
Air Traffic Control Specification

New Edition: May 2000

Copyright 1999, Compaq Computer Corporation
Copyright 1999, Orthogon GmbH

The copyright holders listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each copyright holder listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm.

Contents
Preface . 1
About the Object Management Group 1

What is CORBA? . 1

Associated OMG Documents . 2

Acknowledgments . 2

1. Interface Description . 1-1
1.1 Purpose of the Interface . 1-1

1.2 Architectural Context . 1-2

1.3 Models And Design Patterns . 1-3
1.3.1 Communication Models And Design

Patterns Applied . 1-3

1.3.2 Conceptual Objects . 1-3
1.3.3 Real Publishers . 1-4

1.3.4 CO Subscribers . 1-4

1.3.5 The CO Administrator 1-4
1.3.6 The subscribers of the CO Administrator 1-4

1.3.7 The factories for creating Real Publishers 1-5

1.4 Using Publish-and-Subscribe . 1-5

1.4.1 How Implementations Use the
Publish-and-Subscribe Service 1-5

1.5 Failure and Recovery . 1-5
1.5.1 Scenario 1: Crash of a CO process 1-6

1.5.2 Scenario 2: Crash of the CO Administrator . . . 1-6
1.5.3 Scenario 3: Crash of a HMI application 1-7
Air Traffic Control V1.0 May 2000 i

Contents
2. Interface Definitions . 2-1
2.1 IDL Type Definitions . 2-1

2.1.1 Attr Structure . 2-1

2.1.2 Sequences of attributes 2-1
2.1.3 Object Tag . 2-2

2.1.4 Association of Object and Tag 2-3

2.2 ODS Module Interface Definitions 2-3
2.2.1 COpublisher . 2-3

2.2.2 COpublisher2 . 2-7
2.2.3 COsubscriber . 2-8

2.2.4 RealPublisher . 2-11
2.2.5 COadmin . 2-13

2.2.6 COadminPublisher . 2-15
2.2.7 COadminSubscriber . 2-19

2.2.8 RPfactory . 2-20
2.2.9 COadminControl . 2-23

2.3 BasicPublisher Module Interface Definitions 2-24

2.3.1 Type Definition UID . 2-24
2.3.2 Publisher . 2-25

2.3.3 Subscriber . 2-27

Appendix A - ODS IDL. A-1

Appendix B - BasicPublisher.IDL . B-1

Appendix C - References. C-1

Appendix D - Requirements . D-1
ii Air Traffic Control V1.0 May 2000

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.
Air Traffic Control V1.0 May 2000 1

Associated OMG Documents

In addition to the CORBA Transportation specifications, the CORBA documentation
set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language emapping specifications.

• CORBAservices: Common Object Services Specification, a collection of OMG’s
Object Services specifications.

• CORBAfacilities: Common Facilities Specification, a collection of OMG’s Common
Facility specifications.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry and
represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:
2 Air Traffic Control V1.0 May 2000

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Compaq Computer Corporation

• Orthogon GmbH
Air Traffic Control V1.0 Acknowledgments May 2000 3

4 Air Traffic Control V1.0 May 2000

Interface Description 1
1.1 Purpose of the Interface

This chapter defines the CORBA interface used for implementing ATC systems that
follow the Model-View-Controller paradigm. The purpose of this paradigm is to
separate ATC conceptual objects (Model) from the presentation objects (View) and
from the input processing (Controller). It provides maximum independence between
the involved objects. It is a generic interface designed to an event model which covers
the typical requirements for ATC systems. The term 'generic' means that the interface
is not based on ATC application specific objects – its IDL definition is completely
independent from any particular ATC system.

The following list shows the most important benefits that can be achieved by using
such an architecture in connection with CORBA:

• Capability of integration of different components (e.g., control tower subsystems1)
under a common user interface even when these are developed by different vendors.

• A change of the user interface (i.e., changing the layout or changing the kind of
widgets) does not lead to changes in the ATC application code. Experience shows
that most of change requests are pure HMI requirements – hence the above
constitutes an important economical achievement.

• Single source principle for ATC application objects is supported. No appropriate
counterpart object in the HMI component has to be programmed for adapting the
HMI component to a certain ATC application object.

1.This example is related to a current commercial project for the DFS (German ATC
authority) in which the proposed interface will be used for the Integrated Tower System.
Air Traffic Control V1.0 May 2000 1-1

1

• Development of HMI and ATC application software can be done separately. Since
IDL scripts are the only common part of the HMI and ATC application the
application programmer does not need any library from the vendor of the HMI
component. The development environment can be completely different. There are
no needs for upgrades in the application if the HMI component changes.

• Independence of the ATC application from the HMI product. No HMI features are
visible at the interface between application and HMI. This leads to 'clear semantics'
and 'clean contexts' in the development of software: a source of an ATC application
will contain code that handles application specific procedures only because
developers of applications have no access to presentation objects and no possibility
to create presentation objects anyway.

• In most of the cases of changes less tests and re-tests are required. Changes are
located in one component only (mostly HMI). That means critical sequences of
code in other components of the entire ATC system will not be touched. In contrast
when HMI-procedures are part of an ATC application software changing would bear
much more risks.

• Maintenance of HMI and ATC applications can be done separately (e.g.,
maintenance can be done by different teams) typically a HMI expert has to have
other skills than an expert for a weather information system.

• Independence from hardware, the operational system and programming languages.
HMI and application can be coded in different programming languages and may run
on different architectures under different OSes.

1.2 Architectural Context

This interface is not designed specifically for a certain ATC application. It covers the
communication between the Model and View part and between the Model and the
Controller part in a generic way suitable for the ATC domain.

An interface between Model and Controller and View can be split in two parts because
two different kinds of communication mechanisms are needed: the Controller interacts
with a CO application object on a request basis whereas the View part needs an event
driven mechanism to get up-to-date.

Since the CO application object is an entity which implements a CORBA interface its
methods can be invoked by any client object. This also covers the needs of a Controller
part completely. Moreover it provides a maximum of independence according to the
wanted benefits mentioned above: the application objects implementation is
independent of the way the Controller works. This CORBA interface is specific to the
object it implements and hence not part of this definition (except those additions which
will be needed in connection with the interface providing communication with the
View part).

In contrast communication between Model and View is more complex. The View part
has the need to observe changes of the application objects attributes. The way to
present the information represented by the attribute values will not affect the design of
the application object – it will be hidden to the object. Therefore a publish-and-
subscribe notification service is put in between Model and View part.
1-2 Air Traffic Control V1.0 May 2000

1

In the following section this notification service and its interfaces are described. Also
the conditions and prerequisites for the application objects and the connected clients
are described.

1.3 Models And Design Patterns

1.3.1 Communication Models And Design Patterns Applied

The basis for the publish-and-subscribe notification service is the behavioral design
pattern 'Observer' [Gam95]. Notification of the registered observers is handled
separately by a RealPublisher (in [Gam95] called 'Change Manager'). This means a
client ([Gam95]: an Observer) subscribes to a concrete application object ([Gam95]: a
subject). It does not communicate with an event channel which hides the object that
supplies the events. In contrast to the original design pattern 'observer' this notification
service connects a 'personal' RealPublisher to each application object that wants to
publish events (i.e., each application object has its own 'Change Manager'). This
solution has advantages in flexibility, the publishers can be distributed independent
from each other. For instance performance of distributing events is best when the
RealPublisher is located 'close to' its subscribers (e.g., RealPublisher and most of
the subscribers located on the same machine instead of communicating over a
network).

The publish-and-subscribe service knows three event types: 'object creation,' 'object
deletion,' and 'attribute change.' A special additional well-known object (CO
Administrator - described below) receives and distributes the event type 'object
creation.' The CO Administrator can be seen as a publisher proxy for factory objects.
Clients can get informed about creation of objects – this is useful when a larger
amount of temporary objects is involved which is typical for ATC systems. Interested
clients can trigger their own rules to decide whether to subscribe to a created object or
not. In the case of well-known objects the notification service can also be used without
attaching to the CO Administrator. An object reference (e.g., returned by a naming
service) can be used to directly subscribe to an application object that makes use of the
publish-and-subscribe service.

The proposed interface consists of several groups of entities and knows different
participants, which are:

• Conceptual Objects (COs)

• Real Publishers

• CO Subscribers

• CO Administrator

• The subscribers of the CO Administrator

• The factories for creating Real Publishers
Air Traffic Control V1.0 Models And Design Patterns May 2000 1-3

1

1.3.2 Conceptual Objects

Conceptual Objects (COs) are ATC application objects that have no knowledge about
their presentation. A CO has no methods whose purpose is to create an external
representation of the object or the object state. However, a CO is responsible for
making its creation and deletion known to the CO administrator (see below), as well as
notifying certain objects (subscribers) about attribute value changes. Each CO may
assign itself an object tag – a name by which it can be identified by others, meaning
subscribers. Clients of the publish-and-subscribe notification service (clients of the CO
Administrator) can ask for particular objects or sets of objects with a certain tag. A tag
is an arbitrary string not under further control by the notification service. Object tags
can be identical with the objects entry at a naming service but they need not. COs
implement the COpublisher interface (and the COpublisher2 interface which is a
specialization of COpublisher for communication between the CO and its Real
Publisher).

1.3.3 Real Publishers

A Real Publisher distributes a CO’s events 'attribute change' and 'object deletion.' A
CO delegates processing of distribution to its 'personal' Real Publisher. The assignment
of a Real Publisher to a CO happens when a CO notifies the CO Administrator about
its creation. Real Publishers implement the RealPublisher interface.

1.3.4 CO Subscribers

These are the event consumers of the CO. CO subscribers get informed about a CO’s
'attribute change' and 'object deletion.' CO Subscribers implement the COsubscriber
interface.

1.3.5 The CO Administrator

The CO Administrator is a well-known object that is notified about the creation and
deletion of COs. It forwards this notification to interested parties. Within this context
'interested party' means any object which fulfills a certain interface, and explicitly
makes its 'interest' known to the CO Administrator. Furthermore, the CO Administrator
provides methods which allows any object to query information about the number and
identity of COs which are known to the CO Administrator. With the view of a CO the
CO Administrator also serves as a factory for 'RealPublisher objects.' A CO
Administrator implements three interfaces for different purposes:

1. the COadmin interface for communication with COs,

2. the COadminPublisher interface providing methods for the CO Administrator’s
subscribers, and

3. the COadminControl interface which is used only internally (communication
between CO Administrator and RealPublishers).
1-4 Air Traffic Control V1.0 May 2000

1

1.3.6 The subscribers of the CO Administrator

These are the event consumers of the CO Administrator. The subscribers implement
the COadminSubscriber interface.

1.3.7 The factories for creating Real Publishers

Factories for RealPublishers are only known to the CO Administrator. The main
purpose to explicitly define interfaces for these factories is that factories can be
distributed on different machines. Factories implement the RPfactory interface.

1.4 Using Publish-and-Subscribe

1.4.1 How Implementations Use the Publish-and-Subscribe Service

An ATC application object (CO) delegates distribution of its events (i.e., changes of
values of its attributes and its life cycle events - creation/deletion) to the publish-and-
subscribe service. The life cycle events have to be forwarded to a CO Administrator
object whereas the changes in values of the attributes have to be sent to a 'personal'
proxy - the RealPublisher. The CO gets its RealPublisher with return of the call
that notifies the CO Administrator about creation (via the COadmin interface).
Besides distribution of events a CO delegates subscription and unsubscription to that
object. The subscribe and unsubscribe methods thus become easy to implement. All the
CO needs to do is to pass those calls on to the RealPublisher object. So a CO
programmer need not implement this interface’s functionality by himself. Also, such an
approach would be uneconomic and error-prone. Because of platform independence,
and for legal and management reasons, it is not practicable to provide CO
programmers with a library which they’d be apt to link to their CO implementations.
Therefore, the only design restriction is that every CO must implement the
COpublisher interface.

In the configuration described so far, the CO Administrator is also a factory for
RealPublisher objects. Proper de-coupling of interfaces would usually dictate a
separation of these two functionalities. However, the high availability (ability to
quickly recover from crash or failure) required of COs and the CO Administrator
makes integrating the factory with the COadmin an attractive option: the CO
Administrator can record the association between COs and their RealPublishers, and
use this information during recovery.

1.5 Failure and Recovery

The failure and recovery scenarios presented in the next 3 subsections are based on the
following assumptions:

• There is a mechanism which detects crashed processes and restarts them.

• The processes are able to recover their previous state after a crash and restart (e.g.,
by saving their state in a RAID disk array.
Air Traffic Control V1.0 Using Publish-and-Subscribe May 2000 1-5

1

• COs, the CO Administrator, and the COsubscribers/COadminSubscribers
each reside in their own process.

• The assignment of tags to objects by the publish-and-subscribe notification service
may be used to group objects residing in the same address space (i.e., objects in the
same address space are labeled with the same tag or tagged with the same common
names).

The failure and recovery scenarios shall be supported by the standard implementation
at least to the extent described below. Additional functionalities are optional.

1.5.1 Scenario 1: Crash of a CO process

When a CO process crashes, it is restarted. Upon restart, the CO process issues a call
to COadmin::delete_objs_by_name(p), passing its object tag 'p' as argument. This
results in the following:

• All COsubscribers subscribed to the COs of the process are notified of the
destruction by the COs RealPublishers.

• All associated RealPublisher objects are deleted. The RealPublishers of the
previously registered COs that have the 'p' as a common part in its tag (i.e., objects
which were located in the address space of the crashed process) are removed from
the CO Administrator´s 'internal memory.'

Next, the CO process (re)creates its COs. Each of these COs notifies the CO
Administrator of its creation, resulting in the following:

• The new CO is added to the COadmin´s 'internal memory' and a new
RealPublisher is created for the new CO.

• All COadminSubscribers currently subscribed to the CO Administrator are
notified of the creation of the new CO, resulting in the proper actions (most
probably creation of a COsubscriber object which then subscribes to the new
CO).

1.5.2 Scenario 2: Crash of the CO Administrator

When the CO Administrator crashes, it is restarted. Upon restart, the CO Administrator
restores all object references previously stored in its 'internal memory. For every CO
reference, this results in the following:

• A new RealPublisher object is created (and its masterCO attribute is initialized
with CO's reference). The references to the subscribers of RealPublisher are
restored. CO is notified of the fact that it must use a new RealPublisher (by a call
to COpublisher2::reset_real_publisher(), with the new RealPublisher as its
argument).

• The COsubscribers are not affected by the recovery of CO Administrator in any
way (except that information flow from the COs had stopped for the duration of the
recovery).
1-6 Air Traffic Control V1.0 May 2000

1

1.5.3 Scenario 3: Crash of a HMI application

When an HMI application crashes, it is basically up to the application what to do.
Without further information at hand, two scenarios seem likely:

1. The HMI application has not saved its state

In this case, the HMI application needs to do the following (actions to be taken outside
its CORBA interface not listed):

• Create a new COadminSubscriber object and subscribe to the
CoadminPublisher.

• Get hold of the COs it is “interested” in. The COadminPublisher´s query
methods are intended for just that purpose.

• Create a new COsubscriber object for each CO and subscribe it to that CO.

2. The application has saved its state

The HMI application may have saved its state, including all references to COs, prior to
the crash. In this case, it can be restored without having to create new
COadminSubscriber and COsubscriber objects. However, all present
COsubscribers and COadminSubscribers must be re-subscribed to their
respective COs/the COadminPublisher. During recovery, the CO Administrator or
any COpublisher may have tried to notify the HMI application of a CO
creation/destruction or an attribute change. During recovery, this would have resulted
in an exception and subsequent removal of the COadminSubscriber or
COsubscriber from the COadminiPublisher´s or the COpublisher´s subscription
list.
Air Traffic Control V1.0 Failure and Recovery May 2000 1-7

1

1-8 Air Traffic Control V1.0 May 2000

Interface Definitions 2
2.1 IDL Type Definitions

2.1.1 Attr Structure

#pragma prefix “org.omg”
module ODS
{

typedef stringAttrName;
typedef sequence<AttrName>NameSeq;

struct Attr
{

AttrName name;
any value;

};

#pragma version AttrName 1.0
#pragma version NameSeq 1.0
#pragma version Attr 1.0

};

The Attr structure is a generic representation of an IDL attribute. The name string
contains the name of the attribute, as given in the IDL interface containing the
attribute. The value contains the value of the attribute. Its actual type must be the
exact type of the attribute, as given in the IDL interface containing the attribute.

2.1.2 Sequences of attributes

#pragma prefix “org.omg”
module ODS
{

Air Traffic Control V1.0 May 2000 2-1

2

typedef sequence<Attr> AttrSeq;
typedef sequence<long> LongSeq;
typedef sequence<float> FloatSeq;
typedef sequence<string> StringSeq;
typedef sequence<Object> ObjSeq;

#pragma version AttrSeq 1.0
#pragma version LongSeq 1.0
#pragma version FloatSeq 1.0
#pragma version StringSeq 1.0
#pragma version ObjSeq 1.0

};

The sequences above are defined as a convenience for methods of the interfaces
RealPublisher and COsubscriber.

2.1.3 Object Tag

#pragma prefix “org.omg”
module ODS
{

typedef string ObjTag;
typedef sequence<ObjTag> TagSeq;

#pragma version ObjTag 1.0
#pragma version TagSeq 1.0

};

An object tag identifies a CO or a whole set of COs. An object tag is an arbitrary
string. The publish-and-subscribe notification service does not take care about object
tags except the few simple syntax rules defined below. Since object tags do not control
or influence the behavior of the notification service it is the responsibility of the
applications to assign unique tags to their objects, if necessary. In general a subscriber
needs to know the naming conventions of an application, there is no further regulation
defined here.

The syntax of an ObjTag is as follows:

• A name shall be a sequence of characters taken from the set of 'printable characters'
(but no spaces or tabs, etc.).

• The minimum length of a tag will be at least 5 characters.

• The first character of a tag will be taken from the set [A-Za-z0-9].

An object tag pattern describes a subset of objects whose sequence of the first N
characters of its object tag are identical with the pattern where N denotes the length of
the tag pattern. A given ObjTag pattern 'A' identifies (or matches) the set of objects
labeled with object tags of which the beginning sub-string in the tag are identical with
'A'. A pattern follows the same syntax rules as defined for tags.
2-2 Air Traffic Control V1.0 May 2000

2

Example: if 'A' is an ObjTag pattern with the value "/example/subset" and a set of
objects is labeled with "/example/subset/apple," "/example/subset/peach,"
"/example/subset/banana," "/example/subset/cranberry," "/example/setOfTrees/apple,"
then 'A' matches the first four object tags except the last one
("/example/setOfTrees/apple").

2.1.4 Association of Object and Tag

#pragma prefix “org.omg”
module ODS
{

struct COwithTags
{

COpublisher co;
ObjTag tag;

};
typedef sequence<COwithTags> COseq;

#pragma version COwithTags 1.0
#pragma version COseq 1.0

};

The COwithTags structure is defined as a convenience for get_objs_by_name()
and get_all_objects() methods of the interface COadminPublisher. The member
co is an object reference to a CO. The tag gives the referenced CO’s object tag.

2.2 ODS Module Interface Definitions

2.2.1 COpublisher

2.2.1.1 Purpose

The interface COpublisher must be implemented by every CO. This is the interface
relevant for COsubscribers if they want to subscribe to an application object. It
enables COsubscriber objects to

• subscribe to and unsubscribe from notification about CO attribute changes, and to

• inform a COpublisher object which subset of its attributes they are interested in.

Since a CO (ATC application object) makes use of the publish-and-subscribe
notification service to publish its attribute changes all these method calls are passed
through to the CO’s personal publisher (which implements the RealPublisher)
directly. This personal publisher notifies the attached subscribers. The subscribers do
not know from which entity they are called.
Air Traffic Control V1.0 ODS Module Interface Definitions May 2000 2-3

2

2.2.1.2 Formal Description

#pragma prefix “org.omg”
module ODS
{

exception BadAttributeName
{

AttrName name;
};

exception UnknownID {};

interface COpublisher : BasicPublisher::Publisher
{

BasicPublisher::UID subscribe_co_subscriber(
in COsubscriber sub)

raises(BasicPublisher::SubscribeError);

BasicPublisher::UID subscribe_co_selective(
in COsubsciber sub,

in NameSeq attr_names)
raises(BasicPublisher::SubscribeError,
 BadAttributeName);

void reset_selection (in BasicPublisher::UID sub,
 in NameSeq attr_names)
raises(UnknownID, BadAttributeName);

oneway round_trip(BasicPublisher::UID initiator);
};

#pragma version BadAttributeName 1.0
#pragma version UnknownID 1.0
#pragma version COpublisher 1.0

};

2.2.1.3 Attributes And Methods

BasicPublisher::UID subscribe_co_subscriber (in COsubscriber sub);

This method subscribes the COsubscriber object sub to a notification about the
COpublisher’s attribute changes.

A call to the subscribe_co_subscriber() method on an object A with the arguments
sub registers the object sub with the object A (on which the method is invoked),
meaning that:

• If with completion of subscribe_co_subscriber() the number of objects
registered with the CO would exceed a maximum system parameter for Subscribers,
the method subscribe_co_subscriber() shall throw an exception
2-4 Air Traffic Control V1.0 May 2000

2

BasicPublisher::SubscribeError{SUB_TOO_MANY} and the object
referenced by the argument sub shall not be registered. Otherwise if the sub-
scribe_co_subscriber() was successful, no exception is returned.

• After this method has been called, and until the unsubscribe() method of CO
object A has been called with the COsubscriber's uid as its argument, every value
change in one of COpublisher’s IDL attributes results in an appropriate call to one
of sub’s COsubscriber methods.

If any such call to a COsubscriber sub results in the raising of an exception, A will
not invoke these methods of the object sub, until the subscribe_co_subscriber()
method is again invoked successfully with sub as its first parameter. Therefore if
notification of sub raises an exception, sub is automatically unsubscribed from object
A.

After invocation and successful completion the method returns a unique ID (UID),
which can be used for unsubscription at a later time.

BasicPublisher::UID subscribe_co_selective (in COsubscriber sub,
in NameSeq attr_names);

This method is similar to subscribe_co_subscriber(). The difference is that
notification of subscribers is restricted to a subset of attributes. The method subscribes
the COsubscriber object sub to notification about value changes of those of
Copublisher’s attributes whose names are given in the attr_names argument.

A call to the subscribe_co_selective() method on an object A with the arguments
sub registers the object sub with the object A (on which the method is invoked),
meaning that:

• If with completion of subscribe_co_selective() the number of objects registered
with the CO would exceed a maximum system parameter for subscribers, the
method subscribe_co_selective() throws an exception Basic-
Publisher::SubscribeError{SUB_TOO_MANY} and the object referenced by
the argument sub will not be registered. Otherwise if the subscribe_co_-
selective() was successful, no exception is returned.

• If one of the attribute names contained in an element of parameter attr_names is
not compliant with the rules defined for CORBA attribute names, an exception
BadAttributeName{<badName>} will be raised - where <badName> means
the first erroneous attribute name in the sequence attr_names.

• After this method has been called, and until the unsubscribe() method of object A
has been called with the COsubscriber's uid (see BasicPublisher:: Publisher)
as its argument, every value change in one of COpublisher’s IDL attributes results
in an appropriate call to one of sub’s COsubscriber methods, if and only if the
name of the changed attribute is equal to one of the names given in attr_names
argument.

If any such call to a COsubscriber sub results in the raising of an exception, A will
not invoke these methods of the object sub until the subscribe_co_subscriber()
method is again invoked successfully with sub as its first parameter (if notification of
sub raises an exception, sub is automatically unsubscribed from object A).
Air Traffic Control V1.0 ODS Module Interface Definitions May 2000 2-5

2

After invocation and successful completion the method returns a unique ID (UID),
which can be used for unsubscription at a later time.

void reset_selection (in BasicPublisher::UID sub,
 in NameSeq attr_names);

This method is used to change the subset of the COpublisher’s attributes whose
changes are relevant to the COsubscriber object identified by sub. The result of this
method is independent from the method the caller used previously to get subscribed to
(i.e., the caller may get subscribed either by calling subscribe_co_subscriber() or
by calling subscribe_co_selective().

If the COsubscriber object (with the identification UID) is not already subscribed to,
the called COpublisher object raises the exception UnknownID{}.

If one of the attribute names contained in an element of parameter attr_names is not
compliant with the rules defined for CORBA attribute names, an exception
BadAttributeName{<badName>} is raised – where <badName> means the
first erroneous name in the sequence attr_names.

After invocation and successful completion of reset_selection() the COpublisher
object will initiate its RealPublisher object to call the appropriate method of sub’s
COsubscriber interface only for changes in value of those attributes whose name is
equal to one of the names given in attr_names argument.

If the number of attr_names elements is 0 (zero), the COpublisher object will call
the appropriate method of sub’s COsubscriber interface for changes in value of any
attribute of the COpublisher object (this is like getting subscribed by calling
subscribe_co_subscriber()).

oneway round_trip (in BasicPublisher:UID initiator);

This method requests sending a 'round trip message.' A round trip message is
forwarded to the RealPublisher, which forwards the call again back to the originator
(and only to the originator) of the round trip. In cases when it is absolutely not
predictable when the next attribute change will happen, the round trip is a feature that
gives a subscriber the chance to verify whether the whole chain of information
distribution is still alive.

The called CO will forward this call 1-to-1 to its RealPublisher object.

2.2.1.4 Related Interfaces

COpublisher2: the COpublisher2 interface is an extension of COpublisher, which
is needed for communication between the publish-and-subscribe notification service
and a CO.

RealPublisher: an application object that implements COpublisher2 and
COpublisher uses the RealPublisher interface to delegate publishing.
2-6 Air Traffic Control V1.0 May 2000

2

2.2.2 COpublisher2

2.2.2.1 Purpose

The COpublisher2 interface is a COpublisher interface enhanced with a method
that allows reassigning a RealPublisher to a CO. This only is necessary when a
RealPublisher fails and cannot be replaced by an object with the same object
reference (which is the usual case). In this case the entity of the notification service
that runs the RealPublishers has to update the attached CO. Therefore this is the
interface a CO presents to its RealPublisher – any other subscriber needs not to
know this kind of interface.

2.2.2.2 Formal Description

#pragma prefix “org.omg”
module ODS
{

interface COpublisher2 : COpublisher
{

void reset_real_publisher(
in RealPublisher real_publisher);

};

#pragma version COpublisher2 1.0
};

2.2.2.3 Attributes And Methods

void reset_real_publisher (in RealPublisher real_publisher);

A call to this method tells a COpublisher2 object that its RealPublisher object is no
longer valid. A reference to a new, replacement RealPublisher object is passed as a
parameter.

If with invocation of reset_real_publisher() the publish-and-subscribe notification
service gets an exception, the previously created RealPublisher remains active and
will not be deleted.

This implies that the data necessary for recovery of RealPublishers has to be kept in
a non-volatile memory. The entity that runs the RealPublishers will make sure that
for each known CO the reference with its corresponding tag, UID and the subscriber
references will not be lost or corrupted.
Air Traffic Control V1.0 ODS Module Interface Definitions May 2000 2-7

2

2.2.3 COsubscriber

2.2.3.1 Purpose

The COsubscriber interface is the counterpart to COpublisher. An object that
implements COsubscriber can:

• register (subscribe) for notification about CO attribute changes with a
COpublisher object,

• receive notification about CO attribute changes from a COpublisher object

The methods of COsubscriber are not discussed one by one in detail here, since they
all follow the same pattern. Instead, a general description is given.

Invoking these methods on COsubscriber objects is exclusively handled by
RealPublisher objects - see definition of RealPublisher.

2.2.3.2 Formal Description

#pragma prefix “org.omg”
module ODS
{

interface COsubscriber : BasicPublisher::Subscriber
{

void set_long (in ObjTag co,
in AttrName name,
in long value);

void set_float (in ObjTag co,
in AttrName name,
in float value);

void set_string (in ObjTag co,
in AttrName name,
in string value);

void set_object (in ObjTag co,
in AttrName name,
in Object value);

void set_any (in ObjTag co,
in AttrName name,
in any value);

void set_long_seq (in ObjTag co,
in AttrName name,
in LongSeq value);

void set_float_seq (in ObjTag co,
in AttrName name,
in FloatSeq value);

void set_string_seq (in ObjTag co,
in AttrName name,
in StringSeq Value);
2-8 Air Traffic Control V1.0 May 2000

2

void set_object_seq (in ObjTag co,
in AttrName name,
in ObjectSeq value);

void set_attributes (in ObjTag co,
in AttrSeq attrs);

void obj_deleted (in ObjTag co);

oneway round_trip (in ObjTag called_co);
};

#pragma version COsubscriber 1.0
};

2.2.3.3 Attributes And Methods

Most of the COsubscriber methods have one of the following forms:

void set_<type of attribute> (in ObjTag co,
in AttrName attr_name,
in <type of attribute> value);

and

void set_<type of attribute>_seg (in ObjTag co,
in AttrName attr_name,
in <type of attribute> value);

A call to this method notifies a COsubscriber object of an attribute value change in
one of the COpublisher objects it is subscribed to.

The first parameter is the object tag of the COpublisher object. This parameter
enables the COsubscriber to know which of the COpublisher's it is subscribed to
has sent the notification.

The second parameter is the name of the attribute whose value has changed, as given in
the IDL definition of the object in question (usually an object that inherits and
augments the COpublisher interface).

The third parameter is the new value of the attribute. Types supported are:

• long

• float

• string

• any

• Object

Type short is supported by passing it as a long type. Also, sequences of values of these
types are supported. They are provided to support indexed attributes like (e.g., eto[]).
Air Traffic Control V1.0 ODS Module Interface Definitions May 2000 2-9

2

If the subscriber that has implemented a COsubscriber interface raises any
exception, the notification service unsubscribes this subscriber immediately.

In the case where a subscribed COsubscriber is (temporarily) not reachable by the
notification service (e.g., due to data flow control when the server object is
overloaded), the notification service is waiting for the server object’s readiness and
tries to send the request as long as no further notification of the same attribute is
indicated; otherwise, this first notification is aborted and notification is resumed with
the new (current) attribute value. This means the newest notification may kill
processing of a yet uncompleted notification and a subscriber may not assume that
each notification is delivered.

void set_attributes (in ObjTag co, in AttrSeq attrs);

A call to this method notifies the COsubscriber object of a change to several
attributes, whose names and values are given in the sequence attrs.

In the case where a subscribed COsubscriber is (temporarily) not reachable by the
notification service (e.g., due to data flow control when the server object is
overloaded), the notification service is waiting for the server object’s readiness and
tries to send the request as long as no further notification is indicated; otherwise, this
first notification is aborted and notification is resumed with the new (current) attribute
values. This means the newest notification kills processing of a yet uncompleted
notification and a subscriber may not assume that each notification is delivered.

void obj_deleted (in ObjTag co);

A call to this method notifies the COsubscriber object of the deletion of the CO. The
subscriber may assume that both the reference to this CO and the UID of this
subscription is no longer valid.

In the case where a subscribed COsubscriber is (temporarily) not reachable by
notification service (e.g., due to data flow control when the server object is
overloaded), the notification service is waiting for the server object’s (subscriber)
readiness for 3 seconds maximum1 and tries to send the request. With invocation of
obj_deleted() a previously initiated but (for this subscriber) uncompleted notification
is aborted - a deletion is notified instead. This means the obj_deleted() notification
kills processing of a yet uncompleted notification and a subscriber may not assume that
each notification is delivered.

After notification of the COsubscriber the corresponding data to a CO known by the
CO Administrator is deleted. No subsequent query to COadminPublisher delivers
this data of the CO deleted.

oneway round_trip (in ObjTag called_co);

1. This particular time value was chosen based on the requirements for the current implemen-
tation project. However, a standard implementation may parameterize this value and set it
(e.g., based on an environment variable).
2-10 Air Traffic Control V1.0 May 2000

2

This method is the response to a round trip message requested by a call of the method
round_trip() of a COpublisher. With initiating a round trip message the calling
subscriber of a CO specifies its uid as an argument. This response call delivers the
object tag of the called CO. This is because a uid only is unique within the scope of a
RealPublisher. In the case where an object is subscribed to several COs, it would be
possible that some uids contain the same value.

The parameter called_co (the object tag) denotes the object that was previously
called. The rules for invocation of round_trip() are defined in the interface description
of RealPublisher.

2.2.3.4 Related Interfaces

COpublisher: an object that wants to subscribe to an application object uses the
COpublisher interface.

2.2.4 RealPublisher

2.2.4.1 Purpose

The RealPublisher interface can be used to delegate the actual publishing
functionality out of a COpublisher2 implementation. Meaning, this is the interface a
CO uses to delegate publishing of attribute changes to the notification service. All the
COpublisher2 implementation needs to do is

• create/get a reference to a ('personal') RealPublisher object

• forward all calls to the methods defined by the COpublisher interface
(subscribe(), unsubscribe() methods) to that RealPublisher object

• call the appropriate set_<type of attribute>() method of RealPublisher
whenever one of its attribute values changes. The 'appropriate method' is the method
of the COsubscriber interface with the same name as the called method of
RealPublisher. This means that the CO fully decides how to notify the
subscribers. In cases where several attributes have to change simultaneously a CO
may use the set_attributes() method. But a CO should not use set_attributes()
and set_XXXX() methods intermixed for the same attributes. A subsequent
set_XXXX() may abort a previously initiated but uncompleted set_attributes() in
a certain situations when a subscriber is overloaded (see definition of
COsubscriber interface for more details).

2.2.4.2 Formal Description

#pragma prefix “org.omg”
module ODS
{

interface RealPublisher : COpublisher
{

// This attribute is a reference to the CO which
Air Traffic Control V1.0 ODS Module Interface Definitions May 2000 2-11

2

// uses a RealPublisher object to delegate
// notification about attribute changes
readonly attribute COpublisher masterCO;

void set_long (in AttrName name,
in long value);

void set_float (in AttrName name,
in float value);

void set_string (in AttrName name,
in string value);

void set_object (in AttrName name,
in Object value);

void set_any (in AttrName name,
in any value);

void set_long_seq (in AttrName name,
in LongSeq value);

void set_float_seq (in AttrName name,
in FloatSeq value);

void set_string_seq (in AttrName name,
in StringSeq value);

void set_object_seq (in AttrName name,
in ObjectSeq value);

void set_attributes (in AttrSeq attrs);

void obj_deleted();
};

#pragma version RealPublisher 1.0
};

2.2.4.3 Attributes And Methods

The set_<type of attribute> () and set_<type of attribute>_seq () methods
follow the same pattern as the set_<type of attribute>() and set_<type of
attribute>_seq() methods of the COsubscriber interface.

Their purpose is different, however. It is a request for forwarding the value in
parameter 'value' of the attribute denoted by parameter 'name' to the subscribed objects.

A call to such a method set_<type of attribute>() causes a RealPublisher object to
call the corresponding method of all COsubscriber objects, which are subscribed to
the COpublisher and therefore subscribed to the corresponding RealPublisher
object. The corresponding methods are the methods of the Cosubscriber interface
that have the same name.

The notification service will not wait for completion of publishing. The call to the
RealPublisher is handled asynchronously and returns immediately to provide a de-
coupling from the subscribers.
2-12 Air Traffic Control V1.0 May 2000

2

void obj_deleted ();

With invocation of this method a CO (COpublisher) notifies its RealPublisher that
it will be deleted immediately after the call returns. The RealPublisher notifies all
the COsubscriber objects of the deletion of the CO by calling the corresponding
obj_deleted() method of each COsubscriber. The subscriber may assume that both
the reference to this CO and the UID of this subscription is no longer valid.

In case a subscribed COsubscriber is (temporarily) not reachable by the notification
service (e.g., due to data flow control when the server object is overloaded), the
notification service is waiting for the server object’s (subscriber) readiness for 3
seconds maximum and tries to send the request.

With invocation of obj_deleted() a previously initiated but (for this subscriber)
uncompleted notification is aborted, a deletion is notified instead.

After notification of the COsubscribers and regardless whether the notification was
successful or not the RealPublisher initiates deletion of itself. The RealPublisher
and the corresponding data to a CO known by the CO Administrator shall be deleted.
No subsequent query to COadminPublisher shall deliver this data of the CO deleted.

The notification service will not wait for completion of publishing. The call to the
RealPublisher will be handled asynchronously and will return immediately to
provide a de-coupling from the subscribers.

oneway round_trip (in BasicPublisher:UID initiator);

This method (inherited by the COpublisher interface) requests sending a round trip
message.

With invocation of round_trip() the called RealPublisher object will forward this
call 1-to-1 to the subscriber with the uid given in parameter initiator. The
RealPublisher calls the corresponding method round_trip() of the initiator and
passes the object tag as an argument. Only the initiator which has the given UID is
called, no round trip operation is performed on all the other subscribers.

2.2.4.4 Related Interfaces

COsubscriber: a RealPublisher distributes attribute changes to subscribers that
have implemented a COsusbscriber interface.

2.2.5 COadmin

2.2.5.1 Purpose

The COadmin interface provides a means for COs to notify COadminSubscribers
about their creation, without the CO having to know the number or identity of the
interested (subscribed) COadminSubscriber.
Air Traffic Control V1.0 ODS Module Interface Definitions May 2000 2-13

2

With notification about creation the calling CO gets a RealPublisher object. There is
also a service to delete RealPublishers. The COadmin interface comprises the
services needed for COs - these are the event suppliers. The services for subscribing
and unsubscribing on these creation events is covered by the COadminPublisher
interface.

The entity of the notification service that handles all these services (a CO-
Administrator) can be seen as an object implementing both interfaces.

2.2.5.2 Formal Description

#pragma prefix “org.omg”
module ODS
{

exception BadTag{};
exception NoMatch{};
exception NoResources {};

interface COadmin
{

RealPublisher obj_created (in COpublisher2 obj,
 in ObjTag tag)

raises (BadTag, NoResources);

void delete_objs_by_name (in ObjTag tagpattern);
raises (BadTag, NoMatch);

};

#pragma version BadTag1.0
#pragma version NoMatch1.0
#pragma version NoResources1.0
#pragma version COadmin 1.0

};

2.2.5.3 Attributes And Methods

RealPublisher obj_created (in COpublisher2 co, in ObjTag tag);

A call to this method notifies the COadmin object of the creation of the CO 'co,'
which bears the object tag 'tag.' The notification results in the following:

• co is added to the COadmin object’s internal memory, meaning that the results of
subsequent calls to any of the methods get_all_objects(), get_objs_by_name()
of the corresponding COadminPublisher will include co (and its object tag), if
co matches the criteria passed to these methods.

• An instance of a RealPublisher is created. This instance´s attribute masterCO is
initialized with co. The co uses this object to delegate notification of subscribers.
2-14 Air Traffic Control V1.0 May 2000

2

• If the COadmin object is for some reason unable to create a RealPublisher
object, an exception NoResources{} is raised.

• If the 'tag' argument passed to the method violates the syntax rules, an exception
BadTag{} is raised.

• For every subscribed COadminSubscriber object that is subscribed to the
corresponding COadmin, its method COadminSubscriber::obj_created() is
called, with co as the first parameter, tag as the second parameter. This call has to
be deferred until after the RealPublisher object is returned to the caller (i.e., after
the call to obj_created() proper has terminated).

void delete_objs_by_name (in ObjTag tagpattern);

A call to this method notifies the COadmin object of the destruction of all objects,
which matches the object tag tagpattern, resulting in the following:

• If the tagpattern argument passed to the method violates the syntax rules, an
exception BadTag{} will be raised.

• If no object whose object tag match the argument tagpattern is present in
COadmin’s internal memory, the following exception is raised:
COadmin::NoMatch{};

• The objects whose object tag match the argument tagpattern are removed from the
COadmin object’s internal memory.

• For every subscribed RealPublisher object that is connected to a CO that matches
the tag given in parameter tagpattern, the obj_deleted() method is invoked by the
COadmin (i.e., as soon as this method is called), the COadmin object may not
assume that the objects matching the given tagpattern still exist.

2.2.5.4 Related Interfaces

None.

Note – An administrator entity that implements COadmin also implements an
interface COadminPublisher. Additionally it has to provide COadminControl for
internal purposes meaning the capability to initiate creation of RealPublishers
running on different machines.

2.2.6 COadminPublisher

2.2.6.1 Purpose

The COadminPublisher interface serves the following purposes:

• provides a means for interested objects (which must fulfill the
COadminSubscriber interface) to register (subscribe) for notification about CO
creation.
Air Traffic Control V1.0 ODS Module Interface Definitions May 2000 2-15

2

• provides a means for interested objects (probably, but not necessarily
COadminSubscribers) to get information about the number and identity of
existing COs.

2.2.6.2 Formal Description

#pragma prefix “org.omg”
module ODS
{

interface COadminPublisher : BasicPublisher::Publisher
{

BasicPublisher::UID subscribe_ad_subscriber(
in COadminSubscriber sub)

raises(BasicPublisher::SubscribeError);

BasicPublisher::UID subscribe_ad_selective(
in COadminSubscriber sub,

in TagSeq tagpatterns)
raises(BasicPublisher::SubscribeError, BadTag);

void reset_selection(
in BasicPublisher::UID sub,

in TagSeq tagpatterns)
raises(UnknownID, BadTag);

COseq get_all_objects();

COseq get_objs_by_name(in ObjTag tagpattern)
raises(BadTag);

};

#pragma version COadminPublisher 1.0
};

2.2.6.3 Attributes And Methods

BasicPublisher::UID subscribe_ad_subscriber (
in COadminSubscriber sub);

This method subscribes the object sub to notification about creation of COs.

A call to the subscribe_ad_subscriber() method on a COadminPublisher object
A with the arguments sub registers the object sub with the COadminPublisher
object A (on which the method is invoked).
2-16 Air Traffic Control V1.0 May 2000

2

If with completion of subscribe_ad_subscriber() the number of objects registered
with the COadminPublisher would exceed a maximum system parameter for
subscribers, then the subscribe_ad_subscriber()method will throw an exception
BasicPublisher::SubscribeError{SUB_TOO_MANY} and the object
referenced by the argument sub will not be registered.

After subscribe_ad_subscriber() has returned, and until unsubscribe() is
successfully invoked on object A with the subscribers uid as argument, the
COadminSubscriber::obj_created() method will be invoked once on the object
sub every time a creation event on A is notified via its corresponding COadmin
interface. This invocation will take place immediately after the method on COadmin
interface has been invoked.

If an invocation of obj_created() on sub results in the raising of an exception, A will
not invoke the obj_created() method the object sub, until the
subscribe_ad_subscriber() method is again invoked successfully with sub as its
first parameter. If notification of sub raises an exception, sub is automatically
unsubscribed from object A.

After invocation and successful completion the method returns an unique ID (UID) that
can be used for unsubscription at a later time.

BasicPublisher::UID subscribe_ad_selective (in COadmin
Subscriber sub,

 in TagSeq tagpatterns);

This method is similar to subscribe_ad_subscriber(). The difference is that
notification of a subscriber is only performed if the created object (that has notified CO
Administrator) matches one of the tagpatterns the subscriber has specified with this
call. The method subscribes the COadminSubscriber object sub to notification
about creation of those of CO’s whose tags are matching the tag patterns given in the
tagpattern argument.

A call to the subscribe_ad_selective() method on a CO object A with the
arguments sub registers the object sub with the CO object A (on which the method is
invoked), meaning that:

• If with completion of subscribe_ad_selective() the number of objects registered
with the CO would exceed a maximum system parameter for subscribers, the
method subscribe_ad_selective() will throw an exception BasicPub-
lisher::SubscribeError{SUB_TOO_MANY} and the object referenced by the
argument sub will not be registered.

• If one of the tag patterns contained in an element of parameter tagpatterns is not
compliant with the syntax rules defined for object tags, an exception
BadTag{<badTag>} is raised – where <badTag> means the first erroneous tag
pattern in the sequence tagpatterns.

• After this method has been called, and until the unsubscribe() method of object A
has been called with the COadminSubscriber's uid (see
BasicPublisher::Publisher) as its argument, every creation of a CO results in an
Air Traffic Control V1.0 ODS Module Interface Definitions May 2000 2-17

2

appropriate call to sub’s COadminSubscriber method obj_created(), if and
only if the tag of the created CO matches one of the tagpatterns given in the
tagpatterns argument.

If any such call to a COadminSubscriber sub results in the raising of an exception,
A will not invoke these methods of the object sub until the
subscribe_ad_subscriber() method is again invoked successfully with sub as its
first parameter. If notification of sub raises an exception, sub is automatically
unsubscribed from object A.

After invocation and successful completion the method returns a unique ID (UID) that
can be used for unsubscription at a later time.

void reset_selection (in BasicPublisher::UID sub,
in TagSeq tagpatterns);

This method is used to change the set of tagpatterns associated with a subscriber
identified by sub.

The result of this method is independent from the method the caller used previously to
get subscribed to. For example, the caller may get subscribed either by calling
subscribe_ad_subscriber() or by calling subscribe_ad_selective().

If the calling COadminSubscriber object with the identification UID is not already
subscribed to the called COadminPublisher object, an exception UnknownID{} is
raised.

If one of the tag patterns contained in an element of parameter tagpatterns is not
compliant with the syntax rules defined for object tags, an exception
BadTag{<badTag>} will be raised - where <badTag> means the first erroneous
tag pattern in the sequence tagpatterns.

After invocation and successful completion of the method, notification of a subscriber
is only performed if the created object matches one of the tag patterns the subscriber
sub has specified with this call.

If the number of argument tagpatterns elements is 0 (zero), the CoadminPublisher
object will call the appropriate method of sub’s COadminSubscriber interface for
each creation of a CO regardless of the tag of the created object (this is like getting
subscribed by calling subscribe_ad_subscriber()).

COseq get_objs_by_name (in ObjTag tagpattern);

This method returns a list of COs whose object tag matches the tagpattern passed as
argument, respectively, if and only if:

• the COadmin object was notified of the creation of such a CO by a call to its
obj_created() method (about behavior see description of obj_created()) AND

• before invocation of get_objs_by_name() no method delete_objs_by_name()
with a matching tag as parameter (same tag or tag that denotes a superset of
parameter tagpattern) was invoked on the corresponding COadmin (to notify the
COadmin object of CO destruction).
2-18 Air Traffic Control V1.0 May 2000

2

If the tagpattern argument does not match the syntax rules, an exception BadTag{}
is raised. Otherwise (i.e., tag with correct syntax but no matching object is found in the
COadmin’s internal memory), a void object reference (CORBA::_nil) is returned.
The list is returned as a sequence of COwithTags structures.

COseq get_all_objects ();

This method returns a list of COs. A CO will be included in that list if and only if:

• the COadmin object was notified of the creation of such a CO by a call to its
obj_created() method (about behavior see description of obj_created()) AND

• before invocation of get_objs_by_name() no COadmin method
delete_objs_by_name() with a matching tag as parameter (same tag or tag that
denotes a superset of parameter tag) was called to notify the COadmin object of
CO destruction.

The list is returned as a sequence of COwithTags structures. Otherwise (i.e., no object
is found in the COadmin’s internal memory), a void object reference (CORBA::_nil)
is returned.

2.2.6.4 Related Interfaces

COadminSubscriber: the publisher that implements a COadminPublisher
interface provides subscribers that implement COadminSubscriber interfaces.

2.2.7 COadminSubscriber

2.2.7.1 Purpose

The COadminSubscriber interface enables objects that implement it to:

• register (subscribe) for notification about CO creation with an object that
implements a COadminPublisher interface,

• receive notification about CO creation from a COadminPublisher object.

2.2.7.2 Formal Description

#pragma prefix “org.omg”
module ODS
{

interface COadminSubscriber :
BasicPublisher::Subscriber

{
void obj_created(in COpublisher obj, in ObjTag tag);

};

#pragma version COadminSubscriber 1.0
};
Air Traffic Control V1.0 ODS Module Interface Definitions May 2000 2-19

2

2.2.7.3 Attributes And Methods

void obj_created (in COpublisher obj, in ObjTag tag);

A call to this method notifies the COadminSubscriber object of the creation of a
CO. The CO’s object tag is passed in the tag argument.

In case a subscribed COadminSubscriber is (temporarily) not reachable by the
notification service (e.g., due to data flow control when the server object is
overloaded), the notification service is waiting for the server objects readiness and tries
to send the request.

In this case a COadminPublisher buffers a maximum of 2 notifications2. Otherwise,
if a third notification occurs the first notification is aborted and notification is resumed
with a call of obj_created() where the parameter tag is an empty string and obj is a
nil-reference. This means if a subscriber has received an 'empty' notification, it has to
ask COadminPublisher for the object references that are not delivered (by using the
get_objs_by-_name() method).

2.2.7.4 Related Interfaces

COadminPublisher: a COadminSubscriber subscribes to a CO administrator
using its COadminPublisher interface.

2.2.8 RPfactory

2.2.8.1 Purpose

In the interest of flexibility, it must be possible to delegate the creation of
RealPublisher objects out of the COadmin object. This is done using
RealPublisher factories, the interface description of which is given below. A
configuration file determines which RealPublisher factory has to be used for a
specific COpublisher object. Upon start-up, the COadmin object reads a plain text
file. Each line of this file has one of the following formats:

<empty> (1)

#<comment> (2)

<name of publisher factory> default (3)

<name of publisher factory> <object tag> (4)

The items in lines of the formats (3) and (4) are separated by one or more tabs,
respectively. Lines of one of the above formats may occur in the file in any order.

2. This particular number of notifications was chosen based on the requirements for the current
implementation project. However a standard implementation may parameterize this value
and set it (e.g., based on an environment variable).
2-20 Air Traffic Control V1.0 May 2000

2

The configuration file is interpreted by the COadmin as follows:

• The COadmin uses whatever mechanism it chooses to create RealPublisher
objects when the createObj method is called, unless specified otherwise in the
configuration file.

• The first line in the file which contains only an object name (an object name that
must be translated into an object reference by a naming service) and the keyword
'default' (format 3 above) will be interpreted as follows: the COadmin uses the
factory identified by the name to create a RealPublisher for every COpublisher
object passed as an argument to the obj_created() method, unless specified;
otherwise, in another line of format (4) in the configuration file. All subsequent
lines which contain a name of a factory will be ignored, (i.e., they have no effect on
the behavior of the COadmin).

• The first line in the file that contains a name of a factory and an object tag (format
4) will be interpreted as follows: the COadmin uses the factory identified by the
name to create a RealPublisher for every COpublisher passed as an argument to
a call of the obj_created() method, if the tag argument to that method call
matches the tag. All subsequent lines which contain a name of a factory and a tag
will be ignored (i.e., the first line found that matches the tag of the created object
will be applied).

• An empty line (format 1) and a line beginning with a hash sign (format 2) has no
effect on the behavior of the COadmin.

• Any line that does not conform to one of the formats specified above is considered
faulty. The behavior of the COadmin when encountering a faulty line is not
defined here, but must be documented by the provider of a specific implementation
of the proposed standard.

2.2.8.2 Formal Description

The RPfactory interface must be implemented as specified here by anyone who wants
to customize the COadmin by supplying alternative mechanisms for creating
RealPublisher objects, as described in the previous section. The supplier of a
COadmin implementation may, but need not provide any implementation of the
RPfactory interface.

#pragma prefix “org.omg”
module ODS
{

// an ID by which a RealPublisher is identified
// by its corresponding CO Administrator
typedef long RPID;

interface RPfactory
{

RealPublisher create_rp(
in COpublisher2 co,

in ObjTag tag,
in COadminControl calling_ad,
Air Traffic Control V1.0 ODS Module Interface Definitions May 2000 2-21

2

in RPID rpid)
raises(NoResources);

void delete_objs_by_name(in ObjTag tagpattern);
raises (BadTag, NoMatch);

};

#pragma version RPID1.0
#pragma version RPfactory1.0

};

2.2.8.3 Attributes And Methods

RealPublisher create_rp (in COpublisher2 co, in ObjTag tag,
 in COadminControl calling_ad,
 in RPID rpid)

This method creates a RealPublisher object for the COpublisher2 object co with
object tag tag, meaning that:

• if the factory object is for some reason unable to create a RealPublisher object, an
exception NoResources{} is raised.

• a RealPublisher object is created, whose master_CO attribute is equal to co.

The parameter co represents the reference to the application object (CO) for which the
newly created RealPublisher will be a proxy in distribution of attribute changes.

The parameter tag represents the object tag of the assigned CO (represented by
parameter co).

The parameter calling_ad holds a reference to the calling administrator object.

The parameter rpid is a unique identifier assigned by the calling administrator object.
Since a RealPublisher has to be unique within the scope of an administrator object
assignment of an RPID is the responsibility of the caller. The factory forwards the rpid
and the reference in parameter calling_ad to the RealPublisher internally. This rpid
is used for callbacks to the COadminControl interface (e.g., in case of recovery
procedures).

After invocation and successful completion the method returns a reference to the
created RealPublisher object.

void delete_objs_by_name (in ObjTag tagpattern);

A call to this method requests the RPfactory object for destruction of all objects that
match the object tag tagpattern, resulting in the following:

• if the tagpattern argument passed to the method violates the syntax rules, an
exception BadTag{} will be raised.

• if no object whose object tag matches the argument tagpattern is present in
RPfactory’s internal memory, the following exception is raised: NoMatch{};
2-22 Air Traffic Control V1.0 May 2000

2

• the objects whose object tag matches the argument tagpattern are removed from
the RPfactory object’s internal memory.

2.2.8.4 Related Interfaces

None.

Note – An object that implements an RPfactory interface is only invoked by a CO
administrator.

2.2.9 COadminControl

2.2.9.1 Purpose

In the case when factories of RealPublishers are distributed objects (see Rpfactory)
a CO Administrator has to provide an interface to get informed from these remote
entities. For the same reason a RealPublisher has to notify its corresponding CO
when the object reference has changed, a CO Administrator needs it too (see
COpublisher2). The interface COadminControl provides methods for
RealPublishers to call back its administrator.

2.2.9.2 Formal Description

#pragma prefix “org.omg”
module ODS
{

interface COadminControl
{

exception BadID{};

void reset_rp(in long rpid, in RealPublisher rp)
raises(BadID);

void rp_deleted(in long rpid) raises(BadID);
};
#pragma version COadminControl 1.0

};
Air Traffic Control V1.0 ODS Module Interface Definitions May 2000 2-23

2

2.2.9.3 Attributes And Methods

void reset_rp (in long rpid, in RealPublisher rp);

A call to this method tells a COadminControl object that the reference to its
RealPublisher object identified by the rpid is no longer valid (the rpid which is
assigned by the called RPfactory during creation of a RealPublisher and returned to
the calling CO Administrator). A reference to a new, replacement RealPublisher
object is passed as a parameter.

If with invocation of reset_rp() the COadminControl object does not have
registered a RealPublisher with an rpid given in parameter rpid, the exception
BadID{} is raised.

If with invocation of reset_rp() the calling RealPublisher gets an exception, the
RealPublisher remains and will not be deleted.

void rp_deleted (in long rpid, in RealPublisher rp);

A call to this method tells a COadminControl object that the reference to its
RealPublisher object identified by the rpid is no longer valid (the rpid which is
assigned by the called RPfactory during creation of a RealPublisher and returned to
the calling CO Administrator).

If with invocation of rp_deleted() the COadminControl object does not have
registered a RealPublisher with an rpid given in parameter rpid, an exception
BadID{} is raised.

Regardless if with invocation of rp_deleted() the calling RealPublisher gets an
exception or not the RealPublisher will be deleted.

2.2.9.4 Related Interfaces

RealPublisher: a RealPublisher uses the COadminControl interface to call back
its administrator.

2.3 BasicPublisher Module Interface Definitions

2.3.1 Type Definition UID

2.3.1.1 Purpose

The type UID is used as a key for subscription and unsubscription of subscribers. Use
of such a unique identifier is necessary in algorithms where comparison of object
references is needed - this is not identical with CORBA references [Callb].
2-24 Air Traffic Control V1.0 May 2000

2

2.3.1.2 Formal Description

#pragma prefix “org.omg”
module BasicPublisher
{

typedef long UID;
typedef sequence<UID> UIDSeq;

#pragma version UID1.0
#pragma version UIDSeq 1.0

};

2.3.1.3 Description Of The Elements

A UID represents a unique key to identify a method’s calling entity. An instance of a
UID contains an arbitrary unique number defined locally by the called object.

2.3.2 Publisher

2.3.2.1 Purpose

This is the abstract Publisher interface. Methods of this interface allow to subscribe
and unsubscribe certain subscribers for notification (about events). The abstract
Publisher interface is introduced to enable a generic subscribe and unsubscribe
mechanism.

Each particular Publisher will inherit from this abstract interface. The two inherited
methods subscribe and unsubscribe allow to register any abstract subscriber for an
event. Subscribers registered through these methods have to pull the event. Abstract
subscribers are only notified that an event has happened. The event itself is not
propagated automatically. Instead interested subscribers have to pull the event actively
(when they have been notified). This model enables a very generic pull model.

Each Publisher may specify additional subscribe/unsubscribe methods for
particular subscribers. The two new methods allow to register concrete subscribers for
certain known events. This allows to introduce Push Style notification. Subscribers
registered through these methods don't have to pull the event. Instead when the
notification happens, the event is pushed immediately to the registered Subscribers.
This enables a more coupled push model.

2.3.2.2 Formal Description

#pragma prefix “org.omg”
module BasicPublisher
{

interface Publisher
{

enum SubscribeErrorCode
Air Traffic Control V1.0 BasicPublisher Module Interface Definitions May 2000 2-25

2

{
SUB_TOO_MANY,
SUB_NOT_REGISTERED

};

exception SubscribeError {
SubscribeErrorCode error;

};

UID subscribe(in Subscriber sub, in boolean send_ref)
raises(SubscribeError);

boolean is_subscribed(in UID sub);

void unsubscribe(in UID sub)
raises(SubscribeError);

};

#pragma version Publisher 1.0
};

2.3.2.3 Attributes And Methods

Exception SubscribeError

SubscribeError is an exception that will be raised when errors occur during
subscription and unsubscription.

It will contain SUB_TOO_MANY if too many objects are registered for subscription
an the limit is exceeded.

It will contain SUB_NOT_REGISTERED if this Object/UID is not registered for
subscription

Exception SubscribeError

SubscribeErrorCode is an enumeration that indicates the reason for the exception.

UID subscribe (in Subscriber sub, in boolean send_ref)

This method subscribes the subscriber object sub to notification about certain events,
offered by the Publisher. The parameter send_ref decides whether to send the Object
Reference during the notification or not. If send_ref equals FALSE, then
update_subscriber() is called. If send_ref equals TRUE, then
update_subscriber_from_publisher() is called.

A unique ID (UID) is returned that can be used for unsubscription at a later time. If the
method fails, exceptions of type SubscribeError can be raised indicating the source
of the problem.
2-26 Air Traffic Control V1.0 May 2000

2

void unsubscribe (in UID sub)

This method unsubscribes the subscriber object with its UID uid from notification
about certain events. The unique ID (UID) sub must have been returned from a
previous call to subscribe. If the method fails, exceptions of type SubscribeError
can be raised indicating the source of the problem.

boolean is_subscribed (in UID sub);

This method is used to test whether the subscriber with the UID is still subscribed to
the publisher. Since a subscriber can be unsubscribed automatically in case of an
exception the publisher gets with notification a subscriber has no information about
that.

This call returns a value TRUE if and only if the UID given in argument sub is known
by the called publisher; otherwise, the method return a value of FALSE.

2.3.2.4 Related Interfaces

A Publisher expects a Subscriber interface implemented by a client object that is
calling subscribe().

2.3.3 Subscriber

2.3.3.1 Purpose

This is the abstract Subscriber interface. Methods of this interface allow to receive
notification about events. The abstract Subscriber interface is introduced to enable a
generic subscribe and unsubscribe mechanism. Each particular Subscriber will inherit
from this abstract interface. The two inherited methods update_subscriber() and
update_subscribe_from_publisher() allow to notify Subscriber when certain
events occur. The Subscriber itself then has to pull the event from the Publisher.
This model enables a very generic pull model.

Each particular Subscriber may specify additional notification/update methods. The
new methods allow Publishers to send an event directly to the Subscriber, using
Push Style and avoiding the extra round_trip for pulling the event. This requires a
more narrow coupling because Subscriber and Publisher have detailed knowledge
of each other.

2.3.3.2 Formal Description

#pragma prefix “org.omg”
module BasicPublisher
{

interface Subscriber
{

void update_subscriber();
Air Traffic Control V1.0 BasicPublisher Module Interface Definitions May 2000 2-27

2

void update_subscriber_from_publisher(
in Publisher pub);

};

#pragma version Subscriber 1.0
};

2.3.3.3 Attributes And Methods

This method notifies the subscriber object about an event offered by the publisher. The
parameter send_ref passed during subscription (see subscribe() function of the
Publisher interface) decides, whether to send the object reference or not.

• If send_ref equals FALSE, then update_subscriber() is called.

• If send_ref equals TRUE, then update_subscriber_from_publisher() is
called. The subscriber can pull the event from the publisher.

2.3.3.4 Related Interfaces

A Subscriber has to register by calling the object that implements a Publisher interface.
2-28 Air Traffic Control V1.0 May 2000

ODS IDL A
#ifndef _ODS_IDL_
#define _ODS_IDL_

#pragma prefix “org.omg”
module ODS
{
 // type definitions

typedef string AttrName;
typedef sequence<AttrName> NameSeq;
struct Attr
{

AttrName name;
any value;

};
typedef sequence<Attr> AttrSeq;
typedef sequence<long> LongSeq;
typedef sequence<float> FloatSeq;
typedef sequence<string> StringSeq;
typedef sequence<Object> ObjSeq;
typedef string ObjTag;
typedef sequence<ObjTag> TagSeq;
struct COwithTags
{

COpublisher co;
ObjTag tag;

};
typedef sequence<COwithTags> COseq;
typedef long RPID;

#pragma version AttrName 1.0
#pragma version NameSeq 1.0
#pragma version Attr 1.0
Air Traffic Control V1.0 May 2000 A-1

#pragma version AttrSeq 1.0
#pragma version LongSeq 1.0
#pragma version FloatSeq 1.0
#pragma version StringSeq 1.0
#pragma version ObjSeq 1.0
#pragma version ObjTag 1.0
#pragma version TagSeq 1.0
#pragma version COwithTags 1.0
#pragma version COseq 1.0
#pragma version RPID 1.0

 // exception definitions

exception BadAttributeName
{

AttrName name;
};
exception UnknownID {};
exception BadTag{};
exception NoMatch{};
exception NoResources {};

#pragma version BadAttributeName 1.0
#pragma version UnknownID 1.0
#pragma version BadTag 1.0
#pragma version NoMatch 1.0
#pragma version NoResources 1.0

 // interface definitions

interface COpublisher : BasicPublisher::Publisher
{

BasicPublisher::UID subscribe_co_subscriber(
in COsubscriber sub)

raises(BasicPublisher::SubscribeError);

BasicPublisher::UID subscribe_co_selective(
in COsubsciber sub,

in NameSeq attr_names)
raises(BasicPublisher::SubscribeError,
 BadAttributeName);

void reset_selection (in BasicPublisher::UID sub,
 in NameSeq attr_names)
raises(UnknownID, BadAttributeName);

oneway round_trip(BasicPublisher::UID initiator);
};

interface COpublisher2 : COpublisher
A-2 Air Traffic Control V1.0 May 2000

{
void reset_real_publisher(

in RealPublisher real_publisher);
};

interface COsubscriber : BasicPublisher::Subscriber
{

void set_long (in ObjTag co,
in AttrName name,
in long value);

void set_float (in ObjTag co,
in AttrName name,
in float value);

void set_string (in ObjTag co,
in AttrName name,
in string value);

void set_object (in ObjTag co,
in AttrName name,
in Object value);

void set_any (in ObjTag co,
in AttrName name,
in any value);

void set_long_seq (in ObjTag co,
in AttrName name,
in LongSeq value);

void set_float_seq (in ObjTag co,
in AttrName name,
in FloatSeq value);

void set_string_seq (in ObjTag co,
in AttrName name,
in StringSeq Value);

void set_object_seq (in ObjTag co,
in AttrName name,
in ObjectSeq value);

void set_attributes (in ObjTag co,
in AttrSeq attrs);

void obj_deleted (in ObjTag co);

oneway round_trip (in ObjTag called_co);
};

interface RealPublisher : COpublisher
{

readonly attribute COpublisher masterCO;

void set_long (in AttrName name,
in long value);

void set_float (in AttrName name,
Air Traffic Control V1.0 May 2000 A-3

in float value);
void set_string (in AttrName name,

in string value);
void set_object (in AttrName name,

in Object value);
void set_any (in AttrName name,

in any value);

void set_long_seq (in AttrName name,
in LongSeq value);

void set_float_seq (in AttrName name,
in FloatSeq value);

void set_string_seq (in AttrName name,
in StringSeq value);

void set_object_seq (in AttrName name,
in ObjectSeq value);

void set_attributes (in AttrSeq attrs);

void obj_deleted();
};

interface COadmin
{

RealPublisher obj_created (in COpublisher2 obj,
 in ObjTag tag)

raises (BadTag, NoResources);

void delete_objs_by_name (in ObjTag tagpattern);
raises (BadTag, NoMatch);

};

interface COadminPublisher : BasicPublisher::Publisher
{

BasicPublisher::UID subscribe_ad_subscriber(
in COadminSubscriber sub)

raises(BasicPublisher::SubscribeError);

BasicPublisher::UID subscribe_ad_selective(
in COadminSubscriber sub,

in TagSeq tagpatterns)
raises(BasicPublisher::SubscribeError, BadTag);

void reset_selection(
in BasicPublisher::UID sub,

in TagSeq tagpatterns)
raises(UnknownID, BadTag);

COseq get_all_objects();
A-4 Air Traffic Control V1.0 May 2000

COseq get_objs_by_name(in ObjTag tagpattern)
raises(BadTag);

};

interface COadminSubscriber :
BasicPublisher::Subscriber

{
void obj_created(in COpublisher obj, in ObjTag tag);

};

interface RPfactory
{

RealPublisher create_rp(
in COpublisher2 co,

in ObjTag tag,
in COadminControl calling_ad,
in RPID rpid)

raises(NoResources);

void delete_objs_by_name(in ObjTag tagpattern);
raises (BadTag, NoMatch);

};

interface COadminControl
{

exception BadID{};

void reset_rp(in long rpid, in RealPublisher rp)
raises(BadID);

void rp_deleted(in long rpid) raises(BadID);
 };

#pragma version COpublisher 1.0
#pragma version COpublisher2 1.0
#pragma version COsubscriber 1.0
#pragma version RealPublisher 1.0
#pragma version COadmin 1.0
#pragma version COadminPublisher 1.0
#pragma version COadminSubscriber 1.0
#pragma version RPfactory 1.0
#pragma version COadminControl 1.0

};

#endif

Air Traffic Control V1.0 May 2000 A-5

A-6 Air Traffic Control V1.0 May 2000

BasicPublisher.IDL B
#ifndef _BasicPublisher_IDL_
#define _BasicPublisher_IDL_

#pragma prefix “org.omg”

module BasicPublisher
{

// type definitions

typedef long UID;
typedef sequence<UID> UIDSeq;

#pragma version UID1.0
#pragma version UIDSeq1.0

// interface definitions

interface Publisher
{

enum SubscribeErrorCode
{

SUB_TOO_MANY,
SUB_NOT_REGISTERED

};

exception SubscribeError {
SubscribeErrorCode error;

};

UID subscribe(in Subscriber sub, in boolean send_ref)
raises(SubscribeError);

boolean is_subscribed(in UID sub);
Air Traffic Control V1.0 May 2000 B-1

void unsubscribe(in UID sub)
raises(SubscribeError);

};

interface Subscriber
{

void update_subscriber();

void update_subscriber_from_publisher(
in Publisher pub);

};

#pragma version Publisher1.0
#pragma version Subscriber1.0

};

#endif
B-2 Air Traffic Control V1.0 May 2000

References C
[Gam95] Gamma, Helm, Johnson, Vlissides. Design Patterns, 1995 Addison-Wesley

[Callb] Distributed Callbacks and Decoupled Communication in CORBA, Washington
University of St. Louis, http://siesta.wustl.edu/~schmidt/report-doc.html
Air Traffic Control V1.0 May 2000 C-1

C-2 Air Traffic Control V1.0 May 2000

Requirements D
D.1 Statement Of Proof Of Concept

The general concept of the chosen approach has been proven by Orthogon during the
Integrated Tower System (ITS) presentation in summer 1997 at the DFS site (German
ATC authority).

Currently Orthogon implements a CORBA interface for the HMI of the ITS (which is
developed with Orthogon’s product ODS Toolbox) within a commercial project for the
DFS. This interface fully corresponds to the interface proposed in this submission.

D.2 Resolution Of Mandatory And Optional requirements

All the specified modules and interfaces are mandatory.

Failure and recovery scenarios described in chapter 2.5 shall be supported, too. This
support shall at least cover the functionality mentioned in the scenarios, whereas it is
possible to enhance optionally the failure and recovery features beyond the given
description.

There are few arbitrary defined absolute values like e.g. number of seconds for time
out which – though mandatory – can be handled differently in different standard
implementations. All these values are marked and described correspondingly in the
document.

D.3 Responses To RFP Issues

The specification proposed in this document addresses explicitly only the interface to
the ATC Display Manager. It is not a specification of the Display Manager –
understood as a HMI component of the ATC system – itself. Therefore, there are no
interfaces to particular ATC-relevant entities. Thus all the specific requirements listed
in RFP’s Section 6 are not addressed as assumed by OMG. The reason is given in
Section 1.10 above.
Air Traffic Control V1.0 May 2000 D-1

D.4 Relationship To Pending OMG Specifications

The communication from the ATC Display Manager to other components of the entire
ATC system is not discussed here. For this purpose a standardized interface to these
components is required. Having e.g. a standard IDL interface to the Flight Data
Processor system it will be possible to use functions provided there when an HMI
needs e.g. to report about flight leg modifications done by the ATC controller.

These issues may be handled by other ATC-related RFPs which will target particular
ATC sub-system(s). One of such RFPs is about to be published (“Surveillance Manager
for Air Traffic Control and Management” RFP, OMG Document: transprt/98-06-01).

The specification proposed in this document is closely related to the existing OMG
specifications of the Event Service and Notification Service.

In the ATC domain the use of the Event Channel for the HMI was not satisfactory
because there is a need of well defined data structures. It is also required to have direct
access to the application objects (COs) at the ATC server side (i.e. the ground systems
like RDPs, FDPs, all components of tower systems etc.). In addition a publish-and-
subscribe mechanism is needed so that many consoles which may be both the same1 as
well as different2 type can use the same CORBA interface for their HMI layer and still
get only the information they need. A publish-and-subscribe mechanism is also not
specified in the Event Service.

One of the main goals in development of this interface was to achieve a good
maintainability and changeability mainly for the HMI part in ATC systems (which also
implies: provide a means that supports writing 'safe' code). The MVC paradigm is the
right solution for this problem. Using the publish-and-subscribe mechanism is another
step to achieve de-coupling between application and HMI component - an ATC
application needs not to be tailored to the current needs of a HMI process.

Avoiding visibility is another very important requirement in HMI for ATC. An entity in
the HMI component deals only with one and the same object reference per object. This
simplifies coding and makes it more safe. There is no need to manage mapping of
event channels or notification entities to application objects.

The semantics of supported events is clear, too. There are only 'attribute changes' and
’creation/deletion of objects'. There is no setting of filters and no selection of events
via a third entity. Such things are error prone. In cases of wrong settings errors in HMI
components may occur: for instance, events from the wrong objects. These are errors
of a kind not known before in HMI components programmed in the old fashioned style
(legacy systems not following the MVC paradigm). This would mean, the new
technology is less safe than the old one because it introduces another possibility to
code bugs in the HMI component. It is also not compliant with the goal to reduce effort

1. For example there are usually very many (40, 120 or more) CWPs installed in an Upper Air-
space Management ATC center. These CWPs are usually able to perform exactly the same
functions for any sector in the controlled air space; they are 'exchangeable'.

2. For example consoles in tower systems may differ significantly concerning the design and
implementation depending on the specialized functions they support.
D-2 Air Traffic Control V1.0 May 2000

in maintenance and adaptations of user interfaces. The maintenance issue is perhaps
one of the most important problems for the end users (final customers) - according to
the submitters’ experiences in ATC domain, the HMI layer is far more often changed
then the underlying server layer which can often be seen as legacy systems.

The Notification Service is much more generic than the one proposed in this document.
But this flexibility will cost performance (e.g. the rules for filtering have to be
interpreted at runtime each time an event occurs). This means that the flexibility the
Notification Service provides is not needed but must be handled by the programmer
and its overhead may create performance bottlenecks in the entire ATC system.

Summarizing the aforementioned concerns the Notification Service is not used
because:

1. A direct access to the application CO (not its proxy) is required.

2. The number of events is reduced to simplify the use of the interface and to avoid
processing overhead.

3. There is no need for extensive filtering as it is provided in the Notification Service.

4. The proposed CORBA interface shall include only basic publish-and-subscribe
functions which due to its intended simplicity shall be:

• slim hence fast

• robust - it shall not allow unpredictable errors in effect of maintenance operations
performed by technical personal in an ATC center (non-programmers)

• easy-to-learn hence easy-to-use by HMI programmers and ground system
programmers

• simple to implement in the existing ATC systems - as low as possible interactions
with the legacy code.

5. A running implementation is required now. The CORBA interface to the ODS
Toolbox based exactly on the proposed specification has been implemented in 1998
and is currently used by the DFS in the IDVS project. The implementation will be
commercially available as a COTS product in 1999.

The publish-and-subscribe mechanism proposed in this document is not as flexible as
OMG’s Notification Service. There may be cases where an application object (CO) has
to distribute also other event types than defined here. In this case a possible scenario
could be that this CO has to deal with more than one notification service: one for high
performance forwarding of attribute changes and one for distributing more complex
events.

The interface definition provided in this proposal is well suited to the ATC domain. It
fulfils many important requirements not covered by other standards of the OMG
although the services are principally nearly the same.
Mobile Agent Facility V1.0 January 2000 D-3

D-4 Air Traffic Control V1.0 May 2000

Index
A
Architectural Context 1-2
Assigned Numbers B-1, C-1
Association of Object and Ta g2-3
Attr structure 2-1

B
BadAttributeName{} exception 2-5
BadID{} 2-24
BadTag{} 2-23
BadTag{} exception 2-15
Basic-Publisher

SubscribeError{SUB_TOO_MANY} exception 2-5
BasicPublisher

SubscribeError{SUB_TOO_MANY} exception 2-17
BasicPublisher Module Interface Definitions 2-24

C
CO Administrator1-4
CO Subscribers 1-4
COadmin 2-13

No Match{} exception 2-15
COadmin interface 1-4
COadminControl 2-23
COadminControl interfa c e1-4
COadminPublisher interface 1-4
Communication Models 1-3
Conceptual Objects 1-3
Consolidated OMG IDL B-1, C-1
COpublisher2 2-7
CORBA

contributors 2
documentation set 2
general language mapping requirements 2

CORBA OMG IDL based Specification of the Trading
Function B-1, C-1

COsubscriber 2-8
Crash of a CO proces s1-6
Crash of a HMI application1-7

Crash of the CO Administrat or1-6

D
Design Patterns 1-3

F
factories for creating Real Publishers 1-5

M
MAF IDL Interfaces A-1, B-1, C-1

N
NoResources{} exception 2-15, 2-22

O
Object 2-3
Object Management Group 1

address of 2
Object Tag 2-2
ODS Module Interface Definitions 2-3

P
Publish-and-Subscribe 1-5
Publisher 2-25

R
Real Publishers 1-4
RealPublisher 2-11
Recovery 1-5
RPfactory 2-20

S
Sequences of attributes 2-1
Subscriber 2-27
subscribers of the CO Administrator1-4

T
Tag 2-3
Type Definition UID 2-24
Types 2-9

U
UnknownID{} exception 2-6
 Air Traffic Control V1.0 May 2000 Index-1

Index
Index-2 Air Traffic Control V1.0 May 2000

	Contents
	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	Interface Description
	1.1 Purpose of the Interface
	1.2 Architectural Context
	1.3 Models And Design Patterns
	1.3.1 Communication Models And Design Patterns Applied
	1.3.2 Conceptual Objects
	1.3.3 Real Publishers
	1.3.4 CO Subscribers
	1.3.5 The CO Administrator
	1.3.6 The subscribers of the CO Administrator
	1.3.7 The factories for creating Real Publishers

	1.4 Using Publish-and-Subscribe
	1.4.1 How Implementations Use the Publish-and-Subscribe Service

	1.5 Failure and Recovery
	1.5.1 Scenario 1: Crash of a CO process
	1.5.2 Scenario 2: Crash of the CO Administrator
	1.5.3 Scenario 3: Crash of a HMI application

	Interface Definitions
	2.1 IDL Type Definitions
	2.1.1 Attr Structure
	2.1.2 Sequences of attributes
	2.1.3 Object Tag
	2.1.4 Association of Object and Tag

	2.2 ODS Module Interface Definitions
	2.2.1 COpublisher
	2.2.2 COpublisher2
	2.2.3 COsubscriber
	2.2.4 RealPublisher
	2.2.5 COadmin
	2.2.6 COadminPublisher
	2.2.7 COadminSubscriber
	2.2.8 RPfactory
	2.2.9 COadminControl

	2.3 BasicPublisher Module Interface Definitions
	2.3.1 Type Definition UID
	2.3.2 Publisher
	2.3.3 Subscriber

	ODS IDL
	BasicPublisher.IDL
	References
	Requirements

