systems or business units.
« Facilitates the tracking of data models and the physical data from which these models are derived.
« Allows analysts to continue to track multiple data sources on an ongoing basis as the data warehouse is used.

ASTM SUPPORT: This ASTM supports the ADM Data Warehouse Deployment (DWD) scenario by providing a language
neutral framework upon which DWD Tools can provide a uniform and high level of automated support. The use of the
ASTM establishes atask complexity, O, for defining DWD support for a set of languages Sto be O(M(S) + (DWD(G) + DWD(S))
where M(S) isthe effort to Map each language into the ASTM, DWD(G) is the effort to provide a set of reusable DWD functions
based upon the GAS TM for the set of languages, and DWD(S) is the effort to provide language specific DWD functionality for
language unique features for specific languages.

6.9.10 Application Package Selection & Deployment (Scenario X)

This scenario defines how to analyze, select, and deploy third party application packages. If management is weighing one or more
packages against in-house options, this scenario assists with comparing functional requirements. It assists with the deployment of
the package by helping analysts determine which portions of the package need to be implemented, integrated, discarded, or
updated. It also outlines how exigting systems are to be retired, integrated, or retooled to work with a package. The following
requirements drive the application package scenario:

* A decision has been made to investigate a third party application software package options.
« An application package has aready been acquired and needs to be implemented.

< Documentation of the package is required.

30 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



« A roadmap isneeded to determine how a package can interact, interface, or integrate with existing systems or packages.
* Assg with mapping strategic requirementsto the dataand functiond capabilities of various gpplication packages.

« Allow analyststo compare the functionality of various packages with the functionality running in the existing application
environment.

«  Upon package selection, determine which portions of the package would be deployed and integrated into the current
environment.

» Determine which portions of the existing application environment need to be retained, retired, or integrated into the package
environment.

« Provide adatamapping, integration, and migration plan based on current data structures and those used by the package.

« Offerindgghtsinto functions that need to be added to the newly deployed application based on functions the package does not
perform.

« Streamline the planning and execution of the acceptance testing process.

ASTM SUPPORT: This ASTM supports the ADM Application Package Sdlection & Deployment (APSD) scenario by providing a
language neutral framework upon which APSD Tools can provide a uniform and high level of automated support. The use of the
ASTM establishes atask complexity, O, for defining APSD support for a set of languages S to be O(M(S) + (APSD(G) +
APSD(S)) where M(S) is the effort to Map each language into the ASTM, APSD(G) is the effort to provide a set of reusable
APSD functions based upon the GASTM for the set of languages, and APSD(S) is the effort to provide language specific APSD
functionality for language unique features for specific languages.

6.9.11 Reusable Software Assets / Component Reuse (Scenario Xl)

Reuse is one of the critical waysin which an IT organization can improve productivity. Consider the massive redundancies
hidden in application and data structures across software portfolios and the savings become apparent. Organizations could save
significant time and money by leveraging previousdly implemented functionality in new development projects. Further, businesses
that are now running duplicate customer management, payment, claims, inventory and other systems have a wealth of untapped
information building blocks. Modernization helps identify, capture, streamline and prepare information assets for reuse. This
scenario applies in the following situations:

< An organization understands and has bought into the vaue of reuse and component-based development.

* Thereisadgnificant ingtdled base of application systemsthat contain functiondity that I'T wishesto turn into reusable assets or
components.

The ASTM supports the reuse scenario as follows:
* Facilitatesthe identification of certain software assets based on data utilization, transaction access, or other criteria.

< ldentifiesrelated or duplicate functionaity based on common data usage, structural considerations or other cross-reference
criteria

» Assistswith tracking reusable assets as they are consolidated and populated into reuse libraries.

ASTM SUPPORT: This ASTM supports the ADM Reusable Software Assets / Component Reuse(RSA-CR) scenario by
providing a language neutral framework upon which RSA-CR Tools can provide a uniform and high level of automated
support. The use of the ASTM establishes atask complexity, O, for defining RSA-CR support for a set of languages S to be

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 31



O(M(S) + (RSA-CR(G) + RSA-CR(S)) where M(S) isthe effort to Map each language into the ASTM, RSA-CR(G) isthe effort
to provide a set of reusable RSA-CR functions based upon the GASTM for the set of languages, and RSA-CR(S) is the effort to
provide language specific RSA-CR functionality for language unique features for specific languages.

6.9.12 Model-Driven Architecture Transformation (Scenario XII)

Transforming a non-model-driven environment to a model-driven environment requires a series of phased tasks over a
window of time. Moving to MDA, given that rewriting all of the existing applications is not an option in most cases,
requires transformation of existing, hand-crafted applications into models that can be used to generate replacement applications. The
following are common requirements driving this concept:

« Anorganization has adopted and is committed to an I T environment in which applications are built and maintained in models.
* MDA concepts and tools are accepted within the organization.
« The current data and application architecture is dated or obsolete.

« Thebusinesshas changed to the degree that existing sysems and data structures no longer support the organization in their current
form.

» Usersrequire functiona upgradesthat are difficult to add to the existing architecture. The KDM can assist with the phased
transition to such an environment as follows:

« Current data and application artifacts can be mapped to these new requirementsin the ASTM to assist with
defining a transformation plan.

« Transformation projects can be defined across enterprise data and applications of interest based on ASTM mappings.

« Astransformation proceeds, ASTM serves as the vehicle for mapping current-to-target functionality, along with
exigting artifacts, for transformation purposes.

« Streamline the planning and execution testing process.

« Post-transformation documentation ensures that emerging MDA models and system artifacts are documented
during and after the transformation process.

ASTM SUPPORT: This ASTM supports the ADM Mode Driven Architecture Transformation (MDAT) scenario by providing a
language neutral framework upon which MDAT Tools can provide a uniform and high level of automated support. The use of the
ASTM establishes atask complexity, O, for defining MDAT support for a set of languages S to be O(M(S) + (MDAT(G) +
MDAT(S)) where M(S) isthe effort to Map each language into the ASTM, MDAT(G) isthe effort to provide a set of reusable
MDAT functions based upon the GASTM for the set of languages, and MDAT(S) is the effort to provide language specific
MDAT functiondity for language unique features for specific languages.

The ASTM establishes a standard bottom-most language modeling level for many MDA tools to generate to and derive
from. It allows AST models to be sharable among multiple tools from different vendors accurately support analysis,
visualization, refactoring, target mapping and transformations. It provides high levels of automation for tasks that are highly
manua today, such as application rehosting, platform retargeting, legacy system replacement, database upgrade.

The SATM provides sufficient precision and generality and fineness of granularity to alow its language modeling elements to be
used as acommon basisfor application analysis, metrics, visualization trandation, and refactoring. The ASTM defines an intensely
rich architecture based upon MDA principals for supporting the ADM modernization scenarios. A common use of the ASTM isto
support for scenario 111 Language-to-Language conversons. The ASTM is architected to supports higher efficient conversion
between multiple language categories with a high degree of reuse of language elements. Conversions between “language levels’

32 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



are carried out within the GASTM as language-neutral conversions to achieve high-level of reuse. The platform and language

specific (each source PSM) mappings into the GAS TM (one PIM) and from the GASTM (each target PSM) to the target platform

specific language is defined one once per language.

The complete set of the language-to-L anguage transformation combinatorics supported by GASTM based language to
language conversion is outlined in the Top-Down L2L and the Bottom-Up L2L conversion scenario table below.

Table 6.3 - GASTM Language to Language (L2L) Conversion Scenarios

Top Down Language To Language (L2L) Conversion Scenarios
5GL to 4GL
5GL to 4GL to 3GL 4GL to 3GL
5GL to 4GL to 3GL to 2GL 4GL to 3GL to 2GL 3GL to 2GL
Bottom Up Language To Language (L 2L ) Conversion Scenarios
2GL to 3GL
2GL to 3GL to 4GL 3GL to 4GL
2GL to 3GL to 4GL to 5GL 3GL to 4GL to 5GL 4GL to 5GL

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

33



6.9.13 ASTM Support for the MDA

MDA istypicaly regarded as a top-down model-driven process for new system development. The MDA Architectural models
provide portability, interoperability, and re-usability through architectural separation of concerns. Its Architectura models
direct the course of understanding, design, construction, deployment, operation, maintenance, and modification. ADM
incorporates bottom-up extraction of architectural models followed by top down reuse in MDA processes and scenarios for
legacy systems modernization and closes the gap between top down and bottom up methodol ogies.

MDA ADM
Business Services Business Services
and Domain Models and Domain Models

odel Xform

New
Software

N
<ﬁ/del Xform> <l_‘g1;trelj;(ror“>

Legacy Modernlzed
System System

Figure 6.7 - MDA with ADM Figure 6.8 - MDA with ADM

System

Closure of this gap permits the application of MDA to existing legacy systems as illustrated in Figure 6.9.

Business: Services: & Domain Models

- The Gap -
3GL Monolithic N-Tier
Source Architecture Flat File Modern Architecture Relational
Code Green Database O-0 b Service Database
Screens Code Gul

Figure 6.9 - ADM allows modern MDA tools to be applied to legacy software

34 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



7 ASTM Core Concepts

The terms and definitions in the Glossary, Annex B, are widely used or understood within the computer science
community. They are provided herein as a common frame of reference for interpreting the meaning of the terminology
used throughout this document and are the source references or basis of understanding for the core ASTM concepts and

their definitions presented below.

The following tables categorize and classify the terminology used in the ASTM model into major syntactic and semantic

categories by programming language domain (e.g., imperative, objective-oriented). The terminology was subclassified

along data, functional, structural and preprocessor dimensions, similar to those used in KDM to facilitate ASTM
alignment with the KDM. The names, associations and properties of the GAST modeling elements were synthesized by

combining the best practices employed in commercial-grade software modeling tools of the submission teams (TSRI,

TCS, Klocwork, IBM and EDS). The ASTM Core Element Concise Definitions are definitions of the core ASTM
modeling elements based upon their common understood meaning within the computer science community.

7.1

ASTM Core Syntax Concepts

Table 7.1 - Generic Abstract Tree Core Terminomogy Matrix

Generic Abstract Syntax Tree Core Terminology Matrix
Domain Data Executable Code Structure Preprocessor
Programming Symbols Types Statements Expressions
Paradigm
Imperative Entry Definition Collection Type Block Statement Array Reference Compilation Unit Include Statement
Paradigm Enumeral Definition Enumeration Break Statement Binary Expression | Declaration Include Unit
Label Definition Literal Case Statement | Cast Expression Entry Macro \Call
Procedure Definition Enumeration Type | Continue Conditional Point Macro Definition
Template Definition Exception Type StatementDefault | Expression Procedure
Type Definition Label Type Statement Enumeration
Variable Definition Pointer Type Expression Reference
Formal Parameter Primitive Type Statement Identifier
Definition Range Type Try Statement Reference
Reference Type Jump Statement Label Reference
Structure Type Label Statement Literal Operator
Template Type Loop Statement (Name)
Sequence Type ReturnStatement | Pointer
Dimension Type Switch Statement | Expression
Address Of Throw Statement | Procedure Call
Global Qualified Identifier
Declaration Reference
Range
Expression
Reference
Expression
Object- Class Definition Class Type
Oriented Method Definition Inherits <possible
Member Definition relationship>

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

35



7.2 ASTM Core Semantic Concepts

Table 7.2 - Generic Abstract Semantic Graph Terminology

Generic Abstract Semantic Graph Terminology
Domain Bindings Location
All Programming Paradigms ProgramScopeProcedureScope SourcelLocation SourceFile
Block Scope
Type Scope

7.3 ASTM Core Element Concise Definitions

Table 7.3 - GASTM Element Definitions

GASTM Modeling Element Core Element Concise Definitions

1. GASTMObject The root of the GASTM class hierarchy

1.1 GASTMSourceObject Objects related to specifying locations within source files

1.1.1 SourceLocation Start/end line/column position information, part of a source location specification
1.1.2 SourceFile Objects related to semantic artifacts of the modeled/analyzed system
1.2 GASTMSemanticObject The collection of compilation units to be modeled/analyzed as a whole
1.2.1 Project Declaration context in which names declared must be unique

1.2.2 Scope Declaration context in which names declared must be unique

1.2.2.1 FunctionScope The scope introduced by a function definition

1.2.2.2 AggregateScope The scope introduced by an aggregate type

1.2.2.3 BlockScope The scope introduced by a block statement

1.2.2.4 ProgramScope The scope introduced by a compilation unit

1.2.2.4 GlobalScope outermost scope, surrounding all compilation units of a project

1.3 GASTMSyntaxObject All syntactic constructs

1.3.1 PreprocessorElement Inclusion of a file during preprocessing

1.3.1.1 IncludeUnit Inclusion of a file during preprocessing

1.3.1.2 MacrocCall Invocation of a preprocessor macro

1.3.1.3 MacroDefinition Definition of a preprocessor macro

36 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



1.3.1.4 Comment

Comments appearing in source files

1.3.2 DefinitionObject

Constructs that define entities

1.3.2.1 DeclarationOrDefinition

Declarations and definitions

1.3.2.1.1 Declaration

Constructs that declare entities without defining them

1.3.2.1.1.1 FunctionDeclaration

Function declarations

1.3.2.1.1.2 VariableDeclaration

Variable declarations

1.3.2.1.1.3 FormalParameterDeclaration

Formal Parameter Declarations, appearing in function declarations

1.3.2.1.2 Definition

Constructs that declare entities as they also define them

1.3.2.1.2.1 FunctionDefinition

Subprogram definitions

1.3.2.1.2.2 EntryDefinition

Subprogram entry definitions

1.3.2.1.2.3 DataDefinition

Definitions involving data

1.3.2.1.2.3.1 VariableDefinition

Variable definitions

1.3.2.1.2.3.2 FormalParameterDefinition

Formal Parameter Declarations, appearing in function declarations

1.3.2.1.2.3.3 BitFieldDefinition

Definitions of bit-field data

1.3.2.1.2.4 EnumLiteralDefinition

Definitions of enumerals (members of enumerated types)

1.3.2.1.2.5 TypeDefinition

Definitions of types

1.3.2.1.2.5.1 NamedTypeDefinition

Definitions of types to be referred to by a specified name

1.3.2.1.2.5.2 AggregateTypeDefinition

Definitions of aggregate types

1.3.2.1.2.5.3 EnumTypeDefinition

Definitions of enumeration types

1.3.2.2 NamespaceDefinition

Definitions of namespaces

1.3.2.3 LabelDefinition

Definitions of labels

1.3.3 Type

All types

1.3.3.1 FunctionType

Function types

1.3.3.2 DataType

Types involving data

1.3.3.2.1 PrimitiveType

Primitive types; not further decomposable

1.3.3.2.1.1 Void

Void type

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

37



1.3.3.2.1.2 Boolean

Boolean Type

1.3.3.2.1.3 NumberType

Numeral type (unsigned or signed)

1.3.3.2.1.3.1 Byte

Byte Type

1.3.3.2.1.3.2 Character

Character Type

1.3.3.2.1.3.3 IntegralType

Various Integer types with optional size specification

1.3.3.2.1.3.3.1 Shortinteger

Short Integer type

1.3.3.2.1.3.3.2 Integer

Integer type

1.3.3.2.1.3.3.3 Longlnteger

Long Integer type

1.3.3.2.1.3.4 RealType

Various floating-point types

1.3.3.2.1.3.4.1 Real

Short floating-point type

1.3.3.2.1.3.4.2 Double

Long floating-point type

1.3.3.2.1.3.4.3 LongDouble

Long floating-point type

1.3.3.2.2 EnumType

Enumerated types

1.3.3.2.3 ConstructedType

Types constructed from a specified base type

1.3.3.2.3.1 CollectionType

Types characterized as collections (lists, sets, bags, ...

1.3.3.2.3.2 PointerType

Types whose values are pointers

1.3.3.2.3.3 ReferenceType

Types whose values are references

1.3.3.2.3.4 RangeType

Types whose values are ranges

1.3.3.2.3.5 ArrayType

Array types

1.3.3.2.4 AggregateType

Types composed of heterogeneous subtypes

1.3.3.2.4.1 StructureType Simple structure types (no inheritance or function members)

1.3.3.2.4.2 UnionType Union types (like structures but each data member occupies the same location)
1.3.3.2.4.3 ClassType Class types

1.3.3.2.4.4 AnnotationType Denotations that complete or extend the definitions of other types

1.3.3.2.5 ExceptionType

1.3.3.2.6 FormalParameterType

38 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



1.3.3.2.6.1 ByValueFormalParameterType

1.3.3.2.6.2 ByReferenceFormalParameterType

1.3.3.2.7 NamedType

1.3.3.2.6 LabelType

1.3.3.2.7 NamespaceType

1.3.3.2.8 TypeReference

1.3.3.2.8.1 UnnamedTypeReference

1.3.3.2.8.2 NamedTypeReference

1.3.4 Expression

1.3.4.1 Literal

1.3.4.1.1 IntegerLiteral

1.3.4.1.2 StringLiteral

1.3.4.1.3 CharLiteral

1.3.4.1.4 ReallLiteral

1.3.4.1.5 BooleanLiteral

1.3.4.1.6 BitLiteral

1.3.4.1.7 EnumLiteral

1.3.4.2 CastExpression

1.3.4.3 AggregateExpression

1.3.4.4 ArrayReference

1.3.4.5 UnaryExpression

1.3.4.6 BinaryExpression

1.3.4.7 ConditionalExpression

1.3.4.8 RangeExpression

1.3.4.9 FunctionCallExpression

1.3.4.10 NewExpression

1.3.4.11 NameReference

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

39



1.3.4.11.1 IdentifierReference

1.3.4.11.2 QualifiedldentifierReference

1.3.4.11.2.1 QualifiedOverPointer

1.3.4.11.2.2 QualifiedOverData

1.3.4.11.2.3 TypeQualifiedldentifierReference

1.3.4.12 LabelAccess

1.3.4.13 ArrayAccess

1.3.4.14 AnnotationExpression

1.3.4.15 CollectionExpression

1.3.5 Statement

1.3.5.1 ExpressionStatement

1.3.5.2 JumpStatement

1.3.5.3 BreakStatement

1.3.5.4 ContinueStatement

1.3.5.5 LabeledStatement

1.3.5.6 BlockStatement

1.3.5.7 EmptyStatement

1.3.5.8 IfStatement

1.3.5.9 SwitchStatement

1.3.5.10 ReturnStatement

1.3.5.11 LoopStatement

1.3.5.11.1 WhileStatement

1.3.5.11.2 DoWhileStatement

1.3.5.11.3 ForStatement

1.3.5.11.3.1 ForCheckBeforeStatement

1.3.5.11.3.2 ForCheckAfterStatement

40

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



1.3.5.12 TryStatement

1.3.5.13 ThrowStatement

1.3.5.14 DeleteStatement

1.3.5.15 TerminateStatement

1.3.6 MinorSyntaxObject

1.3.6.1 Dimension

1.3.6.2 CompilationUnit

1.3.6.3 Name

1.3.6.4 SwitchCase

1.3.6.4.1 CaseBlock

1.3.6.4.2 DefaultBlock

1.3.6.5 CatchBlock

1.3.6.5.1 TypesCatchBlock

1.3.6.5.2 VariableCatchBlock

1.3.6.6 UnaryOperator

1.3.6.6.1 UnaryPlus

1.3.6.6.2 UnaryMinus

1.3.6.6.3 Not

1.3.6.6.4 BitNot

1.3.6.6.5 AddressOf

1.3.6.6.6 Deref

1.3.6.6.7 Increment

1.3.6.6.8 Decrement

1.3.6.6.9 Postincrement

1.3.6.6.10 PostDecrement

1.3.6.7 BinaryOperator

1.3.6.7.1 Add

1.3.6.7.2 Subtract

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

41



1.3.6.7.3 Multiply

1.3.6.7.4 Divide

1.3.6.7.5 Modulus

1.3.6.7.6 Exponent

1.3.6.7.7 And

1.3.6.7.8 Or

1.3.6.7.9 Equal

1.3.6.7.10 NotEqual

1.3.6.7.11 Greater

1.3.6.7.12 NotGreater

1.3.6.7.13 Less

1.3.6.7.14 NotLess

1.3.6.7.15 BitAnd

1.3.6.7.16 BitOr
1.3.6.7.17 BitXor

1.3.6.7.18 BitLeftShift

1.3.6.7.19 BitRightShift
1.3.6.7.20 Assign
1.3.6.7.20.1 OperatorAssign
1.3.6.9 StorageSpecification

1.3.6.9.1 External

1.3.6.9.2 FunctionPersistent
1.3.6.9.3 FileLocal

1.3.6.9.4 PerClassMember
1.3.6.9.5 NoDef

1.3.6.10 VirtualSpecification

1.3.6.10.3 NonVirtual
1.3.6.11 AccessKind
1.3.6.11.1 Public
1.3.6.11.2 Protected
1.3.6.11.3 Private
1.3.6.12 ActualParameter

1.3.6.12.1 ActualParameterExpression

1.3.6.12.1.1
ByValueActualParameterExpression

1.3.6.12.1.2
ByReferenceActualParameterExpression

42

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



1.3.6.12.2 MissingActualParameter

1.3.6.13 FunctionMemberAttributes
1.3.6.14 DerivesFrom

1.3.6.15 MemberObject

7.4 ASTM Core Abbreviated BNF Definitions

The ASTM Abbreviated BFN definitions below is a compact form of description of BNFs that is commonly used by
compiler developers and language theory experts to express abstract syntax trees. A BNF is a concise definition
formalism used for describing ASTs in the machine readable format typically used by parser generators. The ABNF of the
GASTM s provided below, as part of the ASTM Core Concept Definition section, to serve as a compact conceptual
expression for the normative specification provided in Section 3.

7.5 ASTM Abreviated BNF (ABNF) Specification Notation

An Abbreviated BNF (Baccus-Nauer Format) notation is used to describe the Generic Abstract Syntax Tree Metamodel
(GASTM) using objects, attributes, and associations.

Notations used in this document are described bel ow:
« "II" jsused to denote comments.
nyn

applied as a prefix to a class denotes that classis an abstract class.

¢ Rulesof theform A -> B mean “class A has the attributes specified in B”
¢ Rulesof theform A => B mean “class B is a subtype of class A”

e Attributes are listed as “name : Primtiive type”

e Associations are listed as “name : Classtype”

« Attributes and Associations within sgaure brackets [ ] hold semantic information as opposed to abstract- syntactic
information.

7.6 The ASTM Model Hierarchy

The ASTM Class Hierarchies consist of a single GASTM Class Hierarchy and multiple SASTM Class Hierarchies. The
GASTM contains a set of UML Class descriptions for syntactic and basic semantic concepts that are common across
many languages. The SASTM Class Hierarchies are extensions of the GASTM that provide the specialized syntactic and
basic semantic concepts that are found within a particular language or a language category. The relationship between the
GASTM and SASTMs are depicted in the figure below. The GASTM provides language neutral support for the ADM
Packages and the SASTMs provide language specific specialization in support of the ADM Packages.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 43



Table 7.4 - ASTM Support for the ADM Packag_;es and Scenarios

Vertical Support For ADM Scenarios

ADM Repository Technologies

ASTM AP MP SW/A VP RP TMTP KDM
ASTM
GASTM : Language Neutral Support
SASTM : Horizontal Language Support
C J A C VB/. C C F J R P J E
+ a d # Ne (0] (0] o} D L C t
+ \Y t B R \Y B / L c
a (0] T i M 1
L R a S
A |
N

O~ V> X>»<nNIL

7.7 GASTM Core Concepts

The ASTM Core as expressed in Abbreviated Baccus-Nauer Format defines a model to represent the syntactic, semantic,
and source associations and properties of programming language elements as they exist in source code and in abstract
model forms. The specification defines a model to represent the programming language elements and their relationships,
as they exist in source code. The GASTM specifications have been split into subsections in order to group related
specifications and to distinguish semantic elements from syntactic language elements.

Table 7.5 - Core Components of the ASTM

ASTM Core Semantics Specification

The ASTM Core Semantics Specification defines a set of core modeling elements used
for enrichment and abstraction of the ASTM abstract syntax tree to represent or derive
the semantics of a formal language so as to enrich an abstract syntax tree to form an
abstract semantic graph (ASG).

ASTM Core Syntax Specification

The ASTM Core Syntax Specification defines a set of generic modeling elements
commonly used in formal programming languages in the form of a finite, labeled,
directed tree, where internal nodes are represented by the classes, the relationships
between interior nodes are depicted by unidirectional associations, and the leaf nodes.

ASTM Unified Modeling Language
Specification

The ASTM Unified Modeling Language Specification depicts the ASTM Semantic and Syntactic
Specification as a set of UML Class diagrams.

44

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Table 7.5 - Core Components of the ASTM

ASTM XSD Specification The ASTM XSD Specification depicts the ASTM Semantic and Syntactic Specification as an
eXtended Meta Language (XML) Schema Description (XSD). An XSD is a specification format
established by the World Wide Web Consortium (W3C) for defining the structure of XML
documents.

ASTM XMI Specification The ASTM XMI Specification depicts the ASTM Semantic and Syntactic Specification as an
eXtended Meta Language Metamodel Interchange Specification. XMl is a specification format
established by the OMG for defining the structure of the meta models of XML documents.

Table 7.6 - ASTM Core Semantics Specification

Project The project consisting of a set of source files containing programming language.
Scope The scope consists of a set of symbols within some set of programming elements. The
scope can contain subscopes and may be contained within a parent scope.

Table 7.7 - ASTM Core source Specification

SourceFile The source files that physically contain the programming language elements.
SourcelLocation The physical source code location of each programming language element.
SourceFileReference The reference to a source file; reference is contained in another source file.

7.8 GASTM Object

The core of the GASTM consists of three abstract classes (denoted with a! prefix) for depicting the syntactic, semantic, and
source properties of programming language elements.

GASTMObject => ! GASTMSourceObject
=> | GASTMSemanticObject
=> ! GASTMSyntaxObject

I

7.9 GASTM Source Object

The GASTM SourceObject has two subclasses, SourceFile and Sourcel ocation for modeling the source file path and
Sourcel ocation starting line, starting column, ending line, and ending column of any ASTM modeling element. The
GASTM SourceFile and Sourcel ocation are used for modeling the file system path and line and column location of source
codethat is stored in files. A GASTMObject can exist as a syntactic abstraction without need for a SourceFile or Sourcelocation
description, in which case these properties are not needed.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 45



GASTMSourceObject

7

SourceFile- >

SourceFile

CompilationUnit->

< path :

h
=>

=>

SourceLocation

inSourceFile

I

SourceFileReference

->

->

[ ofSourceFile

I

=> SourceFil

e

=> SourceLocation

String >

CompilationUnit

SourceFileReference

< language : String >
fragments : DefinitionObject* [ opensScope : ProgramScope? ]
< startLine : Integer >

< startPosition
< endLine : Int
< endPosition

SourceFile

locationInfo

SourceFile ]

Integer >
eger >
Integer >

SourceLocation

7.10 GASTMSemanticObject

This section contains a set of non-syntactic elements used for modeling certain kinds of basic semantic properties between
ASTM objects. Project is a collection of Compilation Units used for depicting the set of code units that are to be modeled.

Scope is, strictly speaking, a semantic rather than a syntactic property that describes the largest declarative region (a part
of a program) in which the name is valid, that is, in which the name may be used as an unqualified name to refer to the
same entity. Scope is semantic property that can be derived by constraint analysis, from the syntactical el ements of the AST, and
henceit is considered a Level 1 Conformance Point of the ASTM model. Scope can be captured explicitly through the use of the
Scope that is subdassed into severa kinds of scope for depicting the scope of functions (FunctionScope), aggregates (AggregateScope),
blocks (BlockScope), programs (ProgramScope), and globals (Globa Scope).

GASTMSemanticObject

Project

Scope

46

Project

Scope

files : CompilationUnit +

[ outerScope : GlobalScope ? ]
definitionObject DefinitionObject *
[ childScope Scope * ]

Il Two way semantic association

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Scope => FunctionScope

=> AggregateScope
=> BlockScope

=> ProgramScope
=> GlobalScope

7.11 GASTMSyntaxObject

The topmost syntactical object in the ASTM modd hierarchy is the GASTM SyntaxObject. PreProcessorElements associates

GASTM SyntaxObject with preprocessor eements (PreprocessorElement) with source co-ordinates in the preprocessor element
dencting whether they appear before or after the GASTM SyntaxObject. Note that PreprocessorElement need not have
PreProcessorElements associated with it. Similarly, AnnotationExpression need not have Annotations. The associaion <Parent>,
which is present in many AST modds is not depicted. Instead every AST association is treated as navigable association, thus making it
bi-directiona. Each AST association can be thought of as a navigable assodiation (as per complete MOF), thus enabling accessto parent
from the child. When explicitly implemented the <Parent> association should be treated as the universa converse for AST

associ ations described herein. Preprocessor, Annotations and Sourcelocation can be attached to any syntax object. The multiplicity of
PreProcssorElements and Annotationsis{ 0. .m} . Note that the Preprocessor annotation is provided as a convenience for capturing the
syntactic representation of preprocessing directives. An individual vendor may choose to expand actual pre-processor directives
in a pre-processing pass before parsing in which case their syntactic representation is lost.

GASTMSyntaxObject-
> locationInfo : SourceLocation
preProcessorElements : PreprocessorElement *
annotations : AnnotationExpression *
GASTMSyntaxObject
=> ! PreprocessorElement
=> ! DefinitionObject
=> ! Type
=> ! Expression
=> ! Statement
=> ! MinorSyntaxObject

7.11.1 Other Syntax Object

MinorSyntaxObject
=> Dimension
=> Name
=> SwitchCase
=> CatchBlock
=> ! UnaryOperator
=> ! BinaryOperator
=> ! StorageSpecification
=> ! VirtualSpecification
=> AccessKind

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 47



=> ! ActualParameter

=> FunctionMemberAttributes
=> DerivesgFrom
=> MemberObject

7.11.2 Declarations and Definitions

Name -> < nameString : String >

Definitionobjectl,2

=> ! DeclarationOrDefinition
=> TypeDefinition

=> NameSpaceDefinition

=> LabelDefinition

=> TypeDeclaration

DeclarationOrDefinition
=> ! Definition
=> | Declaration

DeclarationOrDefinition

-> storageSpecifiers : StorageSpecification
accessKind : AccessKind
< linkageSpecifier : String >
Definition-> identifierName : Name
definitionType : TypeReference ?

1l To allow K&R C formal parameter defn

Definition=> FunctionDefinition

=> EntryDefinition

=> ! DataDefinition

=> EnumLiteralDefinition
Declaration->[ defRef : Definition ]
identifierName : Name ?
declarationType : TypeReference
Declaration

=> FunctionDeclaration

=> VariableDeclaration

=> FormalParameterDeclaration

1
2

48

Definition of variables. DefRef : associates Declaration object to the Definition object
The association <ReferencesOf : IdentifierReference *> - is not by Name because this relationship is captured in NameReference

and NamedTypeReference

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



StorageSpecification

=> External

=> FunctionPersistent
=> FileLocal

=> PerClassMember

=> NoDef

FunctionDeclaration

-> formalParameters
FormalParameterDeclaration *

functionMemberAttributes

FunctionMemberAttributes?
VariableDeclaration

-> < isMutable : Boolean >
FunctionDefinition

-> returnType : TypeReference ?

formalParameters : FormalParameterDefinition *

body : Statement*

functionMemberAttributes : FunctionMemberAttributes?

[ opensScope : FunctionScope ]

FunctionMemberAttributes?

-> < isFriend : Boolean >

< isInline : Boolean >

< isThisConst : Boolean »>?
virtualSpecifier : VirtualSpecification

I

VirtualSpecification

=> Virtual
EntryDefinition
-> formalParameters : FormalParameterDefinition*

body: Statement*
DataDefinition->initialValue : Expression?
< isMutable : Boolean >
DataDefinition=>VariableDefinition

=> FormalParameterDefinition

1. Attributes of this class apply only to member functions
2. eg., C++ const after method

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

49



7.11.3

50

=> BitFieldDefinition
BitFieldDefinition

-> bitFieldSize : Expression

EnumLiteralDefinition

-> value : Expression?
Type Definition,

-> typeName : Name
TypeDefinition

=> NamedTypeDefinition

=> AggregateTypeDefinition

=> EnumTypeDefinition
NamedTypeDefinition

-> definitionType : NamedType
AggregateTypeDefinition

-> aggregateType : AggregateType
EnumTypeDefinition

-> definitionType : EnumType
NameSpaceDefinition

-> nameSpace : Name
body : DefinitionObject+ nameSpaceType : NameSpaceType
LabelDefinition

-> labelName : Name labelType : LabelType
TypeDeclaration

-> typeRef : TypeReference
TypeDeclaration

=> AggregateTypeDeclaration

=> EnumTypeDeclaration

Directives
PreprocessorElement

=> IncludeUnit

=> MacroCall

=> MacroDefinition

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



=> Comment
H

IncludeUnit->file SourceFileReference

MacroCall MacroDefinition-> ;->refersTo
< body String >
Comment - > < body :String >

7.11.4 Data Types

Type -> < 1isConst Boolean >
Type => FunctionType

=> ! DataType

=> LabelType

=> NameSpaceType

=> ! TypeReference
DataType=> ! PrimitiveType

=> EnumType

=> ! ConstructedType

=> ! AggregateType

=> ExceptionType

=> ! FormalParameterType

=> NamedType
PrimitiveType=>! NumberType

=> Void

=> Boolean
NumberType=> ! IntegralType

=> ! RealType

=> Byte

=> Character

NumberType-> < isSigned Boolean >

IntegralType=>ShortInteger
=> Integer
=> LongInteger
IntegralType->[ <gize

7

Integer> ]

MacroDefinition < macroName

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

String >

51



RealType=>=>=>RealDoublelLongDouble

RealType-> [

EnumType ->

7.11.5 Constructed Type

ConstructedType

ConstructedType

PointerType

AggregateType

MemberObject

AggregateType

ArrayType
Dimension

FunctionType

FormalParameterType
FormalParameterType
NamedType
ClassType

DerivesgFrom

52

<precision:

enumLiterals

=>

Integers> |

EnumLiteralDefinition+

baseType TypeReference
CollectionType
PointerType
ReferenceType

RangeType

ArrayType

[ <size Integer ]

members MemberObject+
opensScope AggregateScope ]

[< offset: Integer > ]member DefinitionObject

StructureType
UnionType
ClassType
AnnotationType

ranks Dimension+

lowBound Expression? highBound Expression

returnType TypeReference?
parameterTypes FormalParameterType*

type TypeReference

=>ByValueFormalParameterType ByReferenceFormalParameterType

body Type

DerivesgFrom*

derivesFrom

virtualSpecifier

VirtualSpecification ? accessKind
AccessKind

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



className : NamedTypeReference

AccessKind => Public
=> Protected
=> Private
TypeReference => UnnamedTypeRe ference
=> NamedTypeReference
UnnamedTypeReference -> type : Type
NamedTypeReference -> typeName : Nametype : TypeDefinition

I

7.11.6 Statements

Statement => ExpressionStatement
=> JumpStatement
=> BreakStatement
=> ContinueStatement
=> LabeledStatement
=> BlockStatement
=> EmptyStatement
=> IfStatement
=> SwitchStatement
=> ReturnStatement
=> LoopStatement
=> TryStatement
=> DeclarationOrDefinitionStatement
=> ThrowStatement
=> DeleteStatement
=> TerminateStatement
DeleteStatement -> operand: Expression

7

DeclarationOrDefinitionStatement

-> declOrDefn: DefinitionObject
ExpressionStatement

-> expression : Expression
JumpStatement -> target : Expression
BreakStatement -> target : LabelAccess?
ContinueStatement

-> target : LabelAccess?

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



54

LabeledStatement
->

statement Statement?

7

BlockStatement ->

EmptyStatement->

7

IfStatement ->
thenBody Statement
elseBody Statement?
SwitchStatement ->
cases SwitchCase
SwitchCase ->

body : Statement+

I

SwitchCase =>
=>
CaseBlock ->
ReturnStatement ->
LoopStatement ->
LoopStatement ;=>
=>
=>
ForStatement ->
ForStatement =>
=>
TryStatement ->
CatchBlock ->
CatchBlock =>

label LabelDefinition

subStatements Statement*

[ opensScope BlockScope ]

condition Expression

switchExpression Expression

< isEvaluateAllCases Boolean >

CaseBlock
DefaultBlock

caseExpressions Expression+

returnValue Expression?

condition Expression

body : Statement WhileStatement
DoWhileStatement

! ForStatement

initBody Expression*
iterationBody Expression*
ForCheckBeforeStatement
ForCheckAfterStatement

Statement catchBlocks

Statement?

guardedStatement

finalStatement

body : Statement

TypesCatchBlock
VariableCatchBlock

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

CatchBlock*



TypesCatchBlock -> exceptions : Type+
VariableCatchBlock -> exceptionVariable : DataDefinition

ThrowStatement -> exception : Expression

7

7.11.7 Expressions

Expression -> [expressionType : TypeReference 1;
Expression => Literal

=> CastExpression

=> AggregateExpression

=> UnaryExpression

=> BinaryExpression

=> ConditionalExpression

=> RangeExpression

=> FunctionCallExpression

=> NewExpression

=> ! NameReference

=> LabelAccess

=> ArrayAccess

=> AnnotationExpression

=> CollectionExpression
NameReference => IdentifierReference

=> I QualifiedIdentifierReference

=> TypeQualifiedIdentifierReference
NameReference -> identifierName : Name

refersTo : DefinitionObject
ArrayAccess -> arrayName : Expression
subscripts : Expression+

QualifiedIdentifierReference
-> qualifiers : Expression
member : IdentifierReference
QualifiedIdentifierReference
=> QualifiedOverPointer
=> QualifiedOverData
TypeQualifiedIdentifierReference
-> aggregateType : TypeReference +
member : IdentifierReference

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



56

Literal

Literal

CastExpression

UnaryExpression

UnaryOperator

BinaryExpression

BinaryOperator

< value : String >

IntegerLiteral
StringLiteral
CharLiteral
Realliteral
BooleanLiteral
BitLiteral

EnumLiteral

castType : TypeReference

expression : Expression

operator : UnaryOperator

operand : Expression

UnaryPlus

UnaryMinus

Not
BitNotAddressOfDerefIncrement
Decrement

PostIncrement

PostDecrement

operator :_ BinaryOperator
leftOperand : Expression
rightOperand : EXpression

Add

Subtract
Multiply
Divide
Modulus
Exponent
And

Or

Equal
NotEqual
Greater
NotGreater
Less

NotLess
BitAnd
BitOr
BitXor
BitLeftShift
BitRightShift

Assign

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



=> OperatorAssign

OperatorAssign -> operator
ConditionalExpressio;—> condition
onFalseOperand
RangeExpression i> fromExpression
FunctionCallExpressi;n—> calledFunction

Expression onTrueOperand

BinaryOperator

Expression
Expression
Expression

Expression toExpression

Expression actualParams

ActualParameter*

ActualParameter

=> ActualParameterExpression

=> MissingActualParameter

ActualParameterExpression

-> value Expression
ActualParameterExpression
=> ByValueActualParameterExpression
=> ByReferenceActualParameterExpression
NewExpression -> newType TypeReference
actualParams ActualParameter *
LabelAccess -> labelName Name
labelDefinition LabelDefinition
AnnotationExpression
-> annotationType TypeReference ?
-> memberValues Expression *
CollectionExpression
-> expressionList Expression *

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

57



58

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



8 ASTM Core Specification

The Unified Modeling Language (UML) Diagrams and Detailed Descriptions provided in Section 8.1 High-Level
(Composite) UML Diagrams (below) and in Section 8.2 Low-Level (Detailed) GASTM Class Hierarchy (below) are the
normative specification of the core of the Abstract Syntax Tree Specification, the Generic Abstract Syntax Tree Meta-
Model, GASTM.

8.1 High-Level (Composite) UML Diagrams

This section contains a set of diagrams whose elements are described is detail in the subsequent section.

8.1.1 ASTM Core Objects

The core of the ASTM is the GASTMObject and consists of three abstract classes for depicting the syntactic, semantic,
and source properties of programming language elements. This section provides the high-level Composite UML Class
Diagrams of these elements. All other ASTM elements descend from these elements. These core elements describe the
characteristic properties of the source locations of the objects, abstract syntax of the objects, and the basic semantics of
the objects.

ASTMCors

@ GASTMObject

ASTMSaures ASTMSemantics

@& GASTMSourceObject G GASTMSemanticObject @ GASTMSyntaxObject

Figure 8.1 - GASTMObject Hierarchy

8.1.2 ASTM Core Semantic Object

The ASTM Core Semantics Specification defines a set of core modeling elements used for enrichment and abstraction of
the ASTM abstract syntax tree to represent or derive the basic semantics of aformal language so as to enrich an abstract
syntax tree to form an abstract semantic graph (ASG) for the basic semantics of code-level elements. This section
provides the High-Level Composite UML Class Diagrams of the GASTM SemanticObject and its principal subclasses:
Scope and Project. Project is a container for a collection of Compilation Units that contain the source code that is
modeled. Scope and its subclasses are containers for Definitions that are defined in CompilationUnits.

« declOrDefn associates a Scope to the DefinitionObject it contains.

» childScope associates a parent Scope to its children Scopes.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 59



ASTMSemantics

G GASTMSemanticObject

= Sa

ASTMSem

@ Project Scope
childScope
1 1
outerS copey 0.,
BETMSemantics AT Semantics BSTMSemantics
@ GlobalScope @FunctionScope @ AggregateScope
fles vy 1=
ESTMEoWCE BETMEBemantcs ASTMGemantcs
@ CompilationUnit @ProgramScope @ BlockScope
t language :String
deciOrDefn w0

Digcdarationandllefinition

@ DefintionObject

Figure 8.2 - GASTMSemantic Object

8.1.3 ASTM Core Source Object

The ASTM Core Source Specification defines a set of core modeling elements used for modeling the source file
SourceFile and Sourcel ocation starting line, starting column, ending line and ending column of any ASTM modeling
element. This section describes the High-Level Composite UML Class Diagrams of the GASTM SourceObject.

60 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



AS

MSource

G GASTMSourceObject

ASTMSource
@ SourceFile

tt path :String

1

-

2ETMECue
@ SourcelLocation

e T
nSourcefile

1

.
Cal

= F F F

A
1 [ofSourcefile
1

ASTMSource
@ CompilationUnit

startline :Integer
startPosition :Integer
endLine :Integer
endPosition : Integer

locationlnfo

t language :String

Figure 8.3 - GASTMSource Object

ASTMSouwrce

@ SourceFileReference

8.1.4 ASTM Core Syntax Object

The ASTM Core Syntax Specification defines a set of generic modeling elements commonly used in formal programming

languages in the form of a finite, labeled, directed tree, where internal nodes are represented by the classes, the
relationships between interior nodes are depicted by unidirectional associations, and the leaf nodes are depicted by

associations to terminal primitive classes. This section provides the High-Level Composite UML Class Diagrams of the

GASTM SyntaxObject.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

61



1 ASTMSyntas

1 | @ GASTMSyntaxObject

1 . &
W Iocationinfo S,
ASTMSource ASTIVSER Statement ENpression
@ Sourcelocation @MinorSyntaxObject @ Statement G Expression
t  scartline :Integer
#  startPosition :Integer
t  endline Integer
t  endPosition [Integer
up=s
@ Type DeclarationandCefimtan
fos @ DefintionObject
preProcessorElements ™ — t+ isConst :Boolean
Diirectives
@ PreprocessoiElement .
fragments 0..* |annolations
Y
Erpression
@ AnnotationExpression
ASTMSource
@ CompilationUnit

+  language :String

opensScope v 0.1
ASTMEemantics
@ ProgramScope

Figure 8.4 - GASTMSyntax Object

8.1.5 ASTM Core Preprocessor Objects

This section describes the High-Level Composite UML Class Diagrams of the PreprocessorElement. The
PreprocessorElement subclasses MacroCall, MacroDefinition, Comment, and IncludeUnit are used for modeling the
properties of preprocessor elements. Preprocessor elements model source code that is typically processed by a
preprocessor and converted into the code that is to be processed by a parser or a compiler.

62 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Directives

& PreprocessorElement

—
Directives Directives Directives
@ MacroCall 1 @ MacreDefinition @ Comment
1 g
refersTo t macroName :3tring it body :String

body :String

Oirectives

@ IncludeUnit

1
f||e\'( 1

A5 TIVISourc

@ SowrceFileReference

Figure 8.5 - Preprocessor Element

8.1.6 ASTM Core Definition Unit

This section describes the High-Level Composite UML Class Diagrams of the DefinitionObject and its principal
subclasses Label Definition, TypeDefinition, DeclarationOrDefinition, NameSpaceDefinition, MinorSyntaxObject, and

their subclasses.

T

R ] & =
1y G DefintionObject “— @MNameSpaceType
@LabelType ™ body 1
A
1 |labelT ype A
1 1 nameSpacel ype
DecdaranonsndDefinition DeclaationAndDefinition DeclaratondndDefinstion

a‘:"'l‘"lh"'f'fu_‘[_ = @TypeDefinition @ TypeDeclaration @ NameSpaceDefinition

abelDefinition

TechaaonAnaoennion
e @  DeclarationOrDefinition 1
1 Declar ation AndDefnition e
. . acoess|
oy @AccessKind | Tinkagatpecifiss :String
1 ( el 1 |hameSpace
15 i v
D‘;'l’“"" plbeaticy DeclaratonBndDeniion
9 Name 1 @ Name
e 1
+ nameString :String Stolagff:;i.ilef-\fndm - =
GStorageSpecification

Figure 8.6 - DefinitionObject and its Subclasses

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

63



Dheeclaration &ndCiefndtion

@  TypeDefinition

1
DeclarahonAndoefration Dieclarationndlefintion Declarationandlelmtion
iti NamedTypeDefinitior Aggregate TypeDefinition
@ EnumTypeDefinition @ dTyp " 3 e @  AggregateTyp I
1 DeeclarationAndDefinition
1 @ Name 1
7 1 |definitionType 1 |zogregateT ppe
definkionType wy 1 L' H nameString :String W
Types Types Types
@  EnumType @NamedType @AggregateType
Figure 8.7 - TypeDefinition and its Subclasses
DeclaraticnAndDeFniticn
G TypeDeclaration
1
DreclarationAndDefinition DeclarstionAndDefinikicon
@ EnumTypeDeclaration (€] AggreqgateTypeDeclaration

typeReterence e 1
Types

G TypeReference

Figure 8.8 - TypeDeclaration Object

64 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



DeclarationAndDefinition
@ DeclarationOrDefinition

linkageSpacifier :String

/“/ ;

DeclarationsndDetinition

@ Declaration

DeclarationAndliehniticn

@  Definition

DieclarationAndDefinition

@ FunctionDeclaration

DieclarationAndDefinition
@ VariableDeclaration

+ isMutable :

Boolean

0.1 |functionMemberbttibutes

"r

DeecdarationAndDefinition

FormalParameterDeclaration

U”’l
formalFarameters

DeeclarationAndDefinition

@ EnumLiteralDefinition

DeclarationgndDisfinition

@ EntryDefinition

DieclarationAndDefinition

& DataDefinition

@ FunctionDefintion

t+  isMutsble :Eoolean

DeclarationfndDefinition

0. |formalParameters

¥

DeclarationgndDisfinition

@ FormalParameterDefinition

DeclarationAndDetnition

@ BitFieldDefinition

Diecl aration AndDefinition
@ FunctionMemberAtributes

=

Y

—_

1 initishalue bitFieldSize

-

isInline

+ disFriend :Boolean

it isThisConst :Boolean

DeclarationAndDefinition

Expressior

@ VariableDefinition Q Expression

0.1
&

T
value

Figure 8.9 - DeclarationOrDefinitionObject and its Subclasses

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

65



DeclarationAndDefinition DeclarationAndDefnitiorn
c} Declaration i i (] Definition
S
-
defRef
11 1 19 B |
DeclarationAndDefinition
@ Name
(T s 1
- - - -
) g it mnaneString :String e identifietl ame
identifiert ame
Types
e, @& TypeReference P
declarationT yp&

™ definitionT ppe

Figure 8.10 - Declaration and Definition Objects

1 DeclarationfndDefndtion 1
@ FunctionDefintion
1
1 1
h 1 | opensScope
0.\ formalP Y
DeclarationArdDefinition A5 TMEemantics
@ FormalParameterDefinition @ FunctionScope
flnctionid emberditribuies 1 bady
0.1 Y return T ype v 0.1 v
DedlarationAndDefinition Tepes Statement
@ FunctionMemberAtributes @ TypeReference (¢} Statement
 dsFriend :Boolean
It

isInline :Boclean
isThisConst -Boolean

Figure 8.11 - FunctionDefinition

66

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



ST egntan

@ MinorSymaxObject

1
DeclarstonBnabefiiion 0. TritualSpectier
@ FunctionMemberAttributes
DeclarationfndDefinition DeclarationBndDefinitc
@ HName

DeclaralonEndneniion TeclaralonanDenie
@ StorageSpecification 5 feV¥rmend=Boolean @VirtualSpecification @AccessKind
- - # isTnline :Boolean
[t nameString :String It isThisConst :Boolean
DeclmatonAndDenor DeclaraionAndCiermtion DeclaralonPndIeTnon DeclarabonAndCleution] Tectealon Araeren
@ PerClassMember @ Nodef @ Vimal @ Public @ Private
DeclarationAndDefindtion DeéclarationAndDefinition
@ FunctionP ersistent @® FileLocal HeslalronincLetlion
@ Protected
DieclarstionAndDefinition
@ External

Figure 8.12 - MinorSyntaxObject (subclass belonging to DeclataionAndDefinition)

8.1.7 ASTM Core Types

This section describes the High-Level Composite UML Class Diagrams of Type, its principal subclasses DataType and
their subclasses.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

67



Tgpes
>{ @ Type

u isConst :Boolean

fype

Topes

@ FormalParameterType

S
paranmeter T ypes
U_ M

1

Types

@FunctionType

Tores

@ LabelType

Types

G Datalype

T9pes Twpes
| @G TypeReference @ NameSpaceType
>

retumnT ppe
0
1 / \
Twes Twes
@  UnnamedTypeReference @ NamedTypeReference
gl 1
DeclarationAandDefiniton =
Lleclarstionandlietintion
Name
o 1 1 > @  TypeDefinition
t+ Brri 18X
name raimg ring lwe“ame l}'De

Figure 8.13 - Types

68 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



TIRcTi wionanacsiminan

@ EnumLiteralDefinition

@ DataType

=
@ PrimitiveType @ ConstiuctedType

N
o| enumbiterals

ypE=
@ EnumType

Tepes

Types
@ NamedType

@ FormalParameterType

Typss

@ AggregateType

Types
@ ExceptionType

1 1 |body
Y

Tepes
Tires @ Type

—
@ ByValueFormalParameterType

@ ByReferenceFormalParameterType
# isConst :Boolean

1

W ilvpe

@ TypeReference

Figure 8.14 - DataType and its Subclasses

Taes

Q Aggrejale‘l’we

=7
_ \
Types

@ SII'IICII-II'GT_VPQ @ AnnotationType

Tipes members 1 opensScope e
@ UnionType v v @ ClassType
Twes BETMGEmaE
MemberObject @ AggregateScope 1
- offset :Integer
deiiveskrom Ny 07
1 Types
@ DerivesFrom
member 1
DaclarationAndDefinition
& DefintionObject

Figure 8.15 - AggregateType

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Tupe=

& PrimitiveType

e

Tupes
& HNumberType @

\

Tipe=s

@ WVoid

Tupes
Boolean

H Boolaan

i=Sigmed

e e e—

Topes Tupes Tupes Tupes
@ Character G IntegralType @ Byte G RealType
F =ize -Intemsr F precision :Integex
=
\\
B
Types Type= Types Types
@Longlnteger @ Integer @ Real @& Double
Types Types
@ Shortinteger @ LongDouble
Figure 8.16 - PrimitiveType
ASTMSyntas
@& MinorSyntaxObject
Types Types Types
@ Dimension @ MemberObject @ DerivesFrom
- offset :Inteder acocectkind
1
3 1 1 1
0.1

vituals pecilier\( 0.1

highBound v 1 louBound W
1]

a

Expres

Expression

Decly ztion AndDefintion

@ AccessKind

className yy 0.

@ NamedTg-tpeRefeleuce

DeclarationAndDefinition

(3 VirtualSpecification

Figure 8.17 - MinorSyntaxObject (subclasses belonging to Types)

70

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0




/

Tupes

@& ConstructedType

Topes

@ CollectionType

Tupes

@ ReferenceType

gy

Tupes

PointerType

c]

size

tInteger

1
v baseType

Tupes

@ TypeReference

Figure 8.18 - ConstructedType

8.1.8 ASTM Core Statement

This section provides the High-Level Composite UML Class Diagrams of Statement, SwitchCase, CatchBlock,

Types
@ RangeType
Tupes
@ ArrayType
1
1.5 [ranks
Y
Tupes
@ Dimension

IfStatement, Return, Expression Statement and their subclasses.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

71



Statement %henEo-:Iy
-
@ Statement 5
ekeBody
-
3
0.1
i V\ 3’\\-
_\_‘-‘__\-‘_H__\__‘_
1 1
.|
Statement Statement Statement Statement
@ ExpressionStatement @ BreakStatement @ContinueStatement @ IfStatement
1 1 1 1
e
@ReturnStatement Sl
@ JumpStatement
0.1
1
v target 1
Etpression 01
@ LabelAccess <
target
Statement
@ EmptyStatement
Staternent
teturrValue @ ThrowStatement
0.1
Y
Expression
mpesion 1 | @ Expression condition
L -1
- ) i}
1 larget
exception

Figure 8.19 - Statement, Return, If and their Subclasses

72 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



guardedStat 1

Saatemen

it Q Statement

linalSlatement N
/M shater

A A% Tatement
sllﬁtaenﬂ'l\lS\ ’ @ TerminateState ment
1 il 1
Statement Sxaterment Statement Statement
@TiyStatement @BlockStatement @ SwitchStatement @ LabeledStatement
opersScope
1 1 1 1 1
ASTMSemantics S—
@BlockScope EMameo)
P @eleteStatement @ DeclarationOrDefinitionStatement
1
SETTTE 1 1
1| deciODefn label 1
@LoopStatement I\
Declaation Anaermion TeclmationAnaemtion
iﬂi\ @ DefintionObject @ LabhelDefinition
Statement BEIE 155 \;am
@DoWhileStatement @ WhileStatement s
@ SwitchCase
opefand i+ isBvaluatedllCases :BEoolean
=Latement
GiForStatement
0 condtion 1 1 switchExpression
1 1 Y Y
0= Evpression
D = 3 -
= > Q Expression
B ady

Ty estchBlocks i

Sratement 0. -
@ CatchBlock ilerationB ody

Statement

@ ForCheckAfterStatement

Statemen

@ ForCheckBeforeStatement

Figure 8.20 - Statement, SwitchCase, CatchBlock, and their Subclasses

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



ASTMSuntas

@& MinorSyntaxObject

Statement

@ CatchBleck

Statement

@ SwitchCase ’

it isBvaluateAllCases :Boolean

Statement Staternent

/V V\ @ TypesCatchBlock @ VariableCatchBlock

Statement Statement
@ CaseBlock @ DefaultBlock 1 1
11 exceptions 1 [esceplioriVariable
body y- Ny 1 body Y A
1 oy Types DeclarztionAndOienniion
Sl DataDefinition
caseEspressiony 1+ @ Statement @ Type a
Epesan [t isConst :Boolean t isMutable :Boolean
@ Expression

Figure 8.21 - MinorSyntaxObject (subclasses belonging to Statement)

8.1.9 ASTM Core Expression

This section describes the High-Level Composite UML Class Diagrams of Unary Operator, BinaryOperator,
Actual Parameter, Expression, Literal, NameReference, and their subclasses.

RS TTASsrtan

@ MinorSyntaxObject

Erpression

Trpression Trrression

G UnaryOperator @  BinaryOperator @ ActwalParameter

Figure 8.22 - MinorSyntaxObject (subclasses belonging to Expression)

74 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Ewpres

@& UnaryOperator

sion

Enpr

@ UnaryPlus

Erpresaon

@ UnaryMinus

@PostDecrement

Ton

Erpresaion

Enpr

@ AddressOf @ BitNot @ Decrement @ Deref
Ezpres=ion Erpression
@ Increment @Postlncrement
Figure 8.23 - UnaryOperator
Enpre=zion
Q BinaryOperator
TR L :
B /
Espression // /‘: Exprezzion
3 i /7 @ OperatorAssign
@Bitor iz o
ad A 4 ( \\\\
7
,/ / @Multiply N R S
Expression Exp(e;.:-':“ Erpression Exprezsion E:-'\'.-s.-' i Expression
@ Add @ Subtract @Greater @ Assign @ Divide @ BitXor
Expression Espression Expression Empression Expression Expression Expression
@ Modulus @ Exponent @NotEqual @ And @ Or @NotGreater (@ BitLeftShift
Espression Expression Enpressior Edpression Espression
@Less (@ Notless @ BitAnd @ Equal @BitRightShift

Figure 8.24 - BinaryOperator

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

75



Erpiezsion Expression
@G ActualParameter @& Expression
A~ e A
£ ~. z 2
o =38 1| vale
o o
/JJ’ M‘"\
Il e
Erpressiar Expression
@ MissingActualParameter 3 ActualParameterExpression
‘__,.w"’)‘" Jmﬂ,_‘__“
— e
_.-/I e
Expressior Expression
@  ByReferenceActualParameterExpression ® ByValueActualParameterExpression

Figure 8.25 - ActualParameter

Type Expression Expression
@ TypeReference i 1 Q Expression @ UnaryOperator
o expressionT ype
ERprEssion A
|
1 castTypa =4 1 |cperator
1 1 1
Expression Exprassion Enprassion
@ CastExpression @ AggregateExpression @ UnaryExpression
1
Enpression Expression ERpression
@ ConditionalExpression @ Literal @ BinaryExpression
H walue :String
1 1 1 1 q 1
operator
1 Expression 1 Expression
Expression inaryOperator
—>Q P e ] GBinaryOp
1 left0perand
-
onT uelperand 1
- -~
onFalze0perand * ez
. rightO perand

Figure 8.26 - Expression

76 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



@ Liter

Erpression

al

@ EnumlLiteral

ERpression

@IntegerLiteral

Expression

t walue :Scring

Erpression

@ StiingLiteral

Figure 8.27 - Literal

Ewpression

@ Charliteral

Expression

@ BitLiteral

@ RangeExpression

Enpression

Exprassion Enpression
@ RealLiteral @BooleanLiteral
Ezplession
lal@ Expression
toE xpression
fromExpression

arrayM ame

1sub5 cripts

A7

Evpreszion

@CollectionExpression

Erpres=ion

@ AnnotationExpression

ERpressic
ArrayAccess

Fpre=sion

@ FunctionCallExpression

expressionlist

¥y o

Erpression

aQ Expression

Expression
ANameReference 1 1
1 1 o iy
1| identiier anve
v >
Dol shonfndOennion mernbery alue
@ Name
f onameftring :Scring
1| refersTa
~4
DealarstionAndmermiton
[} DefintionObject i
>
annotationipe

Expression
1 1 @ NewExpression
4 1 1
-
calledFunction
0.4 actualParams
b4
Enpt #5500
@& ActualParameter :';t”’IP""ms
T
0.

Figure 8.28 - Expression

Types

G TypeReference

1
-

i newT ype

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

7



Espressian Espressian
Q Expression \\Q NameReference J
FY T N i
1 | qualifiers e S
o S
- B = Eipiession
% @ TypeQualifiedldentifierReference
@ CQualifiedldentifierReference
,? f 119
4 \
4 b3 Exprezsion
Jr/ »| @ ldentifierReference l
\___ membies membes
/__, \ 1 aqqregate | ype
/ 27 Y
/ \ Types
4 \

@ QualifiedOverData

Enpression

@ QualifiedOverPointer

Figure 8.29 - NameReference

# LabelAccess

Enpresson

@ TypeReference

1 1
1 s 1 labelDefirition
Dreclar ationAndDefinition DeclarationfsndDefinition
@ Name @ LabelDefinition
H- nama :String

Figure 8.30 - LabelAccess

8.2 Low-Level (Detailed) GASTM Class Hierarchy

8.2.1 GASTMObject

The core of the GASTM consists of three abstract classes (denoted with a! prefix) for depicting the syntactic, semantic, and source
properties of programming language elements. The GASTMObject has abstract subclasses GASTM SourceObject,
GASTM SemanticObject, and GASTM SyntaxObject.

78 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Hierarchy Specification:

GASTMObject => ! GASTMSyntaxObject
=> I GASTMSemanticObject
=> ! GASTMSourceObject

’

Definition: The root of the GASTM class hierarchy.

8.2.1.1 GASTMSourceObject
GASTM SourceObject has subclasses Sourcelocation and SourceFile.

Hierarchy Specification:

GASTMSourceObject => SourceFile

=> SourceLocation

I

Definition: Objects related to specifying locations within source files

8.2.1.1.1 SourcelLocation

Sourcel_ocation has unary Integer vaued properties startLine, endPosition, endLine, and startPosition. The Sourcelocation has

unary association inSourceFile to SourceFile.
Property Specification:

SourceLocation -> < startLine : Integer >
< startPosition : Integer >
< endLine : Integer >

< endPosition : Integer > inSourceFile
i

Definition: Start/end line/column position information, part of a source location specification.

8.2.1.1.2 SourceFile

SourceFile is a subclass of GASTM SourceObject and has unary property path to String.
Property Specification:
SourceFile -> < path : String > ;

Definition: The source file part of a source location specification

8.2.1.2 GASTMSemanticObject
GASTMSemanticObject is a subclass of GASTMObject and has subclasses Project and Scope.

Hierarchy Specification:

GASTMSemanticObject
=> Project
=> Scope

i

Definition: Objects related to semantic artifacts of the modeled/analyzed system

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

SourceFile

79



8.2.1.2.1 Project

Project is a subclass of GASTM SemanticObject and has optiond unary semantic association outerScope to Globa Scope. The
Project one or more associations files to CompilationUnit.
Property Specification:
Project -> files : CompilationUnit +
[ outerScope : GlobalScope ? ]

Definition: The collection of compilation units to be modded/anadlyzed as awhole

8.2.1.2.2 Scope

Scope is a subclass of GASTM SemanticObject and has 0 to any number associations childScope to Scope. Scope has 0 to any
number association definitionObject to DefinitionObject. Scope has subdasses ProgramScope, AggregateScope, FunctionScope,
Global Scope, and BlockScope, which inherit the DeclDefn and ChildScope associations from Scope.

Scope and its subclasses are optional derivable semantic annotations.
Property Specification:

Scope -> definitionObject : DefinitionObject *
[ childScope : Scope * 1;
'l Two way semantic association

i

Hierarchy Specification:

Scope => FunctionScope
=> AggregateScope
=> BlockScope
=> ProgramScope
=> GlobalScope

7

Definition: Declaration context in which names declared must be unique

8.2.1.2.2.1 Function Scope

FunctionScope inherits the definitionObject and childScope associations. FunctionScope is an optional derivable semantic annotation.
Property Specification:

Hierarchy Specification:

Definition: The scope introduced by a function definition

8.2.1.2.2.2 Aggregate Scope

AggregateScope inherits the definitionObject and ChildScope associations. AggregateScope is an optiona derivable semantic
annotation.

Definition: The scope introduced by an aggregate type
8.2.1.2.2.3 Block Scope
BlockScope inherits the definitionObject and ChildS cope associations.

80 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



BlockScope is an option derivable semantic annotation.

Definition: The scope introduced by a block statement

8.2.1.2.2.4 Program Scope

ProgramScope inherits the definitionObject and ChildScope associations.
ProgramScope Scope is an optional derivable semantic annotation.
Definition: The scope introduced by a compilation unit

8.2.1.2.2.5 Global Scope

Globa Scope inherits the definitionObject and ChildScope associations. ProgramScope Scope is an optional derivable semantic
annotation.

Definition: The outermost scope, surrounding al compilation units of a project

8.2.1.3 GASTMSyntaxObject

GASTM SyntaxObject is a subclass of GASTMObject and has immediate subclasses PreprocessorElement,
DefinitionObject, Type, Expression, Statement, and MinorSyntaxObject. The GASTM SyntaxObject has zero to any
number association preProcessorElements to PreprocessorElement. The GASTM SyntaxObject has zero to any number association
annotations to AnnotationExpression. The GASTM SyntaxObject has optiona unary association locationlnfo to Sourcelocation (a
subclass of GASTM SourceObject).

Property Specification:
GASTMSyntaxObject
-> locationInfo : SourceLocation
preProcessorElements : PreprocessorElement * annotations
AnnotationExpression *

7

Hierarchy Specification:

GASTMSyntaxObject
=> ! PreprocessorElement
=> ! DefinitionObject
=> ! Type
=> ! Expression
=> ! Statement
=> ! MinorSyntaxObject

Definition: All syntactic constructs

8.2.1.3.1PreprocessorEelement

PreprocessorElement is a subdass of GASTM SyntaxObject and has subclasses IndudeUnit, MacroCall, MacroDefinition and
Comment.

Hierarchy Specification:

PreprocessorElement

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 81



=> IncludeUnit

=> MacroCall
=> MacroDefinition
=> Comment

Definition: Constructs involved in preprocessing
8.2.1.3.1.1 IncludeUnit
IncludeUnit is a subclass of PreprocessorElement and has unary association file to SourceFile.
Property Specification:
IncludeUnit -> file : SourceFileReference

Definition: Inclusion of afile during preprocessing
8.2.1.3.1.2 MacrocCall
A MacroCall is a subclass of PreprocesorElement and has unary association RefersTo to a MacroDefinition.
Property Specification:
MacroCall -> refersTo : MacroDefinition
Definition: Invocation of a preprocessor macro

8.2.1.3.1.3 MacroDefinition

MacroDefinition is a subclass of PreprocessorElement and has unary property macroName to String and unary property body to
String.

Property Specification:

MacroDefinition -> < macroName : String >
< body : String >
Definition: Definition of a preprocessor macro
8.2.1.3.1.4 Comment
Comment is a subclass of PreprocessorElement and has unary property body to String.
Property Specification:

Comment -> < body : String >

Definition: Comments appearing in source files

8.2.1.3.2 DefinitionObject

DefinitionObject is a subclass of GASTM SyntaxObject and has immediate subclasses DeclarationOrDefinition. TypeDefinition,
NamespaceDefinition, and Label Definition.

Hierarchy Specification:

DefinitionObject => ! DeclarationOrDefinition

=> TypeDefinition

82 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



=> NameSpaceDefinition
=> LabelDefinition
=> TypeDeclaration

Definition: Constructs that define entities

8.2.1.3.3 DeclarationOrDefinition

DeclarationOrDefinition is a subclass of GASTM SyntaxObject and has immediate subclasses Declaration, Definition.
DeclarationOrDefinition has unary association storageSpecifiers to class StorageSpecification, unary association accessKind to
class AccessKind, unary property linkageSpecifier to primitive String.
Property Specification:
DeclarationOrDefinition
-> storageSpecifiers : StorageSpecification
accessKind : AccessKind
< linkageSpecifier : String >
Hierarchy Specification:
DeclarationOrDefinition
=> ! Declaration
=> ! Definition

Definition: Declarations and definitions
8.2.1.3.3.1 Declaration

Declaration is a subclass of DeclarationOrDefinition and has immediate subclasses VariableDeclaration and FunctionDeclaration
and Formal ParameterDeclaration. Declaration has unary semantic association defRef to Definition (This association is hidden
below, but is shown above). Declaration has optional unary association identifierName to class Name.

Property Specification:

Declaration -> [ defRef : Definition ]
identifierName : Name ?

Hierarchy Specification:

Declaration => FunctionDeclaration
=> VariableDeclaration
=> FormalParameterDeclaration

I

Definition: Constructs that declare entities without defining them
8.2.1.3.3.1.1 FunctionDeclaration

FunctionDeclaration is a subclass of Declaration, and has zero to any number of association formaParametersto class
Formal ParameterDeclaration, optional unary association functionMemberAttributes to class FunctionM emberAttributes.

Property Specification:

FunctionDeclaration

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 83



-> formalParameters
FormalParameterDeclaration * functionMemberAttributes
FunctionMemberAttributes?

’

Definition: Function declarations
8.2.1.3.3.1.2 VariableDeclaration

VariableDeclaration is a subclass of Declaration and has unary property isMutable to Boolean.
Property Specification:

VariableDeclaration

-> < isMutable : Boolean >

Definition: Variable declarations

8.2.1.3.3.1.3 FormalParameterDeclaration

Formal ParameterDeclaration is a subclass of Declaration.

Definition: Forma Parameter Declarations, appearing in function declarations
8.2.1.3.3.2 Definition

Definition is a subclass of DeclarationOrDefinition, and has immediate subclasses FunctionDefinition, EntryDefinition,
DataDefinition, EnumLiteral Definition. Definition has unary association unary association identifierName to class Name, and
optional unary association definitionType to TypeReference.

Property Specification:

Definition -> identifierName : Name
definitionType : TypeReference ?
1l To allow K&R C formal parameter defn

Hierarchy Specification:

Definition => FunctionDefinition
=> EntryDefinition
=> ! DataDefinition
=> EnumLiteralDefinition

’

Definition: Congtructs that declare entities as they also define them
8.2.1.3.3.2.1 FunctionDefinition

FunctionDefinition is a subclass of Definition, and has unary association Body to class Statement, any number association
Formal Parameters to class Formal Parameter, unary association FunctionM emberAttributes to class
FunctionMemberAttributes, and optional unary semantic association OpensScope to the semantic class FunctionScope.
Property Specification:

FunctionDefinition
-> returnType : TypeReference ?

formalParameters : FormalParameterDefinition *

84 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



body : Statement*
functionMemberAttributes : FunctionMemberAttributes?

[ opensScope : FunctionScope ]

Definition: Subprogram definitions
8.2.1.3.3.2.2 EntryDefinition

EntryDefinition is a subclass of Definition, and has unary association Body to class Statement. EntryDefinition has zero to any
number association Formal Parameters to class Formal Parameter.

Property Specification:

EntryDefinition -> formalParameters : FormalParameterDefinition*
body: Statement*

I

Definition: Subprogram entry definitions
8.2.1.3.3.2.3 DataDefinition

DataDefinition is a subclass of Definition, and has subclasses VariableDefinition, Formal Parameter, and BitFieldDefinition.
DataDefinition has unary property isMutable to primitive Boolean, and unary association initial Value to Expression.

Property Specification:

DataDefinition -> initialvalue : Expression?
< isMutable : Boolean >

Definition: Definitions involving data

8.2.1.3.3.2.4 VariableDefinition

VariableDefinition is a subclass of DataDefinition, and has no subclasses, no immediate associations and no immediate properties.
Definition: Variable definitions

8.2.1.3.3.2.5 FormalParameterDefinition

Forma Parameter Definition is a subclass of DataDefinition, and has no subclasses, no immediate associations and no immediate
properties.

Definition: Forma parameter definitions, appearing in function definitions
8.2.1.3.3.2.6 BitFieldDefinition

Bitfield is a subclass of DataDefinition, and unary association hitfieldSize to Expression.
Property Specification:

BitFieldDefinition
-> bitFieldSize : Expression
i

Definition: Definitions of bit-field data

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 85



8.2.1.3.3.2.7 EnumlLiteralDefinition
EnumL iteral Definition is a subclass of Definition, and has unary association value to class Expression.
Property Specification:

EnumLiteralDefinition

-> value : Expression?
i

Definition: Definitions of enumerals (members of enumerated types)

8.2.1.3.3.3 TypeDefinition

TypeDefinition is a subclass of DefinitionObject and has unary association name to class typeName, and subclasses
NamedTypeDefinition, AggregateTypeDefinition, and EnumTypeDefinition.

Property Specification:

TypeDefinition -> typeName : Name

Hierarchy Specification:

TypeDefinition => NamedTypeDefinition
=> AggregateTypeDefinition
=> EnumTypeDefinition

I

Definition: Definitions of types

8.2.1.3.3.3.1 NamedTypeDefinition

NamedTypeDefinition is a subclass TypeDefinition and has unary definitionType to NamedType.
Property Specification:

NamedTypeDefinition
-> definitionType : NamedType

I

Definition: Definitions of types to be referred to by a specified name

8.2.1.3.3.3.2 AggregateTypeDefinition

AggregateTypeDefinition is a subclass TypeDefinition and has unary aggregateType to AggregateType.
Property Specification:

AggregateTypeDefinition
-> aggregateType : AggregateType

Definition: Definitions of aggregate types
8.2.1.3.3.3.3 EnumTypeDefinition

EnumTypeDefinition is a subclass TypeDefinition and has unary association definitionType to EnumType.

86 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Property Specification:
EnumTypeDefinition
-> definitionType : EnumType
Definition: Definitions of enumeration types
8.2.1.3.3.4 NamespaceDefinition

NamespaceDefinition is a subclass of DeclarationOrDefinition, and one or more association body to class
DeclarationOrDefinition, unary association nameSpaceType to NamespaceType, and unary association nameSpace to class Name.

NameSpaceDefinition
-> nameSpace : Name
body : DefinitionObject+
nameSpaceType : NameSpaceType

Property Specification:

Hierarchy Specification:
Definition: Definitions of namespaces
8.2.1.3.3.5 LabelDefinition

Labe Definition isasubclass of DeclarationOrDefinition, and unary association labelName to Name, and unary association label Type to
Label Type.

Property Specification:

LabelDefinition -> labelName : Name

labelType : LabelType

Definition: Definitions of 1abels

8.2.1.3.3.6 TypeDeclaration

TypeDeclaration is a subclass of DefinitionObject and has unary association typeReference to class TypeReference, and subclasses
AggregateTypeDeclaration, and EnumTypeDeclaration.

Property Specification:
TypeDeclaration -> typeReference : TypeReference
Hierarchy Specification:

TypeDeclaration => AggregateTypeDeclaration

=> EnumTypeDeclaration

Definition: Forward Declaration of user-defined types (aggregates and enumerations)
8.2.1.3.3.6.1 AggregateTypeDeclaration
AggregateTypeDeclaration is a subclass TypeDeclaration.

Definition: Forward declaration of AggregateType

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 87



8.2.1.3.3.6.2 EnumTypeDeclaration
EnumTypeDeclaration is a subclass TypeDeclaration.

Definition: Forward declaration of EnumerationType

8.2.1.3.4 Type

Typeis a subclass of GASTM SyntaxObject, and has subclasses DataType, FunctionType, Label Type and NamespaceType
and TypeReference that are used for depicting categories of Type, and unary property isConst to the primitive Boolean.

Property Specification:

Type -> < isConst : Boolean >

Hierarchy Specification:

Type => FunctionType
=> ! DataType
=> LabelType
=> Name spaceType
=> | TypeReference

7

Definition: All types
8.2.1.3.4.1 FunctionType

FunctionType is a subclass of Type, and has zero to any association parameterTypes to class Forma ParameterType and unary
association returnType to class Type.

Property Specification:

FunctionType -> returnType : TypeReference?
parameterTypes : FormalParameterType*

Definition: Function types
8.2.1.3.4.2 DataType

DaaTypeisasubclass of Type, and has subclasses PrimitiveType, EnumType, CongtructedType, AggregateType, ExceptionType,
Formal Parameter Type, NamedType that are used for depicting kinds of datatypes.

DataType => ! PrimitiveType
=> EnumType
=> ! ConstructedType
=> ! AggregateType
=> ExceptionType
=> | FormalParameterType
=> NamedType ;

Definition: Typesinvolving data
8.2.1.3.4.2.1 PrimitiveType

PrimitiveType is a subclass of DataType, and has terminal subclasses Boolean and Void, and subclass NumberType that is used to
represent al signed types.

88 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Property Specification:

Hierarchy Specification:

PrimitiveType => I NumberType
=> Void,
=> Boolean

Definition: Void and Boolean are primitive types (not further decomposable), Represents dl other signed and unsigned primitive
types aso.

Void
Definition: Void type
Boolean

Definition: Boolean type
8.2.1.3.4.2.2 NumberType

NumberType is a subclass of PrimitiveType, and has terminal subclasses Byte, and Character, and subclasses Integral Type
and Real Type that is used to represent numeral types, and has property isSigned to primitive Boolean.

Property Specification:

NumberType -> < 1sSigned : Boolean >

Hierarchy Specification:

NumberType => I IntegralType
=> ! RealType
=> Byte
=> Character

Definition: Byte and Character are primitive types (not further decomposable), Represents al other signed and unsigned numeral
types aso.

Byte

Definition: Byte type
Character

Definition: Character type

Sematics: Character is denoted by the variable length character encoding for Unicode (UTF16).
8.2.1.3.4.2.3 IntegralType

Integral Type is a subclass of NumberType, and has terminal subclasses Shortlnteger, Integer and Longlnteger, and has optional
semantic property size of type Integer.

Property Specification:

IntegralType -> [ < size : Integer > ]

Hierarchy Specification:

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 89



IntegralType ShortInteger
Integer

LongInteger

o
vV Vv

\

Definition: Shortinteger, Integer, Longlnteger are primitive types (not further decomposable). Enables to specify their sizes.
ShortInteger
Definition: Short integer type
Integer
Definition: Integer type
LongInteger
Definition: Long integer type

8.2.1.3.4.2.4 RealType

Rea Typeisasubclass of NumberType, hasterminal subclasses Real, Double and LongDouble, and has an optional semantic attribute
precision of type Integer.
Property Specification:
RealType -> [ < precision : Integer > ]
Hierarchy Specification:

Real
Double
LongDouble

RealType

LI |
vV Vv

\

Definition: Real, Double, LongDouble are primitive types (not further decomposable). Optionally, precision can be specified.
Real
Definition: Short floating-point type
Double
Definition: Floating-point type
LongDouble
Definition: Long floating-point type
8.2.1.3.4.2.5 EnumType
EnumType is a subclass of DataType, and has one to many association enumLiterals to EnumLiteral Definition.
Property Specification:
EnumType -> enumLiterals : EnumLiteralDefinition+

Definition: Enumerated types
8.2.1.3.4.2.6 ConstructedType
ConstructedType is a subclass of DataType, has unary property BaseType to class TypeReference, and subclasses

PointerType, ArrayType, ReferenceType, CollectionType and RangeType for depicting types of these respective kinds.

90 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Property Specification:

ConstructedType -> baseType : TypeReference

Hierarchy Specification:

ConstructedType => CollectionType
=> PointerType
=> ReferenceType
=> RangeType
=> ArrayType ;

Definition: Types constructed from a specified base type
Collection Type
Definition: Types characterized as collections (lists, sets, bags, ...)
PointerType

The class PointerType is a subclass of ConstructedType and has an optional semantic attribute size of type
Integer.

Property Specification:

PointerType -> [ < size : Integer > ]

Definition: Types whose values are pointers. Optionaly, the size of the pointer can be specified.
Reference Type
Definition: Types whose values are references
Range Type
Definition: Types whose values are ranges
ArrayType
Definition: Array types
8.2.1.3.4.2.7 AggregateType

The class AggregateType is a subclass of DataType and has one or more association members to class MemberObject and the
optional unary semantic property opensScope to the semantic class AggregateScope. The AggregateType has subclasses
StructureType, UnionType, ClassType, AnnotationType.

Property Specification:

AggregateType -> members : MemberObject+
[ opensScope : AggregateScope ]

Hierarchy Specification:

AggregateType => StructureType
=> UnionType
=> ClassType
=> AnnotationType ;

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 91



Definition: Types composed of heterogenous subtypes
Structure Type
StructureType is a subclass of AggregateType and is used for denoting structured types.
Definition: Simple structure types (no inheritance or function members)
Union Type
UnionType is a subclass of AggregateType and is used for denoting aggregate types.

Definition: Union types (like structures but each data member occupies the same location)

Class Type
ClassType is a subclass of AggregateType, and has unary association derivesrom to class Derivesrom, and is used for
dencting class types.
ClassType -> derivesFrom : DerivesFrom

7

Property Specification:
Hierarchy Specification:

Definition: Class types
Annotation Type

AnnotationType is a subclass of AggregateType, and used for denoting annotation types.
Definition: Denotations that complete or extend the definitions of other types
8.2.1.3.4.2.8 ExceptionType
ExceptionType is a subclass of DataType used for denoting exception types.
Definition: Types used in the context of exception generation/handling
8.2.1.3.4.2.9 FormalParameterType

FormalParameterType is a subclass of DataType has unary association type to interior class Type and has subclasses
ByReferenceForma Parameter Type and ByVa ueParameter Type. These two subclasses have no immediate properties or associations
and are used for depicting the kind of Formal ParameterType.

Property Specification:

FormalParameterType
-> type : TypeReference
Hierarchy Specification:
FormalParameterType
=> ByValueFormalParameterType

=> ByReferenceFormalParameterType ;

92 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Definition: Specifies the by-val ue/reference nature of formal parameters

ByValueFormalParameterType
Definition: Specifies that aformal parameter is to be passed by value
ByReferenceFormalParameterType
Definition: Specifies that aformal parameter isto be passed by reference
Named Type
NamedType is a subclass of DataType, and has zero to any number association body to class Type. 1
Property Specification:
NamedType -> body : Type
Definition: Uses of named types
8.2.1.3.4.3 LabelType
Label Type is a subclass of Type, used for depicting that the type of an element is alabd.Definition: The type of alabdl.

8.2.1.3.4.4 NamespaceType

NamespaceType is a subclass of Type used for depicting that the type of an element is a namespace.Definition: The type of a
namespace.

8.2.1.3.4.5 TypeReference
TypeReference is a subclass of Type with subclasses UnnamedTypeReference and NamedTypeReference.

Hierarchy Specification:

TypeReference => UnnamedTypeReference

=> NamedTypeReference
Definition: References to types
8.2.1.3.4.5.1 UnnamedTypeReference
UnnamedTypeReference is a subclass of TypeReference with unary association type to Type.
Property Specification:

UnnamedTypeReference
-> type : Type
Definition: References to types without the use of a name for the referenced type

8.2.1.3.4.5.2 NamedTypeReference

NamedTypeReference is a subclass of TypeReference with unary association type to Type and unary association typeName to Name.

1 the typeDef body

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 93



Property Specification:

NamedTypeReference
-> typeName : Name
type : TypeDefinition

Definition: References to types via the name of the referenced type

8.2.1.4 Expression

The dass Expression has unary association expressonType to a TypeReference, and subclasses Literd, CastExpresson,
AggregateExpression, UnaryExpression, Binary Expression, Conditional Expression, RangeExpression, FunctionCallExpression,
NewExpression, NameReference, Labe Access, ArrayAccess, AnnotationExpression, and CollectionExpression.
Property Specification:

Expression -> [ expressionType : TypeReference ] ;

Hierarchy Specification:

Expression => Literal
=> CastExpression

=> AggregateExpression
=> UnaryExpression
=> BinaryExpression
=> ConditionalExpression
=> RangeExpression
=> FunctionCallExpression
=> NewExpression
=> ! NameReference
=> LabelAccess
=> ArrayAccess
=> AnnotationExpression
=> CollectionExpression

I

Definition: All expressions

8.2.1.4.1 Literal

Theinner dlassLitera isasubclass of Expresson, and has unary association value to String and subdasses IntegerLiteral, StringLiteral,
CharlLiteral, RedlLiteral, BooleanLiteral, BitLiteral, and EnumLiteral.
Property Specification:

Literal -> < value : String >

’

Hierarchy Specification:

Literal => IntegerLiteral
=> StringlLiteral
=> CharLiteral
=> Realliteral
=> BooleanLiteral

94 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



=> BitLiteral
=> EnumLiteral

Definition: Literal expressions

8.2.1.4.1.1 IntegerLiteral

The dass IntegerLitera isasubclass of Literd.
Definition: Integer literals

8.2.1.4.1.2 StringLiteral

The dass IntegerLiterd isasubclass of Literd.
Definition: String literd's

8.2.1.4.1.3 CharlLiteral

The class IntegerLiteral is a subclass of Literal.
Definition: Character literals

8.2.1.4.1.4 Realliteral

The class IntegerLiteral is a subclass of Literal.
Definition: Floating-point Literals

8.2.1.4.1.5 BooleanLiteral

The class IntegerLiteral is a subclass of Literal.
Definition: Boolean literals

8.2.1.4.1.6 BitLiteral

The class IntegerLiteral is a subclass of Literal.
Definition: Binary literals

8.2.1.4.1.7 EnumlLiteral

The class EnumLiteral is a subclass of Literal.

Definition: Enumeration literals

8.2.1.4.2 CastExpression

The class CastExpression is a subclass of Expression, and has unary association castType to TypeReference, and unary association
expression to the class Expression.

Property Specification:

CastExpression -> castType : TypeReference

expression : Expression
i

Definition: Expressions that are cast to a specified type

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



8.2.1.4.3 AggregateExpression
The AggregateExpression is a subclass of Expression, has no associations, properties or subclasses.

Definition: Expressions consisting of a list of subexpressions

8.2.1.4.4 UnaryExpression

Theinterior class UnaryExpression is a subclass of Expresson, and has unary association operand to the class Expression and unary
association operator to class UnaryOperatory.

Property Specification:

UnaryExpression -> operator : UnaryOperator

operand : Expression
i

Definition: Expressions involving unary operators
8.2.1.4.5 BinaryExpression

Theinterior class BinaryExpression is a subclass of Expression, and has unary association leftOperand and unary association
rightOperand to the class Expression and unary association operator to the termina primitive class BinaryOperatory.

Property Specification:

BinaryExpression ->operator : BinaryOperator

leftOperand : Expression rightOperand : Expression

Definition: Expressions involving binary operators
8.2.1.4.6 Conditional Expression

The class Conditional Expression is a subclass of Expression, and has unary association condition, unary onFalseOperand and
unary association onTrueOperand to the class Expression.

Property Specification:

ConditionalExpression

-> condition : Expression
onTrueOperand : Expression
onFalseOperand : Expression

’

Definition: Ternary conditional expressions

Semantics: Conditiona Expression has short-circuit semantics. This implies that the onTrueOperand is evaluated only if the
condition is TRUE, and onFalseOperand is evaluated only if the condition is FALSE.

8.2.1.4.7RangeExpression

Theinterior class RangeExpression, isa subclass of Expression, and has unary association fromExpression and the unary association
toExpression to the interior class Expression.

96 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Property Specification:

RangeExpression -> fromExpression : Expression
toExpression : Expression
i

Definition: Expressions consisting of arange of values

8.2.1.4.8 FunctionCallExpression

Theinterior dass FunctionCallExpression is a subclass of Expression, and has any number of associations of actual Params to the class
ActualParameter, and unary association calledFunction to the class Expression.
Property Specification:

FunctionCallExpression
-> calledFunction : Expression

actualParams : ActualParameter*

Definition: Function calls

NewExpression

The class NewExpression has unary association newType to the class TypeReference, and zero to any number association
actual Params to Actual Parameter.
Property Specification:
NewExpression -> newType : TypeReference
actualParams : ActualParameter *

Definition: Instance creation expressions

8.2.1.4.9 NameReference

The class NameReference is a subclass of Expression, and unary semantic association RefersTo to the inner class
DeclarationOrDefinition, unary association identifierlName to class Name, and subclasses | dentifierReference,
QualifiedidentifierReference, and TypeQualifiedldentifierReference.

Property Specification:

NameReference -> identifierName : Name
refersTo : DefinitionObject

Hierarchy Specification:

NameReference => IdentifierReference
=> ! QualifiedIdentifierReference
=> TypeQualifiedIdentifierReference ;

Definition: References to named entities

ArrayReference

The class ArrayReference has unary association arrayName to inner class Expression and one or more subscripts to the
inner class Expression.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 97



Property Specification:

ArrayAccess -> arrayName : Expression

subscripts : Expression+
i

Definition: References to individual array elements

8.2.1.4.10 AnnotationExpression

AnnotationExpression is a subclass of Expression and has unary association annotationType to TypeReference and zero to any
association memberValues to Expression.

Property Specification:

AnnotationExpression?
-> annotationType : TypeReference 23

MemberValues : Expression *

Definition: Expressions that supply annotations for other elements

8.2.1.4.11 CollectionExpression

CollectionExpression is a subclass of Expression and has one to many association expressionList to Expression.
Property Specification:

CollectionExpression

-> expressionlList : Expression *
i

Definition: Expressions that are collections of other expressions
8.2.1.4.11.1 |dentifierReference

Theinterior class IdentifierReference is a subclass of NameReference, and has any number of association Qudifiersto interior class
NamedType and unary semantic association RefersTo to the inner class DeclarationOrDefinition.

Definition: References to smply-named (unqualified) entities
8.2.1.4.11.2 QualifiedldentifierReference

The class QualifiedldentifierReference is a subclass of NameReference, and has unary association qualifiers to class
Expresson and unary association member to the class IdentifierReference and subcdasses QudifiedOverData and QualifiedOverPtrs.

Property Specification:
QualifiedIdentifierReference
-> qualifiers : Expression
member : IdentifierReference
Hierarchy Specification:

QualifiedIdentifierReference

=> QualifiedOverPtr

2. The AnnotationExpression is used for depicting EGL -style annotations
3. Annotation Typeisoptiona. Thisisto to allow attribute-value pairs (i.e., Member Values) to allow default values for members.

98 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



=> QualifiedOverData
Definition: References to entities with qualified names
8.2.1.4.11.2.1 QualifiedOverPointer
QualifiedOverPtr is a subclass of the class QualifiedldentifierReference.
Definition: References to entities with qualified names where the qualifying portion of the name is a pointer value
8.2.1.4.11.2.2 QualifiedOverData
QualifiedOverData is a subclass of the class Qualifiedl dentifierReference.

Definition: References to entities with qualified names where the qualifying portion of the name is not a pointer value

8.2.1.4.12 LabelAccess

LabelAccessis a subclass of Expression with unary association label Definition to class Label Definition and unary association
|abelName to class Name.

Property Specification:

LabelAccess -> labelName : Name

labelDefinition : LabelDefinition
7

Definition: Referenceto alabd

8.2.1.4.13 ArrayAccess

ArrayAccess is a subclass of Expresson with unary association ArrayName to class Expression and one to many association
Subscripts to Expression.

ArrayAccess -> arrayName : Expression
subscripts : Expression+
i

Property Specification:
Hierarchy Specification:

Definition:
8.2.1.4.14 Statement

The inner class Statement is a subclass of GASTM SyntaticObject, and has interior subclasses ExpressionStatement,
JumpStatement, BreskStatement, ContinueStatement, L abeledStatement, BlockStatement, EmptyStatement, |f Statement,
SwitchStatement, ReturnStatement, TryStatement, ThrowStatement, DeleteStatement, TerminateStatement and inner class
LoopStatement further classified into interior subclasses WhileStatement, DoWhileStatement, and ForStatement.

Hierarchy Specification:

Statement => ExpressionStatement
=> JumpStatement
=> BreakStatement
=> ContinueStatement
=> LabeledStatement

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 99



=> BlockStatement

=> EmptyStatement

=> IfStatement

=> SwitchStatement

=> ReturnStatement

=> LoopStatement

=> TryStatement

=> DeclarationOrDefinitionStatement
=> ThrowStatement

=> DeleteStatement

=> TerminateStatement

Definition: All statements
8.2.1.4.14.1 ExpressionStatement

The class ExpressionStatement is a subclass of Statement, and has unary association expression with the interior inner class
Expression.

Property Specification:

ExpressionStatement -> expression : Expression
i

Definition: Statements comprised of just an expression
8.2.1.4.14.2 JumpStatement

Theinterior class JumpStatement is a subclass of Satement, and has unary association target with the interior inner class Expression.

Property Specification:

JumpStatement -> target : Expression

Definition: Statements that branch to a label
8.2.1.4.14.3 BreakStatement

Theinterior class BreakStatement is a subclass of Statement, and is asubclass of Statement, and has unary association target with the
interior class |dentifierReference.

Property Specification:

BreakStatement -> target : LabelAccess?
i

Definition: Statements that exit aloop or a switch
8.2.1.4.14.4 ContinueStatement

Theinterior class ContinueStatement is a subclass of Statement, and has unary association target with the interior class
I dentifierReference.

100 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Property Specification:
ContinueStatement -> target : LabelAccess?

Definition: Statements that branch to the top of aloop

8.2.1.4.14.5 LabeledStatement

Theinterior class LabdedStatement is a subclass of Statement, and has unary association labd with the interior class Label Definition.
Property Specification:

LabeledStatement -> label : LabelDefinition
statement : Statement?

Definition: Statements that are associated with a label definition

8.2.1.4.14.6 BlockStatement

The interior class BlockStatement is a subclass of Statement, and has unary association subStatements with the interior inner class
Statement and unary semantic association opensScope with the semantic class BlockScope.

Property Specification:

BlockStatement -> subStatements : Statement*

[ opensScope : BlockScope ]

Definition: Statements consisting of a series of substatements
8.2.1.4.14.7 EmptyStatement
Thetermind class EmptyStatement is a subclass of Statement and has no associations, no properties, and no subclasses.
Property Specification:

EmptyStatement -> ;
Definition: Statement that does nothing
8.2.1.4.14.8 IfStatement

The interior class If Statement is a subclass of Statement, and has unary association condition to the interior inner class Expression
and the unary association thenBody to the interior inner class Statement and the unary association €lseBody to the interior inner
class Statement.

Property Specification:

IfStatement -> condition : Expression
thenBody : Statement
elseBody : Statement?

Definition: Statements that conditionally execute one of two substatements

8.2.1.4.14.9 SwitchStatement

Theinterior class SwitchStatement is a subclass of Statement, and has unary association casesto theinterior class SwitchCase and the
unary association switchExpression to the interior inner class Expression.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 101



Property Specification:

SwitchStatement -> switchExpression : Expression

cases : SwitchCase
;

Definition: Statements that conditiondly execute one of many substatements
8.2.1.4.14.10 ReturnStatement

The interior class ReturnStatement is a subclass of Statement, and has unary association returnValue with the interior inner class
Expression.
Property Specification:

ReturnStatement -> returnvValue : Expression?

Definition: Statements that cause return from a function, possibly with a return value

8.2.1.4.14.11 LoopStatement

The interior inner class LoopStatement is a subclass of Statement, and has unary association body to the interior inner class
Statement and the unary association condition to the interior inner class Expresson. The inner LoopStatement is further classified
into interior subclasses WhileStatement, DoWhileStatement, and ForStatement.

Property Specification:

LoopStatement -> condition : Expression
body : Statement

Hierarchy Specification:

LoopStatement => WhileStatement
=> DoWhileStatement
=> ! ForStatement

7

Definition: Statements with a substatement (body) that is potentially repeatedly executed
8.2.1.4.14.11.1 WhileStatement

The WhileStatement is a subclass of LoopStatement, and is the variation of the LoopStatement for which the Condition is tested
before the Body is executed.

Definition: Loop statement whose body is repeatedly executed while a specified condition, tested before each execution, is true
8.2.1.4.14.11.2 DoWhileStatement

The DoWhileStatement is a subclass of LoopStatement, and is the variation of the LoopStatement for which the Condition is
tested after the Body is executed.

Definition: Loop statement whose body is repeatedly executed while a specified condition, tested after each execution, is true
8.2.1.4.14.11.3 ForStatement

The ForStatement is a subclass of LoopStatement, and is the variation of the LoopStatement for which the Condition is tested
before the Body is executed and any number of associations of initBody to interior inner class Expression and any number of
associations of iterationBody to interior inner class Expression.

102 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Property Specification:

ForStatement -> initBody : Expressiont*
iterationBody : Expressiont*
i
Hierarchy Specification:

ForStatement => ForCheckBeforeStatement
=> ForCheckAfterStatement

Definition: Loop statement with initializing and incrementing parts
8.2.1.4.14.11.4 ForCheckBeforeStatement

The ForCheckBeforeStatement is a subclass of ForStatement, and is the variation of the LoopStatement for which the Condition is
tested before the Bodly is executed

Definition: For statement with test before each iteration
8.2.1.4.14.11.5 ForCheckAfterStatement

The ForCheckAfterStatement is a subclass of ForStatement, and is the variation of the LoopStatement for which the Condition is
tested after the Body is executed.

Definition: For statement with test after each iteration
8.2.1.4.14.12 TryStatement

The class TryStatement is a subclass of Statement, and has any number of association catchBlocks to to interior class
CatchBlock, unary association of final Statement to interior inner class Statement and unary association of
guardedStatement to interior inner class Statement.

Property Specification:

TryStatement -> guardedStatement : Statement
catchBlocks : CatchBlock*
finalStatement : Statement?

’

Definition: Exception-handling statements, consisting of a substatement that may throw exceptions and catch blocks to handle them

8.2.1.4.14.13 ThrowStatement
The class ThrowStatement is a subclass of Statement, and has unary association exception to interior inner class Expression.
Property Specification:

ThrowStatement -> exception : Expression

Definition: Statements that cause an exception to be thrown

8.2.1.4.14.14 DeleteStatement

DeeteStatement is a subclass of Statement, and has unary association operand to class Expression, and is used for depicting
deallocation of storage.

Property Specification:
DeleteStatement -> operand: Expression

I

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 103



Definition: Statements that deallocate storage

TerminateStatement

TerminateStatement has no immediate properties, associations, or subclasses it is used for depicting the
termination of execution.

Definition: Satement that terminates execution

8.2.1.5 MinorSyntaxObject

Hierarchy Specification:

MinorSyntaxObject
=> Dimension
=> CompilationUnit
=> Name
=> SwitchCase
=> CatchBlock
=> ! UnaryOperator
=> ! BinaryOperator
=> ! StorageSpecification
=> ! VirtualSpecification
=> AccessKind
=> ! ActualParameter
=> FunctionMemberAttributes
=> DerivesFrom
=> MemberObject

Definition: Various syntactic entities not otherwise categorized

8.2.1.5.1 Dimension

The interior class Dimension is a subclass of OtherSytnaxObject, and has unary associations highBound and lowBound to
interior class Expression.

Property Specification:

Dimension -> lowBound : Expression?

highBound : Expression

Definition: Range of subscript values for one dimension of an array type

8.2.1.5.2 CompilationUnit

The interior class CompilationUnit is a subclass of OtherSytnaxObject, and has any number of associations Fragments to interior
class ProgramCodeFragment, unary semantic property Language to the terminal primitive class String, and unary semantic property
OpensScope to the semantic class ProgramScope.

Property Specification:

CompilationUnit -> < language : String >

fragments : DefinitionObject*

104 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



[ opensScope : ProgramScope? ]

Definition: Unit of compilation; typically corresponding to a source file

8.2.1.5.3 Name
Name is a subclass of OtherSytnaxObject, and has Unary Association nameString to Primitive String.

Property Specification:

Name -> < nameString : String >
7

Definition: Names that may appear in declarations and definitions

8.2.1.5.4 SwitchCase

The class SwitchCase is a subclass of OtherSytnaxObject, has a boolean attribute isEva uateAll Cases, has unary association body to
interior inner class Statement, and subclasses CaseBlock and DefaultBlock.

Property Specification:

SwitchCase -> < isEvaluateAllCases : Boolean >
body : Statement+
Hierarchy Specification:

SwitchCase => CaseBlock
=> DefaultBlock

7

Definition: Parts of a switch statement that are conditionally executed

8.2.1.5.5 CaseBlock

The class CaseBlock is a subclass of OtherSytnaxObject, and has any number of associations of caseExpression to interior inner class
Expression.

Property Specification:
CaseBlock -> caseExpressions : Expression+

Definition: Switch cases that are executed when one of their values matches that of the enclosing switch statement

8.2.1.5.6 DefaultBlock
The DefaultBlock is a subclass of OtherSytnaxObject, and depict the fall through CaseBlock.

Definition: Switch cases that are executed when no other switch case in the enclosing switch statement is executed

8.2.1.5.7 CatchBlock

The dass CatchBlock is a subclass of OtherSyntaxObject, and has interior subclasses TypesCatchBlock and VariableCatchBlock. The
CatchBlock has unary association Body to Statement.

Property Specification:

CatchBlock -> body : Statement

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 105



Hierarchy Specification:

CatchBlock =>

TypesCatchBlock

=> VariableCatchBlock

I

Definition: Parts of atry statement that specify a statement to execute under specified exception conditions

8.2.1.5.7.1 TypesCatchBlock

The class TypesCatchBlock is asubclass of CatchBlock, and has any number association exceptions class Type.

Property Specification:

TypesCatchBlock ->

I

Definition:

8.2.1.5.7.2 VariablesCatchBlock

The class VariablesCatchBlock is a subclass of CatchBlockObject, and has a unary association exceptionVariable to the interior inner

class DataDefinition.
Property Specification:

VariableCatchBlock

-> exceptionVariable

I

Definition:

8.2.1.5.8 UnaryOperator

The inner class UnaryOperator is a subclass of OtherSyntaxObject, and has primitive termina subclasses UnaryPlus,
UnaryMinus, Not, BitNot, AddressOf, Deref, Increment, Decrement, Postincrement, PostDecrement.

Hierarchy Specification:

UnaryOperator =>

Definition: Operators taking a single operand

4. eg.,&varname
5 eg,*ptrto

106

exceptions

UnaryPlus
UnaryMinus
Not

BitNot
AddressOf?
Deref®
Increment
Decrement
PostIncrement

PostDecrement

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

DataDefinition



UnaryPlus
Definition: Unary plus operator
UnaryMinus
Definition: Negation operator
Not
Definition: Logicad complement operator
BitNot
Definition: Bitwise complement operator
AddressOf
Definition: Operator which results in the address of its operand
Deref
Definition: Operator which results in the value of which its operand is the address
Increment
Definition: Operator which increments its operand and results in the incremented value
Decrement
Definition: Operator which decrements its operand and results in the decremented value
PostIncrement
Definition: Operator which results in the value of its operand before it is incremented
PostDecrement

Definition: Operator which results in the value of its operand before it is decremented

8.2.1.5.9 BinaryOperator

Theinner class BinaryOperator is a subclass of OtherSyntaxObject, and has primitive termina subclasses Add, Subtract, Multiply,
Divide, Modulus, Exponent, And, Or , Equal, NotEqual, Greater, NotGreater, Less, NotLess, BitAnd , BitOr, BitXor, BitLeftShift,
BitRightShift, Assign.

Hierarchy Specification:

BinaryOperator => Add
=> Subtract
=> Multiply
=> Divide
=> Modulus
=> Exponent
=> And
=> Or
=> Equal
=> NotEqual
=> Greater

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 107



NotGreater
Less

NotLess
BitAnd
BitOr

BitXor
BitLeftShift
BitRightShift
Assign

OperatorAssign

’

Definition: Operators taking two operands

Semantics: Operators And, Or, BitAnd, BitOr, BitXor have short-circuit semantics. Thisimplies that the second operand
is evaluated only if the first operand does not suffice to determine the value of the expression. For example:

* aAND b=>if (8 thenif (b) then TRUE else FALSE else FALSE
« aORb=>if (3) then TRUE eseif (b) then TRUEelse FALSE
Add
Definition: Addition operator
Subtract
Definition: Subtraction operator
Multiply
Definition: Multiplication operator
Divide
Definition: Division operator
Modulus
Definition: Modulo operator
Semantics: Default behavior of Modulus operator: Integer.mod(i: Integer): Integer post: result = self - (self.div(i) * i)
Exponent
Definition: Exponentiation operator
And
Definition: Logical conjunction operator
Or
Definition: Logica digunction operator
Equal

Definition: Equality operator

108 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



NotEqual
Definition: Inequality operator
Greater
Definition: Relationa operator in which the result is true iff the left operand is greater than the right operand
NotGreater
Definition: Relational operator in which the result is true iff the left operand is not greater than the right operand

Less

Definition: Relationa operator in which the result is true iff the left operand is less than the right operand

NotLess

Definition: Relationa operator in which the result is true iff the left operand is not less than the right operand
BitAnd

Definition: Bitwise conjunction operator
BitOr

Definition: Bitwise digunction operator
BitXor

Definition: Bitwise exclusive-or operator
BitLeftshift

Definition: Bitwise left-shift operator
BitRightShift

Definition: Bitwise right-shift operator

Semantics. Operator BitRightShift applied to unsigned integer implies that a shift by n bits of atwao's
complement value is equivalent to dividing by 2" .

Assign
Definition: Assignment operator
8.2.1.5.9.1 OperatorAssign

The interior class OperatorAssign is a subclass of BinaryOperator, and has unary association operator to inner class
BinaryOperator.

Property Specification:
OperatorAssign -> operator : BinaryOperator6 ;

Definition: Assignment operators compounded with a binary operator

6. weg.,+=,*=, dc

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 109



8.2.1.5.9.2 StorageSpecification

StorageSpecification is a subclass of OtherSytnaxObject, and has subclasses External, FunctionPersistent, Fileloca, PerClassMember,
NoDef.

Hierarchy Specification:

StorageSpecification

=> External

=> FunctionPersistent’
=> FileLocal

=> PerClassMember®

=> Nodef® ;

Definition: a property of data that depicts how it isis allocated

8.2.1.5.9.2.1 External

Externd is a subclass of Storage Specification and depicts storage thet is externa.

Definition: depicts storage that is externa

8.2.1.5.9.2.2 FunctionPersistent

FunctionPersistent is a subclass of Storage Specification and depicts storage that is dlocated and persists within afunction.
Definition: depicts storage that is allocated and persists within a function.

8.2.1.5.9.2.3 FileLocal

FileLocal isa subclass of Storage Specification and depicts storage theat is dlocated and loca within afile.

Definition: depicts storage that is allocated and local within afile.

8.2.1.5.9.2.4 PerClassMember

PerClassMember is asubclass of Storage Specification and depicts storage that is alocated for each class.
Definition: depicts storage that is alocated for each class

8.2.1.5.9.2.5 NoDef

NoDef is a subclass of Storage Specification and depicts storage for which the dlocator is not defined.
Definition: depicts storage for which the allocator is not defined.

8.2.1.5.9.3 VirtualSpecification

Virtual Specification is subclass of MinorSyntaxObject that is used for specifying if a class member is virtual.

Hierarchy Specification:

VirtualSpecification
=> Virtual

7. eg.,Cs'dsatic:
e.g., C++ static member
9. eg., default attributes

00

110 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



I

Definition: Specifications of the virtual characteristics of a function member

8.2.1.5.9.3.1 Virtual

Virtual is subclass of Virtual Specification used for specifying that class member is virtual.
Definition: Specifies that the associated function member is virtua

8.2.1.5.9.4 AccessKind

AccessKind is subclass of MinorSyntaxObject used for specifying that class member is Public, Protected of Private and has
subclasses Public, Protected, and Private for those denotations.

Hierarchy Specification:

AccessKind => Public
=> Protected => Private

I

Definition: Specifications of the kind of access provided by a member or base class
8.2.1.5.9.4.1 Public

Public is subclass of AccessKind used for specifying that class member is Public.
Definition: Specifies that the associated member or base class provides public access
8.2.1.5.9.4.2 Protected

Protected is subclass of AccessKind used for specifying that class member is Protected.
Definition: Specifies that the associated member or base class provides protected access
8.2.1.5.9.4.3 Private

A private is subclass of AccessKind used for specifying that class member is Private.
Definition: Specifies that the associated member or base class provides private access
8.2.1.5.9.5 ActualParameter

ActudParameter is subclass of MinorSyntaxObject used for denoting actua parameters, and has two subclasses
Actual ParameterExpression and MissingActual Parameter.

Property Specification:
ActualParameter => ActualParameterExpression
=> MissingActualParameter
Definition: Actua parameters
8.2.1.5.9.5.1 ActualParameterExpression

Actual ParameterExpression is subclass of ActualParameter and has two subclasses ByVaueActud ParameterExpression and
ByReferenceA ctua ParameterExpression that are used for denoting parameters passed by value and reference and unary association
value to Expression.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 111



Property Specification:

ActualParameterExpression
-> value : Expression
i

Hierarchy Specification:

ActualParameterExpression
=> ByValueActualParameterExpression
=> ByReferenceActualParameterExpression

Definition: Actud parameters involving expressions (as opposed to missing)
ByValueActualParameterExpression

The ByVal ueActualParameterExpression is a subclass of Actua ParameterExpression used for denoting parameters
passed by value.

Definition: Actual Parameters passed by value
ByReferenceActualParameterExpression

The ByReferenceA ctual ParameterExpression is a subclass of ActualParameterExpression used for dencting
parameters passed by reference.

Definition: Actual Parameters passed by reference
MissingActualParameter

The MissingActual Parameter is a subclass of ActualParameter used for denoting that the actual parameters
are not present.

Definition: Missing actua parameter
8.2.1.5.9.6 FunctionMemberAttributes

The FunctionMemberAttributes is a subclass of MinorSyntaxObject used for attributing members of classes.
FunctionMemberAttributes has Boolean properties isFriend, isinLine and isThisConst to depict the corresponding member
properties and the association virtual Specifier to the class Virtual Specification to depict whether the member is virtual.

Property Specification:

FunctionMemberAttributes

-> < isFriend : Boolean >
< isInline : Boolean >
< isThisConst : Boolean > virtualSpecifier : VirtualSpecification'®

Definition: Specifies various properties of function members

10. eg., !! default

112 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



8.2.1.5.9.7 DerivesFrom

DerivesFrom is a subclass of MinorSyntaxObject used for depicting the derived properties of a class. Derives from has
optiona association virtual Specifier to class Virtua Specification, association AccessKind to class accessKind, and association
className to class NamedType.

Property Specification:

DerivesFrom -> virtualSpecifier : VirtualSpecification ?
accessKind : AccessKind
className : NamedTypeReference

Definition: Specifies relationships between class types and the types from which they are derived
8.2.1.5.9.8 MemberObject

MemberObject is a subclass of MinorSyntaxObject used for depicting the members of an aggregate type. MemberObject has
optional Integer property offset., and an assocation member to DefinitionObject.

Property Specification:

MemberObject -> [ < offset : Integer > ]

member : DefinitionObject
Definition: Specifies members of an aggregate type. Optionaly, alows specification of offset for each member.
8.3 Specialized Abstract Syntax Tree Specifications

The SASTM extensions are outside the scope of this document. The process for adding SASTM extensions to the
GASTM s established within this document. Future SASTM will be sought through the OMG RFP process, proposed by
submission teams, reviewed and recommended by the ADMTF and adopted OMG adoption process.

8.3.1 SASTM Extension for RDBMS Languages

An example proposed SASTM extension for Relational Data Base Management System Languages is included as Annex
A of this document.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 113



114 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Annex A - RDBMS Extensions

This annex defines extensions for modeling relational database constructs, including Data Definitions and Embedded
SQL constructs, which are common to many programming languages. The vendor specific clauses like Triggers,
Constraints, and others are not included in the GASTM, and can be made part of the SASTM for the specific vendors.

A.1 Class Diagrams

A.1.1 RDBMS Other Syntax Object Extensions Class Diagrams

EETMSy
\f OtherSyntaxObject J

V3 Er

o BT 2
e o BN R
S S
Declarabonsndletmition DeglarationAndDefinitson DeglarztonandDetmition DelarabondndDetmstion
@ RDBIndex @ RDBConstraint @ RDBTrigger @ RDBIndexColumn
fr motMNull :Boolesan t  ascendingOrDescending :Char
t  isUnicque :Boolean
/. S,
S g
DeclaranonAndoerman TeclaranonAndoemiion DeclaraionAndDermman
@ RDBCheckConstraint @RDBUniquekey @ RDBRefintegrity

B constcraincTaxt :String
H conscraintType :Char

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 115



A.1.2 RDBMS Definitions Class Diagrams

Deola stiznfndDefiniton

[} Definition

Erpression

@ RDBTableSpaceReference ,/_\7

— o R
0.7 | tableSpace // /// \\ T i

1 // /‘ @ RDBColumnDefinition

Ay
\\ t+ notBull :Boolean
%

Dheclaraticn Andoefmnon Declaraticn AndoeAnkion
@ RDBDatabaseDefinition @ RDBCursorDefinition x
0.% | colurn
3
/ 1 1 i B ableDefininon
/ : )
DeclarstionAndDefiraion DeclarstionAndDefingion DeclarstionAnrdDeintion DeclarstionAndDefiration
@ RDATahleSpaceDefinition @ RDBUserDefinition @ RDBViewDefinition @ RDBTableDefinition
1 1 ) 1 1 1] 1
1 | selectE mpression 0. | iriger
.1l 1.% Jown e ¥
v J P = 1 DeclarationAndDefinkior
TS @ RDBSelectExy ™ ey @ RDBTrigger
@ RDBTableReference ok wandiai
=N
o ‘-.i = DecTarstion ArdDetmtion
. RDBConstraint
Ealimy +| @ RDBCol ference < 0. e
Ll N
parentT able primbey sl
= A S v
0 pasnikem ® |foreionkey 1 eoben Diechararons,naLieneion
@ RDBlIndex

t motRull :Boolean
#  i=lmiegue :Boolesn

1
0 0 i i 0.7 | indexColumn
Y
0. e clarslonnd0ernltion Declarslon AndCieTralon

Do clarabionsndDefinibor
@ RDBUnigqueKey @ RDBReflntegrity als @ RDBIndexColumn
——t ascendinglrlascending :Char

116 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



A.1.3 RDBMS Types Class Diagrams

Typez

@  DataType

e BT T SRR,
— """_'___'_'_'__'_P.‘._ ...-‘_‘f’—‘.’_\_ '/ : ‘\" ..\-. ‘.—\\"‘\,I -
...,_.-v-f‘”fﬂ__ st . i / \‘— e
'I,,\/_F- B \‘_
Typez Twes 1 Tupes

@ RDBTableSpaceType @ RDBViewType @ RDBDataBaseType

Typas Tupes

@ RDBTahleType @ RDBUserType @ RDBColumnType @ RDBCursorType

@& RDBColumnType

£ RS
. s S -
g b T Ry T—
- - SR 2 T e T T
o 8 7 / " 2= g e ———

=7 T b % e e —

Types Types wpes Types Types
@ RDBReal (@ RDBFloat (@ RDBDecimal (@ RDBString (@ RDBChar

Tupes

@ RDBInt @ RDBRaw @ RDBLongy @ RDBVarChar @RDBNumber

Tupies

Tpe:

@ RDBColumnType

Tope Tups "q-- Tepe Tupe

@ RDBBoolean @ RDBDate @ RDBBlob @ RDBClob (@ RDBNClob

Types Tepes Tgpe=s Types

@ RDBTimeStamp @ RDBinteger @ RDBRowid @ RDBFile

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 117



A.1.4 RDBMS Statements Class Diagrams

Expression Statement
@ RDBHostVariableReference @ Statement
4 N £ TV
M connectSling /,’J’ r" \\.\ “‘\
i E /.«-" Py " i ‘,_h‘
il 5 -
Traterment STatemert 3 Sratement
@ RDBConnectStatement @ RDBSelectStatement @ RDBInsertStatement
tatement Statement
& RDBModifyStatement @ RDBCursorStatement
b % AN i
- k-‘-\.‘ 1| cursor
Statement E'alf ent W
@ RDBUpdateStatement @ RDBDeleteStatement SR
@ Expression
; L
@ RDBOpenCursorStatement @ RDBCloseCursorStatement
1.7 | values
- ( ! Statement
a 5 i cir | (@ RDBFetchCursorStatement
gpression <
" values
1
1.7 |irto
b

@ RDBHostVariableReference

118 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



A.1.5 RDBMS Select Statements Class Diagrams

Staterment
1
1 @ RDBSelectStatement 1
1.7 | intovariable 1 | zelectExpreszion
b 4
Expression Eupression
(@ RDBHostVariableReference @ RDBSelectExpression
i Statement 1
@ RDBinsertS t
1.* | intoT able 0.* | columns 1.2 | valyes
Y Y i
Exprezzion Expression Evpresmion
@ RDBTableReference @ RDBColumnReference @ Expression
* | table 0.1 | where

Statemen

@ RDBModifyStatement

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 119



A.1.6 RDBMS Expression Class Diagrams

0.1 Expressicn 0.1
p- ; 4"
indicator @ Expression table
’ o
bised arishle > -fnl.r—
= .
s s
Eunpression Exp'+sls on
@ RDBHostVariahleReference @  RDBSelectExpression !
Expression
@ ldentifierReference
_/-"‘V by Ve "'f""-ah__ 5
s B S
Pl Al 0.1 &b ag ™ e, 1. JE-LZE- I 0. columr
oz e F4 =i e — Y
Expressiol Expression Expression Expressicr
3 RDBTableSpaceReferencs @ RDBTableAlias (@ RDBTableReference @ RDBColumnReference
A.2 RDBMS Extended BNF
A.2.1 Extensionsto Core
MinorSyntaxObject => RDBIndex

=> RDBIndexColumn
=> RDBTrigger
=> RDBConstraint

A.2.2 Extensions to Declarations and Definitions

Definition => RDBDatabaseDefinition
=> RDBUserDefinition
=> RDBTableSpaceDefinition
=> RDBTableDefinition
=> RDBColumnDefinition
=> RDBViewDefinition
=> RDBCursorDefinition

120 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



RDBDatabaseDefinition
RDBUserDefinition
RDBTableSpaceDefinition
RDBTableDefinition

7

RDBColumnDefinition
RDBViewDefinition

RDBCursorDefinition

RDBIndex

RDBIndexColumn

RDBTrigger
RDBConstraint

7

RDBCheckConstraint

I

RDBRefIntegrity

I

RDBUniqueKey

I'l Default TableSpace is always present
TableSpace RDBTableSpaceReference +
Owns : RDBTableReference + ;

Table RDBTableReference *;

PrimKey RDBColumnReference *
RDBColumnDefinition *
Constraint RDBConstraint *

RDBIndex *

Column

Index

Trigger RDBTrigger *

< NotNull Boolean > ;
DefinedBy RDBSelectExpression
SelectExpression

RDBSelectExpression ;

RDBIndexColumn*
Boolean>

IndexColumn
< NotNull

< IsUnique Boolean >

Column RDBColumnReference
1l cardinality M:1
< AscendingOrDescending Char >

!l Ascending or Descending

; ! | Details of trigger are vendorspecific
RDBCheckConstraint

RDBRefIntegrity

RDBUniqueKey

< RDBConstraintText String >
< RDBConstraintType Char >

ForeignKey RDBColumnReference *
[ cardinality M:M
ParentKey RDBColumnReference *
1l cardinality M:M
ParentTable RDBColumnReference
1l cardinality M:1
Column RDBColumnReference*;

1l cardinality M:M

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 121



A.2.3 Extensions to Data Types

DataType => RDBDataBaseType
=> RDBUserType

=> RDBTableSpaceType
=> RDBTableType

=> RDBViewType

=> ! RDBColumnType
=> RDBCursorType;
RDBInteger,RDBInNnt,
RDBReal,
RDBFloat,
RDBDecimal,
RDBNumber,
RDBLong,
RDBChar,
RDBVarchar,
RDBString,
RDBRaw,

RDBDate,
RDBTime stamp,
RDBRowid,
RDBBoolean,
RDBBlob,
RDBClob,
RDBNClob,
RDBBFile

RDBColumnType =>

A.2.4 Extensions to Statements

Statement =>
=> RDBInsertStatement
=> ! RDBModifyStatement

=> ! RDBCursorStatement

RDBConnectStatement ->
RDBSelectStatement ->

ConnectString

IntoVariable

RDBInsertStatement -> IntoTable

Columns

RDBConnectStatement RDBSelectStatement

RDBHostVariableReference;
SelectExpression RDBSelectExpression

RDBHostVariableReference+

RDBTableReference +

RDBColumnReference *

RDBModifyStatement

122

Values Expression +

RDBUpdateStatement
RDBDeleteStatement

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



RDBModifyStatement ->
RDBUpdateStatement ->
RDBCursorStatement =>

=>

=>

RDBCursorStatement ->
RDBOpenCursorStatement ->
RDBFetchCursorStatement ->

A.2.5 Extensions to Expressions
Expression =>

RDBHostVariableReference

RDBSelectExpression ->
IdentifierReference =>

=>

=>
RDBTableReference ->
RDBTableAlias ->
RDBColumnReference ->

Table RDBTableReference +
Where Expression?
Values : Expression + ;

RDBOpenCursorStatement
RDBFetchCursorStatement
RDBCloseCursorStatement

Cursor Expression ;
Values : Expression *;
Into HostVariableReference + ;

RDBHostVariableExpres sion

RDBSelectExpression

BaseVariable Expression

Indicator Expression ?
Table
Column
Where
[N Clauses like ConnectBy,StartWith,

RDBTableReference +
RDBColumnReference *
Expression?
GroupBy, ! ! Having,

OrderBy, ForUpdateOf are

vendor! Ispecific;

RDBTableReference
RDBTableAlias

RDBColumnReference

Alias RDBTableAlias ?;

;11 Leaf level class to represent alias of
[ table

Table Expression?

1l RDBTableReference or RDBTableAlias

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

a

123



124 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Annex B - Glossary

The external industry and published source definitions that are the basis for the GASTM core definitions are to be found
in the table below. The industry sources for the ASTM core concept definitions are listed in the ASTM Core Terminology

Bibliograpy (Annex C).

NOTE: NSD refersto: No standard definition found

B.1 Generic Abstract Syntax Tree Glossary

Term

Definition

4GL Statement

An informal (or popular) form of reference to a statement within a programming paradigm.
See Programming Paradigm below.

Abstract Syntax Tree

In computer science, an abstract syntax tree (AST) is afinite, labeled, directed tree, where the
internal nodes are labeled by operators, and the |eaf nodes represent the operands of the node
operators. Thus, the leaves have nullary operators, i.e., variables or constants. In computing, it
isused in aparser as an intermediate between a parse tree and a data structure, the latter
which is often used as a compiler or interpreter’s internal representation of a computer
programwhileit is being optimized and from which code generation is performed. The range
of all possible such structuresis described by the abstract syntax. An AST differsfrom a parse
tree by omitting nodes and edges for syntax rules that do not affect the semantics of the
program. The classic example of such an omission is grouping parentheses, sincein an AST
the grouping of operandsis explicit in the tree structure.

Abstract Semantic Graph

In computer science, an abstract semantic graph (ASG) isadata structure used in representing
or deriving the semantics of an expression aformal language (for example, a programming
language). An abstract semantic graph isahigher level abstraction than an abstract syntax tree
(or AST), which is used to express the syntactic structure of an expression or program. An
abstract semantic graph istypically constructed from an abstract syntax tree by a process of
enrichment and abstraction. The enrichment can, for example, be the addition of back-
pointers, edges from an identifier node (where avariable is being used) to a node representing
the declaration of that variable. The abstraction can entail the removal of detailsthat are
relevant only in parsing, not for semantics.

Actual Parameter

An actual parameter is the particular entity associated with the corresponding formal
parameter in a subprogram call, entry call, or generic instantiation.

Address A location in physical memory.
AddressOf A reference to an address.
Array 1. A composite type that consists of homogeneous components, indexed by discrete value. 2.

An array isacollection of elements of some fixed type, laid out in ak-dimensional rectangular
structure.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 125



Term Definition

Array Reference A reference to a composite type that consists of homogeneous components, indexed by
discrete value.

Base Type The C++ term for any type from which another type is derived via subtyping.

Binary relationship

Any relationship between two things.

Binary Expression

An expression that computes a rel ationship between two things.

Binding The act of associating attributesto anameis often referred to a binding. Most languages allow
only static binding (compile time). Some languages, such as SNOBOL, allow dynamic
binding, or binding of attributes while the program is running (at run time).

Block A block introduces a (possibly named) sequence of statements, optionally preceded by a

declarative part.

Block Statement

A statement that introduces a (possibly named) sequence of statements, optionally preceded
by a declarative part.

Branch Statement

A statement that defines a program point at which the control flow has two or more
alternatives.

Break Statement

The break statement causes program control to proceed with the first statement after the
switch structure.

Cal

1. to send amessage, 2. to evaluate a post fix expression identifying an object and associated
function followed by parentheses containing a possibly empty, comma-separated list of
expressions, which constitute the actual arguments to the function (C++), 3. to invoke the
method function of a method object, 4. to apply a certain feature to a certain object, possibly
with arguments. A call has three components:

« thetarget of the call, an expression whose valueis attached to the object
 thefeature of the call, which must be a feature of the base class of the object’stype
e anactua argument list.

Call-by-address

See Call-by-reference

Call-by-reference

1. When an argument is passed by reference, the caller gives the called method the ability to
access the caller’s data directly and to modify that data if the called method so chooses. Pass-
by-reference improves performance because it eliminates the overhead of copying large
amounts of data, 2. any message passing in which areference to (e.g., the address of) each
argument is passed rather than its value.

Call-by-value 1. When an argument is passed by value, a copy of the argument’s value is made and passed to
the called method, 2. any message passing in which a copy of the value of each argument is
passed rather than areference (e.g., its address).

Case Statement One of aseries of case labelsin a switch statement concluded by an optional default case.

Cast Expression

A special operation that handles type conversion.

Class A set of objectsin the object-oriented model that contain the same types of values and the
same methods; also, atype definition for objects.
Collection The entire set of allocated objects of an access type.
126 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0




Term

Definition

Collection Expression

A comma-separated list of expressions with left-to-right associativity.

Collection Type

1. Any type of collection objects. 2. any instantiation of a collection type generator.

Compilation Unit

A program unit presented for compilation as an independent text. It is preceded by a context
specification, naming the other compilation units on which it depends. A compilation unit
may be the specification or body of a subprogram or package, including generic units or
subunits.

Continue Statement

The continue statement, when executed in a‘while,” ‘for,” or ‘do/while’ structure skipsthe
remaining statementsin the loop body and proceeds with the next iteration of the loop.

Condition

1. (8) Any boolean (or enumeration-valued) expression involving the values of one or more
properties. (b) Any Boolean function of object values that isvalid over an interval of time. 2.
Any logical statement about the current state of an object, the current state of the system
environment, the existence or absence of an object, or the existence or absence of
relationships among objects.

Conditional Expression

A conditional expression is an operation of one or more operands that eval uates to true or
false.

Definition

The specification of the implementation of something.

Default Statement

In a switch/case statement, the default case is the one that will be chosen whenever the value
does not match any of the other cases. See Switch.

Declaration

1. Any line of code that introduces one or more names into a program and specifies the types
of the names. 2. Any language construct that associates a name with aview of an entity. 3.
Associates and identifies with a declared entity, including objects, types, subprograms, tasks,
renamed entities, numbers, subtypes, packages, exceptions, and generic units.

Dimension

The number of independent interpreted input variables over which a domain is defined.

Enumeration Type

A discrete type whose values are given explicitly in the type declaration. These values may be
either identifiers or character literals, which are considered enumeration literals.

Enumeration litera

Instances of an enumeration type that instances are named literal objects.

Enumeration (type)

Any devel oper-defined type whose instances are named literal objects.

Enumeration Reference

A reference to an enumeration type or an enumeration literal.

Entry Used for communication between tasks. Externally, an entry is called just as a subprogramis
called. Itsinternal behavior is determined by one or more accept statements that specify the
actions to be performed when the entry is called.

Exception An event that causes suspension of normal program execution. Bringing an exception to
attention is called raising an exception. An exception handler is a piece of program text
specifying a response to the exception. Execution of such aprogram text is called handling the
exception.

Exception type NSD

Expression Part of a program that computes a value.

Expression Statement

A statement that computes a value.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 127



Term

Definition

Extensible

Adj. Describing software that is easy to modify to implement new or changed requirements,
especially without modification to existing modules. Examples: Classes may easily be
extended via subclasses.

Extensible Expression

A class denoting an expression that may be extended via subclassing to denote specialized
forms of expressions.

Extensible Statement

A class dencting a statement that may be extended via subclassing to denote specialized forms
of statements.

Formal Declaration

See Formal parameter or arguments

Formal parameter or
arguments

A parameter name that appears in the declaration or header of a procedure or function.

Global

Data avail able to more than one unit.

Global Declaration

A declaration available to more than one unit. See Global.

Guard (condition)

Any condition that must be true (or have the proper enumeration value) for atrigger to cause
the associated transition to fire.

Guarded Transition

Any statement transition that occurs only if the trigger fires while its associated guard
condition evaluates to true (or to the enumeration value associated with the transition).

Guarded Statement A statement in alanguage that introduces a guard condition. For example, the ‘ Try’ statement
in java, C++, and C#. The On statement in Visual Basic.
I dentifier One of the basic lexical elements of the language. An identifier is used as the name of an

entity or as a reserved word.

Identifier Reference

A reference to an identifier.

Include Statement

A statement in alanguage (i.e., such as C or C++), which lexically introduces one program
unit into the body of another program unit.

Inherits To obtain the declarations and definition of features viainheritance. Example: Child classes
inherits features from their parent classes.

Iteration Iteration isarepetition structure (such as‘for,” ‘while,” or ‘ do/while’) that terminates when the
loop-continuation condition fails. Iteration modifies a counter until the counter assumes a
value that makes the loop-continuation condition fail. An infinite loop occurs with iteration if
the loop continuation step never becomes false.

Jump Statement 1. Jumps are changesin the flow of control typically invoked by ‘goto’ commands of the form
‘gotol.” 2. When ajump occurs the normal continuation is ignored and control passesto a
continuation corresponding to the rest of the program following the label jumped to.

Label A unique identifier assigned to a statement or program location.

Label Statement A statement denoting alocation to which flow of control can passto.

Label Reference A referenceto alabel.

Label Type NSD

Literal Denotes an explicit value of a given type, for example, a number, an enumeration value, a
character, or a string.

128 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0




Term

Definition

Local

Available only to the procedure within which it is declared.

Local Declaration

A declaration available only to the procedure within which it is declared.

Loop Statement See Iteration. Definite loop: aloop whose iteration count is known at entry. Indefinite loop: a
loop which iteration count is unknown at entry time (e.g., based on values calculated within
the loop).

Macro Many assembly (and programming) languages provide a“macro” facility whereby a macro

statement will translate into a sequence of assembly (or high-level) language statements and
perhaps other macro statements before being translated into machine code. There are two
aspects to macros: definition and use.

Macro Definition

The definition of a macro.

Macro Call

The use of amacro.

Member definition

Any specification of the implementation of something defined as part of the definition of a
class.

Member function (or
method)

A procedure or function that is defined as part of a class and isinvoked in a message passing
style. Every instance of a class exhibits the behavior described by a member function/method
of the class.

Operator Any one of the special symbols (suchas‘*’ or ‘mod’) that perform some logical or
mathematical operation upon objects and literals.

Parent The Parent attribute is an attribute that links each object in an AST to its parent object, if any.
The parent-child rel ationship is defined as follows. If object X hasan AST (i.e., non-semantic)
attribute A, and the value of attribute A for object X is, or contains, object Y, then the parent of
Y is X. The Parent attribute is a universal converse relationship that is applicable to all
syntactic attributes. It is a derivable relationship and is therefore treated as an optional
universal converse relationship for all syntactic attributes.

Primitive type See basic type

Parameter One of the named entities associated with a subprogram, entry, or generic program unit.

Parameters Data objects passed between the caller and the called procedural abstraction.

Pointer An attribute of one object that contains an explicit reference to another object.

Pointer Expression

An expression that resolves to an attribute of one object that contains an explicit reference to
another object.

Procedure 1. Any operation that does not return a significant value. 2. Any operation that may perform
multiple actions and modify the instance to which it is applied, but does not return avalue.
Program Any static object-based application consisting of aset of typesand classesinterrel ated specific

to aparticular (end-use) objective [OMG].

Programming Language

A language for programming, such as COBOL, C, C++, Java, etc. consisting of syntax and
semantics for programming. The syntax of the language specifies those combinations of
symbols that are in the language. The semantics specifies the “meaning” of syntactically
correct constructs in the language.

Procedure Call

A call to aprocedure.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

129



Term

Definition

Qualified expression

An expression qualified by the name of atype or a subtype. It can be used to state the type or
subtype of an expression, such as an overloaded literal.

Qualified Identifier

A reference to a qualified name.

Reference

Qualified name The name of any feature that has been qualified by the name of its enclosing class. Qualified
names are used to prevent overriding in order to explicitly select the correct associated
implementation.

Range A continuous set of values of ascalar type. A rangeis specified by giving the lower and upper

bounds for the values. A range may be used in a membership test.

Range Expression

An expression that evaluates to arange.

Range Type A typethat characterizes arange.

Return [ Statement] A keyword that causes a method to return to its caller. Thisis normally done as the last
statement in amethod, but return can appear anywhere within the body of a method. If a
method has been declared as void, there is no return value and the return statement will not
accept an argument. If the method has been declared as rerunning any data type other than
void, areturn statement is required, and the return statement must be followed by an
expression of the correct type.

Reference A referenceto avalueisjust alocation holding it.

Reference Expression An expression that evaluates to areference.

Scope The region of program text over which a declaration has an effect (isin existence), also
Program scope, procedure scope, block scope, type scope.

Sequence X

Source 1. The thing operated upon or used as input to an operation or a complex process (i.e., a code

generator, translator, or transformer). 2. See Source code.

Source Location

A location within a sourcefile.

Source File 1. A filein which code in a programming language is located.
2. A file from which source is taken.

Source Program A program defined in the programming.

Specialization 1. (a) the process of creating a specialization from one or more generalizations (b) the creation
of asubclass via extension, refinement, or restriction. (c) An extension of the behavior of ta
type of object. 2. (a) the result of using the specialization process (b) any derived class. 3. (a)
any relationship from a generalization to one or more of its specializations (b) the relationship
between a class and its parents, (c) the relationship between a parent and a descendant that has
been modified by refinement or deletion so that the descendant is no longer behaviorally
compatible with its parent.

Symbol NSD

Target The produced by or output by an operation.

Target File A file (typically code) produced by an operation.

130 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Term Definition

Structure NSD

Switch Statement A statement used to compare an expression to a series of possible cases. If the expression
matches the case, the code below the case statement is executed. A break statement is used to
exit the switch block once a case has been matched. If the expression matches none of the case
statements, the code below the default statement is run. The break and default statements are
not mandatory.

Template The C++ term for any parameterized metaclass or any parameterized function. Commentary:

A class template specifies how afamily of individual classes can be constructed much as a
class declaration specifies how individual objects can be constructed.

Template Definition

The definition of atemplate.

Template Type

The definition of atemplate type.

Throw Statement

A throw statement is executed to indicate that an exception has occurred (i.e., amethod could
not complete successfully). This 1 called throwing an exception. A throw statement specifies
an object to be thrown.

Type Characterizes a set of values and a set of operations applicable to those values.

Type Definition A type definition is alanguage construct introducing a new, unique type, whereas a subtype
creates a compatible (possibly) constrained definition of the base type.

Type Declaration A type declaration associates a name with a type introduced by a type definition.

Unary expression

An expression that computes arelation on one thing.

Variable

An abstraction used in imperative languages for memory location of cell.

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 131



132 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



Annex C - ASTM Core Concept Bibliography

The ASTM Core Terminology Bibliograpy provides alist of the published sources and references for the terminology and
definitions provided in Annex B.

C.1 ASTM Core Terminology Bibliography

aa A W N P

© 00 N O

11
12
13
14

15
16

Data Models (pg. 991, The Computer Science and Engineering Handbook, CRC Press, 1997
Imperative Programming Paradigm (pg. 2004, The Science and Engineering Handbook, CRC Press, 1997)
Dictionary of Object Technology, SIGS Books, 1995

Booch, G., Software Engineering with Ada, Benjamin Cummings Publishing Company, 1983

Run Time Environments and Memory Management (pgs. 2188, The Science and Engineering Handbook, CRC

Press, 1997)

The Object-Oriented Language Paradigm (pg. 2063, The Science and Engineering Handbook, CRC Press, 1997)

Beizer, Boris, Software Testing Techniques, Van Nostrand Reinhold, 1990

Deitel, Harvey M, Java, How to Program, Prentice Hall, 4th Edition, 2001

What is an Operating System? (pgs. 1662-1663, The Science and Engineering Handbook, CRC Press, 1997)
Palmer, G, Java Programmer's Reference, Wrox Press, Ltd., 2000.

Backhouse, R.C., Syntax of Programming Languages Theory and Practice, Prentice-Hall, 1979.

Griffith, A, Java Master Reference The Definitive Java Language Reference!, IDG Books, 1998.

Aho, A, Ullman, J., Principles of Compiler Design, Addisen-Wesley, 1977.

Gordon, M.J.C., The Denotational Description of Programming Languages An Introduction, SpringerVerlag,
1970.

The Computer Science and Engineering Handbook, CRC Press, 1997
Wikipedia The Free Encyclopedia. (http://en.wikipedia.org/wiki/Main_Page)

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

133



134 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0



INDEX Call-by-value 126
Case Statement 126

Cast Expression 126

) Class 126
Numerics Class Hierarchy 43
4AGL Statement 125 Collection 126

Collection Expression 127
Collection Type 127
Compilation Unit 127
compliant tool 5
Condition 127

Conditional Expression 127
Conformance 3

constrainer 5

A

Abstract Semantic Graph 125

Abstract semantic graph (ASG) 9

Abstract Syntax Tree 125

Abstract Syntax Tree (AST) 9

Abstract Syntax Tree Metamodel (ASTM) Package 21
Actual Parameter 125

Address 125 Continue Statement 127
AddressOf 125 control-flow analysis 9
ADM Metadata Repository 11
ADM Modernization Scenarios 23 D
Analysis Package (AP) 21 o _ Data architecture migration scenario 28
Application and data architecture consolidation scenario 29 Data warehouse deployment scenario 30
Application improvement scenario 24 data-flow analysis 9
Application package selection & deployment scenario 30 Declaration 127
Application portfolio management scenario 23 Default Statement 127
Architecture Driven Modernization (ADM) 11 Definition 127
Array 125 Dimension 127
Array Reference 126 Domain Specific Languages (DSL) 19
AST model 10
ASTM Core Components 44 E
ASTM Core Definition Unit 63 Entry 127
ASTM Core Expression 74 Enumeration (type) 127
ASTM Core Objects 59 Enumeration literal 127
ASTM Core Preprocessor Objects 62 Enumeration Reference 127
ASTM Core Semantic Object 59 Enumeration Type 127
ASTM Core Source Object 60 Exception 127
ASTM Core Statement 71 Expression 127
ASTM Core Syntax Object 61 Expression Statement 127
ASTM Core Types 67 Extensible 128
ASTM MOF Relationship 13 Extensible Expression 128
ASTM2KDM 5 Extensible Statement 128
ASTM2TRGT 5
F
B Formal Declaration 128
Baccus-Nauer Format (BNF) 43 Formal parameter or arguments 128
Base Type 126
Binary Expression 126 G
Binary relationship 126 GASTMObject 78
Binding 126 GASTM SemanticObject 46
Block 126 GASTMSyntaxObject 47
Block Statement 126 Generic Abstract Syntax Tree Metamodel 10
Branch Statement 126 Global 128
Break Statement 126 Global Declaration 128
Guard (condition) 128
C Guarded Statement 128
Cal 126 Guarded Transition 128

Call-by-address 126
Call-by-reference 126

Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0 135



|

Identifier 128

Identifier Reference 128
Include Statement 128
Inherits 128
issues/problems vii
Iteration 128

J
Jump Statement 128

K
KDM2UML 5
Knowledge Discovery Meta-Model (KDM) Package 20

L

Label 128

Label Reference 128

Label Statement 128

Language Specific Abstract Syntax Tree Metamodels 10
Language support 17

L anguage-to-language conversion scenario 25
Litera 128

Loca 129

Local Declaration 129

Loop Statement 129

M

Macro 129

Macro Call 129

Macro Definition 129

MDA 34

Member definition 129

Member function (or method) 129

Metadata repository (MDR) 11

Metrics Package (MP) 21

Model -driven architecture transformation scenario 32

N
Non-invasive application integration scenario 26

o]

Object Management Group, Inc. (OMG) v
OMG specifications v

Operator 129

P

Parameter 129

Parent 129

parser 5

Platform migration scenario 26
Pointer 129

Pointer Expression 129
Primitive type 129
Procedure 129
Procedure Call 129
Program 129

136 Architecture-driven Modernization: Abstract Syntax Tree Metamodel, v1.0

Programming Language 129
Proprietary Abstract Syntax Tree Metamodels 10
Proprietary Abstract Syntax Trees (PAST) 18

Q

Qualified expression 130
Qualified ldentifier Reference 130
Qualified name 130

R

Range 130

Range Expression 130

Range Type 130

Refactoring Package (RP) 22

Reference 130

Reference Expression 130

Reusabl e software assets / component reuse scenario 31

S

Scope 1, 9, 35, 59, 115, 130, 133

Services oriented architecture transformation scenario 27
Source 130

Source File 130

Source Location 130

Source Program 130

Specialization 130

Switch Statement 131

T
Target 130

Target File 130

Target Mapping & Transformation Package (TMTP) 22
Template 131

Template Definition 131

Template Type 131

Throw Statement 131

Type 131

type analysis 9

Type Declaration 131

Type Definition 131

typographical conventions vi

)
UML2ASTM 5

Unary expression 131

\Y
Variable 131
Visualization Package (VP) 22



	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Additional Information
	5.1 How to Proceed
	5.2 Acknowledgments

	6 Overview
	6.1 Abstract Syntax Tree
	6.2 Abstract Syntax Tree Metamodeling Specification
	6.3 ASTM Support and Complementation for MDA
	6.4 ADM Meta Data Repository
	6.5 ASTM Relationship to MOF
	6.6 ASTM Support for ADM Roadmap
	6.6.1 ASTM Complements the KDM
	6.6.2 ASTM Support for the KDM
	6.6.3 The ADM Metadata Repository Services
	6.6.4 The ASTM Support for Multiple Language Types

	6.7 ASTM Support for OMG Specifications
	6.8 Role of the ASTM in the ADM Metadata Repository Support Services
	6.8.1 ASTM Support For ADM: Knowledge Discovery Meta-Model Package
	6.8.2 ASTM Support For ADM: Abstract Syntax Tree Metamodel Package
	6.8.3 ASTM Support For ADM: Analysis Package (AP)
	6.8.4 ASTM Support for ADM: Metrics Package (MP)
	6.8.5 ASTM Support For ADM: Visualization Package (VP)
	6.8.6 ASTM Support For ADM: Refactoring Package (RP)
	6.8.7 ASTM Support For ADM: Target Mapping & Transformation Package (TMTP)

	6.9 ASTM Support for the ADM Scenarios
	6.9.1 Application Portfolio Management (Scenario I)
	6.9.2 Application Improvement (Scenario II)
	6.9.3 Language-to-Language Conversion (Scenario III)
	6.9.4 Platform Migration (Scenario IV)
	6.9.5 Non-Invasive Application Integration (Scenario V)
	6.9.6 Services Oriented Architecture Transformation (Scenario VI)
	6.9.7 Data Architecture Migration (Scenario VII)
	6.9.8 Application & Data Architecture Consolidation (Scenario VIII)
	6.9.9 Data Warehouse Deployment (Scenario IX)
	6.9.10 Application Package Selection & Deployment (Scenario X)
	6.9.11 Reusable Software Assets / Component Reuse (Scenario XI)
	6.9.12 Model-Driven Architecture Transformation (Scenario XII)
	6.9.13 ASTM Support for the MDA


	7 ASTM Core Concepts
	7.1 ASTM Core Syntax Concepts
	7.2 ASTM Core Semantic Concepts
	7.3 ASTM Core Element Concise Definitions
	7.4 ASTM Core Abbreviated BNF Definitions
	7.5 ASTM Abreviated BNF (ABNF) Specification Notation
	7.6 The ASTM Model Hierarchy
	7.7 GASTM Core Concepts
	7.8 GASTM Object
	7.9 GASTM Source Object
	7.10 GASTMSemanticObject
	7.11 GASTMSyntaxObject
	7.11.1 Other Syntax Object
	7.11.2 Declarations and Definitions
	7.11.3 Directives
	7.11.4 Data Types
	7.11.5 Constructed Type
	7.11.6 Statements
	7.11.7 Expressions


	8 ASTM Core Specification
	8.1 High-Level (Composite) UML Diagrams
	8.1.1 ASTM Core Objects
	8.1.2 ASTM Core Semantic Object
	8.1.3 ASTM Core Source Object
	8.1.4 ASTM Core Syntax Object
	8.1.5 ASTM Core Preprocessor Objects
	8.1.6 ASTM Core Definition Unit
	8.1.7 ASTM Core Types
	8.1.8 ASTM Core Statement
	8.1.9 ASTM Core Expression

	8.2 Low-Level (Detailed) GASTM Class Hierarchy
	8.2.1 GASTMObject

	8.3 Specialized Abstract Syntax Tree Specifications
	8.3.1 SASTM Extension for RDBMS Languages


	Annex A - RDBMS Extensions
	A.1 Class Diagrams
	A.1.1 RDBMS Other Syntax Object Extensions Class Diagrams
	A.1.2 RDBMS Definitions Class Diagrams
	A.1.3 RDBMS Types Class Diagrams
	A.1.4 RDBMS Statements Class Diagrams
	A.1.5 RDBMS Select Statements Class Diagrams
	A.1.6 RDBMS Expression Class Diagrams

	A.2 RDBMS Extended BNF
	A.2.1 Extensions to Core
	A.2.2 Extensions to Declarations and Definitions
	A.2.3 Extensions to Data Types
	A.2.4 Extensions to Statements
	A.2.5 Extensions to Expressions


	Annex B - Glossary
	B.1 Generic Abstract Syntax Tree Glossary

	Annex C - ASTM Core Concept Bibliography
	C.1 ASTM Core Terminology Bibliography


