
Date: September 21, 2017

Automated Technical Debt Measure

Beta

__

OMG Document Number: ptc/2017-09-08

Normative reference: http://www.omg.org/spec/ATDM/

Machine readable file(s):

Normative: http://www.omg.org/spec/ATDM/admtf-2017-02-02.xmi

__

http://www.omg.org/spec/ATDM/

Copyright © 2017, Object Management Group, Inc.

Copyright © 2017, Consortium for IT Software Quality.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT

 Automated Technical Debt Measure, 1.0 i

SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™,
XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ , and OMG
SysML™ are trademarks of the Object Management Group. All other products or company names mentioned are used
for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

IPR Mode: Non-Assertion Covenant

 ii Automated Technical Debt Measure, 1.0

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed
on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/report_issue.)

 Automated Technical Debt Measure, 1.0 iii

Table of Contents
1Scope...1

1.1Purpose 1
1.2The Technical Debt metaphor...1
1.3Measuring Technical Debt..3
1.4Technical Debt as an Estimate..4

2Conformance...6
3References...7

3.1Normative References...7
3.2Non-normative References..7

4Terms and Definitions...8
5Symbols..12
6Foundational Information (Informative)...13

6.1CISQ Quality Characteristic measures..13
6.1.1Development artifacts...13
6.1.2Source Code Patterns representing weaknesses..14

6.2Qualification Measures...19
6.3Contextual Technical Debt Measure (CTDM)..21

7Automated Technical Debt Measure specification (normative)...22
7.1Computing Process Overview...22

7.1.1Automated Technical Debt Measure (ATDM)..22
7.1.2Contextual Technical Debt Measure (CTDM)..24

7.2Application Model..24
7.3Quantification of Remediation Effort at the Pattern Occurrence level...25

7.3.1Occurrence identification..26
7.3.2Unadjusted remediation effort configuration..26
7.3.3Qualification of pattern occurrences...28
7.3.4Adjustment factor 52
7.3.5Adjusted remediation effort..57

7.4Quantification of Remediation Effort at the Pattern level...58
7.5Quantification of Remediation Effort for CISQ Quality Characteristics..59
7.6Quantification of Remediation Effort at the Software level (ATDM)..66
7.7Summary of remediation effort parameters..72

7.7.1ASCSM remediation configuration...72
7.7.2ASCRM remediation configuration..72
7.7.3ASCPEM remediation configuration..74
7.7.4ASCMM remediation configuration...75

7.8Output Generation...76
8Automated Technical Debt Measure (ATDM) usage scenarios (informative)...77

8.1Risk mitigation..77
8.1.1ATDM and its component effort values for AMREM, ARREM, APEREM, ASREM...........................78
8.1.2Exposure 78
8.1.3Evolution status 78

8.2Priority setting...78
8.2.1ATDM and its component effort values for AMREM, ARREM, APEREM, ASREM...........................78
8.2.2Technological Diversity..78
8.2.3Exposure 79
8.2.4Evolution Status 79

8.3Productivity measurement...79
8.3.1Evolution Status 79

8.4Calculating a Contextual Technical Debt Measure (CTDM)..79
9List of Figures...84
10List of Tables...85

 iv Automated Technical Debt Measure RFC

 Automated Technical Debt Measure RFC v

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit
computer industry standards consortium that produces and maintains computer industry specifications for
interoperable, portable, and reusable enterprise applications in distributed, heterogeneous environments.
Membership includes Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process.
OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-
lifecycle approach to enterprise integration that covers multiple operating systems, programming languages,
middleware and networking infrastructures, and software development environments. OMG’s specifications
include: UML® (Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture);
CWM™ (Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

 vi Automated Technical Debt Measure RFC

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

OMG Domain Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications, available
in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting
the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from
ordinary English. However, these conventions are not used in tables or section headings where no distinction
is necessary.

Calabri - 11 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a
document, specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://www.omg.org/report_issue.htm.

 Automated Technical Debt Measure RFC vii

http://www.omg.org/report_issue.htm

1 Scope

1.1 Purpose
The purpose of this specification is to establish a standard for automating a measure of Technical
Debt that can be computed by source code analysis technologies which have implemented the CISQ
Quality Characteristic measures. Within this defined focus, Technical Debt is calculated as an
estimate of the effort to fix violations of good architectural and coding practices that must be
remediated because of their risk and cost to the business. The foundation for specifying this
measure has been provided in the CISQ Quality Characteristic measures approved as OMG standards,
namely the Automated Source Code Reliability/Security/Performance Efficiency/Maintainability
Measures. Using these OMG standards to provide the content for a measure of Technical Debt
allows it to be based on published standards.

Adoption of the Technical Debt metaphor is growing as a means of communicating between IT
executives and their technical staffs about quality issues and costs. Commercial IT executives have
embraced the concept of Technical Debt for its value in predicting such factors as the costs of future
corrective maintenance and the difficulty of enhancing or scaling an application. Currently, several
static analysis vendors have added a measure of Technical Debt to their features, but none of these
measures are based on an approved international standard.

1.2 The Technical Debt metaphor

The Technical Debt metaphor was introduced by Ward Cunningham to describe how sub-optimal
design decisions, often made to meet schedules, accumulated a debt that had to be repaid through
corrective maintenance during future releases. CISQ participated in a 2016 workshop in Dagstuhl,
Germany along with 40 members of the Technical Debt research community to create a framework
for defining the metaphor and guiding research (Curtis, 2016). Two conclusions were reached at the
end of the week.

1) There is no universally agreed definition of Technical Debt.
2) Industry and the research community have different goals in defining and measuring Technical

Debt.

Regarding the second point, many in the research community restrict the domain of Technical Debt
to sub-optimal design decisions that primarily affect maintainability issues such as changeability and
scalability. Consistent with Cunningham’s original formulation of the concept, they do not consider
missing features, functional defects, or most structural flaws related to reliability, security, or
performance efficiency to be part of the Technical Debt domain. The participants in the Dagstuhl
workshop were unable to construct a crisp definition delimiting the domain of weaknesses to be
included in Technical Debt.

In contrast, industry wants a measure that predicts the future costs of corrective maintenance and
other software quality-related outcomes. Since the Consortium for IT Software Quality (CISQ) is an
industry consortium, it has developed a specification for Technical Debt that is designed to predict
corrective maintenance costs and related factors to guide IT decisions and resource allocations. The
CISQ measure of Technical Debt builds on the existing four OMG standards CISQ has developed for
measuring the structural quality of software. The violations of

Automated Technical Debt Measure, 1.0 1

Choosing ‘debt’ as a metaphor engages a set of financial concepts that help executives think about
software quality in business terms. The components that comprise Technical Debt provide a
foundation for the economics of software quality. The metaphor can be partitioned into the
following elements.

• Technical Debt—Future costs attributable to known structural weaknesses in production
code that must be fixed. Technical Debt includes both the debt’s principal and interest. A
weakness in production code is only included in Technical Debt calculations if those
responsible for the application believe it is a ‘must-fix’ problem, therefore incurring
corrective maintenance costs in a future release. Technical Debt is a primary component of
the cost of application ownership.

• Principal—The cost of remediating must-fix problems in production code. At a minimum, the
principal is calculated from the number of hours required to remediate these problems,
multiplied by the fully burdened hourly cost of those involved in designing, implementing,
and unit testing these fixes.

• Interest—Continuing costs, primarily in IT, attributable to must-fix problems so long as they
remain in production code. These ongoing costs can result from the excessive effort to
modify unnecessarily complex code, greater resource usage by inefficient code, etc.

• Business Risk—Potential costs to the business if must-fix problems in production code cause
damaging operational events such as outages, data corruption, performance degradation,
and security breaches.

• Liability—Costs to the business resulting from operational problems caused by flaws in
production code. These flaws include both must-fix problems included in the calculation of
Technical Debt as well as problems not listed as must-fix because their risk was
underestimated.

• Opportunity Cost—Benefits such as revenue from new features that could have been
achieved had resources been committed to developing new capability rather than being
assigned to retire Technical Debt. Opportunity costs represent the tradeoff that application
managers and executives must weigh when deciding how much effort to devote to retiring
Technical Debt.

 2 Automated Technical Debt Measure, 1.0

Relationships among components of the Technical Debt metaphor are displayed in Figure 1. The cost
to fix structural quality problems constitutes the principal of the debt, while the inefficiencies they
cause such as greater maintenance effort or excessive computing resources represent interest costs
on the debt. The structural problems underlying Technical Debt also create business risks such as
outages and security breaches, and the negative events they can cause result in liabilities such as lost
revenue from online sales or costly clean-up from a security breach. The effort committed to
remediating Technical Debt instead of developing new business functionality represents opportunity
costs related to lost benefits that might otherwise have been achieved.

1.3 Measuring Technical Debt

This specification is narrowly focused on defining a measure of principal of a Technical Debt that can
be computed from the CISQ Quality Characteristic measures. Other components of the Technical
Debt metaphor may become the focus of future OMG specifications. There are five steps in
calculating this measure that form the normative component of the specification for Technical Debt.

1. Detect occurrences of patterns specified as weaknesses by four OMG approved
specifications: the Automated Source Code Reliability/Security/Performance
Efficiency/Maintainability Measures; that is, detect the 86 violations of good architectural
and coding practices that constitute these measures.

2. Assign an estimate of the amount of time to remediate each occurrence of a weakness based
on a survey of software professionals; the estimate is a constant for each occurrence.

3. Collect qualification information about the occurrences of each weakness.

Automated Technical Debt Measure, 1.0 3

Business Risk
Opportunity Cost

Liability from debt

Technical Debt
Interest on the debt

Principal borrowed

Structural quality problems
in production code

Figure 1: The Technical Debt Metaphor

4. Compute an adjustment factor as a function of qualification information about each of the
occurrences to negatively or positively impact the effort estimate.

5. Sum the total amount of time across all the occurrences for all 86 violations. The normative
specification does not include variations in labor costs, skill levels, or currencies (dollars,
euros, rupees, etc.) as these are adjustments that must be made based on local conditions.

The specification will also include a set of non-normative usage scenarios showing how qualification
information from step 3 can be used to manage Technical Debt measures as well as customize the
Technical Debt measure to local conditions within an organization. These factors include issues
related to system testing and other processes that can vary across organizations.

1.4 Technical Debt as an Estimate

Technical Debt measures are most frequently used to estimate future corrective maintenance costs
as input to decisions such as budgeting maintenance, allocating developer effort, or replacing an
application. Corrective maintenance includes all the activities involved in analyzing a weakness,
designing and implementing a correction, testing it, and any deployment activities that can directly
traced to the corrected weakness. The measure defined in this specification is a correlated rather
than absolute measure of Technical Debt. That is, it is a predictor of the amount of corrective
maintenance effort needed for an application. Each organization must develop its own equation
linking Technical Debt with its costs and other outcomes. There are three primary issues that affect
the usefulness of this measure.

First, the violations incorporated in the four Automated Source Code Reliability/Security/
Performance Efficiency/Maintainability Measures specifications were selected because they were
considered weaknesses of sufficient severity that must be remediated because of their risk to costs
and operational performance. However, an organization may choose to remediate only some of
these violations, not incurring the debt associated with other violations. In this case the Technical
Debt measure will over-estimate corrective maintenance costs. Conversely, an organization can
choose to remediate more violations of good practice than are included in the CISQ measures, in
which case Technical Debt underestimates corrective maintenance costs. In either case, Technical
Debt provides a common benchmark for comparing the structural quality of different applications
that can be adjusted to better represent local quality assurance strategies.

Second, there are no existing industry-wide repositories of effort data related to remediating
violations of good architectural and coding practices. Consequently, the remediation times used in
this specification are based on surveys of experienced developers. A survey of requested developers
to estimate their time-to-fix for the 86 weaknesses included in the 4 CISQ Quality Characteristic
measures (CISQ, 2017). The times were to include analysis of the weakness through unit test. Most
respondents were primarily developing in Java, .NET, or C# and the distribution of their times were
roughly similar. Default times for each weakness were developed from the modal tendency of these
distributions with some adjustments based their estimate of having to remediate more than one
component or file.

Variations in time estimates and sampling factors could impact the default remediation times drawn
from these data. Consequently, the specification allows for these default times to be overridden
with local estimates where appropriate. As more data become available, these default constants can
be updated if necessary in a future revision of this specification. The remediation times for each
violation are adjusted using the qualification information discussed in later clauses. Similarly, these
adjustment factors can be updated in future revisions as data become available regarding their value
in improving estimates of remediation time.

 4 Automated Technical Debt Measure, 1.0

Third, Technical Debt measures weaknesses in the structural quality of an application. It does not
measure functional defects which must be remediated. Therefore, this measure does not assess all
factors contributing to corrective maintenance costs. However, since practices related to detecting
the non-functional, structural weaknesses in software have lagged those focused on functional
defects, future maintenance effort is most often focused on structural weaknesses. Consequently,
Technical Debt provides an estimate of these costs that can be adjusted to account for local
experience in remediating functional defects that escape testing and must be fixed in future releases.

In view of these considerations, Technical Debt provides an estimate based on OMG standards that
can used to predict future risk and cost outcomes for an application. It can be used as a benchmark
for comparing applications and it can be adjusted to local quality assurance practices and strategies.

Automated Technical Debt Measure, 1.0 5

2 Conformance

Implementations of this specification shall be able to demonstrate all five of the following attributes
to claim conformance—automated, complete, objective, transparent, and verifiable.

• Automated—The calculation of this measure shall be fully automated. A conformant
technology shall be able to consume and process machine readable outputs reporting
weaknesses detected from analysis of the 4 CISQ Quality Characteristic measures and
elements from analysis of the Automated Enhancement Points measure. Analyses to
develop these inputs require the source code of the application, the artifacts and
information needed to configure the application for operation, and any available description
of the architectural layers in the application.

• CompleteA conformant technology shall be able to calculate the Technical Debt measure
as specified in this document. Consequently, the technology used to compute this measure
shall be able to receive and process outputs produced by technologies that comply with the
following OMG specifications:
◦ Automated Source Code Reliability Measure
◦ Automated Source Code Security Measure
◦ Automated Source Code Performance Efficiency Measure
◦ Automated Source Code Maintainability Measure
◦ Automated Enhancement Points

• Objective—After the source code has been prepared for analysis using the information
provided as inputs, the analysis, calculation, and presentation of results shall not require
further human intervention. The analysis and calculation shall be able to repeatedly produce
the same results and outputs on the same body of software.

• Transparent—Implementations that conform to this specification shall clearly list all tools
that supplied inputs to this measure, as well as the source code, non-source code artifacts,
and other information used to prepare the source code for analysis by these other tools.

• Verifiable—A conformant implementation shall state the assumptions and heuristics it uses
in computing this measure in sufficient detail that the calculations can be independently
verified by third parties. Clause 7.8 describes the measures and information required in the
generated output. In addition, all inputs used are required to be clearly described and
itemized so that they can be audited by a third party.

 6 Automated Technical Debt Measure, 1.0

3 References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this specification. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply.

List of normative references.
• Knowledge Discovery Meta-model, version 1.3 (KDM), formal/2011-08-04
• Structured Metrics Meta-model, version 1.1 (SMM), formal/2015-10-03
• Meta Object Facility, version 2.5 (MOF), formal/2015-06-05
• XML Metadata Interchange, version 2.5.1 (XMI), formal/2015-06-07
• Object Constraint Language, version 2.4 (OCL), formal/2014-02-03
• Automated Source Code Reliability Measure, version 1.0 (ASCRM), formal/2016-01-03
• Automated Source Code Security Measure, version 1.0 (ASCSM), formal/2016-01-04
• Automated Source Code Performance Efficiency Measure, version 1.0 (ASCPEM),

formal/2016-01-02
• Automated Source Code Maintainability Measure, version 1.0 (ASCMM), formal/2016-01-01
• Automated Enhancement Points, version 1.0 (AEP), ptc/2016-06-03
• Structured Patterns Metamodel Specification 1.0 (SPMS), formal/2015-10-01
• ISO/IEC 25010 Systems and software engineering - System and software product Quality

Requirements and Evaluation (SquaRE) - System and software quality models

3.2 Non-normative References
 List of non-normative references.

• Paris Avgeriou, Philippe Kruchten, Robert L. Nord, Ipek Ozkaya, Carolyn Seaman (2016).
Reducing friction in software development. IEEE Software, 33 (1), 66-73.

• Consortium for IT Software Quality (2017). CISQ Compliance Assessment. Needham, MA:
Object Management Group.

• Consortium for IT Software Quality (2017). CISQ Time-to-Fix Survey. Needham, MA: Object
Management Group.

• Ward Cunningham, “The WyCash Portfolio Management System”, OOPSLA ’92 Experience
Report

• Curtis, B. (2016). Measuring and communicating the technical debt metaphor in industry.
Managing Technical Debt in Software Engineering. Dagstuhl, Germany: Dagstuhl Publishing,
121-122.

• B. Curtis, J. Sappidi, & A. Szynkarski, (2012). Estimating the principal of an application’s
technical debt. IEEE Software, 29 (6), 34-42.

• P. Kruchten, R. L. Nord, I. Ozkaya (2012). Technical Debt: From Metaphor to Theory and
Practice. IEEE Software, 29 (6), 30-33.

• Software Engineering Body of Knowledge, V3.0 (SWEBOK).
http://www.computer.org/web/swebok/v 3

Automated Technical Debt Measure, 1.0 7

http://www.computer.org/web/swebok/v3
http://www.computer.org/web/swebok/v3

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Adjusted Remediation Effort

The number of minutes needed to remediate a specific source code pattern that has been adjusted
by qualification measures.

Application Model

The Application Model is composed of the computational objects in the source code and their
relationships, some of which can contain processing rules and logic. (KDM)

Automated Technical Debt

Automated Technical Debt sums the Remediation Efforts of all detected Technical Debt Items which
are defined as Occurrences of Patterns representing weaknesses enumerated in the Automated
Source Code Reliability/Security/Performance Efficiency/Maintainability Measure specifications.

Automated Maintainability Remediation Effort

Automated Maintainability Remediation Effort sums the Remediation Efforts of all detected Technical
Debt Items that are Occurrences of Patterns representing weaknesses in the Automated Source Code
Maintainability Measure specification.

Automated Performance Efficiency Remediation Effort

Automated Performance Efficiency Remediation Effort sums the Remediation Efforts of all detected
Technical Debt Items that are Occurrences of Patterns representing weaknesses in the Automated
Source Code Performance Efficiency Measure specification.

Automated Reliability Remediation Effort

Automated Reliability Remediation Effort sums the Remediation Efforts of all detected Technical Debt
Items that are Occurrences of Patterns representing weaknesses in the Automated Source Code
Reliability Measure specification.

Automated Security Remediation Effort

Automated Security Remediation Effort sums the Remediation Efforts of all detected Technical Debt
Items that are Occurrences of Patterns representing weaknesses in the Automated Source Code
Security Measure specification.

 8 Automated Technical Debt Measure, 1.0

CISQ Quality Characteristic Measures

The 4 CISQ Quality Characteristic measures are Automated Source Code
Reliability/Security/Performance Efficiency/Maintainability Measures. These measures have been
approved as OMG standards. The scope of each CISQ Quality Characteristic measure conforms to its
definition in ISO/IEC 25010. (ASCMM, ASCRM, ASCPEM, ASCSM)

Complexity [or Effort Complexity]

The Complexity – or Effort Complexity – of the code elements implementing an Occurrence is
qualification information which is measured according to the Effort Complexity definition from the
Automated Enhancement Points (AEP) specification. (AEP)

Concentration

Concentration is qualification information which measures the number of Occurrences within any
Code Element in the software.

Contextual Technical Debt

Contextual Technical Debt is a measure of Technical Debt that only measures Technical Debt Items
that are a selected subset of the Patterns included in Technical Debt, and/or that use a Remediation
Effort configuration different from the one specified in the current document, and/or incorporating
an adjustment factor as presented in the normative Clause 7.3.4, and/or incorporating modifying
factors such as the ones presented in the informative Clause 8.

Corrective Maintenance

Corrective maintenance includes all the activities involved in analyzing a weakness, designing and
implementing a correction, testing it, and any deployment activities that can directly traced to the
corrected weakness

Evolution Status

The Evolution Status of an Occurrence and of code elements implementing an Occurrence is
qualification information which indicates if the Occurrence or the code elements implementing an
Occurrence have been added, updated, or deleted between measured revisions of the software.

Exposure

The Exposure of an Occurrence is qualification information which measures the level of
connectedness of the Occurrence with the rest of the software, both directly and indirectly through
call paths.

Occurrence [or Pattern Occurrence]

An occurrence (or Pattern Occurrence) designates a single instance of a Source Code Pattern (or
Pattern) representing a weakness which has been implemented in the measured software. (ASCMM,
ASCRM, ASCPEM, ASCSM)

Automated Technical Debt Measure, 1.0 9

Occurrence Gap Size

In the context of patterns which rely on roles that model values and threshold values that are not to
be exceeded, the gap between these values must be closed to remediate this weakness ; the
Occurrence Gap Size is the extent of the gap, measured as the difference between the values and the
thresholds.

Pattern [or Source Code Pattern]

A Pattern (or Source Code Pattern) designates a set of elements and their relationships that can be
detected through automated matching of the pattern description with structures in the source code.
In the Automated Source Code Maintainability/Reliability/Performance Efficiency/Security Measure
specifications, patterns provide analyzable descriptions by which a weakness related to one of the
four CISQ Quality Characteristics specifications can be detected in the source code. (SPMS, ASCMM,
ASCRM, ASCPEM, ASCSM)

Pattern role

Roles describe the set of entities within a pattern, between which those relationships will be
described. As such the Role is a required association in a Pattern Definition. (SPMS)

Qualification information

Qualification information describes attributes of the software context affecting an occurrence that
can cause variation in the time required to remediate the specific occurrence. The qualification
factors include complexity, concentration, evolution status, exposure, and technological diversity.

Qualification measures

Qualification measures quantify the qualification information so they can be applied as adjustments
in calculating the Automated Technical Debt Measure.

Remediation Effort

Remediation Effort designates the time required to remove an occurrence – or a set of occurrences –
of a Technical Debt Item from the software. It covers the coding activity as well as unit/non-
regression testing activities.

Software Cost

Software Cost is the financial burden of developing or maintaining the software. As used in this
specification it is the money spent on corrective maintenance.

Software Value

Software Value is the business benefit derived by the ultimate consumers of the software.

 10 Automated Technical Debt Measure, 1.0

Software Quality

Software Quality is the degree to which the software meets customer or user needs or expectations,
and is free of defects that could cause the software to fail to meet these needs or expectations in the
future. (ISO 25010)

Technical Debt Item

A Technical Debt Item is an atomic constitutive element of Technical Debt, that is, an instance of a
weakness incorporated into one of the four CISQ Quality Characteristic measures. A Technical Debt
Item is identified by detection of its characteristic Source Code Pattern.

Technological Diversity

The Technological Diversity of an Occurrence is qualification information which measures the
number of distinct programming languages in which the code elements included in a single
occurrence of a source code pattern are written.

Unadjusted Remediation Effort

The number of minutes needed to remediate a specific source code pattern before being adjusted by
qualification measures. Default Unadjusted Remediation Efforts have been assigned to each source
code pattern in the CISQ Quality Characteristics. However, these default values can be changed to
better fit the local context and conditions prior to calculating ATDM.

Weakness [or Violation]

A weakness [or violation] designates a non-conformity to good architectural and coding practices
defined in the CISQ Quality Characteristic specifications that must be remediated. (ASCMM, ASCRM,
ASCPEM, ASCSM)

Automated Technical Debt Measure, 1.0 11

5 Symbols

List of symbols/abbreviations.

AEP Automated Enhancement Points

AMREM Automated Maintainability Remediation Effort Measure

APEREM Automated Performance Efficiency Remediation Effort Measure

ARREM Automated Reliability Remediation Effort Measure

ASREM Automated Security Remediation Effort Measure

ASCMM Automated Source Code Maintainability Measure

ASCPEM Automated Source Code Performance Efficiency Measure

ASCRM Automated Source Code Reliability Measure

ASCSM Automated Source Code Security Measure

ATDM Automated Technical Debt Measure

CISQ Consortium for IT Software Quality

CTDM Contextual Technical Debt Measure

SPMS Structured Patterns Metamodel Specification

TD Technical Debt

 12 Automated Technical Debt Measure, 1.0

6 Foundational Information (Informative)

6.1 CISQ Quality Characteristic measures

The Automated Technical Debt Measure (ATDM) is calculated from occurrences of the 86 weaknesses
that included in the 4 CISQ Quality Characteristic measures. Detecting and counting these
weaknesses the starting point for calculating ATDM. The CISQ Quality Characteristic measures
consist of the following approved specifications of the OMG.

 Automated Source Code Reliability Measure (ASCRM)  violations of good architectural
and coding practice that can cause outages, delayed recovery, data corruption, and
unpredictable operational behavior.

 Automated Source Code Security Measure (ASCSM)  violations of good architectural and
coding practice in an application that allow unauthorized intrusion into the application’s
source code, data store, operations, or connections.

 Automated Source Code Performance Efficiency Measure (ASCPEM)  violations of good
architectural and coding practice that can result in slow response, degraded performance, or
excessive use of computational resources.

 Automated Source Code Maintainability Measure (ASCMM)  violations of good
architectural and coding practice that make an application’s source code difficult to
understand or modify.

The following sub-clauses provides additional background information about the scope and content
of Automated Source Code /Reliability/Security/Performance Efficiency/Maintainability Measure
specifications regarding:

• the nature of development artifacts involved
• the identification of occurrences of source code patterns from the ASCMM, ASCRM,

ASCPEM, and ASCSM specifications, including the modeling of the effort associated with
remediating an actual Technical Debt Item

• the qualification of each occurrence, that is, additional information associated with the
occurrence to aid in prioritizing its remediation and other decisions or estimates.

6.1.1 Development artifacts

Development artifacts composing a Technical Debt can be found in various locations:
• Source Code, including implemented Software Structure and Architecture
• Build Scripts
• Test Scripts
• Documentation
• Technology
• Design, including Architecture Decisions

6.1.1.1 Source Code

Source Code Development artifacts include all the elements and inter-element relationships that
exist in the source code and the application model produced from it. The application model allows
automated tools to analyze the software structure and architecture as implemented in the source

Automated Technical Debt Measure, 1.0 13

code, rather than how the structure and architecture were designed or documented. Source Code
Development artifacts are represented by the following elements from the Knowledge Discovery
Meta-model (KDM):

• Source package—representing physical artifacts,
• Code package—representing low-level building blocks of the software,
• Action package—representing low-level relationships and statements,
• Platform package—representing run-time resources,
• UI package—representing user-interface aspects of the software,
• Event package—representing event-driven aspects of the software,
• Data package—representing persistent data aspects of the software,
• Structure package—representing architectural components of the software.

6.1.1.2 Build Scripts

Build Scripts Development artifacts include all the elements produced by development teams to
build the software. Build Scripts Development artifacts are represented by the following elements
from the Knowledge Discovery Meta-model (KDM):

• Build package—representing artifacts related to the build process,
• Source and Code packages—used as build resources.

6.1.1.3 Test Scripts

Test Scripts Development artifacts include all the elements produced by development teams to verify
the correct functioning of the software. Test Scripts Development artifacts are represented by the
same KDM packages as Source Code Development artifacts, and only differ in nature by the intent
behind their production.

6.1.1.4 Documentation

Documentation Development artifacts include all the elements produced by development teams to
help understand how the software was developed. They do not include documentation artifacts that
are found in the source code, and that are already covered by Source Code Development artifacts.

6.1.1.5 Technology

Technology Development artifacts are the programming languages used in developing the software,
as well as third party supplied components that are required to develop and execute the software. In
other words, they include all elements used in the software which are not under the control of the
development organization, but can negatively impact the software or its development process. For
example, the Technical Debt created by the discontinuation of the technologies used in developing
the software.

6.1.1.6 Design

Design Development artifacts are all the decisions, including architectural decisions made and
documented prior to developing the code. Design Development artifacts do not include the software
design and architectural elements that are determined by analyzing the source code.

6.1.2 Source Code Patterns representing weaknesses

The Automated Source Code Maintainability/Reliability/Performance Efficiency/Security Measure
specifications each defines a list of source code patterns that are considered severe enough
violations of good architectural and coding practice that they must be remediated in a near-term
release. These source code patterns are conformant to pattern formats specified in the Structured

 14 Automated Technical Debt Measure, 1.0

Patterns Metamodel Specification (SPMS). These source code patterns constitute Technical Debt
Items, and are listed by their respective CISQ Quality Characteristic measure.

6.1.2.1 Automated Source Code Security Measure (ASCSM) Source Code Patterns

Table 1 lists the patterns defined in the Automated Source Code Security Measure specifications
version 1.0. They are listed along with their Common Weakness Enumeration identifier.

ASCSM pattern name

ASCSM-CWE-120 Buffer Copy without Checking Size of Input

ASCSM-CWE-129 Array Index Improper Input Neutralization

ASCSM-CWE-134 Format String Improper Input Neutralization

ASCSM-CWE-22 Path Traversal Improper Input Neutralization

ASCSM-CWE-252-resource Unchecked Return Parameter Value of named Callable and Method Control
Element with Read, Write, and Manage Access to Platform Resource

ASCSM-CWE-327 Broken or Risky Cryptographic Algorithm Usage

ASCSM-CWE-396 Declaration of Catch for Generic Exception

ASCSM-CWE-397 Declaration of Throws for Generic Exception

ASCSM-CWE-434 File Upload Improper Input Neutralization

ASCSM-CWE-456 Storable and Member Data Element Missing Initialization

ASCSM-CWE-606 Unchecked Input for Loop Condition

ASCSM-CWE-667 Shared Resource Improper Locking

ASCSM-CWE-672 Expired or Released Resource Usage

ASCSM-CWE-681 Numeric Types Incorrect Conversion

ASCSM-CWE-99 Improper Control of Resource Identifiers ('Resource Injection')

ASCSM-CWE-772 Missing Release of Resource after Effective Lifetime

ASCSM-CWE-78 OS Command Injection Improper Input Neutralization

ASCSM-CWE-789 Uncontrolled Memory Allocation

ASCSM-CWE-79 Cross-site Scripting Improper Input Neutralization

ASCSM-CWE-798 Hard-Coded Credentials Usage for Remote Authentication

ASCSM-CWE-835 Loop with Unreachable Exit Condition ('Infinite Loop')

ASCSM-CWE-89 SQL Injection Improper Input Neutralization
Table 1: List of ASCSM 1.0 patterns

6.1.2.2 Automated Source Code Reliability Measure (ASCRM) Source Code Patterns

Table 2 lists the patterns defined in the Automated Source Code Reliability Measure specifications
version 1.0. Common Weakness Enumeration identifiers are listed for those weaknesses to which an
identifier has been assigned.

Automated Technical Debt Measure, 1.0 15

ASCRM pattern name

 ASCRM-CWE-120 Buffer Copy without Checking Size of Input

 ASCRM-CWE-252-data Unchecked Return Parameter Value of named Callable and Method Control
Element with Read, Write, and Manage Access to Data Resource

 ASCRM-CWE-252-resource Unchecked Return Parameter Value of named Callable and Method
Control Element with Read, Write, and Manage Access to Platform Resource

 ASCRM-CWE-396 Declaration of Catch for Generic Exception

 ASCRM-CWE-397 Declaration of Throws for Generic Exception

 ASCRM-CWE-674 Uncontrolled Recursion

 ASCRM-CWE-456 Storable and Member Data Element Missing Initialization

 ASCRM-CWE-704 Incorrect Type Conversion or Cast

 ASCRM-CWE-772 Missing Release of Resource after Effective Lifetime

 ASCRM-CWE-788 Memory Location Access After End of Buffer

 ASCRM-RLB-1 Empty Exception Block

 ASCRM-RLB-2 Serializable Storable Data Element without Serialization Control Element

 ASCRM-RLB-3 Serializable Storable Data Element with non-Serializable Item Elements

 ASCRM-RLB-4 Persistent Storable Data Element without Proper Comparison Control Element

 ASCRM-RLB-5 Runtime Resource Management Control Element in a Component Built to Run on
Application Servers

 ASCRM-RLB-6 Storable or Member Data Element containing Pointer Item Element without Proper
Copy Control Element

 ASCRM-RLB-7 Class Instance Self Destruction Control Element

 ASCRM-RLB-8 Named Callable and Method Control Elements with Variadic Parameter Element

 ASCRM-RLB-9 Float Type Storable and Member Data Element Comparison with Equality Operator

 ASCRM-RLB-10 Data Access Control Element from Outside Designated Data Manager Component

 ASCRM-RLB-11 Named Callable and Method Control Element in Multi-Thread Context with non-Final
Static Storable or Member Element

 ASCRM-RLB-12 Singleton Class Instance Creation without Proper Lock Element Management

 ASCRM-RLB-13 Inter-Module Dependency Cycles

 ASCRM-RLB-14 Parent Class Element with References to Child Class Element

 ASCRM-RLB-15 Class Element with Virtual Method Element without Virtual Destructor

 16 Automated Technical Debt Measure, 1.0

ASCRM pattern name

 ASCRM-RLB-16 Parent Class Element without Virtual Destructor Method Element

 ASCRM-RLB-17 Child Class Element without Virtual Destructor unlike its Parent Class Element

 ASCRM-RLB-18 Storable and Member Data Element Initialization with Hard-Coded Network Resource
Configuration Data

 ASCRM-RLB-19 Synchronous Call Time-Out Absence
Table 2: List of ASCRM 1.0 patterns

6.1.2.3 Automated Source Code Performance Efficiency Measure (ASCPEM) Patterns

Table 3 lists the patterns defined in the Automated Source Code Performance Efficiency Measure
specifications version 1.0.

ASCPEM pattern name

 ASCPEM-PRF-1 Static Block Element containing Class Instance Creation Control Element

 ASCPEM-PRF-2 Immutable Storable and Member Data Element Creation

 ASCPEM-PRF-3 Static Member Data Element outside of a Singleton Class Element

 ASCPEM-PRF-4 Data Resource Read and Write Access Excessive Complexity

 ASCPEM-PRF-5 Data Resource Read Access Unsupported by Index Element

 ASCPEM-PRF-6 Large Data Resource ColumnSet Excessive Number of Index Elements

 ASCPEM-PRF-7 Large Data Resource ColumnSet with Index Element of Excessive Size

 ASCPEM-PRF-8 Control Elements Requiring Significant Resource Element within Control Flow Loop
Block

 ASCPEM-PRF-9 Non-Stored SQL Callable Control Element with Excessive Number of Data Resource
Access

 ASCPEM-PRF-10 Non-SQL Named Callable and Method Control Element with Excessive Number of
Data Resource Access

 ASCPEM-PRF-11 Data Access Control Element from Outside Designated Data Manager Component

 ASCPEM-PRF-12 Storable and Member Data Element Excessive Number of Aggregated Storable and
Member Data Elements

 ASCPEM-PRF-13 Data Resource Access not using Connection Pooling capability

 ASCPEM-PRF-14 Storable and Member Data Element Memory Allocation Missing De-Allocation
Control Element
Table 3: List of ASCPEM 1.0 patterns

Automated Technical Debt Measure, 1.0 17

6.1.2.4 Automated Source Code Maintainability Measure (ASCMM) Patterns

Table 4 lists the patterns defined in the Automated Source Code Maintainability Measure
specifications version 1.0.

ASCMM pattern name

 ASCMM-MNT-1 Control Flow Transfer Control Element outside Switch Block

 ASCMM-MNT-2 Class Element Excessive Inheritance of Class Elements with Concrete Implementation

 ASCMM-MNT-3 Storable and Member Data Element Initialization with Hard-Coded Literals

 ASCMM-MNT-4 Callable and Method Control Element Number of Outward Calls

 ASCMM-MNT-5 Loop Value Update within the Loop

 ASCMM-MNT-6 Commented-out Code Element Excessive Volume

 ASCMM-MNT-7 Inter-Module Dependency Cycles

 ASCMM-MNT-8 Source Element Excessive Size

 ASCMM-MNT-10 Named Callable and Method Control Element Multi-Layer Span

 ASCMM-MNT-11 Callable and Method Control Element Excessive Cyclomatic Complexity Value

 ASCMM-MNT-12 Named Callable and Method Control Element with Layer-skipping Call

 ASCMM-MNT-13 Callable and Method Control Element Excessive Number of Parameters

 ASCMM-MNT-14 Callable and Method Control Element Excessive Number of Control Elements
involving Data Element from Data Manager or File Resource

 ASCMM-MNT-15 Public Member Element

 ASCMM-MNT-16 Method Control Element Usage of Member Element from other Class Element

 ASCMM-MNT-17 Class Element Excessive Inheritance Level

 ASCMM-MNT-18 Class Element Excessive Number of Children

 ASCMM-MNT-19 Named Callable and Method Control Element Excessive Similarity

 ASCMM-MNT-20 Unreachable Named Callable or Method Control Element
Table 4: List of ASCMM 1.0 patterns

6.1.2.5 Source Code Pattern Roles

Each source code pattern definition contains a specification of Roles (SPMS:Definitions::Roles).
According to the Structured Patterns Metamodel Specification (SPMS), “A pattern is informally
defined as a set of relationships between a set of entities. Roles describe the set of entities within a
pattern, between which those relationships will be described. As such the Role is a required

 18 Automated Technical Debt Measure, 1.0

association in a PatternDefinition. Semantically, a Role is a 'slot' that is required to be fulfilled for an
instance of its parent PatternDefinition to exist.”

In the current document, measurements of pattern occurrences rely on these Roles in the following
ways:

• Some patterns rely on roles that model values and threshold values. For example, in the
ASCPEM-PRF-10 pattern, one occurrence exists when the number of data queries (ASCPEM-
PRF-10-roles-numberOfDataQueries) exceeds the number of data queries threshold value
(ASCPEM-PRF-10-roles-numberOfDataQueriesThresholdValue). Therefore, to remediate
this weakness the gap between these values must be closed. In these cases (enumerated in
normative Clause 7.3.3.7), the remediation effort is modeled by the multiplication of a
constant by the extent of the gap via the adjustement factor.

• Qualification information collection relies on the implementation of these Roles.

6.1.2.6 Source Code Pattern Comments

Some pattern definitions contain in the Comment pattern section the following term:
(SPMS:Definitions::PatternSection). In the CISQ Quality Characteristic measure specifications these
comments indicate shared patterns between these specifications. For example, ASCSM-CWE-120-
comment and ASCRM-CWE-120-comment state that “Measure element contributes to Security and
Reliability”. Information in such comments are used to avoid duplicate counting of remediation effort
for an occurrence of CWE-120 when computing the overall Technical Debt score.

6.1.2.7 Adherence to ASCMM, ASCRM, ASCSM, and ASCPEM specifications

The current specification document refers to the ASCMM, ASCRM, ASCSM, and ASCPEM
specifications via OCL operations relying on SPMS specifications:

• Occurrences are identified by; <pattern>.A_instanceOf_PatternInstance::PatternInstance().
E.g. with ASCMM-MNT-1: ASCMM:ASCMMLibrary::ASCMM-MNT-
1.A_instanceOf_PatternInstance::PatternInstance()

• Languages of code elements implementing the occurrence are identified by;
<pattern>.A_instanceOf_PatternInstance::PatternInstance().fulfillments().fulfilledBy().sour
ce().language(). E.g. with ASCMM-MNT-1: ASCMM:ASCMMLibrary::ASCMM-MNT-
1.A_instanceOf_PatternInstance::PatternInstance().fulfillments().fulfilledBy().source().lang
uage()

• Code elements implementing the occurrence roles are identified by;
<role>.A_boundTo_Binding::Binding().fulfilledBy(). E.g. with ASCMM-MNT-1-roles-
controlFlowJumStatement: ASCMM:ASCMMLibrary::ASCMM-MNT-1-roles-
controlFlowJumpStatement.A_boundTo_Binding::Binding().fulfilledBy()

6.2 Qualification Measures

Qualification measures describe attributes of the software context affecting an occurrence that can
cause variation in the time required to remediate the specific occurrence. The contextual attributes
quantified in qualification measures include complexity, concentration, evolution status, exposure,
and technological diversity. In this specification, qualification measures related to pattern
occurrences are use the following ways:

• They are measures available for use in analyzing, interpreting, and using Technical-Debt
values in making decisions, benchmarking, modeling, and other uses to which Technical Debt

Automated Technical Debt Measure, 1.0 19

values may be put. For instance, when prioritizing the remediation of an occurrence of a
source code pattern, the context surrounding the occurrence influences the assessment of:
◦ the operational risk associated with not removing the occurrence,
◦ the destabilization risk associated with removing the occurrence,
◦ the opportunity to reduce costs by removing many occurrences at the same time, or

freshly created occurrences, and
◦ the organizational risk associated with the synchronization of different teams to handle

complex occurrences involving different technologies.

• They are measures available for use in computing an adjustment factor for the remediation
effort of each occurrence that account for attributes of the software context in which the
occurrence resides. For instance, when remediating an occurrence of a source code pattern,
the required effort is impacted by the complexity of the code elements implementing the
occurrence, their connectedness to other code elements in the software, the number of
languages in the occurrence’s implementation, etc.

Therefore, along with the identifying occurrences of source code patterns, the measurement of the
Technical Debt will include for each occurrence the following measures:

• Complexity—of code elements, measured by the Effort Complexity, as defined in the
Automated Enhancement Points (AEP) specification.

• Exposure—of code elements propagating effects of the occurrence to the rest of the
software. Based on the extent of propagation, remediating the occurrence could involve
direct references to code elements (measured as the code elements' number of distinct
direct callers), or indirect references (measured as the number of distinct call paths leading
to the code elements).

• Technological diversity—the number of the languages in which elements in the source code
pattern of a specific occurrence are instantiated.

• Concentration—total number of occurrences of any source code patterns within a single
code element (e.g., class, module, component, subroutine, etc.).

• Evolution status—changes and evolution both of code elements in the occurrence and of
code elements constituting the immediate software environment within which the
occurrence is embedded.

In the context of patterns which rely on roles that model values and threshold values that are not
to be exceeded, the gap size for each pattern occurrence shall be collected and measured as the
difference between the values and the threshold values.

These measures are included in the specification for Technical Debt to provide standard measures for
use in interpreting Technical Debt information. Although organizations may develop their own
interpretive measures, the use of these interpretive measures relieves an organization from having
to develop its own proprietary adjustment formulas and provides standards for benchmarking
adjusted values of Technical Debt. Expected benefits from using qualification measures include the
following:

• Complexity—ability to discriminate between situations where the remediation of Technical
Debt Items can lead to additional costs due to the over-complexity of the fix.

• Exposure—ability to discriminate between situations where the remediation of Technical
Debt Items can lead to additional costs due to the nature and location of the fix. To serve as
a risk warning indicator when assessing or monitoring the Technical Debt. To provide a
priority setting guide (e.g., prioritizing Technical Debt Items with high exposure for
remediation at the beginning of a release to provide time to ensure detection of side-effects,

 20 Automated Technical Debt Measure, 1.0

while scheduling Technical Debt Items with low exposure at the end of a release to minimize
risk of destabilizing the software)

• Technological diversity—ability to identify situations where, because of the need to involve
and coordinate multiple individuals or teams with different knowledge and skills,
remediation effort could increase dramatically.

• Concentration—ability to identify concentrations of Technical Debt Items in the same
classes, components, etc. where remediation effort can be optimized (e.g., re-engineering
code elements that are rife with Technical Debt Items wherein effort spend understanding,
testing, etc. can be shared across Technical Debt Items).

• Evolution Status—ability to identify changes and evolution in the code elements in which
Technical Debt Items are embedded that allow some optimization for remediating one or
more occurrences (e.g., target items in code elements that are being evolved, to share and
reduce the total effort to understand them and test them).

6.3 Contextual Technical Debt Measure (CTDM)

Some organizations may want to customize how the Automated Technical Debt Measure (ATDM)
calculation to reflect local conditions or practices. Such customizations may exclude some source
code patterns from the calculation or adjust the default values for remediation effort. These
adjustments can be made for either the entire organization or for individual applications.
Customized calculations shall be designated as a Contextual Technical Debt Measures (CTDM) to
distinguish them from the standard calculation (ATDM) which can be used for benchmarking with
other organizations or datasets.

Automated Technical Debt Measure, 1.0 21

7 Automated Technical Debt Measure
specification (normative)

7.1 Computing Process Overview

7.1.1 Automated Technical Debt Measure (ATDM)

The Automated Technical Debt Measures (ATDM) shall be calculated through the following process:
1. Collect source code for one or two revisions of the software.
2. Generate the application model for available revision(s), taking care of the

evolveTo/evolveFrom relationships between code elements when there are two revisions.
3. Detect occurrences of the Source Code Patterns enumerated in ASCRM, ASCSM, ASCPEM,

and ASCMM.
4. Compute the unadjusted remediation effort for each occurrence, as:

a) A pattern-dependent constant, when the pattern only relies on the existence of code
elements and relationships.

b) A pattern-dependent constant multiplied by the difference between measured value(s)
and required threshold value(s), when the pattern relies on value(s) exceeding
threshold(s).

1. Collect qualification information for each occurrence, i.e. technological diversity, complexity,
concentration, exposure, and evolution status (only when two revisions of the software were
processed in steps 1., 2., and 3.).
a) Technological diversity is the count of programming languages in use in the

implementation code elements of an occurrence
b) Complexity is the Effort Complexity from the Automated Enhancement Points (AEP)

specification
c) Exposure is the call graph branching factor
d) Concentration is the number of source code pattern occurrences the implementation

code elements are involved in
e) Evolution status requires determining when an occurrence or the code elements

constituting the immediate software environment within which the occurrence is
embedded have been added, removed, or updated between the measured revisions of
the software

f) Occurrence gap size, when the pattern relies on roles that model values and threshold
values that are not to be exceeded

1. Compute an adjustment factor for each occurrence, based on qualification measures from
step 5.
a) Technological diversity is used as is
b) Complexity is computed as an average across the implementations of the pattern roles of

complexity overhead, measured as a ratio of the complexity from step 5.3 divided by the
lowest complexity value the implementations could have had (i.e., complexity as defined
and calculated in the Automated Enhancement Points specification).

c) Exposure is computed as an average across the implementations of pattern exposed
roles of the exposure overhead, measured as a logarithmic transformation of the
exposure value from step 5.3 (i.e., exposure as defined and calculated in the Automated
Enhancement Points specification).

 22 Automated Technical Debt Measure, 1.0

d) Concentration is used as an average across the implementations of the pattern roles of
the inverse of the concentration value from step 5.4

e) Evolution status is not used in the adjustment factor
1. Multiply the adjustment factor from step 6 to the unadjusted remediation effort from step 4

to get the remediation effort for each occurrence.
2. Sum the occurrence remediation efforts from step 7 for each pattern to calculate the

pattern-specific remediation effort.
3. For each CISQ Quality Characteristic, sum the pattern remediation efforts from step 8 for

source code patterns associated with that characteristic (ASCMM, ASCRM, ASCPEM, ASCSM)
to compute the total remediation effort for that specific characteristic (i.e., AMREM, ARREM,
APEREM, or ASREM respectively).

4. Sum the pattern remediation efforts from step 8 for source code patterns associated with all
4 CISQ Quality Characteristics (ASCMM, ASCRM, ASCPEM, ASCSM) to compute the
Automated Technical Debt Measure (ATDM). (Note some patterns are “shared” between
ASCMM, ASCRM, ASCPEM, and ASCSM, the associated remediation effort for such patterns
will be counted only once)

5. Sum occurrence remediation efforts from step 7 for all occurrences within a specified range
of qualification measures to build distributions of the ATDM according to the requested
range.

Figures 2 and 3 visually summarize the computation formulae. They are provided for illustration
and clarity purposes. However, they do not contain all the normative measure elements detailed
in this clause.

Automated Technical Debt Measure, 1.0 23

Figure 2: Illustration of the ATDM computation formula

7.1.2 Contextual Technical Debt Measure (CTDM)

The process to follow to compute CTDM shall be identical to that for ATDM except for the following
steps:

3. Detect occurrences of selected patterns
6. Compute a custom adjustment factor
9./10. Sum Pattern remediation effort for all selected patterns

7.2 Application Model

Overview

The calculation of the Automated Technical Debt Measure (ATDM) shall be performed:
• either on one revision of the software, which is called “ToRevision”
• or between two revisions of the software, which are called “FromRevision” and “ToRevision”,

“ToRevision” being the more recent of the two revisions.

Each available revision shall be analyzed to create an application model of the software. The
application model shall be composed of

• computational objects in the source code and their relationships
• occurrences of patterns, including the binding information to the computational objects and

relationships.

When both “FromRevision” and “ToRevision” revisions are available, the evolvedTo/evolvedFrom
relationship shall be identified for all computational elements (i.e., to identify when code elements in
“FromRevision” revision are also found in “ToRevision” revision, and shall be identified as either an
evolved version of the computational object, or an unchanged version) as presented in SMM clause
§17.1.

Representation in SMM of the revision(s)

SMM enables the following modeling:
• One smm:Observation of collected revision(s) so that the base application model shall

contain all required items.
 24 Automated Technical Debt Measure, 1.0

ASC.M-XXX-XX_O CCURRENCE A DJUSTMENT F ACTOR

ASC.M-XXX-XX_O CCURRENCE C OMPLEXITY O VERHEAD A VERAGE

ASC.M-XXX-XX_O CCURRENCE E XPOSURE O VERHEAD A VERAGE

ASC.M-XXX-XX_O CCURRENCE T ECHNOLOGICAL D IVERSITY

ASC.M-XXX-XX_O CCURRENCE S HARING O PPORTUNITY A VERAGE

x

x

x

ASC.M-XXX-XX_C ODE E LEMENT L ANGUAGES
count

average, for all roles with implementation

A RTIFACT E FFORT C OMPLEXITY / L OW E FFORT C OMPLEXITY

average, for all roles with implementation

1 / ASC-XXX-XX- ROLES-YYYY _C ONCENTRATION

average, for all roles with exposition

1+L OG (1+C ALL G RAPH B RANCHING F ACTOR)

ASC.M-XXX-XX_O CCURRENCEGAPSIZE**

x only for threshold-based patterns

Figure 3: Illustration of the Adjustment Factor computation formula

• One smm:ObservationScope in this smm:Observation for each revision shall be used to
identify items from each revision.

Measure specifications

To handle the latest revision when two revisions are delivered, the analysis shall establish the
following scope related entities:

• An smm:ObservationScope
<measureElement xmi:id="toRevisionMeasurementScope"
xmi:type="smm:ObservationScope" name="toRevisionMeasurementScope"
class="MOF::Element" shortDescription="Subset of the Application Model which contains
code elements from the initial revision. Code elements are related to code elements from
the final revision by evolvedTo/evolvedFrom relationships." />

• An smm:OCLOperation to easily identify a code element from the smm:ObservationScope
<measureElement xmi:type="smm:OCLOperation" xmi:id="isInLatestRevision"
name="isInLatestRevision" context="kdm:Core::Element"
body="(toRevisionMeasurementScope()-&gt;includes(self))"/>

To handle the previous revision when two revisions are delivered, the analysis shall establish the
following scope related entities:

• A second smm:ObservationScope
<measureElement xmi:id="fromRevisionMeasurementScope"
xmi:type="smm:ObservationScope" name="fromRevisionMeasurementScope"
class="MOF::Element" shortDescription="Subset of the Application Model whith contains
code elements from the final revision. Code elements are related to code elements from
the initial revision by evolvedTo/evolvedFrom relationships." />

• A second smm:OCLOperation to easily identify a code element from the
smm:ObservationScope
<measureElement xmi:type="smm:OCLOperation" xmi:id="isInPreviousRevision"
name="isInPreviousRevision" context="kdm:Core::Element"
body="(fromRevisionMeasurementScope()-&gt;includes(self))"/>

7.3 Quantification of Remediation Effort at the Pattern
Occurrence level

This sub-clause describes the steps that shall be used to compute the remediation effort measures of
a given source code pattern occurrence (Technical Debt Item) in a specific revision of the software.

For each pattern occurrence, in each revision, the effort (coding, unit/non-regression testing
adaptation) to remediate it shall be computed as a calculation conforming to the following process.

1) identify occurrences
2) get “unadjusted” remediation effort configuration
3) collect qualification information
4) compute adjustment factor
5) compute “adjusted” remediation effort

Automated Technical Debt Measure, 1.0 25

7.3.1 Occurrence identification

For each pattern, identify each individual occurrence thanks to an smm:Scope relying on an
smm:Operation to use as a scope recognizer. These items are demonstrated with the ASCRM-CWE-
120 pattern as follows:

• an smm:Scope.
<measureElement xmi:id="ASCRM-CWE-120_Occurrence"
xmi:type="smm:Scope"
name="ASCRM-CWE-120_Occurrence"
class="SPMS:Observations::PatternInstance"
recognizer="ASCRM-CWE-120_Occurrence_Recognizer" />

• defined by an OCL smm:Operation
<measureElement xmi:id="ASCRM-CWE-120_Occurrence_Recognizer"
xmi:type="smm:Operation"
name="ASCRM-CWE-120_Occurrence_Recognizer"
language="OCL"
body="ASCRM:ASCRMLibrary::ASCRM-CWE-
120.A_instanceOf_PatternInstance::PatternInstance()" />

Figure 4 illustrates the SMM modeling with ASCRM-CWE-120 pattern.

Measure specifications

An smm:Scope measure (named as the pattern key with a '_Occurrence' suffix) and its
smm:Operation recognizer (named as the pattern key with an '_Occurrence_Recognizer' suffix) shall
be defined for each source code pattern from ASCMM, ASCRM, ASCPEM, and ASCSM, as illustrated
with the ASCRM-CWE-120 pattern above.

7.3.2 Unadjusted remediation effort configuration

This paragraph describes the steps that shall be used to get the remediation effort measure of a
given occurrence of a source code pattern (Technical Debt Item) in a given revision of the software,
unadjusted by qualification information about the occurrence.

For each occurrence in each revision, the effort (coding, unit/non-regression testing adaptation) to
remediate the occurrence shall be determined as follow.

The unadjusted remediation effort shall be the remediation effort assigned to the source code
pattern. The occurrence remediation effort shall be modeled as an smm:DirectMeasure using an

 26 Automated Technical Debt Measure, 1.0

:Scope
name= ASCRM-CWE-120_Occurrence
class= SPMS:Observation::PatternInstance

:Operation
name= ASCRM-CWE-120_Occurrence_Recognizer
language=OCL
body= ASCRM:ASCRMLibrary::ASCRM-CWE-120.
A_instanceOf_PatternInstance::PatternInstance()

+recognizer

Figure 4: ASCRM-CWE-120 occurrence identification with SMM Scope
and Recognizer

smm:Operation relying on a formula which uses a parameter to handle the remediation effort
amount. These rules are demonstrated with the ASCRM-CWE-120 pattern as follows:

• an smm:DirectMeasure
<measureElement xmi:type="smm:DirectMeasure"
xmi:id="ASCRM-CWE-120_OccurrenceUnadjustedRemediationEffort"
name="ASCRM-CWE-120_OccurrenceUnadjustedRemediationEffort"
unit="effort(minutes)"
trait="RemediationEffortEstimating"
scope="softwareMeasurementScope"
shortDescription="Effort to remove one occurrence of ASCRM-CWE-120 pattern"
operation="ASCRM-CWE-120_OccurrenceUnadjustedRemediationEffort_Value" />

• defined by an OCL smm:Operation
<measureElement
xmi:id="ASCRM-CWE-120_OccurrenceUnadjustedRemediationEffort_Value"
xmi:type="smm:Operation"
name="ASCRM-CWE-120_OccurrenceUnadjustedRemediationEffort_Value"
language="OCL"
body="Real { ASCRM-CWE-
120_OccurrenceUnadjustedRemediationEffort_Value_OccurrenceRemovalEffortInMinutes
= 20 }"
trait="RemediationEffortEstimating"/>

Figure 5 illustrates the SMM modeling with ASCRM-CWE-120 pattern.

Measure specifications

An smm:DirectMeasure measure (named as the pattern key with a
'_OccurrenceUnadjustedRemediationEffort' suffix) and its smm:Operation (named as the pattern key
with a '_OccurrenceUnadjustedRemediationEffort_Value' suffix) shall be defined for each source
code pattern from ASCMM, ASCRM, ASCPEM, and ASCSM, as illustrated with the ASCRM-CWE-120
pattern above.

The default values are listed in sub-clause 7.7.

Automated Technical Debt Measure, 1.0 27

:DirectMeasure
name= ASCRM-CWE-120_OccurrenceUnadjustedRemediationEffort
unit= effort(units)

:Operation
name= ASCRM-CWE-120_OccurrenceUnadjustedRemediationEffort _Value
language=OCL
body = Real { ASCRM-CWE-120_OccurrenceUnadjustedRemediationEffort
_Value_OccurrenceRemovalEffortInMinutes = 20 }

+operation

Figure 5: ASCRM-CWE-120 remediation effort configuration access with SMM
DirectMeasure and Operation

7.3.3 Qualification of pattern occurrences

This sub-clause describes the steps that shall be used to compute qualification measures that can be
applied to each individual source code pattern occurrence.

These qualification measures are integral part of the calculation of Technical Debt, via the
adjustment factor detailed in sub-clause 7.3.4. These measures can also be used in analyzing,
interpreting, and using Technical-Debt values for making decisions, benchmarking, modeling, and
other uses.

The measurement process shall include two sets of scopes:

• the code elements from the role implementations of each occurrence

• the languages in which code elements were implemented, from the role implementations of
each occurrence

Then, the measurement process shall compute the following qualification measures:

• Technological diversity, using the language-related scopes

• Complexity, Exposure, Concentration, and Evolution statuses, using the code-elements-
related scopes

Last, when applicable, the measurement process shall compute the occurrence gap size.

7.3.3.1 Occurrence implementation code elements

An smm:Scope (named as the role name with a '_CodeElements' suffix), and its recognizer
smm:Operation (named as the role name with a '_CodeElements_Recognizer' suffix) shall be defined
for each applicable Role (listed below) in a source code pattern from ASCMM, ASCRM, ASCPEM, and
ASCSM, as follows.

E.g. with ASCRM-CWE-120-roles-targetTransformationSequence:

• an smm:Scope
<measureElement
xmi:id="ASCRM-CWE-120-roles-targetTransformationSequence_CodeElements"
name="ASCRM-CWE-120-roles-targetTransformationSequence_CodeElements"
xmi:type="smm:Scope"
class="kdm:Code::AbstractCodeElement"
operation="ASCRM-CWE-120-roles-
targetTransformationSequence_CodeElements_Recognizer" />

• relying on an smm:Operation
<measureElement
xmi:id="ASCRM-CWE-120-roles-
targetTransformationSequence_CodeElements_Recognizer"
name="ASCRM-CWE-120-roles-targetTransformationSequence_CodeElements_Recognizer"

xmi:type="smm:Operation"
language="OCL" body="ASCRM:ASCRMLibrary::ASCRM-CWE-120-roles-
targetTransformationSequence.A_boundTo_Binding::Binding().fulfilledBy()"/>

 28 Automated Technical Debt Measure, 1.0

Figure 6 illustrates the SMM modeling with ASCRM-CWE-120-roles-targetTransformationSequence
role.

Measure specifications

An smm:Scope measure (named as the role key with a '_CodeElements' suffix) and its
smm:Operation recognizer (named as the pattern key with a '_CodeElements_Recognizer' suffix)
shall be defined for each applicable role from source code pattern from ASCMM, ASCRM, ASCPEM,
and ASCSM, as illustrated with the ASCRM-CWE-120-roles-targetTransformationSequence pattern
above.

Applicable roles are:

• ASCMM
◦ ASCMM-MNT-1-roles-controlFlowJumpStatement
◦ ASCMM-MNT-1-roles-switchBranching
◦ ASCMM-MNT-2-roles-class
◦ ASCMM-MNT-3-roles-valueElement
◦ ASCMM-MNT-3-roles-initialisationStatement
◦ ASCMM-MNT-4-roles-controlElement
◦ ASCMM-MNT-5-roles-loopElement
◦ ASCMM-MNT-5-roles-updateStatement
◦ ASCMM-MNT-6-roles-controlElement
◦ ASCMM-MNT-7-roles-module
◦ ASCMM-MNT-7-roles-moduleDependencyCycle
◦ ASCMM-MNT-8-roles-file
◦ ASCMM-MNT-10-roles-controlElement
◦ ASCMM-MNT-11-roles-controlElement
◦ ASCMM-MNT-12-roles-callerObject
◦ ASCMM-MNT-12-roles-calleeObject
◦ ASCMM-MNT-13-roles-controlElement
◦ ASCMM-MNT-14-roles-controlElement
◦ ASCMM-MNT-15-roles-publicDataElement
◦ ASCMM-MNT-15-roles-dataElementDeclarationStatement
◦ ASCMM-MNT-16-roles-class1
◦ ASCMM-MNT-16-roles-class2
◦ ASCMM-MNT-16-roles-field
◦ ASCMM-MNT-17-roles-class
◦ ASCMM-MNT-18-roles-class

Automated Technical Debt Measure, 1.0 29

:Scope
name= ASCRM-CWE-120-roles-targetTransformationSequence_CodeElements
class= kdm:Code::AbstractCodeElement

:Operation
name= ASCRM-CWE-120-roles-targetTransformationSequence_CodeElements _Recognizer
language=OCL
body= ASCRM:ASCRMLibrary::ASCRM-CWE-120-roles-targetTransformationSequence.
A_boundTo_Binding::Binding().fulfilledBy()

+recognizer

Figure 6: ASCRM-CWE-120-roles-targetTransformationSequence role implementation
identification with SMM Scope and Recognizer

◦ ASCMM-MNT-19-roles-controlElement1
◦ ASCMM-MNT-19-roles-controlElement2
◦ ASCMM-MNT-20-roles-controlElement

• ASCRM
◦ ASCRM-CWE-397-roles-controlElement
◦ ASCRM-CWE-397-roles-throwsAction
◦ ASCRM-CWE-397-roles-thrownExceptionParameter
◦ ASCRM-CWE-396-roles-controlElement
◦ ASCRM-CWE-396-roles-catchElement
◦ ASCRM-CWE-396-roles-caughtExceptionParameter
◦ ASCRM-CWE-456-roles-dataElement
◦ ASCRM-CWE-456-roles-declarationStatement
◦ ASCRM-CWE-456-roles-evaluationStatement
◦ ASCRM-CWE-704-roles-dataElement
◦ ASCRM-CWE-704-roles-dataElementDeclarationStatement
◦ ASCRM-CWE-704-roles-typeCastExpression
◦ ASCRM-CWE-772-roles-platformResource
◦ ASCRM-CWE-772-roles-resourceAllocationStatement
◦ ASCRM-CWE-772-roles-transformationSequence
◦ ASCRM-CWE-120-roles-sourceBufferAllocationStatement
◦ ASCRM-CWE-120-roles-targetBufferAllocationStatement
◦ ASCRM-CWE-120-roles-sourceTransformationSequence
◦ ASCRM-CWE-120-roles-targetTransformationSequence
◦ ASCRM-CWE-120-roles-moveBufferStatement
◦ ASCRM-RLB-1-roles-controlElement
◦ ASCRM-RLB-1-roles-exceptionHandlingBlock
◦ ASCRM-CWE-252-data-roles-controlElement
◦ ASCRM-CWE-252-data-roles-sQLStatement
◦ ASCRM-CWE-252-data-roles-executeSQLStatement
◦ ASCRM-RLB-2-roles-serializableStorableDataElement
◦ ASCRM-RLB-2-roles-controlElementList
◦ ASCRM-RLB-3-roles-serializableStorableDataElement
◦ ASCRM-RLB-3-roles-nonSerializableItem
◦ ASCRM-RLB-4-roles-persistantStorableDataElement
◦ ASCRM-RLB-5-roles-lowLevelResourceManagmentAPIList
◦ ASCRM-RLB-6-roles-dataElement
◦ ASCRM-RLB-6-roles-childPointerDataElement
◦ ASCRM-RLB-7-roles-class
◦ ASCRM-RLB-7-roles-selfDestructionControlElement
◦ ASCRM-RLB-8-roles-controlElement
◦ ASCRM-RLB-8-roles-variableNumberOfParametersSyntax
◦ ASCRM-CWE-252-resource-roles-controlElement
◦ ASCRM-CWE-252-resource-roles-resourceAccessStatement
◦ ASCRM-RLB-9-roles-comparisonStatement
◦ ASCRM-CWE-788-roles-valueElement
◦ ASCRM-CWE-788-roles-buffer
◦ ASCRM-CWE-788-roles-bufferReferenceStatement
◦ ASCRM-CWE-788-roles-bufferAllocationStatement
◦ ASCRM-CWE-788-roles-transformationSequence
◦ ASCRM-RLB-10-roles-controlElement

 30 Automated Technical Debt Measure, 1.0

◦ ASCRM-RLB-10-roles-dataAccessStatement
◦ ASCRM-RLB-11-roles-controlElement
◦ ASCRM-RLB-11-roles-nonFinalStaticField
◦ ASCRM-RLB-12-roles-singletonClass
◦ ASCRM-RLB-12-roles-instanciationStatement
◦ ASCRM-RLB-13-roles-module
◦ ASCRM-RLB-13-roles-moduleDependencyCycle
◦ ASCRM-RLB-14-roles-parentClass
◦ ASCRM-RLB-14-roles-childClass
◦ ASCRM-RLB-14-roles-referenceStatement
◦ ASCRM-RLB-15-roles-class
◦ ASCRM-RLB-15-roles-virtualMethod
◦ ASCRM-RLB-16-roles-parentClass
◦ ASCRM-RLB-16-roles-childClass
◦ ASCRM-RLB-17-roles-parentClass
◦ ASCRM-RLB-17-roles-childClass
◦ ASCRM-RLB-17-roles-parentVirtualDestructor
◦ ASCRM-RLB-18-roles-dataElement
◦ ASCRM-RLB-18-roles-initialisationStatement
◦ ASCRM-RLB-18-roles-networdResourceIdentificationValue
◦ ASCRM-RLB-19-roles-syncrhonousCallInstruction
◦ ASCRM-CWE-674-roles-controlElement
◦ ASCRM-CWE-674-roles-recursiveExecutionPath

• ASCSM
◦ ASCSM-CWE-120-roles-sourceBufferAllocationStatement
◦ ASCSM-CWE-120-roles-targetBufferAllocationStatement
◦ ASCSM-CWE-120-roles-sourceTransformationSequence
◦ ASCSM-CWE-120-roles-targetTransformationSequence
◦ ASCSM-CWE-120-roles-moveBufferStatement
◦ ASCSM-CWE-129-roles-userInput
◦ ASCSM-CWE-129-roles-arrayAccessStatement
◦ ASCSM-CWE-129-roles-array
◦ ASCSM-CWE-129-roles-transformationSequence
◦ ASCSM-CWE-134-roles-userInput
◦ ASCSM-CWE-134-roles-formatStatement
◦ ASCSM-CWE-134-roles-transformationSequence
◦ ASCSM-CWE-22-roles-userInput
◦ ASCSM-CWE-22-roles-pathCreationStatement
◦ ASCSM-CWE-22-roles-transformationSequence
◦ ASCSM-CWE-252-resource-roles-controlElement
◦ ASCSM-CWE-252-resource-roles-resourceAccessStatement
◦ ASCSM-CWE-327-roles-cryptographicDeployedComponentInUse
◦ ASCSM-CWE-396-roles-controlElement
◦ ASCSM-CWE-396-roles-catchElement
◦ ASCSM-CWE-396-roles-caughtExceptionParameter
◦ ASCSM-CWE-397-roles-controlElement
◦ ASCSM-CWE-397-roles-throwsAction
◦ ASCSM-CWE-397-roles-thrownExceptionParameter
◦ ASCSM-CWE-434-roles-userInput
◦ ASCSM-CWE-434-roles-transformationSequence

Automated Technical Debt Measure, 1.0 31

◦ ASCSM-CWE-434-roles-fileUploadStatement
◦ ASCSM-CWE-456-roles-dataElement
◦ ASCSM-CWE-456-roles-declarationStatement
◦ ASCSM-CWE-456-roles-evaluationStatement
◦ ASCSM-CWE-606-roles-userInput
◦ ASCSM-CWE-606-roles-loopConditionStatement
◦ ASCSM-CWE-606-roles-transformationSequence
◦ ASCSM-CWE-667-roles-publicDataElement
◦ ASCSM-CWE-667-roles-dataElementDeclarationStatement
◦ ASCSM-CWE-667-roles-dataElementAcessStatement
◦ ASCSM-CWE-672-roles-platformResource
◦ ASCSM-CWE-672-roles-resourceReleaseStatement
◦ ASCSM-CWE-672-roles-transportSequence
◦ ASCSM-CWE-672-roles-resourceAccessStatement
◦ ASCSM-CWE-681-roles-dataElement
◦ ASCSM-CWE-681-roles-dataElementDeclarationStatement
◦ ASCSM-CWE-681-roles-numericalDataType
◦ ASCSM-CWE-681-roles-typeCastExpression
◦ ASCSM-CWE-681-roles-targetDataType
◦ ASCSM-CWE-99-roles-userInput
◦ ASCSM-CWE-99-roles-accessByNameStatement
◦ ASCSM-CWE-99-roles-transformationSequence
◦ ASCSM-CWE-772-roles-platformResource
◦ ASCSM-CWE-772-roles-resourceAllocationStatement
◦ ASCSM-CWE-772-roles-transformationSequence
◦ ASCSM-CWE-78-roles-userInput
◦ ASCSM-CWE-78-roles-executeRunTimeCommandStatement
◦ ASCSM-CWE-78-roles-transformationSequence
◦ ASCSM-CWE-789-roles-userInput
◦ ASCSM-CWE-789-roles-bufferAccessStatement
◦ ASCSM-CWE-789-roles-transformationSequence
◦ ASCSM-CWE-789-roles-bufferAllocationStatement
◦ ASCSM-CWE-79-roles-userInput
◦ ASCSM-CWE-79-roles-userDisplay
◦ ASCSM-CWE-79-roles-transformationSequence
◦ ASCSM-CWE-798-roles-initialisationStatement
◦ ASCSM-CWE-798-roles-authenticationStatement
◦ ASCSM-CWE-798-roles-transportSequence
◦ ASCSM-CWE-835-roles-controlElement
◦ ASCSM-CWE-835-roles-recursiveExecutionPath
◦ ASCSM-CWE-89-roles-userInput
◦ ASCSM-CWE-89-roles-sQLCompilationStatement
◦ ASCSM-CWE-89-roles-transformationSequence

• ASCPEM
◦ ASCPEM-PRF-1-roles-staticBlock
◦ ASCPEM-PRF-1-roles-initialisationStatement
◦ ASCPEM-PRF-2-roles-controlElement
◦ ASCPEM-PRF-2-roles-stringConcatenationStatement
◦ ASCPEM-PRF-3-roles-staticField
◦ ASCPEM-PRF-3-roles-parentClass

 32 Automated Technical Debt Measure, 1.0

◦ ASCPEM-PRF-4-roles-dataTable
◦ ASCPEM-PRF-4-roles-queryStatement
◦ ASCPEM-PRF-5-roles-selectSQLStatement
◦ ASCPEM-PRF-5-roles-sQLTableOrView
◦ ASCPEM-PRF-6-roles-dataTable
◦ ASCPEM-PRF-7-roles-dataTable
◦ ASCPEM-PRF-7-roles-index
◦ ASCPEM-PRF-8-roles-loopStatement
◦ ASCPEM-PRF-8-roles-expensiveOperation
◦ ASCPEM-PRF-8-roles-executionPath
◦ ASCPEM-PRF-9-roles-controlElement
◦ ASCPEM-PRF-10-roles-controlElement
◦ ASCPEM-PRF-11-roles-controlElement
◦ ASCPEM-PRF-11-roles-sQLStatement
◦ ASCPEM-PRF-12-roles-aggregatingDataElement
◦ ASCPEM-PRF-13-roles-controlElement
◦ ASCPEM-PRF-13-roles-sQLConnectionInitializationStatement
◦ ASCPEM-PRF-14-roles-memoryAllocationStatement
◦ ASCPEM-PRF-14-roles-transformationSequence
◦ ASCPEM-PRF-15-roles-methodElement
◦ ASCPEM-PRF-15-roles-referenceStatement
◦ ASCPEM-PRF-15-roles-referencedObject

7.3.3.2 Occurrence implementation languages

The set of languages in which a single pattern occurrence has been implemented shall be
determined through the following process:

1. For each occurrence, list implementation code elements, regardless of the role,
2. For each code element, list the source region(s)
3. For each source region, collect the language attribute value

An smm:Scope (named as the pattern name with a '_CodeElementLanguages' suffix), and its
recognizer smm:Operation (named as the pattern name with a
'_CodeElementLanguages_Recognizer' suffix) shall be defined for each pattern.

E.g. with ASCRM-CWE-120:

• an smm:Scope
<measureElement xmi:id="ASCRM-CWE-120_CodeElementLanguages"
xmi:type="smm:Scope"
name="ASCRM-CWE-120_CodeElementLanguages"
class="MOF::Element"
recognizer="ASCRM-CWE-120_CodeElementLanguages_Recognizer" />

• relying on an smm:Operation
<measureElement xmi:id="ASCRM-CWE-120_CodeElementLanguages_Recognizer"
xmi:type="smm:Operation"
name="ASCRM-CWE-120_CodeElementLanguages_Recognizer"
language="OCL"
body="ASCRM:ASCRMLibrary::ASCRM-CWE-
120.A_instanceOf_PatternInstance::PatternInstance().fulfillments().fulfilledBy().source().la
nguage()" />

Automated Technical Debt Measure, 1.0 33

Figure 7 illustrates the SMM modeling with ASCRM-CWE-120 pattern.

Measure specifications

An smm:Scope measure (named as the pattern key with a '_CodeElementLanguages' suffix) and its
smm:Operation recognizer (named as the pattern key with a '_CodeElementLanguages_Recognizer'
suffix) shall be defined for each source code pattern from ASCMM, ASCRM, ASCPEM, and ASCSM, as
illustrated with the ASCRM-CWE-120 pattern above.

7.3.3.3 Technological Diversity

Technological Diversity is the number of distinct languages in which the code elements of a single
occurrence of a source code pattern are written, and shall computed as a simple counting applied to
the occurrence implementation languages scopes.

E.g. with ASCRM-CWE-120:

• an smm:Counting measure
<measureElement xmi:type="smm:Counting"
xmi:id="ASCRM-CWE-120_OccurrenceTechnologicalDiversity"
name="ASCRM-CWE-120_OccurrenceTechnologicalDiversity"
unit="Integer"
scope="ASCRM-CWE-120_CodeElementLanguages"
trait="LanguageCounting"
category="FunctionalMetrics"
shortDescription="Technological diversity of an occurrence of ASCRM-CWE-120 pattern,
measured as the number of distinct languages" />

Figure 8 enriches figure 7 and illustrates the SMM modeling with ASCRM-CWE-120 pattern.

 34 Automated Technical Debt Measure, 1.0

:Scope
name= ASCRM-CWE-120_CodeElementLanguages
class= MOF::Element

:Operation
name= ASCRM-CWE-120_CodeElementLanguages _Recognizer
language=OCL
body= ASCRM:ASCRMLibrary::ASCRM-CWE-120.
A_instanceOf_PatternInstance::PatternInstance().
fulfillments().fulfilledBy().source().language()

+recognizer

Figure 7: ASCRM-CWE-120 occurrence languages identification with SMM Scope and
Recognizer

Measure specifications

An smm:Counting measure (named as the pattern key with a '_OccurrenceTechnologicalDiversity'
suffix) shall be defined for each source code pattern from ASCMM, ASCRM, ASCPEM, and ASCSM, as
illustrated with the ASCRM-CWE-120 pattern above.

7.3.3.4 Complexity

Complexity – or Effort Complexity – shall be measured as defined in Automated Enhancement Points
specifications, via an smm:NamedMeasure.

<measureElement xmi:type="smm:NamedMeasure"
xmi:id="ArtifactEffortComplexity"
name="ArtifactEffortComplexity"
unit="ImplementationPoint"
scope="AEP::Artifact"
trait="ImplementationComplexity"
formula="AEP::ArtifactEffortComplexity"
shortDescription="Code Element Effort Complexity according to AEP 1.0 specifications" />

aep.aep::Artifact is a subset of kdm:code::ControlElement and this measure will return non-null
values for elements of this subset only.

To compute the Complexity overhead which contributes to the Adjustment Factor, the Low
Complexity Effort value shall also be collected via a second smm:NamedMeasure. This is the lowest
complexity value the implementation code elements could have had, considered to be the “best case
scenario”.

<measureElement xmi:type="smm:NamedMeasure"
xmi:id="LowEffortComplexity"

Automated Technical Debt Measure, 1.0 35

:Scope
name= ASCRM-CWE-120_CodeElementLanguages
class= MOF::Element

:Operation
name= ASCRM-CWE-120_CodeElementLanguages_Recognizer
language=OCL
body= ASCRM:ASCRMLibrary::ASCRM-CWE-120.
A_instanceOf_PatternInstance::PatternInstance().
fulfillments().fulfilledBy().source().language()

+recognizer

:Counting
name= ASCRM-CWE-120_OccurrenceTechnologicalDiversity
unit= integer

+scope

Figure 8: ASCRM-CWE-120 occurrence languages identification with SMM Scope and
Recognizer

name="LowEffortComplexity"
unit="ImplementationPoint"
scope="AEP::Artifact"
trait="ImplementationComplexity"
formula="AEP::wLowEC"
shortDescription="Code Element lowest Effort Complexity value according to AEP 1.0
specifications" />

For each implementation role, the ratio of the two above values defines a complexity overhead, via
an smm:RatioMeasure.

E.g. with ASCRM-CWE-120-roles-targetTransformationSequence:

<measureElement
xmi:id="ASCRM-CWE-120-roles-targetTransformationSequence_ComplexityOverhead"
name="ASCRM-CWE-120-roles-targetTransformationSequence_ComplexityOverhead"
xmi:type="smm:RatioMeasure"
unit="Real"
trait="ComplexityEstimating"
scope="ASCRM-CWE-120-roles-targetTransformationSequence_CodeElements"
shortDescription="Complexity overhead of code elements from ASCRM-CWE-120-roles-
targetTransformationSequence_ComplexityOverhead role, measured as their Effort Complexity
divided by the minimal Effort Complexity they could have" />

Figure 9 enriches figure 6 and illustrates the SMM modeling with ASCRM-CWE-120-roles-
targetTransformationSequence pattern.

Measure specifications

An smm:RatioMeasure measure (named as the role key with a '_ComplexityOverhead' suffix) shall
be defined for each implementation role from ASCMM, ASCRM, ASCPEM, and ASCSM patterns, as
illustrated with the ASCRM-CWE-120-roles-targetTransformationSequence role above.

 36 Automated Technical Debt Measure, 1.0

:Scope
name= ASCRM-CWE-120-roles-targetTransformationSequence_CodeElements
class= kdm:Code::AbstractCodeElement

:Operation
name= ASCRM-CWE-120-roles-targetTransformationSequence_CodeElements_Recognizer
language=OCL
body= ASCRM:ASCRMLibrary::ASCRM-CWE-120-roles-targetTransformationSequence.
A_boundTo_Binding::Binding().fulfilledBy()

+recognizer

:RatioMeasure
name= ASCRM-CWE-120-roles-targetTransformationSequence_ComplexityOverhead
unit= Real

+scope

:NamedMeasure
name=ArtifactEffort Complexity
unit= ImplementationPoint
scope= AEP::Artifact
formula= AEP::ArtifactEffortComplexity

+baseMeasure1To

:NamedMeasure
name=LowEffort Complexity
unit= ImplementationPoint
scope= AEP::Artifact
formula= AEP::wLowEC

+baseMeasure2To

Figure 9: ASCRM-CWE-120-roles-targetTransformationSequence role complexity overhead
computation with SMM NamedMeasures, RatioMeasure, Scope, and Recognizer

7.3.3.5 Exposure

To measure exposure for all applicable source code pattern occurrences, the code element to be
evaluated shall be determined by identifying the exposed role. The list of exposed pattern roles is
only a subset of the list of implementation roles above.

Applicable roles are

• ASCSM
◦ ASCSM-CWE-120-roles-moveBufferStatement
◦ ASCSM-CWE-129-roles-userInput
◦ ASCSM-CWE-134-roles-userInput
◦ ASCSM-CWE-22-roles-userInput
◦ ASCSM-CWE-252-resource-roles-resourceAccessStatement
◦ ASCSM-CWE-397-roles-controlElement
◦ ASCSM-CWE-434-roles-userInput
◦ ASCSM-CWE-456-roles-evaluationStatement
◦ ASCSM-CWE-606-roles-userInput
◦ ASCSM-CWE-667-roles-dataElementAcessStatement
◦ ASCSM-CWE-672-roles-resourceAccessStatement
◦ ASCSM-CWE-681-roles-typeCastExpression
◦ ASCSM-CWE-99-roles-userInput
◦ ASCSM-CWE-772-roles-resourceAllocationStatement
◦ ASCSM-CWE-78-roles-userInput
◦ ASCSM-CWE-789-roles-userInput
◦ ASCSM-CWE-79-roles-userInput
◦ ASCSM-CWE-798-roles-authenticationStatement
◦ ASCSM-CWE-835-roles-controlElement
◦ ASCSM-CWE-89-roles-userInput
◦ ASCSM-CWE-327-roles-cryptographicDeployedComponentInUse
◦ ASCSM-CWE-396-roles-controlElement

• ASCRM
◦ ASCRM-CWE-397-roles-controlElement
◦ ASCRM-CWE-396-roles-controlElement
◦ ASCRM-CWE-456-roles-evaluationStatement
◦ ASCRM-CWE-704-roles-typeCastExpression
◦ ASCRM-CWE-772-roles-resourceAllocationStatement
◦ ASCRM-CWE-120-roles-moveBufferStatement
◦ ASCRM-RLB-1-roles-controlElement
◦ ASCRM-CWE-252-data-roles-controlElement
◦ ASCRM-RLB-2-roles-serializableStorableDataElement
◦ ASCRM-RLB-3-roles-serializableStorableDataElement
◦ ASCRM-RLB-4-roles-persistantStorableDataElement
◦ ASCRM-RLB-5-roles-lowLevelResourceManagmentAPIList
◦ ASCRM-RLB-6-roles-childPointerDataElement
◦ ASCRM-RLB-7-roles-class
◦ ASCRM-RLB-8-roles-controlElement
◦ ASCRM-CWE-252-resource-roles-controlElement
◦ ASCRM-RLB-9-roles-comparisonStatement
◦ ASCRM-CWE-788-roles-bufferReferenceStatement
◦ ASCRM-RLB-10-roles-controlElement

Automated Technical Debt Measure, 1.0 37

◦ ASCRM-RLB-11-roles-controlElement
◦ ASCRM-RLB-12-roles-singletonClass
◦ ASCRM-RLB-13-roles-module
◦ ASCRM-RLB-14-roles-parentClass
◦ ASCRM-RLB-15-roles-class
◦ ASCRM-RLB-16-roles-parentClass
◦ ASCRM-RLB-17-roles-childClass
◦ ASCRM-RLB-18-roles-initialisationStatement
◦ ASCRM-RLB-19-roles-syncrhonousCallInstruction
◦ ASCRM-CWE-674-roles-controlElement

• ASCMM
◦ ASCMM-MNT-1-roles-controlFlowJumpStatement
◦ ASCMM-MNT-2-roles-class
◦ ASCMM-MNT-3-roles-initialisationStatement
◦ ASCMM-MNT-4-roles-controlElement
◦ ASCMM-MNT-5-roles-loopElement
◦ ASCMM-MNT-6-roles-controlElement
◦ ASCMM-MNT-7-roles-module
◦ ASCMM-MNT-8-roles-file
◦ ASCMM-MNT-10-roles-controlElement
◦ ASCMM-MNT-11-roles-controlElement
◦ ASCMM-MNT-12-roles-callerObject
◦ ASCMM-MNT-13-roles-controlElement
◦ ASCMM-MNT-14-roles-controlElement
◦ ASCMM-MNT-15-roles-dataElementDeclarationStatement
◦ ASCMM-MNT-16-roles-class1
◦ ASCMM-MNT-17-roles-class
◦ ASCMM-MNT-18-roles-class
◦ ASCMM-MNT-19-roles-controlElement1
◦ ASCMM-MNT-20-roles-controlElement

• ASCPEM
◦ ASCPEM-PRF-1-roles-initialisationStatement
◦ ASCPEM-PRF-2-roles-controlElement
◦ ASCPEM-PRF-3-roles-parentClass
◦ ASCPEM-PRF-4-roles-queryStatement
◦ ASCPEM-PRF-5-roles-selectSQLStatement
◦ ASCPEM-PRF-6-roles-dataTable
◦ ASCPEM-PRF-7-roles-dataTable
◦ ASCPEM-PRF-8-roles-loopStatement
◦ ASCPEM-PRF-9-roles-controlElement
◦ ASCPEM-PRF-10-roles-controlElement
◦ ASCPEM-PRF-11-roles-controlElement
◦ ASCPEM-PRF-12-roles-aggregatingDataElement
◦ ASCPEM-PRF-13-roles-controlElement
◦ ASCPEM-PRF-14-roles-memoryAllocationStatement
◦ ASCPEM-PRF-15-roles-methodElement

For each pattern applicable Role, the associated smm:Scope (named as the role name with a
'_CodeElements' suffix), and its recognizer smm:Operation (named as the role name with a
'_CodeElements_Recognizer' suffix) will be reused in the current process.
 38 Automated Technical Debt Measure, 1.0

User input exposure considerations

In case of a source code pattern relying on user input, the number of distinct callers and call paths
shall be 0, but the exposure is virtually infinite as the weakness is directly exposed to the outside
world. From the security standpoint, the probability for an event – a malevolent use of the entry
point into the system – to happen is “1”. This shall be considered when using exposure to manage
decisions or outcomes related to Technical Debt.

The affected patterns are:
• ASCSM-CWE-129
• ASCSM-CWE-134
• ASCSM-CWE-22
• ASCSM-CWE-434
• ASCSM-CWE-606
• ASCSM-CWE-99
• ASCSM-CWE-78
• ASCSM-CWE-789
• ASCSM-CWE-79
• ASCSM-CWE-89

Number of distinct direct callers

The number of distinct direct callers shall be calculated as follows.
• identify a code element
• build the set of code elements calling it
• compute the size of the set

Measure specifications

1) The set of direct callers of any code element shall be determined as follows.

• the applicable call links shall be identified by a first smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation"
xmi:id="CallingActions"
name="CallingActions"
context="kdm:code::AbstractCodeElement"
body="((oclIsTypeOf(kdm:action::CallableRelations) or
oclIsTypeOf(kdm:action::DataRelations)) and to = self)" />

• the callers shall be identified by a second smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation"
xmi:id="CallingCodeElements"
name="CallingCodeElements"
context="kdm:code::AbstractCodeElement"
body="(self.CallingActions.from())" />

2) The number of distinct direct callers of any code element shall be determined as follows.

• the size of the set of callers shall be computed by an smm:Operation
<measureElement xmi:type="smm:OCLOperation"
xmi:id="CallingCodeElementsNumber"
name="CallingCodeElementsNumber"
context="kdm:code::AbstractCodeElement"
body="CallingCodeElements()-&gt;size()" />

Automated Technical Debt Measure, 1.0 39

3) To measure the number of distinct callers for all implementation roles, the following measures
shall apply the specified smm:Operation to the identified exposed role; e.g., with ASCRM-CWE-396-
roles-controlElement_CodeElements

• an smm:DirectMeasure uses the smm:OCLOperation on the smm:Scope
<measureElements xmi:type="smm:DirectMeasure"
xmi:id="ASCRM-CWE-396-roles_controlElement_DirectExposure"
name="ASCRM-CWE-396-roles_controlElement_DirectExposure"
unit="Integer"
scope="ASCRM-CWE-396-roles_controlElement_CodeElements"
trait="ExposureSizing"
category="FunctionalMetrics"
shortDescription="Number of direct callers to the issue from ASCRM-CWE-396 Pattern"
operation="CallingCodeElementsNumber" />

A smm:DirectMeasure measure (named as the pattern key with a '_DirectExposure' suffix) shall be
defined for each exposed pattern role from ASCMM, ASCRM, ASCPEM, and ASCSM.

Figure 10 enriches figure 6 and illustrates the SMM modeling with ASCRM-CWE-120-roles-
targetTransformationSequence pattern.

Number of distinct call paths

The number of distinct call paths shall be computed in a manner similar to the McCabe Cyclomatic
Complexity formula (CC = E – N + p) as follows.

• identify a code element
• identify the call paths towards the code element
• compute the number of nodes,
• compute the number of entry nodes to compute the number of edges needed to cycle back

to the starting code element in order that the number of components is 1
 40 Automated Technical Debt Measure, 1.0

:Scope
name= ASCRM-CWE-396-roles_controlElement _CodeElements
class= kdm:Code::AbstractCodeElement

:Operation
name= ASCRM-CWE-396-roles_controlElement _CodeElements_Recognizer
language=OCL
body= ASCRM:ASCRMLibrary::ASCRM-CWE-396-roles_controlElement.
A_boundTo_Binding::Binding().fulfilledBy()

+recognizer

:DirectMeasure
name= ASCRM-CWE-396-roles_controlElement _DirectExposure
unit= Integer

+scope

:Operation
name= CallingCodeElementsNumber
unit= ImplementationPoint
scope= kdm:code::AbstractCodeElement
body= CallingCodeElements()-&gt;size()

+operation

:OCLOperation
name= CallingCodeElements
body= (self.CallingActions.from())

:OCLOperation
name= CallingActions
body= ((oclIsTypeOf(kdm:action::CallableRelations)
or oclIsTypeOf(kdm:action::DataRelations))
and to = self)

Figure 10: ASCRM-CWE-396-roles-controlElement role direct exposure computation with SMM
OCLOperations, Operation, DirectMeasure, Scope, and Recognizer

• compute the number of edges,
• subtract the number of nodes from the sum of the number of edges and the number of

entry nodes
• add 1 to the difference to get the number of distinct call paths

Measure specifications

A call graph for selected code elements shall be developed using the :OCLOperation from the
previous paragraph.

• the call graph as recursive callers, identified by a first smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation"
xmi:id="CallingGraph"
name="CallingGraph"
context="kdm:code::AbstractCodeElement"
body="(closure(CallingCodeElements()))" />

The number of distinct call paths of any code element shall be computed as:

• the number of nodes, computed by a smm:DirectMeasure
<measureElement xmi:id="CallingGraphNodeNumber"
name="CallingGraphNodeNumber"
xmi:type="smm:DirectMeasure"
operation="CallingGraphNodeNumber_Value"/>

• and its smm:Operation
<measureElement xmi:id="CallingGraphNodeNumber_Value"
name="CallingGraphNodeNumber_Value"
xmi:type="smm:Operation"
language="OCL"
body="CallingGraph()-&gt;select(e: kdm:code::AbstractCodeElement)-
&gt;size()"/>

• the number of entry nodes, computed by a smm:DirectMeasure
<measureElement xmi:id="CallingGraphEntryNodeNumber"
name="CallingGraphEntryNodeNumber"
xmi:type="smm:DirectMeasure"
operation="CallingGraphEntryNodeNumber_Value" />

• and its smm:Operation
<measureElement xmi:id="CallingGraphEntryNodeNumber_Value"
name="CallingGraphEntryNodeNumber_Value"
xmi:type="smm:Operation"
language="OCL"
body="CallingGraph()-&gt;select(e: kdm:code::AbstractCodeElement |
e.CallingCodeElementsNumber = 0)-&gt;size()"/>

• the number of edges, computed by a smm:DirectMeasure
<measureElement xmi:id="CallingGraphEdgeNumber"
name="CallingGraphEdgeNumber"
xmi:type="smm:DirectMeasure"
operation="CallingGraphEdgeNumber_Value" />

Automated Technical Debt Measure, 1.0 41

• and its smm:Operation
<measureElement xmi:id="CallingGraphEdgeNumber_Value"
name="CallingGraphEdgeNumber_Value"
xmi:type="smm:Operation"
language="OCL"
body="CallingGraph()-&gt;select(e1, e2: kdm:code::AbstractCodeElement |
e1.CallingAction()-&gt;includes(e2))-&gt;size()"/>

• the sum of the number of edges and the number of entry nodes, computed by a first
smm:BinaryMeasure
<measureElement xmi:type="smm:BinaryMeasure"
xmi:id="CallingGraphEdgeAndEntryNodeNumber"
name="CallingGraphEdgeAndEntryNodeNumber"
unit="Integer"
functor="plus"
scope="kdm:code::AbstractCodeElement"
trait="ExposureSizing"
shortDescription="Calling graph number of edges and entry nodes" />

• the difference of the number of nodes from edges and entry nodes, computed by a second
smm:BinaryMeasure
<measureElement xmi:type="smm:BinaryMeasure"
xmi:id="CallingGraphBranchingFactor"
name="CallingGraphBranchingFactor"
unit="Integer"
functor="minus"
scope="kdm:code::AbstractCodeElement"
trait="ExposureSizing"
shortDescription="Calling graph branching factor" />

• the number of distinct call paths, computed by an smm:RescaledMeasure
<measureElement xmi:type="smm:RescaledMeasure"
xmi:id="GraphCallPathNumber"
name="GraphCallPathNumber"
unit="Integer"
scope="kdm:code::AbstractCodeElement"
trait="ExposureSizing"
shortDescription="Number of call paths to the Code Element"
offset="1"
multiplier="1" />

• the logarithmic transformation of the number of distinct call paths, computed by an
smm:RescaledMeasure
<measureElement xmi:type="smm:RescaledMeasure"
xmi:id="LogGraphCallPathNumber"
name="LogGraphCallPathNumber"
unit="Real"
scope="kdm:code::AbstractCodeElement"
trait="ExposureSizing"
shortDescription="Log of the number of call paths to the Code Element"
operation="log(GraphCallPathNumber)" />

 42 Automated Technical Debt Measure, 1.0

Finally, to measure the Exposure for all applicable pattern occurrences, the following measures shall
apply the specified :RescaleMeasure to the identified exposed role.

E.g., with ASCRM-CWE-396-roles-controlElement_CodeElements

• an smm:RescaledMeasure uses the smm:RescaledMeasure on the smm:Scope
<measureElements xmi:type="smm:RescaledMeasure"
xmi:id="ASCRM-CWE-396-roles-controlElement_Exposure"
name="ASCRM-CWE-396-roles-controlElement_Exposure"
unit="Real"
scope="ASCRM-CWE-396-roles-controlElement_CodeElements"
trait="ExposureSizing"
category="FunctionalMetrics"
shortDescription="Exposure to the issue from ASCRM-CWE-396-roles-controlElement role,
measured as 1 plus the log of the number of call paths to them"
offset="1"
multiplier="1" />

A smm:DirectMeasure measure (named as the pattern key with a '_Exposure' suffix) shall be
computed for each pattern applicable Role from ASCMM, ASCRM, ASCPEM, and ASCSM.

Figure 11 and 12 enriche figure 6 and illustrate the SMM modeling with ASCRM-CWE-120-roles-
targetTransformationSequence pattern.

Automated Technical Debt Measure, 1.0 43

:Scope
name= ASCRM-CWE-396-roles_controlElement _CodeElements
class= kdm:Code::AbstractCodeElement

:Operation
name= ASCRM-CWE-396-roles_controlElement _CodeElements_Recognizer
language=OCL
body= ASCRM:ASCRMLibrary::ASCRM-CWE-396-roles_controlElement.
A_boundTo_Binding::Binding().fulfilledBy()

+recognizer

:RescaledMeasure
name= ASCRM-CWE-396-roles_controlElement _Exposure
unit= Real offset= 1 multiplier= 1

+scope

:RescaledMeasure
name= LogGraphCallPathNumber
unit= Real
operation= log(Graph CallPathNumber)

+rescaleFrom

:RescaledMeasure
name= GraphCallPathNumber
unit= Integer offset= 1 multiplier= 1

+rescaleFrom

:BinaryMeasure
name= CallingGraphBranchingFactor
unit= Integer functor= minus

+rescaleFrom

:BinaryMeasure
name= CallingGraphEdgeAndEntryNodeNumber
unit= Integer functor= plus

+baseMeasure1To

:DirectMeasure
name= CallingGraphNodeNumber
operation= CallingGraphNodeNumber_Value

+baseMeasure2To

:DirectMeasure
name= CallingGraphEdgeNumber
operation= CallingGraphEdgeNumber_Value

+baseMeasure1To

:DirectMeasure
name= CallingGraphEntryNodeNumber
operation= CallingGraphEntryNodeNumber_Value

+baseMeasure2To

Figure 11: ASCRM-CWE-396-roles-controlElement role direct exposure computation with SMM
OCLOperations, Operation, DirectMeasure, Scope, and Recognizer

7.3.3.6 Concentration

The concentration shall be computed as follows:

1. Count the number of occurrences of the any specific pattern role.

E.g. with ASCSM-CWE-120-roles-moveBufferStatement

• defined by an smm:DirectMeasure
<measureElement
xmi:id="ASCRM-CWE-120-roles-moveBufferStatement_Concentration"
name="ASCRM-CWE-120-roles-moveBufferStatement_Concentration"
xmi:type="smm:DirectMeasure"
unit="Integer"
trait="SharingLevelEstimating"
scope="ASCRM-CWE-120-roles-moveBufferStatement_CodeElements"
shortDescription="Remediation sharing opportunity of code elements from ASCRM-CWE-
120-roles-moveBufferStatement_Concentration role, measured as the inverse of the
number of occurrences they are involved in"
operation="NumberOfOccurrences" />

 44 Automated Technical Debt Measure, 1.0

:DirectMeasure
name= CallingGraphNodeNumber
operation= CallingGraphNodeNumber_Value

:Operation
name= CallingGraphNodeNumber_Value
language= OCL
body= CallingGraph()-&gt;select(e:
kdm:code::AbstractCodeElement)-&gt;size()

+operation

:DirectMeasure
name= CallingGraphEdgeNumber
operation= CallingGraphEdgeNumber_Value

:Operation
name= CallingGraphEdgeNumber_Value
language= OCL
body= CallingGraph()-&gt;select(e1,
e2: kdm:code::AbstractCodeElement |
e1.CallingAction()-&gt;includes(e2))-&gt;size()

+operation

:DirectMeasure
name= CallingGraphEntryNodeNumber
operation= CallingGraphEntryNodeNumber_Value

:Operation
name= CallingGraphEntryNodeNumber_Value
language= OCL
body= CallingGraph()-&gt;select(e: kdm:code::AbstractCodeElement
| e.CallingCodeElementsNumber = 0)-&gt;size()

+operation

:OCLOperation
name= CallingCodeElements
body= (self.CallingActions.from())

:OCLOperation
name= CallingActions
body= ((oclIsTypeOf(kdm:action::CallableRelations)
or oclIsTypeOf(kdm:action::DataRelations))
and to = self)

:OCLOperation
name= CallingGraph
body= (closure(CallingCodeElements()))

Figure 12: ASCRM-CWE-396-roles-controlElement role exposure computation with SMM OCLOperations,
Operations, RescaledMeasures, BinaryMeasures, Scope, and Recognizer (part II)

• relying on an smm:Operation
<measureElement xmi:id="NumberOfOccurrences"
name="NumberOfOccurrences"
xmi:type="smm:Operation"
language="OCL"
body="self.A_Binding_fulfilledBy::Binding()-&gt;select(b: Binding |
p.A_PatternInstance_fulfillments::PatternInstance.instanceOf.isInASCMM or
p.A_PatternInstance_fulfillments::PatternInstance.instanceOf.isInASCRM or
p.A_PatternInstance_fulfillments::PatternInstance.instanceOf.isInASCPEM or
p.A_PatternInstance_fulfillments::PatternInstance.instanceOf.isInASCSM)-
&gt;size()"/>

• which uses the following four smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation"
xmi:id="isInASCMM"
name="isInASCMM"
context="SPMS:Definitions::PatternDefinition"
body="Set{'ASCSM-CWE-120','ASCSM-CWE-129','ASCSM-CWE-134','ASCSM-CWE-
22','ASCSM-CWE-252-resource','ASCSM-CWE-327','ASCSM-CWE-396','ASCSM-CWE-
397','ASCSM-CWE-434','ASCSM-CWE-456','ASCSM-CWE-606','ASCSM-CWE-667','ASCSM-
CWE-672','ASCSM-CWE-681','ASCSM-CWE-99','ASCSM-CWE-772','ASCSM-CWE-78','ASCSM-
CWE-789','ASCSM-CWE-79','ASCSM-CWE-798','ASCSM-CWE-835','ASCSM-CWE-89'}-
&gt;includes(self.id)" />
<measureElement xmi:type="smm:OCLOperation"
xmi:id="isInASCPEM"
name="isInASCPEM"
context="SPMS:Definitions::PatternDefinition"
body="Set{'ASCPEM-PRF-1','ASCPEM-PRF-10','ASCPEM-PRF-11','ASCPEM-PRF-
12','ASCPEM-PRF-13','ASCPEM-PRF-14','ASCPEM-PRF-15','ASCPEM-PRF-2','ASCPEM-PRF-
3','ASCPEM-PRF-4','ASCPEM-PRF-5','ASCPEM-PRF-6','ASCPEM-PRF-7','ASCPEM-PRF-
8','ASCPEM-PRF-9'}-&gt;includes(self.id)" />
<measureElement xmi:type="smm:OCLOperation"
xmi:id="isInASCRM"
name="isInASCRM"
context="SPMS:Definitions::PatternDefinition"
body="Set{'ASCRM-CWE-120','ASCRM-CWE-252-data','ASCRM-CWE-252-
resource','ASCRM-CWE-396','ASCRM-CWE-397','ASCRM-CWE-456','ASCRM-CWE-
674','ASCRM-CWE-704','ASCRM-CWE-772','ASCRM-CWE-788','ASCRM-RLB-1','ASCRM-RLB-
10','ASCRM-RLB-11','ASCRM-RLB-12','ASCRM-RLB-13','ASCRM-RLB-14','ASCRM-RLB-
15','ASCRM-RLB-16','ASCRM-RLB-17','ASCRM-RLB-18','ASCRM-RLB-19','ASCRM-RLB-
2','ASCRM-RLB-3','ASCRM-RLB-4','ASCRM-RLB-5','ASCRM-RLB-6','ASCRM-RLB-7','ASCRM-
RLB-8','ASCRM-RLB-9'}-&gt;includes(self.id)" />
<measureElement xmi:type="smm:OCLOperation"
xmi:id="isInASCMM"
name="isInASCMM"
context="SPMS:Definitions::PatternDefinition"
body="Set{'ASCMM-MNT-1','ASCMM-MNT-10','ASCMM-MNT-11','ASCMM-MNT-
12','ASCMM-MNT-13','ASCMM-MNT-14','ASCMM-MNT-15','ASCMM-MNT-16','ASCMM-
MNT-17','ASCMM-MNT-18','ASCMM-MNT-19','ASCMM-MNT-2','ASCMM-MNT-
20','ASCMM-MNT-3','ASCMM-MNT-4','ASCMM-MNT-5','ASCMM-MNT-6','ASCMM-MNT-
7','ASCMM-MNT-8'}-&gt;includes(self.id)" />

Automated Technical Debt Measure, 1.0 45

Figure 13 enriches figure 6 and illustrates the SMM modeling with ASCRM-CWE-120-roles-
moveBufferStatement pattern.

Measure specifications

For each implementation role from ASCMM, ASCRM, ASCPEM, and ASCSM patterns, an
smm:OCLOperation (named as the pattern key with a '_Concentration' suffix) shall be defined.

For each implementation role, the smm:Scope (named as the role name with a '_CodeElements'
suffix), and its recognizer smm:Operation (named as the role name with a
'_CodeElements_Recognizer' suffix) will be reused in the current process.

7.3.3.7 Occurrence Gap Size

This sub-clause shall only be applicable when the pattern relies on role that model values and
threshold values that are not to be exceeded. The Occurrence Gap Size is the extent of the gap to be
closed to remediate the weakness, measured as the difference between the values and the
thresholds.

The affected patterns are:

• ASCMM-MNT-11: Callable and Method Control Element Excessive Cyclomatic Complexity
Value

• ASCMM-MNT-13: Callable and Method Control Element Excessive Number of Parameters

• ASCMM-MNT-14: Callable and Method Control Element Excessive Number of Control
Elements involving Data Element from Data Manager or File Resource

• ASCMM-MNT-17: Class Element Excessive Inheritance Level

 46 Automated Technical Debt Measure, 1.0

:Scope
name= ASCRM-CWE-120-roles-moveBufferStatement _CodeElements
class= kdm:Code::AbstractCodeElement

:Operation
name= ASCRM-CWE-120-roles-moveBufferStatement _CodeElements_Recognizer
language=OCL
body= ASCRM:ASCRMLibrary::ASCRM-CWE-120-roles-targetTransformationSequence.
A_boundTo_Binding::Binding().fulfilledBy()

+recognizer

:DirectMeasure
name= ASCRM-CWE-120-roles-moveBufferStatement_Concentration
unit= Integer
operation= NumberOfOccurrences

+scope

:Operation
name= NumberOfOccurrences
language= OCL
body= self.A_Binding_fulfilledBy::Binding()-&gt;select(b: Binding
| p.A_PatternInstance_fulfillments::PatternInstance.instanceOf.isInASCMM
or p.A_PatternInstance_fulfillments::PatternInstance.instanceOf.isInASCRM
or p.A_PatternInstance_fulfillments::PatternInstance.instanceOf.isInASCPEM
or p.A_PatternInstance_fulfillments::PatternInstance.instanceOf.isInASCSM)-&gt;size()

+operation

Figure 13: ASCRM-CWE-120-roles-moveBufferStatement role concentration with SMM
Operation, DirectMeasure, Scope, and Recognizer

• ASCMM-MNT-18: Class Element Excessive Number of Children

• ASCMM-MNT-2: Class Element Excessive Inheritance of Class Elements with Concrete
Implementation

• ASCMM-MNT-4: Callable and Method Control Element Number of Outward Calls

• ASCMM-MNT-6: Commented Code Element Excessive Volume

• ASCMM-MNT-8: Source Element Excessive Size

• ASCPEM-PRF-10: Non-SQL Named Callable and Method Control Element with Excessive
Number of Data Resource Access

• ASCPEM-PRF-12: Storable and Member Data Element Excessive Number of Aggregated
Storable and Member Data Elements

• ASCPEM-PRF-4: Data Resource Read and Write Access Excessive Complexity

• ASCPEM-PRF-6: Large Data Resource ColumnSet Excessive Number of Index Elements

• ASCPEM-PRF-7: Large Data Resource ColumnSet with Index Element of Excessive Size

• ASCPEM-PRF-9: Non-Stored SQL Callable Control Element with Excessive Number of Data
Resource Access

For each of the occurrences of these patterns, the occurrence gap size shall be computed the
following way:

• Retrieve the value of the roles modeling the exceeding values

• Retrieve the value of the roles modeling the threshold values

• Compute the difference

The difference formulae are:

• ASCMM-MNT-11-roles-cyclomaticComplexity - ASCMM-MNT-11-roles-
cyclomaticComplexityThresholdValue

• ASCMM-MNT-13-roles-parameterNumber - ASCMM-MNT-13-roles-
parameterNumberThreshold

• ASCMM-MNT-14-roles-numberOfDataOperations - ASCMM-MNT-14-roles-
numberOfDataOperationsThresholdValue

• ASCMM-MNT-17-roles-numberOfInheritanceLevels - ASCMM-MNT-17-roles-
numberOfInheritanceLevelsThresholdValue

• ASCMM-MNT-18-roles-numberOfChildren - ASCMM-MNT-18-roles-
numberOfChildrenThresholdValue

• ASCMM-MNT-2-roles-numberOfConcreteClasseInheritances - ASCMM-MNT-2-roles-
numberOfConcreteClasseInheritancesThresholdValue

• ASCMM-MNT-4-roles-numberOfOutwardReferences - ASCMM-MNT-4-roles-
numberOfOutwardReferencesThresholdValue

• ASCMM-MNT-6-roles-percentageOfCommentedOutInstructions - ASCMM-MNT-6-roles-
percentageOfCommentedOutInstructionsThresholdValue

Automated Technical Debt Measure, 1.0 47

• ASCMM-MNT-8-roles-numberOfLinesOfCode - ASCMM-MNT-8-roles-
numberOfLinesOfCodeThresholdValue

• ASCPEM-PRF-10-roles-numberOfDataQueries - ASCPEM-PRF-10-roles-
numberOfDataQueriesThresholdValue

• ASCPEM-PRF-12-roles-numberOfAggregatedDataElements - ASCPEM-PRF-12-roles-
numberOfAggregatedObjectsThresholdValue

• (ASCPEM-PRF-4-roles-numberOfJoins - ASCPEM-PRF-4-roles-numberOfJoinsThresholdValue)
+ (ASCPEM-PRF-4-roles-numberOfSubQueries - ASCPEM-PRF-4-roles-
numberOfSubQueriesThresholdValue)

• ASCPEM-PRF-6-roles-numberOfTableIndices - ASCPEM-PRF-6-roles-
numberOfTableIndicesThresholdValue

• ASCPEM-PRF-7-roles-indexRange - ASCPEM-PRF-7-roles-indexRangeThresholdValue

• ASCPEM-PRF-9-roles-numberOfDataQueries - ASCPEM-PRF-9-roles-
numberOfDataQueriesThresholdValue

They require to get values from the following roles:

• ASCMM-MNT-11-roles-cyclomaticComplexity

• ASCMM-MNT-11-roles-cyclomaticComplexityThresholdValue

• ASCMM-MNT-13-roles-parameterNumber

• ASCMM-MNT-13-roles-parameterNumberThreshold

• ASCMM-MNT-14-roles-numberOfDataOperations

• ASCMM-MNT-14-roles-numberOfDataOperationsThresholdValue

• ASCMM-MNT-18-roles-numberOfChildren

• ASCMM-MNT-18-roles-numberOfChildrenThresholdValue

• ASCMM-MNT-4-roles-numberOfOutwardReferences

• ASCMM-MNT-4-roles-numberOfOutwardReferencesThresholdValue

• ASCMM-MNT-6-roles-percentageOfCommentedOutInstructions

• ASCMM-MNT-6-roles-percentageOfCommentedOutInstructionsThresholdValue

• ASCMM-MNT-8-roles-numberOfLinesOfCode

• ASCMM-MNT-8-roles-numberOfLinesOfCodeThresholdValue

• ASCPEM-PRF-10-roles-numberOfDataQueries

• ASCPEM-PRF-10-roles-numberOfDataQueriesThresholdValue

• ASCPEM-PRF-12-roles-numberOfAggregatedDataElements

• ASCPEM-PRF-12-roles-numberOfAggregatedObjectsThresholdValue

• ASCPEM-PRF-4-roles-numberOfJoins

 48 Automated Technical Debt Measure, 1.0

• ASCPEM-PRF-4-roles-numberOfJoinsThresholdValue

• ASCPEM-PRF-4-roles-numberOfSubQueries

• ASCPEM-PRF-4-roles-numberOfSubQueriesThresholdValue

• ASCPEM-PRF-6-roles-numberOfTableIndices

• ASCPEM-PRF-6-roles-numberOfTableIndicesThresholdValue

• ASCPEM-PRF-7-roles-indexRange

• ASCPEM-PRF-7-roles-indexRangeThresholdValue

• ASCPEM-PRF-9-roles-numberOfDataQueries

• ASCPEM-PRF-9-roles-numberOfDataQueriesThresholdValue

To do so, an smm:Operation and an smm:DirectMeasure shall be defined. E.g. with ASCMM-MNT-
11-roles-cyclomaticComplexity:

• <measureElement
xmi:type="smm:DirectMeasure"
xmi:id="ASCMM-MNT-11-roles-cyclomaticComplexity"
name="ASCMM-MNT-11-roles-cyclomaticComplexity"
operation="ASCMM-MNT-11-roles-cyclomaticComplexity_Value"
unit="Integer"
trait="OccurrenceGapSizing"
scope="ASCMM-MNT-11_Occurrence"
shortDescription="Value of ASCMM-MNT-11-roles-cyclomaticComplexity role" />

• relying on
<measureElement
xmi:id="ASCMM-MNT-11-roles-cyclomaticComplexity_Value"
name="ASCMM-MNT-11-roles-cyclomaticComplexity_Value"
xmi:type="smm:Operation"
language="OCL"
body="ASCMM:ASCMMLibrary::ASCMM-MNT-11-roles-
cyclomaticComplexity_Value.A_boundTo_Binding::Binding().fulfilledBy()"
trait="OccurrenceGapSizing"/>

 The occurrence gap size is then an smm:BinaryMeasure computing the difference according to the
formulae above. E.g. with ASCMM-MNT-11:

• <measureElement
xmi:type="smm:BinaryMeasure"
xmi:id="ASCMM-MNT-11_OccurrenceGapSize"
name="ASCMM-MNT-11_OccurrenceGapSize"
functor="minus"
unit="integer"
scope="ASCMM-MNT-11_Occurrence"
trait="OccurrenceGapSizing"
shortDescription="Occurrence gap size of ASCMM-MNT-11 pattern" />

Automated Technical Debt Measure, 1.0 49

Measure specifications

For each applicable patterns from ASCMM, ASCRM, ASCPEM, and ASCSM patterns (listed above), an
smm:BinaryMeasure (named as the pattern key with a '_OccurrenceGapSize' suffix) shall be defined.

For each applicable implementation role (listed above), the smm:DirectMeasure (named as the role
name without any suffix), and its smm:Operation (named as the role name with a '_Value' suffix)
shall be defined.

In the case of ASCPEM-PRF-4, as the pattern relies on two gaps, two intermediate
smm:BinaryMeasure (named ASCPEM-PRF-4_OccurrenceGapSize_Part1 and ASCPEM-PRF-
4_OccurrenceGapSize_Part2) shall be defined to handle each gap.

7.3.3.8 Evolution Status

This sub-clause shall only be applicable when two revisions of the software are available for
measurement.

Involved code elements

The evolution status of involved code elements shall be computed the following way:

• For each implementation role, use the defined scope to identify code elements

• For each code element, its status shall be identified as added, updated, deleted, or
unchanged based on the following guidelines.
◦ ‘added’ in latest Revision, when there is no code element which evolved into it.
◦ ‘deleted’ from previous Revision, when there is no code element into which it evolved.
◦ ‘updated’ in latest Revision, where the evidence in the source code that its

implementation evolved.
◦ ‘unchanged’ if the code element remains identical in the two revisions.

To identify the evolution status of any code element, a set of smm:OCLOperation for each code
element shall be determined.

• added
<measureElement xmi:type="smm:OCLOperation"
xmi:id="isAddedElement"
name="isAddedElement"
context="kdm:Core::Element"
body="(isInLatestRevision and not fromRevisionMeasurementScope()-&gt;exists(e:
kdm:Core::Element | e.evolvedTo = self))"
trait="EvolutionStatus"
shortDescription="Evolutions status measured code element: TRUE if added between
revisions"/>

• deleted
<measureElement xmi:type="smm:OCLOperation"
xmi:id="isDeletedElement"
name="isDeletedElement"
context="kdm:Core::Element"
body="(isInPreviousRevision and not toRevisionMeasurementScope()-&gt;exists(e:
kdm:Core::Element | e.evolvedFrom = self))"
trait="EvolutionStatus"

 50 Automated Technical Debt Measure, 1.0

shortDescription="Evolutions status measured code element: TRUE if deleted between
revisions"/>

• updated
<measureElement xmi:type="smm:OCLOperation"
xmi:id="isUpdatedElement"
name="isUpdatedElement"
context="kdm:Core::Element"
body="(isInLatestRevision and toRevisionMeasurementScope()-&gt;exists(e:
kdm:Core::Element | e.evolvedTo = self and self.source &lt;&gt; e.source))"
trait="EvolutionStatus"
shortDescription="Evolutions status measured code element: TRUE if updated between
revisions"/>

• unchanged
<measureElement xmi:type="smm:OCLOperation"
xmi:id="isUnchangedElement"
name="isUnchangedElement"
context="kdm:Core::Element"
body="(isInLatestRevision and not (isUpdatedElement or isAddedElement))"
trait="EvolutionStatus"
shortDescription="Evolutions status measured code element: TRUE if unchanged between
revisions"/>

Occurrence

The computation of the evolution status of each occurrence shall include the following additional
steps.

1. The analyzer shall check to determine if the roles are implemented by code elements
evolved from code elements implementing the same roles in the previous release.

◦ either with unchanged code elements, identified via a first smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation"
xmi:id="hasAllItsCodeElementsUnchangedFromCodeElementsInBindingOfSameRole"
name="hasAllItsCodeElementsUnchangedFromCodeElementsInBindingOfSameRole"
context="SPMS:Observations::Binding"
body="self.fullfiled()-forAll(e: kdm:Core::Element | e.isUnchangedElement and
e.evolvedFrom.A_Binding_fulfilledBy::Binding()-&gt;exist(b: Binding | b.boundTo
= self.boundTo))"
trait="EvolutionStatus"
shortDescription="Evolutions status role implemetation: TRUE if all code elements
unchanged between revisions and implementing a binding of the same role in previous
release"/>

◦ either with unchanged or updated code elements, identified via a second
smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation"
xmi:id="hasAllItsCodeElementsEvolvedFromCodeElementsInBindingOfSameRole"
name="hasAllItsCodeElementsEvolvedFromCodeElementsInBindingOfSameRole"
context="SPMS:Observations::Binding"
body="self.fullfiled()-forAll(e: kdm:Core::Element |
e.evolvedFrom.A_Binding_fulfilledBy::Binding()-&gt;exist(b: Binding | b.boundTo

Automated Technical Debt Measure, 1.0 51

= self.boundTo))"
trait="EvolutionStatus"
shortDescription="Evolutions status role implemetation: TRUE if all code elements
implementing a binding of the same role in previous release"/>

1. An occurrence shall be considered as:

◦ unchanged, if all its roles are implemented by unchanged code elements evolved from
code elements implementing the same roles in the previous release, identified via a first
smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation" xmi:id="isUnchangedOccurrence"
name="isUnchangedOccurrence" context="SPMS:Observations::PatternInstance"
body="self.fulfillments()-&gt;forAll(b: SPMS:Observations::Binding |
b.hasAllItsCodeElementsUnchangedFromCodeElementsInBindingOfSameRole)"
trait="EvolutionStatus"
shortDescription="Evolutions status occurrence: TRUE if unchanged between
revisions"/>

◦ updated, if not unchanged and all its roles are implemented by code elements evolved
from code elements implementing the same roles in the previous release, identified via a
second smm:OCLOperation
 <measureElement xmi:type="smm:OCLOperation" xmi:id="isUpdatedOccurrence"
name="isUpdatedOccurrence"
context="SPMS:Observations::PatternInstance"
body="self.fulfillments()-&gt;forAll(b: SPMS:Observations::Binding |
b.hasAllItsCodeElementsUnchangedFromCodeElementsInBindingOfSameRole) and not
self.isUnchangedOccurrence"
trait="EvolutionStatus"
shortDescription="Evolutions status occurrence: TRUE if updated between revisions"/>

◦ added, if in “ToRevision” revision but not updated nor unchanged, identified via a third
smm:OCLOperation
 <measureElement xmi:type="smm:OCLOperation"
xmi:id="isAddedOccurrence"
name="isAddedOccurrence"
context="SPMS:Observations::PatternInstance"
body="self.isInLatest and not self.isUnchangedOccurrence and not
self.isUpdatedOccurrence"
trait="EvolutionStatus"
shortDescription="Evolutions status occurrence: TRUE if added between revisions"/>

7.3.4 Adjustment factor

For each occurrence, the adjustment factor shall be calculated as the simple product of the following
contributions:

• Technological diversity,

• Complexity overhead average, across all implementation roles,

• Exposure overhead average, across all exposed implementation roles,

• Sharing opportunity average, across all implementation roles

 52 Automated Technical Debt Measure, 1.0

• Occurrence Gap Size, when applicable

Note that the evolution status information is not used for adjustment.

7.3.4.1 Technological diversity contribution

The contribution from the occurrence technological diversity specified in sub-clause 7.3.3.3 is direct,
that is, the number of languages in which the occurrence is implemented is used as the Technological
Diversity input to the adjustment factor calculation.

7.3.4.2 Complexity overhead average contribution

The contribution from the complexity overhead specified in sub-clause 7.3.3.4 for each
implementation role is a simple average.

E.g. with ASCRM-CWE-120:

 <measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="ASCRM-CWE-120_OccurrenceComplexityOverheadAverage"
name="ASCRM-CWE-120_OccurrenceComplexityOverheadAverage"
unit="Real"
accumulator="average"
scope="ASCRM-CWE-120_Occurrence"
trait="ComplexityEstimating"
category="FunctionalMetrics"
shortDescription="Complexity overhead average of an occurrence of ASCRM-CWE-120 pattern,
measured as the AEP complexity overhead when compared to simplest complexity" />

Figure 14 illustrates the SMM modeling with ASCRM-CWE-120 pattern.

Automated Technical Debt Measure, 1.0 53

:CollectiveMeasure
name= ASCRM-CWE-120_OccurrenceComplexityOverheadAverage
unit= Real
accumulator= average
scope= ASCRM-CWE-120_Occurrence

:RatioMeasure
name= ASCRM-CWE-120-roles-targetTransformationSequence_ComplexityOverhead

+baseMeasureTo

:RatioMeasure
name= ASCRM-CWE-120-roles-targetBufferAllocationStatement_ComplexityOverhead

+baseMeasureTo

:RatioMeasure
name= ASCRM-CWE-120-roles-sourceTransformationSequence_ComplexityOverhead

+baseMeasureTo

:RatioMeasure
name= ASCRM-CWE-120-roles-sourceBufferAllocationStatement_ComplexityOverhead

+baseMeasureTo

:RatioMeasure
name= ASCRM-CWE-120-roles-moveBufferStatement_ComplexityOverhead

+baseMeasureTo

Figure 14: ASCRM-CWE-120 occurrence complexity overhead average with SMM CollectiveMeasure
and RatioMeasures

Measure specifications

An smm:CollectiveMeasure measure (named as the pattern key with a
'_OccurrenceComplexityOverheadAverage' suffix) shall be defined for each source code pattern from
ASCMM, ASCRM, ASCPEM, and ASCSM, as illustrated with the ASCRM-CWE-120 pattern above.

7.3.4.3 Exposure overhead average contribution

The contribution from the exposure specified in sub-clause 7.3.3.5 for each implementation role is a
simple average. It is considered an overhead vis-à-vis the ‘best case scenario’ where the exposure
value is “1”.

E.g. with ASCRM-CWE-120:

 <measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="ASCRM-CWE-120_OccurrenceExposureOverheadAverage"
name="ASCRM-CWE-120_OccurrenceExposureOverheadAverage"
unit="Real"
accumulator="average"
scope="ASCRM-CWE-120_Occurrence"
trait="ExposureEstimating"
category="FunctionalMetrics"
shortDescription="Exposure overhead average of an occurrence of pattern, measured as the
exposure overhead when compared to simplest exposure of 1" />

Figure 15 illustrates the SMM modeling with ASCRM-CWE-120 pattern.

Measure specifications

An smm:CollectiveMeasure measure (named as the pattern key with a
'_OccurrenceExposureOverheadAverage' suffix) shall be defined for each source code pattern from
ASCMM, ASCRM, ASCPEM, and ASCSM, as illustrated with the ASCRM-CWE-120 pattern above.

7.3.4.4 Sharing opportunity average contribution

The contribution from the sharing opportunity specified in sub-clause 7.3.3.6 for each
implementation role is a simple average. It is considered an opportunity to share the effort vis-à-vis
the nominal situation where the concentration value is 1.

 54 Automated Technical Debt Measure, 1.0

:CollectiveMeasure
name= ASCRM-CWE-120_OccurrenceExposureOverheadAverage
unit= Real
accumulator= average
scope= ASCRM-CWE-120_Occurrence

:RescaledMeasure
name= ASCRM-CWE-120-roles-moveBufferStatement_Exposure

+baseMeasureTo

Figure 15: ASCRM-CWE-120 occurrence complexity overhead average with SMM
CollectiveMeasure and RatioMeasures

E.g. with ASCRM-CWE-120:

 <measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="ASCRM-CWE-120_OccurrenceSharingOpportunityAverage"
name="ASCRM-CWE-120_OccurrenceSharingOpportunityAverage"
unit="Real"
accumulator="average"
scope="ASCRM-CWE-120_Occurrence"
trait="SharingLevelEstimating"
category="FunctionalMetrics"
shortDescription="Sharing opportunity average of an occurrence of ASCRM-CWE-120 pattern,
measured as the number of distinct occurrences sharing code elements" />

Figure 16 illustrates the SMM modeling with ASCRM-CWE-120 pattern.

Measure specifications

An smm:CollectiveMeasure measure (named as the pattern key with a
'_OccurrenceSharingOpportunityAverage' suffix) shall be defined for each source code pattern from
ASCMM, ASCRM, ASCPEM, and ASCSM, as illustrated with the ASCRM-CWE-120 pattern above.

7.3.4.5 Occurrence gap size contribution

The contribution from the occurrence gap size specified in sub-clause 7.3.3.7 is direct, that is, the
difference between exceeding value and threshold value not to exceed is used as input to the
adjustment factor calculation.

Automated Technical Debt Measure, 1.0 55

:CollectiveMeasure
name= ASCRM-CWE-120_OccurrenceSharingOpportunityAverage
unit= Real
accumulator= average
scope= ASCRM-CWE-120_Occurrence

:RescaledMeasure
name= ASCRM-CWE-120-roles-targetTransformationSequence_SharingOpportunity

+baseMeasureTo

:RescaledMeasure
name= ASCRM-CWE-120-roles-targetBufferAllocationStatement_SharingOpportunity

+baseMeasureTo

:RescaledMeasure
name= ASCRM-CWE-120-roles-sourceTransformationSequence_SharingOpportunity

+baseMeasureTo

:RescaledMeasure
name= ASCRM-CWE-120-roles-sourceBufferAllocationStatement_SharingOpportunity

+baseMeasureTo

:RescaledMeasure
name= ASCRM-CWE-120-roles-moveBufferStatement_SharingOpportunity

+baseMeasureTo

Figure 16: ASCRM-CWE-120 occurrence sharing opportunity average with SMM CollectiveMeasure
and RescaledMeasures

7.3.4.6 Adjustment factor computation

For each occurrence, the adjustment factor shall be computed as the product of all four
contributions.

E.g. with ASCRM-CWE-120:

 <measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="ASCRM-CWE-120_OccurrenceAdjustmentFactor"
name="ASCRM-CWE-120_OccurrenceAdjustmentFactor"
accumulator="product"
unit="Real"
scope="ASCRM-CWE-120_Occurrence"
trait="RemediationEffortEstimating"
category="FunctionalMetrics"
shortDescription="Contextual Factor to adjust Raw Remediation Effort to remove one occurrence
of ASCRM-CWE-120 in latest Revision" />

Figure 17 illustrates the SMM modeling with ASCRM-CWE-120 pattern.

Figure 18 illustrates the SMM modeling with ASCMM-MNT-11, for which a fifth contribution from
the Occurrence Gap Size is also part of the computation.

 56 Automated Technical Debt Measure, 1.0

:CollectiveMeasure
name= ASCRM-CWE-120_OccurrenceAdjustmentFactor
unit= Real
accumulator= product
scope= ASCRM-CWE-120_Occurrence

:CollectiveMeasure
name= ASCRM-CWE-120_OccurrenceComplexityOverheadAverage

+baseMeasureTo

:CollectiveMeasure
name= ASCRM-CWE-120_OccurrenceExposureOverheadAverage

+baseMeasureTo

:CollectiveMeasure
name= ASCRM-CWE-120_OccurrenceSharingOpportunityAverage

+baseMeasureTo

:Counting
name= ASCRM-CWE-120_OccurrenceTechnologicalDiversity

+baseMeasureTo

Figure 17: ASCRM-CWE-120 occurrence adjustment factor with SMM CollectiveMeasures and
Counting

Measure specifications

An smm:CollectiveMeasure measure (named as the pattern key with a
'_OccurrenceAdjustmentFactor' suffix) shall be defined for each source code pattern from ASCMM,
ASCRM, ASCPEM, and ASCSM, as illustrated with the ASCRM-CWE-120 pattern above.

7.3.5 Adjusted remediation effort

For each occurrence, the adjusted remediation effort is simply the product of the unadjusted
remediation effort value from sub-clause 7.3.2 by the adjustment factor value from sub-clause 7.3.4.
For example, with ASCRM-CWE-120:

<measureElement xmi:type="smm:BinaryMeasure"
xmi:id="ASCRM-CWE-120_OccurrenceRemediationEffort"
name="ASCRM-CWE-120_OccurrenceRemediationEffort"
functor="multiply"
unit="effort(minutes)"
scope="ASCRM-CWE-120_Occurrence"
trait="RemediationEffortEstimating"
category="FunctionalMetrics"
shortDescription="Remediation Effort to remove one occurrence of ASCRM-CWE-120 in latest
Revision" />

Figure 19 illustrates the SMM modeling with the ASCRM-CWE-120 pattern.

Automated Technical Debt Measure, 1.0 57

:CollectiveMeasure
name=ASCMM-MNT-11 _OccurrenceAdjustmentFactor
unit= Real
accumulator= product
scope= ASCMM-MNT-11_Occurrence

+baseMeasureTo

+baseMeasureTo

+baseMeasureTo

+baseMeasureTo

:BinaryMeasure
name=ASCMM-MNT-11 _OccurrenceGapSize

:CollectiveMeasure
name=ASCMM-MNT-11 _OccurrenceComplexityOverheadAverage

:CollectiveMeasure
name=ASCMM-MNT-11 _OccurrenceExposureOverheadAverage

:CollectiveMeasure
name=ASCMM-MNT-11 _OccurrenceSharingOpportunityAverage

:Counting
name=ASCMM-MNT-11 _OccurrenceTechnologicalDiversity

+baseMeasureTo

Figure 18: ASCMM-MNT-11 occurrence adjustment factor with SMM CollectiveMeasures,
BinaryMeasure, and Counting

Measure specifications

An smm:BinaryMeasure measure (named as the pattern key with a '_OccurrenceRemediationEffort'
suffix) shall be defined for each source code pattern from ASCMM, ASCRM, ASCPEM, and ASCSM, as
illustrated with the ASCRM-CWE-120 pattern above.

7.4 Quantification of Remediation Effort at the Pattern level

The Pattern Remediation Effort values are simply the sum for each pattern of the Occurrence
Remediation Effort values described in sub-clause 7.3.5

This summation shall be done with an smm:CollectiveMeasure. For example, with the ASCRM-CWE-
120 pattern:

<measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="ASCRM-CWE-120_PatternRemediationEffort"
name="ASCRM-CWE-120_PatternRemediationEffort"
accumulator="sum"
unit="effort(minutes)"
scope="toRevisionMeasurementScope"
trait="RemediationEffortEstimating"
category="FunctionalMetrics"
shortDescription="Remediation Effort to remove all occurrences of ASCRM-CWE-120 in latest
Revision" />

Figure 20 illustrates the SMM modeling with ASCRM-CWE-120 pattern.

 58 Automated Technical Debt Measure, 1.0

:BinaryMeasure
name= ASCRM-CWE-120_OccurrenceRemediationEffort
unit= effort(minutes)
functor= multiply

:DirectMeasure
name= ASCRM-CWE-120_OccurrenceUnadjustedRemediationEffort

+baseMeasure1To

:CollectiveMeasure
name= ASCRM-CWE-120_OccurrenceAdjustmentFactor

+baseMeasure2To

Figure 19: ASCRM-CWE-120 occurrence “adjusted” remediation effort with SMM BinaryMeasure,
CollectiveMeasure, and DirectMeasure

:CollectiveMeasure
name= ASCRM-CWE-120_PatternRemediationEffort
unit= effort(minutes)
functor= sum

:CollectiveMeasure
name= ASCRM-CWE-120_OccurrenceRemediationEffort

+baseMeasureTo

Figure 20: ASCRM-CWE-120 pattern remediation effort with SMM CollectiveMeasures

Measure specifications

An smm:CollectiveMeasure measure (named as the pattern key with a '_PatternRemediationEffort'
suffix) shall be defined for each source code pattern from ASCMM, ASCRM, ASCPEM, and ASCSM, as
illustrated with the ASCRM-CWE-120 pattern above.

7.5 Quantification of Remediation Effort for CISQ Quality
Characteristics

Remediation efforts shall be calculated for each of the CISQ Quality Characteristics.

 Automated Reliability Remediation Effort Measure (ARREM)

 Automated Security Remediation Effort Measure (ASREM)

 Automated Performance Efficiency Remediation Effort Measure (APEREM)

 Automated Maintainability Remediation Effort Measure (AMREM)

The AMREM, ARREM, APEREM, and ASREM values shall be computed by summing the remediation
efforts for applicable source code patterns included in the ASCMM, ASCRM, ASCPEM, and ASCSM
specifications respectively.

Pattern applicability considerations

Although designed as technology-agnostic specifications, ASCMM, ASCRM, ASCPEM, and ASCSM
contain source code patterns that are not applicable to all programming languages. When a pattern
is not applicable, there are no occurrences to process.

Measures' specifications

• AMREM is an smm:CollectiveMeasure that shall sum the pattern-level remediation effort
measure values from sub-clause 7.4 (note that the smm:MeasureRelationship elements
towards pattern level measures are not shown here)

◦ <measureElements xmi:id="ATDM-ATDMLibrary-
AutomatedMaintainabilityRemediationEffortMeasureInLatest"
 xmi:type="smm:CollectiveMeasure"
 name="AutomatedMaintainabilityRemediationEffortMeasure"
 accumulator="sum" scope="LatestRevision"
 trait="RemediationEffortEstimating"
 unit="effort(minutes)"
baseMeasureTo="
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
1_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
10_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
11_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
12_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-

Automated Technical Debt Measure, 1.0 59

13_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
14_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
15_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
16_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
17_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
18_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
19_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
2_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
20_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
3_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
4_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
5_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
6_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
7_PatternRemediationEffort
AutomatedMaintainabilityRemediationEffortMeasure_to_ASCMM-MNT-
8_PatternRemediationEffort" />

• ARREM is an smm:CollectiveMeasure that shall sum the pattern-level remediation effort
measure values from sub-clause 7.4 (note that the smm:MeasureRelationship elements
towards pattern level measures are not shown here)

◦ <measureElements xmi:id="ATDM-ATDMLibrary-
AutomatedReliabilityRemediationEffortMeasureInLatest"
 xmi:type="smm:CollectiveMeasure"
 name="AutomatedReliabilityRemediationEffortMeasure"
 accumulator="sum" scope="LatestRevision"
 trait="RemediationEffortEstimating"
 unit="effort(minutes)"
 baseMeasureTo="
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-CWE-
120_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-CWE-252-
data_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-CWE-252-
resource_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-CWE-
396_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-CWE-

 60 Automated Technical Debt Measure, 1.0

397_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-CWE-
456_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-CWE-
674_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-CWE-
704_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-CWE-
772_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-CWE-
788_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
1_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
10_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
11_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
12_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
13_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
14_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
15_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
16_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
17_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
18_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
19_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
2_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
3_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
4_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
5_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
6_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
7_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
8_PatternRemediationEffort
AutomatedReliabilityRemediationEffortMeasure_to_ASCRM-RLB-
9_PatternRemediationEffort" />

Automated Technical Debt Measure, 1.0 61

• ASREM is an smm:CollectiveMeasure that shall sum the pattern-level remediation effort
measure values from sub-clause 7.4 (note that the smm:MeasureRelationship elements
towards pattern level measures are not shown here)

◦ <measureElements xmi:id="ATDM-ATDMLibrary-
AutomatedSecurityRemediationEffortMeasureInLatest"
 xmi:type="smm:CollectiveMeasure"
 name="AutomatedSecurityRemediationEffortMeasure"
 accumulator="sum"
 scope="LatestRevision"
 trait="RemediationEffortEstimating"
 unit="effort(minutes)"
 baseMeasureTo="
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
120_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
129_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
134_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
22_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-252-
resource_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
327_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
396_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
397_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
434_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
456_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
606_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
667_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
672_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
681_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
99_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
772_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
78_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
789_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
79_PatternRemediationEffort

 62 Automated Technical Debt Measure, 1.0

AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
798_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
835_PatternRemediationEffort
AutomatedSecurityRemediationEffortMeasure_to_ASCSM-CWE-
89_PatternRemediationEffort" />

• APEREM is an smm:CollectiveMeasure that shall sum the pattern-level remediation effort
measure values from sub-clause 7.4 (note that the smm:MeasureRelationship elements
towards pattern level measures are not shown here)

◦ <measureElements xmi:id="ATDM-ATDMLibrary-
AutomatedPerformanceEfficiencyRemediationEffortMeasureInLatest"
 xmi:type="smm:CollectiveMeasure"
 name="AutomatedPerformanceEfficiencyRemediationEffortMeasure"
 accumulator="sum" scope="LatestRevision"
 trait="RemediationEffortEstimating"
 unit="effort(minutes)"
baseMeasureTo="
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
1_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
10_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
11_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
12_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
13_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
14_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
15_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
2_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
3_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
4_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
5_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
6_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
7_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
8_PatternRemediationEffort
AutomatedPerformanceEfficiencyRemediationEffortMeasure_to_ASCPEM-PRF-
9_PatternRemediationEffort" />

The AMREM, ARREM, APEREM, and ASREM flow are displayed in Figures 21, 22, 23, and 24
respectively.

Automated Technical Debt Measure, 1.0 63

 64 Automated Technical Debt Measure, 1.0

:BinaryMeasure
name= ASCMM-MNT-1_PatternRemediationEffort

:CollectiveMeasure
name= AutomatedMaintainabilityRemediationEffortMeasure
accumulator=sum
unit=EffortInMinutes

+ baseMeasureTo

:BinaryMeasure
name= ASCMM-MNT-2_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-3_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-4_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-5_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-6_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-7_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-8_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-9_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-10_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-11_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-12_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-13_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-14_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-15_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-16_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-17_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-18_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-19_PatternRemediationEffort

:BinaryMeasure
name= ASCMM-MNT-20_PatternRemediationEffort

+ baseMeasureTo

Figure 21: AMREM flow

:BinaryMeasure
name=ASCRM-RLB -1_PatternRemediationEffort

:CollectiveMeasure
name= AutomatedReliabilityRemediationEffortMeasure
accumulator=sum
unit=EffortInMinutes

+ baseMeasureTo

:BinaryMeasure
name=ASCRM-RLB -2_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -3_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -4_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -5_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -6_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -7_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -8_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -9_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -10_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -15_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -16_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -17_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -18_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -19_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-120 _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-252-data _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-252-resource _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-396 _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-397_PatternRemediationEffort

+ baseMeasureTo

:BinaryMeasure
name=ASCRM-RLB -11_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -12_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-456 _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-674_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -13_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -14_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-704 _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-772_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-788_PatternRemediationEffort

Figure 22: ARREM flow

Automated Technical Debt Measure, 1.0 65

:BinaryMeasure
name=ASCPEM-PRF -1_PatternRemediationEffort

:CollectiveMeasure
name= AutomatedPerformanceEfficiencyRemediationEffortMeasure
accumulator=sum
unit=EffortInMinutes

+ baseMeasureTo

:BinaryMeasure
name=ASCPEM-PRF -2_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -3_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -4_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -5_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -6_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -7_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -8_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -9_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -10_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -11_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -12_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -13_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -14_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF -15_PatternRemediationEffort

+ baseMeasureTo

Figure 23: APEREM flow

:BinaryMeasure
name=ASCSM-CWE-120 _PatternRemediationEffort

:CollectiveMeasure
name= AutomatedSecurityRemediationEffortMeasure
accumulator=sum
unit=EffortInMinutes

+ baseMeasureTo

:BinaryMeasure
name=ASCSM-CWE-129 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-134 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-22 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-252-resource _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-327 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-396 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-397 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-434 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-456 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-667 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-672 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-681 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-99 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-772 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-78 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-789 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-79 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-798 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-835 _PatternRemediationEffort

+ baseMeasureTo

:BinaryMeasure
name=ASCSM-CWE-606 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-89 _PatternRemediationEffort

Figure 24: ASREM flow

7.6 Quantification of Remediation Effort at the Software level
(ATDM)

The Automated Technical Debt Measure (ATDM) shall be calculated by summing the remediation
efforts of all patterns in the CISQ Quality Characteristic specifications (ASCMM, ASCRM, ASCPEM,
ASCSM) specifications, counting only once the remediation effort of patterns that are shared
between multiple specifications.

Shared Pattern considerations

Shared patterns shall be identified based on the Comment :PatternSection of patterns defined in the
ASCMM, ASCRM, ASCPEM, and ASCSM specifications. When computing the overall ATDM value,
occurrences of shared patterns shall be counted only once. Shared patterns include:

• ASCSM-CWE-120 and ASCRM-CWE-120
• ASCSM-CWE-456 and ASCRM-CWE-456
• ASCSM-CWE-772 and ASCRM-CWE-772
• ASCSM-CWE-252-resource and ASCRM-CWE-252-resource
• ASCSM-CWE-396 and ASCRM-CWE-396
• ASCSM-CWE-397 and ASCRM-CWE-397
• ASCRM-RLB-10 and ASCPEM-PRF-1
• ASCRM-RLB-13 and ASCMM-MNT-7

In the measure specifications below, only the following patterns are used:
• ASCRM-CWE-120
• ASCRM-CWE-456
• ASCRM-CWE-772
• ASCRM-CWE-252-resource
• ASCRM-CWE-396
• ASCRM-CWE-397
• ASCPEM-PRF-1
• ASCMM-MNT-7

Measure specifications

• ATDM is an smm:CollectiveMeasure that shall sum the pattern-level remediation effort
measure values from sub-clause 7.4 (note that the smm:MeasureRelationship elements
towards pattern level measures are not shown here)

◦ <measureElements xmi:id="ATDM-ATDMLibrary-
AutomatedTechnicalDebtPrincipalMeasureInLatest"
 xmi:type="smm:CollectiveMeasure"
 name="AutomatedTechnicalDebtPrincipalMeasure"
 accumulator="sum" scope="LatestRevision"
 trait="RemediationEffortEstimating"
 unit="effort(minutes)"
baseMeasureTo="
AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-MNT-
1_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-
MNT-10_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-MNT-

 66 Automated Technical Debt Measure, 1.0

11_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-
MNT-12_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-MNT-
13_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-
MNT-14_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-MNT-
15_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-
MNT-16_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-MNT-
17_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-
MNT-18_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-MNT-
19_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-
MNT-2_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-MNT-
20_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-
MNT-3_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-MNT-
4_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-
MNT-5_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-MNT-
6_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-
MNT-7_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCMM-MNT-
8_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-
CWE-120_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-CWE-252-
data_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-CWE-252-
resource_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-CWE-
396_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-
CWE-397_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-CWE-
456_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-
CWE-674_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-CWE-
704_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-
CWE-772_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-CWE-
788_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-
RLB-1_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-RLB-
11_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-
RLB-12_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-RLB-
14_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-
RLB-15_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-RLB-
16_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-

Automated Technical Debt Measure, 1.0 67

RLB-17_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-RLB-
18_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-
RLB-19_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-RLB-
2_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-
RLB-3_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-RLB-
4_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-
RLB-5_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-RLB-
6_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-
RLB-7_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-RLB-
8_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCRM-
RLB-9_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-CWE-
129_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-
CWE-134_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-CWE-
22_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-
CWE-327_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-CWE-
434_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-
CWE-606_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-CWE-
667_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-
CWE-672_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-CWE-
681_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-
CWE-99_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-CWE-
78_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-
CWE-789_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-CWE-
79_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-
CWE-798_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-CWE-
835_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCSM-
CWE-89_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-PRF-
1_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-
PRF-10_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-PRF-
11_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-
PRF-12_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-PRF-
13_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-
PRF-14_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-PRF-

 68 Automated Technical Debt Measure, 1.0

15_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-
PRF-2_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-PRF-
3_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-
PRF-4_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-PRF-
5_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-
PRF-6_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-PRF-
7_PatternRemediationEffort AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-
PRF-8_PatternRemediationEffort
AutomatedTechnicalDebtPrincipalMeasure_to_ASCPEM-PRF-
9_PatternRemediationEffort" />

The ATDM calculation flow is displayed in figure 25.

Automated Technical Debt Measure, 1.0 69

 70 Automated Technical Debt Measure, 1.0

Automated Technical Debt Measure, 1.0 71

:BinaryMeasure
name=ASCRM-RLB -1_PatternRemediationEffort

:CollectiveMeasure
name= AutomatedTechnicalDebtMeasure
accumulator=sum unit=EffortInMinutes

+ baseMeasureTo

:BinaryMeasure
name=ASCRM-RLB -2_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -3_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -4_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -5_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -6_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -7_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -8_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -9_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-1 _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -15_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -16_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -17_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -18_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -19_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-120 _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-252-data _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-252-resource _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-396 _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-397_PatternRemediationEffort

+ baseMeasureTo

:BinaryMeasure
name=ASCRM-RLB -11_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -12_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-456 _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-674_PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT -7_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-RLB -14_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-704 _PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-772_PatternRemediationEffort

:BinaryMeasure
name=ASCRM-CWE-788_PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-1 _PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-2_PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-3_PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-4 _PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-5_PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-6_PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-8 _PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-10_PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-11_PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT- 12_PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-13 _PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-14 _PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-15 _PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-16 _PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-17 _PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-18 _PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-19 _PatternRemediationEffort

:BinaryMeasure
name=ASCMM-MNT-20 _PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-2 _PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-7 _PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-8 _PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-9 _PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-10 _PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-11 _PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-12 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-434 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-607 _PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-13 _PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-14_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-3 _PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-4 _PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-15 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-129_PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-5 _PatternRemediationEffort

:BinaryMeasure
name=ASCPEM-PRF-6 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-134 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-22_PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-327_PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-667 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-672_PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-681_PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-99 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-78_PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-789_PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-79 _PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-798_PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-835_PatternRemediationEffort

:BinaryMeasure
name=ASCSM-CWE-89_PatternRemediationEffort

Figure 25: ATDM flow

7.7 Summary of remediation effort parameters

7.7.1 ASCSM remediation configuration

Table 5 lists the values to be used to compute unadjusted remediation effort for each occurrence in
sub-clause 7.3.2 for ASCSM source code patterns.

Time to fix (minutes) ASCSM pattern name

Default Range

Lo Hi

30 15 60 ASCSM-CWE-120 Buffer Copy without Checking Size of Input

50 15 180 ASCSM-CWE-129 Array Index Improper Input Neutralization

60 20 180 ASCSM-CWE-134 Format String Improper Input Neutralization

60 20 180 ASCSM-CWE-22 Path Traversal Improper Input Neutralization

50 20 180 ASCSM-CWE-252-resource Unchecked Return Parameter Value of named
Callable and Method Control Element with Read, Write, and Manage Access to
Platform Resource

120 45 300 ASCSM-CWE-327 Broken or Risky Cryptographic Algorithm Usage

50 20 180 ASCSM-CWE-396 Declaration of Catch for Generic Exception

50 20 180 ASCSM-CWE-397 Declaration of Throws for Generic Exception

90 20 240 ASCSM-CWE-434 File Upload Improper Input Neutralization

50 20 120 ASCSM-CWE-456 Storable and Member Data Element Missing Initialization

60 20 120 ASCSM-CWE-606 Unchecked Input for Loop Condition

120 30 240 ASCSM-CWE-667 Shared Resource Improper Locking

90 30 180 ASCSM-CWE-672 Expired or Released Resource Usage

60 20 180 ASCSM-CWE-681 Numeric Types Incorrect Conversion

50 20 240 ASCSM-CWE-99 Improper Control of Resource Identifiers ('Resource Injection')

120 20 270 ASCSM-CWE-772 Missing Release of Resource after Effective Lifetime

90 30 150 ASCSM-CWE-78 OS Command Injection Improper Input Neutralization

50 20 120 ASCSM-CWE-789 Uncontrolled Memory Allocation

120 20 270 ASCSM-CWE-79 Cross-site Scripting Improper Input Neutralization

90 20 180 ASCSM-CWE-798 Hard-Coded Credentials Usage for Remote Authentication

90 30 150 ASCSM-CWE-835 Loop with Unreachable Exit Condition ('Infinite Loop')

90 20 180 ASCSM-CWE-89 SQL Injection Improper Input Neutralization
Table 5: Configuration of unadjusted remediation effort per ASCSM occurrence

7.7.2 ASCRM remediation configuration

Table 6 lists the values to be used to compute unadjusted remediation effort for each occurrence in
sub-clause 7.3.2 for ASCRM source code patterns.

 72 Automated Technical Debt Measure, 1.0

Time to fix (minutes) ASCRM pattern name

Default Range

Lo Hi

30 15 60 ASCRM-CWE-120 Buffer Copy without Checking Size of Input

50 20 120 ASCRM-CWE-252-data Unchecked Return Parameter Value of named Callable
and Method Control Element with Read, Write, and Manage Access to Data
Resource

50 20 120 ASCRM-CWE-252-resource Unchecked Return Parameter Value of named
Callable and Method Control Element with Read, Write, and Manage Access to
Platform Resource

50 20 120 ASCRM-CWE-396 Declaration of Catch for Generic Exception

50 20 90 ASCRM-CWE-397 Declaration of Throws for Generic Exception

60 20 150 ASCRM-CWE-674 Uncontrolled Recursion

30 20 60 ASCRM-CWE-456 Storable and Member Data Element Missing Initialization

60 20 150 ASCRM-CWE-704 Incorrect Type Conversion or Cast

120 45 300 ASCRM-CWE-772 Missing Release of Resource after Effective Lifetime

50 20 90 ASCRM-CWE-788 Memory Location Access After End of Buffer

50 20 120 ASCRM-RLB-1 Empty Exception Block

40 20 90 ASCRM-RLB-2 Serializable Storable Data Element without Serialization Control
Element

90 20 300 ASCRM-RLB-3 Serializable Storable Data Element with non-Serializable Item
Elements

90 20 180 ASCRM-RLB-4 Persistant Storable Data Element without Proper Comparison
Control Element

240 90 420 ASCRM-RLB-5 Runtime Resource Management Control Element in a
Component Built to Run on Application Servers

40 20 120 ASCRM-RLB-6 Storable or Member Data Element containing Pointer Item
Element without Proper Copy Control Element

60 30 230 ASCRM-RLB-7 Class Instance Self Destruction Control Element

120 45 300 ASCRM-RLB-8 Named Callable and Method Control Elements with Variadic
Parameter Element

40 20 120 ASCRM-RLB-9 Float Type Storable and Member Data Element Comparison with
Equality Operator

Automated Technical Debt Measure, 1.0 73

Time to fix (minutes) ASCRM pattern name

90 30 300 ASCRM-RLB-10 Data Access Control Element from Outside Designated Data
Manager Component

120 30 240 ASCRM-RLB-11 Named Callable and Method Control Element in Multi-Thread
Context with non-Final Static Storable or Member Element

60 20 120 ASCRM-RLB-12 Singleton Class Instance Creation without Proper Lock Element
Management

240 60 360 ASCRM-RLB-13 Inter-Module Dependency Cycles

120 50 300 ASCRM-RLB-14 Parent Class Element with References to Child Class Element

50 20 180 ASCRM-RLB-15 Class Element with Virtual Method Element without Virtual
Destructor

90 40 300 ASCRM-RLB-16 Parent Class Element without Virtual Destructor Method
Element

90 30 120 ASCRM-RLB-17 Child Class Element without Virtual Destructor unlike its Parent
Class Element

120 45 300 ASCRM-RLB-18 Storable and Member Data Element Initialization with Hard-
Coded Network Resource Configuration Data

90 30 240 ASCRM-RLB-19 Synchronous Call Time-Out Absence
Table 6: Configuration of unadjusted remediation effort per ASCRM occurrence

7.7.3 ASCPEM remediation configuration

Table 7 lists the values to be used to compute unadjusted remediation effort for each occurrence in
sub-clause 7.3.2 for ASCPEM source code patterns.

Time to fix (minutes) ASCPEM pattern name

Default Range

Lo Hi

60 20 180 ASCPEM-PRF-1 Static Block Element containing Class Instance Creation Control
Element

30 20 90 ASCPEM-PRF-2 Immutable Storable and Member Data Element Creation

120 20 300 ASCPEM-PRF-3 Static Member Data Element outside of a Singleton Class
Element

360 120 600 ASCPEM-PRF-4 Data Resource Read and Write Access Excessive Complexity

150 60 300 ASCPEM-PRF-5 Data Resource Read Access Unsupported by Index Element

240 60 480 ASCPEM-PRF-6 Large Data Resource ColumnSet Excessive Number of Index

 74 Automated Technical Debt Measure, 1.0

Time to fix (minutes) ASCPEM pattern name

Elements

360 120 600 ASCPEM-PRF-7 Large Data Resource ColumnSet with Index Element of
Excessive Size

180 50 300 ASCPEM-PRF-8 Control Elements Requiring Significant Resource Element within
Control Flow Loop Block

240 90 540 ASCPEM-PRF-9 Non-Stored SQL Callable Control Element with Excessive
Number of Data Resource Access

300 90 540 ASCPEM-PRF-10 Non-SQL Named Callable and Method Control Element with
Excessive Number of Data Resource Access

300 90 480 ASCPEM-PRF-11 Data Access Control Element from Outside Designated Data
Manager Component

120 30 300 ASCPEM-PRF-12 Storable and Member Data Element Excessive Number of
Aggregated Storable and Member Data Elements

300 180 600 ASCPEM-PRF-13 Data Resource Access not using Connection Pooling capability

180 45 360 ASCPEM-PRF-14 Storable and Member Data Element Memory Allocation
Missing De-Allocation Control Element

90 30 210 ASCPEM-PRF-15 Storable and Member Data Element Reference Missing De-
Referencing Control Element

Table 7: Configuration of unadjusted remediation effort per ASCPEM occurrence

7.7.4 ASCMM remediation configuration

Table 8 lists the values to be used to compute unadjusted remediation effort for each occurrence in
sub-clause 7.3.2 for ASCMM source code patterns.

Time to fix (minutes) ASCMM pattern name

Default Range

Lo Hi

90 45 180 ASCMM-MNT-1 Control Flow Transfer Control Element outside Switch Block

180 45 420 ASCMM-MNT-2 Class Element Excessive Inheritance of Class Elements with
Concrete Implementation

30 20 90 ASCMM-MNT-3 Storable and Member Data Element Initialization with Hard-
Coded Literals

360 60 600 ASCMM-MNT-4 Callable and Method Control Element Number of Outward
Calls

Automated Technical Debt Measure, 1.0 75

Time to fix (minutes) ASCMM pattern name

60 20 240 ASCMM-MNT-5 Loop Value Update within the Loop

30 20 90 ASCMM-MNT-6 Commented-out Code Element Excessive Volume

300 60 600 ASCMM-MNT-7 Inter-Module Dependency Cycles

180 40 420 ASCMM-MNT-8 Source Element Excessive Size

120 60 300 ASCMM-MNT-10 Named Callable and Method Control Element Multi-Layer
Span

120 50 300 ASCMM-MNT-11 Callable and Method Control Element Excessive Cyclomatic
Complexity Value

120 50 360 ASCMM-MNT-12 Named Callable and Method Control Element with Layer-
skipping Call

180 50 420 ASCMM-MNT-13 Callable and Method Control Element Excessive Number of
Parameters

180 30 300 ASCMM-MNT-14 Callable and Method Control Element Excessive Number of
Control Elements involving Data Element from Data Manager or File Resource

40 20 90 ASCMM-MNT-15 Public Member Element

40 20 120 ASCMM-MNT-16 Method Control Element Usage of Member Element from
other Class Element

300 60 600 ASCMM-MNT-17 Class Element Excessive Inheritance Level

300 60 600 ASCMM-MNT-18 Class Element Excessive Number of Children

40 20 150 ASCMM-MNT-19 Named Callable and Method Control Element Excessive
Similarity

30 20 90 ASCMM-MNT-20 Unreachable Named Callable or Method Control Element
Table 8: Configuration of unadjusted remediation effort per ASCMM occurrence

7.8 Output Generation

The last step of the automated process shall generate the output. The output shall be a human
readable report that contains sufficient detail to answer the following questions:

• What is the amount of Automated Technical Debt (ATDM)?
• What is the amount of Remediation Effort required for each of the Quality Characteristic

measures (Automated Maintainability/Reliability/Performance Efficiency/Security)?
• What is the amount of ATDM added between two revisions?
• What is the amount of ATDM concentrated in any set of code elements?
• What are the exposures of individual occurrences in the ATDM?
• What are the assumptions used in calculating ATDM?

 76 Automated Technical Debt Measure, 1.0

The generated output file format shall be a common text file format (e.g., .txt or .csv) to allow for
importing to other tools such as Excel or a commercial software estimating package. The output shall
include the following artifacts:

• At the measurement level
◦ ASCSM, ASCRM, ASCPEM, and ASCMM measurement input
◦ Remediation effort configuration input (if not the default values)
◦ AEP Effort Complexity measurement input (if not the default values)

• At the software revision level
◦ ATDM value
◦ AMREM, ARREM, APEREM, and ASREM values

• At the pattern level, for all patterns
◦ Pattern remediation effort values

• At the occurrence level, for all occurrences of all patterns
◦ Occurrence remediation effort values
◦ Occurrence adjustment factor values
◦ Occurrence complexity and exposure overhead average values
◦ Occurrence sharing opportunity average values
◦ Occurrence technological diversity values
◦ Occurrence evolution status

• At the role level, for all occurrences of all patterns
◦ List of code elements implementing a role
◦ Complexity of role implementation code elements
◦ Concentration of role implementation code elements
◦ Evolution status of role implementation code elements
◦ Direct and indirect exposure of role implementation code elements (applicable roles

only)

8 Automated Technical Debt Measure (ATDM)
usage scenarios (informative)

8.1 Risk mitigation

The following scenarios illustrate ways in which the Automated Technical Debt Measure (ATDM) and
qualification measures can be used to help mitigate the risk of the Technical Debt associated with IT
applications.

Automated Technical Debt Measure, 1.0 77

8.1.1 ATDM and its component effort values for AMREM, ARREM, APEREM,
ASREM

Principle

Compare the ATDM value and individual CISQ Quality Characteristic remediation values (AMREM,
ARREM, APEREM, ASREM).

This comparison helps determine when the total ATDM value (normalized by size, if needed) is
unequally distributed between Technical Debt Items associated with Security, Performance Efficiency,
or Reliability.

8.1.2 Exposure

Principle

Chart the occurrences of Technical Debt Items by exposure values to evaluate Risk Propagation, and
remediate destabilizing exposures.

This distribution helps identify which Technical Debt Items possess the greatest risk levels in terms of
cost to remediate, and possible destabilization resulting from remediation activities.

8.1.3 Evolution status

Principle

Chart the ATDM value by the evolution status occurrences across releases.

This distribution helps identify trends in the management of Technical Debt. For instance, how much
legacy Technical Debt exists in an application, and how much is being added or remediated in each
subsequent release. Evolution status can also be used in analyzing trends in the operational risks
and cost of ownership associated with the Technical Debt as it is measured across releases.

8.2 Priority setting

The following scenarios illustrate the ways measures defined in ATDM specifications can be used to
help setting priorities for remediating Technical Debt Items.

8.2.1 ATDM and its component effort values for AMREM, ARREM, APEREM,
ASREM

Principle

Use the CISQ Quality Characteristic remediation values (AMREM, ARREM, APEREM, ASREM) to
prioritize and allocate resources among the Quality Characteristics for remediating Technical Debt
Items.

8.2.2 Technological Diversity

Principle

Chart occurrences of Technical Debt Items by their Technological Diversity. This distribution identifies
Technical Debt Items:

• which will require synchronization between multiple teams involved in a remediation during
the development and release cycle

• which can be handled by a single team.
 78 Automated Technical Debt Measure, 1.0

8.2.3 Exposure

Principle

Chart occurrences of Technical Debt Items by the range of exposure values. This distribution helps
identify Technical Debt Items with:

• the highest Risk Propagation and Fix Destabilization exposure so they can be remediated first
during the release development cycle to remove the most impacting issues with enough
time before the release to handle potential side-effects of the fix.

• the highest Fix Destabilization exposure but lower Risk Propagation exposure that so they
can be remediated next during the release development cycle to remove issues while there
is enough time to handle potential side-effects of the fix.

• the lowest Fix Destabilization exposure that are to be removed near the end of the release
development cycle to remove issues without jeopardizing the stability of the release.

8.2.4 Evolution Status

Principle

Chart occurrences of Technical Debt Items by the evolution status of each occurrence.

This distribution helps identify added Technical Debt Items that should be removed first to avoid
letting future enhancements build on top of them, making them more difficult to remove in the
future and increasing their potential negative impacts.

8.3 Productivity measurement

The following scenario illustrates the way ATDM measures can be used in productivity analysis.

8.3.1 Evolution Status

Principle

Filter the occurrences of Technical Debt Items that were “added” in their evolution status.

Adjust productivity figures for the current release by including the remediation effort of source code
patterns implemented in the current release but not remediated until a future release. Remediation
effort passed to future revisions is often counted as new work rather than rework, thus inflating
productivity numbers.

8.4 Calculating a Contextual Technical Debt Measure (CTDM)

The Contextual Technical Debt Measure (CTDM) is an alternative to the Automated Technical Debt
Measure, because it is adapted to the context of a specific organization or application. The
adaptation process is multifaceted and concerns one or more of the following non mutually aspects:

• the list of patterns to consider: a subset of the patterns from ASCMM, ASCRM, ASCPEM, and
ASCSM; or a set including source code patterns not included in these Quality Characteristic
measures.

• different values for remediation effort: different unadjusted Remediation Effort formulas,
different unadjusted Remediation Effort values,

• the use of different formulas for adjustment factors, or their deactivation
• the use of additional adjustment factors.

Automated Technical Debt Measure, 1.0 79

However, these adjustments are incorporated at the expense of benchmarking, which cannot be
accomplished with CTDM except among applications where the CTDM adjustments are identical.

The following sub-sub-clauses illustrates sample variations regarding adjustment factors.

 8.4.1 Technological Diversity

Principle

Adjust the Technological Diversity adjustment factor to better reflect the organization’s ability to
deal with occurrences involving multiple technologies.

Illustrations

1.Turn off (that is, ignore from computation) the Technological Diversity adjustment factor if the
organization is organized around cross-technology teams.

2.Compute an alternative technological diversity penalty factor equal to the power of the number
of distinct technologies, with a power value smaller than 1, to model a smooth coordination of
different teams, and greater than 1, to model the infrequent involvement of different teams.

8.4.2 Exposure

Principle

Adjust the Exposure adjustment factor to better reflect the organization’s ability to avoid
destabilization of the software via automated testing.

Illustrations

1.Turn off (that is, ignore from computation) the Exposure adjustment factor if the organization
is so mature regarding automated non-regression testing that teams can update the code
without fear of side effects

2.Compute an alternative exposure adjustment factor using one of the following formulas:

•with an asymptote: max-1/(range number+1)power

•without an asymptote: (range number)power

•where range number is a logarithmic transformation of the exposure values, to account for
combinatorial nature of the exposure and make them human-friendly: |log (exposure + 1)|

8.4.3 Concentration

Principle

Adjust the Concentration adjustment factor to better reflect the organization’s strategy regarding
the removal of Technical Debt occurrences.

Illustration

Turn off (that is, ignore from computation) the Concentration adjustment factor if the
organization is willing to remove occurrences one at a time, that is, without considerations about
other occurrences involving the same code elements.

8.4.4 Evolution Status

8.4.4.1 Occurrence

Principle

 80 Automated Technical Debt Measure, 1.0

Adjust the remediation effort for a Technical Debt Item with an evolution qualification measure to
factor in the opportunity to remove an occurrence more easily when it was injected into the
software during the current release cycle.

Illustration

Consider an occurrence evolution reward factor of .50 for added occurrences.

8.4.4.2 Code elements

Principle

Adjust the remediation effort for a Technical Debt Item with an evolution qualification measure to
factor in the opportunity to remove an occurrence more easily when the code elements involved
were recently updated.

Illustration

Consider a code element evolution reward factor of .75 for updated code elements.

8.4.4.3 Limitation

Please note that the use of such adjustment factors makes the measures evolve over time, even
if the software is not evolved in any way, as the occurrences “grow old” and the opportunity to
remove them more easily vanishes.

8.5 Technical Debt value communication

The following scenarios illustrate ways in which the Automated Technical Debt Measure (ATDM)
and the Contextual Technical Debt Measure (CTDM) can be used to help communicate about
Technical Debt with non-technical audiences, facilitate acceptance, and reap the benefits of the
Technical Debt metaphor.

8.5.1 Problem statement

ATDM and CTDM are estimating the effort to remove all occurrences of the selected patterns
(from ASCSM, ASCRM, ASCPEM, ASCMM specifications, or from a user-defined list).

First, this is equivalent to a strategy of zero tolerance to defects which may be too stringent (and
very likely unnecessary) to implement to all applications, as well as too expensive due to the
sheer number of occurrences to remove. This leads to remediation effort values so large they are
difficult to accept (even if justifiable), ultimately creating a push back against the whole
measurement program.

Second, there is conceptual debate about the content of Technical Debt. Some says Technical
Debt should only account for items that organizations have the intention to remove at some point
in time. In other words, if organizations do not plan to completely remove all occurrences of each
pattern, they are not to be considered in the Technical Debt measurement.

Third, some organizations manage quality objectives, such as internal or external Service Level
Agreements. That is, they define some requirements on the number of issues that are
considered acceptable. In this context, when quality objectives are set with a certain tolerance
value, it means that only the occurrences whose removal is needed to reach the target level of
tolerance will be effectively removed; the remaining occurrences will remain for lack of incentive
to do so. In these frequent situations, the Technical Debt values that are meaningful for the
management are the estimations of the effort and cost to reach target values (as opposed to the
estimation of the effort and cost to get the total absence of occurrences).

8.5.2 Recommended approach

8.5.2.1 When quality objectives are set

Automated Technical Debt Measure, 1.0 81

CISQ recommends the computation of the amount of Automated Technical Debt Measure that is
required to reach quality objectives that are set for each application.

As the scope of the measure is adjusted with contextual information, this computation should be
exposed as a Contextual Technical Debt Measure to avoid confusion.

The immediate benefits of such approach are:

1.a more relevant value,
because it would be aligned with organization’s existing management practices, as opposed to a
value relative to an hypothetical “zero tolerance” situation;

2.a more acceptable value,
because it would be smaller, having filtered out effort and cost amounts that are not ultimately
applicable

8.5.2.1 When quality objectives are not set

In case there are no quality objectives set, CISQ recommends the computation of the amount of
Automated Technical Debt Measure required to reach arbitrary yet meaningful quality levels
(such as the sigma levels).

The immediate benefits are:

1.a perspective on quality levels,
especially as there are no objectives set, to educate and help justify quality improvement
initiatives (e.g., showing that there is an effort to plan to reach a sigma 3 level can resonate with
non-technical management audience familiar with these concepts)

2.a more acceptable value,
because it would be smaller, having considered the removal of some occurrences only,
(removing all occurrences would be completely unrealistic when dealing with an application for
which there are no objectives set).

8.5.3 Limitations

Benchmarking

The adjustments regarding the tolerance are incorporated at the expense of benchmarking,
which cannot be accomplished with CTDM except among applications where the CTDM
adjustments are identical or acceptably different.

“Acceptably different” means there are differences in the adjustment criteria but that the
organization is accepting and adhering to these differences and their impact on the way to
interpret the results.

As an example, if two applications are assigned different tolerance levels, the organization must
use the CTDM measures knowingly: the measured values shall not be used to compare the
Technical Debt for these two applications but they shall be used to compare the distance to their
respective quality objectives, using a Technical Debt metaphor.

Value range

As soon as the tolerance level is not zero, this means that some occurrences will have to be
removed and some occurrences will be allowed to remain.

Each of the candidate occurrence for any given pattern leads to the same unadjusted
remediation effort. However, as soon as the adjustment factors kick in, the adjusted remediation
effort will very likely differ.

 82 Automated Technical Debt Measure, 1.0

Therefore, the effort required to remove enough occurrences to reach the quality objective for
this pattern becomes a value range, with a minimum value obtained by targeting the occurrences
with the smaller adjusted remediation effort values, and with a maximum value obtained by
targeting the occurrences with the largest adjusted remediation effort values. Obviously, to keep
using a single value, the median or the mean value can be used.

Automated Technical Debt Measure, 1.0 83

9 List of Figures

 Figure 1: The Technical Debt Metaphor..3
 Figure 2: Illustration of the ATDM computation formula...23
 Figure 3: Illustration of the Adjustment Factor computation formula..24
 Figure 4: ASCRM-CWE-120 occurrence identification with SMM Scope and Recognizer................................26
 Figure 5: ASCRM-CWE-120 remediation effort configuration access with SMM DirectMeasure and Operation
..27
 Figure 6: ASCRM-CWE-120-roles-targetTransformationSequence role implementation identification with
SMM Scope and Recognizer..29
 Figure 7: ASCRM-CWE-120 occurrence languages identification with SMM Scope and Recognizer...............34
 Figure 8: ASCRM-CWE-120 occurrence languages identification with SMM Scope and Recognizer...............35
 Figure 9: ASCRM-CWE-120-roles-targetTransformationSequence role complexity overhead computation with
SMM NamedMeasures, RatioMeasure, Scope, and Recognizer..36
 Figure 10: ASCRM-CWE-396-roles-controlElement role direct exposure computation with SMM
OCLOperations, Operation, DirectMeasure, Scope, and Recognizer..40
 Figure 11: ASCRM-CWE-396-roles-controlElement role direct exposure computation with SMM
OCLOperations, Operation, DirectMeasure, Scope, and Recognizer..43
 Figure 12: ASCRM-CWE-396-roles-controlElement role exposure computation with SMM OCLOperations,
Operations, RescaledMeasures, BinaryMeasures, Scope, and Recognizer (part II)..44
 Figure 13: ASCRM-CWE-120-roles-moveBufferStatement role concentration with SMM Operation,
DirectMeasure, Scope, and Recognizer...46
 Figure 14: ASCRM-CWE-120 occurrence complexity overhead average with SMM CollectiveMeasure and
RatioMeasures..53
 Figure 15: ASCRM-CWE-120 occurrence complexity overhead average with SMM CollectiveMeasure and
RatioMeasures..54
 Figure 16: ASCRM-CWE-120 occurrence sharing opportunity average with SMM CollectiveMeasure and
RescaledMeasures..55
 Figure 17: ASCRM-CWE-120 occurrence adjustment factor with SMM CollectiveMeasures and Counting.....56
 Figure 18: ASCMM-MNT-11 occurrence adjustment factor with SMM CollectiveMeasures, BinaryMeasure,
and Counting..56
 Figure 19: ASCRM-CWE-120 occurrence “adjusted” remediation effort with SMM BinaryMeasure,
CollectiveMeasure, and DirectMeasure...57
 Figure 20: ASCRM-CWE-120 pattern remediation effort with SMM CollectiveMeasures.................................58
 Figure 21: AMREM flow..64
 Figure 22: ARREM flow...64
 Figure 23: APEREM flow...65
 Figure 24: ASREM flow..65
 Figure 25: ATDM flow..71

 84 Automated Technical Debt Measure, 1.0

10 List of Tables

Table 1: List of ASCSM 1.0 patterns..15
Table 2: List of ASCRM 1.0 patterns...17
Table 3: List of ASCPEM 1.0 patterns...17
Table 4: List of ASCMM 1.0 patterns..18
Table 5: Configuration of unadjusted remediation effort per ASCSM occurrence..72
Table 6: Configuration of unadjusted remediation effort per ASCRM occurrence..75
Table 7: Configuration of unadjusted remediation effort per ASCPEM occurrence..76
Table 8: Configuration of unadjusted remediation effort per ASCMM occurrence...77

Automated Technical Debt Measure, 1.0 85

 86 Automated Technical Debt Measure, 1.0

Automated Technical Debt Measure, 1.0 87

