
Date: NovemberMarch 2024

Business Architecture Core Metamodel
Version 1.10

__

OMG Document Number: dtc/24-11-12formal/24-03-01 [smsc/24-03-02]

Normative reference: https://www.omg.org/spec/BACM/

__

ii Businiess Architecture Core Metamodel (BACM), v1.0

Copyright © 2021, Business Architecture Guild
Copyright © 2024, Object Management Group, Inc.
Copyright © 2021, Mega International
Copyright © 2021, VDMBee
Copyright © 2021, Thematix Partners
Copyright © 2021, BPM.com
Copyright © 2021, Tactical Strategy Group, Inc
Copyright © 2021, Capsifi, USA
Copyright © 2021, Model Driven Solutions
Copyright © 2021, Agile Enterprise Design

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

Business Architecture Core Metamodel (BACM), v1.0 iii

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 9C Medway Road, PMB 274, Milford, MA 01757, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group,
Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

iv Businiess Architecture Core Metamodel (BACM), v1.0

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers, and sellers of
computer software to use certification marks, trademarks, or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

Business Architecture Core Metamodel (BACM), v1.0 v

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process, we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page https://www.omg.org, under Specifications, Report a
Bug/Issue.

 vi Business Architecture Core Metamodel (BACM), v1.0

Business Architecture Core Metamodel (BACM), v1.0 vii

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel™);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters

9C Medway Road, PMB 274

Milford, MA 01757

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

 viii Business Architecture Core Metamodel (BACM), v1.0

Business Architecture Core Metamodel (BACM), v1.0 ix

1 Scope ... 1
2 Conformance ... 1

2.1 Content completeness .. 1
2.1.1 Basic level ... 1
2.1.2 Professional level .. 2
2.1.3 Expert level ... 2

2.2 SMOF Capability ... 2
2.2.1 Basic level ... 2
2.2.2 Professional level .. 2
2.2.3 Expert level ... 2

2.3 Shortcut capability ... 2
2.3.1 Basic level ... 2
2.3.2 Professional level .. 2
2.3.3 Expert level ... 3

2.4 MOF Extension (MEF) capability ... 3
2.4.1 Basic level ... 3
2.4.2 Professional level .. 3
2.4.3 Expert level ... 3

3 References ... 3
3.1 Normative References.. 3
3.2 Non-normative References .. 4

4 Terms and Definitions ... 4
5 Symbols and Abbreviations .. 4
6 Additional Information .. 5

6.1 Changes to Adopted OMG Specifications [optional] .. 5
6.2 Acknowledgements .. 5
6.3 IPR Mode ... 5
6.4 Document Style Conventions .. 5

7 Business Architecture Core Metamodel .. 7
7.1 Overview of the Metamodel (non-normative) ... 7

7.1.1 Capability Package ... 7
7.1.2 Customer Package ... 8
7.1.3 Organization Package ... 9
7.1.4 Process Package .. 9
7.1.5 Product Package .. 9
7.1.6 Strategy Package ... 9
7.1.7 The BACM_Model package ... 10

7.2 Interpreting and Implementing the Metamodel (normative) .. 10
7.2.1 Interpreting the UML metamodel and generated XMI ... 10
7.2.2 Unique naming of associations ... 12
7.2.3 Model elements (instances) represent sets and individuals ... 12
7.2.4 Meta-model association instances as association classes .. 12
7.2.5 Distinguished association names .. 13
7.2.6 N-ary Associations reified as Classes and Binary Associations ... 13
7.2.7 Application of business architecture frameworks with MEF .. 1414

7.3 BACM Metamodel (Normative) .. 14
7.3.1 Package: BACM_Model ... 14
7.3.2 Package: Capability .. 29
7.3.3 Package: Customer ... 49
7.3.4 Package: Organization .. 63
7.3.5 Package: Process ... 70
7.3.6 Package: Product ... 75
7.3.7 Package: Strategy .. 85

8 Shortcuts and Touchpoints (normative) .. 98
8.1 Shortcuts .. 98

 x Business Architecture Core Metamodel (BACM), v1.0

8.1.1 Definition .. 98
8.1.2 Compliance ... 98

8.2 Touchpoints ... 98

Business Architecture Core Metamodel (BACM), v1.0 1

1 Scope

The Business Architecture Core Metamodel defines concepts suitable for modeling business concepts found to be useful
in business direction and strategy and not found in business operating models. These concepts include value and its
delivery to stakeholders of a business, capability, abstract organization, process, product and strategy. The concepts are
represented at a high level typical of executive management and staffs who are responsible for overall business
management and direction. Business architecture models derived from this metamodel are not intended to represent all
aspects of a business; they are intended to be used in conjunction with other models, with the ensemble of models being
a sufficient basis for strategic and business analysis and planning. While the business architecture models are high level,
they must be grounded in the reality and details of the business. For this reason, an ability to align or link elements or
groups of elements of a business architecture model with elements and groups of elements of other models or even
portions of prose documents or business data is a strong requirement. The OMG has produced or is working on
specifications for other business models, but the business architect will need to include models not based on any OMG
specification. This specification defines a general mechanism for linking a BACM-derived model to other models and
data sources. These mechanisms respond to the RFP request for a “touchpoint” mechanism.

Business architects typically make use of conceptual frameworks to create models of a business or type of business.
There are many such frameworks and they change with frequency, consequently it would be inappropriate to encode
particular frameworks in the metamodel. A general mechanism, MEF [MEF] has been defined for MOF that allows the
dynamic application of stereotypes to any MOF-based model. The specification requires MEF and recommends that
business architects develop profiles of stereotypes for such frameworks. The concepts of the framework, represented as
stereotypes, may then be applied to BACM model elements to characterize them and provide supplementary
information according to the framework.

2 Conformance

A conforming implementation may directly implement the MOF metamodel for BACM or implement a semantically
equivalent metamodel using e.g. [RDF] or any other type of implementation that is semantically equivalent to the MOF
metamodel for BACM and can import and export that model in [XMI]. Other import and export concrete syntaxes are
allowed, but are not controlled by this specification and they may not allow exchange of models between
implementations.
Conformance criteria for implementations of this specification are specified in four independent domains:

 completeness of implementation of the classes and associations in the metamodel

 implementation of SMOF

 implementation of shortcuts

 implementation of MEF

2.1 Content completeness
The rationale for these compliance points is to allow implementations to exhibit different levels of detail and
complexity with respect to business architecture modeling and different implementation and maintenance costs.
Note that the instances of classes and associations in the metamodel are also classes and associations. The BACM
specification does not define “individuals”, but it may have external relationships to model elements or data that
represent individuals or sets of individuals and their individual relationships.

2.1.1 Basic level
Completely implement the BACM_Model package classes and associations including ExternalReferences with SMM
integration optional.
Implement the Capability package, replacing the variable arity associations OutcomeRelation and ObjectRelation with
binary class associations.
Implement the Customer package without the ValueCharacteristic 4-ary association. ProductOffering must be
implemented, but the other classes and associations in the Product package need not be implemented.

 2 Business Architecture Core Metamodel (BACM), v1.0

Implement the Organization package, omitting the ofProcess association and the AbstractProcess class. The
Responsible association should be implemented as a binary, directed association between OrgUnits.
Do not implement the Process package
Do not implement the Strategy package
Do not implement the Product package

2.1.2 Professional level
Completely implement all packages except Strategy.
Replace the variable-arity associations OutcomeRelation and ObjectRelation with binary class associations
Replace the variable-arity association ContractRelation with a binary class association.

2.1.3 Expert level
Implement all packages and variable arity associations.

2.2 SMOF Capability
SMOF is a modification to MOF that allows instances to be members of multiple classes and to change the membership
linkage between instances and their classes dynamically. SMOF also removes the assumption of disjointness of class
extents and adds constraint types to declare when class extents are disjoint. This capability becomes important when
aligning business architecture models with models of actual businesses as an instance such as a tool may be classified as
a Resource, a Performer or a BusinessObject that is an asset.

2.2.1 Basic level
SMOF is not implemented. The extensions of classes are disjoint and may not be dynamically changed (however, the
model may be edited to reflect changes). The disjointness constraints expressed in the MOF metamodel are ignored.

2.2.2 Professional level
Enough of SMOF is implemented to allow instances to be members of the extent of multiple classes and disjointness
constraints as specified by [SMOF] to be expressed in the metamodel and by modelers in their models.

2.2.3 Expert level
SMOF is completely implemented.

2.3 Shortcut capability
Shortcuts allow the modeler to express an association that implies the existence of a chain of classes and associations
that would justify the shortcut association. In plain language, the English term “uncle” means “the brother of a parent”;
in a concept graph, “uncle” would label a direct arc between a person and that person’s uncle. However, the concept
graph might also contain a direct arc labeled “parent” between the person and the person’s parent and a direct arc
labeled “brother” between the person’s parent and the person’s uncle. If a shortcut association like “uncle” was created
in a model, one could infer that a parent also exists (but may not be represented in the model) and that the “parent” and
“brother” associations may also exist.
Shortcuts are a way to abstract detail, but it is important to be able to determine if the abstraction and the details are
consistent. For this reason, shortcut associations have constraint specifications that may be applied to the model to
determine this consistency. The short constraint describes the structure of a chain of instance classes and associations
that should exist in the model to justify the assertion of the shortcut association. It is not an invariant and it is not
required to be true in a valid model.

2.3.1 Basic level
Shortcuts are not implemented. They are ignored on import and will not be exported. The constraint language associated
with a shortcut is also ignored on import and may not be created in the implementation.

2.3.2 Professional level
Shortcuts and their constraint specifications may be imported and exported. The implementation does not need to
provide the capability to evaluate constraint expressions. The implementation may allow the creation of constraint

Business Architecture Core Metamodel (BACM), v1.0 3

specifications and must support the [OCL] language for specification of shortcut constraints. An implementation may
also support constraints specified in the [SPARQL] language where the implementation is based on [RDF] or [RDF*]
or any other language capable of expressing such constraints as a textual language, provided that a specification for this
language is available.

2.3.3 Expert level
Shortcuts and their constraint specifications are fully implemented, including all of the requirements for the
Professional level. An implementation capable of evaluating the constraints must be provided.

2.4 MOF Extension (MEF) capability
This requirement is derived from the need to apply methodological frameworks to a BACM model. As an example of a
framework, consider Value Proposition Design [Osterwalder, et al., Value Proposition Design, Wiley 2014]. This
methodology defines a “Customer Profile” to characterize customers according to three aspects: “Customer Job”,
“Customer Pain” and “Customer Gain”. It also defines a “Value Map” to characterize the offerings from a business,
with aspects “Goods and Services”, “Pain Relievers” and “Gain Creators”. The intent of this analytic framework is to
allow the evaluation of the fit of a product offering to the characterized customer type.
There are a variety of such frameworks available, and they change over time; consequently, it is not appropriate to
constrain the methodological framework by defining a metamodel for it. Fortunately, such frameworks have a lot in
common with UML profiles. A profile, when applied to instances of UML classes and associations, can associate
properties and default values with these instances. Considering the BACM Customer Package, a “Customer Profile”
could be represented by an instance of BACM::Customer::Customer and the associated instances of
BACM::Customer:CustomerSegment. Conceptually, a “Customer Profile” could be created in a BACM model by
applying a “Customer Profile” UML stereotype to the BACM::Customer::Customer and a “Customer Job” stereotype to
one or more of the BACM::Customer::CustomerSegment instances. The modeler determined properties of these
stereotypes are able to hold analysis values derived from following the analysis processes outlined in the methodology
reference previously cited.

2.4.1 Basic level
The implementation is not required to provide an extension capability as described above. The modeler may elect to use
the annotation capability of the BACM metamodel to capture framework defined values.

2.4.2 Professional level
The implementation may implement the UML 2.5.1 profile capability or its equivalent. This capability would
effectively import the BACM metamodel, excluding elements not derived from
BACM::BACM_Model::BusinessElement and make them available to Stereotypes. If the implementation provides the
BACM tailored implementation of SMM, it may choose to effectively import any or all elements of the SMM
metamodel and make them available to Stereotypes.

2.4.3 Expert level
The OMG Metamodel Extension Framework [MEF] relies on the dynamic metamodeling provision of SMOF to allow
Profiles and Stereotypes to be defined at the metamodel level, simplifying the process for extending metamodels by
adding properties and constraints to an existing metamodel without changing it. Implementations at this level will
include an implementation of the [MEF] specification.

3 References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not
apply.

 4 Business Architecture Core Metamodel (BACM), v1.0

[UML] Unified Modeling Language https://www.omg.org/spec/UML.

[XMI] XML Metadata Interchange. https://www.omg.org/spec/XMI.

[MEF] Metamodel Extension Facility (MEF), OMG Specification https://www.omg.org/spec/MEF

[MOF] Meta Object Facility (MOF) Core, version 2.5.1, OMG Specification https://www.omg.org/spec/MOF

[SMOF] MOF Support for Semantic Structures (SMOF), OMG Specification https://www.omg.org/spec/SMOF

[SMM] Structured Metrics Meta-Model (SMM), https://www.omg.org/spec/SMM

[OCL] Object Constraint Language, https://www.omg.org/spec/OCL/2.4

3.2 Non-normative References
[BMM] The Business Motivation Model https://www.omg.org/spec/BMM)

[BPMN] The Business Process Model And Notation™ (BPMN™): https://www.omg.org/spec/BPMN.

[CMMN] Case Management Model and Notation https://www.omg.org/spec/CMMN

[DMN] Decision Model Notation https://www.omg.org/spec/DMN

[ODM] Ontology Definition Metamodel, https://www.omg.org/spec/ODM

[OWL] OWL 2 Web Ontology Language Document Overview (Second Edition) , https://www.w3.org/TR/2012/REC-
owl2-overview-20121211/ and documents referenced therein

[SPARQL] SPARQL 1.1 Overview https://www.w3.org/TR/sparql11-overview/ and documents referenced therein

[RDF] RDF 1.1 Concepts and AbstractSyntax https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

[RDF*] Foundations of an Alternative Approach to Reification in RDF https://arxiv.org/abs/1406.3399

[SBVR] Semantics of Business Vocabulary and Rules™ (SBVR™) https://www.omg.org/spec/SBVR.

[UAF] Unified Architecture Framework Profile (UAF) https://www.omg.org/spec/UAF.

[VDML] The Value Delivery Modeling Language (VDML) https://www.omg.org/spec/VDML.

4 Terms and Definitions

The terms used to label metaelements in this specification and their definitions are contained in Annex A:

The term "M1" has been previously used in OMG specifications to designate a model that is properly derived from a
metamodel (typically designated by the term "M2"). In this specification, the term "M1" designates a model that is
properly derived from the metamodel defined in this specification. Elements of an M1 model are instances of the
metaclasses and meta-associations of the metamodel, and these instances will have metaclasses and meta-associations
as their metaclasses.

5 Symbols and Abbreviations

The specification employs UML symbols and diagrams to present the metamodel.

Various abbreviations, acronyms and symbols are used in this document as a terse form of reference to references
contained in section 3 of this document. They are not repeated here.

Business Architecture Core Metamodel (BACM), v1.0 5

6 Additional Information

6.1 Changes to Adopted OMG Specifications [optional]

No changes are proposed to any adopted OMG specifications by this specification.

6.2 Acknowledgements

The following companies submitted this specification:

• Business Architecture Guild

• Mega Corporation

• Trisotech

• Model Driven Solutions

• Tactical Strategy Group

• Capsifi USA

The following companies supported this specification:

 VDMbee

 Thematix Partners

 Airbus

 Boeing

The following individuals contributed to this specification:

 Jim Rhyne

 Antoine Lonjon

 Henk de Man

 Fred Cummins

 Lloyd Dugan

 Hermann Schlamann

 Michel Sauvage

 Chalon Mullins

6.3 IPR Mode

The IPR mode of this specification is “non-assert”.

6.4 Document Style Conventions

The following stylistic conventions apply to text about the Clause 7 (Metamodel):

Italicized names in the descriptive text refer to the corresponding named elements in the diagrams and in the element
syntax definitions. In general, such terms can be taken as referring to instances of the named metaclasses and meta-
associations. Where necessary, an ambiguity will be resolved by using the metamodel element label followed by the
“metaclass” or “meta-association” term.

 6 Business Architecture Core Metamodel (BACM), v1.0

This page intentionally left blank.

Business Architecture Core Metamodel (BACM), v1.0 7

7 Business Architecture Core Metamodel

7.1 Overview of the Metamodel (non-normative)

The metamodel is specified as a collection of packages containing metaclasses and meta-association that refer to
metaclasses and meta-associations in other packages. The metamodel is intended to define an abstract syntax for BACM
models that are instances of the overall metamodel. The packaging is a convenience and should not be construed by
implementers as specifying a modeling palette structure or any other characteristic of model presentation except for the
names of the metaclasses and meta-associations.

Many meta-associations in the metamodel are given a <<class>> stereotype. This stereotype should be interpreted as
meaning that these associations can have properties, be specialized, and participate in associations. Some associations
are n-ary; these associations are sometimes represented as classes with an <<association>> stereotype and sometimes as
a UML n-ary association. In either case, these associations should be able to have properties, be specialized and
participate in associations.

The <<shortcut>> stereotype is sometimes applied to an association in the metamodel. This stereotype indicates that the
association must be consistent with other details that may or may not be elaborated in the metamodel. For example, a
business architect may wish to assert that a value stream is intended to satisfy the values of a set of customers
(represented as a customer) without immediately specifying the details of value propositions, customer journeys and
customer segments. This assertion would be modeled as an instance of a <<shortcut>> stereotyped meta-association.
The assertions associated with shortcuts are represented in the MOF-compliant XMI as OCL constraints.

The model instances of the meta-classes and meta-associations represent types or sets of entities that would be found in
a real or imagined business. Some of these entities will be tangible (occupying time and space) while others will be
intangible (conventions of thought). The model instances have potentially intensional and extensional semantics and are
not required to have disjoint extensions; for example, a BusinessObject instance, AssemblyRobot, may in a different
context be an instance of Performer or an instance of Resource. This may create a problem for tool implementations that
do not allow an instance to have multiple metaclasses. The OMG specification MOF Support for Semantic Structures –
SMOF [SMOF] provides such a facility for MOF metamodels and the implementation of the MOF metamodel of this
specification will also require implementation of SMOF.

7.1.1 Capability Package

The Capability package specifies abstract syntax for Capability, Outcome, BusinessObject and InformationItem and
their related metaclasses. It also specifies associations that link these metaclasses together. Capability is an abstraction
of a unit of work that does not specify how the work is done. In effect, a Capability is specified by its Outcomes that are
states of BusinessObjects or InformationItems. A Capability produces Outcomes and needs Outcomes. An Outcome that
is produced by a Capability and seen by an entity outside theBusiness corresponds to an external event or state;
typically, such Outcomes would be experienced by stakeholders such as customers and regulators. An Outcome that is
needed by a Capability and not produced by any Capability is effectively a triggering event that occurs outside the
business, such as receipt of an order.

Outcomes effectively externalize the modeled state of a BusinessObject or InformationItem. This allows the modeler to
define a BusinessObject or InformationItem without having to define its state variables, properties, or characteristic
associations; these can be specified separately as Outcomes. The resulting abstract model is more complex but allows a
BusinessObject or InformationItem to be represented in the model in multiple states in the structural model of the
business. The alternative, internalized states, requires the separate specification of state machines that control the state
behavior and tie it to Capabilities.

Capabilities are also associated with Role instances that are abstract specifications of a type of work that may be
accomplished by the Capability while producing an Outcome. Roles are useful for defining Capabilities that can be used
to manage behavioral variation in a business. There are two types of Roles that can be instantiated in a model:
PerformerRoles and ResourceRoles. PerformerRoles specify a kind of skill. ResourceRoles specify actions that may be
performed with or on a Resource.

 8 Business Architecture Core Metamodel (BACM), v1.0

Capabilities must be tied to an operating model of a business to be useful for analysis of the business. The BACM
Capability package provides two metaclasses, CapabilityBehavior and CapabilityImplementation as intermediaries that
can be tied to a business operating model. CapabilityBehavior represents specific behaviors of a Capability (that might
be described in a BPMN or VDML model). CapabilityImplementation instances represent a specification of Performers
and Resources that can be assigned to Roles of a CapabilityBehavior. These instances can represent specifications of
project resourcing for planning purposes, or they can represent actual elements of an organization for purposes of
analysis.

InformationItems can be used to control decisions and other behaviors of Capabilities and CapabilityBehaviors.
InformationItems can also represent metadata (is_about) about a BusinessObject. InformationItems are typically
intangible but may also represent a tangible such as a report or a dataset. BusinessObjects are typically tangible but may
also represent collections of tangible and intangible things.

Capabilities are also associated with the production of value by ValueStreams. The abstract syntax in the
CapabilityValue diagram shows that Capabilities support ValueStreamStages and Outcomes are valued by ValueItems.
In effect, the Capabilities supporting ValueStreamStages represent abilities that the business must have to produce
values that are experienced by Customers (and other stakeholders). The ValueStreams, ValueStreamStages, ValueItems
and ValuePropositions create a value perspective on the underlying Capabilities and Outcomes. The Customer package
provides additional details.

7.1.2 Customer Package

The Customer package defines abstract syntax for Customer, CustomerSegment, CustomerJourney, JourneyStage and
Touchpoint. The Customer identifies a customer (or any value-receiving stakeholder) but does not describe the
customer/stakeholder. Descriptions are held in CustomerSegments associated with a Customer. The CustomerSegments
would describe a Customer in terms of needs and avoidances as well as information that would allow targeting the
customer type (e.g. demographic information). A Customer owns all of the CustomerSegments associated with it;
CustomerSegments cannot exist independently of a Customer. A Customer is also defined relative to a ProductOffering
(see the Product package) targeting the Customer.

A Customer may be associated with a CustomerJourney, consisting of several JourneyStages that usually represent
important decision and interaction points the Customer experiences in the course of finding, acquiring, and using a
product type. The CustomerJourney is a view of customer behavior that is relevant to the objectives of the business and
CustomerJourneys are usually created by the business, not by customers. CustomerSegments are also associated with
JourneyStages and Touchpoints; they describe the needs and avoidances of the Customer at the associated JourneyStage
or Touchpoint.

Customers, CustomerSegments, ValuePropositions, ValueItems and ValueCharacteristics can be tagged a framework of
tags provided by MEF or its equivalent. These tags typically define a framework for analyzing types of delivered value,
analyzing the satisfaction (“fit”) the customer has with the ValueProposition and its components. For example, value
framework tags with values such as “uses”, “pains” and “gains” could be used to tag the aforementioned elements and
support different kinds of value analysis based on the categories.

The CustomerPackage also defines ValueStream, ValueStreamStage, ValueProposition and ValueItem. These element
types represent values the business believes it is offering the Customer and how those values are accumulated. The
ValueProposition is “of” a ProductOffering. These believed values may match the needs and avoidances of the
Customer or they may not. The degree to which the ValueProposition and its components match or fit the Customer
needs and avoidances is captured by the ValueCharacteristic. This fit is typically a complex set of measures.

ValueStreamStages represent the accumulation of value leading to a ValueProposition. Consequently, the definition of
the ValueStreamStages by the modeler determines the relationship between Capabilities and components of the
ValueProposition by way of the ValueStreamStage.

Business Architecture Core Metamodel (BACM), v1.0 9

7.1.3 Organization Package

The Organization package defines abstract syntax for Performer and Resource. A Performer is an OrgUnit (the humans)
or a System (IT system or robot). A Performer is described by a set of abilities that match the skills required by a
PerformerRole to which the Performer is assigned. A Resource is described by the things that are allowed to be done to
or done with the Resource. Resources and Performers should not be considered disjoint at the M0 (real) level; an
assembly robot may be considered a Resource by an equipment management Capability and as a performer by an
assembly Capability.

An OrgUnit can be a LegalEntity. The LegalEntity is characterized by being in the legal_jurisdiction of one or more
Jurisdictions. The legal_jurisdiction concept includes regulatory oversight as well as the location of the business and
represents taxation, operating policy regulation and criminal and civil statutes. The Jurisdiction elements represents the
authority to regulate, tax or create criminal and civil statutes and to adjudicate disputes in such authorities.

7.1.4 Process Package

The Process package defines a basic model for processes that is like Input-Process-Output (IPO) but adds Outcome
connectors between activities. The Outcome connectors convey stateful objects between activities that typically change
the state of objects. Process and capability models of a business are complementary perspectives on the business.
Process models reveal end-to-end flows of information and materials, while capability models reveal common things a
business must do independently of the organization of the business. Both capability and process models share
information, business objects, resources, and performers. The Process package defines abstract syntax for Activities,
Processes, and reuses Capability::Outcome. Activities are un-decomposed. Processes are groups of Activities.
Outcomes are input from Processes and Activities and output to other Processes and Activities. The capability models of
a business and the process models of the same business are linked through the Outcomes.

Because representing the creation of delivered value (in the form of a ValueProposition) is important, Processes and
Activities can implement ValueStreams. However, Processes and Activities may also implement ValueStreamStages
when it is useful to represent process detail for a ValueStreamStage. The Process metamodel provides the implements
association between ValueStreamStages and Processes/Activities. This complex set of associations to a ValueStream
define the Processes and Activities that produce the Outcomes that are valued as ValueItems and compose the
ValueProposition.

Processes and Activities also share roles (PerformerRoles and ResourceRoles) with Capabilities, allowing the same
assignments of Performers and Resources that Capabilities permit. Activities and Processes are scoped differently from
Capabilities, so the roles will be associated differently as well. In addition, some roles that are associated with a
Capability may not appear in a process model because they are not used in the process.

7.1.5 Product Package

The Product package defines abstract syntax for ProductOffering, representing the description of a product or product
family, including terms and conditions pertaining to the acquisition and/or use of the product. ProductOffering has four
subtypes:

 Merchandise Offering – a ProductOffering that includes one or more BusinessObjects for sale/lease to and use
by the Customer.

 Service Offering – a ProductOffering that promises to deliver a result (Outcomes) to a Customer.
 OutsourcedServiceOffering – a ProductOffering that is a solicitation for a service to be performed for the

business by another business.
 ProcurementOffering – a ProductOffering that is a solicitation by the business to acquire products from another

business.

A ProductOffering is a BusinessObject or InformationItem and inherits the properties and associations of these model
elements.

7.1.6 Strategy Package

The abstract syntax defined in the Strategy package is premised on the need by analysts to compare and evaluate strategy
options. The package defines StrategyChoices, a container of StrategyModels, to satisfy this need.

 10 Business Architecture Core Metamodel (BACM), v1.0

A StrategyModel represents a complete strategy, consisting of Means and Ends. Ends represent the desired results of the
StrategyModel and are often changes to the value offered to the customer (ValuePropositions and ValueItems) or the fit
of the offered value to the customer needs and avoidances (ValueCharacteristic). Sometimes Ends will represent an
outreach to a new customer type (Customer, CustomerSegment, CustomerJourney, CustomerJourneyStage, Touchpoint).
The model element types noted are all abstractly represented by the AbstractValueModel metaclass.

The Means represent ways or approaches that are expected to produce the Means. The Means are associated with the
Ends by the expects association. This association must be instanced as an association classifier to allow the modeler to
express the influence of environmental factors, risks and to provide a rational for the expectation.

The Ends also represent expectations of change to results of business operations (Outcomes). The Outcomes associated
with Ends represent a baseline operating state of the business and the Ends describe the hoped for operating state of the
business (and are thus effectively future Outcomes).

The Means represent changes to the operating structure and behavior of the business (Capabilities, CapabilityBehaviors,
CapabilityImplementations and Role assignments). These changes impact the corresponding BACM model elements.
Recording the impacts helps strategists and planners deal with collaboration and conflict in the execution of business
strategies.

Businesses need to track the implementation of strategies for several reasons: 1) to determine if strategy implementations
(Initiatives) are on the expected trajectory; 2) to understand the impact of a change in strategy to ongoing or planned
implementations; 3) to analyze and predict the impact of variances in execution on the delivered value of the business.
The Initiatives represent in-process, planned, or recently completed strategy implementation efforts. These efforts should
implement the general strategy Means of the adopted StrategyModel.

Initiatives are expected to produce Changes to elements of the types in the AbstractValueModel and the
AbstractOperatingModel. These Changes should implement the Ends of the chosen StrategyModel. The expects
association connecting Initiatives to Changes must be consistent with the expects association connecting the Means and
Ends being implemented by the Initiatives and Changes.

The Initiatives and Changes elements are intended for use as gateways to actual planning documents such as project
objectives, staffing, schedules, and work breakdowns. These alignments allow the upward flow of information into the
BACM model for analysis and management of the strategy execution. They also support change management of ongoing
and planned strategy executions when strategy changes are made.

7.1.7 BACM Package

The BACM package includes two sub-packages that define abstract syntax for BACM models and foundational
elements, along with importing the SMM metamodel and specializing some of its classes._1_.

7.1.7.17.1.7 The BACM_Model package

The BACM_Model package defines BACMElement as the base metaclass. It provides for a name and description of each
element as well as providing multiple, tagged Annotation elements to be associated with any BACMElement concrete
subclass instance.

BusinessElement is a specialization of BACMElement that is the base metaclass for all metaclasses representing business
entities and relationships. BusinessElement can be associated with ExternalRelationship and ExternalData.allowing the
architect to record a relationship to an external model or document. This metamodel structure is adapted from the
metamodel structure defined in the SysML V2 API and Services submission.

The BACM_Model package also defines BACM_Model as the root element in a BACM model. This element holds
associations to SMM MeasureLibraries, StrategyChoices and all BusinessElements.

7.2 Interpreting and Implementing the Metamodel (normative)

7.2.1 Interpreting the UML metamodel and generated XMI

UML visual modeling is used in this specification as a visual notation for an underlying graphical predicate model. The
underlying model can be given a concrete form in MOF, [RDF*] or a property graph language. Most of the semantics of
the metamodel (except for shortcuts and co-occurrence constraints) can be specified in [OWL].

Formatted: Heading 3

Commented [JR1]: BACM11-107

Business Architecture Core Metamodel (BACM), v1.0 11

An implementation of the specification must conform to the metamodel expressed in the normative XMI file that is part
of the specification. The diagrams in this document make use of stereotypes to eliminate detail that is present in the
normative XMI file and make the diagrams more readable. The following paragraphs and subsections in this document
explain how to interpret these stereotypes and how they are translated in the MOF-compliant, normative XMI file. In any
case where the diagram and the interpretation rules appear to disagree with the normative XMI, the normative XMI is the
authoritative source."

The normative, MOF-compliant XMI can be generated from the model represented in the class diagrams of this
specification in the following way:

7.2.1.1 Un-stereotyped class translation
An un-stereotyped class in a diagram becomes a class in MOF. When such a class inherits from “BusinessElement”, a
generalization association is added to specialize the “BACMPlainEntity” abstract class. These specializations are
presented in diagram Error! Reference source not found.7.3.1.3.

7.2.1.2 Un-stereotyped association translation
An un-stereotyped association between classes that specialize “BusinessElement” in a diagram becomes an association in
MOF, except when such an association is a leg association of an <<association>> stereotyped class – see below. All
other associations are translated into MOF associations.

7.2.1.3 <<class>> stereotyped binary association translation
A binary directed association in a diagram with a <<class>> stereotype is translated into a MOF class and two binary
MOF associations. Navigability is ignored and the implementation must provide bidirectional navigation for both the
generated, binary, directed MOF associations. The MOF class represents a relationship, and the two associations specify
the types of elements that can participate in the relationship. By convention, the cardinality of the association end
opposite the MOF class is 0..1, representing the notion that instances of the MOF class contain single valued properties
(the owned ends) that reference a single instance of the defined type. The cardinality of the association end at the MOF
class is the cardinality of the origin binary association. Since there are two associations, each one represents an end of the
origin association. To preserve directionality, a naming convention is used; the name of the MOF association
representing the starting association end is prefixed with “from_” and the name of the MOF association representing the
ending association end is prefixed with “to_”. The MOF class is given the name of the origin association. The generated
ownedEnds resulting from this translation are given names that are the names of the MOF association prefixed with
“src_” and “dst_” respectively to preserve the directionality of these associations (from “src” to “dst”). Thus, the origin
association “produces” (see Diagram Error! Reference source not found.7.3.2.1) is translated into a MOF class named
“produces” and two associations: “from_produces” with ownedEnds “src_from_produces” and “dst_from_produces”,
and “to_produces” with ownedEnds “src_to_produces” and “dst_to_produces”.

The generated MOF class specializes the “BACMBinDirRelation” abstract class and redefines the ownedEnds:
“from_bacm_entity”, “from_bacm_relation”, “to_bacm_entity” and “”to_bacm_relation”. This specialization and the
redefinitions are created in the translation and are not shown or described in this document. The specialization permits
MOF reflection to distinguish binary directed relationship instances from other types of instances.
The lifecycle semantics of the configuration of MOF class and MOF associations is equivalent to the lifecycle of the
origin association. In particular, if an instance coupled to the “dst_” prefixed ownedEnd is deleted, then the
corresponding instance of the class and the other association instance must also be deleted from the model.

7.2.1.4 <<association>> stereotyped origin class translation
A class in a diagram with an <<association>> stereotype is translated into a MOF class and each un-stereotyped
association whose starting ownedEnd is at this class is effectively a component of an n-ary relationship that is
represented by the class. The term “leg” is used in this document section to refer to such associations. Note that this
allows an origin <<association>> class to participate in other associations where it is the “dst” of such an association that
is often stereotyped with <<class>>. Such a configuration (i.e. an <<association>> stereotyped class and some number of
leg associations) is translated directly into MOF as a MOF class and MOF associations, but without the <<association>>
stereotype on the class. In this case, the class and leg association names remain unchanged in the MOF metamodel as do
the ownedEnd names. The ownedEnd cardinalities are also directly translated into MOF.
In the MOF translation, the MOF class specializes “BACMRelation”, allowing MOF reflection to distinguish that
instances of the MOF class represent n-ary relations and to identify the associations that represent legs of the
relationship.

The lifecycle semantics of the configuration of instances of such a MOF class and instances of its leg associations obey
the same rule as for the translated binary directed associations with the <<class>> stereotype. If an participating instance

 12 Business Architecture Core Metamodel (BACM), v1.0

that is referenced by the “dst” slot of the link instance of a leg association is deleted from the model, then the class
instance and all other leg association link instances must be deleted from the model.

7.2.1.5 <<shortcut>> stereotyped class and association translation
The basic translation is as if the class was stereotyped <<association>> or the association was stereotyped <<class>>. In
addition, the MOF class representing the <<class>> stereotyped association or the <<association>> stereotyped class
carries an ownedRule represented by an OpaqueExpression that is specified both in OCL and in a path language whose
interpretation is equivalent to the OCL representation. This OCL expression may be invoked by the business architecture
modeler to determine if additional model information is available that implies the existence of an instance of the
<<shortcut>> element. The shortcut mechanism is described in section 8.1 of this specification. The language type of the
alternative path expression is “BACMPathLanguage” and is intended for implementors who are based on RDF (the
expression can be directly translated into a SPARQL query) or a graph language.

7.2.1.6 <<individual>> stereotype translation
The specification has a single metaclass, theBusness with this stereotype. The concept represents the particular business
being modeled and its purpose is to designate Performers that belong_to this business (i.e. are employees or contract
workers). There should be at most one instance of this metaclass in a model. In translation to MOF, the stereotype is
removed and an OCL constraint is added that at most one instance has theBusiness as its metaclass.

7.2.2 Unique naming of associations

UML does not require that associations be uniquely named; as noted above, some UML associations are translated into
MOF as a class and association pattern and in this case the class names should be unique. Consequently, the UML model
adopts a suffixing convention to uniquely name associations. In this convention, the business meaning of the association
is defined by a prefix term followed by an underscore and a distinguishing number. All associations with the same prefix
should be understood as having the same general business meaning, even though the classes they associate may differ.

7.2.3 Model elements (instances) represent sets and individuals
A business architecture model represents entity and relational concepts of the business. These concepts typically
represent sets of things in a business. For example, an instance of a BusinessObject labeled as “part bin” represents
several hundred actual part bins used by the business. All the part bins can be represented by a single model element
because they have identical or similar properties and are used in identical or similar ways. The “part bin” model element
needs to describe these similar properties and the similar behaviors the part bins participate in.
Sometimes a business concept represents an individual thing. A metamodeling specification that represents individuals
will typically represent types (classes) to which the individuals belong. In the BACM metamodel, theBusiness is a
metaclass that should only ever have a single model element and that model element represents an identifiable, individual
business (i.e. the one being modeled). Normally, an instance of a BACM metaclass would be interpreted as a class (type).
However, in this case the instance of theBusiness is to be interpreted as an individual. Expression of this interpretation
requires two constraints:

1. The extent of the theBusiness metaclass is restricted to 0 or one model elements (instances).
2. The model element that is the sole instance of theBusiness represents an individual.

Because the second of these constraints involves model extents in the real world, it cannot be enforced except in a model
that has classes and individuals as disjoint domains. The BACM model does not have a domain of individuals and the
constraint can neither be represented in the model nor enforced. Other modeling languages, such as UAF and SysML, do
have classes and individuals as disjoint domains and such a constraint can be specified.
The first constraint can be expressed in OCL as a constraint that no more than one model element may have theBusiness
as a metaclass. The <<individual>> stereotype is used in the specification document to indicate this constraint. The OCL
that expresses the constraint is found in the normative MOF XMI that is part of this specification.
While it is theoretically possible to apply the <<individual>> stereotype to a binary or n-ary association, such a construct
is not used in this specification.

7.2.4 Meta-model association instances as association classes

The UML 2.5.1 specification allows N-ary associations to be class associations and distinguishes owned features as
pertaining to the class and owned ends as pertaining to the association (see [OMG UML] 11.5.3.2). Instances of meta-
model associations should be treated similarly, i.e. as a combination of a class and an association. Where applicable, the
semantics of class associations should be followed. The metamodel also makes use of metaclasses stereotyped as
<<association>>; instances of these metaclasses in M1 models should be implemented as class associations.

Business Architecture Core Metamodel (BACM), v1.0 13

Simple associations in the metamodel with a stereotype of <<class>> or <<shortcut>> should also be implemented at the
M1 model as binary, directed class associations.

7.2.5 Distinguished association names

These associations are exempt from requirement previously stated to implement associations as class-associations or a
similar representation permitting associations to have properties and participate in other associations. The meaning and
usage of these associations is defined here and not in the generated content of section 7.3. The distinguished association
names may consist of a prefix and a suffix separated by an underscore. The prefix designates the semantic interpretation,
while the suffix designates a distinct association.

7.2.5.1 aggregates

This association name identifies an association type that creates a collection semantic between instances of the associated
types. Duplicates may appear in the collection and the same instance may appear in more than one collection.
Associations with this name may appear multiple times in the diagrams and in the MOF model. They all have the same
semantic interpretation but are distinguished by the meta-classes they associate. In the BusinessElement diagram,
BusinessElements may aggregate other BusinessElements as long as the elements being aggregated have the same,
concrete metaclass (this is enforced by an OCL constraint). In the ValueStream diagram, an aggregates association
allows ValuePropositions to aggregate ValueItems. This aggregates association has the same semantic but is restricted in
the end types it allows.

7.2.5.2 generalizes
The instances of this association create a generalization semantic relationship between the meta-class instances at the
association ends. The association is restricted to 1) self-association of a concrete meta-class; 2) association between
concrete meta-classes such that one meta-class eventually specializes the other. In case 2), the instance of this association
may not contradict the generalization relationship between the meta-classes. The restriction to instances of the same
metaclass is defined in theBusinessElement diagram by an OCL constraint on BusinessElement, This relationship does
not appear in the OWL ontology as rdfs:subClassOf and rdfs:subPropertyOf predicates are present in both RDFS and
OWL.

7.2.5.3 owns

The instances of this association carry the semantic of exclusive ownership. The target of the association may not exist
separately from the source.

7.2.5.4 related

Some meta-classes stereotyped as associations should be realized in models as n-ary relations, whose arity is determined
by the architect. These meta-classes have a single association, related to a target meta-class. When realized in a model,
multiple instances of the related association may be created by the architect and given distinct labels to distinguish them.

7.2.6 N-ary Associations reified as Classes and Binary Associations

N-ary associations in this metamodel are represented as classes with an <<association>> stereotype. In the diagrams, the
n-ary association class may be represented either by a box or a diamond. The roles of the n-ary association are modeled
as binary associations between the n-ary association class and the classes allowed to participate in these roles (i.e. the
participants). However, the UML interpretation of this configuration is deficient in some important ways: 1) the UML
specification states that the cardinality specification of a role assumes that the other n-1 role entities are held constant; 2)
the specification is unclear about how to interpret optional role participants.

An n-ary association specified in this way in this specification should be interpreted in its extension as a set of n-tuples,
possibly with constraints between elements in each tuple and among the tuples, in addition to the requirement that the
entries in the kth position of the tuple are instances of the class participating in the kth role. This specification does not
determine an implementation, and implementors are free to number the roles of each association as they choose.

Likewise, the specification does not determine a technical language for the specification of constraints. In the
specification, prose is used to define constraints.

Commented [JR2]: BACM11-9

 14 Business Architecture Core Metamodel (BACM), v1.0

7.2.7 Application of business architecture frameworks with MEF

The Metamodel Extension Facility (MEF) provides for the definition and application of profiles and stereotypes that can
be applied to any MOF-based model elements. The implementation of MEF or its equivalent is a requirement.

It is recommended that architects encode conceptual frameworks, such as the Value Proposition Canvas [VPC] in a MEF
profile and use the stereotypes to characterize model elements, such as ValueItems and CustomerSegments according to
the principles of the Value Proposition Canvas by applying stereotypes, such as “pains”, “gains” and “uses” to the model
elements.

7.3 BACM Metamodel (Normative)
The following material describes the classes and associations that comprise the BACM metamodel:

7.3.1 Package: BACM_Model

7.3.1.1 Diagram: BACM_Element

The BACM_Element diagram defines abstract syntax for the BACMElement and for Annotation.
BACMElement is an abstract class that provides annotation, description and name to all classes used to represent concepts
of the business being modeled.
The BusinessElement abstract class provides a boolean feature allowing modelers to specify whether an instance is
abstract or concrete. BusinessElement also provides an ExternalRelationship that allows the modeler to specify
ExternalData that is associated with the BusinessElement

BACM_Model

A

BACMElement

+ description: String
+ name: String

BusinessElement

+ abstract: Boolean

Annotation

+ tag: String
+ value: String

ExternalRelationship

+ language: String
+ specification: String

ExternalData

+ resourceIdentifier: IRI [0..1]

«dataType»
IRI

0..1 generalizes

0..*

+externalRelationshipEnd 1..*

+externalDataEnd 1..*

+externalRelationshipEnd

1..*

+elementEnd

1..*

0..*

annotates

1

Business Architecture Core Metamodel (BACM), v1.0 15

7.3.1.2 Diagram: BACM_Entities

The BACM_Entities diagram displays the specializations of BACMPlainEntity as model classes. These specializations
are not transformed in the production of the MOF-compliant XMI model

7.3.1.3 Diagram: BACM_Model

The BACM_Model diagram defines abstract syntax for BACM_Model, whose instance is the root element for a BACM
model.
The BACM_Model element is a container for all BusinessElements in the model.
The BACM_Model is associated with a single StrategyChoices (which may contain several alternative StrategyModels)

BACMPlainEntity

Capability::
AbstractCapability

Capability::
CapabilityImplementation

Capability::Outcome Organization::
Jurisdiction

Strategy::
StrategyChoices

AbstractAction

Capability::
BusinessObject

Capability::
InformationItem

BACM_Model

A

SMM::
MeasureLibrary

BusinessElement

+ abstract: Boolean

SMM::Scope

SMM::SmmModel

SMM::
Measurement

Strategy::
StrategyChoices

BACMElement

+ description: String
+ name: String

1

bacm_element

0..*

1

strategy_choices

0..*

0..1

measure_library

0..*

0..*

element

+measurand

1..*

0..*

class

0..1

0..1

smm_model

0..1

 16 Business Architecture Core Metamodel (BACM), v1.0

Finally, the BACM_Model contains an SMMModel element and a selected set of SMM MeasureLibraries. The
integration with SMM allows any instance of BusinessElement to be the measurand of a SMM Measurement. The
BACM specification effectively imports at least the SMM 1.2 specification.

7.3.1.4 Diagram: BACM_Model

The package diagram shows the inclusion relationships between the BACM package and the sub-packages that contain
the metamodel classes and associations. The packaging is define for convenience in managing the metamodel and should
not be construed as defining domains of business architecture concepts.

BACM_Model

+ AbstractAction
+ AbstractThing
+ BACMBinDirRelation
+ BACMEntity
+ BACMPlainEntity
+ BACMRelation
+ BACMShortcut
+ ExternalData
+ ExternalRelationship
+ Annotation
+ BACM_Model
+ BACMElement
+ BusinessElement
+ IRI

(from BACM)

BACM

+ Capability
+ Customer
+ Organization
+ Process
+ Product
+ Strategy
+ BACM_Model
+ SMM

(from Model)

Capability

+ isAbout
+ needs_0
+ produces_0
+ AbstractBusinessObject
+ AbstractCapability
+ BusinessObject
+ Capability
+ CapabilityBehavior
+ CapabilityImplementation
+ InformationItem
+ ObjectRelation
+ Outcome
+ OutcomeRelation
+ PerformerRole
+ ResourceRole
+ Role

(from BACM)

Customer

+ JSTP
+ ValueCharacteristic_1
+ Customer
+ CustomerJourney
+ CustomerJourneyStage
+ CustomerSegment
+ Touchpoint
+ ValueCharacteristic
+ ValueItem
+ ValueProposition
+ ValueStream
+ ValueStreamStage

(from BACM)

Organization

+ Jurisdiction
+ LegalEntity
+ OrgUnit
+ Performer
+ Responsible
+ System

(from BACM)

Process

+ VSVSS
+ AbstractProcess
+ Activity
+ Process

(from BACM)

Product

+ APCICB
+ ContractRelation
+ MerchandiseOffering
+ MerchandiseOutcome
+ Offering
+ OutsourcedServiceOffering
+ OutsourcedServiceOutcome
+ ProcurementOffering
+ ProcurementOutcome
+ ProductOffering
+ ServiceOffering
+ ServiceOutcome

(from BACM)

Strategy

+ Directive
+ AbstractOperatingModel
+ AbstractValueModel
+ Change
+ Ends
+ Initiative
+ Means
+ StrategyChoices
+ StrategyModel

(from BACM)

SMM

+ MeasureLibrary
+ Measurement
+ Scope
+ SmmModel

(from BACM)

Business Architecture Core Metamodel (BACM), v1.0 17

7.3.1.5 Diagram: BusinessElement

The BusinessElement diagram defines abstract syntax for BusinessElement, the abstract base class for all metaclasses
whose instances represent business entities. Refer to the normative XMI file for details.
This diagram also defines specializations of BusinessElement that are used to support the transformation of the XMI for
this model to a MOF compliant XMI. These specializations are BACMEntity, BACMRelation, BACMPlainEntity,
BACMBinDirRelation and BACMShortcut.
BACMPlainEntity is the generalization of all BACM classes representing concepts of the business being modeled that
are not stereotyped and not transformed in the production of MOF-compliant XMI (see the BACM_Entities diagram and
the normative MOF XMI file for details).

BACMElement

+ description: String
+ name: String

BusinessElement

+ abstract: Boolean

constraints
{self->oclType = self.owner->oclType()}
{self->oclType() = self.aggregator->oclType()}
{self->oclType() = self.more_general->oclType()}

BACMRelationBACMPlainEntity

BACMBinDirRelation

BACMShortcut

+ constr: String [1..*]

+ hasDetail(): Boolean

BACMEntity

+to_bacm_relation

0..*
{redefines bacm_relation}

+to_bacm_entity

1..*
{redefines bacm_entity}

+aggregator
0..*

aggregates_0

+aggregated
0..*

+from_bacm_relation

0..*
{redefines bacm_relation}

+from_bacm_entity

1..*
{redefines bacm_entity}

+bacm_relation

0..*

+bacm_entity

1..*

+owner
0..1

owns_0

+owned
0..*

+less_general
0..*generalizes_0

+more_general
0..*

 18 Business Architecture Core Metamodel (BACM), v1.0

7.3.1.6 Diagram: DisjointElements

The BACM metamodel is based on SMOF, not MOF. Consequently, the assumption of disjointness of concrete
classifiers does not hold and explicit assertions of disjointness must be made. The DisjointElements diagram asserts that
the set of elements shown are pairwise disjoint (i.e. no object can have two or more of these classes as its metaclass).

BACMPlainEntity
BACMRelation

{disjoint} ExternalData

+ resourceIdentifier: IRI [0..1]

ExternalRelationship

+ language: String
+ specification: String

Annotation

+ tag: String
+ value: String

BACM_Model

A

SMM::
MeasureLibrary

SMM::
Measurement

SMM::Scope

SMM::SmmModel

Business Architecture Core Metamodel (BACM), v1.0 19

7.3.1.7 Diagram: DisjointEntities

The BACM metamodel is based on SMOF, not MOF. Consequently, the assumption of disjointness of concrete
classifiers does not hold and explicit assertions of disjointness must be made. The DisjointEntities diagram asserts that
the set of elements shown are pairwise disjoint (i.e. no object can have two or more of these classes as its metaclass).

7.3.1.8 Class Name: AbstractAction Class Type: Class Stereotype:
Base Classes: BACMPlainEntity
AbstractAction is used to classify entities that should be disjoint from Capability, AbstractResult and AbstractThing. It is
not used for any other purpose in the metamodel.

7.3.1.8.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractAction [] Target Class: BACMPlainEntity []

Association Name: Association Type: Generalization Stereotype:
 Source Class: CustomerJourneyStage [] Target Class: AbstractAction []

AbstractAction

{disjoint}

Capability::
CapabilityBehavior

Capability::
AbstractBusinessObject

Process::
AbstractProcess

AbstractThing

Customer::
CustomerJourney Customer::

CustomerJourneyStage
Customer::
Touchpoint

Capability::Outcome

Customer::
Customer

Capability::
Capability

Customer::
ValueStream

Customer::
ValueStreamStage

 20 Business Architecture Core Metamodel (BACM), v1.0

Association Name: Association Type: NoteLink Stereotype:
 Source Class: Constraint [] Target Class: AbstractAction []

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractProcess [] Target Class: AbstractAction []

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueStream [] Target Class: AbstractAction []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Touchpoint [] Target Class: AbstractAction []

Association Name: Association Type: Generalization Stereotype:
 Source Class: CapabilityBehavior [] Target Class: AbstractAction []

Association Name: Association Type: Generalization Stereotype:
 Source Class: CustomerJourney [] Target Class: AbstractAction []

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueStreamStage [] Target Class: AbstractAction []

7.3.1.9 Class Name: AbstractThing Class Type: Class Stereotype:
Base Classes:
AbstractThing is used to classify entities that should be disjoint from Capability, AbstractResult and AbstractAction . It is
not used for any other purpose in the metamodel.

7.3.1.9.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: Customer [] Target Class: AbstractThing []

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractBusinessObject [] Target Class: AbstractThing []

Association Name: Association Type: NoteLink Stereotype:
 Source Class: Constraint [] Target Class: AbstractThing []

7.3.1.10 Class Name: Annotation Class Type: Class Stereotype:
Base Classes: BACMElement
Definition: Annotation provides the modeler an ability to associate tag/value pairs to any BACMElement in a BACM
model.
Usage: Annotations may be annotated. Annotations may also be specialized in a BACM model to add additional
attributes.

Business Architecture Core Metamodel (BACM), v1.0 21

7.3.1.10.1 Attributes, Methods and Connectors:

Attribute Name: tag Attribute Type: String
Definition: The property identifies the intended meaning of the value property.

Attribute Name: value Attribute Type: String
Definition: The value property holds the value of the annotation. The meaning of this value is provided by
the tag property.

Association Name: generalizes Association Type: Association Stereotype:
 Source Class: Annotation [0..1] Target Class: Annotation [0..*]

Association Name: annotates Association Type: Association Stereotype:
 Source Class: Annotation [0..*] Target Class: BACMElement [1]
 Definition: The annotates association links an Annotation to the BACMElement being annotated.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Annotation [] Target Class: BACMElement []

Association Name: generalizes Association Type: Association Stereotype:
 Source Class: Annotation [0..1] Target Class: Annotation [0..*]

Association Name: Association Type: NoteLink Stereotype:
 Source Class: Constraint [] Target Class: Annotation []

7.3.1.11 Class Name: BACM_Model Class Type: Class Stereotype:
Base Classes: BACMElement
Definition: The BACMModel represents the root element of a BACM model (i.e. the element from which a tool or
person can navigate to every other element in the model)
Usage: A single instance of this class must exist in an instance model.

7.3.1.11.1 Attributes, Methods and Connectors:

Association Name: measure_library Association Type: Association Stereotype:
 Source Class: BACM_Model [0..1] Target Class: MeasureLibrary [0..*]
 Definition: The measure_library association links an SMM measure library to the BACM model.

Association Name: strategy_choices Association Type: Association Stereotype:
 Source Class: BACM_Model [1] Target Class: StrategyChoices [0..*]
 Definition: strategy_choices links a set of StrategyChoices to a BACMModel.
Usage: To facilitate reuse of the BACM model in different strategy situations, multiple StrategyChoices
may be associated with a BACMModel.

Association Name: Association Type: Generalization Stereotype:
 Source Class: BACM_Model [] Target Class: BACMElement []

Association Name: bacm_element Association Type: Association Stereotype:
 Source Class: BACM_Model [1] Target Class: BACMElement [0..*]
 Definition: bacm_element links the BACM_Model to all of the BACMElements contained in a model.
Usage: This association should be interpreted to include all n-ary associations, associations stereotyped
<class>> and classes stereotyped <<association>>. The translation of this model to MOF creates classes

 22 Business Architecture Core Metamodel (BACM), v1.0

representing these types of associations that are not allowed in MOF and these classes specifically inherit
from BusinessElement.
This association is exclusive; BACMElements are not allowed to be shared in different BACM_Models.

Association Name: smm_model Association Type: Association Stereotype:
 Source Class: BACM_Model [0..1] Target Class: SmmModel [0..1]
 Definition: The smm_model association links an SMM model to the BACM model.

Association Name: Association Type: NoteLink Stereotype:
 Source Class: Constraint [] Target Class: BACM_Model []

7.3.1.12 Class Name: BACMBinDirRelation Class Type: Class Stereotype:
Base Classes: BACMRelation
Definition: BACMBinDirRelation is an abstract class that generalizes the classes resulting from the transformation of
model associations stereotyped as <<class> or <<shortcut>>. It specializes BACMRelation to represent binary directed
relations and redefines the association between BACMRelation and BACMEntity to designate the start
(from_bacm_entity) and end (to_bacm_entity) of the relation direction

7.3.1.12.1 Attributes, Methods and Connectors:

Association Name: BACMRelToEntity Association Type: Association Stereotype:
 Source Class: BACMBinDirRelation [0..*] Target Class: BACMEntity [1..*]

Association Name: BACMRelFromEntity Association Type: Association Stereotype:
 Source Class: BACMBinDirRelation [0..*] Target Class: BACMEntity [1..*]

Association Name: Association Type: Generalization Stereotype:
 Source Class: BACMBinDirRelation [] Target Class: BACMRelation []

7.3.1.13 Class Name: BACMElement Class Type: Class Stereotype:
Base Classes:
Definition: The BACMElement represents the class of all elements in a BACM model. It provides elements with a name
and description and allows elements to be annotated.
Usage: BACMElement is an abstract class and cannnot be instantiated in a model.

7.3.1.13.1 Attributes, Methods and Connectors:

Attribute Name: description Attribute Type: String
Definition: The description property provides a description of the BACMElement.
Usage: Typically the description states what business concept or entity the BACMElement is intended to
represent.

Attribute Name: name Attribute Type: String
Definition: The name property provides a term that indicates what the BACMElement represents in the
BACM model.
Usage: The description property should provide a more detailed description of the represented business
concept or entity.

Association Name: Association Type: Generalization Stereotype:

Business Architecture Core Metamodel (BACM), v1.0 23

 Source Class: ExternalRelationship [] Target Class: BACMElement []

Association Name: annotates Association Type: Association Stereotype:
 Source Class: Annotation [0..*] Target Class: BACMElement [1]
 Definition: The annotates association links an Annotation to the BACMElement being annotated.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Annotation [] Target Class: BACMElement []

Association Name: Association Type: Generalization Stereotype:
 Source Class: BACM_Model [] Target Class: BACMElement []

Association Name: bacm_element Association Type: Association Stereotype:
 Source Class: BACM_Model [1] Target Class: BACMElement [0..*]
 Definition: bacm_element links the BACM_Model to all of the BACMElements contained in a model.
Usage: This association should be interpreted to include all n-ary associations, associations stereotyped
<class>> and classes stereotyped <<association>>. The translation of this model to MOF creates classes
representing these types of associations that are not allowed in MOF and these classes specifically inherit
from BusinessElement.
This association is exclusive; BACMElements are not allowed to be shared in different BACM_Models.

Association Name: Association Type: Generalization Stereotype:
 Source Class: BusinessElement [] Target Class: BACMElement []

Association Name: Association Type: Generalization Stereotype:
 Source Class: ExternalData [] Target Class: BACMElement []

7.3.1.14 Class Name: BACMEntity Class Type: Class Stereotype:
Base Classes: BusinessElement
Definition: BACMEntity is an abstract class that is characterized by participating in relationships defined by
BACMRelation and BACMBinDirRelation. BACMEntity is also a generalization of all classes intended to represent
concepts of the modeled business. See the normative XMI file for details.
Usage: Both BACMRelation and BACMBinDirRelation are specializations of BACMEntity allowing these relationships
to participate in other relationships

7.3.1.14.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: BACMEntity [] Target Class: BusinessElement []

Association Name: BACMRelToEntity Association Type: Association Stereotype:
 Source Class: BACMBinDirRelation [0..*] Target Class: BACMEntity [1..*]

Association Name: Association Type: Generalization Stereotype:
 Source Class: BACMPlainEntity [] Target Class: BACMEntity []

Association Name: BACMRelFromEntity Association Type: Association Stereotype:
 Source Class: BACMBinDirRelation [0..*] Target Class: BACMEntity [1..*]

 24 Business Architecture Core Metamodel (BACM), v1.0

Association Name: Association Type: Generalization Stereotype:
 Source Class: BACMRelation [] Target Class: BACMEntity []

Association Name: BACMRelEntity Association Type: Association Stereotype:
 Source Class: BACMRelation [0..*] Target Class: BACMEntity [1..*]

7.3.1.15 Class Name: BACMPlainEntity Class Type: Class Stereotype:
Base Classes: BACMEntity
Definition: BACMPlainEntity is an abstract class disjoint from BACMRelation that classifies all BACM classes
representing concepts of the modeled business that are not specializations of BACMRelation.
Usage: BACMPlainEntity and BACMRelation distinguish classes intended to represent entities from those intended to
represent associations.

7.3.1.15.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: BACMPlainEntity [] Target Class: BACMEntity []

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractAction [] Target Class: BACMPlainEntity []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Jurisdiction [] Target Class: BACMPlainEntity []

Association Name: Association Type: Generalization Stereotype:
 Source Class: CapabilityImplementation [] Target Class: BACMPlainEntity []

Association Name: Association Type: Generalization Stereotype:
 Source Class: BusinessObject [] Target Class: BACMPlainEntity []

Association Name: Association Type: Generalization Stereotype:
 Source Class: InformationItem [] Target Class: BACMPlainEntity []

Association Name: Association Type: Generalization Stereotype:
 Source Class: StrategyChoices [] Target Class: BACMPlainEntity []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Outcome [] Target Class: BACMPlainEntity []

Association Name: Association Type: NoteLink Stereotype:
 Source Class: Constraint [] Target Class: BACMPlainEntity []

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractCapability [] Target Class: BACMPlainEntity []

Business Architecture Core Metamodel (BACM), v1.0 25

7.3.1.16 Class Name: BACMRelation Class Type: Class Stereotype:
Base Classes: BACMEntity
Definition: BACMRelation is an abstract class that models n-ary relations with features and the ability to participate in
other specializations and instances of this class as bacm_entity ends.
Usage: BACMRelation is the generalization of all classes resulting from the transformation of <<association>>
stereotyped classes. The model associations determined to be legs of the <<association>> stereotyped classes are
transformed to specialize the association with ends bacm_entity and bacm_relation.

7.3.1.16.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: BACMRelation [] Target Class: BACMEntity []

Association Name: BACMRelEntity Association Type: Association Stereotype:
 Source Class: BACMRelation [0..*] Target Class: BACMEntity [1..*]

Association Name: Association Type: NoteLink Stereotype:
 Source Class: Constraint [] Target Class: BACMRelation []

Association Name: Association Type: Generalization Stereotype:
 Source Class: BACMBinDirRelation [] Target Class: BACMRelation []

7.3.1.17 Class Name: BACMShortcut Class Type: Class Stereotype:
Base Classes:
Definition: BACMShortcut is an abstract class inherited by the transformation of all metamodel classes stereotyped as
<<shortcut> and all generated classes that result from the transformation of model classes stereotyped as <<shortcut>>. It
declares a string (constr) that defines the shortcut constraint and a boolean valued function (hasDetail) that evaluates the
constraint string and determines whether it is true or false.
Usage: In the normative XMI, the constraint string defined in the model is represented as an OCL function that
determines if there is a specified path between the instances at the ends of the association. The modeler is allowed to use
the constraint mechanism to define shortcut associations within the instance model. In this case, the constr attribute will
contain the constraint string and the modeler must provide an implementation of the hasDetail function that evaluates the
string and returns a boolean result.

7.3.1.17.1 Attributes, Methods and Connectors:

Attribute Name: constr Attribute Type: String

Method Name: hasDetail

7.3.1.18 Class Name: BusinessElement Class Type: Class Stereotype:
Base Classes: BACMElement
Definition: BusinessElement represents a concept or entity that existing or is planned to exist in the business.
Usage: BusinessElement is an abstract base class for all classes whose instances represent business entities.

 26 Business Architecture Core Metamodel (BACM), v1.0

7.3.1.18.1 Attributes, Methods and Connectors:

Attribute Name: abstract Attribute Type: Boolean
Definition: The abstract property of a BusinessElement has a boolean value and the true value means that
the represented business concept is not a tangible entity.
Usage: This property allows a business architect to create a framework through generalization at the M1
level that prevents instances marked as abstract from being included in the instance of the M1 model that is
also at the M1 level.

Association Name: generalizes_0 Association Type: Association Stereotype:
 Source Class: BusinessElement [0..*] Target Class: BusinessElement [0..*]
 Definition: The generalizes association classifies links with the semantic that the less_general end of the
link is less general than the more_general end of the link.
Usage: Instances of this association are used to create a generalization relationship between instances.
Constraint: The generalizes association is restricted to instances of the same type (see BusinessElement).

Association Name: owns_0 Association Type: Association Stereotype:
 Source Class: BusinessElement [0..1] Target Class: BusinessElement [0..*]
 Definition: The owns association instance defines an undifferentiated and exclusive relationship between
BusinessElements (in contrast with aggregates which is a non-exclusive relationship).
Usage: The owns association instance defines an undifferentiated and exclusive relationship between
instances of BusinessElement allowing a BusinessElement instance to be a container of other
BusinessElement instances.
Constraint: The owns association is restricted to BusinessElement concrete subtypes that are of the same
type (see BusinessElement).

Association Name: aggregates_0 Association Type: Association Stereotype:
 Source Class: BusinessElement [0..*] Target Class: BusinessElement [0..*]
 Definition: The aggregates association instance defines an undifferentiated and non-exclusive relationship
between BusinessElements (in contrast with owns which is an exclusive relationship).
Usage: The aggregates association instance defines an undifferentiated and non-exclusive relationship
between instances of BusinessElement allowing a BusinessElement instance to be a collection of other
BusinessElement instances.
Constraint: The aggregates association is restricted to BusinessElement concrete subtypes that are of the
same type (see BusinessElement).

Association Name: Association Type: Generalization Stereotype:
 Source Class: BusinessElement [] Target Class: BACMElement []

Association Name: class Association Type: Association Stereotype:
 Source Class: Scope [0..*] Target Class: BusinessElement [0..1]
 Definition: The class association provides the SMM::Scope element with a scoping reference to one or
more BusinessElements.

Association Name: element Association Type: Association Stereotype:
 Source Class: Measurement [0..*] Target Class: BusinessElement [1..*]
 Definieion: The measurand association specializes the SMM::measurand association to associate a
SMM::Measurement with a BusinessElement.
Usage: Any n-ary association, class stereotyped as <<association>> or association stereotyped as <<class>>
should be treated as a BusinessElement target of this association.

Association Name: BusEleExtRel Association Type: Association Stereotype:
 Source Class: ExternalRelationship [1..*] Target Class: BusinessElement [1..*]

Association Name: nature Association Type: Association Stereotype:

Business Architecture Core Metamodel (BACM), v1.0 27

 Source Class: Responsible [0..*] Target Class: BusinessElement [0..*]
 Definition: The nature leg of the Responsible designates a BusinessElement that helps define the scope
and/or nature of the Responsible association.

Association Name: generalizes_0 Association Type: Association Stereotype:
 Source Class: BusinessElement [0..*] Target Class: BusinessElement [0..*]
 Definition: The generalizes association classifies links with the semantic that the less_general end of the
link is less general than the more_general end of the link.
Usage: Instances of this association are used to create a generalization relationship between instances.
Constraint: The generalizes association is restricted to instances of the same type (see BusinessElement).

Association Name: owns_0 Association Type: Association Stereotype:
 Source Class: BusinessElement [0..1] Target Class: BusinessElement [0..*]
 Definition: The owns association instance defines an undifferentiated and exclusive relationship between
BusinessElements (in contrast with aggregates which is a non-exclusive relationship).
Usage: The owns association instance defines an undifferentiated and exclusive relationship between
instances of BusinessElement allowing a BusinessElement instance to be a container of other
BusinessElement instances.
Constraint: The owns association is restricted to BusinessElement concrete subtypes that are of the same
type (see BusinessElement).

Association Name: aggregates_0 Association Type: Association Stereotype:
 Source Class: BusinessElement [0..*] Target Class: BusinessElement [0..*]
 Definition: The aggregates association instance defines an undifferentiated and non-exclusive relationship
between BusinessElements (in contrast with owns which is an exclusive relationship).
Usage: The aggregates association instance defines an undifferentiated and non-exclusive relationship
between instances of BusinessElement allowing a BusinessElement instance to be a collection of other
BusinessElement instances.
Constraint: The aggregates association is restricted to BusinessElement concrete subtypes that are of the
same type (see BusinessElement).

Association Name: Association Type: Generalization Stereotype:
 Source Class: BACMEntity [] Target Class: BusinessElement []

7.3.1.19 Class Name: ExternalData Class Type: Class Stereotype:
Base Classes: BACMElement
Definition: ExternalData is a class that wraps an IRI. An ExternalRelationship instance may be associated with multiple
ExternalData instances.

7.3.1.19.1 Attributes, Methods and Connectors:

Attribute Name: resourceIdentifier Attribute Type: IRI

Association Name: Association Type: Generalization Stereotype:
 Source Class: ExternalData [] Target Class: BACMElement []

Association Name: externalRelData Association Type: Association Stereotype:
 Source Class: ExternalRelationship [1..*] Target Class: ExternalData [1..*]

Association Name: Association Type: NoteLink Stereotype:
 Source Class: Constraint [] Target Class: ExternalData []

 28 Business Architecture Core Metamodel (BACM), v1.0

7.3.1.20 Class Name: ExternalRelationship Class Type: Class Stereotype:
Base Classes: BACMElement
Definition: ExternalRealtionship represents a relationship between a BusinessElement in a provider tool or repository to
ExternalData in another tool or Repository. The external data may be a BusinessElement (or a linked collection of
BusinessElements) or some other element (or linked collection of elements) from a model that is not a BACM model.
The IRI must identify a resource to which the specification String can be applied to identify the element (or linked set of
elements) in that resource. The language attribute of the ExternalRelationship identifies the language of the specification
String.
Note that BusinessElement classifies all BACM classes and associations that are intended to represent business concepts
(as opposed to model concepts or analysis concepts).
Usage: The tool provider may elect to provide services to dereference the ExternalData and apply the specification to
allow the architect to view and interact with the results. However, a compliant implementation may just implement,
import and export the ExternalRelationship, the ExternalData and the links connecting them and connecting the
ExternalRelationship to the BusienssElement.
If the language string is the string "Natural" or a string that identifies a natural language. then the specification Strong
will be a natural language description of the alignment mapping

7.3.1.20.1 Attributes, Methods and Connectors:

Attribute Name: language Attribute Type: String

Attribute Name: specification Attribute Type: String

Association Name: Association Type: Generalization Stereotype:
 Source Class: ExternalRelationship [] Target Class: BACMElement []

Association Name: BusEleExtRel Association Type: Association Stereotype:
 Source Class: ExternalRelationship [1..*] Target Class: BusinessElement [1..*]

Association Name: externalRelData Association Type: Association Stereotype:
 Source Class: ExternalRelationship [1..*] Target Class: ExternalData [1..*]

Association Name: Association Type: NoteLink Stereotype:
 Source Class: Constraint [] Target Class: ExternalRelationship []

7.3.1.21 Class Name: IRI Class Type: DataType Stereotype:
Base Classes:
Definition: IRI is a UML DataType entity that represents an Internationalized Resource Identifier (IRI). Instances of IRI
will contain a single IRI as a character string.

7.3.1.21.1 Attributes, Methods and Connectors:

Business Architecture Core Metamodel (BACM), v1.0 29

7.3.2 Package: Capability

7.3.2.1 Diagram: Capability

The Capability diagram defines abstract syntax for Capability and CapabilityBehavior classes. Both metaclasses inherit
from AbstractCapability which allows their instances to produce and need Outcomes and to be informed by
InformationItems (e.g. a decision or action associated with the Capability is influenced by the InformationItems).

While Capability represents an ability to produce an Outcone, CapabilityBehavior represents a particular way, process or
manner of producing that Outcome. A CapabilityBehavior that delivers a Capability must produce and/or need Outcomes
that are equivalent to, specialize, or contribute parts to the Outcomes produced by the Capability. A CapabilityBehavior
may produce and need Outcomes not needed or produced by the Capability it delivers.

Capabilities may be decomposed by the owns_0 association creating a strict hierarchy (i.e. a subCapability may not have
multiple owners)
Where a Outcome is obvious, the scopes shortcut association may be used to omit it from the model. The modeler may
later elect to define FlowOutcomes that are consistent with the possess shortcut association constraint.

A CapabilityImplementation represents actual or planned roles and asignees to those roles (see Roles diagram)
implementing a Capability, CapabilityBehavior and/or AbstractProcess. The modeler may also specify Roles and
assignments to these Roles that are consistent with the constraint defined in the implements shortcut association.
See also the Process diagram in the Process package.

Capability

constraints
{self.aggregator->selectByKind(Capability)->isEmpty()}
{self.more_general->selectByKind(Capability)->isEmpty()}

OutcomeAbstractCapability

CapabilityBehavior

CapabilityImplementation

BusinessObject

InformationItem

AbstractBusinessObject

needs_0

+ non_Initial: Boolean

produces_0

+ non_final: Boolean

0..*

informs_0

«class»

0..*

1

prod_0_tgt
1

1

needs_0_tgt

1

0..*

delivers
«class»

0..1

0..*

realizedAs

«shortcut»

0..*

0..*
«shortcut»
depends_0

0..*

0..*

recordedAs

«class»

0..*

1

needs_0_src

1

0..*

implements_5
«class»

0..*

0..1

scopes
«shortcut»

0..1
0..*

stateOf

«class»

0..*

1

prod_0_src1

0..*

realize

«class»0..*

Commented [JR3]: BACM11-89
BACM11-81
BACM11-98

 30 Business Architecture Core Metamodel (BACM), v1.0

7.3.2.2 Diagram: Outcome

The Outcome diagram dhows abstract syntax details for Outcomes and AbstractBusinessObjects.

The isAbout relationship is shown as a specialization of ObjectRelation.

Concepts from the Strategy package: Change, Ends, Means and Initiative are specializations of InformationItem. These
strategy concepts are ideas or potentially documents that describe the strategy. The strategy concepts come to exist as
Outcomes produced by (strategy) Capabilities define the stateOf the strategy concepts to exist.

Outcome

BusinessObject InformationItem

ObjectRelation

OutcomeRelation

isAbout

AbstractBusinessObject

Strategy::Change Strategy::Ends Strategy::Means Strategy::Initiative

0..*

stateOf

«class»

0..*

+rel
0..*

{subsets
rel}

bus_obj

+obj 1
{subsets

obj}

0..*

recordedAs

«class»

0..*

+rel

0..*
{subsets

rel}

info_item+obj

1
{subsets

obj}

0..*

implements_4

«class»0..*

0..*

realizedAs

«shortcut»

0..*

0..*

related_0

0..*

0..*

realize

«class» 0..*

0..*

implements_2

«class» 0..*

+rel

0..*

related_1

+obj1

Commented [JR4]: BACM11-64
BACM11-81

Business Architecture Core Metamodel (BACM), v1.0 31

7.3.2.3 Diagram: Roles

The Roles diagram defines the abstract syntax for roles and role assignments. Roles define how Performers and
AbstractBusinessObjects participate in AbstractCapabilities and AbstractProcesses.

The Role acts as a ternary association that represents assignments of Performers and AbstractBusinessObjects to
PerformerRoles and ResourceRoles that are role associated to AbstractCapabilities and AbstractProcesses. The same
Role may be associated with an AbstractProcess and an AbstractCapability. A Role must be associated with either an
AbstractProcess or an AbstractCapability. A Role need not have an assignedTo leg.

A CapabilityImplementation represents a an aggregation of ResourceRoles and PerformerRoles. A
CapabilityImplementation may also aggregate the Performers and AbstractBusinessObjects assignedTo those roles. The
abstract syntax does not prevent the aggregation of unrelated Performers and AbstractBusinessObjects, but the
metamodel assigns no meaning to this case. A CapabilityImplementation may be empty and contain an annotation
suggesting future contents.

Role

PerformerRole
ResourceRole

Organization::Performer

CapabilityImplementation

AbstractCapability

Process::
AbstractProcess

Organization::
OrgUnit

AbstractBusinessObject

0..*

ofProcess

0..1

0..*

follows_1

0..*

0..*

implements_0

«shortcut»
0..*

0..*

belongsTo_1

«class»

0..*

0..*

aggregates_2

0..*

0..*

implements_7

0..*

0..*

aggregates_1

0..*

0..*

staffs

«shortcut»

0..*

0..*

implements_5

«class»

0..*

0..*
assignTo_1

0..1

0..*

belongsTo_2

«class»
0..*

0..*

ofCapability

0..1

0..*

implements_6

«class»

0..*

0..*
assignTo_2

0..1

Commented [JR5]: BACM11-66
BACM11-77
BACM11-78
BACM11-79
BACM11-91

 32 Business Architecture Core Metamodel (BACM), v1.0

The Implements_5 class association allows a CapabilityImplementation to be associated with a Capability and/or a
CapabilityBehavior.
The Implements_6 class association allows a CapabilityImplementation to be associated with a Process and/or an
Activity.
The staffs shortcut association represents a commitment or the fact that some of the Performers and
AbstractBusinessObjects that belongTo the OrgUnit are/will be assignTo the Roles of the CapabilityImplementation.

7.3.2.4 Class Name: AbstractBusinessObject Class Type: Class Stereotype:
Base Classes: AbstractOperatingModel, AbstractThing
Definition: AbstractBusinessObject represents BusinessObjects or InformationItems.
Usage: AbstractBusinessObject cannot be instanced or specialized in a business arcitecture model. The
AbstractBusinessObject metaclass has two disjoint, concrete subclasses:
 BusinessObject - instances represent tangible things of importance to the business.
 InformationItem - instances represent intangible (mental) concepts important to the business.
The AbstractBusinessObject metaclass provides its concrete specializations with the state_of association to Outcomes
and the scopes association to Capability and CapabilityBehavior.
AbstractBusinessObject also provides for ObjectRelations that may relate any collection of BusinessObjects and
InformationItems.

7.3.2.4.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractBusinessObject [] Target Class: AbstractThing []

Association Name: belongsTo_2 Association Type: Association Stereotype: «class»
 Source Class: AbstractBusinessObject [0..*] Target Class: OrgUnit [0..*]
 Definition: The relationship belongsTo_2 represents that a AbstractBusinessObject belongs to OrgUnit.
This association has the semantics of agggregation.

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractBusinessObject [] Target Class: AbstractOperatingModel []

Association Name: scopes Association Type: Association Stereotype: «shortcut»
 Source Class: AbstractBusinessObject [0..1] Target Class: AbstractCapability [0..1]
 Definition: The scopes shortcut association allows a Capability and/or CapabilityBehavior to be associated
with some BusinessObjects and.or an InformationItems without defining Outcomes produced or needed by
the Capability and/or CapabilityBehavior.
Usage: The modeler may elect to subsequently define such Outcomes, which must be consistent with the
constraint specified by the scopes shortcut association.
Constraint: Let BO1 be a BusinessObject and C1 be a Capability that are associated by scopes s1. Then
there should exist in the model an Outcome O1 such that C1 produce_0s O1 and O1 is a stateOf BO1.

Association Name: aggregates_2 Association Type: Association Stereotype:
 Source Class: CapabilityImplementation [0..*] Target Class: AbstractBusinessObject [0..*]
 Definition: The aggregates_2 relationship between CapabilityImplementation and AbstractBusinessObject
represents that a AbstractBusinessObject is incorporated non-exclusively into a CapabilityImplementation.

Association Name: object_1 Association Type: Association Stereotype: «shortcut»
 Source Class: ProcurementOffering [0..*] Target Class: AbstractBusinessObject [0..*]
 Definition: The object shortcut association asserts that the ProcurementOffering incorporates unspecified
Outcomes describing the states of AbstractBusinessObjects.

Commented [JR6]: BACM11-79

Business Architecture Core Metamodel (BACM), v1.0 33

Usage: This association allows the business architect to omit the Outcome in the procurement of some
AbstractBusinessObjects for use by theBusiness when those Outcomes are obvious or irrelevant to the
purposes of the analysis that is using the business architecture model.
Constraint: Let POf1 be a ProcurementOffering and BO1 be a BusinessObject associated by o1 an "object"
association. Then POf1 should incorporate ProcurementOutcomes {POj} that represent either the change of
ownership of BO1 or the establishment of a limited right to use BO1.

Association Name: assignTo_1 Association Type: Association Stereotype:
 Source Class: ResourceRole [0..*] Target Class: AbstractBusinessObject [0..1]
 Definition: The assignTo_1 leg of the ResourceRole association represents that a AbstractBusinessObject
has been assigned to a ResourceRole.

Association Name: Association Type: Generalization Stereotype:
 Source Class: InformationItem [] Target Class: AbstractBusinessObject []

Association Name: Association Type: Generalization Stereotype:
 Source Class: BusinessObject [] Target Class: AbstractBusinessObject []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Performer [] Target Class: AbstractBusinessObject []

Association Name: related_1 Association Type: Association Stereotype:
 Source Class: ObjectRelation [0..*] Target Class: AbstractBusinessObject [1]
 Definition: The related_1 leg of the ObjectRelation association links an StatefulThing to another
StatefulThing.
Usage: ObjectRelation is typically specialized by the modeler to define specific relationships between
SatefulThings. For example, a relationship between a passenger and a conveyor may designate that the
passenger is onboard the conveyor.
Note that ObjectRelation can have state applied by Outcomes that define when the relationship began to
exist and when it ceased to exist.

Note that ObjectRelation may target other ObjectRelations.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ObjectRelation [] Target Class: AbstractBusinessObject []

Association Name: object_0 Association Type: Association Stereotype: «shortcut»
 Source Class: MerchandiseOffering [0..*] Target Class: AbstractBusinessObject [0..*]
 Definition: The object association represents a shortcut relationship between a MerchandiseOffering and a
BusinessObject or InformationItem offered for sale or lease to the Customer.
Usage: This shortcut implies that there is an unspecified MerchandiseOutcome of the
AbstractBusinessObject that would describe the terms of ownership/use incorporated in the
MerchandiseOffering.
Constraint: Let MOf1 be a MerchandiseOffering and BO1 be a BusinessObject associated by o1 an
"object" association. Then MOf1 should incorporate MerchandiseOutcomes {MOj} that represent either the
change of ownership of BO1 or the establishment of a limited right to use BO1.

Association Name: stateOf Association Type: Association Stereotype: «class»
 Source Class: Outcome [0..*] Target Class: AbstractBusinessObject [0..*]
 Definition: The "state_of" meta-association applies a state to an AbstractBusinessObject.

Usage: For example, a passenger may be transported from one location to another by a Capability, and the
Outcome resulting from the Capability execution represents the fact that the passenger is now in the
destination location.

Association Name: bus_obj Association Type: Association Stereotype:

Commented [JR7]: BACM11-55

 34 Business Architecture Core Metamodel (BACM), v1.0

 Source Class: isAbout [0..*] Target Class: AbstractBusinessObject [1]
 Definition: The bus_obj association specializes the related_1 association to designate the StatefulThing the
InformationItem isAbout.

7.3.2.5 Class Name: AbstractCapability Class Type: Class Stereotype:
Base Classes: AbstractOperatingModel, BACMPlainEntity
Definition: AbstractCapability is not intended to represent a business concept. It is a metamodeling device to provide
relationships to Capability and CapabilityBehavior that would otherwise be duplicated.
Usage: The AbstractCapability metaclass has two concrete specializations: Capability and CapabilityBehavior. Only the
specializations can be instanced in models.
AbstractCapability provides the following to its concrete specializations:
1. to represent the production of an Outcome;
2. to represent the need for an Outcome;
3. to represent the ability of an InformationItem to inform the behavior of a Capability and/or CapabilityBehavior;
4. to represent the ability of a CapabilityImplementation to implement a Capability and/or a CapabilityBehavior;
5. to represent the notion that a BusinessObject and/or an InformationItem scopes a Capability and/or a

CapabilityBehavior

7.3.2.5.1 Attributes, Methods and Connectors:

Association Name: depends_0 Association Type: Association Stereotype: «shortcut»
 Source Class: AbstractCapability [0..*] Target Class: AbstractCapability [0..*]
 Definition: The depends shortcut association represents the execution dependency of one
AbstractCapability on another AbstractCapability. This execution dependency is represented in detail by the
first AbstractCapability produces_0 non-finally an Outcome OA that is need_0 by the second
AbstractCapability, which produces_0 Outcome OB that is non-initially needs_0 by the first
AbstractCapability.

Usage: This shortcut association is used to represent a possible execution dependency that can be justified
as described in the definition. It is useful when analyzing models for dependencies or issue root causes.

Constraint: Let CA be a Capability that depends on Capability CB. Then CA should non-finally
produces_0 an Outcome OA that is the state of AbstractBusinessObject ABO1 that is related via an
ObjectRelation OR to AbstractBusinessObject ABO2 whose state is defined by Outcome OB that is
produces_0 by Capability CB.

In effect, CA is scoped by ABO1 and CB is scoped by ABO2 and ABO1 is related to ABO2.

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractCapability [] Target Class: AbstractOperatingModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractCapability [] Target Class: BACMPlainEntity []

Association Name: object_2 Association Type: Association Stereotype: «shortcut»
 Source Class: ServiceOffering [0..*] Target Class: AbstractCapability [0..*]
 Definition: the object shortcut association designates an AbstractCapability possessed by theBusiness that
is intended to produce the ServiceOutcome incorporated into the ServiceOffering.
Constraint: Let SOf1 be a ServiceOffering and C1 be a Capability that is associated by o1 an object
association. Then there should exist a ServiceOutcome SO1 such that SO1 is incoporated in SOf1 and SO1
is produced by C1.

Association Name: depends_0 Association Type: Association Stereotype: «shortcut»
 Source Class: AbstractCapability [0..*] Target Class: AbstractCapability [0..*]

Commented [JR8]: BACM11-98

Business Architecture Core Metamodel (BACM), v1.0 35

 Definition: The depends shortcut association represents the execution dependency of one
AbstractCapability on another AbstractCapability. This execution dependency is represented in detail by the
first AbstractCapability produces_0 non-finally an Outcome OA that is need_0 by the second
AbstractCapability, which produces_0 Outcome OB that is non-initially needs_0 by the first
AbstractCapability.

Usage: This shortcut association is used to represent a possible execution dependency that can be justified
as described in the definition. It is useful when analyzing models for dependencies or issue root causes.

Constraint: Let CA be a Capability that depends on Capability CB. Then CA should non-finally
produces_0 an Outcome OA that is the state of AbstractBusinessObject ABO1 that is related via an
ObjectRelation OR to AbstractBusinessObject ABO2 whose state is defined by Outcome OB that is
produces_0 by Capability CB.

In effect, CA is scoped by ABO1 and CB is scoped by ABO2 and ABO1 is related to ABO2.

Association Name: informs_0 Association Type: Association Stereotype: «class»
 Source Class: InformationItem [0..*] Target Class: AbstractCapability [0..*]
 Definition: The informs_0 association represents the influence of information (represented by
InformationItem) on a Capability or a CapabilityBehavior.
Usage: Information, such as weather, production targets, and results of a business analysis project will
change how a business behaves and how a Capability or CapabilityBehavior performs.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Capability [] Target Class: AbstractCapability []

Association Name: implements_5 Association Type: Association Stereotype: «class»
 Source Class: CapabilityImplementation [0..*] Target Class: AbstractCapability [0..*]
 Definition: The implements_5 association represents a relationship meaning that the
CapabilityImplementation provides PerformerRoles and ResourceRoles to implement a Capability or
CapabillityBehavior.
Usage: The implements_5 association should be used to define a set of resource requirements needed to
implement an AbstractCapability. The resource requirements are stated as a collection of PerformerRoles
and ResourceRoles. These Roles should be the Roles of the AbstractCapability, but this is not enforced by
the abstract syntax.
Additionally, the CapabilityImplementation may aggregate Performers and AbstractBusinessObjects that are
assignTo the set of Roles. These Performers and AbstractBusinessObjects represent domains from which
these assignTo assignments are/should be made. This is not enforced by the abstract syntax.

Association Name: needs_0_src Association Type: Association Stereotype:
 Source Class: needs_0 [1] Target Class: AbstractCapability [1]

Association Name: implements_0 Association Type: Association Stereotype: «shortcut»
 Source Class: AbstractProcess [0..*] Target Class: AbstractCapability [0..*]
 Definition: The implements_0 shortcut represents that a AbstractCapability and an AbstractProcess have
related Outcomes
Usage: It could also be justified by a common Performer playing a role in the CapabilityBehavior and the
AbstractProcess
Constraint: Let P1 be a Process and C1 be a capability associated by an implements association. Then there
should exist Outcomes O1 and O2 such that O1 is produced by (needed by) C1 and O2 is output (input) by
P1 and O1 and O2 are related such that they are the same Outcome or one is in the extended aggregation of
the other or one is the extended specialization of the other or any chain of relationships connecting the two
where the chain consists exclusively of being aggregated by or being a specialization of the predecessor
Outcome.

Association Name: ofCapability Association Type: Association Stereotype:
 Source Class: Role [0..*] Target Class: AbstractCapability [0..1]

Commented [JR9]: BACM11-89

 36 Business Architecture Core Metamodel (BACM), v1.0

 Definition: The ofCapability leg of the Role association links the Role to the AbstractCapability.

Association Name: Association Type: Generalization Stereotype:
 Source Class: CapabilityBehavior [] Target Class: AbstractCapability []

Association Name: scopes Association Type: Association Stereotype: «shortcut»
 Source Class: AbstractBusinessObject [0..1] Target Class: AbstractCapability [0..1]
 Definition: The scopes shortcut association allows a Capability and/or CapabilityBehavior to be associated
with some BusinessObjects and.or an InformationItems without defining Outcomes produced or needed by
the Capability and/or CapabilityBehavior.
Usage: The modeler may elect to subsequently define such Outcomes, which must be consistent with the
constraint specified by the scopes shortcut association.
Constraint: Let BO1 be a BusinessObject and C1 be a Capability that are associated by scopes s1. Then
there should exist in the model an Outcome O1 such that C1 produce_0s O1 and O1 is a stateOf BO1.

Association Name: prod_0_src Association Type: Association Stereotype:
 Source Class: produces_0 [1] Target Class: AbstractCapability [1]

7.3.2.6 Class Name: BusinessObject Class Type: Class Stereotype:
Base Classes: AbstractBusinessObject, BACMPlainEntity
Definition: BusinessObject represents a tangible thing that is of significance to a business.
Usage: BusinessObjects may also overlap with other classes in the model; for example a BusinessObject may also be a
Resource used by a Capability.
Typically, the BusinessObject represents tangible things that are acted on by the Capabilities of a business to create a
new Outcome that defines a new state of the BusinessObject. An assembly robot may be a Performer associated with an
assembly Capability. The same assembly robot may be a BusinessObject when it is no longer needed and is sold.

7.3.2.6.1 Attributes, Methods and Connectors:

Association Name: contains Association Type: Association Stereotype: «class»
 Source Class: BusinessObject [0..*] Target Class: System [0..*]
 Definition: The contains association represents that BusinessObjects may contain System.
Usage: In some cases, a BusinessObject and a System may represent different aspects of the same entity;
since meta-classes in this meta-model are not assumed disjoint, an instance may have both BusinessObject
and System as metaclasses. However, a BusinessObject may contain several Systems and other
BusinessObjects as well. In this case, the Systems are not aspects of the primary BusinessObject, and the
contains association allows the architect to represent this. An example of this latter case is a primary
BusinessObject that is a computer and the System is a software package hosted on that computer (along with
other software packages). The software package may be an instance of a System and also an instance of a
BusinessObject (i.e. the code)

Association Name: realize Association Type: Association Stereotype: «class»
 Source Class: BusinessObject [0..*] Target Class: InformationItem [0..*]
 Description: The realize relation designates that a tangible BusinessObject realizes the information of an
InformationItem.
Usage: The realize relation would be used to model the fact that an Outcome such as the completion of a
journey that is recordedAs an InformationItem is also realized in a document or data in a dataset.

Association Name: Association Type: Generalization Stereotype:
 Source Class: BusinessObject [] Target Class: BACMPlainEntity []

Association Name: Association Type: Generalization Stereotype:

Business Architecture Core Metamodel (BACM), v1.0 37

 Source Class: BusinessObject [] Target Class: AbstractBusinessObject []

Association Name: realizedAs Association Type: Association Stereotype: «shortcut»
 Source Class: Outcome [0..*] Target Class: BusinessObject [0..*]
 Definition: The realizedAs shortcut relation designates a BusinessObject that realizes an Outcome.
Usage: This shortcut relationship allows the modeler to omit modeling of the InformationItem that records
the Outcome and is realized as the BusinessObject.
Constraint: Given an Outcome realizedAs BusinessObject, this Outcome would be recordedAs an
InformationObject that is realized by a BusinessObject.

7.3.2.7 Class Name: Capability Class Type: Class Stereotype:
Base Classes: AbstractCapability
Definition: Capability represents generalization over variations in behavior and variations in structure applied to the
behavior where the same general Outcome is produced by the behavior.. A Capability represents the ability a business
has to produce an Outcome without specifying how that Outcome is produced.
Usage: Capability is defined in this way to allow executives to analyze variation in business behaviors and structures that
all produce the same or similar outcomes.
In addition, observing problems or successes that recur in most or all of the variations of a Capability is a clue that the
business has a systemic problem with respect to the capability. For example, if all behavior variants and implementations
of a Capability are underperforming, then one might wish to understand why.
Capabilities may be decomposed in a strict hierarchy, but are not allowed to be specialized. The CapabilityBehavior that
delivers a Capability is used to represent behavioral variants of a Capability.
A Capability may be implemented by a CapabilityImplementation, a collection of Resources and Performers that are
assigned Roles in the Capability.
The modeler may use any of the following patterns:
1. Capability is defined without CapabilityBejaviors or CapabilityImplementations;
2. Capability is defined with CapabilityImplementations annotated with proposed resources and performers but without

Roles, Resources and Performers;
3. Capability is defined with Roles, CapabilityImplementations, Performers, Resources where the Performers and

Resources are aggregated to the CapabilityImplementation and are assigned to Roles of the Capability;
4. Capability is defined as in 3. and CapabilityBehaviors are defined delivering the Capability with Role assignments

to CapabilityBehavior compatible with the assignments to Capability Roles;
5. Capability is defined with delivering CapabilityBehaviors but no CapabilityImplementation;
6. Capability is defined with Roles and delivering CapabilityBehaviors are defined with consistent Roles;
7. All other configurations are disallowed.
Constraint: Capability instances may own other Capability instances but may not aggregate or generalize them.

7.3.2.7.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: Capability [] Target Class: AbstractCapability []

Association Name: supports Association Type: Association Stereotype: «class»
 Source Class: Capability [0..*] Target Class: ValueStreamStage [0..*]
 Definition: The supports association represents the relationship between a Capability and a
ValueStreamStage that means that the Capability is needed in the ValueStreamStage.
Usage: For example, an important stage in the creation of value for a manipulation puzzle such as Rubik's
Cobe is the production of a manufacturable design of the puzzle. A failure here can result in a puzzle that
cannot be manufactured or is not attractive to purchasers.
Outcomes providing value are:
 a positive maniufacturability review;
 a positive customer reaction in a focus group.
The Capabilities needed to produce these Outcomes are: product design, manufacturability analysis, focus
group management. For this example, the previous three Capability instances would be associated with the
"Design Ready" ValueStreamStage.

 38 Business Architecture Core Metamodel (BACM), v1.0

Association Name: delivers Association Type: Association Stereotype: «class»
 Source Class: CapabilityBehavior [0..*] Target Class: Capability [0..1]
 Definition: The delivers association represents a CapabilityBehavior that produces or is intended to
produce Outcomes that satisfy the Outcomes produced by the Capability.
Usage: A CapabilityBehavior that delivers a Capability must provide at least the set of Roles provided by
the Capability.

Association Name: Association Type: NoteLink Stereotype:
 Source Class: Constraint [] Target Class: Capability []

7.3.2.8 Class Name: CapabilityBehavior Class Type: Class Stereotype:
Base Classes: AbstractAction, AbstractCapability, APCICB
Definition: CapabilityBehavior represents a behavior description or specification, such as process diagrams, procedures
manuals and other means of recording and publishing expected business practices.
Usage: CapabilityBehavior also represents rules, regulations and policies that constrain behavior, whether imposed by
statute, regulators or business executives.
CapabilityBehaviors deliver a Capability, indicating that the set CapabilityBehaviors associated to a Capability are
variant ways of producing the same or similar Outcomes.
CapabilityBehaviors may have associated Roles. These Roles define how Performers and Resources may participate in
the described or specified behavior.
CapabilityBehavior is a subtype of AbstractCapability and inherits associations with the Outcomes of Capabilities. These
associations represent the ability of a behavior to produce an outcome. The Outcomes produced by a CapabilityBehavior
are usually more specific than Outcomes produced by the Capability. Often the Outcome of a CapabilityBehavior will
include side-effects that result from the particular behavior, such as resources consumed in executing the behavior or
time taken by the execution.
CapabilityBehaviors are not decomposable, but may be associated with Processes, which are decomposable.

7.3.2.8.1 Attributes, Methods and Connectors:

Association Name: delivers Association Type: Association Stereotype: «class»
 Source Class: CapabilityBehavior [0..*] Target Class: Capability [0..1]
 Definition: The delivers association represents a CapabilityBehavior that produces or is intended to
produce Outcomes that satisfy the Outcomes produced by the Capability.
Usage: A CapabilityBehavior that delivers a Capability must provide at least the set of Roles provided by
the Capability.

Association Name: Association Type: Generalization Stereotype:
 Source Class: CapabilityBehavior [] Target Class: AbstractCapability []

Association Name: Association Type: Generalization Stereotype:
 Source Class: CapabilityBehavior [] Target Class: AbstractAction []

Association Name: Association Type: Generalization Stereotype:
 Source Class: CapabilityBehavior [] Target Class: APCICB []

7.3.2.9 Class Name: CapabilityImplementation Class Type: Class Stereotype:
Base Classes: AbstractOperatingModel, APCICB, BACMPlainEntity
Definition: The CapabilityImplementation represents a collection of Roles, AbstractBusinessObjects and Performers that
may be used to implement a Capability or CapabilityBehavior or a Process or Activity (see the Roles diagram).

Business Architecture Core Metamodel (BACM), v1.0 39

Usage: The AbstractBusinessObjects and Performers are optional, as are the Roles. The modeler may create instances of
CapabilityImplementation annotated with a description of proposed or planned roles, resources and performers and
subsequently add the Roles, Performers and Resources.
Note that AbstractBusinessObjects and Performers may be shared by CapabilityImplementations (representing that two
or more CapabilityImplementations will select AbstractBusinessObjects and Performers from the same domain.
However, Roles may not be shared (see implements_7 description). Consequently, when a CapabilityImplementation is
created or implements_5 to an AbstractCapability or implements_6 an AbstractProcess, a new set of Role elements
should be created that specialize the Roles of the AbstractCapability or AbstractProcess. These "role clones" are
effectively owned by the CapabilityImplementation via the implements_7 relationship.

7.3.2.9.1 Attributes, Methods and Connectors:

Association Name: implements_6 Association Type: Association Stereotype: «class»
 Source Class: CapabilityImplementation [0..*] Target Class: AbstractProcess [0..*]
 Definition: The implements_6 association represents a relationship meaning that the
CapabilityImplementation provides PerformerRoles and ResourceRoles to implement a Process or Activity.
Usage: The implements_6 association should be used to define a set of resource requirements needed to
implement an AbstractProcess. The resource requirements are stated as a collection of PerformerRoles and
ResourceRoles. These Roles should be the Roles of the AbstractProcess, but this is not enforced by the
abstract syntax.
Additionally, the CapabilityImplementation may aggregate Performers and AbstractBusinessObjects that are
assignTo the set of Roles. These Performers and AbstractBusinessObjects represent domains from which
these assignTo assignments are/should be made. This is not enforced by the abstract syntax.

Association Name: aggregates_2 Association Type: Association Stereotype:
 Source Class: CapabilityImplementation [0..*] Target Class: AbstractBusinessObject [0..*]
 Definition: The aggregates_2 relationship between CapabilityImplementation and AbstractBusinessObject
represents that a AbstractBusinessObject is incorporated non-exclusively into a CapabilityImplementation.

Association Name: implements_5 Association Type: Association Stereotype: «class»
 Source Class: CapabilityImplementation [0..*] Target Class: AbstractCapability [0..*]
 Definition: The implements_5 association represents a relationship meaning that the
CapabilityImplementation provides PerformerRoles and ResourceRoles to implement a Capability or
CapabillityBehavior.
Usage: The implements_5 association should be used to define a set of resource requirements needed to
implement an AbstractCapability. The resource requirements are stated as a collection of PerformerRoles
and ResourceRoles. These Roles should be the Roles of the AbstractCapability, but this is not enforced by
the abstract syntax.
Additionally, the CapabilityImplementation may aggregate Performers and AbstractBusinessObjects that are
assignTo the set of Roles. These Performers and AbstractBusinessObjects represent domains from which
these assignTo assignments are/should be made. This is not enforced by the abstract syntax.

Association Name: Association Type: Generalization Stereotype:
 Source Class: CapabilityImplementation [] Target Class: AbstractOperatingModel []

Association Name: aggregates_1 Association Type: Association Stereotype:
 Source Class: CapabilityImplementation [0..*] Target Class: Performer [0..*]
 Definition: The aggregates_1 relationship between CapabilityImplementation and Performer represents
that a Performer is incorporated non-exclusively into a CapabilityImplementation.

Association Name: Association Type: Generalization Stereotype:
 Source Class: CapabilityImplementation [] Target Class: APCICB []

Association Name: implements_7 Association Type: Association Stereotype:
 Source Class: CapabilityImplementation [0..*] Target Class: Role [0..*]

Commented [JR10]: BACM11-78

Commented [JR11]: BACM11-78

 40 Business Architecture Core Metamodel (BACM), v1.0

 Definition: The implements_7 relationship associates Roles with a CapabilityImplementation. This
relationship is a form of ownership, so if the CapabilityImplementation is deleted from a model, the related
Roles must be deleted also.

Usage: When a CapabilityImplementation implements_5 an AbstractCapability or implements_6 an
AbstractProcess, A set of "role clones" should be created from the Roles of the AbstractCapability or
AbstractProcess and should specialize those Roles. This allows multiple CapabilityImplementation to assign
AbstractBusinessObjects and Performers to Roles differently for each CapabilityImplementation.

Association Name: Association Type: Generalization Stereotype:
 Source Class: CapabilityImplementation [] Target Class: BACMPlainEntity []

Association Name: staffs Association Type: Association Stereotype: «shortcut»
 Source Class: OrgUnit [0..*] Target Class: CapabilityImplementation [0..*]
 Definition: The staffs relationship between OrgUnit and CapabilityImplementation represents that the
OrgUnit is belongTo by Performers and AbstractBusinessObjects that are assignTo PerformerRoles and
ResourceRoles that are aggregated_3 by the CapabilityImplementation.

Constraint: If OrgUnit OU1 staffs CapabilityImplementation CI1, then for some Performer P1, P1
belongsTo_1 OrgUnit OU1 and P1 is assignTo_1 PerformerRole PR1 and PR1 is aggregates_3 by CI1.
Also, if OU1 staffs CI1, then for some AbstractBusinessObject ABO1, ABO1 belongsTo_2 OU1 and ABO1
is assignTo_1 ResourceRole RR1 and CI1 aggregates_3 RR1.

7.3.2.10 Class Name: InformationItem Class Type: Class Stereotype:
Base Classes: AbstractBusinessObject, BACMPlainEntity
Definition: The InformationItem represents a kind of information.
Usage: The same InformationItem may represent a thought or piece of knowedge and a physical manifestation of that
thought or knowledge as a document or a dataset.

7.3.2.10.1 Attributes, Methods and Connectors:

Association Name: informs_0 Association Type: Association Stereotype: «class»
 Source Class: InformationItem [0..*] Target Class: AbstractCapability [0..*]
 Definition: The informs_0 association represents the influence of information (represented by
InformationItem) on a Capability or a CapabilityBehavior.
Usage: Information, such as weather, production targets, and results of a business analysis project will
change how a business behaves and how a Capability or CapabilityBehavior performs.

Association Name: Association Type: Generalization Stereotype:
 Source Class: InformationItem [] Target Class: AbstractBusinessObject []

Association Name: Association Type: Generalization Stereotype:
 Source Class: InformationItem [] Target Class: BACMPlainEntity []

Association Name: informs_1 Association Type: Association Stereotype: «class»
 Source Class: InformationItem [0..*] Target Class: AbstractProcess [0..*]
 Definition: The informs_1 association represents the influence of information (represented by
InformationItem) on a Process or Activity.
Usage: Information, such as weather, production targets, and results of a business analysis project will
change how a business behaves and how a Process or Activity performs.

Association Name: informs_2 Association Type: Association Stereotype: «class»
 Source Class: InformationItem [0..*] Target Class: Performer [0..*]

Commented [JR12]: BACM11-91

Commented [JR13]: BACM11-78
BACM11-91

Business Architecture Core Metamodel (BACM), v1.0 41

 Definition: The informs_2 association represents the influence of information (represented by
InformationItem) on a Performer.
Usage: Information, such as weather, production targets, and results of a business analysis project will
change how a business behaves and how a Performer performs.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Offering [] Target Class: InformationItem []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Initiative [] Target Class: InformationItem []

Association Name: Association Type: Generalization Stereotype:
 Source Class: StrategyModel [] Target Class: InformationItem []

Association Name: realize Association Type: Association Stereotype: «class»
 Source Class: BusinessObject [0..*] Target Class: InformationItem [0..*]
 Description: The realize relation designates that a tangible BusinessObject realizes the information of an
InformationItem.
Usage: The realize relation would be used to model the fact that an Outcome such as the completion of a
journey that is recordedAs an InformationItem is also realized in a document or data in a dataset.

Association Name: recordedAs Association Type: Association Stereotype: «class»
 Source Class: Outcome [0..*] Target Class: InformationItem [0..*]
 Definition: The recordedAs meta-association between Outcome and AbstractBusinessObject indicates that
the AbstractBusinessObject records an occurrence of an Outcome.

Usage: In effect, this allows the architect to indicate that model instances of Outcome are or will be
recorded to create a reviewable history.

Association Name: info_item Association Type: Association Stereotype:
 Source Class: isAbout [0..*] Target Class: InformationItem [1]
 Definition: The info_item association specializes the related_1 association to designate the InformationItem
that isAbout the StatefulThing.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Means [] Target Class: InformationItem []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Change [] Target Class: InformationItem []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Ends [] Target Class: InformationItem []

7.3.2.11 Class Name: isAbout Class Type: Class Stereotype: «association»
Base Classes: ObjectRelation
Definition: IsAbout is a binary directed relationship between an InformationItem and an StatefulThing. It specializes
ObjectRelation. It designates that the InformationItem is metadata about the StatefulThing.

Usage: AbstractBusinessObjects and ObjectRelations have only identity and immutable properties (a.k.a. intrinsic
properties). An InformationItem that isAbout an AbstractBusinessObject can only hold metadata bout this identity and the
intrinsic properties. To model the recording of state, modelers should use recordedAs.

Commented [JR14]: BACM11-6

 42 Business Architecture Core Metamodel (BACM), v1.0

7.3.2.11.1 Attributes, Methods and Connectors:

Association Name: info_item Association Type: Association Stereotype:
 Source Class: isAbout [0..*] Target Class: InformationItem [1]
 Definition: The info_item association specializes the related_1 association to designate the InformationItem
that isAbout the StatefulThing.

Association Name: Association Type: Generalization Stereotype:
 Source Class: isAbout [] Target Class: ObjectRelation []

Association Name: bus_obj Association Type: Association Stereotype:
 Source Class: isAbout [0..*] Target Class: AbstractBusinessObject [1]
 Definition: The bus_obj association specializes the related_1 association to designate the StatefulThing the
InformationItem isAbout.

7.3.2.12 Class Name: needs_0 Class Type: Class Stereotype: «association»
Base Classes:
Definition: The needs_0 association represents the assertion that a Capability and/or CapabilityBehavior needs, desires
or requires a particular Outcome representing a state of an BusinessObject or InformationItem. If the non-initial feature is
True, the need of the Outcome does not signal that a new Capability execution is started. The default is False, signalling
initiation of a new Capability execution.

7.3.2.12.1 Attributes, Methods and Connectors:

Attribute Name: non_Initial Attribute Type: Boolean

Association Name: needs_0_src Association Type: Association Stereotype:
 Source Class: needs_0 [1] Target Class: AbstractCapability [1]

Association Name: needs_0_tgt Association Type: Association Stereotype:
 Source Class: needs_0 [1] Target Class: Outcome [1]

7.3.2.13 Class Name: ObjectRelation Class Type: Class Stereotype: «association»
Base Classes: AbstractBusinessObject
Definition: ObjectRelation represents any relationship of any arity among StatefulThings and InformationItems.
Usage: The architect may use ObjectRelation to indicate that two BusinessObjects are joined together or that one
BusinessObject is part of another. ObjectRelations may also target other ObjectRelations.

7.3.2.13.1 Attributes, Methods and Connectors:

Association Name: related_1 Association Type: Association Stereotype:
 Source Class: ObjectRelation [0..*] Target Class: AbstractBusinessObject [1]
 Definition: The related_1 leg of the ObjectRelation association links an StatefulThing to another
StatefulThing.
Usage: ObjectRelation is typically specialized by the modeler to define specific relationships between
SatefulThings. For example, a relationship between a passenger and a conveyor may designate that the
passenger is onboard the conveyor.

Commented [JR15]: BACM11-98

Business Architecture Core Metamodel (BACM), v1.0 43

Note that ObjectRelation can have state applied by Outcomes that define when the relationship began to
exist and when it ceased to exist.

Note that ObjectRelation may target other ObjectRelations.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ObjectRelation [] Target Class: AbstractBusinessObject []

Association Name: Association Type: Generalization Stereotype:
 Source Class: isAbout [] Target Class: ObjectRelation []

7.3.2.14 Class Name: Outcome Class Type: Class Stereotype:
Base Classes: AbstractOperatingModel, BACMPlainEntity
Definition: An Outcome represents a fact or collection of facts about an experienced state of affairs pertaining to one or
more BusinessObjects and/or InformationItems. Outcomes are produced/needed by and outputs/inputs of
AbstractProcesses.
Usage: For example, a Capability to attach wheels to a vehicle being manufactured would require that a vehicle without
wheels be available and that wheels be available. This requirements would be modeled as two Outcomes:
1. A vehicle without wheels is available to the Capability, and
2. A set of wheels is available to the Capability.
The result of the Capability is another Outcome in which the wheels are no longer separate but are attached to the
vehicle.
Separating the state of a BusinessObject or InformationItem from the BusinessObject or InformationItem allows the
model to represent many possible states of the BusinessObject or InformationItem and associate each state with the
Capabilities and/or CapabilityBehaviors that produce the states.
Outcome and its AbstractBusinessObjects must represent a single, consistent set of facts whether viewed from the
capability perspective or the process perspective. However, the facts represented by a Outcome may not be at the same
level of detail when viewed in a capability perspective as when viewed in a process perspective. For example, a process
perspective may represent the wheel assembly activities in greater detail, specifying the additional tools and parts needed
to attach the wheels to the vehicle with intermediate Outcomes representing the stages of mounting the wheels to the
hubs, attaching the nuts to the hub bolts, and tightening them to the required torque specification. The beginning and end
of this sequence of Outcomes are the same in the process perspective and in the capability perspective. Other semantic
relationships provided for Outcome are generalization and aggregation.

7.3.2.14.1 Attributes, Methods and Connectors:

Association Name: realizedAs Association Type: Association Stereotype: «shortcut»
 Source Class: Outcome [0..*] Target Class: BusinessObject [0..*]
 Definition: The realizedAs shortcut relation designates a BusinessObject that realizes an Outcome.
Usage: This shortcut relationship allows the modeler to omit modeling of the InformationItem that records
the Outcome and is realized as the BusinessObject.
Constraint: Given an Outcome realizedAs BusinessObject, this Outcome would be recordedAs an
InformationObject that is realized by a BusinessObject.

Association Name: triggeer_1 Association Type: Association Stereotype: «class»
 Source Class: Outcome [0..*] Target Class: CustomerJourneyStage [0..*]
 Definition: The trigger_1 association relates an Outcome to a CustomerJourneyStage that directly or
indirectly causes the Outcome to occur.

Usage: The trigger_1 association is typically used with the initial stage of a CustomerJourney to define an
Outcome that is an entryCriteria for the initial stage of a ValueSTream. This means that the
CustomerJourneyStage triggers the ValueStream. The association may be used for other purposes as well.

Association Name: recordedAs Association Type: Association Stereotype: «class»

Commented [JR16]: BACM11-64

 44 Business Architecture Core Metamodel (BACM), v1.0

 Source Class: Outcome [0..*] Target Class: InformationItem [0..*]
 Definition: The recordedAs meta-association between Outcome and AbstractBusinessObject indicates that
the AbstractBusinessObject records an occurrence of an Outcome.

Usage: In effect, this allows the architect to indicate that model instances of Outcome are or will be
recorded to create a reviewable history.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Outcome [] Target Class: AbstractOperatingModel []

Association Name: trigger_2 Association Type: Association Stereotype: «class»
 Source Class: Outcome [0..*] Target Class: Touchpoint [0..*]
 Definition: The trigger_2 association relates an Outcome to a Touchpoint, and means that the Outcome was
produced in the Touchpoint.

Usage: The trigger_2 association, along with trigger_1 is used in the initial Touchpoint of the initial
CustomerJourneyStage to produce an Outcome that is an entryCriteria of the initial ValueStreamStage of a
ValueStream. It means that the Touchpoint triggers the ValueStream. This association may be used for other
purposes.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Outcome [] Target Class: BACMPlainEntity []

Association Name: stateOf Association Type: Association Stereotype: «class»
 Source Class: Outcome [0..*] Target Class: AbstractBusinessObject [0..*]
 Definition: The "state_of" meta-association applies a state to an AbstractBusinessObject.

Usage: For example, a passenger may be transported from one location to another by a Capability, and the
Outcome resulting from the Capability execution represents the fact that the passenger is now in the
destination location.

Association Name: trigger_0 Association Type: Association Stereotype: «shortcut»
 Source Class: Customer [0..*] Target Class: Outcome [0..*]
 Definition: The trigger_0 association relates a Customer to an Outcome and means that the Customer has
directly or indirectly caused that Outcome to happen.

Usage: The trigger_0 association is used to relate a Customer to an Outcome that is an entryCriteria for the
initial ValueStreamStage of a ValueStream. It allows the implication that the Customer triggers the
ValueStream.

Constraint: This shortcut is justified by an Outcome that trigger_1 a CustomerJourneyStage that is the
initial stage owns_2-ed by a CustomerJourney taken by the Customer.

Association Name: prod_0_tgt Association Type: Association Stereotype:
 Source Class: produces_0 [1] Target Class: Outcome [1]

Association Name: exitCriteria Association Type: Association Stereotype: «shortcut»
 Source Class: ValueStreamStage [0..*] Target Class: Outcome [0..*]
 Definition: The exitCriteria association represents that the Outcome may be produced by the completion of
the ValueStreamStage.
Usage: It is often useful in analysis to record the Outcomes that may be the case when a ValueStreamStage
is complete, without commiting to defining Capabilities that support the ValueStreamStage and produce the
Outcome. This association does not distinguish necessary from sufficient, nor does it permit logic
expressions involving combinations of Outcomes. Such conditions may be expressed as annotations on the
participating associations.
Constraint: Let C1 be a Capability supporting the ValueStreamStage and C1 produces the Outcome. Commented [JR17]: BACM11-3

Business Architecture Core Metamodel (BACM), v1.0 45

Association Name: values Association Type: Association Stereotype: «class»
 Source Class: ValueItem [0..*] Target Class: Outcome [0..*]
 Definition: The values association links a ValueItem to an Outcome and provides a valuation of that
Outcome. An Outcome may have several ValueItems, reflecting the ways in which different stakeholders
perceive the Outcome. Likewise, a ValueItem may value multiple Outcomes that must be valued as a group.
Usage: The Outcome may be present in the business architecture model without an associated ValueItem,
but ValueItems may not exist without being associated to an Outcome.

Association Name: Association Type: Generalization Stereotype:
 Source Class: OutsourcedServiceOutcome [] Target Class: Outcome []

Association Name: Association Type: Generalization Stereotype:
 Source Class: MerchandiseOutcome [] Target Class: Outcome []

Association Name: input Association Type: Association Stereotype: «class»
 Source Class: AbstractProcess [0..*] Target Class: Outcome [0..*]
 Definition: The input association represents that the AbstractProcess inputs (requires or can use) the
Outcome.
Usage: The input association in the process perspective corresponds to the needs association in the
capability perspective. While it is possible that the same Outcome is input to a process and needed by a
capability, it will usually be the case that a process inputs an Outcome that is related by generalization or
aggregation (or another relation between Outcomes) to an Outcome needed by a capability. The process and
capability in this case are semantically related by the relationship between their Outcomes.
For example, a CustomerInformationManagement Capability may need
CustomerInformation_change_pending Outcome. A process that updates the CustomerAddress (a
component of CustomerInformation) may input CustomerAddress_change_pending Outcome, that is related
to the other Outcome by aggregation.

Association Name: needs_0_tgt Association Type: Association Stereotype:
 Source Class: needs_0 [1] Target Class: Outcome [1]

Association Name: entryCriteria Association Type: Association Stereotype: «shortcut»
 Source Class: ValueStreamStage [0..*] Target Class: Outcome [0..*]
 Definition: The entryCriteria association represents that the Outcome may need to be satisfied in order to
enter the ValueStreamStage.
Usage: It is often useful in analysis to record the Outcomes that should be the case to enter a
ValueStreamStage without commiting to defining Capabilities that support the ValueStreamStage and need
the Outcome. This association does not distinguish necessary from sufficient, nor does it permit logic
expressions involving combinations of Outcomes. Such conditions may be expressed as annotations on the
participating associations.
Constraint: Let C1 be a Capability supporting the ValueStreamStage and C1 needs the Outcome.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ProcurementOutcome [] Target Class: Outcome []

Association Name: experiences Association Type: Association Stereotype: «class»
 Source Class: Touchpoint [0..*] Target Class: Outcome [0..*]
 Definition: The experiences relation represents a relationship between an Outcome and a Touchpoint
meaning that the Customer will experience the Outcome at the Touchpoint.
Usage: A Touchpoint experiences an Outcome:
1. when that Outcome is provided as a service or
2. when the Outcome is associated with acceptance of the ProductOffering (e.g. the customer is happy with
the contract of sale), or
3. when the customer receives information that resolves a question, or

Commented [JR18]: BACM11-3

 46 Business Architecture Core Metamodel (BACM), v1.0

4. when the customer makes use of a business object that is provided as an Outcome of an exchange
transaction

Association Name: output Association Type: Association Stereotype: «class»
 Source Class: AbstractProcess [0..*] Target Class: Outcome [0..*]
 Definition: The output association represents that the AbstractProcess outputs the Outcome.
Usage: The output association in the process perspective corresponds to the produces association in the
capability perspective. While it is possible that the same Outcome is output from a process and produced by
a capability, it will usually be the case that a process outputs an Outcome that is related by generalization or
aggregation (or another relation between Outcomes) to an Outcome produced by a capability. The process
and capability in this case are semantically related by the relationship between their Outcomes.
For example, a CustomerInformationManagement Capability may produce CustomerInformation_is_current
and CustomerInformation_is_correct Outcomes. A process that updates the CustomerAddress (a component
of CustomerInformation) may produce CustomerAddress_is_current and CustomerAddress_is_correct
Outcomes, that are related to the other Outcomes by aggregation.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ServiceOutcome [] Target Class: Outcome []

Association Name: related_0 Association Type: Association Stereotype:
 Source Class: OutcomeRelation [0..*] Target Class: Outcome [0..*]
 Definition: The relatedOutcome leg of the OutcomeRelation association identifies an Outcome that is
related to one or more other Outcomes.
Usage: The OutcomeRelation association does not have a fixed number of legs when instanced. The
architect may define any number of instances of the relatedOutcome leg wen instancing the
OutcomeRelation as long as each leg is given a unique name.

Association Name: incorporates_0 Association Type: Association Stereotype: «class»
 Source Class: ProductOffering [0..*] Target Class: Outcome [0..*]
 Definition: The incorporates association represents that an Outcome is included in a ProductOffering.
Usage: It may be implied that the BusinessObject whose state is represented by the Outcome is also
included in the ProductOffering. In the case of a service offering, the Outcome instance represents the
intended result of performing the capability as a service for a customer (as opposed to performing the
capability for the immediate benefit of the business).

Association Name: Association Type: NoteLink Stereotype:
 Source Class: Constraint [] Target Class: Outcome []

7.3.2.15 Class Name: OutcomeRelation Class Type: Class Stereotype: «association»
Base Classes: AbstractOperatingModel
Definition: OutcomeRelation represents any kind of semantic relationship between Outcomes.
Usage: The architect may create instances of any arity to define semantic relationships between Outcomes. For example,
two Outcomes may be specified as alternatives that cannot both be produced by a Capability or Process in a single
execution.

7.3.2.15.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: OutcomeRelation [] Target Class: AbstractOperatingModel []

Association Name: related_0 Association Type: Association Stereotype:
 Source Class: OutcomeRelation [0..*] Target Class: Outcome [0..*]

Business Architecture Core Metamodel (BACM), v1.0 47

 Definition: The relatedOutcome leg of the OutcomeRelation association identifies an Outcome that is
related to one or more other Outcomes.
Usage: The OutcomeRelation association does not have a fixed number of legs when instanced. The
architect may define any number of instances of the relatedOutcome leg wen instancing the
OutcomeRelation as long as each leg is given a unique name.

7.3.2.16 Class Name: PerformerRole Class Type: Class Stereotype: «association»
Base Classes: Role
Definition: PerformerRole represents skills, knowledge and willingness to use these in the production of the Outcomes
of a Capability.
Usage: PerformerRole represents roles that must be fulfilled by human or automation actors. This role can also be used
to define an executive or managerial authority for an AbstractCapability or an AbstractProcess. When assignTo_2 a
Performer, it is interpreted to mean that the Performer acquires the authority and responsibility defined by the
PerformerRole

7.3.2.16.1 Attributes, Methods and Connectors:

Association Name: assignTo_2 Association Type: Association Stereotype:
 Source Class: PerformerRole [0..*] Target Class: Performer [0..1]
 Definition: The assignTo_2 leg of the PerformerRole association represents that a Performer is assigned to
the PerformerRole.

Association Name: Association Type: Generalization Stereotype:
 Source Class: PerformerRole [] Target Class: Role []

7.3.2.17 Class Name: produces_0 Class Type: Class Stereotype: «association»
Base Classes:
Definition: The produces_0 association represents that a Capability and/or CapabilityBehavior may produce the
Outcome. If the non-final feature is True, the production of the Outcome does not signal that the Capability execution is
complete. The default is False, signalling Capability completion.

7.3.2.17.1 Attributes, Methods and Connectors:

Attribute Name: non_final Attribute Type: Boolean

Association Name: prod_0_tgt Association Type: Association Stereotype:
 Source Class: produces_0 [1] Target Class: Outcome [1]

Association Name: prod_0_src Association Type: Association Stereotype:
 Source Class: produces_0 [1] Target Class: AbstractCapability [1]

7.3.2.18 Class Name: ResourceRole Class Type: Class Stereotype: «association»
Base Classes: Role
Definition: ResourceRole represents the set of roles that must be fulfilled by business entities that are passive
participants in the Capability, CapabilityBehavior, Process or Activity. This includes tools, locations and materials that
are used in the behavior but do not become incorporated into the Outcome of the behavior. Any materials or entities that
are incorporated into a BusinessObject or InformationItem whose Outcomes are produced by the Capability or

Commented [JR19]: BACM11-98

 48 Business Architecture Core Metamodel (BACM), v1.0

CapabilityBehavior should be represented as BusinessObjects or InformationItems associated with Outcomes needed by
the Capability and not represented as Resources in this context.

7.3.2.18.1 Attributes, Methods and Connectors:

Association Name: assignTo_1 Association Type: Association Stereotype:
 Source Class: ResourceRole [0..*] Target Class: AbstractBusinessObject [0..1]
 Definition: The assignTo_1 leg of the ResourceRole association represents that a AbstractBusinessObject
has been assigned to a ResourceRole.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ResourceRole [] Target Class: Role []

7.3.2.19 Class Name: Role Class Type: Class Stereotype: «association»
Base Classes: AbstractOperatingModel
Definition: Role represents a specified way for an entity to participate in producing the Outcome of a Capability or a
Process. However, only the concrete subclasses of Role may be used in a model.
Usage: Role is an abstract association meta-class used to model relationships between Performers and Resources and
Capabilities and Processes. It represents how Performers and Resources participate in behavior descriptions as
represented by CapabilityBehaviors and/or in Capabilities. The Role meta-class is stereotyped as an association and its
concrete instances are effectively class associations.
Specifically, the Role meta-class acts as an n-ary association with three predominant patterns:
1. A Capability is associated with a Performer;
2. A CapabilityBehavior is associated with a Performer, or a choice of an OrgUnit or a System;
3. A CapabilityImplementation is associated with a CapabilityBehavior and a choice of an OrgUnit or a System.
These three patterns represent:
1. An abstract view of the business capability with detail added by the Role instance indicating the type of activity to be
performed. Since a Capability may have multiple associated Roles, this implies that the Capability incorporates multiple
activities.
2. An intermediate view of the business used in planning where details about the specific behaviors of a capability and
the type of performer entity (OrgUnit or System) are specified, but the actual or planned assignment of real OrgUnits or
Systems has not occurred.
3. A more detailed planning/implementation view of the business in which specific performers and resources have been
or are planned to be allocated to a Capability and its CapabilityBehaviors by way of a set of CapabilityImplementations.
Neither ResourceRoles nor PerformerRoles may exist without being linked to a Capability or a CapabilityBehavior or a
Process or an Activity with the role link.
A Capability and a CapabilityBehavior may share a Role, but an assignment to that Role will be the same for both the
Capability and the CapabilityBehavior. To indicate that a CapabilityBehavior and a Capability have related roles, the
modeler should create a specialization ot the Capability Role for each CapabilityBehavior that delivers the Capability
and link the specialized Role to the CapabilityBehavior.
A Process and an Activity may not share a Role.
A Role may be shared between a Capability and/or a CapabilityBehavior, and either a Process or an Activity. In this case,
any assignment to the Role is an assignment to both the Capability/CapabilityBehavior and the Process/Activity
PerformerRoles and ResourceRoles may be linked to CapabilityImplementations with the assignment shortcut
association. Performers and Resources aggregated in the CapabilityImplementation should be assigned to these roles.

7.3.2.19.1 Attributes, Methods and Connectors:

Association Name: ofProcess Association Type: Association Stereotype:
 Source Class: Role [0..*] Target Class: AbstractProcess [0..1]
 Definition: The ofProcess leg of the Role association links a PerformerRole or ResourceRole to a Process
or Activity.

Association Name: ofCapability Association Type: Association Stereotype:

Commented [JR20]: BACM11-66

Business Architecture Core Metamodel (BACM), v1.0 49

 Source Class: Role [0..*] Target Class: AbstractCapability [0..1]
 Definition: The ofCapability leg of the Role association links the Role to the AbstractCapability.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Role [] Target Class: AbstractOperatingModel []

Association Name: implements_7 Association Type: Association Stereotype:
 Source Class: CapabilityImplementation [0..*] Target Class: Role [0..*]
 Definition: The implements_7 relationship associates Roles with a CapabilityImplementation. This
relationship is a form of ownership, so if the CapabilityImplementation is deleted from a model, the related
Roles must be deleted also.

Usage: When a CapabilityImplementation implements_5 an AbstractCapability or implements_6 an
AbstractProcess, A set of "role clones" should be created from the Roles of the AbstractCapability or
AbstractProcess and should specialize those Roles. This allows multiple CapabilityImplementation to assign
AbstractBusinessObjects and Performers to Roles differently for each CapabilityImplementation.

Association Name: Association Type: Generalization Stereotype:
 Source Class: PerformerRole [] Target Class: Role []

Association Name: Association Type: Generalization Stereotype:
 Source Class: ResourceRole [] Target Class: Role []

7.3.3 Package: Customer

7.3.3.1 Diagram: Customer

 50 Business Architecture Core Metamodel (BACM), v1.0

The Customer diagram expresses the abstract syntax of elements that collectively describe the customer, the customer's
interactions with the business or its products and services, and the customer's state of mind at these interactions.
The CustomerJourney is a reusable tree that decomposes a journey into CustomerJourneyStages and
CustomerJourneyStages into Touchpoints. This tree is reusable in that it allows multiple Customers to take the same
CustomerJourney. It also allows a Customer to take different Journeys.
The CustomerSegment describes customer characteristics and/or state of mind at CustomerJourneyStages and
Touchpoints of a CustomerJourney. The CustomerSegments are associated with CustomerJourneyStages and
Touchpoints, but are effectively owned by the Customer taking the CustomerJourney. Separating the customer
characteristics and state of mind from the CustomerJourneyStage and Touchpoint allows the CustomerJourneyStage and
Touchpoint to be associated with different Customers.
Touchpoint differs from CustomerJourneyStage in experiencing Outcomes that may be incorporated in a
ProductOffering. Such Outcomes might include the sale of a product item, the performance of a service or the customer's
use of a product item after the sale. At each such Touchpoint, the customer characteristics and state of mind are described
in a CustomerSegment.

7.3.3.2 Diagram: ValueFit

Customer

CustomerSegment

CustomerJourney

constraints
{self.aggregator->isEmpty()}
{self.more_general->isEmpty()}
{self.owner->isEmpty()}

CustomerJourneyStage

constraints
{self.aggregator->selectByKind(CustomerJourneyStage)->isEmpty()}
{self.more_general->selectByKind(CustomerJourneyStage)->isEmpty()}

Touchpoint

Organization::
LegalEntity Capability::Outcome

0..*

trigger_1

«class»

0..*0..*

describes

«class»

1..*

0..*

experiences

«class»

0..*

0..*

follows_3

0..*

1

owns_3

0..*

0..*

trigger_0

«shortcut»

0..*

1

owns_2

0..*

0..*

takes

«class» 0..*

0..*

follows_2

0..*

0..*

trigger_2

«class»

0..*

Commented [JR21]: BACM11-52

Business Architecture Core Metamodel (BACM), v1.0 51

The ValueFit diagram defines abstract syntax for an analysis of how well the ValuePropositions meet the Customer
expectations. The ValueCharacteristic_1 holds an assessment of the fit of the ValueProposition (and its constituent
ValuePropositions and ValueItems) to the CustomerSegments associated with the targeted Customer.

ValueCharacteristic_2 represents an assessment of the fit of a ValueItem to a particular description of a Customer
represented as a CustomerSegment. For example, the capabilities of a product would be represented as a ValueItem and
the CustomerSegment represents the uses of the Customer.

ValueCharacteristic_2 elements may be aggregated to other ValueCharcteristic_2 elements or to ValueCharacteristic_1
elements to facilitate roll-up of the fit assessments.

ValueStream

ValueStreamStage

+ presentation_order: int

ValueProposition

ValueItem

CustomerJourney

CustomerSegment

Touchpoint

ValueCharacteristic

CustomerJourneyStage

Customer

Capability::Outcome

JSTP

ValueCharacteristic_1

0..*

customer

10..*
aggregates_3

0..*
0..*

proposition

1

0..*

target

«shortcut» 0..*

0..*

experiences
«class»

0..*

1

owns_3

0..*

0..*

values
«class» 0..*

0..*

entryCriteria «shortcut»

0..*

1

owns_1

0..*

0..*

item

0..1

0..*

trigger_2

«class» 0..*

1

owns_2

0..*

0..*

produces_2

«shortcut»0..*

0..*

produces_1

«shortcut» 0..*

0..*characterizes

«class» 0..*

0..*
owns_4

0..*

0..*

describes

«class»

1..*

0..*

segment
0..1

0..*

takes

«class» 0..*

0..*

trigger_1

«class»

0..*

0..*

exitCriteria «shortcut»

0..*

Commented [JR22]: BACM11-3
BACM11-16
BACM11-23
BACM11-52

 52 Business Architecture Core Metamodel (BACM), v1.0

7.3.3.3 Diagram: ValueStream

The ValueStream diagram defines abstract syntax for models incorporating ValueStreams. The ValueStream owns
ValueStreamStages representing business significant stages in the composition of value for a customer. The ValueStream
itself produces ValuePropositions that aggregates other ValuePropositions and ValueItems.
ValueStreams are abstractly realized by Capabilities that support ValueStreamStages. These Capabilities produce
Outcomes that are Valued by ValueItems. Some of these Outcomes are incorporated into the ProductOffering (e.g. sale
price, warranty).
ValuePropositions target a Customer, who is also the target of the ProductOffering. The ValueProposition is of the
ProductOffering.
The product shortcut association links a ValueStream to a ProductOffering, allowing the modeler to defer details of the
ValueProposition.

7.3.3.4 Class Name: Customer Class Type: Class Stereotype:
Base Classes: AbstractThing, AbstractValueModel, LegalEntity
Definition: Customer represents a customer type or a class of customers. Customer also represents partner businesses
and other forms of contracted business relationships.
Usage: Customer effectively owns a set of CustomerSegments, each of which contains a partial description of the
Customer. The CustomerSegments of a Customer may characterize CustomerJourneyStages or Touchpoints (i.e. they
describe the Customer characteristics and state of mind at the CustomerJourneyStage or Touchpoint. When this is the
case, the Customer should take the CustomerJourney owning the CustomerJourneyStages and Youchpoints.

ValueStream

constraints
{self.aggregator->isEmpty()}
{self.moreGeneral->isEmpty()}
{self.owner->isEmpty()}

ValueStreamStage

+ presentation_order: int

constraints
{self.aggregator->isEmpty()}
{self.more_general->isEmpty()}

ValueItem

Product::
ProductOffering

ValueProposition Customer

Capability::Outcome

Organization::
Performer

Capability::
Capability

0..*

entryCriteria

«shortcut»

0..*

0..*

participate

«shortcut»

0..*

0..*

of

«shortcut»

0..*

0..*

exitCriteria

«shortcut»
0..*

0..*

aggregates_3

0..*

0..*

target

«shortcut» 0..*0..*

produces_1

«shortcut» 0..* 0..*

trigger_0

«shortcut»

0..*

1
owns_1

0..*

0..*

incorporates_0

«class»0..*

0..*

values

«class»

0..*

0..*

supports

«class»

0..*
0..*

produces_2

«shortcut» 0..*

Commented [JR23]: BACM11-3
BACM11-70
BAC<11-52
BACM11-13

Business Architecture Core Metamodel (BACM), v1.0 53

The Customer is an acceptor of one or more ProductOfferings and target of the ValuePropositions of these
ProductOfferings.

7.3.3.4.1 Attributes, Methods and Connectors:

Association Name: takes Association Type: Association Stereotype: «class»
 Source Class: Customer [0..*] Target Class: CustomerJourney [0..*]
 Definition: The takes association represents a relationship between a Customer and a CustomerJourney
asserting that the Customer is likely to take the CustomerJourney.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Customer [] Target Class: LegalEntity []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Customer [] Target Class: AbstractThing []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Customer [] Target Class: AbstractValueModel []

Association Name: trigger_0 Association Type: Association Stereotype: «shortcut»
 Source Class: Customer [0..*] Target Class: Outcome [0..*]
 Definition: The trigger_0 association relates a Customer to an Outcome and means that the Customer has
directly or indirectly caused that Outcome to happen.

Usage: The trigger_0 association is used to relate a Customer to an Outcome that is an entryCriteria for the
initial ValueStreamStage of a ValueStream. It allows the implication that the Customer triggers the
ValueStream.

Constraint: This shortcut is justified by an Outcome that trigger_1 a CustomerJourneyStage that is the
initial stage owns_2-ed by a CustomerJourney taken by the Customer.

Association Name: customer Association Type: Association Stereotype:
 Source Class: ValueCharacteristic [0..*] Target Class: Customer [1]
 Definition: The customer leg of the ValueCharacteristic association identifies the Customer participating
in the value fit analysis represented by the ValueCharacteristic.
Usage: The ValueCharacteristic may define specific CustomerSegments, JourneyStages and Touchpoints as
having weigts in the value fit analysis. The meta-model does not provide direct support for asserting such
facts, but they can be recorded in Annotations associated with the ValueCharacteristic.

Association Name: describes Association Type: Association Stereotype: «class»
 Source Class: CustomerSegment [0..*] Target Class: Customer [1..*]
 Definition: The describes association represents the relationship between a CustomerSegment and a
Customer asserting that the Customer is partially described by the CustomerSegment
Usage: If there is no CustomerJourney associated with a Customer, then the set of all CustomerSegments
that describe the Customer represent the total customer description.
If the Customer takes a CustomerJourney, then the CustomerSegments that describe the Customer may be
qualified by the characterizes association to a CustomerJourneyStage or Touchpoint, indicating that the
CustomerSegment partially describes the Customer at that CustomerJourneyStage or Touchpoint.

Association Name: target Association Type: Association Stereotype: «shortcut»
 Source Class: ValueProposition [0..*] Target Class: Customer [0..*]
 Definition: The target shortcut association asserts that the ValueProposition is intended to target the
Customer.
Usage: This shortcut allows the architect to assert that a ValueProposition targets a Customer and imply that
there is an unspecified ValueCharacteristic that represents the value fit analysis of the ValueProposition and
Customer.

Commented [JR24]: BACM11-52

 54 Business Architecture Core Metamodel (BACM), v1.0

Constraint: Let VP1 be a ValueProposition and Cu1 be a Customer associated by t1, a target association.
Then there should be a ValueCharacteristic VC1 with VP1 as its proposition and Cu1 as its customer.
Note that it is commonly the case that the set of individuals represented intensionally by the Customer
element are also LegalEntities.

7.3.3.5 Class Name: CustomerJourney Class Type: Class Stereotype:
Base Classes: AbstractAction, AbstractValueModel
Definition: A CustomerJourney represents a sequence of stages through which a Customer may pass with respect to a
ProductOffering and its ValueProposition. The CustomerJourneyStages of the CustomerJourney capture the notion that
the customer experience is cumulative.

7.3.3.5.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: CustomerJourney [] Target Class: AbstractAction []

Association Name: Association Type: Generalization Stereotype:
 Source Class: CustomerJourney [] Target Class: AbstractValueModel []

Association Name: takes Association Type: Association Stereotype: «class»
 Source Class: Customer [0..*] Target Class: CustomerJourney [0..*]
 Definition: The takes association represents a relationship between a Customer and a CustomerJourney
asserting that the Customer is likely to take the CustomerJourney.

Association Name: owns_2 Association Type: Association Stereotype:
 Source Class: CustomerJourneyStage [1] Target Class: CustomerJourney [0..*]

7.3.3.6 Class Name: CustomerJourneyStage Class Type: Class Stereotype:
Base Classes: AbstractAction, AbstractValueModel, JSTP
Definition: The CustomerJourneyStage represents a significant stage in the CustomerJourney. An example of the stages
of a customer journey would be: awareness, seeking a solution, weighting alternatives, acquiring the solution, using the
solution, disposing the solution.
Usage: CustomerJourneyStages are often associated with decisions by the customer to proceed to the next stage or
abandon the journey. However, the CustomerJourney is not a process and has no alternative sequences or paths.

7.3.3.6.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: CustomerJourneyStage [] Target Class: AbstractValueModel []

Association Name: owns_2 Association Type: Association Stereotype:
 Source Class: CustomerJourneyStage [1] Target Class: CustomerJourney [0..*]

Association Name: Association Type: Generalization Stereotype:
 Source Class: CustomerJourneyStage [] Target Class: JSTP []

Business Architecture Core Metamodel (BACM), v1.0 55

Association Name: follows_2 Association Type: Association Stereotype:
 Source Class: CustomerJourneyStage [0..*] Target Class: CustomerJourneyStage [0..*]
 Definition: The follows_2 relationship may be used to specify an ordering of CustomerJourneyStages
within a CustomerJourney. The metamodel does not enforce the constraint that the resulting network of
CustomerJourneyStages are owns_2 by a CustomerJourney. It does not prevent loops.

Association Name: Association Type: Generalization Stereotype:
 Source Class: CustomerJourneyStage [] Target Class: AbstractAction []

Association Name: owns_3 Association Type: Association Stereotype:
 Source Class: CustomerJourneyStage [1] Target Class: Touchpoint [0..*]

Association Name: follows_2 Association Type: Association Stereotype:
 Source Class: CustomerJourneyStage [0..*] Target Class: CustomerJourneyStage [0..*]
 Definition: The follows_2 relationship may be used to specify an ordering of CustomerJourneyStages
within a CustomerJourney. The metamodel does not enforce the constraint that the resulting network of
CustomerJourneyStages are owns_2 by a CustomerJourney. It does not prevent loops.

Association Name: triggeer_1 Association Type: Association Stereotype: «class»
 Source Class: Outcome [0..*] Target Class: CustomerJourneyStage [0..*]
 Definition: The trigger_1 association relates an Outcome to a CustomerJourneyStage that directly or
indirectly causes the Outcome to occur.

Usage: The trigger_1 association is typically used with the initial stage of a CustomerJourney to define an
Outcome that is an entryCriteria for the initial stage of a ValueSTream. This means that the
CustomerJourneyStage triggers the ValueStream. The association may be used for other purposes as well.

7.3.3.7 Class Name: CustomerSegment Class Type: Class Stereotype:
Base Classes: AbstractValueModel
Definition: The CustomerSegment represents a characteristic of the Customer or a component of customer state of mind.
CustomerSegments are owned by the Customer they describe.
Usage: When the owning Customer takes a Customerjourney, CustomerSegments should be created for each
CustomerJourneyStage and Touchpoint in the CustomerJourney. These CustomerSegments characterize the customer or
the customer's state of mind at the CustomerJourneyStage or Touchpoint.

7.3.3.7.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: CustomerSegment [] Target Class: AbstractValueModel []

Association Name: describes Association Type: Association Stereotype: «class»
 Source Class: CustomerSegment [0..*] Target Class: Customer [1..*]
 Definition: The describes association represents the relationship between a CustomerSegment and a
Customer asserting that the Customer is partially described by the CustomerSegment
Usage: If there is no CustomerJourney associated with a Customer, then the set of all CustomerSegments
that describe the Customer represent the total customer description.
If the Customer takes a CustomerJourney, then the CustomerSegments that describe the Customer may be
qualified by the characterizes association to a CustomerJourneyStage or Touchpoint, indicating that the
CustomerSegment partially describes the Customer at that CustomerJourneyStage or Touchpoint.

Association Name: characterizes Association Type: Association Stereotype: «class»
 Source Class: CustomerSegment [0..*] Target Class: JSTP [0..*]

Commented [JR25]: BACM11-70

Commented [JR26]: BACM11-52

 56 Business Architecture Core Metamodel (BACM), v1.0

 Definition: The characterizes association represents a relationship between a CustomerSegment and a
Touchpoint meaning that the CustomerSegment partially describes the state of mind or capability of the
Customer at the Touchpoint interaction.
Usage: This characterizes association represents the same kind of relationship as the characterizes
association between the CustomerSegment and the CustomerJourneyStage. The range of the association is
the union of CustomerJourneyStage and Touchpoint.

Association Name: segment Association Type: Association Stereotype:
 Source Class: ValueCharacteristic_1 [0..*] Target Class: CustomerSegment [0..1]

7.3.3.8 Class Name: JSTP Class Type: Class Stereotype:
Base Classes:
Usage: This abstract class provides a union type for CustomerJourneyStage and Touchpoint, allowing the characterizes
association to link instances of any concrete subclass of these classes.

7.3.3.8.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: CustomerJourneyStage [] Target Class: JSTP []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Touchpoint [] Target Class: JSTP []

Association Name: characterizes Association Type: Association Stereotype: «class»
 Source Class: CustomerSegment [0..*] Target Class: JSTP [0..*]
 Definition: The characterizes association represents a relationship between a CustomerSegment and a
Touchpoint meaning that the CustomerSegment partially describes the state of mind or capability of the
Customer at the Touchpoint interaction.
Usage: This characterizes association represents the same kind of relationship as the characterizes
association between the CustomerSegment and the CustomerJourneyStage. The range of the association is
the union of CustomerJourneyStage and Touchpoint.

7.3.3.9 Class Name: Touchpoint Class Type: Class Stereotype:
Base Classes: AbstractAction, AbstractValueModel, JSTP
Definition: The Touchpoint represents an interaction between the business and the Customer.
Usage: One or more Outcomes created by the business are experienced by the Customer at the Touchpoint (e.g. the
customer finds the answer to a question in a brochure created by the business, or the customer receives the business
object that was ordered in good condition and on time). Alternatively, one or more Outcomes created by customer uses of
the business objects contained in the ProductOffering are experienced by the customer (e.g. the customer uses the
purchased hammer to drive nails).
The analysis of value exchanged at the Touchpoint is represented by the ValueCharacteristic associated with the
Touchpoint.

7.3.3.9.1 Attributes, Methods and Connectors:

Association Name: experiences Association Type: Association Stereotype: «class»
 Source Class: Touchpoint [0..*] Target Class: Outcome [0..*]
 Definition: The experiences relation represents a relationship between an Outcome and a Touchpoint
meaning that the Customer will experience the Outcome at the Touchpoint.
Usage: A Touchpoint experiences an Outcome:

Business Architecture Core Metamodel (BACM), v1.0 57

1. when that Outcome is provided as a service or
2. when the Outcome is associated with acceptance of the ProductOffering (e.g. the customer is happy with
the contract of sale), or
3. when the customer receives information that resolves a question, or
4. when the customer makes use of a business object that is provided as an Outcome of an exchange
transaction

Association Name: Association Type: Generalization Stereotype:
 Source Class: Touchpoint [] Target Class: JSTP []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Touchpoint [] Target Class: AbstractAction []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Touchpoint [] Target Class: AbstractValueModel []

Association Name: follows_3 Association Type: Association Stereotype:
 Source Class: Touchpoint [0..*] Target Class: Touchpoint [0..*]
 Definition: The follows_3 relationship may be used to define an ordering among the Touchpoints that are
owns_3 by a CustomerJourneyStage. The metamodel does not enforce that the network of Touchpoints
defined by this relation are all owns_3 by a single CustomerJourneyStage. The metamodel does not prevent
the creation of loops.

Association Name: trigger_2 Association Type: Association Stereotype: «class»
 Source Class: Outcome [0..*] Target Class: Touchpoint [0..*]
 Definition: The trigger_2 association relates an Outcome to a Touchpoint, and means that the Outcome was
produced in the Touchpoint.

Usage: The trigger_2 association, along with trigger_1 is used in the initial Touchpoint of the initial
CustomerJourneyStage to produce an Outcome that is an entryCriteria of the initial ValueStreamStage of a
ValueStream. It means that the Touchpoint triggers the ValueStream. This association may be used for other
purposes.

Association Name: owns_3 Association Type: Association Stereotype:
 Source Class: CustomerJourneyStage [1] Target Class: Touchpoint [0..*]

Association Name: follows_3 Association Type: Association Stereotype:
 Source Class: Touchpoint [0..*] Target Class: Touchpoint [0..*]
 Definition: The follows_3 relationship may be used to define an ordering among the Touchpoints that are
owns_3 by a CustomerJourneyStage. The metamodel does not enforce that the network of Touchpoints
defined by this relation are all owns_3 by a single CustomerJourneyStage. The metamodel does not prevent
the creation of loops.

7.3.3.10 Class Name: ValueCharacteristic Class Type: Class Stereotype: «association»
Base Classes: AbstractValueModel
Definition: ValueCharacteristic represents the fit between the ValueProposition of a ProductOffering targeted at a
Customer.

Usage: ValueCharacteristic is decomposed into ValueCharacteristic_1 to allow for the aggregaton of fit measures
associated with the owned ValueCharacteristic_1 model elements.

Constraint: A ValueCharacteristic is not owned by another ValueCharacteristic.

Commented [JR27]: BACM11-70

Commented [JR28]: BACM11-52

Commented [JR29]: BACM11-16

 58 Business Architecture Core Metamodel (BACM), v1.0

7.3.3.10.1 Attributes, Methods and Connectors:

Association Name: customer Association Type: Association Stereotype:
 Source Class: ValueCharacteristic [0..*] Target Class: Customer [1]
 Definition: The customer leg of the ValueCharacteristic association identifies the Customer participating
in the value fit analysis represented by the ValueCharacteristic.
Usage: The ValueCharacteristic may define specific CustomerSegments, JourneyStages and Touchpoints as
having weigts in the value fit analysis. The meta-model does not provide direct support for asserting such
facts, but they can be recorded in Annotations associated with the ValueCharacteristic.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueCharacteristic [] Target Class: AbstractValueModel []

Association Name: owns_4 Association Type: Association Stereotype:
 Source Class: ValueCharacteristic [0..*] Target Class: ValueCharacteristic_1 [0..*]
 Definition: Owns_4 defines a composition relationship between a ValueCharacteristic and an owned
ValueCharacteristic_1.

Usage: The ValueCharacteristic_1 is owned a a ValueCharacteristic should have properties that aggregate to
the properties that describe the fit between the ValueProposition and the Customer. ValueCharacteristic_1
model elements may be further decomposed or aggregated.

Association Name: proposition Association Type: Association Stereotype:
 Source Class: ValueCharacteristic [0..*] Target Class: ValueProposition [1]
 Definition: The proposition leg of the ValueCharacteristic association identifies the ValueProposition that
is a component of the value fit analysis represented by the ValueCharacteristic.
Usage: A ValueCharacteristic may identify specific ValueItems of the ValueProposition and represent
weights that these items may have in the analysis, but this information must be placed in an Annotation of
the ValueCharacteristic as there is no direct support for such facts in the meta-model.

7.3.3.11 Class Name: ValueCharacteristic_1 Class Type: Class Stereotype: «association»
Base Classes: AbstractValueModel
Definition: ValueCharacteristic_1 represents the fit between the ValueItem and a CustmerSegment. A
ValueCharacteristic_1 model element is owned by a ValueCharacteristic and may not exist independently.

Usage: ValueCharacteristic_1 is intended to be used with a semantic tagging mechanism such as that provided by MEF
or its equivalent. This allows the creation of tagging frameworks such as the Value Proposition Canvas categories of
"use", "pain" and "gain". The CustomerSegments and ValueItems should be tagged by these categories.

Constraints: A ValueCharacteristic_1 must be owned by a ValueCharacteristic or a ValueCharacteristic_1 but not both.

7.3.3.11.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueCharacteristic_1 [] Target Class: AbstractValueModel []

Association Name: segment Association Type: Association Stereotype:
 Source Class: ValueCharacteristic_1 [0..*] Target Class: CustomerSegment [0..1]

Association Name: item Association Type: Association Stereotype:
 Source Class: ValueCharacteristic_1 [0..*] Target Class: ValueItem [0..1]

Commented [JR30]: BACM11-16

Business Architecture Core Metamodel (BACM), v1.0 59

Association Name: owns_4 Association Type: Association Stereotype:
 Source Class: ValueCharacteristic [0..*] Target Class: ValueCharacteristic_1 [0..*]
 Definition: Owns_4 defines a composition relationship between a ValueCharacteristic and an owned
ValueCharacteristic_1.

Usage: The ValueCharacteristic_1 is owned a a ValueCharacteristic should have properties that aggregate to
the properties that describe the fit between the ValueProposition and the Customer. ValueCharacteristic_1
model elements may be further decomposed or aggregated.

7.3.3.12 Class Name: ValueItem Class Type: Class Stereotype:
Base Classes: AbstractValueModel
Definition: A ValueItem represents the business belief that a Customer will value one or more Outcomes that are
experienced by the Customer.
Usage: For example, the ability of a sales representative to answer customer questions about a product is deemed to be
valuable to the customer. Another example Outcome is the exchange of a good for money; the associated ValueItem
could represent the buyer's feeling of having gotten a good deal.

7.3.3.12.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueItem [] Target Class: AbstractValueModel []

Association Name: values Association Type: Association Stereotype: «class»
 Source Class: ValueItem [0..*] Target Class: Outcome [0..*]
 Definition: The values association links a ValueItem to an Outcome and provides a valuation of that
Outcome. An Outcome may have several ValueItems, reflecting the ways in which different stakeholders
perceive the Outcome. Likewise, a ValueItem may value multiple Outcomes that must be valued as a group.
Usage: The Outcome may be present in the business architecture model without an associated ValueItem,
but ValueItems may not exist without being associated to an Outcome.

Association Name: item Association Type: Association Stereotype:
 Source Class: ValueCharacteristic_1 [0..*] Target Class: ValueItem [0..1]

Association Name: aggregates_3 Association Type: Association Stereotype:
 Source Class: ValueProposition [0..*] Target Class: ValueItem [0..*]
 Definition: The aggregates association represents the aggregateion of ValueItems into a ValueProposition.
ValueItems may be shared with multiple ValuePropositions.

Association Name: produces_2 Association Type: Association Stereotype: «shortcut»
 Source Class: ValueStreamStage [0..*] Target Class: ValueItem [0..*]
 Definition: The produces_2 association represents the fact of a ValueItem being produced by valuing one
or more Outcomes produced by Capabilities that support the ValueStreamStage or Processes or Activities
that implement the ValueStreamStage.
Usage: The ValueItems produced in a ValueStreamStage that is part of a ValueStream should contribute to
the ValueProposition produced by the ValueStream. The meta-model does not enforce this restriction.
Constraint: The produces_2 association is consistent with the ValueStreamStage being supported by some
Capabilities that produce Outcomes that are valued by the ValueItem.

7.3.3.13 Class Name: ValueProposition Class Type: Class Stereotype:
Base Classes: AbstractValueModel
Definition: The ValueProposition represents a collection of values the business believes it is offering to customers,
partners and other stakeholders through a ProductOffering.

Commented [JR31]: BACM11-13

 60 Business Architecture Core Metamodel (BACM), v1.0

7.3.3.13.1 Attributes, Methods and Connectors:

Association Name: of Association Type: Association Stereotype: «shortcut»
 Source Class: ValueProposition [0..*] Target Class: ProductOffering [0..*]
 Definition: The of association links a VslueProposition to a ProductOffering and represents that is the
ValueProposition is about the ProductOffering.
Constraint: Let VP1 be a ValueProposition and PO1 be a ProductOffering associated by o1, an "of"
association. Then for some subset of ValueItems {VIj} aggregated by VP1 such that each VIj values an
Outcome O1 that is incorporated in the ProductOffering PO1. Note that the ProductOfferings typically
include Outcomes that are experienced by the Customer at a Touchpoint.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueProposition [] Target Class: AbstractValueModel []

Association Name: aggregates_3 Association Type: Association Stereotype:
 Source Class: ValueProposition [0..*] Target Class: ValueItem [0..*]
 Definition: The aggregates association represents the aggregateion of ValueItems into a ValueProposition.
ValueItems may be shared with multiple ValuePropositions.

Association Name: target Association Type: Association Stereotype: «shortcut»
 Source Class: ValueProposition [0..*] Target Class: Customer [0..*]
 Definition: The target shortcut association asserts that the ValueProposition is intended to target the
Customer.
Usage: This shortcut allows the architect to assert that a ValueProposition targets a Customer and imply that
there is an unspecified ValueCharacteristic that represents the value fit analysis of the ValueProposition and
Customer.
Constraint: Let VP1 be a ValueProposition and Cu1 be a Customer associated by t1, a target association.
Then there should be a ValueCharacteristic VC1 with VP1 as its proposition and Cu1 as its customer.
Note that it is commonly the case that the set of individuals represented intensionally by the Customer
element are also LegalEntities.

Association Name: produces_1 Association Type: Association Stereotype: «shortcut»
 Source Class: ValueStream [0..*] Target Class: ValueProposition [0..*]
 Definition: The produces_1 shortcut association represents the creation of a ValueProposition by a
ValueStream.
Usage: The produces_1 relation effectively aggregates the produces relations between the
ValueStreamStages that are part of this ValueStream and the ValueItems that comprise the ValueProposition
of this ValueStream.
Constraint: The produces_1 association is implied by some owned ValueStreamStages that produce
ValueItems that are aggregated into the ValueProposition.

Association Name: proposition Association Type: Association Stereotype:
 Source Class: ValueCharacteristic [0..*] Target Class: ValueProposition [1]
 Definition: The proposition leg of the ValueCharacteristic association identifies the ValueProposition that
is a component of the value fit analysis represented by the ValueCharacteristic.
Usage: A ValueCharacteristic may identify specific ValueItems of the ValueProposition and represent
weights that these items may have in the analysis, but this information must be placed in an Annotation of
the ValueCharacteristic as there is no direct support for such facts in the meta-model.

7.3.3.14 Class Name: ValueStream Class Type: Class Stereotype:
Base Classes: AbstractAction, AbstractValueModel, VSVSS
Definition: A ValueStream represnts a set of stages that accumulate value represented by the ValueProposition.
Usage: The notion that value accumulation can be broken into components has been central to strategic practices such as
Michael Porter's value chains and high level, value oriented process architecture. The notion is well established in
business architecture and analysis practice.

Commented [JR32]: BACM11-13

Business Architecture Core Metamodel (BACM), v1.0 61

In some cases, it may be desirable to order the stages in a ValueStream. For example, there is a natural order to the
design, build, inventory, sell and service stages of a manufacturing business. However, in other cases, such as health
care, it is difficult to order the stages of triage, diagnosis, treatment, prevention. Consequently, no strong semantic
interpretation should be associated with the ordering of ValueStreamStages in a ValueStream.
Constraint: A ValueStream instance may not own, aggregate or generalize another ValueStream instance

7.3.3.14.1 Attributes, Methods and Connectors:

Association Name: produces_1 Association Type: Association Stereotype: «shortcut»
 Source Class: ValueStream [0..*] Target Class: ValueProposition [0..*]
 Definition: The produces_1 shortcut association represents the creation of a ValueProposition by a
ValueStream.
Usage: The produces_1 relation effectively aggregates the produces relations between the
ValueStreamStages that are part of this ValueStream and the ValueItems that comprise the ValueProposition
of this ValueStream.
Constraint: The produces_1 association is implied by some owned ValueStreamStages that produce
ValueItems that are aggregated into the ValueProposition.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueStream [] Target Class: AbstractValueModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueStream [] Target Class: VSVSS []

Association Name: owns_1 Association Type: Association Stereotype:
 Source Class: ValueStream [1] Target Class: ValueStreamStage [0..*]
 Definition: The owns association represents that a ValueStream may be composed of ValueStreamStages.
ValueStreamStages cannot be shared with other ValueStream instances.
This association may be ordered to facilitate the presentation of ValueStreamStages, but no business
operating model implications should be assumed based on the ordering of ValueStreamStages.
This association effectively specializes the owns association in the BusinessElement diagram to add the
ordered constraint.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueStream [] Target Class: AbstractAction []

7.3.3.15 Class Name: ValueStreamStage Class Type: Class Stereotype:
Base Classes: AbstractAction, AbstractValueModel, VSVSS
Definition: ValueStreamStages represent significant points of value creation in a ValueStream.
Usage: ValueStreamStages are dependent on their containing ValueStream and are not shared with other ValueStreams.
When the business architect intends to represent similar ValueStreamStages in different ValueStreams, the similarity
should be represented by having the same set of relationships with the supporting Capabilities.
ValueStreamStages are often defined by analysis and decomposition of the ValueProposition. They may also respresent
stages of completion of a "build to order" product that are of interest to the Customer (e.g. stages where the Customer
may make changes in specifications of the ordered product).
Constraint: A ValueStreamStage may only own other ValueStreamStages and be owned by another ValueStreamStage
or a ValueStream. ValueStreamStages may not participate in generalizes or aggregates associations.

7.3.3.15.1 Attributes, Methods and Connectors:

Attribute Name: presentation_order Attribute Type: int

 62 Business Architecture Core Metamodel (BACM), v1.0

Definition: The presentation_order attribute is a static integer that is used to control the presentation
ordering of stages in a value stream display. It has no additional meaning and does not influence value
stream navigation as determined by the entry and exit criteria.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueStreamStage [] Target Class: AbstractValueModel []

Association Name: exitCriteria Association Type: Association Stereotype: «shortcut»
 Source Class: ValueStreamStage [0..*] Target Class: Outcome [0..*]
 Definition: The exitCriteria association represents that the Outcome may be produced by the completion of
the ValueStreamStage.
Usage: It is often useful in analysis to record the Outcomes that may be the case when a ValueStreamStage
is complete, without commiting to defining Capabilities that support the ValueStreamStage and produce the
Outcome. This association does not distinguish necessary from sufficient, nor does it permit logic
expressions involving combinations of Outcomes. Such conditions may be expressed as annotations on the
participating associations.
Constraint: Let C1 be a Capability supporting the ValueStreamStage and C1 produces the Outcome.

Association Name: entryCriteria Association Type: Association Stereotype: «shortcut»
 Source Class: ValueStreamStage [0..*] Target Class: Outcome [0..*]
 Definition: The entryCriteria association represents that the Outcome may need to be satisfied in order to
enter the ValueStreamStage.
Usage: It is often useful in analysis to record the Outcomes that should be the case to enter a
ValueStreamStage without commiting to defining Capabilities that support the ValueStreamStage and need
the Outcome. This association does not distinguish necessary from sufficient, nor does it permit logic
expressions involving combinations of Outcomes. Such conditions may be expressed as annotations on the
participating associations.
Constraint: Let C1 be a Capability supporting the ValueStreamStage and C1 needs the Outcome.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueStreamStage [] Target Class: AbstractAction []

Association Name: produces_2 Association Type: Association Stereotype: «shortcut»
 Source Class: ValueStreamStage [0..*] Target Class: ValueItem [0..*]
 Definition: The produces_2 association represents the fact of a ValueItem being produced by valuing one
or more Outcomes produced by Capabilities that support the ValueStreamStage or Processes or Activities
that implement the ValueStreamStage.
Usage: The ValueItems produced in a ValueStreamStage that is part of a ValueStream should contribute to
the ValueProposition produced by the ValueStream. The meta-model does not enforce this restriction.
Constraint: The produces_2 association is consistent with the ValueStreamStage being supported by some
Capabilities that produce Outcomes that are valued by the ValueItem.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueStreamStage [] Target Class: VSVSS []

Association Name: participate Association Type: Association Stereotype: «shortcut»
 Source Class: Performer [0..*] Target Class: ValueStreamStage [0..*]
 Definition: The participate shortcut asserts that a Performer is assigned to an unspecified PerformerRole
of an unspecified Capability hat supports the ValueStreamStage.
Constraint: Let P1 be a Performer participating in a ValueStreamStage VSS1. There should exist a
PerformerRole PR1 that P1 is assignedTo and PR1 is a PerformerRole ofCapability C1 that produces some
Outcme O1 valued by a ValueItem VI1 that is produced by ValueStream VSS1.

Association Name: supports Association Type: Association Stereotype: «class»
 Source Class: Capability [0..*] Target Class: ValueStreamStage [0..*]

Commented [JR33]: BACM11-35

Commented [JR34]: BACM11-5

Business Architecture Core Metamodel (BACM), v1.0 63

 Definition: The supports association represents the relationship between a Capability and a
ValueStreamStage that means that the Capability is needed in the ValueStreamStage.
Usage: For example, an important stage in the creation of value for a manipulation puzzle such as Rubik's
Cobe is the production of a manufacturable design of the puzzle. A failure here can result in a puzzle that
cannot be manufactured or is not attractive to purchasers.
Outcomes providing value are:
 a positive maniufacturability review;
 a positive customer reaction in a focus group.
The Capabilities needed to produce these Outcomes are: product design, manufacturability analysis, focus
group management. For this example, the previous three Capability instances would be associated with the
"Design Ready" ValueStreamStage.

Association Name: owns_1 Association Type: Association Stereotype:
 Source Class: ValueStream [1] Target Class: ValueStreamStage [0..*]
 Definition: The owns association represents that a ValueStream may be composed of ValueStreamStages.
ValueStreamStages cannot be shared with other ValueStream instances.
This association may be ordered to facilitate the presentation of ValueStreamStages, but no business
operating model implications should be assumed based on the ordering of ValueStreamStages.
This association effectively specializes the owns association in the BusinessElement diagram to add the
ordered constraint.

7.3.4 Package: Organization

Commented [JR35]: BACM11-13

 64 Business Architecture Core Metamodel (BACM), v1.0

7.3.4.1 Diagram: Organization

The Organization diagram defines Performer as an entity capable of action. A Performer may be assignedTo_2
PerformerRoles associated with AbstractCapabilities and/or AbstractProcesses. This role defines the activities the
Performer is expected to carry out.

OrgUnit represents a collection of Performers and AbstractBusinessObjects that is part of an organization.

LegalEntity represents an OrgUnit that is chartered or regulated in a Jurisdiction. A LegalEntity will usually be the top of
a hierarchy of OrgUnits, connected by belongsTo_1. However, LegalUnits may belongTo_1 other LegalUnits.

Responsible represents an n-ary relationship between OrgUnits that may involve some BusinessElement. An example
might be a couple of OrgUnits with an informal collaboration to manage a BusinessObject.

LegalEntity

OrgUnit

Performer

Jurisdiction

Capability::Role

System

Capability::
PerformerRole

Capability::
ResourceRole

Process::AbstractProcess

Capability::
AbstractCapability

Responsible

BACM_Model::
BusinessElement

+ abstract: Boolean

Capability::
BusinessObject

Capability::
AbstractBusinessObject

Capability::
InformationItem

0..*

belongsTo_1

«class»
0..*

0..*

target

0..1

0..*

assignTo_1

0..1

0..*

assignTo_2

0..1

0..*

implements_0

«shortcut»

0..*

0..*

informs_2

«class» 0..*

0..*

legal_jurisdiction

«class» 0..*

0..*

source

0..1

0..*

belongsTo_2

«class»

0..*

0..*

ofCapability

0..10..*

ofProcess

0..1

0..*

contains

«class»

0..*
0..*

nature

0..*

Commented [JR36]: BACM11-66
BACM11-79
BACM11-89

Business Architecture Core Metamodel (BACM), v1.0 65

7.3.4.2 Diagram: Participant

7.3.4.3 Class Name: Jurisdiction Class Type: Class Stereotype:
Base Classes: AbstractOperatingModel, BACMPlainEntity
Definition: The Jurisdiction represents a legal jurisdictions with powers to charter and/or regulate businesses.

7.3.4.3.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: Jurisdiction [] Target Class: AbstractOperatingModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Jurisdiction [] Target Class: BACMPlainEntity []

Association Name: legal_jurisdiction Association Type: Association Stereotype: «class»
 Source Class: LegalEntity [0..*] Target Class: Jurisdiction [0..*]
 Definition: The "legal_jurisdiction"association instances represent the jurisdiction to which an Enterprise
belongs.

Customer::
ValueStreamStage

+ presentation_order: int

Performer

Customer::
ValueItem

Capability::Outcome
Capability::

AbstractCapability

Capability::PerformerRole

Capability::Role

Capability::needs_0

+ non_Initial: Boolean

Capability::produces_0

+ non_final: Boolean

1

prod_0_tgt 1

1
needs_0_tgt

1

0..*
ofCapability

0..1

1

prod_0_src1

0..*

participate

«shortcut» 0..*

0..*

values

«class»

0..*

1needs_0_src

1

0..*

produces_2

«shortcut»
0..*

0..*

assignTo_2

0..1

 66 Business Architecture Core Metamodel (BACM), v1.0

Usage: The meta-model allows Enterprise instances to be in multiple jurisdictions (e.g. a business that is
subject to local, provincial and stage laws, regulations and processes).

7.3.4.4 Class Name: LegalEntity Class Type: Class Stereotype:
Base Classes: OrgUnit
Definition: LegalEntity represents a human organization that is subject to the laws and regulations of a Jurisdiction..

7.3.4.4.1 Attributes, Methods and Connectors:

Association Name: provides Association Type: Association Stereotype: «class»
 Source Class: LegalEntity [0..*] Target Class: Offering [0..*]
 Definition: The provider relation represents a relationship between a LegalEntity and an Offering created
by the LegalEntity that is intended to solicit the business of designated parties identified by the consumer
relation.

Association Name: Association Type: Generalization Stereotype:
 Source Class: LegalEntity [] Target Class: OrgUnit []

Association Name: legal_jurisdiction Association Type: Association Stereotype: «class»
 Source Class: LegalEntity [0..*] Target Class: Jurisdiction [0..*]
 Definition: The "legal_jurisdiction"association instances represent the jurisdiction to which an Enterprise
belongs.
Usage: The meta-model allows Enterprise instances to be in multiple jurisdictions (e.g. a business that is
subject to local, provincial and stage laws, regulations and processes).

Association Name: purchaser Association Type: Association Stereotype: «class»
 Source Class: LegalEntity [0..*] Target Class: ProcurementOutcome [0..*]

Association Name: accepts Association Type: Association Stereotype: «class»
 Source Class: LegalEntity [0..*] Target Class: Offering [0..*]
 Definition: The acceptor relation represents a relationship between a party external to the business and an
Offering intended to solicit business from the acceptor party represented by the Customer..
Usage: Note that offering dies not represent a sale; in a sale, each party gives something of value and
receives something of value.

Association Name: server Association Type: Association Stereotype: «class»
 Source Class: ServiceOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The server association asserts that the LegalEntity is the provider of ServiceOutcomes
incorporated into a ServiceOffering.
Usage: It is not necessarily the case that the provides LegalEntity is the same as the server LegalEntity of
the ServiceOutcome.

Association Name: provider_0 Association Type: Association Stereotype: «class»
 Source Class: OutsourcedServiceOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The provider_0 association asserts that a LegalEntity is the provider of the
OutsourcedServiceOutcome.
Usage: The provides LegalEntity is not necessarily the same LegalEntity as the provider_0 of the
OutsourcedServiceOffering as it may be an agent acting for the provider_0 LegalEntity.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Customer [] Target Class: LegalEntity []

Association Name: recipient_1 Association Type: Association Stereotype: «class»

Business Architecture Core Metamodel (BACM), v1.0 67

 Source Class: ServiceOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The recipient_1 association asserts that the LegalEntity is the recipient of ServiceOutcomes
incorporated into a ServiceOffering.
Usage: It is not necessarily the case that the accepts LegalEntity is the same as the recipient_1 LegalEntity
of the ServiceOutcome.

Association Name: acceptor_0 Association Type: Association Stereotype: «class»
 Source Class: OutsourcedServiceOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The acceptor_0 association asserts that a LegalEntity is the receiver of the
OutsourcedServiceOutcome.
Usage: The accepts LegalEntity is not necessarily the same LegalEntity as the acceptor_0 of the
OutsourcedServiceOffering, as it may be an agent acting for the acceptor_0 LegalEntity.

Association Name: seller Association Type: Association Stereotype: «class»
 Source Class: MerchandiseOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The seller association is related to the accepts association and asserts that a LegalEntity
(typically also a business) is the targeted seller of the MerchandiseOutcome.
Usage: The seller of the MerchandiseOutcome is not necessarily the LegalEntity that provides the
MerchandiseOffering in the case when the provider is acting as an agent for the seller.

Association Name: supplier Association Type: Association Stereotype: «class»
 Source Class: ProcurementOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The supplier association asserts that the LegalEntity is to be the supplier of the
ProcurementOutcome.
Usage: The supplier LegalEntity is not necessarily the same as the provider LegalEntity for the
ProcurementOffering incorporating the ProcurementOutcome.

Association Name: buyer Association Type: Association Stereotype: «class»
 Source Class: MerchandiseOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The buyer association is related to the accepts association and asserts that a LegalEntity
(typically also a Customer) is the targeted buyer of the MerchandiseOutcome.
Usage: The buyer of the MerchandiseOutcome is not necessarily the LegalEntity that accepts the
MerchandiseOffering in the case when the acceptor is acting as an agent for the buyer.

7.3.4.5 Class Name: OrgUnit Class Type: Class Stereotype:
Base Classes: Performer
Definition: The OrgUnit meta-class represents the various types of human organizations and individuals capable of
acting as performers.

7.3.4.5.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: OrgUnit [] Target Class: Performer []

Association Name: staffs Association Type: Association Stereotype: «shortcut»
 Source Class: OrgUnit [0..*] Target Class: CapabilityImplementation [0..*]
 Definition: The staffs relationship between OrgUnit and CapabilityImplementation represents that the
OrgUnit is belongTo by Performers and AbstractBusinessObjects that are assignTo PerformerRoles and
ResourceRoles that are aggregated_3 by the CapabilityImplementation.

Constraint: If OrgUnit OU1 staffs CapabilityImplementation CI1, then for some Performer P1, P1
belongsTo_1 OrgUnit OU1 and P1 is assignTo_1 PerformerRole PR1 and PR1 is aggregates_3 by CI1.
Also, if OU1 staffs CI1, then for some AbstractBusinessObject ABO1, ABO1 belongsTo_2 OU1 and ABO1
is assignTo_1 ResourceRole RR1 and CI1 aggregates_3 RR1.

Association Name: belongsTo_1 Association Type: Association Stereotype: «class»

 68 Business Architecture Core Metamodel (BACM), v1.0

 Source Class: Performer [0..*] Target Class: OrgUnit [0..*]
 Definition: belongsTo_1 represents that a Performer belongs to OrgUnit. This association has the
semantics of agggregation.
Usage: In a model, there will typically be semantic overlap between belongsTo_1 and Responsible.
However, the metamodel syntax presently does not allow the specification of this overlap. The business
architect may choose to use belongs_to in lieu of Responsible or vice versa. It would not be recommended
to use both where there is the potential of semantic overlap.

Association Name: Association Type: Generalization Stereotype:
 Source Class: LegalEntity [] Target Class: OrgUnit []

Association Name: target Association Type: Association Stereotype:
 Source Class: Responsible [0..*] Target Class: OrgUnit [0..1]
 Definition: The target leg of the Responsible association asserts that the OrgUnit is responsible to another
OrgUnit determined by the source leg of the Responsible association.

Association Name: source Association Type: Association Stereotype:
 Source Class: Responsible [0..*] Target Class: OrgUnit [0..1]
 Definition: The source leg of the Responsible association asserts that the source OrgUnit is responsible in
some way for the target OrgUnit.

Association Name: belongsTo_2 Association Type: Association Stereotype: «class»
 Source Class: AbstractBusinessObject [0..*] Target Class: OrgUnit [0..*]
 Definition: The relationship belongsTo_2 represents that a AbstractBusinessObject belongs to OrgUnit.
This association has the semantics of agggregation.

7.3.4.6 Class Name: Performer Class Type: Class Stereotype:
Base Classes: AbstractBusinessObject
Definition: The Performer represents entities that are capable of performing PerformerRoles. Performer has two
specializations: OrgUnit and System, representing a human components of the business or a system.
Usage: The Performer is concrete to allow modeling the need for a Performer without committing to a human
assignment, a system assignment, or a combination of both. Performers are generally described by skills or abilities.
Performer is s specialization of AbstractBusinessObject, allowing Performers to be treated as AbstractBusinessObjects
without conflict. For example, a Performer may fill a role in a manufaturing capability and be the BusinessObject of a
Training Management capability responsible for employee training..

7.3.4.6.1 Attributes, Methods and Connectors:

Association Name: belongsTo_1 Association Type: Association Stereotype: «class»
 Source Class: Performer [0..*] Target Class: OrgUnit [0..*]
 Definition: belongsTo_1 represents that a Performer belongs to OrgUnit. This association has the
semantics of agggregation.
Usage: In a model, there will typically be semantic overlap between belongsTo_1 and Responsible.
However, the metamodel syntax presently does not allow the specification of this overlap. The business
architect may choose to use belongs_to in lieu of Responsible or vice versa. It would not be recommended
to use both where there is the potential of semantic overlap.

Association Name: participate Association Type: Association Stereotype: «shortcut»
 Source Class: Performer [0..*] Target Class: ValueStreamStage [0..*]
 Definition: The participate shortcut asserts that a Performer is assigned to an unspecified PerformerRole
of an unspecified Capability hat supports the ValueStreamStage.
Constraint: Let P1 be a Performer participating in a ValueStreamStage VSS1. There should exist a
PerformerRole PR1 that P1 is assignedTo and PR1 is a PerformerRole ofCapability C1 that produces some
Outcme O1 valued by a ValueItem VI1 that is produced by ValueStream VSS1.

Commented [JR37]: BACM11-79

Business Architecture Core Metamodel (BACM), v1.0 69

Association Name: Association Type: Generalization Stereotype:
 Source Class: Performer [] Target Class: AbstractBusinessObject []

Association Name: Association Type: Generalization Stereotype:
 Source Class: System [] Target Class: Performer []

Association Name: Association Type: Generalization Stereotype:
 Source Class: OrgUnit [] Target Class: Performer []

Association Name: assignTo_2 Association Type: Association Stereotype:
 Source Class: PerformerRole [0..*] Target Class: Performer [0..1]
 Definition: The assignTo_2 leg of the PerformerRole association represents that a Performer is assigned to
the PerformerRole.

Association Name: aggregates_1 Association Type: Association Stereotype:
 Source Class: CapabilityImplementation [0..*] Target Class: Performer [0..*]
 Definition: The aggregates_1 relationship between CapabilityImplementation and Performer represents
that a Performer is incorporated non-exclusively into a CapabilityImplementation.

Association Name: informs_2 Association Type: Association Stereotype: «class»
 Source Class: InformationItem [0..*] Target Class: Performer [0..*]
 Definition: The informs_2 association represents the influence of information (represented by
InformationItem) on a Performer.
Usage: Information, such as weather, production targets, and results of a business analysis project will
change how a business behaves and how a Performer performs.

7.3.4.7 Class Name: Responsible Class Type: Class Stereotype: «association»
Base Classes: AbstractOperatingModel
Definition: Responsible represents an unspecified kind of responsibility relationship between a source OrgUnit and a
target OrgUnit. This relationship may also include a BusinessElement that defines the nature of the association.
Usage: Responsible instances may form generalization hierarchies. The business architect may create these hierarchies to
represent particular types of responsibility relationships found in the business. When specializing Responsible instances,
the source, target and nature association legs may be subsetted to restrict them to particular types of OrgUnit and
BusinessElement.

7.3.4.7.1 Attributes, Methods and Connectors:

Association Name: target Association Type: Association Stereotype:
 Source Class: Responsible [0..*] Target Class: OrgUnit [0..1]
 Definition: The target leg of the Responsible association asserts that the OrgUnit is responsible to another
OrgUnit determined by the source leg of the Responsible association.

Association Name: nature Association Type: Association Stereotype:
 Source Class: Responsible [0..*] Target Class: BusinessElement [0..*]
 Definition: The nature leg of the Responsible designates a BusinessElement that helps define the scope
and/or nature of the Responsible association.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Responsible [] Target Class: AbstractOperatingModel []

Association Name: source Association Type: Association Stereotype:
 Source Class: Responsible [0..*] Target Class: OrgUnit [0..1]

Commented [JR38]: BACM11-89

 70 Business Architecture Core Metamodel (BACM), v1.0

 Definition: The source leg of the Responsible association asserts that the source OrgUnit is responsible in
some way for the target OrgUnit.

7.3.4.8 Class Name: System Class Type: Class Stereotype:
Base Classes: Performer
Definition: The System represents the concept of a non-human performer, such as an IT system or a robot. Tools such as
jigs and drills are not considered Perfomers for the purpose of business architecture. They should be modeled as
Resources.

7.3.4.8.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: System [] Target Class: Performer []

Association Name: contains Association Type: Association Stereotype: «class»
 Source Class: BusinessObject [0..*] Target Class: System [0..*]
 Definition: The contains association represents that BusinessObjects may contain System.
Usage: In some cases, a BusinessObject and a System may represent different aspects of the same entity;
since meta-classes in this meta-model are not assumed disjoint, an instance may have both BusinessObject
and System as metaclasses. However, a BusinessObject may contain several Systems and other
BusinessObjects as well. In this case, the Systems are not aspects of the primary BusinessObject, and the
contains association allows the architect to represent this. An example of this latter case is a primary
BusinessObject that is a computer and the System is a software package hosted on that computer (along with
other software packages). The software package may be an instance of a System and also an instance of a
BusinessObject (i.e. the code)

7.3.5 Package: Process

Business Architecture Core Metamodel (BACM), v1.0 71

7.3.5.1 Diagram: Process

The Process diagram defines abstract syntax for a high level process model, for representing how components of a
process implement a value stream's ValueStreamStages, and for relating Capabilities and Processes/Activities through
their related Outcomes and the Outcome associated BusinessObjects and InformationItems..
Processes are modeled as Activities and Processes. A Process is an aggregator of other Processes and Activities.

7.3.5.2 Class Name: AbstractProcess Class Type: Class Stereotype:
Base Classes: AbstractAction, AbstractOperatingModel, APCICB
Definition: AbstractProcess is not intended to represent a busines concept. It is a metamodeling technical device to share
relationships with Process and Activity that would otherwise need to be duplicated.
Usage: AbstractProcess is an abstract meta-class that provides input and output Outcome connection abilities to both
Process and Activity. It also provides the role link to PerformerRoles and ResourceRoled. It also provides the implements
link to a ValueStream or some ValueStreamStages. Since implements aligns the scope of the Process with either a
ValueStreamStage or a ValueStream, it should not link both a ValueStreamStage and the ValueStream the
ValueStreamStage belongs to.

7.3.5.2.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractProcess [] Target Class: AbstractOperatingModel []

Association Name: implements_0 Association Type: Association Stereotype: «shortcut»

AbstractProcess

Activity Process

Customer::ValueStream
Customer::

ValueStreamStage

+ presentation_order: int

Customer::
ValueItem

Capability::Role Capability::Outcome

Capability::
AbstractCapability

Capability::
InformationItem

VSVSS

0..*

values

«class»

0..*0..*

implements_1

«class»

0..*

0..*

ofProcess

0..1

0..*

input

«class» 0..*

0..*

implements_0

«shortcut»

0..*

1

owns_1 0..*

0..*
«shortcut» depends_0

0..*

0..*

output

«class» 0..*

0..*

follows_1

0..*

0..*

exitCriteria

«shortcut»

0..*0..*

ofCapability

0..1

0..*
produces_2
«shortcut»

0..*

0..*

entryCriteria

«shortcut»

0..*

0..*

aggregates

0..*

0..*

informs_1

«class»

0..*

Commented [JR39]: BACM11-70
BACM11-89
BACM11-71

 72 Business Architecture Core Metamodel (BACM), v1.0

 Source Class: AbstractProcess [0..*] Target Class: AbstractCapability [0..*]
 Definition: The implements_0 shortcut represents that a AbstractCapability and an AbstractProcess have
related Outcomes
Usage: It could also be justified by a common Performer playing a role in the CapabilityBehavior and the
AbstractProcess
Constraint: Let P1 be a Process and C1 be a capability associated by an implements association. Then there
should exist Outcomes O1 and O2 such that O1 is produced by (needed by) C1 and O2 is output (input) by
P1 and O1 and O2 are related such that they are the same Outcome or one is in the extended aggregation of
the other or one is the extended specialization of the other or any chain of relationships connecting the two
where the chain consists exclusively of being aggregated by or being a specialization of the predecessor
Outcome.

Association Name: follows_1 Association Type: Association Stereotype:
 Source Class: AbstractProcess [0..*] Target Class: AbstractProcess [0..*]
 Definition: The follows_1 relation indicates a temporal ordering relation between instances such that the
target instance follows the source. The relation is many-many, but has no definition in terms of split/join

Usage: The abstract syntax does not restrict the use of this relation to meaningful connections in a model
with decomposed processes. It is the responsibility of the modeler to provide an interpretation of the
decomposition structure and to insure that the follows_1 relation is properly constructed.

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractProcess [] Target Class: AbstractAction []

Association Name: input Association Type: Association Stereotype: «class»
 Source Class: AbstractProcess [0..*] Target Class: Outcome [0..*]
 Definition: The input association represents that the AbstractProcess inputs (requires or can use) the
Outcome.
Usage: The input association in the process perspective corresponds to the needs association in the
capability perspective. While it is possible that the same Outcome is input to a process and needed by a
capability, it will usually be the case that a process inputs an Outcome that is related by generalization or
aggregation (or another relation between Outcomes) to an Outcome needed by a capability. The process and
capability in this case are semantically related by the relationship between their Outcomes.
For example, a CustomerInformationManagement Capability may need
CustomerInformation_change_pending Outcome. A process that updates the CustomerAddress (a
component of CustomerInformation) may input CustomerAddress_change_pending Outcome, that is related
to the other Outcome by aggregation.

Association Name: implements_1 Association Type: Association Stereotype: «class»
 Source Class: AbstractProcess [0..*] Target Class: VSVSS [0..*]
 Definition: The implements association asserts that a Process or Activity implements a ValueStream and
implies that Outcomes of the Process are valued as ValueItems incorporated into the ValueProposition
delivered by the ValueStream.
Usage: It is not permitted for a Process or Activity to implement both a ValueStream and one or more
ValueStreamStages of that ValueStream. A Process implementing a ValueStream may have aggregated
Processes that implement ValueStreamStages of the ValueStream.

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractProcess [] Target Class: APCICB []

Association Name: output Association Type: Association Stereotype: «class»
 Source Class: AbstractProcess [0..*] Target Class: Outcome [0..*]
 Definition: The output association represents that the AbstractProcess outputs the Outcome.
Usage: The output association in the process perspective corresponds to the produces association in the
capability perspective. While it is possible that the same Outcome is output from a process and produced by
a capability, it will usually be the case that a process outputs an Outcome that is related by generalization or

Commented [JR40]: BACM11-70
BACM11-71

Business Architecture Core Metamodel (BACM), v1.0 73

aggregation (or another relation between Outcomes) to an Outcome produced by a capability. The process
and capability in this case are semantically related by the relationship between their Outcomes.
For example, a CustomerInformationManagement Capability may produce CustomerInformation_is_current
and CustomerInformation_is_correct Outcomes. A process that updates the CustomerAddress (a component
of CustomerInformation) may produce CustomerAddress_is_current and CustomerAddress_is_correct
Outcomes, that are related to the other Outcomes by aggregation.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Process [] Target Class: AbstractProcess []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Activity [] Target Class: AbstractProcess []

Association Name: follows_1 Association Type: Association Stereotype:
 Source Class: AbstractProcess [0..*] Target Class: AbstractProcess [0..*]
 Definition: The follows_1 relation indicates a temporal ordering relation between instances such that the
target instance follows the source. The relation is many-many, but has no definition in terms of split/join

Usage: The abstract syntax does not restrict the use of this relation to meaningful connections in a model
with decomposed processes. It is the responsibility of the modeler to provide an interpretation of the
decomposition structure and to insure that the follows_1 relation is properly constructed.

Association Name: implements_6 Association Type: Association Stereotype: «class»
 Source Class: CapabilityImplementation [0..*] Target Class: AbstractProcess [0..*]
 Definition: The implements_6 association represents a relationship meaning that the
CapabilityImplementation provides PerformerRoles and ResourceRoles to implement a Process or Activity.
Usage: The implements_6 association should be used to define a set of resource requirements needed to
implement an AbstractProcess. The resource requirements are stated as a collection of PerformerRoles and
ResourceRoles. These Roles should be the Roles of the AbstractProcess, but this is not enforced by the
abstract syntax.
Additionally, the CapabilityImplementation may aggregate Performers and AbstractBusinessObjects that are
assignTo the set of Roles. These Performers and AbstractBusinessObjects represent domains from which
these assignTo assignments are/should be made. This is not enforced by the abstract syntax.

Association Name: informs_1 Association Type: Association Stereotype: «class»
 Source Class: InformationItem [0..*] Target Class: AbstractProcess [0..*]
 Definition: The informs_1 association represents the influence of information (represented by
InformationItem) on a Process or Activity.
Usage: Information, such as weather, production targets, and results of a business analysis project will
change how a business behaves and how a Process or Activity performs.

Association Name: ofProcess Association Type: Association Stereotype:
 Source Class: Role [0..*] Target Class: AbstractProcess [0..1]
 Definition: The ofProcess leg of the Role association links a PerformerRole or ResourceRole to a Process
or Activity.

Association Name: aggregates Association Type: Association Stereotype:
 Source Class: Process [0..*] Target Class: AbstractProcess [0..*]
 A Process aggregates other Processes and Activities.

7.3.5.3 Class Name: Activity Class Type: Class Stereotype:
Base Classes: AbstractProcess
Definition: Activities represent atomic (non-decomposable) activities.

Commented [JR41]: BACM11-89

 74 Business Architecture Core Metamodel (BACM), v1.0

7.3.5.3.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: Activity [] Target Class: AbstractProcess []

7.3.5.4 Class Name: Process Class Type: Class Stereotype:
Base Classes: AbstractProcess
Definition: Process represents an aggregation of Activities and other Processes.
Usage: A Process aggregated into another Process means that the aggregated Process may be executed as a part of
executing the aggregator Process. The abstract syntax does not specify a starting or ending Process/Activity;
consequently starting and ending Activities/Processes aggregated by another Process must be determined by analysis of
the Outcome connections.

7.3.5.4.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: Process [] Target Class: AbstractProcess []

Association Name: aggregates Association Type: Association Stereotype:
 Source Class: Process [0..*] Target Class: AbstractProcess [0..*]
 A Process aggregates other Processes and Activities.

7.3.5.5 Class Name: VSVSS Class Type: Class Stereotype:
Base Classes:
Usage: This abstract class provides a union type for ValueStream and ValueStreamStage, allowing instances of the
implements_1 association to link to instances of any concrete subclass of either of these classes.

7.3.5.5.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueStreamStage [] Target Class: VSVSS []

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueStream [] Target Class: VSVSS []

Association Name: implements_1 Association Type: Association Stereotype: «class»
 Source Class: AbstractProcess [0..*] Target Class: VSVSS [0..*]
 Definition: The implements association asserts that a Process or Activity implements a ValueStream and
implies that Outcomes of the Process are valued as ValueItems incorporated into the ValueProposition
delivered by the ValueStream.
Usage: It is not permitted for a Process or Activity to implement both a ValueStream and one or more
ValueStreamStages of that ValueStream. A Process implementing a ValueStream may have aggregated
Processes that implement ValueStreamStages of the ValueStream.

Business Architecture Core Metamodel (BACM), v1.0 75

7.3.6 Package: Product

7.3.6.1 Diagram: MerchandiseOffering

ProductOffering Capability::
AbstractBusinessObject

Capability::Outcome

MerchandiseOutcome

Offering
Organization::

LegalEntity

MerchandiseOffering
0..* object_0

«shortcut»

0..*

0..*

buyer

«class»

0..*

0..*

accepts

«class» 0..*

+offering

0..*

incorporates_0

«class»

+outcome

0..*

0..*

stateOf

«class» 0..*

0..*

provides

«class» 0..*

+offering

0..*
{redefines
offering}

incorporates_2

«class»

+outcome
0..*
{redefines
outcome}

0..*

seller

«class»

0..*

Commented [JR42]: BACM11-75

 76 Business Architecture Core Metamodel (BACM), v1.0

7.3.6.2 Diagram: OutsourcedServiceOffering

7.3.6.3 Diagram: ProcurementOffering

OfferingOrganization::
LegalEntity

Capability::
AbstractBusinessObject

Capability::OutcomeProductOffering

OutsourcedServiceOutcome

OutsourcedServiceOffering

Capability::
Capability

Capability::
AbstractCapability

Capability::
CapabilityBehavior

Capability::
CapabilityImplementation

Process::AbstractProcess

APCICB

0..*

provider_0

«class»

0..*

0..*

delivers
«class»

0..1

0..*

specifies

«class»
0..*

0..*

accepts

«class» 0..*

0..1

scopes

«shortcut»
0..1

0..*
«shortcut» depends_0

0..*

+offering 0..*
{redefines
offering}

incorporates_4

«class» +outcome

0..*
{redefines
outcome}

0..*

stateOf

«class» 0..*

0..*

provides
«class» 0..*

+offering0..*

incorporates_0
«class»

+outcome
0..*

0..*

acceptor_0

«class»

0..*

Offering

ProcurementOffering

Organization::
LegalEntity

ProcurementOutcome

Capability::
AbstractBusinessObject

Capability::OutcomeProductOffering
0..*

stateOf

«class» 0..*

0..*

supplier
«class»

0..*

+offering

0..*

incorporates_0

«class»

+outcome

0..*

0..*

purchaser

«class» 0..*

+offering

0..*
{redefines
offering}

incorporates_1

«class»

+outcome

0..*
{redefines
outcome}

0..*

accepts

«class» 0..*

0..*

object_1

«shortcut»

0..*

0..*

provides

«class» 0..*

Commented [JR43]: BACM11-75

Commented [JR44]: BACM11-75

Business Architecture Core Metamodel (BACM), v1.0 77

7.3.6.4 Diagram: Product

The metamodel uses a single syntax to express three different patterns:
1. GoodOffering - Possession of an AbstractBusinessObject is changed and the customer experiences Outcomes

associated with the AbstractCapabilities possessed by the AbstractBusinessObject in a post-change-of-possession
JourneyStage. The Outcome incorporated in the GoodOffering represents the pledged state of the
AbstractBusinessObject that is the object of the ProductOffering (e.g. that the AbstractBusinessObject is complete
and functional).

2. ServiceOffering - The customer experiences the Outcome of a ServiceOffering provided by the business through
some of its AbstractCapabilities. This experience is associated with both the activities at the Touchpoint (i.e. while
the Service is being rendered) and at a JourneyStage subsequent to the completion of the Service. These situations
would be modeled by two different Outcomes and not by a single Outcome that is experienced at both a Touchpoint
and a JourneyStage. In the Service case, the Outcome incorporated in the ProductOffering is produced by the
AbstractCapability that is the object of the Service.

3. OutsourcingOffering - the Customer is solicited to provide Outcomes to the business. The OutsourcingOffering may
specify processes (CapabilityBehaviors) and resources (CapabilityImplementations) that the Customer is asked to
follow and use respectively.

ProductOffering

MerchandiseOffering
ServiceOffering

Capability::Outcome

Capability::
AbstractBusinessObject

OfferingOrganization::
LegalEntity

ContractRelation

OutsourcedServiceOffering
ProcurementOffering

Capability::
InformationItem

0..*

stateOf
«class»

0..*

0..*

provides

«class» 0..*

0..*

object_1

«shortcut»

0..*

0..*

object_0

«shortcut»
0..*

+offering

0..*

incorporates_0

«class»

+outcome

0..*

0..*

related_2

0..*

0..*

accepts

«class» 0..*

 78 Business Architecture Core Metamodel (BACM), v1.0

7.3.6.5 Diagram: ServiceOffering

7.3.6.6 Class Name: APCICB Class Type: Class Stereotype:
Base Classes:
Usage: This abstract element defines a union type for AbstractProcess, CapabilityImplementation and
CapabilityProvider, allowing the specifies association to connect any instances of any concrete subclasses of these
classes.

7.3.6.6.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: CapabilityImplementation [] Target Class: APCICB []

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractProcess [] Target Class: APCICB []

Association Name: Association Type: Generalization Stereotype:
 Source Class: CapabilityBehavior [] Target Class: APCICB []

OfferingOrganization::
LegalEntity

Capability::
AbstractBusinessObject

Capability::OutcomeProductOffering

ServiceOutcome

ServiceOffering Capability::
AbstractCapability

Capability::produces_0

+ non_final: Boolean

0..*

stateOf

«class» 0..*

0..1

scopes

«shortcut»

0..1

0..*

accepts

«class» 0..*

0..*

recipient_1

«class»

0..*

1
prod_0_src

1

+offering

0..*

incorporates_0

«class»

+outcome

0..*

0..*

object_2

«shortcut» 0..*

0..*

provides

«class» 0..*

+offering

0..*
{redefines
offering}

incorporates_3
«class»

+outcome

0..*
{redefines
outcome}

0..*

server

«class»

0..*

1

prod_0_tgt
1

Commented [JR45]: BACM11-75

Business Architecture Core Metamodel (BACM), v1.0 79

Association Name: specifies Association Type: Association Stereotype: «class»
 Source Class: OutsourcedServiceOffering [0..*] Target Class: APCICB [0..*]
 Definition: The specifies association represents a relationship between an OutsourcingOffering and a
CapabilityBehavior or Process or CapabilityImplementation, in which the Customer would be required or
advised to perform the CapabilityBehavior or Process and/or provide Performers and Resources as
specified by the CapabilityImplementation as an implementation of the CapabilityBehavior or Process..
Usage: This association is effectively combined with the two other specifies relation whose source is
OutsourcingOffering so that the range of the combined associations is the union of AbstractProcess,
CapabilityBehavior and CapabilityImplementation.

7.3.6.7 Class Name: ContractRelation Class Type: Class Stereotype: «association»
Base Classes: AbstractOperatingModel
Definition: ContractRelation represents any kind of relationship between Offerings.
Usage: ContractRelation should be instanced as a relationship between Offferings whose arity is determined by the
architect. Each leg of such an instance effectively inherits from the relation association.

7.3.6.7.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: ContractRelation [] Target Class: AbstractOperatingModel []

Association Name: related_2 Association Type: Association Stereotype:
 Source Class: ContractRelation [0..*] Target Class: Offering [0..*]
 Definition: The relation association reresents a leg of a potentially n-ary relationship that may exist among
multiple Offerings.

7.3.6.8 Class Name: MerchandiseOffering Class Type: Class Stereotype:
Base Classes: ProductOffering
Definition: A MerchandiseOffering irepresents an offering to sell or lease a good to a customer who may use the good to
produce Outcomes.
Usage: The MerchandiseOffering is characterized by some BusinessObjects or InformationItems that would be
transferred to the Customer for use by the Customer. The BusinessObjects and/or InformationItems are objects of the
MerchandiseOffering.

7.3.6.8.1 Attributes, Methods and Connectors:

Association Name: object_0 Association Type: Association Stereotype: «shortcut»
 Source Class: MerchandiseOffering [0..*] Target Class: AbstractBusinessObject [0..*]
 Definition: The object association represents a shortcut relationship between a MerchandiseOffering and a
BusinessObject or InformationItem offered for sale or lease to the Customer.
Usage: This shortcut implies that there is an unspecified MerchandiseOutcome of the
AbstractBusinessObject that would describe the terms of ownership/use incorporated in the
MerchandiseOffering.
Constraint: Let MOf1 be a MerchandiseOffering and BO1 be a BusinessObject associated by o1 an
"object" association. Then MOf1 should incorporate MerchandiseOutcomes {MOj} that represent either the
change of ownership of BO1 or the establishment of a limited right to use BO1.

Association Name: incorporates_2 Association Type: Association Stereotype: «class»
 Source Class: MerchandiseOffering [0..*] Target Class: MerchandiseOutcome [0..*]

 80 Business Architecture Core Metamodel (BACM), v1.0

 Definition: This incorporates association refines the incorporates association between the generalizing
meta-classes ProductOffering and Outcome. It asserts that a MerchandiseOffering incorporates a
MerchandiseOutcome.

Association Name: Association Type: Generalization Stereotype:
 Source Class: MerchandiseOffering [] Target Class: ProductOffering []

7.3.6.9 Class Name: MerchandiseOutcome Class Type: Class Stereotype:
Base Classes: Outcome
Definition: MerchandiseOutcome represents the transfer of ownership and/or use between the business that is selling the
merchandise via the MerchandiseOffering and the LegalEntity who receives the possession and/or use of the
merchandise. The LegalEntity may also be a Customer.

7.3.6.9.1 Attributes, Methods and Connectors:

Association Name: seller Association Type: Association Stereotype: «class»
 Source Class: MerchandiseOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The seller association is related to the accepts association and asserts that a LegalEntity
(typically also a business) is the targeted seller of the MerchandiseOutcome.
Usage: The seller of the MerchandiseOutcome is not necessarily the LegalEntity that provides the
MerchandiseOffering in the case when the provider is acting as an agent for the seller.

Association Name: buyer Association Type: Association Stereotype: «class»
 Source Class: MerchandiseOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The buyer association is related to the accepts association and asserts that a LegalEntity
(typically also a Customer) is the targeted buyer of the MerchandiseOutcome.
Usage: The buyer of the MerchandiseOutcome is not necessarily the LegalEntity that accepts the
MerchandiseOffering in the case when the acceptor is acting as an agent for the buyer.

Association Name: Association Type: Generalization Stereotype:
 Source Class: MerchandiseOutcome [] Target Class: Outcome []

Association Name: incorporates_2 Association Type: Association Stereotype: «class»
 Source Class: MerchandiseOffering [0..*] Target Class: MerchandiseOutcome [0..*]
 Definition: This incorporates association refines the incorporates association between the generalizing
meta-classes ProductOffering and Outcome. It asserts that a MerchandiseOffering incorporates a
MerchandiseOutcome.

7.3.6.10 Class Name: Offering Class Type: Class Stereotype:
Base Classes: InformationItem
Definition: Offering represents the solicitation of business from a Customer by presenting Outcomes and
BusinessObjects that the business is willing to provide in return for items of value received from the Customer.
Usage: Offering is abstract because the metamodel may eventually include subtypes other than ProductOffering.
Offering is provided by the business or a partner and the intended consumer is a type of Customer.
The business architecture does not include the concept of a sale directly. Sales are in the past of a business, and business
architecture is focused on the possible futures of the business. Sales are useful as predictors of acceptance of future
offering and as predictors of future liability for warranties.

7.3.6.10.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:

Business Architecture Core Metamodel (BACM), v1.0 81

 Source Class: Offering [] Target Class: InformationItem []

Association Name: provides Association Type: Association Stereotype: «class»
 Source Class: LegalEntity [0..*] Target Class: Offering [0..*]
 Definition: The provider relation represents a relationship between a LegalEntity and an Offering created
by the LegalEntity that is intended to solicit the business of designated parties identified by the consumer
relation.

Association Name: related_2 Association Type: Association Stereotype:
 Source Class: ContractRelation [0..*] Target Class: Offering [0..*]
 Definition: The relation association reresents a leg of a potentially n-ary relationship that may exist among
multiple Offerings.

Association Name: accepts Association Type: Association Stereotype: «class»
 Source Class: LegalEntity [0..*] Target Class: Offering [0..*]
 Definition: The acceptor relation represents a relationship between a party external to the business and an
Offering intended to solicit business from the acceptor party represented by the Customer..
Usage: Note that offering dies not represent a sale; in a sale, each party gives something of value and
receives something of value.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ProductOffering [] Target Class: Offering []

7.3.6.11 Class Name: OutsourcedServiceOffering Class Type: Class Stereotype:
Base Classes: ProductOffering
Definition: OutsourcedServiceOffering represents an offering made by the business that solicits a service to be
performed by another business.

7.3.6.11.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: OutsourcedServiceOffering [] Target Class: ProductOffering []

Association Name: specifies Association Type: Association Stereotype: «class»
 Source Class: OutsourcedServiceOffering [0..*] Target Class: APCICB [0..*]
 Definition: The specifies association represents a relationship between an OutsourcingOffering and a
CapabilityBehavior or Process or CapabilityImplementation, in which the Customer would be required or
advised to perform the CapabilityBehavior or Process and/or provide Performers and Resources as
specified by the CapabilityImplementation as an implementation of the CapabilityBehavior or Process..
Usage: This association is effectively combined with the two other specifies relation whose source is
OutsourcingOffering so that the range of the combined associations is the union of AbstractProcess,
CapabilityBehavior and CapabilityImplementation.

Association Name: incorporates_4 Association Type: Association Stereotype: «class»
 Source Class: OutsourcedServiceOffering [0..*] Target Class: OutsourcedServiceOutcome [0..*]
 Definition: The incorporates association designates that an OutsourcedServiceOffering incorporates some
OutsourcedServiceOutcomes.
Usage: The incorporates association refines the incorporates association between ProductOffering and
Outcome.

7.3.6.12 Class Name: OutsourcedServiceOutcome Class Type: Class Stereotype:
Base Classes: Outcome

 82 Business Architecture Core Metamodel (BACM), v1.0

Definition: OutsourcedServiceOutcome represents the expected Outcome of the performance of an outsourced service
(i.e. a service performed for the business by another business).

7.3.6.12.1 Attributes, Methods and Connectors:

Association Name: acceptor_0 Association Type: Association Stereotype: «class»
 Source Class: OutsourcedServiceOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The acceptor_0 association asserts that a LegalEntity is the receiver of the
OutsourcedServiceOutcome.
Usage: The accepts LegalEntity is not necessarily the same LegalEntity as the acceptor_0 of the
OutsourcedServiceOffering, as it may be an agent acting for the acceptor_0 LegalEntity.

Association Name: Association Type: Generalization Stereotype:
 Source Class: OutsourcedServiceOutcome [] Target Class: Outcome []

Association Name: provider_0 Association Type: Association Stereotype: «class»
 Source Class: OutsourcedServiceOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The provider_0 association asserts that a LegalEntity is the provider of the
OutsourcedServiceOutcome.
Usage: The provides LegalEntity is not necessarily the same LegalEntity as the provider_0 of the
OutsourcedServiceOffering as it may be an agent acting for the provider_0 LegalEntity.

Association Name: incorporates_4 Association Type: Association Stereotype: «class»
 Source Class: OutsourcedServiceOffering [0..*] Target Class: OutsourcedServiceOutcome [0..*]
 Definition: The incorporates association designates that an OutsourcedServiceOffering incorporates some
OutsourcedServiceOutcomes.
Usage: The incorporates association refines the incorporates association between ProductOffering and
Outcome.

7.3.6.13 Class Name: ProcurementOffering Class Type: Class Stereotype:
Base Classes: ProductOffering
Definition: ProcurementOffering is an offering by theBusiness to purchase or lease a BusinessObject and/or
InformationItem from a LegalEntity.

7.3.6.13.1 Attributes, Methods and Connectors:

Association Name: incorporates_1 Association Type: Association Stereotype: «class»
 Source Class: ProcurementOffering [0..*] Target Class: ProcurementOutcome [0..*]
 Definition: The incorporates association refines the incorporates association between the generalizing
meta-classes ProductOffering and Outcome and asserts that the ProcurementOffering incorporates the
ProcurementOutcomes.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ProcurementOffering [] Target Class: ProductOffering []

Association Name: object_1 Association Type: Association Stereotype: «shortcut»
 Source Class: ProcurementOffering [0..*] Target Class: AbstractBusinessObject [0..*]
 Definition: The object shortcut association asserts that the ProcurementOffering incorporates unspecified
Outcomes describing the states of AbstractBusinessObjects.
Usage: This association allows the business architect to omit the Outcome in the procurement of some
AbstractBusinessObjects for use by theBusiness when those Outcomes are obvious or irrelevant to the
purposes of the analysis that is using the business architecture model.

Business Architecture Core Metamodel (BACM), v1.0 83

Constraint: Let POf1 be a ProcurementOffering and BO1 be a BusinessObject associated by o1 an "object"
association. Then POf1 should incorporate ProcurementOutcomes {POj} that represent either the change of
ownership of BO1 or the establishment of a limited right to use BO1.

7.3.6.14 Class Name: ProcurementOutcome Class Type: Class Stereotype:
Base Classes: Outcome
Definition: ProcurementOutcome represents the expected Outcome of the procurement. E.g. that the
BusinessObject/InformationItem received has the characteristics needed by the procuring business.
Usage: ProcurementOutcome specifies such details and is associated with a ProcurementOfferint that should not
duplicate the details of the ProcurementOutcome.

7.3.6.14.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: ProcurementOutcome [] Target Class: Outcome []

Association Name: supplier Association Type: Association Stereotype: «class»
 Source Class: ProcurementOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The supplier association asserts that the LegalEntity is to be the supplier of the
ProcurementOutcome.
Usage: The supplier LegalEntity is not necessarily the same as the provider LegalEntity for the
ProcurementOffering incorporating the ProcurementOutcome.

Association Name: incorporates_1 Association Type: Association Stereotype: «class»
 Source Class: ProcurementOffering [0..*] Target Class: ProcurementOutcome [0..*]
 Definition: The incorporates association refines the incorporates association between the generalizing
meta-classes ProductOffering and Outcome and asserts that the ProcurementOffering incorporates the
ProcurementOutcomes.

Association Name: purchaser Association Type: Association Stereotype: «class»
 Source Class: LegalEntity [0..*] Target Class: ProcurementOutcome [0..*]

7.3.6.15 Class Name: ProductOffering Class Type: Class Stereotype:
Base Classes: Offering
Definition: ProductOffering represents the terms and conditions associated with the acquisition of a product or service
by a customer. It would typically include price, delivery terms, warranty and other aspects of these terms. The
ProductOffering incorporates Outcomes such as change of possession for a product (BusinessObject or InformationItem)
that is sold.
Usage: A ProductOffering (and its specializations Good and Service) are a type of BusinessObject. This allows a
Customer to experience the ProductOffering at a Touchpoint and develop a reaction (such as the ProductOffering being a
good deal). Such a reaction can be represented as a CustomerSegment associated with the Customer and the
JourneyStage that includes the Touchpoint.

7.3.6.15.1 Attributes, Methods and Connectors:

Association Name: incorporates_0 Association Type: Association Stereotype: «class»
 Source Class: ProductOffering [0..*] Target Class: Outcome [0..*]
 Definition: The incorporates association represents that an Outcome is included in a ProductOffering.
Usage: It may be implied that the BusinessObject whose state is represented by the Outcome is also
included in the ProductOffering. In the case of a service offering, the Outcome instance represents the
intended result of performing the capability as a service for a customer (as opposed to performing the
capability for the immediate benefit of the business).

 84 Business Architecture Core Metamodel (BACM), v1.0

Association Name: Association Type: Generalization Stereotype:
 Source Class: ProductOffering [] Target Class: Offering []

Association Name: Association Type: Generalization Stereotype:
 Source Class: ProcurementOffering [] Target Class: ProductOffering []

Association Name: of Association Type: Association Stereotype: «shortcut»
 Source Class: ValueProposition [0..*] Target Class: ProductOffering [0..*]
 Definition: The of association links a VslueProposition to a ProductOffering and represents that is the
ValueProposition is about the ProductOffering.
Constraint: Let VP1 be a ValueProposition and PO1 be a ProductOffering associated by o1, an "of"
association. Then for some subset of ValueItems {VIj} aggregated by VP1 such that each VIj values an
Outcome O1 that is incorporated in the ProductOffering PO1. Note that the ProductOfferings typically
include Outcomes that are experienced by the Customer at a Touchpoint.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ServiceOffering [] Target Class: ProductOffering []

Association Name: Association Type: Generalization Stereotype:
 Source Class: OutsourcedServiceOffering [] Target Class: ProductOffering []

Association Name: Association Type: Generalization Stereotype:
 Source Class: MerchandiseOffering [] Target Class: ProductOffering []

7.3.6.16 Class Name: ServiceOffering Class Type: Class Stereotype:
Base Classes: ProductOffering
Definition: ServiceOffering represents an offer to provide a service to a Customer. the busienss provides the
CapabilityImplementations and CapabilityBehaviors needed to effect the Outcome promised to the Customer by the
ServiceOffering.
Usage: A ServiceOffering is a specialization of a ProductOffering such that a Capability or CapabilityBehavior or
Process or Activity is performed to produce an Outcome that is incorporated into the service. Unlike a sale or lease,
where some incorporated Outcomes represent a change of ownership or poseeseeion/use of a business object, the
incorporated Outcomes (such as a cleaned residence) are the primary Outcomes desired by the customer.
A business that offers a ServiceOffering must incorporate or arrange for the Capabilities and or Processes needed to
produce the promised Outcomes.

7.3.6.16.1 Attributes, Methods and Connectors:

Association Name: object_2 Association Type: Association Stereotype: «shortcut»
 Source Class: ServiceOffering [0..*] Target Class: AbstractCapability [0..*]
 Definition: the object shortcut association designates an AbstractCapability possessed by theBusiness that
is intended to produce the ServiceOutcome incorporated into the ServiceOffering.
Constraint: Let SOf1 be a ServiceOffering and C1 be a Capability that is associated by o1 an object
association. Then there should exist a ServiceOutcome SO1 such that SO1 is incoporated in SOf1 and SO1
is produced by C1.

Association Name: incorporates_3 Association Type: Association Stereotype: «class»
 Source Class: ServiceOffering [0..*] Target Class: ServiceOutcome [0..*]

Business Architecture Core Metamodel (BACM), v1.0 85

 Definition: The incorporates assocation refines the incorporates association between the generalizing
meta-classes (ProductOffering and Outcome) and asserts that the ServiceOffering incorporates some
ServiceOutcomes.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ServiceOffering [] Target Class: ProductOffering []

7.3.6.17 Class Name: ServiceOutcome Class Type: Class Stereotype:
Base Classes: Outcome
Definition: ServiceOutcome represents the expected Outcome of the performance of a service for a Customer.

7.3.6.17.1 Attributes, Methods and Connectors:

Association Name: recipient_1 Association Type: Association Stereotype: «class»
 Source Class: ServiceOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The recipient_1 association asserts that the LegalEntity is the recipient of ServiceOutcomes
incorporated into a ServiceOffering.
Usage: It is not necessarily the case that the accepts LegalEntity is the same as the recipient_1 LegalEntity
of the ServiceOutcome.

Association Name: server Association Type: Association Stereotype: «class»
 Source Class: ServiceOutcome [0..*] Target Class: LegalEntity [0..*]
 Definition: The server association asserts that the LegalEntity is the provider of ServiceOutcomes
incorporated into a ServiceOffering.
Usage: It is not necessarily the case that the provides LegalEntity is the same as the server LegalEntity of
the ServiceOutcome.

Association Name: Association Type: Generalization Stereotype:
 Source Class: ServiceOutcome [] Target Class: Outcome []

Association Name: incorporates_3 Association Type: Association Stereotype: «class»
 Source Class: ServiceOffering [0..*] Target Class: ServiceOutcome [0..*]
 Definition: The incorporates assocation refines the incorporates association between the generalizing
meta-classes (ProductOffering and Outcome) and asserts that the ServiceOffering incorporates some
ServiceOutcomes.

7.3.7 Package: Strategy

 86 Business Architecture Core Metamodel (BACM), v1.0

7.3.7.1 Diagram: OperatingModel

The OperatingModel diagram defines metaclasses for the business entities that are changeable by a strategy and are part
of the business operating model, but not part of the business value model (see the Strategy::ValueModel diagram)

AbstractOperatingModelCapability::Role

Capability::
PerformerRole

Capability::
ResourceRole

Organization::
Jurisdiction

Process::
AbstractProcess

Capability::
CapabilityImplementation

Capability::
AbstractCapability

Capability::Outcome

Capability::
OutcomeRelation

Product::
ContractRelationOrganization::

Responsible

Capability::
AbstractBusinessObject

Commented [JR46]: BACM11-100

Business Architecture Core Metamodel (BACM), v1.0 87

7.3.7.2 Diagram: Strategy

The Strategy diagram defines abstract syntax for modeling strategy driven change.
A strategy is represented by a StrategyModel that contains Means and Ends. A StrategyModel also contains the Initiatives
and Changes that implement the Means and Ends.
Multiple StrategyModels are contained in StrategyChoices, allowing an analysis to evaluate StrategyModels and compare
them with each other.
Ends represent desired changes to delivered value and/or business results. Means represent prospective ways to achieve
the Ends.
Strategy is modeled at two levels:
1. High level strategy expressed as Means and Ends. Ends are statements primarily about value delivered to

stakeholders (e.g. increased stock price, better customer satisfaction with a product). Means are high level statements
about possible ways to achieve the Ends (e.g. reducing expenses, improving manufacturing quality).

2. Planned initiatives to implement a strategy, expressed as Initiatives and Changes. Changes represent specific
objectives for Outcomes, BusinessObjects, ProductOfferings, ValuePropositions, ValueCharacteristics and
ValueItems. Initiatives represent changes to be made to Capabilities, CapabilityBehaviors,
CapabilityImplementations, Roles, Processes, Activities, Flows and assignments of Performers and Resources to
achieve the Changes.

This abstract syntax does not distinguish the model elements changed by Ends from those changed by Means. For
simplicity, it lumps these together as specializations of AbstractOperatingModel and AbstractValueModel. Implementors
should follow the descriptions in items 1 and 2 above.

StrategyModel

Means

+ actionStatement: String [0..*]

Ends

+ resultStatement: String [0..*]

Change

+ resultStatement: String [0..*]

AbstractOperatingModel

Initiative

+ actionStatement: String [0..*]

StrategyChoices

AbstractValueModelDirective

Capability::
InformationItem

0..*

baseline_4

«class» 0..*

0..*

needs_2

«class» 0..*

0..*

uses_1

«class»

0..*

0..*

implements_2

«class»

0..*

0..*

baseline_3

«class»

0..*

0..*

expects_0

«class» 0..*

0..*

baseline_2

«class»

0..*

0..*

baseline_5

«class»
0..*

0..*

expects_1

«class» 0..*

0..*
baseline_0

«class»
0..*

0..*
aggregates_5

0..*

0..*

alternative

0..*

0..*

implements_4

«class»

0..* 0..* uses_0

«class»

0..*

0..*aggregates_4

0..*

0..*

needs_1

«class»0..*

0..*

baseline_1

«class»
0..*

Commented [JR47]: BACM11-7
BACM11-89
BACM11-2

 88 Business Architecture Core Metamodel (BACM), v1.0

This abstract syntax also does not distinguish the model element changed by Change from those changed by Initiative.

7.3.7.3 Diagram: ValueModel

The ValueModel diagram defines the BACM meta-classes whose instances can be used to model aspects of the business
which represent value or which represent characteristics of the customer.
The concrete specializations of AbstractValueModel can be changed by the Ends instance of a StrategyModel instance.

7.3.7.4 Class Name: AbstractOperatingModel Class Type: Class Stereotype:
Base Classes:
Definition: AbstractOperatingModel is an abstract metaclass whose concrete specializations are the model elements of
the operating model (see the AbstractOperatingModel diagram). This metaclass groups together the concrete metaclasses
that may be impacted by a Means or Initiative or baselined by Ends or Changes
Usage: Means and Initiatives describe behaviors that will impact parts of the operating model of the business to achieve
the Ends and Changes associated with the Means and Initiatives. While the behaviors are described by the Means and
Initiatives, the affected operating model components are represented by the impacts relationship to facilitate analysis of
these impacts for feasibility, risk, cost and other measures.
Ends and Change describe the new state and behavior of the baselined parts of the operating model of the business. For
example, an End may be the improvement of throughput and reduction of wait time for a CapabilityImplementation. The
Means may be the addition of personnel and upgrading of an application. The End describes a new baseline for the
CapabilityImplementation (relative to the existing baseline associated with the CapabilityImplementation). The Means
describes the behaviors to be carried out with respect to the staffing and resourcing of the CapabilityImplementation.

7.3.7.4.1 Attributes, Methods and Connectors:

Association Name: baseline_4 Association Type: Association Stereotype: «class»
 Source Class: Means [0..*] Target Class: AbstractOperatingModel [0..*]
 Definition: The baseline_4 relationship represents the change impact that the Means is expected to have on
the concepts of the AbstractOperatingModel.

Usage: This baseline_4 relationship is typically used to record the change impact of a Means on selected
concepts of the AbstractOperatingModel. A change impact describes proposed changes to the selected
AbstractOperatingModel concepts. Note that this may include uses_0 selected elements of the
AbstractOperatingModel concepts when a concept is both used and changed by the Means.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Responsible [] Target Class: AbstractOperatingModel []

AbstractValueModel

Customer::
ValueProposition

Customer::
CustomerSegment

Customer::ValueStream Customer::
ValueStreamStage

+ presentation_order: int

Customer::
ValueItem

Customer::
ValueCharacteristic

Customer::
Customer

Customer::
Touchpoint

Customer::
CustomerJourneyStage

Customer::
CustomerJourney

Customer::
ValueCharacteristic_1

Commented [JR48]: BACM11-2

Business Architecture Core Metamodel (BACM), v1.0 89

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractProcess [] Target Class: AbstractOperatingModel []

Association Name: uses_1 Association Type: Association Stereotype: «class»
 Source Class: Initiative [0..*] Target Class: AbstractOperatingModel [0..*]
 Definition: The uses_1 association represents a need that the Initiative has to make use of entities in the
AbstractOperatingModel that may also be used by other business operations.

Usage: This relationship would typically be used to identify resource conflicts occurring while executing the
Initiative as the same time as executing steady state business operations and other Initiatives that are part of
the StrategyModel.

Association Name: baseline_2 Association Type: Association Stereotype: «class»
 Source Class: Change [0..*] Target Class: AbstractOperatingModel [0..*]
 Definition: The baseline_2 association links one or more operating model elements representing business
results to change objectives represented by the Changes.
Usage: An operating model Outcome (e.g. cost of executing an activity) is the baseline for a Change (e,g, a
5% reduction in the cost of executing the activity as a result of purchasing a new robot).

Association Name: Association Type: Generalization Stereotype:
 Source Class: ContractRelation [] Target Class: AbstractOperatingModel []

Association Name: baseline_5 Association Type: Association Stereotype: «class»
 Source Class: Initiative [0..*] Target Class: AbstractOperatingModel [0..*]
 Definition: The baseline_5 relationship represents the change impact that the Initiative is expected to have
on the concepts of the AbstractOperatingModel.

Usage: This baseline_5 relationship is typically used to record the change impact of an Initiative on selected
concepts of the AbstractOperatingModel. A change impact describes proposed changes to the selected
AbstractOperatingModel concepts. Note that this may include uses_0 selected elements of the
AbstractOperatingModel concepts when a concept is both used and changed by the Initiative.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Role [] Target Class: AbstractOperatingModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Jurisdiction [] Target Class: AbstractOperatingModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: OutcomeRelation [] Target Class: AbstractOperatingModel []

Association Name: baseline_0 Association Type: Association Stereotype: «class»
 Source Class: Ends [0..*] Target Class: AbstractOperatingModel [0..*]
 Definition: The baseline_0 association links one or more operating model elements representing business
results to change objectives represented by the Ends.
Usage: An operating model Outcome (e.g. cost of executing an activity) is the baseline for an End (e,g, a
10% reduction in the cost of executing the activity).

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractCapability [] Target Class: AbstractOperatingModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: CapabilityImplementation [] Target Class: AbstractOperatingModel []

Commented [JR49]: BACM11-89
BACM11-2

Commented [JR50]: BACM11-2

 90 Business Architecture Core Metamodel (BACM), v1.0

Association Name: Association Type: Generalization Stereotype:
 Source Class: Outcome [] Target Class: AbstractOperatingModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: AbstractBusinessObject [] Target Class: AbstractOperatingModel []

Association Name: uses_0 Association Type: Association Stereotype: «class»
 Source Class: Means [0..*] Target Class: AbstractOperatingModel [0..*]
 Definition: The uses_0 association represents a need that the Means has to make use of entities in the
AbstractOperatingModel that may also be used by other business operations.

Usage: This relationship would typically be used to identify resource conflicts occurring while executing the
Means as the same time as executing steady state business operations and other Means that are part of the
StrategyModel.

7.3.7.5 Class Name: AbstractValueModel Class Type: Class Stereotype:
Base Classes:
Definition: The AbstractValueModel represents the value-related concepts that the Means and Initiative behaviors seek
to achieve by changes made to the AbstractOperatingModel.
Usage: AbstractValueModel model elements represent perceptions of value as seen by a Customer or imagined by
theBusiness to be seen by the Customer. As such, they cannot be directly changed by the business, so Means and
Initiatives do not directly impact them. For example, the ValueProposition and ValueCharacteristic of an Offering may
be improved by lowering its price, but this result is not guaranteed as the price action may be viewed as a signal of
inflated worth or diminished quality. The architect may express a conviction that this result will occur in the expects
association that links the price Means to the new Ends baseline for the ValueProposition and ValueCharacteristic.

7.3.7.5.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueProposition [] Target Class: AbstractValueModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueStreamStage [] Target Class: AbstractValueModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueCharacteristic_1 [] Target Class: AbstractValueModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: CustomerSegment [] Target Class: AbstractValueModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueItem [] Target Class: AbstractValueModel []

Association Name: baseline_3 Association Type: Association Stereotype: «class»
 Source Class: Change [0..*] Target Class: AbstractValueModel [0..*]

Commented [JR51]: BACM11-89
BACM11-2

Business Architecture Core Metamodel (BACM), v1.0 91

 Definition: The baseline_3 association links a value model element (e.g. a ValueProposition where the
price of a product is equal to the competitive average price) to a change (e.g. a change that reduces the price
of a product by 5%).

Association Name: Association Type: Generalization Stereotype:
 Source Class: Customer [] Target Class: AbstractValueModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: CustomerJourney [] Target Class: AbstractValueModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueStream [] Target Class: AbstractValueModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: CustomerJourneyStage [] Target Class: AbstractValueModel []

Association Name: baseline_1 Association Type: Association Stereotype: «class»
 Source Class: Ends [0..*] Target Class: AbstractValueModel [0..*]
 Definition: The baseline_1 association links a value model element (e.g. a ValueProposition where the
price of a product is equal to the competitive average price) to an End (e.g. an End that reduces the price of a
product to 5% below the competitive average).

Association Name: Association Type: Generalization Stereotype:
 Source Class: ValueCharacteristic [] Target Class: AbstractValueModel []

Association Name: Association Type: Generalization Stereotype:
 Source Class: Touchpoint [] Target Class: AbstractValueModel []

7.3.7.6 Class Name: Change Class Type: Class Stereotype:
Base Classes: InformationItem
Definition: Change represents desired states of business value and results as represented by the baselined elements of the
AbstractOperatingModel and the AbstractValueModel. These states are expected to result from the changes described by
the Initiatives.
Usage: Changes can be decomposed and share sub-Changes.

7.3.7.6.1 Attributes, Methods and Connectors:

Attribute Name: resultStatement Attribute Type: String

Association Name: baseline_2 Association Type: Association Stereotype: «class»
 Source Class: Change [0..*] Target Class: AbstractOperatingModel [0..*]
 Definition: The baseline_2 association links one or more operating model elements representing business
results to change objectives represented by the Changes.
Usage: An operating model Outcome (e.g. cost of executing an activity) is the baseline for a Change (e,g, a
5% reduction in the cost of executing the activity as a result of purchasing a new robot).

Association Name: baseline_3 Association Type: Association Stereotype: «class»
 Source Class: Change [0..*] Target Class: AbstractValueModel [0..*]

 92 Business Architecture Core Metamodel (BACM), v1.0

 Definition: The baseline_3 association links a value model element (e.g. a ValueProposition where the
price of a product is equal to the competitive average price) to a change (e.g. a change that reduces the price
of a product by 5%).

Association Name: Association Type: Generalization Stereotype:
 Source Class: Change [] Target Class: InformationItem []

Association Name: implements_2 Association Type: Association Stereotype: «class»
 Source Class: Change [0..*] Target Class: Ends [0..*]
 This "implements" meta-association links a desired end of a strategy to the specific changes that are
expected to result in the achievement of the end.

Association Name: needs_2 Association Type: Association Stereotype: «class»
 Source Class: Initiative [0..*] Target Class: Change [0..*]
 Definition: The needs association represents that one or more Changes are needed to enable the
performance of the Initiatives.
Usage: This association must be instanced as an association classifier so that the modeler can express:
 a rationale for the expectation;
 note the likely influences of environmental factors, including competitive responses and regulatory

actions
 risks and risk avoidance activities
Expressing these concerns may require the modeler to define additional properties and association legs at
the M1 model level.

Association Name: expects_1 Association Type: Association Stereotype: «class»
 Source Class: Initiative [0..*] Target Class: Change [0..*]
 Definition: The expects association links one or more Changes that are expected to result from the Means
described changes.

7.3.7.7 Class Name: Directive Class Type: Class Stereotype:
Base Classes: Means
Definition: Directive represents constraints (impacts_0) on AbstractOperatingModel elements that require or prohibit
actions or states.

Usage: Directive is a kind of Means that represents policy or regulation that is incorporated in a StrategyModel.
Directive is also intended to be linked with the Directive class in the BMM metamodel.

7.3.7.7.1 Attributes, Methods and Connectors:

Association Name: Association Type: Generalization Stereotype:
 Source Class: Directive [] Target Class: Means []

7.3.7.8 Class Name: Ends Class Type: Class Stereotype:
Base Classes: InformationItem
Definition: Ends represent changes to elements representing business values, such as ValuePropositions., ValueItems
and ValueCharacteristics. Ends also represent changes to business results (i.e. Outcomes, BusinessObjects,
InformationItems and ProductOfferings). These element types derive from AbstractOperatingModel and
AbstractValueModel.
Usage: A Ends element will typically state the desired result (e.g. improved customer satisfaction) relative to the
currently achieved (baselined) result (customer satisfaction represented as an Outcome).
Ends can be decomposed into subordinate Ends. Subordinate Ends may be shared by one or more aggregator Ends.

Commented [JR52]: BACM11-7

Business Architecture Core Metamodel (BACM), v1.0 93

7.3.7.8.1 Attributes, Methods and Connectors:

Attribute Name: resultStatement Attribute Type: String

Association Name: needs_1 Association Type: Association Stereotype: «class»
 Source Class: Ends [0..*] Target Class: Means [0..*]
 Definition: The needs_1 association represents that one or more Ends are needed to enable the performance
of the Means
Usage: This association must be instanced as an association classifier so that the modeler can express:
 a rationale for the expectation;
 note the likely influences of environmental factors, including competitive responses and regulatory

actions
 risks and risk avoidance activities
Expressing these concerns may require the modeler to define additional properties and association legs at
the M1 model level.

Association Name: baseline_0 Association Type: Association Stereotype: «class»
 Source Class: Ends [0..*] Target Class: AbstractOperatingModel [0..*]
 Definition: The baseline_0 association links one or more operating model elements representing business
results to change objectives represented by the Ends.
Usage: An operating model Outcome (e.g. cost of executing an activity) is the baseline for an End (e,g, a
10% reduction in the cost of executing the activity).

Association Name: baseline_1 Association Type: Association Stereotype: «class»
 Source Class: Ends [0..*] Target Class: AbstractValueModel [0..*]
 Definition: The baseline_1 association links a value model element (e.g. a ValueProposition where the
price of a product is equal to the competitive average price) to an End (e.g. an End that reduces the price of a
product to 5% below the competitive average).

Association Name: Association Type: Generalization Stereotype:
 Source Class: Ends [] Target Class: InformationItem []

Association Name: aggregates_5 Association Type: Association Stereotype:
 Source Class: StrategyModel [0..*] Target Class: Ends [0..*]
 This aggregates_5 association represents participation of End instances in a StrategyModel instance. This
"aggregates" association and the "aggregates" association that summarizes End instancea to other End
instances are not exclusive.

Association Name: implements_2 Association Type: Association Stereotype: «class»
 Source Class: Change [0..*] Target Class: Ends [0..*]
 This "implements" meta-association links a desired end of a strategy to the specific changes that are
expected to result in the achievement of the end.

Association Name: expects_0 Association Type: Association Stereotype: «class»
 Source Class: Means [0..*] Target Class: Ends [0..*]
 Definition: The expects_0 association represents that one or more Ends are expected to result from the
changes described in the Means.
Usage: This association must be instanced as an association classifier so that the modeler can express:
 a rationale for the expectation;
 note the likely influences of environmental factors, including competitive responses and regulatory

actions
 risks and risk avoidance activities
Expressing these concerns may require the modeler to define additional properties and association legs at
the M1 model level.

 94 Business Architecture Core Metamodel (BACM), v1.0

7.3.7.9 Class Name: Initiative Class Type: Class Stereotype:
Base Classes: InformationItem
Definition: Initiatives represent plans to change business functions in order to achieve the business results described by
Changes. Initiatives should be linked to the expected Changes with the expects association.
Usage: Initiatives may be decomposed and may share sub-Initiatives.

7.3.7.9.1 Attributes, Methods and Connectors:

Attribute Name: actionStatement Attribute Type: String

Association Name: needs_2 Association Type: Association Stereotype: «class»
 Source Class: Initiative [0..*] Target Class: Change [0..*]
 Definition: The needs association represents that one or more Changes are needed to enable the
performance of the Initiatives.
Usage: This association must be instanced as an association classifier so that the modeler can express:
 a rationale for the expectation;
 note the likely influences of environmental factors, including competitive responses and regulatory

actions
 risks and risk avoidance activities
Expressing these concerns may require the modeler to define additional properties and association legs at
the M1 model level.

Association Name: uses_1 Association Type: Association Stereotype: «class»
 Source Class: Initiative [0..*] Target Class: AbstractOperatingModel [0..*]
 Definition: The uses_1 association represents a need that the Initiative has to make use of entities in the
AbstractOperatingModel that may also be used by other business operations.

Usage: This relationship would typically be used to identify resource conflicts occurring while executing the
Initiative as the same time as executing steady state business operations and other Initiatives that are part of
the StrategyModel.

Association Name: implements_4 Association Type: Association Stereotype: «class»
 Source Class: Initiative [0..*] Target Class: Means [0..*]
 Definition: The implements association represents the assertion that an initiative implements a Means.

Association Name: expects_1 Association Type: Association Stereotype: «class»
 Source Class: Initiative [0..*] Target Class: Change [0..*]
 Definition: The expects association links one or more Changes that are expected to result from the Means
described changes.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Initiative [] Target Class: InformationItem []

Association Name: baseline_5 Association Type: Association Stereotype: «class»
 Source Class: Initiative [0..*] Target Class: AbstractOperatingModel [0..*]
 Definition: The baseline_5 relationship represents the change impact that the Initiative is expected to have
on the concepts of the AbstractOperatingModel.

Usage: This baseline_5 relationship is typically used to record the change impact of an Initiative on selected
concepts of the AbstractOperatingModel. A change impact describes proposed changes to the selected
AbstractOperatingModel concepts. Note that this may include uses_0 selected elements of the
AbstractOperatingModel concepts when a concept is both used and changed by the Initiative.

Business Architecture Core Metamodel (BACM), v1.0 95

7.3.7.10 Class Name: Means Class Type: Class Stereotype:
Base Classes: InformationItem
Definition: Means represent possible behaviors that will change functional elements of the business (represented by
Capabilities, CapabilityBehaviors, CapabilityImplementations, Processes, Activities, Roles, Performers and Resources).
These changes are expected to produce the changes represented by the Ends. Each End should be expected to result from
the changes described by one or more Means.
Usage: Means can be decomposed and subordinate Means may be shared by aggregator Means.

7.3.7.10.1 Attributes, Methods and Connectors:

Attribute Name: actionStatement Attribute Type: String

Association Name: baseline_4 Association Type: Association Stereotype: «class»
 Source Class: Means [0..*] Target Class: AbstractOperatingModel [0..*]
 Definition: The baseline_4 relationship represents the change impact that the Means is expected to have on
the concepts of the AbstractOperatingModel.

Usage: This baseline_4 relationship is typically used to record the change impact of a Means on selected
concepts of the AbstractOperatingModel. A change impact describes proposed changes to the selected
AbstractOperatingModel concepts. Note that this may include uses_0 selected elements of the
AbstractOperatingModel concepts when a concept is both used and changed by the Means.

Association Name: Association Type: Generalization Stereotype:
 Source Class: Means [] Target Class: InformationItem []

Association Name: uses_0 Association Type: Association Stereotype: «class»
 Source Class: Means [0..*] Target Class: AbstractOperatingModel [0..*]
 Definition: The uses_0 association represents a need that the Means has to make use of entities in the
AbstractOperatingModel that may also be used by other business operations.

Usage: This relationship would typically be used to identify resource conflicts occurring while executing the
Means as the same time as executing steady state business operations and other Means that are part of the
StrategyModel.

Association Name: expects_0 Association Type: Association Stereotype: «class»
 Source Class: Means [0..*] Target Class: Ends [0..*]
 Definition: The expects_0 association represents that one or more Ends are expected to result from the
changes described in the Means.
Usage: This association must be instanced as an association classifier so that the modeler can express:
 a rationale for the expectation;
 note the likely influences of environmental factors, including competitive responses and regulatory

actions
 risks and risk avoidance activities
Expressing these concerns may require the modeler to define additional properties and association legs at
the M1 model level.

Association Name: needs_1 Association Type: Association Stereotype: «class»
 Source Class: Ends [0..*] Target Class: Means [0..*]
 Definition: The needs_1 association represents that one or more Ends are needed to enable the performance
of the Means
Usage: This association must be instanced as an association classifier so that the modeler can express:
 a rationale for the expectation;
 note the likely influences of environmental factors, including competitive responses and regulatory

actions
 risks and risk avoidance activities
Expressing these concerns may require the modeler to define additional properties and association legs at
the M1 model level.

 96 Business Architecture Core Metamodel (BACM), v1.0

Association Name: Association Type: Generalization Stereotype:
 Source Class: Directive [] Target Class: Means []

Association Name: aggregates_4 Association Type: Association Stereotype:
 Source Class: StrategyModel [0..*] Target Class: Means [0..*]
 The aggregates_4 meta-association represents the inclusion of Means instances into a StrategyModel
instance.

Association Name: implements_4 Association Type: Association Stereotype: «class»
 Source Class: Initiative [0..*] Target Class: Means [0..*]
 Definition: The implements association represents the assertion that an initiative implements a Means.

7.3.7.11 Class Name: StrategyChoices Class Type: Class Stereotype:
Base Classes: BACMPlainEntity
Definition: The StrategyChoices represents a suite of strategies that can be evaluated for selection. Each StrategyModel
in a StrategyChoices element shall be considered as alternatives. Alternative StrategyModels may share Means, Ends,
Initiatives and Changes.
Usage: There may be at most a single instance of StrategyChoices in a BACM model.

7.3.7.11.1 Attributes, Methods and Connectors:

Association Name: alternative Association Type: Association Stereotype:
 Source Class: StrategyChoices [0..*] Target Class: StrategyModel [0..*]
 The alternatives association connects two or more StrategyModels to a StrategyChoices. Each
StrategyModel alternative contained in a StratecyChoices should be taken as alternative strategies for
evaluation and comparison.

Association Name: Association Type: Generalization Stereotype:
 Source Class: StrategyChoices [] Target Class: BACMPlainEntity []

Association Name: strategy_choices Association Type: Association Stereotype:
 Source Class: BACM_Model [1] Target Class: StrategyChoices [0..*]
 Definition: strategy_choices links a set of StrategyChoices to a BACMModel.
Usage: To facilitate reuse of the BACM model in different strategy situations, multiple StrategyChoices
may be associated with a BACMModel.

7.3.7.12 Class Name: StrategyModel Class Type: Class Stereotype:
Base Classes: InformationItem
Definition: StrategyModel is a collection of Means and Ends and the Initiatives and Changes implementing the Means
and Ends. It represents a single, coherent and complete strategy.
Usage: StrategyModels each represent a particular strategy choice. StrategyModels may share sub-StrategyModels. The
set of StrategyModels as prepared by the architect and strategist is represented by the StrategyChoices model element and
the alternative associations linking it to each StrategyModel

7.3.7.12.1 Attributes, Methods and Connectors:

Association Name: aggregates_4 Association Type: Association Stereotype:
 Source Class: StrategyModel [0..*] Target Class: Means [0..*]
 The aggregates_4 meta-association represents the inclusion of Means instances into a StrategyModel
instance.

Business Architecture Core Metamodel (BACM), v1.0 97

Association Name: Association Type: Generalization Stereotype:
 Source Class: StrategyModel [] Target Class: InformationItem []

Association Name: aggregates_5 Association Type: Association Stereotype:
 Source Class: StrategyModel [0..*] Target Class: Ends [0..*]
 This aggregates_5 association represents participation of End instances in a StrategyModel instance. This
"aggregates" association and the "aggregates" association that summarizes End instancea to other End
instances are not exclusive.

Association Name: alternative Association Type: Association Stereotype:
 Source Class: StrategyChoices [0..*] Target Class: StrategyModel [0..*]
 The alternatives association connects two or more StrategyModels to a StrategyChoices. Each
StrategyModel alternative contained in a StratecyChoices should be taken as alternative strategies for
evaluation and comparison.

 98 Business Architecture Core Metamodel (BACM), v1.0

8 Shortcuts and Touchpoints (normative)

8.1 Shortcuts

8.1.1 Definition

UML allows properties such as attributes and owned ends to be defined as virtual; associations may also be marked as
virtual. This means that the value of the property or the links of the association are to be computed according to some
specification rather than being represented explicitly. However, the computation may simply consist of retrieving the
stored value or retrieving an explicit link. This mechanism can be used, along with a constraint language such as OCL,
to insure that a high-level association is grounded in a chain of lower-level associations and classes.

The mechanism is represented in the metamodel abstract syntax by applying a “<<shortcut>>” stereotype to a UML
association. The stereotype is accompanied by documentation that describes the constraint that should be applied to
insure that details involving the same endpoint classes are consistent with the intent of the <<shortcut>> association.
Since the architect is not required to provide details when asserting a <<shortcut>> association, these constraints are not
invariants, but should be evaluated on demand by the architect to check the model for consistency and completeness.

The normative XMI expresses these constraints in OCL. A conforming implementation may use OCL or may use an
equivalent mechanism. The MOF XMI expresses shortcut constraints as OpaqueConstraints whose language is OCL 2.0.
The OCL expresses the semantics of the “hasDetail” Boolean function defined in the BACMShortcut abstract class.
Execution of this function should evaluate this function and present the value to the modeler. Note that the classes and
associations being created by the modeler are considered as instances of the BACM metaclasses in this specification for
the purposes of evaluating the OCL. The constraint should also be expressed in string form as a value of the “constr”
property to allow for editing by the modeler. An alternative implementation, treating the <<shortcut>> association as a
derived association whose semantics are defined by the OCL constraint is also valid, provided that the constraint is
treated as existential and advisory and not invariant.

8.1.2 Compliance

An implementor may but is not required to implement a mechanism to evaluate the consistency of a shortcut constraint
with respect to a model as described in this section. However, an implementor must represent, make visible and preserve
across model saves, import, and export, any shortcuts specified in this metamodel or defined by business architecture
modelers. A conforming implementation may advise a business architecture modeler that a model contains shortcuts that
will not be validated by the implementation. For example, a conforming implementation may implement a meta-model
shortcut as a class-association or an n-ary class-association and preserve the specification of the shortcut semantics as a
tagged text value or a similar scheme.

8.2 Touchpoints

Touchpoints are intended to link a BACM model to one or more other models. A touchpoint shall be able to access
elements of another model and specify the potentially complex relationship that may exist between multiple BACM
model elements and multiple elements or sections in the external model, document, or dataset. Touchpoints are specified
as external relationships. As a default, an IRI may be used to identify or dereference a resource and a natural language
description may be given as the external reference specification that describes the mapping between the BACM elements
and information or model elements in the external model.

A BACM model does not represent everything that is interesting about a business. It does not adequately represent
strategic planning, resource management, business processes, IT architecture or market campaigns for example. It should
be able to link to models of such domains and extract information from those models. In addition, the BACM model
should serve as a guide to details about the business that are represented in other models. This guide function reduces the
need for the analyst to search through unorganized business models looking for information relevant to the current
analysis project.

Business Architecture Core Metamodel (BACM), v1.0 99

This page intentionally left blank.

 100 Business Architecture Core Metamodel (BACM), v1.0

Annex A:

(normative)

A.1 Glossary

Term Meaning

AbstractAction AbstractAction is used to classify entities that should be disjoint from Capability, AbstractResult
and AbstractThing. It is not used for any other purpose in the metamodel.

AbstractThing AbstractThing is used to classify entities that should be disjoint from Capability, AbstractResult
and AbstractAction . It is not used for any other purpose in the metamodel.

Annotation Definition: Annotation provides the modeler an ability to associate tag/value pairs to any
BACMElement in a BACM model.
Usage: Annotations may be annotated. Annotations may also be specialized in a BACM model to
add additional attributes.

BACM_Model Definition: The BACMModel represents the root element of a BACM model (i.e. the element
from which a tool or person can navigate to every other element in the model)
Usage: A single instance of this class must exist in an instance model.

BACMBinDirRelation Definition: BACMBinDirRelation is an abstract class that generalizes the classes resulting from
the transformation of model associations stereotyped as <<class> or <<shortcut>>. It specializes
BACMRelation to represent binary directed relations and redefines the association between
BACMRelation and BACMEntity to designate the start (from_bacm_entity) and end
(to_bacm_entity) of the relation direction

BACMElement Definition: The BACMElement represents the class of all elements in a BACM model. It
provides elements with a name and description and allows elements to be annotated.
Usage: BACMElement is an abstract class and cannnot be instantiated in a model.

BACMEntity Definition: BACMEntity is an abstract class that is characterized by participating in relationships
defined by BACMRelation and BACMBinDirRelation. BACMEntity is also a generalization of all
classes intended to represent concepts of the modeled business. See the normative XMI file for
details.
Usage: Both BACMRelation and BACMBinDirRelation are specializations of BACMEntity
allowing these relationships to participate in other relationships

BACMPlainEntity Definition: BACMPlainEntity is an abstract class disjoint from BACMRelation that classifies all
BACM classes representing concepts of the modeled business that are not specializations of
BACMRelation.
Usage: BACMPlainEntity and BACMRelation distinguish classes intended to represent entities
from those intended to represent associations.

BACMRelation Definition: BACMRelation is an abstract class that models n-ary relations with features and the
ability to participate in other specializations and instances of this class as bacm_entity ends.
Usage: BACMRelation is the generalization of all classes resulting from the transformation of
<<association>> stereotyped classes. The model associations determined to be legs of the
<<association>> stereotyped classes are transformed to specialize the association with ends
bacm_entity and bacm_relation.

BACMShortcut Definition: BACMShortcut is an abstract class inherited by the transformation of all metamodel
classes stereotyped as <<shortcut> and all generated classes that result from the transformation of
model classes stereotyped as <<shortcut>>. It declares a string (constr) that defines the shortcut
constraint and a boolean valued function (hasDetail) that evaluates the constraint string and
determines whether it is true or false.
Usage: In the normative XMI, the constraint string defined in the model is represented as an
OCL function that determines if there is a specified path between the instances at the ends of the
association. The modeler is allowed to use the constraint mechanism to define shortcut
associations within the instance model. In this case, the constr attribute will contain the constraint
string and the modeler must provide an implementation of the hasDetail function that evaluates
the string and returns a boolean result.

Business Architecture Core Metamodel (BACM), v1.0 101

BusinessElement Definition: BusinessElement represents a concept or entity that existing or is planned to exist in
the business.
Usage: BusinessElement is an abstract base class for all classes whose instances represent
business entities.

ExternalData Definition: ExternalData is a class that wraps an IRI. An ExternalRelationship instance may be
associated with multiple ExternalData instances.

ExternalRelationship Definition: ExternalRealtionship represents a relationship between a BusinessElement in a
provider tool or repository to ExternalData in another tool or Repository. The external data may
be a BusinessElement (or a linked collection of BusinessElements) or some other element (or
linked collection of elements) from a model that is not a BACM model. The IRI must identify a
resource to which the specification String can be applied to identify the element (or linked set of
elements) in that resource. The language attribute of the ExternalRelationship identifies the
language of the specification String.
Note that BusinessElement classifies all BACM classes and associations that are intended to
represent business concepts (as opposed to model concepts or analysis concepts).
Usage: The tool provider may elect to provide services to dereference the ExternalData and
apply the specification to allow the architect to view and interact with the results. However, a
compliant implementation may just implement, import and export the ExternalRelationship, the
ExternalData and the links connecting them and connecting the ExternalRelationship to the
BusienssElement.
If the language string is the string "Natural" or a string that identifies a natural language. then the
specification Strong will be a natural language description of the alignment mapping

IRI Definition: IRI is a UML DataType entity that represents an Internationalized Resource
Identifier (IRI). Instances of IRI will contain a single IRI as a character string.

AbstractBusinessObject Definition: AbstractBusinessObject represents BusinessObjects or InformationItems.
Usage: AbstractBusinessObject cannot be instanced or specialized in a business arcitecture
model. The AbstractBusinessObject metaclass has two disjoint, concrete subclasses:

 BusinessObject - instances represent tangible things of importance to the business.

 InformationItem - instances represent intangible (mental) concepts important to the business.
The AbstractBusinessObject metaclass provides its concrete specializations with the state_of
association to Outcomes and the scopes association to Capability and CapabilityBehavior.
AbstractBusinessObject also provides for ObjectRelations that may relate any collection of
BusinessObjects and InformationItems.

AbstractCapability Definition: AbstractCapability is not intended to represent a business concept. It is a
metamodeling device to provide relationships to Capability and CapabilityBehavior that would
otherwise be duplicated.
Usage: The AbstractCapability metaclass has two concrete specializations: Capability and
CapabilityBehavior. Only the specializations can be instanced in models.
AbstractCapability provides the following to its concrete specializations:
1. to represent the production of an Outcome;
2. to represent the need for an Outcome;
3. to represent the ability of an InformationItem to inform the behavior of a Capability and/or

CapabilityBehavior;
4. to represent the ability of a CapabilityImplementation to implement a Capability and/or a

CapabilityBehavior;
5. to represent the notion that a BusinessObject and/or an InformationItem scopes a Capability

and/or a CapabilityBehavior

BusinessObject Definition: BusinessObject represents a tangible thing that is of significance to a business.
Usage: BusinessObjects may also overlap with other classes in the model; for example a
BusinessObject may also be a Resource used by a Capability.
Typically, the BusinessObject represents tangible things that are acted on by the Capabilities of a
business to create a new Outcome that defines a new state of the BusinessObject. An assembly
robot may be a Performer associated with an assembly Capability. The same assembly robot may
be a BusinessObject when it is no longer needed and is sold.

Capability Definition: Capability represents generalization over variations in behavior and variations in
structure applied to the behavior where the same general Outcome is produced by the behavior..
A Capability represents the ability a business has to produce an Outcome without specifying how
that Outcome is produced.
Usage: Capability is defined in this way to allow executives to analyze variation in business
behaviors and structures that all produce the same or similar outcomes.
In addition, observing problems or successes that recur in most or all of the variations of a
Capability is a clue that the business has a systemic problem with respect to the capability. For

 102 Business Architecture Core Metamodel (BACM), v1.0

example, if all behavior variants and implementations of a Capability are underperforming, then
one might wish to understand why.
Capabilities may be decomposed in a strict hierarchy, but are not allowed to be specialized. The
CapabilityBehavior that delivers a Capability is used to represent behavioral variants of a
Capability.
A Capability may be implemented by a CapabilityImplementation, a collection of Resources and
Performers that are assigned Roles in the Capability.
The modeler may use any of the following patterns:
1. Capability is defined without CapabilityBejaviors or CapabilityImplementations;
2. Capability is defined with CapabilityImplementations annotated with proposed resources

and performers but without Roles, Resources and Performers;
3. Capability is defined with Roles, CapabilityImplementations, Performers, Resources where

the Performers and Resources are aggregated to the CapabilityImplementation and are
assigned to Roles of the Capability;

4. Capability is defined as in 3. and CapabilityBehaviors are defined delivering the Capability
with Role assignments to CapabilityBehavior compatible with the assignments to Capability
Roles;

5. Capability is defined with delivering CapabilityBehaviors but no CapabilityImplementation;
6. Capability is defined with Roles and delivering CapabilityBehaviors are defined with

consistent Roles;
7. All other configurations are disallowed.
Constraint: Capability instances may own other Capability instances but may not aggregate or
generalize them.

CapabilityBehavior Definition: CapabilityBehavior represents a behavior description or specification, such as
process diagrams, procedures manuals and other means of recording and publishing expected
business practices.
Usage: CapabilityBehavior also represents rules, regulations and policies that constrain behavior,
whether imposed by statute, regulators or business executives.
CapabilityBehaviors deliver a Capability, indicating that the set CapabilityBehaviors associated
to a Capability are variant ways of producing the same or similar Outcomes.
CapabilityBehaviors may have associated Roles. These Roles define how Performers and
Resources may participate in the described or specified behavior.
CapabilityBehavior is a subtype of AbstractCapability and inherits associations with the
Outcomes of Capabilities. These associations represent the ability of a behavior to produce an
outcome. The Outcomes produced by a CapabilityBehavior are usually more specific than
Outcomes produced by the Capability. Often the Outcome of a CapabilityBehavior will include
side-effects that result from the particular behavior, such as resources consumed in executing the
behavior or time taken by the execution.
CapabilityBehaviors are not decomposable, but may be associated with Processes, which are
decomposable.

CapabilityImplementatio
n

Definition: The CapabilityImplementation represents a collection of Roles,
AbstractBusinessObjects and Performers that may be used to implement a Capability or
CapabilityBehavior or a Process or Activity (see the Roles diagram).
Usage: The AbstractBusinessObjects and Performers are optional, as are the Roles. The modeler
may create instances of CapabilityImplementation annotated with a description of proposed or
planned roles, resources and performers and subsequently add the Roles, Performers and
Resources.
Note that AbstractBusinessObjects and Performers may be shared by CapabilityImplementations
(representing that two or more CapabilityImplementations will select AbstractBusinessObjects
and Performers from the same domain. However, Roles may not be shared (see implements_7
description). Consequently, when a CapabilityImplementation is created or implements_5 to an
AbstractCapability or implements_6 an AbstractProcess, a new set of Role elements should be
created that specialize the Roles of the AbstractCapability or AbstractProcess. These "role
clones" are effectively owned by the CapabilityImplementation via the implements_7
relationship.

InformationItem Definition: The InformationItem represents a kind of information.
Usage: The same InformationItem may represent a thought or piece of knowedge and a physical
manifestation of that thought or knowledge as a document or a dataset.

isAbout Definition: IsAbout is a binary directed relationship between an InformationItem and an
StatefulThing. It specializes ObjectRelation. It designates that the InformationItem is metadata
about the StatefulThing.

Business Architecture Core Metamodel (BACM), v1.0 103

Usage: AbstractBusinessObjects and ObjectRelations have only identity and immutable
properties (a.k.a. intrinsic properties). An InformationItem that isAbout an
AbstractBusinessObject can only hold metadata bout this identity and the intrinsic properties. To
model the recording of state, modelers should use recordedAs.

needs_0 Definition: The needs_0 association represents the assertion that a Capability and/or
CapabilityBehavior needs, desires or requires a particular Outcome representing a state of an
BusinessObject or InformationItem. If the non-initial feature is True, the need of the Outcome
does not signal that a new Capability execution is started. The default is False, signalling
initiation of a new Capability execution.

ObjectRelation Definition: ObjectRelation represents any relationship of any arity among StatefulThings and
InformationItems.
Usage: The architect may use ObjectRelation to indicate that two BusinessObjects are joined
together or that one BusinessObject is part of another. ObjectRelations may also target other
ObjectRelations.

Outcome Definition: An Outcome represents a fact or collection of facts about an experienced state of
affairs pertaining to one or more BusinessObjects and/or InformationItems. Outcomes are
produced/needed by and outputs/inputs of AbstractProcesses.
Usage: For example, a Capability to attach wheels to a vehicle being manufactured would
require that a vehicle without wheels be available and that wheels be available. This requirements
would be modeled as two Outcomes:
1. A vehicle without wheels is available to the Capability, and
2. A set of wheels is available to the Capability.
The result of the Capability is another Outcome in which the wheels are no longer separate but
are attached to the vehicle.
Separating the state of a BusinessObject or InformationItem from the BusinessObject or
InformationItem allows the model to represent many possible states of the BusinessObject or
InformationItem and associate each state with the Capabilities and/or CapabilityBehaviors that
produce the states.
Outcome and its AbstractBusinessObjects must represent a single, consistent set of facts whether
viewed from the capability perspective or the process perspective. However, the facts represented
by a Outcome may not be at the same level of detail when viewed in a capability perspective as
when viewed in a process perspective. For example, a process perspective may represent the
wheel assembly activities in greater detail, specifying the additional tools and parts needed to
attach the wheels to the vehicle with intermediate Outcomes representing the stages of mounting
the wheels to the hubs, attaching the nuts to the hub bolts, and tightening them to the required
torque specification. The beginning and end of this sequence of Outcomes are the same in the
process perspective and in the capability perspective. Other semantic relationships provided for
Outcome are generalization and aggregation.

OutcomeRelation Definition: OutcomeRelation represents any kind of semantic relationship between Outcomes.
Usage: The architect may create instances of any arity to define semantic relationships between
Outcomes. For example, two Outcomes may be specified as alternatives that cannot both be
produced by a Capability or Process in a single execution.

PerformerRole Definition: PerformerRole represents skills, knowledge and willingness to use these in the
production of the Outcomes of a Capability.
Usage: PerformerRole represents roles that must be fulfilled by human or automation actors.
This role can also be used to define an executive or managerial authority for an
AbstractCapability or an AbstractProcess. When assignTo_2 a Performer, it is interpreted to
mean that the Performer acquires the authority and responsibility defined by the PerformerRole

produces_0 Definition: The produces_0 association represents that a Capability and/or CapabilityBehavior
may produce the Outcome. If the non-final feature is True, the production of the Outcome does
not signal that the Capability execution is complete. The default is False, signalling Capability
completion.

ResourceRole Definition: ResourceRole represents the set of roles that must be fulfilled by business entities
that are passive participants in the Capability, CapabilityBehavior, Process or Activity. This
includes tools, locations and materials that are used in the behavior but do not become
incorporated into the Outcome of the behavior. Any materials or entities that are incorporated
into a BusinessObject or InformationItem whose Outcomes are produced by the Capability or
CapabilityBehavior should be represented as BusinessObjects or InformationItems associated
with Outcomes needed by the Capability and not represented as Resources in this context.

Role Definition: Role represents a specified way for an entity to participate in producing the Outcome
of a Capability or a Process. However, only the concrete subclasses of Role may be used in a
model.

 104 Business Architecture Core Metamodel (BACM), v1.0

Usage: Role is an abstract association meta-class used to model relationships between
Performers and Resources and Capabilities and Processes. It represents how Performers and
Resources participate in behavior descriptions as represented by CapabilityBehaviors and/or in
Capabilities. The Role meta-class is stereotyped as an association and its concrete instances are
effectively class associations.
Specifically, the Role meta-class acts as an n-ary association with three predominant patterns:
1. A Capability is associated with a Performer;
2. A CapabilityBehavior is associated with a Performer, or a choice of an OrgUnit or a System;
3. A CapabilityImplementation is associated with a CapabilityBehavior and a choice of an
OrgUnit or a System.
These three patterns represent:
1. An abstract view of the business capability with detail added by the Role instance indicating
the type of activity to be performed. Since a Capability may have multiple associated Roles, this
implies that the Capability incorporates multiple activities.
2. An intermediate view of the business used in planning where details about the specific
behaviors of a capability and the type of performer entity (OrgUnit or System) are specified, but
the actual or planned assignment of real OrgUnits or Systems has not occurred.
3. A more detailed planning/implementation view of the business in which specific performers
and resources have been or are planned to be allocated to a Capability and its
CapabilityBehaviors by way of a set of CapabilityImplementations.
Neither ResourceRoles nor PerformerRoles may exist without being linked to a Capability or a
CapabilityBehavior or a Process or an Activity with the role link.
A Capability and a CapabilityBehavior may share a Role, but an assignment to that Role will be
the same for both the Capability and the CapabilityBehavior. To indicate that a
CapabilityBehavior and a Capability have related roles, the modeler should create a
specialization ot the Capability Role for each CapabilityBehavior that delivers the Capability and
link the specialized Role to the CapabilityBehavior.
A Process and an Activity may not share a Role.
A Role may be shared between a Capability and/or a CapabilityBehavior, and either a Process or
an Activity. In this case, any assignment to the Role is an assignment to both the
Capability/CapabilityBehavior and the Process/Activity
PerformerRoles and ResourceRoles may be linked to CapabilityImplementations with the
assignment shortcut association. Performers and Resources aggregated in the
CapabilityImplementation should be assigned to these roles.

Customer Definition: Customer represents a customer type or a class of customers. Customer also
represents partner businesses and other forms of contracted business relationships.
Usage: Customer effectively owns a set of CustomerSegments, each of which contains a partial
description of the Customer. The CustomerSegments of a Customer may characterize
CustomerJourneyStages or Touchpoints (i.e. they describe the Customer characteristics and state
of mind at the CustomerJourneyStage or Touchpoint. When this is the case, the Customer should
take the CustomerJourney owning the CustomerJourneyStages and Youchpoints.
The Customer is an acceptor of one or more ProductOfferings and target of the
ValuePropositions of these ProductOfferings.

CustomerJourney Definition: A CustomerJourney represents a sequence of stages through which a Customer may
pass with respect to a ProductOffering and its ValueProposition. The CustomerJourneyStages of
the CustomerJourney capture the notion that the customer experience is cumulative.

CustomerJourneyStage Definition: The CustomerJourneyStage represents a significant stage in the CustomerJourney.
An example of the stages of a customer journey would be: awareness, seeking a solution,
weighting alternatives, acquiring the solution, using the solution, disposing the solution.
Usage: CustomerJourneyStages are often associated with decisions by the customer to proceed to
the next stage or abandon the journey. However, the CustomerJourney is not a process and has
no alternative sequences or paths.

CustomerSegment Definition: The CustomerSegment represents a characteristic of the Customer or a component of
customer state of mind. CustomerSegments are owned by the Customer they describe.
Usage: When the owning Customer takes a Customerjourney, CustomerSegments should be
created for each CustomerJourneyStage and Touchpoint in the CustomerJourney. These
CustomerSegments characterize the customer or the customer's state of mind at the
CustomerJourneyStage or Touchpoint.

JSTP Usage: This abstract class provides a union type for CustomerJourneyStage and Touchpoint,
allowing the characterizes association to link instances of any concrete subclass of these classes.

Touchpoint Definition: The Touchpoint represents an interaction between the business and the Customer.

Business Architecture Core Metamodel (BACM), v1.0 105

Usage: One or more Outcomes created by the business are experienced by the Customer at the
Touchpoint (e.g. the customer finds the answer to a question in a brochure created by the
business, or the customer receives the business object that was ordered in good condition and on
time). Alternatively, one or more Outcomes created by customer uses of the business objects
contained in the ProductOffering are experienced by the customer (e.g. the customer uses the
purchased hammer to drive nails).
The analysis of value exchanged at the Touchpoint is represented by the ValueCharacteristic
associated with the Touchpoint.

ValueCharacteristic Definition: ValueCharacteristic represents the fit between the ValueProposition of a
ProductOffering targeted at a Customer.

Usage: ValueCharacteristic is decomposed into ValueCharacteristic_1 to allow for the
aggregaton of fit measures associated with the owned ValueCharacteristic_1 model elements.

Constraint: A ValueCharacteristic is not owned by another ValueCharacteristic.

ValueCharacteristic_1 Definition: ValueCharacteristic_1 represents the fit between the ValueItem and a
CustmerSegment. A ValueCharacteristic_1 model element is owned by a ValueCharacteristic and
may not exist independently.

Usage: ValueCharacteristic_1 is intended to be used with a semantic tagging mechanism such as
that provided by MEF or its equivalent. This allows the creation of tagging frameworks such as
the Value Proposition Canvas categories of "use", "pain" and "gain". The CustomerSegments and
ValueItems should be tagged by these categories.

Constraints: A ValueCharacteristic_1 must be owned by a ValueCharacteristic or a
ValueCharacteristic_1 but not both.

ValueItem Definition: A ValueItem represents the business belief that a Customer will value one or more
Outcomes that are experienced by the Customer.
Usage: For example, the ability of a sales representative to answer customer questions about a
product is deemed to be valuable to the customer. Another example Outcome is the exchange of a
good for money; the associated ValueItem could represent the buyer's feeling of having gotten a
good deal.

ValueProposition Definition: The ValueProposition represents a collection of values the business believes it is
offering to customers, partners and other stakeholders through a ProductOffering.

ValueStream Definition: A ValueStream represnts a set of stages that accumulate value represented by the
ValueProposition.
Usage: The notion that value accumulation can be broken into components has been central to
strategic practices such as Michael Porter's value chains and high level, value oriented process
architecture. The notion is well established in business architecture and analysis practice.
In some cases, it may be desirable to order the stages in a ValueStream. For example, there is a
natural order to the design, build, inventory, sell and service stages of a manufacturing business.
However, in other cases, such as health care, it is difficult to order the stages of triage, diagnosis,
treatment, prevention. Consequently, no strong semantic interpretation should be associated with
the ordering of ValueStreamStages in a ValueStream.
Constraint: A ValueStream instance may not own, aggregate or generalize another ValueStream
instance

ValueStreamStage Definition: ValueStreamStages represent significant points of value creation in a ValueStream.
Usage: ValueStreamStages are dependent on their containing ValueStream and are not shared
with other ValueStreams. When the business architect intends to represent similar
ValueStreamStages in different ValueStreams, the similarity should be represented by having the
same set of relationships with the supporting Capabilities.
ValueStreamStages are often defined by analysis and decomposition of the ValueProposition.
They may also respresent stages of completion of a "build to order" product that are of interest to
the Customer (e.g. stages where the Customer may make changes in specifications of the ordered
product).
Constraint: A ValueStreamStage may only own other ValueStreamStages and be owned by
another ValueStreamStage or a ValueStream. ValueStreamStages may not participate in
generalizes or aggregates associations.

Jurisdiction Definition: The Jurisdiction represents a legal jurisdictions with powers to charter and/or
regulate businesses.

LegalEntity Definition: LegalEntity represents a human organization that is subject to the laws and
regulations of a Jurisdiction..

 106 Business Architecture Core Metamodel (BACM), v1.0

OrgUnit Definition: The OrgUnit meta-class represents the various types of human organizations and
individuals capable of acting as performers.

Performer Definition: The Performer represents entities that are capable of performing PerformerRoles.
Performer has two specializations: OrgUnit and System, representing a human components of the
business or a system.
Usage: The Performer is concrete to allow modeling the need for a Performer without
committing to a human assignment, a system assignment, or a combination of both. Performers
are generally described by skills or abilities.
Performer is s specialization of AbstractBusinessObject, allowing Performers to be treated as
AbstractBusinessObjects without conflict. For example, a Performer may fill a role in a
manufaturing capability and be the BusinessObject of a Training Management capability
responsible for employee training..

Responsible Definition: Responsible represents an unspecified kind of responsibility relationship between a
source OrgUnit and a target OrgUnit. This relationship may also include a BusinessElement that
defines the nature of the association.
Usage: Responsible instances may form generalization hierarchies. The business architect may
create these hierarchies to represent particular types of responsibility relationships found in the
business. When specializing Responsible instances, the source, target and nature association legs
may be subsetted to restrict them to particular types of OrgUnit and BusinessElement.

System Definition: The System represents the concept of a non-human performer, such as an IT system
or a robot. Tools such as jigs and drills are not considered Perfomers for the purpose of business
architecture. They should be modeled as Resources.

AbstractProcess Definition: AbstractProcess is not intended to represent a busines concept. It is a metamodeling
technical device to share relationships with Process and Activity that would otherwise need to be
duplicated.
Usage: AbstractProcess is an abstract meta-class that provides input and output Outcome
connection abilities to both Process and Activity. It also provides the role link to PerformerRoles
and ResourceRoled. It also provides the implements link to a ValueStream or some
ValueStreamStages. Since implements aligns the scope of the Process with either a
ValueStreamStage or a ValueStream, it should not link both a ValueStreamStage and the
ValueStream the ValueStreamStage belongs to.

Activity Definition: Activities represent atomic (non-decomposable) activities.

Process Definition: Process represents an aggregation of Activities and other Processes.
Usage: A Process aggregated into another Process means that the aggregated Process may be
executed as a part of executing the aggregator Process. The abstract syntax does not specify a
starting or ending Process/Activity; consequently starting and ending Activities/Processes
aggregated by another Process must be determined by analysis of the Outcome connections.

VSVSS Usage: This abstract class provides a union type for ValueStream and ValueStreamStage,
allowing instances of the implements_1 association to link to instances of any concrete subclass
of either of these classes.

APCICB Usage: This abstract element defines a union type for AbstractProcess,
CapabilityImplementation and CapabilityProvider, allowing the specifies association to connect
any instances of any concrete subclasses of these classes.

ContractRelation Definition: ContractRelation represents any kind of relationship between Offerings.
Usage: ContractRelation should be instanced as a relationship between Offferings whose arity is
determined by the architect. Each leg of such an instance effectively inherits from the relation
association.

MerchandiseOffering Definition: A MerchandiseOffering irepresents an offering to sell or lease a good to a customer
who may use the good to produce Outcomes.
Usage: The MerchandiseOffering is characterized by some BusinessObjects or InformationItems
that would be transferred to the Customer for use by the Customer. The BusinessObjects and/or
InformationItems are objects of the MerchandiseOffering.

MerchandiseOutcome Definition: MerchandiseOutcome represents the transfer of ownership and/or use between the
business that is selling the merchandise via the MerchandiseOffering and the LegalEntity who
receives the possession and/or use of the merchandise. The LegalEntity may also be a Customer.

Offering Definition: Offering represents the solicitation of business from a Customer by presenting
Outcomes and BusinessObjects that the business is willing to provide in return for items of value
received from the Customer.
Usage: Offering is abstract because the metamodel may eventually include subtypes other than
ProductOffering. Offering is provided by the business or a partner and the intended consumer is a
type of Customer.

Business Architecture Core Metamodel (BACM), v1.0 107

The business architecture does not include the concept of a sale directly. Sales are in the past of a
business, and business architecture is focused on the possible futures of the business. Sales are
useful as predictors of acceptance of future offering and as predictors of future liability for
warranties.

OutsourcedServiceOfferi
ng

Definition: OutsourcedServiceOffering represents an offering made by the business that solicits a
service to be performed by another business.

OutsourcedServiceOutco
me

Definition: OutsourcedServiceOutcome represents the expected Outcome of the performance of
an outsourced service (i.e. a service performed for the business by another business).

ProcurementOffering Definition: ProcurementOffering is an offering by theBusiness to purchase or lease a
BusinessObject and/or InformationItem from a LegalEntity.

ProcurementOutcome Definition: ProcurementOutcome represents the expected Outcome of the procurement. E.g. that
the BusinessObject/InformationItem received has the characteristics needed by the procuring
business.
Usage: ProcurementOutcome specifies such details and is associated with a ProcurementOfferint
that should not duplicate the details of the ProcurementOutcome.

ProductOffering Definition: ProductOffering represents the terms and conditions associated with the acquisition
of a product or service by a customer. It would typically include price, delivery terms, warranty
and other aspects of these terms. The ProductOffering incorporates Outcomes such as change of
possession for a product (BusinessObject or InformationItem) that is sold.
Usage: A ProductOffering (and its specializations Good and Service) are a type of
BusinessObject. This allows a Customer to experience the ProductOffering at a Touchpoint and
develop a reaction (such as the ProductOffering being a good deal). Such a reaction can be
represented as a CustomerSegment associated with the Customer and the JourneyStage that
includes the Touchpoint.

ServiceOffering Definition: ServiceOffering represents an offer to provide a service to a Customer. the busienss
provides the CapabilityImplementations and CapabilityBehaviors needed to effect the Outcome
promised to the Customer by the ServiceOffering.
Usage: A ServiceOffering is a specialization of a ProductOffering such that a Capability or
CapabilityBehavior or Process or Activity is performed to produce an Outcome that is
incorporated into the service. Unlike a sale or lease, where some incorporated Outcomes
represent a change of ownership or poseeseeion/use of a business object, the incorporated
Outcomes (such as a cleaned residence) are the primary Outcomes desired by the customer.
A business that offers a ServiceOffering must incorporate or arrange for the Capabilities and or
Processes needed to produce the promised Outcomes.

ServiceOutcome Definition: ServiceOutcome represents the expected Outcome of the performance of a service for
a Customer.

AbstractOperatingModel Definition: AbstractOperatingModel is an abstract metaclass whose concrete specializations are
the model elements of the operating model (see the AbstractOperatingModel diagram). This
metaclass groups together the concrete metaclasses that may be impacted by a Means or Initiative
or baselined by Ends or Changes
Usage: Means and Initiatives describe behaviors that will impact parts of the operating model of
the business to achieve the Ends and Changes associated with the Means and Initiatives. While
the behaviors are described by the Means and Initiatives, the affected operating model
components are represented by the impacts relationship to facilitate analysis of these impacts for
feasibility, risk, cost and other measures.
Ends and Change describe the new state and behavior of the baselined parts of the operating
model of the business. For example, an End may be the improvement of throughput and
reduction of wait time for a CapabilityImplementation. The Means may be the addition of
personnel and upgrading of an application. The End describes a new baseline for the
CapabilityImplementation (relative to the existing baseline associated with the
CapabilityImplementation). The Means describes the behaviors to be carried out with respect to
the staffing and resourcing of the CapabilityImplementation.

AbstractValueModel Definition: The AbstractValueModel represents the value-related concepts that the Means and
Initiative behaviors seek to achieve by changes made to the AbstractOperatingModel.
Usage: AbstractValueModel model elements represent perceptions of value as seen by a
Customer or imagined by theBusiness to be seen by the Customer. As such, they cannot be
directly changed by the business, so Means and Initiatives do not directly impact them. For
example, the ValueProposition and ValueCharacteristic of an Offering may be improved by
lowering its price, but this result is not guaranteed as the price action may be viewed as a signal
of inflated worth or diminished quality. The architect may express a conviction that this result
will occur in the expects association that links the price Means to the new Ends baseline for the
ValueProposition and ValueCharacteristic.

 108 Business Architecture Core Metamodel (BACM), v1.0

Change Definition: Change represents desired states of business value and results as represented by the
baselined elements of the AbstractOperatingModel and the AbstractValueModel. These states are
expected to result from the changes described by the Initiatives.
Usage: Changes can be decomposed and share sub-Changes.

Directive Definition: Directive represents constraints (impacts_0) on AbstractOperatingModel elements
that require or prohibit actions or states.

Usage: Directive is a kind of Means that represents policy or regulation that is incorporated in a
StrategyModel. Directive is also intended to be linked with the Directive class in the BMM
metamodel.

Ends Definition: Ends represent changes to elements representing business values, such as
ValuePropositions., ValueItems and ValueCharacteristics. Ends also represent changes to
business results (i.e. Outcomes, BusinessObjects, InformationItems and ProductOfferings). These
element types derive from AbstractOperatingModel and AbstractValueModel.
Usage: A Ends element will typically state the desired result (e.g. improved customer
satisfaction) relative to the currently achieved (baselined) result (customer satisfaction
represented as an Outcome).
Ends can be decomposed into subordinate Ends. Subordinate Ends may be shared by one or more
aggregator Ends.

Initiative Definition: Initiatives represent plans to change business functions in order to achieve the
business results described by Changes. Initiatives should be linked to the expected Changes with
the expects association.
Usage: Initiatives may be decomposed and may share sub-Initiatives.

Means Definition: Means represent possible behaviors that will change functional elements of the
business (represented by Capabilities, CapabilityBehaviors, CapabilityImplementations,
Processes, Activities, Roles, Performers and Resources). These changes are expected to produce
the changes represented by the Ends. Each End should be expected to result from the changes
described by one or more Means.
Usage: Means can be decomposed and subordinate Means may be shared by aggregator Means.

StrategyChoices Definition: The StrategyChoices represents a suite of strategies that can be evaluated for
selection. Each StrategyModel in a StrategyChoices element shall be considered as alternatives.
Alternative StrategyModels may share Means, Ends, Initiatives and Changes.
Usage: There may be at most a single instance of StrategyChoices in a BACM model.

StrategyModel Definition: StrategyModel is a collection of Means and Ends and the Initiatives and Changes
implementing the Means and Ends. It represents a single, coherent and complete strategy.
Usage: StrategyModels each represent a particular strategy choice. StrategyModels may share
sub-StrategyModels. The set of StrategyModels as prepared by the architect and strategist is
represented by the StrategyChoices model element and the alternative associations linking it to
each StrategyModel

Business Architecture Core Metamodel (BACM), v1.0 109

This page intentionally left blank.

