
The Authorization Token Layer
Acquisition Service Specification

This OMG document replaces the draft adopted specification (ptc/2001-10-01). It is an OMG Final
Adopted Specification, which has been approved by the OMG board and technical plenaries, and is
currently in the finalization phase. Comments on the content of this document are welcomed, and
should be directed to issues@omg.org by May 2, 2002.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on July 1, 2002. If
you are reading this after that date, please download the available specification from the OMG for-
mal specifications web page.

OMG Final Adopted Specification
October 2001

October 2001 ATLAS Final Adopted Specification 27-1

ATLAS: The Authorization Token
Layer Acquisition Service 27

Note – from the OMG Technical Editor: Eventually, this specification will become part
of the CORBA Core document. The chapter number is temporary and may change.

Contents

This chapter contains the following topics.

Topic Page

Section I - Overview

“Introduction” 27-2

“Relationship to Other OMG Modules” 27-2

“Existing Specifications” 27-2

Section II - ATLAS Specification

“Introduction” 27-3

“Specification Scope” 27-4

“Reference Model for CSIv2 Authorization
Interoperability”

27-5

“Reference Model for Spanning Authorization Domains” 27-6

“The ATLAS Module” 27-7

“The Target ATLAS Interoperability Profile” 27-10

“Locating the Target’s ATLAS” 27-11

“The Target ATLAS Interoperability Specification” 27-12

27-2 ATLAS Final Adopted Specification October 2001

27

Section I - Overview
[1] This section discusses some of the design decisions that were made to provide the

components to achieve full secure interoperability between clients and targets.

27.1 Introduction

[2] This document describes the service needed to acquire authorization tokens to access a
target system using the newly adopted CSIv2 protocol. This design, mandated by the
RFP, defines a single interface with which to a client acquires an authorization token
for a particular token. This token may be pushed, using the CSIv2 protocol in order to
gain access to a CORBA invocation on the target.

[3] This specification solves the problem of acquiring the privileges needed for a client to
acquire a set of privileges the target will understand as the client need not understand
the token that is retrieved from the ATLAS.

27.2 Relationship to Other OMG Modules

[4] This document refers to the following modules:

• module CSI

• module CSIIOP

• module Time

• module CosNaming

• module CosNamingExt

27.3 Existing Specifications

[5] This section describes the relationships of this specification with other existing
CORBA specifications.

“Security Concerns” 27-12

“IllegalTokenRequest Error Codes” 27-13

Appendix A - “References” 27-15

Appendix B - “Conformance Points” 27-16

Appendix C - “OMG IDL” 27-17

Topic Page

October 2001 ATLAS Final Adopted Spec: Introduction 27-3

27

27.3.1 Use of Existing Specifications

[6] This specification is dependent on the ORB services, data structures, and semantic
definitions defined in the following specifications:

• OMG Naming Service v1.1 (OMG TC Document orbos/99-10-11) [2]

• OMG Time Service (OMG TC Document formal/2000-06-26) [3]

• OMG Common Secure Interoperability Version 2 RFP Response (OMG TC
Document orbos/2000-08-04)

27.3.1.1 The Name Service

[7] Dependencies on the Name Service specification include:

• use of the Name Services CosNaming::NamingContext interface,

• use of the definition of CosNaming::NamingContextExt::StringName, and

• use of the definition of CosNaming::NamingContextExt::URLString.

27.3.1.2 The Time Service

[8] Dependencies on the Time Service specification are limited to the TimeBase::UtcT
database structure.

27.3.1.3 The CSIv2 Interoperably Specification

[9] Dependencies on the CSIv2 specification include:

• use of the CSI::IdentityToken,

• use of the CSI::AuthorizationToken,

• use of the CSIIOP::ServiceConfiguration

 structures, and their related types.

Section II - ATLAS Specification

27.4 Introduction

[10] This section describes the Authorization Token Layer Acquisition Service (ATLAS).
The Authorization Token Acquisition Service is a service by which a client’s security
service (CSS) acquires authorization tokens to deliver to a target’s security service
(TSS).

[11] An authorization token consists of information that is processed by a TSS for security
purposes. For example, the TSS uses the information in the authorization token to grant
or deny access to the target’s resources on behalf of the client.

27-4 ATLAS Final Adopted Specification October 2001

27

[12] Authorization tokens must contain privilege information that is scoped to the target’s
understanding of privileges to be effective. Privilege information must be scoped to the
target’s realm of understood privileges. For example, the privilege “doctor” at target
Hospital A does not necessarily have the same meaning as “doctor” at target Hospital
B, if any meaning at all. Alternatively, a single client, such as “Alice,” may have the
“doctor” privilege at Hospital A, but not at Hospital B.

[13] Privileges are defined by privilege authorities, which define the privilege scope. The
previous example illustrates that two different entities define the privilege “doctor,” as
well as the mappings from clients to those privileges. Hospital A subscribes to one
privilege authority, Hospital B subscribes to a different privilege authority. The
hospitals have different privilege scopes.

[14] The CSS needs to deliver an authorization token that is within the target’s privilege
scope. The definition of a privilege scope consists of, but is not limited to, the
following capabilities:

• Authorizing the client with privileges defined by a privilege authority that is
understood by the target.

• Authorizing the target to be endorsed with the client’s privileges or identity should
it be necessary for the needs of both the client and target.

[15] To facilitate secure interoperability, the TSS indicates to a client the location of the
specific ATLAS that defines the target’s privilege scope. The CSS retrieves from that
ATLAS an authorization token, and the CSS is guaranteed that the token is understood
by the TSS.

[16] Many different targets may belong to the same privilege scope and therefore they may
indicate the use of the same ATLAS. One client may use many of these targets. This
specification defines the data structures and semantics with which TSS’s convey the
location of the target’s ATLAS. The approach defined in this specification facilitates
client caching of the authorization tokens based on the privilege scope.

27.5 Specification Scope

[17] An ATLAS only delivers authorization tokens for one privilege scope. A service that
issues authorization tokens of a variety of different token formats and different scopes
is outside of this specification.

[18] This specification only addresses retrieval of authorization tokens that clients deliver to
targets for security purposes. Specification of the delivery of those tokens from the
CSS to the TSS is left to a transport mechanism and is outside the scope of this
specification. Also, definition of the mechanism by which the TSS transmits the
location of its ATLAS to the CSS is left to a transport mechanism and is also outside
the scope of this specification.

[19] Administration of privileges, privilege scopes, and token formats is outside the scope
of this specification.

October 2001 ATLAS Final Adopted Spec: Reference Model for CSIv2 Authorization Interoperability 27-5

27

[20] This specification facilitates the notion of client caching of authorization tokens. This
specification defines the caching semantics. However, the specific caching mechanism
and the conditions on which the client chooses to cache authorization tokens is outside
the scope of this specification.

[21] This specification defines the method by which a client locates an ATLAS, but only
does so with respect to making an interoperable request on a specific target. The client
may know beforehand the various ATLAS’s in which it will be dealing. In that case, it
may want to locate those ATLAS’s and fill its cache with frequently used authorization
tokens. Locating those ATLAS’s for this purpose is outside the scope of this
specification. However, it might be helpful to mention to the implementers that naming
or trading services may be employed to do so.

27.6 Reference Model for CSIv2 Authorization Interoperability

[22] The following model illustrates authorization interoperability with the CSIv2
authorization layer that this specification supports.

Figure 27-1

[23] In the above model, the Client has no prior agreements with the Target. The Client has
no knowledge as to the format and authority of an Authorization Token (AT) that the
Target will understand. The following scenario ensues:

1. The Client acquires the IOR of the Target.

2. The Client looks at the CSIv2 component in the Target’s IOR and locates the
ATLAS based on the information in the
CSIIOP::SAS_ContextSec:privilege_authorities field.

3. The Client requests an Authorization Token from the Target’s ATLAS based on its
own authentication to the ATLAS.

4. The Client makes its intended CSIv2 protected invocation on the Target pushing the
AT that was retrieved from the ATLAS in the authorization layer of the CSIv2
protocol.

ATLAS

Target

IOR

CSIv2

Client

AT

AT

27-6 ATLAS Final Adopted Specification October 2001

27

5. Since the Target specified the ATLAS, the Target will understand the format and
encoding of the AT that is produced by the ATLAS. The Client need not understand
the format or encoding of the AT.

27.7 Reference Model for Spanning Authorization Domains

[24] The following model illustrates authorization interoperability with the CSIv2
authorization layer when Authorization Domains may be crossed.

Figure 27-2

[25] In the above model, the Intermediary Client has no prior agreements with the Target.
The Client has no knowledge as to the authorization domain, and the format and
encoding of an Authorization Token that the Target will understand. However, the
Client has an Authorization Token, AT1, from another Authorization Domain. The
following scenario ensues:

1. The Client acquires the IOR of the Target.

2. The Client looks at the CSIv2 component in the Target’s IOR and locates the
ATLAS based on the information in the
CSIIOP::SAS_ContextSec:privilege_authorities field.

3. The Client intends to make a request on the Target in some other principal’s behalf.
The Client requests AT2 from the ATLAS based on its own authentication to the
ATLAS, the other principal’s authorization token (AT1), and the identity token
representing the other principal.

4. The Client makes its intended CSIv2 protected invocation on the Target pushing
AT2 that was retrieved from the ATLAS in the authorization layer of the CSIv2
protocol and asserting the identity of the other principal.

[26] Since the Target specified the ATLAS, the Target will understand the format and
encoding of the AT2 that is produced by the ATLAS. The Client need not understand
the format or encoding of the AT2.

ATLAS

Target

IOR

CSIv2

Client

AT2

AT2

AT1

Id

AT1

October 2001 ATLAS Final Adopted Spec: The ATLAS Module 27-7

27

27.8 The ATLAS Module

[27] The ATLAS module contains data types, exceptions, and interfaces used by an ATLAS.
Some of the important types are described here. The ATLAS module contains the
following IDL:

// File: ATLAS.idl

#ifndef _ATLAS_IDL_
#define _ATLAS_IDL_

#include <TimeBase.idl>
#include <CosNaming.idl>
#include <CSI.idl>
#include <CSIIOP.idl>

#pragma prefix "omg.org"

module ATLAS {

...

};
#endif // _ATLAS_IDL_

[28] The ATLAS module depends on some data types in the TimeBase, CosNaming,
CSI, and CSIIOP modules. Some important types are described in the following
sections. The full IDL description of the module is defined in Section C.1, “Module
ATLAS,” on page 27-17.

27.8.1 The ExpiryTime Type

[29] The ExpiryTime structure is a component of an AuthTokenData structure that
stipulates the time that authorization token will expire, if known. The ExpiryTime is a
sequence of at most one element of coordinated universal time. A zero element
sequence indicates that the expiry time of the authorization token is not known. The
ExpiryTime type has the following definition:

typedef sequence<TimeBase::UtcT,1> ExpiryTime;

27.8.2 The IdTokenOption Type

[30] The CSIv2 protocol requires the use of a CSI::IdentityToken. The intended identity
shall be asserted along with the CSI::AuthorizationToken to give the TSS an
indication of the identity to which the CSI::AuthorizationToken pertains. The return
of a CSI::IdentityToken also facilitates translation of the identity token as different
privilege scopes may map identities to different encodings, or even different identities.

27-8 ATLAS Final Adopted Specification October 2001

27

[31] The IdTokenOption structure is a component of an AuthTokenData structure that
stipulates the CSI::IdentityToken that the CSS shall use in conjunction with the
CSI::AuthorizationToken. The IdTokenOption is a sequence of at most one
element containing a CSI::IdentityToken. A zero element sequence indicates that the
CSI::IdentityToken used by the CSS in its call to the ATLAS is acceptable in
conjunction with the accompanying CSI::AuthorizationToken. This approach
removes the need to return the same token back to the CSS, as the identity token can
be lengthy.

typedef sequence<CSI::IdentityToken,1> IdTokenOption;

27.8.3 The AuthTokenData Type

[32] The AuthTokenData structure is used for a return value in some ATLAS operations.
It returns the CSI::IdentityToken, CSI::AuthorizationToken, and an expiry time.
The expiry time shall indicate the time the token will expire, if known. It has the
following definition:

struct AuthTokenData {
IdTokenOption ident_token;
CSI::AuthorizationToken auth_token;
ExpiryTime expiry_time;

};

[33] The CSI::AuthorizationToken type is actually a sequence of
CSI::AuthorizationElement. Therefore, the auth_token field may be a sequence
that contains zero elements, which means that the authorization token is empty. In this
case, the CSS shall send an empty authorization token to the intended TSS.

27.8.4 The AuthTokenDispenser Interface

[34] The AuthTokenDispenser interface delivers AuthTokenData elements to the client.
It has the following definition:

interface AuthTokenDispenser {
// ... attributes and operations

};

[35] The operations of the AuthTokenDispenser interface are defined in the following
subsections.

27.8.4.1 get_my_authorization_token

[36] A client shall use this operation to retrieve an authorization token based on the client’s
own identity. It has the following definition:

AuthTokenData get_my_authorization_token()
 raises (

IllegalTokenRequest

October 2001 ATLAS Final Adopted Spec: The ATLAS Module 27-9

27

);

Return Value

[37] The value returned by this operation shall be the data structure containing the
CSI::AuthorizationToken, and CSI::IdentityToken for the client. An
IllegalTokenRequest exception shall be raised in the event that the client is not
granted an authorization token.

27.8.4.2 translate_authorization_token

[38] A client shall use this operation to translate an authorization token from one privilege
scope to that of the scope supported by this ATLAS for the intended subject. It has the
following definition:

AuthTokenData translate_authorization_token(
in CSI::IdentityToken the_subject,
in AuthorizationToken the_token

) raises (
IllegalTokenRequest,
TokenOkay

);

[39] The client may use this operation to “request” privileges within the target scope by
creating an authorization token and having it translated.

Parameters

Return Value

[40] The value returned shall be the structure containing the CSI::AuthorizationToken
and the CSI::IdentityToken that has been translated to the target’s privilege scope.

[41] An IllegalTokenRequest exception shall be raised in the event that the client is not
granted an authorization token, or if the given authorization token is not translatable by
this ATLAS.

[42] The TokenOkay exception shall be raised in the event that the token is understood and
is deliverable to the target. In other words, the token did not need to be translated by
this ATLAS.

the_subject This parameter specifies the identity for which the token is
being translated. The CSI::IdentityToken type is a
discriminated union that accommodates different name forms. A
client shall not use a CSI::IdentityToken with a discriminator
of CSI::ITTAbsent.

the_token This parameter contains the token to be translated.

27-10 ATLAS Final Adopted Specification October 2001

27

27.9 The Target ATLAS Interoperability Profile

[43] The target shall indicate the specific ATLAS from which the CSS gets authorization
tokens to deliver to the TSS. Once a CSS gets this profile, it shall locate the target’s
ATLAS. Locating an ATLAS is defined as retrieving an object reference to an
AuthTokenDispenser interface.

The ATLASProfile has the following definition:

struct ATLASProfile {
ATLASCacheId the_cache_id;
ATLASLocator the_locator;

);

[44] The field, the_cache_id, is a byte sequence on which the client may cache
authorization tokens associated with the located ATLAS. The field, the_locator, shall
contain a locator that leads to the object reference of the AuthTokenDispenser
interface.

[45] The ATLASCacheId is defined as a byte sequence. The caching identifier is said to be
present if it is a non-empty byte sequence. The caching identifier is said not to be
present if it is an empty byte sequence.

[46] If the caching identifier is present, and the CSS caches authorization tokens, the CSS
shall use the caching identifier and shall ignore the locator for the caching of
authorization tokens. The locator shall not enter into the CSS caching scheme because
the locator is insufficient to determine whether two ATLAS’s are the same. For,
example, there may be many different servers for one ATLAS, which results in many
different object references and locator specifications. The caching identifier matching
algorithm is byte sequence equality.

[47] If the caching identifier is not present, the target considers the locator sufficient for
caching purposes. In this case, the default matching algorithm used by the CSS is byte
sequence equality on the locator. The CSS can use better matching algorithms based on
the its understanding of the locator and its resolution.

[48] The target shall make the caching identity unique enough to facilitate correct client
caching of authorization tokens amongst its clients. One approach would be to create a
Universal Unique Identifier (UUID) [4]. For multiple targets that use the same ATLAS,
it is advisable to allocate a common identifier for that ATLAS.

[49] Targets using different privilege scopes shall have different locators, and if caching
identities are supplied, they shall be different as well.

[50] Specification of caching identifiers and procedures for allocation of caching identifiers
is outside the scope of this specification.

October 2001 ATLAS Final Adopted Spec: Locating the Target’s ATLAS 27-11

27

27.10 Locating the Target’s ATLAS

[51] The ATLASLocator shall be, or shall lead to, the object reference of an ATLAS
AuthTokenDispenser interface. Using an object reference that directly points to the
ATLAS may not be desirable in all cases. In some cases, a level of indirection, such as
using the CORBA NameService, may be useful. The ATLASLocator combines all
these methods by using a discriminated union.

struct CosNamingLocator {
CosNaming::NamingContext name_service;
CosNaming::Name the_name;

};

typedef CosNaming::NamingContextExt::URLString URLocator;

typedef unsigned long ATLASLocatorType;

const ATLASLocatorType ATLASCosNaming = 1;
const ATLASLocatorType ATLASURL = 2;
const ATLASLocatorType ATLASObject = 3;

union ATLASLocator switch (ATLASLocatorType) {
case ATLASCosNaming: CosNamingLocator naming_locator;
case ATLASURL: URLocator the_url;
case ATLASObject: AuthTokenDispenser the_dispenser;

};

[52] The ATLASCosNaming branch of the union is a CORBA NameService specification
in which the object reference of the naming context is supplied along with the name of
the AuthTokenDispenser. The object reference that is resolved at the end of this
name path shall resolve to a target of the AuthTokenDispenser type.

[53] The ATLASURL branch indicates a Universal Resource Locator (URL), which is
specified by the Extended Interoperable Naming Service Specification [2].

[54] The ATLASObject branch indicates that an object reference points to a target of the
AuthTokenDispenser type directly.

[55] Given an ATLASLocator that is a URL, the client shall locate the ATLAS by
resolving successive locates until it gets an object reference, because the content of the
URL may be another URL. This procedure shall be followed until the URL resolution
results in an invalid URL or an object reference. The object reference that results shall
be that of an AuthTokenDispenser.

Warning – To alleviate a denial of service attack on the client directly, a client would
place a limit on the number of URLs it will resolve in a chain of resolutions as well as
check for loops.

27-12 ATLAS Final Adopted Specification October 2001

27

27.11 The Target ATLAS Interoperability Specification

[56] The ATLAS Interoperability Specification is contained in the privilege_authorities
field of the CSIIOP::SAS_ContextSec structure. Its type is that of
CSIIOP::ServiceConfiguration, and its definition is listed below:

typedef short ServiceConfigurationSyntax;

typedef sequence<octet> ServiceSpecificName;

struct ServiceConfiguration {
ServiceConfigurationSyntax syntax;
ServiceSpecificName name;

};

[57] The syntax field of the structure stipulates the encoding of the name field.

[58] The ServiceConfiguration for an ATLAS is as follows:

[59] The “syntax” field of the ServiceConfiguration structure shall contain the value of
the following constant.

const CSIIOP::ServiceConfigurationSyntax SCS_ATLAS = 3;

[60] The name field of the ServiceConfiguration structure shall contain the CDR
encapsulation of the ATLAS::ATLASProfile structure.

27.12 Security Concerns

[61] This section describes the security concerns one should have in both implementing,
deploying, configuring, and using the ATLAS.

[62] The ATLAS is intended to implemented with CORBA Security. Its implementations
shall be security aware to support some of the operations. One such operation is the
AuthTokenDispenser::get_my_authorization_token operation. This operation
shall determine its client’s identity to return the correct authorization token for the
client.

[63] The ATLAS is a potentially sensitive service. All of its operations shall be protected by
CORBA Security services and have an access control policy based on its clients’
identities. The reason the ATLAS is a sensitive service is discussed in the following
subsections.

27.12.1 Confidentiality and Privacy

[64] Authorization information may be a privacy concern to some individuals and
organizations. For example, a nemesis discovers an individual to have privileges that
allow that individual access to sensitive data. That discovery may warrant an attack on
that individual to gain access to the sensitive data. Therefore, the ATLAS shall take

October 2001 ATLAS Final Adopted Spec: IllegalTokenRequest Error Codes 27-13

27

care and perform access control when dispensing authorization tokens. Also, where
privilege information is a privacy concern in suspicious networks, the ATLAS should
mandate the use of confidential security services.

[65] The use of the ATLAS must also be considered for privacy concerns. A rogue target
may know the ATLAS locator or its caching identifier. It can then spoof the CSS into
giving up a cached authorization token. The CSS shall trust the target before sending
authorization tokens. A rogue target may also collect authorization tokens by
specifying an ATLAS for the purpose of getting the CSS to perform token translation.
Therefore, the CSS shall trust the target and its located ATLAS before sending
authorization tokens to the ATLAS for translation.

27.12.2 Integrity

[66] To stop spoofing of targets by clients, the TSS shall verify that the authorization tokens
delivered by the client are from the target’s ATLAS. Also, the TSS shall make some
trust determination that the tokens are valid for the particular client that delivered
them.

27.12.3 Availability

[67] Beyond the normal problems of dealing with denial of service attacks, there is one
important concern that a CSS must take into account when trying to locate a target’s
ATLAS. A rogue target may put a URL loop or an exceedingly long URL resolution
chain in its ATLAS locator. A CSS that is not careful may spin indefinitely trying to
locate the ATLAS; and therefore, it may not do anything else. A CSS should impose a
limit on chasing chains of URLs, look for loops, and possibly make a trust
determination on URLs.

[68] Another great concern for the CSS is a recursive need for authorization tokens to
access an ATLAS. In the reference for interoperability the ATLAS is effectively just
another target, which is protected by CORBA security services. An ATLAS’s TSS may
require privileges from another privilege scope. ATLAS’s that require authorization
tokens shall not specify themselves, or one from some mutually recursive set, as the
ATLAS.

27.13 IllegalTokenRequest Error Codes

[69] This section describes the error codes returned in the IllegalTokenRequest code that
are returned from implementations. The exception has the following format:

exception IllegalTokenRequest {
unsigned long the_errnum;
string the_reason;

};

27-14 ATLAS Final Adopted Specification October 2001

27

[70] The field, the_errnum, contains an error code, of which the values are defined in
Table 27-1. An implementation shall use the standard error codes below where
possible, and indicate minor errors with the reason field. For error codes that are not
standard, the code should be placed in the least significant 16 bits of the unsigned long
with the following restrictions.

[71] An error code between 300 and 400 indicates a server error, of which 300 as the
default for server errors. The range 200 to 300 hundred is for errors pertaining to the
client’s invocation on the ATLAS. Codes between 100 and 200 are for other errors.
Specific vendors may use their VMCIDs to indicate their own errors.

Table 27-1 IllegalTokenRequest Error Codes

Error Code Meaning

0100 Generic error

0200 Generic client error

0201 Authorization token is malformed

0202 Identity token is malformed

0300 Generic server error

0301 Authorization token is not granted

0302 Authorization token type is not supported for translation

0303 Authorization token translation failed.

October 2001 ATLAS Final Adopted Spec: IllegalTokenRequest Error Codes 27-15

27

Appendix A References

[1] The Object Management Group, Common Secure Interoperability Version 2
Joint Revised Submission, http://cgi.omg.org/cgi-bin/doc?orbos/00-08-04, 2000

[2] The Object Management Group, CORBA Name Service v1.1,
http://cgi.omg.org/cgi-bin/doc?orbos/99-10-11.pdf, 1999

[3] The Object Management Group, CORBA Time Service, http://cgi.omg.org/cgi-
bin/doc?formal/97-02-22, 1997

[4] The Open Group, Universal Unique Identifier,
http://wwww.opengroup.org/onlinepubs/9629399/adxa.htm, 1997

[5] Yergeau F., UTF-8, a transformational format of Unicode and ISO 10646 , RFC
2044, Alis Technologies, October 1996

27-16 ATLAS Final Adopted Specification October 2001

27

Appendix B Conformance Points

B.1 Conformance of ATLAS Implementations

[72] This Appendix describes the terms of conformance for implementations of ATLAS. All
implementations shall implement all operations of the AuthTokenDispenser
interface.

[73] Implementations may not support the notion of translating authorization tokens.
However, they shall still raise an IllegalTokenRequest exception with the appropriate
error code defined in Section 27.13, “IllegalTokenRequest Error Codes,” on page 27-13
for the “translate_authorization_token” operation of the AuthTokenDispenser
interface.

B.2 Conformance of Standard CORBA Security Implementations

[74] CORBA Security implementations that support pushing authorization tokens shall
support CSS functionality defined in Section 27.6, “Reference Model for CSIv2
Authorization Interoperability,” on page 27-5” when the ATLAS profile is contained as
a privilege authority within the CSS selected security mechanism component in the
target IOR. CORBA Security implementations that support acceptance of authorization
tokens and indicate their privilege authorities in security mechanism components of
their IOR shall have implementation support to indicate an ATLAS profile as a
privilege authority.

September 2001 ATLAS Draft Adopted Spec: Module ATLAS 27-17

27

Appendix C - OMG IDL

C.1 Module ATLAS

// File: ATLAS.idl

#ifndef _ATLAS_IDL_
#define _ATLAS_IDL_

#include <TimeBase.idl>
#include <CosNaming.idl>
#include <CSI.idl>
#include <CSIIOP.idl>

#pragma prefix "omg.org"

module ATLAS {

typedef sequence<TimeBase::UtcT,1> ExpiryTime;

typedef sequence<CSI::IdentityToken,1> IdTokenOption;

struct AuthTokenData {
IdTokenOption ident_token;
CSI::AuthorizationToken auth_token;
ExpiryTime expiry_time;

};

exception IllegalTokenRequest {
unsigned long the_errnum;
string the_reason;

};

exception TokenOkay {};

interface AuthTokenDispenser {

AuthTokenData get_my_authorization_token()
 raises (

IllegalTokenRequest
);

AuthTokenData translate_authorization_token(
in CSI::IdentityToken the_subject,
in CSI::AuthorizationToken the_token

) raises (
IllegalTokenRequest,
TokenOkay

);

September 2001 ATLAS Draft Adopted Spec: Module ATLAS 27-18

27

};

struct CosNamingLocator {
CosNaming::NamingContext name_service;
CosNaming::Name the_name;

};

//
// This type specifies a string encoded in UTF-8 form [IETF RFC 2044].
//
typedef sequence<octet> UTF8String;

typedef CosNaming::NamingContextExt::URLString URLocator;

typedef unsigned long ATLASLocatorType;

const ATLASLocatorType ATLASCosNaming = 1;
const ATLASLocatorType ATLASURL = 2;
const ATLASLocatorType ATLASObject = 3;

union ATLASLocator switch (ATLASLocatorType) {
case ATLASCosNaming: CosNamingLocator naming_locator;
case ATLASURL: URLocator the_url;
case ATLASObject: AuthTokenDispenser the_depenser;

};

typedef sequence<octet> ATLASCacheId;

struct ATLASProfile {
ATLASLocator the_locator;
ATLASCacheId the_cache_id;

};

const CSIIOP::ServiceConfigurationSyntax SCS_ATLAS = 3;

};

#endif // _ATLAS_IDL_

	ATLAS: The Authorization Token Layer Acquisition Service
	27.1 Introduction
	27.2 Relationship to Other OMG Modules
	27.3 Existing Specifications
	27.3.1 Use of Existing Specifications

	27.4 Introduction
	27.5 Specification Scope
	27.6 Reference Model for CSIv2 Authorization Interoperability
	27.7 Reference Model for Spanning Authorization Domains
	27.8 The ATLAS Module
	27.8.1 The ExpiryTime Type
	27.8.2 The IdTokenOption Type
	27.8.3 The AuthTokenData Type
	27.8.4 The AuthTokenDispenser Interface

	27.9 The Target ATLAS Interoperability Profile
	27.10 Locating the Target’s ATLAS
	27.11 The Target ATLAS Interoperability Specification
	27.12 Security Concerns
	27.12.1 Confidentiality and Privacy
	27.12.2 Integrity
	27.12.3 Availability

	27.13 IllegalTokenRequest Error Codes
	A - References
	B - Conformance Points
	C - OMG IDL

