
Audio/Video Stream Specification

New Edition: January 2000
(no text changes since June 1998)

Copyright 2000, IONA Technologies, Plc
Copyright 2000, Lucent Technologies, Inc.
Copyright 2000, Siemens-Nixdorf, AG

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
1-1

1-1

-1

1-2

1-2

2-1

2-3
-3

-6

-9

-12

12
-14

16
20

23

-25

-31
-31

-33
1. Overview .

1.1 About the Object Management Group

1.1.1 What is CORBA? . 1

1.2 Associated Documents .

1.3 Acknowledgments .

2. Control and Management of Audio/Video Streams 2-1

2.1 Introduction .

2.2 Architecture Overview .
2.2.1 Principal Components 2

2.2.2 (Virtual) Multimedia Device Interface 2-5
2.2.3 StreamCtrl Interface . 2

2.2.4 StreamEndPoint Interface 2-7
2.2.5 Flow Endpoints, Flow Connections, and FDevs 2

2.2.6 Properties of Streams . 2

2.2.7 Quality of Service . 2-
2.2.8 Stream Specification . 2

2.2.9 Flow Protocol . 2-
2.2.10 Examples for point-to-point streams 2-

2.2.11 Issues in Modifying QoS 2-
2.2.12 Issues in Multipoint Streams 2-23

2.2.13 Extending Stream Management Functionality . 2-25
2.2.14 Device and Stream Parameters 2

2.3 IDL Interfaces . 2
2.3.1 The Basic_StreamCtrl 2

2.3.2 The StreamCtrl . 2
Audio/Video Streams V1.0 June 1998 i

Contents

44
47

48
52

-54

-55
5

56
-56

-1

-1
2.3.3 The StreamEndpoint . 2-36
2.3.4 The StreamEndPoint_A and StreamEndPoint_B 2-43

2.3.5 The MMDevice . 2-
2.3.6 The VDev . 2-

2.3.7 The FlowEndPoint . 2-
2.3.8 The FlowConnection . 2-

2.3.9 FDev . 2

2.4 Conformance Criteria . 2
2.4.1 Light vs Full Profile . 2-5

2.4.2 Flow Protocol . 2-
2.4.3 Network QoS Parameters 2

Appendix A - Complete OMG IDL A-1

Appendix B - Requirements for Control and Management
of A/V Streams . B

Appendix C - Relationship to DAVIC Work C-1

Appendix D - References . D
ii Audio/Video Streams V1.0 June 1998

Overview 1
rted
 and
nted

ide a
,
ous
p a

ed.

ted,
ey
bject
nd

ing
1.1 About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas

1.1.1 What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them. CORBA 1.1 was introduced in 1991 by O
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.
Audio/Video Streams V1.0 June 1998 1-1

1

ards
o

ed

d,
dards

 (The

mat.
ons,

nd
th
1.2 Associated Documents

The CORBA documentation set includes the following books:

• Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG stand
are based. It defines the umbrella architecture for the OMG standards. It als
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specification contains specifications
for OMG’s Object Services.

• CORBAfacilities: Common Facilities Architecture and Specification describes an
architecture for Common Facilities. Additionally, it includes specifications bas
on this architecture that have been adopted and published by the OMG.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:

OMG Headquarters

492 Old Connecticut Path

Framingham, MA 01701

USA

Tel: +1-508-820 4300

Fax: +1-508-820 4303

pubs@omg.org

http://www.omg.org

1.3 Acknowledgments

This specification represents the hard work and contribution of many individuals a
companies. We would like to acknowledge the following for their contributions, bo
large and small:

• Fore Systems, Inc.

• IONA Technologies, Plc.
1-2 Audio/Video Streams V1.0 June 1998

1

• Lucent Technologies, Inc.

• Siemens-Nixdorf, AG
Audio/Video Streams V1.0 Acknowledgments June 1998 1-3

1

1-4 Audio/Video Streams V1.0 June 1998

Control and Management of
Audio/Video Streams 2
and

ject.
n

e

tream

t 11
The OMG document used to create this formal document was telecom/97-05-07 (
its errata).

Contents

This chapter contains the following sections.

2.1 Introduction

A stream is a set of flows of data between objects, where a flow is a continuous
sequence of frames in a clearly identified direction. A stream interface is an
aggregation of one or more source and sink flow endpoints associated with an ob
Although any type of data could flow between objects, this specification focuses o
applications dealing with audio and video exchange with Quality of Service (QoS)
constraints.

The Control and Management of Audio/Video Streams specification addresses th
following issues: Topologies for streams, multiple flows, stream description and
typing, stream interface identification and reference, stream set-up and release, s
modification, stream termination, multiple protocols, Quality of Service (QoS), flow
synchronization, interoperability, and security. This specification addresses the firs
issues and provides hooks for solutions to the last issue (security).

Section Title Page

“Introduction” 2-1

“Architecture Overview” 2-3

“IDL Interfaces” 2-31

“Conformance Criteria” 2-55
 Audio/Video Streams V1.0 June 1998 2-1

2

wn as

, 2b)
e of

 final

t
.
Note – The term “Stream Control” is used throughout this specification as an
abbreviation for the name of the specification.

The specification uses an architecture based upon Figure 2-1.

Figure 2-1 Example stream architecture

Figure 2-1 shows a stream with a single flow between two stream end-points, one
acting as the source of the data and the other the sink. Each stream end-point, sho
a dotted encapsulation in Figure 2-1, consists of three logical entities:

1. A stream interface control object that provides IDL defined interfaces (as server
for controlling and managing the stream (as well as potentially, outside the scop
this specification, invoking operations as client, 2a, on other server objects).

2. A flow data source or sink object (at least one per stream endpoint) that is the
destination of the data flow (3).

3. A stream adaptor that transmits and receives frames over a network.

The Stream interface control object is shown in Figure 2-1 as using a basic objec
adaptor that transmits and receives control messages in a CORBA-compliant way

Note – This specification does not require any changes to the BOA/POA or IDL
language bindings to accommodate the control of A/V streams.

C o nt ro l a nd
M an ag e m en t

O b jec ts

F lo w d a ta
E nd -p o in t
(S o u rce)

S t re am
I n te rfa c e
C on tro l
O b jec t

d at a
fl ow

3.

B a s ic
O b jec t

A d a p to r

2a . s tre am
c o n tro l

op e ra ti o ns

F lo w d a ta
E nd -p o in t

(S in k)

S t re am
I n te rfa c e
C on tro l
O b jec t

d at a
fl ow

S t re am
A d a p to r

3 .

B a s ic
O b jec t

A d a p to r

2a .s tre am
c o n tro l

op e ra ti o ns

4 . 4 .

O R B C O R E

S t re am
A d a p to r

F l o w

1a .

2 b .
�����������	

1 b.

2 b .
������ �����	

�
�
�
�
�
������	 �����	

S t re am E n d po in t
2-2 Audio/Video Streams V1.0 June 1998

2

daptor
ntrol

cope

nd

used
d in
r

ia

ual

eaker
When a stream is terminated in hardware, the source/sink object and the stream a
may not be visible as distinct entities. Please note that how the stream interface co
object communicates with the source/sink object and perhaps indirectly with the
stream adaptor (interface 4 in Figure 2-1) and how the source/sink object
communicates with the stream adaptor (interface 3 in Figure 2-1) are outside the s
of this specification.

This specification provides definitions of the components that make up a stream a
for interface definitions onto Stream control and management objects (interface
number 1a.), and for interface definitions onto stream interface control objects
(interface number 2b.) associated with individual stream endpoints.

In particular, CORBA interface references for stream interface control objects are
to refer to all stream endpoints in parameters to stream control operations define
this specification. Thus, this specification does not require a new IDL data type fo
stream interface reference.

2.2 Architecture Overview

2.2.1 Principal Components

This specification proposes a set of interfaces which implement a distributed med
streaming framework. The principal components of the framework are:

• Virtual Multimedia Devices and Multimedia device - represented by the
VDev and MMDevice interfaces respectively

• Streams - represented by the StreamCtrl interface

• Stream endpoints - represented by the StreamEndPoint interfaces

• Flows and flow endpoints - represented by FlowConnection and
FlowEndPoint interfaces respectively

• Flow Devices - represented by the FDev interface

A stream represents continuous media transfer, usually between two or more virt
multimedia devices. A stream endpoint terminates a stream.

A simple stream between a microphone device (audio source or producer) and sp
device (audio sink or consumer) is shown in Figure 2-2 on page 2-4.
A/V Streams V1.0 Architecture Overview June 1998 2-3

2

low
n a

ints
ere
, the

may
in
ints
nect
Figure 2-2 A basic stream configuration

A stream may contain multiple flows. Each flow carries data in one direction so a f
endpoint may be either a source (producer) or a sink (consumer). An operation o
stream (for example, stop or start) may be applied to all flows within the stream
simultaneously or just a subset of them.

A stream endpoint may contain multiple flow endpoints. Both flow producer endpo
and flow consumer endpoints may be contained in the same stream endpoint. Th
may be a CORBA object representing each flow endpoint and flow connection (i.e.
flow itself), but not all systems are required to expose IDL interfaces to these flow
objects. Figure 2-3 illustrates a stream which consists of several different flow
connections. Note that not all flow endpoints are involved in the stream (i.e., there
be dangling flow endpoints). Note also that flows can travel in both directions with
the same stream. When two stream endpoints which support separate flow endpo
are bound, a compatibility rule can be used to determine which flow endpoints con
to each other.

Figure 2-3 Stream connection compatibility rules can allow unconnected flow endpoints

�����������
�����������

V D e v

S t rea m E ndp o in t

V D e v

S t rea m E ndP o in t

S tr ea m C tr l

L e ge nd :
B A c on ta ins BA

A B A a sso cia te d w ith B

stream connection (A-C)flow connection

bound stream
endpoint (C)

bound stream
endpoint (A)
2-4 Audio/Video Streams V1.0 June 1998

2

 as a
one

ection
dia

 and
rty

order

o1,

 a
 B

g

, or

d

 are

DL

DL
ms
ns.

r
dia
.

ice

ill
evice
g

 they
A multimedia device abstracts one or more items of multimedia hardware and acts
factory for virtual multimedia devices. A multimedia device can support more than
stream simultaneously. For example, a microphone device streaming audio to two
speaker devices using separate non-multicast connections. For each stream conn
requested, the multimedia device creates a stream endpoint and a virtual multime
device.

The StreamEndPoint interface type has two specializations: 1) StreamEndPoint_A
2) StreamEndPoint_B. This does not imply that the flows always start at the A pa
and flow to the B party, indeed both A and B parties may have a mixture of flow
producers and flow consumers. Stream endpoints are distinguished in this way in
to help the implementation determine the directionality of their contained flow
endpoints. For example, a videophone stream may contain four flows labeled vide
video2, audio1, audio2. When a videophone A party endpoint is created it can
automatically set video1 to be a consumer, video2 to be a producer, and so on.
Similarly, when the videophone B party endpoint is created it can set video1 to be
producer, video2 to be a consumer, and so on. In this way the videophone A and
parties can act like a ‘plug and socket’ with all pins and ports facing in the right
direction, relieving the application programmer from the chore of manually ensurin
that this is the case.

Note – Throughout this document the verb ‘binding’ when applied to a stream, flow
set of multimedia devices is used as meaning stream or flow establishment.

When ‘binding’ is used as a noun, it refers to a stream or flow which is establishe
(i.e., has active transport connections).

The sections below discuss each of the main IDL interfaces in more detail. There
two basic profiles for the streaming service:

• The full profile in which flows endpoints and flow connections have accessible I
interfaces. This profile is optimized for flexibility.

• The light profile in which flows endpoints and flow connections do not expose I
interfaces. The light profile is a subset of the full profile. It is optimized for syste
which need to minimize memory footprint and the number of CORBA invocatio

2.2.2 (Virtual) Multimedia Device Interface

A multimedia device abstracts one or more items of multimedia hardware and is
described by the IDL interface MMDevice . A multimedia device can be connected o
‘bound’ to one or more compatible multimedia devices using a stream. A multime
device potentially can support any number of streams to other multimedia devices
Each stream connection will be supported by creation of a virtual multimedia dev
(VDev) and a stream endpoint (StreamEndPoint) representing the device specific
and network specific aspects of a stream endpoint respectively. Virtual devices w
have configuration parameters associated with them. For example, a microphone d
might be capable of encoding audio data using either µ-law or A-law. The samplin
frequency might also vary. When two virtual devices are connected using a stream
A/V Streams V1.0 Architecture Overview June 1998 2-5

2

hen
does

s.

ing
g

his
 on

vice
n the

ream.

 are
 more
face
must ensure that they are both appropriately configured. For example, if the
microphone device is using A-law encoding and a sampling frequency of 8-kHz, t
it must ensure that the speaker device it is connected to is configured similarly. It
this by calling configuration operations such as:

• set_format("audio1","MIME:audio/basic") , and

• set_dev_params("audio1",myaudioProperties)

on the VDev interface for the speaker device. This procedure occurs when a
StreamCtrl is establishing a stream between two virtual devices. Changes in
configuration can also occur while a stream is flowing between two virtual device
There are some important points to note about this procedure. The VDev negotiation
procedure is initiated in a point-to-point scenario by the streamCtrl first calling
set_peer() on the ‘A-party’ VDev with the ‘B-party’ VDev as a parameter and then
calling set_peer() on the ‘B-party’ VDev with the ‘A-party’ VDev as a parameter. It
will generally be the case that the programmer who implements the VDev (either an
application programmer or a multimedia device vendor) will be responsible for writ
the behavior of the set_peer() call. This behavior should normally consist of checkin
that all flows which originate in this VDev can be understood by the corresponding
flow consumers in the peer VDev. The operations set_format() and
set_dev_params() have been expressly included for this purpose. A variation on t
procedure is also used for multicast streams and is explained in “The StreamCtrl”
page 2-33.

An MMDevice supports operations to set up a stream between two or more peer
MMDevices on the network. For example, to bind two multimedia devices using a
stream the application programmer could call the following operation on the
MMDevice interface:

StreamCtrl bind(in MMDevice peer_device, inout streamQoS the_qos,
out boolean is_met, flowSpec the_spec);

The parameter peer_device specifies the device which should be bound to this de
using the stream. The the_spec parameter is a list which specifies the flows withi
stream which should be initially connected. If the list is empty, then all flows are
connected. This operation will return a reference to the StreamCtrl which the
application programmer can then use to stop, start, or otherwise manipulate the st
This StreamCtrl will be co-located with the MMDevice on which the bind call is
made; therefore, it can be considered a form of first-party stream establishment.

2.2.3 StreamCtrl Interface

The StreamCtrl interface abstracts a continuous media transfer between virtual
devices. It supports operations to bind multimedia devices using a stream. There
also operations to start and stop a stream. If the application programmer requires
complex functionality (for example, rewind) s/he can extend the basic stream inter
to support this.
2-6 Audio/Video Streams V1.0 June 1998

2

edia
 can

epth.
will
ay

am

e

rk

st

g a
an

arty
e
ints

he
rty’

 a
When the application programmer requests a stream between two or more multim
devices s/he can explicitly specify the Quality of Service (QoS) of the stream. QoS
mean different things at different levels. For example, a multimedia device which
supports video will be concerned with QoS parameters like frame-rate and color d
This type of QoS will be referred to as application-level QoS. A stream, however,
be supported by underlying network protocols. The QoS for a network protocol m
include parameters like minimum bandwidth and jitter. This type of QoS will be
referred to as network-level QoS. An application programmer can establish a stre
between two devices by calling the operation bind_devs() on the StreamCtrl
interface:

boolean bind_devs(in MMDevice a_party, in MMDevice b_party,
inout streamQoS the_qos, flowSpec the_spec);

The StreamCtrl object is generally instantiated by the application programmer (se
“Examples for point-to-point streams” on page 2-20). The bind() operation on the
MMDevice interface is simply a shorthand for creating a StreamCtrl and calling
bind_devs() on it. The argument the_qos will generally be an application-level QoS
specification. The appropriate protocols will be chosen by the Media Streaming
Framework and a translation will occur between application level QoS and netwo
level QoS for these protocols. If the MMDevices decide they can accept the
connection, they will each create a StreamEndPoint and a VDev to support the
stream between them.

The Media Streaming Framework supports point-to-multipoint streams. These
allow a single ‘source’ device to be connected to many sink devices via a multica
stream. For example, the application programmer could do something like the
following to set up a video broadcast:

MyStream->bind_devs(cameraDev,nilObject,someQoS,nilFlowSpec)

Using a reference to a nil Object as the b_party parameter has the effect of addin
camera device as a multicast A party. The application programmer can then add
arbitrary number of TVs to the broadcast by calling:

MyStream->bind_devs(nilObject,TVDev,someQoS,nilFlowSpec)

Note that in the point-to-point case, an A party may contain flow sinks and the B p
the corresponding flow sources, but in the multicast case only flow sources may b
present in an A-party and only flow sinks in a B-party. The A and B stream endpo
are therefore symmetrical except for the multicast case.

2.2.4 StreamEndPoint Interface

A stream endpoint logically contains and controls the flow endpoints for each of t
individual flows in a stream. There are two flavors of stream endpoint: 1) an ‘A-pa
and 2) a ‘B-party’ (represented by the interfaces StreamEndPoint_A and
StreamEndPoint_B). An A party can contain producer flow endpoints as well as
consumer flow endpoints, similarly with a B party. The primary reason for making
distinction is so that when an instance of a typed StreamEndPoint is created the
A/V Streams V1.0 Architecture Overview June 1998 2-7

2

e

te
v and

use

al)

int

he
t
flows will be plumbed in the right direction (i.e., an audio consumer FlowEndPoint
in a StreamEndPoint_A will correspond to an audio producer FlowEndPoint in a
StreamEndPoint_B . The choice of which end-point is the A party and which is th
B party is entirely arbitrary. A call to connect() which will establish or ‘bind’ the
stream can be made on either a StreamEndPoint_A or StreamEndPoint_B .

Figure 2-4 Establishing a stream (simplified)

Figure 2-4 illustrates what happens when the bind_devs() operation is called on a
StreamCtrl object.

Step 1: A StreamCtrl object may be created by the application programmer to initia
a stream between two multimedia devices. To establish a stream between aMMDe
bMMDev, a call is made to bind_devs() on the StreamCtrl interface.

Step 2: The StreamCtrl asks aMMDev and bMMDev for a StreamEndPoint and
VDev to support the stream by calling create_A (…,someQoS,…) on one and
create_B (…,someQoS,…) on the other. The former call, for example, will return a
StreamEndPoint_A object which is associated with aVDev. This is the point at
which an MMDevice could decide that it can support no more connections and ref
to create the StreamEndPoint and VDev. A particular MMDevice might be
specialized to only create A-end-points for a type of stream (for example, a
microphone end-point and VDev) or only B-end-points (for example, a speaker end-
point and VDev).

Step 3: This step involves the aVDev calling configuration operations on the bVDev
and vice versa. This is the device configuration phase already discussed in “(Virtu
Multimedia Device Interface” on page 2-5.

Step 4: The actual stream is set up by calling connect() on the A_EndPoint with the
B_EndPoint as a parameter. Stream end-points contain a number of flow end-po
objects. A flow end-point object can be used to either pull information from a
multimedia device and send it over the network or vice versa. In the light profile t
FlowEndPoint objects are co-located with the StreamEndPoint objects and do no
expose IDL interfaces.

aStreamCtrl

aMMDev

A_EndPoint

bMMDev

1) bind_devs(aMMdev,bMMdev,someQoS)

2.1) create_A(...)

2.2) A_EndPoint_ref 2.4) B_EndPoint_ref

2.3) create_B(...)

4) connect(B_EndPoint,
 someQoS)

5) request_connection()

B_EndPoint

aVDev bVDev

3) configure()
2-8 Audio/Video Streams V1.0 June 1998

2

s

n the

le that
n
ates
alog

he

can

way

f the
h

ll as
s

ntrol
d by

 of

on
Step 5: The A_EndPoint may choose to listen on transport addresses for the flow
which terminate on the A side. It will then call request_connection() . Among the
information passed across will be the transport addresses of the listening flows o
A side. The B_EndPoint will connect to the listening flows on the A-side and will
listen on transport addresses for flows which terminate on the B-side. Among the
information passed back by the request_connection() operation will be the transport
addresses of the flows listening on the B side. The final stage is for the A_EndPoint
to connect to the listening flows on the B_EndPoint .

So far, streams have always been shown between multimedia devices. It is possib
a programmer will want to stream data between objects in a distributed applicatio
which have nothing to do with multimedia devices. As an example, streaming upd
of the positions of players in a distributed multi-player game. Where there is no an
of a multimedia device involved, asking the application programmer to specify a
dummy multimedia device class is inappropriate and an unnecessary overhead. T
framework makes it possible to have a stream existing independently of any
multimedia devices. The stream will be established directly between two
StreamEndPoints which have been created by the application programmer. This
be done by making the following call on the StreamCtrl interface:

boolean bind(in StreamEndPoint_A A_party,
in StreamEndPoint_B B_party,
inout streamQoS theQoS,
in flowSpec theFlows)

The bind() call can also be used to set up multipoint streams in exactly the same
as a bind_devs() call.

2.2.5 Flow Endpoints, Flow Connections, and FDevs

Heretofore, this document has described connection setup using the light profile o
Audio/Video Streams specification. The full profile provides IDL interfaces for eac
individual flow (FlowConnection) and its endpoints (FlowEndPoint) allowing a
greater degree of versatility in connection setup. In systems which support the fu
opposed to the light streams profile, individual flow endpoints and flow connection
(which connect flow endpoints) are accessible. This gives greater granularity of co
over stream establishment and manipulation. Indeed, a stream can be establishe
simply setting up a set of FlowConnections and then grouping them under a
StreamCtrl.

A flow endpoint supports an operation is_fep_compatible() . This allows a third
party (usually a FlowConnection) to check whether two flow endpoints are
connectable. A flow endpoint may support a selection of protocols and a selection
encoding/decoding formats. Two flow endpoints are compatible if they share a
common protocol over which they can transport media, and if they share a comm
format for media encoding/decoding (e.g., MPEG). The FDev is exactly analogous to
the MMDevice for streams. A FlowConnection can be used to bind FDevs in
exactly the same manner as a StreamCtrl binds MMDevices . Whereas an
A/V Streams V1.0 Architecture Overview June 1998 2-9

2

h
k
oint
uest
ay

 are

w

the

o try
is a
lity

m
t fit

 the

w

ream

atible

he

ing

re the
the
MMDevice creates a StreamEndPoint and a VDev, an FDev just creates a
FlowEndPoint . The FlowEndPoint combines the functionality of a VDev and a
StreamEndPoint in a single interface but only applies to a single flow.

The algorithm for connecting a set of flow endpoints can then be specialized for
supporting a particular type of stream connection. For example, in Figure 2-3 on
page 2-4 the top dangling flow endpoint in stream endpoint A might be a French
language audio producer, while the next lowest flow endpoint might be the Englis
language audio producer, and the other two might be video provider and talk-bac
audio consumer flow endpoints. Stream endpoint A is compatible with stream endp
C, even though stream endpoint C has no French audio consumer. In a given req
for a stream connection (or connection modification), a subset of flow endpoints m
be selected.

In general, the compatibility rules for connecting two stream endpoints (A and C)
as follows:

• The stream endpoint types for both A and C must specify which flow endpoint
types are included, along with the causality (producer or consumer) of each flo
endpoint.

• When stream connection setup is requested, the client may select a subset of
flow endpoints to be included in the stream connection for a specified stream
endpoint. For each flow endpoint selected in each stream endpoint (default is t
to connect all flow endpoints), the connection provided must determine if there
compatible flow endpoint in the other stream endpoint using the flow compatibi
rules outlined above.

• The two stream endpoints are compatible if they both contain at least one flow
endpoint which is compatible with at least one flow endpoint in the other strea
endpoint. In the case of one-to-many flow endpoint compatibility choices, a bes
algorithm could be used to select one-to-one associations of flow endpoints in
two stream endpoints. Flow endpoints in each stream endpoint, which have no
compatible flow endpoints in the other stream endpoints are called dangling flo
endpoints, and cannot participate in a stream connection involving those two st
endpoints.

• In order to set-up a stream connection there must be at least one pair of comp
flow endpoints in the connected stream endpoints. If this is not so, the stream
connection will fail.

• A stream connection may be modified by requesting additional flow endpoints
(included in the stream endpoint type) be added or dropped from an existing
connection. In such cases, the stream controller attempts to connect the newly
selected flow endpoints with an associated flow endpoint on the other side of t
stream connection.

If a Media Streams implementation supports the full profile of operation, then mak
a bind call on StreamCtrl leads to the execution of the certain behavior for
establishing whether the stream setup is possible. First consider the scenario whe
StreamCtrl has been implemented by a vendor who has supplied the full profile,
StreamEndPoint_A is running on a platform which is supplied with a full profile
implementation and StreamEndPoint_B is from a light profile implementation.
2-10 Audio/Video Streams V1.0 June 1998

2

nt

o

. It

t the
 the

 A
Because the StreamCtrl is a full profile implementation, it will attempt to bind the
stream using the algorithm above. It will begin by querying both StreamEndPoints
to see what flows they support SEP_A->get_property_value ("Flows ") and
SEP_B->get_property_value("Flows") . It will then attempt to iterate through the
flows on A and B by calling an operation get_fep("flowName") for each flow. On
the StreamEndPoint_A (which is full profile) this will return an Object which can be
narrowed to a FlowEndPoint but on the StreamEndPoint_B (light profile) this
operation will raise the exception notSupported with reason "Full profile not
supported." The StreamCtrl will then realize that this StreamEndPoint is a light
profile and will proceed by using the light profile algorithm for stream establishme
(i.e., it calls connect() on StreamEndPoint_A with StreamEndPoint_B as a
parameter). In fact, the connect() operation works just as well from a B endpoint to
an A endpoint as it does from an A to a B.

If, on the other hand, both StreamEndPoints were both full profile, then the
get_fep() operation would succeed on both and the StreamCtrl would build a list of
FlowEndPoints on the A side and on the B side. It will use the algorithm above t
iterate through these lists matching FlowEndPoints on the A side to
FlowEndPoints on the B side. Once it is established that two FlowEndPoints can
be connected, the StreamCtrl creates a FlowConnection to bind them and calls
connect() on the FlowConnection with the two FlowEndPoints as a parameter.
For each pair of matching source/sink FlowEndPoints , the FlowConnection calls
set_peer() on the producer FlowEndPoint with the consumer as a parameter. This
has the same function as calling set_peer() on the VDev. The FlowConnection then
calls go_to_listen() (see Figure 2-5) on the sink which returns a transport address
then calls connect_to_peer() on the source using the transport address as a
parameter. This scenario is depicted in Figure 2-5. This StreamCtrl implementation’s
flow matching algorithm may be designed to be overriden in derived classes so tha
algorithm for matching flow endpoints is suited to a particular scenario. Note that
sink FlowEndPoint can be on either the A side or the B side. The bind call to
StreamCtrl will be given the names of the flows to bind and it will first search the
side for a flow of this name to bind and then the B side.

Figure 2-5 Flow establishment in full profile Media Streaming Framework

1) go_to_listen(…)
returns “TCP=cod.fish.net:2222”

2) “TCP=cod.fish.net:2222”

3) connect_to_peer(“TCP=cod.fish.net:2222”)

FlowConnection

producer FlowEndPointconsumer FlowEndPoint
4) Flow is established
A/V Streams V1.0 Architecture Overview June 1998 2-11

2

an

e
eam
d their

hich

QoS

 There are two important points to note about flows vs streams in the full profile:

• A stream endpoint can be used to group a collection of flow endpoints which c
reside on different nodes. A FlowEndPoint can be added to a StreamEndPoint
by calling add_fep() on a StreamEndPoint .

• A FlowConnection can be used exactly like a StreamCtrl except that it only
controls one flow. A collection of FlowConnections can be set up and
subsequently grouped under a StreamCtrl by calling set_flow_connection() on
the StreamCtrl for each FlowConnection . Operations like stop and start applied
to the StreamCtrl will be applied to all contained FlowConnections .

2.2.6 Properties of Streams

The Media Streaming Framework makes extensive use of properties to describe
devices, streams, flows, and their endpoints. This allows any of these entities to b
queried to establish their status and their compatibility constraints. “Device and Str
Parameters” on page 2-25 outlines some standard properties of stream entities an
associated values.

2.2.7 Quality of Service

The application programmer can use either network level or application-level QoS
parameters to set up a connection. The application level QoS will be translated to
network level QoS internally. The QoS definition is essentially a named list of
properties and their values. IDL for the QoS structures is shown below:

// From Property Service

typedef string PropertyName;

struct Property{
PropertyName property_name;
any property_value;

};

typedef sequence<Property> Properties;

struct QoS{
string QoSType;
Properties QoSParams;

};

typedef sequence<QoS> streamQoS;

The QoSType is a convenience label used to group QoS parameters and identify w
flow they pertain to. Most operations for modifying or binding streams take a
parameter of type streamQoS. This allows the application programmer to specify
on a flow-by-flow basis. For example, consider a stream which has two flows, one
called "video" and one called "audio." When establishing a stream of this type the
2-12 Audio/Video Streams V1.0 June 1998

2

dio).

 is
ters
e
rt the
 “The

" If
ve
. In
application programmer will typically call bind_devs() with a streamQoS parameter
which has two elements (one to specify the QoS for the video and one for the au
For example:

<
{"video_QoS"
<

{"video_framerate" 25}
{"video_colorDepth" 8}

>
}
{"audio_QoS"
<

{"audio_sampleRate" 8000}
{"audio_numChannels" 2}

>
}
>

There are a couple of things to note about this. First, the QoS for a particular flow
indicated using the name of the flow followed by "_QoS." Second, the QoS parame
shown in this example are application level QoS parameters (i.e., they relate to th
performance of the application as opposed to the network QoS needed to transpo
flow). A number of these QoS parameters are standardized in this document (see
A/V Streams Registration Space” on page B-8). It is up to the A/V Streams
implementation to translate the application-level QoS parameters such as
"video_framerate" to suitable network level QoS parameters such as "Bandwidth.
the application programmer prefers, s/he may directly specify the StreamQoS abo
using Network-level QoS parameters instead of application-level QoS parameters
this case, the above example might become something like the following:

<
{"video_QoS"
<

{"ServiceType" 0} // Best effort
{"Bandwidth" 1500000}
{"Bandwidth_Min" 1250000}
{"Delay" 100}
…

>
}
{"audio_QoS"
<

{"ServiceType" 1} // Guaranteed
{"Bandwidth" 8000}
{"Delay" 100}
…

>
}
>

A/V Streams V1.0 Architecture Overview June 1998 2-13

2

nt.
S

le,
ither

 the

ch as

 the
m a

ed by

IDL
 the

one

rent
A set of common network-level QoS parameters are also specified in this docume
There is a reserved QoSType value "Network_QoS," this is used to indicate a Qo
structure which contains only network-level QoS parameters.

Note – Please note the following convention: Where a range of values is acceptab
the desired value should be called "Name" and the acceptable value should be e
"Name_Max" or "Name_Min."

2.2.8 Stream Specification

It is beneficial for a stream service implementation to provide a notation to specify
content of flows and their relative direction within a particular stream type. This
notation, however, is beyond the scope of this specification. A de facto notation su
TINA-C ODL stream template [9], for example, could be used. It is expected that
another RFP will be issued which will cover the area of stream typing notation and
related language mappings for typesafe insertion and extraction of data to and fro
flow.

It should be possible to compile typesafe versions of the interfaces so far discuss
using a streams notation. For example, a stream of type X will always lead to the
generation of a new IDL interface X_StreamCtrl which can only be used to bind X
devices. The compiler would also generate the implementation code for the new
interfaces. Although the notation itself is not within the scope of this specification,
resulting generated IDL interfaces can be standardized. Consider, for example, a
specification for a videophone stream with two flows containing audio and video,
in each direction. Compiling such a stream specification will result in an IDL file
which will contain IDL for specializations of the following interfaces:

• StreamCtrl (videophone_StreamCtrl)

• StreamEndPoint _A and _B (videophone_A, videophone_B)

• VDev (v_videophone)

• MMDevice (videophone)

A Stream notation might typically define a stream as being a composition of diffe
flows. Flows can also be strictly typed, as follows (for a flow type X):

• FlowProducer (X_Producer)

• FlowConsumer (X_Consumer)

• FDev (F_X)

• FlowConnection (X_Connection)

The generated IDL for the videophone definitions might look something like the
following:

#include <MediaStreams.idl>

interface Videophone_StreamCtrl : StreamCtrl{
2-14 Audio/Video Streams V1.0 June 1998

2

sses
led
 class

g to

be
at no
ws"
int.

e
…
boolean bind_videophone_devs(in videophone a_party,

in videophone b_party,
inout streamQoS the_qos,
in flowSpec the_spec)
raises(…);

…
};
etc.

The stream notation compiler will generate the source code for implementation cla
corresponding to these interfaces (see Figure 2-6). In Figure 2-6 the classes labe
‘user’ are generated as a result of the stream specification. By using a videophone
in place of an MMDevice class and a videophone_StreamCtrl class instead of
StreamCtrl , the application programmer can catch gross errors, such as attemptin
connect a videophone to a cd_player at compile time. The StreamCtrl , MMDevice ,
and StreamEndPoint classes all contain the property "Type" which allows them to
queried as to the type of stream they support. A value of empty-string indicates th
typing information is supplied. Each of the interfaces also contains a property "Flo
which contains the names of all the flows in the stream, device, or stream endpo

It is important to bear in mind that the classes StreamCtrl , StreamEndPoint_A , and
StreamEndPoint_B are directly instantiable and can be used for general stream
control and management. The use of specialized subtypes like
videophone_StreamCtrl is merely a convenience for catching errors at compile tim
and making stream programming simpler.

Figure 2-6 Relationships between a subset of objects in the media stream framework

StreamEndPoint

videophone_A videophone_B

videophone_StreamCtrl

StreamCtrl MMDevice

videophone

Key:
IDL
IDL (user)

StreamEndPoint_A StreamEndPoint_B

VDev

v_videophone

Legend:
n B Contains n*B

1:n, n>=0

1:0 or 1
A

B

B inherits
from A

1:1
A/V Streams V1.0 Architecture Overview June 1998 2-15

2

as a
se, it
nts of

e is
nous

ble
re

this
 by

ired

the
e of
 The

y
be

pes,

here
cases

h

r

2.2.9 Flow Protocol

There are a number of ways in which the type of transport used to stream data h
fundamental impact on the solution architecture. To understand why this is the ca
is necessary to realize that there are differences between the transport requireme
a regular ORB and the transport requirements for a multimedia stream. An ORB
requires a reliable transport, which implicitly involves retransmission when a fram
dropped or in error. Unfortunately retransmission can seriously impact an isochro
stream by causing jitter. Furthermore, it can add unnecessary weight to the
transportation of time-critical data if that data is being transmitted on a highly relia
network anyway. It is quite often the case that the timeliness of stream data is mo
important than whether it is completely correct all of the time. As long as the
application is aware that there is a problem, it can deal with it in its own way. With
in mind there are three fundamental types of transport which should be supported
the framework:

• Connection-Oriented transport: This is provided by transports like TCP and requ
where completeness and reliability of data are essential.

• Datagram-oriented transport: This is frequently more efficient and lightweight if
application doesn’t mind losing the occasional datagram and handling a degre
mis-sequencing. UDP is used by many popular Internet streaming applications.
framework must insert sequence numbers into the packets to ensure that mis-
sequencing and packet-loss is detected.

• Unreliable connection-oriented transport: This is the type of service supplied b
ATM AAL5. Messages are delivered in sequence to the endpoint but they can
dropped or contain errors. If there are errors, then this fact is reported to the
application. There is no flow control unless provided by the underlying network
(e.g., ABR).

In addition to the requirements placed on the framework by the various transport ty
there are application level factors which will influence the way that flows are
structured. These include the need for timestamping in some applications. Also, t
may be a need for adding an indication of the source of a media packet. This is in
where a stream endpoint may be receiving from multiple senders on an internet
multicast connection. All this information will need to be transported in band. Suc
information can include:

• Sequence numbers

• Source indicators

• Timestamps

• Synchronization sourceR

Refer to RTP specification [5] for additional information.

There is no single transport protocol which provides all the capabilities needed fo
streamed media. ATM AAL5 is good but it lacks flow control so that a sender can
overrun a receiver. Only RTP provides facilities for transporting the in-band
2-16 Audio/Video Streams V1.0 June 1998

2

a
ore,

ion.

p of
sfer.

rt
ate
d at

 in
This

information above, but RTP is internet-centric and it should not be assumed that
platform must support RTP in order to take advantage of streamed media. Furtherm
none of the transports provide a standard way for transporting IDL typed informat

The only way to accommodate the various needs of multimedia transport over a
multitude of transports is to define a simple specialized protocol which works on to
various transport protocols and provides architecture independent flow content tran
This protocol will be referred to as the Simple Flow Protocol (SFP). There are two
important points to note about SFP:

1. It is not a transport protocol, it is a message-level protocol, like GIOP, and is
layered on top of the underlying transport. It is simple to implement.

2. It is not mandatory for a Media Streaming Framework implementation to suppo
SFP. A flow endpoint which supports SFP can switch it off in order to communic
with a flow endpoint which does not support it. The use of the SFP is negotiate
stream establishment. This is discussed in “The StreamEndPoint_A and
StreamEndPoint_B” on page 2-43. If the stream data is not IDL-typed (i.e., it is
agreed byte layout, for example MPEG) then, by default, SFP will not be used.
allows octetstream flows to be transferred straight to a hardware device on the
network.

The SFP v1.0 protocol messages are specified as:

module flowProtocol{
enum MsgType{

// Messages in the forward direction
Start,
EndofStream,
SimpleFrame,
SequencedFrame,
Frame,
SpecialFrame,
// Messages in the reverse direction
StartReply,
Credit};

struct frameHeader{
char magic_number[4]; // ‘=’, ‘S’, ‘F’, ‘P’
octet flags; // bit 0 = byte order,

 // 1 = fragments, 2-7 always 0
octet message_type;
unsigned long message_size;// Size following this header

};

struct fragment{
char magic_number[4]; // ‘F’, ‘R’, ‘A’, ‘G’
octet flags; // bit 1 = more fragments
unsigned long frag_number; // 0,..,n
unsigned long frag_sz;
unsigned long source_id;// Required for UDP multicast
A/V Streams V1.0 Architecture Overview June 1998 2-17

2

 is, in
 All

es are

ctets.
}; // with multiple sources
struct Start{

char magic_number[4]; // ‘=’, ‘S’, ‘T’, ‘A’
octet major_version;
octet minor_version;
octet flags; // bit 0 = byte order

};

// Acknowledge successful processing of
// Start
struct StartReply{

octet flags; // bit 0 = byte order, 1 = exception
};

// If the message_type in frameHeader is sequencedFrame
// the the frameHeader will be followed by this
// (See also RTP note)
struct sequencedFrame{

unsigned long sequence_num;
};

// If the message_type is Frame then
// the frameHeader is followed by this
// See also RTP note
struct frame{

unsigned long timestamp;
unsigned long synchSource;
sequence<unsigned long> source_ids;
unsigned long sequence_num;

};

struct specialFrame{
frameID context_id;
sequence <octet> context_data;

};

struct credit{
unsigned long cred_num;

};
};

As in GIOP, the SFP uses CDR encoding and obeys the same conventions. That
the frameHeader structure the magic number and flags are in network byte order.
subsequent fields are CDR encoded. All fields in the Start and StartReply messag
also in network byte order.

Note that for a simple frame there is no subsequent header, simply a stream of o
The other message headers: frameHeader, frame , and specialFrame are followed
by a stream of octets.
2-18 Audio/Video Streams V1.0 June 1998

2

-7.

king
 first

send
.
o
of
ince
Normally if a frameHeader has the message_type=SequencedFrame , then it is
followed by a sequencedFrame structure and if it has the message_type=Frame ,
then it is followed by a frame structure. The exception to this rule is when SFP is
running over RTP. In this circumstance, the sequencedFrame and frame structures
are not used since the values for timestamp, synchSource, source_ids, and
sequence_num are embedded directly into the corresponding RTP protocol fields
[5].

The typical structure of an SFP dialog for a point-to-point flow is shown in Figure 2
The dialog begins with a Start message being sent from source to sink. The source
waits for a StartReply message. The message_size field in the frame header
denotes the size of the message (including the headers) if no fragmentation is ta
place. If fragmentation is being used, then message_size indicates the size of the
fragment including headers.

Figure 2-7 Typical SFP dialog

The sink of a flow may send a credit message to the source of the flow to tell it to
more data. The cred_num field will be incremented with each credit message sent
This facility may be used with protocols such as ATM AAL5 or UDP which have n
flow control. “Compatibility of Flow Formats” on page B-6 describes the behavior
SFP in more detail. Note that the SFP dialog is much simpler on a multicast flow s
no messages are sent in the reverse direction.

Start
StartReply

FrameHeader{...
flags = 02 i.e. fragmentation
message_type = frame
message_size = 65,536}
frame{
timestamp = x
…}

Data...

frame

65,536
octets

Fragment{...
flags = 0 ie no more fragments}

Data...

fragment

frames x 9

waits

waits

Credit
More messages

EndofStream

EndofStream
A/V Streams V1.0 Architecture Overview June 1998 2-19

2

2.2.10 Examples for point-to-point streams

The code fragment below illustrates a simple stream binding (see Figure 2-8 on
page 2-22):

// C++

// Declare the local and remote videophone multimedia
// devices
videophone_ptr myPhone = …;
videophone_ptr johnsPhone = …;

//Declare the stream controller
videophone_StreamCtrl_ptr myStream;
// Some code here to initialize the local MMDevice (myPhone)
…
// Bind johnsPhone
…

myStream = myPhone->bind(johnsPhone,
someQoS,
&wasQoSMet,// Was requested QoS honored
nilFlowSpec); // Bind all flows

myStream->start(nilFlowSpec);

cout << "Hit any key to hang up…" << endl;
cin >> buf;

myStream->stop(nilFlowSpec)
myStream->destroy(nilFlowSpec);

The code fragment below illustrates another way of achieving the same effect.

// C++
// Declare the local and remote videophone multimedia
// devices
videophone_ptr myPhone = …;
videophone_ptr johnsPhone = …;

//Declare the stream controller
videophone_StreamCtrl myStream;

// Some code here to initialize the local MMDevice (myPhone)
…
// Bind johnsPhone
…

// Bind the two devices using a stream with a specified QoS
wasQoSMet = myStream.bind_videophone_devs(
2-20 Audio/Video Streams V1.0 June 1998

2

 or
 with

 use

use

a
myPhone,johnsPhone,QoSspec,nilFlowSpec);

myStream.start();

cout << "Hit any key to hang up…" << endl;
cin >> buf;

myStream.stop();
myStream.destroy();

One point of interest in the above fragment is that no explicit code for reading from
writing to the stream is shown. This is because each flow has a thread associated
it which loops around reading from the network and writing to the multimedia
hardware or vice versa. The application programmer, however, is not compelled to
separately threaded FlowEndPoint . You can loop around calling read() or write()
style operations on the FlowEndPoint . These operations can be untyped for
‘octetstream’ flows or typed for non-octetstream flows. Another point to note is the
of the specialized typesafe bind_videophone_devs() call instead of bind_devs() .

The following example shows how StreamEndPoints can be used independently of
MMDevices .

On the client side:

// C++
// Details omitted
// Declare local and remote phones

videophone_B_ptr remote_phone;
videophone_A_ptr local_phone = new videophone_A(…);
videophone_StreamCtrl my_stream_controller;
// Bind the remote_phone
…

my_stream_controller.bind(local_phone,
remote_phone,QoSspec,nilFlowSpec);

my_stream_controller.start(nilFlowSpec);
cout << "Hit return to hang up! " << endl;
cin >> buf;
my_stream_controller.stop(nilFlowSpec);
my_stream_controller->destroy(nilFlowspec);

Using the StreamEndPoint interface directly, a stream can exist independently of
multimedia device. The bind family of calls on the StreamCtrl all work in one of two
ways:

1. In the full version of the Media Streaming Framework , the stream compatibility
rules are used to determine a viable stream setup. For each matching pair of
source/sinks, the StreamCtrl calls go_to_listen() on the sink FlowEndPoint and
connect_to_peer() on the source FlowEndPoint .
A/V Streams V1.0 Architecture Overview June 1998 2-21

2

 to

the

ed
2. In the light version of the Media Streaming Framework the stream is set up by
calling A_end-point->connect(B_Adapter,QoS,flowSpec) . The connect()
operation basically works by setting up a number of communications channels
the peer StreamEndPoint (remote_phone) . This involves:

• Choosing protocols which are supported by the StreamEndPoint_B
• Performing a QoS translation from application level parameters to protocol

specific parameters.

• Optionally create ‘sockets’ and start listening on any flows which terminate in
StreamEndPoint_A .

• Requesting connection of all the flows to StreamEndPoint_B , pass transport
addresses of any sockets that are being listened on.

• The StreamEndPoint_B sets up ‘sockets’ which listen on the appropriate
transport addresses and returns these addresses. At this point, the
StreamEndPoint_B implementation may choose to connect to any listening
sockets on StreamEndPoint_A .

• The StreamEndPoint_A may then choose to connect its remaining unconnect
flows to addresses of listening ‘sockets’ in StreamEndPoint_B and returns.

Figure 2-8 Overview of objects involved in a point-to-point videophone stream

v ideophone_B

F lowE ndPo in t

F lowE ndPo in t

videophon e_Stre amC tr l

videophone _A

F lowE ndPo in t

F lowE ndPo in t

v_videophone
v_videophone
2-22 Audio/Video Streams V1.0 June 1998

2

at
the

plex
or

there
re

y

ght

here
n

ho
 by
2.2.11 Issues in Modifying QoS

One advantage of having a stream abstraction is that the QoS associated with th
stream can be changed over time. One way in which this can happen is through
user directly requesting a quality of service change.

// c++
// Modifying streams
try{

myStream->modifyQoS(newQoS);
}catch(QoSRequestFailed f){

…
}

This is deceptively simple since changing the application level QoS can have com
effects. Any changes to application level QoS must therefore be informed to one
both of the VDevs . When it receives a modify_QoS() request, the StreamCtrl will
assess which flows are involved and what directions those flows go. For example,
are three flows f1, f2, and f3. The f1 flow has direction in (by convention ‘in’ flows a
towards the B party). The f2 and f3 flows have direction out. Since the flow f1
originates in the A party, the StreamCtrl passes the request modify_QoS(…,<f1>) to
the VDev at the A end. It will then pass the request modify_QoS(…,<f2,f3>) to the
VDev at the B end. By default, the VDev will simply pass the modify_QoS() request
on to its associated StreamEndPoint . However, the application programmer who is
subtyping a VDev may typically do the following upon receiving a request to modif
QoS:

• Check that the QoS modification is valid.

• If policy dictates, then stop the stream.

• Send any re-configuration data needed to the peer device. The peer device mi
reject a change in the QoS.

• Call modifyQoS on the appropriate StreamEndPoint_A .

• Restart the stream if necessary.

It should be noted that today’s protocols generally do not support QoS changes. W
a FlowEndPoint does not support QoS modification, the flow may be brought dow
and restarted with a new QoS by the FlowEndPoint object.

2.2.12 Issues in Multipoint Streams

Multicasting is a very important network technology since it will form the basis of
conferencing and broadcasting applications. At the protocol level, multicasting
minimizes the bandwidth and complexity required to send information to multiple
stations on a network. There are two basic programming models for multicast
networking: 1) the internet model and 2) the ATM model.

1. In the internet model, a party who wishes to multicast information finds a free
multicast address and starts sending information on that address. Any party w
wishes to listen ‘tunes in’ to that multicast address. This is the technique used
A/V Streams V1.0 Architecture Overview June 1998 2-23

2

ckets
lying
sed.

dd
ber

r a
an
 and

is is

t
eing
er
the popular MBone applications. If more than one party wishes to broadcast pa
to the address then there is nothing preventing this from happening. The under
transport is UDP and so transmission is unreliable and no flow control is exerci

2. The ATM-style involves setting up a Switched Virtual Circuit (SVC) to a
destination station. The initiator (A party) can then request the local switch to a
parties to that circuit creating a multicast tree with one root (source) and a num
of leaves (sinks). The interface to the StreamCtrl hides these differences in the
underlying programming model from the application programmer.

This section explains how multicast streams are used by the application. Conside
videoserver stream with two flows, audio and video. The code below shows how
application programmer can add a multicasting source (A party) to such a stream
subsequently add two B parties (sinks). It should be noted that in regular internet
multicasting no one party is aware that other parties are listening to a multicast. Th
different in the Media Streaming Framework because each B party is explicitly
added to the list of B parties by the StreamCtrl and is given the appropriate multicas
addresses to listen on. In the example below, all parties are joined prior to start() b
called on the stream. It must be possible, however, to add and remove parties aft
start() has been called.

// C++
// Multicast stream binding
//
vidserver_ptr aVidsrc = …;
vidserver_ptr vidsink1, vidsink2;
…
// Declare the stream controller
vidserver_StreamCtrl_ptr myVid = …;

// Bind aVidsrc, vidsink1 and vidsink2
…
// Add the multicast root
myVid->bind_devs(aVidsrc,nilObject,someQoS,nilFlowSpec);

// Add a B party for receiving the a/v data
myVid->bind_devs(nilObject,vidsnk1,someQoS,nilFlowSpec);

// Start the stream
myVid->start(nilFlowSpec);

// Add another B party for receiving the a/v data
myVid->bind_devs(nilObject,vidsnk2,someQoS,nilFlowSpec);

cout << "Hit return to end multicast" << endl;
cin >> buf;
myVid->stop(nilFlowSpec);
myVid->unbind();
2-24 Audio/Video Streams V1.0 June 1998

2

d

ach
e,
ct

e
r. In
tored

is by

priate

ility
 need
tly
2.2.13 Extending Stream Management Functionality

The StreamCtrl interface provides no support for performing operations like rewin
or fast forward on a flow. This kind of behavior depends on the functionality of the
device that is the producer of the flow. In order to facilitate this kind of operation, e
FlowEndPoint may be associated with 0 or 1 media controllers. In the light profil
the application programmer can access a flow’s media controller through an obje
property of the VDev called "FlowNameX_related_mediaCtrl." In the full profile, the
media controller can be accessed through the FlowEndPoint using the object property
"Related_mediaCtrl." In both cases an Object reference is returned. This allows th
application programmer to narrow the reference to the appropriate type of controlle
“Device and Stream Parameters” on page 2-25 a standard controller interface for s
media is provided.

Returning to the application programmer who wants to just rewind, s/he can do th
specifying a media controller for the device as follows:

// IDL
interface rewindable_control{

void rewind();
void stop_rewind();
… etc.

};

The programmer then implements this and associates an instance with the appro
flow endpoint. S/he can also extend the StreamCtrl interface to make include rewind
functionality (see below). The implementation of rewind() will narrow the Object
reference returned by getting a "Related_mediaCtrl" property to a
rewindable_control reference.

//IDL
interface myStreamCtrl : StreamCtrl {

void rewind(string flowname);
void stop_rewind(string flowname);

};

2.2.14 Device and Stream Parameters

Stream establishment and management is subject to a large number of potential
parameters for Quality of Service and other attributes. In order to ensure compatib
between different implementations, a standard set of parameters and their values
to be defined. For generic network-level QoS the following parameters are curren
registered (see “The A/V Streams Registration Space” on page B-8):

Network QoS, parameter set 1

• ServiceType - Best Effort, Guaranteed, Predicted

• ErrorFree - True or False

• Delay - long value
A/V Streams V1.0 Architecture Overview June 1998 2-25

2

aping

es
• Delay_Max - long value

• Bandwidth - long value

• Bandwidth_Min - long value

• PeakBandwidth - long value

• PeakBandwidth_Min - long value

• TokenRate - long value

• TokenRate_Min - long value

• TokenBucketSize - long value

• TokenBucketSize_Min - long value

• Jitter - float value

• Jitter_Max - float value

• Cost - float value

• Cost_Max - float value

• Protection - short value, 0= default, no encryption, 1= encryption level 1

This parameter set makes no assumptions about the semantics of policing and sh
policies. This is beyond the scope of this specification.

 Network QoS, parameter set 2

The following optional Network QoS parameter set is defined as an alternative to
parameter set 1:

• Duplication - enum dup {IGNORE, DELETE}

• Damage - enum dam {DAM_IGNORE, DAM_NOTIFY, DAM_DELETE,
DAM_CORRECT}

• Damage_method - Type to be specified

• Reorder - enum reord {REORDER_CORRECT, REORDER_IGNORE}

• Loss - long, {-1 = LOSS_IGNORE, -2 = LOSS_NOTIFY}, positive integer denot
number of retry attempts before the receiver is presumed dead

• Size_Min - long, min bytes in a data unit

• Size_Max - long, max bytes in a data unit

• Size_avg - long, average number of bytes in a data unit

• Size_avg_span - long, number of subsequent data units sent with an interval
(ival_const)

• Ival_Const - long, {-2 = IVAL_MAX, -1 = IVAL_ANY}, positive integer denotes
constant time interval between transport requests

• Ival_Max - long, the maximum acceptable value if Ival_Const cannot be met
2-26 Audio/Video Streams V1.0 June 1998

2

am

.0

o.

nits

io.

be

ter

ter

QoS.

ee,

m.
m
• Delay - long, {0 = DELAY_VOID, -1 = DELAY_ANY, -2 = DELAY_MIN},
DELAY_MIN denotes best effort with minimal delay, DELAY_ANY = best effort,
low cost. Positive integer denotes delay required.

• Delay_Max - long, indicates maximum acceptable delay

• Delay_Cum - long, indicates acceptable cumulative delay for concatenated stre

• Jitter - long

• Jitter_Max - long

• ErrDamRatio - float, Ratio of damaged data units {0.0 = RATIO_DAM_VOID, -1
= RATIO_DAM_ANY, -2.0 = RATIO_DAM_MIN}, where RATIO_DAM_MIN is a
request for minimal error ratio, RATIO_DAM_ANY is request for less costly rati
A number between 0-1.0 indicates the desired ratio.

• ErrDamRatio_Max - float, maximum acceptable error ratio for damaged data u

• ErrLossRatio - float, ratio of lost data units { 0.0 = RATIO_LOSS_VOID, -1.0 =
RATIO_LOSS_ANY, -2,0 = RATIO_LOSS_MIN}, where RATIO_LOSS_MIN is a
request for minimal error ratio, RATIO_LOSS_ANY is request for less costly rat
A number between 0-1.0 indicates the desired ratio.

• ErrLossRatio_Max - float, maximum acceptable ratio of lost data units

• Workahead_Mode - enum {AHEAD_BLOCKING, AHEAD_NONBLOCKING}

• Workahead_Max - long, the maximum number of data units the producer may
ahead of the consumer

• Playback_Mode - Type to be specified, indicates playback strategy

• Playback_Max - long, The maximum delay introduced by the producer to coun
jitter effects

It is mandatory for an implementation of streams to support Network QoS parame
set 1. It is optional to support Network QoS parameter set 2.

Not all of the Network QoS parameters need to be used to describe network level
For example, in a toll-free environment where only best-effort limits are used the
"Network QoS" QoS structure could use only the properties: ServiceType, ErrorFr
Delay, Bandwidth, and Jitter.

Devices and streams themselves have a number of properties associated with the
These properties can be read by using the Object Property Service interfaces fro
which StreamCtrl, MMDevice, StreamEndPoint, FlowEndPoint,
FlowConnection , and VDev are derived.

 StreamCtrl

The suggested properties for a StreamCtrl are:

• Type - string (empty string implies generic stream type)

• Status - seqflowStatus

• QoS - streamQoS
A/V Streams V1.0 Architecture Overview June 1998 2-27

2

ng a

dia
.

s

ed
• Network_QoS - streamQoS

• Flows - sequence of strings, current flows (named from A side)

• A_parties - sequence of StreamEndPoint_A

• B_parties - sequence of StreamEndPoint_B

• flowConnections - sequence of FlowConnection

 MMDevice

 Some suggested properties for MMDevices are:

• Flows - sequence of flow names supported

• FlowNameX_dir - string, directionality indicators

• FlowNameX_availableFormats - sequence of <format_name> strings

• FlowNameX_SFPStatus - sfp status structure

• FlowNameX_PublicKey - sequence of octets

• MaxStreams - long, maximum of streams supported

• CurrentLoad - float (a percentage) indicates load on physical device

The flowNameX_availableFormats property lists all the possible coders/decoders
supported by the device which is associated with that flow. This is designated usi
<format_name> which takes the following form:

<format_name> ::= <format_category> [":" <fname>]
 <format_category> ::= "MIME" | "IDL" | "UNS"

The MIME format category is managed by the IETF [7] and is known there as Me
Type. It is referred to here by its older, more familiar name of MIME Content-Type
Valid values for <fname> when the <format_category> is MIME are listed in the
registration section (see “The A/V Streams Registration Space” on page B-8). The
<format_category> IDL is used to describe IDL-typed flows. The <fname> will be
the full IDL of the flow element. The <format_category> "UNS" indicates
unspecified and is not followed by <fname> information. Further
<format_category> values can be registered with the OMG (see “The A/V Stream
Registration Space” on page B-8).

The property "FlowNameX_dir" states the possible directions for this flow support
by the device (i.e., in, out, or inout).

 FDev

The properties for the FDev interface are very similar to those for MMDevice :

• Flow - string, name of flow supported

• Dir - string, indicates directionality

• AvailableFormats - sequence <format_name> strings
2-28 Audio/Video Streams V1.0 June 1998

2

s a

 at

ent
rs for
n
• SFPStatus - SFP status structure

• PublicKey - sequence of octets

• MaxFlows - long, Maximum number of flows supported

• CurrentLoad - float (a percentage) indicates load on physical device

Properties are especially important on the VDev interface. This is because during the
configuration phase the devices may need to query each other’s current settings.

 VDev

The properties supported by VDev are:

• Related_StreamEndPoint

• Related_MMDevice

• Flows - sequence of string

• FlowNameX_dir - string, directionality indicators

• FlowNameX_availableFormats - sequence of <format> strings

• FlowNameX_currFormat - <format> string

• FlowNameX_devParams - Properties

• FlowNameX_SFPStatus - sfp status structure (only where SFP is in use)

• FlowNameX_status - flow status structures

• FlowNameX_related_mediaCtrl - Object

• FlowNameX_PublicKey - sequence of octets

The flowNameX_availableFormats property states which formats this VDev can
support (e.g., MPEG, MJPEG, etc.). The flowNameX_currFormat property states
which of these is currently in use. The flowNameX_related_mediaCtrl property hold
reference to a media controller for a flow. These media controllers can be used to
implement functionality like rewind and fast forward and can support any interface
all. “The FlowEndPoint” on page 2-48 supplies a useful standard media control
interface; whereas, Appendix C illustrates how DAVIC’s DSM-CC UU commands
could be used to perform media control.

The flowNameX_devParams property states the settings associated with the curr
codec or device. This document describes the following common device paramete
audio, video and other devices (see also “The A/V Streams Registration Space” o
page B-8):

• language - string, from the set
{…,"English(UK)","English(US)",…,"Irish",…}

• audio_sampleSize - short, number of bits per sample

• audio_sampleRate - long, Hertz

• audio_numChannels - short
A/V Streams V1.0 Architecture Overview June 1998 2-29

2

in

rmat
e
n
• audio_quantization - short , 0 = linear, 1 = u-law, 2 = A-law, 3 = GSM

• video_framerate - long

• video_colorDepth - short (e.g., 2, 4, 8, 12, 16, 24, 32)

• video_colorModel - short 0 = RGB, 1 = CMY, 2 = HSV, 3 = YIQ, 4 = HLS

• video_resolution - struct resolution

Further properties can be exposed through a registration process described later
Appendix A.

 StreamEndPoint

The properties exposed by a StreamEndPoint are:

• Related_VDev

• Related_StreamCtrl

• Negotiator - A negotiator object ref.

• Flows - sequence of flow names supported

• FlowNameX_dir - string, directionality indicators

• FlowNameX_currFormat - string, <format> string

• FlowNameX_address - string indicates protocol and address

• FlowNameX_status - stopped, started, destroyed

• FlowNameX_flowProtocol - string (<flowProtocol>)

• FlowNameX_PublicKey - sequence octet

• AvailableProtocols - sequence of string (protocol names)

• ProtocolRestriction - sequence of string (protocol names)

• PeerAdapter - StreamEndPoint reference

The AvailableProtocols property states what protocols are available to this
StreamEndPoint . The ProtocolRestriction property lists the restriction currently
placed on what protocols may be used for the purposes of connecting to another
StreamEndPoint .

The flowNameX_address property is formatted according to <transport_address>
syntax described later in this document. For example, it could typically have the fo
"TCP=cod.fish.net:2222". The directionality is expressed from the A-side, so if th
direction of a flow is "in" on a B end-point that means that the flow is originating o
the B side and terminating on the A side.

 FlowEndPoint

The properties exposed by a flow endpoint are:

• FlowName - string
2-30 Audio/Video Streams V1.0 June 1998

2

")

ore
• Format - sequence of <format> string

• CurrFormat - <format> string

• DevParams - property list, describes

• Status - Stopped/started

• FlowProtocol - string (<flow protocol>)

• Active - Boolean

• Dir - enum sink/source (State actual type name)

• flowProtocol - string, flow protocol name in <flowProtocol> syntax (e.g., "SFP1.0

• SFPStatus - SFP status structure

• Related_mediaCtrl - Object, the related media controller

• Address - Formatted string

• AvailableProtocols - protocol spec

• CurrProtocol - <protocolname>

2.3 IDL Interfaces

The purpose of this section is to specify the semantics of each IDL interface in m
detail.

2.3.1 The Basic_StreamCtrl

The first and most important interface is the StreamCtrl interface. The StreamCtrl
interface inherits from Basic_StreamCtrl .

struct SFPStatus{
boolean isFormatted;
boolean isSpecialFormat;
boolean seqNums;
boolean timestamps;
boolean sourceIndicators;

};

interface Basic_StreamCtrl : PropertyService::PropertySet {

// Empty flowSpec => apply operation to all flows
void stop(in flowSpec the_spec) raises (noSuchFlow);
void start(in flowSpec the_spec) raises (noSuchFlow);
void destroy(in flowSpec the_spec) raises (noSuchFlow);

boolean modify_QoS(inout streamQoS new_qos,
in flowSpec the_spec)
raises (noSuchFlow, QoSRequestFailed);
A/V Streams V1.0 IDL Interfaces June 1998 2-31

2

n
e

port

alse

.

// Called by StreamEndPoint when something goes wrong
// with a flow
oneway void push_event(

in streamEvent the_event);

void set_FPStatus(in flowSpec the_spec,
in string fp_name, // Only SFP1.0 currently

// specified
in any fp_settings) // Currently SFP accepts

// SFPStatus structure
raises (noSuchFlow, FPError);

Object get_flow_connection(in string flow_name)
raises (noSuchFlow, notSupported);

void set_flow_connection(in string flow_name,
in Object flow_connection)
raises (noSuchFlow, notSupported);

};

The property service is used to record the properties enumerated in the previous
section. The properties are readonly.

When a point-to-point stream receives a start() operation it does two things:

1. It determines whether there is a related Media Control object for that flow. For
example, it queries the FlowNameX_related_mediaCtrl property on the VDev in the
light profile or queries the Related_mediaCtrl property on the relevant
FlowProducer in the full profile.

2. It then calls start() on the media control object with a relative position of 0. It the
calls start() on the A-party stream endpoint. The A-party end-point could do th
following:

• Calls start() on its incoming flows.

• Calls start() on its peer B-party end-point.

• Calls start() on its outgoing flows.

The start() operation takes a sequence of flow names (called a flowSpec) as a
parameter. If the list is empty, then the operation is applied to all flows. This
convention is used throughout these interfaces. The stop() operation works in exactly
the opposite way to the start() operation. In multipoint streams, only the A-party is
started and stopped, the B-party is always ready to read.

The destroy() operation tears down a stream. This includes tearing down the trans
connections and deleting all MMDevice-created StreamEndPoints and VDevs .

The modify_QoS() operation changes the QoS associated with a stream. The
operation of the modify_QoS() operation has already been discussed in “Issues in
Modifying QoS” on page 2-23. If the resulting QoS was best effort, then it returns f
and the QoS parameter’s out value will indicate the actual modification to the QoS
2-32 Audio/Video Streams V1.0 June 1998

2

rties.

d.

ol
low

he

r
The push_event() operation is used by StreamEndPoints or VDevs to inform the
StreamCtrl of events that are happening on a flow. Events are just typed as prope
The following events are currently defined:

• {"FlowLost" string} where string is the name of the flow lost

• {"FlowReEstablished" string} where string is the name of the flow re-establishe

• {"QoSChanged" string} where the string holds the name of the flow.

The set_FPStatus() operation allows the application programmer to explicitly contr
aspects of flow protocol for all flows in the stream. It is envisaged that setting the f
protocol parameters of a stream will seldom be done explicitly at this level but the
hooks to allow it are there. There will be further discussion of this feature under t
StreamEndPoint interface.

The set_flow_connection() operation will raise a notSupported exception in light
profile implementations. In full profile implementations it will allow the declaration
and installation of a particular FlowConnection object for flow. This is desirable
where an application programmer may want a FlowConnection to have special,
inherited functionality. For example:

interface specialFlowConnection : FlowConnection, MediaControl {};

The application programmer can declare an instance of specialFlowConnection to
handle a particular flow (e.g., a video flow) and then call:

myStreamCtrl->set_flow_connection("video1",myspecialFlowConnection);

2.3.2 The StreamCtrl

The StreamCtrl interface for streams is specified below. Its purpose is to allow fo
point-to-point and point-to-multipoint bindings. The StreamCtrl interface was kept
separate from Basic_StreamCtrl to allow the future possibility of other binding
controllers which inherit from Basic_StreamCtrl. The StreamCtrl IDL follows:

interface StreamCtrl : Basic_StreamCtrl {

boolean bind_devs(in MMDevice a_party, in MMDevice b_party,
inout streamQoS the_qos,
in flowSpec the_flows)
raises (streamOpFailed, noSuchFlow, QoSRequestFailed);

boolean bind(in StreamEndPoint_A a_party,
in StreamEndPoint_B b_party,
inout streamQoS the_qos,
in flowSpec the_flows)
raises (streamOpFailed, noSuchFlow, QoSRequestFailed);

void unbind_party(in StreamEndPoint the_ep,
in flowSpec the_spec)
raises (streamOpFailed, noSuchFlow);
A/V Streams V1.0 IDL Interfaces June 1998 2-33

2

.

nd,
arty

lly

void unbind()
raises (streamOpFailed);

};

interface MCastConfigIf : PropertyService::PropertySet{

boolean set_peer(in Object peer,
inout streamQoS the_qos,
in flowSpec the_spec)
raises (QoSRequestFailed, streamOpFailed);

void configure(in PropertyService::Property a_configuration);

void set_initial_configuration(
in PropertyService::Properties initial);

// Uses <format_name> standardized by OMG and IETF
void set_format(in string flowName, in string format_name)

raises (notSupported);

// Note, some of these device params are standardized by OMG
void set_dev_params(in string flowName,

in PropertyService::Properties new_params)
raises(PropertyService::PropertyException,

streamOpFailed);
};

The basic bind_devs() operation sets up a stream between MMDevices:
streamQoS identifies the desired QoS for the stream. If it is not met, then the
bind_devs() call returns false and the streamQoS parameter is changed to reflect the
actual QoS of the stream. The flowSpec is used to name the subset of flows to bind
If the flowSpec is an empty sequence, then all flows are bound.

The bind_devs() call can be used in the following modes:

• bind_devs(aDev,bDev,someQoS,flowSpec)
Bind two MMDevices, aDev and bDev with a stream

• bind_devs(aDev,nilObject,someQoS,<f1,f2>)
Bind aDev as a multicast source with the flows f1 and f2. If aDev is already bou
then the effect is to add the flows f1 and f2 to the stream. For example, the A p
will now be multicasting f1 and f2 as well as whatever flows it was multicasting
previously. Any subsequent B parties that join with a nilflowSpec will automatica
have access to these flows, but existing B parties will not.

• bind_devs(nilObject,bDev,-,<f1,f2>)
Bind bDev as a multicast sink with the flows in flowSpec
If bDev is already bound, then add flows from f1 and f2 (i.e., the bDev will now
listen for multicast flows f1 and f2).
2-34 Audio/Video Streams V1.0 June 1998

2

e,
1

d
is

l it

• bind_devs(nilObject,nilObject,someQoS,<f1,f2>)
Add the flows f1 and f2 to all parties in an existing stream. In the multicast cas
this means all existing A parties and B parties will multicast/receive the flows f
and f2.

In multicast streams between VDevs , configuration information is distributed via the
MCastConfigIf interface, shown above. The configuration commands (e.g.,
set_format() , configure()) are sent by A party devices to an MCastConfigIf . The
semantics of the configuration operations on the MCastConfigIf is the same as their
equivalents on the VDev interface except that all configuration calls will be distribute
by the MCastConfigIf to B parties connected to the stream. How this information
distributed to the B parties is not stipulated in this specification. It is possible (if
multicast messaging is not available) for the MCastConfigIf object to make
configuration calls on each of the B parties in turn.

Calls to configure() use parameters of type Property , for example:

{
"video_interlace"
True
}

When a B party joins it should receive some initial configuration information to tel
how the A party device is configured. The A party can set this initial configuration
information through the set_initial_configuration() operation on MCastConfigIf .

The bind() operation is the equivalent of the bind_devs() operation for
StreamEndPoints . Its modes of operation work in just the same way.

The unbind() operation is used to unbind parties from a stream or unbind flows. A
sample of the different modes used are as follows:

• unbind(aSEP,nilFlowSpec)
Unbind the StreamEndPoint aSEP

• unbind(aSEP,<f1,f2>)
Unbind only the flows f1 and f2 from sSEP

• unbind(nilObject,<f1,f2>)
Unbind flows f1 and f2 from all stream endpoints

• unbind(nilObject,nilflowSpec)
Unbind the stream. Equivalent to calling unbind() which is equivalent to calling
destroy() .

A stream notation compiler will generate specialized StreamCtrl interfaces which
inherit from StreamCtrl . Consider the example definition previously given for the
videophone stream. This would lead to the following code being generated for a
specialized StreamCtrl :

Videophone_StreamCtrl : StreamCtrl{

boolean bind_videophone_devs(in videophone a_party,
A/V Streams V1.0 IDL Interfaces June 1998 2-35

2

in videophone b_party,
inout streamQoS the_qos,
in flowSpec the_flows)
raises (streamOpFailed, noSuchFlow, QoSRequestFailed);

boolean bind_videophone(in videophone_A a_party,
in videophone_B b_party,
inout streamQoS the_qos,
in flowSpec the_flows)
raises (streamOpFailed, noSuchFlow, QoSRequestFailed);

boolean bind_videophone_A_party(in videophone_A a_party,
inout streamQoS the_qos,
in flowSpec the_flows)
raises (streamOpFailed, noSuchFlow, QoSRequestFailed);

boolean bind_videophone_B_party(in videophone_B b_party,
inout streamQoS the_qos,
in flowSpec the_flows)
raises (streamOpFailed, noSuchFlow, QoSRequestFailed);

};

2.3.3 The StreamEndpoint

The StreamEndPoint is described in IDL as follows:

interface StreamEndPoint : PropertyService::PropertySet{

void stop(in flowSpec the_spec) raises (noSuchFlow);
void start(in flowSpec the_spec) raises (noSuchFlow);
void destroy(in flowSpec the_spec) raises (noSuchFlow);

boolean connect(in StreamEndPoint responder,
inout streamQoS qos_spec,
in flowSpec the_spec)
raises (noSuchFlow, QoSRequestFailed, streamOpFailed);

boolean request_connection(
in StreamEndPoint initiator,
in boolean is_mcast,
inout streamQoS qos,
inout flowSpec the_spec)
raises (streamOpDenied, noSuchFlow,

QoSRequestFailed, FPError);

boolean modify_QoS(inout streamQoS new_qos,
in flowSpec the_flows)
raises (noSuchFlow, QoSRequestFailed);

boolean set_protocol_restriction(in protocolSpec the_pspec);
2-36 Audio/Video Streams V1.0 June 1998

2

void disconnect(in flowSpec the_spec)
raises (noSuchFlow, streamOpFailed);

void set_FPStatus(in flowSpec the_spec,
in string fp_name,
in any fp_settings)
raises (noSuchFlow, FPError);

Object get_fep(in string flow_name)
raises (notSupported, noSuchFlow);

string add_fep(in Object the_fep)
// Can fail for reasons {duplicateFepName, duplicateRef}

raises (notSupported, streamOpFailed);

void remove_fep(in string fep_name)
raises (notSupported, streamOpFailed);

void set_negotiator(in Negotiator new_negotiator);
void set_key(in string flow_name, in key the_key);
void set_source_id(in long source_id);

};

A StreamEndPoint may be associated with a VDev. If this is the case, then the
Related_VDev property holds a reference to the VDev.

The start() and stop() and destroy() operations have already been discussed in
relation to streams. Calling destroy() will have the effect of disconnecting all the
flow transports rather than destroying the StreamEndPoint objects.
A/V Streams V1.0 IDL Interfaces June 1998 2-37

2

 the
ile,

.
rtant
connect() and request_connection()

Figure 2-9 Message Sequence Chart for a connect () operation

The StreamEndPoint interface provides the connect() operation for connecting to a
peer StreamEndPoint object. This operation is normally used in the ‘light’ profile of
stream component and is usually called from an A party to a B party. The ‘full’ prof
where available, will perform stream setup using FlowEndPoint interfaces. The
workings of connect() are illustrated by the message sequence chart in Figure 2-9
The sequence in which an A end-point makes calls to the B end-point is very impo
since this sequence of operations must be followed in order for different
implementations of StreamEndPoint from different vendors to interwork.

// Pseudo-code
boolean StreamEndPoint_A::connect(

in StreamEndPoint_B_ptr remoteStreamEp,
inout streamQoS aQoS,…)

If there is no local negotiator, then
there will be no negotiation

else
tmpAny = remoteStreamEp

->get_property_value("Negotiator");
// extract peerNegotiator from tmpAny
…
myNegotiator->negotiate(peerNegotiator,

aQoS);

A party B party

get_property_value(“Negotiator”)
remote_negotiator

remote_negotiatorlocal_negotiator

negotiate(...)

…Extensive parly!

true (go ahead)

Listen on appropriate
transport addressesreturnConnect to appropriate

transport addresses

request_connection(…,inout requestedQoS,
inout flow_spec);

connect(in target,
inout QoSspec,...)
2-38 Audio/Video Streams V1.0 June 1998

2

t

umer

 for

i.e.,
lee to
Choose protocols based on what the remote end-point can sup-
port. If the QoS is specified at application level then
translate application-level QoS into network level QoS for
those protocols.

Set up listening flows where appropriate

Try{
remoteStreamEp->request_connection(

this,
false // Not multicast
offeredQoSspec,// inout
flow_spec // inout
);

}catch(…){
Take appropriate action

}
Connect to listening flows in the B-party where appropriate
using transport addresses from the flow spec

}

Flow Specification

An important point for interoperability is the format of the flowSpec . This is a crucial
piece of data since it conveys the information needed to set up the transport
connections which carry the flows. The flowSpec data type is a sequence of strings
but each string must be formatted according to strict rules. Before describing the
structure of these strings it is important to establish a basic rule:

The StreamEndPoint which supports the flow consumer endpoint is not
necessarily the StreamEndPoint which listens for the transport connection for tha
flow.

The specification is written in such a way that either the producer end or the cons
end can decide to listen for the transport connection which carries the flow. The
structure of the flowSpec will indicate to the peer StreamEndPoint whether the A-
party is already listening for a flow or whether it expects its B-party peer to listen
the flow.

For the critical request_connection() call, a flowSpec is either a forward flowSpec
or a reverse flowSpec. A forward flowSpec is going from the caller to the callee (
the the_spec parameter going in) and the reverse flow spec is going back from cal
caller (i.e., the_spec parameter’s out value). The syntax is expressed below:

<flowSpec> ::= <flowName> ["\" <forwardFlowSpec> | <reverseFlowSpec>]
<forwardFlowSpec> ::= <direction> ["\" [<format_name>] ["\" <flowProto-
col> "\"

 [<address>] ["\" <address>]]]
A/V Streams V1.0 IDL Interfaces June 1998 2-39

2

e

ng
 not

es of
s
<reverseFlowSpec> ::= [<address> ["\" <flowProtocol>]]

<direction> ::= "in" | "out"
<flowProtocol> ::= <flowProtocolName> ":" <version> [":" <flowProtocolOp-
tions>]
<flowProtocolName> ::= "SFP" | …
<flowProtocolOptions> ::= <OptionTag> ["=" <OptionValue>] [";" <flowPro-
tocolOptions>]
<OptionTag> ::= <AlphaNumericString>
<OptionValue> ::= <AlphaNumericString>
<address> ::= <carrier_protocol> ["=" <networkAddress> ":" <portList>]
<carrierProtocol> ::= "TCP" | "UDP" | "AAL5" | "AAL3-4" | "AAL1" |
"RTP/UDP" | "RTP/AAL5" | "IPX" | …
<portList> ::= <portNumber> [";" <portList>]
<portNumber> ::= <intstring> // > 0
<version> ::= <major_version> "." <minor_version>
<major_version> ::= <intstring>
<minor_version> ::= <intstring>
<format_name> ::= <format_category> [":" <fname>]
<format_category> ::= "MIME" | "IDL" | "UNS"
<intstring> ::= stringified integer

The ellipsis (…) following the productions <flowProtocolName> and
<carrierProtocol> indicate that further values for these can be registered with th
OMG (see “The A/V Streams Registration Space” on page B-8). The currently
recognized values for <OptionTag> are "Credit." The corresponding
<OptionValue> will denote a positive, non-zero integer (e.g., Credit=10).

Example 1

An example of a simple forward flowSpec might be:
< "video1\out\MIME:video/MPEG" >.

This flowSpec tells the B party that the A party wants to establish one flow called
video1 . The flow is ‘out’-bound so it flows from the B party to the A party. The
format of the flow is video/MPEG. The B end-point will process this and might
typically output something like the following:

 <"video1\TCP=cod.fish.net:5678">

This confirms that the flow video1 has been established and a TCP socket is waiti
on transport address cod.fish.net:5678. Note that the sink of the connection does
have to be the party which goes into listen mode for the connection.

Example 2

In this example the forward flowSpec is:
< "audio1\out\\SFP:1.0:Credit=10" >.

That is, the flow audio1 is to be established with the A party as the sink. No MIME
format is given. The SFP v1.0 is to be used and the sink wishes to have 10 fram
credit for flow control. This implies that a protocol such as ATM AAL5, which doe
2-40 Audio/Video Streams V1.0 June 1998

2

 flow

ng the
eiver

or
ing

n for

 A

 is

 and

a
nsport

an

s

ove.

nnel
not use flow control, has been chosen. The credit mechanism gives the sink of the
a simple way to stop itself being overrun by the source. After every 10 frames (or
whenever a timeout occurs), it must send a credit message back to the source usi
SFP source, in turn, stops after every ten frames it has sent and waits for the rec
to acknowledge that it has caught up. The request_connection call may fail with
exceptions that indicate that the B party does not support the formatting protocol
that it cannot use flow control. If successful the reverse flowSpec will look someth
like the following: < "audio1\AAL5=…" > .

Example 3

In this example the forward flowSpec is:
< "audio1\out\\SFP:1.0:Credit=10\AAL5=…" >

This is essentially the same as the above except that the A party is offering to liste
connection establishment. The reverse flowSpec will simply be < "audio1" > .

Example 4

In this example the forward flowSpec is:
<"simdata\out\UNS:user/simdata\SFP:1.0\\UDP=analogue:5432" >

This time the A party is the source of the flow. It has been decided already by the
party that the flow will be carried on UDP. The format name is user defined (i.e.,
unspecified) and indicates to the application that information of type user/simdata
being carried by the flow. The SFP:1.0 field indicates that the flow should use flow
protocol SFPv1.0. No credit is sought because the A party is the source of the flow
only sinks can ask for credit. The address given in this context is the address of
reverse channel. A reverse channel is only needed when a datagram-oriented tra
like UDP is in use. This reverse channel has two purposes:

1. For credit messages to be sent from the sink to the source, the sink will need
address to send the credit datagrams to.

2. It is used at the sink to filter out packets which are not coming from the flow
source. Because UDP is not connection oriented, datagrams from other source
could potentially corrupt the flow unless this is done.

Typically, the return flowSpec might contain a request for credit (e.g.,
< "simdata\UDP=digital:5417\SFP:1.0:Credit=20" >). If, on the other hand, the
reverse flowSpec is < "simdata\UDP=digital:5417" > , then no credit is being
sought.

There is one exceptional circumstance which causes behavior to differ from the ab
If the A party above had left the choice of protocol to the B party (i.e., the forward
flowSpec is: < "simdata\out\UNS:user/simdata\SFP:1.0> and the B party chose
UDP). In this case, the A party will need to supply the B party with a reverse cha
address using another call to request_connection() with the forward flowSpec set
to:

< "simdata\out\UNS:user/simdata\SFP:1.0\\UDP=analogue:5432" >
A/V Streams V1.0 IDL Interfaces June 1998 2-41

2

S
oS

ise

-all to
ect

e can
hich
and
o
y
ty

ing

nto

is

The
ique
. A
The B-party will not commence listening for packets from the A party until it has
received this reverse channel address.

Other Functions Supported by StreamEndPoint

The modify_QoS() operation on this interface refers to modification of transport Qo
rather than application QoS. If the transport supporting a flow does not support Q
modification, then it may tear down the flow and restart it.

The operations get_fep() , add_fep() , and remove_fep() are all implemented in the
full profile specification but are not implemented in the light profile, where they ra
notSupported exceptions with the value "Full profile not supported." The get_fep()
operation returns a named flowEndPoint object. The add_fep() operation adds a
named FlowEndPoint to the StreamEndPoint . The returned string indicates the
name of the flow endpoint that was added. This is discovered through the
StreamEndPoint querying the FlowEndPoint’s "FlowName" property. If this
property does not exist, then a name will be generated by the StreamEndPoint .

The operation set_negotiator() may be used by a stream endpoint to attach a
negotiating object to the stream endpoint. Negotiator objects are used as a catch
implement special user defined behavior during stream setup. This negotiator obj
must be derived from the interface Negotiator, but will be highly specialized to a
particular type of negotiation.

The set_protocol_restriction() operation is used to restrict the set of protocols
which may be used by a stream endpoint when creating a stream. This knowledg
be used, for example, to stop the A party end-point selecting a set of protocols w
aren’t supported by the B party end-point. Suppose that the A end supports TCP
AAL5 and the B end supports AAL5 and UDP. By setting the restriction set in A t
{"AAL5," "UDP"} the AAL5 will be chosen for connection set up since it is the onl
protocol in common with the A sides available set {"TCP," "AAL5"}. Using an emp
list clears the restriction set. Strictly speaking every call to bind_devs() or bind() (in
point-to-point cases) should include the behavior that the StreamCtrl queries one of
the StreamEndPoints for its "AvailableProtocols" property and then calls
set_protocol_restriction() on the other StreamEndPoint before calling
connect() on that StreamEndPoint . In practice most application programmers will
have their system configured on a single network so the protocol restriction check
will be turned off.

The set_source_id() gives the end-point a unique number which can be tagged o
in-band SFP data to identify where it has come from. This can be important in
applications which use multicast UDP. For example, consider the case of a flow
listening on a UDP multicast address. There are two A-parties sending data to th
multicast address. The flow is receiving a sequence of frames but the only way it
knows which A party sent which frame is by examining the source-id of the frame.
StreamCtrl ensures that each new A or B party added to a stream receives a un
source id to allow its frames to be uniquely identified on such a multicast address
VDev will be given this unique source id by the StreamCtrl which can then set its
stream endpoints to carry this identifier, if need be.
2-42 Audio/Video Streams V1.0 June 1998

2

by
in
rs. The
re

.

r
this

n
The set_FPStatus() operation results in flags being set for the flow protocol used
all flows. There are various types of format information which can be transmitted
band using SFP, these are: sequence numbers, timestamps, and source indicato
sequence numbers are always sent for a UDP-based flow. The sourceIndicators a
taken from the source_id() (see previous operation). This information can be
conveyed by specifying fp_name as "SFP1.0" and fp_settings as a struct SFPStatus

The set_key() operation can serve two functions. If public key encryption is being
used, then this operation can be called by the StreamCtrl to set a shared secret key fo
the encryption of a flow in the stream. If public key encryption is being used, then
call is made by the VDev and informs the local StreamEndPoint of the public key of
the peer StreamEndPoint (it is assumed that the local private key is known to the
StreamEndPoint , this is considered an implementation detail). The public keys ca
be exchanged by VDevs during the configuration phase when set_peer() has been
called. The VDev supports a standardized property, FlowNameX_PublicKey.

2.3.4 The StreamEndPoint_A and StreamEndPoint_B

The StreamEndPoint_A and StreamEndPoint_B classes are derived from
StreamEndPoint . The StreamEndPoint_A interface is shown below:

interface StreamEndPoint_A : StreamEndPoint{

boolean multiconnect(inout streamQoS the_qos,
inout flowSpec the_spec)
raises (noSuchFlow, QoSRequestFailed, streamOpFailed);

boolean connect_leaf(in StreamEndPoint_B the_ep,
inout streamQoS the_qos,
in flowSpec the_flows)
raises (streamOpFailed, noSuchFlow,
QoSRequestFailed, notSupported);

void disconnect_leaf(in StreamEndPoint_B the_ep,
in flowSpec theSpec)
raises(streamOpFailed, noSuchFlow);

};

interface StreamEndPoint_B : StreamEndPoint {

boolean multiconnect(inout streamQoS the_qos,
inout flowSpec the_spec)
raises (streamOpFailed, noSuchFlow,

QoSRequestFailed, FPError);
};
A/V Streams V1.0 IDL Interfaces June 1998 2-43

2

ion is

r

 to

ts of
Multicasting Operations

The StreamEndPoint A and B interfaces support multicast operations such as
multiconnect() , connect_leaf() . The multiconnect() operation is used with
Internet-style multicast and connect_leaf() is used with ATM-style multicast. The
sequence of events when an application programmer sets up a multicast connect
as follows:

1. The programmer calls StreamCtrl->bind_devs(Adev,nil,…) .

• The StreamCtrl calls A_SEP = Adev->create_A(…,out AVDev,…).

• It then creates mc , an instance of MCastConfigIf and calls AVDev-
>setMCastPeer(mc,…) .

2. When the application programmer calls StreamCtrl->bind_devs(nil,Bdev,…) ,
the StreamCtrl calls B_SEP = Bdev->create_B(…,out BVDev,…) , it then
calls mc->setPeer(BVDev,…) followed by A_SEP->connect_leaf(B_SEP,…)
• If this completes successfully, then B_SEP is bound to a multicast tree with

A_SEP being the root.

• If connect_leaf() returns an exception of type notSupported with reason
"noMCastTreeSupported," then it retries but using multiconnect() instead.

The multiconnect() call returns a flowSpec with internet multicasting addresses fo
each of the flows. StreamCtrl calls multiconnect() on B_SEP using this flowSpec.

The StreamEndPoint::disconnect() and disconnect_leaf() operations are used to
respectively tear down connection (internet multicast A party or any B party) and
remove a leaf from a multicast tree.

Specializations of StreamEndPoint A and B

The stream notation compiler will generate specialized interfaces for the endpoin
streams. For the videophone example these would be:

interface Videophone_A : StreamEndPoint_A {
};

Similarly for videophone_B:

interface Videophone_B : StreamEndPoint_B {
};

2.3.5 The MMDevice

The interface for MMDevice is:

interface MMDevice : PropertyService::PropertySet {
StreamEndPoint_A create_A(

in StreamCtrl the_requester,
out VDev the_vdev,
inout streamQoS the_qos,
2-44 Audio/Video Streams V1.0 June 1998

2

nout

ing an
al
 not
out boolean met_qos,
inout string named_vdev,
in flowSpec the_spec)
raises(streamOpFailed, streamOpDenied, notSupported,

QoSRequestFailed, noSuchFlow);

StreamEndPoint_B create_B(
in StreamCtrl the_requester,
out VDev the_vdev,
inout streamQoS the_qos,
out boolean met_qos,
inout string named_vdev,
in flowSpec the_spec)
raises(streamOpFailed, streamOpDenied, notSupported,

QoSRequestFailed, noSuchFlow);

StreamCtrl bind(in MMDevice peer_device,
inout streamQoS the_qos,
out boolean is_met,
in flowSpec the_spec)
raises (streamOpFailed, noSuchFlow, QoSRequestFailed);

StreamCtrl bind_mcast(in MMDevice first_peer,
inout streamQoS the_qos,
out boolean is_met,
in flowSpec the_spec)
raises (streamOpFailed, noSuchFlow, QoSRequestFailed);

void destroy(in StreamEndPoint the_ep, in string vdev_name)
// ie VDev not found
raises (notSupported);

string add_fdev(in Object the_fdev)
raises(notSupported, streamOpFailed);

Object get_fdev(in string flow_name)
raises(notSupported, noSuchFlow);

void remove_fdev(in string flow_name)
raises (notSupported, noSuchFlow);

};

The create_A() and create_B() operations return references to (A and B)
StreamEndPoint objects each of which have an associated VDev object passed back
in the out parameter the_vdev . The namedDev parameter allows the caller to specify
a particular subsystem in the logical device (for example, "camera1"). This is an i
value so it can also be used by the MMDevice to tell the streamCtrl what the logical
name of the endpoint is. This can later be used to expedite the process of destroy
endpoint. The met_qos parameter indicates whether the QoS of the returned virtu
device meets the criteria specified in the ongoing QoS parameter. If the QoS was
met, then the actual QoS will be given on the out value of the_qos parameter. The
A/V Streams V1.0 IDL Interfaces June 1998 2-45

2

r a
ce
son

sa.
orts

f

n a

the
exception streamOpFailed can be raised as a result of badly formed parameters o
system failure. The streamOpDenied exception can be used to indicate that the devi
is overloaded and cannot take any more connections. If this is the case, then rea
"Device overload" should be used. The notSupported exception is thrown to indicate
that, if an A endpoint was requested only B endpoints are supported and vice ver
The reason will be given as "Device supports only A endpoints" or "Device supp
only B endpoints."

The bind() operation creates a stream for binding one MMDevice to another. Calling
bind_mcast() creates a multicast binding and adds the first MMDevice sink to the
multicast stream.

The destroy() operation will remove a StreamEndPoint and its associated VDev.
The destroy() operation can either use a StreamEndPoint reference or the string
that was returned by the named_vdev parameter in the create_A or create_B
operations.

In full profile implementations, an MMDevice can act as a container for a number o
FDevs . In such cases, create_A() and create_B() will normally result in calls to the
contained FDevs which will return FlowEndPoints . A StreamEndPoint will be
created and the FlowEndPoints will be added to it by calls to add_fep() . Generally,
no VDev will be created because the FlowEndPoints individually contain functions
like set_peer() . To fill the MMDevice container with FDevs calls can be made to
add_fdev() . Each FDev has a name (in its properties) and this is what is returned i
string. If the FDev has no name, then one is assigned by the MMDevice . This is
analogous to add_fep() on StreamEndPoint . The get_fdev() operation returns a
named FDev, while remove_fdev() removes an FDev from the MMDevice . All of
these operations raise the exception notSupported with reason "Full profile not
supported" in light profile implementations.

The stream notation compiler will generate the following specialized interface for
videophone example:

interface Videophone : MMDevice{

Videophone_A create_videophone_A(
in StreamCtrl the_ctrl,
out v_Videophone the_vdev,
inout streamQoS the_qos,
out boolean met_qos,
inout string named_vdev,
in flowSpec the_spec)
raises(streamOpDenied, streamOpFailed, notSupported,

QoSRequestFailed, noSuchFlow);

Videophone_B create_videophone_B(
in StreamCtrl the_ctrl,
out v_Videophone the_vdev,
inout streamQoS the_qos,
out boolean met_qos,
inout string named_vdev,
2-46 Audio/Video Streams V1.0 June 1998

2

ers
er’s
in flowSpec the_spec)
raises(streamOpDenied, streamOpFailed, notSupported,

QoSRequestFailed, noSuchFlow);

Videophone_StreamCtrl videophone_bind(
in videophone peer_device,
inout streamQoS the_qos,
out boolean is_met,
in flowSpec the_spec)
raises (streamOpDenied, streamOpFailed, notSupported);

Videophone_StreamCtrl videophone_bind_mcast(
in videophone first_peer,
inout streamQoS the_qos,
out boolean is_met,
in flowSpec the_spec)
raises (streamOpDenied, streamOpFailed, notSupported);

};

2.3.6 The VDev

The VDev abstracts the idea of a multimedia device which can be linked up to pe
across a network. This is the interface which requires most effort on the programm
part since the behavior of every device will differ. The IDL for VDev follows:

interface VDev : PropertyService::PropertySet{

boolean set_peer(
in StreamCtrl the_ctrl,
in VDev the_peer_dev,
inout streamQoS the_qos,
in flowSpec the_spec)
raises (noSuchFlow, QoSRequestFailed, streamOpFailed);

boolean set_Mcast_peer(in StreamCtrl the_ctrl,
in MCastConfigIf a_mcastconfigif,
inout streamQoS the_qos,
in flowSpec the_spec)
raises (noSuchFlow, QoSRequestFailed, streamOpFailed);

void configure(in PropertyService::Property the_config_mesg)
raises(PropertyException, streamOpFailed);

// Uses <formatName> standardized by OMG and IETF
void set_format(in string flowName, in string format_name)

raises (notSupported);

// Note, some of these device params are standardized by OMG
void set_dev_params(in string flowName,

in PropertyService::Properties new_params)
A/V Streams V1.0 IDL Interfaces June 1998 2-47

2

ior
e

 the

tion,

atch-

c

.

e
raises(PropertyException, streamOpFailed);

boolean modify_QoS(inout streamQoS the_qos,
in flowSpec the_spec)
raises (noSuchFlow, QoSRequestFailed);

};

The application developer or multimedia device vendor must implement the behav
for set_peer() and set_Mcast_peer() . The purpose of these operations is to ensur
that all flows originating in this VDev can be understood by the peer VDev. The
programmer is free to implement this operation in any way s/he chooses. Typically
VDev will query the properties of its peer to see what formats it supports for its
various flows. In cases where the Protection parameter is set in the QoS specifica
it can also find out the public key for its peer flows. The configuration of the peer
device will generally consist of calls to set_format() and set_dev_params() on the
peer VDev or MCastConfigIf . Any type of configuration which can’t be achieved
with these calls can be done through setting miscellaneous properties using the c
all configure() calls to the peer device and in the multicast case also calling
set_initial_configuration() . The set_peer() call can also be used to get the publi
key of a peer device. This will be followed by a call to set_key() on the local
StreamEndPoint .

The application programmer is free to reimplement the behavior of modify_QoS()
This has already been discussed in “Issues in Modifying QoS” on page 2-23.

The stream notation compiler generates the following videophone interface which
specializes VDev: interface v_Videophone : VDev{};

2.3.7 The FlowEndPoint

The FlowEndPoint interface is only required to be supported in the full profile. Th
IDL for FlowEndPoint is:

interface FlowEndPoint : PropertyService::PropertySet
{

boolean lock();
void unlock();

void stop();
void start();
void destroy();

// Default is a nil object reference
attribute StreamEndPoint related_sep;
attribute FlowConnection related_flow_connection;

FlowEndPoint get_connected_fep()
raises (notConnected, notSupported);

// syntax of fp_name is <flowProtocol>
2-48 Audio/Video Streams V1.0 June 1998

2

boolean use_flow_protocol(in string fp_name,
in any fp_settings)
raises (FPError, notSupported);

// set_format() initializes ‘format’
// as current media format e.g. MPEG.
void set_format(in string format)

raises (notSupported);

void set_dev_params(
in PropertyService::Properties new_settings)
raises (PropertyException, streamOpFailed);

void set_protocol_restriction(in protocolSpec the_spec)
raises (notSupported);

boolean is_fep_compatible(in FlowEndPoint fep)
 raises (formatMismatch, deviceQosMismatch);

boolean set_peer(
in FlowConnection the_fc,
in FlowEndPoint the_peer_fep,
inout AVStreams::QoS the_qos)
raises (AVStreams::QoSRequestFailed,

AVStreams::streamOpFailed);

boolean set_Mcast_peer(
in FlowConnection the_fc,
in MCastConfigIf a_mcastconfigif,
inout QoS the_qos)
raises (QoSRequestFailed);

};

interface FlowProducer : FlowEndPoint
{

boolean connect_to_peer(inout AVStreams::QoS the_qos,
in string address,
in string use_flow_protocol) // syntax <flowProtocol>
raises(failedToConnect,

AVStreams::FPError, AVSTreams::QoSRequestFailed);

string connect_mcast(inout QoS the_qos, out boolean is_met,
in string address,
in string use_flow_protocol)
raises (failedToConnect, notSupported,
FPError, QoSRequestFailed);

string get_rev_channel(in string pcol_name);

void set_key(in key the_key);
void set_source_id(in long source_id);
A/V Streams V1.0 IDL Interfaces June 1998 2-49

2

en

ections,

l

 then

e call

n
};

interface FlowConsumer : FlowEndPoint
{

string go_to_listen(
inout AVStreams::QoS the_qos,
in boolean is_mcast,
in FlowProducer peer,
inout string flowProtocol // syntax <flowProtocol>

 // The out value contains SFP
 // version supported and

 // all options including
 // "Credit"

raises(failedToListen, AVStreams::FPError,
AVStreams::QoSRequestFailed);

};

The lock() and unlock() operations reserve a FlowEndPoint for use with a particular
flow. This would typically be called as a result of an add_fep() operation on a
StreamEndPoint . Once a FlowEndPoint is locked, it cannot be locked by another
StreamEndPoint until it has been unlocked by the current owner (i.e., the lock() call
will return false). This problem does not arise if FDevs are used to create
FlowEndPoints (which is recommended).

Most of the other operations will be familiar from StreamEndPoint and VDev. The
is_fep_compatible() checks whether this fep supports compatible protocols and
formats to its peer fep.

The connect_to_peer() operation connects a source to sink which has already be
put into listen mode through a call to go_to_listen() . The get_rev_channel() call is
made as a result of a call to go_to_listen() where UDP-like unidirectional protocol
has been chosen and SFP is being used. Since SFP sends messages in both dir
it needs a channel to send backward messages on such as Credit.

The connect_mcast() operation performs connection for multicast flows. A typica
scenario is as follows. A call is made to add_producer() on the FlowConnection .
This will map to a call to connect_mcast() on FlowProducer with an empty string
for the address parameter. This call will return a string with the syntax <address>
(see “Flow Specification” on page 2-39). If the connect_mcast() call returns a string
with a full address (including protocol name, transport address, and port number)
internet-style multicasting is in use. The returned string will contain the multicast
address of the flow. Any subsequent calls to add_consumer() on the
FlowConnection will result in a call to go_to_listen() on the consumer with the
multicast address as a parameter. If, on the other hand, a string was returned by th
to add_producer() which contains only the <carrier_protocol> part of the
<address> syntax, then ATM-style multicast is in use. Subsequent calls to
add_consumer() will use set_protocol_restriction() calls on the consumer with
the name of the returned carrier protocol (e.g., "AAL5"). This will ensure that whe
go_to_listen() is called on the FlowConsumer (with is_mcast set to true) that it
2-50 Audio/Video Streams V1.0 June 1998

2

 of
will be listening on the right protocol. The FlowConnection will then call
connect_mcast() on the FlowProducer with listening address returned by
go_to_listen() .

A suitable stream notation compiler will produce the following interfaces for a flow
type X:

interface X_Producer : FlowProducer
{
};

interface X_Consumer : FlowConsumer
{
};"

The IDL for MediaControl is:

enum PositionOrigin {
AbsolutePosition, RelativePosition, ModuloPosition

};

enum PositionKey {
ByteCount, SampleCount, MediaTime

};

struct Position {
PositionOrigin origin;
PositionKey key;
long value;

};

exception PostionKeyNotSupported { PositionKey key;};
exception InvalidPosition { PositionKey key;};
exception InvalidTransform {};

// MediaControl interface is similar to
// ControlledStream interface in MSS.
// It can be inherited by flow endpoints or
// FlowConnection interfaces.
interface MediaControl{

exception PostionKeyNotSupported { PositionKey key;};

Position get_media_position(
in PositionOrigin an_origin,
in PositionKey a_key)
raises (PostionKeyNotSupported);

void set_media_position(in Position a_position)
raises (PostionKeyNotSupported, InvalidPosition);
A/V Streams V1.0 IDL Interfaces June 1998 2-51

2

y.
void start(in Position a_position)
raises(InvalidPosition);

void pause(in Position a_position)
raises(InvalidPosition);

void resumes(in Position a_position)
raises(InvalidPosition);

void stop(in Position a_position)
raises(InvalidPosition);

};

A MediaCtrl interface can be associated with a VDev (using the
FlowNameX_related_mediaCtrl property) or FlowEndPoint (using the
Related_mediaCtrl property) and it may be multiply inherited by specializations of
FlowConnection or StreamCtrl . For example:

interface myStreamCtrl : StreamCtrl, MediaControl{};

Instances of myStreamCtrl allow standardized control over the stored media repla
The importance of this type of scenario merits the inclusion of this interface as
standard. Appendix C also deals with this subject.

2.3.8 The FlowConnection

This interface is only implemented by the full profile.

interface FlowConnection : PropertyService::PropertySet{
void stop();
void start();
void destroy();

boolean modifyQoS(inout AVStreams::QoS new_qos)
raises (AVStreams::QoSRequestFailed);

boolean use_flow_protocol(
in string fp_name,
in any fp_settings)
raises (FPError, notSupported);

oneway void push_event(in streamEvent the_event);

boolean connect_devs(in FDev a_party, in FDev b_party,
inout QoS the_qos);

boolean connect(
in FlowProducer flow_producer,
in FlowConsumer flow_consumer,
inout QoS theQoS)
raises (formatMismatch, FEPMismatch, alreadyConnected);
2-52 Audio/Video Streams V1.0 June 1998

2

ype
boolean disconnect();
// The notSupported exception is raised where
// flow cannot have multiple producers
boolean add_producer(in FlowProducer flow_producer,

inout QoS theQoS)
raises (alreadyConnected, notSupported);

boolean add_consumer(in FlowConsumer flow_consumer,
inout QoS theQoS)
raises (alreadyConnected);

boolean drop(in FlowEndPoint target)
raises (notConnected);

};

The FlowConnection is the flow-level analog of the StreamCtrl . A full profile
implementation of the StreamCtrl which connects two or more stream endpoints
which use a flow connection for each of the individual flows within a stream.

The following describes the typical sequence of events in using a full profile
StreamCtrl to bind to two full profile stream endpoints:

• User A adds some FEPs to an instance of a full profile implementation of
StreamEndPoint_A (myA) by calling myA->add_fep(aFEP);

• User B adds some FEPs to an instance of a full profile implementation of
StreamEndPoint_B (theirB) .

• User C creates a StreamCtrl and calls

aSC->bind(myA,theirB,someQoS,nilflowSpec)

The bind() algorithm will find which pairs of FlowEndPoints are compatible
between myA and theirB and create a FlowConnection for each pair of
FlowEndPoints . Each flow connection within a stream can be individually
accessed and manipulated.

A suitable stream notation compiler can generate the following code for a flow of t
X:

interface X_Connection : FlowConnection {

boolean connect_X_devs(in F_X a_party, in F_X b_party,
inout QoS the_qos);

boolean connect_X(
in X_Producer flow_producer,
in X_Consumer flow_consumer,
inout QoS theQoS)
raises (formatMismatch, FEPMismatch, alreadyConnected);

// The notSupported exception is raised where
A/V Streams V1.0 IDL Interfaces June 1998 2-53

2

// flow cannot have multiple producers
boolean add_X_producer(in X_Producer flow_producer,

inout QoS theQoS)
raises (alreadyConnected, notSupported);

boolean add_X_consumer(in X_Consumer flow_consumer,
inout QoS theQoS)
raises (alreadyConnected);

};

2.3.9 FDev

The FDev is only used in the full profile. The IDL is given below:

interface FDev : PropertyService::PropertySet {

FlowProducer create_producer(
in FlowConnection the_requester,
inout QoS the_qos,
out boolean met_qos,
inout string named_fdev)
raises(streamOpFailed, streamOpDenied, notSupported,

QoSRequestFailed);

FlowConsumer create_consumer(
in FlowConnection the_requester,
inout QoS the_qos,
out boolean met_qos,
inout string named_fdev)
raises(streamOpFailed, streamOpDenied, notSupported,

QoSRequestFailed);

FlowConnection bind(in FDev peer_device,
inout QoS the_qos,
out boolean is_met)
raises (streamOpFailed, QoSRequestFailed);

FlowConnection bind_mcast(in FDev first_peer,
inout QoS the_qos,
out boolean is_met)
raises (streamOpFailed, QoSRequestFailed);

void destroy(in FlowEndPoint the_ep, in string fdev_name)
// ie FDev not found
raises (notSupported);

};

The FDev is exactly analogous in operation to the MMDevice for streams.

A stream notation compiler could generate the following specialization of FDev for a
flow type X:
2-54 Audio/Video Streams V1.0 June 1998

2

bed

rol.
interface F_X : FDev {

X_Producer create_X_producer(
in X_Connection the_requester,
inout QoS the_qos,
out boolean met_qos,
inout string named_fdev)
raises(streamOpFailed, streamOpDenied, notSupported,

QoSRequestFailed);

X_Consumer create_X_consumer(
in X_FlowConnection the_requester,
inout QoS the_qos,
out boolean met_qos,
inout string named_fdev)
raises(streamOpFailed, streamOpDenied, notSupported,

QoSRequestFailed);

X_Connection X_bind(in F_X peer_device,
inout QoS the_qos,
out boolean is_met)
raises (streamOpFailed, QoSRequestFailed);

X_Connection X_bind_mcast(in F_X first_peer,
inout QoS the_qos,
out boolean is_met)
raises (streamOpFailed QoSRequestFailed);

};

2.4 Conformance Criteria

This section summarizes the various levels of conformance to the specification.

2.4.1 Light vs Full Profile

There are two main levels of specification: "light" and "full." The "light"
implementation must support the following interfaces, as described in the text:

PropertyService::PropertySet, Basic_StreamCtrl, StreamCtrl, Negotiator,
MCastConfigIf, StreamEndPoint, StreamEndPoint_A, StreamEndPoint_B, VDev,
MMDevice.

In addition to these, the full profile must support the following interfaces, as descri
in the text:

FlowConnection, FlowEndPoint, FlowConsumer, FlowProducer, FDev, MediaCont

The following operations in the light profile will raise the notSupported exception
with reason "Full profile not supported."
A/V Streams V1.0 Conformance Criteria June 1998 2-55

2

 is
ption
 is

 The

set 1
• In StreamEndPoint: get_fep(), add_fep(), remove_fep()

• In Basic_StreamCtrl: get_flow_connection(), set_flow_connection()

2.4.2 Flow Protocol

Both light and full profiles may optionally support a flow protocol. SFP version 1.0
specified in this document. A system which does not support SFP causes the exce
FPError with reason "No flow protocol supported." If the version of SFP supported
different from that requested, then it uses reason "<flowProtocol> only supported."
following operations raise the FPError exception:

• In Basic_StreamCtrl: set_FPStatus()

• In StreamEndPoint: set_FPStatus(), request_connection()

• In FlowConnection: use_flow_protocol()

• In FlowEndPoint: use_flow_protocol()

2.4.3 Network QoS Parameters

It is mandatory for a streams implementation to support Network QoS parameter
(as discussed in “Device and Stream Parameters” on page 2-25). It is optional to
support Network QoS parameter set 2.
2-56 Audio/Video Streams V1.0 June 1998

Complete OMG IDL A

A.1 Full IDL

The following is the full IDL for this specification. All IDL compiles using the Orbix
2.2 IDL compiler on NT.

#include "PropertyService.idl"

module AVStreams{

struct QoS{
string QoSType;
PropertyService::Properties QoSParams;

};

typedef sequence<QoS> streamQoS;

typedef sequence<string> flowSpec;

typedef sequence<string> protocolSpec;

typedef sequence<octet> key;

// protocol names registered by OMG.
// e.g., TCP, UDP, AAL5, IPX, RTP

// This structure is defined for SFP1.0
// Subsequent versions of the protocol may
// specify new structures
struct SFPStatus{

boolean isFormatted;
boolean isSpecialFormat;
boolean seqNums;
 Audio/Video Streams V1.0 June 1998 A-1

A

boolean timestamps;
boolean sourceIndicators;

};

enum flowState {stopped, started, dead};

enum dirType {dir_in, dir_out};

struct flowStatus{
string flowName;
dirType directionality;
flowState status;
SFPStatus theFormat;
QoS theQoS;

};

typedef PropertyService::Property streamEvent;
exception notSupported {};
exception PropertyException {};
// An flow protocol related error
exception FPError { string flow_name; };

exception streamOpFailed{
string reason;};

exception streamOpDenied{
string reason;};

exception noSuchFlow{};
exception QoSRequestFailed{

string reason;};

interface Basic_StreamCtrl : PropertyService::PropertySet {

// Empty flowSpec => apply operation to all flows
void stop(in flowSpec the_spec) raises (noSuchFlow);
void start(in flowSpec the_spec) raises (noSuchFlow);
void destroy(in flowSpec the_spec) raises (noSuchFlow);

boolean modify_QoS(inout streamQoS new_qos,
in flowSpec the_spec)
raises (noSuchFlow, QoSRequestFailed);

// Called by StreamEndPoint when something goes wrong
// with a flow
oneway void push_event(

in streamEvent the_event);

void set_FPStatus(in flowSpec the_spec,
in string fp_name, // Only SFP1.0 currently

// specified
in any fp_settings) // Currently SFP accepts

// SFPStatus structure
A-2 Audio/Video Streams V1.0 June 1998

A

raises (noSuchFlow, FPError);

Object get_flow_connection(in string flow_name)
raises (noSuchFlow, notSupported);

void set_flow_connection(in string flow_name,
in Object flow_connection)
raises (noSuchFlow, notSupported);

};

interface Negotiator{
boolean negotiate(in Negotiator remote_negotiator,

in streamQoS qos_spec);
};

interface VDev;
interface MMDevice;
interface StreamEndPoint;
interface StreamEndPoint_A;
interface StreamEndPoint_B;

interface StreamCtrl : Basic_StreamCtrl {

boolean bind_devs(in MMDevice a_party, in MMDevice b_party,
inout streamQoS the_qos,
in flowSpec the_flows)
raises (streamOpFailed, noSuchFlow, QoSRequestFailed);

boolean bind(in StreamEndPoint_A a_party,
in StreamEndPoint_B b_party,
inout streamQoS the_qos,
in flowSpec the_flows)
raises (streamOpFailed, noSuchFlow, QoSRequestFailed);

void unbind_party(in StreamEndPoint the_ep,
in flowSpec the_spec)
raises (streamOpFailed, noSuchFlow);

void unbind()
raises (streamOpFailed);

};

interface MCastConfigIf : PropertyService::PropertySet{

boolean set_peer(
in Object peer,
inout streamQoS the_qos,
in flowSpec the_spec)
raises (QoSRequestFailed, streamOpFailed);

void configure(in PropertyService::Property a_configuration);
A/V Streams V1.0 June 1998 A-3

A

void set_initial_configuration(
in PropertyService::Properties initial);

// Uses <format_name> standardized by OMG and IETF
void set_format(in string flowName, in string format_name)

raises (notSupported);

// Note, some of these device params are standardized by OMG
void set_dev_params(in string flowName,

in PropertyService::Properties new_params)
raises(PropertyService::PropertyException,

streamOpFailed);
};

interface StreamEndPoint : PropertyService::PropertySet{

void stop(in flowSpec the_spec) raises (noSuchFlow);
void start(in flowSpec the_spec) raises (noSuchFlow);
void destroy(in flowSpec the_spec) raises (noSuchFlow);

boolean connect(in StreamEndPoint responder,
inout streamQoS qos_spec,
in flowSpec the_spec)
raises (noSuchFlow, QoSRequestFailed, streamOpFailed);

boolean request_connection(
in StreamEndPoint initiator,
in boolean is_mcast,
inout streamQoS qos,
inout flowSpec the_spec)
raises (streamOpDenied, noSuchFlow,

QoSRequestFailed, FPError);

boolean modify_QoS(inout streamQoS new_qos,
in flowSpec the_flows)
raises (noSuchFlow, QoSRequestFailed);

boolean set_protocol_restriction(in protocolSpec the_pspec);

void disconnect(in flowSpec the_spec)
raises (noSuchFlow, streamOpFailed);

void set_FPStatus(in flowSpec the_spec,
in string fp_name,
in any fp_settings)
raises (noSuchFlow, FPError);

Object get_fep(in string flow_name)
raises (notSupported, noSuchFlow);
A-4 Audio/Video Streams V1.0 June 1998

A

string add_fep(in Object the_fep)
// Can fail for reasons {duplicateFepName, duplicateRef}

raises (notSupported, streamOpFailed);

void remove_fep(in string fep_name)
raises (notSupported, streamOpFailed);

void set_negotiator(in Negotiator new_negotiator);
void set_key(in string flow_name, in key the_key);
void set_source_id(in long source_id);

};

interface StreamEndPoint_A : StreamEndPoint{

boolean multiconnect(inout streamQoS the_qos,
inout flowSpec the_spec)
raises (noSuchFlow, QoSRequestFailed, streamOpFailed);

boolean connect_leaf(in StreamEndPoint_B the_ep,
inout streamQoS the_qos,
in flowSpec the_flows)
raises (streamOpFailed, noSuchFlow,
QoSRequestFailed, notSupported);

void disconnect_leaf(in StreamEndPoint_B the_ep,
in flowSpec theSpec)
raises(streamOpFailed, noSuchFlow);

};

interface StreamEndPoint_B : StreamEndPoint {

boolean multiconnect(inout streamQoS the_qos,
inout flowSpec the_spec)
raises (streamOpFailed, noSuchFlow,

QoSRequestFailed, FPError);
};

interface VDev : PropertyService::PropertySet{

boolean set_peer(
in StreamCtrl the_ctrl,
in VDev the_peer_dev,
inout streamQoS the_qos,
in flowSpec the_spec)
raises (noSuchFlow, QoSRequestFailed, streamOpFailed);

boolean set_Mcast_peer(in StreamCtrl the_ctrl,
in MCastConfigIf a_mcastconfigif,
inout streamQoS the_qos,
in flowSpec the_spec)
raises (noSuchFlow, QoSRequestFailed, streamOpFailed);
A/V Streams V1.0 June 1998 A-5

A

void configure(in PropertyService::Property the_config_mesg)
raises(PropertyException, streamOpFailed);

// Uses <formatName> standardized by OMG and IETF
void set_format(in string flowName, in string format_name)

raises (notSupported);

// Note, some of these device params are standardized by OMG
void set_dev_params(in string flowName,

in PropertyService::Properties new_params)
raises(PropertyException, streamOpFailed);

boolean modify_QoS(inout streamQoS the_qos,
in flowSpec the_spec)
raises (noSuchFlow, QoSRequestFailed);

};

interface MMDevice : PropertyService::PropertySet {
StreamEndPoint_A create_A(

in StreamCtrl the_requester,
out VDev the_vdev,
inout streamQoS the_qos,
out boolean met_qos,
inout string named_vdev,
in flowSpec the_spec)
raises(streamOpFailed, streamOpDenied, notSupported,

QoSRequestFailed, noSuchFlow);

StreamEndPoint_B create_B(
in StreamCtrl the_requester,
out VDev the_vdev,
inout streamQoS the_qos,
out boolean met_qos,
inout string named_vdev,
in flowSpec the_spec)
raises(streamOpFailed, streamOpDenied, notSupported,

QoSRequestFailed, noSuchFlow);

StreamCtrl bind(in MMDevice peer_device,
inout streamQoS the_qos,
out boolean is_met,
in flowSpec the_spec)
raises (streamOpFailed, noSuchFlow, QoSRequestFailed);

StreamCtrl bind_mcast(in MMDevice first_peer,
inout streamQoS the_qos,
out boolean is_met,
in flowSpec the_spec)
raises (streamOpFailed, noSuchFlow, QoSRequestFailed);

void destroy(in StreamEndPoint the_ep, in string vdev_name)
A-6 Audio/Video Streams V1.0 June 1998

A

// ie VDev not found
raises (notSupported);

string add_fdev(in Object the_fdev)
raises(notSupported, streamOpFailed);

Object get_fdev(in string flow_name)
raises(notSupported, noSuchFlow);

void remove_fdev(in string flow_name)
raises (notSupported, noSuchFlow);

};

};

// Additional IDL for full profile
#include "AVStreams.idl"

module AVStreams_Full{

exception protocolNotSupported{};
exception formatNotSupported{};
exception formatMismatch{};
exception FEPMismatch{};
exception alreadyConnected{};
exception invalidSettings{string settings;};
exception notConnected{};
exception deviceQosMismatch{};
exception failedToConnect{string reason;};
exception failedToListen{string reason;};

interface FlowProducer;
interface FlowConsumer;
interface FlowEndPoint;
interface FDev;

interface FlowConnection : PropertyService::PropertySet{
void stop();
void start();
void destroy();

boolean modify_QoS(

inout AVStreams::QoS new_qos)
raises (AVStreams::QoSRequestFailed);

boolean use_flow_protocol(
in string fp_name,
in any fp_settings)
raises (AVStreams::FPError, AVStreams::notSupported);
A/V Streams V1.0 June 1998 A-7

A

oneway void push_event(in AVStreams::streamEvent the_event);

boolean connect_devs(in FDev a_party, in FDev b_party,
inout AVStreams::QoS the_qos)
raises (AVStreams::streamOpFailed,
AVStreams::streamOpDenied,
AVStreams::QoSRequestFailed);

boolean connect(
in FlowProducer flow_producer,
in FlowConsumer flow_consumer,
inout AVStreams::QoS the_qos)
raises (formatMismatch, FEPMismatch, alreadyConnected);

boolean disconnect();

// The notSupported exception is raised where
// flow cannot have multiple producers

boolean add_producer(in FlowProducer flow_producer,
inout AVStreams::QoS the_qos)
raises (alreadyConnected, AVStreams::notSupported);

boolean add_consumer(in FlowConsumer flow_consumer,
inout AVStreams::QoS the_qos)
raises (alreadyConnected);

boolean drop(in FlowEndPoint target)
raises (notConnected);

};

interface FlowEndPoint : PropertyService::PropertySet
{

boolean lock();
void unlock();

void stop();
void start();
void destroy();

// Default is a nil object reference
attribute AVStreams::StreamEndPoint related_sep;
attribute FlowConnection related_flow_connection;

FlowEndPoint get_connected_fep()
raises (notConnected,
AVStreams::notSupported);

// syntax of fp_name is <flowProtocol>
boolean use_flow_protocol(in string fp_name,

in any fp_settings)
raises (AVStreams::FPError, AVStreams::notSupported);
A-8 Audio/Video Streams V1.0 June 1998

A

// set_format() initializes ‘format’
// as current media format e.g. MPEG.
void set_format(in string format)

raises (AVStreams::notSupported);

void set_dev_params(
in PropertyService::Properties new_settings)
raises (PropertyService::PropertyException,
AVStreams::streamOpFailed);

void set_protocol_restriction(in AVStreams::protocolSpec
the_spec)
raises (AVStreams::notSupported);

boolean is_fep_compatible(in FlowEndPoint fep)
 raises (formatMismatch, deviceQosMismatch);

boolean set_peer(
in FlowConnection the_fc,

in FlowEndPoint the_peer_fep,
inout AVStreams::QoS the_qos)
raises (AVStreams::QoSRequestFailed,

AVStreams::streamOpFailed);

boolean set_Mcast_peer(
in FlowConnection the_fc,
in AVStreams::MCastConfigIf a_mcastconfigif,
inout AVStreams::QoS the_qos)
raises (AVStreams::QoSRequestFailed);

};

interface FlowProducer : FlowEndPoint
{

boolean connect_to_peer(inout AVStreams::QoS the_qos,
in string address,

in string use_flow_protocol) // syntax <flowProtocol>
raises(failedToConnect,
AVStreams::FPError, AVStreams::QoSRequestFailed);

string connect_mcast(inout AVStreams::QoS the_qos,
out boolean is_met,
in string address,
in string use_flow_protocol)
raises (failedToConnect,
AVStreams::notSupported,
AVStreams::FPError,
AVStreams::QoSRequestFailed);
A/V Streams V1.0 June 1998 A-9

A

string get_rev_channel(in string pcol_name);

void set_key(in AVStreams::key the_key);
void set_source_id(in long source_id);

};

interface FlowConsumer : FlowEndPoint
{

// Needs to know its peer to choose its protocol correctly
// Also to ask for a reverse channel for credit-based flow
// control, if one is required
string go_to_listen(

inout AVStreams::QoS the_qos,
in boolean is_mcast,
in FlowProducer peer,
inout string flowProtocol)// syntax <flowProtocol>
raises(failedToListen, AVStreams::FPError,
AVStreams::QoSRequestFailed);

};

interface FDev : PropertyService::PropertySet {
FlowProducer create_producer(

in FlowConnection the_requester,
inout AVStreams::QoS the_qos,
out boolean met_qos,
inout string named_fdev)
raises(AVStreams::streamOpFailed,

AVStreams::streamOpDenied,
AVStreams::notSupported,
AVStreams::QoSRequestFailed);

FlowConsumer create_consumer(
in FlowConnection the_requester,
inout AVStreams::QoS the_qos,
out boolean met_qos,
inout string named_fdev)
raises(AVStreams::streamOpFailed,

AVStreams::streamOpDenied,
AVStreams::notSupported,
AVStreams::QoSRequestFailed);

FlowConnection bind(in FDev peer_device,
inout AVStreams::QoS the_qos,
out boolean is_met)
raises (AVStreams::streamOpFailed,
AVStreams::QoSRequestFailed);

FlowConnection bind_mcast(in FDev first_peer,
inout AVStreams::QoS the_qos,
A-10 Audio/Video Streams V1.0 June 1998

A

out boolean is_met)
raises (AVStreams::streamOpFailed,
AVStreams::QoSRequestFailed);

void destroy(in FlowEndPoint the_ep, in string fdev_name)
// ie FDev not found
raises (AVStreams::notSupported);

};

enum PositionOrigin {
AbsolutePosition, RelativePosition, ModuloPosition

};

enum PositionKey {
ByteCount, SampleCount, MediaTime

};

struct Position {
PositionOrigin origin;
PositionKey key;
long value;

};

exception PostionKeyNotSupported { PositionKey key;};
exception InvalidPosition { PositionKey key;};

// MediaControl interface is similar to
// ControlledStream interface in MSS.
// It can be inherited by flow endpoints or
// FlowConnection interfaces.
interface MediaControl{

exception PostionKeyNotSupported { PositionKey key;};

Position get_media_position(
in PositionOrigin an_origin,
in PositionKey a_key)
raises (PostionKeyNotSupported);

void set_media_position(in Position a_position)
raises (PostionKeyNotSupported, InvalidPosition);

void start(in Position a_position)
raises(InvalidPosition);

void pause(in Position a_position)
raises(InvalidPosition);

void resume(in Position a_position)
raises(InvalidPosition);

void stop(in Position a_position)
raises(InvalidPosition);

};
A/V Streams V1.0 June 1998 A-11

A

};
A-12 Audio/Video Streams V1.0 June 1998

Requirements for Control and
Management of A/V Streams B
ment

e

-to-
arty

s
This appendix discusses how the issues raised in the RFP for Control and Manage
of A/V Streams were addressed by the architecture outlined in this document.

B.1 Topologies

The RFP required a solution to allow one-to-one, one-to-many, many-to-one, and
many-to-many sources and sinks to be configured in the same stream binding. Th
architecture presented in this specification addresses point-to-point and point-to-
multipoint configurations which can easily be used as the building blocks of many
many and many-to-one streams. For example, the application developer or third p
supplier could define an interface manyPt_Stream which inherits from
Basic_StreamCtrl and which supports an operation join_party(in MMDevice
newparty) . The programmer may then choose to implement many-to-many stream
using a video-bridge style device, as illustrated in Figure B-1.
 Audio/Video Streams V1.0 June 1998 B-1

B

Figure B-1 Using a mixer device for creating multipoint-to-multipoint streams

When the application programmer calls to stop() on manyPt_streamCtrl this will
result in stop() being called on all constituent streams.

Figure B-2 Using internet multicasting to implement multipoint-to-multipoint streams

S e nde r de v ice s

S tr eam C tr l

S tr eam C tr l

R ec e ive r dev ic e s

M ix er D e v ic e

m an y P t_ str eam C tr l

B a sic_ S tr eam C tr l

N *p o in t- to -p oin t
S tre am s

1 M ult ipo i n t S t ream

sou rce_ id= 1

sou rce_ id= 2

sou rce_ id= 3

S trea m C trl

D e v1

D e v2

D e v3
B-2 Audio/Video Streams V1.0 June 1998

B

even

can

tion

 to
area

e
tains
n

 the

ch as
ther

ated

 has

 to
tion
Using internet multicasting to support many-to-many streams (see Figure B-2) is
easier. The application programmer uses a call to set_FPStatus() to indicate that
source-ids should be used. By configuring the A/V Streams implementation, s/he
ensure that UDP is the default protocol. The programmer subsequently calls:

• bind_devs(Dev1,nilObject,…)

• bind_devs(nilObject,Dev1,…)

• bind_devs(Dev2,nilObject,…)

• bind_devs(nilObject,Dev2,…)

• bind_devs(Dev3,nilObject,…)

• bind_devs(nilObject,Dev3,…)

All StreamEndPoints will receive data from all other stream endpoints. They will
use source-ids to distinguish which frames are from which endpoints. The applica
must then perform its own mixing of the received data similar to other internet
conferencing software.

The important point is that this specification allows multipoint-to-multipoint streams
be built but does not force the use of any one approach. This is a very important
where vendors and third parties can add value.

B.2 Multiple Flows

Multiple flows are an integral part of the solution presented in this specification. A
stream may contain any number of flows and an instruction to stop or start can b
applied to the stream as a whole or any subset of its flows. A stream endpoint con
a FlowEndPoint object for each flow within the stream; however, in the light versio
of the specification FlowEndPoints do not expose their IDL. In the light profile,
flows information is accessed instead via the StreamEndPoint interfaces.

B.3 Stream Description and Typing

It is beneficial for a stream service implementation to provide a notation to specify
content of flows and their relative direction within a particular stream type. This
notation, however, is beyond the scope of this specification. A de facto notation su
TINA-C ODL stream template, for example, could be used. It is expected that ano
RFP will be issued which will cover the area of stream typing notation and the rel
language mappings for typesafe insertion and extraction of data to/from a flow.

Although the notation for typing streams is beyond the scope of this document;
nevertheless, SFP provides for transportation of IDL typed data. This specification
also described a scheme for creating strictly typed versions of the interfaces for
StreamCtrl, MMDevice, VDev, StreamEndPoint_A, StreamEndPoint_B,
FlowConnection, FlowProducer, FlowConsumer, and FDev. This allows typed
streams to be dealt with in a standardized way without dictating the notation used
describe streams or the language mappings for inserting/extracting typed informa
to/from flows.
A/V Streams V1.0 June 1998 B-3

B

e

ring

lation

f

s.

are
tion

ich

ols

the
e
B.4 Stream Interface Identification and Reference

A reference to a stream is simply a reference to a StreamCtrl interface. A reference to
a stream endpoint is a reference to a StreamEndPoint .

B.5 Stream Setup and Release

Stream setup and release are the main focus of this specification. Streams can b
established flexibly using either the MMDevice::bind() operations or the
bind_devs() , bind() family of operations in StreamCtrl . There is also support for
releasing stream connections using unbind(), destroy() , or unbind_party() .
Individual flows may also be setup and released in both the light and full profiles.

B.6 Stream Modification

One of the principal advantages of streams is that they can be modified flexibly du
their lifetime. These modifications include changes to QoS using the modify_QoS()
operations. An appropriate error is thrown whenever a QoS modification fails. It
should be recognized that changes to application level QoS cannot be made in iso
of the VDevs being linked by a stream. A VDev may reject the QoS modification
because it would overload the underlying multimedia device.

All streams can be modified during their lifetime through the addition or removal o
individual flows.

Multipoint streams add the flexibility of being able to add or remove A or B partie

B.7 Stream Termination

The RFP specified that it should be possible to terminate flow-endpoints "in hardw
or software." This can be achieved using the architecture outlined in this specifica
by suitable implementation of the StreamEndPoint or FlowEndPoint . For example,
a StreamEndPoint_A or StreamEndPoint_B derived object which overrides
behaviors in the normal StreamEndPoint_A and StreamEndPoint_B could execute
methods which signal directly to hardware devices on the network. Therefore, the
StreamCtrl need not be aware of which flows are terminated in hardware and wh
are terminated in software.

B.8 Multiple Protocols

The specification was designed with multiple protocols in mind. This allows the
solution to be applied, in principle, to any transport protocol, including ATM protoc
and internet protocols. The specification makes explicit provision for RTP. The
protocols to be used for carrying individual streams will be selected at runtime in
process of establishing a connection. The stream endpoint may be restricted in th
choice of protocol by explicitly setting a protocol restriction
B-4 Audio/Video Streams V1.0 June 1998

B

g
 are

lt
sed
en

by all
(set_protocol_restriction()). This can be used to prevent an A party from choosin
protocols which a B party does not speak. The details of how different transports
abstracted internally to the end-points is an implementation issue.

B.9 Flow Synchronization

Inter-flow synchronization is not tackled within a stream. The position of this
specification is that inter-flow synchronization is more properly an issue to be dea
with by the device endpoints. The SFP includes a timestamp field which can be u
by the VDev implementation at the receiving end to perform synchronization betwe
different flows by reconstructing timing relationships at the source.

B.10 Interoperability

Interoperability in this specification has a number of different aspects:

1. Naming of generated interfaces

2. Compatibility of StreamEndPoint implementations

3. Compatibility of SFP

4. Compatibility of common parameters, properties, and syntaxes

The last point is dealt with in Section 2.2.14, “Device and Stream Parameters,” on
page 2-25 and in the A/V Streams registration space which is presented in
Section 2.2.13, “Extending Stream Management Functionality,” on page 2-25. The
syntaxes for common string parameters such as <flowSpec> are also defined in
Section 2.3, “IDL Interfaces,” on page 2-31.

B.10.1 Naming of Generated Interfaces

These interoperability rules concern the way that a stream notation compiler will
generate IDL interfaces. The rules are relatively simple and should be respected
conforming stream-IDL compilers regardless of the notation which they use to
represent streams.

If a stream interface is named X, then the generated IDL interfaces will be:

• X_StreamCtrl derived from StreamCtrl

• X_A and X_B derived from StreamEndPoint_A and StreamEndPoint_B

• X derived from MMDevice

• v_X derived from VDev

 If a flow type is named Y, then the generated IDL interfaces will be:

• Y_FlowConnection derived from FlowConnection

• Y_Consumer and Y_Producer derived from FlowConsumer and
FlowProducer
A/V Streams V1.0 June 1998 B-5

B

,

o
his

t

t"
d

t is
ides
e
e

e
2-3.
oint-
he

hen
 that
ocol
ected

This
• F_Y derived from FDev

A full description of all the IDL generated for each of these is given in Section 2.3
“IDL Interfaces,” on page 2-31.

B.10.2 Compatibility of StreamEndPoints

It should be possible to set up a stream between two device objects even if the tw
device objects belong to two different implementations of the streaming service. T
requires that implementations offer uniform behavior. This is particularly importan
between StreamEndPoint objects in the "light" profile of the service. In particular,
the connect() call on the "light" StreamEndPoint must follow a particular sequence
of calls to its peer StreamEndPoint . This sequence of operations between the "ligh
versions of the end-points is detailed in Section 2.3.4, “The StreamEndPoint_A an
StreamEndPoint_B,” on page 2-43.

B.10.3 Compatibility of Flow Formats

Compatibility of flow data is not an issue where raw data in an agreed byte layou
being exchanged (e.g., a raw MPEG flow). At a higher level, the architecture prov
for extensive negotiation between VDevs prior to stream setup which ensures that th
source of a flow is producing information in a format which is understanding to th
sink of the flow. This VDev negotiation is one of the most important aspects of this
specification.

Where typed data needs to be transferred or where in-band information such as
timestamping is needed, compatibility of flows formats will be assured through th
(optional) use of the SFP defined in Section 2.2, “Architecture Overview,” on page
Figure B-3 depicts the state machine for the sending end of an SFP flow in the p
to-point case. The figure also depicts the state machine for the receiving end in t
point-to-point case. The multipoint case is of course much simpler since no
information ever travels in the reverse direction. Each transition is labelled by the
condition which causes the transition to occur and the action which is performed w
the transition is made. Note that the state machines have been slightly simplified in
the sending of fragments is not shown. Also, the machines implementing the prot
at each end will discard any messages which are received when they are not exp
(e.g., if the sender gets a credit when it is not expected it will be discarded). The
timeout value T2 should be set to be several times the duration of timeout of T1.
allows for several attempts by the other side to send their message.
B-6 Audio/Video Streams V1.0 June 1998

B

t it
y
dia

n to
Figure B-3 The state machine for the SFP sender

Figure B-4 The state machine for the SFP receiver

B.11 Security

One of the principal advantages of using a distributed streaming framework is tha
allows uniform application of security policies to streamed media. Regular securit
mechanisms can be applied to operations invoked on any of the objects in the me
streams framework. The mechanisms for encryption are beyond the scope of this
specification; however, the hooks provided by the interfaces should allow encryptio

s tar t

True ;S en d Start ; s _ re t r ies = S R

R ece iv ed StartReply ; C re d it = C

ti m e o u t(T 1) & &
s _ re trie s -- > 0 ; S en d Start

e n d

s _ ret r ies = = 0

C red it- - > 0 & & d a ta to sen d ; Se n d d a ta f ra m e
+ f ra g m en t s if n ec e ss ary

C r e d i t = = 0

T i m eo u t(T 2)

R e ce iv ed
Credit ;
C re d it = C E n d o f S tre am ; S en d EndofStream

start

R eceived Start ; S end StartReply , s_ retr ies = S R

e nd

Tim eout(T 2)

T imeo ut(T1) & & s_ retr ies- - > 0;
S end StartReply

s_ retr ies = = 0
R eceived data fram e; C redi t = F(f ram e)

Cre dit- - > 0 && Rec eiv ed da ta fram e

Credit = = 0; S end Credit ; s_ retr ies = S R
Received d ata
fram e;
C red it = F(fram e)

F (fram e) is C -f ram e.seq _nu m% C

Timeout(T1) & & s_ retr ies -- > 0

s_ retr ies = = 0

Rec eiv ed
EndOfStream
A/V Streams V1.0 June 1998 B-7

B

ed

blic

s.

be applied to selected flows within a stream. The Protection attribute is a register
QoS parameter. In order to protect a flow the application programmer need only
specify that the Protection QoS parameter is set to 1 (for encryption). The set_key()
operation on the StreamEndPoint and FlowEndPoint then allows the flow/flows to
be established or modified to use either public or private key encryption. Where pu
key encryption is to be used, Public keys can be exchanged via VDev negotiation (i.e.,
the VDev finds the value of FlowNameX_PublicKey on its peer and calls the
set_key() operation with this value.

B.12 The A/V Streams Registration Space

The A/V Streams initial registration space is given below. This information will be
maintained in a living document under the OMG Website. The A/V Streams
registration space web page will contain instructions on how to register new value

B.12.1 Carrier Protocol Names

<CarrierName> ::=

"TCP" |

"UDP" |

"AAL5" |

"IPX" |

"RTP/UDP" |

"RTP/AAL5"|

"AAL3-4" | "AAL1"

Other names may be registered via the OMG registration authority.

B.12.2 SFP

The <flowProtocol> syntax currently allows the following combinations of values:

<flowProtocolName> ::= "SFP"

The <version> for SFP is currently 1.0.

The only currently defined <OptionTag> is "Credit" which takes a non-zero positive
integer <OptionValue> .

B.12.3 Media Format Categories and MIME Content-Types

<FormatCategory> ::=

"IDL" |
B-8 Audio/Video Streams V1.0 June 1998

B

r the
.

 =
"MIME"

The Media-type registry for audio and video subtypes is currently very sparse. Fo
purposes of this specification we will temporarily define the following Media-types
These will be officially registered with the IETF in due course:

video/x-mjpeg , the MJPEG standard for video

The following media-types are also supported:

• audio/mpeg

• audio/x-wav, the Microsoft audio format

• audio/x-aiff

• video/x-msvideo, the Microsoft format (e.g., .avi files)

• video/x-mpeg2

B.12.4 QoS Parameters

Names for QoS parameter types and their associated IDL types

struct resolution{
long horz,
long vert,

};

The following parameters are also standardized for Network-level QoS (QoSType
"Network_QoS")

Parameter set 1 - Support = Mandatory

"audio_sampleSize” short, number of bits per sample

"audio_sampleRate” long, Hertz

"audio_numChannels" short

"audio_quantization" short (0 = linear, 1 = u-law, 2 = A-law, 3 = GSM)

"video_framerate" long

"video_colourDepth" short (e.g., 2, 4, 8, 12, 16, 24, 32)

"video_colorModel" short 0 - RGB, 1 - YUV, 2 - HSV

"video_resolution" struct resolution

"ServiceType" short, 0 = best effort, 1 = guaranteed, 2 = predicted

"ErrorFree" boolean

"Delay" long, milliseconds, desired delay
A/V Streams V1.0 June 1998 B-9

B

e
 Parameter set 2 - Support = Optional

"Delay_Max" long, max. acceptable delay

"Bandwidth" long, bytes per second, desired bandwidth

 "Bandwidth_Min" long, bytes per second, min. acceptable bandwidth

"Bandwidth_Max" long, max. offered bandwidth

"PeakBandwidth" long, bytes per second, desired peak bandwidth

"PeakBandwidth_Min" long, min. acceptable peak bandwidth

"PeakBandwidth_Max" long, max. offered bandwidth

"TokenRate" long value, bytes/second

"TokenRate_Min" long value

"TokenRate_Max" long value

"TokenBucketSize" long value, bytes

"TokenBucketSize_Min" long value

"TokenBucketSize_Max" long value

"Jitter" float, microseconds, bounds for delay variation

"Jitter_Max" float, max. acceptable

"Cost" float, dimensionless

"Cost_Max" float, max. acceptable cost

"Protection" short, 0= default, no encryption, 1= encryption level 1

Duplication enum dup {IGNORE, DELETE}

Damage enum dam {DAM_IGNORE, DAM_NOTIFY,
DAM_DELETE, DAM_CORRECT}

Damage_method Type to be specified

Reorder enum reord {REORDER_CORRECT,
REORDER_IGNORE}

Loss long, {-1 = LOSS_IGNORE, -2 = LOSS_NOTIFY},
positive integer denotes number of retry attempts befor
the receiver is presumed dead

Size_Min long, min bytes in a data unit

Size_Max long, max bytes in a data unit

Size_avg long, average number of bytes in a data unit

Size_avg_span long, number of subsequent data units sent with an
interval (ival_const)
B-10 Audio/Video Streams V1.0 June 1998

B

rt

ta

r

to
Ival_Const long, {-2 = IVAL_MAX, -1 = IVAL_ANY}, positive
integer denotes constant time interval between transpo
requests

Ival_Max long, the maximum acceptable value if Ival_Const
cannot be met

Delay long, {0 = DELAY_VOID, -1 = DELAY_ANY, -2 =
DELAY_MIN}, DELAY_MIN denotes best effort with
minimal delay, DELAY_ANY = best effort, low cost.
Positive integer denotes delay required.

Delay_Max long, indicates maximum acceptable delay

Delay_Cum long, indicates acceptable cumulative delay for
concatenated stream

Jitter long

Jitter_Max long

ErrDamRatio float, Ratio of damaged data units {0.0 =
RATIO_DAM_VOID, -1.0 = RATIO_DAM_ANY, -2.0
= RATIO_DAM_MIN}, where RATIO_DAM_MIN is a
request for minimal error ratio, RATIO_DAM_ANY is
request for less costly ratio. A number between 0-1.0
indicates the desired ratio

ErrDamRatio_Max float, maximum acceptable error ratio for damaged da
units

ErrLossRatio float, ratio of lost data units { 0.0 =
RATIO_LOSS_VOID, -1.0 = RATIO_LOSS_ANY, -2,0
= RATIO_LOSS_MIN}, where RATIO_LOSS_MIN is a
request for minimal error ratio, RATIO_LOSS_ANY is
request for less costly ratio. A number between 0-1.0
indicates the desired ratio

ErrLossRatio_Max float, maximum acceptable ratio of lost data units

Workahead_Mode enum {AHEAD_BLOCKING,
AHEAD_NONBLOCKING}

Workahead_Max long, the maximum number of data units the produce
may be ahead of the consumer

Playback_Mode Type to be specified, indicates playback strategy

Playback_Max long, The maximum delay introduced by the producer
counter jitter effects
A/V Streams V1.0 June 1998 B-11

B

o
B.12.5 Device Parameters

The following device parameters are standardized by this document. Similarities t
QoS parameters are non-accidental.

"language" - string, from the set
{…,"English(UK)","English(US)",…,"Irish",…}

"audio_sampleSize" - short, number of bits per sample

"audio_sampleRate" - long, Hertz

"audio_numChannels
"

 - short

"audio_quantization" - short, 0 = linear, 1 = u-law, 2 = A-law, 3 = GSM

"video_framerate" - long

"video_colorDepth" - short, (e.g., 2, 4, 8, 12, 16, 24, 32)

"video_colorModel" - short 0 - RGB, 1 - YUV, 2 - HSV

"video_resolution" - struct resolution
B-12 Audio/Video Streams V1.0 June 1998

Relationship to DAVIC Work C
se

s
 also
y

 in

 is
. In
er
ia
C.1 Overview

The A/V Streams specification deals with a very different set of problems than tho
addressed by DAVIC’s DSM-CC. CORBA is used for all aspects of stream
establishment and management with an emphasis on ensuring that heterogeneou
devices talking to each other across the stream are compatible. The specification
addresses: multiple protocols, unipoint and multipoint stream topologies and man
different types of flow (not just MPEG). It is aimed at the off the shelf multimedia
application programmer rather than those engineering Video on Demand services
particular.

Nevertheless, there are areas of overlap with DAVIC’s DSM-CC User-User part. It
possible that a DAVIC stream could be managed as a flow within this architecture
particular, an interface DAVIC_DSMCC_UU could be defined for DSM-CC User-Us
level operations. In particular, the DAVIC_DSMCC_UU could be used as the med
controller for a VDev/FlowEndPoint and/or could be multiply inherited by a
specialization of FlowConnection (i.e., interface davicFlowConnection :
FlowConnection, DAVIC_DSMCC_UU;).
 Audio/Video Streams V1.0 June 1998 C-1

C

C-2 Audio/Video Streams V1.0 June 1998

References D

,

[1] Control and Management of A/V Streams, OMG RFP, telecom/96-08-01

[2] Integrating Multimedia Streams into a Distributed Computing System, BJ Murphy
and GE Mapp, ORL & Computer Laboratory, Cambridge.

[3] IMA Recommended Practice, Multimedia Systems Services Part 1: Functional
Specification, September 1994.

[4] Measuring the Performance of Object-Oriented Components for High-speed
Network Programming, Douglas C. Schmidt.

[5] RTP: A Transport for Realtime Applications, RFC1889, March 1996.

[6] OMG RFP5 Submission, Trading Object Service, orbos/96-05-06, Version 1.0.0,
May 10, 1996.

[7] J. Postel, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types
RFC 2046, November 1996.

[8] C. Partridge, A Proposed Flow Specification, RFC 1363, September 1992.

[9] TINA Object Definition Language (TINA-ODL) MANUAL, PBL01, TINA-C,
(www.tinac.com/deliverable/deliverable.htm), July 1996
 Audio/Video Streams V1.0 June 1998 D-1

D

D-2 Audio/Video Streams V1.0 June 1998

Index
Symbols
(Virtual) Multimedia Device Interface 2-5

A
A/V Streams Registration Space B-8
A_parties 2-28
AAL5 2-42, 2-50
Active 2-31
add_fep() operation 2-50
add_producer() 2-50
Address 2-31
ATM AAL5 2-16, 2-19
ATM model 2-23
ATM-style multicast 2-50
audio_numChannels 2-29
audio_quantization 2-30
audio_sampleRate 2-29
audio_sampleSize 2-29
AvailableFormats 2-28
AvailableProtocols 2-30, 2-31

B
B_parties 2-28
Bandwidth 2-26
Bandwidth_Min 2-26
Basic stream configuration 2-4
Basic_StreamCtrl 2-31
bind() operation 2-7, 2-35, 2-46
bind_devs() 2-21
bind_devs() operation 2-34
bind_videophone_devs() 2-21
binding 2-5

C
Carrier Protocol Names B-8
CDR encoding 2-18
common device parameters 2-29
Compatibility of Flow Formats B-6
Compatibility of StreamEndPoints B-6
connect() and request_connection() 2-38
connect_mcast() operation 2-50
connect_to_peer() operation 2-50
Connection-Oriented transport 2-16
CORBA

documentation set 1-2
Cost 2-26
Cost_Max 2-26
create_A() operation 2-45
create_B() operation 2-45
CurrentLoad 2-28, 2-29
CurrFormat 2-31
CurrProtocol 2-31

D
Damage 2-26
Damage_method 2-26
Datagram-oriented transport 2-16
Delay 2-25, 2-27
Delay_Cum 2-27
Delay_Max 2-26, 2-27
destroy() operation 2-32, 2-37, 2-46
Device and Stream Parameters 2-25

Device Parameters B-12
DevParams 2-31
Dir 2-28, 2-31
disconnect_leaf() operation 2-44
Duplication 2-26

E
ErrDamRatio 2-27
ErrDamRatio_Max 2-27
ErrLossRatio 2-27
ErrLossRatio_Max 2-27
ErrorFree 2-25
Establishing a stream (simplified) 2-8

F
FDev 2-9, 2-28, 2-54
Flow 2-28
flow connection 2-4, 2-9
Flow Devices 2-3
flow endpoint 2-4
Flow Endpoints 2-9
Flow Protocol 2-56
Flow Synchronization B-5
FlowConnection 2-28, 2-52
FlowEndPoint 2-30, 2-48
FlowName 2-30
FlowNameX_address 2-30
FlowNameX_availableFormats 2-28, 2-29
FlowNameX_currFormat 2-29, 2-30
FlowNameX_devParams 2-29
FlowNameX_dir 2-28, 2-29, 2-30
FlowNameX_flowProtocol 2-30
FlowNameX_PublicKey 2-28, 2-29, 2-30
FlowNameX_related_mediaCtrl 2-29
FlowNameX_SFPStatus 2-28, 2-29
FlowNameX_status 2-29, 2-30
FlowProtocol 2-31
Flows 2-4, 2-28, 2-29, 2-30
Flows and flow endpoints 2-3
Flows property 2-15
flows vs streams 2-12
flowSpec 2-39
Format 2-31
full profile 2-5

G
get_fep() operation 2-42
get_rev_channel() 2-50
go_to_listen() 2-50

I
IDL Interfaces 2-31
internet model 2-23
Interoperability B-5
is_fep_compatible() 2-50
Issues in Modifying QoS 2-23
Issues in Multipoint Streams 2-23
Ival_Const 2-26
Ival_Max 2-26

J
Jitter 2-26, 2-27
Audio/Video Streams V1.0 June 1998 Index-1

Index

w
Jitter_Max 2-26, 2-27

L
language 2-29
light profile 2-5
Light vs Full Profile 2-55
lock() operation 2-50
Loss 2-26

M
MaxFlows 2-29
MaxStreams 2-28
Media Format Categories B-8
Media Streaming Framework 2-7, 2-12, 2-21
MIME Content-Types B-8
MMDevice 2-6, 2-28
MMDevice interface 2-44
modify_QoS() operation 2-32, 2-42
Multimedia device 2-3, 2-5
Multiple Protocols B-4

N
Naming of Generated Interfaces B-5
Negotiator 2-30
Network QoS Parameters 2-56
Network_QoS 2-28

O
Object Management Group 1-1

address of 1-2
octetstream flows 2-21

P
PeakBandwidth 2-26
PeakBandwidth_Min 2-26
peer_device 2-6
PeerAdapter 2-30
Playback_Max 2-27
Playback_Mode 2-27
plug and socket 2-5
point-to-point stream examples 2-20
Profiles 2-5, 2-55
Protection 2-26
ProtocolRestriction 2-30
PublicKey 2-29
push_event() operation 2-33

Q
QoS 2-27
QoS Parameters B-9
Quality of Service (QoS) 2-7

R
Related_mediaCtrl 2-31
Related_MMDevice 2-29
Related_StreamCtrl 2-30
Related_StreamEndPoint 2-29
Related_VDev 2-30
Reorder 2-26
RTP 2-16

S
Security B-7
ServiceType 2-25
set_flow_connection() operation 2-33
set_FPStatus() operation 2-33, 2-43
set_key() operation 2-43
set_Mcast_peer() operation 2-48
set_negotiator() operation 2-42
set_peer() operation 2-48
set_protocol_restriction() operation 2-42
SFP 2-17, 2-41, B-8
SFP dialog 2-19
SFPStatus 2-29, 2-31
Size_avg 2-26
Size_avg_span 2-26
Size_Max 2-26
Size_Min 2-26
source device 2-7
start() operation 2-32, 2-37
Status 2-27, 2-31
stop() operation 2-37
Stream connection compatibility rules can allow unconnected flo

endpoints 2-4
Stream Description and Typing B-3
Stream endpoints 2-3
Stream Interface Identification and Reference B-4
Stream Modification B-4
Stream Setup and Release B-4
Stream Termination B-4
StreamCtrl 2-27
StreamCtrl interface 2-6, 2-33
StreamEndPoint 2-30, 2-36

disconnect() operation 2-44
StreamEndPoint Interface 2-7
Streams 2-3
Switched Virtual Circuit (SVC) 2-24

T
TCP 2-42
TINA-C ODL stream template 2-14
TokenBucketSize 2-26
TokenBucketSize_Min 2-26
TokenRate 2-26
TokenRate_Min 2-26
transport types 2-16
Type 2-27
Type property 2-15

U
UDP 2-19, 2-41, 2-42
unlock() operation 2-50
Unreliable connection-oriented transport 2-16

V
VDev 2-29, 2-47
video_colorDepth 2-30
video_colorModel 2-30
video_framerate 2-30
video_resolution 2-30
Virtual Multimedia Devices 2-3, 2-5
Index-2 Audio/Video Streams V1.0 June 1998

Index
W
Workahead_Max 2-27

Workahead_Mode 2-27
Audio/Video Streams V1.0 June 1998 Index-3

Index
Index-4 Audio/Video Streams V1.0 June 1998

	1. Overview
	Control and Management of Audio/Video Streams
	2.1 Introduction
	2.2 Architecture Overview
	2.2.1 Principal Components
	2.2.2 (Virtual) Multimedia Device Interface
	2.2.3 StreamCtrl Interface
	2.2.4 StreamEndPoint Interface
	2.2.5 Flow Endpoints, Flow Connections, and FDevs
	2.2.6 Properties of Streams
	2.2.7 Quality of Service
	2.2.8 Stream Specification
	2.2.9 Flow Protocol
	2.2.10 Examples for point-to-point streams
	2.2.11 Issues in Modifying QoS
	2.2.12 Issues in Multipoint Streams
	2.2.13 Extending Stream Management Functionality
	2.2.14 Device and Stream Parameters

	2.3 IDL Interfaces
	2.3.1 The Basic_StreamCtrl
	2.3.2 The StreamCtrl
	2.3.3 The StreamEndpoint
	2.3.4 The StreamEndPoint_A and StreamEndPoint_B
	2.3.5 The MMDevice
	2.3.6 The VDev
	2.3.7 The FlowEndPoint
	2.3.8 The FlowConnection
	2.3.9 FDev

	2.4 Conformance Criteria
	2.4.1 Light vs Full Profile
	2.4.2 Flow Protocol
	2.4.3 Network QoS Parameters

	1.1 About the Object Management Group
	1.1.1 What is CORBA?

	1.2 Associated Documents
	1.3 Acknowledgments

	2. Control and Management of
	Appendix A - Complete OMG IDL
	Appendix B - Requirements for Control and Management of A/V Streams
	Appendix C - Relationship to DAVIC Work
	Appendix D - References
	Index

