Date: November 2008

Business Process Definition MetaModel
Volume I: Common Infrastructure

Version 1.0

OMG Document Number: formal/2008-11-03

Standard document URL: http://www.omg.org/spec/BPDM/1.0

Associated File(s)*: http://www.omg.org/spec/BPDM/20080501
http://www.omg.org/spec/BPDM/20080501/Abstractions.xsd

http://www.omg.org/spec/BPDM/20080501/Activity.xsd
http://www.omg.org/spec/BPDM/20080501/BehaviorModel.xsd
http://www.omg.org/spec/BPDM/20080501/bpdm.xsd
http://www.omg.org/spec/BPDM/20080501/bpmn.cmof
http://www.omg.org/spec/BPDM/20080501/BPMNLibrary
http://www.omg.org/spec/BPDM/20080501/CommonlInfrastructure.cmof

http://www.omg.org/spec/BPDM/20080501/CommonlInfrastructureLibrary
http://www.omg.org/spec/BPDM/20080501/CompositionModel.xsd
http://www.omg.org/spec/BPDM/20080501/ConditionModel.xsd
http://www.omg.org/spec/BPDM/20080501/CourseModel.xsd
http://www.omg.org/spec/BPDM/20080501/importfile commoninfrastructure.xsd
http://www.omg.org/spec/BPDM/20080501/InteractionProtocol.xsd
http://www.omg.org/spec/BPDM/20080501/InteractiveBehaviorModel.xsd
http://www.omg.org/spec/BPDM/20080501/xmi_infra.xsd
http://www.omg.org/spec/BPDM/20080501/VotingSample
http://www.omg.org/spec/BPDM/20080501/BPMNSamples_schema.xsd

http://www.omg.org/spec/BPDM/20080502
http://www.omg.org/spec/BPDM/20080502/xmi.xsd

Source document: BPDM Common Infrastructure Document without change bars (dtc/2008-05-07)
* Original file: XML schema and library (dtc/2008-05-14)

http://www.omg.org/spec/BPDM/20080501
http://www.omg.org/spec/EXPRESS/20080202

Copyright © 2008, Adaptive

Copyright © 2008, Axway Software

Copyright © 2008, Borland Software, Inc.
Copyright © 2008, EDS

Copyright © 2008, Lombardi Software

Copyright © 2008, MEGA International

Copyright © 2008, Model Driven Solution
Copyright © 2008, Object Management Group, Inc.
Copyright © 2008, Unisys

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of
the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as
indicated above and may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA
02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, [IOP™ MOF™ | OMG Interface Definition Language (IDL)™ |
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

OMG'’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/
technology/agreement.htm).

Table of Contents

1 Normative References..........coooveiiiiii i, 1
2 Terms and DefinitionS. ... 1
3 Additional Informationcccoooiiiiii 4
3.1 ACKNOWIEAGEMENTS......oiiiiiiiiiiee e 4
4 Metamodel and Notation Specification..............cccccooeveeennnn. 4
g IO 1YY T PRSP 4
L Y o 11 = Tex 10 o 3 6
2t 10 o 11 o3 1T o TS 6

A . =Y =T 4T Yo 1= O 7

4.2.2.1 PrimitiVETYPES. ..cceeeeeiiiee ettt sttt e e et e e e e e e e e e nnae 7

S = To o [T o T PSSP PRPPIN 7

R T [(=TT PP PPRPPUPPIR 7

A] 1] o TP UPPPPPPPRRPPIN 7

4.2.2.5 UnlMItedNatural. ..ot 8

4.2.2.6 Elements Package.oouuuiiiiiiiiee e 8

4.2.2.7 EIBMENTS. ...ttt e e e e e e e e et e e e e e e nnareeeaaeaaaes 8

4228 EIBMENT.... o e e e e e e e nna e e e e e e naeneees 8

4.2.2.9 OWNErships Package.c.ueiiiiiiiiiiie et 9

4.2.2.10 OWNEISNIPS. .. .eeiiitite ittt ettt e e e 9

422 1T EIBMENT...co e 9

4.2.2.12 Comments Package............ooeiiiiiiiiiii et 10

B 1 T 07) o 1441 o £ SRR 10

S 3 07 o) o 14T o RS 10

422 A5 EIBMENT. ..ottt e e e et e e e e e e neaneees 11

4.2.2.16 Relationships Package...........cueiiiiiiiiiiiii e 11

4.2.2.17 RelatioNSNiPS.ciiiiiii e 12

4.2.2.18 DirectedRelationShip.........coiouiiiiiiiiii e 12

4.2.2.19 RelatioNShiD....cce i eaaan 13

4.2.2.20 Namespaces PacCKage.........couveeeiiiiiiii ettt e e e e e e e e e e eaeen 13

4.2.2.21 NAMESPACES. .. uuuruiiiiiiiiiiiiieieieeeeaeae e e e e et st e e aasss e raraastaraaaaaeeeeeaaaaaaaaaaaeaaasaaaeeensnnn 14

V7 2 =1 =Y 0 =Y o1 4] oo N 14

4.2.2.23 ImportableElement.............oo i 15

4.2.2.24 NamedEIEMENt...... ...t e e eeeeees 15

4.2.2.25 NAMESPACE.ueeieeiiie ettt ettt et e et ettt e et e e e bt e st e e sbe e e e nbneeeeean 16

4.2.2.26 VisiDilityKind.........cooiieiiieie e e 16

4.2.2.27 Packages Diagraml.........c.uueieeiiiiiiiee ettt a e e e e eeeees 17

4.2.2.28 PACKAQES.uueieieeieiiiiie e e ettt e e e ettt e e e ettt e e e e s et e e e e e saataeeaeeannbaeaaaaaeeeeeeaaaes 18

4.2.2.29 PACKAGE. ... eeiee ittt ettt e ettt e e e et e e e e e ae e e e e e e e nnaeeeeeeenees 18

4.2.2.30 PackageableElement........ ..o 18

4.2.2.31 PackagelmpPOrt........c.oeioiiiieiiie et 19

4.2.2.32 TypedElements Package.ccoocuviiiiiiiiiiie e 19

4.2.2.33 Typed EIemMENtS.......cocueiiiiiiie e 20

R Y/ o YRS 20

4.2.2.35 TYPEAEIBMENT. ..ot e e e 20

4.2.2.36 MUltiplicitiesS PacCKage..........uueuiiiiiiiiiieieee e eeeeeen 21

4.2.2.37 MURIPICHIES. ..ot 21

Business Process Definition MetaModel, Common Infrastructure, v1.0 i

4.2.2.38 MUIIPlICItYEIEMENT. ...t 21

4.2.2.39 MultiplicityEXpressions Package.cooueeiiiiiiiriiiiiieeee e 22
4.2.2.40 MURIPIICItYEXPrEeSSIONS. ...ttt e e 22
4.2.2.41 MURIPICIYYEIEMENT.....coiiiii e e 23
4.2.2.42 EXPressions PaCKage.cccouiuuiiiiiiiiiieie ettt 23
4.2.2.43 EXPrESSIONS. . uuuiieiiiiiiiiieieie e e e e et et e et e et e et e e e e e aeaaaaaaaaaeaaeaeerr e eeaeaaan 24
4.2.2.44 EXPIESSION...coiiiiiiiiiie et ettt ettt et s e et e ettt r e e e e e e e ean 24
4.2.2.45 OpaqUEEXPIrESSION.oiiiiiiiiiiii ittt e 24
4.2.2.46 ValueSPECIfiCatION.......ccoiiiiiiiiie ittt e 25
4.2.2.47 Literals PAaCKagE.........cuuiiiiiiiiiee ittt e e 25
4.2.2.48 LITEIalS.eeeieeiiee ettt a e e e e e e e e e eeaaaes 26
4.2.2.49 LIteralBOOIEaN.coeiiiiiiiei e 26
4.2.2.50 LIterallNteger........ueieee et eeeeees 26
4.2.2.51 LItEralNUIL......ooieiii ittt 27
4.2.2.52 Literal SpecifiCation............coiuiiiiiiiiiie e 27
4.2.2.53 LIteralStriNg.....ccveee ettt 27
4.2.2.54 LiteralUnlimitedNatural.............ccooiiiiiiiiiiiieeie e 28
4.2.2.55 Constraints Package.coouuiiiiiiiiiiiie e 28
R S T O 0]) (= 11 | SR 29
Y (O]) - 1] | SRS 29
4.2.2.58 NAMESPACE.ciiiiiieee e e e e et e e e e e e e aaaaeaa e e e e e e s e s e ss s ansnrnranereenrnnn 30
4.2.2.59 Classifiers Package.........cceeiiiiiiiiieeiiee et e e e e e e e 30
4.2.2.60 ClasSIfierS.cueeiiee ettt ettt e et e e e e e e e e e e e e e eeeeaaaes 30
4.2.2.67 ClaSSIfieF.... ..ttt et e et e e e e e e e eeenaaes 30
4.2.2.62 FRATUIE.......eiiieeii ettt ettt e e e e e e ean 31
4.2.2.63 SUPEI PACKAGE.ccitiiiiiiiie ittt e 31
4.2.2.84 SUPET......ueeeie ittt e e e ettt e e e e ettt e e e e e e e e e e e e et e e e e e e abraaaaeaaaaaaaaeeeraeaaaa 32
4.2.2.65 ClasSIfir......eeeiiee et e e e e eeeean 32
4.2.2.66 Generalizations Package..........c..eoviiiiiiiiie e 33
4.2.2.67 GENEraliZations..........ccceeiiiieeiiee et aa e e an 33
4.2.2.68 GENEraliZatioN.............uiiiiiiiiiiie et e e e e e 33
4.2.2.689 ClaSSIfieF........eeeiieeiieii ettt e e e e e e e e e e e eaeaeaes 34
4.2.2.70 Structural Features Package...........ccoouiiiriiiiiiieiiiiiecic e 34
4.2.2.71 Structural FEatUres.........ccuuiiiiiiiiee e 35
4.2.2.72 StructuralFEature............oei it e e e e 35
4.2.2.73 Behavioral Features Package.............coooiiiiiiiiiiiieec e 36
4.2.2.74 Behavioral FEatUres.........oo it 36
4.2.2.75 BehavioralFeature..............eoii it 36
4.2.2.76 Parameter.......ooii ettt e e e e e e et e e e e e en e e e e e e e eeeeaeaaaes 37
4.2.2.77 PropertieS PaCKage.........cocuiiiiiiiiiiiie ettt 37
O ST o (o) o= 1= PP PPPRTRP 38
L T o (o) o= o Y PP PPRPTP 38
4.2.2.80 InStances PacCKage...........uueiiiiiiiiiieee e 39
4.2.2.871 INSEANCES......eiiiiiiiii et e e e e e e e e e e e e e e eeeanaes 39
4.2.2.82 InstanceSpecifiCation............oceiei e 39
4.2.2.83 INStANCEVAIUE...... ..ot 41
4.2.2.84 SIOL.... ittt b e ae e nab e nreeenne e 41
4.2.2.85 Datatypes Package..........ccoiuiiiiiiiiiiiiiciiee e 42
4.2.2.86 DatatyPes......ceeiiiieiiiii ettt 42
L D - | - Y o 1= T PP PPPRPPP 42
4.2.2.88 ENUMEIAtION. ..ottt e s e e e e e e e e e e e e e eeeenees 43
4.2.2.89 EnumerationLiteral............oocueiiiiiiiiiiiie e 43
4.2.2.90 PrimitiVeTYPE. .. ce ittt et e et e e e e e e e e e e e e e eenaaes 43
4.2.2.91 Redefinitions Package.oouiuiiiiiiiieiee e 44
4.2.2.92 REAEINITIONS. ...coiiiiiiiiiee et e e et e e e e e e e e eeeeeaes 44
4.2.2.93 RedefinableElement.............ooo e 44
v/ G I 7] aTo 11 o] 0 I 1Y o o = SRR 45
7 3G Tt 101 o o 11 o3 110 o TS 45
4.3.2 METAMOAEL......ueeeiiiiiieeeeee et e et 45
4.3.2.1 Condition Model DIiagram...........cccioueeeiriiieiiieie et e e e 46
4.3.2.2 Boolean ValueSpecCifiCation............ccoiuiiiiiiie i 46

Business Process Definition MetaModel, Common Infrastructure, v1.0

4.3.2.3 Compound CONAitiON.........ceiiiiiiiiiii it e e 46

4.3.2.4 Compound Condition TYPE......ccciiuiiiiiiiiieiiiie ettt e e 47

7 T 0o g To 11T o USRS 47

4.3.2.6 FACt CONItION.ooiiiiiiiiiie et 48

4.3.2.7 Opaque CONAItiON......cueiiiiiiiiiiiiee e a e e e e e e e e e e aaaa 48

4.3.2.8 Opaque Statement............oooiiiiiii i 48

4.3.2.9 SHAtEMENL.....ei it e e 48

4.4 CompOoSItioN MOAEL......ccooe e 49
g 1o o {1 o3 1T o TS 49
4.4.1.1 Individuals, Models, and Modeling Languages............cccocueeiriiiniiicinieen e 49

4.4.1.2 ClaSSIfIBIS. ..eeiiiii ettt e e e e ean 50

4.4.1.3 COMPOSILES.veeeiiii ettt ettt st e e e st e snt e e s e e e e e e eeas 51

4404 PartS. ..o 51

4.4.1.5 Part CONNECHONS. ...ttt e e e e e e e e e eas 51

4.4.1.6 Part Paths.........oiiiiiiiiiiiee e 52

4.4.1.7 Derivation and SeIECHON...........ccueieiiiie et a e 52

4.4.2 Metamodel SpecCifiCation..............eeiiiiiiiiiiiii e 53
4.4.2.1 Composition Model Diagram...........ccceiiiiiiiiiieeeiiiee e 53

4.4.2.2 Directed Part Connection Diagram...........ccccoeiuiiiiiiieiiiiciie e 54

4.4.2.3 Part Connection & Condition Diagram............cccecvieiiiiiiiiieniiie e 55

4.4.2.4 Derivation Diagram...........ccouiiiiiriiie et 56

4.4.2.5 Selection Diagram.........c.eo et eeaeeeeean 56

4.4.2.6 COMPOSITE....cccueiiiee e ittt et e e e et e e e e et e e e e s et e e e e e e s saabaeeeessenrannnes 56

4.4.2.7 Connectable Element.......... .o 57

4.4.2.8 DEIVALION. ...ttt ettt e e e e et e e e e e e ne e e e e e e e neneeees 57

4.4.2.9 Directed Part CONNECHION..........cooiiiiiiii e 58

A L 3T 1AV To [N | USSR OPR 58

4.4.2.11 Individual From Set.......ccoiiiiiiiiiiiiii e 58

4.4.2.12 Irreflexive ConditioN..........ooiiii i 59

44203 Pt ..ottt 59

4.4.2.14 Part CONNECHON.oiiiiiieiiie ettt s e e e e eeeeeaeeeeean 59

R o - T A €] (o TV o USSP 60

4.4.2.16 Part Path........oooiiiii e 61

4.4.2.17 Part Replacement...........ooi i 61

4.4.2.18 Selector SpecCifiCation..........cocuii i 62

44219 TYPEA Part... ..ot e e 62

4.4.2.20 Instance: Irreflexive Condition............ooocuiiiiiiiiiie e 62

T O 11 1= 1Y/ [0 Yo [63
4.5.1 INEOTUCHION.ceiieie et e e e e e e 63
4.5.2 Metamodel SPeCIfiCatioN............ueviiiiiiiiiieiieeee e 65
4.5.2.1 Happening and Event Diagram.............ccoooiiieiiieiiiiiieee e 65

4.5.2.2 Time Event Diagraml.........ocueeiiiiiiiiiiiee ettt eeeeeeeees 66

4.5.2.3 Event Condition Diagram............eiiiiiiiiiiiie et ee e e e e e e 66

4.5.2.4 Time Event Condition Diagram...........c.ccueeeiiiieeiiie e siee e sieee e e 67

4.5.2.5 Fact Change Condition Diagram............ccueiiiieieiiiie e 68

4.5.2.6 CoUrse DIagram........c..eiiiiiiiiiiii ettt 69

4.5.2.7 Gateway Diagraml........cooueei i 70

4.5.2.8 Event Course Diagram..........c.cooiuiiiiiiiiiiiee e e e e 71

4.5.2.9 Common Infrastructure Library: Happenings, Events and Conditions............. 72

4.5.2.10 Common Infrastructure Library: 'Happening Occurrences'...............cccceeeennn. 73

4.5.2.170 ClOCK ...ttt et e 73

Iy 1 07 o TN = YRS 73

4.5.2.13 COUISE EVENL.....oiiiiiiiiiiiie e 74

4.5.2.14 COUISE Part........ooiiiiiii ettt 74

4.5.2.15 CYClE EVENT....coiiiiiiiii e et 75

452168 EVENL....eeiiiiee e 75

4.5.2.17 EVENt CONAItION.......oiiiiiieiiie et e e s e e e e e e e e eas 75

A.5.2 18 EVENE PArt......ooiiiiiee et e e 76

4.5.2.19 EXCIUSIVE JOIN...ciiiiiiiiiieeieee ettt e st e e e e e e e e e eeeeees 76

4.5.2.20 EXCIUSIVE SPIit....cccieiiriiieiiecee ettt e 77

Business Process Definition MetaModel, Common Infrastructure, v1.0 iii

4.5.2.21 FACt ChaNQ@E.....cueeiiiiiie ettt e e e e e e 78

4.5.2.22 Fact Change ConditioN...........cooiiiiiiiiiiiiiee e e 79
I T 1= | (=1 OSSR 79
4.5.2.24 HAPPENMING. ...ceiiiiiiiitiee ettt ettt e e et e e e e et e e e e e e e e e e e e e aeaeeeeeeeeanaes 80
4.5.2.25 Happening OVer TIME. . ..o it e e e et e e e e e e eneeeeees 80
4.5.2.26 Happening Part...... ... it 80
4.5.2.27 Immediate SUCCESSION.........cooieieeeieee et e e e e e e e 81
4.5.2.28 Parallel JOIN........ouuueeieeeieeeeeeeee ettt e e e e 81
4.5.2.29 Parallel SPlit......cccueiiiiieiiiie e 82
4.5.2.30 Relative TimeDate EVENL............ooovveuiiiieei e 82
I o IS 10 (oot <11 (o o N 83
4.5.2.32TIME EVENL......ccooieee ettt e e 84
4.5.2.33 Time Event ConditioN..........ccooi i iieeecee et 85
4.5.2.34 TIMEDAIE EVENL.........ooeeeeeeie et e s 85
4.5.2.35 InStance: All SUCCESSIONS.........coiveiiiiieeeeee et e e e e e e e e e eeaanas 85
4.5.2.36 Instance: becomes falSe............ooeuvueeeiiiiiiieeeeee e 86
4.5.2.37 Instance: bECOMES trUE........uuveeeiiiieeeeieieeeeeeeeeee e 86
4.5.2.38 Instance: Course Event OCCUITENCE..........cccccuvvuriviriieiiieieeeeeeeeeeeeee e, 86
4.5.2.39 Instance: Course OCCUIMTENCE.uueeeeeeeeeieieeeeeeeeeeeeeeeeeeeeeeeraeeareeaaeeeeeeenes 86
4.5.2.40 Instance: ENA EVENL........cooo oo 87
4.5.2.41 INStANCE. ENG....eueiiiiieeeeeeeee ettt e e 88
4.5.2.42 Instance: EVENt OCCUIMENCE.covviiiieeeeeeeeee e e e e e e eeees 88
4.5.2.43 Instance: Happening OCCUITENCE..........ccoruiiiiiieeeriiee et e e 89
4.5.2.44 Instance: Happening Over Time OCCUITENCE.cceevvueeeriiiriiiieeeeeeeeeeeans 89
4.5.2.45 Instance: ONe SUCCESSION.........uuvvriiriiiiiiiiieieieeeeeeeeeeeeeeeeeeeeebar e e eeeanes 89
4.5.2.46 InStance: Start EVENL..........uuoiiiiieeeeeeeee e 90
4.5.2.47 Instance: Start-ENd...........coooiiiiiiiiieccee s 90
4.5.2.48 InStaANCE: Start..........coo i 90

Business Process Definition MetaModel, Common Infrastructure, v1.0

List of Figures

Figure 1 - Package DepPeNAENCIES.cuccuiiiiieiiiiiises s s s s e s e e b aa e e a e e e n e e e e e e e e e annnnnn e e e 5
Figure 2 - Primitive TyPes. ...t p e e an e e e a e e e e e e e e e e nnnnn e 7
Figure 3 - Elements PaCKage..........ccouiiiiiiiii i s s s an e e e e n e nrnnnnnnn 8
L 0= B] =T £ oY o SRR 8
Figure 5 - OWNerships PacCKage.........ccccciiiiiiiiiiiiicirirsee st e s ser s sssse s s s e s sar s ssn e s s e e s s s s mn e s s me e e ssnn e s s e e s s s nnnnnnnnnen 9
Figure 6 - OWNEISRIPS.cooi it s e s s e e s e e s e me e s me e e s ane s e nneseanenessnnesssnnnnnnnnen 9
Figure 7 - COmMmMENtS PaCKage.........cceiiiiiiiiiriiie i s s p e n e a s nr e e e e e e e e e s 10
LT LU= TR 00T 4T 14T LN 10
Figure 9 - Relationships PaCKage...........ccuuiiiiuiiiniiiinis i s s s s e 1
Figure 10 - Relationships..........ccociiiiiiiii i e s 12
Figure 11 - Namespaces PaCKage.........cciuiumiiiiiiiieies s s s ann s e s e ann e e e e nnnnnn 13
FIiQUIe 12 - NAmME@SPACES.....ciiiccueerriiiiisnnrerisssssnesssssssssseesssasssnsressassssssssssassssnsessssasasnnsessasssansesssassssnnennessensessennenssnnnnnnnnnnn 14
Figure 13 - Packages DIiagram............ccioiiiiimii s s s sms e s s m s e e s e e mms e e s e e s e amn e e e e s s e e s s e e e e e e e e e ennnnnnnnnn 17
L 0= I B e T - TN 18
Figure 15 - TypedElements PACKage..........ccceiiuiriiiiniiiisisie s s s s s s s s s s s sn e n s s s 19
Figure 16 - Typed EI@MENLS........... i r e e e e s smme e s e s e s mme e s e e e me e e e e e sesmneeessesasmneeseassannnennnnnnnnnn 20
Figure 17 - Multiplicities Package.........cccccmiiiiiiiis i 21
Figure 18 - MUKIPIICIties.......coiciiiiiiie i n e 21
Figure 19 - MultiplicityEXpressions Package.........cccuccvieriiiiiiiminiiinisirs s s sss s s s sss s s snsnnnes 22
Figure 20 - MultipliCityEXPreSSIONS. ssssssssr s s e s s e s e s s s s s as s s s s s s snsnssssssennnnsssssnnnn 22
Figure 21 - EXpressions PacCKage.........coooiiiiiiiiiii i ms s s mn e e e s s e e s s e e e e e e e e e e e e e nnnnnnn 23
L U= o o T =X =] e L= 24
Lo 10 L Tl L= 1L - T T [25
T U= B T =T - | L= 26
Figure 25 - Constraints Package.........cccceiriiiiiniiie i e s e s 28
Figure 26 - CONSIIaINES.......cicceiiiiieinii i r e e e e e R e e e R e r e an s 29
Figure 27 - Classifiers PACKAge..........cccciiiiiiiiiiiiieis it s s s s m s s s s e e s e e mn e s e e s e s 30
FIigUIe 28 - ClasSifiers.......iccicciiiiiiciieiiisicsseeie s sss s sse e e s ssssssr e e e s s s s ssn e e e e e sssssms e e e sessssnneeeeassssnaseeeassnneseesanaannne e e e e e e e e e e e nnnnnnnnnnn 30
LT LU= S 1T o =T gl o= Ve - Vo = 31
LT 10 = T TS 1 o =Y 32
Figure 31 - Generalizations Package...........cccccriiimmiiniininiiiss i s 33
Figure 32 - Generalizations............ccciieiiiieiiini i 33
Figure 33 - Structural Features Package...........cccciiiiiiiiiiiniiniie e e s 34
Figure 34 - Structural FEatures..........ccciiiiiiiiiiii i s 35
Figure 35 - Behavioral Features Package..........cccuccieeiiiiniiimimiiiieirn e 36
Figure 36 - Behavioral FEatUres...........uuuiiiiiiiiiiiiiiiiiissssssssssssrsisrss s s s s s sssssmsssssssssasssssssssssssnsnnnsssssnnnn 36
Figure 37 - Properties PaCKage. ... mir s s n e s mn e e s e e mms e e e e s mmn e e e e e e e e e e nnnnnnn 37
L U= T T T o o o 1T o =N 38
Figure 39 - INStances PacCKage.........ccuuiiiiiimiriiii i 39
Figure 40 - INSEANCES.......ceiiiiiiiiiriir iR na s 39
Figure 41 - Datatypes Package.........ccccciiiiiiiiiiniss i s s 42
LT L0 Ll T 1= T/ o =S 42
Figure 43 - Redefinitions Package...........cccoiiiiiiiiiiie i s s 43
Figure 44 - RedefinitioNs........oiii i irccrere s cer e s s s s s e s s s s ssse e e s s s nn e e e e s s s snn e e e e s s smnn e e e sa s nnneeneassnnnnenesnnsnnnnnns 44
Figure 45 - Condition Model DIiagram..........ccccuuceceiriierinsiersseressseesss s e ssssse s sssmeesss s e sssms s sssnnessssnesassnsesssnnessssnesssssassnnns 46
Figure 46 - Composition Model Diagram..........cccuceiriiiiiinnsniissre s s s ses s s s s s s se s smn s me s s smn e sssmnesennnn 53
Figure 47 - Directed Part Connection Diagram..........ccccviiiiiminiieinnninss e s s s e 54
Figure 48 - Part Connection & Condition Diagram..........cccccminiminnine s 55
Figure 49 - Derivation Diagram..........ccciiriiieiiie i e ae e s e e e e e e n e nnnr s 56
Figure 50 - Selection Diagram...........uccciiiimiieniiirsir i s 56
Figure 51 - Part Group NOatioN...........ccoiiiiiiir e s s e e e e 60
Figure 52 - Happening and Event Diagram.............cciiiiiiiiisssssssssesrsrsnssssssss s s s ssssssssssssssssssssssssnssnsssssssnee 65
Figure 53 - Time Event Diagram....... ..o s ms e ms e s e s mn e e s e s mmn e e s e e mmn e e e s s nnnnnn 66
Figure 54 - Event Condition Diagram...........cccoiiiiiiiiiiiinieirisiessser s ses s s sss s s s s s s s me s e mn s s s mme s s mnennan 66
Figure 55 - Time Event Condition Diagram...........cccuciiminiimiiesii i s s 67

Business Process Definition MetaModel, Common Infrastructure, v1.0 v

vi

Figure 56 - Fact Change Condition Diagram..........cccceriiiiminismnisss s s s s sss s sss s s ss s sssss s s snas 68

Figure 57 - CoUrse Diagram.........ccccuiiieriiiinniiiisinss i s e e e e e s aa e e e a e e e e e e e e ne e e an e e aan e e e s 69
Figure 58 - GateWay DIiagram.........ccceiiiiriiiniriiie i me s as s s ae s me e s s san e s e ae e s mn e s s n R e e e e e e e e e s nnnnnnnn 70
Figure 59 - Event Course Diagram.........cccuiiiiiriinie s s s ssssss s sme s s s s s ms s s mns s s s sessss s sssnnessssnssessssssnnnn 7
Figure 60 - Common Infrastructure Library: Happenings, Events and Conditions............ccccoiiiiiiiiiiiiiiiinniinninnnens 72
Figure 61 - Common Infrastructure Library: 'Happening OCCUITENCES'..........ccccecoerrricrrirserrrsserssseesssee s e sssnnns 73
Figure 62 - Exclusive Merge Notation...........cccciieiiiiiinin i 76
Figure 63 - Exclusive Split Notation..........cccceiiiiiiiini - 78
Figure 64 - Fact Change Notation...........cccciiiiiiiniiir i 78
Figure 65 - Gateway NOtation...........cociiiiiimir 80
Figure 66 - Parallel JOin NOtatioN..........cccuuiiieii s nnnnnan 81
Figure 67 - Parallel Split NOtation...........cccociiiiiiiiiir s e 82
Figure 68 - SUCCeSSION NOLAtioN........coiiiiee e n e s mn e e nn e e e nnnnan 84
Figure 69 - Succession with Fact Change Condition............cccuiiiiiiiiirssrisce e s 84
Figure 70 - Succession with Time Event Condition...........cccccviminiimiiii s 84
Figure 71 - Time Event NOtation..........ccciiiiiiiiisiisnir i s 85
Figure 72 - Course OCCUIrenCe Diagram........ccccuiiieriiieininiis i e s s e s e e s s 87
Figure 73 - Event Part : End NoOtation..........cccciiiiiiniii i s 88
Figure 74 - Event Part : Start Notation..........cccciiiiiniii e e 91
Figure 75 - Event Part : Start with 'Fact Change Condition' Notation.............ccccviiiiinicninnsnnce e 91
Figure 76 - Event Part : Start with 'Time Event Condition' Notation............cccooiiiicie e 91
Business Process Definition MetaModel, Common Infrastructure, v1.0

1 Normative References

[OMG formal/2007-11-04] http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF

2 Terms and Definitions

Classifier

A classifier is a classification of instances - it describes a set of instances that have features in common.
Description : A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

Element

An element can own comments. The comments for an Element add no semantics but may represent information useful to
the reader of the model.

DataType

DataType is an abstract class that acts as a common superclass for different kinds of data types. DataType is the abstract
class that represents the general notion of being a data type (i.e., a type whose instances are identified only by their
value).

Expression

An expression is a structured tree of symbols that denotes a (possibly empty) set of values when evaluated in a context.
An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and
has a possibly empty sequence of operands that are value specifications.

ValueSpecification

A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.
Description: ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference
an instance or it may be an expression denoting an instance or instances when evaluated.

Generalization

A generalization between two types means each instance of the specific type is also an instance of the general type. Any
specification applying to instances of the general type also apply to instances of the specific type.

Namespace

A namespace is a named element that can own other named elements. Each named element may be owned by at most one
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified
by name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by
other means (e.g., importing or inheriting). Namespace is an abstract metaclass.

Package

A package is a container for types and other packages. Packages provide a way of grouping types and packages together,
which can be useful for understanding and managing a model. A package cannot contain itself.

Business Process Definition MetaModel, Common Infrastructure, v1.0 1

http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/

Property

A property is a structural feature of a classifier that characterizes instances of the classifier.

Description: Property represents a declared state of one or more instances in terms of a named relationship to a value or
values. When a property is an attribute of a classifier, the value or values are related to the instance of the classifier by
being held in slots of the instance. Property is indirectly a subclass of TypedElement. The range of valid values
represented by the property can be controlled by setting the property's type.

Type

A Type is a NamedElement that groups individuals according to some commonality among them, which might be
characteristics they can have or constraints they obey. Types can cover any kind of entity, physical or computational,
static or dynamic. For example, the type Person groups individual people, like Mary and John. The type declares
commonalities among people, for example, they can have names and gender, or obey constraints, such as being
genetically related to exactly two other people.

TypedElement

A typed element is a kind of named element that represents elements with types. Elements with types are instances of
TypedElement. A typed element may optionally have no type. The type of a typed element constrains the set of values
that the typed element may refer to.

Composite

A Composite is a Classifier which has an internal structure. It specifies the connections of individuals that are all related
to the same other individual (MO0). For example, a company type specifies the connections of departments within each
individual company of that type (assuming it is modeled in a value chain manner, rather than just an organization chart).
Likewise, an orchestration type specifies the sequence of steps in each individual occurrence of that orchestration.

Part

A Part is a Connectable Element that is an element of the structure of a Composite.

Part Connection
A Part Connection is a Feature of a composite used to connect its Connectable Elements. A Part Connection can

connect any number of parts. For example, a business interaction can involve multiple companies.

When a Part Connection is connecting Typed Part, its specifies links between MO entities playing the typed parts. For
example, the reporting connection between the president of a company and the CEO means the person playing the
president in a particular company will report to the person playing the CEO in the same company. Likewise, the temporal
connection between one step and another in a process means that in each occurrence of that process, there is an
occurrence of one step that happens after the occurrence of another. Conditions may be applied to Part Connections to
limit when they apply. For example, one step in a process may happen after another only when certain conditions are true
as the process is executing.

Condition

A Condition is a Boolean ValueSpecification that constrains some element in the models. Conditions are true if their
descriptions hold in the current state of the world, possibly including executions, and false otherwise.

Statement

Statement is a Boolean ValueSpecification that does not constrain anything. Statements are used to integrate with rule
models.

Course

A Course is an ordered Succession of Happening Parts. A Course is a Composite that has connections representing

2 Business Process Definition MetaModel, Common Infrastructure, v1.0

that one part of the course "follows" another in time, and possibly establishes constraints on such followings
(Succession).

Course Part

A Course Part is a kind of Connectable Element that defines a stage in a Course. It can be connected to Succession as
a predecessor or successor element.

Event

An Event is a Happening for dynamic entities occurring at a point in time.

Event Condition

An Event Condition is a Condition for specifying that an Event must occur in the context of a particular Happening
Over Time for the condition to hold. For instance, a condition can be on the eruption (instance of Event) of a particular
volcano (instance of Happening Over Time).

Event Part

An Event Part identifies Event (such as Start Event or End Event) for an individual Course. An Event Part is also a
Happening Part, enabling it to be connected by Successions.

Gateway

A Gateway is a kind of Course Part representing potentially complex specifications of how dynamic individuals
playing Happening Parts are ordered in time. The particular specifications are given in subtypes. At runtime, Gateways
don't have any execution trace.

Happening

A Happening is a Classifier for dynamic entities.

Succession

A Succession is a Directed Part Connection that organizes Course Parts in series in the context of a Course. A
Succession indicates that one Course Part "follows" another in time, and possibly establishes constraints on such
followings. It can order the Event Part of its Happening Parts such as their Start or End.

Succession allows any combination of Event Part to be connected.

End -> Start
Start -> Start
Start -> Abort
etc.

A Succession doesn't need to have Happening Part on its ends, it can have untyped course parts also, such as Gateway,
but it must have something on each end. For convenience, a Succession that does not specify source event part or
target event part will have the same effect as a Succession where these are respectively the End and Start.

Time Event

A Time Event specifies a point in time that is a source of interest.

Time Event Condition

A Time Event Condition is a kind of Event Condition that is based on the occurrence of a Time Event. A Time Event
Condition is specified by referring to a Clock.

Business Process Definition MetaModel, Common Infrastructure, v1.0 3

3 Additional Information

3.1 Acknowledgements

The following companies submitted this specification:

e Adaptive

* Axway Software

¢ Borland Software

¢ Model Driven Solutions
e EDS

¢ Lombardi Software

¢ MEGA International

e Unisys

The following companies and organizations support this specification:

* BPM Focus
e U.S. National Institute of Standards and Technology (NIST)

4 Metamodel and Notation Specification

This section presents the normative specification for the common infrastructure metamodel. It begins with an overview of
the metamodel structure followed by a description of each sub-package.

4.1 Overview

The Abstractions package is a result of the merge from the InfrastructureLibrary::Core: Abstractions package and the
Infrastructure:Core:PrimitiveTypes package.

4 Business Process Definition MetaModel, Common Infrastructure, v1.0

Elements
e
Ownerships Multiplicities

N
Comments ," ,"
/N

'
Super > Classifiers
- : 1 -~
H
H
s
A e .
Seal Lo :
Shel L7 Instances H
. L i
. H
. H

{%WHJ

Figure 1 - Package Dependencies

Package Comment

BehavioralFeatures The BehavioralFeatures subpackage of the Abstractions package specifies the
basic classes for modeling dynamic features of model elements.

Classifiers The Classifiers package in the Abstractions package specifies an abstract
generalization for the classification of instances according to their features.

Comments The Comments package of the Abstractions package defines the general
capability of attaching comments to any element.

Constraints The Constraints subpackage of the Abstractions package specifies the basic
building blocks that can be used to add additional semantic information to an
element.

Business Process Definition MetaModel, Common Infrastructure, v1.0

DataTypes

The DataTypes subPackage specifies the DataType, Enumeration,
EnumerationLiteral, and PrimitiveType constructs. These constructs are used
for defining primitive data types (such as Integer and String) and user-defined
enumeration data types. The data types are typically used for declaring the
types of the class attributes.

Elements

The Elements subpackage of the Abstractions package specifies the most basic
abstract construct, Element.

Expressions

The Expressions package in the Abstractions package specifies the general
metaclass supporting the specification of values, along with specializations for
supporting structured expression trees and opaque, or uninterpreted,
expressions. Various UML constructs require or use expressions, which are
linguistic formulas that yield values when evaluated in a context.

Generalizations

The Generalizations package of the Abstractions package provides mechanisms
for specifying generalization relationships between classifiers.

Instances

The Instances package in the Abstractions package provides for modeling
instances of classifiers.

Literals

The Literals package in the Abstractions package specifies metaclasses for
specifying literal values.

Multiplicities

The Multiplicities subpackage of the Abstractions package defines the
metamodel classes used to support the specification of multiplicities for typed
elements (such as association ends and attributes), and for specifying whether
multivalued elements are ordered or unique.

MultiplicityExpressions

The MultiplicityExpressions subpackage of the Abstractions package extends
the multiplicity capabilities to support the use of value expressions for the
bounds.

Namespaces The Namespaces subpackage of the Abstractions package specifies the
concepts used for defining model elements that have names, and the
containment and identification of these named elements within namespaces.

Ownerships The Ownerships subpackage of the Abstractions package extends the basic
element to support ownership of other elements.

Packages The Packages package of Abstractions specifies the Package and
Packagelmport constructs.

Properties The Properties subpackage of the Abstractions package specifies the basic class
for modeling structural features of model elements.

Redefinitions

Relationships The Relationships subpackage of the Abstractions package adds support for
directed relationships.

StructuralFeatures The StructuralFeatures package of the Abstractions package specifies an
abstract generalization of structural features of classifiers.

Super The Super package of the Abstractions package provides mechanisms for
specifying generalization relationships between classifiers.

TypedElements The TypedElements subpackage of the Abstractions package defines typed

elements and their types.

4.2 Abstractions

421 Introduction

The Abstractions package represents the core modeling concepts of the UML, including classifiers, properties, and
packages. This part is mostly reused from the infrastructure library, since many of these concepts are the same as those

that are used in, for example, MOF.

Business Process Definition MetaModel, Common Infrastructure, v1.0

422 Metamodel

The PrimitiveTypes package of InfrastructureLibrary::Core contains a number of predefined types used when defining
the abstract syntax of metamodels.

4.2.21 PrimitiveTypes

<<primtive>> <<primtive>> <<primtive>> <<primtive>>
Integer Boolean String UnlimitedNatural

Figure 2 - Primitive Types

4.2.2.2 Boolean

Package: PrimitiveTypes
isAbstract: No
Description

Boolean is an instance of PrimitiveType. In the metamodel, Boolean defines an enumeration that denotes a logical
condition. Its enumeration literals are:

¢ true - The Boolean condition is satisfied.
e false - The Boolean condition is not satisfied.
4223 Integer

Package: PrimitiveTypes
isAbstract: No

Description

An instance of Integer is an element in the (infinite) set of integers (..2, -1, 0, 1, 2..). It is used for integer attributes and
integer expressions in the metamodel.

4224 String

Package: PrimitiveTypes
isAbstract: No
Description

A string is a sequence of characters in some suitable character set used to display information about the model. Character
sets may include non-Roman alphabets and characters.

An instance of String defines a piece of text. The semantics of the string itself depends on its purpose, it can be a
comment, computational language expression, OCL expression, etc. It is used for String attributes and String expressions
in the metamodel.

Business Process Definition MetaModel, Common Infrastructure, v1.0 7

4225 UnlimitedNatural

Package: PrimitiveTypes
isAbstract: No

Description

An unlimited natural is a primitive type representing unlimited natural values. An instance of UnlimitedNatural is an
element in the (infinite) set of naturals (0, 1, 2..). The value of infinity is shown using an asterisk ('*').
The Elements subpackage of the Abstractions package specifies the most basic abstract construct, Element.

4.2.2.6 Elements Package

Elements

Figure 3 - Elements Package

4.2.2.7 Elements

Element

Figure 4 - Elements

4.2.2.8 Element

Package: Elements
isAbstract: Yes

Description

An element is a constituent of a model.
Description
Element is an abstract metaclass with no superclass. It is used as the common superclass for all metaclasses in the

infrastructure library.

The Ownerships subpackage of the Abstractions package extends the basic element to support ownership of other
elements.

8 Business Process Definition MetaModel, Common Infrastructure, v1.0

4229 Ownerships Package

Elements

N

:

Ow nerships

Figure 5 - Ownerships Package

4.2.210 Ownerships

Element
from [Elements]

freadonly, union} ér

Faviner Efemeni
a1 from [Ownerships]

®

fownedElement
{readonly, union}

Figure 6 - Ownerships

4.2.2.11 Element

Package: Ownerships

isAbstract: Yes

Generalization: “Element”

Description

An element is a constituent of a model. As such, it has the capability of owning other elements.
Description

Element has a derived composition association to itself to support the general capability for elements to own other
elements.

The Comments package of the Abstractions package defines the general capability of attaching comments to any
element.

Business Process Definition MetaModel, Common Infrastructure, v1.0

4.2.212 Comments Package

Ownerships

N

Comments

Figure 7 - Comments Package

4.2.213 Comments

Flement
from [0 wnerships]

L%

fement {zubset: owner[D.1]}
annotatedE lement . owningE le ment
- 0.1
Comment
= (+bodw[0..1]:5trng *

ownedComment)
{subsets ownedEleme nt[*]

Figure 8 - Comments
42214 Comment

Package: Comments
isAbstract: No
Generalization: “Element”
Description

A comment is a textual annotation that can be attached to a set of elements. A comment gives the ability to attach various
remarks to elements. A comment carries no semantic force, but may contain information that is useful to a modeler. A
comment may be owned by any element. A Comment adds no semantics to the annotated elements, but may represent
information useful to the reader of the model.

Attributes

body: String [0..1] Specifies a string that is the comment.

10 Business Process Definition MetaModel, Common Infrastructure, v1.0

Associations

annotatedElement : Element [*] References the Element(s) being commented.

4.2.2.15 Element

Package: Comments
isAbstract: Yes
Generalization: “Element”

Description

An element can own comments. The comments for an Element add no semantics but may represent information useful to
the reader of the model.

Associations

ownedComment : Comment [*] The Comments owned by this element.
Subsets ownedElement

The Relationships subpackage of the Abstractions package adds support for directed relationships.

4.2.216 Relationships Package

Comments

/N

Relationships

Figure 9 - Relationships Package

Business Process Definition MetaModel, Common Infrastructure, v1.0 1

4.2.217 Relationships

£leme nf
from [Comments)

A‘S

Hefafionzhip

Efement

{readanly . union} from [Comments)

frelatedElement

freadonly, union}

* 1.7

freadonly, union}

{zubsets relatedE lement[1..7]}

freadonly, union}
Frouice

Pireciedf efafionship /
" 1

freadanly, union}
{readonly, union} {zubzets relatedElement[1.. "]}
! ftarget

: 1

Figure 10 - Relationships
4.2.2.18 DirectedRelationship

Package: Relationships
isAbstract: Yes
Generalization: “Relationship”

Description

A directed relationship represents a relationship between a collection of source model elements and a collection of target
model elements.

Associations
source : Element [1] Specifies the sources of the DirectedRelationship.
This is a derived union.
Subsets relatedElement
target : Element [1] Specifies the targets of the DirectedRelationship.

This is a derived union.
Subsets relatedElement

12 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.2.219 Relationship

Package: Relationships
isAbstract: Yes
Generalization: “Element”

Description

Relationship is an abstract concept that specifies some kind of relationship between elements.

Associations

relatedElement : Element [1..%] Specifies the elements related by the Relationship.
This is a derived union.

The Namespaces subpackage of the Abstractions package specifies the concepts used for defining model elements that

have names, and the containment and identification of these named elements within namespaces.

4.2.2.20 Namespaces Package

Relationships

—————y
—~

Namespaces

Figure 11 - Namespaces Package

Business Process Definition MetaModel, Common Infrastructure, v1.0

13

4.2.2.21 Namespaces

from [Comments)

L|5

MamedElement <<Enumeratiori>»
+namd 0L 1]:5ting VisibilityKind
+.-“q.ﬁifia§|:lN \?“E{Iu}y Sdtii ngu_ p L_b!::pu_glct

Iy pvae=pivate
+izibility 1] Wiziblibgkinds public pivdephats e
package
+/ovredd ember | * +/memnber
fsubsets oma:IElemmll"l}} {readaniy. union}
readonly, Lnion
{z1bset: owrer[0.17 Directeddelationsiip
{rea‘?lﬁmak_l, unior} from [A elationships)
+ espace g 0.1 #
Hamespace ﬁl

E lement Import

faubsets ovnedElerent Tt |+ sbilibl] I]\.f.s_ihi|it;,-r<'nd=p-,b|ic
1 +eleme rtpart |+alias[0l1}Sing

v+irrpatingNarrespaoe
[sd:sets owredd. 1]
subsety source{ 1]}

Mame dEfement
{aubssts taget[1 1}
+impartedElement . [, 1
Itmpor fabloEfemorndt

{subsats owredd embel T
+fimportzdhd ember

Figure 12 - Namespaces

4.2.2.22 Elementimport

Package: Namespaces
isAbstract: No
Generalization: “DirectedRelationship”

Description

An element import identifies an element in another package, and allows the element to be referenced using its name
without a qualifier.

Description

An element import is defined as a directed relationship between an importing namespace and a packageable element. The
name of the packageable element or its alias is to be added to the namespace of the importing namespace. It is also
possible to control whether the imported element can be further imported.

Semantics

An element import adds the name of a packageable element from a package to the importing namespace. It works by
reference, which means that it is not possible to add features to the element import itself, but it is possible to modify the
referenced element in the namespace from which it was imported. An element import is used to selectively import
individual elements without relying on a package import. In case of a nameclash with an outer name (an element that is
defined in an enclosing namespace is available using its unqualified name in enclosed namespaces) in the importing
namespace, the outer name is hidden by an element import, and the unqualified name refers to the imported element. The
outer name can be accessed using its qualified name.

If more than one element with the same name would be imported to a namespace as a consequence of element imports or
package imports, the elements are not added to the importing namespace and the names of those elements must be

14 Business Process Definition MetaModel, Common Infrastructure, v1.0

qualified in order to be used in that namespace. If the name of an imported element is the same as the name of an element
owned by the importing namespace, that element is not added to the importing namespace and the name of that element
must be qualified in order to be used. If the name of an imported element is the same as the name of an element owned
by the importing namespace, the name of the imported element must be qualified in order to be used and is not added to
the importing namespace.

An imported element can be further imported by other namespaces using either element or package imports.
The visibility of the Elementlmport may be either the same or more restricted than that of the imported element.

Attributes
visibility: VisibilityKind [1] Specifies the visibility of the imported ImportableElement within the importing
Namespace. The default visibility is the same as that of the imported element. If
the imported element does not have a visibility, it is possible to add visibility to the
element import; default value is public.
alias: String [0..1] Specifies the name that should be added to the namespace of the importing

Package in lieu of the name of the imported PackagableElement. The aliased name
must not clash with any other member name in the importing Package. By default,
no alias is used.

Associations

importedElement : ImportableElement [1] Specifies the PackageableElement whose name is to be added to a
Namespace.
Subsets target

4.2.2.23 ImportableElement

Package: Namespaces
isAbstract: Yes
Generalization: “NamedElement”

Description

A ImportableElement indicates a named element that is imported by a Namespace.

4.2.2.24 NamedElement

Package: Namespaces
isAbstract: Yes
Generalization: “Element”

Description

A named element represents elements with names. Elements with names are instances of NamedElement. The name for
a named element is optional. If specified, then any valid string, including the empty string, may be used.

Attributes
name: String [0..1] The name of the NamedElement.
qualifiedName: String [0..1] A name which allows the NamedElement to be identified within a hierarchy of

nested Namespaces. It is constructed from the names of the containing

Business Process Definition MetaModel, Common Infrastructure, v1.0 15

namespaces starting at the root of the hierarchy and ending with the name of the
NamedElement itself. This is a derived attribute.

visibility: VisibilityKind [1] Determines where the NamedElement appears within different Namespaces
within the overall model, and its accessibility.

4.2.2.25 Namespace

Package: Namespaces
isAbstract: Yes
Generalization: “NamedElement”

Description

A namespace is a named element that can own other named elements. Each named element may be owned by at most one
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified
by name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by
other means (e.g., importing or inheriting). Namespace is an abstract metaclass.

Associations

elementlmport : ElementImport [*] References the ElementImports owned by the Namespace.
Subsets ownedElement
Subsets

importedMember : ImportableElement [*] References the ImportableElements that are members of this

Namespace as a result of either ElementImports.
This is a derived association.
Subsets ownedMember

member : NamedElement [*] A collection of NamedElements identifiable within the
Namespace, either by being owned or by being introduced by
importing or inheritance.
This is a derived union.

ownedMember : NamedElement [*] A collection of NamedElements owned by the Namespace.
This is a derived union.
Subsets ownedElement

4.2.2.26 VisibilityKind

Package: Namespaces
isAbstract: No

Description

VisibilityKind is an enumeration type that defines literals to determine the visibility of elements in a model.
Semantics

VisibilityKind is intended for use in the specification of visibility in conjunction with, for example, the Imports,
Generalizations, Packages, and Classifiers packages. Detailed semantics are specified with those mechanisms. If the

Visibility package is used without those packages, these literals will have different meanings, or no meanings.

e A public element is visible to all elements that can access the contents of the namespace that owns it.
e A private element is only visible inside the namespace that owns it.

16 Business Process Definition MetaModel, Common Infrastructure, v1.0

* A protected element is visible to elements that have a generalization relationship to the namespace that
owns it.

¢ A package element is owned by a namespace that is not a package, and is visible to elements that are in
the same package as its owning namespace.

Only named elements that are not owned by packages can be marked as having package visibility. Any element marked
as having package visibility is visible to all elements within the nearest enclosing package (given that other owning
elements have proper visibility). Outside the nearest enclosing package, an element marked as having package visibility
is not visible.
In circumstances where a named element ends up with multiple visibilities, for example by being imported multiple
times, public visibility overrides private visibility, i.e., if an element is imported twice into the same namespace, once
using public import and once using private import, it will be public.

public:

private:

protected:

package:

The Packages package of Abstractions specifies the Package and PackageImport constructs.

4.2.2.27 Packages Diagram

Namespaces

~
-~

Packages

Figure 13 - Packages Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0 17

4.2.2.28 Packages

ace

from [Naméspaces]

| PackageableElemant |

Lls

LF

Impodabletioment
from [N amespaces]

A‘S

Package {subsets namespace]0.. 1] {subsets ownedMembed T
+oningFack age +pack agedElement | PackageableLjement
0.1 =
DiectedAelationsiip
from [R elationships)
{subsetz source1]}
{subsets ownedl. 1]} {subsets ownedE lement]
+impartingMam espace +package mport Packagelmport
1 +vigibility[0..1 I Wisibilitwkind
{subsats taget[1]}
+irrportedPack age
frestedPackage | ¢ 0.1 ¥ /resting? ackage

{subsets packagedElerment["T {zubzets owringPackage[174

Figure 14 - Packages

4.2.2.29 Package

Package: Packages
isAbstract: No
Generalization: “Namespace” ‘“PackageableElement”

Description

A package is a container for types and other packages. Packages provide a way of grouping types and packages together,
which can be useful for understanding and managing a model. A package cannot contain itself.

Associations

Specifies the packageable elements that are owned by this
Package.
Subsets ownedMember

packagedElement : PackageableElement [*]

Subsets ownedElement
Subsets

packagelmport : Packagelmport [*]

4.2.2.30 PackageableElement

Package: Packages
isAbstract: Yes

Generalization: “ImportableElement”

Description

A packageable element indicates a named element that may be owned directly by a package.

18 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.2.2.31 Packagelmport

Package: Packages
isAbstract: No
Generalization: “DirectedRelationship”

Description

A package import is a relationship that allows the use of unqualified names to refer to package members from other
namespaces.

Description
A package import is defined as a directed relationship that identifies a package whose members are to be imported by a
namespace.

Semantics

A package import is a relationship between an importing namespace and a package, indicating that the importing
namespace adds the names of the members of the package to its own namespace. Conceptually, a package import is
equivalent to having an element import to each individual member of the imported namespace, unless there is already a
separately-defined element import.

Attributes

visibility: VisibilityKind [0..1] Specifies the visibility of the imported PackageableElement within the importing
Package. The default visibility is the same as that of the imported element. If the
imported element does not have a visibility, it is possible to add visibility to the
element import; default value is public.

Associations

importedPackage : Package [*] Subsets target

The TypedElements subpackage of the Abstractions package defines typed elements and their types.

42232 TypedElements Package

Packages

/| é\
I

TypedElements

Figure 15 - TypedElements Package

Business Process Definition MetaModel, Common Infrastructure, v1.0 19

4.2.2.33 Typed Elements

Named Efemens Fackageablefiement
from [HNamespaces] from [Packages]
TypedElement Fype
+typedElement +Hype
* 0.1

Figure 16 - Typed Elements
42234 Type

Package: TypedElements
isAbstract: Yes
Generalization: “PackageableElement”

Description

A Type is a NamedElement that groups individuals according to some commonality among them, which might be
characteristics they can have or constraints they obey. Types can cover any kind of entity, physical or computational,
static or dynamic. For example, the type Person groups individual people, like Mary and John. The type declares
commonalities among people, for example, they can have names and gender, or obey constraints, such as being
genetically related to exactly two other people.

4.2.2.35 TypedElement

Package: TypedElements
isAbstract: Yes
Generalization: “NamedElement”

Description

A typed element is a kind of named element that represents elements with types. Elements with types are instances of
TypedElement. A typed element may optionally have no type. The type of a typed element constrains the set of values
that the typed element may refer to.

Associations

type : Type [0..1] The type of the TypedElement.

The Multiplicities subpackage of the Abstractions package defines the metamodel classes used to support the
specification of multiplicities for typed elements (such as association ends and attributes), and for specifying whether
multivalued elements are ordered or unique.

4.2.2.36 Multiplicities Package

20 Business Process Definition MetaModel, Common Infrastructure, v1.0

Elements

——_———
—

Multiplicities

Figure 17 - Multiplicities Package

4.2.2.37 Multiplicities

Element

%

MultiplicityE lement

+HsOrdered[1]:Boolean=false
HsUnique[l]:Boolean=true
Howerl0..1]:Integer=1L
+upper0.. 1]:UnlimtedNatural=L

Figure 18 - Multiplicities

4.2.2.38 MultiplicityElement

Package: Multiplicities
isAbstract: Yes
Generalization: “Element”

Description

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable
cardinalities for an instantiation of this element.

Description

A MultiplicityElement is an abstract metaclass that includes optional attributes for defining the bounds of a multiplicity.
A MultiplicityElement also includes specifications of whether the values in an instantiation of this element must be
unique or ordered.

Semantics

A multiplicity defines a set of integers that define valid cardinalities. Specifically, cardinality C is valid for multiplicity
M if M.includesCardinality(C). A multiplicity is specified as an interval of integers starting with the lower bound and
ending with the (possibly infinite) upper bound. If a MultiplicityElement specifies a multivalued multiplicity, then an
instantiation of this element has a set of values. The multiplicity is a constraint on the number of values that may validly
occur in that set. If the MultiplicityElement is specified as ordered (i.e., isOrdered is true), then the set of values in an
instantiation of this element is ordered. This ordering implies that there is a mapping from positive integers to the
elements of the set of values. If a MultiplicityElement is not multivalued, then the value for isOrdered has no semantic
effect. If the MultiplicityElement is specified as unordered (i.e., isOrdered is false), then no assumptions can be made
about the order of the values in an instantiation of this element. If the MultiplicityElement is specified as unique (i.e.,

Business Process Definition MetaModel, Common Infrastructure, v1.0 21

isUnique is true), then the set of values in an instantiation of this element must be unique. If a MultiplicityElement is not
multivalued, then the value for isUnique has no semantic effect.

Attributes
isOrdered: Boolean [1] For a multivalued multiplicity, this attribute specifies whether the values in an
instantiation of this element are sequentially ordered. Default is false.
isUnique: Boolean [1] For a multivalued multiplicity, this attribute specifies whether the values in an
instantiation of this element are unique. Default is true.
lower: Integer [0..1] Specifies the lower bound of the multiplicity interval. Default is one.
upper: UnlimitedNatural [0..1] Specifies the upper bound of the multiplicity interval. Default is one.

The MultiplicityExpressions subpackage of the Abstractions package extends the multiplicity capabilities to support the
use of value expressions for the bounds.

4.2.2.39 MultiplicityExpressions Package

Multiplicities Expressions
™ 7
\‘ 't
\\ "'
MultiplicityE xpressions

Figure 19 - MultiplicityExpressions Package

4.2.2.40 MultiplicityExpressions

Mudtip e ity £fe menit Llement
from [Multiplic ities] from [Ownerships]

|

MultiplicityElement fsubzets owner[0. 1]} fsubsets ownedElem ent[*]} Value Specification

b Hawer[D 1] Integer __owhingl pper upperalue from [Expressions]
Frupper[0..1]:Unlimit=d N atural 0.1 0.1
{subsets awner[0.1]} {subsets ownedElem ant [}
| owninglower lowearalue
0.1 0.1

Figure 20 - MultiplicityExpressions

22 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.2.2.41 MultiplicityElement

Package: MultiplicityExpressions
isAbstract: No

Generalization: “Element” “MultiplicityElement”

Description

MultiplicityElement is specialized to support the use of value specifications to define each bound of the multiplicity.

Attributes

lower: Integer [0..1]

upper: UnlimitedNatural [0..1]

Associations

lowerValue : ValueSpecification [0..1]

upperValue : ValueSpecification [0..1]

Specifies the lower bound of the multiplicity interval, if it is expressed
as an integer. This is a redefinition of the corresponding property from
Multiplicities.

Specifies the upper bound of the multiplicity interval, if it is expressed
as an unlimited natural. This is a redefinition of the corresponding
property from Multiplicities.

The specification of the lower bound for this multiplicity.
Subsets ownedElement

The specification of the upper bound for this multiplicity.
Subsets ownedElement

The Expressions package in the Abstractions package specifies the general metaclass supporting the specification of
values, along with specializations for supporting structured expression trees and opaque, or uninterpreted, expressions.
Various UML constructs require or use expressions, which are linguistic formulas that yield values when evaluated in a

context.

4.2.2.42 Expressions Package

TypedE lements

N

I:

Expressions

Figure 21 - Expressions Package

Business Process Definition MetaModel, Common Infrastructure, v1.0 23

4.2.2.43 Expressions

Packageable £lement FyppedEiament
from [Pack ages]) from (TypedElements]
Lr Lls {subzets ownedE lement[*]}
Valuwe5p ecification {0rdered}
operand

Lﬁ

OpaqueExpression Expression 0

+body[*]:String +zymbol[0..1]:5tring
+language[*]:Sting

expression
{subzets owner[0.1]}

Figure 22 - Expressions

4.2.2.44 Expression

Package: Expressions
isAbstract: No
Generalization: “ValueSpecification”

Description

An expression is a structured tree of symbols that denotes a (possibly empty) set of values when evaluated in a context.
An expression represents a node in an expression tree, which may be non-terminal or terminal. It defines a symbol, and
has a possibly empty sequence of operands that are value specifications.

Attributes

symbol: String [0..1] The symbol associated with the node in the expression tree.

Associations

operand : ValueSpecification [*] Specifies a sequence of operands.
Subsets ownedElement

4.2.2.45 OpaqueExpression

Package: Expressions
isAbstract: No
Generalization: “ValueSpecification”

Description

An opaque expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated
in a context.

24 Business Process Definition MetaModel, Common Infrastructure, v1.0

Description

An opaque expression contains language-specific text strings used to describe a value or values, and an optional
specification of the languages. One predefined language for specifying expressions is OCL. Natural language or
programming languages may also be used.

Attributes
body: String [*] The text of the expression, possibly in multiple languages.
language: String [*] Specifies the languages in which the expression is stated. The interpretation of the

expression body depends on the language. If languages are unspecified, it might be implicit
from the expression body or the context. Languages are matched to body strings by order.

4.2.2.46 ValueSpecification

Package: Expressions
isAbstract: Yes
Generalization: “PackageableElement” “TypedElement”

Description

A value specification is the specification of a (possibly empty) set of instances, including both objects and data values.
Description

ValueSpecification is an abstract metaclass used to identify a value or values in a model. It may reference an instance or
it may be an expression denoting an instance or instances when evaluated.

The Literals package in the Abstractions package specifies metaclasses for specifying literal values.

4.2.2.47 Literals Package

Expressions

/N

Literals

Figure 23 - Literals Package

Business Process Definition MetaModel, Common Infrastructure, v1.0 25

4.2.2.48 Literals

| Vakse Spec e aiion |
Literal Specification
Lites allnteger LiteralStning Liter alBoolean Litesal Hull LitesalUnlimitedHapural
+ueabie[1]dnteger Hwalie[1]:5hing Hwalue[1]:Baolean -+ due[1]: Urimitediat el

Figure 24 - Literals

4.2.2.49 LiteralBoolean
Package: Literals
isAbstract: No

Generalization: “LiteralSpecification”

Description

A literal Boolean is a specification of a Boolean value.

Description
A literal Boolean contains a Boolean-valued attribute.

Semantics
A LiteralBoolean specifies a constant Boolean value.

Notation
A LiteralBoolean is shown as either the word "true" or the word "false," corresponding to its value.

Attributes

value: Boolean [1]

4.2.2.50 Literalinteger
Package: Literals
isAbstract: No

Generalization: “LiteralSpecification”

Description

A literal integer is a specification of an integer value.

Description
A literal integer contains an Integer-valued attribute.

26 Business Process Definition MetaModel, Common Infrastructure, v1.0

Semantics
A Literallnteger specifies a constant Integer value.

Notation
A Literallnteger is typically shown as a sequence of digits.

Attributes

value: Integer [1]

4.2.2.51 LiteralNull

Package: Literals
isAbstract: No
Generalization: “LiteralSpecification”

Description

A literal null specifies the lack of a value.

Description
A literal null is used to represent null (i.e., the absence of a value).

Semantics
LiteralNull is intended to be used to explicitly model the lack of a value.

Notation

Notation for LiteralNull varies depending on where it is used. It often appears as the word "null." Other notations are
described for specific uses.

4.2.2.52 LiteralSpecification

Package: Literals

isAbstract: Yes

Generalization: “ValueSpecification”

Description

A literal specification identifies a literal constant being modeled.

Description

A literal specification is an abstract specialization of ValueSpecification that identifies a literal constant being modeled.
4.2.2.53 LiteralString

Package: Literals

isAbstract: No

Generalization: “LiteralSpecification”

Description

A literal string is a specification of a string value.

Business Process Definition MetaModel, Common Infrastructure, v1.0 27

Description
A literal string contains a String-valued attribute.

Semantics
A LiteralString specifies a constant String value.

Notation
A LiteralString is shown as a sequence of characters within double quotes. The character set used is unspecified.

Attributes
value: String [1]

4.2.2.54 LiteralUnlimitedNatural

Package: Literals
isAbstract: No
Generalization: “LiteralSpecification”

Description

A literal unlimited natural is a specification of an unlimited natural number.

Description
A literal unlimited natural contains an UnlimitedNatural-valued attribute.

Semantics
A LiteralUnlimitedNatural specifies a constant UnlimitedNatural value.

Notation
A LiteralUnlimitedNatural is shown either as a sequence of digits or as an asterisk (*), where the asterisk denotes
unlimited (and not infinity).

Attributes

value: UnlimitedNatural [1]

The Constraints subpackage of the Abstractions package specifies the basic building blocks that can be used to add
additional semantic information to an element.

4.2.255 Constraints Package

Expressions

—————
=

Constraints

Figure 25 - Constraints Package

28 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.2.2.56 Constraints

Namespace Fack agealie Senend
T - N
= ant I3
{aubeat = namespacall 1]} 3 " fram [Comments)
corbat =
NN oeredRue Lbsats cvmedElament
fsubssts onnechrber) 0.1 {beasannedleonentll} _
[o gore T| fram essiors)
{aubsats owred0. 1]

Figure 26 - Constraints

4.2.2.57 Constraint

Package: Constraints
isAbstract: No
Generalization: “PackageableElement”

Description

A constraint is a condition or restriction expressed in natural language text or in a machine readable language for the
purpose of declaring some of the semantics of an element.

Description

Constraint contains a ValueSpecification that specifies additional semantics for one or more elements. Certain kinds of
constraints (such as an association "xor" constraint) are predefined in UML, others may be user-defined. A user-defined
Constraint is described using a specified language, whose syntax and interpretation is a tool responsibility. One
predefined language for writing constraints is OCL. In some situations, a programming language such as Java may be
appropriate for expressing a constraint. In other situations natural language may be used. Constraint is a condition (a
Boolean expression) that restricts the extension of the associated element beyond what is imposed by the other language
constructs applied to the element. Constraint contains an optional name, although they are commonly unnamed.

Semantics

A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion
that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those
elements required to evaluate the constraint specification. In addition, the context of the Constraint may be accessed, and
may be used as the namespace for interpreting names used in the specification. For example, in OCL "self" is used to
refer to the context element. Constraints are often expressed as a text string in some language. If a formal language such
as OCL is used, then tools may be able to verify some aspects of the constraints. In general there are many possible kinds
of owners for a Constraint. The only restriction is that the owning element must have access to the constrainedElements.
The owner of the Constraint will determine when the constraint specification is evaluated. For example, this allows an
Operation to specify if a Constraint represents a precondition or a postcondition.

Associations

constrainedElement : Element [*] The ordered set of Elements referenced by this Constraint.

specification : ValueSpecification [1] A condition that must be true when evaluated in order for the
constraint to be satisfied.
Subsets ownedElement

Business Process Definition MetaModel, Common Infrastructure, v1.0 29

4.2.2.58 Namespace

Package: Constraints
isAbstract: Yes
Generalization: “Namespace”

Description

A namespace is a named element that can own other named elements. Each named element may be owned by at most one
namespace. A namespace provides a means for identifying named elements by name. Named elements can be identified
by name in a namespace either by being directly owned by the namespace or by being introduced into the namespace by
other means (e.g., importing or inheriting). Namespace is an abstract metaclass.

Associations

ownedRule : Constraint [*] Specifies a set of Constraints owned by this Namespace.
Subsets ownedMember

The Classifiers package in the Abstractions package specifies an abstract generalization for the classification of instances
according to their features.

4.2.2.59 Classifiers Package

Constraints

A

Classifiers

Figure 27 - Classifiers Package

4.2.2.60 Classifiers

Namespace NamedEfemenr
from [Constraints] from [Hamespaces]

i ?

freadonly, union} freadanly, unian}
Classifn i
i {subsets [} fzubsats member["} feature
Ifeaturing Classifier Ifeature

® ®

Figure 28 - Classifiers
4.2.2.61 Classifier
Package: Classifiers

isAbstract: Yes
Generalization: “Namespace”

30 Business Process Definition MetaModel, Common Infrastructure, v1.0

Description

A classifier is a classification of instances - it describes a set of instances that have features in common.

Description
A classifier is a namespace whose members can include features. Classifier is an abstract metaclass.

Associations

feature : Feature [*] Specifies each feature defined in the classifier.
This is a derived union.
Subsets member

4.2.2.62 Feature

Package: Classifiers

isAbstract: Yes

Generalization: “NamedElement”
Description

Description

A feature declares a behavioral or structural characteristic of instances of classifiers. Feature is an abstract metaclass.

Semantics
A Feature represents some characteristic for its featuring classifiers. A Feature can be a feature of multiple classifiers.

Associations

featuringClassifier : Classifier [*] The Classifiers that have this Feature as a feature.
This is a derived union.
Subsets

The Super package of the Abstractions package provides mechanisms for specifying generalization relationships between
classifiers.

4.2.2.63 Super Package

Classifiers

N

Super

Figure 29 - Super Package

Business Process Definition MetaModel, Common Infrastructure, v1.0 31

4.2.2.64 Super

Claszifier
from [Classifiers]

T

Clazzifier

+izAbstract[1};Boolean=fake

{zubzets member[7]}
finhentedi ember

% B

general

B

ER—

Figure 30 - Super

4.2.2.65 Classifier
Package: Super
isAbstract: Yes

Generalization: “Classifier”

Description

NamedElement
from [Hamespaces)

A classifier can specify a generalization hierarchy by referencing its general classifiers.

Attributes

isAbstract: Boolean [1] If true, the Classifier does not provide a complete declaration and can
typically not be instantiated. An abstract classifier is intended to be
used by other classifiers (e.g., as the target of general metarelationships

or generalization relationships). Default value is false.

Associations

inheritedMember : NamedElement [*] Specifies all elements inherited by this classifier from the general

classifiers.
This is a derived association.
Subsets member

The Generalizations package of the Abstractions package provides mechanisms for specifying generalization

relationships between classifiers.

32 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.2.2.66 Generalizations Package

Super

Generalizations

Figure 31 - Generalizations Package

4.2.2.67 Generalizations

e fas sifrer
from [TypedElemeants] from [Super)
‘ Divec ted Relations bip |
{subsetz awne [0 1]} le
{subsets soure e[1]} {subsets ownedElement [}
Classdver specific gerersliz ation Generalization

q =

fsubsets target[1]}
general

1 x

! general

®

[

Figure 32 - Generalizations

4.2.2.68 Generalization

Package: Generalizations
isAbstract: No

Generalization: “DirectedRelationship”

Description

A generalization between two types means each instance of the specific type is also an instance of the general type. Any
specification applying to instances of the general type also apply to instances of the specific type.

Associations

general : Classifier [1] References the general classifier in the Generalization relationship.
Subsets target

Business Process Definition MetaModel, Common Infrastructure, v1.0 33

4.2.2.69 Classifier

Package: Generalizations
isAbstract: Yes
Generalization: “Classifier” “Type”

Description

A classifier is a type and can own generalizations, thereby making it possible to define generalization relationships to
other classifiers.

Semantics

A Classifier may participate in generalization relationships with other Classifiers. An instance of a specific Classifier is
also an (indirect) instance of the general Classifier. The specific semantics of how generalization affects each concrete
subtype of Classifier varies. A Classifier defines a type. Type conformance between generalizable Classifiers is defined
so that a Classifier conforms to itself and to all of its ancestors in the generalization hierarchy.

Associations

generalization : Generalization [*] generalization specifies the more general super-type of the type
Subsets ownedElement
Subsets

The StructuralFeatures package of the Abstractions package specifies an abstract generalization of structural features of
classifiers.

4.2.2.70 Structural Features Package

Classifiers

[N
=

S tructuralFeatures

Figure 33 - Structural Features Package

34 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.2.2.71 Structural Features

TypedElfement | Fearure |

T T

Sirue furafFeature

+izH eadOnly[0..1]:Boalean=false

Figure 34 - Structural Features

4.2.2.72 StructuralFeature

Package: StructuralFeatures

isAbstract: Yes

Generalization: “Feature” “TypedElement”

Description

A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier.
Description

A structural feature is a typed feature of a classifier that specifies the structure of instances of the classifier. Structural
feature is an abstract metaclass.

Semantics
A structural feature specifies that instances of the featuring classifier have a slot whose value or values are of a specified

type.

Attributes
isReadOnly: Boolean [0..1] States whether the feature’s value may be modified by a client. Default is false.

The BehavioralFeatures subpackage of the Abstractions package specifies the basic classes for modeling dynamic
features of model elements.

Business Process Definition MetaModel, Common Infrastructure, v1.0 35

4.2.2.73 Behavioral Features Package

Classifiers

N

BehavioralFeatures

Figure 35 - Behavioral Features Package

4.2.2.74 Behavioral Features

Fearture
from [Classifiers]

Namespace
from [Constraints)

BehawioralFeature

{readaonly, unian}

i

‘readonly, union}
{subzetz member[*]}

I parameter

Typedfiement
from [TypedElements]

Parameter

0.1

Figure 36 - Behavioral Features

4.2.2.75 BehavioralFeature

Package: BehavioralFeatures

isAbstract: No

Generalization: “Feature” “Namespace”

Description

=

A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances.

Description

A behavioral feature is a feature of a classifier that specifies an aspect of the behavior of its instances. BehavioralFeature
is an abstract metaclass specializing Feature and Namespace. Kinds of behavioral aspects are modeled by subclasses of

BehavioralFeature.

Semantics

The list of parameters describes the order and type of arguments that can be given when the BehavioralFeature is

invoked.

36

Business Process Definition MetaModel, Common Infrastructure, v1.0

Associations

parameter : Parameter [*] Specifies the parameters of the BehavioralFeature.
This is a derived union.
Subsets member

4.2.2.76 Parameter

Package: BehavioralFeatures
isAbstract: No
Generalization: “TypedElement”

Description
A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioral

feature.

Semantics

A parameter specifies arguments that are passed into or out of an invocation of a behavioral element like an operation. A
parameter's type restricts what values can be passed. A parameter may be given a name, which then identifies the
parameter uniquely within the parameters of the same behavioral feature. If it is unnamed, it is distinguished only by its
position in the ordered list of parameters.

The Properties subpackage of the Abstractions package specifies the basic class for modeling structural features of model
elements.

4.2.2.77 Properties Package

Generalizations S tructuralFeatures Multiplicities

Properties

Figure 37 - Properties Package

Business Process Definition MetaModel, Common Infrastructure, v1.0 37

4.2.2.78 Properties

StructurafFeafure M ultip fcifpElement
from [StructuralFeatures] from [Multiplicities]
P roperty

+/default[0.. 1} 5ting

+izCaompozite[1]:Boolean=falze
+izDerived[1]:Boolean=falze *
+igD erivedU nion[0..1]:B oolean=falz &

+zubzettedProperty

owningProperty
fsubszets owner[0. 1]}

{zubsets ownedElement[*]}
0.1+ defaultvalue

Vafues pecificafion

Figure 38 - Properties
4.2.2.79 Property

Package: Properties
isAbstract: No
Generalization: “MultiplicityElement” “StructuralFeature”

Description

A property is a structural feature of a classifier that characterizes instances of the classifier.

Description

Property represents a declared state of one or more instances in terms of a named relationship to a value or values. When
a property is an attribute of a classifier, the value or values are related to the instance of the classifier by being held in
slots of the instance. Property is indirectly a subclass of TypedElement. The range of valid values represented by the
property can be controlled by setting the property's type.

Attributes

default: String [0..1] A String that is evaluated to give a default value for the Property when an
object of the owning Classifier is instantiated.

isComposite: Boolean [1] This is a derived value, indicating whether the aggregation of the Property is
composite or not.

isDerived: Boolean [1] Specifies whether the Property is derived, i.e., whether its value or values
can be computed from other information. The default value is false.

isDerivedUnion: Boolean [0..1] Specifies whether the property is derived as the union of all of the properties

that are constrained to subset it. The default value is false.

38 Business Process Definition MetaModel, Common Infrastructure, v1.0

Associations

defaultValue : ValueSpecification [0..1]

The Instances package in the Abstractions package provides for modeling instances of classifiers.

4.2.2.80

Instances Package

S tructuralFeatures

/N

Instances

Figure 39 - Instances Package

4.2.2.81 Instances

ImstascoSaecd

Subsets ownedElement

Figure 40 - Instances

4.2.2.82

Package: Instances
isAbstract: No

A ValueSpecification that is evaluated to give a default value for
the Property when an object of the owning Classifier is

Vawe Speciemas

Sirscimrif evice

VelmaSpacr

ClEy e

InstanceSpecification

Generalization: “NamedElement”

Business Process Definition MetaModel, Common Infrastructure, v1.0

39

Description

An instance specification is a model element that represents an instance in a modeled system.

Description
An instance specification specifies existence of an entity in a modeled system and completely or partially describes the
entity. The description includes:

* C(Classification of the entity by one or more classifiers of which the entity is an instance. If the only classifier
specified is abstract, then the instance specification only partially describes the entity.

* The kind of instance, based on its classifier or classifiers. For example, an instance specification whose classifier
is a class describes an object of that class, while an instance specification whose classifier is an association
describes a link of that association.

* Specification of values of structural features of the entity. Not all structural features of all classifiers of the
instance specification need be represented by slots, in which case the instance specification is a partial
description.

e Specification of how to compute, derive or construct the instance (optional).

Semantics

An instance specification may specify the existence of an entity in a modeled system. An instance specification may
provide an illustration or example of a possible entity in a modeled system. An instance specification describes the entity.
These details can be incomplete. The purpose of an instance specification is to show what is of interest about an entity in
the modeled system. The entity conforms to the specification of each classifier of the instance specification, and has
features with values indicated by each slot of the instance specification. Having no slot in an instance specification for
some feature does not mean that the represented entity does not have the feature, but merely that the feature is not of
interest in the model. An instance specification can represent an entity at a point in time (a snapshot). Changes to the
entity can be modeled using multiple instance specifications, one for each snapshot.

It is important to keep in mind that InstanceSpecification is a model element and should not be confused with the
dynamic element that it is modeling. Therefore, one should not expect the dynamic semantics of InstanceSpecification
model elements in a model repository to conform to the semantics of the dynamic elements that they represent. When
used to provide an illustration or example of an entity in a modeled system, an InstanceSpecification class does not depict
a precise run-time structure. Instead, it describes information about such structures. No conclusions can be drawn about
the implementation detail of run-time structure. When used to specify the existence of an entity in a modeled system, an
instance specification represents part of that system. Instance specifications can be modeled incompletely, required
structural features can be omitted, and classifiers of an instance specification can be abstract, even though an actual entity
would have a concrete classification.

Associations

classifier : Classifier [*] The classifier or classifiers of the represented instance. If multiple
classifiers are specified, the instance is classified by all of them.

slot : Slot [*] A slot giving the value or values of a structural feature of the
instance. An instance specification can have one slot per structural
feature of its classifiers, including inherited features. It is not
necessary to model a slot for each structural feature, in which case
the instance specification is a partial description.
Subsets ownedElement

specification : ValueSpecification [0..1] A specification of how to compute, derive, or construct the
instance.
Subsets ownedElement

40 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.2.2.83 InstanceValue

Package: Instances
isAbstract: No
Generalization: “ValueSpecification”

Description

An instance value is a value specification that identifies an instance.

Associations

instance : InstanceSpecification [*] The instance that is the specified value.

4.2.2.84 Slot

Package: Instances
isAbstract: No
Generalization: “Element”

Description

A slot specifies that an entity modeled by an instance specification has a value or values for a specific structural feature.

Description
A slot is owned by an instance specification. It specifies the value or values for its defining feature, which must be a
structural feature of a classifier of the instance specification owning the slot.

Semantics

A slot relates an instance specification, a structural feature, and a value or values. It represents that an entity modeled by
the instance specification has a structural feature with the specified value or values. The values in a slot must conform to
the defining feature of the slot (in type, multiplicity, etc.).

Associations

definingFeature : StructuralFeature [1] The structural feature that specifies the values that may be held by
the slot.
value : ValueSpecification [*] The value or values corresponding to the defining feature for the

owning instance specification. This is an ordered association.
Subsets ownedElement

The DataTypes subPackage specifies the DataType, Enumeration, EnumerationLiteral, and PrimitiveType constructs.
These constructs are used for defining primitive data types (such as Integer and String) and user-defined enumeration
data types. The data types are typically used for declaring the types of the class attributes.

Business Process Definition MetaModel, Common Infrastructure, v1.0 41

4.2.2.85 Datatypes Package

Properties

~
=

DataTypes

Figure 41 - Datatypes Package

4.2.2.86 Datatypes

Classifrer

from [Generalizations])

T

{subsets featuing Classifier [T} {subsets faature [T
Datal ype {subszets namespace[0. 1]} {subsats v didember [T} Property
+dataType +ownad Attribuite
0.1 #

‘ NamedElement ‘

4:

ErumerationLiteral

Primitive Ty pe Erumeration

{subsets namespacelD. 1]}

+ariumeration %
0.1 +ovned Literal
{subsats owredMamber [}

{Ordered}

Figure 42 - Datatypes

4.2.2.87 DataType

Package: DataTypes
isAbstract: No
Generalization: “Classifier”

Description

DataType is an abstract class that acts as a common superclass for different kinds of data types. DataType is the abstract
class that represents the general notion of being a data type (i.e., a type whose instances are identified only by their
value).

42 Business Process Definition MetaModel, Common Infrastructure, v1.0

Associations

ownedAttribute : Property [*]

4.2.2.88 Enumeration
Package: DataTypes
isAbstract: No
Generalization: “DataType”

Description

The Attributes owned by the DataType. This is an ordered
collection.

Subsets feature

Subsets ownedMember

An enumeration defines a set of literals that can be used as its values.
An enumeration defines a finite ordered set of values, such as {red, green, blue}. The values denoted by typed elements
whose type is an enumeration must be taken from this set.

Associations

ownedLiteral : EnumerationLiteral [*]

4.2.2.89 EnumerationLiteral
Package: DataTypes
isAbstract: No

Generalization: “NamedElement”

Description

An enumeration literal is a value of an enumeration.

4.2.290 PrimitiveType
Package: DataTypes
isAbstract: No

Generalization: “DataType”

Description

The ordered set of literals for this Enumeration.
Subsets ownedMember

A primitive type is a data type implemented by the underlying infrastructure and made available for modeling.

4.2.291 Redefinitions Package

Business Process Definition MetaModel, Common Infrastructure, v1.0 43

Super

N
:

R edefinitions

Figure 43 - Redefinitions Package

4.2.2.92 Redefinitions

Namedffemenst
from [Namespaces]

{readonly, union}

Redefinable ffemenit IredefinedElament

3

freadonly, union}

Classifrer

fredefintionContext from (Super]

g E

Figure 44 - Redefinitions
4.2.2.93 RedefinableElement
Package: Redefinitions

isAbstract: Yes
Generalization: “NamedElement”

Description

A redefinable element is an element that, when defined in the context of a classifier, can be redefined more specifically
or differently in the context of another classifier that specializes (directly or indirectly) the context classifier.

Description
A redefinable element is a named element that can be redefined in the context of a generalization. RedefinableElement is
an abstract metaclass.

Semantics

44 Business Process Definition MetaModel, Common Infrastructure, v1.0

A RedefinableElement represents the general ability to be redefined in the context of a generalization relationship. The
detailed semantics of redefinition varies for each specialization of RedefinableElement. A redefinable element is a
specification concerning instances of a classifier that is one of the element’s redefinition contexts. For a classifier that
specializes that more general classifier (directly or indirectly), another element can redefine the element from the general
classifier in order to augment, constrain, or override the specification as it applies more specifically to instances of the
specializing classifier. A redefining element must be consistent with the element it redefines, but it can add specific
constraints or other details that are particular to instances of the specializing redefinition context that do not contradict
invariant constraints in the general context. A redefinable element may be redefined multiple times. Furthermore, one
redefining element may redefine multiple inherited redefinable elements.

Semantic Variation Points

There are various degrees of compatibility between the redefined element and the redefining element, such as name
compatibility (the redefining element has the same name as the redefined element), structural compatibility (the client
visible properties of the redefined element are also properties of the redefining element), or behavioral compatibility (the
redefining element is substitutable for the redefined element). Any kind of compatibility involves a constraint on
redefinitions. The particular constraint chosen is a semantic variation point.

Associations

redefinitionContext : Classifier [*] References the contexts that this element may be redefined from.
This is a derived union.

4.3 Condition Model

4.31 Introduction

The Condition Model is for specifying boolean expressions that constrain model elements or capture statements. It
defines specialized conditions that are represented as free text, as expressions with particular results, and as boolean
combinations of other conditions.

Conditions are boolean ValueSpecifications that constrain some element in the models. They are true if their descriptions
hold in the current state of the world, possibly including executions, and false otherwise. Opaque Conditions are
Conditions that are expressed in free text. Fact Conditions are Conditions that are true when the two value specifications
to which they refer yield equal values, and false otherwise. Compound Conditions are Conditions that provide for
combining other conditions with Boolean operators, such as “and” and “or.” Statements are boolean ValueSpecifications
that do not constrain anything. They are used to integrate with rule models.

4.3.2 Metamodel

The Condition Model is for specifying boolean expressions that constrain model elements or capture statements. It
defines specialized conditions that are represented as free text, as expressions with particular results, and as boolean
combinations of other conditions.

4.3.21 Condition Model Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0 45

Value$ pecification
from (Expressions)

D

Boolean ValueSpecification

1

feadony, union} Condition fubsets ownedElement(s] Statement
Element Jconditioned element . combined condition
from (C)
1ok /constraining condition 1.
{readonly, union}
JAN
. OpaqueExpression
OpaqueExpression from (Expressions)
from (Expressions)
{subsets owner[0..1 T+ %
‘ 0.1 owner compound condition Opaque Statement
Opaque Condition Fact Condition Compound Condition
fcorrbinaisonType[1]:Compound Condition Type
specified condition | % evalutating condition Y 0..1

{subsets owner[0..1]}

<<Enumeration>>
{subsets ownedElement[*]} Compound Condition Type

evaluated expression 1 evaluation result "
’ and=and

ValueS pecification Value$ pecification not=not
or=or

Figure 45 - Condition Model Diagram
4.3.2.2 Boolean ValueSpecification

Package: Condition Model
isAbstract: No
Generalization: “ValueSpecification”

Description

Boolean ValueSpecification is a kind of ValueSpecification that specifies a boolean value.

Constraint

[1] The type of a Boolean ValueSpecification must be a boolean.
self.type = Boolean

4.3.2.3 Compound Condition
Package: Condition Model

isAbstract: No
Generalization: “Condition”

Description

A Compound Condition is a kind of Condition that is the combination of other Conditions. There are three kinds of
Compound Condition:

46 Business Process Definition MetaModel, Common Infrastructure, v1.0

¢ or : the Compound Condition is the result of one the combined condition
¢ and: the Compound Condition is the result of all the combined condition
e not: the Compound Condition is result of the negation of all the combined condition.

Attributes

combinaisonType: Compound Condition Type [1] Boolean operator used to combine conditions.

Associations

combined condition : Condition [1..*] Condition making up the Compound Condition
Subsets ownedElement

43.24 Compound Condition Type

Package: Condition Model
isAbstract: No

Description

Enumeration specifying the different types of Compound Condition
and:
not:

or:

43.2.5 Condition
Package: Condition Model
isAbstract: Yes

Generalization: “Boolean ValueSpecification”

Description

A Condition is a Boolean ValueSpecification that constrains some element in the models. Conditions are true if their

descriptions hold in the current state of the world, possibly including executions, and false otherwise.

Associations

conditioned element : Element [1..*] Element being constrained by the Condition.
This is a derived union.

4.3.2.6 Fact Condition
Package: Condition Model

isAbstract: No
Generalization: “Condition”

Business Process Definition MetaModel, Common Infrastructure, v1.0

47

Description

A Fact Condition is a Condition that is true when the two ValueSpecifications to which they refer yield equal values,
and false otherwise.

Associations

evaluated expression : ValueSpecification [1] ValueSpecification evaluated by the Fact Condition.

evaluation result : ValueSpecification [1] ValueSpecification that represents the result that must be
yielded by the evaluation of the evaluated expression for the
Fact Condition to be true.
Subsets ownedElement

4.3.2.7 Opaque Condition

Package: Condition Model
isAbstract: No
Generalization: “Condition” “OpaqueExpression”

Description

An Opaque Condition is a Condition that can be expressed in free text.

4.3.2.8 Opaque Statement

Package: Condition Model
isAbstract: No
Generalization: “OpaqueExpression” “Statement”

Description

Opaque Statement is a concrete Statement that uses OpaqueExpression attributes (language and body) to store its
expression as a string.

4.3.29 Statement
Package: Condition Model
isAbstract: Yes

Generalization: “Boolean ValueSpecification”

Description

Statement is a Boolean ValueSpecification that does not constrain anything. Statements are used to integrate with rule
models.

4.4 Composition Model

441 Introduction

The Composition Model is a framework for relating metamodels to the real world entities they ultimately represent, in
particular those with interconnected elements in the same organized whole. This facilitates integration with business
process runtimes and rule engines, as well as uniform performance, enactment, and execution across business process
management suites. The Composition Model enables users and vendors to build libraries of orchestrations and

438 Business Process Definition MetaModel, Common Infrastructure, v1.0

choreographies, including specialization of some orchestrations or choreographies from others. It also enables users and
vendors to define their own frameworks for recording data about ongoing orchestrations and choreographies, for
example, how long they have been going, who is involved in them, and what resources they are using. The Composition
Model provides general capabilities for representing:

1. The interconnection of elements due to their relation to the same other element. For example, the steps in a process
are interconnected because they are all parts of the same process. Interconnections can differ depending on this
common element. For example, two processes might have the same steps, but in a different order.

2. Interconnections that are composed of other interconnections. For example, the many fine-grained communications
between businesses to set up a partnership may be aggregated into a single joint choreography when viewed at a high
level.

3. Interconnections between interconnections. For example, when one communication happens before another during a
choreography, it is a connection in time between two other connections.

4. User and vendor-defined characteristics of elements, such as cost, person responsible for them, and resources being
consumed.

The Composition Model can be applied in many domains, including structural ones, but in BPDM it is applied to
modeling of dynamics, specifically to orchestration and choreography. In this domain the elements are steps in
orchestrations, or interactions in choreographies, and the interconnections are relationships in time or transfers of
information or physical objects between elements. The elements of the Composition Model are specialized in the other
BPDM packages for application to these areas.

The first subsection below is the basis for applying BPDM to business process execution and rules, and to understanding
the specification in general. The remaining subsections cover the major elements of the Composition Model.

4411 Individuals, Models, and Modeling Languages

An individual is any uniquely identifiable thing. For example, it can be an organization, a piece of hardware, or software
component, or something more ephemeral like an information object, process, interaction, or event. The only
requirement is that it is distinguished from other individuals. Individual processes and interactions occur at particular
times, and are variously called performances, enactments, or executions.

A model describes what we would like from individuals (the model semantics). For example, a model of a business
specifies what is desired from an actual real world business. Some businesses will satisfy these desires, some will not.
Individuals that satisfy the model are said to conform to the model. The rules for conformance are the semantics of the
model.'

A modeling language consists of shorthands for expressing the semantics of a model. Shorthands used in a model can be
“expanded” to give the semantics. For example, a common semantic pattern is to say that all individuals of one kind are

also of another kind. A shorthand for this is sometimes called “generalization.” Generalization might be used in a model
to say that businesses are a generalization of small businesses. This is a shorthand for saying any individual that is a
small business is also a business.”

Individuals exist at the MO level in OMG's Model Driven Architecture, while models exist at the M1 level, and modeling
languages at the M2 level. The term “individual” in this specification refers only to elements that are not in models or

The phrase “instance of” is sometimes used to mean the conformance of an individual to a particular model element (which is
often called a “class”), but this terminology usually refers to classes as factories for creating instances, rather than classes as
categories. For example, if an individual Fido is a Dog, then Fido is also a Mammal, so conforms to both Dog and Mammal, even
though normally Fido would not be called an instance of Mammal, because it was not “created” from Mammal.

The difference between shorthands and templates is that the expansion of templates are captured in a machine-understandable way,

as part of the modeling language. The expansion of shorthands are specified less formally. Shorthands are more susceptible to
misinterpretation than templates, leading to communication failures between users and lack of interoperability between tools.

Business Process Definition MetaModel, Common Infrastructure, v1.0 49

modeling languages, even though the contents of models and modeling languages are uniquely identifiable like any
individual. Similarly, the term “model” in this specification refers only to elements that are not individuals or modeling
languages, even though a model language may be expressed as a model (metamodel, see below). More examples and
explanation are available in Sections 7.9 through 7.12 of the UML Infrastructure, http://doc.omg.org/formal/07-02-06.

A modeling language has two parts:

e The language syntax gives the names of the modeling shorthands and how they can be combined. For example,
generalization applies between exactly two kinds of things. Syntax alone cannot determine model semantics,
because it refers only to model elements, not individuals.?

e The language semantics specifies how shorthands are expanded into model semantics. For example,
generalization in a model expands to individuals of one kind of thing in the model also being individuals of the
other. Language semantics builds on syntax, but must refer to individuals to give a syntax its MO meaning when
the syntax is used in a model.

Some syntaxes are better for specifying language semantics than others. In particular, a syntax that identifies model
elements categorizing individuals provides a better basis for specifying model semantics. This enables the language
semantics to refer to individuals via the model elements that categorize them. BPDM reuses the syntactical element
“Classifier” from UML Infrastructure for this purpose.

4.41.2 Classifiers

Classifiers group individuals (uniquely identifiable MO entities, see Individuals, Models and Modeling Languages)
according to some commonality among them, which might be characteristics they can have or constraints they obey.
Classifiers can cover any kind of entity, physical or computational, static or dynamic. For example, the classifier Person
groups individual people, like Mary and John. The classifier declares commonalities among people, for example, they
can have names and gender, or obey constraints, such as being genetically related to exactly two other people. The terms
“type” is also used to refer to classifiers, as in “John’s type is Person.”

Classifiers can group individual occurrences of dynamic entities (MO), such as processes and interactions. For example,
the classifier Order Process groups individual performances, enactments, or executions of the ordering, where each
occurrence happens between particular start and end times. The classifier declares commonalities among the occurrences,
for example, that they involve a product or service, or obey constraints, such as having certain steps taken in a certain
order.

Generalization is a relationship between Classifiers indicating that MO individuals of one classifier are also individuals of
another classifier. For example, business is a generalization of small business because individual small businesses are
also individual businesses. Specialization is the opposite of generalization, for example, small business is a specialization
of business. Parts and constraints specified on the general type apply to all individuals conforming to specializations of
that type, because those individuals also conform to the more general type. For example, businesses in general attempt to
make a profit, so small businesses do also.

4413 Composites
Composites are Classifiers specifying the interconnections of individuals that are all related to the same other individual

(MO). For example, a company composite specifies the interconnections of departments within each individual company
of that type (assuming it is modeled in a value chain manner, rather than just an organization chart). Likewise, an

A metamodel specifies syntax by omitting some aspects of the graphical or textual appearance of the language, such as geometric
shapes or punctuation. For example, a metamodel might have an element for kinds of things and another for generalization, but no
mention of how generalization appears in a graphical or textual language. This is sometimes called “abstract syntax,” as
distinguished from “concrete syntax,” which includes the detailed graphical or textual appearances.

This commonly used terminology is different from the UML Infrastructure, where Types are elements that specify the range of
relations (TypedElements), and Classifiers specify the domain of relations (can own typed elements). Classifiers are Types in the
Infrastructure, enabling them to specify both the domain and range of typed elements.

50 Business Process Definition MetaModel, Common Infrastructure, v1.0

http://doc.omg.org/formal/07-02-06

orchestration type specifies the sequence of steps in each individual occurrence of that orchestration.

The things interconnected by a composite can have any kind of relation to the composite. They are not necessarily
“contained,” “owned,” or “part of”” the composite. For example, choreographies are composites with the communicating
businesses entities as “parts,” but the businesses entities are not contained by the choreography in any sense.

44.1.4 Parts
To clarify the meaning of “Part” in BPDM, it is important to distinguish two senses in ordinary English:

* Part as an individual, for example the Acme Furniture Company with a unique tax identification number.
e Partasarole, as in “part in a play.”

These are mutually defining. Parts in the first sense (individuals) play parts in the second sense (“roles”). For example, a
person Mary (individual) may play the president (role) in the Acme Furniture Company. Roles map an individual whole
into another individual playing that role in the whole. For example, the president role maps Acme Furniture Company to
Mary. (The term “role” is used informally in this section. It has a more specialized meaning in other packages of
BPDM.)

Typed Parts in BPDM have the second meaning above. Individuals playing a typed part must be of a certain kind
(Classifier’), and play the part in the context of another type of thing (whole). For example, an individual playing the
president part must be a person, and must play the president within an individual company.S Individuals playing parts can
have any relation to the whole. They are not necessarily “contained,” “owned,” or “part of” the whole. For example, a
person might be modeled as a composite of anatomically contained parts, but still have other typed parts for relations to
other people, such as spouses. The typed part spouseOf will have individuals playing that role for other individuals, but
the people are not contained within each other. Typed Parts are MultiplicityElements for restricting the number of
individuals that play the part. For example, a company might allow no more than five vice-presidents, but require a
president, and a choreography might have an interaction that is optional.

Parts in BPDM are a generalization of Typed Parts to include elements in a composite that do not correspond to
individuals (M0). For example, process models often have an indicator that some steps happen at the same time. This
part of a process model does not correspond to anything identifiable in the MO occurrences of the process. It just models
the constraint that there are suboccurrences happening at the same time. Because of this, these parts do not have a type
restriction like Typed Parts do.

Part Groups are Parts that collect together other Parts. Part groups can share parts. The meaning of part groups is given
in the specializations of the Composition Model, for example, in the Behavior Model.

4415 Part Connections

Connections between typed parts in the composition model specify links between MO entities playing the typed parts in
the same individual (M0). For example, the reporting connection between the president of a company and the CEO
means the person playing the president in a particular company will report to the person playing the CEO in the same

company. Likewise, the temporal connection between one step and another in a process means that in each occurrence of
that process, there is an occurrence of one step that happens after the occurrence of another.

Connections involving untyped parts do not have a predefined meaning in the Composition Model. They are given
specialized interpretations in other packages of BPDM, depending on the parts being connected. For example, parts of a
process model indicating that some steps happen at the same time are untyped. Connections to and from these parts
require special interpretation to reflect this intention.

> See footnote 50.

¢ Typed parts are equivalent to what are sometimes called “properties” or “attributes.” In this terminology, an individual playing a

part is called the “value” of the property or attribute. BPDM Typed Parts are a kind of UML Property.

Business Process Definition MetaModel, Common Infrastructure, v1.0 51

Part Connections can be treated as first-class parts in themselves, by defining classes that are subtypes of both Part
Connection and Typed Part, as done in other BPDM packages. This provides connections that have parts, and
connections to connections. For example, choreographies are connections between business entities that are composed of
many communications between the businesses. These communications are connections also, and occur in a certain order,
which are temporal connections between the communications. Choreographies are the type of their MO performances,
enactments, or executions, which are also MO links between the businesses. Typed connections require the modeler to
specify which parts of the type correspond to which parts on the ends of the connection, see the Part Binding subsection
below.

Directed Part Connections are Part Connections between two parts that facilitate traversal from one to the other in user
(M1) models. Their source and target associations specify the top-level parts (not part paths) that are connected, as
typically shown by the arrows in process diagrams. For example, when one step is after another in a process, the arrow
between them is modeled as a directed connection, with the earlier step at the source end, and the later step at the target
end. Connections in general can connect any number of parts. For example, a business interaction can involve multiple
companies.

Conditions may be applied to connections to limit when they apply. For example, one step in a process may happen after
another only when certain conditions are true as the process is executing. Irreflexive Conditions are for restricting
connections to apply at MO only between distinct MO individuals playing the part (or playing the last part in the path). It
applies only to connections between typed parts, or paths with at least one typed part.

4.4.1.6 Part Paths

Some connections are between parts of parts. For example, the temporal connections between steps in a process typically
indicate that the start of one step is after the end of another, but they might also indicate that the start of one step is after
the start of another, or the end of one step is after the end of another, and so on. To distinguish these cases, the parts on
each end of the connection must specify which event (start, end) it is referring to “inside” the step on that end.” In
BPDM individual events at M0 can be identified by parts, and the combination of the step and the event part is a Part
Path.

Part Paths enable connections to refer to parts of parts, for example to connect the end and start events in two steps of a
process. For generality, it enables connections to refer to parts of parts to any depth. For example, a part path might
refer to the time at which the start event in a step occurs, where the time of an event is modeled as a part of the event.
This defines a path through three parts.® Part Paths can have a short cut to the last element in the path (final target), for
convenience. Part Paths and Parts are generalized to Connectable Elements, which are the ends of connections. This
enables connections not requiring part paths to refer directly to parts, rather than to part paths with only one element.

4417 Derivation and Selection

Derivation is a relationship between Composites that replaces some parts with others. There is no restriction on the
number or kinds of parts that can be replaced by a derived composite. Derivation is useful for exploring alternative
configurations for a composite. There are no parts or constraints specified on a composite type that are guaranteed to
apply to individuals of derived types. A selector specifies the individuals playing a Typed Part. This might be determined
by a rule for each MO whole that contains the part. A special kind of rule is that the individual must be drawn from a set
of predetermined individuals.

44.2 Metamodel Specification

The Composition Model is a framework for relating metamodels to the real world entities they ultimately represent. It
facilitates integration with business process runtimes and rule engines, as well as uniform performance, enactment, and

7 The step must be specified as a part, rather than just the type of thing done at the step, because a process might have more than one

step that does the same thing.

8 A path can contain at most one untyped part, which must be at the end of the path, otherwise it would not be possible to navigate

through to the end of the path.

52 Business Process Definition MetaModel, Common Infrastructure, v1.0

execution across business process management suites. The Composition Model enables users and vendors to build
libraries of orchestrations and choreographies, including specialization of some orchestrations or choreographies from
others. It also enables users and vendors to define their own frameworks for recording data about ongoing orchestrations
and choreographies, for example, how long they have been going, who is involved in them, and what resources they are

using.

4421 Composition Model Diagram

(Gt one
ﬁl {readonly. union} £
Paif Isubsets connected element[2.. Tt Diccted Pat Conmechion

farget

B

1

{readonly, union}

{zubsets connected dement[2..°T
fzource

Aeource connection
{zubzets part connedtion[*]}
{readanly, union}

=

1

{readonly, union}
{zubsets target pat[0.17}
Jeource sub ongin

Starget connecdtion
{subsets pat connechon[*]
{re adonly, union}

{readonly, union}

{zubsets targeting path[*[t
foniginated connectian

0.1

{readonly, Lnion}
{subsets target part{0. 1]
farget sub destination

x

{re adonly, union}
{zubzets tageting path(*]
Jtargeting connection

0.1

Figure 46 - Composition Model Diagram

=

Business Process Definition MetaModel, Common Infrastructure, v1.0

53

4422 Directed Part Connection Diagram

Classifer
from [Generalizations]

zls.

Compozie
Jpatwhde ¥1 Joorredtion whole % 1
{subsets festuringlassiier) ubssts featumglsssfie I}
freadorly, urice} Erea:lnrly, Lhion} {readorly, unior)
a.bmtz fedue[7h
« | Jowned connectable element a
Connrectable Element
é|\'\‘ {readon, urion} |+ 0.1 Fiy Joonrected slment | 2.7
Pt Jaget pat {readrly, Liar]
Zn Jercloeedpat /. Aind tanet /T 011
{readonky, uriont
. o] freadarly, wnion}
freadmnly, uriont freadonly, _U’IDH}) freadonly, uior] {subsets featurel}
fenclosingpat goup | ¢ s ftangeting path Jpart cornection | Jomred connechon | =
Parf Group Parf Pat Parf Connection
Mraverdng path | «
{readarly, union}
Froperty
S {readcrly, union}
Araversed pat | 4
Fiped Parf
vV E=T
{subsets hpedElemert]'] .
Eadorl), Uri fieadmnly, uion}
{!r ol uncn}} Tasbssts bypelll 1)
1| fpartT e
Type

Figure 47 - Directed Part Connection Diagram

54

Business Process Definition MetaModel, Common Infrastructure, v1.0

4423 Part Connection & Condition Diagram

Parf Connea clion

Boolean Yalue5pecification
from [C ondition Model]

i

guarded conhection
{zubsets conditioned element[1..7]}
{zubzets awne0. 1]}

fsubzets constraining condition[*]}
fsubzets ownedElement*]
gquard

o difion

Lll

Opaque Condition

Lls

Ireflexiv e Condition

Figure 48 - Part Connection & Condition Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0

55

4424 Derivation Diagram

iy {readonly. union} {freadonly. union}
{zubzets owrnedE lement[5]} {zubsets cwner[0.. 1]}
D ervafion sderivation Aderived from Composife
= T
- 1
Aderivation specific ation -’dEliVEd_lU
Atraced derivation 1 {readonly. union} freadonly. union}

{subsets owner0. 1]}
{readonly. union}

{subsets ownedE le ment[]}

N

Aderivation trace

Parf Beplfacement

{readonly. union} {readonly . union}
® Aderived from Aderived to ®

Parsr

Figure 49 - Derivation Diagram

4425 Selection Diagram

| Vafue Spe cific ation |
Typed Part {subsets ovmedEement[’]} | Sefe cror Specificaon
1 selection rulke
'selecled part ®

{subsats ovwner[d..1]}
Lﬁ iy
Individual From 3et Individual
mem ber

Figure 50 - Selection Diagram
4.4.2.6 Composite

Package: Composition Model
isAbstract: Yes
Generalization: “Classifier”

Description

A Composite is a Classifier which has an internal structure. It specifies the connections of individuals that are all related
to the same other individual (MO0). For example, a company type specifies the connections of departments within each
individual company of that type (assuming it is modeled in a value chain manner, rather than just an organization chart).
Likewise, an orchestration type specifies the sequence of steps in each individual occurrence of that orchestration.

56 Business Process Definition MetaModel, Common Infrastructure, v1.0

Associations

derivation : Derivation [*] Derivation that the Composite is a source of
This is a derived union.
Subsets ownedElement

owned connectable element : Connectable Element [*] Connectable Element owned by the Composite
This is a derived union.
Subsets feature

owned connection : Part Connection [*] Part Connection owned by the Composite
This is a derived union.
Subsets feature

4.4.2.7 Connectable Element

Package: Composition Model
isAbstract: Yes
Generalization: “Feature”

Description

Connectable Element is the subject of relations between parts through Part Connection. Connectable Element is a
capability shared by Part and Part Path. Individuals playing parts can have any relation to the whole, they are not
necessarily "contained," "owned," or "part of" the whole.

Associations

part connection : Part Connection [*] Connection connecting the Connectable Element to one or more
other Connectable Elements.
This is a derived union.

44.2.8 Derivation

Package: Composition Model
isAbstract: Yes
Generalization: “Element”

Description

The Parts of the derived to Composite are the same as the on derived from Composite, except for replaced or removed
Parts, as specified by derivation trace , or added parts.

Associations

derivation trace : Part Replacement [*] Part Replacement owned by the Derivation
This is a derived union.
Subsets ownedElement

derived to : Composite [1] Derived Composite
This is a derived union.

4429 Directed Part Connection

Package: Composition Model
isAbstract: Yes

Business Process Definition MetaModel, Common Infrastructure, v1.0 57

Generalization: ‘“Part Connection”

Description

A Directed Part Connection is a kind of Part Connection for only two parts, when it is convenient to have standard
names referring to the parts on each end (source and target).

Directed Part Connections are designed to facilitate traversal of Part Connections. Their source and target associations
specify the top-level parts (not Part Paths) that are connected, as typically shown by the arrows in process diagrams. For
example, when one step is after another in a process, the arrow between them is modeled as a directed connection, with
the earlier step at the source part, and the later step at the target part.

Associations

source sub origin : Part [0..1] This is a derived union.
Subsets farget part
source : Part [1] Part that is the source of the Directed Part Connection

This is a derived union.
Subsets connected element

target sub destination : Part [0..1] This is a derived union.
Subsets farget part
target : Part [1] Part that is the target of the Directed Part Connection

This is a derived union.
Subsets connected element

Constraint

[1] A Directed Part Connection must have exactly two Connectable Elements (target and source); no more.

44210 Individual

Package: Composition Model
isAbstract: No
Generalization: “Element”

Description

Individual instance

4.4.2.11 Individual From Set

Package: Composition Model
isAbstract: No
Generalization: “Selector Specification”

Description

An Individual From Set is a kind of Selector Specification that provides a list of Individual as the potential Type of a
Typed Part.

Associations

member : Individual [*] Individual member of a Individual From Set selector specification

58 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.4.212 Irreflexive Condition

Package: Composition Model
isAbstract: No
Generalization: “Opaque Condition”

Description

An Irreflexive Condition is a kind of Opaque Condition that restricts the connection to apply at MO only to distinct MO
individuals playing the part (or playing the last part in the path). It applies only to connections between Typed Parts, or
Part Paths with at least one Typed Part.

44213 Part

Package: Composition Model
isAbstract: Yes
Generalization: “Connectable Element”

Description

A Part is a Connectable Element that is an element of the structure of a Composite.

Associations

source connection : Directed Part Connection [*] Directed Part Connection that the Part is the target of.
This is a derived union.
Subsets part connection

target connection : Directed Part Connection [*] Directed Part Connection that the part is the source of.
This is a derived union.
Subsets part connection

4.4.2.14 Part Connection

Package: Composition Model
isAbstract: Yes
Generalization: “Feature”

Description

A Part Connection is a Feature of a composite used to connect its Connectable Elements. A Part Connection can
connect any number of parts. For example, a business interaction can involve multiple companies.

When a Part Connection is connecting Typed Part, its specifies links between MO entities playing the typed parts. For
example, the reporting connection between the president of a company and the CEO means the person playing the
president in a particular company will report to the person playing the CEO in the same company. Likewise, the temporal
connection between one step and another in a process means that in each occurrence of that process, there is an
occurrence of one step that happens after the occurrence of another.

Conditions may be applied to Part Connections to limit when they apply. For example, one step in a process may
happen after another only when certain conditions are true as the process is executing.

Business Process Definition MetaModel, Common Infrastructure, v1.0 59

Associations
connected element : Connectable Element [2..*] Connectable Element connected by a Part Connection

This is a derived union.

guard : Condition [0..1] Condition evaluated at runtime to determine if the Part
Connection is enabled.
Subsets constraining condition
Subsets ownedElement

4.4.215 Part Group

Package: Composition Model
isAbstract: Yes
Generalization: “Part”

Description

A Part Group is a kind of Connectable Element that collects other Connectable Elements together. A Part Groups
can share Connectable Elements. The meaning of part groups is given in the specializations of the Composition Model,
for example, in Behavior Model.

Associations

enclosed part : Part [*] Part that is enclosed in a Part Group. A Part can be enclosed in
multiple Part Groups
This is a derived union.

BPMN Notation

Part Group

Figure 51 - Part Group Notation

44216 Part Path
Package: Composition Model

isAbstract: Yes
Generalization: “Connectable Element”

60 Business Process Definition MetaModel, Common Infrastructure, v1.0

Description

A Part Path connects to a Part of a nested Composite.
An instance of Part Path is introduced for each traversed part to a target part.

The purpose of Part Path is to provide access to parts in a nested composite structure. All models based on the
composition model needs to have access to parts within parts, for example:

¢ Data clements within data elements
¢ Roles within roles

e Protocols within protocols

e Activities within activities

Part Path and Part are generalized to Connectable Element, which are the is of Part Connection. This enables
connections not requiring part paths to refer directly to parts, rather than to part paths with only one element.

Associations

final target : Part [0..1] leaf Part to which a part path chain is pointing at
This is a derived association.

target part : Connectable Element [0..1] Connectable Element to which the part path is pointing at.
This is a derived union.

traversed part : Typed Part [1] Typed Part being the source of the part path. This part is traversed
by the part path in order to reach the target part.
This is a derived union.

Constraint

[1] The target part must be a Part of the Composite that owns the target part

[1] The traversed part must be a Typed Part which type is a Composite.

4.4.217 Part Replacement
Package: Composition Model
isAbstract: Yes

Generalization: “Element”

Description

A Part Replacement is used to specify the replacement or removal of Parts in derived to Composite of a Derivation.

Associations

derived from : Part [*] This is a derived union.

derived to : Part [*] This is a derived union.

4.4.218 Selector Specification

Package: Composition Model
isAbstract: Yes

Business Process Definition MetaModel, Common Infrastructure, v1.0 61

Generalization: “ValueSpecification”

Description

A Selector Specification is a query mechanism used to specify the individuals playing a Typed Part.

44219 Typed Part

Package: Composition Model
isAbstract: Yes
Generalization: “Part” “Property”

Description

A Typed Part is a kind of Part that specifies that individuals playing the Part in the Composite must be of a certain
kind (Type). For example, an individual playing the president part must be a person, and must play the president within
an individual company.

Typed Part is a Property for restricting the number of individuals that play the part. For example, a company might
allow no more than five vice-presidents, but require a president, and a choreography might have an interaction that is

optional.

Associations

partType : Type [1] Type of the Typed Part
This is a derived union.
Subsets type

selection rule : Selector Specification [*] Selector Specification used to specify the individual that plays the
Typed Part

Subsets ownedElement

traversing path : Part Path [*] Part Path that traverses the Typed Part in order to reach a part of its
composite type.
This is a derived union.

Constraint
[1] The default values for lower and upper (from Abstraction:MultiplicityElement) are 0 and * respectively.
context Typed Part::lower: Integer
init: 0
context Typed Part::upper: UnlimitedInteger
init: *

4.4.2.20 Instance: Irreflexive Condition

Class: Irreflexive Condition

Description

Links
Played End Opposite End
Irreflexive Condition:guard end/abort

62 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.5 Course Model

451 Introduction

The Course Model extends the Composition Model for dynamics. It introduces connections for time ordering of parts
(Succession), including time ordering of process lifecycle events, such as starting and ending a process. For example, a
succession connects one step in a process to another to indicate that the second step happens sometime after before the
first. The same applies to messages in choreography, and to process lifecycle events, for example ,a process always ends
sometime after it starts. This facilitates the integration of rule and monitoring systems with models of dynamics, such as
orchestration and choreography. The model enables users and vendors to define their own libraries of processes, with
their own categorizations and attributes, such as how long a process has been running, and the resources it is using. They
can also define their own life cycle events, for example, to define finish statuses and taxonomy of errors.

The Course Model extends the Composition Model with:

¢ General categories for dynamic entities that extend over time (Happenings Over Time) producing entities that
occur at a point in time (Events).

* Dynamic entities that produce lifecycle events, such as starting and ending, enabling the events to be ordered in
time (Cousers and Behavioral Events).

e A user (M1) library defining a behavior that produces common behavior lifecycle events, such starting and
ending (Behavior Occurrence).

* Conditions for time events and changes in facts.

Happenings are Classifiers for the most general notion of dynamic entities, including processes and events. Happenings
at M1 are classifiers for individual MO happening occurrences, such as individual performances, enactments,or
executions of processes, and occurrences of events. Happenings Over Time and Events are Happenings that extend over
time, or as occur at a point in time, respectively. Happenings over time produce events, for example, the revenue of a
company changes during a business process. A dynamic entity could be either a happening over time or an event,
depending on the viewpoint of the application. For example, a package arriving at a business might be treated as a
process of signing for it, inspecting it, and routing it to the addressee or it might be treated as simply occurring on a
particular day with no additional detail.

Courses are Composites that are also Happenings Over Time. As composites, courses have Happening Parts, which are
parts played by happenings. These enable individual MO courses to be linked to individual MO happenings, such as
individual performances, enactments, or executions of subprocesses and individual MO lifecycle events. As composites,
courses also have Succession connections representing that one part of the course "follows" another in time, and possibly
establishes constraints on such followings (Course Parts are introduced just to categorize those Parts that can be related
by Successions). Immediate Successions are Successions for specifying that one part of the course immediately follows
another, as opposed to following sometime afterwards. Successions have different meanings for typed and un-typed
parts:

* For typed course parts, such as Happening Parts, Succession means that an individual dynamic entity playing one
typed part will happen at the same time or after another dynamic entity playing another typed part as the course
proceeds. These dynamic entities might be steps in a process, interactions in choreography, or events due to
these. Immediate Successions are Successions where the dynamic entities being connected happen at the same
time. For example, two steps in a process might be required to start at the same time. Typed course parts specify
conditions incoming successions must satisfy for dynamic entities playing a part to start, and conditions outgoing
successions must satisfy when dynamic entities playing a part come to an end. Predefined conditions requiring
all successions to be satisfied (AllSuccession) or only one succession (OneSuccession) are provided in an M1
model library.

e For un-typed course parts, such as Gateways, Successions represent more complex specifications of how
dynamic individuals playing typed parts are ordered in time. Parallel Splits are Gateways indicating that the
dynamic individuals playing parts following them happen after the dynamic individuals playing the part
preceding them. Parallel Joins indicate that the parts (in the sense of individuals) following them happen after the

Business Process Definition MetaModel, Common Infrastructure, v1.0 63

parts preceding them. Exclusive Splits indicate that exactly one of the parts following them will occur after the
part preceding them. Exclusive Joins indicate that the part following them will occur after each part that occurs
preceding them. Successions with un-typed parts at one or both ends may not have part paths at those ends,
including qualification, because there will be no individual playing that part (see Composition Model).

As happenings over time, courses produce Course Events, which are process lifecycle events, such as starting and ending.
Event Parts are Happening Parts identifying events for individual MO courses. For example, an event part for shipping a
product can identify the starting event for each individual shipment, such as 8am on a particular day. Event Parts are also
Course Parts, enabling them to be connected by Successions. For example, an event part identifying the end of a course
succeeds the event part identifying the start. This means the ending of each individual MO course occurrence, such as an
individual shipment, is after the start of that same individual course.

A user (M1) library in the Course Model captures commonly needed aspects of courses as instances of classes in the
Course Model. The library defines:

* Course Events representing process lifecycle events, specifically starting and ending of individual courses.

* A taxonomy of MO happening occurrences rooted at Happening Occurrence, which is a generalization of all M1
dynamic models, including all orchestration and choreography models. All individual (M0O) happening
occurrences conform to Happening Occurrence, which is the most abstract M1 model of happenings. It
generalizes Happening Over Time Occurrences and Event Occurrences, which generalize Course Occurrences
and Course Event Occurrences, respectively.

¢ Event Parts of Course Occurrence for the various Course Events, such as start and end parts. These are typed by
the M1 events Start Event and End Event. They can be the source or target for successions, see below.

* Successions between the Event Parts above for M0 time ordering, such as the end of every course being after the
start.

Successions can order the event parts of happening parts, such as the start and end parts of packing or shipping in a
delivery process. For example, a succession might have the packing part as source and the end part as source event part,
while the shipping part is the target, and the start part is the target event part. This means packing must end before
shipping starts, specifically, the ending of each individual MO packing occurrence within a delivery occurrence is before
the start of that same individual course. Other combinations of event parts in succession might be one happening part
starts after another starts, ends after another ends, or ends after another starts. For convenience, successions that do not
specify source or target event parts will have the same effect as successions where these are the end parts and start parts,
respectively. Successions do not need to have happening parts as source and target, they can have untyped course parts
also, such as gateways.

The library enables users and extenders of BPDM to define their own:

* Parts of courses, for example, a business monitoring model or business runtime model can specialize Course
Occurrence to introduce typed parts for the time an individual process starts, how long it has been running, and
the resources it is using.

* Taxonomies of courses, for example, a general business process can be specialized for small and large
businesses, or business in specific sectors, such as health care or retail. This can be the framework for libraries of
reusable business processes.

¢ Taxonomies of events, for example, to define kinds of errors and introduce error codes.

* Taxonomies of event parts, for example, to take different steps depending on which error ends a course.

The Course Events in the user library are for the starting and ending of courses (Start Event and End Event). Individual
(MO) course events play event parts as they occur. The user library (M1) defines event parts for the event types in the
library, in particular, individual start events at MO play start parts, and individual end events at MO play end parts. Each
individual (MO) course occurrence will have exactly one start event and one end event. Inversely, each individual course
event must play an event part in exactly one individual course occurrence. For example, an MO start event plays the start
part for exactly one individual course occurrence.

64 Business Process Definition MetaModel, Common Infrastructure, v1.0

Successions in Course Occurrences inherit to all user-defined course definitions (M1) and all individual (MO0) course
occurrences (all performances, enactments, and executions). These establish the time order of process lifecycle events,
for example, that ending happens after starting. Successions that target parts typed by the Start Event specify a new
individual (MO) course. For example, a process definition may indicate that an incoming message creates a new
execution of a process by a succession from the message receipt to the start part in the user library. Event parts can be
the source or target of Successions, for example, to specify different steps that follow normal and abnormal ends.

Event Conditions are Conditions for specifying that an Event must occur in the context of a particular Happening Over
Time for the condition to hold. It generalizes Time events and changes in Facts (also see the Behavior Model). Event
Conditions specify that an individual (M0) happening over time must produce a particular kind of event (defined at M1)
for the condition to hold. Time Event Condition is specified by referring to a Clock, which is a Happening Over Time
that produces Time Events. Time Events have a property for specifying the time in a detailed expression. Fact Change
Conditions refer to general propositions becoming true or false due to changes in MO facts. It is used to integrate with
models of rules.

4.5.2 Metamodel Specification

The Course Model extends the Composition Model to connect parts in time (Succession). For example, a succession
connects one step in a process to another to indicate that the second step happens after the first. The same applies to
messages in choreography.

45.21 Happening and Event Diagram

P

Happening

All

Happening O ver Event
Time % induced event

=

event context

Figure 52 - Happening and Event Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0 65

45.2.2 Time Event Diagram

Happening Over - - Event
Time event context induced event

Time Event

{subsets induced event[+]

Clock fubsets event context[x]}
produced time event | timeF xpression[0..1]:String

time event producer

0.1 *

ﬁx TimeDate Event
Himedate[1]:UnlimitedNatural

Relative TimeDate Event starting event Event

| +duration[1]:UnlimtedNatural ;

Cycle Event
HimedatePeriod[1]:UnlimtedN atural

Figure 53 - Time Event Diagram

45.2.3 Event Condition Diagram

Condifion

Alx

Event Condifion

fepecified event condition ‘zpecified event condition | =
freadanly, union}

E

freadaonly, union}

freadanly, union} {readonly, union}
0.1 fconditioning happening over time foonditioning event 1
Happening Over Time Event
event context %
* induced event

Figure 54 - Event Condition Diagram

66 Business Process Definition MetaModel, Common Infrastructure, v1.0

4524 Time Event Condition Diagram

Condifion

é|)

Evenf Condifion

T

Time E vent Condition

B

zpecified time c ondition s_pecified time cn_nditian
{subsets s pecified event condition[*]} {subsets specified event condition[*

{subsets conditioning

happening over ime[0..1]} {subsets condiioning event[1]}
0.1 ¢ onditiohing clock 1 conditioning time event
Clock Time E vent

time event producer

{subsets evert contest} L meE wpreszsion[0..1 | Sting

0.1 produced time event
{subsets induced event[}

Figure 55 - Time Event Condition Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0

67

4525 Fact Change Condition Diagram

Condiion
from [Condition Model)

Lls

Event Condition

é|§

Fact Change Condition

B

specified fact change ¢ ondition specified fact change condiion | =

{subszetz zpecified event candition [}

Event

{subsets conditioning event[11}

1 canditioning statement conditioning fact ¢hange q ZF\

Stratement Fact Change
from [Condition Model)

Figure 56 - Fact Change Condition Diagram

68 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.5.2.6 Course Diagram

Composifa | Happening Over Tme ‘

zls

Course

fhirecfed Paif Conmeclon

le

1 4§ OWner course
{subs ets conmection whaole[1]H

{subsets owned connection(*}
owred sucCession

Succession

I

*| previols sUCCEZEon

fmmedafe
Succession

{zubsets target[17}
1 | successor

{subsets souce connection("} fsubsets taget connection["]}

riek succezon | ¢

{subsets source] 1]

AN
predecessor

—

Jouner course

{zubsets part whale[1]}
{readonly, wion!

{readarly, urion}
{subsets owred connectable element[
fovned course part

Course Parf

Figure 57 - Course Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0

69

45.2.7 Gateway Diagram

Succession Course

arf 1]} 1] = 1ed counse pa
a1 1 EEE] 1.1 ried partenw
Enxclusive Split Parallel Spiit Parall=l Join Exclusive Join

Elmeny]]
afd.1])
sxman | 0.1 . | siding expres=an

Valve Spac ific ation

Figure 58 - Gateway Diagram

70 Business Process Definition MetaModel, Common Infrastructure, v1.0

45.2.8 Event Course Diagram

Courze

Ewvent

Ll}.

1 {subsets happening part bype[1]
event part bype

{subszets event contest[*]} Course Event

=

Aoourze e vent conbest

event part owner §
{zubsets owrer course[1]}

{zubzets owned course pat*}

owned event part

Ainduced courze event

]
{subsets induced event[*]}

{subzets happening usagel]}
* | ewvent uzage

Event Part

0.1

0.1 target event part

" faubsets tarngeting conmection]

{subsets target sub destinatior{0..17}

source event park
{subsets source sub arign[0L 1]}

x

{zubsets souce sub oign{0.1]}

Succession

| Toped Part

| | Cowrse Parf |

T

Lr v

Happe ning Pardt

* |conghraned courze pat

happening usage
{subzets type uzage[]}
{readonly, urion}

{readonby, unior}
{subzets partType1]}

/happening par type 1

Happening

corstrained couse part
{subsets condtioned germent[1..7]}

{subsets corstraning condition[* T
previous suct ession condiion

{zubsety condtioned dement[1..%]}

{subsets constrain ng condition[*[}
1 rext succession condition

Condfifiorn

Figure 59 - Event Course Diagram

Business Process Definition MetaModel, Common Infrastructure, v1.0

71

4529

Commaon [nfrastiucture Library P ackage

All Successiohs:
Opague Condition

One Succession:
Opague Condition

Start Ewvent:Course
Ewent

End E wvent:Course
Ewent

Change

becomes ueFact

becomes falze:Fact

Change

Happehing OccunenceHappening

Happening Ower Time Occurience:

Happening Ower Time

Courze OccunenceCourse

EventOccunence:Event

Course Event 0 courrence Course

Ewvent

Common Infrastructure Library: Happenings, Events and Conditions

The graphical containement
meansz that the Library package
ownz 'packagedElement '

b

Figure 60 - Common Infrastructure Library: Happenings, Events and Conditions

72

Business Process Definition MetaModel, Common Infrastructure, v1.0

45210 Common Infrastructure Library: '"Happening Occurrences'

Happening Oec urenc & Happening

general general

- - induced evert .
Happening Over Time Occuren: e: Event Occurnrence :Event

Happening Owver Time event context
general gensral
- generl Courze Event general End Event:
~ 5 O currene : Course Ewent
urse Event Course Event
evert part type

event partippe induzed course ewvent
{zubsets induced event}
{subsets event cantext}
1 |course evert c ontext

event usage evert usage
Start: Event Part - . . End:Event Par
predec essar start-=nd: PrEwious SUGC &S5i0n i
lovver=1 T overer=1
Lip par= 1 nest suzcessor |upper=1
succession

Courze Occurrence:-Courze

The graphical c ontainement means that the ¢ ourse owns even
pars and successions respactively thraugh the 'owned svant
part' association and the 'owned suce ession' associaion

Figure 61 - Common Infrastructure Library: '"Happening Occurrences'
45211 Clock

Package: Course Model

isAbstract: No

Generalization: “Happening Over Time”

Description

A Clock is a kind of Happening Over Time that produces Time Events.

Associations

produced time event : Time Event [*] Time Event that occurs in the context of a Clock
Subsets induced event

4.5.2.12 Course

Package: Course Model
isAbstract: No
Generalization: “Composite” “Happening Over Time”

Business Process Definition MetaModel, Common Infrastructure, v1.0

Description

A Course is an ordered Succession of Happening Parts
A Course is a Composite that has connections representing that one part of the course "follows" another in time, and
possibly establishes constraints on such followings (Succession).

Associations

induced course event : Course Event [*] Events that can occur in the context of this Course.
The set of these Events is derived from the Event Part owned by
the Course.
This is a derived association.
Subsets induced event

owned course part : Course Part [*] Course Part owned by the Course
This is a derived union.
Subsets owned connectable element

owned event part : Event Part [*] Event Part owned by the Course
Subsets owned course part

owned gateway : Gateway [*] Gateway owned by the Course.
Subsets owned course part

owned succession : Succession [*] Succession owned by the Course
Subsets owned connection

4.5.2.13 Course Event

Package: Course Model

isAbstract:

Generalization: “Event”

Description

A Course Event is a kind of Event that occurs as part of the lifecycle of a Course, such as Start Event, End Event.
The Common Infrastructure provides a predefined library of Course Events.

Associations

course event context : Course [1] Event that can occur in the context of the Course
This is a derived association.
Subsets event context

4.5.2.14 Course Part

Package: Course Model
isAbstract: Yes
Generalization: “Part”

Description

A Course Part is a kind of Connectable Element that defines a stage in a Course. It can be connected to Succession as
a predecessor or successor clement.

74 Business Process Definition MetaModel, Common Infrastructure, v1.0

Associations

next succession : Succession [*] Succession that enables the Course Part as its predecessor .

Subsets farget connection

previous succession : Succession [*] Succession that enables the Course Part as its successor .
Subsets source connection

45.215 Cycle Event
Package: Course Model

isAbstract: No
Generalization: “Time Event”

Description

A Cycle Event is a kind of Time Event that define the occurrence of a cycle in time.

Attributes
timedatePeriod: UnlimitedNatural [1]

45216 Event
Package: Course Model
isAbstract: No

Generalization: “Happening”

Description

An Event is a Happening for dynamic entities occurring at a point in time.

Associations

event context : Happening Over Time [*] Happening Over Time where the Event can occur

4.5.2.17 Event Condition
Package: Course Model
isAbstract: Yes

Generalization: “Condition”

Description

An Event Condition is a Condition for specifying that an Event must occur in the context of a particular Happening
Over Time for the condition to hold. For instance, a condition can be on the eruption (instance of Event) of a particular

volcano (instance of Happening Over Time).

Business Process Definition MetaModel, Common Infrastructure, v1.0

75

Associations
conditioning event : Event [1] Event that is the source of the Event Condition.

This is a derived union.

conditioning happening over time : Happening ~ Happening Over Time where the conditioning event should occur.
Over Time [0..1] This is a derived union.

4.5.2.18 Event Part

Package: Course Model
isAbstract:
Generalization: “Happening Part”

Description

An Event Part identifies Event (such as Start Event or End Event) for an individual Course. An Event Part is also a
Happening Part, enabling it to be connected by Successions.

Associations

event part type : Event [1] Event that is the type of the Event Part.
Subsets happening part type

4.5.2.19 Exclusive Join

Package: Course Model
isAbstract: No
Generalization: “Gateway”

Description

An Exclusive Join is a Gateway indicating that the part following it will occur after each part that occurs preceding it.

BPMN Notation

The Exclusive Join shares the same basic shape of the generic Gateway.

)

./

Figure 62 - Exclusive Merge Notation

76 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.5.2.20 Exclusive Split

Package: Course Model
isAbstract: No
Generalization: “Gateway”
Description

Exclusive Split is a Gateway indicating that exactly one of the parts following it will occur after the part preceding it.

Associations

default : Succession [0..1] Succession enabled by default if no other next succession
connected to the Exclusive Split has been enabled.

owned expression : ValueSpecification [0..1] splitting expression owned by the Exclusive Split.
Subsets ownedElement
Subsets splitting expression

splitting expression : ValueSpecification [0..1] ValueSpecification that specifies the expression shared by
the guards on the outgoing successions of the Exclusive
Split .These guards must be Fact Conditions that reference
this shared ValueSpecification as their evaluated expression.

Constraint

The guard s of the next succession s of the Exclusive Split must be Fact Conditions that have their evaluated
expression be the same as the splitting expression of the Exclusive Split.

self.next succession ->guard ->evaluated expression in self. splitting expression

[1] The default Succession must be one of the Successions connected to the Exclusive Split as a next succession.

BPMN Notation

The Exclusive Split shares the same basic shape, called a Gateway, of the generic Gateway. The Exclusive Split MAY
use a marker that is shaped like an “X” and is placed within the Gateway diamond to distinguish it from other Gateways.
This marker is not required. A Diagram SHOULD be consistent in the use of the “X” internal indicator. That is, a
Diagram SHOULD NOT have some Exclusive Splits with an indicator and some Exclusive Splits without an indicator.

The default succession is represented by a default Marker that MUST be a backslash near the beginning of the line
representing the Succession.

Business Process Definition MetaModel, Common Infrastructure, v1.0 77

Alternative 1
|
| ——
Alternative 2
>
00
SE—
Default Alternative
4
-)
R
Alternative 1
4
|
S
Alternative 2
X >
-
. f A
Default Alternative
4
w00 @

Figure 63 - Exclusive Split Notation

4.5.2.21 Fact Change
Package: Course Model
isAbstract: No

Generalization: “Event”

Description

A Fact Change is a kind of Event that manifests a change in the evaluation of a Statement.

BPMN Notation

FactChange

Figure 64 - Fact Change Notation

78 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.5.2.22 Fact Change Condition

Package: Course Model
isAbstract: No
Generalization: “Event Condition”

Description

A Fact Change Condition refers to general propositions becoming true or false due to changes in MO facts. It is used to
integrate with models of rules.

Associations

conditioning fact change : Fact Change [1] Fact Change that, when it occurs, make the Fact Change Condition
evaluate to true
Subsets conditioning event

conditioning statement : Statement [1] Statement that the Fact Change Condition is evaluating the change
of.

4.5.2.23 Gateway

Package: Course Model
isAbstract: Yes
Generalization: “Course Part”

Description

A Gateway is a kind of Course Part representing potentially complex specifications of how dynamic individuals
playing Happening Parts are ordered in time. The particular specifications are given in subtypes. At runtime, Gateways
don't have any execution trace.

Associations

next gateway succession : Succession [*] Succession that enables the Gateway as its predecessor
gateway.
Subsets next succession

previous gateway succession : Succession [*] Succession that enables the Gateway as its successor gateway.
Subsets previous succession

BPMN Notation

A Gateway is represented by a diamond that has been used in many flow chart notations for exclusive branching and is
familiar to most modelers. The diamond MUST be drawn with a single thin black line. It is not a requirement that
predecessor and successor Successions must connect to the corners of the diamond. Successions can connect to any
position on the boundary of the Gateway.

The shape of the different sub-types of Gateway are differentiated by an internal marker. This marker MUST be placed
inside the shape, in any size or location, depending on the preference of the modeler or modeling tool vendor.

Business Process Definition MetaModel, Common Infrastructure, v1.0 79

Gateway

Figure 65 - Gateway Notation

4.5.2.24 Happening

Package: Course Model
isAbstract: No
Generalization: “Classifier”

Description

A Happening is a Classifier for dynamic entities.

4.5.2.25 Happening Over Time

Package: Course Model
isAbstract: No
Generalization: “Happening”

Description

A Happening Over Time is a Happening for dynamic entities that are treated as extending over time and that are
contexts for Events.

Associations

induced event : Event [*] Event that occurs in the context of the Happening Over Time

4.5.2.26 Happening Part

Package: Course Model

isAbstract: Yes

Generalization: “Course Part” “Typed Part”
Description

A Happening Part is a kind of Course Part that is also a Typed Part where the type is a Happening. It is a stage or
interval in a development or Course.

Happening Parts are different from other Course Parts as they are the only one that have occurrence trace at runtime.

Associations

happening part type : Happening [1] Happening that is the type of the Happening Part.
This is a derived union.
Subsets partType

80 Business Process Definition MetaModel, Common Infrastructure, v1.0

next succession condition : Condition [1] conditions next succession (outgoing) must satisfy when
dynamic entities playing a part come to an end.
Subsets constraining condition
Default: All Successions

previous succession condition : Condition [1] condition previous succession (incoming) must satisfy for
dynamic entities playing a part to start,
Subsets constraining condition
Default: One Succession

4.5.2.27 Immediate Succession

Package: Course Model
isAbstract: Yes
Generalization: “Succession”

Description

A Immediate Succession is a kind of Succession that has the following execution semantic: successor immediately
follows its predecessor.

4.5.2.28 Parallel Join

Package: Course Model
isAbstract: No
Generalization: “Gateway”

Description

Parallel Join is a Gateway indicating that the parts (in the sense of individuals) following it happen after the parts
preceding them.

BPMN Notation

The Parallel Join uses the shape of Gateway, called Gateway and MUST use a marker that is in the shape of a plus sign
and is placed within the Gateway diamond to distinguish it from other Gateways.

)

—

—

Figure 66 - Parallel Join Notation

Business Process Definition MetaModel, Common Infrastructure, v1.0 81

4.5.2.29 Parallel Split
Package: Course Model
isAbstract: No

Generalization: “Gateway”

Description

Parallel Split is a Gateway that indicates that the dynamic individuals playing parts following them happen after the
dynamic individuals playing the part preceding them.

BPMN Notation

The Parallel Split uses the shape of Gateway, called Gateway and MUST use a marker that is in the shape of a plus sign
and is placed within the Gateway diamond to distinguish it from other Gateways.

N

((U

>—>
NN

Figure 67 - Parallel Split Notation

4.5.2.30 Relative TimeDate Event

Package: Course Model
isAbstract: No
Generalization: “Time Event”

Description

A Relative TimeDate Event is a kind of TimeDate Event that defines a change in time for a relative start point in time.

Attributes
duration: UnlimitedNatural [1]

Associations

starting event : Event [1] Event which occurrence is the beginning of the Relative TimeDate
Event

82 Business Process Definition MetaModel, Common Infrastructure, v1.0

4.5.2.31 Succession

Package: Course Model
isAbstract: No
Generalization: “Directed Part Connection”

Description

A Succession is a Directed Part Connection that organizes Course Parts in series in the context of a Course. A
Succession indicates that one Course Part "follows" another in time, and possibly establishes constraints on such
followings. It can order the Event Part of its Happening Parts such as their Start or End.

Succession allows any combination of Event Part to be connected.
End -> Start

Start -> Start

Start -> Abort

etc.

A Succession doesn't need to have Happening Part on its ends, it can have untyped course parts also, such as Gateway,
but it must have something on each end.

For convenience, a Succession that does not specify source event part or target event part will have the same effect as
a Succession where these are respectively the End and Start.

Associations

predecessor gateway : Gateway [0..1] Gateway that comes before another Course Part in a Succession.
Subsets predecessor
predecessor : Course Part [1] Course Part that comes before another Course Part in a Succession.

Subsets source

source event part : Event Part [0..1] Event Part of the predecessor Happening Part that is connected
through the Succession.
Subsets source sub origin

successor gateway : Gateway [0..1] Gateway that comes after another Course Part in a Succession.
Subsets successor

successor : Course Part [1] Course Part that comes after another Course Part in a Succession.
Subsets target

target event part : Event Part [0..1] Event Part of the successor Happening Part that is connected
through the Succession.
Subsets target sub destination

Constraint

[1] The source event part must be one of the Events of the Course that is the type of the predecessor.

processing step sclf.source event part in sclf.predecessor behavioral step->step type ->owned event
part

Business Process Definition MetaModel, Common Infrastructure, v1.0 83

[1] The target event part must be one of the Events of the Course that is the type of the successor processing.

step sclf.target event part in sclf.successor behavioral step->step type ->owned event part

BPMN Notation

A Succession is line with a solid arrowhead that MUST be drawn with a solid single line

[
»

A succession

Figure 68 - Succession Notation

Non Normative Notation

A Succession with a Condition of type Fact Change Condition is drawn as a line covered by the shape the conditioning
Fact Change. The line has a solid arrowhead and MUST be drawn with as solid single line.

E S
= -

A succession with Fact Change Condition

Figure 69 - Succession with Fact Change Condition

A Succession with a Condition of type Time Event Condition is drawn as one line covered by the shape the
conditioning Time Event. The line has a solid arrowhead and MUST be drawn with a solid single line.

(D) >

A succession with Time Change Condition

Figure 70 - Succession with Time Event Condition

4.5.2.32 Time Event

Package: Course Model
isAbstract: No
Generalization: “Event”

Description

A Time Event specifies a point in time that is a source of interest.

Attributes

timeExpression: String [0..1] A timeExpression represents a time value.

Associations

time event producer : Clock [0..1] Clock that generates the Time Event
Subsets event context

84 Business Process Definition MetaModel, Common Infrastructure, v1.0

BPMN Notation

A Time Event is represented by a clock

Time Event

Figure 71 - Time Event Notation

4.5.2.33 Time Event Condition

Package: Course Model
isAbstract: No
Generalization: “Event Condition”

Description

A Time Event Condition is a kind of Event Condition that is based on the occurrence of a Time Event. A Time Event
Condition is specified by referring to a Clock.

Associations

conditioning clock : Clock [0..1] Clock that is the Happening Over Time context producing the
conditioning time event that is the source of the Time Event
Condition.
Subsets conditioning happening over time

conditioning time event : Time Event [1] Time Event that is the source of the Time Event Condition.
Subsets conditioning event

4.5.2.34 TimeDate Event
Package: Course Model
isAbstract: No

Generalization: “Time Event”

Description

A TimeDate Event is a kind of Time Event that manifest a date or time change.

Attributes
timedate: UnlimitedNatural [1]

4.5.2.35 Instance: All Successions
Class: Opaque Condition

Description

Condition requiring all successions to be satisfied before the execution of a Happening Part.

Business Process Definition MetaModel, Common Infrastructure, v1.0 85

Links

Played End Opposite End
All Successions:owningPackage owningPackage Common Infrastructure Library

4.5.2.36 Instance: becomes false

Class: Fact Change

Description
Links
Played End Opposite End
becomes false:packagedElement owningPackage Common Infrastructure Library

4.5.2.37 Instance: becomes true

Class: Fact Change

Description
Links
Played End Opposite End
becomes true:packagedElement owningPackage Common Infrastructure Library

4.5.2.38 Instance: Course Event Occurrence

Class: Course Event

Description
Links
Played End Opposite End
Course Event Occurrence: general Event Occurrence
Course Event Occurrence:general Start Event
Course Event Occurrence:general End Event
Course Event owningPackage Common Infrastructure Library
Occurrence:packagedElement
Course Event Occurrence:induced course event context Course Occurrence

course event

4.5.2.39 Instance: Course Occurrence
Class: Course

Description

Course Occurrence is a Course that is the generalization of all M1 Courses, including all orchestrations and
choreographies.

86 Business Process Definition MetaModel, Common Infrastructure, v1.0

Course Occurrence introduces M1 events for starting and ending and a succession between them that is inherited to all

M1 courses. All individual (MO) courses conform to Course Occurrence, which is the most abstract M1 model of
Courses.

Links
Played End Opposite End
Course Occurrence: general Happening Over Time Occurrence
Course Occurrence:course event context induced course event Course Event Occurrence
Course Occurrence:event part owner owned event part End
Course Occurrence:event part owner owned event part Start
Course Occurrence:general Behavior Occurrence
Course Occurrence:owner course owned succession start-end
Course Occurrence:packagedElement owningPackage Common Infrastructure Library
Constraint

[1] Start and End event parts cannot have the same values
not self.Start = self.End

Non Normative Notation

IOOO Happening Occurence J

OO Happening Over Time Occurrence OO Event Occurrence

O-OO Course Occurrence

Figure 72 - Course Occurrence Diagram
4.5.2.40 Instance: End Event
Class: Course Event

Description

End Event is a Event that manifests the end of a Course.

Business Process Definition MetaModel, Common Infrastructure, v1.0

87

Links

Played End Opposite End

End Event: general Course Event Occurrence

End Event:event part type event usage End

End Event:general Normal End Event

End Event:general Abnormal End Event

End Event:packagedElement owningPackage Common Infrastructure Library

4.5.2.41 Instance: End

Class: Event Part

Description

Links
Played End Opposite End
End:event usage event part type End Event
End:owned event part event part owner Course Occurrence
End:subsettedProperty Abnormal End
End:subsettedProperty Normal End
End:successor previous succession interationend-end
End:successor previous succession startseq-end
End:successor previous succession compensate-end
End:successor previous succession cancel-end
End:successor previous succession start-end

BPMN Notation
The shape of the End instance of Event Part is drawn as a circle that MUST be drawn with a single thick black line.

End Event Part

Figure 73 - Event Part : End Notation
4.5.2.42 Instance: Event Occurrence
Class: Event

Description

Event Occurrence is an Event that is the generalization of all M1 events, including all events induced by orchestrations
and choreographies. All individual (MO0) occurrences of events conform to Event Occurrence, which is the most abstract
M1 model of events.

88 Business Process Definition MetaModel, Common Infrastructure, v1.0

Links

Played End Opposite End

Event Occurrence: general Happening Occurrence

Event Occurrence:general Course Event Occurrence

Event Occurrence:induced event event context Happening Over Time Occurrence
Event Occurrence:packagedElement owningPackage Common Infrastructure Library

4.5.2.43 Instance: Happening Occurrence
Class: Happening

Description

Happening Occurrence is a Happening that is the generalization of all M1 happenings over time and events, including
all orchestrations and choreographies and events induced by them. All individual (MO0)

occurrences of happenings over time and events conform to Happening Occurrence, which is the most abstract M1 model
of occurrence.

Links
Played End Opposite End
Happening Occurrence:general Event Occurrence
Happening Occurrence:general Happening Over Time Occurrence

4.5.2.44 Instance: Happening Over Time Occurrence
Class: Happening Over Time

Description

Happening Over Time Occurrence is a Happening Over Time that is the generalization of all M1 happenings over time,
including all orchestrations and choreographies. All individual (M0) happening of time occurrences conform to
Happening Over Time Occurrence, which is the most abstract M1 model of happening over time.

Links
Played End Opposite End
Happening Over Time Occurrence: general Happening Occurrence
Happening Over Time Occurrence:event | induced event Event Occurrence
context
Happening Over Time Course Occurrence
Occurrence:general
Happening Over Time owningPackage Common Infrastructure Library

Occurrence:packagedElement

4.5.2.45 Instance: One Succession
Class: Opaque Condition

Description

Condition requiring only one succession to be satisfied before the execution of a Happening Part.

Business Process Definition MetaModel, Common Infrastructure, v1.0 89

Links
Played End

One Succession:owningPackage

4.5.2.46 Instance: Start Event

Class: Course Event

Description

Opposite End
owningPackage Common Infrastructure Library

Start Event is a Event that manifests the start of a Course

Links

Played End

Start Event:

Start Event:event part type
Start Event:packagedElement

4.5.2.47 Instance: start-end

Class: Succession
Description

Links

Played End

start-end:next succession
start-end:owned succession
start-end:previous succession

4.5.2.48 Instance: Start
Class: Event Part

Description

Links

Played End
Start:event usage
Start:owned event part
Start:predecessor
Start:predecessor
Start:predecessor
Start:predecessor
Start:target event part

90

Opposite End

general Course Event Occurrence

event usage Start

owningPackage Common Infrastructure Library

Opposite End

predecessor Start

owner course Course Occurrence
successor End

Opposite End

event part type Start Event

event part owner Course Occurrence
next succession start-iterationend
next succession start-cancel

next succession start-end

next succession start-compensate
start/start

Business Process Definition MetaModel, Common Infrastructure, v1.0

BPMN Notation
An Event Part typed by the Start Event instance of Event is drawn as a circle that MUST be drawn with a single thin

line.

Start Event Part
Figure 74 - Event Part : Start Notation

When a Start Event Event Part is conditioned by a Fact Change Condition, a Fact Change marker is added to the
Start Event Event Part shape.

Start with Fact Change Condition

Figure 75 - Event Part : Start with 'Fact Change Condition' Notation

Shape of Start when it has an Event Monitor with a Time Event Condition, as its predecessor.

Start with Time condition

Figure 76 - Event Part : Start with 'Time Event Condition' Notation

Business Process Definition MetaModel, Common Infrastructure, v1.0

91

Index

ADSITACLIONS PACKAZE.cvvievieiieiieiteetesteete st ete st e te et ebeeteesteesteseestesseessesseessesseassesssensasssansanssenseassenseessesseensesssensesssaeenssaesnssens 6
ADSITACLIONS PACKAZEevvievieiieiieiieieeteete st ete st e e e et et ettesteeseeseestesseassesseessesseensesseenseessanseessenseassenseessesssansesssensesnsaeenseesnssens 4
BEhavioral FEAtUIES.c.iiueiiieeieiee ettt ettt e et e bt e bt e he et e e be st et e e s emeen s eneeaeeseebeebeebe et eesneeenteenbeeneenne 36
Behavioral FEatures PACKAGE...........ccviiiiiiiiiicieciceee ettt ettt ettt e et eb e et et e e seebeessasseesseessessesssessesssessseesnnseennns 36
BehavioralF@AtUIE.cetieiieiieeieit et ettt ettt et s a e et e a e bt e et e bt e et e bt em s e eheem e e eb e et e es e e bt eneeebeeeteebeenteenteeenneeenn 36
J270T0] (<7 3§ OO OSSPSR 7
B00lean ValueSPeCifICaAtION.coueoieiiiiiiiriiiiertietere sttt ettt eb bbb st ettt et bt e bt e bt ebeebe e bt saeetesbeneenaennentens 46
(0 F: Ty < VOO ST RO U PPRTRUUPPRPINS 1, 30, 32, 34
CLASSITIETS ..ottt ettt ettt ettt e a e bt eb e bt e bt e bt e bt bt ekt b et e et e b et et ea b en b enten e e st e st e bt e bt e bt e bt eb e b b e bt et e teten 30
CIASSTTIEIS PACKAZE. ... ecvieiieiieti ettt ettt et ettt et e te e e e saeesbesseesseessenseesaenseessansaasseeseansesseensesssensesnseeansseannsneennns 30
CLOCK ettt ettt et a et b e at et e e bt bt et ek e et e e4 et ea s e s em e e n b en e en e eR e eR e e bt eh e ekt h e eR e ke beeAeeAen b et et ententent e st eneene e beebeen 73
COMUMEIE. ...ttt ettt ettt e ettt e st e s bt eat e sb e e et e bt e bt eb e e bt ee s e bt ea b e eb e e et e eb e emt e ebe et e eb e e bt emeesbeemtesbeemtesbeenbesbeenteennne 10
L0103 541001S) 1L F RSSO 10
COMMENTS PACKAGE. ...ttt ettt sttt e s bt et e e bt et e e bt et e eb e et e eseeabeemeesbeentesbeenneeeanee 10
COMTIPOSIEL. ...ttt sttt ettt ettt ettt eb e eb e bt s bttt b e s bt st et et et e st eatea e ebe e bt e bt e bt e bt bt s bt et e b et et estentemtebeebeebeebeebeembeenbeenaeeans 2,56
COTIIPOSIEES. ..ttt ettt ettt ettt et et sttt et e st eateb e eae e bt eb e e bt e bt s bt et e b e et st et et et essemtemtemteuteatebeeb e e bt sbesb e et e bt sae st e bensentenne 51
COMPOSIEION IMOAEL......couiiiiieiiciieiieieie ettt sttt et et e e et esbeessesseesse et e essesseessesssesesssensaessenseassensaenseesseennsseennsseennns 49
ComMPOUNA CONAILION TYPE....vivieiiiiieiiiieiieieie ettt ete st ete st estestessesstesseesseseesseseessesseesseaseessesssessesssessesssesessseesnsseesnsseesnns 47
(@703 1 e 11510 s FE RPN 2,47
CONAILION IMOEL....c.ititiietee ettt sttt ettt et e st a e e st es e eb e e bt e bt et e eb e et e et e b e b e s et ensenteneententeneesnbeenbeenne 45
(0103111 1o 0] (S 2 153 1 13 o LA U URU U SRUPSRRTSN 57
COMSITAINE .« ettt ettt ettt ettt et e e a et e bt e bt ea e e bt em e bt em e e eb e emt e eaeeme e eae e et eaeesaeemeeebeem s e bt emteebeemtees e et e enee bt emtesbeentesbeenneeennee 29
COMSETAINES. ...veeettietieeiteeteeiteeeteestteeeteeette e teestaeeaseessseesseesseasseessesasseassseasseassseasssessaeasseensaeeaseansaessseanssensssanssessseensssaeesanssseeanns 29
CONSLIANES PACKAZE. ... ettt ettt ettt b et a et b et et e e et e st ente st ebeebeeabeenbeenne 28
COUISC. vttt e e ettt e e ettt e e e ettt e e e e et e e e eeeeataaeeeeeesaaaseeeeeasaaaeeeeeesatsaseeeeassaaeeeeeetaseeeeeansssseeeeenssasaeeeeensassaeeeesastasseesssssssesnsees 2,73
COUTSE EVENL......iiiiiiiiiiiiie ettt ettt ettt et et a e et sae e et e s bt e et e bt et e s bt et e eb e et e eae e bt emtenueemnesueenneeenane 74
COUISE IMOAEL. ...ttt ettt ettt ettt e et e s e st e et ea e eb e eb e e et eb e eb e e bt e e et e b e s emsensenseneeneeneeneeneebeeseeneebeabee e 63
(010331 ST) o o PRSPPI 3,74
L0761 (S ZA <33 | SRS SRRSRTSN 75
LD 121 Iy o T OO 1, 42
DIALALYPES......eeuteiieieet ettt ettt a et et a e e s h e a e h e e a e bt et e e s ettt e bt e e e et e et neeeaneeens 42
DAtatyPES PACKAZE. ... eueeeeeeieeiieie ettt ettt et e bt et e bt e e et e e et e st et e e st et e eneeete et e ese et e ereeseeneeteenteeennaeeeneeenn 42
I D 1S A7 1510) s VOSSP 52,57
DErIVALION DIAGIAIMN.uieiiiiieiiiieieeiete ettt ettt e et et e st eseesseesaesseessesseesseessesseessanseassasseansesssansesssensesssensaeansseennsseesnsseens 56
DITECtEd Part COMMECTION. ... eeuettitietiittetetete ettt ettt ettt e e bt st e tesbe st e e et et e st eseeseeseebeebeeae et e et e abessensenseeeneenseneeneeneeseaneenne 57
Directed Part ConNECtion DIAGIAIMI............ccueriiiiiertieieitieieseeteeteesteeteesseeseesteeseesteessesseessesssessesssessesssessesssessesssesseessesssessseesnns 54
DireCtedR EIATIONSIID. ..ottt ettt ettt et a e et e s bt et e e bt et e es e e et en e e teen s e ebee st e e e ntee e bteeenneeenn 12
BLOIMGNL. ...ttt e et e et e e et e e e eta e e eeaaeeeeaeeeeeteeeeeateeeeteeeeteeeeaateeeateeeeteeeeannrrrnnnes 1, 8p., 11
ELOTMENEIMPOTT. ...ttt ettt ettt b e bt eb e e bt b e s bt sttt et e et et et ene e bt e bt ebeeb e e bt sb e st e eue e sateenbeenbeenae 14
EUIMETATION. 1. eiitieiie ettt ettt ettt et e et e e bt e e tbeebeeeabeesseesebeessaeasseessaaesseensaessseenseeseseenssassseassaensseensaessseanseessseenseennsssenns 43
ENUMETatioNLITETAL ..ottt b ettt ettt ea e bt bt e bt e bt ebesbe s bbb et et et et e et enbeebeene 43
J AV 1 | T TN TR 3,75
g AT s 0101 T VU5 o s RPN 3,75
EVEINT PATt....ooeiiiiiieiicc et e et e e e et e e e e e e et e e e e e eeeataeeeeeeeaaaeeeeeenaa e e e e e e e taeeeeseaatereeeeaatareeeeeenaarares 3,76
(e 11 A0 | 4 DO USSP 76
EXCIUSTVE SPIIL....eeeene ettt ettt ettt et e a et e s et e e et e bt ee e e b e em e eb e emteeh e em et eae e bt emeesbeemtesbeembeebeenbeenbeeenbteesnneeens 77
EEXPIESSION. ...ttt ettt ettt ettt ea et e bt e bt e bt bt e bbbt ettt et e st e st ea e bt e bt e bt bt e bt bt ee b b sttt et et eat e st e b e en 1,24
4 03 (13 ()81 PSSR 24
EXPIESSIONS PACKAZE.cviiieitiiieciieieeitete ettt ettt ettt et e st e b e e st e e e st et e esseeseessessaessesseesseesseseessesseessensaenseasaenseaseennsneens 23
FACE CANGE......ecuiiiieeieiieie ettt ettt ettt et e et e et e ae e se e st e sseesaesseesseaseenseessanseessenseessasseensesssansesseensesssensaeansseesnsseannseeans 78
Fact Change CONItION.ccouiiieitiiieiteetecteet et ete et ete et esteeseesteesaesteessesseesseessasseessesseassasseessesseessesssessesssesseeessseeassseessseeans 79
FACT COMAITION. ...ttt ettt ettt ettt e st e st e st ea e e b e e bt sh e et e b e e b e b et et emtemtemteneen e ebeeseebeebeebesaesbenbensenee e 48

92 Business Process Definition MetaModel, Common Infrastructure, v1.0

FRALUTC. ..ottt e et e e e e et e e e e eet—— e e e e eea———aa e e e e ——aaeeeeaa——aeee e e ta—aaaeaaeaaaaaerererrraa—————— 31

GALEWAY ...t entteeiteette et et e st et e ettt e bt e eab e e bt e st e ebtesateesstesat e e bteeabeeabeesab e e st e sa b e e st e ea b e e beeeab e e bt e ea b e e bt e ea bt e shteeabe e e nbaeeeenantreeeean 3,79
(1S 115 w21 112 L5 o) 1 PR SSURRPRRRRRRRRE 1,33
GENETAIIZALIONSeevvivieiieitieieett et et e ete et et e etesteestesteesbesseesseessessaessesseessaaseesseeseessesseessesssesseassesseessesseessenseenseesseeensseesssneennns 33
Generalizations PACKAGE.coiui ittt ettt b et eh et e e st et e a e bt et e eaeetesae e beene e nteeeneeeanee 33
5 3 0) 0153 1110 SO OO O TUSRUUSRRPPRPP 3,80
HapPEning OVET TIME.....cc.eruiriiieiiieiieiteteeett ettt ettt et eat et be bt b e bt s ae st et st et st et e st ebtebeebeebeebe et e enbeesateembeenbeenne 80
D Y0 0153 1110 Y e o USROS 80
IMIMEAIALE SUCCESSION.euvietietieirestieteettetestetestesteessesseesseseessesseessesseessesssessesssessesssesseessenssassensaesseassessesssessesssessenssessesssennns 81
IMPOITADICEICINENL.eeiieiieiieieett ettt sttt ettt et e s bt et e s st esseestessessae s e esseseessenseensensaenseassesseassanseansenseensessesnsennns 15
INAIVIAUAL ...ttt ettt et e et et e e et e beesaesbeessesteesseessesbaessesseessanseessasseesseessensesssessessaensseasnnneennns 58
INAIVIAUAL FTOM SCL....viviiiiiciiiiieie sttt ettt ettt et e s teesbesbeesbe s st esseessesseessassaesseeseessesseensessaessessseeesssessssseennns 58
INAIVIAUALS. ...ttt ettt e et e st e e bt esteeesae e beesabaesseeasseessaassseessseasseesseessseanseessseenseensssaasanssseeesannsseeanns 49
INSTANCE: AL SUCCESSIONS. .. .vieutieierietieitieeiteeetteeteeetteeteessteeteessaeasseesseesssaesseesssaessseasseensseasseesseessseesseessseensesasseesseenssesnsessssennns 85
INSTANCE: DECOMES TAISE......cctiiitiieiieciie ettt et eete ettt e et e it e et e e bt e eabeesseeeabe e saeeaseessseesseesseessseanseessseanssasssseeeansssaeeeannsseeanns 86
INSTANCE: DECOIMES TIUEC......viiitiieiieiitiecieeetieeeteeeteeeteestteeteestteesbe e teeesseesseeasseassaeasssassseassaesseessseensaessseanssessseessaessseenseessseensseeanns 86
Instance: Course EVENt OCCUITEIICE.covuuirtieriieeiierteettestte et esteesbeestteseteesteesateesbeessseenseesaseenseesaseenseessseenseesasesnseesnnsseeesnns 86
INStANCE: COUTSE OCCUITEIICE. ...eeuvveeutieireeiteesiieeteesiteeteestteeteesteesateesteesateessaesaseenbaesaseanbeesaseenseessteensaesaseensaesssesnnbaeeessnnsseeennns 86
INSEANCE: EN....ooviiiiiiiiciiciceicte ettt sttt e et e et e e teesbeeseesbeeseesseeseesbeesa e beess e s e esseeseesbeessesbeersenbeenaesheensesreennennns 88
INSANCE: ENA EVENL.....iiiiiiiiiiiiicieciecte sttt ettt ettt et esteesbesbeesbe s st esbeesaesseessasseessesseessesseessessaessessseeessseesnsseennns 87
INStANCE: EVENT OCCUITEIICE. ... veeviieiieeiieetieeteeteesiteeteestteeseesteeesbeesseeesseesssaasseesseeasseesseesssaasseessseessaeasseensseassessssseeessnssseeennns 88
Instance: Happening OCCUITEIICE.co.uiiuiiieitieieit ettt ettt ettt steete s bt et e eb e et e eb e et e e st e bt eaeeebeentesaeeneesaeenbesaeenseeasnneeeanne 89
Instance: Happening OVer TIMeE OCCUITENCE.c..coueteieuieuieiiriteieeteste sttt sttt testess et et eseesteateseebesbesbesbeebesbesaesaensensensenee 89
Instance: IITefleXiVe COMAIION.ccuiiiiieitieeie et eete ettt ettt e et e et e e be e teeeebeesseesaseesssaasseesseesssaeseessseeseessssasssesesnssseeanns 62
INStANCE: ONE SUCCESSION.eetieeiertieierttestestetestesteeetesseessesseessesseessesseassesssessesssessesssesseessensssssesseesseassessesssessesssessesssessesssennns &9
INSTANCE: SEAT EVENL.....eiitiiiiiiiieieeeee ettt ettt et e st e bte s et e e bt e sab e e bt e eabeeabeesabeenbeesateenbeesaseenbbeeessnnsaeeannns 90
INSEANCE: STATT-CIIA......ccutietiiiiciieie ettt ettt et e e e te et e e teebe e st e beesaesteessestsessesssesseessessaessasseessaseessesssessesssessesssessseessnseennns 90
INISTANICES. ...t euteeiie ettt ettt ettt et ettt et e s tt e e bt e s tte s et e e st e easeessaeasseenseesabeenseese b e enseeesbeeatae e et e en s e e eabeenteeenbeenseeenteenbeeenbeenbeennbaens 39
INSEANCES PACKAZE. ... ittt ettt ettt et s ae et s bt e et e et et e e st et e ea e et e en e e eaeemteeae e bt eseebeenbeeeneeeeneeeanne 39
INStANCE S PECTTICATION. 1.ttt ettt et a ettt et e e e s bt et e s bt e m e e eb e et e eb e et e es e et e emeeebeemeesaeemeesaeenbesneenseeasnneeeanee 39
INSTANCEVAIUC. ...ttt ettt e et e et e e e e baeesbe e teeeabe e saesaseesssaasseesssaesseeaseesaseenseessseensaesaseensaensseenseesssennns 41
IETEEIEXIVE COMAILION.c.tiiiiiiiiieiie et ettt ettt e ettt e et e et e e e e bt e ebe e teeesbe e seeseseessaasseesssaesseessaessseenseessseensaeasseessaensseenseesssannns 59
31 11 27070) (< Vo PRSPPI 26
It AIIMECEET euveeeieteeteeteet ettt et et et et e et e bt e st e b e esbe st e esseeseesseeseesseassesseassesseensesseensesssenseassenseassenseensenseesseeensseeensseannnneans 26
LIEETAINULL ...ttt ettt ettt et e e te e s b e e te e s b e ete e beessesseessesseessesssesseessesseassasseesseaseesseeseesseeseesseeraesseessensneans 27
LLIEETALS. .. euvieitetieteete ettt ettt et st e et e bt et b e s te e b e eteesb e et e esseessasseesseaseessesaeesseeReesbe Rt enbeeRsenteestanseesseeseenseeReenbeera e beesbeeetaeeennreeanns 26
L] T o Ted S LTSS 25
B] 1T Ttz 5 o) o OO OSSPSR 27
LEETAISIIIIIZ. ¢ttt ettt bttt b e ettt et e st e bt e bt eb e e bt e bt sb et e b e b et et et et ea b e st ent e et e ebee e 27
LiteralUnImMItEdINALUIAL.........ociieiiiiie ettt ettt ettt et e s ve et e st e eteeeebe e beassseesseessseasseessssanseessseassaaasseessassssannseesssensenas 28
MetamOde] SPECTTICALION.cuiiciiiieiiiiieteeiet ettt ete ettt et e et e tesetesteesbesbeesseeseesseeseesseessesseassesseassesseensesssensensseennsseennsseens 53
MOAEING LANGUAZES.eeviieietieietieteeiieteetteteete et ete st estesseessesseessasssesseessesseassasseassesssensesssensesssensesssensenssensesnsenseansenseensenns 49
IMIOAEIS.....vieeeiteetteie ettt ettt ettt et et e bt et et e e ta e beess e beesb e b e esseeseesbeessasbeass e aeess e seeRb e seesbeetseabeeRsenbees b e beenseebeesbeeentbeeentbeeerneeens 49
IMIUIEIDIICTEIES. 1.ttt ettt ettt ettt et ettt e et e et e e bt et e e st e aeesaebeessesaeesseseess e ssess e et s esseessesseesseseassasseessesssessesssensanssassenssansessssseennns 21
IMUIEPLICIEIES PACKAZE. ...ttt ettt h et a et a et e e s et e et s st e e e ea e et e eme e beemte bt eneenneeneeeneenseenn 21
IMUIEPICTEYELEIMENL. ...ttt ettt et s b e e b et e b et e e b e e bt e ae e bt eaeesbeemeesbeemtesbeembeaneeesnbeeennnes 21,23
MU P CTEY EXPIESSIONS. ...ttt sttt et ettt ettt eb e b e b sttt b e s ettt e st e st e bt eaeebeeb e s bt sb e et e bt sa et et et et entententeembeenbeenne 22
MultipliCity EXPreSSions PACKAGE.ccuviiiiieieiiee ettt ettt ettt ettt et e e et eeeeneenaeeneessesneesbeensanseenneeens 22
INAMEAELCINENL........uieiiieieticiecieeteet ettt ettt et et esteesaesaeessesseessesssesseessesseessasseassesseessesseensesssansanssansenssanseensenseensenssensenns 15
INAITIESPACE. ... veeuteetteeutee ettt eat e ettt et e sttt et e sttt e bt e s ateeabeesabeeabeesbteenbeesseeeabeesaeesabeesabeeabeessbeenseeseeenbeensbesabeesabeenbeesannbeeeesanns 1,16, 30
INITISPACES. ..o euveenvreentreeueeeteesteeteeseteesseessseeseeaseessseessseasseessseanseesssanseeassessssesssesnseesssesnseensseanseenssessseessseensesssnsssseessnssseeesnnnnn 14
NAMESPACES PACKAZE.cuviiviiiiiiieiieietieeeete ettt ettt sttt ettt et e st e e st e beessesbeessesseesseeseessesseessesseessesssessesssessenssasansseeessseans 13
(00 Ta | LT O} T T3 1o s OO SRRP SR UPSPUTSN 48
OPAGUE STATCIIICNIL.ceeetienteeeiete ettt ettt e e st et et e bt ea e et e eat et e eaeeebeeaee e bt em e e ebeemteeseemtees e et e eme e st emteeaeeneesaeensesreenseeasnneeaanne 48
OPAQUEEXPIESSION. ... ettt ettt ettt ettt ettt ettt sh et e bt b e sttt et et e st et e st esteatebe e bt e bt e bt sb e ekt bt sb e et e bt e satesabeenbeenne 24
OWIIETSHIPS. ...ttt ettt ettt ettt ea e bbbt e bt s bt ekt b e sa et et et et e st ea e et ebeee e e bt eb e e bt e bt sa e et e be st et et et emteenbeesuteemteenteens 9

Business Process Definition MetaModel, Common Infrastructure, v1.0 93

OWNETSNIPS PACKAZE.evieiiiiieiiicticie ettt ettt e st e e st e steesaesaeessesseessesseessaassenseassesseessanseessenssensenssenssesansseenns 9

o 10d S TSRS 1,18
PaCKAZEADICEICINENL.........iciiitiiiiiiieieecete ettt ettt ettt e e et e et esbeesaesbeesbesbeesseeseesseessesseeseesseessesseessesssessesssessensseesssseesssneans 18
PACKAGEIMPOIT......iuieeiieiieiictieie ettt ettt e ettt e et e e ete e be e st esseesaesaeessesseessesssessaessesseessassaessesseesseaseensesseessessseeassseesssneennns 19
o Tod S T USRS PSP 18
PaCKAZES DIAGIAIN. ...ttt ettt ettt et h et s b et e bt et e eh e et e e st et e eateebeemteseeenbesa e et e ea e e bt en b e bt ente bt et e eaeeteens 17
PATALLET JOIN.....eiiiiiiiiecie ettt ettt et e ettt e bt e e b e e beeeabeesseesebeesseesseessaeasseesseessseanseeseseanseessseenseaesseenbeessbeenseessseanreeas 81
PATALLEL SPLIL...cninieiieiieiieteeet ettt b sttt et et e h e bbbt bt b e ettt ettt et et ebeebe et eae bt be e e 82
PATAIMELET ...ttt ettt b et h et b et sbt e bt e et s bt e st e s bttt e bt et e b et e bt e bt et e ettt e eaneeens 37
Pt a e a e bbbt bt bbbttt e st e a e a e bt bt e bt e bt e bt e bbbt bt st et sheesabe e s 2,59
PaIt COMNMECIION.eveiieeeiieeeeeee et e ettt et e et e e aeeeeeateeeeaeeeesseeessaeesamaeessasaeesnseeesanseesanaeessnsseesrnseesanseeesnseeesnnneesareeesanns 2,59
Part Connection & Condition DIAGIAIN..........c.ccuieiiiiiiiiitieieeeete ettt e ste et e st e eb e teeseeseesseeseessessaesseessesseessesssessasseessesssesenns 55
o A O] 0V 1Tt) USRS OUSPPI 51
Part PatRS. ...ttt h e h et h et b et e e a e e bt et e ehe e et eh e e bt eh e et ee e bteeeabteeeneeens 52
Part REPIACEIIIENL. ... cutiuiiiieiieieeieeteteet ettt ettt ettt ettt b e bttt et et e st et e bt e bt ebeeb e e bt e bt sb e st e b e nae st et et et e sateeabeenbeenne 61
oo £ TSR 51
PLIMIEIVETYPC et eteeeieete ettt ettt ettt e et et e et e esae e st e seeseesseessesseessesseenseessesseaseenseassanseassesssessesseessesssensaeansseennsseennsneans 43
PrimitIVETYPES PACKAZE. .. .evieuieetieiietieieeterteste e et e et e ste et et e st e e st esseeseesseeseessesssensesssensaessenseessenseessensaenseassensenseensesnsansennssens 7
54 0] 0153 45 T USSR 38
PrOPErties PACKAZE.......coviiieiiiieiictectect ettt ettt st e bt e st et e e b e e st esbeeseesseeseeeseessesseessesssesbesssessaessenseessebeeernneeanns 37
S8 C0) 013 /OO TUSRRRRPP 2,38
REdEfINADICEICINENL.c.eiiiiitiiieiieeet ettt ettt e a et e et e eb e et e sbeen bt sae e bt s st e be e st e beenteebeenteebeenteeneesnneeens 44
REACTINITIONS. ...eutiiietieiieete ettt et e ettt e et e e bt e eebe e beesebe e saessseessaeesseenseeessaenseeseseensaessssansaassseenseesaseensaessseesanssseeas 44
RedefiNItionNs PACKAZE.ccveiuieiiiieiieeetee ettt ettt ettt et e st et e e et e ae s st eseeaeenseeneenseente st ensenneenseeneenseenn 44
REIALIONSIIP.eeeieiieie ettt ettt ettt et e st e st e e st et e esbesseesseeseesseeseesseeseesseassesseassesseenseassensanssenseessenseansseennsseennsneans 13
L] 1 Ta 41 114013 SRS 12
REIatiONSNIPS PACKAZE.iiviiiiiiiiiiciieieetete ettt ettt ettt st e b e s teesbe et e esseeseesseess e seessesseessesssessesssesseeensseesssseessseeans 11
Relative TIMEDAtE EVENL......ccuiiiiiiieieiieiieeet ettt ettt h e bbbt et e e bt st et et e st e e et et et e st eseeneeneebeebeenbee e 82
N 110y g 1T b (et 5 ()3 OSSR 61
SOt ettt a et ea et e eheea e ettt e ehe oA et et e oA et en s easeatenteatenteR e eheeReeR e ek e bt eheeke s e s ensensens et ententeenteenneennes 41
N 11S] 10 1S) 0| A USSP 2,48
SEIIIIZ. ettt ettt ettt et e bt e bt s bt bt ekt b e s et ettt et e et e st e bt e a e e bt eh € bbbt et b a e et e et ea e et et e bt e bt bt eb e eh bt st et e et e 7
SHUCTUTAL FEALUTES.c.vetieteitiitietetete ettt sttt ettt et e bt ebt e bt eh e e bt e bt s bt et e b e b et e b et et e st ense bt e nbeeeaneeneee 35
Structural FEatures PACKAZE.ccoiiieiiiieieeiet ettt sttt ettt et et et e st essesseensesseessesssensesssenseessensenssessnsens 34
N Lo eTTy 3 o) o FO RPN 3,83
01 o) SO PSPPSR PSP 32
SUPET PACKAZE. ...ttt ettt et h et e b et e et e bt e s et e ea e e ea e ea et ea e et e sae e et eaeeaeemte bt entenbeeneeeennees 31
TIME EVEINL. .. .ottt e e e e et e e et eeeeateeeeaeeeeeteeeeeateeeeaseeeeseeeeteeeeaaseeeenseeeenteeeenrennns 3,84
TIME EVENE CONAITION.ctiiiiiiiiiiiieeeieet et e eie et e et eeeteeeveesteeeateesteeesseetaeesseasseeesbeessseasseessseanssesssessaessseesseessseesseesssaeennn 3,85
TIMEDALE EVENL.....c.uiieiiiiiiicie ettt ettt et et e bt e st eetbe e tbeesbe e teeesbe e seassbeasssassssesssaassaessaessseenseessseanssessssanssaaeesnssseeanns 85
Dttt ettt ettt ettt e h e ettt et e et et e et e e et e e bt e e a bt e bte e a bt e hteea bt e ateea bt e beeea b e e bt eabe e hteeateenhbeenbee e nbaeeeennntraeeean 2,20
TYPEA ELBIMENLS.ecuviiieieeiieiieiteie ettt ettt ettt et e st e et e b e e st et e e s s e seess e st esseeseansesseensesssessesssenseassenseesseseenseesseennsseennsneennns 20
TYPEA PATt......eieiieieiecieteee ettt ettt ettt e et e e b e teesbeeteeaseeseesseeseesseeseesaeessesssess e saenseessenbeessenbeeseeseenseeaeenaesreennneeanns 62
TYPEAELSIMENL.......c.viitieiiiiieieeiecte ettt ettt ettt et et e et esteestesbeesaesbeesseseesseessesseessesseessesseessesseassesseessesssessenssensanseessssessnes 2,20
TYPEAELEMENS PACKAGE. ... cueeiiieieii ettt ettt sttt s h et e e et e e st et e em e e e aeemtesseenaesaeensesaeenneeasnneeeanee 19
UNBMIEEANGLULAL ...ttt h et s bt et e b et e a e et e eh e e bt eae e et e emeesbeembesheembeebeenbeeseenteeamseeeanteesnneeas 8
ValUESPECITICALION. ...ttt ettt ettt ettt st et e st e bt e bt e bt sb e bt bt sb et et et et et et eneenbeeaneen 1,25
VISTDIIEYKITIA. 1.ttt ettt ettt et et es e sae st e st eseese et e et e ese e s et eesessessensensansensessaseeseeseeseeseeseansseenseenseansennes 16

94 Business Process Definition MetaModel, Common Infrastructure, v1.0

	1Normative References
	2Terms and Definitions
	3Additional Information
	3.1Acknowledgements

	4Metamodel and Notation Specification
	4.1Overview
	4.2Abstractions
	4.2.1Introduction
	4.2.2Metamodel
	4.2.2.1PrimitiveTypes
	4.2.2.2Boolean
	4.2.2.3Integer
	4.2.2.4String
	4.2.2.5UnlimitedNatural
	4.2.2.6Elements Package
	4.2.2.7Elements
	4.2.2.8Element
	4.2.2.9Ownerships Package
	4.2.2.10Ownerships
	4.2.2.11Element
	4.2.2.12Comments Package
	4.2.2.13Comments
	4.2.2.14Comment
	4.2.2.15Element
	4.2.2.16Relationships Package
	4.2.2.17Relationships
	4.2.2.18DirectedRelationship
	4.2.2.19Relationship
	4.2.2.20Namespaces Package
	4.2.2.21Namespaces
	4.2.2.22ElementImport
	4.2.2.23ImportableElement
	4.2.2.24NamedElement
	4.2.2.25Namespace
	4.2.2.26VisibilityKind
	4.2.2.27Packages Diagram
	4.2.2.28Packages
	4.2.2.29Package
	4.2.2.30PackageableElement
	4.2.2.31PackageImport
	4.2.2.32TypedElements Package
	4.2.2.33Typed Elements
	4.2.2.34Type
	4.2.2.35TypedElement
	4.2.2.36Multiplicities Package
	4.2.2.37Multiplicities
	4.2.2.38MultiplicityElement
	4.2.2.39MultiplicityExpressions Package
	4.2.2.40MultiplicityExpressions
	4.2.2.41MultiplicityElement
	4.2.2.42Expressions Package
	4.2.2.43Expressions
	4.2.2.44Expression
	4.2.2.45OpaqueExpression
	4.2.2.46ValueSpecification
	4.2.2.47Literals Package
	4.2.2.48Literals
	4.2.2.49LiteralBoolean
	4.2.2.50LiteralInteger
	4.2.2.51LiteralNull
	4.2.2.52LiteralSpecification
	4.2.2.53LiteralString
	4.2.2.54LiteralUnlimitedNatural
	4.2.2.55Constraints Package
	4.2.2.56Constraints
	4.2.2.57Constraint
	4.2.2.58Namespace
	4.2.2.59Classifiers Package
	4.2.2.60Classifiers
	4.2.2.61Classifier
	4.2.2.62Feature
	4.2.2.63Super Package
	4.2.2.64Super
	4.2.2.65Classifier
	4.2.2.66Generalizations Package
	4.2.2.67Generalizations
	4.2.2.68Generalization
	4.2.2.69Classifier
	4.2.2.70Structural Features Package
	4.2.2.71Structural Features
	4.2.2.72StructuralFeature
	4.2.2.73Behavioral Features Package
	4.2.2.74Behavioral Features
	4.2.2.75BehavioralFeature
	4.2.2.76Parameter
	4.2.2.77Properties Package
	4.2.2.78Properties
	4.2.2.79Property
	4.2.2.80Instances Package
	4.2.2.81Instances
	4.2.2.82InstanceSpecification
	4.2.2.83InstanceValue
	4.2.2.84Slot
	4.2.2.85Datatypes Package
	4.2.2.86Datatypes
	4.2.2.87DataType
	4.2.2.88Enumeration
	4.2.2.89EnumerationLiteral
	4.2.2.90PrimitiveType
	4.2.2.91Redefinitions Package
	4.2.2.92Redefinitions
	4.2.2.93RedefinableElement

	4.3Condition Model
	4.3.1Introduction
	4.3.2Metamodel
	4.3.2.1Condition Model Diagram
	4.3.2.2Boolean ValueSpecification
	4.3.2.3Compound Condition
	4.3.2.4Compound Condition Type
	4.3.2.5Condition
	4.3.2.6Fact Condition
	4.3.2.7Opaque Condition
	4.3.2.8Opaque Statement
	4.3.2.9Statement

	4.4Composition Model
	4.4.1Introduction
	4.4.1.1Individuals, Models, and Modeling Languages
	4.4.1.2Classifiers
	4.4.1.3Composites
	4.4.1.4Parts
	4.4.1.5Part Connections
	4.4.1.6Part Paths
	4.4.1.7Derivation and Selection

	4.4.2Metamodel Specification
	4.4.2.1Composition Model Diagram
	4.4.2.2Directed Part Connection Diagram
	4.4.2.3Part Connection & Condition Diagram
	4.4.2.4Derivation Diagram
	4.4.2.5Selection Diagram
	4.4.2.6Composite
	4.4.2.7Connectable Element
	4.4.2.8Derivation
	4.4.2.9Directed Part Connection
	4.4.2.10Individual
	4.4.2.11Individual From Set
	4.4.2.12Irreflexive Condition
	4.4.2.13Part
	4.4.2.14Part Connection
	4.4.2.15Part Group
	4.4.2.16Part Path
	4.4.2.17Part Replacement
	4.4.2.18Selector Specification
	4.4.2.19Typed Part
	4.4.2.20Instance: Irreflexive Condition

	4.5Course Model
	4.5.1Introduction
	4.5.2Metamodel Specification
	4.5.2.1Happening and Event Diagram
	4.5.2.2Time Event Diagram
	4.5.2.3Event Condition Diagram
	4.5.2.4Time Event Condition Diagram
	4.5.2.5Fact Change Condition Diagram
	4.5.2.6Course Diagram
	4.5.2.7Gateway Diagram
	4.5.2.8Event Course Diagram
	4.5.2.9Common Infrastructure Library: Happenings, Events and Conditions
	4.5.2.10Common Infrastructure Library: 'Happening Occurrences'
	4.5.2.11Clock
	4.5.2.12Course
	4.5.2.13Course Event
	4.5.2.14Course Part
	4.5.2.15Cycle Event
	4.5.2.16Event
	4.5.2.17Event Condition
	4.5.2.18Event Part
	4.5.2.19Exclusive Join
	4.5.2.20Exclusive Split
	4.5.2.21Fact Change
	4.5.2.22Fact Change Condition
	4.5.2.23Gateway
	4.5.2.24Happening
	4.5.2.25Happening Over Time
	4.5.2.26Happening Part
	4.5.2.27Immediate Succession
	4.5.2.28Parallel Join
	4.5.2.29Parallel Split
	4.5.2.30Relative TimeDate Event
	4.5.2.31Succession
	4.5.2.32Time Event
	4.5.2.33Time Event Condition
	4.5.2.34TimeDate Event
	4.5.2.35Instance: All Successions
	4.5.2.36Instance: becomes false
	4.5.2.37Instance: becomes true
	4.5.2.38Instance: Course Event Occurrence
	4.5.2.39Instance: Course Occurrence
	4.5.2.40Instance: End Event
	4.5.2.41Instance: End
	4.5.2.42Instance: Event Occurrence
	4.5.2.43Instance: Happening Occurrence
	4.5.2.44Instance: Happening Over Time Occurrence
	4.5.2.45Instance: One Succession
	4.5.2.46Instance: Start Event
	4.5.2.47Instance: start-end
	4.5.2.48Instance: Start

