
Date: November 11, 2023

Automated Technical Debt Measure,
Version 2

Beta

__

OMG Document Number: ptc/2023-121-108

Normative reference: http://www.omg.org/spec/ATDM/
Machine readable file(s): http://www.omg.org/spec/ATDM/admtf-2023-02-02.xmi

Normative:

__

 Automated Technical Debt Measure, 2.0 i

Copyright © 2022, Object Management Group, Inc.

Copyright © 2022, Consortium for IT Software Quality.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the
terms, conditions and notices set forth below. This document does not represent a commitment to implement
any portion of this specification in any company's products. The information contained in this document is
subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by
reason of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that
are based upon this specification, and to use, copy, and distribute this specification as provided under the
Copyright Act; provided that: (1) both the copyright notice identified above and this permission notice appear
on any copies of this specification; (2) the use of the specifications is for informational purposes and will not
be copied or posted on any network computer or broadcast in any media and will not be otherwise resold or
transferred for commercial purposes; and (3) no modifications are made to this specification. This limited
permission automatically terminates without notice if you breach any of these terms or conditions. Upon
termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

 ii Automated Technical Debt Measure, 2.0

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR
FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER
DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER
OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by
you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this
specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph
(c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management
Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through
its designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

 Automated Technical Debt Measure, 2.0 iii

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page https://www.omg.org, under Documents, Report a
Bug/Issue.

IPR Mode: Non-Assertive Covenant

 iv Automated Technical Debt Measure, 2.0

Table of Contents
1 Scope ... 2

1.1 Purpose .. 2
1.2 The Technical Debt Metaphor .. 2
1.3 Measuring Technical Debt .. 4
1.4 Technical Debt as an Estimate .. 5

2 Conformance ... 7

3 References ... 8

3.1 Normative References .. 8
3.2 Non-normative References .. 8

4 Terms and Definitions ... 9

5 Symbols .. 13

6 Foundational Information (Informative) .. 14

6.1 Automated Source Code Quality Measures ... 14
6.1.1 Development artifacts .. 14
6.1.2 Source Code Weaknesses ... 15

6.2 Automated Source Code Security Measure (ASCSM) Weaknesses ... 16
6.3 Automated Source Code Reliability Measure (ASCRM) Weaknesses .. 18
6.4 Automated Source Code Performance Efficiency Measure (ASCPEM) Weaknesses 20
6.5 Automated Source Code Maintainability Measure (ASCMM) Weaknesses....................................... 21
6.6 Source Code Pattern Roles ... 22
6.7 Detection Pattern Comments .. 22
6.8 Adherence to ASCMM, ASCRM, ASCSM, and ASCPEM Specifications ... 22
6.9 Contextual Measures ... 23
6.10 Contextual Technical Debt Measure (CTDM) ... 24

7 Automated Technical Debt Measure specification (normative) 26

7.1 Computing Process Overview .. 26
7.1.1 Automated Technical Debt Measure (ATDM)... 26
7.1.2 Contextual Technical Debt Measure (CTDM) ... 28

7.2 Application Model .. 29
7.2.1 Overview .. 29
7.2.2 Representation in SMM of the revision(s) ... 29
7.2.3 Measure specifications .. 29

7.3 Quantification of Remediation Effort at the Detection Pattern Occurrence Level 30
7.3.1 Occurrence identification ... 30
7.3.2 Measure specification .. 31
7.3.3 Acquiring Unadjusted Remediation Effort Values .. 31
7.3.4 Measure specifications .. 31

7.4 Contextual measures of Detection Pattern Occurrences ... 32
7.4.1 Detection Pattern Occurrence Implementation Code Elements ... 32
7.4.2 Measure specifications .. 33
7.4.3 Detection Pattern Occurrence Parent Artifact Code Elements .. 4141
7.4.4 Measure specifications .. 4141

 Automated Technical Debt Measure, 2.0 v

7.5 Technological Diversity ... 4141
7.5.1 Measure specifications .. 4242
7.5.2 Occurrence implementation languages ... 4242
7.5.3 Measure specifications .. 4242

7.6 Complexity ... 4242
7.7 Exposure and Direct Exposure ... 4444

7.7.1 User input Exposure considerations .. 4444
7.7.2 Number of distinct direct callers .. 4444
7.7.3 Measure specifications .. 4444
7.7.4 Number of distinct call paths ... 4545
7.7.5 Measure specifications .. 4545

7.8 Concentration and Sharing Opportunity .. 4747
7.8.1 Overview of Concentration .. 4747
7.8.2 Sharing Opportunities .. 4949
7.8.3 Measure specifications .. 4949

7.9 Occurrence Gap Size .. 4949
7.9.1 Definition of Occurrence Gap Size ... 4949
7.9.2 Measure specifications .. 5353

7.10 Evolution .. 5353
7.10.1 Involved Code Elements ... 5353
7.10.2 Occurrence Gap Size .. 5454

7.11 Adjustment Factor .. 5555
7.11.1 Complexity Overhead Average Contribution ... 5555
7.11.2 Measure specifications .. 5656
7.11.3 Exposure Overhead Average Contribution ... 5656
7.11.4 Measure Specifications .. 5656
7.11.5 Technological Diversity Contribution ... 5757
7.11.6 Sharing Opportunity Average Contribution ... 5757
7.11.7 Measure specifications .. 5757
7.11.8 Occurrence Gap Size Contribution ... 5757
7.11.9 Adjustment Factor Computation .. 5858

7.12 Adjusted Remediation Effort .. 5959
7.12.1 Measure specifications .. 5959

7.13 Quantification of Remediation Effort at the Detection Pattern level .. 5959
7.14 Quantification of Remediation Effort at the Weakness Level .. 6060

7.14.1 Weakness Remediation Effort .. 6060
7.14.2 Pattern Applicability Considerations .. 6060
7.14.3 Shared Pattern Considerations ... 6060

7.15 Quantification of Remediation Effort for ASCQM Quality Characteristics 6060
7.15.1 Quality Characteristic Remediation Effort .. 6060
7.15.2 Pattern Applicability Considerations .. 6161
7.15.3 Shared Pattern Considerations ... 6161
7.15.4 Overlapping Pattern Considerations .. 6161
7.15.5 Measures' Specifications .. 6161

7.16 Quantification of Remediation Effort at the Software Level (ATDM) ... 6666
7.16.1 Calculating Software Remediation Effort ... 6666
7.16.2 Measure Specifications .. 6767

7.17 ASCQM Unadjusted Remediation Effort Configuration ... 7069
7.18 Output Generation ... 8080

 vi Automated Technical Debt Measure, 2.0

8 Automated Technical Debt Measure (ATDM) Usage Scenarios (Informative) . 8281

8.1 Risk Mitigation ... 8281
8.1.1 ATDM and Its Component Effort Values for MREM, RREM, PEREM, SREM 8281
8.1.2 Exposure ... 8281
8.1.3 Evolution .. 8281

8.2 Priority Setting ... 8281
8.2.1 ATDM and its component effort values for MREM, RREM, PEREM, SREM 8281
8.2.2 Technological Diversity ... 8382
8.2.3 Exposure ... 8382
8.2.4 Evolution .. 8382

8.3 Productivity Measurement .. 8382
8.3.1 Evolution .. 8382

9 Contextual Technical Debt Measure (CTDM) Usage Scenarios (Informative) . 8483

9.1 Technological Diversity ... 8483
9.2 Exposure ... 8483
9.3 Sharing Opportunity ... 8483
9.4 Evolution .. 8584

9.4.1 Occurrence ... 8584
9.4.2 Code Elements ... 8584

9.5 Limitation ... 8584
10 Technical Debt Value Communication (Informative) .. 8685

10.1 Problem statement .. 8685
10.2 Recommended Approach... 8685

10.2.1 When Quality Objectives Are Set ... 8685
10.2.2 When Quality Objectives Are Not Set .. 8686

10.3 Limitations .. 8786
10.3.1 Benchmarking .. 8786
10.3.2 Value Range .. 8786

Annex A: Consortium for IT Software Quality (CISQ) ... 8987

Automated Technical Debt Measure, 2.0 1

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit
computer industry standards consortium that produces and maintains computer industry specifications
for interoperable, portable, and reusable enterprise applications in distributed, heterogeneous environ-
ments. Membership includes Information Technology vendors, end users, government agencies, and
academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open pro-
cess. OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI
through a full-lifecycle approach to enterprise integration that covers multiple operating systems, pro-
gramming languages, middleware and networking infrastructures, and software development environ-
ments. OMG’s specifications include: UML® (Unified Modeling Language™); CORBA® (Common
Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and industry-spe-
cific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All
OMG Specifications are available from the OMG website at:
https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications,
available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above
or by contacting the Object Management Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org
Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

 2 Automated Technical Debt Measure, 2.0

1 Scope

1.1 Purpose

The purpose of this revised specification is to update formal/18-09-01 Automated Technical Debt
Measure. This revision is based on updates to the Weaknesses included in the four quality measures
defined in formal/2020-01-02 Automated Source Code Quality Measures, that was subsequently ap-
proved and published as ISO/IEC 1055:2021 Automated Source Code Quality Measures. The tech-
nical objective of this specification and its predecessor are to establish a standard for automating a
measure of Technical Debt that can be computed by source code analysis technologies which have
implemented formal/2020-01-02 Automated Source Code Quality Measures. Within the context of
these four quality measures, Technical Debt is calculated as an estimate of the effort to fix Weak-
nesses that represent violations of good architectural and coding practices that must be corrected
because of their risk and/or cost to the owner or user of the software system. Currently, several
static analysis vendors calculate a proprietary measure of Technical Debt. Using OMG and ISO stand-
ards to provide the content for a measure of Technical Debt allows this measuresit to be based on
published standards rather than proprietary calculations.

1.2 The Technical Debt Metaphor

The Technical Debt metaphor was introduced by Ward Cunningham (1992) to describe how sub-
optimal design decisions, often made to meet release schedules, accumulated a debt that had to be
repaid through corrective maintenance during future releases. CISQ participated in a 2016 workshop
in Dagstuhl, Germany (Avgeriou, et al., 2016) along with 40 members of the Technical Debt research
community to create a framework for defining the metaphor and guiding research (Curtis, 2016).
Two conclusions were reached at the end of the week.

1) There is no universally agreed definition of Technical Debt.
2) Industry and the research community have different goals in using a Technical Debt measure.

Regarding the second point, many in the research community restrict the domain of Technical Debt
to consciously sub-optimal design decisions that primarily affect maintainability issues such as
changeability and scalability. Consistent with Cunningham’s original formulation of the concept, they
do not consider missing features, functional defects, or most structural flaws related to reliability,
security, or performance efficiency to be part of the Technical Debt domain. The participants in the
Dagstuhl workshop were unable to construct a crisp definition delimiting the domain of Weaknesses
to be included in Technical Debt.

In contrast, industry wants a measure that predicts the future costs of corrective maintenance and
other software quality-related outcomes. Since the Consortium for IT Software Quality (CISQ) is an
industry consortium, it has developed a specification for Technical Debt that is designed to predict
corrective maintenance costs for guiding IT decisions and resource allocations. This measure of
Technical Debt builds on formal/2020-01-02 Automated Source Code Quality Measures that CISQ
developed for measuring the structural quality of software in the areas of Reliability, Security,
Performance Efficiency, and Maintainability.

Choosing ‘debt’ as a metaphor engages a set of financial concepts that help executives think about
software quality in business terms. The components that comprise Technical Debt provide a

Commented [BC1]: ATDMV2-5

Commented [BC2]: ATDMV2-13

Commented [BC3]: ATDMV2-13

Automated Technical Debt Measure, 2.0 3

foundation for the economics of software quality. The metaphor can be partitioned into the
following elements which are displayed in Figure 1.

• Technical Debt—Future costs attributable to known structural Weaknesses in production
code that must be fixed. Technical Debt includes both the debt’s principal and interest. A
Weakness in production code is only included in Technical Debt calculations if those
responsible for the application believe it is a ‘must-fix’ problem, therefore incurring
corrective maintenance costs in a future release. Technical Debt is a primary component of
the cost of application ownership.

• Principal—The cost of remediating must-fix problems in production code. At a minimum,
the principal is calculated from the number of hours required to correct these problems,
multiplied by the fully burdened hourly cost of those involved in designing, implementing,
and unit testing these fixes.

• Interest—Continuing costs, primarily in IT, attributable to must-fix problems so long as they
remain in production code. These ongoing costs can result from the excessive effort to
modify unnecessarily complex code, greater resource usage by inefficient code, etc.

• Business Risk—Potential costs to the business if must-fix problems in production code
cause damaging operational events such as outages, data corruption, performance
degradation, and security breaches.

• Liability—Costs to the business resulting from operational problems caused by flaws in
production code. These flaws include both must-fix problems included in the calculation of
Technical Debt as well as problems not listed as must-fix because their risk was
underestimated.

• Opportunity Cost—Benefits such as revenue from new features that could have been
achieved had resources been committed to developing new capability rather than being
assigned to retire Technical Debt. Opportunity costs represent the tradeoff that application
managers and executives must weigh when deciding how much effort to devote to retiring
Technical Debt.

Figure 1. The Technical Debt metaphor

The cost to fix structural quality problems constitutes the principal of the debt, while the
inefficiencies they cause such as greater maintenance effort or excessive computing resources
represent interest costs on the debt. The structural problems underlying Technical Debt also create

 4 Automated Technical Debt Measure, 2.0

business risks such as outages and security breaches, and the negative events they can cause result
in liabilities such as lost revenue from online sales or costly clean-up from a security breach. The
effort spent to correct Technical Debt rather than develop new business functionality represents
opportunity costs related to lost benefits that might otherwise have been achieved.

Adoption of the Technical Debt metaphor has provided a means of communicating between IT exec-
utives and their technical staffs about the costs of quality problems. Commercial IT executives have
embraced the concept of Technical Debt for its value in predicting such factors as the costs of future
corrective maintenance, the risks of operational problems, and the difficulty of enhancing or scaling
applications.

1.3 Measuring Technical Debt

This specification is narrowly focused on defining a measure of the principal of Technical Debt that
can be computed from the source code Weaknesses included formal/202020-01-02 Automated
Source Code Quality Measures. This measure includes all the activities involved in analyzing a
Weakness, designing, implementing, and unit testing the remediated code. Costs for subsequent
activities such as integration testing, system testing, and deployment are typically aggregated across
the remediations of numerous Weaknesses. Consequently, these costs are difficult if not impossible
to separate and allocate among Weakness and are not included in this measure. Other components
of the Technical Debt metaphor (interest, liability, and opportunity cost) may become the focus of
future OMG specifications. There are five steps in calculating Technical Debt that form the normative
component of this specification.

1. Detect Occurrences of Detection Patterns that constitute Weaknesses in the Automated
Source Code Quality Measures specifications (covering Reliability, Security, Performance
Efficiency, and Maintainability quality characteristics); that is, detect the 135 unique
violations of good architectural and coding practices from which these measures are
calculated.

2. Assign an estimate of the amount of time to correct each of the 135 Detection Patterns
based on a survey of software professionals; the estimate is a constant applied to each
Occurrence of a source code Detection Pattern designed to detect Weaknesses.

3. Collect information about the structural context within which each Occurrence of a
Detection Pattern is embedded.

4. Compute an Adjustment Factor based on the structural context surrounding each
Occurrence of a Detection Pattern to adjust the estimate of its Remediation Effort time.

5. Sum the total amount of Remediation Effort time across all the Occurrences of each
Detection Pattern for all 135 Detection Patterns to aggregate them into an estimate of total
Technical Debt.

6. A separate Technical Debt Measure can be computed for each of the four quality
characteristics defined in the Automated Source Code Quality Measures (ASCQM) standard
(Reliability, Security, Performance Efficiency, and Maintainability) by aggregating the
estimated Remediation Effort times separately for the Detection Patterns underlying
Weaknesses included in each quality characteristic.

This normative specification does not include variations in labor costs, skill levels, or currencies
(dollars, euros, rupees, etc.) since these are adjustments that must be made based on local
conditions. The specification will include a set of non-normative usage scenarios showing how
contextual information from step 3 can be used to manage Technical Debt measures as well as

Commented [BC4]: ATDMV2-5

Automated Technical Debt Measure, 2.0 5

customize the Technical Debt measure to local conditions within an organization. These factors
include issues related to system testing and other processes that can vary across organizations.

1.4 Technical Debt as an Estimate

Technical Debt measures are most frequently used to estimate future corrective maintenance costs
as input to decisions such as budgeting maintenance, allocating developer effort, or replacing an
application. Corrective maintenance includes all the activities involved in analyzing a Weakness,
designing, implementing, and unit testing a Remediation. Costs for subsequent activities such as
integration testing, system testing, and deployment are typically aggregated across the Remediations
of numerous Weaknesses. Consequently, these costs are difficult if not impossible to separate and
allocate among Weakness.

The measure defined in this specification is a correlated rather than absolute measure of Technical
Debt. That is, it is a predictor of the amount of corrective maintenance effort needed for an
application. Each organization must develop its own equation linking Technical Debt with its costs
and other outcomes. There are three primary issues that affect the usefulness of this measure.

First, the Weaknesses incorporated in the four Automated Source Code Quality Measures (Reliability,
Security, Performance Efficiency, and Maintainability) were selected because they were considered
Weaknesses of sufficient severity that they should be corrected because of their risk to costs and
operational performance. However, an organization may choose to correct only some of these
Weaknesses, thereby not incurring the debt associated with other Weaknesses. In this case the
Technical Debt measure will over-estimate corrective maintenance costs. Conversely, an organization
can choose to correct more Weaknesses than are included in the four quality measures, in which
case Technical Debt underestimates corrective maintenance costs. In either case, an organization
can compute a Contextual Technical Debt Measure (CTDM) that better estimates their specific
Remediation Effort the Automated Technical Debt Measure (ATDM) provides a common benchmark
for comparing the structural quality and Remediation Effort across industry, while Contextual
Technical Debt Measure (CTDM) provides an organizational or application specific modification that
better evaluates Remediation Effort based on the unique attributes of local quality assurance
strategies.

Second, there are no existing industry-wide repositories of effort data related to correcting violations
of good architectural and coding practices. Consequently, the Remediation Effort times used in this
specification are based on surveys of experienced developers. The survey requested developers to
estimate their time-to-fix for the 138 Weaknesses included in the four quality measures. The
estimated times were to include Remediation Effort activities up to and including unit test. Most
respondents were primarily developing in Java, .NET, or C# applications. Therefore, these
Remediation Effort times are primarily relevant to business software rather than embedded software
and languages such as C and C++. Default Remediation Effort times were developed as a constant for
each Weakness from the modal tendency of the distribution of Remediation Effort times for that
Weakness. The values at the Weakness level are then used at the underlying level, the level of the
135 Detection Patterns.

Variations in time estimates and sampling factors could impact the default Remediation Effort times
drawn from these data. Consequently, the specification allows for these default times to be
overridden with local estimates where appropriate. As more data become available, these default
constants can be updated, if necessary, in a future revision of this specification. The Remediation
Effort times for each violation are adjusted using the contextual information discussed in later
clauses. Similarly, these Adjustment Factors can be updated in future revisions as data become
available regarding their value in improving estimates of Remediation Effort times.

Commented [BC5]: ATDMV2-5

Commented [BC6]: ATDMV2-10

Commented [BC7]: AGDMV2-10

 6 Automated Technical Debt Measure, 2.0

Third, Technical Debt measures are developed from static analysis of the Weaknesses in the
structural quality of an application. It does not measure functional defects which must be corrected.
Therefore, this measure does not assess all factors contributing to corrective maintenance costs.
However, since practices related to detecting the non-functional, structural Weaknesses in software
have lagged those focused on functional defects, future maintenance effort is most often focused on
structural Weaknesses. Consequently, Technical Debt provides an estimate of these costs that can be
adjusted to account for local experience in remediating functional defects that escape testing and
must be fixed in future releases.

In view of these considerations, Technical Debt provides an estimate based on OMG standards that
can used to predict future risk and cost outcomes for a software-intensive system. It can be used as
a benchmark for comparing applications that can be adjusted to local quality assurance practices and
strategies.

Automated Technical Debt Measure, 2.0 7

2 Conformance

Implementations of this specification shall be able to demonstrate all five of the following attributes
to claim conformance—automated, complete, objective, transparent, and verifiable.

• Automated—The calculation of this measure shall be fully automated. A conformant
technology shall be able to consume and process machine readable outputs reporting
Weaknesses detected from analysis of at least one of the four Automated Source Code
Quality Measures and elements from analysis of the Automated Enhancement Points
measure. Analyses to develop these inputs shall be provided with the software source
code, the artifacts and information needed to configure the software for operation, and
any available description of the architectural layers in the software.

• CompleteA conformant technology shall be able to calculate a Technical Debt measure
as specified in this document. Consequently, the technology used to compute this measure
shall be able to receive and process outputs produced by technologies that comply with
calculating the measures in formal/2020-01-02 Automated Source Code Quality Measures
and formal/17-04-03 Automated Enhancement Points.

• Objective—After the source code has been prepared for analysis using the information
provided as inputs, the analysis, calculation, and presentation of results shall not require
further human intervention. The analysis and calculation shall be able to repeatedly
produce the same results and outputs on the same body of software.

• Transparent—Implementations that conform to this specification shall clearly list all tools
that supplied inputs to this measure, as well as the source code, non-source code artifacts,
and other information used by these other tools to prepare the source code for analysis.

• Verifiable—A conformant implementation shall state the assumptions and heuristics it uses
in computing this measure in sufficient detail that the calculations can be independently
verified by third parties. Sub-clause 8080 describes the measures and information required
in the generated output. In addition, all inputs used are required to be clearly described
and itemized so that they can be audited by a third party.

 8 Automated Technical Debt Measure, 2.0

3 References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this specification. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply.

List of normative references.
• Knowledge Discovery Meta-model, version 1.3 (KDM), formal/2011-08-04
• Structured Metrics Meta-model, version 1.1 (SMM), formal/2015-10-03
• Meta Object Facility, version 2.5 (MOF), formal/2015-06-05
• XML Metadata Interchange, version 2.5.1 (XMI), formal/2015-06-07
• Object Constraint Language, version 2.4 (OCL), formal/2014-02-03
• Automated Source Code Quality Measures, formal/2020-01-02
• ISO/IEC 5055:2021 Information technology — Software measurement — Software quality

measurement — Automated source code quality measures
• Automated Enhancement Points, version 1.0 (AEP), formal/2017-04-03
• Structured Patterns Metamodel Specification 1.0 (SPMS), formal/2015-10-01
• ISO/IEC 25010:2011 Systems and software engineering - System and software product

Quality Requirements and Evaluation (SQuaRE) - System and software quality models

3.2 Non-normative References
 List of non-normative references.

• Paris Avgeriou, Philippe Kruchten, Robert L. Nord, Ipek Ozkaya, Carolyn Seaman (2016).
Reducing friction in software development. IEEE Software, 33 (1), 66-73.

• Consortium for IT Software Quality (2017). CISQ Compliance Assessment. Needham, MA:
Object Management Group.

• Consortium for IT Software Quality (2022). CISQ Time-to-Fix Survey. Needham, MA: Object
Management Group.

• Ward Cunningham (1992). The WyCash Portfolio Management System, OOPSLA ’92
Experience Report.

• Curtis, B. (2016). Measuring and communicating the technical debt metaphor in industry.
Managing Technical Debt in Software Engineering. Dagstuhl, Germany: Dagstuhl Publishing,
121-122.

• B. Curtis, J. Sappidi, & A. Szynkarski, (2012). Estimating the principal of an application’s
technical debt. IEEE Software, 29 (6), 34-42.

• P. Kruchten, R. L. Nord, I. Ozkaya (2012). Technical Debt: From Metaphor to Theory and
Practice. IEEE Software, 29 (6), 30-33.

• Software Engineering Body of Knowledge, V3.0 (SWEBOK).
http://www.computer.org/web/swebok/v3

Automated Technical Debt Measure, 2.0 9

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Adjusted Remediation Effort

The number of minutes needed to correct a specific source code pattern that has been adjusted by
contextual measures.

Adjusted Technical Debt

A measure of Technical Debt that:
 only measures Technical Debt Items that are a selected subset of the Detection Patterns

included in Technical Debt, and/or
 uses a Remediation Effort configuration different from the one described in this specification,

and/or
 incorporates an Adjustment Factor as presented in the normative Sub-clause 7.11, and/or
 incorporates contextual factors such as the ones presented in the informative Clause 9.

Application Model

A representation of the Application composed of the computational objects in the source code and
their relationships, some of which can contain processing rules and logic.

[SOURCE: formal/2011-08-04 Knowledge Discovery Meta-model, version 1.3]

Automated Maintainability Remediation Effort

The sum of Remediation Efforts of all detected Technical Debt Items associated with Weaknesses in
the Automated Source Code Maintainability Measure specification (formal/2020-01-02).

Automated Performance Efficiency Remediation Effort

The sum of Remediation Efforts of all detected Technical Debt Items associated with Weaknesses
included in the Automated Source Code Performance Efficiency Measure specification (formal/2020-
01-02).

Automated Reliability Remediation Effort

The sum of Remediation Efforts of all detected Technical Debt Items associated with Weaknesses
included in the Automated Source Code Reliability Measure specification (formal/2020-01-02).

Automated Security Remediation Effort

The sum of Remediation Efforts of all detected Technical Debt Items associated with Weaknesses
included in the Automated Source Code Security Measure specification (formal/2020-01-02).

Automated Source Code Quality Measures

Four measures derived from static analysis of software source code that quantify the number of
severe Weaknesses affecting the Reliability, Security, Performance Efficiency, and Maintainability of a
software system.

 10 Automated Technical Debt Measure, 2.0

[SOURCE: formal/2020-01-02/Automated Source Code Quality Measures and ISO/IEC 5055:2021
Automated Source Code Quality Measures]

Note 1 to entry: The definition of each measure conforms to the definition of its related quality
characteristic in ISO/IEC 25010:2011 System and Software Quality Model.

Automated Technical Debt

The sum of Remediation Efforts of all detected Technical Debt Items associated with Weaknesses
enumerated in the Automated Source Code Quality Measures specifications (formal/2020-01-02).

Code Element

A collection of programming language instructions such as a class, module, component, or
subroutine treated as a single grouping of code for functions such as compiling or unit testing.

Complexity [or Effort Complexity]

Contextual Information regarding the code elements implementing the Occurrence of a Detection
Pattern measured according to the Effort Complexity definition from the Automated Enhancement
Points specification.

[SOURCE: formal/2017-04-03 Automated Enhancement Points, version 1.0]

Concentration

Contextual Information which measures the number of Occurrences of Detection Patterns within any
Code Element in the software.

Contextual information

Attributes of the software context affecting a specific Occurrence of a Detection Pattern that can
cause variation in the time required to correct the Occurrence.

Contextual measures

Quantifications of the Contextual Information used in adjusting calculations of Remediation Effort in
the Automated Technical Debt Measure.

Contributing Weakness

A Weakness that represents a conceptually distinct Instantiation of a Parent Weakness based on
differences in the Detection Patterns underlying each instantiation.

Corrective Maintenance

All the activities involved in analyzing a Weakness, designing and implementing a Remediation, and
unit testing it.

Detection Pattern

A collection of parsed program elements and their relations that constitute a Weakness in the soft-
ware and can be identified through automated matching of a Detection Pattern with structures in
the source code.

Automated Technical Debt Measure, 2.0 11

Note 1 to entry: Detection Patterns for the 138 Weaknesses incorporated in this specification are
enumerated in ISO/IEC 5055:2021.

Detection Pattern Occurrence

A single instance of a Detection Pattern that has been implemented in the software.

Detection Pattern Role

Pattern roles describe the set of code elements involved in relationships that create a Detection
Pattern.

[SOURCE: formal/2015-10-01 Structured Patterns Metamodel Specification 1.0]

Note 1 to entry: A Role is a required element in a Structured Pattern Definition

Technological Diversity

Contextual Information which measures the number of distinct programming languages in which the
source code elements included in a single Occurrence of a Detection Pattern are written.

Evolution

The Evolution of the Occurrence of a Weakness and of code elements implementing the Occurrence
is contextual information indicating if the Occurrence of a Weakness or the code elements
implementing it have been added, updated, or deleted between measured revisions of the software.

Exposure

Contextual Information measuring the level of connectedness of an Occurrence of a Weakness with
the rest of the software, both directly and indirectly through call paths.

Occurrence

A single instance of a Detection Pattern for a Weakness occurring in the source code.

Occurrence Gap Size

The difference between the actual measured values and specified threshold values for Detection
Patterns incorporating a role that defines threshold values that are not to be exceeded.

Parent Weakness

A Weakness that has several conceptually distinct instantiations based on differences in the
Detection Patterns underlying each instantiation.

Remediation Effort

The time required to correct an Occurrence, or set of Occurrences, of a Detection Pattern in the
software.

Software Cost

Money spent for developing, correcting, or enhancing the software. In this specification it is the
money spent on corrective maintenance.

 12 Automated Technical Debt Measure, 2.0

Software Value

The business benefit derived by the owners or users of the software.

Software Quality

The degree to which the software meets customer or user needs or expectations, and is free of
defects that could cause the software to fail to meet these needs or expectations in the future.

[SOURCE: ISO/IEC 25010:2011 System and Software Quality Model]

Technical Debt Item

An atomic constitutive element of Technical Debt, that is, a single Occurrence of a Detection Pattern
in the source code associated with one of the 138 Weaknesses enumerated in ISO/IEC 5055:2021.

Unadjusted Remediation Effort

The number of minutes needed to correct a specific source code pattern before being adjusted by
Contextual measures.

Note 1 to entry: Default Unadjusted Remediation Efforts have been assigned to each of the 138
Detection Patterns defined in ISO/IEC 5055:2021.

Note 2 to entry: Default Unadjusted Remediation Efforts values can be changed to better fit the
local context and conditions prior to calculating a Technical Debt measure.

Weakness

A non-conformity to good architectural and coding practices.

Note 1 to entry: In this specification ‘Weaknesses’ refer to the 138 Weaknesses enumerated in
ISO/IEC 5055:2021.

Note 2 to entry: Weaknesses are occasionally referred to as ‘smells’ in the developer community.
However, this specification uses ‘Weaknesses’ in order to use the capabilities and
standardization of the Common Weakness Enumeration (CWE) Repository.

.

Commented [BC8]: ATDMV2 - 4

Automated Technical Debt Measure, 2.0 13

5 Symbols

List of symbols/abbreviations.

AEP Automated Enhancement Points

MREM Automated Maintainability Remediation Effort Measure

PEREM Automated Performance Efficiency Remediation Effort Measure

RREM Automated Reliability Remediation Effort Measure

SREM Automated Security Remediation Effort Measure

ASCMM Automated Source Code Maintainability Measure

ASCPEM Automated Source Code Performance Efficiency Measure

ASCQM Automated Source Code Quality Measures

ASCRM Automated Source Code Reliability Measure

ASCSM Automated Source Code Security Measure

ATDM Automated Technical Debt Measure

CISQ Consortium for IT Software Quality

CTDM Contextual Technical Debt Measure

KDM Knowledge Discovery Metamodel

OCL Object Constraint Language

SMM Structured Metrics Metamodel

SPMS Structured Patterns Metamodel Specification

TD Technical Debt

 Combine measures according to specified equations

 Summation

Commented [BC9]: ATDMV2-3

 14 Automated Technical Debt Measure, 2.0

6 Foundational Information (Informative)

6.1 Automated Source Code Quality Measures

The Automated Technical Debt Measure (ATDM) is calculated from Occurrences of the 138
Weaknesses included in the four Quality Characteristic measures contained in OMG’s Automated
Source Code Quality Measures (ASCQM), which has been approved and published as ISO/IEC
5055:2021. Detecting and counting these Weaknesses is the starting point for calculating ATDM. The
Automated Source Code Quality Measures consist of the following measures contained in ASCQM
and ISO/IEC 5055:2021.

 Automated Source Code Reliability Measure (ASCRM)  violations of good architectural
and coding practice that can cause outages, delayed recovery, data corruption, and
unpredictable operational behavior.

 Automated Source Code Security Measure (ASCSM)  violations of good architectural and
coding practice in an application that allow unauthorized intrusion into the application’s
source code, data store, operations, or connections.

 Automated Source Code Performance Efficiency Measure (ASCPEM)  violations of good
architectural and coding practice that can result in slow response, degraded performance, or
excessive use of computational resources.

 Automated Source Code Maintainability Measure (ASCMM)  violations of good
architectural and coding practice that make an application’s source code difficult to
understand or modify.

The following sub-clauses provide additional background information about the scope and content of
Automated Source Code Quality Measure specifications regarding:

• the nature of development artifacts involved,
• the identification of Occurrences of Detection Patterns from the ASCMM, ASCRM, ASCPEM,

and ASCSM specifications, including the modeling of the effort associated with remediating
an actual Technical Debt Item, or

• the Contextual Information associated with each Detection Pattern Occurrence, that is,
additional information associated with the Occurrence to aid in prioritizing its Remediation
and other decisions or estimates.

6.1.1 Development artifacts

Development artifacts associated with a Technical Debt item can be found in various locations:
• Source Code, including implemented Software Structure and Architecture
• Build Scripts
• Test Scripts
• Documentation
• Technology
• Design, including Architecture Decisions

6.1.1.1 Source Code

Source Code Development artifacts include all the elements and inter-element relationships that
exist in the source code and the Application Model produced from it. The Application Model allows

Automated Technical Debt Measure, 2.0 15

automated tools to analyze the software structure and architecture as implemented in the source
code, rather than how the structure and architecture were designed or documented. Source Code
Development artifacts are represented by the following elements from the Knowledge Discovery
Metamodel (KDM):

• Source package—representing physical artifacts,
• Code package—representing low-level building blocks of the software,
• Action package—representing low-level relationships and statements,
• Platform package—representing run-time resources,
• UI package—representing user-interface aspects of the software,
• Event package—representing event-driven aspects of the software,
• Data package—representing persistent data aspects of the software,
• Structure package—representing architectural components of the software.

6.1.1.2 Build Scripts

Build Scripts Development artifacts include all the elements produced by development teams to
build the software. Build Scripts Development artifacts are represented by the following elements
from the Knowledge Discovery Meta-model (KDM):

• Build package—representing artifacts related to the build process,
• Source and Code packages—used as build resources.

6.1.1.3 Test Scripts

Test Scripts Development artifacts include all the elements produced by development teams to verify
the correct functioning of the software. Test Scripts Development artifacts are represented by the
same KDM packages as Source Code Development artifacts, and only differ in nature by the intent
behind their production.

6.1.1.4 Documentation

Documentation Development artifacts include all the elements produced by development teams to
help understand how the software was developed. They do not include documentation artifacts that
are found in the source code, and that are already covered by Source Code Development artifacts.

6.1.1.5 Technology

Technology Development artifacts are the programming languages used in developing the software,
as well as third party supplied components that are required to develop and execute the software. In
other words, they include all elements used in the software which are not under the control of the
development organization, but can negatively impact the software or its development process. For
example, the Technical Debt created by the discontinuation of the technologies used in developing
the software.

6.1.1.6 Design

Design Development artifacts are all the decisions, including architectural decisions made and
documented prior to developing the code. Design Development artifacts do not include the software
design and architectural elements that are determined by analyzing the source code.

6.1.2 Source Code Weaknesses

The Automated Source Code Quality Measure (ASCQM) specification defines lists of source code
Weaknesses for each of the four quality measures that are considered severe enough violations of
good architectural and coding practice that they should be corrected in a near-term release. These

 16 Automated Technical Debt Measure, 2.0

Weaknesses are specified in formats drawn from the Structured Patterns Metamodel Specification
(SPMS) using element descriptions from the Knowledge Discovery Metamodel (KDM). Each
Weakness constitutes a Technical Debt measurement Item and is listed by its Common Weakness
Enumeration identifier (CWE ###). Some Weaknesses may be associated with more than one quality
measure. There are 138 unique Weaknesses included in ASCQM.

Tables 1-4 provide the list of Weaknesses for each of the quality characteristic measures in
ASCQM. In these tables Weaknesses are identified as either a parent or contributing
Weakness. Contributing Weaknesses are unique instantiations of a parent Weakness. CWE
numbers for parent Weakness are presented in dark blue cells. CWE numbers for
contributing Weaknesses are presented in light blue cells immediately below their parent
Weakness.

6.2 Automated Source Code Security Measure (ASCSM) Weaknesses

ASCSM contains 36 parent Weaknesses and 37 contributing Weaknesses which are
presented in Table 1. CWE #s for Contributing Weaknesses are presented in light blue
immediately following their Parent Weakness whose CWE # is presented in dark blue.

Table 1: List of ASCSM Weaknesses

CWE # Descriptor

CWE-22
Improper Limitation of a Pathname to a Restricted Directory (
('Path Traversal')

CWE-23 Relative Path Traversal
CWE-36 Absolute Path Traversal

CWE-77 Improper Neutralization of Special Elements used in a Command (
('Command Injection')

CWE-78
Improper Neutralization of Special Elements used in an OS Command (
('OS Command Injection')

CWE-88 Argument Injection or Modification

CWE-79
Improper Neutralization of Input During Web Page Generation (
('Cross-site Scripting')

CWE-89 Improper Neutralization of Special Elements used in an SQL Command
('SQL Injection')

CWE-564 SQL Injection: Hibernate

CWE-90
Improper Neutralization of Special Elements used in an LDAP Query
('LDAP Injection')

CWE-91 XML Injection (aka Blind XPath Injection)

CWE-99
Improper Control of Resource Identifiers (
(‘Resource injection’)

CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE-120 Buffer Copy without Checking Size of Input (
('Classic Buffer Overflow')

CWE-123 Write-what-where condition
CWE-125 Out-of-bounds Read
CWE-130 Improper Handling of Length Parameter Inconsistency

Commented [BC10]: ATDMV2 - 10 6 times this page

Automated Technical Debt Measure, 2.0 17

CWE-786 Access of Memory Location Before Start of Buffer
CWE-787 Out-of-bounds Write
CWE-788 Access of Memory Location After End of Buffer
CWE-805 Buffer Access with Incorrect Length Value
CWE-822 Untrusted Pointer Dereference
CWE-823 Use of Out-of-range Pointer Offset
CWE-824 Access of Uninitialized Pointer
CWE-825 Expired Pointer Dereference
CWE-129 Improper Validation of Array Index
CWE-134 Use of Externally Controlled Format String
CWE-252 Unchecked Return Value
CWE-404 Improper Resource Shutdown or Release

CWE-401
Improper Release of Memory Before Removing Last Reference (
('Memory Leak')

CWE-772 Missing Release of Resource after Effective Lifetime
CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime
CWE-424 Improper Protection of Alternate Path
CWE-434 Unrestricted Upload of File with Dangerous Type
CWE-477 Use of Obsolete Function
CWE-480 Use of Incorrect Operator
CWE-502 Deserialization of Untrusted Data
CWE-570 Expression is Always False
CWE-571 Expression Is Always True
CWE-606 Unchecked Input for Loop Condition
CWE-611 Improper Restriction of XML External Entity Reference ('XXE')

CWE-643
Improper Neutralization of Data within XPath Expressions (
('XPath Injection')

CWE-652
Improper Neutralization of Data within XQuery Expressions (
('XQuery Injection')

CWE-665 Improper Initialization
CWE-456 Missing Initialization of a Variable
CWE-457 Use of uninitialized variable
CWE-662 Improper Synchronization
CWE-366 Race Condition within a Thread

CWE-543
Use of Singleton Pattern Without Synchronization in a Multithreaded
Context

CWE-567 Unsynchronized Access to Shared Data in a Multithreaded Context
CWE-667 Improper Locking
CWE-820 Missing Synchronization
CWE-821 Incorrect Synchronization
CWE-672 Operation on a Resource after Expiration or Release
CWE-415 Double Free
CWE-416 Use After Free

Commented [BC11]: ATDMV2-10 3 times this page

 18 Automated Technical Debt Measure, 2.0

CWE-681 Incorrect Conversion between Numeric Types
CWE-194 Unexpected Sign Extension
CWE-195 Signed to Unsigned Conversion Error
CWE-196 Unsigned to Signed Conversion Error
CWE-197 Numeric Truncation Error
CWE-682 Incorrect Calculation
CWE-131 Incorrect Calculation of Buffer Size
CWE-369 Divide By Zero
CWE-732 Incorrect Permission Assignment for Critical Resource
CWE-778 Insufficient Logging
CWE-783 Operator Precedence Logic Error
CWE-789 Uncontrolled Memory Allocation
CWE-798 Use of Hard-coded Credentials
CWE-259 Use of Hard-coded Password
CWE-321 Use of Hard-coded Cryptographic Key
CWE-835 Loop with Unreachable Exit Condition ('Infinite Loop')

CWE-917 Improper Neutralization of Special Elements used in an Expression
Language Statement ('Expression Language Injection')

CWE-1057
Data Access Operations Outside of Expected Data Manager Component

6.3 Automated Source Code Reliability Measure (ASCRM) Weaknesses

ASCRM contains 35 parent Weaknesses and 39 contributing Weaknesses as presented in
Table 2. CWE #s for Contributing Weaknesses are presented in light blue immediately
following their Parent Weakness whose CWE # is presented in dark blue.

Table 2: List of ASCRM Weaknesses

CWE # Descriptor

CWE-119 Improper Restriction of Operations within the Bounds of a Memory
Buffer

CWE-120
Buffer Copy without Checking Size of Input (
('Classic Buffer Overflow')

CWE-123 Write-what-where condition
CWE-125 Out-of-bounds read
CWE-130 Improper Handling of Length Parameter Inconsistency
CWE-786 Access of Memory Location Before Start of Buffer
CWE-787 Out-of-bounds Write
CWE-788 Access of Memory Location After End of Buffer
CWE-805 Buffer Access with Incorrect Length Value
CWE-822 Untrusted Pointer Dereference
CWE-823 Use of Out-of-range Pointer Offset
CWE-824 Access of Uninitialized Pointer
CWE-825 Expired Pointer Dereference

Commented [BC12]: ATDMV2-10

Automated Technical Debt Measure, 2.0 19

CWE-170 Improper Null Termination
CWE-252 Unchecked Return Value
CWE-390 Detection of Error Condition Without Action
CWE-394 Unexpected Status Code or Return Value
CWE-404 Improper Resource Shutdown or Release

CWE-401
Improper Release of Memory Before Removing Last Reference ('Memory
Leak')

CWE-772 Missing Release of Resource after Effective Lifetime
CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime
CWE-424 Improper Protection of Alternate Path
CWE-459 Incomplete Clean-up
CWE-476 NULL Pointer Dereference
CWE-480 Use of Incorrect Operator
CWE-484 Omitted Break Statement in Switch
CWE-562 Return of Stack Variable Address
CWE-595 Comparison of Object References Instead of Object Contents
CWE-597 Use of Wrong Operator in String Comparison

CWE-1097 Persistent Storable Data Element without Associated Comparison
Control Element

CWE-662 Improper Synchronization
CWE-366 Race Condition within a Thread

CWE-543
Use of Singleton Pattern Without Synchronization in a Multithreaded
Context

CWE-567 Unsynchronized Access to Shared Data in a Multithreaded Context
CWE-667 Improper Locking
CWE-764 Multiple Locks of a Critical Resource
CWE-820 Missing Synchronization
CWE-821 Incorrect Synchronization

CWE-1058
Invokable Control Element in Multi-Thread Context with non-Final Static
Storable or Member Element

CWE-1096 Singleton Class Instance Creation without Proper Locking or
Synchronization

CWE-665 Improper Initialization
CWE-456 Missing Initialization of a Variable
CWE-457 Use of uninitialized variable
CWE-672 Operation on a Resource after Expiration or Release
CWE-415 Double Free
CWE-416 Use After Free
CWE-681 Incorrect Conversion between Numeric Types
CWE-194 Unexpected Sign Extension
CWE-195 Signed to Unsigned Conversion Error
CWE-196 Unsigned to Signed Conversion Error
CWE-197 Numeric Truncation Error

 20 Automated Technical Debt Measure, 2.0

CWE-682 Incorrect Calculation
CWE-131 Incorrect Calculation of Buffer Size
CWE-369 Divide By Zero
CWE-703 Improper Check or Handling of Exceptional Conditions
CWE-248 Uncaught Exception
CWE-391 Unchecked Error Condition
CWE-392 Missing Report of Error Condition
CWE-704 Incorrect Type Conversion or Cast

CWE-758 Reliance on Undefined, Unspecified, or Implementation-Defined
Behavior

CWE-833 Deadlock
CWE-835 Loop with Unreachable Exit Condition ('Infinite Loop')
CWE-908 Use of Uninitialized Resource

CWE-1045
Parent Class with a Virtual Destructor and a Child Class without a Virtual
Destructor

CWE-1051 Initialization with Hard-Coded Network Resource Configuration Data
CWE-1066 Missing Serialization Control Element

CWE-1070 Serializable Data Element Containing non-Non-Serializable Item Ele-
ments

CWE-1077 Floating Point Comparison with Incorrect Operator
CWE-1079 Parent Class without Virtual Destructor Method
CWE-1082 Class Instance Self Destruction Control Element
CWE-1083 Data Access from Outside Designated Data Manager Component
CWE-1087 Class with Virtual Method without a Virtual Destructor
CWE-1088 Synchronous Access of Remote Resource without Timeout

CWE-1098
Data Element containing Pointer Item without Proper Copy Control
Element

6.4 Automated Source Code Performance Efficiency Measure (ASCPEM)
Weaknesses

ASCPEM contains 16 parent Weaknesses and 3 contributing Weaknesses as presented in
Table 3. CWE #s for Contributing Weaknesses are presented in light blue immediately
following their Parent Weakness whose CWE # is presented in dark blue.

Table 3: List of ASCPEM Weaknesses

CWE # Descriptor

CWE-404 Improper Resource Shutdown or Release

CWE-401
Improper Release of Memory Before Removing Last Reference (
('Memory Leak')

CWE-772 Missing Release of Resource after Effective Lifetime
CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime
CWE-424 Improper Protection of Alternate Path

CWE-1042 Static Member Data Element outside of a Singleton Class Element

Commented [BC13]: ATDMV2-10

Commented [BC14]: ATDMV2-10

Automated Technical Debt Measure, 2.0 21

CWE-1043 Data Element Aggregating an Excessively Large Number of Non-Primitive
Elements

CWE-1046 Creation of Immutable Text Using String Concatenation
CWE-1049 Excessive Data Query Operations in a Large Data Table
CWE-1050 Excessive Platform Resource Consumption within a Loop
CWE-1057 Data Access Operations Outside of Expected Data Manager Component
CWE-1060 Excessive Number of Inefficient Server-Side Data Accesses
CWE-1067 Excessive Execution of Sequential Searches of Data Resource
CWE-1072 Data Resource Access without Use of Connection Pooling

CWE-1073 Non-SQL Invokable Control Element with Excessive Number of Data Re-
source Accesses

CWE-1089 Large Data Table with Excessive Number of Indices
CWE-1091 Use of Object without Invoking Destructor Method
CWE-1094 Excessive Index Range Scan for a Data Resource

6.5 Automated Source Code Maintainability Measure (ASCMM) Weaknesses

ASCMM contains 29 parent Weaknesses and no contributing Weaknesses.

Table 4: List of ASCMM Weaknesses

CWE # Descriptor
CWE-407 Algorithmic Complexity
CWE-478 Missing Default Case in Switch Statement
CWE-480 Use of Incorrect Operator
CWE-484 Omitted Break Statement in Switch
CWE-561 Dead code
CWE-570 Expression is Always False
CWE-571 Expression is Always True
CWE-783 Operator Precedence Logic Error

CWE-1041 Use of Redundant Code (Copy-Paste)

CWE-1045
Parent Class with a Virtual Destructor and a Child Class without a Virtual
Destructor

CWE-1047 Modules with Circular Dependencies

CWE-1048
Invokable Control Element with Large Number of Outward Calls (
(Excessive Coupling or Fan-out)

CWE-1051 Initialization with Hard-Coded Network Resource Configuration Data
CWE-1052 Excessive Use of Hard-Coded Literals in Initialization

CWE-1054 Invocation of a Control Element at an Unnecessarily Deep Horizontal
Layer (Layer-skipping Call)

CWE-1055 Multiple Inheritance from Concrete Classes
CWE-1062 Parent Class Element with References to Child Class

CWE-1064
Invokable Control Element with Signature Containing an Excessive Num-
ber of Parameters

Commented [BC15]: ATDMV2-10

 22 Automated Technical Debt Measure, 2.0

CWE-1074 Class with Excessively Deep Inheritance
CWE-1075 Unconditional Control Flow Transfer outside of Switch Block
CWE-1079 Parent Class without Virtual Destructor Method
CWE-1080 Source Code File with Excessive Number of Lines of Code
CWE-1084 Invokable Control Element with Excessive File or Data Access Operations

CWE-1085
Invokable Control Element with Excessive Volume of Commented-out
Code

CWE-1086 Class with Excessive Number of Child Classes
CWE-1087 Class with Virtual Method without a Virtual Destructor
CWE-1090 Method Containing Access of a Member Element from Another Class
CWE-1095 Loop Condition Value Update within the Loop
CWE-1121 Excessive McCabe Cyclomatic Complexity

6.6 Source Code Pattern Roles

Each Weakness definition contains a specification of Roles (SPMS:Definitions::Roles). According to
the Structured Patterns Metamodel Specification (SPMS), “A pattern is informally defined as a set of
relationships between a set of entities. Roles describe the set of entities within a pattern, between
which those relationships will be described. As such the Role is a required association in a
PatternDefinition. Semantically, a Role is a 'slot' that is required to be fulfilled for an instance of its
parent PatternDefinition to exist.”

In this specification measurements of Detection Pattern Occurrences rely on Roles in the following
ways:

• Some patterns rely on roles that model values and threshold values. For example, in the
CWE 1049 Detection Pattern, one Occurrence exists when the number of data queries
(CWE-1049-roles-numberOfDataQueries) exceeds the number of data queries threshold
value (CWE-1049-roles-numberOfDataQueriesThresholdValue). Therefore, to correct this
Weakness, the Occurrence Gap Size between these two values must be closed. In these
cases (enumerated in normative Sub-clause 4949.9), the Remediation Effort is estimated
by multiplying a constant by the Gap Size.

• Contextual information collection relies on the implementation of these Roles.

6.7 Detection Pattern Comments

Some Detection Pattern definitions contain in the Comment pattern section the following term:
(SPMS:Definitions::PatternSection). In the Automated Source Code Quality Measure specifications
these comments indicate shared Detection Patterns between two or more ASCQM measures. For
example, ASCSM-CWE-120-comment and ASCQM Check Index of Array Access-comment state that
“Measure element contributes to Security and Reliability”. Information in such comments is used to
avoid duplicate counting of Remediation Effort in the overall Technical Debt score for a single
Occurrence of CWE-120 that will appear in the calculations of both ASCSM and ASCRM.

6.8 Adherence to ASCMM, ASCRM, ASCSM, and ASCPEM Specifications

This specification refers to the ASCMM, ASCRM, ASCSM, and ASCPEM specifications via OCL opera-
tions relying on SPMS specifications:

Automated Technical Debt Measure, 2.0 23

• Detection Pattern Occurrences are identified by;
<pattern>.A_instanceOf_PatternInstance::PatternInstance(). E.g., with CWE-1075: ASCMM:
ASCMMLibrary::ASCSM-CWE-1075.A_instanceOf_PatternInstance::PatternInstance()

• Languages of code elements implementing the Detection Pattern Occurrence are identified by;
<pattern>.A_instanceOf_PatternInstance::PatternInstance().fulfillments().fulfilledBy().source().
language(). E.g., with ASCSM-CWE-1075: ASCMM:ASCMMLibrary::ASCMM-CWE-
1075.A_instanceOf_PatternInstance::PatternInstance().fulfillments().fulfilledBy().source().lang
uage()

• Code elements implementing the Detection Pattern Occurrence roles are identified by;
<role>.A_boundTo_Binding::Binding().fulfilledBy(). E.g., with ASCMM-CWE-1075-roles-
controlFlowJumpStatement: ASCMM:ASCMMLibrary::ASCMM-CWE-1075-roles-
controlFlowJumpStatement.A_boundTo_Binding::Binding().fulfilledBy()

6.9 Contextual Measures

Contextual measures quantify structural attributes of the software environment in which a specific
Detection Pattern Occurrence is embedded that can cause variation in the time required to correct
its Detection Pattern. The structural attributes quantified in Contextual measures include
complexity, Concentration, Evolution , Exposure, and Technological Diversity. Contextual measures
are used in Technical Debt calculations to adjust the Remediation times for each Detection Pattern
Occurrence based on the impact of these structural attributes on the effort to correct each specific
Occurrence. In this specification, Contextual measures related to pattern Occurrences are used in
the following ways:

• They can be used in analyzing, interpreting, and using Technical Debt scores in making
decisions, prioritizing Remediations, allocating resources, benchmarking, modeling, and
other uses for Technical Debt results. For instance, when prioritizing the Remediation of a
specific Detection Pattern Occurrence, the context surrounding the Detection Pattern
influences the assessment of:
◦ the operational risk associated with not correcting the Detection Pattern,
◦ the destabilization risk associated with correcting the Detection Pattern,
◦ the opportunity to reduce costs by removing many Detection Pattern Occurrences at

the same time, and
◦ the organizational risk associated with the synchronization of different teams to handle

complex Detection Pattern Occurrences involving different technologies.

• They can be used in computing an Adjustment Factor for the Remediation Effort of each
Detection Pattern Occurrence that accounts for the impact of structural attributes of the
software environment in which the Detection Pattern Occurrence resides. For instance,
when correcting a Detection Pattern, the required effort is impacted by the complexity of the
code elements in which the Detection Pattern is embedded, their connectedness to other
code elements in the software, the number of languages the Detection Pattern’s
implementation, etc.

Therefore, along with the identifying Detection Pattern Occurrences, the measurement of Technical
Debt will include for each Occurrence the following measures:

• Complexity—of code elements, measured by the Effort Complexity, as defined in the
Automated Enhancement Points (AEP) specification.

• Exposure—of the effects of the Detection Pattern Occurrence to the rest of the software
system. Based on the extent of propagation, correcting the Occurrence could involve direct
references to code elements (measured as the code elements' number of distinct direct

 24 Automated Technical Debt Measure, 2.0

callers), or indirect references (measured as the number of distinct call paths leading to the
code elements).

• Technological Diversity—the number of languages in which code elements composing a
single Detection Pattern are instantiated.

• Concentration—total number of Detection Pattern Occurrences across all Weakness types
within a single unit of code (e.g., class, module, component, subroutine, etc.).

• Evolution —changes and evolution both of code elements in the Detection Pattern
Occurrence and of code elements constituting the immediate software environment within
which the Occurrence is embedded.

In the context of Weaknesses which rely on roles that model values and threshold values that are
not to be exceeded, the Gap Size for each Occurrence of a Weakness shall be collected and
measured as the difference between the values and the threshold values.

These measures are included in the specification for Technical Debt to provide standard measures for
use in interpreting Technical Debt information. Although organizations may develop their own
interpretive measures, the use of these interpretive measures relieves an organization from having
to develop its own proprietary adjustment formulas and provides standards for benchmarking
adjusted values of Technical Debt. Expected benefits from using Contextual measures include the
following:

• Complexity—identification of situations where correcting Technical Debt Items can lead to
excessive effort and cost due to the complexity of the software in a Detection Pattern
Occurrence is embedded.

• Exposure—identification of situations where the Remediation of Technical Debt Items can
lead to excessive effort, cost, and unwanted side effects because the Detection Pattern
Occurrence is coupled to an excessive number of code elements throughout the software
system.

• Technological Diversity—identification of situations where effort and cost could rise
because of the need to coordinate multiple individuals or teams with different language
skills and knowledge of different system components.

• Concentration—identification of situations where corrective effort and cost could be
reduced because the effort to understand, correct, and test fixes can be amortized across
Technical Debt Items.

• Evolution — identification of situations where effort and cost can be reduced by
incorporating the Remediation of Detection Pattern Occurrences into ongoing changes and
evolution of the software in which the Occurrences are embedded.

6.10 Contextual Technical Debt Measure (CTDM)

Some organizations may want to customize the Automated Technical Debt Measure (ATDM)
calculation to reflect local conditions or practices, thus turning a generic benchmarking indicator into
a localized management indicator to help guide software development and maintenance decisions.

Such customizations may:

 exclude some Weaknesses from the calculation,
 adjust the default values for Unadjusted Remediation Effort,
 adapt the Adjustment Factor formula, by including or excluding contributing factors,
 adapt the formulae of the factors contributing to the Adjustment Factor.

These adjustments can be made for either the entire organization or for individual applications.
Customized calculations shall be designated as a Contextual Technical Debt Measures (CTDM) to

Automated Technical Debt Measure, 2.0 25

distinguish them from the standard calculation (ATDM) which can be used for benchmarking with
other organizations or datasets.

Informative Clause 9 provides some illustration and rationale behind CTDM customizations.

 26 Automated Technical Debt Measure, 2.0

7 Automated Technical Debt Measure
specification (normative)

7.1 Computing Process Overview

7.1.1 Automated Technical Debt Measure (ATDM)

Automated Technical Debt Measures (ATDM) shall be calculated through the following process:
1. Collect source code for one or two revisions of the software.

2. Generate the Application Model for the available revision(s), taking care of the

evolveTo/evolveFrom relationships between code elements when there are two revisions.

3. Detect Occurrences of the Detection Patterns enumerated in the ASCQM standard.

4. Collect Contextual Information for each Detection Pattern Occurrence, i.e., Complexity,
Exposure, Technological Diversity, Concentration, and Gap Size. Collect Evolution
information when two revisions of the software were processed in steps 1, 2, and 3.
a) Complexity is the Effort Complexity from the Automated Enhancement Points (AEP)

standard.
b) Exposure is the call graph branching factor, while Direct Exposure is the number of

callers.
c) Technological Diversity is the number of programming languages in which the code

elements instantiating a single Detection Pattern are written.
d) Concentration is the number of Detection Pattern Occurrences in a code element.
e) Evolution requires determining whether a Detection Pattern Occurrence or code

elements in the software environment where the Occurrence is embedded have been
added, deleted, or updated between revisions of the software.

f) Occurrence Gap Size, when the Detection Pattern incorporates roles that establish
threshold values that are not to be exceeded.

5. Compute an Adjustment Factor for each Occurrence as the product of three Contextual

measures (Complexity, Technological Diversity, and Concentration) from step 4:
a) Complexity Overhead Average is computed as an average across the implementations

of the Detection Pattern roles of their Complexity Overhead, measured as a ratio of the
complexity from step 4.a divided by the lowest complexity value the implementations
could have had (i.e., complexity as defined and calculated in the Automated
Enhancement Points (AEP) standard).

b) Technological Diversity for each Detection Pattern Occurrence is used as defined in step
4.c.

c) Concentration Sharing Opportunity Average is computed as an average of the
Concentration Sharing Opportunities across implementations of the Detection Pattern
roles. Concentration Sharing Opportunity for each Detection Pattern role is measured
as the inverse of the Concentration value from step 4.d.

d) Exposure and Evolution are not used in the Adjustment Factor. Even so, the Exposure
Overhead Average can be computed as an average of the Exposure Overheads across
the implementations of Detection Pattern roles. The Exposure Overhead for a
Detection Pattern role is measured as a logarithmic transformation of the Exposure

Automated Technical Debt Measure, 2.0 27

value from step 4.b. The Direct Exposure Overhead Average can also be computed as
an average of the Direct Exposure values from step 4.b aggregated across
implementations of Detection Pattern roles. Exposure and Evolution are valuable
measures for managing technical debt (setting priorities, mitigating risk, etc.) and to
build a localized Contextual Technical Debt Measure.

6. Multiply the Adjustment Factor from step 5 by the Unadjusted Remediation Effort to get

the Adjusted Remediation Effort for each Detection Pattern Occurrence.

7. For each Detection Pattern, sum the Adjusted Remediation Efforts from step 6 across all

Occurrences of the Detection Pattern to calculate the Occurrence Remediation Effort for
the Detection Pattern

8. For each Weakness, sum the Occurrence Remediation Efforts from step 7 for all the

Detection Patterns associated with the Weakness to calculate the Weakness Remediation
Effort.

9. For each of the four Quality Characteristics, sum the Detection Pattern Remediation Efforts

from step 7 for Detection Patterns detecting Weaknesses associated with that characteristic
(ASCMM, ASCRM, ASCPEM, or ASCSM) to compute the Quality Characteristic Remediation
Effort (MREM, PEREM, RREM, or SREM).

10. Sum all the Detection Pattern Remediation Efforts from step 7 to compute the Automated

Technical Debt Measure (ATDM) for an application.

11. Sum Occurrence Remediation Efforts from step 6 for all Occurrences within a specified
range of Contextual measures to build distributions of ATDM scores for the specified range.

Note on 8., 9., 10., and 11.:

1. Detection Patterns can help detect more than one Weakness,
2. Detection Patterns can be functionally included in other Detection Patterns (in ASCQM

1.0, this happens only once),
3. Weaknesses can be organized in optional parent-child relationships,
4. Weaknesses can be shared between quality characteristics, the sums must not

deduplicate contributions to the total remediation effort.

Figures 2 and 3 visually summarize the computation formulae. They are provided for illustration
and clarity purposes. However, they do not contain all the normative measure elements detailed
in this clause.

 28 Automated Technical Debt Measure, 2.0

Figure 2. Illustration of the ATDM computation formula

Figure 3. Illustration of Adjustment Factor computation formula

7.1.2 Contextual Technical Debt Measure (CTDM)

The process to follow in computing CTDM shall be identical to that for ATDM except for the following
steps:

3. Detect Occurrences of selected Detection Patterns.
4. Collect contextual information in accordance to 5. Below.
5. Compute a custom Adjustment Factor.

Automated Technical Debt Measure, 2.0 29

6. Use custom Unadjusted Remediation Effort values.
7.-10. Sum Pattern and Weakness Remediation Efforts only for the selected Weaknesses.

7.2 Application Model

7.2.1 Overview

The calculation of the Automated Technical Debt Measure (ATDM) shall be performed:
• either on one revision of the software, which is called “ToRevision”
• or between two revisions of the software, which are called “FromRevision” and

“ToRevision”, with “ToRevision” being the more recent of the two revisions.

Each available revision shall be analyzed to create an Application Model of the software. The
Application Model shall be composed of

• computational objects in the source code and their relationships, as defined in the KDM
standard,

• Occurrences of Detection Patterns, including the binding information to the computational
objects and relationships.

When both “FromRevision” and “ToRevision” revisions are available, the evolvedTo/evolvedFrom
relationship shall be identified for all computational elements (i.e., to identify when code elements in
“FromRevision” revision are also found in the “ToRevision” revision, andrevision and shall be
identified as either an evolved version of the computational object, or an unchanged version) as
presented in SMM Clause 17.1.

7.2.2 Representation in SMM of the revision(s)

SMM enables the following modeling:
• One smm:Observation of collected revision(s) so that the base Application Model shall

contain all required items. <measureElement xmi:type="smm:Observation"
xmi:id="softwareMeasurementScope" name="softwareMeasurementScope"
shortDescription="Observation of the Application Model which contains code elements
from the final revision (and from the initial revision if available)."
scopes="toRevisionMeasurementScope fromRevisionMeasurementScope"/>

• One smm:ObservationScope in this smm:Observation for each revision shall be used to
identify items from each revision.

7.2.3 Measure specifications

To handle the latest revision when two revisions are delivered, the analysis shall establish the
following scope related entities:

• An smm:ObservationScope
<measureElement xmi:id="toRevisionMeasurementScope"
xmi:type="smm:ObservationScope" name="toRevisionMeasurementScope"
class="MOF::Element" shortDescription="Subset of the Application Model which contains
code elements from the initial revision. Code elements are related to code elements from
the final revision by evolvedTo/evolvedFrom relationships." />

• An smm:OCLOperation to easily identify a code element from the smm:ObservationScope
<measureElement xmi:type="smm:OCLOperation" xmi:id="isInLatestRevision"
name="isInLatestRevision" context="kdm:Core::Element"
body="(toRevisionMeasurementScope()->includes(self))"/>

Commented [BC16]: ATDMV2-10

 30 Automated Technical Debt Measure, 2.0

To handle the previous revision when two revisions are delivered, the analysis shall establish the
following scope related entities:

• A second smm:ObservationScope
<measureElement xmi:id="fromRevisionMeasurementScope"
xmi:type="smm:ObservationScope" name="fromRevisionMeasurementScope"
class="MOF::Element" shortDescription="Subset of the Application Model which contains
code elements from the final revision. Code elements are related to code elements from
the initial revision by evolvedTo/evolvedFrom relationships." />

• A second smm:OCLOperation to easily identify a code element from the
smm:ObservationScope
<measureElement xmi:type="smm:OCLOperation" xmi:id="isInPreviousRevision"
name="isInPreviousRevision" context="kdm:Core::Element"
body="(fromRevisionMeasurementScope()->includes(self))"/>

7.3 Quantification of Remediation Effort at the Detection Pattern Occurrence
Level

This sub-clause describes the steps that shall be used to compute the Remediation Effort measures
of a single Detection Pattern Occurrence (Technical Debt Item) in a specific revision of the software.

For each Detection Pattern Occurrence in each revision, the effort (coding, unit/non-regression
testing adaptation) to correct the Detection Pattern Occurrence shall be computed as a calculation
conforming to the following process.

1) identify a Detection Pattern Occurrence
2) get Unadjusted Remediation Effort from Table 5
3) collect Contextual information
4) compute Adjustment Factor
5) compute Adjusted Remediation Effort

7.3.1 Occurrence identification

For each Detection Pattern, identify each individual Detection Pattern Occurrence through an
smm:Scope relying on an smm:Operation to use as a scope recognizer. These items are
demonstrated with the ASCQM Check Index of Array Access ASCQM Check Index of Array Access
Detection Pattern as follows:

• an smm:Scope.
<measureElement xmi:type="smm:Scope" xmi:id="id.sfgd.34.scope" name="Occurrence
Scope of ASCQM Check Index of Array Access" category="id.cat.277 id.cat.278"
measures="id.sfgd.34.occurrence.count" class="spms:Observations::PatternInstance"
recognizer="id.sfgd.34.recognizer"/>ASCQM Check Index of Array AccessASCQM Check
Index of Array AccessASCQM Check Index of Array Access

• defined by an OCL smm:Operation
<measureElement xmi:type="smm:Operation" xmi:id="id.sfgd.34.recognizer"
name="Occurrence Scope Recognizer of ASCQM Check Index of Array Access"
category="id.cat.277 id.cat.278"
body="ascqm:id.sfgd.34.A_instanceOf_PatternInstance::PatternInstance()"
language="OCL"/>ASCQM Check Index of Array AccessASCQM Check Index of Array
AccessASCQM Check Index of Array Access

Automated Technical Debt Measure, 2.0 31

Note that the key prefix is consistent with the key defined in ASCQM standard.

7.3.2 Measure specification

An smm:Scope measure (whose key is the Detection Pattern key with a '.scope' suffix) and its
smm:Operation recognizer (whose key is the Detection Pattern key with an '.recognizer' suffix) shall
be defined for each Detection Pattern from ASCQM standard, as illustrated with the ASCQM Check
Index of Array Access Detection Pattern abovein Subclause 7.3.1.

7.3.3 Acquiring Unadjusted Remediation Effort Values

This sub-clause describes the steps that shall be used to get the Unadjusted Remediation Effort
measure for all Occurrences (Technical Debt Items) of a specific Detection Pattern in each revision of
the software, unadjusted by the Contextual information associated with the Detection Pattern
Occurrence. For each Detection Pattern Occurrence in each revision, the unadjusted effort (coding,
unit/non-regression testing adaptation) to remove the Detection Pattern Occurrence shall be
determined as described below.

The Unadjusted Remediation Effort shall be modeled as an smm:DirectMeasure using an
smm:Operation relying on a formula which uses a parameter to handle the Unadjusted Remediation
Effort amount in minutes. These rules are demonstrated with the ASCQM Check Index of Array
Access pattern as follows:

• an smm:DirectMeasure
<measureElement xmi:type="smm:DirectMeasure"
xmi:id="id.sfgd.34.unadjusted_remediation_effort" name="Occurrence Unadjusted
Remediation Effort of ASCQM Check Index of Array Access" unit="effort(minutes)"
scope="toRevisionMeasurementScope" trait="RemediationEffortEstimating"
category="id.cat.277 id.cat.278" shortDescription="Effort to remove one occurrence of
ASCQM Check Index of Array Access (in simplest context)"
operation="id.sfgd.34.unadjusted_remediation_effort_value"
baseMeasure1From="id.sfgd.34.remediation_effort_to_id.sfgd.34.unadjusted_remediatio
n_effort"/>

• defined by an OCL smm:Operation
<measureElement xmi:type="smm:Operation"
xmi:id="id.sfgd.34.unadjusted_remediation_effort_value" name="Occurrence Unadjusted
Remediation Effort Value of ASCQM Check Index of Array Access"
trait="RemediationEffortEstimating" category="id.cat.277 id.cat.278" body="Real {
id.sfgd.34.unadjusted_remediation_effort_value_occurrence_removal_effort_in_minutes
= 46}" language="OCL"/>

The Unadjusted Remediation Value for an Occurrence of a Detection Pattern can be found in Table 5
in the row for the Weakness identified by this instantiation of the Detection Pattern.

7.3.4 Measure specifications

An smm:DirectMeasure measure (whose key is the Detection Pattern key with an
'.unadjusted_remediation_effort' suffix) and its smm:Operation (whose key is the Detection Pattern
key with a '.unadjusted_remediation_effort_value' suffix) shall be defined for each Detection Pattern
from ASCQM standard, as illustrated with the ASCQM Check Index of Array Access pattern abovein
Subclause 7.11.1. The Unadjusted Remediation Effort values are listed in Sub-clause 7.17.

Commented [BC17]: ATDMV2-8

Commented [BC18]: ATDMV2-8

 32 Automated Technical Debt Measure, 2.0

7.4 Contextual measures of Detection Pattern Occurrences

This sub-clause describes the steps that shall be used to compute Contextual measures that can be
applied to each individual Detection Pattern Occurrence. These Contextual measures are integral
parts of the calculation of Technical Debt, via the Adjustment Factor detailed in Sub-clause 7.1 (5).
These measures can also be used in analyzing, interpreting, and using Technical Debt values for
making decisions, benchmarking, modeling, and other uses.

The measurement process shall include three sets of scopes:

• the code elements from the role implementations of each Detection Pattern Occurrence

• the parent Artifact, as defined in AEP standard, from the code elements from the role
implementations of each Detection Pattern Occurrence

• the languages in which code elements were implemented, from the role implementations of
each Detection Pattern Occurrence

Then, the measurement process shall compute the following Contextual measures:

• Technological Diversity, using the language-related scopes,

• Complexity, using the parent Artifact scopes,

• Exposure, Direct Exposure, Concentration, and Evolution, using the code-elements-related
scopes.

Last, when applicable, the measurement process shall compute the Occurrence Gap Size.

7.4.1 Detection Pattern Occurrence Implementation Code Elements

An smm:Scope (named as the role name with a '_code_elements ' suffix), and its recognizer
smm:Operation (named as the role name with a '_code_elements _recognizer' suffix) shall be
defined for each applicable Role (listed below) in Detection Patterns from ASCQM standard. ASCQM
Check Index of Array Access role PathFromDeclarationStatementToUseAsAnIndexStatement will be
used in the examples below:

• an smm:Scope
<measureElement xmi:type="smm:Scope"
xmi:id="id.sfgd.34.PathFromDeclarationStatementToUseAsAnIndexStatement_code_eleme
nts" name="ASCQM Check Index of Array Access
PathFromDeclarationStatementToUseAsAnIndexStatement Code Elements"
category="id.cat.277 id.cat.278"
operation="id.sfgd.34.PathFromDeclarationStatementToUseAsAnIndexStatement_code_el
ements_recognizer" class="kdm:Code::AbstractCodeElement"/>

• relying on an smm:Operation
<measureElement xmi:type="smm:Operation"
xmi:id="id.sfgd.34.PathFromDeclarationStatementToUseAsAnIndexStatement_code_eleme
nts_recognizer" name="ASCQM Check Index of Array Access
PathFromDeclarationStatementToUseAsAnIndexStatement Code Elements Recognizer"
category="id.cat.277 id.cat.278"
body="ascqm:id.sfgd.34.PathFromDeclarationStatementToUseAsAnIndexStatement_code_
elements_recognizer.A_boundTo_Binding::Binding().fulfilledBy()" language="OCL"/>

Automated Technical Debt Measure, 2.0 33

7.4.2 Measure specifications

An smm:Scope measure (named as the role key with a '_code_elements' suffix) and its
smm:Operation recognizer (whose key is the Detection Pattern with a '_code_elements_recognizer '
suffix) shall be defined for each applicable role from source code pattern in thefrom ASCQM standard
(also ISO/IEC 5055:2021), as illustrated with the ASCQM Check Index of Array Access role
PathFromDeclarationStatementToUseAsAnIndexStatement abovein Subclause 7.4.1.

The Aapplicable roles are: listed in Subclauses 7.1.32, 7.20, 7.3.75, and 7.4.74 of ASCQM and ISO/IEC
5055:2021.

◦ ASCQM Ban Allocation of Memory with Null Size MemoryAllocationCall Code Elements
◦ ASCQM Ban Assignment Operation Inside Logic Blocks AssignmentExpression Code

Elements
◦ ASCQM Ban Assignment Operation Inside Logic Blocks LogicBlock Code Elements
◦ ASCQM Ban Buffer Size Computation Based on Array Element Pointer Size

MemoryAllocationCall Code Elements
◦ ASCQM Ban Buffer Size Computation Based on Bitwise Logical Operation

BitwiseOperation Code Elements
◦ ASCQM Ban Buffer Size Computation Based on Bitwise Logical Operation

MemoryAllocationCall Code Elements
◦ ASCQM Ban Buffer Size Computation Based on Incorrect String Length Value

LengthComputation Code Elements
◦ ASCQM Ban Buffer Size Computation Based on Incorrect String Length Value

MemoryAllocationCall Code Elements
◦ ASCQM Ban Comma Operator from Delete Statement CommaStatement Code

Elements
◦ ASCQM Ban Comma Operator from Delete Statement DeleteStatement Code Elements
◦ ASCQM Ban Comparison Expression Outside Logic Blocks ComparisonExpression Code

Elements
◦ ASCQM Ban Control Flow Transfer ControlFlowJumpStatement Code Elements
◦ ASCQM Ban Conversion References to Child Class Class Code Elements
◦ ASCQM Ban Conversion References to Child Class ParentClass Code Elements
◦ ASCQM Ban Conversion References to Child Class TypeConversion Code Elements
◦ ASCQM Ban Creation of Lock on Inappropriate Object Type

LockingAcquisitionStatement Code Elements
◦ ASCQM Ban Creation of Lock on Inappropriate Object Type ObjectDeclaration Code

Elements
◦ ASCQM Ban Creation of Lock on Non-Final Object LockingAcquisitionStatement Code

Elements
◦ ASCQM Ban Creation of Lock on Non-Final Object NonFinalObjectDeclaration Code

Elements
◦ ASCQM Ban Creation of Lock on Private Non-Static Object to Access Private Static Data

DataAccess Code Elements
◦ ASCQM Ban Creation of Lock on Private Non-Static Object to Access Private Static Data

PrivateNonStaticLock Code Elements
◦ ASCQM Ban Creation of Lock on Private Non-Static Object to Access Private Static Data

PrivateStaticData Code Elements
◦ ASCQM Ban Delete of VOID Pointer DeclarationStatement Code Elements
◦ ASCQM Ban Delete of VOID Pointer ReleaseStatement Code Elements
◦ ASCQM Ban Double Free on Pointers FirstPointerReleaseStatement Code Elements

Commented [BC19]: ATDMV2-9

Commented [BC20]: ATDMV2-8

Commented [BC21]: ATDMV2-9

 34 Automated Technical Debt Measure, 2.0

◦ ASCQM Ban Double Free on Pointers PathToPointerReleaseFromPointerRelease Code
Elements

◦ ASCQM Ban Double Free on Pointers SecondPointerReleaseStatement Code Elements
◦ ASCQM Ban Double Release of Resource FirstResourceReleaseStatement Code

Elements
◦ ASCQM Ban Double Release of Resource PathToResourceReleaseFromResourceRelease

Code Elements
◦ ASCQM Ban Double Release of Resource SecondResourceReleaseStatement Code

Elements
◦ ASCQM Ban Empty Exception Block CatchBlock Code Elements
◦ ASCQM Ban Exception Definition without Ever Throwing It Exception Code Elements
◦ ASCQM Ban Exception Definition without Ever Throwing It

FunctionProcedureOrMethod Code Elements
◦ ASCQM Ban Excessive Complexity of Data Resource Access Query Code Elements
◦ ASCQM Ban Excessive Number of Children Class Code Elements
◦ ASCQM Ban Excessive Number of Concrete Implementations to Inherit From Class Code

Elements
◦ ASCQM Ban Excessive Number of Data Resource Access from non-SQL Code

FunctionProcedureOrMethod Code Elements
◦ ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL

Procedure Function Code Elements
◦ ASCQM Ban Excessive Number of Index on Columns of Large Tables Code Elements
◦ ASCQM Ban Excessive Number of Inheritance Levels Class Code Elements
◦ ASCQM Ban Excessive Size of Index on Columns of Large Tables Code Elements
◦ ASCQM Ban Expensive Operations in Loops Loop Code Elements
◦ ASCQM Ban Expensive Operations in Loops ResourceConsummingStatement Code

Elements
◦ ASCQM Ban File Creation with Default Permissions FileCreationStatement Code

Elements
◦ ASCQM Ban File Creation with Default Permissions Permission Code Elements
◦ ASCQM Ban Free Operation on Pointer Received as Parameter ReleaseStatement Code

Elements
◦ ASCQM Ban Free Operation on Pointer Received as Parameter Signature Code Elements
◦ ASCQM Ban Hard-Coded Literals used to Connect to Resource InitializationStatement

Code Elements
◦ ASCQM Ban Hard-Coded Literals used to Connect to Resource

ResourceAccessStatement Code Elements
◦ ASCQM Ban Hard-Coded Literals used to Initialize Variables InitializationStatement

Code Elements
◦ ASCQM Ban Incompatible Lock Acquisition Sequences LockAcquisitionSequence Code

Elements
◦ ASCQM Ban Incompatible Lock Acquisition Sequences ReverseLockAcquisitionSequence

Code Elements
◦ ASCQM Ban Incorrect Float Number Comparison FloatEqualityComparisonExpression

Code Elements
◦ ASCQM Ban Incorrect Joint Comparison JointComparisonExpression Code Elements
◦ ASCQM Ban Incorrect Numeric Conversion of Return Value CallStatement Code

Elements
◦ ASCQM Ban Incorrect Numeric Conversion of Return Value

FunctionMethodOrProcedure Code Elements

Automated Technical Debt Measure, 2.0 35

◦ ASCQM Ban Incorrect Numeric Conversion of Return Value TargetDataType Code
Elements

◦ ASCQM Ban Incorrect Numeric Conversion of Return Value VariableDataType Code
Elements

◦ ASCQM Ban Incorrect Numeric Implicit Conversion Data Code Elements
◦ ASCQM Ban Incorrect Numeric Implicit Conversion TargetDataType Code Elements
◦ ASCQM Ban Incorrect Numeric Implicit Conversion Variable Code Elements
◦ ASCQM Ban Incorrect Numeric Implicit Conversion VariableAssignmentStatement Code

Elements
◦ ASCQM Ban Incorrect Numeric Implicit Conversion VariableDataType Code Elements
◦ ASCQM Ban Incorrect Object Comparison ObjectEqualityComparisonExpression Code

Elements
◦ ASCQM Ban Incorrect String Comparison StringEqualityComparisonExpression Code

Elements
◦ ASCQM Ban Incorrect Synchronization Mechanisms

IncorrectSynchronizationPrimitiveCall Code Elements
◦ ASCQM Ban Incorrect Type Conversion Data Code Elements
◦ ASCQM Ban Incorrect Type Conversion TargetDataType Code Elements
◦ ASCQM Ban Incorrect Type Conversion Variable Code Elements
◦ ASCQM Ban Incorrect Type Conversion VariableAssignmentStatement Code Elements
◦ ASCQM Ban Incorrect Type Conversion VariableDataType Code Elements
◦ ASCQM Ban Incremental Creation of Immutable Data StringConcatenationStatement

Code Elements
◦ ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities

InputAcquisitionCall Code Elements
◦ ASCQM Ban Logical Dead Code FunctionProcedureOrMethod Code Elements
◦ ASCQM Ban Logical Dead Code Statement Code Elements
◦ ASCQM Ban Logical Operation with a Constant Operand ComparisonExpression Code

Elements
◦ ASCQM Ban Loop Value Update within Incremental and Decremental Loop

LoopVariable Code Elements
◦ ASCQM Ban Loop Value Update within Incremental and Decremental Loop

LoopVariableUpdateStatement Code Elements
◦ ASCQM Ban Non-Final Static Data in Multi-Threaded Context Declaration Code

Elements
◦ ASCQM Ban Non-Serializable Elements in Serializable Objects NonSerializableMember

Code Elements
◦ ASCQM Ban Non-Serializable Elements in Serializable Objects SerializableClass Code

Elements
◦ ASCQM Ban Not Operator on Non-Boolean Operand Of Comparison Operation

ComparisonExpression Code Elements
◦ ASCQM Ban Not Operator on Operand Of Bitwise Operation BitwiseExpression Code

Elements
◦ ASCQM Ban Reading and Writing the Same Variable Used as Assignment Value

VariableAssignment Code Elements
◦ ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context

ResourceAccessStatement Code Elements
◦ ASCQM Ban Return of Local Variable Address LocalVariable Code Elements
◦ ASCQM Ban Return of Local Variable Address Operation Code Elements
◦ ASCQM Ban Self Assignment SelfAssignmentStatement Code Elements

 36 Automated Technical Debt Measure, 2.0

◦ ASCQM Ban Self Destruction DeleteThisStatement Code Elements
◦ ASCQM Ban Sequential Acquisitions of Single Non-Reentrant Lock

FirstLockAcquisitionStatement Code Elements
◦ ASCQM Ban Sequential Acquisitions of Single Non-Reentrant Lock

SecondLockAcquisitionStatement Code Elements
◦ ASCQM Ban Sleep Between Lock Acquisition and Release LockAcquisitionStatement

Code Elements
◦ ASCQM Ban Sleep Between Lock Acquisition and Release LockReleaseStatement Code

Elements
◦ ASCQM Ban Sleep Between Lock Acquisition and Release

PathFromLockAcquisitionToLockRelease Code Elements
◦ ASCQM Ban Sleep Between Lock Acquisition and Release SleepStatement Code

Elements
◦ ASCQM Ban Static Non-Final Data Element Outside Singleton

StaticNonFinalVariableDeclaration Code Elements
◦ ASCQM Ban Storage of Local Variable Address in Global Variable GlobalVariable Code

Elements
◦ ASCQM Ban Storage of Local Variable Address in Global Variable LocalVariable Code

Elements
◦ ASCQM Ban Storage of Local Variable Address in Global Variable StorageStatement

Code Elements
◦ ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities

StringManipulationCall Code Elements
◦ ASCQM Ban Switch in Switch Statement NestedSwitch Code Elements
◦ ASCQM Ban Switch in Switch Statement ParentSwitch Code Elements
◦ ASCQM Ban Unintended Paths Callee Code Elements
◦ ASCQM Ban Unintended Paths Caller Code Elements
◦ ASCQM Ban Unintended Paths Relation Code Elements
◦ ASCQM Ban Unmodified Loop Variable Within Loop WhileLoop Code Elements
◦ ASCQM Ban Unreferenced Dead Code FunctionProcedureOrMethod Code Elements
◦ ASCQM Ban Usage of Data Elements from Other Classes Class Code Elements
◦ ASCQM Ban Usage of Data Elements from Other Classes OtherClass Code Elements
◦ ASCQM Ban Usage of Data Elements from Other Classes Reference Code Elements
◦ ASCQM Ban Use of Deprecated Libraries CallStatement Code Elements
◦ ASCQM Ban Use of Deprecated Libraries DeprecatedLibrary Code Elements
◦ ASCQM Ban Use of Expired Pointer PathToPointerAccessFromPointerRelease Code

Elements
◦ ASCQM Ban Use of Expired Pointer PointerAccessStatement Code Elements
◦ ASCQM Ban Use of Expired Pointer PointerReleaseStatement Code Elements
◦ ASCQM Ban Use of Expired Resource PathToResourceAccessFromResourceRelease

Code Elements
◦ ASCQM Ban Use of Expired Resource ResourceAccessStatement Code Elements
◦ ASCQM Ban Use of Expired Resource ResourceReleaseStatement Code Elements
◦ ASCQM Ban Use of Prohibited Low-Level Resource Management Functionality

ResourceManagementPrimitiveCall Code Elements
◦ ASCQM Ban Use of Prohibited Low-Level Resource Management Functionality

TechnologyStack Code Elements
◦ ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues

ThreadControlPrimitiveCall Code Elements
◦ ASCQM Ban Useless Handling of Exceptions CatchBlock Code Elements

Automated Technical Debt Measure, 2.0 37

◦ ASCQM Ban Variable Increment or Decrement Operation in Operations using the Same
Variable VariableAssignment Code Elements

◦ ASCQM Ban While TRUE Loop Without Path To Break WhileTrueLoop Code Elements
◦ ASCQM Catch Exceptions Exception Code Elements
◦ ASCQM Catch Exceptions Method Code Elements
◦ ASCQM Catch Exceptions MethodCall Code Elements
◦ ASCQM Check and Handle ZERO Value before Use as Divisor DivisionStatement Code

Elements
◦ ASCQM Check Boolean Variables are Updated in Different Conditional Branches before

Use Boolean Code Elements
◦ ASCQM Check Boolean Variables are Updated in Different Conditional Branches before

Use Condition Code Elements
◦ ASCQM Check Index of Array Access ArrayAccessStatement Code Elements
◦ ASCQM Check Index of Array Access

PathFromDeclarationStatementToUseAsAnIndexStatement Code Elements
◦ ASCQM Check Index of Array Access VariableDeclarationStatement Code Elements
◦ ASCQM Check Input of Memory Allocation Primitives MemoryAllocationCall Code

Elements
◦ ASCQM Check Input of Memory Manipulation Primitives MemoryManipulationCall

Code Elements
◦ ASCQM Check Input of String Manipulation Primitives with Boundary Checking

Capabilities StringManipulationCall Code Elements
◦ ASCQM Check NULL Pointer Value before Use EvaluationStatement Code Elements
◦ ASCQM Check Offset used in Pointer Arithmetic ArithmeticExpression Code Elements
◦ ASCQM Check Offset used in Pointer Arithmetic EvaluationStatement Code Elements
◦ ASCQM Check Return Value of Resource Operations Immediately CallToTheOperation

Code Elements
◦ ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context

InitializationStatement Code Elements
◦ ASCQM Handle Return Value of Must Check Operations CallToTheOperation Code

Elements
◦ ASCQM Handle Return Value of Resource Operations CallToTheOperation Code

Elements
◦ ASCQM Implement Copy Constructor for Class with Pointer Resource Class Code

Elements
◦ ASCQM Implement Copy Constructor for Class with Pointer Resource Pointer Code

Elements
◦ ASCQM Implement Correct Object Comparison Operations Class Code Elements
◦ ASCQM Implement Index Required by Query on Large Tables Column Code Elements
◦ ASCQM Implement Index Required by Query on Large Tables Query Code Elements
◦ ASCQM Implement Index Required by Query on Large Tables Code Elements
◦ ASCQM Implement Required Operations for Manual Resource Management

ObjectDeclaration Code Elements
◦ ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual

Destructor Class Code Elements
◦ ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual

Destructor ParentClass Code Elements
◦ ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual

Destructor ParentVirtualDestructor Code Elements

 38 Automated Technical Debt Measure, 2.0

◦ ASCQM Implement Virtual Destructor for Classes with Virtual Methods Class Code
Elements

◦ ASCQM Implement Virtual Destructor for Classes with Virtual Methods VirtualMethod
Code Elements

◦ ASCQM Implement Virtual Destructor for Parent Classes Class Code Elements
◦ ASCQM Implement Virtual Destructor for Parent Classes ParentClass Code Elements
◦ ASCQM Initialize Pointers before Use PathToPointerAccessFromPointerDeclaration

Code Elements
◦ ASCQM Initialize Pointers before Use PointerAccessStatement Code Elements
◦ ASCQM Initialize Pointers before Use PointerDeclarationStatement Code Elements
◦ ASCQM Initialize Resource before Use PathToResourceAccessFromResourceDeclaration

Code Elements
◦ ASCQM Initialize Resource before Use ResourceAccessStatement Code Elements
◦ ASCQM Initialize Resource before Use ResourceDeclarationStatement Code Elements
◦ ASCQM Initialize Variables before Use PathToVariableAccessFromVariableDeclaration

Code Elements
◦ ASCQM Initialize Variables before Use VariableAccessStatement Code Elements
◦ ASCQM Initialize Variables before Use VariableDeclarationStatement Code Elements
◦ ASCQM Initialize Variables PathFromVariableDeclaration Code Elements
◦ ASCQM Initialize Variables VariableDeclarationStatement Code Elements
◦ ASCQM Limit Algorithmic Complexity via Cyclomatic Complexity Value

FunctionProcedureOrMethod Code Elements
◦ ASCQM Limit Algorithmic Complexity via Essential Complexity Value

FunctionProcedureOrMethod Code Elements
◦ ASCQM Limit Algorithmic Complexity via Module Design Complexity Value

FunctionProcedureOrMethod Code Elements
◦ ASCQM Limit Number of Aggregated Non-Primitive Data Types Class Code Elements
◦ ASCQM Limit Number of Data Access FunctionProcedureOrMethod Code Elements
◦ ASCQM Limit Number of Outward Calls FunctionProcedureOrMethod Code Elements
◦ ASCQM Limit Number of Parameters FunctionProcedureOrMethod Code Elements
◦ ASCQM Limit Size of Operations Code FunctionProcedureOrMethod Code Elements
◦ ASCQM Limit Volume of Commented-Out Code FunctionProcedureOrMethod Code

Elements
◦ ASCQM Limit Volume of Similar Code FunctionProcedureOrMethod1 Code Elements
◦ ASCQM Limit Volume of Similar Code FunctionProcedureOrMethod2 Code Elements
◦ ASCQM Log Caught Security Exceptions CatchStatement Code Elements
◦ ASCQM Log Caught Security Exceptions Method Code Elements
◦ ASCQM Log Caught Security Exceptions MethodCall Code Elements
◦ ASCQM Log Caught Security Exceptions SecurityException Code Elements
◦ ASCQM Manage Time-Out Mechanisms in Blocking Synchronous Calls

BlockingSynchronousCall Code Elements
◦ ASCQM Manage Time-Out Mechanisms in Blocking Synchronous Calls TimeOutOption

Code Elements
◦ ASCQM NULL Terminate Output Of String Manipulation Primitives

StringManipulationCallStatement Code Elements
◦ ASCQM Release File Resource after Use in Class Class Code Elements
◦ ASCQM Release File Resource after Use in Class FileResourceOpenStatement Code

Elements
◦ ASCQM Release File Resource after Use in Operation FileResourceOpenStatement Code

Elements

Automated Technical Debt Measure, 2.0 39

◦ ASCQM Release File Resource after Use in Operation FunctionProcedureOrMethod
Code Elements

◦ ASCQM Release File Resource after Use in Operation
PathToExitWithoutFileResourceClose Code Elements

◦ ASCQM Release in Destructor Memory Allocated in Constructor
MemoryAllocationStatement Code Elements

◦ ASCQM Release Lock After Use FunctionProcedureOrMethod Code Elements
◦ ASCQM Release Lock After Use LockAcquisitionStatement Code Elements
◦ ASCQM Release Lock After Use PathToExitWithoutLockRelease Code Elements
◦ ASCQM Release Memory After Use MemoryAllocationStatement Code Elements
◦ ASCQM Release Memory after Use with Correct Operation

MemoryAllocationStatement Code Elements
◦ ASCQM Release Memory after Use with Correct Operation MemoryReleaseStatement

Code Elements
◦ ASCQM Release Platform Resource after Use FunctionProcedureOrMethod Code

Elements
◦ ASCQM Release Platform Resource after Use PathToExitWithoutResourceRelease Code

Elements
◦ ASCQM Release Platform Resource after Use ResourceAllocationStatement Code

Elements
◦ ASCQM Sanitize Stored Input used in User Output

PathFromRetrievalStatementToUserDisplay Code Elements
◦ ASCQM Sanitize Stored Input used in User Output

PathFromUserInputToStorageStatement Code Elements
◦ ASCQM Sanitize Stored Input used in User Output RetrievalStatement Code Elements
◦ ASCQM Sanitize Stored Input used in User Output StorageStatement Code Elements
◦ ASCQM Sanitize Stored Input used in User Output UserDisplay Code Elements
◦ ASCQM Sanitize Stored Input used in User Output UserInput Code Elements
◦ ASCQM Sanitize User Input used as Array Index ArrayAccessStatement Code Elements
◦ ASCQM Sanitize User Input used as Array Index PathFromUserInputToArrayAccess Code

Elements
◦ ASCQM Sanitize User Input used as Array Index UserInput Code Elements
◦ ASCQM Sanitize User Input used as Pointer PathFromUserInputToPointerDereferencing

Code Elements
◦ ASCQM Sanitize User Input used as Pointer PointerDereferencingStatement Code

Elements
◦ ASCQM Sanitize User Input used as Pointer UserInput Code Elements
◦ ASCQM Sanitize User Input used as Serialized Object DeserializationStatement Code

Elements
◦ ASCQM Sanitize User Input used as Serialized Object

PathFromUserInputToDeserialization Code Elements
◦ ASCQM Sanitize User Input used as Serialized Object UserInput Code Elements
◦ ASCQM Sanitize User Input used as String Format FormatStatement Code Elements
◦ ASCQM Sanitize User Input used as String Format

PathFromUserInputToFormatStatement Code Elements
◦ ASCQM Sanitize User Input used as String Format UserInput Code Elements
◦ ASCQM Sanitize User Input used in Document Manipulation Expression

DocumentManipulationExpression Code Elements
◦ ASCQM Sanitize User Input used in Document Manipulation Expression

PathFromUserInputToDocumentManipulation Code Elements

 40 Automated Technical Debt Measure, 2.0

◦ ASCQM Sanitize User Input used in Document Manipulation Expression UserInput Code
Elements

◦ ASCQM Sanitize User Input used in Document Navigation Expression
DocumentNavigationEvaluationExpression Code Elements

◦ ASCQM Sanitize User Input used in Document Navigation Expression
PathFromUserInputToDocumentNavigationEvaluation Code Elements

◦ ASCQM Sanitize User Input used in Document Navigation Expression UserInput Code
Elements

◦ ASCQM Sanitize User Input used in Expression Language Statement
ExpressionLanguageExpression Code Elements

◦ ASCQM Sanitize User Input used in Expression Language Statement
TransformationSequence Code Elements

◦ ASCQM Sanitize User Input used in Expression Language Statement UserInput Code
Elements

◦ ASCQM Sanitize User Input used in Loop Condition LoopConditionStatement Code
Elements

◦ ASCQM Sanitize User Input used in Loop Condition
PathFromUserInputToLoopCondition Code Elements

◦ ASCQM Sanitize User Input used in Loop Condition UserInput Code Elements
◦ ASCQM Sanitize User Input used in Path Manipulation

PathFromUserInputToPathManipulation Code Elements
◦ ASCQM Sanitize User Input used in Path Manipulation PathManipulationStatement

Code Elements
◦ ASCQM Sanitize User Input used in Path Manipulation UserInput Code Elements
◦ ASCQM Sanitize User Input used in SQL Access PathFromUserInputToSQLStatement

Code Elements
◦ ASCQM Sanitize User Input used in SQL Access SQLStatement Code Elements
◦ ASCQM Sanitize User Input used in SQL Access UserInput Code Elements
◦ ASCQM Sanitize User Input used in System Command

ExecuteRunTimeCommandStatement Code Elements
◦ ASCQM Sanitize User Input used in System Command

PathFromUserInputToExecuteRunTimeCommand Code Elements
◦ ASCQM Sanitize User Input used in System Command UserInput Code Elements
◦ ASCQM Sanitize User Input used in User Output PathFromUserInputToUserDisplay

Code Elements
◦ ASCQM Sanitize User Input used in User Output UserDisplay Code Elements
◦ ASCQM Sanitize User Input used in User Output UserInput Code Elements
◦ ASCQM Sanitize User Input used to access Directory Resources

DirectoryAccessStatement Code Elements
◦ ASCQM Sanitize User Input used to access Directory Resources

PathFromUserInputToExecuteRunTimeCommand Code Elements
◦ ASCQM Sanitize User Input used to access Directory Resources UserInput Code

Elements
◦ ASCQM Secure Use of Unsafe XML Processing with Secure Parser XMLProcessingCall

Code Elements
◦ ASCQM Secure XML Parsing with Secure Options DTDProcessingDisablingOption Code

Elements
◦ ASCQM Secure XML Parsing with Secure Options XMLParsingCall Code Elements
◦ ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context

InitializationStatement Code Elements

Automated Technical Debt Measure, 2.0 41

◦ ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context
SingletonClass Code Elements

◦ ASCQM Use Break in Switch Statement ControlFlowBranch Code Elements
◦ ASCQM Use Break in Switch Statement Switch Code Elements
◦ ASCQM Use Default Case in Switch Statement Switch Code Elements

7.4.2577.4.3 Detection Pattern Occurrence Parent Artifact Code Elements

An smm:Scope (named as the role name with a '_parent_artifact_code_elements' suffix), and its
recognizer smm:Operation (named as the role name with a '_parent_artifact_code_elements
_recognizer' suffix) shall be defined for each applicable Role (listed below) in Detection Patterns from
ASCQM standard. ASCQM Check Index of Array Access role
PathFromDeclarationStatementToUseAsAnIndexStatement will be used in the examples below:

• an smm:Scope
<measureElement xmi:type="smm:Scope"
xmi:id="id.sfgd.34.PathFromDeclarationStatementToUseAsAnIndexStatement_parent_artif
act_code_elements" name="ASCQM Check Index of Array Access
PathFromDeclarationStatementToUseAsAnIndexStatement Code Elements from parent
Artifact" category="id.cat.277 id.cat.278"
operation="id.sfgd.34.PathFromDeclarationStatementToUseAsAnIndexStatement_parent_
artifact_code_elements_recognizer" class="aep::Artifact"/>

• relying on an smm:Operation
<measureElement xmi:type="smm:Operation"
xmi:id="id.sfgd.34.PathFromDeclarationStatementToUseAsAnIndexStatement_parent_artif
act_code_elements_recognizer" name="ASCQM Check Index of Array Access
PathFromDeclarationStatementToUseAsAnIndexStatement Code Elements from parent
Artifact Recognizer" category="id.cat.277 id.cat.278"
body="ascqm:id.sfgd.34.PathFromDeclarationStatementToUseAsAnIndexStatement_paren
t_artifact_code_elements_recognizer.A_boundTo_Binding::Binding().fulfilledBy().closure(p
arent)->>;select(oclIsTypeOf(aep::Artifact))->>;notEmpty()" language="OCL"/>

7.4.2587.4.4 Measure specifications

An smm:Scope measure (named as the role key with a '_code_elements' suffix) and its
smm:Operation recognizer (whose key is the Detection Pattern with a '_code_elements_recognizer '
suffix) shall be defined for each applicable role from source code pattern from ASCQM standard, as
illustrated with the ASCQM Check Index of Array Access role
PathFromDeclarationStatementToUseAsAnIndexStatement above.

7.5 Technological Diversity

Technological Diversity is the number of distinct languages in which the code elements of a single
Occurrence of a Detection Pattern are written. Technological Diversity shall be computed as a simple
count applied to the Detection Pattern Occurrence implementation languages scopes.

E.g., with ASCQM Check Index of Array Access:

• an smm:Counting measure
<measureElement xmi:type="smm:Counting" xmi:id="id.sfgd.34.technological_diversity"
name="Occurrence Technological Diversity of ASCQM Check Index of Array Access"

Commented [BC22]: ATDMV2-2

 42 Automated Technical Debt Measure, 2.0

unit="Integer" scope="id.sfgd.34.code_element_languages" trait="LanguageCounting"
category="id.cat.277 id.cat.278" shortDescription="Occurrence Technological Diversity of
ASCQM Check Index of Array Access (measured as the number of distinct languages)"
baseMeasureFrom="id.sfgd.34.adjustment_factor_to_id.sfgd.34.technological_diversity"/>

7.5.1 Measure specifications

An smm:Counting measure (whose key is the Detection Pattern with a '.technological_diversity '
suffix) shall be defined for each source code pattern from ASCQM standard, as illustrated with the
ASCQM Check Index of Array Access pattern above.

7.5.2 Occurrence implementation languages

The set of languages in which a single pattern Occurrence has been implemented shall be
determined through the following process:

1. For each Detection Pattern Occurrence, list implementation code elements, regardless of
the role,

2. For each code element, list the source region(s),
3. For each source region, collect the language attribute value.

An smm:Scope (whose key is the Detection Pattern name with a '.code_element_languages ' suffix),
and its recognizer smm:Operation (whose key is the Detection Pattern name with a '.
code_element_languages_recognizer' suffix) shall be defined for each Detection Pattern.

E.g., with ASCQM Check Index of Array Access:

• an smm:Scope
<measureElement xmi:type="smm:Scope" xmi:id="id.sfgd.34.code_element_languages"
name="Occurrence Code Element Languages of ASCQM Check Index of Array Access"
category="id.cat.277 id.cat.278" class="MOF::Element"
recognizer="id.sfgd.34.code_element_languages_recognizer"/>

• relying on an smm:Operation
<measureElement xmi:type="smm:Operation"
xmi:id="id.sfgd.34.code_element_languages_recognizer" name="Occurrence Code
Element Languages of ASCQM Check Index of Array Access Recognizer"
category="id.cat.277 id.cat.278"
body="ascqm:id.sfgd.34.code_element_languages_recognizer.A_instanceOf_PatternInstan
ce::PatternInstance().fulfillments().fulfilledBy().source().language()" language="OCL"/>

7.5.3 Measure specifications

An smm:Scope measure (whose key is the Detection Pattern key with a '.code_element_languages'
suffix) and its smm:Operation recognizer (whose key is the Detection Pattern key with a
'.code_element_languages _recognizer' suffix) shall be defined for each Detection Pattern from
ASCQM standard, as illustrated with the ASCQM Check Index of Array Access Detection Pattern
above.

7.6 Complexity

Complexity, or Effort Complexity, shall be measured as defined in the Automated Enhancement
Points specification, via an smm:NamedMeasure.

<measureElement xmi:type="smm:NamedMeasure" xmi:id="ArtifactEffortComplexity"
name="ArtifactEffortComplexity" unit="ImplementationPoint" scope="aep::Artifact"

Automated Technical Debt Measure, 2.0 43

trait="ImplementationComplexity" shortDescription="Code Element Effort Complexity according
to AEP 1.0 specifications" formula="aep::ArtifactEffortComplexity"
baseMeasure1From="id.sfgd.100.Table_complexity_overhead_to_ArtifactEffortComplexity
id.sfgd.101.Table_complexity_overhead_to_ArtifactEffortComplexity
id.sfgd.102.FunctionProcedureOrMethod_complexity_overhead_to_ArtifactEffortComplexity … "
/>

aep::Artifact is a subset of kdm:code::ControlElement and this measure will return non-null values
for elements of this subset only.

To compute the Complexity overhead which contributes to the Adjustment Factor, the Low
Complexity Effort value shall also be collected via a second smm:NamedMeasure. This is the lowest
complexity value the implementation code elements could have had, considered to be the “best case
scenario” for well-implemented code.

<measureElement xmi:type="smm:NamedMeasure" xmi:id="LowEffortComplexity"
name="LowEffortComplexity" unit="ImplementationPoint" scope="aep::Artifact"
trait="ImplementationComplexity" shortDescription="Code Element lowest Effort Complexity
value according to AEP 1.0 specifications" formula="aep::wLowEC"
baseMeasure2From="id.sfgd.100.Table_complexity_overhead_to_LowEffortComplexity … " />

For each implementation role, the ratio of the two above values defines a complexity overhead, via
an smm:RatioMeasure.

E.g., with ASCQM Check Index of Array Access role
PathFromDeclarationStatementToUseAsAnIndexStatement:

<measureElement xmi:type="smm:RatioMeasure"
xmi:id="id.sfgd.34.PathFromDeclarationStatementToUseAsAnIndexStatement_complexity_overhe
ad" name="ASCQM Check Index of Array Access
PathFromDeclarationStatementToUseAsAnIndexStatement Code Elements from parent Artifact"
unit="Real"
scope="id.sfgd.34.PathFromDeclarationStatementToUseAsAnIndexStatement_parent_artifact_cod
e_elements" trait="ComplexityEstimating" category="id.cat.277 id.cat.278"
shortDescription="ASCQM Check Index of Array Access
PathFromDeclarationStatementToUseAsAnIndexStatement Code Elements from parent Artifact of
code elements (measured as their Effort Complexity divided by the minimal Effort Complexity they
could have)"
baseMeasure1To="id.sfgd.34.PathFromDeclarationStatementToUseAsAnIndexStatement_complexi
ty_overhead_to_ArtifactEffortComplexity"
baseMeasure2To="id.sfgd.34.PathFromDeclarationStatementToUseAsAnIndexStatement_complexi
ty_overhead_to_LowEffortComplexity"
baseMeasureFrom="id.sfgd.34.complexity_overhead_average_to_id.sfgd.34.PathFromDeclaration
StatementToUseAsAnIndexStatement_complexity_overhead"/>

Measure Sspecifications

An smm:RatioMeasure measure (named as the role key with a '_complexity overhead' suffix) shall
be defined for each implementation role from ASCQM standard patterns, as illustrated with the
ASCQM Check Index of Array Access role PathFromDeclarationStatementToUseAsAnIndexStatement
above.

Commented [BC23]: ATDMV2-11

 44 Automated Technical Debt Measure, 2.0

7.7 Exposure and Direct Exposure

Exposure and Direct Exposure shall be measured for all Detection Pattern Occurrences, respectively
as the number of distinct call pathsgraph to and the number of direct callers of the code elements
from the implementation of the Detection Pattern roles.

For each Detection Pattern Role, the associated smm:Scope (named as the role name with a
'_code_elements' suffix), and its recognizer smm:Operation (named as the role name with a
'_code_elements_recognizer' suffix) will be reused in the current process.

7.7.1 User input Exposure considerations

In case of a Detection Pattern relying on user input, the number of distinct callers and call paths shall
be 0, but the Exposure is virtually infinite as the Detection Pattern is directly exposed to the outside
world. From the security standpoint, the probability for an event (a malevolent use of the entry point
into the system) to occur is “1”. This shall be considered when using Exposure to manage decisions
or outcomes related to Technical Debt.

The affected patterns are:
• ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities
• ASCQM Check Input of Memory Allocation Primitives
• ASCQM Check Input of Memory Manipulation Primitives
• ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities
• ASCQM Sanitize Stored Input used in User Output
• ASCQM Sanitize User Input used as Array Index
• ASCQM Sanitize User Input used as Pointer
• ASCQM Sanitize User Input used as Serialized Object
• ASCQM Sanitize User Input used as String Format
• ASCQM Sanitize User Input used in Document Manipulation Expression
• ASCQM Sanitize User Input used in Document Navigation Expression
• ASCQM Sanitize User Input used in Expression Language Statement
• ASCQM Sanitize User Input used in Loop Condition
• ASCQM Sanitize User Input used in Path Manipulation
• ASCQM Sanitize User Input used in SQL Access
• ASCQM Sanitize User Input used in System Command
• ASCQM Sanitize User Input used in User Output
• ASCQM Sanitize User Input used to access Directory Resources

7.7.2 Number of distinct direct callers

The number of distinct direct callers shall be calculated as follows:
1. identify a code element.
2. build the set of code elements calling it.
3. compute the size of the set.

7.7.3 Measure specifications

1) The set of direct callers of any code element shall be determined as follows.

• the applicable call links shall be identified by a first smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation" xmi:id="CallingAction"
name="CallingAction" trait="ExposureSizing" shortDescription=""
body="((oclIsTypeOf(kdm:action::CallableRelations) or

Commented [BC24]: ATDMV2-7

Automated Technical Debt Measure, 2.0 45

oclIsTypeOf(kdm:action::DataRelations)) and to = self)"
context="kdm:code::AbstractCodeElement"/>

• the callers shall be identified by a second smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation" xmi:id="CallingCodeElements"
name="CallingCodeElements" trait="ExposureSizing" shortDescription=""
body="(self.CallingAction.from())" context="kdm:code::AbstractCodeElement"/>

2) The number of distinct direct callers of any code element shall be determined as follows.

• the size of the set of callers shall be computed by an smm:Operation
<measureElement xmi:type="smm:OCLOperation" xmi:id="CallingCodeElementsNumber"
name="CallingCodeElementsNumber" trait="ExposureSizing" shortDescription=""
body="CallingCodeElements()->size()" context="kdm:code::AbstractCodeElement"/>

3) To measure the number of distinct callers for all implementation roles, the following measures
shall apply the specified smm:Operation to the identified exposed role; e.g., with ASCQM Check
Index of Array Access VariableDeclarationStatement Code Elements

• an smm:DirectMeasure uses the smm:OCLOperation on the smm:Scope
<measureElement xmi:type="smm:OCLOperation"
xmi:id="id.sfgd.34.VariableDeclarationStatement_direct_exposure" name="ASCQM Check
Index of Array Access VariableDeclarationStatement Direct Exposure" unit="Integer"
scope="id.sfgd.34.VariableDeclarationStatement_code_elements" trait="ExposureSizing"
category="id.cat.277 id.cat.278" shortDescription="Number of direct callers to ASCQM
Check Index of Array Access VariableDeclarationStatement Direct Exposure"
operation="CallingCodeElementsNumber"/>

A smm:DirectMeasure measure (whose key is the Detection Pattern with a '_direct_exposure' suffix)
shall be defined for each pattern role from ASCQM standard.

7.7.4 Number of distinct call paths

The number of distinct call paths shall be computed similar to the McCabe Cyclomatic Complexity
formula (CC = E – N + p) as follows.

1. identify a code element,
2. identify the call paths towards the code element,
3. compute the number of nodes (N),
4. compute the number of entry nodes to compute the number of edges (E) needed to cycle

back to the starting code element in order that the number of components is 1,
5. compute the number of edges (E),
6. subtract the number of nodes (N) from the sum of the number of edges (E) and the

number of entry nodes,
7. add 1 to the difference to get the number of distinct call paths

7.7.5 Measure specifications

A call graph for selected code elements shall be developed using the :OCLOperation from the
previous paragraph.

• the call graph as recursive callers, identified by a first smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation" xmi:id="CallingGraph"
name="CallingGraph" trait="ExposureSizing" shortDescription=""
body="(closure(CallingCodeElements()))" context="kdm:code::AbstractCodeElement"/>

 46 Automated Technical Debt Measure, 2.0

The number of distinct call paths of any code element shall be computed as:

• the number of nodes, computed by a smm:DirectMeasure
<measureElement xmi:type="smm:DirectMeasure" xmi:id="CallingGraphNodeNumber"
name="CallingGraphNodeNumber" trait="ExposureSizing" shortDescription=""
operation="CallingGraphNodeNumber_value"
baseMeasure1From="CallingGraphBranchingFactor_to_CallingGraphNodeNumber"/>

• and its smm:Operation
<measureElement xmi:type="smm:Operation" xmi:id="CallingGraphNodeNumber_value"
name="CallingGraphNodeNumber_value" trait="ExposureSizing" shortDescription=""
body="CallingGraph()->select(e: kdm:code::AbstractCodeElement)->size()"
language="OCL"/>

• the number of entry nodes, computed by a smm:DirectMeasure
<measureElement xmi:type="smm:DirectMeasure"
xmi:id="CallingGraphEntryNodeNumber" name="CallingGraphEntryNodeNumber"
trait="ExposureSizing" shortDescription=""
operation="CallingGraphEntryNodeNumber_value"
baseMeasure2From="CallingGraphEdgeAndEntryNodeNumber_to_CallingGraphEdgeNumb
er"/>

• and its smm:Operation
<measureElement xmi:type="smm:Operation"
xmi:id="CallingGraphEntryNodeNumber_value"
name="CallingGraphEntryNodeNumber_value" trait="ExposureSizing" shortDescription=""
body="CallingGraph()->>;select(e: kdm:code::AbstractCodeElement |
e.CallingCodeElementsNumber = 0)->size()" language="OCL"/>

• the number of edges, computed by a smm:DirectMeasure
<measureElement xmi:type="smm:DirectMeasure" xmi:id="CallingGraphEdgeNumber"
name="CallingGraphEdgeNumber" trait="ExposureSizing" shortDescription=""
operation="CallingGraphEdgeNumber_value"
baseMeasure1From="CallingGraphEdgeAndEntryNodeNumber_to_CallingGraphEdgeNumb
er"/>

• and its smm:Operation
<measureElement xmi:type="smm:Operation" xmi:id="CallingGraphEdgeNumber_value"
name="CallingGraphEdgeNumber_value" trait="ExposureSizing" shortDescription=""
body="CallingGraph()->select(e1, e2: kdm:code::AbstractCodeElement |
e1.CallingAction()->includes(e2))->size()" language="OCL"/>

• the sum of the number of edges and the number of entry nodes, computed by a first
smm:BinaryMeasure
<measureElement xmi:type="smm:BinaryMeasure"
xmi:id="CallingGraphEdgeAndEntryNodeNumber"
name="CallingGraphEdgeAndEntryNodeNumber" functor="plus" unit="Integer"
scope="kdm:code::AbstractCodeElement" trait="ExposureSizing"
shortDescription="Calling graph number of edges and entry nodes"
baseMeasure1To="CallingGraphEdgeAndEntryNodeNumber_to_CallingGraphEdgeNumber
"
baseMeasure2To="CallingGraphEdgeAndEntryNodeNumber_to_CallingGraphEdgeNumber
"

Commented [BC25]: ATDMV2-2

Automated Technical Debt Measure, 2.0 47

baseMeasure2From="CallingGraphBranchingFactor_to_CallingGraphEdgeAndEntryNodeN
umber"/>

• the difference of the number of nodes from edges and entry nodes, computed by a second
smm:BinaryMeasure
<measureElement xmi:type="smm:BinaryMeasure"
xmi:id="CallingGraphBranchingFactor" name="CallingGraphBranchingFactor"
functor="minus" unit="Integer" scope="kdm:code::AbstractCodeElement"
trait="ExposureSizing" shortDescription="Calling graph branching factor"
baseMeasure1To="CallingGraphBranchingFactor_to_CallingGraphNodeNumber"
baseMeasure2To="CallingGraphBranchingFactor_to_CallingGraphEdgeAndEntryNodeNum
ber" rescaleTo="CallingGraphBranchingFactor_to_GraphCallPathNumber"/>

• the number of distinct call paths, computed by an smm:RescaledMeasure
<measureElement xmi:type="smm:RescaledMeasure" xmi:id="GraphCallPathNumber"
name="GraphCallPathNumber" unit="Integer" scope="kdm:code::AbstractCodeElement"
trait="ExposureSizing" shortDescription="Number of call paths to the Code Element"
offset="1" multiplier="1"
rescaleFrom="CallingGraphBranchingFactor_to_GraphCallPathNumber"
rescaleTo="GraphCallPathNumber_to_LogGraphCallPathNumber"/>

• the logarithmic transformation of the number of distinct call paths, computed by an
smm:RescaledMeasure
<measureElement xmi:type="smm:RescaledMeasure" xmi:id="LogGraphCallPathNumber"
name="LogGraphCallPathNumber" unit="Real" scope="kdm:code::AbstractCodeElement"
trait="ExposureSizing" shortDescription="Log of the number of call paths to the Code
Element" operation="log(GraphCallPathNumber)"
rescaleFrom="GraphCallPathNumber_to_LogGraphCallPathNumber"
rescaleTo="LogGraphCallPathNumber_to_id.sfgd.100.Table_exposure …" />

Finally, to measure the Exposure for all Detection Pattern Occurrences, the following measures shall
apply the specified :RescaleMeasure to the identified role.

E.g., with ASCQM Check Index of Array Access VariableDeclarationStatement Code Elements

• an smm:RescaledMeasure uses the smm:RescaledMeasure on the smm:Scope
<measureElement xmi:type="smm:RescaledMeasure"
xmi:id="id.sfgd.34.VariableDeclarationStatement_exposure" name="ASCQM Check Index
of Array Access VariableDeclarationStatement Exposure" unit="Real"
scope="id.sfgd.34.VariableDeclarationStatement_code_elements" trait="ExposureSizing"
category="id.cat.277 id.cat.278" shortDescription="Exposure of ASCQM Check Index of
Array Access VariableDeclarationStatement Exposure (measured as 1 plus the log of the
number of call paths to them)" offset="1" multiplier="1"
baseMeasureFrom="id.sfgd.34.exposure_overhead_average_to_id.sfgd.34.VariableDeclara
tionStatement_exposure"
rescaleFrom="LogGraphCallPathNumber_to_id.sfgd.34.VariableDeclarationStatement_exp
osure"/>

7.8 Concentration and Sharing Opportunity

7.8.1 Overview of Concentration

The Concentration shall be computed as follows:

 48 Automated Technical Debt Measure, 2.0

Count the number of Occurrences of each of the Detection Pattern role.

E.g., with ASCQM Check Index of Array Access role VariableDeclarationStatement

• defined by an smm:DirectMeasure
<measureElement xmi:type="smm:DirectMeasure"
xmi:id="id.sfgd.34.VariableDeclarationStatement_concentration" name="ASCQM Check
Index of Array Access VariableDeclarationStatement Concentration" unit="Integer"
scope="id.sfgd.34.VariableDeclarationStatement_code_elements"
trait="SharingLevelEstimating" category="id.cat.277 id.cat.278" shortDescription="
ASCQM Check Index of Array Access VariableDeclarationStatement Concentration
(measured as the number of occurrences they are involved in)"
operation="NumberOfOccurrences"
rescaleTo="id.sfgd.34.VariableDeclarationStatement_concentration_to_id.sfgd.34.Variable
DeclarationStatement_sharing"/>

• relying on an smm:Operation
<measureElement xmi:type="smm:Operation" xmi:id="NumberOfOccurrences"
name="NumberOfOccurrences" body="self.A_Binding_fulfilledBy::Binding()->>;select(b:
Binding | p.A_PatternInstance_fulfillments::PatternInstance.instanceOf.isInASCQM)-
>>;size()" language="OCL"/>

• which uses the following smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation" xmi:id="isInASCQM"
name="isInASCMM" body="Set{
'ascqm:id.sfgd.34','ascqm:id.sfgd.25','ascqm:id.sfgd.19','ascqm:id.sfgd.26','ascqm:id.sfgd.1
5','ascqm:id.sfgd.24','ascqm:id.sfgd.27','ascqm:id.sfgd.29','ascqm:id.sfgd.30','ascqm:id.sfgd
.12','ascqm:id.sfgd.79','ascqm:id.sfgd.338','ascqm:id.sfgd.122','ascqm:id.sfgd.141','ascqm:i
d.sfgd.38','ascqm:id.sfgd.120','ascqm:id.sfgd.321','ascqm:id.sfgd.41','ascqm:id.sfgd.327','as
cqm:id.sfgd.340','ascqm:id.sfgd.44','ascqm:id.sfgd.45','ascqm:id.sfgd.57','ascqm:id.sfgd.59'
,'ascqm:id.sfgd.60','ascqm:id.sfgd.232','ascqm:id.sfgd.341','ascqm:id.sfgd.61','ascqm:id.sfg
d.69','ascqm:id.sfgd.78','ascqm:id.sfgd.138','ascqm:id.sfgd.157','ascqm:id.sfgd.260','ascqm:
id.sfgd.344','ascqm:id.sfgd.127','ascqm:id.sfgd.128','ascqm:id.sfgd.106','ascqm:id.sfgd.125'
,'ascqm:id.sfgd.109','ascqm:id.sfgd.154','ascqm:id.sfgd.121','ascqm:id.sfgd.114','ascqm:id.s
fgd.123','ascqm:id.sfgd.140','ascqm:id.sfgd.81','ascqm:id.sfgd.92','ascqm:id.sfgd.82','ascqm
:id.sfgd.85','ascqm:id.sfgd.133','ascqm:id.sfgd.261','ascqm:id.sfgd.238','ascqm:id.sfgd.148',
'ascqm:id.sfgd.149','ascqm:id.sfgd.107','ascqm:id.sfgd.126','ascqm:id.sfgd.83','ascqm:id.sfg
d.189','ascqm:id.sfgd.328','ascqm:id.sfgd.329','ascqm:id.sfgd.333','ascqm:id.sfgd.334','ascq
m:id.sfgd.110','ascqm:id.sfgd.335','ascqm:id.sfgd.136','ascqm:id.sfgd.290','ascqm:id.sfgd.1
34','ascqm:id.sfgd.297','ascqm:id.sfgd.301','ascqm:id.sfgd.326','ascqm:id.sfgd.190','ascqm:i
d.sfgd.305','ascqm:id.sfgd.313','ascqm:id.sfgd.312','ascqm:id.sfgd.317','ascqm:id.sfgd.337','
ascqm:id.sfgd.320','ascqm:id.sfgd.142','ascqm:id.sfgd.339','ascqm:id.sfgd.72','ascqm:id.sfg
d.319','ascqm:id.sfgd.318','ascqm:id.sfgd.332','ascqm:id.sfgd.322','ascqm:id.sfgd.323','ascq
m:id.sfgd.93','ascqm:id.sfgd.96','ascqm:id.sfgd.145','ascqm:id.sfgd.146','ascqm:id.sfgd.95','
ascqm:id.sfgd.150','ascqm:id.sfgd.151','ascqm:id.sfgd.94','ascqm:id.sfgd.119','ascqm:id.sfg
d.143','ascqm:id.sfgd.252','ascqm:id.sfgd.144','ascqm:id.sfgd.147','ascqm:id.sfgd.152','ascq
m:id.sfgd.331','ascqm:id.sfgd.330','ascqm:id.sfgd.343','ascqm:id.sfgd.97','ascqm:id.sfgd.10
0','ascqm:id.sfgd.99','ascqm:id.sfgd.101','ascqm:id.sfgd.105','ascqm:id.sfgd.108','ascqm:id.
sfgd.111','ascqm:id.sfgd.117','ascqm:id.sfgd.118','ascqm:id.sfgd.139','ascqm:id.sfgd.91','asc
qm:id.sfgd.129','ascqm:id.sfgd.113','ascqm:id.sfgd.159','ascqm:id.sfgd.153','ascqm:id.sfgd.
156','ascqm:id.sfgd.102','ascqm:id.sfgd.98','ascqm:id.sfgd.112','ascqm:id.sfgd.116','ascqm:i
d.sfgd.130','ascqm:id.sfgd.124','ascqm:id.sfgd.132','ascqm:id.sfgd.131','ascqm:id.sfgd.87','a

Commented [BC26]: ATDMV2-2

Automated Technical Debt Measure, 2.0 49

scqm:id.sfgd.88','ascqm:id.sfgd.90','ascqm:id.sfgd.84','ascqm:id.sfgd.155','ascqm:id.sfgd.33
6','ascqm:id.sfgd.137','ascqm:id.sfgd.103','ascqm:id.sfgd.104','ascqm:id.sfgd.135'}-
>>;includes(self.id)" context="spms:Definitions::PatternDefinition"/>

7.8.2 Sharing Opportunities

The Sharing Opportunity shall be computed as follows:

The inverse of the Concentration of each of the Detection Pattern role.

E.g., with ASCQM Check Index of Array Access role VariableDeclarationStatement

• an smm:RescaledMeasure
<measureElement xmi:type="smm:RescaledMeasure"
xmi:id="id.sfgd.34.VariableDeclarationStatement_sharing" name="ASCQM Check Index of
Array Access VariableDeclarationStatement Sharing Opportunity (measured as the inverse
of the number of occurrences the code elements supporting the role are involved in)"
unit="Real" scope="id.sfgd.34.VariableDeclarationStatement_code_elements"
operation="1 / id.sfgd.34.VariableDeclarationStatement_concentration" offset=""
multiplier=""
baseMeasureFrom="id.sfgd.34.sharing_opportunity_average_to_id.sfgd.34.VariableDeclar
ationStatement_sharing"
rescaleFrom="id.sfgd.34.VariableDeclarationStatement_concentration_to_id.sfgd.34.Variab
leDeclarationStatement_sharing"/>

7.8.3 Measure specifications

For each implementation role from ASCQM standard Detection Patterns, an smm:OCLOperation
(whose key is the Detection Pattern key with a '_concentration' suffix) and an smm:RescaledMeasure
(whose key is the Detection Pattern key with a '_sharing' suffix) shall be defined.

For each implementation role, the smm:Scope (named as the role name with a '_code_elements'
suffix), and its recognizer smm:Operation (named as the role name with a
'_code_elements_recognizer' suffix) will be reused in the current process.

7.9 Occurrence Gap Size

7.9.1 Definition of Occurrence Gap Size

This sub-clause shall only be applicable when the Detection Pattern relies on roles that compare
existing values to threshold values that are not to be exceeded. The Occurrence Gap Size is the
extent of the gap to be closed to remediate the Detection Pattern Occurrence, measured as the
difference between the existing value and the threshold value.

The affected Detection Patterns are:

• ASCQM Ban Excessive Complexity of Data Resource Access
• ASCQM Ban Excessive Number of Children
• ASCQM Ban Excessive Number of Concrete Implementations to Inherit From
• ASCQM Ban Excessive Number of Data Resource Access from non-SQL Code
• ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL Procedure
• ASCQM Ban Excessive Number of Index on Columns of Large Tables
• ASCQM Ban Excessive Number of Inheritance Levels
• ASCQM Ban Excessive Size of Index on Columns of Large Tables

Commented [BC27]: ATDMV2-2

 50 Automated Technical Debt Measure, 2.0

• ASCQM Limit Number of Aggregated Non-Primitive Data Types
• ASCQM Limit Number of Data Access
• ASCQM Limit Number of Outward Calls
• ASCQM Limit Number of Parameters
• ASCQM Limit Size of Operations Code
• ASCQM Limit Volume of Commented-Out Code
• ASCQM Limit Volume of Similar Code

For each Occurrence of these Detection Patterns, the Occurrence Gap Size shall be computed as
follows:

1. Retrieve the value of the roles modeling the exceeding values
2. Retrieve the value of the roles modeling the threshold values
3. Compute the difference.

The difference formulae are:

• ASCQM Ban Excessive Complexity of Data Resource Access Gap Size :
(id.sfgd.105.NumberOfTables – id.sfgd.105.MaxNumberOfTables) +
(id.sfgd.105.NumberOfSubqueries - id.sfgd.105.MaxNumberOfSubqueries)

• ASCQM Ban Excessive Number of Children Gap Size :
id.sfgd.112.NumberOfChildren - id.sfgd.112.MaxNumberOfChildren

• ASCQM Ban Excessive Number of Concrete Implementations to Inherit From Gap Size :
id.sfgd.88.NumberOfConcreteClasseInheritances - id.sfgd.88.MaxNumberOfConcreteClass~

• ASCQM Ban Excessive Number of Data Resource Access from non-SQL Code Gap Size :
id.sfgd.118.NumberOfDataAccess - id.sfgd.118.MaxNumberOfDataAccess

• ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL Procedure Gap
Size : id.sfgd.117.NumberOfDataAccess - id.sfgd.117.MaxNumberOfDataAccess

• ASCQM Ban Excessive Number of Index on Columns of Large Tables Gap Size :
id.sfgd.101.NumberOfIndexes - id.sfgd.101.MaxNumberOfIndexes

• ASCQM Ban Excessive Number of Inheritance Levels Gap Size :
id.sfgd.116.NumberOfInheritanceLevels - id.sfgd.116.MaxNumberOfInheritanceLevels

• ASCQM Ban Excessive Size of Index on Columns of Large Tables Gap Size :
id.sfgd.100.TotalSizeOfIndexes - id.sfgd.100.MaxTotalSizeOfIndexes

• ASCQM Limit Number of Aggregated Non-Primitive Data Types Gap Size :
id.sfgd.111.NumberOfNonPrimitiveMembers -
id.sfgd.111.MaxNumberOfNonPrimitiveMembers

• ASCQM Limit Number of Data Access Gap Size :
id.sfgd.98.NumberOfDataAccess - id.sfgd.98.MaxNumberOfDataAccess

• ASCQM Limit Number of Outward Calls Gap Size :
id.sfgd.90.NumberOfOutwardCalls - id.sfgd.90.MaxNumberOfOutwardCalls

• ASCQM Limit Number of Parameters Gap Size :
id.sfgd.131.NumberOfParameter - id.sfgd.131.MaxNumberOfParameter

• ASCQM Limit Size of Operations Code Gap Size :
id.sfgd.153.NumberOfNonEmptyLinesOfCode -
id.sfgd.153.MaxNumberOfNonEmptyLinesOfCode

Automated Technical Debt Measure, 2.0 51

• ASCQM Limit Volume of Commented-Out Code Gap Size :
id.sfgd.159.PercentageOfCommentedOutCode -
id.sfgd.159.MaxPercentageOfCommentedOutC~

• ASCQM Limit Volume of Similar Code Gap Size :
id.sfgd.156.PercentageOfSimilarElements - id.sfgd.156.MaxPercentageOfSimilarElements

They require to get values from the following roles:

• ASCQM Ban Excessive Complexity of Data Resource Access Gap Size 1
id.sfgd.105.NumberOfTables

• ASCQM Ban Excessive Complexity of Data Resource Access Gap Size 1
id.sfgd.105.MaxNumberOfTables

• ASCQM Ban Excessive Complexity of Data Resource Access Gap Size 2
id.sfgd.105.NumberOfSubqueries

• ASCQM Ban Excessive Complexity of Data Resource Access Gap Size 2
id.sfgd.105.MaxNumberOfSubqueries

• ASCQM Ban Excessive Number of Children Gap Size id.sfgd.112.NumberOfChildren

• ASCQM Ban Excessive Number of Children Gap Size id.sfgd.112.MaxNumberOfChildren

• ASCQM Ban Excessive Number of Concrete Implementations to Inherit From Gap Size
id.sfgd.88.NumberOfConcreteClasseInheritances

• ASCQM Ban Excessive Number of Concrete Implementations to Inherit From Gap Size
id.sfgd.88.MaxNumberOfConcreteClasseInheritances

• ASCQM Ban Excessive Number of Data Resource Access from non-SQL Code Gap Size
id.sfgd.118.NumberOfDataAccess

• ASCQM Ban Excessive Number of Data Resource Access from non-SQL Code Gap Size
id.sfgd.118.MaxNumberOfDataAccess

• ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL Procedure Gap
Size id.sfgd.117.NumberOfDataAccess

• ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL Procedure Gap
Size id.sfgd.117.MaxNumberOfDataAccess

• ASCQM Ban Excessive Number of Index on Columns of Large Tables Gap Size
id.sfgd.101.NumberOfIndexes

• ASCQM Ban Excessive Number of Index on Columns of Large Tables Gap Size
id.sfgd.101.MaxNumberOfIndexes

• ASCQM Ban Excessive Number of Inheritance Levels Gap Size
id.sfgd.116.NumberOfInheritanceLevels

• ASCQM Ban Excessive Number of Inheritance Levels Gap Size
id.sfgd.116.MaxNumberOfInheritanceLevels

• ASCQM Ban Excessive Size of Index on Columns of Large Tables Gap Size
id.sfgd.100.TotalSizeOfIndexes

 52 Automated Technical Debt Measure, 2.0

• ASCQM Ban Excessive Size of Index on Columns of Large Tables Gap Size
id.sfgd.100.MaxTotalSizeOfIndexes

• ASCQM Limit Number of Aggregated Non-Primitive Data Types Gap Size
id.sfgd.111.NumberOfNonPrimitiveMembers

• ASCQM Limit Number of Aggregated Non-Primitive Data Types Gap Size
id.sfgd.111.MaxNumberOfNonPrimitiveMembers

• ASCQM Limit Number of Data Access Gap Size id.sfgd.98.NumberOfDataAccess

• ASCQM Limit Number of Data Access Gap Size id.sfgd.98.MaxNumberOfDataAccess

• ASCQM Limit Number of Outward Calls Gap Size id.sfgd.90.NumberOfOutwardCalls

• ASCQM Limit Number of Outward Calls Gap Size id.sfgd.90.MaxNumberOfOutwardCalls

• ASCQM Limit Number of Parameters Gap Size id.sfgd.131.NumberOfParameter

• ASCQM Limit Number of Parameters Gap Size id.sfgd.131.MaxNumberOfParameter

• ASCQM Limit Size of Operations Code Gap Size id.sfgd.153.NumberOfNonEmptyLinesOfCode

• ASCQM Limit Size of Operations Code Gap Size
id.sfgd.153.MaxNumberOfNonEmptyLinesOfCode

• ASCQM Limit Volume of Commented-Out Code Gap Size
id.sfgd.159.PercentageOfCommentedOutCode

• ASCQM Limit Volume of Commented-Out Code Gap Size
id.sfgd.159.MaxPercentageOfCommentedOutCode

• ASCQM Limit Volume of Similar Code Gap Size id.sfgd.156.PercentageOfSimilarElements

• ASCQM Limit Volume of Similar Code Gap Size id.sfgd.156.MaxPercentageOfSimilarElements

To do so, an smm:Operation and an smm:DirectMeasure shall be defined as follows (using an
example with ASCQM Ban Excessive Size of Index on Columns of Large Tables role
TotalSizeOfIndexes):

• <measureElement xmi:type="smm:DirectMeasure"
xmi:id="id.sfgd.100.TotalSizeOfIndexes" name="ASCQM Ban Excessive Size of Index on
Columns of Large Tables MaxTotalSizeOfIndexes Measure" unit="Integer"
scope="id.sfgd.100.scope" trait="OccurrenceGapSizing" category="id.cat.279"
operation="id.sfgd.100.TotalSizeOfIndexes_value" />

• relying on
<measureElement xmi:type="smm:Operation"
xmi:id="id.sfgd.100.TotalSizeOfIndexes_value" name="ASCQM Ban Excessive Size of Index
on Columns of Large Tables MaxTotalSizeOfIndexes Operation to retrieve the value"
scope="id.sfgd.100.scope" trait="OccurrenceGapSizing" category="id.cat.279"
body="ascqm:id.sfgd.100.TotalSizeOfIndexes.A_boundTo_Binding::Binding().fulfilledBy()"
language="OCL"/>

The Occurrence Gap Size is then an smm:BinaryMeasure computing the difference according to the
formulae above using an example with ASCMM-CWE-1121:

Automated Technical Debt Measure, 2.0 53

• <measureElement xmi:type="smm:BinaryMeasure" xmi:id="id.sfgd.100_1.gap_size"
name="ASCQM Ban Excessive Size of Index on Columns of Large Tables Gap Size "
functor="minus" unit="Integer" scope="id.sfgd.100.scope" trait="OccurrenceGapSizing"
category="id.cat.279" shortDescription="Occurrence gap size for ASCQM Ban Excessive
Size of Index on Columns of Large Tables regarding the TotalSizeOfIndexes "
baseMeasure1To="id.sfgd.100_1.gap_size_to_id.sfgd.100.TotalSizeOfIndexes"
baseMeasure2To="id.sfgd.100_1.gap_size_to_id.sfgd.100.MaxTotalSizeOfIndexes"
baseMeasureFrom="id.sfgd.100.adjustment_factor_to_id.sfgd.100_1.gap_size"/>

7.9.2 Measure specifications

For each applicable detection patterns listed in Sub-clause 7.9.1from the ASCQM standard patterns
(listed above), an smm:BinaryMeasure (whose key is the Detection Pattern with a '_x.gap_size’
suffix) shall be defined, with ‘x’ being an integer index used to handle multiple gaps for a single
pattern (in current version of ASCQM standard, only ASCQM Ban Excessive Complexity of Data
Resource Access Detection Pattern features two gaps).

For each applicable implementation role (listed abovein ASCQM), the smm:DirectMeasure (named
as the role name without any suffix), and its smm:Operation (named as the role name with a '_value'
suffix) shall be defined.

7.10 Evolution

This sub-clause shall only be applicable when two revisions of the software are available for
measurement.

7.10.1 Involved Code Elements

The Evolution of involved code elements shall be computed as follows:

1. For each implementation role, use the defined scope to identify code elements.

2. For each code element, its status shall be identified as added, updated, deleted, or
unchanged based on the following guidelines.

◦ ‘added’ in latest Revision when there is no code element which evolved into it from a
previous Revision.

◦ ‘deleted’ from a previous Revision when there is no code element in the latest
Revision into which it evolved.

◦ ‘updated’ in latest Revision where the evidence in the source code that its
implementation evolved from its instantiation in a previous release.

◦ ‘unchanged’ if the code element remains identical in the two revisions.

To identify the Evolution of any code element, a set of smm:OCLOperation for each code element
shall be determined.

• added <measureElement xmi:type="smm:OCLOperation" xmi:id="isAddedElement"
name="isAddedElement" trait="EvolutionStatus" shortDescription="Evolutions status
measured code element: TRUE if added between revisions" context="kdm:Core::Element"
body="(isInLatestRevision and not fromRevisionMeasurementScope()-
>exists(e:kdm:Core::Element | e.evolvedTo = self))"/>

• deleted
<measureElement xmi:type="smm:OCLOperation" xmi:id="isDeletedElement"
name="isDeletedElement" trait="EvolutionStatus" shortDescription="Evolutions status

Commented [BC28]: ATDMV2-8

Commented [BC29]: ATDMV2-8

 54 Automated Technical Debt Measure, 2.0

measured code element: TRUE if deleted between revisions"
context="kdm:Core::Element" body="(isInPreviousRevision and not
toRevisionMeasurementScope()->exists(e:kdm:Core::Element | e.evolvedFrom = self))"/>

• updated
<measureElement xmi:type="smm:OCLOperation" xmi:id="isUpdatedElement"
name="isUpdatedElement" trait="EvolutionStatus" shortDescription="Evolutions status
measured code element: TRUE if updated between revisions"
context="kdm:Core::Element" body="(isInLatestRevision and
toRevisionMeasurementScope()->exists(e:kdm:Core::Element | e.evolvedTo = self and
self.source != e.source))"/>

• unchanged
<measureElement xmi:type="smm:OCLOperation" xmi:id="isUnchangedElement"
name="isUnchangedElement" trait="EvolutionStatus" shortDescription="Evolutions status
measured code element: TRUE if unchanged between revisions"
context="kdm:Core::Element" body="(isInLatestRevision and not (isUpdatedElement or
isAddedElement))"/>

7.10.2 Occurrence Gap Size

The computation of the Evolution of each Detection Pattern Occurrence shall include the following
additional steps.

1. The analyzer shall check to determine if the roles are implemented by code elements
evolved from code elements implementing the same roles in the previous release.

◦ either with unchanged code elements, identified via a first smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation"
xmi:id="hasAllItsCodeElementsUnchangedFromCodeElementsInBindingOfSameRole"
name="hasAllItsCodeElementsEvolvedFromCodeElementsInBindingOfSameRole"
trait="EvolutionStatus" shortDescription="Evolutions status role implementation:
TRUE if all code elements unchanged between revisions and implementing a binding of
the same role in previous release" context="spms:Observations::Binding"
body="self.fullfiled()->forAll(e: kdm:Core::Element | e.isUnchangedElement and
e.evolvedFrom.A_Binding_fulfilledBy::Binding()->exist(b: Binding | b.boundTo =
self.boundTo))"/>

◦ either with unchanged or updated code elements, identified via a second
smm:OCLOperation
<measureElement xmi:type="smm:OCLOperation"
xmi:id="hasAllItsCodeElementsEvolvedFromCodeElementsInBindingOfSameRole"
name="hasAllItsCodeElementsEvolvedFromCodeElementsInBindingOfSameRole"
trait="EvolutionStatus" shortDescription="Evolutions status role implementation:
TRUE if all code elements implementing a binding of the same role in previous release"
context="spms:Observations::Binding" body="self.fullfiled()->forAll(e:
kdm:Core::Element | e.evolvedFrom.A_Binding_fulfilledBy::Binding()->exist(b: Binding
| b.boundTo = self.boundTo))"/>

2. An Occurrence shall be considered as:

◦ unchanged, if all its roles are implemented by unchanged code elements evolved from
code elements implementing the same roles in the previous release, identified via a first
smm:OCLOperation

Automated Technical Debt Measure, 2.0 55

<measureElement xmi:type="smm:OCLOperation" xmi:id="isUnchangedOccurrence"
name="isUnchangedOccurrence" trait="EvolutionStatus" shortDescription="Evolutions
status occurrence: TRUE if unchanged between revisions"
context="spms:Observations::PatternInstance" body="self.fulfillments()->forAll(b:
spms:Observations::Binding |
b.hasAllItsCodeElementsUnchangedFromCodeElementsInBindingOfSameRole)"/>

◦ updated, if not unchanged and all its roles are implemented by code elements evolved
from code elements implementing the same roles in the previous release, identified via a
second smm:OCLOperation
 <measureElement xmi:type="smm:OCLOperation" xmi:id="isUpdatedOccurrence"
name="isUpdatedOccurrence" trait="EvolutionStatus" shortDescription="Evolutions
status occurrence: TRUE if updated between revisions"
context="spms:Observations::PatternInstance" body="self.fulfillments()->forAll(b:
spms:Observations::Binding |
b.hasAllItsCodeElementsUnchangedFromCodeElementsInBindingOfSameRole) and not
self.isUnchangedOccurrence"/>

◦ added, if in the “ToRevision” revision but not updated nor unchanged, identified via a
third smm:OCLOperation
 <measureElement xmi:type="smm:OCLOperation" xmi:id="isAddedOccurrence"
name="isAddedOccurrence" trait="EvolutionStatus" shortDescription="Evolutions
status occurrence: TRUE if added between revisions"
context="spms:Observations::PatternInstance" body="self.isInLatest and not
self.isUnchangedOccurrence and not self.isUpdatedOccurrence"/>

7.11 Adjustment Factor

For each Detection Pattern Occurrence, the Adjustment Factor shall be calculated as the simple
product of the following contributions:

• Complexity overhead average, across all implementation roles,
• Technological Diversity,
• Sharing opportunity average, across all implementation roles
• Occurrence Gap Size, when applicable

Note that the Evolution and Exposure information is not used for adjustments in ATDM, butATDM
but can be used in CTDM.

7.11.1 Complexity Overhead Average Contribution

The contribution from the complexity overhead specified in Sub-clause 7.6 for each implementation
role is a simple average.

E.g., with ASCQM Check Index of Array Access:

 <measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="id.sfgd.34.complexity_overhead_average" name="Occurrence Complexity Overhead
Average of ASCQM Check Index of Array Access" unit="Real" scope="id.sfgd.34.scope"
trait="ComplexityEstimating" category="id.cat.277 id.cat.278" shortDescription="Complexity
overhead average of an occurrence of ASCQM Check Index of Array Access (measured as the AEP
complexity overhead when compared to simplest complexity)" accumulator="average"
baseMeasureTo="id.sfgd.34.complexity_overhead_average_to_id.sfgd.34.ArrayAccessStatement_c
omplexity_overhead

Commented [BC30]: ATDMV2-10

 56 Automated Technical Debt Measure, 2.0

id.sfgd.34.complexity_overhead_average_to_id.sfgd.34.PathFromDeclarationStatementToUseAsAn
IndexStatement_complexity_overhead
id.sfgd.34.complexity_overhead_average_to_id.sfgd.34.VariableDeclarationStatement_complexity
_overhead"
baseMeasureFrom="id.sfgd.34.adjustment_factor_to_id.sfgd.34.complexity_overhead_average"/>

7.11.2 Measure specifications

An smm:CollectiveMeasure measure (whose key is the Detection Pattern with a
'.complexity_overhead_average' suffix) shall be defined for each source code pattern from ASCQM
standard, as illustrated with the ASCQM Check Index of Array Access pattern abovein Subclause
7.11.1.

7.11.3 Exposure Overhead Average Contribution

The contribution from the Exposure or Direct Exposure specified in Sub-clause 7.7 for each
implementation role is a simple average. It is considered an overhead vis-à-vis the ‘best case
scenario’ in ‘well-implemented’ code where the Exposure value is “1”.

• E.g. with ASCQM Check Index of Array Access:direct exposure <measureElement
xmi:type="smm:CollectiveMeasure"
xmi:id="id.sfgd.34.direct_exposure_overhead_average" name="Occurrence Direct
Exposure Overhead Average of ASCQM Check Index of Array Access" unit="Real"
scope="id.sfgd.34.scope" trait="ExposureEstimating" category="id.cat.277 id.cat.278"
shortDescription="Occurrence Direct Exposure Overhead Average of ASCQM Check Index
of Array Access (measured as the direct exposure overhead when compared to simplest
direct exposure of 1)" accumulator="average"
baseMeasureTo="id.sfgd.34.direct_exposure_overhead_average_to_id.sfgd.34.ArrayAcces
sStatement_direct_exposure
id.sfgd.34.direct_exposure_overhead_average_to_id.sfgd.34.VariableDeclarationStatement
_direct_exposure"/>

• exposure <measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="id.sfgd.34.exposure_overhead_average" name="Occurrence Exposure Overhead
Average of ASCQM Check Index of Array Access" unit="Real" scope="id.sfgd.34.scope"
trait="ExposureEstimating" category="id.cat.277 id.cat.278" shortDescription="Exposure
overhead average of an occurrence of ASCQM Check Index of Array Access (measured as
the exposure overhead when compared to simplest exposure of 1)"
accumulator="average"
baseMeasureTo="id.sfgd.34.exposure_overhead_average_to_id.sfgd.34.ArrayAccessState
ment_exposure
id.sfgd.34.exposure_overhead_average_to_id.sfgd.34.PathFromDeclarationStatementToUs
eAsAnIndexStatement_exposure
id.sfgd.34.exposure_overhead_average_to_id.sfgd.34.VariableDeclarationStatement_expo
sure"
baseMeasureFrom="id.sfgd.34.adjustment_factor_to_id.sfgd.34.exposure_overhead_aver
age"/>

7.11.4 Measure Specifications

Two smm:CollectiveMeasure measures (whose key is the Detection Pattern with
'.direct_exposure_overhead_average' and '.exposure_overhead_average' suffixes) shall be defined

Commented [BC31]: ATDMV2-8

Commented [BC32]: ATDM2-10

Automated Technical Debt Measure, 2.0 57

for each source code pattern from ASCQM standard, as illustrated with the ASCQM Check Index of
Array Access pattern in Subclause 7.11.1above.

7.11.5 Technological Diversity Contribution

The contribution from the Occurrence of Technological Diversity specified in Sub-clause 7.5 is direct,
that is, the number of languages in which the Detection Pattern Occurrence is implemented is used
as the Technological Diversity input to the Adjustment Factor calculation.

7.11.6 Sharing Opportunity Average Contribution

The contribution from the Sharing Opportunity specified in Sub-clause 7.8 for each implementation
role is a simple average. It is considered an opportunity to share the Remediation Effort vis-à-vis the
nominal situation where the Concentration value is 1.

E.g., with ASCQM Check Index of Array Access:

 <measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="id.sfgd.34.sharing_opportunity_average" name="Occurrence Sharing Opportunity Average
of ASCQM Check Index of Array Access" unit="Real" scope="id.sfgd.34.scope"
trait="SharingLevelEstimating" category="id.cat.277 id.cat.278" shortDescription="Sharing
opportunity average of an occurrence of ASCQM Check Index of Array Access (measured as the
distinct occurrences sharing code elements)" accumulator="average"
baseMeasureTo="id.sfgd.34.sharing_opportunity_average_to_id.sfgd.34.ArrayAccessStatement_sh
aring
id.sfgd.34.sharing_opportunity_average_to_id.sfgd.34.PathFromDeclarationStatementToUseAsAnI
ndexStatement_sharing
id.sfgd.34.sharing_opportunity_average_to_id.sfgd.34.VariableDeclarationStatement_sharing"
baseMeasureFrom="id.sfgd.34.adjustment_factor_to_id.sfgd.34.sharing_opportunity_average"/>

7.11.7 Measure specifications

A smm:CollectiveMeasure measure (whose key is the Detection Pattern with a
'.sharing_opportunity_average' suffix) shall be defined for each Detection Pattern from ASCQM
standard, as illustrated with the ASCQM Check Index of Array Access pattern abovein 7.11.1.

7.11.8 Occurrence Gap Size Contribution

The contribution from the Occurrence Gap Size specified in Sub-clause 7.9 is either:

 direct, that is, the difference between existing value and threshold value that has been
exceeded is used as input to the Adjustment Factor calculation.

 Indirect, via a transformation (log base 2 in this version of the specifications), for a selection
of four Detection Patterns, when the remediation of the issue is generally not done by
reducing the gap of 1 point at a time. These four Detection Patterns are:

 ASCQM Ban Excessive Size of Index on Columns of Large Tables,
 ASCQM Limit Algorithmic Complexity via Cyclomatic Complexity Value, ASCQM Limit Size

of Operations Code,
 ASCQM Limit Volume of Similar Code, and
 ASCQM Limit Volume of Commented-Out Code.

The transformation is performed by an smm:RescaledMeasure, which transform the result of the
difference between exceeding value and threshold value.

Commented [BC33]: ATDMV2-8

Commented [BC34]: ATDMV2-8

 58 Automated Technical Debt Measure, 2.0

E.g., ASCQM Ban Excessive Size of Index on Columns of Large Tables:

<measureElement xmi:type="smm:RescaledMeasure" xmi:id="id.sfgd.100_1.rescaled_gap_size"
name="ASCQM Ban Excessive Size of Index on Columns of Large Tables Gap Size Rescaled (log2) "
offset="" multiplier="" operation="log2(id.sfgd.100_1.gap_size)" unit="Real"
scope="id.sfgd.100.scope" trait="OccurrenceGapSizing" category="id.cat.279"
shortDescription="Rescaled occurrence gap size for ASCQM Ban Excessive Size of Index on Columns
of Large Tables regarding the TotalSizeOfIndexes "/>

7.11.9 Adjustment Factor Computation

For each Detection Pattern Occurrence, the Adjustment Factor shall be computed as the product of
all three or four contributions.

E.g., with ASCQM Check Index of Array Access:

<measureElement xmi:type="smm:CollectiveMeasure" xmi:id="id.sfgd.34.adjustment_factor"
name="Occurrence Adjustment Factor of ASCQM Check Index of Array Access" unit="Real"
scope="id.sfgd.34.scope" trait="RemediationEffortEstimating" category="id.cat.277 id.cat.278"
shortDescription="Contextual Factor to adjust Unadjusted Remediation Effort to remove one
occurrence of ASCQM Check Index of Array Access" accumulator="product"
isGapDependent="FALSE"
baseMeasureTo="id.sfgd.34.adjustment_factor_to_id.sfgd.34.complexity_overhead_average
id.sfgd.34.adjustment_factor_to_id.sfgd.34.sharing_opportunity_average
id.sfgd.34.adjustment_factor_to_id.sfgd.34.technological_diversity"
baseMeasure2From="id.sfgd.34.remediation_effort_to_id.sfgd.34.adjustment_factor"/>

E.g.E.g., with ASCQM Ban Excessive Number of Children, which features a gap size:

<measureElement xmi:type="smm:CollectiveMeasure" xmi:id="id.sfgd.112.adjustment_factor"
name="Occurrence Adjustment Factor of ASCQM Ban Excessive Number of Children" unit="Real"
scope="id.sfgd.112.scope" trait="RemediationEffortEstimating" category="id.cat.280"
shortDescription="Contextual Factor to adjust Unadjusted Remediation Effort to remove one
occurrence of ASCQM Ban Excessive Number of Children" accumulator="product"
isGapDependent="TRUE"
baseMeasureTo="id.sfgd.112.adjustment_factor_to_id.sfgd.112.complexity_overhead_average
id.sfgd.112.adjustment_factor_to_id.sfgd.112.sharing_opportunity_average
id.sfgd.112.adjustment_factor_to_id.sfgd.112.technological_diversity
id.sfgd.112.adjustment_factor_to_id.sfgd.112_1.gap_size"
baseMeasure2From="id.sfgd.112.remediation_effort_to_id.sfgd.112.adjustment_factor"/>

E.g.E.g., with ASCQM Ban Excessive Size of Index on Columns of Large Tables, which features a
rescaled gap size:

<measureElement xmi:type="smm:CollectiveMeasure" xmi:id="id.sfgd.100.adjustment_factor"
name="Occurrence Adjustment Factor of ASCQM Ban Excessive Size of Index on Columns of Large
Tables" unit="Real" scope="id.sfgd.100.scope" trait="RemediationEffortEstimating"
category="id.cat.279" shortDescription="Contextual Factor to adjust Unadjusted Remediation
Effort to remove one occurrence of ASCQM Ban Excessive Size of Index on Columns of Large
Tables" accumulator="product" isGapDependent="TRUE"
baseMeasureTo="id.sfgd.100.adjustment_factor_to_id.sfgd.100.complexity_overhead_average
id.sfgd.100.adjustment_factor_to_id.sfgd.100.sharing_opportunity_average
id.sfgd.100.adjustment_factor_to_id.sfgd.100.technological_diversity

Commented [BC35]: ATDMV2-10

Commented [BC36]: ATDMV2-10

Automated Technical Debt Measure, 2.0 59

id.sfgd.100.adjustment_factor_to_id.sfgd.100_1.rescaled_gap_size"
baseMeasure2From="id.sfgd.100.remediation_effort_to_id.sfgd.100.adjustment_factor"/>

Measure Sspecifications

An smm:CollectiveMeasure measure (whose key is the Detection Pattern with an
'.adjustment_factor' suffix) shall be defined for each Detection Pattern from the ASCQM standard, as
illustrated with the ASCQM Check Index of Array Access pattern abovein Subclause 7.1.1.

7.12 Adjusted Remediation Effort

For each Occurrence, the adjusted Remediation Effort is simply the product of the Unadjusted
Remediation Effort value from Sub-clause 7.3.313 by the Adjustment Factor value from Sub-clause
7.11. For example, with ASCQM Check Index of Array Access:

<measureElement xmi:type="smm:BinaryMeasure" xmi:id="id.sfgd.34.remediation_effort"
name="Occurrence Remediation Effort of ASCQM Check Index of Array Access" functor="multiply"
unit="effort(minutes)" scope="id.sfgd.34.scope" trait="RemediationEffortEstimating"
category="id.cat.277 id.cat.278" shortDescription="Effort to remove one occurrence of ASCQM
Check Index of Array Access (in context)"
baseMeasure1To="id.sfgd.34.remediation_effort_to_id.sfgd.34.unadjusted_remediation_effort"
baseMeasure2To="id.sfgd.34.remediation_effort_to_id.sfgd.34.adjustment_factor"
baseMeasureFrom="id.sfgd.34.pattern_remediation_effort_to_id.sfgd.34.remediation_effort"/>

7.12.1 Measure specifications

An smm:BinaryMeasure measure (whose key is the Detection Pattern with a '.remediation effort'
suffix) shall be defined for each source code pattern from ASCQM standard, as illustrated with the
ASCQM Check Index of Array Access pattern abovein Subclause 7.11.1.

7.13 Quantification of Remediation Effort at the Detection Pattern level

The Pattern Remediation Effort values are simply the sum for each Detection Pattern of the
Occurrence Remediation Effort values described in Sub-clause 7.13.

This summation shall be done with an smm:CollectiveMeasure. For example, with the ASCQM Check
Index of Array Access pattern:

<measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="id.sfgd.34.pattern_remediation_effort" name="Pattern Remediation Effort of ASCQM
Check Index of Array Access" unit="effort(minutes)" scope="toRevisionMeasurementScope"
trait="RemediationEffortEstimating" category="id.cat.277 id.cat.278" shortDescription="Effort to
remove all occurrences of ASCQM Check Index of Array Access (in context)" accumulator="sum"
baseMeasureTo="id.sfgd.34.pattern_remediation_effort_to_id.sfgd.34.remediation_effort"
baseMeasureFrom="id.atdm_remediation_effort_to_id.sfgd.34.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.34.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.34.pattern_remediation_effort
id.wk.1.weakness_remediation_effort_to_id.sfgd.34.pattern_remediation_effort
id.wk.2.weakness_remediation_effort_to_id.sfgd.34.pattern_remediation_effort
id.wk.35.weakness_remediation_effort_to_id.sfgd.34.pattern_remediation_effort
id.wk.4.weakness_remediation_effort_to_id.sfgd.34.pattern_remediation_effort
id.wk.6.weakness_remediation_effort_to_id.sfgd.34.pattern_remediation_effort
id.wk.8.weakness_remediation_effort_to_id.sfgd.34.pattern_remediation_effort"/>

Commented [BC37]: ATDMV2-11

Commented [BC38]: ATDMV2-8

Commented [BC39]: ATDMV2-12

Commented [BC40]: ATDMV2-8

 60 Automated Technical Debt Measure, 2.0

Measure Specifications

An smm:CollectiveMeasure measure (whose key is the Detection Pattern with a
'_PatternRemediationEffort' suffix) shall be defined for each source code pattern from ASCQM
standard, as illustrated with the ASCQM Check Index of Array Access pattern abovein Subclause
7.11.1.

7.14 Quantification of Remediation Effort at the Weakness Level

7.14.1 Weakness Remediation Effort

Remediation Efforts shall be calculated for each of the ASCQM Weaknesses. The values shall be
computed by summing the Remediation Efforts for applicable Detection Patterns associated to
specific Weaknesses, as defined in the ASCQM standard.

E.g., for Weakness CWE-125 Out-of-bounds Read:

<measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="id.wk.1.weakness_remediation_effort" name="Weakness CWE-125 Out-of-bounds Read
Remediation Effort" unit="effort(minutes)" scope="toRevisionMeasurementScope"
trait="RemediationEffortEstimating" category="id.cat.277 id.cat.278" shortDescription="Effort to
remove all occurrences of CWE-125 Out-of-bounds Read weakness (measured as the sum of
remediation efforts of all contributing detection patterns, directly or indirectly via child
weaknesses)" accumulator="sum"
baseMeasureTo="id.wk.1.weakness_remediation_effort_to_id.sfgd.34.pattern_remediation_effort
"/>

7.14.2 Pattern Applicability Considerations

Although designed as technology-agnostic specifications, the ASCQM standard contains Detection
Patterns that are not applicable to all programming languages. When a pattern is not applicable,
there are no Detection Pattern Occurrences to process.

7.14.3 Shared Pattern Considerations

Detection Patterns are occasionally shared between Weaknesses (e.g., among Weaknesses within
the same parent-child groups of Weaknesses). Each unique Detection Pattern Occurrence would only
be fixed only once. Therefore, each Detection Pattern Occurrence must be counted only once.

E.g., ASCQM Ban Use of Expired Pointer Detection Pattern supports Weaknesses CWE-825 and CWE-
119 (both in the parent-child group of Weakness CWE-119), as well as Weaknesses CWE-416 and
CWE-672 (both in the parent-child group of Weakness CWE-672). Therefore, when computing
Weakness CWE-119 Remediation Effort, ASCQM Ban Use of Expired Pointer Detection Pattern
Remediation Effort shall be counted only once if this unique occurrence of the Detection Pattern
triggers the identification of more than one Weakness.

7.15 Quantification of Remediation Effort for ASCQM Quality Characteristics

7.15.1 Quality Characteristic Remediation Effort

Remediation Efforts shall be calculated for each of the ASCQM Quality Characteristics.

 Reliability Remediation Effort Measure (RREM)
 Security Remediation Effort Measure (SREM)
 Performance Efficiency Remediation Effort Measure (PEREM)

Commented [BC41]: ATDMV2-8

Automated Technical Debt Measure, 2.0 61

 Maintainability Remediation Effort Measure (MREM)

The MREM, RREM, PEREM, and SREM values shall be computed by summing the Remediation Efforts
for applicable Detection Patterns associated to Maintainability, Reliability, Performance Efficiency,
and Security quality characteristics respectively, as defined in the ASCQM standard.

7.15.2 Pattern Applicability Considerations

Although designed as technology-agnostic specifications, the ASCQM standard contains Detection
Patterns that are not applicable to all programming languages. When a pattern is not applicable,
there are no Detection Pattern Occurrences to process.

7.15.3 Shared Pattern Considerations

Detection Patterns are occasionally shared between Weaknesses (e.g., among Weaknesses within
the same parent-child groups of Weaknesses). Each unique Detection Pattern Occurrence would only
be fixed only once. Therefore, each Detection Pattern Occurrence must be counted only once within
the computation of Remediation Effort for a Quality Characteristic.

E.g.E.g., ASCQM Ban Use of Expired Pointer Detection Pattern supports Weaknesses CWE-825, CWE-
119, CWE-416, and CWE-672, all of which are associated to Security quality characteristic. Therefore,
when computing SREM, ASCQM Ban Use of Expired Pointer Detection Pattern Remediation Effort
shall contribute only once.

7.15.4 Overlapping Pattern Considerations

Although designed to avoid functional overlap among Detection Patterns, there is at least one case
where one Detection Pattern entirely overlaps another Detection Pattern: ASCQM Initialize Variables
entirely overlaps ASCQM Initialize Variables before Use. That is, all Occurrences of ASCQM Initialize
Variables before Use are also Occurrences of ASCQM Initialize Variables (the two Detection Patterns
were defined to discriminate between two Weaknesses, CWE-456 Missing Initialization of a Variable
and CWE-457 Use of Uninitialized Variable). Therefore, when the Remediation Effort of both
Detection Patterns (ASCQM Initialize Variables and ASCQM Initialize Variables before Use) should be
summed together, only the Remediation Effort of both ASCQM Initialize Variables is taken into
account.

7.15.5 Measures' Specifications

MREM is an smm:CollectiveMeasure that shall sum the pattern-level Remediation Effort measure
values from Sub-clause 7.13 (note that the smm:MeasureRelationship elements towards Detection
Pattern level measures are not shown here)

<measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="id.cat.280.category_remediation_effort" name="Weakness Category Maintainability
Remediation Effort" unit="effort(minutes)" scope="toRevisionMeasurementScope"
trait="RemediationEffortEstimating" category="id.cat.280" shortDescription="Effort to remove
all occurrences of Maintainability weakness category (measured as the sum of remediation
efforts of all contributing detection patterns)" accumulator="sum"
baseMeasureTo="id.cat.280.category_remediation_effort_to_id.sfgd.102.pattern_remediation
_effort id.cat.280.category_remediation_effort_to_id.sfgd.103.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.104.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.112.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.113.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.116.pattern_remediation_effort

Commented [BC42]: ATDMV2-10

 62 Automated Technical Debt Measure, 2.0

id.cat.280.category_remediation_effort_to_id.sfgd.123.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.124.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.125.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.127.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.128.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.129.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.130.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.131.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.132.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.135.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.136.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.137.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.140.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.153.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.155.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.156.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.159.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.232.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.318.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.319.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.332.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.336.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.341.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.57.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.59.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.60.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.72.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.84.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.87.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.88.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.90.pattern_remediation_effort
id.cat.280.category_remediation_effort_to_id.sfgd.98.pattern_remediation_effort"/>

RREM is an smm:CollectiveMeasure that shall sum the pattern-level Remediation Effort measure
values from Sub-clause 7.13 (note that the smm:MeasureRelationship elements towards pattern
level measures are not shown here)

<measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="id.cat.278.category_remediation_effort" name="Weakness Category Reliability
Remediation Effort" unit="effort(minutes)" scope="toRevisionMeasurementScope"
trait="RemediationEffortEstimating" category="id.cat.278" shortDescription="Effort to remove
all occurrences of Reliability weakness category (measured as the sum of remediation efforts
of all contributing detection patterns)" accumulator="sum"
baseMeasureTo="id.cat.278.category_remediation_effort_to_id.sfgd.106.pattern_remediation
_effort id.cat.278.category_remediation_effort_to_id.sfgd.107.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.109.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.110.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.114.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.12.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.120.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.121.pattern_remediation_effort

Automated Technical Debt Measure, 2.0 63

id.cat.278.category_remediation_effort_to_id.sfgd.122.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.123.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.125.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.126.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.127.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.128.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.133.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.134.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.136.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.138.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.140.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.141.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.148.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.149.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.15.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.154.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.157.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.189.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.19.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.190.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.232.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.238.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.24.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.25.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.26.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.260.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.261.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.27.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.29.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.290.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.297.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.30.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.301.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.305.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.312.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.313.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.317.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.320.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.321.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.326.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.327.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.328.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.329.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.333.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.334.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.335.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.337.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.338.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.339.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.34.pattern_remediation_effort

 64 Automated Technical Debt Measure, 2.0

id.cat.278.category_remediation_effort_to_id.sfgd.340.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.341.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.344.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.38.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.41.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.44.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.45.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.57.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.59.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.60.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.61.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.69.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.78.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.79.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.81.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.82.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.83.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.85.pattern_remediation_effort
id.cat.278.category_remediation_effort_to_id.sfgd.92.pattern_remediation_effort"/>

SREM is an smm:CollectiveMeasure that shall sum the pattern-level Remediation Effort measure
values from Sub-clause 7.13 (note that the smm:MeasureRelationship elements towards pattern
level measures are not shown here)

<measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="id.cat.277.category_remediation_effort" name="Weakness Category Security
Remediation Effort" unit="effort(minutes)" scope="toRevisionMeasurementScope"
trait="RemediationEffortEstimating" category="id.cat.277" shortDescription="Effort to remove
all occurrences of Security weakness category (measured as the sum of remediation efforts of
all contributing detection patterns)" accumulator="sum"
baseMeasureTo="id.cat.277.category_remediation_effort_to_id.sfgd.106.pattern_remediation
_effort id.cat.277.category_remediation_effort_to_id.sfgd.107.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.119.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.121.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.122.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.123.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.125.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.126.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.127.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.128.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.133.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.138.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.140.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.141.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.143.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.144.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.145.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.146.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.147.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.15.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.150.pattern_remediation_effort

Automated Technical Debt Measure, 2.0 65

id.cat.277.category_remediation_effort_to_id.sfgd.151.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.152.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.157.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.189.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.19.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.190.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.232.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.24.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.25.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.252.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.26.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.260.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.261.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.27.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.29.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.30.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.301.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.305.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.312.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.313.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.317.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.318.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.319.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.320.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.322.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.323.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.326.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.328.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.329.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.330.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.331.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.332.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.333.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.334.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.335.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.337.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.338.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.339.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.34.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.340.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.341.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.343.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.344.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.44.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.57.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.59.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.60.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.69.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.72.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.78.pattern_remediation_effort

 66 Automated Technical Debt Measure, 2.0

id.cat.277.category_remediation_effort_to_id.sfgd.79.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.82.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.83.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.85.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.92.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.93.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.94.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.95.pattern_remediation_effort
id.cat.277.category_remediation_effort_to_id.sfgd.96.pattern_remediation_effort"/>

PEREM is an smm:CollectiveMeasure that shall sum the pattern-level Remediation Effort measure
values from Sub-clause 7.13 (note that the smm:MeasureRelationship elements towards pattern
level measures are not shown here)

measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="id.cat.279.category_remediation_effort" name="Weakness Category Performance
Efficiency Remediation Effort" unit="effort(minutes)" scope="toRevisionMeasurementScope"
trait="RemediationEffortEstimating" category="id.cat.279" shortDescription="Effort to remove
all occurrences of Performance Efficiency weakness category (measured as the sum of
remediation efforts of all contributing detection patterns)" accumulator="sum"
baseMeasureTo="id.cat.279.category_remediation_effort_to_id.sfgd.100.pattern_remediation
_effort id.cat.279.category_remediation_effort_to_id.sfgd.101.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.105.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.106.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.108.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.111.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.117.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.118.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.125.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.127.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.128.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.138.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.139.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.140.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.157.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.260.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.335.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.344.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.69.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.78.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.91.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.97.pattern_remediation_effort
id.cat.279.category_remediation_effort_to_id.sfgd.99.pattern_remediation_effort"/>

7.16 Quantification of Remediation Effort at the Software Level (ATDM)

7.16.1 Calculating Software Remediation Effort

The Automated Technical Debt Measure (ATDM) shall be calculated by summing the Remediation
Efforts of all Detection Patterns in the ASCQM standard. The pattern applicability considerations,
shared pattern considerations, and overlapping pattern considerations (sub-clauses 7.15.2 to 7.15.4)

Automated Technical Debt Measure, 2.0 67

that applied to calculating Remediation Effort at the Quality Characteristic level also apply to
calculating Remediation Effort at the software level.

7.16.2 Measure Specifications

• ATDM is an smm:CollectiveMeasure that shall sum the pattern-level Remediation Effort measure
values from Sub-clause 7.15 (note that the smm:MeasureRelationship elements towards pattern
level measures are not shown here)

◦ <measureElement xmi:type="smm:CollectiveMeasure"
xmi:id="id.atdm_remediation_effort" name="Automated Technical Debt Remediation
Effort" unit="effort(minutes)" scope="toRevisionMeasurementScope"
trait="RemediationEffortEstimating" shortDescription="Automated Technical Debt
weakness category (measured as the sum of remediation efforts of all contributing
detection patterns)" accumulator="sum"
baseMeasureTo="id.atdm_remediation_effort_to_id.sfgd.100.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.101.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.102.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.103.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.104.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.105.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.106.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.107.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.108.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.109.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.110.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.111.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.112.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.113.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.114.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.116.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.117.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.118.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.119.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.12.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.120.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.121.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.122.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.123.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.124.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.125.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.126.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.127.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.128.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.129.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.130.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.131.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.132.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.133.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.134.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.135.pattern_remediation_effort

 68 Automated Technical Debt Measure, 2.0

id.atdm_remediation_effort_to_id.sfgd.136.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.137.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.138.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.139.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.140.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.141.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.143.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.144.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.145.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.146.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.147.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.148.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.149.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.15.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.150.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.151.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.152.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.153.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.154.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.155.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.156.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.157.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.159.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.189.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.19.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.190.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.232.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.238.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.24.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.25.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.252.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.26.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.260.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.261.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.27.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.29.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.290.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.297.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.30.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.301.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.305.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.312.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.313.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.317.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.318.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.319.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.320.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.321.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.322.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.323.pattern_remediation_effort

Automated Technical Debt Measure, 2.0 69

id.atdm_remediation_effort_to_id.sfgd.326.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.327.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.328.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.329.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.330.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.331.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.332.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.333.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.334.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.335.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.336.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.337.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.338.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.339.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.34.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.340.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.341.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.343.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.344.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.38.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.41.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.44.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.45.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.57.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.59.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.60.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.61.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.69.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.72.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.78.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.79.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.81.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.82.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.83.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.84.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.85.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.87.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.88.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.90.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.91.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.92.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.93.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.94.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.95.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.96.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.97.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.98.pattern_remediation_effort
id.atdm_remediation_effort_to_id.sfgd.99.pattern_remediation_effort"/>

 70 Automated Technical Debt Measure, 2.0

7.17 ASCQM Unadjusted Remediation Effort Configuration

Table 5 lists the Unadjusted Remediation Effort values to be used with each ASCQM Weakness in
Sub-clause 6.2 and its associated Detection Patterns.

Table 5. Unadjusted Remediation Effort for Each ISO 5055 Detection Pattern

Detection Pattern

Unadjusted
Remedia-
tion Effort
(minutes)

ASCQM Ban Allocation of Memory with Null Size 33
ASCQM Ban Assignment Operation Inside Logic Blocks 33
ASCQM Ban Buffer Size Computation Based on Array Element Pointer Size 79
ASCQM Ban Buffer Size Computation Based on Bitwise Logical Operation 79
ASCQM Ban Buffer Size Computation Based on Incorrect String Length Value 79
ASCQM Ban Circular Dependencies between Modules 100
ASCQM Ban Comma Operator from Delete Statement 79
ASCQM Ban Comparison Expression Outside Logic Blocks 33
ASCQM Ban Control Flow Transfer 100
ASCQM Ban Conversion References to Child Class 79
ASCQM Ban Creation of Lock On Inappropriate Object Type 140
ASCQM Ban Creation of Lock On Non-Final Object 140
ASCQM Ban Creation of Lock On Private Non-Static Object to Access Private Static
Data 140
ASCQM Ban Delete of VOID Pointer 140
ASCQM Ban Double Free On Pointers 57
ASCQM Ban Double Release of Resource 100
ASCQM Ban Empty Exception Block 57
ASCQM Ban Exception Definition without Ever Throwing It 100
ASCQM Ban Excessive Complexity of Data Resource Access 179
ASCQM Ban Excessive Number of Children 140
ASCQM Ban Excessive Number of Concrete Implementations to Inherit From 100
ASCQM Ban Excessive Number of Data Resource Access from non-SQL Code 140
ASCQM Ban Excessive Number of Data Resource Access from non-stored SQL Proce-
dure 179
ASCQM Ban Excessive Number of Index on Columns of Large Tables 140
ASCQM Ban Excessive Number of Inheritance Levels 179
ASCQM Ban Excessive Size of Index on Columns of Large Tables 100
ASCQM Ban Expensive Operations in Loops 179
ASCQM Ban File Creation with Default Permissions 79
ASCQM Ban Free Operation on Pointer Received as Parameter 79
ASCQM Ban Hard-Coded Literals used to Connect to Resource 57
ASCQM Ban Hard-Coded Literals used to Initialize Variables 46
ASCQM Ban Incompatible Lock Acquisition Sequences 179
ASCQM Ban Incorrect Float Number Comparison 57

Automated Technical Debt Measure, 2.0 71

ASCQM Ban Incorrect Joint Comparison 57
ASCQM Ban Incorrect Numeric Conversion of Return Value 57
ASCQM Ban Incorrect Numeric Implicit Conversion 46
ASCQM Ban Incorrect Object Comparison 33
ASCQM Ban Incorrect String Comparison 33
ASCQM Ban Incorrect Synchronization Mechanisms 121
ASCQM Ban Incorrect Type Conversion 33
ASCQM Ban Incrementral Creation of Immutable Data 57
ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities 57
ASCQM Ban Logical Dead Code 100
ASCQM Ban Logical Operation with a Constant Operand 33
ASCQM Ban Loop Value Update within Incremental and Decremental Loop 57
ASCQM Ban Non-Final Static Data in Multi-Threaded Context 100
ASCQM Ban Non-Serializable Elements in Serializable Objects 79
ASCQM Ban Not Operator On Non-Boolean Operand Of Comparison Operation 57
ASCQM Ban Not Operator On Operand Of Bitwise Operation 57
ASCQM Ban Reading and Writing the Same Variable Used as Assignment Value 140
ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context 100
ASCQM Ban Return of Local Variable Address 140
ASCQM Ban Self Assignment 79
ASCQM Ban Self Destruction 79
ASCQM Ban Sequential Acquisitions of Single Non-Reentrant Lock 100
ASCQM Ban Sleep Between Lock Acquisition and Release 140
ASCQM Ban Static Non-Final Data Element Outside Singleton 79
ASCQM Ban Storage of Local Variable Address in Global Variable 140
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities 57
ASCQM Ban Switch in Switch Statement 179
ASCQM Ban Unintended Paths 100
ASCQM Ban Unmodified Loop Variable Within Loop 57
ASCQM Ban Unreferenced Dead Code 100
ASCQM Ban Usage of Data Elements from Other Classes 57
ASCQM Ban Use of Deprecated Libraries 79
ASCQM Ban Use of Expired Pointer 79
ASCQM Ban Use of Expired Resource 100
ASCQM Ban Use of Prohibited Low-Level Resource Management Functionality 140
ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues 179
ASCQM Ban Useless Handling of Exceptions 57
ASCQM Ban Variable Increment or Decrement Operation in Operations using the
Same Variable 140
ASCQM Ban While TRUE Loop Without Path To Break 57
ASCQM Catch Exceptions 33
ASCQM Check and Handle ZERO Value before Use as Divisor 33
ASCQM Check Boolean Variables are Updated in Different Conditional Branches be-
fore Use 46

Commented [BC43]: ATDMV2-10

 72 Automated Technical Debt Measure, 2.0

ASCQM Check Index of Array Access 46
ASCQM Check Input of Memory Allocation Primitives 79
ASCQM Check Input of Memory Manipulation Primitives 57
ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capa-
bilities 57
ASCQM Check NULL Pointer Value before Use 46
ASCQM Check Offset used in Pointer Arithmetic 100
ASCQM Check Return Value of Resource Operations Immediately 57
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context 140
ASCQM Handle Return Value of Must Check Operations 57
ASCQM Handle Return Value of Resource Operations 57
ASCQM Implement Copy Constructor for Class With Pointer Resource 79
ASCQM Implement Correct Object Comparison Operations 79
ASCQM Implement Index Required by Query on Large Tables 140
ASCQM Implement Required Operations for Manual Resource Management 57
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual De-
structor 57
ASCQM Implement Virtual Destructor for Classes with Virtual Methods 57
ASCQM Implement Virtual Destructor for Parent Classes 46
ASCQM Initialize Pointers before Use 33
ASCQM Initialize Resource before Use 57
ASCQM Initialize Variables 33
ASCQM Initialize Variables before Use 33
ASCQM Limit Algorithmic Complexity via Cyclomatic Complexity Value 79
ASCQM Limit Algorithmic Complexity via Essential Complexity Value 179
ASCQM Limit Algorithmic Complexity via Module Design Complexity Value 179
ASCQM Limit Number of Aggregated Non-Primitive Data Types 100
ASCQM Limit Number of Data Access 100
ASCQM Limit Number of Outward Calls 140
ASCQM Limit Number of Parameters 100
ASCQM Limit Size of Operations Code 179
ASCQM Limit Volume of Commented-Out Code 57
ASCQM Limit Volume of Similar Code 79
ASCQM Log Caught Security Exceptions 79
ASCQM Manage Time-Out Mechanisms in Blocking Synchronous Calls 46
ASCQM NULL Terminate Output Of String Manipulation Primitives 33
ASCQM Release File Resource after Use in Class 79
ASCQM Release File Resource after Use in Operation 79
ASCQM Release in Destructor Memory Allocated in Constructor 79
ASCQM Release Lock After Use 140
ASCQM Release Memory After Use 79
ASCQM Release Memory after Use with Correct Operation 79
ASCQM Release Platform Resource after Use 79

Automated Technical Debt Measure, 2.0 73

ASCQM Sanitize Stored Input used in User Output 140
ASCQM Sanitize User Input used as Array Index 33
ASCQM Sanitize User Input used as Pointer 100
ASCQM Sanitize User Input used as Serialized Object 79
ASCQM Sanitize User Input used as String Format 79
ASCQM Sanitize User Input used in Document Manipulation Expression 79
ASCQM Sanitize User Input used in Document Navigation Expression 57
ASCQM Sanitize User Input used in Expression Language Statement 79
ASCQM Sanitize User Input used in Loop Condition 57
ASCQM Sanitize User Input used in Path Manipulation 46
ASCQM Sanitize User Input used in SQL Access 79
ASCQM Sanitize User Input used in System Command 79
ASCQM Sanitize User Input used in User Output 140
ASCQM Sanitize User Input used to access Directory Resources 100
ASCQM Secure Use of Unsafe XML Processing with Secure Parser 57
ASCQM Secure XML Parsing with Secure Options 57
ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context 79
ASCQM Use Break in Switch Statement 46
ASCQM Use Default Case in Switch Statement 33

Table 6 summarizes the Unadjusted Remediation Effort values for use with each ASCQM Weakness
based on their associated Detection Patterns. For each ASCQM Weakness, it also lists the Quality
Characteristics to which the Weakness is a member. When the Effort is listed as a range, the choice
of Unadjusted Remediation Effort depends on which Detection Pattern must be remediated to
correct the Weakness.

Table 6. Unadjusted Remediation Effort and Quality Characteristic Membership for
Each ISO 5055 Weakness

CWE
Weakness title

Quality
Characteristic
Membership

Unadjusted
Remediation
Effort (hours)

22
Improper Limitation of a Pathname to a Re-
stricted Directory ('Path Traversal')

Maintainability 0.8

23 Relative Path Traversal Security 0.8

36 Absolute Path Traversal Security 0.8

77
Improper Neutralization of Special Elements
used in a Command ('Command Injection')

Security 1.3

78
Improper Neutralization of Special Elements
used in an OS Command ('OS Command
Injection')

Security 1.3

79
Improper Neutralization of Input During Web
Page Generation ('Cross-site Scripting')

Security 2.3

88 Argument Injection or Modification Security 1.3

 74 Automated Technical Debt Measure, 2.0

89
Improper Neutralization of Special Elements
used in an SQL Command ('SQL Injection')

Security 1.3

90
Improper Neutralization of Special Elements
used in an LDAP Query ('LDAP Injection')

Security 1.7

91 XML Injection (aka Blind XPath Injection) Security 0.9 – 1.3

99
Improper Control of Resource Identifiers
(‘Resource injection’) Security 0.8

119
Improper Restriction of Operations within the
Bounds of a Memory Buffer

Reliability
Security

0.6 – 1.7

120
Buffer Copy without Checking Size of Input
('Classic Buffer Overflow')

Reliability
Security

0.9

123 Write-what-where condition
Reliability
Security 0.9

125 Out-of-bounds Read Reliability
Security

0.8

129 Improper Validation of Array Index Security 0.6

130
Improper Handling of Length Parameter
Inconsistency

Reliability
Security

0.8

131 Incorrect Calculation of Buffer Size Reliability
Security

1.3

134 Use of Externally Controlled Format String Security 1.3

170 Improper Null Termination Security 0.6

194 Unexpected Sign Extension Reliability
Security

0.8

195 Signed to Unsigned Conversion Error Reliability
Security

0.8

196 Unsigned to Signed Conversion Error
Reliability
Security

0.8

197 Numeric Truncation Error Reliability 0.8

248 Uncaught Exception Reliability 0.6

252 Unchecked Return Value Reliability
Security

0.9

259 Use of Hard-coded Password Security 0.9

321 Use of Hard-coded Cryptographic Key Security 0.9

366 Race Condition within a Thread Reliability
Security

2.3

369 Divide By Zero Reliability
Security

0.6

Automated Technical Debt Measure, 2.0 75

390 Detection of Error Condition Without Action Reliability 0.9

391 Unchecked Error Condition Reliability 0.9

392 Missing Report of Error Condition Reliability 0.9

394 Unexpected Status Code or Return Value Reliability 0.9

401 Improper Release of Memory Before Removing
Last Reference ('Memory Leak')

Reliability
Security

Performance
0.9 – 1.3

404 Improper Resource Shutdown or Release
Reliability
Security

Performance
0.8 – 1.3

407 Algorithmic Complexity Maintainability 1.3 – 3.0

415 Double Free
Reliability
Security 0.9

416 Use After Free Reliability Se-
curity

1.3

424 Improper Protection of Alternate Path
Reliability
Security

Performance
1.7

434 Unrestricted Upload of File with Dangerous
Type

Security 0.8

456 Missing Initialization of a Variable Reliability
Security

0.6

457 Use of uninitialized variable
Reliability
Security

0.6

459 Incomplete Cleanup Reliability 1.3

476 NULL Pointer Dereference Reliability 0.8

477 Use of Obsolete Function Security 1.3

478 Missing Default Case in Switch Statement Maintainability 0.6

480 Use of Incorrect Operator
Reliability
Security

Maintainability
0.6

484 Omitted Break Statement in Switch Reliability
Maintainability

0.8

502 Deserialization of Untrusted Data Security 1.3

543 Use of Singleton Pattern Without
Synchronization in a Multithreaded Context

Reliability Se-
curity

1.3 – 1.7

561 Dead code Maintainability 1.7

562 Return of Stack Variable Address Reliability 2.3

 76 Automated Technical Debt Measure, 2.0

564 SQL Injection: Hibernate Security 1.3

567 Unsynchronized Access to Shared Data in a
Multithreaded Context

Reliability
Security

1.7 – 2.3

570 Expression is Always False
Security

Maintainability 0.8

571 Expression Is Always True
Security

Maintainability 0.8

595
Comparison of Object References Instead of
Object Contents

Reliability 0.6 – 1.3

597 Use of Wrong Operator in String Comparison Reliability 0.6

606 Unchecked Input for Loop Condition Security 0.9

611
Improper Restriction of XML External Entity
Reference ('XXE')

Security 0.9

643
Improper Neutralization of Data within XPath
Expressions ('XPath Injection')

Security 0.9

652
Improper Neutralization of Data within XQuery
Expressions ('XQuery Injection')

Security 1.3

662 Improper Synchronization Reliability
Security

1.3 – 3.0

665 Improper Initialization Reliability
Security

0.6 – 1.3

667 Improper Locking
Reliability
Security

1.7 – 2.3

672
Operation on a Resource after Expiration or
Release

Reliability
Security 0.9 – 1.7

681 Incorrect Conversion between Numeric Types
Reliability
Security 0.8

682 Incorrect Calculation
Reliability
Security

0.6 – 1.3

703
Improper Check or Handling of Exceptional
Conditions Reliability 0.6 – 0.9

704 Incorrect Type Conversion or Cast Reliability 0.6

732 Incorrect Permission Assignment for Critical
Resource

Security 1.3

758 Reliance on Undefined, Unspecified, or
Implementation-Defined Behavior

Reliability 2.3

764 Multiple Locks of a Critical Resource Reliability 1.7

Automated Technical Debt Measure, 2.0 77

772
Missing Release of Resource after Effective
Lifetime

Reliability
Security

Performance
1.3

775
Missing Release of File Descriptor or Handle
after Effective Lifetime

Reliability
Security

Performance
1.3

778 Insufficient Logging Security 1.3

783 Operator Precedence Logic Error Security
Maintainability

0.9

786
Access of Memory Location Before Start of
Buffer

Reliability
Security

0.8 – 0.9

787 Out-of-bounds Write Reliability
Security

0.8 – 0.9

788 Access of Memory Location After End of Buffer
Reliability
Security 0.8 – 0.9

789 Uncontrolled Memory Allocation Security 0.6 – 1.3

798 Use of Hard-coded Credentials Security 0.9

805 Buffer Access with Incorrect Length Value
Reliability
Security

0.9

820 Missing Synchronization
Reliability
Security

1.7

821 Incorrect Synchronization Reliability
Security

2.0

822 Untrusted Pointer Dereference
Reliability
Security

1.7

823 Use of Out-of-range Pointer Offset
Reliability
Security

1.7

824 Access of Uninitialized Pointer
Reliability
Security

0.6

825 Expired Pointer Dereference
Reliability
Security 1.3

833 Deadlock Reliability 3.0

835
Loop with Unreachable Exit Condition
('Infinite Loop')

Reliability
Security

0.9

908 Use of Uninitialized Resource Reliability 0.9

917
Improper Neutralization of Special Elements
used in an Expression Language Statement
('Expression Language Injection')

Security 1.3

1041 Use of Redundant Code (Copy-Paste) Maintainability 1.3

 78 Automated Technical Debt Measure, 2.0

1042
Static Member Data Element outside of a
Singleton Class Element

Performance 1.3

1043
Data Element Aggregating an Excessively Large
Number of Non-Primitive Elements

Performance 1.7

1045 Parent Class with a Virtual Destructor and a
Child Class without a Virtual Destructor

Reliability
Maintainability

0.9

1046
Creation of Immutable Text Using String
Concatenation

Performance 0.9

1047 Modules with Circular Dependencies Maintainability 1.7

1048 Invokable Control Element with Large Number
of Outward Calls (Excessive Coupling or Fan-out)

Maintainability 2.3

1049 Excessive Data Query Operations in a Large Data
Table

Performance 3.0

1050 Excessive Platform Resource Consumption
within a Loop

Performance 3.0

1051
Initialization with Hard-Coded Network
Resource Configuration Data

Reliability
Maintainability

0.9

1052
Excessive Use of Hard-Coded Literals in
Initialization

Maintainability 0.8

1054
Invocation of a Control Element at an
Unnecessarily Deep Horizontal Layer
(Layer-skipping Call)

Maintainability 1.7

1055 Multiple Inheritance from Concrete Classes Maintainability 1.7

1057
Data Access Operations Outside of Expected
Data Manager Component

Security
Performance

1.7

1058
Invokable Control Element in Multi-Thread
Context with non-Final Static Storable or
Member Element

Reliability 1.7

1060
Excessive Number of Inefficient Server-Side
Data Accesses

Performance 3.0

1062
Parent Class Element with References to Child
Class

Maintainability 1.3

1064
Invokable Control Element with Signature
Containing an Excessive Number of Parameters

Maintainability 1.7

1066 Missing Serialization Control Element Reliability 1.3

1067
Excessive Execution of Sequential Searches of
Data Resource

Performance 2.3

Automated Technical Debt Measure, 2.0 79

1070
Serializable Data Element Containing
non-Serializable Item Elements

Reliability 1.3

1072
Non-SQL Invokable Control Element with
Excessive Number of Data Resource Accesses

Performance 2.3

1073 Large Data Table with Excessive Number of
Indices

Performance 2.3

1074 Class with Excessively Deep Inheritance Maintainability 3.0

1075
Unconditional Control Flow Transfer outside of
Switch Block

Maintainability 1.7

1077
Floating Point Comparison with Incorrect
Operator

Reliability 0.9

1079 Parent Class without Virtual Destructor Method
Reliability

Maintenance 0.8

1080
Source Code File with Excessive Number of Lines
of Code

Maintainability 3.0

1082 Class Instance Self Destruction Control Element Reliability 1.3

1083
Data Access from Outside Designated Data
Manager Component Reliability 1.7

1084
Invokable Control Element with Excessive File or
Data Access Operations Maintainability 1.7

1085
Invokable Control Element with Excessive
Volume of Commented-out Code

Maintainability 0.9

1086 Class with Excessive Number of Child Classes Maintainability 2.3

1087
Class with Virtual Method without a Virtual
Destructor

Reliability
Maintainability 0.9

1088
Synchronous Access of Remote Resource
without Timeout Reliability 0.8

1089
Large Data Table with Excessive Number of
Indices Performance 2.3

1090
Method Containing Access of a Member Ele-
ment from Another Class Maintainability 0.9

1091
Use of Object without Invoking Destructor
Method Performance 0.9

1094 Excessive Index Range Scan for a Data Resource Performance 1.7

1095 Loop Condition Value Update within the Loop Maintainability 0.9

 80 Automated Technical Debt Measure, 2.0

1096
Singleton Class Instance Creation without
Proper Locking or Synchronization

Reliability 1.3

1097
Persistent Storable Data Element without
Associated Comparison Control Element

Reliability 1.3

1098 Data Element containing Pointer Item without
Proper Copy Control Element

Reliability 1.3

1121 Excessive McCabe Cyclomatic Complexity Maintainability 1.3

7.18 Output Generation

The last step of the automated process shall generate the output. The output shall be a human
readable report that contains sufficient detail to answer the following questions:

• What is the amount of Automated Technical Debt (ATDM)?
• What is the amount of Remediation Effort required for each of the Quality Characteristic

measures (Automated Maintainability/Reliability/Performance Efficiency/Security)?
• What is the amount of ATDM added or removed between two revisions?
• What is the amount of ATDM concentrated in any set of code elements?
• What are the exposure levels of individual occurrences in the ATDM?
• What are the assumptions used in calculating ATDM?

The generated output file format shall be a common text file format (e.g., .txt or .csv) to allow for
importing to other tools such as Excel or a commercial software estimating package. The output shall
include the following artifacts:

• At the measurement level
◦ ASCSM, ASCRM, ASCPEM, and ASCMM measurement input
◦ Remediation Effort configuration input (if not the default values)
◦ AEP Effort Complexity measurement input (if not the default values)

• At the software revision level
◦ ATDM value
◦ MREM, RREM, PEREM, and SREM values

• At the weakness level, for all weaknesses
◦ Weakness Remediation Effort values

• At the pattern level, for all patterns
◦ Pattern Remediation Effort values

• At the Occurrence level, for all Occurrences of all patterns
◦ Occurrence Remediation Effort values
◦ Occurrence Adjustment Factor values
◦ Occurrence Complexity and Exposure overhead average values
◦ Occurrence Sharing Opportunity average values
◦ Occurrence Technological Diversity values
◦ Occurrence Evolution

• At the role level, for all Occurrences of all patterns
◦ List of code elements implementing a role
◦ Complexity of role implementation code elements
◦ Concentration of role implementation code elements
◦ Evolution of role implementation code elements
◦ Direct and indirect Exposure of role implementation code elements

Automated Technical Debt Measure, 2.0 81

 82 Automated Technical Debt Measure, 2.0

8 Automated Technical Debt Measure (ATDM)
Usage Scenarios (Informative)

8.1 Risk Mitigation

The following scenarios illustrate ways in which the Automated Technical Debt Measure (ATDM) and
Contextual measures can be used to help mitigate the risk of the Technical Debt associated with IT
applications.

8.1.1 ATDM and Its Component Effort Values for MREM, RREM, PEREM, SREM

Action—Compare the ATDM value and individual ASCQM Quality Characteristic Remediation values
(MREM, RREM, PEREM, SREM).

Interpretation—This comparison helps determine when the total Technical Debt measured in the
ATDM value (normalized by size, if needed) is unequally distributed between Technical Debt Items
associated with Security, Performance Efficiency, Maintainability, or Reliability.

8.1.2 Exposure

Action—Chart the Occurrences of Technical Debt Items by Exposure values to evaluate the breadth
of Risk Exposure.

Interpretation—This distribution helps identify which Technical Debt Items possess the greatest
breadth of connections to other code elements in the software. These Technical Debt Items usually
possess the greatest risk in effort and cost to correct because of potential side effects that must be
evaluated. There is also greater possible destabilization resulting from undetected side effects of
Remediation activities.

8.1.3 Evolution

Action—Chart the ATDM value by the Evolution Occurrences across releases.

Interpretation—This distribution helps identify trends in the management of Technical Debt. For
instance, how much legacy Technical Debt exists in an application, and how much is being added or
corrected in each subsequent release. Evolution can also be used in analyzing trends in the
operational risks and cost of ownership associated with the Technical Debt as it is measured across
releases.

8.2 Priority Setting

The following scenarios illustrate the ways measures defined in ATDM specifications can be used to
help setting priorities for remediating Technical Debt Items.

8.2.1 ATDM and its component effort values for MREM, RREM, PEREM, SREM

Action—Evaluate the ASCQM Quality Characteristic Remediation values (MREM, RREM, PEREM,
SREM).

Interpretation—The relative amounts of Technical Debt indicated in the Quality Characteristic
Remediation values can help prioritize and allocate resources among the Quality Characteristics for
remediating Technical Debt Items.

Automated Technical Debt Measure, 2.0 83

8.2.2 Technological Diversity

Action—Chart Occurrences of Technical Debt Items by their Technological Diversity.

Interpretation—This distribution identifies Technical Debt Items:
• that may require synchronization between multiple teams involved in a Remediation

because different sets of computational objects involved in the Occurrence are written in
different languages and may be located in different code elements.

• that probably can be handled by a single team because only one language is involved.

8.2.3 Exposure

Action—Chart Occurrences of Technical Debt Items by the range of Exposure values.

Interpretation—This distribution helps identify Technical Debt Items with:
• the highest Risk Exposure and Fix Destabilization Exposure so they can be corrected first

during the release development cycle to remove the most impacting issues with enough
time before the release to handle potential side-effects of the fix.

• the highest Fix Destabilization Exposure but lower Risk Exposure that so they can be
corrected next during the release development cycle to remove issues while there is
enough time to handle potential side-effects of the fix.

• the lowest Fix Destabilization Exposure that are to be removed near the end of the release
development cycle to remove issues without jeopardizing the stability of the release.

8.2.4 Evolution

Acton—Chart Occurrences of Technical Debt Items by the Evolution of each Occurrence.

Interpretation—This distribution helps identify added Technical Debt Items that should be removed
first to avoid letting future enhancements build on top of them, making them more difficult to
remove in the future and increasing their potential negative impacts.

8.3 Productivity Measurement

The following scenario illustrates the way ATDM measures can be used in productivity analysis.

8.3.1 Evolution

Action—Filter the Occurrences of Technical Debt Items that were “added” in their Evolution .

Interpretation—Adjust productivity figures for the current release by including the Remediation
Effort of Detection Patterns implemented in the current release but not corrected until a future
release. Remediation Effort passed to future revisions is often counted as new work rather than
rework, thus inflating productivity numbers.

 84 Automated Technical Debt Measure, 2.0

9 Contextual Technical Debt Measure (CTDM)
Usage Scenarios (Informative)

The Contextual Technical Debt Measure (CTDM) is an alternative to the Automated Technical Debt
Measure because it is adapted to the context of a specific organization or application. The adaptation
process is multifaceted and concerns one or more of the following non-mutually exclusive aspects:

• the list of patterns to consider: a subset of the patterns from the ASCQM standard; or a set
including Detection Patterns not included in the ASCQM standard.

• different values for Remediation Effort: different Unadjusted Remediation Effort values,
• the use of different formulas for Adjustment Factors, or their deactivation
• the use of additional Adjustment Factors.

However, these adjustments are incorporated at the expense of benchmarking, which cannot be
accomplished with CTDM except among applications where the CTDM adjustments are identical.

The following sub-clauses illustrates sample variations regarding Adjustment Factors.

9.1 Technological Diversity

Action—Adjust the Technological Diversity Adjustment Factor to better reflect the organization’s
ability to deal with Occurrences involving multiple technologies.

Illustrations

1. Turn off (that is, ignore from computation) the Technological Diversity Adjustment Factor if
the organization is organized around cross-technology teams.

2. Compute an alternative Technological Diversity penalty factor equal to the power of the
number of distinct technologies, with a power value smaller than 1, to model a
smooth coordination of different teams, and greater than 1, to model
the infrequent involvement of different teams.

9.2 Exposure

Action—Adjust the Exposure Adjustment Factor to better reflect the organization’s ability to avoid
destabilization of the software via automated testing.

Illustrations

1. Turn off (that is, ignore from computation) the Exposure Adjustment Factor if the organization is so
mature regarding automated non-regression testing that teams can update the code without fear
of side effects.

2. Compute an alternative Exposure Adjustment Factor using one of the following formulas:

• with an asymptote: max-1/(range number+1)power

• without an asymptote: (range number)power
• where range number is a logarithmic transformation of the Exposure values, to account for

combinatorial nature of the Exposure and make them human-friendly: |log (Exposure + 1)|

9.3 Sharing Opportunity

Action—Adjust the Sharing Opportunity Adjustment Factor to better reflect the organization’s
strategy regarding the removal of Technical Debt Occurrences.

Automated Technical Debt Measure, 2.0 85

Illustration—Turn off (that is, ignore from computation) the Sharing Opportunity Adjustment Factor
if the organization is willing to remove Occurrences at different times, that is, without achieving
an economy of effort when removing multiple Occurrences concurrently in the same code
element.

9.4 Evolution

9.4.1 Occurrence

Action—Adjust the Remediation Effort for a Technical Debt Item with an evolution Contextual measure to
factor in the opportunity to remove an Occurrence more easily when it was injected into the software
during the current release cycle.

Illustration—Consider an Occurrence evolution reward factor of .50 for added Occurrences.

9.4.2 Code Elements

Action—Adjust the Remediation Effort for a Technical Debt Item with an evolution Contextual measure to
factor in the opportunity to remove an Occurrence more easily when the code elements involved were
recently updated.

Illustration—Consider a code element evolution reward factor of .75 for updated code elements.

9.5 Limitation

The use of Adjustment Factors makes the measures evolve over time. As Occurrences age and code
elements are modified, remediating them becomes more difficult. This difficulty is compounded if there
is growth in the number of Technical Debt items over cycles and releases.

 86 Automated Technical Debt Measure, 2.0

10 Technical Debt Value Communication
(Informative)

The following scenarios illustrate ways in which the Automated Technical Debt Measure (ATDM) and
the Contextual Technical Debt Measure (CTDM) can be used to help communicate about Technical
Debt with non-technical audiences, facilitate acceptance, and reap the benefits of the Technical Debt
metaphor.

10.1 Problem statement

ATDM and CTDM are estimating the effort to remove all Occurrences of the selected Detection Patterns
(from ASCQM standard, or from a user-defined list).

First, this is equivalent to a strategy of zero tolerance to defects which may be too stringent (and very
likely unnecessary) to implement in all applications, as well as too expensive due to the sheer number of
Occurrences to remediate. This leads to Remediation Effort values so large they are difficult to accept
(even if justifiable), ultimately creating a push back against the measurement program.

Second, there is conceptual debate about the content of Technical Debt. Some say Technical Debt should
only account for items that organizations intend to remove. In other words, if organizations do not plan to
completely remove all Occurrences of each pattern, they are not to be considered in the Technical Debt
measurement. A more academic approach holds that Technical Debt is not about Weaknesses, but rather
the cost to remediate flaws resulting from conscious sub-optimal design decisions made in a rush to get
software delivered on schedule.

Third, some organizations manage quality objectives, such as internal or external Service Level
Agreements. That is, they may define the number of issues that are considered acceptable. When quality
objectives are set with a certain tolerance value, only the Occurrences whose removal is needed to reach
the target level of tolerance will be effectively removed; the remaining Occurrences will remain for lack of
incentive to do so. In these situations, the Technical Debt values that are meaningful for the management
are the estimations of the effort and cost to reach target values as re[resented in CDTM (as opposed to
the estimation of the effort and cost to get the total absence of Occurrences).

10.2 Recommended Approach

10.2.1 When Quality Objectives Are Set

CISQ recommends the computation of the amount of Automated Technical Debt Measure that is required
to reach quality objectives that are set for each application.

As the scope of the ATDM measure is adjusted with contextual information, this computation should be
exposed labeled a Contextual Technical Debt Measure to avoid confusion.

The immediate benefits of this approach are:

1. a more relevant value, because it would be aligned with organization’s existing management
practices, as opposed to a value relative to a hypothetical “zero tolerance” situation,

2. a more acceptable value, because it would be smaller, having filtered out effort and cost amounts
that are not ultimately applicable.

10.2.2 When Quality Objectives Are Not Set

In case no quality objectives are set, CISQ recommends the computation of the amount of Automated
Technical Debt Measure required to reach arbitrary yet meaningful quality levels, such as sigma levels
(e.g., Occurrences per million lines of code).

Automated Technical Debt Measure, 2.0 87

The immediate benefits are:

1. a perspective on quality levels, especially as there are no objectives set, to educate and help
justify quality improvement initiatives (e.g., showing a plan to reach a sigma level 3 can resonate
with non-technical management audience familiar with 6 concepts)

2. a more acceptable value, because it would be smaller, based on remediating a smaller set of
Occurrences. Removing all Occurrences would be unrealistic when dealing with an application for
which there are no quality objectives.

10.3 Limitations

10.3.1 Benchmarking

Adjustments regarding tolerances are incorporated at the expense of benchmarking, which cannot be
accomplished with CTDM except among applications where the CTDM adjustments are identical or
acceptably different.

“Acceptably different” means there are differences in the adjustment criteria but that the organization is
accepting and adhering to these differences and their impact on the way to interpret the results.

As an example, if two applications are assigned different tolerance levels, the organization must use the
CTDM measures carefully. The measured values shall not be used to compare the Technical Debt for these
two applications, but they shall be used to compare the distance to their respective quality objectives,
using the Technical Debt metaphor.

10.3.2 Value Range

As soon as a tolerance level is not zero, some Occurrences will be allowed to remain in the software.

Each Detection Pattern Occurrence is assigned the same Unadjusted Remediation Effort. However, when
the Adjustment Factors are applied, the Adjusted Remediation Effort will likely differ.

Therefore, the effort required to remove enough Occurrences to reach the quality objective for this
Detection Pattern becomes a value range, with a minimum value obtained by targeting the Occurrences
with the smaller adjusted Remediation Effort values, and with a maximum value obtained by targeting the
Occurrences with the largest adjusted Remediation Effort values.

 88 Automated Technical Debt Measure, 2.0

11 References

Avgeriou, P., Kruchten, P., Ozkaya, I., & Seaman, C. (2016). Managing Technical Debt in Software
Engineering (Dagstuhl Seminar 16162). Dagstuhl Reports, 6 (4), 110-138. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

Cunningham, W. (1992). The WyCash portfolio management system. ACM SIGPLAN OOPSLA
Messenger. 4 (2): 29–30. doi:10.1145/157710.157715

Curtis, B. (2016). Measuring and communicating the technical debt metaphor in industry. Dagstuhl
Reports, 6 (4), 121-122.

Commented [BC44]: ATDMV2-13

Automated Technical Debt Measure, 2.0 89

Annex A: Consortium for IT Software Quality (CISQ)

The purpose of the Consortium for IT Software Quality (CISQ) is to develop specifications for auto-
mated measures of software quality characteristics taken on source code. These measures were de-
signed to provide international standards for measuring software structural quality that can be used
by IT organizations, IT service providers, and software vendors in contracting, developing, testing, ac-
cepting, and deploying IT software applications. Executives from the member companies that joined
CISQ prioritized the quality characteristics of Reliability, Security, Performance Efficiency, and Main-
tainability to be developed as measurement specifications.

CISQ strives to maintain consistency with ISO/IEC standards to the extent possible, and in particular
with the ISO/IEC 25000 series that replaces ISO/IEC 9126 and defines quality measures for software
systems. In order to maintain consistency with the quality model presented in ISO/IEC 25010, soft-
ware quality characteristics are defined for the purpose of this specification as attributes that can be
measured from the static properties of software and can be related to the dynamic properties of a
computer system as affected by its software. However, the 25000 series, and in particular ISO/IEC
25023 which elaborates quality characteristic measures, does not define these measures at the
source code level. Thus, this and other CISQ quality characteristic specifications supplement ISO/IEC
25023 by providing a deeper level of software measurement, one that is rooted in measuring soft-
ware attributes in the source code.

Companies interested in joining CISQ held executive forums in Frankfurt, Germany; Arlington, VA;
and Bangalore, India to set strategy and direction for the consortium. In these forums four quality
characteristics were selected as the most important targets for automation—reliability, security, per-
formance efficiency, and maintainability. These attributes cover four of the eight quality characteris-
tics described in ISO/IEC 25010.

The Consortium for IT Software Quality (CISQ), a consortium managed by OMG, was formed in 2010
to create international standards for automating measures of size and structural quality characteris-
tics from source code. These measures are intended for use by IT organizations, IT service providers,
and software vendors in contracting, developing, testing, accepting, and deploying software systems.
Executives from the member companies that joined CISQ prioritized Reliability, Security, Performance
Efficiency, and Maintainability as the initial structural quality measures to be specified.

An international team of experts drawn from CISQ’s 24 original companies formed into working
groups to define CISQ measures. Weaknesses that had a high probability of causing reliability, secu-
rity, performance efficiency, or maintainability problems were selected for inclusion in the four
measures. The original CISQ members included IT departments in Fortune 200 companies, system
integrators/ outsourcers, and vendors that provide quality-related products and services to the IT
market. The experts met several times per year for two years in the US, France, and India to develop
a broad list of candidate weaknesses. This list was pared down to a set of weaknesses they believed
had to be remediated to avoid serious operational or cost problems. These 86 weaknesses became
the foundation of the original specifications of the automated source code measures for Reliability,
Security, Performance Efficiency, and Maintainability.

