

Date: July 2007

Business Process Definition MetaModel
(BPDM), Beta 1
OMG Adopted Specification

OMG Document Number: dtc/07-07-01
URL: http://www.omg.org/cgi-bin/doc?dtc/2007-07-01
Associated Schema Files: http://www.omg.org/spec/BPDM/1.0/

This OMG document replaces the submission document (bmi/2007-03-01, Alpha). It is an OMG
Adopted Beta Specification and is currently in the finalization phase. Comments on the content of
this document are welcome, and should be directed to issues@omg.org by September 14, 2007.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on December 21, 2007.
If you are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

Copyright © 2007, Adaptive
Copyright © 2007, Axway Software
Copyright © 2007, Borland Software, Inc
Copyright © 2007, EDS
Copyright © 2007, Lombardi Software
Copyright © 2007, MEGA International
Copyright © 2007, Model Driven Solution
Copyright © 2006, Object Management Group, Inc.
Copyright © 2007, Unisys

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ and OMG Interface Definition Language (IDL)™ are trademarks of
the Object Management Group. All other products or company names mentioned are used for identification purposes
only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface ... ix

1 Scope ... 1

1.1 Business Process Modeling Notation (BPMN) ..2

1.2 Target Audience and Use of BPDM ..2

1.3 Other Common Business Benefits of BPDM ..2

1.4 Carefully defined semantics ..2

1.5 Saying just enough, but not too much... 2

1.6 Improved Integration and Collaboration ..2

1.7 Improved Agility ..3

1.8 Business Processes supported by Service Oriented Architectures (SOA)3

1.9 Better Return on I.T. Investment ...3

1.10 Process Concepts supported by BPDM ..3

2 Conformance .. 4

2.1 BPDM Full Compliance ...4

2.2 BPDM Collaboration Protocol Compliance ...5

2.3 BPDM Orchestration Process Compliance ... 5

2.4 BPDM - BPMN Compliance ..5

3 Normative References .. 5

4 Terms and Definitions ... 5

5 Additional Information ... 9

5.1 Acknowledgements ...9
Business Process Definition MetaModel, Beta 1 i

6 Metamodel Specification .. 11

6.1 Overview ...11

6.2 Composition Model ...14
 6.2.1 Introduction .. 14

 6.2.1.1 Individuals, Models, and Modeling Languages ...15
 6.2.1.2 Types ..16
 6.2.1.3 Composites ...16
 6.2.1.4 Parts ...16
 6.2.1.5 Part Connections ..17
 6.2.1.6 Part Paths ...17
 6.2.1.7 Generalization and Derivation ..18
 6.2.1.8 Selection ...18

 6.2.2 Metamodel Specification ... 18
 6.2.2.1 Composition ..19
 6.2.2.2 Part Connection & Condition ..20
 6.2.2.3 Generalization & Derivation ..21
 6.2.2.4 Selection ...22
 6.2.2.5 Abstract Part ...22
 6.2.2.6 Composite ..22
 6.2.2.7 Compound Condition ..23
 6.2.2.8 Compound Condition Type ...23
 6.2.2.9 Condition ..24
 6.2.2.10 Derivation ...24
 6.2.2.11 Directed Part Connection ..24
 6.2.2.12 Generalization ..25
 6.2.2.13 Individual ..25
 6.2.2.14 Individual From Set ...25
 6.2.2.15 Irreflexive Condition ..26
 6.2.2.16 Opaque Condition ...26
 6.2.2.17 Part ...26
 6.2.2.18 Part Connection ..27
 6.2.2.19 Part Group ..27
 6.2.2.20 Part Path ...28
 6.2.2.21 Part Replacement ...29
 6.2.2.22 Selector Specification ...30
 6.2.2.23 Typed Part ..30
 6.2.2.24 Instance: Irreflexive Condition ..30

6.3 Course Model ..31
 6.3.1 Introduction .. 31
 6.3.2 Metamodel Specification ... 31

 6.3.2.1 Course Model ...32
 6.3.2.2 Course ..32
 6.3.2.3 Course Control Part ...33
 6.3.2.4 Course Part ...33
 6.3.2.5 Exclusive Join.. 34
 6.3.2.6 Exclusive Split ...34
 6.3.2.7 Immediate Succession ..36
 6.3.2.8 Parallel Join ...36
 6.3.2.9 Parallel Split..36
 6.3.2.10 Succession ...37
 6.3.2.11 Typed Course Part ...38
ii Business Process Definition MetaModel, Beta 1

6.4 Happening & Change Model ... 38
 6.4.1 Introduction .. 38
 6.4.2 Metamodel Specification ... 40

 6.4.2.1 Happening & Change .. 41
 6.4.2.2 Behavioral Happening ...41
 6.4.2.3 Happening & Change Library: Behavioral Change instances ... 42
 6.4.2.4 Happening & Change Library: 'Universal Behavioral Happening' instance 42
 6.4.2.5 Change Condition ... 43
 6.4.2.6 Time Change ...43
 6.4.2.7 Time Change Condition ... 44
 6.4.2.8 Happening & Change Library : Fact Change instances .. 44
 6.4.2.9 Fact Change Condition ...45
 6.4.2.10 Behavioral Change ... 45
 6.4.2.11 Behavioral Change Part ... 46
 6.4.2.12 Behavioral Happening ..48
 6.4.2.13 Change ... 49
 6.4.2.14 Change Condition.. 50
 6.4.2.15 Clock ... 50
 6.4.2.16 Cycle Change ... 50
 6.4.2.17 Fact Change ... 51
 6.4.2.18 Fact Change Condition..51
 6.4.2.19 Happening Over Time ..51
 6.4.2.20 Relative TimeDate Change ..52
 6.4.2.21 Statement ... 52
 6.4.2.22 Time Change ..52
 6.4.2.23 Time Change Condition .. 53
 6.4.2.24 TimeDate Change ..53
 6.4.2.25 Instance: Abort ... 54
 6.4.2.26 Instance: abortPart ... 54
 6.4.2.27 Instance: becomes false ... 55
 6.4.2.28 Instance: becomes true .. 55
 6.4.2.29 Instance: End ..55
 6.4.2.30 Instance: endPart ... 55
 6.4.2.31 Instance: Error .. 56
 6.4.2.32 Instance: errorPart... 56
 6.4.2.33 Instance: Finish .. 57
 6.4.2.34 Instance: finishPart ... 57
 6.4.2.35 Instance: Generalization ... 57
 6.4.2.36 Instance: Generalization ... 58
 6.4.2.37 Instance: Generalization ... 58
 6.4.2.38 Instance: Happening & Change Library .. 58
 6.4.2.39 Instance: start-abort... 59
 6.4.2.40 Instance: start-end ..59
 6.4.2.41 Instance: start-error .. 60
 6.4.2.42 Instance: start-finish ...60
 6.4.2.43 Instance: Start .. 60
 6.4.2.44 Instance: startPart ..61
 6.4.2.45 Instance: Universal Behavioral Happening ...61

6.5 Processing Behavior Model ..62
 6.5.1 Introduction .. 62
 6.5.2 Metamodel Specification ... 65

 6.5.2.1 Processing Behavior ... 66
 6.5.2.2 Connected Part Binding ... 67
 6.5.2.3 Immediate Process Succession ..67
Business Process Definition MetaModel, Beta 1 iii

 6.5.2.4 Process Behavior Library: 'Racing' Processing Behavior instance68
 6.5.2.5 Processing Behavior Library: 'Group Abort Behavior'...69
 6.5.2.6 Behavioral Change Condition...70
 6.5.2.7 Behavioral Step Group ..70
 6.5.2.8 Behavioral Change Condition ..71
 6.5.2.9 Behavioral Step ..72
 6.5.2.10 Behavioral Step Group ...72
 6.5.2.11 Bindable Connection ..73
 6.5.2.12 Change Condition Step ..73
 6.5.2.13 Compound Behavioral Connection ...74
 6.5.2.14 Connected Part Binding ..75
 6.5.2.15 Group Abort Connection ...76
 6.5.2.16 Immediate Processing Succession..76
 6.5.2.17 Processing Behavior ...76
 6.5.2.18 Processing Step ...77
 6.5.2.19 Processing Succession ..77
 6.5.2.20 Race Connection ..79
 6.5.2.21 Instance: Enclosed Step ...79
 6.5.2.22 Instance: finish/abort ..80
 6.5.2.23 Instance: Group Abort Behavior ..80
 6.5.2.24 Instance: group-step ...81
 6.5.2.25 Instance: Processing Behavior Library ..81
 6.5.2.26 Instance: Racing Behavior ..82
 6.5.2.27 Instance: Racing Contestant ...82
 6.5.2.28 Instance: start/start ...83
 6.5.2.29 Instance: Step Group ..83

6.6 Simple Interaction Model ...84
 6.6.1 Introduction .. 84
 6.6.2 Metamodel Specification ... 85

 6.6.2.1 Simple Interaction Binding ..87
 6.6.2.2 Interaction ...87
 6.6.2.3 Interaction Role ...87
 6.6.2.4 Interactive Part ...88
 6.6.2.5 Simple Interaction ...88
 6.6.2.6 Simple Interaction Binding ..91

6.7 Activity Model ..92
 6.7.1 Introduction .. 92
 6.7.2 Metamodel Specification .. 94

 6.7.2.1 Core ..95
 6.7.2.2 Activity Model Library: Simple Process instances ..96
 6.7.2.3 Activity Categories ..96
 6.7.2.4 Activity Model Library: Loop Happening instance ...97
 6.7.2.5 Embedded Process ..98
 6.7.2.6 Derivation ...98
 6.7.2.7 Role Realization ...99
 6.7.2.8 Abort Activity ...99
 6.7.2.9 Activity ..99
 6.7.2.10 Activity Loop ...100
 6.7.2.11 Actor ...101
 6.7.2.12 Conditional Loop ...101
 6.7.2.13 Embedded Process ..101
 6.7.2.14 Error Activity ...102
 6.7.2.15 Holder ...103
iv Business Process Definition MetaModel, Beta 1

 6.7.2.16 LoopTestTime ...103
 6.7.2.17 Multi Instance Loop ..104
 6.7.2.18 MultiInstanceLoopOrdering ...104
 6.7.2.19 Performer Role ...104
 6.7.2.20 Process ...106
 6.7.2.21 Process Interaction Boundary ...108
 6.7.2.22 Processor Role ...108
 6.7.2.23 Role Realization ...109
 6.7.2.24 Simple Activity ..109
 6.7.2.25 Sub-Process Activity ...110
 6.7.2.26 Substitutable Derivation ..111
 6.7.2.27 Instance: Abort Process ...111
 6.7.2.28 Instance: Activity Library ...111
 6.7.2.29 Instance: Activity Loop Happening ...112
 6.7.2.30 Instance: Error Process ..112
 6.7.2.31 Instance: Generalization ...113
 6.7.2.32 Instance: interationend-end ..113
 6.7.2.33 Instance: Iteration End ..113
 6.7.2.34 Instance: iterationEndPart ..113
 6.7.2.35 Instance: start-iterationend ...114

6.8 BPMN Extensions ... 114
 6.8.1 Introduction .. 114
 6.8.2 Metamodel Specification ... 115

 6.8.2.1 Adhoc Extension ...115
 6.8.2.2 Activity Extensions ..115
 6.8.2.3 Course Control Part Extension ...116
 6.8.2.4 BPMN Extensions Library: Compensate Process Instance ..116
 6.8.2.5 BPMN Extensions Library: BPMN Universal Process instance ..117
 6.8.2.6 Sequence Flow Extension ..117
 6.8.2.7 Message Extensions ..118
 6.8.2.8 Artifact Flow Extensions ...118
 6.8.2.9 Event Extension ..118
 6.8.2.10 Transaction Extensions ..118
 6.8.2.11 Compensation Extensions ..119
 6.8.2.12 Adhoc Process Directive ..119
 6.8.2.13 AdhocOrdering ...119
 6.8.2.14 Artifact Flow ..120
 6.8.2.15 Artifact Sequence Flow ...120
 6.8.2.16 Cancel Activity ..120
 6.8.2.17 Compensate Activity ...121
 6.8.2.18 Compensating Activity ..121
 6.8.2.19 Complex Decision ...122
 6.8.2.20 Complex Merge ..123
 6.8.2.21 End Message ..123
 6.8.2.22 Event ..124
 6.8.2.23 Event Decision ..124
 6.8.2.24 Exclusive Decision ..124
 6.8.2.25 Exclusive Merge ...125
 6.8.2.26 Inclusive Decision ...126
 6.8.2.27 Inclusive Merge ..127
 6.8.2.28 Intermediate Message...127
 6.8.2.29 Message ...128
 6.8.2.30 Message Flow ..128
 6.8.2.31 Process Directive ..129
Business Process Definition MetaModel, Beta 1 v

 6.8.2.32 Script Activity ..129
 6.8.2.33 Sequence Flow ...129
 6.8.2.34 Start Message ..130
 6.8.2.35 Task ..130
 6.8.2.36 Terminate ... 131
 6.8.2.37 Transaction ...131
 6.8.2.38 Instance: BPMN Universal Process...132
 6.8.2.39 Instance: Cancel Process ...132
 6.8.2.40 Instance: cancel-end ...133
 6.8.2.41 Instance: Cancel ...133
 6.8.2.42 Instance: cancelPart ...133
 6.8.2.43 Instance: Compensate Process ..134
 6.8.2.44 Instance: compensate-end ...134
 6.8.2.45 Instance: Compensate ..134
 6.8.2.46 Instance: compensatePart ..135
 6.8.2.47 Instance: Compensation Library ...135
 6.8.2.48 Instance: Generalization ...135
 6.8.2.49 Instance: start-cancel ...136
 6.8.2.50 Instance: start-compensate ..136
 6.8.2.51 Instance: startFromSequencePart ..136
 6.8.2.52 Instance: startseq-end ..137

6.9 Interaction Protocol Model ..137
 6.9.1 Introduction .. 137
 6.9.2 Metamodel Specification ... 138

 6.9.2.1 Interaction Protocol ...138
 6.9.2.2 Compound Interaction ..138
 6.9.2.3 Compound Interaction Binding ..139
 6.9.2.4 Interaction Protocol ...140

6.10 Class Hierarchies ..140
 6.10.1 Happening OverTime Hierarchy .. 141
 6.10.2 Change Hierarchy ... 141
 6.10.3 Succession Hierarchy .. 142
 6.10.4 Behavioral Step Hierarchy ... 142
 6.10.5 Interactive Part Hierarchy .. 143
 6.10.6 Simple Interaction Hierarchy ... 143

7 BPDM-BPEL Mapping .. 145

7.1 General ...145
 7.1.1 Topological Considerations ... 145
 7.1.2 Generator Model .. 145
 7.1.3 Notational Conventions .. 145

7.2 Process ...146

7.3 Start Event Mappings ..146

7.4 End Event Mappings ...148

7.5 Intermediate Events ..149
vi Business Process Definition MetaModel, Beta 1

7.6 Activities .. 152

7.7 Flows ...156

7.8 Additional Constructs ... 160

8 Proof of Concept Language Mappings 163

8.1 BPEL Mapping .. 163

8.2 WS-CDL Mapping ... 163
Business Process Definition MetaModel, Beta 1 vii

viii Business Process Definition MetaModel, Beta 1

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications
• CORBAservices
 Business Process Definition MetaModel, Beta1 ix

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
x Business Process Definition MetaModel, Beta 1

1 Scope

The “Business Process Definition Metamodel” (BPDM) is a framework for understanding and specifying the processes of
an organization or community. Business processes have been at the heart of business and technology improvement under
the guise of many terms and methodologies, such as: Business Process Engineering or Re-Engineering, Business Process
Management, Business Process Execution, Total Quality Management, Process Improvement, Business Process Modeling
and Workflow. Similar and related concepts such as Service Oriented Architectures, Enterprise Application Integration,
Flowcharts, Data Flows, Activity Diagrams, Role/Collaboration Modeling, and Modeling and Simulation serve to enable
and describe business processes.

This heritage of process related approaches has provided substantial benefit to public and private institutions and is one
of the factors that has allowed the modern enterprise to grow and prosper. This same heritage has also caused some
confusion in how these various approaches and solutions do or do not work together and how to leverage them for a
coherent and integrated solution. As of now there is a substantial asset of business process descriptions, notations,
implementations and machinery but many of these are islands - islands of a particular technology, methodology or
notation.

BPDM provides the capability to represent and model business processes independent of notation or methodology, thus
bringing these different approaches together into a cohesive capability. This is done using a “meta model” - a model of
how to describe business processes - a kind of shared vocabulary of process with well defined connections between terms
and concepts. This meta model captures the meaning behind the notations and technologies in a way that can help
integrate them and leverage existing assets and new designs. The meta model behind BPDM uses the OMG “Meta Object
Facility” (MOF) standard to capture business processes in this very general way and to provide an XML syntax for
storing and transferring business process models between tools and infrastructures. Various tools, methods and
technologies can then map their way to view, understand and implement processes to and through BPDM.

To achieve this goal, BPDM supports two fundamental and complementary views of process - “Orchestration” and
“Choreography.”

• Orchestration concepts in BPDM are represented through sequences of "Activities" that produce results with
branching and synchronization. Orchestration is typically represented as flow charts, activity diagrams, swim lanes or
similar notations of one task or activity following another. The orchestration of processes describes what happens and
when in order to better manage a process under the authority of some entity.

• Choreography describes how semi-independent and collaborating entities work together in a process, each of which
may have their own internal processes. Choreography captures the interactions of roles with well defined
responsibilities within a given process. Choreography is the basis for the Service Oriented Architecture (SOA)
paradigm and helps to keep the enterprise loosely coupled and agile. The choreography of a process focuses on the
responsibilities and interactions that ultimately provide value without necessarily requiring any coordinating authority.

In business process modeling, choreography and orchestration are effectively two sides of the same coin. BPDM joins
orchestration and choreography into a unified and coherent model.

1.1 Business Process Modeling Notation (BPMN)
BPMN has gained recognition as a flexible and business-friendly notation for process orchestration. BPDM provides an
explicit metamodel and serialization mechanism for BPMN concepts. By integrating BPMN and BPDM both the
underlying model and notation for process orchestration is covered by an integrated set of standards. The notation for
choreography, BPMN diagram interchange and the normative relationship to runtime technologies such as BPEL is
planned to be part of subsequent standards.
Business Process Definition MetaModel, Beta 1 1

1.2 Target Audience and Use of BPDM
At its core, BPDM provides interoperability across tools, so that different tools can depict or utilize a process definition
in different ways yet work together for the ultimate benefit of the enterprise. For example, If Vendor A and Vendor B both
support BPDM as their process exchange mechanism, then, a BPMN drawing created using Vendor A's modeling tool
could then be opened and executed using Vendor B's business process management system. Therefore, BPDM is a
technology specification for vendors to use to define how they serialize or exchange their process depictions, allowing for
industry interoperability. For most business analysts and process users, this is all they really need to know about BPDM.
What BPDM support means is that your process assets are not locked into a particular tool or notation; they are assets that
can work across a wide range of tools and solutions.

1.3 Other Common Business Benefits of BPDM

1.3.1 Carefully defined semantics
When diagrams are used to aid human to human communications a certain amount of "fuzziness" in what those notations
mean can be acceptable, since explanations often clear up any misunderstandings. When processes are specifications for
what people, organizations or I.T. systems should do, those specifications must be clear and precise. Particular attention
has been paid in BPDM to make sure that the semantics behind the notations and models are well defined, consistent and
sufficient to represent most normal forms of business processes. BPDM is sufficiently precise to model behavioral
changes/events (starting, ending, aborting, etc) of processes that allows them to be ordered in time, and have their effects
on each other precisely modeled. Formal methods , based on logic, are utilized to verify this precision. The precise
semantics of BPDM makes sure that processes will be accurately communicated to man and machine.

1.3.2 Saying just enough, but not too much:
Specifying a business process can be a double-edged sword. Say too little and the process may be unpredictable,
inconsistent, wasteful and not fit into the rest of the business (or the business of partners). Say too much and the process
can be a strangle-hold, preventing creativity, agility and optimization. BPDM can't enforce this artful balance, but it can
enable it; the basis of which is separation of concerns - separating the intended outcome of a process from how that
outcome is achieved. Where appropriate; substantial detail can be specified for how to achieve a goal, in other cases only
the "contract" is specified - the contract says what is to be accomplished without saying how. Many of the established
methods do not provide well for this separation of concerns and therefore over specify or under specify a process. BPDM
provides for separation of concerns, well defined contracts and multiple options for implementing a process that
correspond to its contracts.

1.3.3 Improved Integration and Collaboration
The successful modern enterprise is defined by two basic capabilities; the ability to be agile and the ability to collaborate.
Both capabilities are served by "loosely coupling" the business and the technologies that serve it. This means that tightly
coupled and monolithic processes are barriers to success. A business process design better serves the enterprise by
making it easy to collaborate with other organizations, regardless of their processes. It should be easy to outsource,
insource or change the way a part of the organization works without undue impact on the rest of the organization or
business partners. The integration of orchestration and collaboration as well as the separation of process contract from its
realization serve this goal of loose coupling.
2 Business Process Definition MetaModel, Beta 1

1.3.4 Improved Agility
Agility is required to respond to external drivers, internal needs and the constant impact of legislation and technology
change. In today's' world - agility is survival. The combination of well defined business processes that provide for
separation of concerns with Model Driven Architecture (MDA)® provide the exciting possibility of being able to design,
redesign and deploy new processes quickly and with minimal overhead - the enterprise is not locked in to legacy
technologies and processes. BPDM provides the business focused model that can be part of the specification of the
process for people, in terms of process "play books" and instructions, and for technologies, in terms of web services,
workflows and process execution engines. In addition BPDM is technology independent - any number of technical
approaches may be used to help realize or support a business process. The BPDM model is a model of the business, not
the technology - MDA helps join these two viewpoints.

1.3.5 Business Processes supported by Service Oriented Architectures (SOA)
SOA has become recognized as the leading architectural approach to business and technical agility and integration. SOA
structures the enterprise and supporting technologies based on services that are provided or consumed by collaborating
entities. This service oriented approach applies to both the business - in terms of how one business or business unit serves
another, and to the technologies - in terms of how application components work together by providing and using software
services. BPDM describes the business side of SOA in terms of choreography (above) that can then be mapped to the
software components that assist those business processes. This process centric SOA approach provides for agility, loose
coupling and a better tie between business and technology. SOA helps support both the agility and collaboration goals of
BPDM.

1.3.6 Better Return on I.T. Investment
The net result of separation of concerns, support for collaboration and enhanced agility is that I.T. investments have better
return. This return is realized by directly supporting business needs as identified in the business processes and by
supporting reuse of services, components and supporting infrastructure across the enterprise and across marketplaces.
Since investments are more reusable, their return is not limited to a single project. Since investments are directly tied to
business needs, their business benefit can be measured. Since investments support agility and collaboration, they can have
bottom-line impact.

1.4 Process Concepts supported by BPDM
BPDM integrates multiple process approaches and notations, which are summarized as follows. BPDM provides
integrated and consistent support for the semantics of:

• All BPMN notation concepts
• Processes, activities, tasks and sub-processes
• Workflow
• Sophisticated control of alternatives and parallel processes
• Conditional execution paths
• Signals and events
• Time-based events and conditions
• Events based on change in data or external conditions
• Integration with rules and rules engines through event-based semantics
• Process groups and swim-lanes
Business Process Definition MetaModel, Beta 1 3

• Transactions, rollback and compensation
• Process data and data flow
• Artifacts and artifact production and dependencies
• A combination of human and automated process participants
• Service Oriented Architectures and business services
• Resource and entity selection
• Roles, responsibilities & collaborations
• Bi-directional and composite interactions between entities
• Automated execution with MDA and process execution engines such as BPEL (See non-normative mapping to BPEL)
• Interaction protocols, services and design by contract
• Composite processes
• UML activity, collaboration and interaction diagram concepts
• Process specialization, derivation and refinement

In summary, BPDM standardizes the underlying semantics, model and exchange mechanisms to improve the efficiency,
agility and collaboration of public and private enterprises through the precise and integrated definition of business
processes.

2 Conformance

The following levels of compliance are defined for BPDM in relation software. For the following compliance points the
interpretation of the phrase "to process a model" will depend on the functionality of the software as follows;

• If the software reads process models, to "process the model" will include reading a BPDM model compliant with the
MOF-2 XMI for BPDM included as part of this specification.

• If the software writes process models, to "process the model" will include writing a BPDM model compliant with the
MOF-2 XMI for BPDM included as part of this specification.

• If the software executes or otherwise interprets process models, to "process the model" will include executing or
interpreting the model in accordance with the semantics as defined in this document.

2.1 BPDM Full Compliance
An implementation is fully compliant if it can process a model that utilizes all BPDM metamodel concrete concepts, not
necessarily including those defined in the “BPMN Extensions” package.

2.2 BPDM Collaboration Protocol Compliance
An implementation is BPDM protocol compliant if it can process a collaboration protocol model that utilizes all concrete
concepts for representation of a collaboration protocol as specified in the “Interaction Protocol Process Model” package
and all included packages.
4 Business Process Definition MetaModel, Beta 1

2.3 BPDM Orchestration Process Compliance
An implementation is BPDM protocol compliant if it can process an orchestration model that utilizes all concrete
concepts for representation of a orchestration process as specified in the “Activity Model” package and all included
packages.

2.4 BPDM - BPMN Compliance
An implementation is BPMN compliant if it can process a model that utilizes all concrete concepts for representation of
a process as specified in Section 4.4, 4.5, 4.6, 4.7 and 4.8. Each of these sections provides a detailed mapping of the
BPMN constructs on to the BPDM metamodel.

3 Normative References

[BPEL11] ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

[BPEL20] http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.pdf

[BPMN] http://www.omg.org/docs/dtc/06-02-01.pdf

[BPM-06-02] http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-02.pdf

[RFC2119] http://www.ietf.org/rfc/rfc2119.txt

4 Terms and Definitions

Activity

An Activity is a kind of Processing Step that activates a Processing Behavior (it operates over time) in the context of a
Process. It can:

• be ordered in time by Processing Succession

• operate under the responsibility of a Performer Role

• activate a sub-processe or be a simple task that start and stop

An Activity is also an Interactive Part that receives its inputs and outputs through Interactions coming from other
Interactive Parts in the Process (Activity, Interaction Role, Performer Role, Holder).

Actor

An Actor is an entity that is responsible for the execution of duties specified by a Performer Role

Further sub-type of Actor will be defines in specifications such as the the Organizational Structure Metamodel (OSM) to
add specific requirements such as and can

as having certain skills or budget.
Business Process Definition MetaModel, Beta 1 5

Performer Role

A Performer Role is a Part Group that takes responsibility of performing activities in the process. Being an Interactive
Part, a Performer Role also has responsibilities to fulfill Interactions that it is involved with other Performer Roles or
with Interaction Roles at the boundary of the Process. A Performer Role is a Typed Part for specifying Actor that can
play the role at process enactment.

A Performer Role can be decomposed into sub Performer Role to delegate responsibility for a subset of its activities or
interactions. A Performer Role may have a realization as defined by a Role Realization that further specifies how the
Performer Role will meet its responsibilities.

Process

A Process is a kind of Processing Behavior that describes specific Activity(ies) to be performed, Interactions to be
undertaken during its execution under the authority of a Processor Role (or delegated performer role s).

The process owns the set of activities to be performed as well as the Conditions on when such activities will be
performed and by which performer role. The process also owns the set of Interactive Parts that define the flow of
information and other resources between activities,Performer Role and Interaction Roles.

A specific Interaction Role defines the set of Interactions the process is responsible of: its is the Process Interaction
Boundary. The set of Interactions attached to the Process Interaction Boundary defines the inputs and outputs of the
process

A Process may utilize sub-processes with a Sub-Process Activity as well as be used in the context of other processes in
the same way.

Condition

A Condition determines if the semantics of a model element applies or not during the enactment of a process.

In the user's model it is a boolean expression. During the (enactment, execution) occurrence of a process it is evaluated to
determine if the semantics of the model element applies at the time of the evaluation.

Succession

A Succession is a Directed Part Connection that organizes Course Parts in series in the context of a Course. A
Succession indicates that that one Course Part "follows" another in time, and possibly establishes constraints on such
followings.

Behavioral Change

A Behavioral Change is a kind of Change that occurs as part of the lifecycle of a Behavioral Happening, such as Start,
Finish or Abort.

BPDM provides a predefined library of Behavioral Changes.

Behavioral Change Part

A Behavioral Change Part identifies Behavioral Change (such as Start or End) for an individual Behavioral
Happening. A Behavioral Change Part is also a Course Part, enabling it to be connected by Successions.
6 Business Process Definition MetaModel, Beta 1

Behavioral Happening

A Behavioral Happening is a kind of Happening Over Timethat produces Behavioral Changes which are behavior
lifecycle events, such as Start and End. A Behavioral Happening is also a Course, enabling its lifecycle to be ordered
in time by Successions .

A user (M1) library - Happening & Change Library - captures commonly needed aspects of Behavioral Happenings
as instances such as the finish being after the start.

Change

A Change is a Type for dynamic entities occurring at a point in time.

Change Condition

A Change Condition is a Condition for specifying that a Change must occur in the context of a particular Happening
Over Time for the condition to hold.

For instance, a condition can be on the eruption (instance of Change) of a particular volcano (instance of Happening
Over Time).

Behavioral Step Group

A Behavioral Step Group is a kind of Part Group that is also a Behavioral Step typed by the Universal Behavioral
Happening in user models (M1). This gives a group of Behavioral Steps as a whole the capacity to produce start and end
changes playing the standard behavioral change parts, such as startPart and endPart.

For example, most process languages have a way of modeling sub-processes without defining a separate process. This is
a Behavioral Step Group.

Change Condition Step

A Change Condition Step is a kind of Typed Course Part that monitors the occurrence of a Change Condition and
that has an effect on the course of a Processing Behavior. For instance, a Change Condition Step can be used to react
to the Abort of a specific Behavioral Happening.

Processing Succession

A Processing Succession is a kind of Succession that can order the Behavioral Change Parts of its Behavioral Step
such as their start and end parts.

Processing Succession allows any combination of Behavioral Change Part to be connected.

End -> Start

Start -> Start

Start -> Abort

etc.

A Processing Succession doesn't need to have Behavioral Steps on its ends, it can have untyped course parts also, such
as Course Control Part, but it must have something on each end, as all Successions do.
Business Process Definition MetaModel, Beta 1 7

For convenience, a Processing Succession that do not specify predecessor behavioral change part or successor
behavioral change part will have the same effect as a Processing Succession where these are respectively the end part
and start part.

Interaction

An Interaction is a Behavioral Step that is also a Part Connection , enabling Interaction to have start and end changes,
and be ordered in time.

An Interaction can be either a simple Simple Interaction or a set of combined Simple Interactions : a Compound
Interaction. Ultimately, an Interaction is realized by the exchange of Simple Interactions between its Interactive
Parts.

Interaction Role

An Interaction Role is an Interactive Part where the individuals playing the part are in the environment context where
the Processing Behavior is used. For example, the customer is an Interaction Role in a behavior for delivering a
product.

Simple Interaction

An Simple Interaction is a kind of Interaction in which something is "transferred" from individuals playing one
interactive part to individuals playing another interactive part. For example, a document, phone number, or package may
be transferred from one department to another in a company. The transferred items must conform to a Type specified by
the Simple Interaction. A Simple Interaction can have an Expression to change the item that arrives at the target based
on the item flowing from the source. For example, a transformation may retrieve the zip code from an address flowing
from the source to deliver the zip code to the target.

Simple Interactions in user (M1) models are always typed by the Universal Behavioral Happening (see user library
Happening & Change Library). This gives them the standard Behavioral Change Parts, such as for start and end, so
the Simple Interactions can be ordered within an Interaction Protocol. This is different from the type of thing
transferred.

Simple Interactions can refer to Simple Interactions inside the Interactive Parts being connected. This means the
transferred thing is passed along through chains of Simple Interactions from inside to outside the parts, or the other way
(see Simple Interaction Binding)

Interaction Protocol

An Interaction Protocol is a kind of Processing Behavior where Behavioral Steps are Interactions that occur between
Interaction Roles.

The set of Interactions defines the purpose of the Interaction Protocol.

5 Additional Information

5.1 Acknowledgements
The following companies submitted this specification:
8 Business Process Definition MetaModel, Beta 1

• Adaptive

• Axway Software

• Borland Software

• Model Driven Solutions

• EDS

• Lombardi Software

• MEGA International

• Unisys

The following companies and organizations support this specification:

• BPM Focus

• U.S. National Institute of Standards and Technology (NIST)
Business Process Definition MetaModel, Beta 1 9

10 Business Process Definition MetaModel, Beta 1

6 Metamodel Specification

This chapter presents the normative specification for business process definition metamodel. It begins with an overview
of the BPDM metamodel structure followed by a description of each sub-package.

6.1 Overview
The BPDM package contains the models for orchestration (including BPMN) and choreography, and their performance,
enactment, and execution. It has eight subpackages grouped into three categories:

• Common Abstractions for the framework that ties the other models to performance, enactment, and execution
(Composition Model and Course Model).

• Common Behavior for the aspects of dynamics in common between orchestrations and choreography (Happening &
Change, Processing Behavior, and Simple Interaction).

• Activity Model (including BPMN Extensions) for orchestration and Interaction Protocol Model for choreography.

Figure 6.1 - Dependencies of BPDM Packages

Business Process Definit ion MetaModel

Common Abstractions

Infrastructure Library

Core

PrimitiveTypes
Abstractions

Common Behavior Model

Simple Interact ion

Composition Model Course Model

Activity Model

Processing
 Behavior

Happening &
 Change

Interaction Protocol Model

BPMN Extensions

Basic
Business Process Definition MetaModel, Beta 1 11

Package Comment

Business Process Definition MetaModel The BPDM package contains the models for orchestration (including BPMN)
and choreography, and their performance, enactment, and execution. It has
eight subpackages grouped into three categories:
Common Abstractions for the framework that ties the other models to
performance, enactment, and execution (Composition Model and Course
Model).
Common Behavior for the aspects of dynamics in common between
orchestrations and choreography (Happening & Change, Processing Behavior,
and Simple Interaction).
Activity Model (including BPMN Extensions) for orchestration and Interaction
Protocol Model for choreography.

Common Abstractions The Common Abstractions groups the packages that provides abstractions used
in other packages.

Composition Model The Composition Model is a framework for relating metamodels to the real
world entities they ultimately represent. It facilitates integration with business
process runtimes and rule engines, as well as uniform performance, enactment,
and execution across business process management suites. The Composition
Model enables users and vendors to build libraries of orchestrations and
choreographies, including specialization of some orchestrations or
choreographies from others. It also enables users and vendors to define their
own frameworks for recording data about ongoing orchestrations and
choreographies, for example, how long they have been going, who is involved
in them, and what resources they are using.

Course Model The Course Model extends the Composition Model to connect parts in time
(Succession). For example, a succession connects one step in a process to
another to indicate that the second step happens after the first. The same applies
to messages in choreography.

Common Behavior Model The Common Behavior Model includes elements shared by all process oriented
behavior models

Happening & Change The Happening and Change Model introduces dynamics, in particular, time
ordering of lifecycle events, such as starting and ending a process. This
facilitates the integration of rule and monitoring systems with models of
dynamics, such as orchestration and choreography. The model enables users
and vendors to define their own libraries of processes, with their own
categorizations and attributes, such as how long a process has been running, and
the resources it is using. They can also define their own life cycle events, for
example, to define finish statuses and taxonomy of errors.
12 Business Process Definition MetaModel, Beta 1

Processing Behavior The Processing Behavior Model enables behavioral happenings to be ordered in
time as parts of other behavioral happenings (see the Happening and Change
model). Vendors and users can define their own execution patterns with
connections between these behavioral parts. The model predefines a specific
connection for races, where behavioral happenings start at the same time and
abort each other when the first finishes. It also defines a change condition for
detecting lifecycle events in behavioral happenings. The Processing Behavior
Model is the most specialized model in BPDM that still covers all of processes
and interactions (orchestration and choreography, see the Activity and
Interaction Protocol Models).

Simple Interaction The Simple Interaction Model enables interactions to be treated like any other
step in a processing behavior, ordered in time, with start and end events. The
model is the basis for flows between process steps and between participants in
a choreography (see the Activity Model and the Interaction Protocol Model).
The Simple Interaction Model is the most specialized model in BPDM that still
has elements in common between processes and choreographies.

Activity Model The Activity Model is for capturing orchestrations in way that facilitates
modification as boundaries of process of business change, for example, due to
insourcing, outsourcing, mergers, and acquisitions. It uses interactions to
represent inputs and outputs, enabling choreographies to be specified between
the process and its environment, as well as between the performers responsible
for steps in the process. The Activity Model is the basis for the BPMN model in
BPDM (see the BPMN Extensions).

BPMN Extensions The BPMN Extension provides additions to the Activity Model for BPMN.
These provide BPMN names for special usages of BPDM concepts and
additional functionality specific to BPMN

Interaction Protocol Model The Interaction Protocol Model is for capturing choreographies. It enables
interactions to be grouped together into larger, reusable interactions. For
example, an interaction that exchanges goods between companies might be used
with other interactions within a larger protocol representing a partnership of the
companies. This protocol might be adopted by a standards body and reused
between many pairs of companies. The interactions in a protocol may be simple
interactions that have no sub-interactions, or may be other protocols.

Infrastructure Library InfrastructureLibrary package defines a reusable metalanguage kernel and a
metamodel extension mechanism for UML. The metalanguage kernel can be
used to specify a variety of metamodels, including UML, MOF, and CWM. In
addition, the library defines a profiling extension mechanism that can be used to
customize UML for different platforms and domains without supporting a
complete metamodeling capability.

Core The Core package is the central reusable part of the InfrastructureLibrary.

PrimitiveTypes The PrimitiveTypes package of InfrastructureLibrary::Core contains a number
of predefined types used when defining the abstract syntax of metamodels.

Abstractions The Abstractions package of InfrastructureLibrary::Core is divided into a
number of finer-grained packages to facilitate flexible reuse when creating
metamodels.
Business Process Definition MetaModel, Beta 1 13

6.2 Composition Model

6.2.1 Introduction
The Composition Model is a framework for relating metamodels to the real world entities they ultimately represent, in
particular those with interconnected elements in the same organized whole. This facilitates integration with business
process runtimes and rule engines, as well as uniform performance, enactment, and execution across business process
management suites. The Composition Model enables users and vendors to build libraries of orchestrations and
choreographies, including specialization of some orchestrations or choreographies from others. It also enables users and
vendors to define their own frameworks for recording data about ongoing orchestrations and choreographies, for example,
how long they have been going, who is involved in them, and what resources they are using.

The Composition Model provides general capabilities for representing:

1. The interconnection of elements due to their relation to the same other element. For example, the steps in a
process are interconnected because they are all parts of the same process. Interconnections can differ by the
element they have in common. For example, two processes might have the same steps, but in a different order.

2. Interconnections that are composed of other interconnections. For example, the many fine-grained
communications between businesses to set up a partnership may be aggregated into a single joint choreography
when viewed at a high level.

3. Interconnections between interconnections. For example, when one communication happens before another during
a choreography, it is a connection in time between two other connections.

4. User and vendor-defined characteristics of elements, such as cost, person responsible for them, and resources being
consumed.

The Composition Model can be applied in many domains, including structural ones, but in BPDM it is applied to
modeling of dynamics, specifically to orchestration and choreography. In this domain the elements are steps in
orchestrations, or interactions in choreographies, and the interconnections are relationships in time or transfers of
information or physical objects between elements. The elements of the Composition Model are specialized in the other
BPDM packages for application to these areas.

The first subsection below is the basis for applying BPDM to business process execution and rules, and to understanding
the specification in general. The remaining subsections cover the major elements of the Composition Model.

Basic The Basic package of InfrastructureLibrary::Core provides a minimal class-
based modeling language on top of which more complex languages can be built.
It is intended for reuse by the Essential layer of the Meta-Object Facility (MOF).
The metaclasses in Basic are specified using four diagrams: Types, Classes,
DataTypes, and Packages. Basic can be viewed as an instance of itself. More
complex versions of the Basic constructs are defined in Constructs, which is
intended for reuse by the Complete layer of MOF as well as the UML
Superstructure.
14 Business Process Definition MetaModel, Beta 1

6.2.1.1 Individuals, Models, and Modeling Languages

An individual is any uniquely identifiable thing. For example, it can be an organization, a piece of hardware, or software
component, or something more ephemeral like an information object, process, interaction, or event. The only requirement
is that it is distinguished from other individuals. Individual processes and interactions occur at particular times, and are
variously called performances, enactments, or executions.

A model describes what we would like from individuals (the model semantics). For example, a model of a business
specifies what is desired from an actual real world business. Some businesses will satisfy these desires, some will not.
Individuals that satisfy the model are said to conform to the model. The rules for conformance are the semantics of the
model.1

A modeling language consists of shorthands for expressing the semantics of a model. Shorthands used in a model can be
“expanded” to give the semantics. For example, a common semantic pattern is to say that all individuals of one kind are
also of another kind. A shorthand for this is sometimes called “generalization”. Generalization might be used in a model
to say that businesses are a generalization of small businesses. This is a shorthand for saying any individual that is a small
business is also a business.2

Individuals exist at the M0 level in OMG's Model Driven Architecture, while models exist at the M1 level, and modeling
languages at the M2 level. The term “individual” in this specification refers only to elements that are not in models or
modeling languages, even though the contents of models and modeling languages are uniquely identifiable like any
individual. Similarly, the term “model” in this specification refers only to elements that are not individuals or modeling
languages, even though a model language may be expressed as a model (metamodel, see below). More examples and
explanation are available in Sections 7.9 through 7.12 of the UML Infrastructure, http://doc.omg.org/formal/07-02-06.

A modeling language has two parts:

• The language syntax gives the names of the modeling shorthands and how they can be combined. For example,
generalization applies between exactly two kinds of things. Syntax alone cannot determine model semantics, because
it refers only to model elements, not individuals.3

• The language semantics specifies how shorthands are expanded into model semantics. For example, generalization in
a model expands to individuals of one kind of thing in the model also being individuals of the other. Language
semantics builds on syntax, but must refer to individuals to give a syntax its M0 meaning when the syntax is used in a
model.

Some syntaxes are better for specifying language semantics than others. In particular, a syntax that identifies model
elements categorizing individuals provides a better basis for specifying model semantics. This enables the language
semantics to refer to individuals via the model elements that categorize them. Following the UML Infrastructure
terminology, BPDM calls these syntactical elements “Types.”

1. The phrase “instance of” is sometimes used to mean the conformance of an individual to a particular model element (which is often
called a “class”), but this terminology usually refers to classes as factories for creating instances, rather than classes as categories.
For example, if an individual Fido is a Dog, then Fido is also a Mammal, so conforms to both Dog and Mammal, even though
normally Fido would not be called an instance of Mammal, because it was not “created” from Mammal.

2. The difference between shorthands and templates is that the expansion of templates are captured in a machine-understandable way,
as part of the modeling language. The expansion of shorthands are specified less formally. Shorthands are more susceptible to
misinterpretation than templates, leading to communication failures between users and lack of interoperability between tools.

3. A metamodel specifies syntax by omitting some aspects of the graphical or textual appearance of the language, such as geometric
shapes or punctuation. For example, a metamodel might have an element for kinds of things and another for generalization, but no
mention of how generalization appears in a graphical or textual language. This is sometimes called “abstract syntax”, as
distinguished from “concrete syntax”, which includes the detailed graphical or textual appearances.
Business Process Definition MetaModel, Beta 1 15

6.2.1.2 Types

Types group individuals according to some commonality among them, which might be characteristics they can have or
constraints they obey. Types can cover any kind of entity, physical or computational, static or dynamic. For example, the
type Person groups individual people, like Mary and John. The type declares commonalities among people, for example,
they can have names and gender, or obey constraints, such as being genetically related to exactly two other people.

Types can group individual occurrences of dynamic entities (M0), such as processes and interactions. For example, the
type Order Process groups individual performances, enactments, or executions of the ordering, where each occurrence
happens between particular start and end times. The type declares commonalities among the occurrences, for example,
that they involve a product or service, or obey constraints, such as having certain steps taken in a certain order.

6.2.1.3 Composites

Composites are Types specifying the interconnections of individuals that are all related to the same other individual (M0).
For example, a company type specifies the interconnections of departments within each individual company of that type
(assuming it is modeled in a value chain manner, rather than just an organization chart). Likewise, an orchestration type
specifies the sequence of steps in each individual occurrence of that orchestration.

The things interconnected by a composite can have any kind of relation to the composite. They are not necessarily
“contained”, “owned”, or “part of” the composite. For example, choreographies are composites with the communicating
businesses entities as “parts”, but the businesses entities are not contained by the choreography in any sense.

6.2.1.4 Parts

To clarify the meaning of “Part” in BPDM, it is important to distinguish two senses in ordinary English:

• Part as an individual, for example the Acme Furniture Company with a unique tax identification number.

• Part as a role, as in “part in a play.”

These are mutually defining. Parts in the first sense (individuals) play parts in the second sense (“roles”). For example,
a person Mary (individual) may play the president (role) in the Acme Furniture Company. Roles map an individual whole
into another individual playing that role in the whole. For example, the president role maps Acme Furniture Company to
Mary. (The term “role” is used informally in this section. It has a more specialized meaning in other packages of BPDM.)

Typed Parts in BPDM have the second meaning above. Individuals playing a typed part must be of a certain kind (Type),
and play the part in the context of another type of thing (whole). For example, an individual playing the president part
must be a person, and must play the president within an individual company.4 Individuals playing parts can have any
relation to the whole. They are not necessarily “contained,” “owned,” or “part of” the whole. For example, a person
might be modeled as a composite of anatomically contained parts, but still have other typed parts for relations to other
people, such as spouses. The typed part spouseOf will have individuals playing that role for other individuals, but the
people are not contained within each other. Typed Parts are MultiplicityElements for restricting the number of individuals
that play the part. For example, a company might allow no more than five vice-presidents, but require a president, and a
choreography might have an interaction that is optional.

4. Typed parts are equivalent to what are sometimes called “properties” or “attributes.” In this terminology, an individual playing a
part is called the “value” of the property or attribute.
16 Business Process Definition MetaModel, Beta 1

Parts in BPDM are a generalization of Typed Parts to include elements in a composite that do not correspond to
individuals (identifiable M0 entities, see Individuals, Models and Modeling Languages). For example, process models
often have an indicator that some steps happen at the same time. This part of a process model does not correspond to
anything identifiable in the M0 occurrences of the process. It just models the constraint that there are suboccurrences
happening at the same time. Because of this, these parts do not have a type restriction like Typed Parts do.

Part Groups are Parts that collect together other Parts. Part groups can share parts. The meaning of part groups is given
in the specializations of the Composition Model, for example, in Processing Behavior.

6.2.1.5 Part Connections

Connections between typed parts in the composition model specify links between M0 entities playing the typed parts. For
example, the reporting connection between the president of a company and the CEO means the person playing the
president in a particular company will report to the person playing the CEO in the same company. Likewise, the temporal
connection between one step and another in a process means that in each occurrence of that process, there is an
occurrence of one step that happens after the occurrence of another.

Connections involving untyped parts do not have a predefined meaning in the Composition Model. They are given
specialized interpretations in other packages of BPDM, depending on the parts being connected. For example, parts of a
process model indicating that some steps happen at the same time are untyped. Connections to and from these parts
require special interpretation to reflect this intention.

Part Connections can be treated as first-class parts in themselves, by defining classes that are subtypes of both Part
Connection and Typed Part, as done in other BPDM packages. This provides connections that have parts, and
connections to connections. For example, choreographies are connections between business entities that are composed of
many communications between the businesses. These communications are connections also, and occur in a certain order,
which are temporal connections between the communications. Choreographies are the type of their M0 performances,
enactments, or executions, which are also M0 links between the businesses. Typed connections require the modeler to
specify which parts of the type correspond to which parts on the ends of the connection, see the Part Binding subsection
below.

Directed Part Connections are Part Connections between two parts that facilitate traversal from one to the other in user
(M1) models. Their source and target associations specify the top-level parts (not part paths) that are connected, as
typically shown by the arrows in process diagrams. For example, when one step is after another in a process, the arrow
between them is modeled as a directed connection, with the earlier step at the source end, and the later step at the target
end. Connections in general can connect any number of parts. For example, a business interaction can involve multiple
companies.

Conditions may be applied to connections to limit when they apply. For example, one step in a process may happen after
another only when certain conditions are true as the process is executing. Opaque Conditions are Conditions that enables
the condition to be expressed textually in multiple languages. Irreflexive Conditions are for restricting connections to
apply at M0 only between distinct M0 individuals playing the part (or playing the last part in the path). It applies only to
connections between typed parts, or paths with at least one typed part. Compound Conditions provide for combining other
conditions with Boolean operators, such as “and” and “or.”

6.2.1.6 Part Paths

Some connections are between parts of parts. For example, the temporal connections between steps in a process typically
indicate that the start of one step is after the end of another, but they might also indicate that the start of one step is after
the start of another, or the end of one step is after the end of another, and so on. To distinguish these cases, the parts on
each end of the connection must specify which event (start, end) it is referring to “inside” the step on that end.5 In BPDM
individual events at M0 can be identified by parts, and the combination of the step and the event part is a Part Path.
Business Process Definition MetaModel, Beta 1 17

Part Paths are Parts that enable connections to refer to parts of parts, for example to connect the end and start events in
two steps of a process. For generality, it enables connections to refer to parts of parts to any depth. For example, a part
path might refer to the time at which the start event in a step occurs, where the time of an event is modeled as a part of
the event. This defines a path through three parts.6 Part Paths can have a short cut to the last element in the path (final
target), for convenience. Part Paths and Parts are generalized to Abstract Parts, which are the ends of connections. This
enables connections not requiring part paths to refer directly to parts, rather than to part paths with only one element.

6.2.1.7 Generalization and Derivation

Generalization is a relationship between Types indicating that M0 individuals of one type are also individuals of another
type. For example, business is a generalization of small business because individual small businesses are also individual
businesses. Specialization is the opposite of generalization, for example, small business is a specialization of business.
Parts and constraints specified on the general type apply to all individuals conforming to specializations of that type,
because those individuals also conform to the more general type. For example, businesses in general attempt to make a
profit, so small businesses do also.

Derivation is a relationship between Composite Types that replaces some parts with others. There is no restriction on the
number or kinds of parts that can be replaced by a derived composite. Derivation is useful for exploring alternative
configurations for a composite. There are no parts or constraints specified on a composite type that are guaranteed to
apply to individuals of derived types.

6.2.1.8 Selection

A selector specifies the individuals playing a Typed Part. This might be determined by a rule for each M0 whole that
contains the part. A special kind of rule is that the individual must be drawn from a set of predetermined individuals.

6.2.2 Metamodel Specification
The Composition Model is a framework for relating metamodels to the real world entities they ultimately represent. It
facilitates integration with business process runtimes and rule engines, as well as uniform performance, enactment, and
execution across business process management suites. The Composition Model enables users and vendors to build
libraries of orchestrations and choreographies, including specialization of some orchestrations or choreographies from
others. It also enables users and vendors to define their own frameworks for recording data about ongoing orchestrations
and choreographies, for example, how long they have been going, who is involved in them, and what resources they are
using.

5. The step must be specified as a part, rather than just the type of thing done at the step, because a process might have more than one
step that does the same thing.

6. A path can contain at most one untyped part, which must be at the end of the path, otherwise it would not be possible to navigate
through to the end of the path.
18 Business Process Definition MetaModel, Beta 1

6.2.2.1 Composition

Figure 6.2 - Composition

Abst rac t Pa rt

T ype d Pa rt

Comp osit e

{subsets ow nedElement[*]}

{subsets owner[0..1]}

* composite p art

1 part whole

Part Co n ne c tio n

{subsets part connection[*]}

{subsets connect ed part[2..*]}

*target connection

1source

{subsets part connection[*]}

{subsets conne cted part[2..*]}

* source connection

1 target

Typ e

Typ ed Ele men t

*

{subsets ow nedElemen t[*]}

o wned connection

1

{subsets owner[0..1]}

conne ction w hole

Eleme nt

Pa rt Grou p

*enclosed part

*enclosing part grou p

Typ e
1

{subsets type[0..1]}

partType*

{subsets typedElement[*]}

type usage
usage

*

part connection2..*

connected part

P art Pa t h

P art

1 traversed part

* part path
1

target part

*

N ame dE leme nt

D irec t ed P art Co nn e ct ion

1 / final target

M ult ip lic it yEleme nt
Business Process Definition MetaModel, Beta 1 19

6.2.2.2 Part Connection & Condition

Figure 6.3 - Part Connection & Condition

Val ueSpec if ic at ion
from (Expressio ns)

Condit ion

Opaque Condi t ion

1
{subsets ownedElement[*]}
condit ion spec ification

0..1
{subsets owner[0..1]}
owner condition

NamedElement

0..1
{subsets ownedElement[*]}
guard

0..1
{subsets owner[0..1]}

guarded connection

Pa rt Conn ec t ion

Compound Condit i on

+combinaisonType[1]:Compound Condition Type

1..*

{subsets ownedElement[*]}
combined condition

0..1

{subsets owner[0..1]}

owner compound condition

Compound Co ndit ion T yp e
<<Enumeration>>

and
not
orIrref l exive

 Condit i on

20 Business Process Definition MetaModel, Beta 1

6.2.2.3 Generalization & Derivation

Figure 6.4 - Generalization & Derivation

T ype

Gene ral izat i on

*

generalizat ion

1

spec if ic

1

general

Part R ep lac eme nt

P art

Ele me nt

*derived to

*

1

{subsets ow ner[0. .1]}

traced derivat ion

*

{subsets ownedElement[*] }

derivation trace

* derived f rom

*

Comp os ite

D e riv at i on

 1

{subsets owner[0..1]}

deriv ed from

*

{subsets ownedElement[*]}
derivation

1

derived to

*

deriv at ion spec ification

Ele men t

Ele men t
Business Process Definition MetaModel, Beta 1 21

6.2.2.4 Selection

Figure 6.5 - Selection

6.2.2.5 Abstract Part

Namespace: Composition Model
isAbstract: Yes
Generalization: “NamedElement”

Description

Abstract Part is the subject of relations between parts through Part Connection. Abstract Part is a capability that all
kinds of Parts share.

Individuals playing parts can have any relation to the whole, they are not necessarily “contained,” “owned,” or “part of”
the whole.

Associations

6.2.2.6 Composite

Namespace: Composition Model
isAbstract: Yes
Generalization: “Type”

Description

A Composite is a Type which has an internal structure. It specifies the connections of individuals that are all related to
the same other individual (M0). For example, a company type specifies the connections of departments within each
individual company of that type (assuming it is modeled in a value chain manner, rather than just an organization chart).
Likewise, an orchestration type specifies the sequence of steps in each individual occurrence of that orchestration.

part connection : Part Connection [*] Connection connecting the Part to one or more other Parts.

Typed Part

Sel ec tor Spec i fi c at ion

In div id ual From Set

*

{subsets ownedElement[*]}

selection rule1

{subsets owner[0..1]}
selected part

Indi v idual

*

member

Val ueSpec i f icat ion
22 Business Process Definition MetaModel, Beta 1

Associations

6.2.2.7 Compound Condition

Namespace: Composition Model
isAbstract:
Generalization: “Condition”

Description

A Compound Condition is a kind of Condition that is the combination of other Conditions. There are three kinds of
Compound Condition:

• or: the Compound Condition is the result of of one the combined condition

• and: the Compound Condition is the result of all the combined condition

• not: the Compound Condition is result of the negation of all the combined condition

Attributes

6.2.2.8 Compound Condition Type

Namespace: Composition Model
isAbstract:

Description

Enumeration specifying the different types of Compound Condition

composite part : Abstract Part [*] Part owned by the Composite
Subsets ownedElement

derivation : Derivation [*] Derivation that the Composite is a source of
Subsets ownedElement

owned connection : Part Connection [*] Part Connection owned by the Composite
Subsets ownedElement

combinaisonType: Compound Condition Type [1]

and:

not:

or:
Business Process Definition MetaModel, Beta 1 23

6.2.2.9 Condition

Namespace: Composition Model
isAbstract: Yes
Generalization: “NamedElement”

Description

A Condition determines if the semantics of a model element applies or not during the enactment of a process.

In the user's model it is a boolean expression. During the (enactment, execution) occurrence of a process it is evaluated to
determine if the semantics of the model element applies at the time of the evaluation.

6.2.2.10 Derivation

Namespace: Composition Model
isAbstract:
Generalization: “Element”

Description

The Parts of the derived to Composite are the same as the on derived from Composite, except for replaced or removed
Parts, as specified by derivation trace, or added parts.

Associations

6.2.2.11 Directed Part Connection

Namespace: Composition Model
isAbstract: Yes
Generalization: “Part Connection”

Description

A Directed Part Connection is a kind of Part Connection for only two parts, when it is convenient to have standard
names referring to the parts on each end (source and target).

Directed Part Connections are designed to facilitate traversal of Part Connections . Their source and target associations
specify the top-level parts (not Part Paths) that are connected, as typically shown by the arrows in process diagrams. For
example, when one step is after another in a process, the arrow between them is modeled as a directed connection, with
the earlier step at the source part, and the later step at the target part.

derivation trace : Part Replacement [*] Part Replacement owned by the Derivation
Subsets ownedElement

derived to : Composite [1] Derived Composite
24 Business Process Definition MetaModel, Beta 1

Associations

6.2.2.12 Generalization

Namespace: Composition Model
isAbstract: Yes
Generalization: “Element”

Description

A generalization between two types means each instance of the specific type is also an instance of the general type. Any
specification applying to instances of the general type also apply to instances of the specific type.

Associations

6.2.2.13 Individual

Namespace: Composition Model
isAbstract: No

Description

Individual instance

6.2.2.14 Individual From Set

Namespace: Composition Model
isAbstract: No
Generalization: “Selector Specification”

Description

A Individual From Set is a kind of Selector Specification that provide a list of Individual as the potential Type of a
Typed Part

Associations

6.2.2.15 Irreflexive Condition

Namespace: Composition Model
isAbstract:
Generalization: “Opaque Condition”

source : Part [1] Part that is the source of the Directed Part Connection
Subsets connected part

target : Part [1] Part that is the target of the Directed Part Connection
Subsets connected part

general : Type [1] References the general Type in the Generalization relationship.

member : Individual [*] Individual member of a Individual From Set selector specification
Business Process Definition MetaModel, Beta 1 25

Description

An Irreflexive Condition is a kind of Opaque Condition that restricts the connection to apply at M0 only to distinct M0
individuals playing the part (or playing the last part in the path). It applies only to connections between Typed Parts, or
Part Paths with at least one Typed Part.

6.2.2.16 Opaque Condition

Namespace: Composition Model
isAbstract:
Generalization: “Condition”

Description

An Opaque Condition is a Condition that enables the condition to be expressed textually in multiple languages.

Associations

6.2.2.17 Part

Namespace: Composition Model
isAbstract: Yes
Generalization: “Abstract Part”

Description

A Part is an element of the structure of a Composite. See Abstract Part

Associations

6.2.2.18 Part Connection

Namespace: Composition Model
isAbstract: Yes
Generalization: “Element”

Description

A Part Connection is used to connect Parts of a Composite. A Part Connection can connect any number of parts. For
example, a business interaction can involve multiple companies.

condition specification : ValueSpecification [1] ValueSpecification that specifies the expression of the Opaque
Condition
Subsets ownedElement

part path : Part Path [*] Part Path that the part is traversed by

source connection : Directed Part Connection [*] Directed Part Connection that the Part is the target of
Subsets part connection

target connection : Directed Part Connection [*] Directed Part Connection that the part is the source of
Subsets part connection
26 Business Process Definition MetaModel, Beta 1

When a Part Connection is connecting Typed Part, its specifies links between M0 entities playing the typed parts. For
example, the reporting connection between the president of a company and the CEO means the person playing the
president in a particular company will report to the person playing the CEO in the same company. Likewise, the temporal
connection between one step and another in a process means that in each occurrence of that process, there is an
occurrence of one step that happens after the occurrence of another.

Conditions may be applied to Part Connections to limit when they apply. For example, one step in a process may
happen after another only when certain conditions are true as the process is executing.

Associations

6.2.2.19 Part Group

Namespace: Composition Model
isAbstract: Yes
Generalization: “Part”

Description

A Part Group is a kind of Part that collects other Parts together. A Part Groups can share Parts. The meaning of part
groups is given in the specializations of the Composition Model, for example, in Processing Behavior.

Associations

BPMN Notation

Figure 6.6 - Part Group Notation

6.2.2.20 Part Path

Namespace: Composition Model

connected part : Abstract Part [2..*] Abstract Part connected by a Part Connection

guard : Condition [0..1] Condition evaluated at runtime to determine if the Part Connection is
enabled.

Subsets ownedElement

enclosed part : Part [*] Part that is enclosed in a Part Group. A Part can be enclosed in multiple
Part Groups

P art Group
Business Process Definition MetaModel, Beta 1 27

isAbstract: Yes
Generalization: “Abstract Part”

Description

A Part Path connects to a Part of a nested Composite.

An instance of Part Path is introduced for each traversed part to a target part .

The purpose of Part Path is to provide access to parts in a nested composite structure. All models based on the
composition model needs to have access to parts within parts, for example;

• Data elements within data elements
• Roles within roles
• Protocols within protocols
• Activities within activities

Part Path and a Part are generalized to Abstract Part, which are the is of Part Connection. This enables connections
not requiring part paths to refer directly to parts, rather than to part paths with only one element.

Associations

Constraint

[2] The target part must be a Part of the Composite that owns the target part

self.target part in self.traversed part ->partType ->composite part

[2] The traversed part must be a Typed Part

self.traversed part .isKindOf(Typed Part)

final target : Part [1] leaf Part to which a part path chain is pointing at

target part : Abstract Part [1] Abstract Part to which the part path is pointing at.

traversed part : Part [1] Part being the source of the part path. This part is traversed by the
part path in order to reach the target part.
28 Business Process Definition MetaModel, Beta 1

Part Path

Figure 6.7 - Part Path

6.2.2.21 Part Replacement

Namespace: Composition Model
isAbstract: Yes
Generalization: “Element”

Description

A Part Replacement is used to specify the replacement or removal of Parts in derived to Composite of a Derivation.

Associations

6.2.2.22 Selector Specification

Namespace: Composition Model
isAbstract: Yes
Generalization: “ValueSpecification”

Description
A Selector Specification is a query mechanism used to specify the individuals playing a Typed Part

6.2.2.23 Typed Part

Namespace: Composition Model
isAbstract: Yes

derived from : Part [*]

derived to : Part [*]

A com posi te

Part
X

Part
Y

Part Y Com posite Type

Part

Connection

Another com posite

Part
A

Part
B

Part

Connection

Pa rt
Path

Traversed P art

Target Part
Business Process Definition MetaModel, Beta 1 29

Generalization: “Part” “TypedElement” “MultiplicityElement”

Description

A Typed Part is a kind of Part that specifies that individuals playing the Part in the Composite must be of a certain
kind (Type). For example, an individual playing the president part must be a person, and must play the president within a
individual company.

Typed Part] is a MultiplicityElementfor restricting the number of individuals that play the part. For example, a
company might allow no more than five vice-presidents, but require a president, and a choreography might have an
interaction that is optional.

Associations

6.2.2.24 Instance: Irreflexive Condition

Class: Irreflexive Condition

Description

This condition is applicable to connections between parts (or paths with at least one typed part). It restricts the connection
to apply at M0 only to distinct M0 individuals playing the part (or the last part in the path).

Usage convention

A connection with one part typing a connector implies part bindings between the end parts of the connector and the single
part of the connector type.

Links

6.3 Course Model

6.3.1 Introduction
The Course Model extends the Composition Model to connect parts in time (Succession). For example, a succession
connects one step in a process to another to indicate that the second step happens after the first. The same applies to
messages in choreography.

Courses are Composites that have Succession connections representing that one part of the course "follows" another in
time, and possibly establishes constraints on such followings. This can have very different meanings for typed and un-
typed parts:

partType : Type [1] Type of the Typed Part
Subsets type

selection rule : Selector Specification [*] Selector Specification used to specify the individual that plays the
Typed Part
Subsets ownedElement

Played End Opposite End

guard finish/abort
30 Business Process Definition MetaModel, Beta 1

• For Typed Course Parts, Succession means that an individual dynamic entity playing one typed part will happen at the
same time or after another dynamic entity playing another typed part as the course proceeds. These dynamic entities
might be steps in a process, interactions in choreography, or changes and events due to these. Immediate Successions
are Successions where the dynamic entities being connected happen at the same time. For example, two steps in a
process might be required to start at the same time (see the Happening and Change Model).

• For un-typed course parts, such as Course Control Parts, Successions represent more complex specifications of how
dynamic individuals playing typed parts are ordered in time. Parallel Splits are Course Control Parts indicating that the
dynamic individuals playing parts following them happen after the dynamic individuals playing the part preceding
them. Parallel Joins indicate that the parts (in the sense of individuals) following them happen after the parts preceding
them. Exclusive Splits indicate that exactly one of the parts following them will occur after the part preceding them.
Exclusive Joins indicate that the part following them will occur after each part that occurs preceding them. Successions
with un-typed parts at one or both ends may not have part paths at those ends, including qualification, because there
will be no individual playing that part (see Composition Model).

Course Parts are defined just to categorize those Parts that may be related by Successions.

6.3.2 Metamodel Specification
The Course Model extends the Composition Model to connect parts in time (Succession). For example, a succession
connects one step in a process to another to indicate that the second step happens after the first. The same applies to
messages in choreography.
Business Process Definition MetaModel, Beta 1 31

6.3.2.1 Course Model

Figure 6.8 - Course Model

6.3.2.2 Course

Namespace: Course Model
isAbstract: Yes
Generalization: “Composite”

Description

A Course is an ordered Succession of Typed Course Parts

A Course is a Composite that has connections representing that one part of the course “follows” another in time, and
possibly establishes constraints on such followings (Succession).

Su c c es sion

P ar a l le l S p l it

T yp ed Cou rs e P ar t

E x c lu siv e Jo in

Cou rs e

*

{subs ets composite part[*]}

owned c ourse part

1
{ subsets part who le[1]}

owner c ourse

Comp osi t e

P ar a l le l J o in

E x c lus iv e S pl i t

*

{ subsets owned c onnec tion[*]}

owned succ ession

1
{ subsets c onnec tion who le[1]}

owner course

Cou rs e P ar t

Cours e Co ntr o l P ar t

1

{subs ets source [1]}

p redec essor

*
{s ubsets target connec tion [*]}

next succ ession

1

{ subsets ta rget[1]}

suc cessor

*
{ subsets sourc e c onnec tion[*]}

p rev ious succ ession

T y ped P art

0 ..1

defaul t

P art

I mm edia t e
 S uc c es sion

D i rec ted P art Conn ec tion
32 Business Process Definition MetaModel, Beta 1

Associations

6.3.2.3 Course Control Part

Namespace: Course Model
isAbstract: Yes
Generalization: “Course Part”

Description

A Course Control Part is a kind of Course Part representing potentially complex specifications of how dynamic
individuals playing Typed Course Parts are ordered in time. The particular specifications are given in subtypes. At
runtime, Course Parts don't have any execution trace.

BPMN Notation

The shape of a Course Control Part is called a Gateway. A Gateway is a diamond which has been used in many flow chart
notations for exclusive branching and is familiar to most modelers. The diamond MUST be drawn with a single thin black
line.

It is not a requirement that predecessor and successor Successions must connect to the corners of the diamond.
Successions can connect to any position on the boundary of the Gateway.

The shape of the different sub-types of Course Control Part are differentiated by an internal marker. This marker MUST
be placed inside the shape, in any size or location, depending on the preference of the modeler or modeling tool vendor.

Figure 6.9 - Course Control Part Notation

6.3.2.4 Course Part

Namespace: Course Model
isAbstract: Yes
Generalization: “Part”

Description

A Course Part is a kind of Part that defines a stage in a Course.

It can be connected to Succession as a predecessor or successor element.

owned course part : Course Part [*] Course Part owned by the Course
Subsets composite part

owned succession : Succession [*] Succession owned by the Course
Subsets owned connection

Cours e Cont ro l
Part
Business Process Definition MetaModel, Beta 1 33

Associations

6.3.2.5 Exclusive Join

Namespace: Course Model
isAbstract: No
Generalization: “Course Control Part”

Description

An Exclusive Join is a Course Control Part indicating that the part following it will occur after each part that occurs
preceding it.

BPMN Notation

The Exclusive Join shares the same basic shape of the generic Course Control Part.

Figure 6.10 - Exclusive Merge Notation

6.3.2.6 Exclusive Split

Namespace: Course Model
isAbstract: No
Generalization: “Course Control Part”

Description

Exclusive Split is a Course Control Part indicating that exactly one of the part following it will occur after the part
preceding it.

next succession : Succession [*] Succession that enables the Course Part as its predecessor
Subsets target connection

previous succession : Succession [*] Succession that enables the Course Part as its successor
Subsets source connection
34 Business Process Definition MetaModel, Beta 1

Associations

Constraint

[1] The default Succession must be one of the Successions connected to the Exclusive Split as a next succession

BPMN Notation

The Exclusive Split shares the same basic shape, called a Gateway, of the generic Course Control Part. The Exclusive
Split MAY use a marker that is shaped like an “X” and is placed within the Gateway diamond to distinguish it from other
Course Control Parts. This marker is not required . A Diagram SHOULD be consistent in the use of the “X” internal
indicator. That is, a Diagram SHOULD NOT have some Exclusive Splits with an indicator and some Exclusive Splits
without an indicator.

The default succession is represented by a default Marker that MUST be a backslash near the beginning of the line
representing the Succession.

Figure 6.11 - Exclusive Split Notation

default : Succession [0..1] Succession enabled by default if no other next succession connected
to the Exclusive Split has been enabled.

Alternative 1

Alternative 2

Default Alternative

Alternative 1

Alternative 2

Default Alternative

X

Business Process Definition MetaModel, Beta 1 35

6.3.2.7 Immediate Succession

Namespace: Course Model
isAbstract:
Generalization: “Succession”

Description

A Immediate Succession is a kind of Succession that has the following execution semantic: successor immediately
follows its predecessor

6.3.2.8 Parallel Join

Namespace: Course Model
isAbstract: No
Generalization: “Course Control Part”

Description

Parallel Join is a Course Control Part indicating that the parts (in the sense of individuals) following it happen after the
parts preceding them.

BPMN Notation

The Parallel Join uses the shape of Course Control Part, called Gateway and MUST use a marker that is in the shape of
an plus sign and is placed within the Gateway diamond to distinguish it from other of Course Control Parts.

Figure 6.12 - Parallel Join Notation

6.3.2.9 Parallel Split

Namespace: Course Model
isAbstract: No
Generalization: “Course Control Part”

Description

Parallel Split is a Course Control Part that indicates that the dynamic individuals playing parts following them happen
after the dynamic individuals playing the part preceding them.

+

36 Business Process Definition MetaModel, Beta 1

BPMN Notation

The Parallel Split uses the shape of Course Control Part, called Gateway and MUST use a marker that is in the shape of
an plus sign and is placed within the Gateway diamond to distinguish it from other of Course Control Parts.

Figure 6.13 - Parallel Split Notation

6.3.2.10 Succession

Namespace: Course Model
isAbstract: No
Generalization: “Directed Part Connection”

Description

A Succession is a Directed Part Connection that organizes Course Parts in series in the context of a Course. A
Succession indicates that that one Course Part "follows" another in time, and possibly establishes constraints on such
followings.

Associations

BPMN Notation

A Succession is line with a solid arrowhead that MUST be drawn with a solid single line

Figure 6.14 - Succession Notation

predecessor : Course Part [1] Course Part that comes before another Course Part in a Succession
Subsets source

successor : Course Part [1] Course Part that comes after another Course Part in a Succession
Subsets target

+

A succession
Business Process Definition MetaModel, Beta 1 37

Non-normative Notation

A Succession with a Condition of type Fact Change Conditionis drawn as a line covered by the shape the conditioning
Fact Change.

The line has a solid arrowhead and MUST be drawn with as solid single line.

Figure 6.15 - Succession with Fact Change Condition

A Succession with a Condition of type Time Change Condition is drawn as one line covered by the shape the
conditioning Time Change.

The line has a solid arrowhead and MUST be drawn with as solid single line

Figure 6.16 - Succession with Time Change Condition

6.3.2.11 Typed Course Part

Namespace: Course Model
isAbstract: Yes
Generalization: “Course Part” “Typed Part”

Description

A Typed Course Part is kind of Course Part that is a stage or interval in a development or Course.

Typed Course Parts are different from other Course Parts as they are the only one that have occurence trace at runtime.

6.4 Happening & Change Model

6.4.1 Introduction
The Happening and Change Model introduces dynamics, in particular, time ordering of lifecycle events, such as starting
and ending a process. This facilitates the integration of rule and monitoring systems with models of dynamics, such as
orchestration and choreography. The model enables users and vendors to define their own libraries of processes, with
their own categorizations and attributes, such as how long a process has been running, and the resources it is using. They
can also define their own life cycle events, for example, to define finish statuses and taxonomy of errors.

The Happening and Change Model extends the Composition and Course Models with:

• General categories for dynamic entities that extend over time (Happenings Over Time) producing entities that occur at
a point in time (Changes).

A succ ess ion with Fact Change Condition

A succession with Time Change Condition
38 Business Process Definition MetaModel, Beta 1

• Courses that produce lifecycle events, such as starting and ending, enabling the events to be ordered in time
(Behavioral Happenings and Behavioral Changes).

• A user (M1) library defining a behavioral happening that produces common behavior lifecycle events, such starting
and ending (Universal Behavioral Happening).

• Conditions for time changes and changes in facts.

Happenings Over Time and Changes are Types for dynamic entities that are treated as extending over time, or as
occurring at a point in time, respectively. Happenings over time produce changes, for example, the revenue of a company
changes during a business process. An individual dynamic entity could be either a happening over time or a change,
depending on the viewpoint of the application. For example, a package arriving at a business might be treated as a
process of signing for it, inspecting it, and routing it to the addressee, or it might be treated as simply occurring on a
particular day with no additional detail.

Behavioral Happenings are Happenings Over Time that produce Behavioral Changes, which are behavior lifecycle events,
such as starting and ending. Behavioral Happenings are also Courses, enabling their lifecycle changes to be ordered in
time by Successions (see the Course Model). Behavioral Change Parts identify behavioral changes for individual
Behavioral Happenings. For example, a behavioral change part for shipping a product can identify the starting change for
each individual shipment, such as 8am on a particular day. Behavioral Change Parts are also Course Parts, enabling them
to be connected by Successions. For example, a change part identifying the end of a behavioral happening succeeds the
change part identifying the start. This means the ending of each individual behavioral happening, such as an individual
shipment, is after the start of that same individual happening.

A user (M1) library in the Happening and Change Model captures commonly needed aspects of behavioral happenings as
instances of classes in the Happening and Change Model. The library defines:

• Behavioral Changes to represent various behavior lifecycle events, such as starting and ending of individual behavioral
happenings.

• A Behavioral Happening called the Universal Behavioral Happening. It is a generalization of all M1 dynamic models
(see the Composition Model).

• Behavioral Change Parts of the Universal Behavioral Happening for the various Behavioral Changes, such as startPart
and endPart. These are typed by the various M1 changes, such as Start and End Behavioral Changes.

• Successions between the Behavior Change Parts above for universal constraints, such as the end being after the start.

The library enables Users and extenders of BPDM to define their own:

• Parts on happenings, for example, a business monitoring model or business runtime model can specialize the Universal
Behavioral Happening to introduce typed parts for the time an individual process starts, how long it has been running,
and the resources it is using.

• Taxonomies of happenings, for example, a general business process can be specialized for small and large businesses,
or business in specific sectors, such as health care or retail. This can be the framework for libraries of reusable business
processes.

• Taxonomies of changes, for example, to define kinds of errors and introduce error codes.

• Behavioral change parts, for example, multiple finish parts for different finish statuses (success, failure, for example).7

7. For some individual (M0) happenings, the finish change will play the part of successful finish, for others it will play the part of
failed finish.
Business Process Definition MetaModel, Beta 1 39

These can be the source for successions leading to different steps taken as the result of finishing status.

The most general Behavior Changes in the user library are for the starting and ending of happenings (Start and
End). End changes at M1 specialize into changes for aborting, erroring, and finishing, no two of which can occur in
the same individual happening. Aborting means the happening is terminated by an external source for abnormal
reasons. Erroring means the happening is terminated by itself for abnormal reasons. Aborting and erroring may
involve cleanup, but this must be completed before the end of the happening. Finishing means the happening ended
normally, without aborting or erroring.8

Individual (M0) changes conforming to the library must play the library behavioral change parts as the changes
occur.9 For example, every individual conforming to the Universal Behavioral Happening will have an individual
conforming to the library Start change that plays the value of its library startPart. Each individual (M0) universal
behavioral happening will have at most one individual change conforming to the change types in the library. For
example, there is only one start change for each individual universal behavioral happening. Inversely, each individ-
ual change must play a behavioral change part in exactly one individual universal behavioral happening. For exam-
ple, an M0 start change plays the startPart for exactly one individual universal behavioral happening.

Successions in Universal Behavioral Happening inherit to all user-defined behavior definitions (M1) and all indi-
vidual (M0) behavioral happenings (all performances, enactments, and executions). These establish the time order
of the lifecycle changes, for example that ending happens after starting. Successions that target parts typed by the
Start change specify a new individual (M0) behavioral happening. For example, a process definition may indicate
that an incoming message creates a new execution of a process by a succession from the message receipt to the start
part in the user library (see the BPMN Extensions package).

Change Conditions are Conditions for specifying that a Change must occur in the context of a particular Happening
Over Time for the condition to hold. It is specialized into conditions for Behavioral Changes, Time Changes, and
changes in Facts. Behavioral Conditions specify that an individual (M0) behavioral happening must produce a par-
ticular kind of behavioral change (defined at M1) for the condition to hold. For example, a selling process may
notify customers that products have been shipped, and the notification should happen only after the shipping step is
complete. Each individual behavioral happening, such as each shipment, is identified by a Behavior Part (Process
Steps are behavior parts, see the Processesing Behavior Model). Time Change Condition is specified by referring to
a Clock, which is a Happening Over Time that produces Time Changes. Time Changes have a property for specify-
ing the time in a detailed expression. Fact Change Conditions refer to general propositions becoming true or false
due to changes in M0 facts. It is used to integrate with models of rules. All change conditions can identify a happen-
ing that produces the change.

6.4.2 Metamodel Specification
The Happening and Change Model introduces dynamics, in particular, time ordering of lifecycle events, such as starting
and ending a process. This facilitates the integration of rule and monitoring systems with models of dynamics, such as
orchestration and choreography. The model enables users and vendors to define their own libraries of processes, with
their own categorizations and attributes, such as how long a process has been running, and the resources it is using. They
can also define their own life cycle events, for example, to define finish statuses and taxonomy of errors.

8. Finishing includes situations where the happening ends normally, but does not have the effect intended by the modeler. See
previous footnote and example.

9. See comments on conformance in the first footnote in Individuals, Models, and Modeling Languages in the Composition Model.
40 Business Process Definition MetaModel, Beta 1

6.4.2.1 Happening & Change

Figure 6.17 - Happening & Change

6.4.2.2 Behavioral Happening

Figure 6.18 - Behavioral Happening

Happening Ov er
 Time

Change

T ype

*

induced change

*

change context

Be ha vioral Ha pp enin g

Be ha vioral Cha nge

*

{subsets owned course part[*]}
owned behavioral change part

1
{subsets ow ner course[1]}

owner behavioral happening

Ch ang e

Ha pp enin g Ov er
 Time

 *

change context

*

induced change

1

{subsets partType[1]}
behavioral change part type*

{subsets type usage[*]}

behavioral change usage

Be hav ioral C han ge Pa rt

*

{subsets induced change[*]}

/ induced behavioral change*

{subsets change context[*]}

/ behavioral change context

Typ ed Cou rse Part

Cou rse
Business Process Definition MetaModel, Beta 1 41

6.4.2.3 Happening & Change Library: Behavioral Change instances

Figure 6.19 - Happening & Change Library: Behavioral Change instances

6.4.2.4 Happening & Change Library: 'Universal Behavioral Happening' instance

Figure 6.20 - Happening & Change Library: ‘Universal Behavioral Happening’ instance

packagepackagepackageownedType

ownedType

package

package
ownedType

ownedType

Happening & Change Library:Package

ownedType

Finish:Behavioral
 Change

Abort:Behavioral
 Change

Start:Behavioral
 Change

Error:Behavioral
 Change

End:Behavioral
 Change

Cancel:Behavioral
 Change

The graphical
 containement means
 that the Library
 package owns
 behavioral changes
 through the 'owned
 type ' association

nestedPackage

nestingPackageBPDM Library:Package

owned behavioral change part

owner b ehavioral happening

owned succession

owned succession

owne d behavioral cha ng e part

owned behav io ral change pa rt

o wner course

owned succession

owned behavioral change part

o wner behavioral happening
owne r courseo wner behavioral happening

owned behav io ral change pa rtowner course

owned succession

owner course

owner beh avioral happening

o wner behavioral happening

Universal Beh av ioral Happening:Behavioral H appening

startPart:
Behavioral

 Change
 Part

endPart:Beha vi oral
 Change Partstart-e nd:

Succession
previous succession

successor

predecessor

next successio n

errorPart:Behavioral
 Change Partstart-error:

Succ essionn ext succession

pred ecessor

succe ssor

previous su ccession

abo rtPart:
Behavioral Change

 Part
start-abort :
Succ essionn ext succession

predecessor

successor

prev ious successio n

start-finish:
Succ essionnext successio n

p redecessor

successo r

previous succession

Start:Behavi oral
 Change

b ehavioral change part type

beh avioral change u sage

Finish:Behavioral
 Cha nge

behavio ral change part type

behavioral change usage

Abort:Beha vi oral
 Cha nge

behavio ral change part type

behavioral change usag e

Error:Behavioral
 Cha nge

behavioral c hange part type

beh av ioral change u sage

En d:Behaviora l
 Change

finishPart:
Behavioral Change

 Part

The gra phical containement means that the unive rsal owns
 behav ioral change parts and successions respec tively through
 the 'o wned behavi oral change part' associat ion a nd the 'owned
 succession' associat ion

:Generalization

behavioral cha ng e part type

behavioral change usage

general

generalization

specif ic

:Generalization

generalizat ion

specific

general

:Generalization

gen eralization

specif ic

genera l
42 Business Process Definition MetaModel, Beta 1

6.4.2.5 Change Condition

Figure 6.21 - Change Condition

6.4.2.6 Time Change

Figure 6.22 - Time Change

Change Condition

Change

Happening Ov er Time

0..1 conditioning happening over time

* specified happening condition

1conditioning change

*specified happening condition

*

change context *
induced change

Condit ion

H a p p en ing Ov e r
 Time

Time Ch a ng e

+time Expressio n[0 ..1]:String

TimeD a te Ch a n ge

+timedate[1]:Un limitedNa tural

R e la ti v e T ime D at e C ha n g e

+d ura tio n[1]:Unlimited Natural

Cy cle Ch a ng e

+time datePe rio d[1]:Unlimite dNatural

Clo ck

*

{subsets induce d c hang e[*]}
pro duced time ch ange

*

{subsets cha nge context[*]}
time happ ening produ cer

1

sta rting cha nge

Ch ang e*
chan ge context

*
induc ed chang e

C han g e

Business Process Definition MetaModel, Beta 1 43

6.4.2.7 Time Change Condition

Figure 6.23 - Time Change Condition

6.4.2.8 Happening & Change Library : Fact Change instances

Figure 6.24 - Happening & Change Library : Fact Change instances

T ime Ch ange Condi ti on

T ime Change

+t imeExpression[0..1]:String

1
{subsets condit ioning change[1]}
conditioning time change

*
{subsets specified happening condition[*]}

spec ified time condition

Clo ck

*
{subsets specif ied happening condition[*]}
specified time condition

0..1

{subsets condit ioning
 happening over time[0..1]}
conditioning clock

*

{subsets change context[*]}

t ime happening producer

*

{subsets induced change[*]}
produced time change

Change Condit ion

Condit io n

ownedTypepackage
ownedType

package

Happening & Change Library:Package

becomes true:Fact
 Change

becomes false:Fact
 Change

nestedPackage

nestingPackage

BPDM Library:Package The graphical containement
 means that the Library package
 owns behavioral changes
 through the 'owned type '
 association
44 Business Process Definition MetaModel, Beta 1

6.4.2.9 Fact Change Condition

Figure 6.25 - Fact Change Condition

6.4.2.10 Behavioral Change

Namespace: Happening & Change
isAbstract: No
Generalization: “Change”

Description

A Behavioral Change is a kind of Change that occurs as part of the lifecycle of a Behavioral Happening, such as Start,
Finish or Abort.

BPDM provides a predefined library of Behavioral Changes.

Associations

behavioral change context : Behavioral Happening
[*]

Behavioral Change that can occur in the context of the Behavioral
Happening
Subsets change context

Change Condit i on

Condit ion

Fa c t Chan ge Con dit ion

Fac t Change

*
{subsets spec ified happening condition[*] }

spec ified fac t change condition

1

{subsets conditioning c hange[1]}

c onditioning statement c hange1 c onditioning statement

*
{subsets specified happening condit ion[*]}

specified fact c hange condit ion

Ch ange

Statement

Val ueSpec if ic at ion

1

{subsets ownedElement [*]}
statement specific ation

0..1
{subsets owner[0..1]}
owner statement

E lement
Business Process Definition MetaModel, Beta 1 45

6.4.2.11 Behavioral Change Part

Namespace: Happening & Change
isAbstract:
Generalization: “Typed Course Part”

Description

A Behavioral Change Part identifies Behavioral Change (such as Start or End) for an individual Behavioral
Happening. A Behavioral Change Part is also a Course Part, enabling it to be connected by Successions.

Associations

BPMN Notation

Behavioral Change Part typed by the Cancel instance of Behavioral Change

Figure 6.26 - Behavioral Change Part : Cancel Notation

A Behavioral Change Part typed by the End instance of Behavioral Change is drawn as a circle that MUST be drawn
with a single thick black line.

Figure 6.27 - Behavioral Change Part : End Notation

A Behavioral Change Part typed by the Start instance of Behavioral Change is drawn as a circle that MUST be drawn
with a single thin line.

Figure 6.28 - Behavioral Change Part : Start Notation

When a Start Behavioral Change Part is conditionned by a Fact Change Condition, a Fact Change marker is added to
the Start Behavioral Change Part shape.

behavioral change part type : Behavioral Change
[1]

Behavioral Change that is the type of the Behavioral Change Part
Subsets partType

Cancel Behavioral Change Part

Finish

Start
46 Business Process Definition MetaModel, Beta 1

Figure 6.29 - Behavioral Change Part : Start with 'Fact Change Condition' Notation

When a Start Behavioral Change Part is conditionned by a Time Change Condition, a Time Change marker is added
to the Start Behavioral Change Part shape.

Figure 6.30 - Behavioral Change Part : Start with 'Time Change Condition' Notation

This symbol can alternatively represent:

1. Behavioral Change Part typed by the Cancel instance of Behavioral Change

2. A Cancel Activity

Figure 6.31 - Cancel Activity Notation or 'Cancel' Behavioral Change Part

This symbol is a a circle, with an open center. The circle MUST be drawn with a double thin black line. It can
alternatively represent:

1. Behavioral Change Parts that are not typed by Start or End

2. Change Condition Steps

Markers can be placed within the circle to indicate the nature of the Change associated with the Behavioral Change Part
or Change Condition Step

Figure 6.32 - Change Condition Step Notation or Behavioral Change Part

This symbol can alternatively represent:

Start with Statement Condition

Start with Time Condition

Cancel Activity
or

Cancel Behavioral Change Part

Change Condition Step
or

Behavioral Change Part
Business Process Definition MetaModel, Beta 1 47

1. Behavioral Change Part typed by the Error instance of Behavioral Change

2. An Error Activity

Figure 6.33 - Error Activity Notation or 'Error' Behavioral Change Part

Error Behavioral Change Part used for error handling.

The Error Behavioral Change Part is linked to the Processing Succession instance through the predecessor
behavioral change part association.

Figure 6.34 - Error Handling Notation

Non Normative Notation

A Behavioral Change Part typed by a Finish instance of Behavioral Change is drawn as a circle that MUST be drawn
with a single thick black line.

Figure 6.35 - Behavioral Change Part : Finish notation

6.4.2.12 Behavioral Happening

Namespace: Happening & Change
isAbstract: No
Generalization: “Course” “Happening Over Time”

Error Activity
or

Error Behavioral Change Part

Behavioral
Step

Error Handling

Error Behavioral Change Part as used in Error Handling

Finish Behavioral Change Part
48 Business Process Definition MetaModel, Beta 1

Description

A Behavioral Happening is a kind of Happening Over Timethat produces Behavioral Changes which are behavior
lifecycle events, such as Start and End. A Behavioral Happening is also a Course, enabling its lifecycle to be ordered
in time by Successions .

A user (M1) library - Happening & Change Library - captures commonly needed aspects of Behavioral Happenings
as instances such as the finish being after the start.

Associations

Universal Behavioral Happening

Figure 6.36 - Universal Behavioral Happening

6.4.2.13 Change

Namespace: Happening & Change
isAbstract: Yes
Generalization: “Type”

induced behavioral change : Behavioral Change [*] Behavioral Changes that can occur in the context of this Behavioral
Happening.
The set of these Behavioral Changes is derived from the Behavioral
Change Part owned by the Behavioral Happening.
Subsets induced change

owned behavioral change part : Behavioral Change
Part [*]

Behavioral Change Part owned byt the Behavioral Happening
Subsets owned course part

Fin ishS t a rt

C om p e ns a te

Ab ort

E nd

E rror

C a nc e l

Universal Behavioral Happening
Business Process Definition MetaModel, Beta 1 49

Description

A Change is a Type for dynamic entities occurring at a point in time.

Associations

6.4.2.14 Change Condition

Namespace: Happening & Change
isAbstract: Yes
Generalization: “Condition”

Description

A Change Condition is a Condition for specifying that a Change must occur in the context of a particular Happening
Over Time for the condition to hold.

For instance, a condition can be on the eruption (instance of Change) of a particular volcano (instance of Happening
Over Time).

Associations

6.4.2.15 Clock

Namespace: Happening & Change
isAbstract: No
Generalization: “Happening Over Time”

Description

A Clock is a kind of Happening Over Time that produces Time Changes.

Associations

6.4.2.16 Cycle Change

Namespace: Happening & Change
isAbstract: No
Generalization: “Time Change”

change context : Happening Over Time [*] Happening Over Time where the Change can occur

conditioning change : Change [1] Change that is the source of the Change Condition

conditioning happening over time : Happening
Over Time [0..1]

Happening Over Time where the conditioning change should occur

produced time change : Time Change [*] Time Change that occurs in the context of a Clock
Subsets induced change
50 Business Process Definition MetaModel, Beta 1

Description

A Cycle Change is a kind of Time Change that define the occurrence of a cycle in time.

Attributes

6.4.2.17 Fact Change

Namespace: Happening & Change
isAbstract: No
Generalization: “Change”

Description

A Fact Change is a kind of Change that manifests a change in the evaluation of a Statement.

BPMN Notation

Figure 6.37 - Fact Change Notation

6.4.2.18 Fact Change Condition

Namespace: Happening & Change
isAbstract: No
Generalization: “Change Condition”

Description

A Fact Change Condition refers to general propositions becoming true or false due to changes in M0 facts. It is used to
integrate with models of rules.

Associations

6.4.2.19 Happening Over Time

Namespace: Happening & Change
isAbstract: Yes

timedatePeriod: UnlimitedNatural [1]

conditioning statement change : Fact Change [1] Fact Change that, when it occurs, make the Fact Change Condition
evaluate to true
Subsets conditioning change

conditioning statement : Statement [1] Statement that the Fact Change Condition is evaluating the change
of.

Fact Change
Business Process Definition MetaModel, Beta 1 51

Generalization: “Type”

Description

A Happening Over Time is a Type for dynamic entities that are treated as extending over time and that are contexts for
Changes.

Associations

6.4.2.20 Relative TimeDate Change

Namespace: Happening & Change
isAbstract: No
Generalization: “Time Change”

Description

A Relative TimeDate Change is a kind of Relative TimeDate Change that defines a change in time for a relative start
point in time.

Attributes

Associations

6.4.2.21 Statement

Namespace: Happening & Change
isAbstract: No
Generalization: “Element”

Description

Representation of a proposition by an expression of the proposition

Associations

6.4.2.22 Time Change

Namespace: Happening & Change
isAbstract: Yes
Generalization: “Change”

induced change : Change [*] Change that occurs in the context of the Happening Over Time

duration: UnlimitedNatural
[1]

starting change : Change [1] Change which occurrence is the beginning of the Relative TimeDate
Change

statement specification : ValueSpecification [1] specification of the Statement
Subsets ownedElement
52 Business Process Definition MetaModel, Beta 1

Description

A Time Change specifies a point in time that is a source of interest.

Attributes

Associations

BPMN Notation

A Time Change is represented by a clock

Figure 6.38 - Time Change Notation

6.4.2.23 Time Change Condition

Namespace: Happening & Change
isAbstract: No
Generalization: “Change Condition”

Description

A Time Change Condition is a kind of Change Condition that is based on the occurrence of a Time Change. A Time
Change Condition is specified by referring to a Clock.

Associations

6.4.2.24 TimeDate Change

Namespace: Happening & Change
isAbstract: No
Generalization: “Time Change”

timeExpression: String [0..1] A timeExpression represents a time value.

time happening producer : Clock [*] Clock that generates the Time Change
Subsets change context

conditioning clock : Clock [0..1] Clock that is the Happening Over Time context producing the
conditioning time change that is the source of the Time Change
Condition
Subsets conditioning happening over time

conditioning time change : Time Change [1] Time Change that is the source of the Time Change Condition
Subsets conditioning change

Time Change
Business Process Definition MetaModel, Beta 1 53

Description

A TimeDate Change is a kind of Time Change that manifest a date or time change

Attributes

6.4.2.25 Instance: Abort

Class: Behavioral Change

Description

Abort is a Behavioral Change that manifests that the the course of a Behavioral Happening is being interrupted. The
source of the Abort can be internal or external to the Behavioral Happening.

Links

6.4.2.26 Instance: abortPart

Class: Behavioral Change Part

Description

Links

timedate: UnlimitedNatural
[1]

Played End Opposite End

behavioral change part type behavioral change usage abortPart

induced behavioral change behavioral change context Abort Process

ownedType package Happening & Change Library

specific generalization Generalization

Played End Opposite End

behavioral change usage behavioral change part type Abort

owned behavioral change part owner behavioral happening Universal Behavioral Happening

predecessor behavioral change
part

group-step

successor behavioral change part group-step

successor behavioral change part finish/abort

successor previous succession start-abort
54 Business Process Definition MetaModel, Beta 1

6.4.2.27 Instance: becomes false

Class: Fact Change

Description

Links

6.4.2.28 Instance: becomes true

Class: Fact Change

Description

Links

6.4.2.29 Instance: End

Class: Behavioral Change

Description

End is a Behavioral Change that manifests the end of a Behavioral Happening. The end can occur because of

Links

6.4.2.30 Instance: endPart

Class: Behavioral Change Part

Played End Opposite End

ownedType package Happening & Change Library

Played End Opposite End

ownedType package Happening & Change Library

Played End Opposite End

behavioral change part type behavioral change usage endPart

general Generalization

general Generalization

general Generalization

ownedType package Happening & Change Library
Business Process Definition MetaModel, Beta 1 55

Description

Links

6.4.2.31 Instance: Error

Class: Behavioral Change

Description

Error is a Behavioral Change that manifests that an error has occurred that will lead to the End of the Behavioral
Happening. The source of the Error is always internal to the Behavioral Happening.

Links

6.4.2.32 Instance: errorPart

Class: Behavioral Change Part

Description

Links

Played End Opposite End

behavioral change usage behavioral change part type End

owned behavioral change part owner behavioral happening Universal Behavioral Happening

successor previous succession startseq-end

successor previous succession interationend-end

successor previous succession cancel-end

successor previous succession compensate-end

successor previous succession start-end

Played End Opposite End

behavioral change part type behavioral change usage errorPart

induced behavioral change behavioral change context Error Process

ownedType package Happening & Change Library

specific generalization Generalization

Played End Opposite End

behavioral change usage behavioral change part type Error
56 Business Process Definition MetaModel, Beta 1

6.4.2.33 Instance: Finish

Class: Behavioral Change

Description

Finish is a Behavioral Change that manifests the normal End of a Behavioral Happening

Links

6.4.2.34 Instance: finishPart

Class: Behavioral Change Part

Description

Links

6.4.2.35 Instance: Generalization

Class: Generalization

owned behavioral change part owner behavioral happening Universal Behavioral Happening

predecessor behavioral change
part

 error handling

successor previous succession start-error

Played End Opposite End

behavioral change part type behavioral change usage finishPart

ownedType package Happening & Change Library

specific generalization Generalization

Played End Opposite End

behavioral change usage behavioral change part type Finish

owned behavioral change part owner behavioral happening Universal Behavioral Happening

predecessor behavioral change
part

 start/start

predecessor behavioral change
part

 finish/abort

successor previous succession start-finish
Business Process Definition MetaModel, Beta 1 57

Description

Links

6.4.2.36 Instance: Generalization

Class: Generalization

Description

Links

6.4.2.37 Instance: Generalization

Class: Generalization

Description

Links

6.4.2.38 Instance: Happening & Change Library

Class: Package

Description

User (M1) library capturing commonly needed aspects of behavioral happenings as instances of the class in the
Happening & Change model. The library defines:

• Behavioral Changes to represent various behavior lifecycle events, such as starting and ending of individual
Behavioral Happenings.

Played End Opposite End

general End

generalization specific Finish

Played End Opposite End

general End

generalization specific Error

Played End Opposite End

general End

generalization specific Abort
58 Business Process Definition MetaModel, Beta 1

• A Behavioral Happenings called the Universal Behavioral Happening. It is a generalization of all M1 dynamic
models (see the Composition Model).

• Behavioral Change Parts of the Universal Behavioral Happening for the various behavioral changes, such as
startPart and finishPart. These are typed by the various M1 changes, such as Start and End Behavioral Changes

• Successions between the Behavioral Change Parts above for universal constraints, such as the End being after the
Start.

Links

6.4.2.39 Instance: start-abort

Class: Succession

Description

Links

6.4.2.40 Instance: start-end

Class: Succession

Played End Opposite End

nestedPackage nestingPackage BPDM Library

package ownedType Universal Behavioral Happening

package ownedType becomes true

package ownedType becomes false

package ownedType Error

package ownedType Finish

package ownedType Start

package ownedType End

package ownedType Abort

Played End Opposite End

next succession predecessor startPart

owned succession owner course Universal Behavioral Happening

previous succession successor abortPart
Business Process Definition MetaModel, Beta 1 59

Description

Links

6.4.2.41 Instance: start-error

Class: Succession

Description

Links

6.4.2.42 Instance: start-finish

Class: Succession

Description

Links

6.4.2.43 Instance: Start

Class: Behavioral Change

Description

Start is a Behavioral Change that manifests the start of a Behavioral Happening.

Played End Opposite End

next succession predecessor startPart

owned succession owner course Universal Behavioral Happening

previous succession successor endPart

Played End Opposite End

next succession predecessor startPart

owned succession owner course Universal Behavioral Happening

previous succession successor errorPart

Played End Opposite End

next succession predecessor startPart

owned succession owner course Universal Behavioral Happening

previous succession successor finishPart
60 Business Process Definition MetaModel, Beta 1

Links

6.4.2.44 Instance: startPart

Class: Behavioral Change Part

Description

Links

6.4.2.45 Instance: Universal Behavioral Happening

Class: Behavioral Happening

Description

Behavioral Happening that produces common behavior lifecycle changes, such as Start or End.

Links

Played End Opposite End

behavioral change part type behavioral change usage startPart

ownedType package Happening & Change Library

Played End Opposite End

behavioral change usage behavioral change part type Start

owned behavioral change part owner behavioral happening Universal Behavioral Happening

predecessor next succession start-error

predecessor next succession start-compensate

predecessor next succession start-cancel

predecessor next succession start-finish

predecessor next succession start-end

predecessor next succession start-iterationend

predecessor next succession start-abort

successor behavioral change part start/start

Played End Opposite End

behavioral step type behavioral happening usage Step Group
Business Process Definition MetaModel, Beta 1 61

6.5 Processing Behavior Model

6.5.1 Introduction
The Processing Behavior Model enables behavioral happenings to be ordered in time as parts of other behavioral
happenings (see the Happening and Change model). Vendors and users can define their own execution patterns with
connections between these behavioral parts. The model predefines a specific connection for races, where behavioral
happenings start at the same time and abort each other when the first finishes, and for part groups that abort the steps
inside them. It also defines a change condition for detecting lifecycle events in behavioral happenings. The Processing
Behavior Model is the most specialized model in BPDM that still covers all of orchestration and choreography (see the
Activity Model and Interaction Protocol Model).

The Processing Behavior Model introduces:

• Courses with parts that behavioral happenings can play (Processing Behavior and Behavioral Steps). The course orders
the happenings in time according to their behavioral changes, such as when they start and end (Processing
Successions).

• Connections for behavioral steps that establish execution rules for connected steps (Compound Behavioral
Connection). One of these is a connection between steps that all start at the same time, and where the first one to finish
aborts the others (Race Connection and Race Behavior). Another connects groups that can abort their enclosed steps
(Group Abort Connection and Group Abort Behavior).

behavioral step type behavioral happening usage Enclosed Step

behavioral step type behavioral happening usage Racing Contestant

behavioral step type behavioral happening usage Activity 1

general Generalization

general Generalization

ownedType package Happening & Change Library

owner behavioral happening owned behavioral change part abortPart

owner behavioral happening owned behavioral change part endPart

owner behavioral happening owned behavioral change part finishPart

owner behavioral happening owned behavioral change part errorPart

owner behavioral happening owned behavioral change part startPart

owner course owned succession start-end

owner course owned succession start-abort

owner course owned succession start-finish

owner course owned succession start-error
62 Business Process Definition MetaModel, Beta 1

• Behavioral steps for subprocessing behaviors (Processing Steps). These enable reuse of the same processing behavior.

• Behavioral steps for detecting changes in conditions, such as changes in time, facts, or behavior (Change Condition
Step). For example, a change condition step can detect the passing of a certain point in time, a change in the truth of a
statement due to changes in facts, and the completion of a happening, such as the arrival of a message.

• Groups of behavioral steps (Behavioral Step Group), where the group has its own behavioral change parts, such as for
starting and ending.

Behavioral Steps are Typed Course Parts where the type is a Behavioral Happening. They are owned by Courses called
Processing Behaviors. This enables processing behaviors to order happenings in time, as in the steps of a process model
and or the interactions in a choreography. For example, the steps in a selling process are behavioral steps played by
behavioral happenings such as packing and shipping. Individual selling processes (M0 performances, enactments, or
executions of selling) can have a behavioral step played by an individual packing happening and another behavioral step
played by an individual shipping happening.

Behavioral Steps are of two kinds:

• Processing Steps have Processing Behaviors as types, enabling them to "invoke" other behavioral happenings. The
example selling process above is a processing behavior, where packing and shipping are the happening types of its
processing steps.

• Change Condition Steps are behavioral steps that detect changes in Conditions, including time, facts (see the
Happening and Change Model), or behavior. Change condition steps in user models (M1) are always typed by the
Universal Behavioral Happening or subtypes of it that have no behavioral steps.

Processing Successions are Successions (see the Course Model) that can order the behavioral change parts of the steps,
such as the start and end parts of packing or shipping. In the selling process example, a processing succession might have
the packing part as source and the end part as internal source, while the shipping part is the target, and the start part is the
internal target. This means packing must end before shipping starts. Processing Successions do not need to have
behavioral steps on their ends, they can have untyped course parts also, such as gateways in BPMN, but they must have
something on each end, as all successions do. For convenience, processing successions that do not specify internal source
or target parts will have the same effect as processing successions where these are the end parts and start parts,
respectively.

Immediate Processing Successions are Processing Successions that are also Immediate Successions (see the Course
Model), for specifying changes playing behavioral steps happen at the same time. This is used in Process Behavior's user
(M1) library, see Compound Behavioral Connections below.

Processing Successions can order change condition steps also. For example, a process can perform one step, then perform
a time change condition step to wait for a certain duration to elapse, then another step. This is enabled by change
condition steps at M1 being typed by the Universal Behavioral Happening (see the Happening and Change Model), to
define the standard behavioral change parts, for example startPart and endPart.

Connected Part Bindings are Elements specifying that individuals playing the part at an end of a connection also play a
part within the connection. For example, one of the interactions between businesses in a choreography might be a
subchoreography composed of many communications between the businesses. Businesses playing a particular role in the
larger choreography also play one of the roles in the subchoreography. Bindable Connections are defined just to
categorize those connections that can carry part bindings. The player is part of the composite owning the bindable
connection. The played is part of the bindable connection. The binding requires the (M0) individuals playing these parts
to be the same. They are found by navigating from an individual composite, to the player individuals, and to the played
individuals in the connection part of the same composite. The two sets of individuals found this way must be exactly the
same. Connected part bindings are different from connections because part bindings are about which individuals are
Business Process Definition MetaModel, Beta 1 63

playing certain parts in a whole, whereas connections are about links between the individuals themselves due to playing
parts in the whole. As a convenience, it is assumed that a connection typed by a composite that has only one (non-
connection) part implies bindings where that one part is played by all the parts at all the ends of the connector. This is
useful for symmetrical connectors (see Race Connector below for an application).

Compound Behavioral Connections are Connections between Behavioral Steps that are also Typed Parts, enabling
connections to reuse the same composite for connecting steps. BPDM defines two kinds of compound behavioral
connections:

• Race Connections are Compound Behavioral Connections that are always typed by Race Behavior, an M1 instance of
Processing Behavior defined in the Processing Behavior user (M1) library. Race Behavior ensures that all the
behavioral steps connected by Race Connection start at the same time, and that the first one to finish aborts the others
(see the Happening and Change Model)10 Race Behavior contains:

• One step, called the Contestant, which is bound to all the steps connected by the M1 race connection (see Connected
Part Binding above). This ensures that all the contestants are treated the same way.

• Two immediate processing successions connecting the Contestant to itself. One succession refers to the start part of
the Contestant on both ends (see the Happening and Change Model), specifying that all the contestant behavioral
happenings start at the same time. The other succession has the finish part on one end and the abort part on the other,
specifying that any contestant happening that finishes will be accompanied by a simultaneous abort of the others. This
succession has the Irreflexive condition applied (see the Composition Model), to prevent the finishing contestant from
aborting itself.

When a race connection is created between behavioral steps, it implies part bindings between the connected steps and the
Contestant in Race Behavior, with Contestant on the played end (see Connected Part Binding above). The part bindings
ensure that any individual M0 happening playing the connected steps will also play the Contestant, establishing the start-
start and finish-abort successions between the connected steps, and the temporal constraints on the individual happenings.
The Race Behavior above can be the type for any connector that is also a typed part, but Race Connection is always typed
by Race Behavior, for convenience.

• Group Abort Connections are Compound Behavioral Connections that are always typed by Group Abort Behavior, an
M1 instance of Processing Behavior defined in the Processing Behavior user (M1) library. It is applied to behavioral
step groups and their enclosed steps to ensure that the steps are aborted when the group is. Group Abort Behavior
contains:

• Two steps, one for the group and one for its enclosed steps (Step Group and Enclosed Step). The first is bound to an
M1 behavioral step group and the second to each step in the group (see Connected Part Binding above).

• One immediate processing succession between the two steps above. The source is Step Group and the target is
Enclosed Step. It refers to the abort part on both ends (see the Happening and Change Model), specifying that any
group behavioral happening that aborts will be accompanied by a simultaneous abort of the enclosed step happenings.

When a group abort connection is created between a behavior step group and its steps, it implies a part binding between
Step Group in the Group Abort Behavior and the connected group, with Step Group on the played end (see Connected
Part Binding above). Similarly, it implies bindings between Enclosed Step and the steps in the group. The part bindings
ensure that any individual M0 happening playing the connected group will also play the Step Group, and any individual
playing the connected steps will also play the Enclosed Step, establishing the abort-abort successions between the
connected group and steps, and the temporal constraints on the individual happenings. The Group Abort Behavior above
can be the type for any connector that is also a typed part, but Group Abort Connection is always typed by Group Abort
Behavior, for convenience.

10. See the BPMN package for application to event-based gateways and intermediate events attached to activities.
64 Business Process Definition MetaModel, Beta 1

Users and vendors can capture their own execution patterns by defining M1 processing behaviors to use as the type of
compound behavioral connections. For example, some vendors might have an option on races to not abort the losing
processes. This is a variation on the Race Behavior that does not have the finish-abort successions. It can be defined as
an M1 instance of Compound Behavioral Connection that is always typed by the vendor-defined variant Race Behavior.

Behavioral Change Conditions are Change Conditions for detecting behavioral changes in happenings, for example the
start and ending of a happening. It specifies the happening with a behavioral step, such as a step in a process or
interaction in a choreography, and specifies the change with a change part, such as the parts for starting and ending (see
the Happening and Change Model). A behavioral change condition can be the condition for a change condition step,
enabling detection of the starting and ending of happenings identified by behavioral steps. For example, a behavioral
change condition can refer to a message part and the finish part in it to specify that the message has arrived (BPDM
represents messages as processes in themselves, see Simple Interaction Model).

Behavioral Step Groups are Part Groups (see the Composition Model) that enclose Behavioral Steps, and are also
Behavioral Steps themselves, typed by the Universal Behavioral Happening in user models (M1). This gives a group of
behavioral steps as a whole the capacity to produce start and end changes playing the standard behavioral change parts,
such as startPart and endPart. For example, most process languages have a way of modeling subprocesses without
defining a separate process. This is a behavioral step group.

6.5.2 Metamodel Specification
The Processing Behavior Model enables behavioral happenings to be ordered in time as parts of other behavioral
happenings (see the Happening and Change model). Vendors and users can define their own execution patterns with
connections between these behavioral parts. The model predefines a specific connection for races, where behavioral
happenings start at the same time and abort each other when the first finishes. It also defines a change condition for
detecting lifecycle events in behavioral happenings. The Processing Behavior Model is the most specialized model in
BPDM that still covers all of processes and interactions (orchestration and choreography, see the Activity and Interaction
Protocol Models).
Business Process Definition MetaModel, Beta 1 65

6.5.2.1 Processing Behavior

Figure 6.39 - Processing Behavior

Processing Succession

Processi ng Behavior

Processi ng Step

*

{subsets owned course part[*]}
owned behavioral step

1

{subsets owner course[1]}
owner processing behavior

Behavioral Happening

1
{subsets owner course[1]}
owner processing behavior

*

{subsets owned succession[*]}
owned processing succession

1
{subsets behavioral step type[1]}

processing behavior type

*

{subsets behavioral happening usage[*]}
processing behavior usage

0..1

predecessor behavioral change part

*

0. .1

successor behavioral change part

*

Successi on

*
{subsets previous succession[*]}
previous processing succession

0..1

{subsets successor[1]}
successor behavioral step

*
{subsets next succession[*]}
next processing succession

0..1
{subsets predecessor[1]}

predecessor behavioral step

Change Condit i on Step

1 monitored change condition

* condit ionned change step

Behavioral
 Change Part

Change Condit ion

Behavioral Step

Compound Behavi oral Connecti on

*

{subsets composite part[*] }

owned behavioral connection

1

{subsets part whole[1]}

owner processing behavior

2..*

{subsets connected part [2..*]}
connected behavioral step

*
{subsets part connection[*]}
compound behavioral step connection

Race Connect ion

1
{redef ines partType[1]}

compound connection type

* {redef ines type usage[*]}

processing behavior usage

Behavioral Happeni ng

{redefines partType[1]}

{redefines type usage[*]}

1 behavioral step type

* behavioral happening usage

T yped Course Part

Bi ndable Connecti on

Group Abort
 Connect ion

66 Business Process Definition MetaModel, Beta 1

6.5.2.2 Connected Part Binding

Figure 6.40 - Connected Part Binding

6.5.2.3 Immediate Process Succession

Figure 6.41 - Immediate Process Succession

Connec ted Part Binding
 1

player part *
player binding

1

internal played part *
played binding

*
{subsets ownedElement[*]}

owned part binding

1
{subsets owner[0..1]}

part binding owner

Element

Bindable Connec tion

Typed PartPart Connec tion

T yped Part

Immediate Succession

Immediate Processing Succession

Processing Succession

Business Process Definition MetaModel, Beta 1 67

6.5.2.4 Process Behavior Library: 'Racing' Processing Behavior instance

Figure 6.42 - Process Behavior Library: 'Racing' Processing Behavior instance

owner courseowned behavioral step
owner course

owned succession

owner processing behavior
owned succession

Racing Behavior:Processing Behavior

Racing Contestant:Behavioral Step

start/ start: Immediate Processing Succession fi nish/abort: Immediate Processing Succession

Universal Behavioral Happening:Behavioral Happening

behavioral step type

predecessor behavioral step

next processing succession

next processing succession

predecessor behavioral step

startPart:Behavioral
 Change Part

abortPart:
Behavioral Change

 Part

finishPart :
Behavioral Change

 Part
predecessor behavioral change part

successor behavioral step

previous processing succession

successor behavioral step

previous processing succession

successor behavioral change part

predecessor behavioral change part

successor behavioral change part

: Irreflexive
 Condition

guard

behavioral happening usage

The graphical containement
 means that the universal owns
 behavioral change parts and
 successions respectively through
 the 'owned behavioral change
 part ' associat ion and the 'owned
 succession' association

BPDM Library:Package Processing Behavior
 Library:Package

nestedPackage

nest ingPackage

ownedType

package
68 Business Process Definition MetaModel, Beta 1

6.5.2.5 Processing Behavior Library: 'Group Abort Behavior'

Figure 6.43 - Processing Behavior Library: 'Group Abort Behavior'

owned proc essing suc cession

owner proc essing behavior

owned behavioral step

owner processing behavior owned behavioral step

owner processing behavior

owned behavioral change part

Group Abort Behavior:Proc essing Behavior

Universal Behav ioral Happening:Behavioral Happening

abortPart:Behavioral Change Part

BPDM Library:Pack age Proc essing Behavior
 Library:Pack age

nestedPac kage

nest ingPackage

ownedType

package

Step Group:
Behavioral Step

Enclosed Step:
Behav ioral Step

behavioral step type

behav ioral happening usage

behav ioral step type

behav ioral happening usage

group-step:Immediate
 Processing
 Suc cession

next processing succ ession
predecessor behavioral step succ essor behav ioral step

previous processing succ ession

T he graphic al c ontainement means that
 the univ ersal owns behav ioral change
 parts and succ essions respec tiv ely
 through the 'owned behav ioral c hange
 part' assoc iation and the 'owned
 succ ession' assoc iation

predec essor behav ioral c hange part suc cessor behav ioral change part
Business Process Definition MetaModel, Beta 1 69

6.5.2.6 Behavioral Change Condition

Figure 6.44 - Behavioral Change Condition

6.5.2.7 Behavioral Step Group

Figure 6.45 - Behavioral Step Group

Condition

Behav ioral Change Condi tion

Behav ioral Change

1
{subsets conditioning change[1]}
/ conditioning behav ioral change

*

{subsets specified happening condition[*]}

/specified behavioral condition

/

Change Condition

1

{subsets c onditioning happening over time[0..1]}

/c onditionning behavioral happening

*

{ subsets spec ified happening condition[*]}

/ speci fied changed behav ioral condition

Behav ioral
 Happening

1 conditionning behavioral step

*

Behav ioral Change
 Par t

1 conditioning behavioral change part

*

Behav ioral S tep

Behav ioral Step Group

Part Group

*
{subsets enclosed part[*]}
enclosed behavioral step

*
{subsets enclosing part group[*]}
enclosing behavioral step group

Proc essing Behav ior

0..1
{subsets composite part[*]}
owned behavioral step group

1
{subsets part whole[1]}
owner processing behavior

Behavioral Step

70 Business Process Definition MetaModel, Beta 1

6.5.2.8 Behavioral Change Condition

Namespace: Processing Behavior
isAbstract: No
Generalization: “Change Condition”

Description

A Behavioral Change Condition is a kind of Change Condition for detecting a Behavioral Change in a particular
Behavioral Happening, for example the start and ending of this Behavioral Happening.

that is based on the occurrence of a Behavioral Change in a particular Behavioral Happening as defined by the
conditionning behavioral step.

Behavioral Change Conditions are Change Conditions for detecting behavioral changes in happenings, for example the
start and ending of a happening.

It specifies the happening with a behavioral step, such as a step in a process or interaction in choreography, and specifies
the change with a change part, such as the parts for starting and ending (see the Happening and Change Model). A
behavioral change condition can be the condition for a change condition step, enabling detection of the starting and
ending of happenings identified by behavioral steps. For example, a behavioral change condition can refer to a message
part and the finish part in it to specify that the message has arrived (BPDM represents messages as processes in
themselves, see Simple Interaction Model).

Associations

Constraint

[1] The conditioning behavioral change part must be a Behavioral Change Part of the type of the conditionning
behavioral step

conditioning behavioral change part : Behavioral
Change Part [1]

Behavioral Change Part that specifies the Behavioral Change that is
the source of the condition, such as the start (startPart) or end
(endPart)

conditioning behavioral change : Behavioral
Change [1]

Behavioral Change that specifies the Behavioral Change Condition.
This is derived from the Behavioral Change Part that defines the
Behavioral Change Condition
Subsets conditioning change

conditionning behavioral happening : Behavioral
Happening [1]

Behavioral Happening that specifies the context of the Behavioral
Change that defines the condition. This is derived from
conditionning behavioral step of the condition.
Subsets conditioning happening over time

conditionning behavioral step : Behavioral Step [1] Behavioral Step that is the source of the condition, such as an
activity in a process or an interaction in a protocol
Business Process Definition MetaModel, Beta 1 71

self.conditioning behavioral change part in self.conditionning behavioral step ->behavioral step type -
>owned behavioral change part

6.5.2.9 Behavioral Step

Namespace: Processing Behavior
isAbstract: No
Generalization: “Typed Course Part”

Description

A Behavioral Step is a kind of Typed Course Part where the type is a Behavioral Happening. This enables the
ordering over time of Behavioral Happenings in the context of a Processing Behavior . As such, Behavioral Steps
can be connected by Processing Successions.

Associations

6.5.2.10 Behavioral Step Group

Namespace: Processing Behavior
isAbstract:
Generalization: “Behavioral Step” “Part Group”

Description

A Behavioral Step Group is a kind of Part Group that is also a Behavioral Step typed by the Universal Behavioral
Happening in user models (M1). This gives a group of Behavioral Steps as a whole the capacity to produce start and end
changes playing the standard behavioral change parts, such as startPart and endPart.

For example, most process languages have a way of modeling sub-processes without defining a separate process. This is
a Behavioral Step Group.

behavioral step type : Behavioral Happening [1] Behavioral Happening typing the Behavioral Step.
The default behavioral step type is the Universal Behavioral
Happening
Redefines partType

compound behavioral step connection : Compound
Behavioral Connection [*]

Compound Behavioral Connection indicating that the lifecycle of the
Behavioral Step is tied to the life cycle of other Behavioral Steps.
Subsets part connection

next processing succession : Processing Succession
[*]

Processing Succession that enables the Behavioral Step as its
predecessor behavioral step
Subsets next succession

previous processing succession : Processing
Succession [*]

Processing Succession that enables the Behavioral Step as its
successor behavioral step
Subsets previous succession
72 Business Process Definition MetaModel, Beta 1

Associations

6.5.2.11 Bindable Connection

Namespace: Processing Behavior
isAbstract:
Generalization: “Part Connection” “Typed Part”

Description

A Bindable Connection is a kind of Part Connection defined just to categorize those connections that can carry
Connected Part Binding.

Associations

6.5.2.12 Change Condition Step

Namespace: Processing Behavior
isAbstract:
Generalization: “Behavioral Step”

Description

A Change Condition Step is a kind of Typed Course Part that monitors the occurrence of a Change Condition and
that has an effect on the course of a Processing Behavior. For instance, a Change Condition Step can be used to react
to the Abort of a specific Behavioral Happening.

Associations

BPMN Notation

Change Condition Step shape with the marker of the Compensate instance of Behavioral Change

Figure 6.46 - Change Condition Step monitoring a 'Compensate' Behavioral Change Condition

enclosed behavioral step : Behavioral Step [*] Behavioral Step being part of the Behavioral Step Group
Subsets enclosed part

owned part binding : Connected Part Binding [*] Connected Part Binding owned by the Composite
Subsets ownedElement

monitored change condition : Change Condition
[1]

Change Condition being monitored

Compensate Behavioral Change Condition Step
Business Process Definition MetaModel, Beta 1 73

Figure 6.47 - Change Condition Step monitoring a Compound Change Condition

Change Condition Step shape with a Fact Change as a maker

Figure 6.48 - Change Condition Step monitoring a Fact Change Condition

Change Condition Step shape with a Time Change as a maker

Figure 6.49 - Change Condition Step monitoring a Time Change Condition

This symbol is a a circle, with an open center. The circle MUST be drawn with a double thin black line. It can
alternatively represent:

1. Behavioral Change Parts that are not typed by Start or End

2. Change Condition Steps

Markers can be placed within the circle to indicate the nature of the Change associated with the Behavioral Change Part
or Change Condition Step

Figure 6.50 - Change Condition Step Notation or Behavioral Change Part

6.5.2.13 Compound Behavioral Connection

Namespace: Processing Behavior
isAbstract:
Generalization: “Bindable Connection”

C hange Condit ion Step
monitoring a Compound Change C ondition

Fact Change Condition Step

Time Change Condition Step

Change Condition Step
or

Behavioral Change Part
74 Business Process Definition MetaModel, Beta 1

Description

A Compound Behavioral Connection is a Part Connection that enables dedicated lifecycle rule connections to apply
between Behavioral Steps. These rules are described by the compound connection type of the Compound Behavioral
Connection, which is itself a Processing Behavior.

This makes Compound Behavioral Connection be itself a Typed Part.

Associations

6.5.2.14 Connected Part Binding

Namespace: Processing Behavior
isAbstract:
Generalization: “Element”

Description

A Connected Part Binding is an Element specifying that individuals playing the part at an end of a Part Connection
also play a Part within the connection. For example, one of the interactions between businesses in a choreography might
be a subchoreography composed of many communications between the businesses. Businesses playing a particular role in
the larger choreography also play one of the roles in the subchoreography.

The player is part of the composite owning the bindable connection. The played is part of the bindable connection. The
binding requires the (M0) individuals playing these parts to be the same. They are found by navigating from an
individual composite, to the player individuals, and to the played individuals in the connection part of the same
composite. The two sets of individuals found this way must be exactly the same.

Connected Part Binding is different from Part Connection because part bindings are about which individuals are
playing certain parts in a whole, whereas connections are about links between the individuals themselves due to playing
parts in the whole. As a convenience, it is assumed that a connection typed by a composite that has only one (non-
connection) part implies bindings where that one part is played by all the parts at all the ends of the connector. This is
useful for symmetrical connectors.

Associations

compound connection type : Processing Behavior
[1]

Processing Behavior typing the Compound Behavioral Connection
and specifying the lifecycle rules (start/start, abort/abort) tying all
Behavioral Steps connected by the Compound Behavioral
Connection
Redefines partType

connected behavioral step : Behavioral Step [2..*] Behavioral Step connected by the Compound Behavioral Connection
Subsets connected part

internal played part : Typed Part [1] the played is part of the bindable connection

player part : Typed Part [1] The player is part of the composite owning the bindable connection
Business Process Definition MetaModel, Beta 1 75

6.5.2.15 Group Abort Connection

Namespace: Processing Behavior
isAbstract:
Generalization: “Compound Behavioral Connection”

Description

A Group Abort Connection is a kind of Compound Behavioral Connection which has for compound connection type
the Group Abort Behavior, an M1 instance of Processing Behavior defined in the Processing Behavior Libraryuser
(M1) library.

It is applied to Behavioral Step Groups and their enclosed steps to ensure that the steps are aborted when the group is.
(See more details in Group Abort Behavior).

6.5.2.16 Immediate Processing Succession

Namespace: Processing Behavior
isAbstract:
Generalization: “Immediate Succession” “Processing Succession”

Description

An Immediate Processing Succession is a Processing Succession that is immediate, as defined by the Immediate
Succession

6.5.2.17 Processing Behavior

Namespace: Processing Behavior
isAbstract: No
Generalization: “Behavioral Happening”

Description

A Processing Behavior is of Behavioral Happenings that order happenings in time, as in the activities of a process
model and or the interactions in a choreography.

Processing Behavior introduces capabilites shared by both choreography and orchestration:

• Its steps are typed by Behavioral Happenings which provide them with start/end capabilities

• As a Course it can organize its part with Succession. It adds the ability to order its steps according to their start and
ends (Processing Succession).

• Rich connections can be establish between its steps to enable time sychronization between them (Compound
Behavioral Connection).

• The reuse of the same Processing Behavior enable .is enabled by (Processing Step).

• Detection of changes in conditions, such as changes in time, facts, or behavior can be to influence its course (Change
Condition Step)

• Its steps can be organize in groups to which start/end constraints can be applied (Behavioral Step Group)
76 Business Process Definition MetaModel, Beta 1

Associations

6.5.2.18 Processing Step

Namespace: Processing Behavior
isAbstract: Yes
Generalization: “Behavioral Step”

Description

Processing Steps is a kind of Behavioral Step which type is a Processing Behavior. This enables it to “invoke” other
Processing Behavior and to build Processing Behavior composites (made of sub- Processing Behaviors).

Associations

6.5.2.19 Processing Succession

Namespace: Processing Behavior
isAbstract:
Generalization: “Succession”

Description

A Processing Succession is a kind of Succession that can order the Behavioral Change Parts of its Behavioral Step
such as their start and end parts.

Processing Succession allows any combination of Behavioral Change Part to be connected.

End -> Start

Start -> Start

owned behavioral connection : Compound
Behavioral Connection [*]

Compound Behavioral Connection owned by the Processing
Behavior
Subsets composite part

owned behavioral step group : Behavioral Step
Group [0..1]

Behavioral Step Group owned by the Processing Behavior
Subsets composite part

owned behavioral step : Behavioral Step [*] Behavioral Step owned by the Processing Behavior
Subsets owned course part

owned processing succession : Processing
Succession [*]

Processing Succession owned by the Processing Behavior
Subsets owned succession

processing behavior type : Processing Behavior [1] specifies the type of the Processing Step.
The default processing behavior type is the Universal Behavioral
Happening
Subsets behavioral step type
Business Process Definition MetaModel, Beta 1 77

Start -> Abort

etc.

A Processing Succession doesn't need to have Behavioral Steps on its ends, it can have untyped course parts also, such
as Course Control Part, but it must have something on each end, as all Successions do.

For convenience, a Processing Succession that do not specify predecessor behavioral change part or successor
behavioral change part will have the same effect as a Processing Succession where these are respectively the end part
and start part.

Associations

Constraint

[2] The predecessor behavioral change part must be one of the Behavioral ChanBehavioral Changes of the
Behavioral Happening that is the type of the predecessor behavioral step

self.predecessor behavioral change part in self.predecessor behavioral step ->behavioral step type ->owned
behavioral change part

[2] The successor behavioral change part must be one of the Behavioral Changes of the Behavioral Happening that
is the type of the successor behavioral step

self.successor behavioral change part in self.successor behavioral step ->behavioral step type ->owned
behavioral change part

predecessor behavioral change part : Behavioral
Change Part [0..1]

Behavioral Change Part of the predecessor behavioral step that is
connected through the Processing Succession

predecessor behavioral step : Behavioral Step [0..1] Behavioral Step that comes before another Course Part in a
Processing Succession
Subsets predecessor

successor behavioral change part : Behavioral
Change Part [0..1]

Behavioral Change Part of the successor behavioral step that is
connected through the Processing Succession.

successor behavioral step : Behavioral Step [0..1] Behavioral Step that comes after another Course Part in a Processing
Succession
Subsets successor
78 Business Process Definition MetaModel, Beta 1

Processing Succession & Behavioral Change Part

Figure 6.51 - Processing Succession & Behavioral Change Part

BPMN Notation

A Succession is line with a solid arrowhead that MUST be drawn with a solid single line

Figure 6.52 - Succession Notation

6.5.2.20 Race Connection

Namespace: Processing Behavior
isAbstract:
Generalization: “Compound Behavioral Connection”

Description

A Race Connection is a kind of Compound Behavioral Connection which has for compound connection type the
Racing Behavior.

The Racing Behavior ensures that all the connected Behavioral Step start at the same time, and that the first one to
finish aborts the others.

6.5.2.21 Instance: Enclosed Step

Class: Behavioral Step

Behavioral Step 1 Behavioral Step 2predecessor successor

behavioral happening type behavioral happening type

F in ishS tart

Compen sate

Abo rt

E nd

E rro r

Cancel

Universal Beh avio ral Happ enin g

FinishS tart

Compensa te

Abo rt

E nd

E rror

Cancel

Universal Beha vior al Happen in g

predecessor
behavioral change
part

successor
behavioral change
part

A succession
Business Process Definition MetaModel, Beta 1 79

Description

Links

6.5.2.22 Instance: finish/abort

Class: Immediate Processing Succession

Description

This succession has the finish part on one end and the abort part on the other, specifying that any contestant happening
that finishes will be accompanied by a simultaneous abort of the others. This succession has the Irreflexive condition
applied (see the Composition Model), to prevent the finishing contestant from aborting itself.

Links

6.5.2.23 Instance: Group Abort Behavior

Class: Processing Behavior

Description

Group Abort Behavior contains:

• Two steps, one for the group and one for its enclosed steps (Step Group and Enclosed Step). The first is bound to an
M1 behavioral step group and the second to each step in the group (see Connected Part Binding above).

• One immediate processing succession between the two steps above. The source is Step Group and the target is
Enclosed Step. It refers to the abort part on both ends (see the Happening and Change Model), specifying that any
group behavioral happening that aborts will be accompanied by a simultaneous abort of the enclosed step happenings.

Played End Opposite End

behavioral happening usage behavioral step type Universal Behavioral Happening

owned behavioral step owner processing behavior Group Abort Behavior

successor behavioral step previous processing succession group-step

Played End Opposite End

successor behavioral change part abortPart

predecessor behavioral change part finishPart

guard Irreflexive Condition

next processing succession predecessor behavioral step Racing Contestant

owned succession owner course Racing Behavior

previous processing succession successor behavioral step Racing Contestant
80 Business Process Definition MetaModel, Beta 1

When a group abort connection is created between a behavior step group and its steps, it implies a part binding between
Step Group in the Group Abort Behavior and the connected group, with Step Group on the played end (see Connected
Part Binding above). Similarly, it implies bindings between Enclosed Step and the steps in the group. The part bindings
ensure that any individual M0 happening playing the connected group will also play the Step Group, and any individual
playing the connected steps will also play the Enclosed Step, establishing the abort-abort successions between the
connected group and steps, and the temporal constraints on the individual happenings. The Group Abort Behavior above
can be the type for any connector that is also a typed part, but Group Abort Connection is always typed by Group Abort
Behavior, for convenience.

Links

6.5.2.24 Instance: group-step

Class: Immediate Processing Succession

Description

Links

6.5.2.25 Instance: Processing Behavior Library

Class: Package

Played End Opposite End

ownedType package Processing Behavior Library

owner processing behavior owned behavioral step Step Group

owner processing behavior owned processing succession group-step

owner processing behavior owned behavioral step Enclosed Step

Played End Opposite End

predecessor behavioral change part abortPart

successor behavioral change part abortPart

next processing succession predecessor behavioral step Step Group

owned processing succession owner processing behavior Group Abort Behavior

previous processing succession successor behavioral step Enclosed Step
Business Process Definition MetaModel, Beta 1 81

Description

Links

6.5.2.26 Instance: Racing Behavior

Class: Processing Behavior

Description

Racing Behavior contains:

• One step, called the Contestant, which is bound to all the steps connected by the M1 race connection (see Connected
Part Binding above). This ensures that all the contestants are treated the same way.

• Two immediate processing successions connecting the Contestant to itself. One succession refers to the start part of
the Contestant on both ends (see the Happening and Change Model), specifying that all the contestant behavioral
happenings start at the same time. The other succession has the finish part on one end and the abort part on the other,
specifying that any contestant happening that finishes will be accompanied by a simultaneous abort of the others. This
succession has the Irreflexive condition applied (see the Composition Model), to prevent the finishing contestant from
aborting itself.

Links

6.5.2.27 Instance: Racing Contestant

Class: Behavioral Step

Description

Behavioral Step of the Racing Behavior is bound to all the steps connected by the M1 race connection to ensures that
all the contestants are treated the same way.

Played End Opposite End

nestedPackage nestingPackage BPDM Library

package ownedType Racing Behavior

package ownedType Group Abort Behavior

Played End Opposite End

ownedType package Processing Behavior Library

owner course owned succession finish/abort

owner course owned succession start/start

owner processing behavior owned behavioral step Racing Contestant
82 Business Process Definition MetaModel, Beta 1

Links

6.5.2.28 Instance: start/start

Class: Immediate Processing Succession

Description

This succession refers to the start part of the Racing Contestant on both ends (see the Happening and Change Model
introduction), specifying that all the contestant behavioral happenings start at the same time.

Links

6.5.2.29 Instance: Step Group

Class: Behavioral Step

Played End Opposite End

behavioral happening usage behavioral step type Universal Behavioral Happening

owned behavioral step owner processing behavior Racing Behavior

predecessor behavioral step next processing succession finish/abort

predecessor behavioral step next processing succession start/start

successor behavioral step previous processing succession finish/abort

successor behavioral step previous processing succession start/start

Played End Opposite End

predecessor behavioral change part finishPart

successor behavioral change part startPart

next processing succession predecessor behavioral step Racing Contestant

owned succession owner course Racing Behavior

previous processing succession successor behavioral step Racing Contestant
Business Process Definition MetaModel, Beta 1 83

Description

Links

6.6 Simple Interaction Model

6.6.1 Introduction
The Simple Interaction Model enables interactions to be treated like any other step in a processing behavior, ordered in
time, with start and end events. The model is the basis for flows between process steps and between participants in a
choreography (see the Activity Model and the Interaction Protocol Model). The Simple Interaction Model is the most
specialized model in BPDM that still has elements in common between orchestration and choreography.

The Simple Interaction Model provides:

• Interactions that have no subinteractions (Simple Interactions).

• Types for flowing entities (transferred item types).

• Expressions for changing which entities are flowing (transformation expression).

• Parts that interact within a processing behavior (Interaction Roles).

Interactions are Behavioral Steps that are also Connections, enabling them to have start and end changes, and be ordered
in time. This is used to define reusable protocols and specify the way a process interacts with its environment (see the
Interaction Protocol Model and the Activity Model). Interactive Parts are defined just to categorize those Typed Parts that
can be connected by Interactions. The types of interactive parts establish requirements for the interacting individuals, for
example, that they have a minimum security clearance or market capitalization.

Simple Interactions are interactions in which something is "transferred" from individuals playing one interactive part to
individuals playing another interactive part. For example, a document, phone number, or package may be transferred
from one department to another in a company. The transferred items must conform to a Type specified by the simple
interaction. Simple Interactions can have an expression to change the item that arrives at the target based on the item
flowing from the source. For example, a transformation may retrieve the zip code from an address flowing from the
source to deliver the zip code to the target.

Simple Interactions in user (M1) models are always typed by the Universal Behavioral Happening (see user library in the
Happening and Change Model). This gives them the standard behavioral change parts, such as for start and end, so the
simple interactions can be ordered within an Interaction Protocol (see the Interaction Protocol Model). This is different
from the type of thing transferred.

Simple Interaction Bindings are Elements specifying that a simple interaction is the same as some of the simple
interactions in the interactive parts it connects. For example, an interaction between steps in a process can be bound to
interactions in the connected steps that output and input transferred items (see the Activity Model). The individuals
constrained by the binding are interactions as they occur at M0, for example, transferring a car with a certain

Played End Opposite End

behavioral happening usage behavioral step type Universal Behavioral Happening

owned behavioral step owner processing behavior Group Abort Behavior

predecessor behavioral step next processing succession group-step
84 Business Process Definition MetaModel, Beta 1

identification number at a certain time. These individual (M0) interactions are found by navigating from an individual
composite, to individual interactions playing a part in it, and from there to internal interactions in the source end, and to
internal interactions in the target end. The three sets of individuals found this way must be exactly the same. Simple
interaction bindings are different from connections because interaction bindings are about which individuals are playing
certain parts in a whole, whereas connections are about links between the individuals themselves due to playing parts in
the whole.

Interaction Roles are Interactive Parts played by individuals outside the processing behavior, but interacting with it. For
example, the customer is an interaction role in a behavior for delivering a product. This is specialized in other BPDM
packages for application to orchestration and choreography (see the Activity Model and the Interaction Protocol Model).

6.6.2 Metamodel Specification
The Simple Interaction Model enables interactions to be treated like any other step in a processing behavior, ordered in
time, with start and end events. The model is the basis for flows between process steps and between participants in a
choreography (see the Activity Model and the Interaction Protocol Model). The Simple Interaction Model is the most
specialized model in BPDM that still has elements in common between processes and choreographies.
Business Process Definition MetaModel, Beta 1 85

Simple Interaction

Figure 6.53 - Simple Interaction

Type

Proce ssing Beh av io r

Simple I nte ra ct io n

I nte ra ctio n Role

In te rac tiv e Pa rt

2..*

{subsets connected part[2..*]}

/ involved interactive part

*
{subsets part connection[*]}

/ involving interaction

*

{subsets involving interaction[*]}
{subsets source connection[*]}

source simple interaction

1

{subsets involved interactive
 part[2..*]}
{subsets target[1]}

target interactive part

*
{subsets involving interaction[*]}

{subsets target connection[*]}

target simple interaction

1

{subsets involved interactive
 part[2..*]}

{subsets source[1]}

source interactive part

*

{subsets composite part[*]}
owned interaction role

1

{subsets part whole[1]}

owner processing behavior

I nte ra ctio n

1 transferred item type

*

Exp ression

0..1

{subsets ownedElement[*]}

transformation expression

0..1
{subsets owner[0..1]}
owned transformation expression

Pa rt Co nne ctio nBeh avioral Step

1

{subsets owner course[1]}

owner processing behavior

*

{subsets owned course part[*]}

owned behavioral step

Typed Pa rt

D irec ted Pa rt
 Conn ect ion
86 Business Process Definition MetaModel, Beta 1

6.6.2.1 Simple Interaction Binding

Figure 6.54 - Simple Interaction Binding

6.6.2.2 Interaction

Namespace: Simple Interaction
isAbstract: Yes
Generalization: “Behavioral Step” “Part Connection”

Description

An Interaction is a Behavioral Step that is also a Part Connection , enabling Interaction to have start and end changes,
and be ordered in time.

An Interaction can be either a simple Simple Interaction or a set of combined Simple Interactions : a Compound
Interaction. Ultimately, an Interaction is realized by the exchange of Simple Interactions between its Interactive
Parts.

Associations

6.6.2.3 Interaction Role

Namespace: Simple Interaction
isAbstract: No
Generalization: “Interactive Part”

involved interactive part : Interactive Part [2..*] Interactive Part involved in the Interaction
Subsets connected part

Simple Interact ion

* source interaction binding

1
target internal
 interaction

Simple Interaction Binding

0..1
{subsets ownedElement[*]}
owned interaction binding

1
{subsets owner[0..1]}
owner simple interaction 1

source internal
 interaction

* target interaction binding

Element
Business Process Definition MetaModel, Beta 1 87

Description

An Interaction Role is an Interactive Part where the individuals playing the part are in the environment context where
the Processing Behavior is used. For example, the customer is an Interaction Role in a behavior for delivering a
product.

6.6.2.4 Interactive Part

Namespace: Simple Interaction
isAbstract: Yes
Generalization: “Typed Part”

Description

Interactive Part is a category of Typed Part that can be connected by Interactions. The types of interactive parts
establish requirements for the interacting individuals, for example, that they have a minimum security clearance or market
capitalization.

Associations

6.6.2.5 Simple Interaction

Namespace: Simple Interaction
isAbstract: No
Generalization: “Directed Part Connection” “Interaction”

Description

A Simple Interaction is a kind of Interaction in which something is "transferred" from individuals playing one
interactive part to individuals playing another interactive part. For example, a document, phone number, or package may
be transferred from one department to another in a company. The transferred items must conform to a Type specified by
the Simple Interaction. A Simple Interaction can have an Expression to change the item that arrives at the target based
on the item flowing from the source. For example, a transformation may retrieve the zip code from an address flowing
from the source to deliver the zip code to the target.

involving interaction : Interaction [*] Interaction that the Interactive Part is involved in.
Subsets part connection

source simple interaction : Simple Interaction [*] Simple Interaction going to the target interactive part
Subsets involving interaction
Subsets source connection

target simple interaction : Simple Interaction [*] Simple Interaction coming from the source interactive part
Subsets involving interaction
Subsets target connection
88 Business Process Definition MetaModel, Beta 1

Simple Interactions in user (M1) models are always typed by the Universal Behavioral Happening (see user library
Happening & Change Library). This gives them the standard Behavioral Change Parts, such as for start and end, so
the Simple Interactions can be ordered within an Interaction Protocol. This is different from the type of thing
transferred.

Simple Interactions can refer to Simple Interactions inside the Interactive Parts being connected. This means the
transferred thing is passed along through chains of Simple Interactions from inside to outside the parts, or the other way
(see Simple Interaction Binding)

Associations

BPMN Notation

An Artifact Sequence Flow is represented by a is line with a solid arrowhead that MUST be drawn with a solid single
line.

The type of the element transferred by the information flow is represented by a portrait-oriented rectangle that has its
upper-right corner folded over that MUST be drawn with a solid single black line.

owned interaction binding : Simple Interaction
Binding [0..1] Subsets ownedElement

source interactive part : Interactive Part [1] Interactive Part that is the source of the Simple Interaction
Subsets involved interactive part
Subsets source

target interactive part : Interactive Part [1] Interactive Part that is the target of the Simple Interaction
Subsets involved interactive part
Subsets target

transferred item type : Type [1] specifies the type of the item transferred by the Simple Interaction.

transformation expression : Expression [0..1] Expression used to transform the item that arrives at the target based
on the item flowing from the source. For example, a transformation
may retrieve the zip code from an address flowing from the source to
deliver the zip code to the target.
Subsets ownedElement
Business Process Definition MetaModel, Beta 1 89

Figure 6.55 - Artifact Sequence Flow Notation

Notation for End Message or Simple Interaction categorized as an End Message.

Figure 6.56 - End Message Notation

Figure 6.57 - Intermediate Message Notation or Change Condition Step Monitoring an incoming Message

A Message Flow is line with a open arrowhead that MUST be drawn with a dashed single black line.

Figure 6.58 - Message Flow Notation

The shape of Message depends on its sub-types.

The line connecting a Message to its Interaction Role(s) MUST have an open arrowhead and MUST be drawn with a
dashed single black line.

The line connecting a Message to other kind of Interactive Part MUST have a solid arrowhead and MUST be drawn
with a solid single line.

Figure 6.59 - Message Notation

A ctiv ity (to)Ac tivi ty (f ro m)

Tran sfe rred Item Type

End Message

Intermediate Message

Message Flow

Start Message End Message Interm ediate Message

Message Flow
90 Business Process Definition MetaModel, Beta 1

Notation for Start Message or Simple Interaction categorized as a Start Message.

Figure 6.60 - Start Message Notation

Non-normative Notation

Figure 6.61 - Interaction Flow between Activities and Statement Condition

Figure 6.62 - Interaction Flow between Activities and Time Condition

6.6.2.6 Simple Interaction Binding

Namespace: Simple Interaction
isAbstract:
Generalization: “Element”

Description

Simple Interaction Binding is a kind of Element specifying that a Simple Interaction is the same as some of the
Simple Interactions in the Interactive Parts it connects. The individuals constrained by the binding are Simple
Interactions as they occur at M0, for example, transferring a car with a certain identification number at a certain time.
These individual (M0)Simple Interactions are found by navigating from an individual composite, to individual
interactions playing a part in it, and from there to source internal interaction in the source ,Interactive Part and to
source internal interaction in the target Interactive Part. The three sets of individuals found this way must be exactly
the same. Simple Interaction Bindings are different from Part Connections because interaction bindings are about
which individuals are playing certain parts in a whole, whereas connections are about links between the individuals
themselves due to playing parts in the whole.

Start Message

Activit y (to)Activ ity (from)

Trans ferred Item Type

Statement Condition

Activ ity (to)Activity (from)

Transferred Item Type

Time Condition
Business Process Definition MetaModel, Beta 1 91

Associations

Constraint

[1] The target internal interaction must be one of the Simple Interactions of the Behavioral Happening that is the
type of the source interactive part.

self.target internal interaction in self.source interactive part ->process type ->owned interaction role ->target
simple interaction

6.7 Activity Model

6.7.1 Introduction
The Activity Model is for capturing orchestrations in way that facilitates modification as boundaries of process of
business change, for example, due to insourcing, outsourcing, mergers, and acquisitions. It uses interactions to represent
inputs and outputs, enabling choreographies to be specified between the process and its environment, as well as between
the performers responsible for steps in the process. The Activity Model is the basis for the BPMN model in BPDM (see
the BPMN Extension).

In the Activity Model, Processes are Processing Behaviors that have:

• Boundaries with which processes interact to get inputs and provide outputs (Process Interaction Boundary).

• Performers for steps in the process, including a performer for the entire process (Performer Role and Processor Role).

• Steps that interact with each other and the process boundary, and invoke other processes (Activity and Emdedded
Process).

• Embedded processes for loops, with loop control features (Activity Loop and its subtypes).

• Holders hold flowing items (Holders).

• Steps for generating process lifecycle events, such as for errors and aborts.

• Derivations from other processes (Substitutable Derivations).

Process Interaction Boundaries and Processor Roles are the two top-level elements in Processes. The first represents
entities in the environment of the process and the other the actors responsible for the process itself. They are Interactive
Parts, enabling Simple interactions between them to show the inputs and outputs of a process (see the Simple Interaction
Model). Inputs are simple interactions that have the boundary as source and the processor as target (or an activity in the
processor, see below), and outputs have the processor as source (or an activity in the processor), and the boundary as
target. The transferred item type of simple interactions specifies the kind of thing that is input or output. These
interactions can be ordered in time to specify when the process is expecting its inputs and when it will provide its outputs.
Multiplicities on the interactions specify how many individuals of the item type are required or allowed to be input and
output by the process (see the Composition Model).

source internal interaction : Simple Interaction [1] Simple Interaction played in the source interactive part

target internal interaction : Simple Interaction [1] Simple Interaction Binding played in the target interactive part
92 Business Process Definition MetaModel, Beta 1

Performer Roles are Part Groups showing the responsibility of Actors for steps in the process (see Activity below).
Processor Roles are actually just top-level Performer Roles, enabling them to delegate responsibility for a subset of the
process steps to Performer Roles, which in can turn delegate smaller subsets to other Performer Roles. Processor Roles
and Performer Roles are also Typed Parts, for specifying Actors that can play the roles. Actors are Types, to specify
requirements on them, such as having certain skills or budget.

Performer Roles are also Interactive Parts that can have interactions with each other as well to the boundary. This is
useful when the boundaries of the process change, for example, due to outsourcing or insourcing. For outsourcing, the
steps a performer role is responsible for are separated out into another process. The interactions between the performer's
steps and the steps of other performers become the interactions in the protocol between the performers. This establishes
a service contract for the outsourced steps in the activity. Role Realizations are Elements for showing which processes
satisfy the contract. For insourcing, some of the interactions to the boundary become interactions with a performer role.
This establishes the requirements on designing the steps that the performer will be responsible for.

Activities are:

• Processing Steps, enabling them to have start and end changes, be ordered in time by processing successions, and nest
subprocesses (see the Processing Behavior Model).

• Typed Parts (due to being Processing Steps), where the type is another Process. For Simple Activities the subprocesses
have no subactivities, for Subprocess Activities they do.

• Interactive Parts to support simple interactions with other activities and the boundary for inputs and outputs (see the
Simple Interaction Model).

Activities connected by Simple Interactions use Simple Interaction Bindings to specify which interactions in the
subprocesses will flow between the activities (see the Simple Interaction Model). For example, one activity might be for
a process that outputs a document with an interaction to its boundary, and another activity might be for a process that
inputs a document with an interaction from its boundary. These process might output and input many other documents.
The simple interaction bindings on the interaction between the activities identify which of the interactions in the
subprocesses are the ones that support the flow between the activities. The bindings ensure that whenever the document
flows during the enactment of the process, that the exact same M0 flow plays all three interaction parts simultaneously:
the output interaction in one subprocess, the interaction between the activities, and the input interaction in the other
subprocess. In many cases, the simple interaction bindings can be derived from the types of things flowing, so the
modeler does not need to specify them manually. For example, if the subprocesses have only one interaction outputting
and inputting a document, then interaction flows transferring documents between the subprocess will bind to those
internal interaction.11

Emdedded Processes are Behavioral Step Groups that enclose Activities, enabling embedded processes to have their own
lifecycle changes, such as starting and ending, that interact with the enclosed activities. Every embedded process has the
Abort Group Connection applied to it (see Processing Behavior). This ensures the enclosed steps abort when the group
does.

Activity Loops are Emdedded Processes that can execute their enclosed activities as a group multiple times. The process
can proceed past the loop in several ways:

• After all subexecutions are complete, with a processing succession that has the loop as the source.

11. Simple interaction bindings can be derived if the interaction between the activities has a transferred item type that is the same or a
supertype of exactly one output interaction flow on the source end of the interaction, or has a transferred item type that is the same
or a subtype of exactly one input interaction flow on the target end of the interaction.
Business Process Definition MetaModel, Beta 1 93

• After each subexecution, with processing succession that has the iterationEnd behavior part as an internal source. This
part is defined in a user (M1) library in the Activity Model, typed by the IterationEnd change also defined in the
library.

• After the first subexecution to complete, with a processing succession that has the iterationEnd behavior part as an
internal source, and a guard evaluating to the string “first iteration.”

• After each subexecution, but depending on conditions, with a processing succession that has the iterationEnd behavior
part as an internal source, and a guard specified by the modeler.

Activity Loops are of two kinds:

• Conditional Loops execute their enclosed activities multiple times as a group while a specified condition is true. If the
condition is never true, the enclosed activities are never executed. The multiple subexecutions are sequential.

• MultiInstance Loops execute their enclosed activities as a group a certain number of times, as specified by the modeler
in an integer-valued expression evaluated at the time the loop begins executing. MultiInstance Loops support the
option of sequential or parallel subexecutions.

Holders are Interactive Parts for storing items temporarily as they flow through the process. For example, a document,
phone number, or package can flow along simple interactions, into a holder for some period, and flow out later. The type
of the holder is the type of thing it can hold.

Substitutable Derivations are Derivations of one process from another that do not alter the interactions with the boundary
(see the Composition Model).

6.7.2 Metamodel Specification
The Activity Model is for capturing orchestrations in way that facilitates modification as boundaries of process of
business change, for example, due to insourcing, outsourcing, mergers, and acquisitions. It uses interactions to represent
inputs and outputs, enabling choreographies to be specified between the process and its environment, as well as between
the performers responsible for steps in the process. The Activity Model is the basis for the BPMN model in BPDM (see
the BPMN Extensions).
94 Business Process Definition MetaModel, Beta 1

6.7.2.1 Core

Figure 6.63 - Core

Performer Role

{subsets ownedElement [*] }{subsets owner[0. .1]}

* delegated performer role0. .1delegat ing performer role

Process

P rocessor Role

Act or

Type

0.. 1

{subsets partType[1] }

player actor

*

{subsets type usage[*]}

played performer role

0..1

{subsets part whole[1]}

owner process

0..1

{subsets composit e part[*]}

owned processor role

A ct iv i ty

 {redefines enclosing part group[*]}

{redefines enclosed part[*]}

*

activity performer *

performedActivity

P rocess Interaction

 Boundary

1

{subsets owner processing behavior[1]}

owner process

0. .1

{subsets owned interaction role[*]}

owned process interaction boundary

Processing B ehav ior

P rocessi ng S tep

Interact ive P art

*

{subsets owned behavioral st ep[*] }

owned act iv ity

1

{subsets owner processing behavior[1] }

owner process

Holder

*

{subsets composite part[*] }
owned holder

0..1

{subsets part whole[1] }

owner process

Interac t ive Part
Part Group

1
{subsets processing behavior t ype[1]}

process type

*

{subsets processing behavior usage[*]}

process usage

Interactive Part

I nteract ion Role
Business Process Definition MetaModel, Beta 1 95

6.7.2.2 Activity Model Library: Simple Process instances

Figure 6.64 - Activity Model Library: Simple Process instances

6.7.2.3 Activity Categories

Figure 6.65 - Activity Categories

ownedTypeownedType
packagepackage

Activity Library:Package

Abort Process:
Process

Abort:Behavioral
 Change

Error Process:
Process

Error:Behavioral
 Change

induced behavioral change
behavioral change context

induced behavioral change
behavioral change context

The graphical containement means that the Library
 package ow ns behavioral changes thr ough the
 'ow ned type ' association

BPDM Library:Package

nestedPackage

nestingPackage

Ac tiv ity

S imple Activ ity

Sub-Process Ac tiv ity

Processing Step

Abort Ac tiv it y

Error Ac tiv ity

96 Business Process Definition MetaModel, Beta 1

6.7.2.4 Activity Model Library: Loop Happening instance

Figure 6.66 - Activity Model Library: Loop Happening instance

ow ner course
owned succession

ow ned behavioral change part
owner behavioral happening

owned behavioral change part

owner behavioral happening

owned succession

ow ned behavioral change part

owner course
owner behavioral happening

U niversal Behavioral H appening:Behavioral Happening

Iteration End:Behavioral
 Change

Activity Loop H appening:Behavioral Happening

iterationEndPart: Behavioral
 Change Part

behavioral change part type

behavioral change usage

endPart:Behavioral
 Change Part

interationend-end:
Succession

next succession

predecessor

successor

previous succession

End:Behavioral Changebehavioral change usage

behavioral change part type

:Generalization

generalization

specific

general

startPart:Behavioral
 Change Part

start-iterationend:
Succession

next succession

predecessor

successor

previous succession
Business Process Definition MetaModel, Beta 1 97

6.7.2.5 Embedded Process

Figure 6.67 - Embedded Process

6.7.2.6 Derivation

Figure 6.68 - Derivation

Embe dd ed Pro cess

Pro ce ss

*

{subsets composite part[*]}
owned embedded process

1
{subsets part whole[1]}
owner process

Ac tiv ity

{redefines enclosed behavioral step[*]}

{redefines enclosing behavioral step group[*]}

* enclosed activity

* enclosing embedded process

Be ha vio ra l St ep Gro up

Act ivit y L oop

Co nd itio n

1 loop condition

0..1 conditionned loop

Valu eSp ec ific at io n

0..1
{subsets ownedElement[*]}
max iteration0..1

{subsets owner[0..1]}
owner activity loop

Mu lt i I n st an ce L oo p

+ordering:MultiInstanceLoopOrdering

Con dit io na l L oo p

1
{subsets ownedElement[*]}
number of instances

0..1
{subsets owner[0..1]}
ow ner multi instance loop

M ultiI nst an ce Lo op Orde rin g
<<Enumeration>>

Sequential
Parallel

Deriv at ion

Subst itu table D eriva tion

Proc ess

1

{subsets derived to[1]}
derived to process

1

{subsets derived from[1]}
derived from process

*

substitutable derivation
98 Business Process Definition MetaModel, Beta 1

6.7.2.7 Role Realization

Figure 6.69 - Role Realization

6.7.2.8 Abort Activity

Namespace: Activity Model
isAbstract: No
Generalization: “Simple Activity”

Description

An Abort Activity is a Simple Activity that interrupts the course of a Process. All activities in the Process should be
immediately ended. The Process is ended without compensation or event handling.

The type of all Abort Activity(ies) must be Abort Process provided by BPDM user library for the Activity Model
(Activity Library).

BPMN Notation

This symbol can alternatively represent:

1. Behavioral Change Part typed by the Abort instance of Behavioral Change

2. An Abort Activity

Figure 6.70 - Abort Activity Notation or 'Abort' Behavioral Change Part

6.7.2.9 Activity

Namespace: Activity Model
isAbstract: Yes
Generalization: “Interactive Part” “Processing Step”

Pe rfo rme r R ole

Proc e sso r Ro le

Ro le Re al izat io n
 * 1

realized performer role

*

{subsets ownedElement[*]}
role realization

1
{subsets owner[0..1]}
realizing processor role

E le me nt

Abort Ac tivity
or

Abort Behavioral Change Part
Business Process Definition MetaModel, Beta 1 99

Description

An Activity is a kind of Processing Step that activates a Processing Behavior (it operates over time) in the context of a
Process. It can:

• be ordered in time by Processing Succession

• operate under the responsibility of a Performer Role

• activate a sub-processe or be a simple task that start and stop

An Activity is also an Interactive Part that receives its inputs and outputs through Interactions coming from other
Interactive Parts in the Process (Activity, Interaction Role, Performer Role, Holder).

Associations

BPMN Notation

An Activity is represented by a rounded corner rectangle that MUST be drawn with a single thin black line.

Figure 6.71 - Activity Notation

6.7.2.10 Activity Loop

Namespace: Activity Model
isAbstract:
Generalization: “Embedded Process”

Description

An Activity Loop is an Embedded Process that can execute its their enclosed activities multiple times. The process can
proceed past the loop in several ways:

• After all subexecutions are complete, with a processing succession that has the loop as the source.

• After each subexecution, with processing succession that has the iterationEnd behavior part as an internal source. This
part is defined in a user (M1) library in the Activity Model, typed by the IterationEnd change also defined in the
library.

• After the first subexecution to complete, with a processing succession that has the iterationEndPart as an internal
source, and a guard evaluating to the string “first iteration.”

enclosing embedded process : Embedded Process
[*]

Embedded Process in which the activity is enclosed
Redefines enclosing behavioral step group

process type : Process [1] Type of the Activity
Subsets processing behavior type

An Activity
100 Business Process Definition MetaModel, Beta 1

• After each subexecution, but depending on conditions, with a processing succession that has the iterationEnd behavior
part as an internal source, and a guard specified by the modeler.

Associations

6.7.2.11 Actor

Namespace: Activity Model
isAbstract: No
Generalization: “Type”

Description

An Actor is an entity that is responsible for the execution of duties specified by a Performer Role

Further sub-type of Actor will be defines in specifications such as the the Organizational Structure Metamodel (OSM) to
add specific requirements such as and can as having certain skills or budget.

6.7.2.12 Conditional Loop

Namespace: Activity Model
isAbstract:
Generalization: “Activity Loop”

Description

Conditional Loop is a kind of Activity Loop that will execute its enclosed activities multiple times as a group while a
specified condition is true. If the condition is never true, the enclosed activities are never executed. The multiple
subexecutions are sequential.

Associations

6.7.2.13 Embedded Process

Namespace: Activity Model
isAbstract: No
Generalization: “Behavioral Step Group”

Description

An Embedded Process is a kind of Behavioral Step Group that groups a set of Activity that, as a whole, act as a
Processing Step. Thereby, an Embedded Process is typed by a Behavioral Happening that defines its start change and
a finish change.

max iteration : ValueSpecification [0..1] the maximum number of iteration
Subsets ownedElement

loop condition : Condition [1] Condition that controls the iterations of a Conditional Loop
Business Process Definition MetaModel, Beta 1 101

As any Processing Step, an Embedded Process can be interrupted or constrained in its Behavioral Happening course.

Associations

Constraint

[1] An enclosed activity of an Embedded Process must belong to the Process owning the Embedded Process

BPMN Notation

A Sub-Process Activity shares the same shape as the Activity object, which is a rounded rectangle. A Sub-Process
Activity is a rounded corner rectangle that MUST be drawn with a single thin black line. If the Sub-Process Activity is
also a transaction, it has a boundary drawn with a double line.

The Sub-Process Activity can be in a collapsed view that hides its details or a Sub-Process can be in an expanded view
that shows the details of its Process Type.

In the collapsed form, the Sub-Process Activity uses a marker to distinguish it as a Sub-Process Activity, rather than a
Simple Activity. The Sub-Process Activity marker MUST be a small square with a plus sign (+) inside. The square MUST
be positioned at the bottom center of the shape.

Figure 6.72 - Collapsed Sub-Process Activity Notation

Figure 6.73 - Uncollapsed Sub-Process Activity Notation

6.7.2.14 Error Activity

Namespace: Activity Model
isAbstract:

enclosed activity : Activity [*] Activity that is part of the Embedded Process
Redefines enclosed behavioral step

Sub-Process
Activity

+

102 Business Process Definition MetaModel, Beta 1

Generalization: “Simple Activity”

Description

An Error Activity is a kind of Simple Activity that produces an Error and that ends its enclosing Behavioral
Happening

In case where the Error Activity is part of an Embedded Process, the ended Behavioral Happening is this Embedded
Embedded Process, otherwise the ended Behavioral Happening is the Process that owns the Error Activity.

BPMN Notation

This symbol can alternatively represent:

1. Behavioral Change Part typed by the Error instance of Behavioral Change

2. An Error Activity

Figure 6.74 - Error Activity Notation or 'Error' Behavioral Change Part

6.7.2.15 Holder

Namespace: Activity Model
isAbstract: No
Generalization: “Interactive Part”

Description

A Holder is an Interactive Part storing items temporarily as they flow through the Process. For example, a document,
phone number, or package can flow along simple interactions, into a holder for some period, and flow out later. The type
of the Holder is the type of thing it can hold.

Non-normative Notation

A Holder is represented by a can that MUST be drawn with a single thin black line.

Figure 6.75 - Holder Notation

6.7.2.16 LoopTestTime

Namespace: Activity Model
isAbstract:

Error Activity
or

Error Behavioral Change Part

Holder

Holder
Business Process Definition MetaModel, Beta 1 103

Description

Enumeration of the following literal values:

6.7.2.17 Multi Instance Loop

Namespace: Activity Model
isAbstract:
Generalization: “Activity Loop”

Description

Multi Instance Loop is a kind of Activity Loop that will execute its enclosed activities as a group of times, as specified
by the number of instances ValueSpecification evaluated at the time the loop begins executing. A Multi Instance Loop
supports the option of sequential or parallel subexecutions as specified by its ordering attribute.

Attributes

Associations

6.7.2.18 MultiInstanceLoopOrdering

Namespace: Activity Model
isAbstract:

Description

Enumeration of the following literal values:

6.7.2.19 Performer Role

Namespace: Activity Model
isAbstract: No
Generalization: “Interactive Part” “Part Group”

after:

before:

ordering: MultiInstanceLoopOrdering []

number of instances : ValueSpecification [1] number of instance of iteration
Subsets ownedElement

Parallel: activities are executed in parallel

Sequential: the activities are executed sequentially
104 Business Process Definition MetaModel, Beta 1

Description

A Performer Role is a Part Group that takes responsibility of performing activities in the process. Being an Interactive
Part, a Performer Role also has responsibilities to fulfill Interactions that it is involved with other Performer Roles or
with Interaction Roles at the boundary of the Process. A Performer Role is a Typed Part for specifying Actor that can
play the role at process enactment.

A Performer Role can be decomposed into sub Performer Role to delegate responsibility for a subset of its activities or
interactions. A Performer Role may have a realization as defined by a Role Realization that further specifies how the
Performer Role will meet its responsibilities.

Associations

BPMN Notation

A Performer Role is represented by a Lane. A lane is a sub-partition of the Pool representing the Processor Role of the
process or a sub-partition of the Lane representing its delegating performer role.

A Lane will extend the entire length of its containing Pool or Lane, either vertically or horizontally . If the pool is
invisibly bounded, the lane associated with the pool must extend the entire length of the pool.

Text associated with the Lane (the Performer Role name) can be placed inside the shape, in any direction or location,
depending on the preference of the modeler or modeling tool vendor. Our examples place the name as a banner on the left
side (for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool name,
however, this is not a requirement.

Figure 6.76 - Horizontal Lane Notation

A Performer Role is represented by a Lane. A lane is a sub-partition of the Pool representing the Processor Role of the
process or a sub-partition of the Lane representing its delegating performer role.

performedActivity : Activity [*] specifies the set of Activity(ies) that are under the responsibility of
the Performer Role
Redefines enclosed part

player actor : Actor [0..1] Actor that, at runtime, is responsible for the execution of the respon-
sibilities specified by the Performer Role
Subsets partType

P
ro

ce
ss

or
 R

o
le

or

 P
er

fo
rm

er
 R

ol
e

P
er

fo
rm

er

R
ol

e
P

er
fo

rm
er

R

ol
e

P
ro

ce
ss

or
 R

o
le

or

 P
er

fo
rm

er
 R

ol
e

P
er

fo
rm

er

R
ol

e
P

er
fo

rm
er

R

ol
e

Business Process Definition MetaModel, Beta 1 105

A Lane will extend the entire length of its containing Pool or Lane, either vertically or horizontally . If the pool is
invisibly bounded, the lane associated with the pool must extend the entire length of the pool.

Text associated with the Lane (the Performer Role name) can be placed inside the shape, in any direction or location,
depending on the preference of the modeler or modeling tool vendor. Our examples place the name as a banner on the left
side (for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool name,
however, this is not a requirement.

Figure 6.77 - Vertical Lane Notation

6.7.2.20 Process

Namespace: Activity Model
isAbstract: No
Generalization: “Processing Behavior”

Description

A Process is a kind of Processing Behavior that describes specific Activity(ies) to be performed, Interactions to be
undertaken during its execution under the authority of a Processor Role (or delegated performer role s).

The process owns the set of activities to be performed as well as the Conditions on when such activities will be
performed and by which performer role. The process also owns the set of Interactive Parts that define the flow of
information and other resources between activities,Performer Role and Interaction Roles.

A specific Interaction Role defines the set of Interactions the process is responsible of: its is the Process Interaction
Boundary. The set of Interactions attached to the Process Interaction Boundary defines the inputs and outputs of the
process

A Process may utilize sub-processes with a Sub-Process Activity as well as be used in the context of other processes in
the same way.

Processor Role
or Performer Role

Performer
Role

Performer
Role
106 Business Process Definition MetaModel, Beta 1

Associations

Non Normative Notation

Each process diagram has a contents area. As an option, it may have a frame and a heading as shown in the following
figure. The frame is a rectangle. The frame may be omitted and implied by the border of the diagram area provided by a
tool. In case the frame is omitted, the heading is also omitted.

The diagram contents area contains the graphical symbols. The heading is a string contained in name tag (rectangle with
cutoff corner) in the upper leftmost corner of the rectangle, with the following syntax: <process name>

Figure 6.78 - Process Diagram

owned activity : Activity [*] Activity owned by the Process
Subsets owned behavioral step

owned embedded process : Embedded Process [*] Embedded Process owned by the Process
Subsets composite part

owned holder : Holder [*] Holder owned by the Process
Subsets composite part

owned process interaction boundary : Process
Interaction Boundary [0..1]

specifies the set of Interactions the process is responsible for.
This set of Interaction defines the inputs and outputs of the process
Subsets owned interaction role

owned processor role : Processor Role [0..1] Processor Role of the Process
Subsets composite part

substitutable derivation : Substitutable Derivation
[*]

< P ro ce s s N am e >

< Proces s C on tent>
Business Process Definition MetaModel, Beta 1 107

6.7.2.21 Process Interaction Boundary

Namespace: Activity Model
isAbstract: No
Generalization: “Interaction Role”

Description

The Process Interaction Boundary is the Interaction Role through which a Process interacts to get its inputs and
deliver its outputs.

The process is responsible to fulfill all Interactions attached to the Process Interaction Boundary.

6.7.2.22 Processor Role

Namespace: Activity Model
isAbstract: No
Generalization: “Performer Role”

Description

A Processor Role is the top-level Performer Role reponsible for all activities and interactions at the boundary of the
Process. As all Performer Roles, it can delegate responsibility for a subset of the process activities and interactions to
Performer Roles, which in can turn delegate smaller subsets to other Performer Roles (delegated performer role).

A Processor Role may be active or passive. An active processor will control and/or monitor the process and may manage
process resources. A passive processor delegates all responsibilities to delegee role. The actor of a passive processor
may be a “community”, consensus body or group of actors who have agreed to work together in a particular way. The
actor of an active processor must be an individual, system or organization capable of taking action, initiating and
responding to Interactions and managing resources.

Associations

BPMN Notation

A Processor Role is represented by a Pool. A Pool is a square-cornered rectangle that MUST be drawn with a solid single
black line.

To help with the clarity of the Diagram, A Pool will extend the entire length of the Diagram, either horizontally or
vertically. However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and modeling tools
can use Pools (and Lanes) in a flexible manner in the interest of conserving the “real estate” of a Diagram on a screen or
a printed page.

The Processor Role Pool MAY be presented without a boundary.

role realization : Role Realization [*] specification of the set of Performer Role that the Processor Role is
the realization of
Subsets ownedElement
108 Business Process Definition MetaModel, Beta 1

Figure 6.79 - Processor Role Notation

6.7.2.23 Role Realization

Namespace: Activity Model
isAbstract: No
Generalization: “Element”

Description

A role realization takes a realized performer role and defines a processor role and the associated process that specifies the
specific process to be enacted by the specified processor role as required to meet the responsibilities of the realized
performer role. A performer role may be realized by any number of processor roles as long as they each satisfy the
responsibilities of the role.

Associations

6.7.2.24 Simple Activity

Namespace: Activity Model
isAbstract: No
Generalization: “Activity”

Description

A Simple Activity is an Activity which process type is no further composed of other activities

Constraint

[1] A Simple Activity is typed by a process that has no owned activity

self.oclIsKindof(Simple Activity) implies self.process type ->owned activity ->isEmpty()

BPMN Notation

An Activity is represented by a rounded corner rectangle that MUST be drawn with a single thin black line.

realized performer role : Performer Role [1] Performer Role that is the specification of the Role Realization.

Pr
oc

es
so

r R
ol

e
Pr

oc
es

so
r R

ol
e
Business Process Definition MetaModel, Beta 1 109

Figure 6.80 - Activity Notation

6.7.2.25 Sub-Process Activity

Namespace: Activity Model
isAbstract: No
Generalization: “Activity”

Description

A Sub-Process Activity is an Activity which process type is further composed of other activities

Constraint

[1] A Sub-Process Activity is typed by a process that has owned activity

self.oclIsKindOf(Activity) implies self.process type ->owned activity ->notEmpty()

BPMN Notation

A Sub-Process Activity shares the same shape as the Activity object, which is a rounded rectangle. A Sub-Process
Activity is a rounded corner rectangle that MUST be drawn with a single thin black line. If the Sub-Process Activity is
also a transaction, it has a boundary drawn with a double line.

The Sub-Process Activity can be in a collapsed view that hides its details or a Sub-Process can be in an expanded view
that shows the details of its Process Type.

In the collapsed form, the Sub-Process Activity uses a marker to distinguish it as a Sub-Process Activity, rather than a
Simple Activity. The Sub-Process Activity marker MUST be a small square with a plus sign (+) inside. The square MUST
be positioned at the bottom center of the shape.

Figure 6.81 - Collapsed Sub-Process Activity Notation

An Activity

Sub-Process
Activity

+

110 Business Process Definition MetaModel, Beta 1

Figure 6.82 - Uncollapsed Sub-Process Activity Notation

6.7.2.26 Substitutable Derivation

Namespace: Activity Model
isAbstract:
Generalization: “Derivation”

Description

A Substitutable Derivation is a kind of Derivation that derives one Process from another and that does not alter the
Interaction at the owned process interaction boundary

Associations

6.7.2.27 Instance: Abort Process

Class: Process

Description

Links

6.7.2.28 Instance: Activity Library

Class: Package

derived to process : Process [1] Subsets derived to

Played End Opposite End

behavioral change context induced behavioral change Abort

ownedType package Activity Library
Business Process Definition MetaModel, Beta 1 111

Description

Links

6.7.2.29 Instance: Activity Loop Happening

Class: Behavioral Happening

Description

Links

6.7.2.30 Instance: Error Process

Class: Process

Description

Links

Played End Opposite End

nestedPackage nestingPackage BPDM Library

nestingPackage nestedPackage Compensation Library

package ownedType Error Process

package ownedType Abort Process

package ownedType Activity Loop Happening

package ownedType Iteration End

Played End Opposite End

ownedType package Activity Library

owner behavioral happening owned behavioral change part iterationEndPart

owner course owned succession start-iterationend

owner course owned succession interationend-end

specific generalization Generalization

Played End Opposite End

behavioral change context induced behavioral change Error

ownedType package Activity Library
112 Business Process Definition MetaModel, Beta 1

6.7.2.31 Instance: Generalization

Class: Generalization

Description

Links

6.7.2.32 Instance: interationend-end

Class: Succession

Description

Links

6.7.2.33 Instance: Iteration End

Class: Behavioral Change

Description

Links

6.7.2.34 Instance: iterationEndPart

Class: Behavioral Change Part

Played End Opposite End

general Universal Behavioral Happening

generalization specific Activity Loop Happening

Played End Opposite End

next succession predecessor iterationEndPart

owned succession owner course Activity Loop Happening

previous succession successor endPart

Played End Opposite End

behavioral change part type behavioral change usage iterationEndPart

ownedType package Activity Library
Business Process Definition MetaModel, Beta 1 113

Description

Links

6.7.2.35 Instance: start-iterationend

Class: Succession

Description

Links

6.8 BPMN Extensions

6.8.1 Introduction
The BPMN Extension provides additions to the Activity Model for BPMN. These provide BPMN names for special
usages of BPDM concepts and additional functionality specific to BPMN. The BPMN Extension includes:

• Activities for scripts, tasks, termination, compensation, and cancelling, along with Embedded processes for
transactions.

• Directives for Processes and Embedded Processes, such as adhoc directives.

• Course Control Parts specific to BPMN, such as Inclusive Merge, and specializations of BPDM course control parts,
such as Inclusive Decisions.

• User (M1) library for compensation and cancelling.

The descriptions of these and other elements in the BPMN Extension are available in the BPMN specification.

Played End Opposite End

behavioral change usage behavioral change part type Iteration End

owned behavioral change part owner behavioral happening Activity Loop Happening

predecessor next succession interationend-end

successor previous succession start-iterationend

Played End Opposite End

next succession predecessor startPart

owned succession owner course Activity Loop Happening

previous succession successor iterationEndPart
114 Business Process Definition MetaModel, Beta 1

6.8.2 Metamodel Specification
The BPMN Extension provides additions to the Activity Model for BPMN. These provide BPMN names for special
usages of BPDM concepts and additional functionality specific to BPMN

6.8.2.1 Adhoc Extension

Figure 6.83 - Adhoc Extension

6.8.2.2 Activity Extensions

Figure 6.84 - Activity Extensions

Embedded Process

Adhoc Process Direct ive
+AdhocOrdering[0..1]:AdhocOrdering
+AdHocCompletionCondition[0..1]:Expression

Process

Process Direc tive

*
{subsets ownedElement[*]}
owned process directive

0..1
{subsets owner[0..1]}
owner process

Element

*
{subsets ownedElement[*]}
owned process directive

0..1
{subsets owner[0..1]}
owner embedded process

Script Ac tiv ity
+language:String
+body:Expression

Activ ity

Abort Ac tiv ity

Simple Ac tiv ity

Terminate

Task

Business Process Definition MetaModel, Beta 1 115

6.8.2.3 Course Control Part Extension

Figure 6.85 - Course Control Part Extension

6.8.2.4 BPMN Extensions Library: Compensate Process Instance

Figure 6.86 - BPMN Extensions Library: Compensate Process Instance

Co urse Co ntrol Pa rt

Incl usiv e Dec isio n

Incl usiv e Me rge

0..1 default

Succ essi on

Compl ex Dec isio n

+split expression:ValueSpecification

Comp le x Merge

+merge expression:ValueSpecification

Pa ra ll el Spl it

Exc lusi ve Joi n

Exc lusi ve Spli t

Exc lusiv e De cisio n

Excl usive Me rg e

Parall el Joi n

Eve nt Dec isio n

pac k age ownedTypeownedTy pe
ownedType

pac kage

ow nedTy pe

pac kage

Compensation Library:Package

The graphic al c ontainement means that the Library
 pac kage ow ns behav ioral c hanges thr ough the
 'ow ned ty pe ' as s oc iation

Compensate Process:
Process

Compensate:
Behavioral Change

induced behavioral change

behavioral change context

Activity Library:Package

nestedPackage

nestingPackage

Cancel Process:
Process

Cancel:Behavioral
 Change

pac kage

induced behavioral change

behavioral change context
116 Business Process Definition MetaModel, Beta 1

6.8.2.5 BPMN Extensions Library: BPMN Universal Process instance

Figure 6.87 - BPMN Extensions Library: BPMN Universal Process instance

6.8.2.6 Sequence Flow Extension

Figure 6.88 - Sequence Flow Extension

owned succ ession

owned succ ession

owner course

owned succ ession
owner behavioral happening

owned behav iora l c hange part
owner course

owned behavioral change part

owner course

owned succ ession

owner behav ioral happen ing

BPMN Univ ersa l P rocess:Process

owned behavioral c hange part

owned suc cession

owner behavio ral happening

owned behav iora l c hange part

owner course

owner behav iora l happen ing

Un iv ersal Behavioral Happen ing:Behav iora l Happen ing

sta rtPart:Behaviora l
 Change Part endPart:Behav iora l

 Change P artstart-end:
Succ ession

prev ious suc cession

suc cessor

predec essor

next succ ession

compensa tePart:
Behav iora l Change

 P art

start-c ompensate :
S uc cessionnext succ ession

predec essor

suc cessor

prev ious suc cession

Start:Behav iora l
 Change

behavioral c hange part type

behavioral c hange usage

behavioral c hange part type

behav iora l change usage

Compensate:
Behav iora l Change

behav io ra l change part type

behav iora l change usage

End:Behav iora l
 Change

The g raphic al c ontainement means that the
 univ ersa l owns behav iora l c hange parts and
 succ essions respec tive ly th rough the 'owned
 behav iora l change part' assoc iation and the
 'owned suc cession ' associa tion

compensate-end:
Suc cession

next succ ession

predecessor

suc cessor

p revious succ ession

:Genera lization

general

spec ific

generalization

Cancel:Behav iora l
 Change

c anc elPart:
Behavioral Change

 Part

sta rt-canc el:
Succ ession

succ essorprev ious succ ession

behavio ral c hange part type

behav iora l change usage

predecessor

next suc cession

startFromS equenc e
Part:Behavioral
 Change Part

cance l-end :
Succ ession

predec essor

next suc cession

succ essor

prev ious succ ession

startseq-end :
S uc cessionpredecessor

suc cessor

next suc cession

prev ious suc cession

Processing Succession

Sequence Flow

Business Process Definition MetaModel, Beta 1 117

6.8.2.7 Message Extensions

Figure 6.89 - Message Extensions

6.8.2.8 Artifact Flow Extensions

Figure 6.90 - Artifact Flow Extensions

6.8.2.9 Event Extension

Figure 6.91 - Event Extension

6.8.2.10 Transaction Extensions

Si mp le Intera c t i on

M ess ag e

S tart M es sa ge

En d M es sa ge

I nterme dia te M es sa ge

M ess ag e F low

S imp le In te ra cti on

A rti fa ct S eq u en ce Flo w

A rtif ac t Flo w

Ev ent

Change Condi tion Step

118 Business Process Definition MetaModel, Beta 1

Figure 6.92 - Transaction Extensions

6.8.2.11 Compensation Extensions

Figure 6.93 - Compensation Extensions

6.8.2.12 Adhoc Process Directive

Namespace: BPMN Extensions
isAbstract:
Generalization: “Process Directive”

Description

Attributes

6.8.2.13 AdhocOrdering

Namespace: BPMN Extensions
isAbstract:

Description

Enumeration of the following literal values:

AdhocOrdering: AdhocOrdering [0..1]

AdHocCompletionCondition: Expression [0..1]

Transact ion

Embedded Process

Simple Ac tiv i ty

Compensate Ac tiv ity

Compensating Ac tiv ity

Ac tivit y

Canc el Ac tiv it y

Business Process Definition MetaModel, Beta 1 119

6.8.2.14 Artifact Flow

Namespace: BPMN Extensions
isAbstract:
Generalization: “Simple Interaction”

Description

An Artifact Flow is a Simple Interaction which has a Holder as one of its Interactive Parts.

6.8.2.15 Artifact Sequence Flow

Namespace: BPMN Extensions
isAbstract:
Generalization: “Simple Interaction”

Description

An Artifact Sequence Flow is a Simple Interaction between two activities that connect an End Message from the
source Activity and a Start Message of the target Activity.

BPMN Notation

An Artifact Sequence Flow is represented by a is line with a solid arrowhead that MUST be drawn with a solid single
line.

The type of the element transferred by the information flow is represented by a portrait-oriented rectangle that has its
upper-right corner folded over that MUST be drawn with a solid single black line.

Figure 6.94 - Artifact Sequence Flow Notation

6.8.2.16 Cancel Activity

Namespace: BPMN Extensions
isAbstract: No

parallel:

sequential:

Activ ity (to)Activity (f ro m)

Transferred Item Type
120 Business Process Definition MetaModel, Beta 1

Generalization: “Simple Activity”

Description

A Cancel Activity is a kind of Simple Activity that causes the Cancel of its enclosing Behavioral Happening

In case where the Cancel Activity is part of an Embedded Process, the cancelled Behavioral Happening is this
Embedded Process, otherwise the cancelled Behavioral Happening is the Process that owns the Cancel Activity

BPMN Notation

This symbol can alternatively represent:

1. Behavioral Change Part typed by the Cancel instance of Behavioral Change

2. A Cancel Activity

Figure 6.95 - Cancel Activity Notation or 'Cancel' Behavioral Change Part

6.8.2.17 Compensate Activity

Namespace: BPMN Extensions
isAbstract:
Generalization: “Simple Activity”

Description

Compensate Activity is a kind of Simple Activity that ends a Process and indicates that a Compensation is necessary.

BPMN Notation

Figure 6.96 - Compensate Activity Notation

6.8.2.18 Compensating Activity

Namespace: BPMN Extensions
isAbstract:
Generalization: “Activity”

Cancel Activity
or

Cancel Behavioral Change Part

Compensate Activity
Business Process Definition MetaModel, Beta 1 121

Description

A Compensating Activity is an Activity that follows a Change Condition Step conditionned by the Compensate
Behavioral Change. A Compensating Activity cannot have successors.

Constraint

[1] A compensating activitycannot have next processing succession

BPMN Notation

A Compensating Activity share the standard activity shape with the Compensate marker displayed in the bottom center
of the activity.

Figure 6.97 - Compensating Activity Notation

6.8.2.19 Complex Decision

Namespace: BPMN Extensions
isAbstract:
Generalization: “Parallel Split”

Description

A Complex Decision is a Parallel Split that has an expression determining which outgoing Successions apply.

Attributes

BPMN Notation

Figure 6.98 - Complex Decision Notation

split expression: ValueSpecification [] has to evaluate to a boolean value that when evaluated to true enables the split.

Compensating
Activity

Alternative 1

Alternative 2

Default Alternative
122 Business Process Definition MetaModel, Beta 1

6.8.2.20 Complex Merge

Namespace: BPMN Extensions
isAbstract:
Generalization: “Exclusive Join”

Description

A Complex Merge is an Exclusive Join that has an expression determining which which incoming Successions must
apply for the merge to apply.

Attributes

BPMN Notation

Figure 6.99 - Complex Join Notation

6.8.2.21 End Message

Namespace: BPMN Extensions
isAbstract:
Generalization: “Message”

Description

An End Message is a Message that has a succession to the endPart instance of Behavioral Change Part of the
Processing Behavior. The receipt of this Message precedes the end of the Processing Behavior.

End Messages are Messages that have a immediate processing succession from their start part to the end part a process.
The sending the message is simultaneous with the end of the process.

BPMN Notation

Notation for End Message or Simple Interaction categorized as an End Message

merge expression: ValueSpecification []
Business Process Definition MetaModel, Beta 1 123

Figure 6.100 - End Message Notation

6.8.2.22 Event

Namespace: BPMN Extensions
isAbstract:
Generalization: “Change Condition Step”

Description

A BPMN Event is represented by a Change Condition Step in BPDM.

6.8.2.23 Event Decision

Namespace: BPMN Extensions
isAbstract:
Generalization: “Parallel Split”

Description

An Event Decision applies a race connector to the parts on the target end of processing successions that have the event
decision as source (see Processing Behavior). The targeted parts are change condition steps. To wait for incoming
messages, these can include behavioral change condition steps detecting the finish of simple interactions from the
boundary to the processor role.

BPMN Notation

Figure 6.101 - Event Decision Notation

6.8.2.24 Exclusive Decision

Namespace: BPMN Extensions
isAbstract:

End Message

Change Condit ion Step 1, monitoring a Simple Interaction

Change Condit ion Step 2, monitoring a Simple Interaction

Change Condition Step 3, monitoring a Time Change
124 Business Process Definition MetaModel, Beta 1

Generalization: “Exclusive Split”

Description

Same as Exclusive Split but with a different name in BPMN

BPMN Notation

The Exclusive Split shares the same basic shape, called a Gateway, of the generic Course Control Part. The Exclusive
Split MAY use a marker that is shaped like an “X” and is placed within the Gateway diamond to distinguish it from other
Course Control Parts. This marker is not required . A Diagram SHOULD be consistent in the use of the “X” internal
indicator. That is, a Diagram SHOULD NOT have some Exclusive Splits with an indicator and some Exclusive Splits
without an indicator.

The default succession is represented by a default Marker that MUST be a backslash near the beginning of the line
representing the Succession.

Figure 6.102 - Exclusive Split Notation

6.8.2.25 Exclusive Merge

Namespace: BPMN Extensions
isAbstract:
Generalization: “Exclusive Join”

Description

Same as Exclusive Join but with a different name in BPMN.

Alternative 1

Alternative 2

Default Alternative

Alternative 1

A lternative 2

Default Alternative

X

Business Process Definition MetaModel, Beta 1 125

BPMN Notation

The Exclusive Join shares the same basic shape of the generic Course Control Part.

Figure 6.103 - Exclusive Merge Notation

6.8.2.26 Inclusive Decision

Namespace: BPMN Extensions
isAbstract:
Generalization: “Parallel Split”

Description

Inclusive Decision is a Parallel Split that has an outgoing Succession specified as the default if none of the other
outgoing successions apply due their conditions.

Associations

default : Succession [0..1] Succession enabled by default if no other next succession connected
to the Inclusive Decision has been enabled.
126 Business Process Definition MetaModel, Beta 1

BPMN Notation

Figure 6.104 - Inclusive Split Notation

6.8.2.27 Inclusive Merge

Namespace: BPMN Extensions
isAbstract:
Generalization: “Course Control Part”

Description

An Inclusive Merge is a Course Control Part that requires none of the upstream activities to be executing for the join
to apply.

BPMN Notation

Figure 6.105 - Inclusive Merge Notation

6.8.2.28 Intermediate Message

Namespace: BPMN Extensions
isAbstract:
Generalization: “Message”

Condition 1

Condition 2

Default
Business Process Definition MetaModel, Beta 1 127

Description

An Intermediate Message is a Message that has a succession to another Message.

BPMN Notation

Figure 6.106 - Intermediate Message Notation or Change Condition Step Monitoring an incoming Message

6.8.2.29 Message

Namespace: BPMN Extensions
isAbstract: No
Generalization: “Simple Interaction”

Description

A Message is a kind of Simple Interaction which has an Interaction Role as one of its Interactive Parts.

Constraint

[1] At least one of the Interactive Parts of a Message must be an Interaction Role.

BPMN Notation

The shape of Message depends on its sub-types.

The line connecting a Message to its Interaction Role(s) MUST have an open arrowhead and MUST be drawn with a
dashed single black line.

The line connecting a Message to other kind of Interactive Part MUST have a solid arrowhead and MUST be drawn
with a solid single line.

Figure 6.107 - Message Notation

6.8.2.30 Message Flow

Namespace: BPMN Extensions
isAbstract:

Intermediate Message

Start Message End Message Intermediate Message

Message Flow
128 Business Process Definition MetaModel, Beta 1

Generalization: “Message”

Description

An Message Flow is a Message that has no succession to any other Message or Behavioral Change Part. Such a
Message doesn't have any influence on the course of its owning Processing Behavior.

BPMN Notation

A Message Flow is line with an open arrowhead that MUST be drawn with a dashed single black line.

Figure 6.108 - Message Flow Notation

6.8.2.31 Process Directive

Namespace: BPMN Extensions
isAbstract:
Generalization: “Element”

Description

6.8.2.32 Script Activity

Namespace: BPMN Extensions
isAbstract:
Generalization: “Activity”

Description

Attributes

6.8.2.33 Sequence Flow

Namespace: BPMN Extensions
isAbstract:
Generalization: “Processing Succession”

language: String []

body: Expression []

Message Flow
Business Process Definition MetaModel, Beta 1 129

Description

Sequences Flow is Processing Succession from one part to another (see Processing Behavior). If the source part of the
succession is typed (not a control part), then if the source part has no intermediate events attached, the source end refers
to the end part (which can be omitted as the default), otherwise to the finish part. If the target part is typed, then the
target part refers to the start part (which can be omitted as the default).

BPMN Notation

A Succession is line with a solid arrowhead that MUST be drawn with a solid single line.

Figure 6.109 - Succession Notation

6.8.2.34 Start Message

Namespace: BPMN Extensions
isAbstract:
Generalization: “Message”

Description

A Start Message is a Message that has a succession to the startPart instance of Behavioral Change Part of the
Processing Behavior. The receipt of this Message precedes the start of the Processing Behavior.

Start Messages are Messages that have a processing succession from their end part to the start part of a process. The
receipt of the message creates a new execution of the process.

BPMN Notation

Notation for Start Message or Simple Interaction categorized as a Start Message.

Figure 6.110 - Start Message Notation

6.8.2.35 Task

Namespace: BPMN Extensions
isAbstract:
Generalization: “Simple Activity”

Description

BPMN name for Simple Activity

A succession

Start Message
130 Business Process Definition MetaModel, Beta 1

BPMN Notation

An Activity is represented by a rounded corner rectangle that MUST be drawn with a single thin black line.

Figure 6.111 - Activity Notation

6.8.2.36 Terminate

Namespace: BPMN Extensions
isAbstract:
Generalization: “Abort Activity”

Description

BPMN Notation

This symbol can alternatively represent:

1. Behavioral Change Part typed by the Abort instance of Behavioral Change.

2. An Abort Activity

Figure 6.112 - Abort Activity Notation or 'Abort' Behavioral Change Part

6.8.2.37 Transaction

Namespace: BPMN Extensions
isAbstract:
Generalization: “Embedded Process”

Description

A Transaction is a kind of Embedded Process which enclosed activity (ies) can be rolled back by the mean of an Actor.

BPMN Notation

An Activity

Abort Activity
or

Abort Behavioral Change Part
Business Process Definition MetaModel, Beta 1 131

Figure 6.113 - Transaction Notation

6.8.2.38 Instance: BPMN Universal Process

Class: Process

Description

Links

6.8.2.39 Instance: Cancel Process

Class: Process

Description

Links

Played End Opposite End

owned succession startseq-end

ownedType package Compensation Library

owner behavioral happening owned behavioral change part compensatePart

owner behavioral happening owned behavioral change part cancelPart

owner course owned succession start-cancel

owner course owned succession cancel-end

owner course owned succession start-compensate

specific generalization Generalization

Played End Opposite End

behavioral change context induced behavioral change Cancel

ownedType package Compensation Library

Transaction
132 Business Process Definition MetaModel, Beta 1

6.8.2.40 Instance: cancel-end

Class: Succession

Description

Links

6.8.2.41 Instance: Cancel

Class: Behavioral Change

Description

Links

6.8.2.42 Instance: cancelPart

Class: Behavioral Change Part

Description

Links

Played End Opposite End

next succession predecessor cancelPart

owned succession owner course BPMN Universal Process

previous succession successor endPart

Played End Opposite End

behavioral change part type behavioral change usage cancelPart

induced behavioral change behavioral change context Cancel Process

ownedType package Compensation Library

Played End Opposite End

behavioral change usage behavioral change part type Cancel

owned behavioral change part owner behavioral happening BPMN Universal Process

predecessor next succession cancel-end

successor previous succession start-cancel
Business Process Definition MetaModel, Beta 1 133

6.8.2.43 Instance: Compensate Process

Class: Process

Description

Links

6.8.2.44 Instance: compensate-end

Class: Succession

Description

Links

6.8.2.45 Instance: Compensate

Class: Behavioral Change

Description

Compensate is a Behavioral Change that manifests that compensation is occuring following an Abort of a Process

Links

Played End Opposite End

behavioral change context induced behavioral change Compensate

ownedType package Compensation Library

Played End Opposite End

next succession predecessor compensatePart

previous succession successor endPart

Played End Opposite End

behavioral change part type behavioral change usage compensatePart

induced behavioral change behavioral change context Compensate Process

ownedType package Compensation Library
134 Business Process Definition MetaModel, Beta 1

6.8.2.46 Instance: compensatePart

Class: Behavioral Change Part

Description

Links

6.8.2.47 Instance: Compensation Library

Class: Package

Description

Links

6.8.2.48 Instance: Generalization

Class: Generalization

Description

Links

Played End Opposite End

behavioral change usage behavioral change part type Compensate

owned behavioral change part owner behavioral happening BPMN Universal Process

predecessor next succession compensate-end

successor previous succession start-compensate

Played End Opposite End

nestedPackage nestingPackage Activity Library

package ownedType Cancel

package ownedType Compensate

package ownedType BPMN Universal Process

package ownedType Cancel Process

package ownedType Compensate Process

Played End Opposite End
Business Process Definition MetaModel, Beta 1 135

6.8.2.49 Instance: start-cancel

Class: Succession

Description

Links

6.8.2.50 Instance: start-compensate

Class: Succession

Description

Links

6.8.2.51 Instance: startFromSequencePart

Class: Behavioral Change Part

Description

Links

general Universal Behavioral Happening

generalization specific BPMN Universal Process

Played End Opposite End

next succession predecessor startPart

owned succession owner course BPMN Universal Process

previous succession successor cancelPart

Played End Opposite End

next succession predecessor startPart

owned succession owner course BPMN Universal Process

previous succession successor compensatePart

Played End Opposite End

predecessor next succession startseq-end
136 Business Process Definition MetaModel, Beta 1

6.8.2.52 Instance: startseq-end

Class: Succession

Description

Links

6.9 Interaction Protocol Model

6.9.1 Introduction
The Interaction Protocol Model is for capturing choreographies. It enables interactions to be grouped together into larger,
reusable interactions. For example, an interaction that exchanges goods between companies might be used with other
interactions within a larger protocol representing a partnership of the companies. This protocol might be adopted by a
standards body and reused between many pairs of companies. The interactions in a protocol may be simple interactions
that have no sub-interactions, or may be other protocols.

The Interaction Model provides:

• Processing behaviors with steps that are interactions (Interaction Protocols).

• Interactions representing the reuse of protocols (Compound Interactions).

• A way to specify how a reused protocol ties in with the protocols using it (Interactive Part Binding).

Interaction Protocols are Processing Behaviors where the Behavioral Steps are Interactions. For example, a protocol
between two companies might start with one company sending another an order, then the other sending back a product,
and then the original company sending payment, and finally receiving a receipt. These four simple interactions can be
grouped into an interaction protocol, with processing successions between them to specify which interaction comes before
which (see the Processing Behavior Model). The two companies are interaction roles in the protocol (see the Simple
Interaction Model).

Compound Interactions are Interactions that are also Processing Steps, enabling them to reuse Interaction Protocols. For
example, two companies might use the ordering protocol described above many times as part of a larger partnership. This
partnership is a larger interaction protocol that reuses the ordering protocol many times. Each reuse is represented as a
compound interaction in the larger partnership protocol. Compound Interactions are complementary to Simple
Interactions, which are Interactions that do not have sub-interactions (see the Simple Interaction Model).

Played End Opposite End

next succession predecessor startFromSequencePart

owned succession BPMN Universal Process

previous succession successor endPart
Business Process Definition MetaModel, Beta 1 137

Interactive Part Bindings are Part Bindings that specify how a protocol reused by a Compound Interaction ties in with the
larger protocol reusing it (see the Part Binding subsection in the Composition Model). For example, reusing the ordering
protocol described above requires specifying which part in the larger partnership identifies the buying company and
which identifies the selling company. Both companies will play these roles at some point in the larger partnership, so the
bindings must be specified for each compound interaction.

6.9.2 Metamodel Specification
The Interaction Protocol Model is for capturing choreographies. It enables interactions to be grouped together into larger,
reusable interactions. For example, an interaction that exchanges goods between companies might be used with other
interactions within a larger protocol representing a partnership of the companies. This protocol might be adopted by a
standards body and reused between many pairs of companies. The interactions in a protocol may be simple interactions
that have no sub-interactions, or may be other protocols.

6.9.2.1 Interaction Protocol

Figure 6.114 - Interaction Protocol

6.9.2.2 Compound Interaction

Namespace: Interaction Protocol Model

P roc essi ng B eh av io r

Inte rac t iv e Pa rt

Co mp ou nd Inte rac t io n B i nd in g

Com po un d In tera ct i on

*

{sub sets o wne dE lement [*]}

owned binding

0..1

{subsets owner[0..1]}

o wne d binding

P ro ce ssin g S te p

Inte rac t io n P ro toc ol

{redef ines processing behavior type[1] }

{redef ines processing behavior usage[*]}

0. .1interaction type

*inte racti on protocol usage

1

{subsets player part [1] }

player interactive part

*

2.. *

{subsets connected part [2. .*] }

/ involved interac tive part

*

{subsets part c on ne ct ion[*] }

/ involv ing interaction

1

{subsets internal played part [1] }

played interac t ion role

*

In tera ct i on

*

{sub sets i nv ol ve d
 i ntera ct ive p art [2. .*]}

involved
 interactive part

*

{subsets involv ing
 interaction[*]}

involv ing compound
 interact ion

*

{redefines owned behavioral step[*] }

owned interact ion

0..1
{redef ines owner processing behavior[1]}

owner interac t ion protocol

B e h av i o ral S te p P art Co nn ec t io n

Con ne cte d P a rt
 B i n din g

Inte rac t io n R ol e

1. .*

{subsets owned interact ion role[*] }

owned interaction protocol role

0. .1

{subsets owner process ing behavior[1] }

owned interac t ion role

T yp ed P art

B in da bl e Co nn ec t io n
138 Business Process Definition MetaModel, Beta 1

isAbstract: No
Generalization: “Bindable Connection” “Interaction” “Processing Step”

Description

A Compound Interaction is an Interaction that is also a Processing Step, enabling it to reuse an Interaction Protocol.
Compound Interaction is complementary to Simple Interaction, which is an Interaction that doesn't have sub-
interactions.

Associations

Non Normative Notation

A compound interaction is represented by a rounded corner rectangle that MUST be drawn with a double thin black line.

Figure 6.115 - Compound Interaction Notation

6.9.2.3 Compound Interaction Binding

Namespace: Interaction Protocol Model
isAbstract: No
Generalization: “Connected Part Binding”

Description

An Compound Interaction Binding is a Connected Part Binding that specifies how an Interaction Protocol reused by
a Compound Interaction ties in with the larger Processing Behavior reusing it.

For each Interactive Part involved in a Compound Interaction, there is a Compound Interaction Binding that
specifies which Interaction Role it plays in the Interaction Protocol.

interaction type : Interaction Protocol [0..1] Interaction Protocol that defines the type of the Compound
Interaction
Redefines processing behavior type

involved interactive part : Interactive Part [*] Interactive Part involved in the Compound Interaction
Subsets involved interactive part

owned binding : Compound Interaction Binding [*] Subsets ownedElement

C om pound
In te r ac tion
Business Process Definition MetaModel, Beta 1 139

Associations

6.9.2.4 Interaction Protocol

Namespace: Interaction Protocol Model
isAbstract: No
Generalization: “Processing Behavior”

Description

An Interaction Protocol is a kind of Processing Behavior where Behavioral Steps are Interactions that occur between
Interaction Roles.

The set of Interactions defines the purpose of the Interaction Protocol.

Associations

6.10 Class Hierarchies
The Class Hierarchies is not a real package. It groups diagrams that provide a synthesis of class hierarchies.

played interaction role : Interaction Role [1] The Interaction Role that is played by the player interactive part
connected by the Compound Interaction Binding
Subsets internal played part

player interactive part : Interactive Part [1] The Interactive PartInteractive Part being playing the played
interaction role as defined by the Compound Interaction Binding
Subsets player part

owned interaction protocol role : Interaction Role
[1..*]

Interaction Role owned by the Interaction Protocol
Subsets owned interaction role

owned interaction : Interaction [*] Redefines owned behavioral step
140 Business Process Definition MetaModel, Beta 1

6.10.1 Happening OverTime Hierarchy

Figure 6.116 - Happening OverTime Hierarchy

6.10.2 Change Hierarchy

Figure 6.117 - Change Hierarchy

Happening Ov er Time

Cloc k

Behaviora l Happen ing

Proc essing Behav ior

Int erac tion Pro toco l

Process

Change

Behav iora l Change

Fac t Change

T ime Change

Cycle Change

Relat iv e T imeDate
 Change

T imeDate Change

Business Process Definition MetaModel, Beta 1 141

6.10.3 Succession Hierarchy

Figure 6.118 - Succession Hierarchy

6.10.4 Behavioral Step Hierarchy

Figure 6.119 - Behavioral Step Hierarchy

Processing Succession

Succession

Immediate Succession

Immediate Processing
 Succession

Behavioral St ep

Embedded P roc ess

Change Condition Step

Pr oc ess ing S tep

Ac tiv it y

Interac tion

Compound Int er act ion

Simple Interac tion

S ub- Proc ess Ac tiv it y

S imple A ct iv i ty

Canc el A c tiv i ty

Abort Ac tiv it y

B ehav ioral Step Group

Error Ac tiv it y

142 Business Process Definition MetaModel, Beta 1

6.10.5 Interactive Part Hierarchy

Figure 6.120 - Interactive Part Hierarchy

6.10.6 Simple Interaction Hierarchy

Figure 6.121 - Simple Interaction Hierarchy

I n t e r a c t iv e P a rt

I n t e ra c t io n R o le

H o ld e r

P e rf o rm e r R o le

A c t iv it y

P ro c e ss I n t e ra c t io n
 B o u n d a ry

S imp le I nt erac t io n

Art ifa c t Flo w

Artif ac t Se qu en ce Flo w

M essa ge

End Me ssa ge

In te rme dia te Messa ge

Me ssag e Flo w

St a rt M essa ge

Business Process Definition MetaModel, Beta 1 143

144 Business Process Definition MetaModel, Beta 1

7 BPDM-BPEL Mapping

7.1 General
This document will cover a non-normative mapping from BPDM constructs to WS-BPEL 2.0 elements. The basis for the
mapping are the “Mapping to BPEL” in [BPMN] (Section 11) and “BPMN to BPDM Mapping” in [BPDM] (Section 6).

7.1.1 Topological Considerations
The Business Process Definition Metamodel (BPDM) is a graph-oriented language in which control and action nodes can
be connected almost arbitrarily. In contrast, Business Process Execution Language (BPEL) is a mainly block-structured
(albeit providing graph-oriented constructs with syntactical limitations) language with a properly nested structure. As
BPDM and BPEL represent two fundamentally different classes of languages, the mapping is technically challenging;
while BPEL to BPDM mapping is trivial, not all BPDM processes can easily be converted to BPEL.

To map a BPDM process onto BPEL code, a transformation from a graph structure to block structure is needed. For this
purpose, the process can be decomposed into components with one entry and one exit point [BPM-06-02]. These
components can then be mapped onto suitable “BPEL blocks.” The decomposition helps to define an iterative approach
which allows an incremental transformation of a “componentized” BPDM process to a block-structured BPEL process.

A component may be well-structured so that it can be directly mapped onto BPEL structured activities, whereas a non-
well-structured component can be translated into BPEL via event-action rules. The latter approach can be applied to
translating any component to BPEL, yet it produces less readable BPEL code and will therefore be applied only to the
remaining non-well-structured components. The algorithm is explained in detail in [BPM-06-02] that addresses the same
problem in translation between BPMN and BPEL.

7.1.2 Generator Model
In general transformation from one metamodel to another metamodel requires additional information. This information is
provided in a separate model that is specific to the performed transformation. We will refer to this model as “generator
model.”

If information required by BPEL and not provided by BPDM is needed then the generator model is responsible for
providing it. Such examples are: XML namespaces, specific BPEL customizations, etc. Using the generator model we
could avoid introducing concepts and terms in BPDM that are specific for BPEL and still have the capability to customize
the produced BPEL models.

Ultimately, a generator metamodel would be required for this generator model in order to describe all possible
customizations that can be used. For the purposes of this non-normative mapping, however, it is merely indicated which
additional information is needed for the mapping (see Notational Conventions).

7.1.3 Notational Conventions
BPDM constructs are depicted in Bold typeface. The equivalent BPMN element may follow in (Parentheses). BPEL
elements are represented in <angle brackets> and attributes in italics. Marks are denoted in Bold Italics.

The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
Business Process Definition MetaModel, Beta 1 145

7.2 Process

7.3 Start Event Mappings

BPDM BPEL

Processor Role Processor Role maps to BPEL <process> element. The NamedElement.name
maps to the name attribute of <process>.

BPDM BPEL

Behavioral Change Part typed by the
Start Behavioral Change

The only way to instantiate a business process in BPEL is to annotate a <receive> or
<pick> activity with the createInstance attribute set to “yes.” The <receive> or
<pick> will likely be placed within a <sequence> or a <flow>.

Start Message This will map to the <receive> element. The createInstance attribute of the
<receive> element will be set to “yes.”
The Message attribute of Start maps to the variable attribute of the <receive>
element. Note that the extra spaces and non-alphanumeric characters MUST be
stripped from the variable attribute to fit with the XML specification of the variable
attribute. If there is a name collision (because of the name change), then the
transformer is responsible for generating unique names.
The Name attribute of Simple Interaction maps to the name attribute of a BPEL
<variable> element. Note that the extra spaces and non-alphanumeric characters
MUST be stripped from the Name to fit with the XML specification of the name
attribute. Note that there may be two or more elements with the same name after
Name has been stripped.
The messageType, type or element attribute is used to specify the type of a variable.
Exactly one of these attributes MUST be used. The messageType attribute of the
variable element refers to a WSDL message type definition. Thus, the messageType
will share the same Name and a corresponding WSDL message must be created.
Attribute type refers to an XML Schema type (simple or complex). Attribute
element refers to an XML Schema element.
146 Business Process Definition MetaModel, Beta 1

Start Message In case of using a WSDL message type definition, each Properties will map to a
<part> element of the WSDL <message>. The Name attribute of the Property will
map to the name attribute of the <part>. The Type attribute of the Property will map
to the type attribute of the <part>.
The Implementation attribute of Simple Interaction MUST be a Web service or
MUST be converted to a Web service for mapping to BPEL. The Web Service
Attributes are mapped as follows:

• The Participant attribute is mapped to the partnerLink attribute of the BPEL
activity

• The Interface attribute is mapped to the portType attribute of the BPEL
activity

• The Operation attribute is mapped to the operation attribute of the BPEL
activity

InteractionFlow.transformationExpression will map to a <fromParts> element
within <receive>.

Time Condition on Start This will map to the <receive> element. The createInstance attribute of the
<receive> element will be set to “yes.”
The remaining attributes of the <receive> will be mapped as as shown for the
Message Start Event (see above).
During the mapping an additional BPEL process is employed. We will refer to this
process as <NameOfStartNode>trigger. Thus the functionality of the timing as
defined in the Start Event will be implemented in a separate process that will be
started by the BPEL Engine. The process definition will use a <wait> element for
the defined time, and then use an <invoke> to send a message that will be received
by the above <receive> element. A specific Message and Web service
implementation must be provided so that the mappings to <receive> element can be
completed.
InteractionFlow.transformationExpression will map to a <fromParts> element
within <receive>.

Fact Change Condition on Start This will map to the <receive> element. The createInstance attribute of the
<receive> element will be set to “yes.”
The remaining attributes of the <receive> element will be mapped as shown for the
Message Start Event (see above).
InteractionFlow.transformationExpression will map to a <fromParts> element
within <receive>.
Note: the Message is expected to arrive from the application that tracks and triggers
Business Rules.
Business Process Definition MetaModel, Beta 1 147

7.4 End Event Mappings

BPDM BPEL

End Behavioral Change Part There is no BPEL element that Finish will map to. However, it marks the end of a
path within the Process and will be used to define the boundaries of complex BPEL
elements.

End Message This will map to a BPEL <reply> or an <invoke>. The appropriate BPEL activity
will be determined by the implementation defined for the Event. That is, the
portType and operation of the Message will be used to check to see if an upstream
Message Event has the same portType and operation. If these two attributes are
matched, then the Event will map to a <reply>, if not, the Event will map to an
<invoke>.
The Message attribute of Finish maps to the variable attribute of the <reply> or the
outputVariable of the <invoke>.
See the corresponding Message Start Event above for more information about how
Simple Interaction maps to BPEL and WSDL.
The Implementation attribute of Simple Interaction MUST be a Web service or
MUST be converted to a Web service for mapping to BPEL. The Web Service
Attributes are mapped as follows:

• The Participant attribute is mapped to the partnerLink attribute of the BPEL
activity

• The Interface attribute is mapped to the portType attribute of the BPEL
activity

• The Operation attribute is mapped to the operation attribute of the BPEL
activity

InteractionFlow.transformationExpression will map to the fromVariable
variable of <toParts> element within <reply> or <invoke>.

Error Activity This will map to a <throw> element. The ErrorCode attribute of Error Activity
will map to the faultName attribute of the <throw>.

Cancel Activity The mapping of Cancel Activity to BPEL is an open issue.

Abort Activity This will map to the <exit> element.
148 Business Process Definition MetaModel, Beta 1

7.5 Intermediate Events

BPDM BPEL

Simple Interaction coming from or
going to the Process Interaction
Boundary that is not connected to
Start or Finish.

If Simple Interaction.Simple Interaction consumer refers to the same Participant
as that of the Process that contains the Event, then this will map to a <receive>. The
createInstance attribute of the <receive> element will be set to “no.” If Simple
Interaction.Simple Interaction producer is the same Participant as that of the
Process that contains the Event, then this will map to a (one-way) <invoke>.
The Message attribute of the Event maps to the variable attribute of the <receive>
or the outputVariable of the <invoke>.
See the corresponding Start event above for more information about how Simple
Interaction maps to BPEL and WSDL.

The Implementation attribute of Simple Interaction MUST be a Web service or
MUST be converted to a Web service for mapping to BPEL. The Web Service
Attributes are mapped as follows:

• The Participant attribute is mapped to the partnerLink attribute of the BPEL
activity

• The Interface attribute is mapped to the portType attribute of the BPEL
activity

• The Operation attribute is mapped to the operation attribute of the BPEL
activity

If the Event has no incoming Processing Succession:
• Simple Interaction.Simple Interaction consumer MUST be the same

Participant as that of the Process that contains the Event.
• The <process> could be given a <scope> (if it doesn’t already have one).
• An <eventHandlers> element can be defined directly under <process> or

under <scope> (if one was generated).
• An <onMessage> element will be added to the <eventHandlers> element.
• The Message attribute of the Event maps to the variable attribute of the

<onMessage>.
Further, The Implementation attribute of Simple Interaction MUST be a Web
service or MUST be converted to a Web service for mapping to BPEL. The Web
Service Attributes are mapped as follows:

• The Participant attribute is mapped to the partnerLink attribute of the
<onMessage>

• The Interface attribute is mapped to the portType attribute of the
<onMessage>

• The Operation attribute is mapped to the operation attribute of
<onMessage>
Business Process Definition MetaModel, Beta 1 149

Processing Succession from the
abort Change Part

The mappings of the activity (to which the Event is attached) will be placed within
a <scope>.
A <faultHandlers> element will be defined for the scope.
A <catch> element will be added to the <faultHandlers> element with “<message
name>_Exit” as the faultName attribute.
An <eventHandlers> element will be defined for the scope.
The Event will map to an <onMessage> element within the <eventHandlers>. The
mapping to the <onMessage> attributes is the same as described for the <receive>
above.
The activity for the <onMessage> will be a <throw> with “<message name>_Exit”
as the faultName attribute.
If used in an event-based decision, this will map to an <onMessage> within a
<pick>. The mapping to the <onMessage> attributes is the same as described for the
<receive> above.

Time Change Condition on
Succession

This will map to a <wait>.
TimeChange.timeExpression maps to the until attribute of the <wait>.
Cycle Change.timeExpression maps to the for attribute of the <wait>.
If the Event has no incoming Processing Succession:

• The <process> could be given a <scope> (if it doesn’t already have one).
• An <eventHandlers> element will be defined for the process or the <scope>

(if <scope> element was generated).
• An <onAlarm> element will be added to the <eventHandlers> element.
• TimeChange.timeExpression maps to the until attribute of the <onAlarm>.
• Cycle Change.timeExpression maps to the for attribute of the <onAlarm>.

Racing Connection connecting a
Change Condition Step
conditioned by a Time Change
Condition

The mappings of the activity (to which the Event is attached) will be placed within
a <scope>.
A <faultHandlers> element will be defined for the scope.
A <catch> element will be added to the <faultHandlers> element with “<Event
name>_Exit” as the faultName attribute.
An <eventHandlers> element will be defined for the scope.
The Event will map to an <onAlarm> element within the <eventHandlers>.
TimeChange.timeExpression maps to the until attribute of the <onAlarm>.
Cycle Change.timeExpression maps to the for attribute of the <onAlarm>.
The activity for the <onAlarm> will be a <throw> with “<message name>_Exit” as
the faultName attribute.
If used in an event-based decision, this will map to an <onAlarm> within a <pick>.
TimeChange.timeExpression then maps to the until attribute of the <onAlarm>.
Accordingly, Cycle Change.timeExpression maps to the for attribute of the
<onAlarm>.
150 Business Process Definition MetaModel, Beta 1

Processing Succession from the
errorPart

Within the normal flow, Processing Succession will map to a <throw> element.
If the error is attached to an activity, the mappings of the activity (to which the Event
is attached) will be placed within a <scope>.
This Event will map to a <catch> element within a <scope>.
If the Error Behavioral Change does not have an ErrorCode, then a <catchAll>
element will be added to the <faultHandlers> element.
If the Error Behavioral Change has an ErrorCode, then a <catch> element will be
added to the <faultHandlers> element with the ErrorCode mapping to the
faultName attribute.

Processing Succession from the
abortPart

The mapping of succession from abort to BPEL is an open issue.

Fact Change Condition on
Succession

This will map to the <receive> element. The createInstance attribute of the
<receive> element will be set to “no.” The remaining attributes of the <receive> will
be mapped as shown for the Message Start Event (see above).
If the Event has no incoming Processing Succession:

• Simple Interaction.Simple Interaction consumer MUST be the same
Participant as that of the Process that contains the Event.

• The <process> could be given a <scope> (if it doesn’t already have one).
• An <eventHandlers> element will be defined for the process or the <scope>

(if one was generated).
• The Event will map to an <onMessage> element within the

<eventHandlers>. The mapping to the <onMessage> attributes is the same as
described for the <receive> for the Message Event above.

Note: the Message is expected to arrive from the application that tracks and triggers

Racing Connection connecting a
Change Condition Step monitoring
a Fact Change Condition

The mappings of the activity (to which the Event is attached) will be placed within
a <scope>.
A <faultHandlers> element will be defined for the scope.
A <catch> element will be added to the <faultHandlers> element with “<message
name>_Exit” as the faultName attribute.
An <eventHandlers> element will be defined for the scope.
The Event will map to an <onMessage> element within the <eventHandlers>. The
mapping to the <onMessage> attributes is the same as described for the <receive>
for the Message Event above.
Note: the Message is expected to arrive from the application that tracks and triggers
Business Rules.
The activity for the onMessage will be a <throw> with “<message name>_Exit” as
the faultName attribute.
If used in an event-based decision, this will map to an <onMessage> element within
<pick>. The mapping to the <onMessage> attributes is the same as described for the
<receive> for the Message Event above.
Business Process Definition MetaModel, Beta 1 151

7.6 Activities

Change Condition Step monitoring
a Compensation Change

Within the normal flow:
Maps to a <compensate> or <compensateScope> element. The Name of the activity
referenced by the Compensation Event will map to the target attribute of the
<compensateScope> element.
Attached to an activity boundary:
The activity (to which the Event is attached) will be placed within a <scope>. This
Event maps to a <compensationHandler> element within a <scope>.
For the <invoke> activity, there is a special shortcut to inline a
<compensationHandler> within <invoke> rather than explicitly using an
immediately enclosing scope.

BPDM BPEL

Simple Activity An incoming Simple Interaction maps to a <receive> activity. The Message
attribute maps to the variable attribute of the <receive> activity. If the Simple
Interaction represents start Simple Interaction, then the createInstance
attribute of the receive will be set to “yes.”
Two Simple Interactions associated with the same activity – an incoming and
an outgoing flow – map to an <invoke> activity. The InMessage attribute
maps to the inputVariable attribute of the <invoke> activity. The OutMessage
attribute maps to the outputVariable attribute.
An outgoing Simple Interaction maps to a <reply> or an <invoke> activity.
The appropriate BPEL activity will be determined by checking if an upstream
<receive> has the same portType and operation. If these two attributes are
matched, then the activity will map to a <reply>, if not, it will map to an
<invoke>. The Message attribute maps to the variable attribute of the <reply>
activity or it maps to the inputVariable attribute of the <invoke> activity.
See the Start event above for more information about how Simple Interaction
maps to BPEL and WSDL.

Script Activity This maps to an <invoke> activity. Since this activity is performed by a
process engine, the default settings of the engine must be used to determine the
settings of the <invoke> activity. That is, partnerLink, portType, operation,
inputVariable, and maybe outputVariable are derived by these default settings.
The script itself is performed when the appropriate Web service of the process
engine in invoked.

Embedded Process This will map to a <scope> element. The scope is not an independent
<process> and will share the process variables of the higher-level process.
152 Business Process Definition MetaModel, Beta 1

Sub-Process Activity BPEL does not have a sub-process element. Thus Independent Sub-Processes
MUST map to a BPEL <process>; the contents of the Sub-Process will be
contained within a separate process. The Sub-Process object itself maps to an
<invoke> activity that “calls” the process.
BPEL does not support Reference type of Sub-Processes. However, the Sub-
Process will be used as a placeholder for the Sub-Process that will be mapped.
Mapping for an Independent Sub-Process:
The DiagramRef and ProcessRef attributes will identify the process that will
be used for the mapping to the BPEL process.
The OutputPropertyMaps attribute of the referenced process maps to the
inputVariable attribute of the <invoke> activity.
The InputPropertyMaps attribute of the referenced process maps to the
outputVariable attribute of the <invoke> activity.
See the Start event above for more information about how Simple Interaction
maps to BPEL and WSDL.
Mapping for a Reference Sub-Process:
The SubProcessRef attribute references another Sub-Process in the Process.
It is the referenced Sub-Process that will be mapped and the mappings will be
placed in the location of the Reference Sub-Process; another copy of the entire
mapping will be created in this location (the mappings will also exist in the
referenced Sub-Process’ original location).

Course Control Part Course Control Part will map to a variety of BPEL elements (e.g., <if>,
<pick>, <flow>) and patterns of elements.
Course Control Part potentially marks the end of a BPEL structured element,
if the correct number of flows converge.
The elements that follow Course Control Part, until all the outgoing paths
have converged, will be contained within the extent of the mapping (e.g., they
will be placed within a <sequence> within an <if><condition> and any
number of <if><elseif><condition>s).

Exclusive Split

Exclusive Join

Exclusive Split will map to <if>.
Each Gate will map to branches specified by <if> and <elseif> (within <if>).
The order of branches is maintained.
Each guard association between Succession and Condition associated with
the Gates will map to <condition> elements within <if> or <elseif>.
The Default Gate (ExclusiveSplit.default) will map to the <else> element of
<if>.
If there is more than one element that follows the Gate or the Default Gate,
including assignments, then these elements will be placed inside a
<sequence>.
Business Process Definition MetaModel, Beta 1 153

Embedded Process with an Change
Condition Step connected by a Racing
Connection

This will map to <pick>. The elements of the <pick> will be determined by the
targets of the outgoing Processing Succession.
If the Instantiate attribute is set to False, the createInstance attribute of the
<pick> MUST NOT be included OR it MUST be set to “no.”
If the Instantiate attribute is set to True, the createInstance attribute of the
<pick> MUST NOT be included OR it MUST be set to “yes.”
If the target is a Simple Activity with an incoming Simple Interaction, it
maps to an <onMessage> element within <pick>.
The attributes of the Simple Activity will map to the appropriate elements of
the <onMessage>, such as operation and portType.
If there is a Time Change Condition on Succession, the activity maps to an
<onAlarm> element within <pick>.
TimeChange.timeExpression maps to the until attribute of the <onAlarm>.
Cycle Change.timeExpression maps to the for attribute of the <onAlarm>.
If there is a Fact Change Condition on Succession, the event will be
considered as the same as receiving a message from a system that tracks and
generates Rule events. Thus, this will map to an <onMessage> element within
the <pick>.
If there is more than one element that follows the first target, including
assignments, then these elements will be placed inside a <sequence> activity.

Parallel Split
Parallel Join

This will map to <flow>.
154 Business Process Definition MetaModel, Beta 1

Inclusive Split
Inclusive Join

Inclusive Split will map to a set of <if>s within a <flow>. An additional <if>
will be required if the Default Gate (InclusiveSplit.default) is used.
Each Gate will map to <if>, which is binary in nature, i.e. has only the main
<if> branch and the <else>.
Each guard association between Succession and Condition associated with
the Gates will map to <condition> elements within <if> or <elseif>.
If the Default Gate is used, the mapping to BPEL is more complicated, as the
decision about whether the Default Gate should be taken will occur after all
the other gate decisions have been determined. Only if no other path is taken,
will the default path taken. This means that the <if> for the Default Gate will
follow the <flow> activity generated for all the Gates of the Gateway. Also, a
<sequence> activity must encompass the <flow> and the <if>.
If the Default Gate is not used, the <else> element for each <if> will contain
an <empty> activity.
A <variable> must be used so that the <if> for the Default Gate will know
whether or not the default path should be taken. To do this, a BPEL <variable>
must be created with a derived name and will have a structure as follows:
<variable name="[Gateway.Name]_noDefaultRequired"
messageType="noDefaultRequired" />
The messageType, type or element attribute is used to specify the type of a
variable. Exactly one of these attributes MUST be used. The messageType
attribute of the variable element refers to a WSDL message type definition.
Thus, the messageType will share the same Name and a corresponding WSDL
message must be created. Attribute type refers to an XML Schema type
(simple or complex). Attribute element refers to an XML Schema element.
If a WSDL <message> element is created to support this variable, the message
will be structured as follows:

<message name="noDefaultRequired" >
<part name="noDefault" type="xsd:boolean" />
</message>

An <assign> activity will be created to initialize the <variable> before the start
of the loop. This <assign> precedes the <flow> activity that contains all the
<if>s derived from the Gates. This will be the first activity within the
<sequence> activity. The <assign> will be structured as follows:
If any of the <if>s within the <flow> passes the condition of the <if>, then the
noDefaultRequired must be set to True. This will ensure that the Default Gate
will bypass the mapped activities for the Default Gate.
An <assign> activity will be created to set the variable to True. This will be
the last activity within the <sequence> activity within the switch. The
<assign> will be structured as follows:
Business Process Definition MetaModel, Beta 1 155

7.7 Flows

The <condition> for the <if> will use the noDefaultRequired variable and will
be structured as follows:

<if>
<condition>
bpel:getVariableProperty(
[Gateway.Name]_noDefaultRequired,
noDefault)=true
</condition>
<sequence>
<!--The mappings of the original activity are placed here.-->
<!--An assign activity (see below) is placed here.-->
</sequence>
<else>
<empty/>
</else>
</if>

If there is more than one element that follows the first target, including
assignments, then these elements will be placed inside a <sequence> activity.

<assign name="[Gateway.Name]_set_noDefault">
<copy>
<from>true</from>
<to variable="[Gateway.Name]_noDefaultRequired"
part="noDefault" />
</copy>
</assign>

Complex Split
Complex Join

N/A

BPDM BPEL

Processing Succession This MAY map to a <link> element. In many situations, however, Processing
Succession will not map to a <link> element; to connect activities that are listed
in a BPEL structured activity (e.g., a <sequence>), the <link> elements are not
required. <link> elements are only appropriate when the Processing
Successions are Connecting Objects within a <flow>. However, only the
Processing Successions that are completely contained within the boundaries of
the <flow> will be mapped to a <link>.
156 Business Process Definition MetaModel, Beta 1

If another structured activity (e.g., a <while>) is contained within the flow, then
the Processing Successions that would be appropriate for the contents of the
structured activity, would not be mapped to a <link>.
If the Processing Succession is being mapped to a <link>:

• The Name attribute of the Process (NamedElement.name) SHALL
map to name attribute of the <link>. The extra spaces and non-
alphanumeric characters MUST be stripped from the Name to fit with
the XML specification of the name attribute.

• The mapping of the source activity will include a <source> element.
• The Name of the Processing Succession (NamedElement.name) will

map to linkName attribute of the <source> element. The extra spaces
and non-alphanumeric characters MUST be stripped from the Name to
fit with the XML specification of the linkName attribute.

• If the source object is a Course Control Part and it maps to an activity,
the mapping is the same as if the source object is an activity (see above).

• If the Course Control Part does not map to an activity, the Processing
Succession will be combined with one of the Course Control Part’s
incoming Processing Successions. (There will be a separate <link> for
each of the incoming Processing Successions). The source of the
second Processing Succession will be used at the source for the original
Processing Succession. Then this mapping is the same as if the source
object is an activity (see above).

• The mapping of the target activity will include a <target> element.
• The Name of the Processing Succession (NamedElement.name) will

map to linkName attribute of the <target> element. The extra spaces and
non-alphanumeric characters MUST be stripped from the Name to fit
with the XML specification of the linkName attribute.

• If the target object is a Gateway and it maps to an activity, the mapping
is the same as if the target object is an activity (see above).

• If the Control Course Part does not map to an activity, the Processing
Succession will be combined with one of the Course Control Part’s
outgoing Processing Successions. (There will be a separate <link> for
each of the outgoing Processing Successions). The target of the second
Processing Succession will be used at the target for the original
Processing Succession. Then this mapping is the same as if the target
object is an activity (see above).

Processing Succession with Condition A <flow> will be required and the Processing Succession will map to a <link>
element. An <empty> activity will be placed in the flow and will contain all the
<source> elements. The Condition will then map to the transitionCondition
attribute of the <source> element that is contained in the appropriate BPEL
activity.
The mapping of Processing Succession with Condition when the source
object is a Course Control Part is described in Exclusive Split/Join and
Inclusive Split/Join.
Business Process Definition MetaModel, Beta 1 157

ExclusiveSplit.default
InclusiveSplit.default

See Exclusive Split/Join and Inclusive Split/Join.

Processing Succession from the
errorPart Behavioral Change Part

All the activities that follow the Processing Succession, until the Exception
Flow merges back into the Normal Flow, will be mapped to BPEL and then
placed within the <faultHandlers> element for the <scope> of the activity (and
usually within a <sequence>).
If there is only one activity in the <faultHandlers> element for the scope of the
activity, then this activity will be placed within a <sequence> and preceded by
an <assign> (as described below).
The mapping of the original activity will be placed within a <sequence> (if it
had not been already). The original activity will be followed by an <if>, with
one <condition> and an empty <else> as follows:

<if>
<condition>
bpel:getVariableProperty(
[activity.Name]_normalCompletion, normalCompletion)=true
</condition>
<sequence>
<!--The mappings of the Process activities until the merging of the Exception
Flow are placed here.-->
</sequence>
<else>
<empty/>
</else>
</if>
158 Business Process Definition MetaModel, Beta 1

A <variable> must be used so that the <if> will know whether or not the
Exception Flow or Normal Flow had reached that point in the Process. It must
be created with a derived name and will have structure as follows:

<variable name=”[activity.Name]_normalCompletion”
messageType=”noDefaultRequired” />

The messageType, type or element attribute is used to specify the type of a
variable. Exactly one of these attributes MUST be used. The messageType
attribute of the variable element refers to a WSDL message type definition.
Thus, the messageType will share the same Name and a corresponding WSDL
message must be created. Attribute type refers to an XML Schema type (simple
or complex). Attribute element refers to an XML Schema element.
If a WSDL <message> element is created to support this <variable>, the
message will be structured as follows:

<message name=”noDefaultRequired” >
<part name=”normalCompletion” type=”xsd:boolean” />
</message>

The <assign> will be created to initialize the <variable> before the start of the
original activity. The <assign> will be structured as follows:
the <sequence> activity of the <faultHandlers>. The <assign> will be
structured as follows:

<assign name=”[activity.Name]_initialize_normalCompletion”>
<copy>
<from>true</from>
<to variable=”[activity.Name]_normalCompletion”
part=”normalCompletion” />
</copy>
</assign>

If a fault is thrown and <faultHandlers> is activated, then an <assign> activity
will be used to set the <variable> to False. This will be the first activity within
the <sequence> activity of the <faultHandlers>. The <assign> will be
structured as follows:

<assign name=”[activity.Name]_set_normalCompletion”>
<copy>
<from>false</from>
<to variable=”[activity.Name]_normalCompletion”
part=”normalCompletion” />
</copy>

Simple Interaction No specific mapping to a BPEL element. It represents a message that is sent
through a WSDL operation that is referenced in a BPEL <receive>, <reply>, or
<invoke>.
See Start, Intermediate and End Events for mappings pertaining to Simple
Interaction.
Business Process Definition MetaModel, Beta 1 159

7.8 Additional Constructs

Change Condition Step monitoring
Compensation

See Compensation Connection in Intermediate Events.

BPDM BPEL

Activity with Conditional
Loop

This will map to a <forEach> activity. The <forEach> iterates its child <scope> activity
exactly N+1 times where N equals the <finalCounterValue> minus the
<startCounterValue>.

Activity with For Loop or
Multi Instance Loop

A Multi Instance Loop can be either sequential or parallel.
MultiInstanceLoop.ordering maps to the parallel (=”yes|no”) attribute of <forEach>.
A sequential MI loop maps to <forEach> as in Basic Loop above so that forEachCount
equals to N + 1.
Four flow conditions (None | One | All | Complex) exist for parallel multi-instance loops:
None – There is no synchronization or control of the Tokens that are generated through
the multi-instance activity. Each Token will continue on independently and each Token
will create a separate instantiation of each activity they encounter. Basically, there is a
separate copy of the whole process, for each copy of the MI activity, after that point. Each
copy of the remainder of the process will continue independently.
One – Only one of the spawned processes must be completed before the original process
can continue.
All – All of the spawned processes must be completed before the original process can
continue.
Complex – The difference from All is that the number of completed spawned processes
required before the process flow will continue must be determined and the processes
have been completed.
160 Business Process Definition MetaModel, Beta 1

The BPDM Activity Loop is kind of Embedded Process that can execute its content
multiple times. Upon completion of each iteration the activity loop will generate
Iteration Finish happening. This happening can be used in the outgoing Successions to
specify that a Succession should be activated on loop iteration completion. Depending
on the flow condition:

• None – Succession on Iteration Finish of Activity Loop
• One – Succession on Iteration Finish of Activity Loop with Succession.guard

evaluating to the string "first iteration only"
• All – Succession on Finish of Activity Loop
• Complex – on Iteration Finish of Activity Loop with Succession.guard

evaluating to a boolean value. If the value is True then the Succession will be
followed

A <completionCondition> may be used within the <forEach> to allow the <forEach>
activity to complete without executing or finishing all the branches specified.
The <forEach> activity without a <completionCondition> completes when all of its child
<scope>s have completed. The <completionCondition> element is optionally specified
to prevent some of the children from executing (in the serial case), or to force early
termination of some of the children (in the parallel case).
The <branches> element within <completionCondition> represents an unsigned –integer
expression used to define a completion condition of the “at least N out of M” form. The
actual value B of the expression is calculated once, at the beginning of the <forEach>
activity. It will not change as the result of the <forEach> activity’s execution. At the end
of execution of each directly enclosed <scope> activity, the number of completed
children is compared to B, the value of the <branches> expression. If at least B children
have completed, the <completionCondition> is triggered: No further children will be
started, and currently running children will be terminated.
The mapping to BPEL per flow condition is as follows:

• None – This is not supported by <forEach>. To create this behavior, the
remainder of the process will be moved into a new derived <process>. This
process will be spawned through a one-way <invoke> that will be placed within
the <while> activity.

• One – <completionCondition> evaluates to 1.
• All – No <completionCondition> specified.
• Complex – <completionCondition> evaluates to B (1 < B < N + 1).
Business Process Definition MetaModel, Beta 1 161

Holder A BPDM Process can define multiple Holder objects. A BPDM Holder specializes
TypedElement and thus can define the type of the value it can hold.
Holder maps to a BPEL <variable>.
BPEL uses three kinds of variable declarations: WSDL message type, XML Schema type
(simple or complex), and XML Schema element.
In the case of WSDL variable declaration, the <variable> element will be structured as
follows:

<variable
name="[Process.Name]_Data"
messageType=
"[Process.Name]_ProcessDataMessage" />

The <message> element will be structured as follows:
<message name="[Process.Name]_ProcessDataMessage">
<part name="[Property.Name]"
type="xsd:[Property.Type]" />
</message>

Transaction Open issue

Part Group A <scope> provides the context which influences the execution behavior of its enclosed
activities. This behavioral context includes variables, partner links, message exchanges,
correlation sets, event handlers, fault handlers, a compensation handler, and a
termination handler. Contexts provided by <scope> activities can be nested
hierarchically, while the root context is provided by the <process> construct.

Comment from UML2
infrastructure

Can map to the <documentation> element. If the Comment is associated with an object
that has a straight-forward mapping to a BPEL element, then the text of the Comment
will be placed in the <documentation> element of that object. If there is no straight-
forward mapping to any element, then the text will be appended to the <documentation>
element of the <process>.

Simple
Interaction.transformation

This will map to BPEL <assign> activities.
162 Business Process Definition MetaModel, Beta 1

8 Proof of Concept Language Mappings

The following sub-sections describe mappings to specific languages as proofs of concept.

8.1 BPEL Mapping
[To be completed in a later version of this specification.]

8.2 WS-CDL Mapping
[To be completed in a later version of this specification.]
Business Process Definition MetaModel, Beta 1 163

164 Business Process Definition MetaModel, Beta 1

	Preface
	1 Scope
	1.1 Business Process Modeling Notation (BPMN)
	1.2 Target Audience and Use of BPDM
	1.3 Other Common Business Benefits of BPDM
	1.3.1 Carefully defined semantics
	1.3.2 Saying just enough, but not too much:
	1.3.3 Improved Integration and Collaboration
	1.3.4 Improved Agility
	1.3.5 Business Processes supported by Service Oriented Architectures (SOA)
	1.3.6 Better Return on I.T. Investment

	1.4 Process Concepts supported by BPDM

	2 Conformance
	2.1 BPDM Full Compliance
	2.2 BPDM Collaboration Protocol Compliance
	2.3 BPDM Orchestration Process Compliance
	2.4 BPDM - BPMN Compliance

	3 Normative References
	4 Terms and Definitions
	5 Additional Information
	5.1 Acknowledgements

	6 Metamodel Specification
	6.1 Overview
	6.2 Composition Model
	6.2.1 Introduction
	6.2.1.1 Individuals, Models, and Modeling Languages
	6.2.1.2 Types
	6.2.1.3 Composites
	6.2.1.4 Parts
	6.2.1.5 Part Connections
	6.2.1.6 Part Paths
	6.2.1.7 Generalization and Derivation
	6.2.1.8 Selection

	6.2.2 Metamodel Specification
	6.2.2.1 Composition
	6.2.2.2 Part Connection & Condition
	6.2.2.3 Generalization & Derivation
	6.2.2.4 Selection
	6.2.2.5 Abstract Part
	6.2.2.6 Composite
	6.2.2.7 Compound Condition
	6.2.2.8 Compound Condition Type
	6.2.2.9 Condition
	6.2.2.10 Derivation
	6.2.2.11 Directed Part Connection
	6.2.2.12 Generalization
	6.2.2.13 Individual
	6.2.2.14 Individual From Set
	6.2.2.15 Irreflexive Condition
	6.2.2.16 Opaque Condition
	6.2.2.17 Part
	6.2.2.18 Part Connection
	6.2.2.19 Part Group
	6.2.2.20 Part Path
	6.2.2.21 Part Replacement
	6.2.2.22 Selector Specification
	6.2.2.23 Typed Part
	6.2.2.24 Instance: Irreflexive Condition

	6.3 Course Model
	6.3.1 Introduction
	6.3.2 Metamodel Specification
	6.3.2.1 Course Model
	6.3.2.2 Course
	6.3.2.3 Course Control Part
	6.3.2.4 Course Part
	6.3.2.5 Exclusive Join
	6.3.2.6 Exclusive Split
	6.3.2.7 Immediate Succession
	6.3.2.8 Parallel Join
	6.3.2.9 Parallel Split
	6.3.2.10 Succession
	6.3.2.11 Typed Course Part

	6.4 Happening & Change Model
	6.4.1 Introduction
	6.4.2 Metamodel Specification
	6.4.2.1 Happening & Change
	6.4.2.2 Behavioral Happening
	6.4.2.3 Happening & Change Library: Behavioral Change instances
	6.4.2.4 Happening & Change Library: 'Universal Behavioral Happening' instance
	6.4.2.5 Change Condition
	6.4.2.6 Time Change
	6.4.2.7 Time Change Condition
	6.4.2.8 Happening & Change Library : Fact Change instances
	6.4.2.9 Fact Change Condition
	6.4.2.10 Behavioral Change
	6.4.2.11 Behavioral Change Part
	6.4.2.12 Behavioral Happening
	6.4.2.13 Change
	6.4.2.14 Change Condition
	6.4.2.15 Clock
	6.4.2.16 Cycle Change
	6.4.2.17 Fact Change
	6.4.2.18 Fact Change Condition
	6.4.2.19 Happening Over Time
	6.4.2.20 Relative TimeDate Change
	6.4.2.21 Statement
	6.4.2.22 Time Change
	6.4.2.23 Time Change Condition
	6.4.2.24 TimeDate Change
	6.4.2.25 Instance: Abort
	6.4.2.26 Instance: abortPart
	6.4.2.27 Instance: becomes false
	6.4.2.28 Instance: becomes true
	6.4.2.29 Instance: End
	6.4.2.30 Instance: endPart
	6.4.2.31 Instance: Error
	6.4.2.32 Instance: errorPart
	6.4.2.33 Instance: Finish
	6.4.2.34 Instance: finishPart
	6.4.2.35 Instance: Generalization
	6.4.2.36 Instance: Generalization
	6.4.2.37 Instance: Generalization
	6.4.2.38 Instance: Happening & Change Library
	6.4.2.39 Instance: start-abort
	6.4.2.40 Instance: start-end
	6.4.2.41 Instance: start-error
	6.4.2.42 Instance: start-finish
	6.4.2.43 Instance: Start
	6.4.2.44 Instance: startPart
	6.4.2.45 Instance: Universal Behavioral Happening

	6.5 Processing Behavior Model
	6.5.1 Introduction
	6.5.2 Metamodel Specification
	6.5.2.1 Processing Behavior
	6.5.2.2 Connected Part Binding
	6.5.2.3 Immediate Process Succession
	6.5.2.4 Process Behavior Library: 'Racing' Processing Behavior instance
	6.5.2.5 Processing Behavior Library: 'Group Abort Behavior'
	6.5.2.6 Behavioral Change Condition
	6.5.2.7 Behavioral Step Group
	6.5.2.8 Behavioral Change Condition
	6.5.2.9 Behavioral Step
	6.5.2.10 Behavioral Step Group
	6.5.2.11 Bindable Connection
	6.5.2.12 Change Condition Step
	6.5.2.13 Compound Behavioral Connection
	6.5.2.14 Connected Part Binding
	6.5.2.15 Group Abort Connection
	6.5.2.16 Immediate Processing Succession
	6.5.2.17 Processing Behavior
	6.5.2.18 Processing Step
	6.5.2.19 Processing Succession
	6.5.2.20 Race Connection
	6.5.2.21 Instance: Enclosed Step
	6.5.2.22 Instance: finish/abort
	6.5.2.23 Instance: Group Abort Behavior
	6.5.2.24 Instance: group-step
	6.5.2.25 Instance: Processing Behavior Library
	6.5.2.26 Instance: Racing Behavior
	6.5.2.27 Instance: Racing Contestant
	6.5.2.28 Instance: start/start
	6.5.2.29 Instance: Step Group

	6.6 Simple Interaction Model
	6.6.1 Introduction
	6.6.2 Metamodel Specification
	6.6.2.1 Simple Interaction Binding
	6.6.2.2 Interaction
	6.6.2.3 Interaction Role
	6.6.2.4 Interactive Part
	6.6.2.5 Simple Interaction
	6.6.2.6 Simple Interaction Binding

	6.7 Activity Model
	6.7.1 Introduction
	6.7.2 Metamodel Specification
	6.7.2.1 Core
	6.7.2.2 Activity Model Library: Simple Process instances
	6.7.2.3 Activity Categories
	6.7.2.4 Activity Model Library: Loop Happening instance
	6.7.2.5 Embedded Process
	6.7.2.6 Derivation
	6.7.2.7 Role Realization
	6.7.2.8 Abort Activity
	6.7.2.9 Activity
	6.7.2.10 Activity Loop
	6.7.2.11 Actor
	6.7.2.12 Conditional Loop
	6.7.2.13 Embedded Process
	6.7.2.14 Error Activity
	6.7.2.15 Holder
	6.7.2.16 LoopTestTime
	6.7.2.17 Multi Instance Loop
	6.7.2.18 MultiInstanceLoopOrdering
	6.7.2.19 Performer Role
	6.7.2.20 Process
	6.7.2.21 Process Interaction Boundary
	6.7.2.22 Processor Role
	6.7.2.23 Role Realization
	6.7.2.24 Simple Activity
	6.7.2.25 Sub-Process Activity
	6.7.2.26 Substitutable Derivation
	6.7.2.27 Instance: Abort Process
	6.7.2.28 Instance: Activity Library
	6.7.2.29 Instance: Activity Loop Happening
	6.7.2.30 Instance: Error Process
	6.7.2.31 Instance: Generalization
	6.7.2.32 Instance: interationend-end
	6.7.2.33 Instance: Iteration End
	6.7.2.34 Instance: iterationEndPart
	6.7.2.35 Instance: start-iterationend

	6.8 BPMN Extensions
	6.8.1 Introduction
	6.8.2 Metamodel Specification
	6.8.2.1 Adhoc Extension
	6.8.2.2 Activity Extensions
	6.8.2.3 Course Control Part Extension
	6.8.2.4 BPMN Extensions Library: Compensate Process Instance
	6.8.2.5 BPMN Extensions Library: BPMN Universal Process instance
	6.8.2.6 Sequence Flow Extension
	6.8.2.7 Message Extensions
	6.8.2.8 Artifact Flow Extensions
	6.8.2.9 Event Extension
	6.8.2.10 Transaction Extensions
	6.8.2.11 Compensation Extensions
	6.8.2.12 Adhoc Process Directive
	6.8.2.13 AdhocOrdering
	6.8.2.14 Artifact Flow
	6.8.2.15 Artifact Sequence Flow
	6.8.2.16 Cancel Activity
	6.8.2.17 Compensate Activity
	6.8.2.18 Compensating Activity
	6.8.2.19 Complex Decision
	6.8.2.20 Complex Merge
	6.8.2.21 End Message
	6.8.2.22 Event
	6.8.2.23 Event Decision
	6.8.2.24 Exclusive Decision
	6.8.2.25 Exclusive Merge
	6.8.2.26 Inclusive Decision
	6.8.2.27 Inclusive Merge
	6.8.2.28 Intermediate Message
	6.8.2.29 Message
	6.8.2.30 Message Flow
	6.8.2.31 Process Directive
	6.8.2.32 Script Activity
	6.8.2.33 Sequence Flow
	6.8.2.34 Start Message
	6.8.2.35 Task
	6.8.2.36 Terminate
	6.8.2.37 Transaction
	6.8.2.38 Instance: BPMN Universal Process
	6.8.2.39 Instance: Cancel Process
	6.8.2.40 Instance: cancel-end
	6.8.2.41 Instance: Cancel
	6.8.2.42 Instance: cancelPart
	6.8.2.43 Instance: Compensate Process
	6.8.2.44 Instance: compensate-end
	6.8.2.45 Instance: Compensate
	6.8.2.46 Instance: compensatePart
	6.8.2.47 Instance: Compensation Library
	6.8.2.48 Instance: Generalization
	6.8.2.49 Instance: start-cancel
	6.8.2.50 Instance: start-compensate
	6.8.2.51 Instance: startFromSequencePart
	6.8.2.52 Instance: startseq-end

	6.9 Interaction Protocol Model
	6.9.1 Introduction
	6.9.2 Metamodel Specification
	6.9.2.1 Interaction Protocol
	6.9.2.2 Compound Interaction
	6.9.2.3 Compound Interaction Binding
	6.9.2.4 Interaction Protocol

	6.10 Class Hierarchies
	6.10.1 Happening OverTime Hierarchy
	6.10.2 Change Hierarchy
	6.10.3 Succession Hierarchy
	6.10.4 Behavioral Step Hierarchy
	6.10.5 Interactive Part Hierarchy
	6.10.6 Simple Interaction Hierarchy

	7 BPDM-BPEL Mapping
	7.1 General
	7.1.1 Topological Considerations
	7.1.2 Generator Model
	7.1.3 Notational Conventions

	7.2 Process
	7.3 Start Event Mappings
	7.4 End Event Mappings
	7.5 Intermediate Events
	7.6 Activities
	7.7 Flows
	7.8 Additional Constructs

	8 Proof of Concept Language Mappings
	8.1 BPEL Mapping
	8.2 WS-CDL Mapping

