
Date: November 2008

Business Process Definition MetaModel
Volume II: Process Definitions

Version 1.0

OMG Document Number: formal/2008-11-04
Standard document URL: http://www.omg.org/spec/BPDM/1.0
Associated File(s)*: http://www.omg.org/spec/BPDM/20080501

http://www.omg.org/spec/BPDM/20080501/Abstractions.xsd

http://www.omg.org/spec/BPDM/20080501/Activity.xsd

http://www.omg.org/spec/BPDM/20080501/BehaviorModel.xsd

http://www.omg.org/spec/BPDM/20080501/bpdm.xsd

http://www.omg.org/spec/BPDM/20080501/bpmn.cmof

http://www.omg.org/spec/BPDM/20080501/BPMNLibrary

http://www.omg.org/spec/BPDM/20080501/CommonInfrastructure.cmof

http://www.omg.org/spec/BPDM/20080501/CommonInfrastructureLibrary

http://www.omg.org/spec/BPDM/20080501/CompositionModel.xsd

http://www.omg.org/spec/BPDM/20080501/ConditionModel.xsd

http://www.omg.org/spec/BPDM/20080501/CourseModel.xsd

http://www.omg.org/spec/BPDM/20080501/importfile_commoninfrastructure.xsd

http://www.omg.org/spec/BPDM/20080501/InteractionProtocol.xsd

http://www.omg.org/spec/BPDM/20080501/InteractiveBehaviorModel.xsd

http://www.omg.org/spec/BPDM/20080501/xmi_infra.xsd

http://www.omg.org/spec/BPDM/20080501/VotingSample

http://www.omg.org/spec/BPDM/20080501/BPMNSamples_schema.xsd
 http://www.omg.org/spec/BPDM/20080502
 http://www.omg.org/spec/BPDM/20080502/xmi.xsd

Source document: BPDM Process Definitions Document without change bars (dtc/2008-05-10)
* Original file: XML schema and library (dtc/2008-05-14)

http://www.omg.org/spec/BPDM/20080501
http://www.omg.org/spec/EXPRESS/20080202

Copyright © 2008, Adaptive
Copyright © 2008, Axway Software
Copyright © 2008, Borland Software, Inc.
Copyright © 2008, EDS
Copyright © 2008, Lombardi Software
Copyright © 2008, MEGA International
Copyright © 2008, Model Driven Solution
Copyright © 2008, Object Management Group, Inc.
Copyright © 2008, Unisys

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.
Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of
the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as
indicated above and may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA
02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ ,
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials. Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance points as
stated in the specification. Software developed only partially matching the applicable compliance points may claim
only that the software was based on this specification, but may not claim compliance or conformance with this
specification. In the event that testing suites are implemented or approved by Object Management Group, Inc.,
software developed using this specification may claim compliance or conformance with the specification only if the
software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/
technology/agreement.htm).

http://www.omg.org/technology/agreement.htm
http://www.omg.org/technology/agreement.htm

Table of Contents

1 Scope..1

1.1 Business Process Modeling Notation (BPMN)..1
1.1.1 Target Audience and Use of BPDM ...2

1.2 Other Common Business Benefits of BPDM...2
1.2.1 Carefully defined semantics..2
1.2.2 Saying just enough, but not too much ..2
1.2.3 Improved Integration and Collaboration..2
1.2.4 Improved Agility...2
1.2.5 Business Processes supported by Service Oriented Architectures (SOA)..................3
1.2.6 Better Return on I.T. Investment...3

1.3 Process Concepts Supported by BPDM..4
2 Conformance...4

2.1 BPDM Full Compliance..4
2.2 BPDM Collaboration Protocol Compliance..5
2.3 BPDM Orchestration Process Compliance..5
2.4 BPDM - BPMN Compliance...5

3 Normative References...5
4 Terms and Definitions...5
5 Additional Information..8

5.1 Acknowledgements..8
6 Metamodel and Notation Specification.....................................8

6.1 Overview..8
6.2 Behavior Model..11

6.2.1 Introduction ...11
6.2.2 Metamodel Specification...13

6.2.2.1 Behavior Model Diagram...14
6.2.2.2 Behavior Library: Events..15
6.2.2.3 Behavior Library: Behavior Occurrence...16
6.2.2.4 Behavior Library: 'Racing' Behavior...17
6.2.2.5 Behavior Library: 'Group Abort Behavior'...18
6.2.2.6 Behavior Event Condition Diagram..19
6.2.2.7 Behavior Step Group Diagram...19
6.2.2.8 Connected Part Binding Diagram...20
6.2.2.9 Behavior...20
6.2.2.10 Behavior Event Condition...21
6.2.2.11 Behavior Step...21
6.2.2.12 Behavior Step Group..22
6.2.2.13 Bindable Connection..22
6.2.2.14 Compound Behavioral Connection..22
6.2.2.15 Connected Part Binding...23
6.2.2.16 Event Monitor...23
6.2.2.17 Group Abort Connection..25
6.2.2.18 ImmediateSuccession..25
6.2.2.19 Race Connection..25
6.2.2.20 Succession...25
6.2.2.21 Instance: Abnormal End Event...26
6.2.2.22 Instance: Abnormal End...26

 Business Process Definition MetaModel, Process Definitions, v1.0 i

6.2.2.23 Instance: Abort Event...27
6.2.2.24 Instance: Abort...27
6.2.2.25 Instance: Behavior Library...28
6.2.2.26 Instance: Behavior Library...28
6.2.2.27 Instance: Behavior Occurrence..28
6.2.2.28 Instance: Enclosed Step..30
6.2.2.29 Instance: end/abort..30
6.2.2.30 Instance: Error Event...31
6.2.2.31 Instance: Error..31
6.2.2.32 Instance: Failure Event..32
6.2.2.33 Instance: Failure...33
6.2.2.34 Instance: Group Abort Behavior...33
6.2.2.35 Instance: group-step..34
6.2.2.36 Instance: ImportInfra..34
6.2.2.37 Instance: Normal End Event..35
6.2.2.38 Instance: Normal End...35
6.2.2.39 Instance: Racing Behavior...36
6.2.2.40 Instance: Racing Contestant..36
6.2.2.41 Instance: start/start...36
6.2.2.42 Instance: Step Group...37
6.2.2.43 Instance: Success Event..37
6.2.2.44 Instance: Success..37

6.3 Interactive Behavior Model..38
6.3.1 Introduction ...38
6.3.2 Metamodel Specification...39

6.3.2.1 Interactive Behavior Diagram...39
6.3.2.2 Simple Interaction Binding Diagram...41
6.3.2.3 Message Diagram..41
6.3.2.4 End Message...41
6.3.2.5 Interaction..42
6.3.2.6 Interaction Role..42
6.3.2.7 Interactive Behavior...43
6.3.2.8 Interactive Part...43
6.3.2.9 Message...43
6.3.2.10 Message Flow..44
6.3.2.11 Received Intermediate Message..44
6.3.2.12 Sent Intermediate Message...45
6.3.2.13 Simple Interaction..46
6.3.2.14 Start Message..47

6.4 Activity Model...47
6.4.1 Introduction ...47
6.4.2 Metamodel Specification...49

6.4.2.1 Activity Model Diagram..50
6.4.2.2 Activity Model Library: Simple Process instances..51
6.4.2.3 Activity Categories Diagram...51
6.4.2.4 Activity Model Library: Loop Happening instance..52
6.4.2.5 Embedded Process Diagram...53
6.4.2.6 Process Derivation Diagram..54
6.4.2.7 Role Realization Diagram..54
6.4.2.8 Abort Activity..54
6.4.2.9 Activity..55
6.4.2.10 Activity Loop...55
6.4.2.11 Actor...56
6.4.2.12 Conditional Loop..56
6.4.2.13 Embedded Process..57
6.4.2.14 Error Activity...58
6.4.2.15 Holder..58
6.4.2.16 LoopTestTime..59
6.4.2.17 Multi Instance Loop..59
6.4.2.18 MultiInstanceLoopOrdering..59
6.4.2.19 Performer Role...60

 ii Business Process Definition MetaModel, Process Definitions,
v1.0

6.4.2.20 Process..61
6.4.2.21 Process Interaction Boundary..62
6.4.2.22 Processor Role..63
6.4.2.23 Role Realization...64
6.4.2.24 Simple Activity..64
6.4.2.25 Sub-Process Activity..64
6.4.2.26 Substitutable Derivation...65
6.4.2.27 Instance: Abort Process...66
6.4.2.28 Instance: Activity Library..66
6.4.2.29 Instance: Activity Loop Behavior..66
6.4.2.30 Instance: Error Process...66
6.4.2.31 Instance: Generalization..67
6.4.2.32 Instance: interationend-end...67
6.4.2.33 Instance: IterationEnd Event..67
6.4.2.34 Instance: IterationEnd..67
6.4.2.35 Instance: start-iterationend..68

6.5 BPMN Extensions..68
6.5.1 Introduction ...68
6.5.2 Metamodel Specification...68

6.5.2.1 Adhoc Extension Diagram...69
6.5.2.2 Activity Extensions Diagram..69
6.5.2.3 Gateway Extension Diagram...70
6.5.2.4 BPMN Extensions Library: Compensate Process Instance.....................................70
6.5.2.5 BPMN Extensions Library: BPMN Process Occurrence Instance...........................71
6.5.2.6 Sequence Flow Extension Diagram...71
6.5.2.7 Artifact Flow Extensions Diagram..72
6.5.2.8 Transaction Extensions Diagram...72
6.5.2.9 Compensation Extensions Diagram...72
6.5.2.10 Adhoc Process Directive..72
6.5.2.11 AdhocOrdering...73
6.5.2.12 Artifact Flow...73
6.5.2.13 Artifact Sequence Flow..73
6.5.2.14 Cancel Activity...74
6.5.2.15 Compensate Activity..75
6.5.2.16 Compensating Activity...75
6.5.2.17 Complex Decision..76
6.5.2.18 Complex Merge..76
6.5.2.19 Event Decision...77
6.5.2.20 Exclusive Decision...77
6.5.2.21 Exclusive Merge...78
6.5.2.22 Inclusive Decision..79
6.5.2.23 Inclusive Merge..80
6.5.2.24 Process Directive...80
6.5.2.25 Script Activity...80
6.5.2.26 Sequence Flow..80
6.5.2.27 Task...81
6.5.2.28 Terminate...81
6.5.2.29 Transaction..82
6.5.2.30 Instance: Cancel Event..82
6.5.2.31 Instance: Cancel Process..83
6.5.2.32 Links Instance: cancel-end..83
6.5.2.33 Instance: Cancel..83
6.5.2.34 Instance: Compensate Event...84
6.5.2.35 Instance: Compensate Process...84
6.5.2.36 Instance: compensate-end...84
6.5.2.37 Instance: Compensate...84
6.5.2.38 Instance: Compensation Library..85
6.5.2.39 Instance: Generalization..85
6.5.2.40 Instance: Process Occurrence...85
6.5.2.41 Instance: start-cancel...85
6.5.2.42 Instance: start-compensate..86
6.5.2.43 Instance: StartFromSequence...86

 Business Process Definition MetaModel, Process Definitions, v1.0 iii

6.5.2.44 Instance: startseq-end...86
6.6 Interaction Protocol Model...86

6.6.1 Introduction ...86
6.6.2 Metamodel Specification...87

6.6.2.1 Interaction Protocol...87
6.6.2.2 Compound Interaction..88
6.6.2.3 Compound Interaction Binding...89
6.6.2.4 Interaction Protocol...89

6.7 Class Hierarchies...89
 6.7.1 Condition Hierarchy..90
 6.7.2 Happening OverTime Hierarchy..90
 6.7.5 Simple Interaction Hierarchy...92
 6.7.6 Interactive Part Hierarchy..92

7 BPMN Notation Summary...93
7.1 Interaction Role Notation...93
7.2 Processor Role Notation..93
7.3 Horizontal Lane Notation...93
7.4 Vertical Lane Notation...94
7.5 Time Event Notation..95
7.6 Fact Change Notation..96
7.7 Course Event 'Error' Instance Notation...96
7.8 Course Event 'Cancel' Instance Notation..96
7.9 Course Event 'Iteration End'..97
7.10 Course Event 'Abort' Notation..97
7.11 Course Event 'Compensate' Instance Notation...97
7.12 Event Part : Start Notation...98
7.13 Event Part : Start with 'Time Event Condition' Notation..................................98
7.14 Event Part : Start with 'Fact Change Condition' Notation................................98
7.15 Event Part : End Notation..99
7.16 Event Part : Error Notation...99
7.17 Event Part : Cancel Notation...99
7.18 Event Part : Abort Notation...100
7.19 Error Handling Notation..100
7.20 Activity Notation..101
7.21 Collapsed Sub-Process Activity Notation...101
7.22 Uncollapsed Sub-Process Activity Notation...102
7.23 Activity Loop Notation...102
7.24 Cancel Activity Notation or 'Cancel' Event Part..102
7.25 Error Activity Notation or 'Error' Event Part..103
7.26 Abort Activity Notation or 'Abort' Event Part...103
7.27 Compensate Activity Notation..104
7.28 Compensating Activity Notation...104
7.29 Event Monitor Notation...104
7.30 Event Monitor monitoring a Time Event Condition...105
7.31 Event Monitor monitoring a Fact Change Condition......................................105
7.32 Event Monitor monitoring a 'Compensate' Behavior Event Condition...........106
7.33 Event Monitor monitoring a Compound Event Condition...............................106
7.34 Succession Notation...106

 iv Business Process Definition MetaModel, Process Definitions,
v1.0

7.35 Event Decision Notation..107
7.36 Message Notation...107
7.37 Start Message Notation..107
7.38 End Message Notation..108
7.39 Sent Intermediate Message Notation...109
7.40 Received Intermediate Message Notation..110
7.41 Message Flow Notation..110
7.42 Artifact Sequence Flow Notation..111
7.43 Part Group Notation..111
7.44 Transaction Notation...112
7.45 Gateway Notation...112
7.46 Exclusive Split Notation..112
7.47 Exclusive Merge Notation...113
7.48 Parallel Split Notation..114
7.49 Parallel Join Notation..114
7.50 Inclusive Split Notation..115
7.51 Inclusive Merge Notation..116
7.52 Complex Decision Notation...116
7.53 Complex Join Notation..117

8 Non-normative Notation Summary..118
8.1 Process Diagram..118
8.2 Non-immediate Succession...118
8.3 Course Event 'Normal End' instance notation..118
8.4 Course Event 'Abnormal End' instance notation..119
8.5 Course Event 'Failure' Instance notation...119
8.6 Course Event 'Success' Instance Notation..119
8.7 Event Part : Normal End Notation..120
8.8 Event Part : Abnormal End notation...120
8.9 Event Part : Success Notation...120
8.10 Event Part : Failure Notation..121
8.11 Succession with Fact Change Condition...121
8.12 Succession with Time Event Condition..122
8.13 Interaction Flow between Activities and Statement Condition.......................122
8.14 Interaction Flow between Activities and Time Event Condition.....................123
8.15 Holder Notation..123
8.16 Compound Interaction Notation...123
8.17 Course Occurrence Diagram...124
8.18 Behavior Occurrence..125
8.19 Process Occurrence...126

9 BPDM–BPEL Mapping..127
9.1 General..127

9.1.1 Topological Considerations..127
9.1.2 Generator Model..127
9.1.3 Notational Conventions..127

9.2 Process..128
9.3 Start Event Mappings..128

 Business Process Definition MetaModel, Process Definitions, v1.0 v

9.4 End Event Mappings...129
9.5 Intermediate Events..130
9.6 Activities..134
9.7 Flows ..138
9.8 Additional Constructs..140
9.9 References...142

10 Proof of Concept Language Mappings.................................143

 vi Business Process Definition MetaModel, Process Definitions,
v1.0

List of Figures

Figure 1 - Dependencies of BPDM Packages..9
Figure 2 - Behavior Model Diagram..14
Figure 3 - Behavior Library: Events...15
Figure 4 - Behavior Library : Behavior Occurrence..16
Figure 5 - Behavior Library: 'Racing' Behavior...17
Figure 6 - Behavior Library: 'Group Abort Behavior'..18
Figure 7 - Behavior Event Condition Diagram...19
Figure 8 - Behavior Step Group Diagram...19
Figure 9 - Connected Part Binding Diagram..20
Figure 10 - Event Monitor monitoring a 'Compensate' Course Event Condition...24
Figure 11 - Event Monitor monitoring a Compound Event Condition...24
Figure 12 - Event Monitor monitoring a Fact Change Condition...24
Figure 13 - Event Monitor monitoring a Time Event Condition...24
Figure 14 - Event Monitor Notation..25
Figure 15 - Course Event 'Abnormal End' instance notation...26
Figure 16 - Event Part : Abnormal End notation...26
Figure 17 - Course Event 'Abort' Notation...27
Figure 18 - Event Part : Abort Notation..27
Figure 19 - Behavior Occurrence..30
Figure 20 - Course Event 'Error' Instance Notation..31
Figure 21 - Error Activity Notation or 'Error' Course Event Step..32
Figure 22 - Error Handling Notation...32
Figure 23 - Event Part : Error Notation...32
Figure 24 - Course Event 'Failure' Instance notation...33
Figure 25 - Event Part : Failure Notation..33
Figure 26 - Course Event 'Normal End' instance notation...35
Figure 27 - Event Part : Normal End notation..35
Figure 28 - Course Event 'Success' Instance notation...37
Figure 29 - Event Part : Success Notation...38
Figure 30 - Interactive Behavior Diagram..40
Figure 31 - Simple Interaction Binding Diagram...41
Figure 32 - Message Diagram...41
Figure 33 - End Message Notation...42
Figure 34 - Interaction Role Notation...42
Figure 35 - Message Notation...44
Figure 36 - Message Flow Notation..44
Figure 37 - Received Intermediate Message Notation..45
Figure 38 - Sent Intermediate Message Notation..46
Figure 39 - Start Message Notation..47
Figure 40 - Activity Model Diagram..50
Figure 41 - Activity Model Library: Simple Process instances..51
Figure 42 - Activity Categories Diagram..51
Figure 43 - Activity Model Library: Loop Happening instance..52
Figure 44 - Embedded Process Diagram...53
Figure 45 - Process Derivation Diagram..54
Figure 46 - Role Realization Diagram...54
Figure 47 - Abort Activity Notation or 'Abort' Behavioral Change Part..55
Figure 48 - Activity Notation...55
Figure 49 - Activity Loop Notation..56
Figure 50 - Collapsed Sub-Process Activity Notation..57
Figure 51 - Uncollapsed Sub-Process Activity Notation..58
Figure 52 - Error Activity Notation or 'Error' Behavioral Event Step..58
Figure 53 - Holder Notation...59

 Business Process Definition MetaModel, Process Definitions, v1.0 vii

Figure 54 - Horizontal Lane Notation...60
Figure 55 - Vertical Lane Notation..61
Figure 56 - Process Diagram...62
Figure 57 - Interaction Role Notation...63
Figure 58 - Processor Role Notation..63
Figure 59 - Activity Notation...64
Figure 60 - Collapsed Sub-Process Activity Notation..65
Figure 61 - Uncollapsed Sub-Process Activity Notation..65
Figure 62 - Behavioral Event 'Iteration End'..67
Figure 63 - Adhoc Extension Diagram...69
Figure 64 - Activity Extensions Diagram...69
Figure 65 - Gateway Extension Diagram..70
Figure 66 - BPMN Extensions Library: Compensate Process Instance..70
Figure 67 - BPMN Extensions Library: BPMN Process Occurrence Instance..71
Figure 68 - Sequence Flow Extension Diagram..71
Figure 69 - Artifact Flow Extensions Diagram...72
Figure 70 - Transaction Extensions Diagram..72
Figure 71 - Compensation Extensions Diagram...72
Figure 72 - Artifact Sequence Flow Notation...74
Figure 73 - Interaction Flow between Activities and Statement Condition..74
Figure 74 - Interaction Flow between Activities and Time Event Condition...74
Figure 75 - Cancel Activity Notation or 'Cancel' Behavioral Event Step..75
Figure 76 - Compensate Activity Notation...75
Figure 77 - Compensating Activity Notation...76
Figure 78 - Complex Decision Notation...76
Figure 79 - Complex Join Notation...77
Figure 80 - Event Decision Notation...77
Figure 81 - Exclusive Split Notation...78
Figure 82 - Exclusive Merge Notation..79
Figure 83 - Inclusive Split Notation..79
Figure 84 - Inclusive Merge Notation...80
Figure 85 - Succession Notation..81
Figure 86 - Activity Notation...81
Figure 87 - Abort Activity Notation or 'Abort' Behavioral Change Part..82
Figure 88 - Transaction Notation..82
Figure 89 - Behavioral Event 'Cancel' Instance Notation...83
Figure 90 - Event Part : Cancel Notation..83
Figure 91 - Behavioral Event 'Compensate' Instance Notation...84
Figure 92 - Interaction Protocol..88
Figure 93 - Compound Interaction Notation..89
Figure 94 - Condition Hierarchy..90
Figure 95 - Happening OverTime Hierarchy..90
Figure 96 - Event Hierarchy...91
Figure 97 - Behavioral Step Hierarchy...91
Figure 98 - Simple Interaction Hierarchy...92
Figure 99 - Interactive Part Hierarchy..92
Figure 100 - Interaction Role Notation...93
Figure 101 - Processor Role Notation..93
Figure 102 - Horizontal Lane Notation...94
Figure 103 - Vertical Lane Notation..95
Figure 104 - Time Event Notation...95
Figure 105 - Fact Change Notation...96
Figure 106 - Course Event 'Error' Instance Notation..96
Figure 107 - Course Event 'Cancel' Instance Notation...96
Figure 108 - Course Event 'Iteration End'..97
Figure 109 - Course Event 'Abort' Notation...97
Figure 110 - Course Event 'Compensate' Instance Notation...97
Figure 111 - Event Part : Start Notation...98
Figure 112 - Event Part : Start with 'Time Event Condition' Notation...98
Figure 113 - Event Part : Start with 'Fact Change Condition' Notation...98
Figure 114 - Event Part : End Notation...99
Figure 115 - Event Part : Error Notation...99

 viii Business Process Definition MetaModel, Process Definitions,
v1.0

Figure 116 - Event Part : Cancel Notation..99
Figure 117 - Event Part : Abort Notation..100
Figure 118 - Error Handling Notation...100
Figure 119 - Activity Notation...101
Figure 120 - Collapsed Sub-Process Activity Notation..101
Figure 121 - Uncollapsed Sub-Process Activity Notation..102
Figure 122 - Activity Loop Notation..102
Figure 123 - Cancel Activity Notation or 'Cancel' Event Part...103
Figure 124 - Error Activity Notation or 'Error' Event Part...103
Figure 125 - Abort Activity Notation or 'Abort' Event Part...103
Figure 126 - Compensate Activity Notation...104
Figure 127 - Compensating Activity Notation...104
Figure 128 - Event Monitor Notation..105
Figure 129 - Event Monitor monitoring a Time Event Condition...105
Figure 130 - Event Monitor monitoring a Fact Change Condition...105
Figure 131 - Event Monitor monitoring a 'Compensate' Behavior Event Condition......................................106
Figure 132 - Event Monitor monitoring a Compound Event Condition...106
Figure 133 - Succession Notation..106
Figure 134 - Event Decision Notation...107
Figure 135 - Message Notation...107
Figure 136 - Start Message Notation..108
Figure 137 - End Message Notation...108
Figure 138 - Sent Intermediate Message Notation..109
Figure 139 - Received Intermediate Message Notation..110
Figure 140 - Message Flow Notation..110
Figure 141 - Artifact Sequence Flow Notation...111
Figure 142 - Part Group Notation..111
Figure 143 - Transaction Notation..112
Figure 144 - Gateway Notation..112
Figure 145 - Exclusive Split Notation...113
Figure 146 - Exclusive Merge Notation..114
Figure 147 - Parallel Split Notation...114
Figure 148 - Parallel Join Notation...115
Figure 149 - Inclusive Split Notation..115
Figure 150 - Inclusive Merge Notation...116
Figure 151 - Complex Decision Notation...116
Figure 152 - Complex Join Notation...117
Figure 153 - Process Diagram...118
Figure 154 - Non Immediate Succession...118
Figure 155 - Course Event 'Normal End' instance notation...119
Figure 156 - Course Event 'Abnormal End' instance notation...119
Figure 157 - Course Event 'Failure' Instance notation...119
Figure 158 - Course Event 'Success' Instance notation...119
Figure 159 - Event Part : Normal End notation..120
Figure 160 - Event Part : Abnormal End notation...120
Figure 161 - Event Part : Success Notation...121
Figure 162 - Event Part : Failure Notation..121
Figure 163 - Succession with Fact Change Condition...121
Figure 164 - Succession with Time Event Condition..122
Figure 165 - Interaction Flow between Activities and Statement Condition..122
Figure 166 - Interaction Flow between Activities and Time Event Condition...123
Figure 167 - Holder Notation...123
Figure 168 - Compound Interaction Notation..123
Figure 169 - Course Occurrence Diagram...124
Figure 170 - Behavior Occurrence..125
Figure 171 - Process Occurrence...126

 Business Process Definition MetaModel, Process Definitions, v1.0 ix

1 Scope
The “Business Process Definition Metamodel” (BPDM) is a framework for understanding and specifying the
processes of an organization or community. Business processes have been at the heart of business and technology
improvement under the guise of many terms and methodologies, such as: Business Process Engineering or Re-
Engineering, Business Process Management, Business Process Execution, Total Quality Management, Process
Improvement, Business Process Modeling, and Workflow. Similar and related concepts such as Service Oriented
Architectures, Enterprise Application Integration, Flowcharts, Data Flows, Activity Diagrams, Role/Collaboration
Modeling, and Modeling and Simulation serve to enable and describe business processes.

This heritage of process related approaches has provided substantial benefit to public and private institutions and is
one of the factors that has allowed the modern enterprise to grow and prosper. This same heritage has also caused
some confusion in how these various approaches and solutions do or do not work together and how to leverage them
for a coherent and integrated solution. As of now there is a substantial asset of business process descriptions,
notations, implementations, and machinery but many of these are islands – islands of a particular technology,
methodology, or notation.

BPDM provides the capability to represent and model business processes independent of notation or methodology,
thus bringing these different approaches together into a cohesive capability. This is done using a “meta model”1 – a
model of how to describe business processes – a kind of shared vocabulary of process with well defined connections
between terms and concepts. This meta model captures the meaning behind the notations and technologies in a way
that can help integrate them and leverage existing assets and new designs. The meta model behind BPDM uses the
OMG “Meta Object Facility” (MOF)2 standard to capture business processes in this very general way, and to provide
an XML syntax for storing and transferring business process models between tools and infrastructures. Various
tools, methods, and technologies can then map their way to view, understand, and implement processes to and
through BPDM.

To achieve this goal, BPDM supports two fundamental and complementary views of process – “Orchestration” and
“Choreography”:

• Orchestration concepts in BPDM are represented through sequences of “Activities” that produce results with
branching and synchronization. Orchestration is typically represented as flow charts, activity diagrams,
swim lanes, or similar notations of one task or activity following another. The orchestration of processes
describes what happens and when in order to better manage a process under the authority of some entity.

• Choreography describes how semi-independent and collaborating entities work together in a process, each of
which may have their own internal processes. Choreography captures the interactions of roles with well
defined responsibilities within a given process. Choreography is the basis for the Service Oriented
Architecture (SOA) paradigm and helps to keep the enterprise loosely coupled and agile. The choreography
of a process focuses on the responsibilities and interactions that ultimately provide value without necessarily
requiring any coordinating authority.

In business process modeling, choreography and orchestration are effectively two sides of the same coin. BPDM
joins orchestration and choreography into a unified and coherent model.

1.1 Business Process Modeling Notation (BPMN)
BPMN has gained recognition as a flexible and business-friendly notation for process orchestration. BPDM
provides an explicit metamodel and serialization mechanism for BPMN concepts. By integrating BPMN and
BPDM both the underlying model and notation for process orchestration is covered by an integrated set of standards.
The notation for choreography, BPMN diagram interchange and the normative relationship to runtime technologies
such as BPEL is planned to be part of subsequent standards.

1 Meta models - http://en.wikipedia.org/wiki/Meta_model
2 OMG Meta Object Facility - http://www.omg.org/mof/

Business Process Definition MetaModel, Process Definitions, v1.0 1

1.1.1 Target Audience and Use of BPDM

At its core, BPDM provides interoperability across tools, so that different tools can depict or utilize a process
definition in different ways yet work together for the ultimate benefit of the enterprise. For example, If Vendor A
and Vendor B both support BPDM as their process exchange mechanism, then, a BPMN drawing created using
Vendor A’s modeling tool could then be opened and executed using Vendor B’s business process management
system. Therefore, BPDM is a technology specification for vendors to use to define how they serialize or exchange
their process depictions, allowing for industry interoperability. For most business analysts and process users, this is
all they really need to know about BPDM. What BPDM support means is that your process assets are not locked into
a particular tool or notation; they are assets that can work across a wide range of tools and solutions.

1.2 Other Common Business Benefits of BPDM

1.2.1 Carefully defined semantics

When diagrams are used to aid human to human communications a certain amount of “fuzziness” in what those
notations mean can be acceptable, since explanations often clear up any misunderstandings. When processes are
specifications for what people, organizations, or I.T. systems should do, those specifications must be clear and
precise. Particular attention has been paid in BPDM to make sure that the semantics behind the notations and models
are well defined, consistent and sufficient to represent most normal forms of business processes. BPDM is
sufficiently precise to model behavioral events (starting, ending, aborting, etc) of processes that allows them to be
ordered in time, and have their effects on each other precisely modeled. Formal methods3, based on logic, are
utilized to verify this precision. The precise semantics of BPDM makes sure that processes will be accurately
communicated to man and machine.

1.2.2 Saying just enough, but not too much

Specifying a business process can be a double-edged sword. Say too little and the process may be unpredictable,
inconsistent, wasteful, and not fit into the rest of the business (or the business of partners). Say too much and the
process can be a strangle-hold, preventing creativity, agility, and optimization. BPDM can’t enforce this artful
balance, but it can enable it; the basis of which is separation of concerns – separating the intended outcome of a
process from how that outcome is achieved. Where appropriate; substantial detail can be specified for how to
achieve a goal, in other cases only the “contract” is specified – the contract says what is to be accomplished without
saying how. Many of the established methods do not provide well for this separation of concerns and therefore over
specify or under specify a process. BPDM provides for separation of concerns, well defined contracts, and multiple
options for implementing a process that corresponds to its contracts.

1.2.3 Improved Integration and Collaboration

The successful modern enterprise is defined by two basic capabilities; the ability to be agile and the ability to
collaborate. Both capabilities are served by “loosely coupling” the business and the technologies that serve it. This
means that tightly coupled and monolithic processes are barriers to success. A business process design better serves
the enterprise by making it easy to collaborate with other organizations, regardless of their processes. It should be
easy to outsource, insource or change the way a part of the organization works without undue impact on the rest of
the organization or business partners. The integration of orchestration and collaboration as well as the separation of
process contract from its realization serve this goal of loose coupling.

1.2.4 Improved Agility

Agility is required to respond to external drivers, internal needs and the constant impact of legislation and
technology change. In today’s’ world – agility is survival. The combination of well defined business processes that
provide for separation of concerns with Model Driven Architecture (MDA)® 4 provide the exciting possibility of
being able to design, redesign and deploy new processes quickly and with minimal overhead – the enterprise is not
locked in to legacy technologies and processes. BPDM provides the business focused model that can be part of the
specification of the process for people, in terms of process “play books” and instructions, and for technologies, in
3 Process Specification Language (PSL) - http://www.mel.nist.gov/psl/
4 Model Driven Architecture (MDA)®, is a trademark of the Object Management Group – http://www.omg.org/mda

2 Business Process Definition MetaModel, Process Definitions, v1.0

terms of web services, workflows, and process execution engines. In addition BPDM is technology independent –
any number of technical approaches may be used to help realize or support a business process. The BPDM model is
a model of the business, not the technology – MDA helps join these two viewpoints.

1.2.5 Business Processes supported by Service Oriented
Architectures (SOA)

SOA has become recognized as the leading architectural approach to business and technical agility and integration.
SOA structures the enterprise and supporting technologies based on services that are provided or consumed by
collaborating entities. This service oriented approach applies to both the business – in terms of how one business or
business unit serves another, and to the technologies – in terms of how application components work together by
providing and using software services. BPDM describes the business side of SOA in terms of choreography (above)
that can then be mapped to the software components that assist those business processes. This process centric SOA
approach provides for agility, loose coupling, and a better tie between business and technology. SOA helps support
both the agility and collaboration goals of BPDM.

1.2.6 Better Return on I.T. Investment

The net result of separation of concerns, support for collaboration, and enhanced agility is that I.T. investments have
better return. This return is realized by directly supporting business needs as identified in the business processes and
by supporting reuse of services, components, and supporting infrastructure across the enterprise and across
marketplaces. Since investments are more reusable, their return is not limited to a single project. Since investments
are directly tied to business needs, their business benefit can be measured. Since investments support agility and
collaboration, they can have bottom-line impact.

Business Process Definition MetaModel, Process Definitions, v1.0 3

1.3 Process Concepts Supported by BPDM
BPDM integrates multiple process approaches and notations, which are summarized as follows. BPDM provides
integrated and consistent support for the semantics of:

• All BPMN notation concepts
• Processes, activities, tasks, and sub-processes
• Workflow
• Sophisticated control of alternatives and parallel processes
• Conditional execution paths
• Signals and events
• Time-based events and conditions
• Events based on change in data or external conditions
• Integration with rules and rules engines through event-based semantics
• Process groups and swim-lanes
• Transactions, rollback, and compensation
• Process data and data flow
• Artifacts and artifact production and dependencies
• A combination of human and automated process participants
• Service Oriented Architectures and business services
• Resource and entity selection
• Roles, responsibilities, and collaborations
• Bi-directional and composite interactions between entities
• Automated execution with MDA and process execution engines such as BPEL (See non-normative mapping

to BPEL)
• Interaction protocols, services, and design by contract
• Composite processes
• UML activity, collaboration, and interaction diagram concepts
• Process specialization, derivation, and refinement.

In summary, BPDM standardizes the underlying semantics, model, and exchange mechanisms to improve the
efficiency, agility, and collaboration of public and private enterprises through the precise and integrated definition of
business processes.

2 Conformance
The following levels of compliance are defined for BPDM in relation software. For the following compliance points
the interpretation of the phrase “to process a model” will depend on the functionality of the software as follows:

• If the software reads process models, to “process the model” will include reading a BPDM model compliant
with the MOF-2 XMI for BPDM included as part of this specification.

• If the software writes process models, to “process the model” will include writing a BPDM model compliant
with the MOF-2 XMI for BPDM included as part of this specification.

• If the software executes or otherwise interprets process models, to “process the model” will include
executing or interpreting the model in accordance with the semantics as defined in this document.

2.1 BPDM Full Compliance
An implementation is fully compliant if it can process a model that utilizes all BPDM metamodel concrete concepts,
not necessarily including those defined in the “BPMN Extensions” package.

4 Business Process Definition MetaModel, Process Definitions, v1.0

2.2 BPDM Collaboration Protocol Compliance
An implementation is BPDM protocol compliant if it can process a collaboration protocol model that utilizes all
concrete concepts for representation of a collaboration protocol as specified in the “Interaction Protocol Process
Model” package and all included packages.

2.3 BPDM Orchestration Process Compliance
An implementation is BPDM protocol compliant if it can process an orchestration model that utilizes all concrete
concepts for representation of an orchestration process as specified in the “Activity Model” package and all included
packages.

2.4 BPDM - BPMN Compliance
An implementation is BPMN compliant if it can process a model that utilizes all concrete concepts for representation
of a process as specified in Section 6.5, 6.6, 6.7, 6.8 and 6.9. Each of these sections provides detailed mappings of
the BPMN notation constructs on to the BPDM metamodel. Section 7 provides a mapping summary of BPMN
notation constructs to BPDM metamodel elements.

3 Normative References
[BPEL11] ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
[BPEL20] http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.pdf
[BPMN] http://www.omg.org/cgi-bin/apps/doc?dtc/07-06-03.pdf
[BPM-06-02] http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-02.pdf
[RFC2119] http://www.ietf.org/rfc/rfc2119.txt

4 Terms and Definitions
Activity

An Activity is a kind of Behavior Step that activates a Behavior (it operates over time) in the context of a Process.
It can:

• be ordered in time by Succession
• operate under the responsibility of a Performer Role
• activate a sub-processe or be a simple task that start and stop

An Activity is also an Interactive Part that receives its inputs and outputs through Interactions coming from other
Interactive Parts in the Process (Activity, Interaction Role, Performer Role, Holder).

Actor

An Actor is an entity that is responsible for the execution of duties specified by a Performer Role
Further sub-type of Actor will be defined in specifications such as the Organizational Structure Metamodel (OSM)
to add specific requirements such as and can as having certain skills or budget.

Performer Role

A Performer Role is a Part Group that takes responsibility of performing activities in the process. Being an
Interactive Part, a Performer Role also has responsibilities to fulfill Interactions that it is involved with other
Performer Roles or with Interaction Roles at the boundary of the Process. A Performer Role is a Typed Part for
specifying Actor that can play the role at process enactment.

Business Process Definition MetaModel, Process Definitions, v1.0 5

http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-02.pdf
http://www.omg.org/cgi-bin/apps/doc?dtc/07-06-03.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.pdf

A Performer Role can be decomposed into sub Performer Role to delegate responsibility for a subset of its
activities or interactions. A Performer Role may have a realization as defined by a Role Realization that further
specifies how the Performer Role will meet its responsibilities.

Process

A Process is a kind of Interactive Behavior that describes specific Activity(ies) to be performed, Interactions to
be undertaken during its execution under the authority of a Processor Role (or delegated performer roles).
The process owns the set of activities to be performed as well as the Conditions on when such activities will be
performed and by which performer role. The process also owns the set of Interactive Parts that define the flow of
information and other resources between activities, Performer Role and Interaction Roles.

A specific Interaction Role defines the set of Interactions the process is responsible of: its is the Process
Interaction Boundary. The set of Interactions attached to the Process Interaction Boundary defines the inputs
and outputs of the process.

A Process may utilize sub-processes with a Sub-Process Activity as well as be used in the context of other
processes in the same way.

Behavior Step

Behavior Steps is a kind of Happening Part which typed is a Behavior. This enables it to "invoke" other Behavior
and to build Behavior composites (made of sub- Behaviors).

Behavior Step Group

A Behavior Step Group is a kind of Part Group that is also a Behavior Step typed by the Behavior Occurrence
in user models (M1). This gives a group of Behavior Steps as a whole the capacity to produce start and end changes
playing the standard behavioral change parts, such as Start and End. For example, most process languages have a
way of modeling sub-processes without defining a separate process. This is a Behavior Step Group.

Event Monitor

An Event Monitor is a kind of Behavior Step that monitors the occurrence of an Event Condition and that has an
effect on the course of a Behavior. For instance, an Event Monitor can be used to react to the Abort Event of a
specific Course.

Interaction

An Interaction is a Behavior Step that is also a Part Connection , enabling Interaction to have start and end
changes, and be ordered in time.

An Interaction can be either a simple Simple Interaction or a set of combined Simple Interactions: a Compound
Interaction. Ultimately, an Interaction is realized by the exchange of Simple Interactions between its Interactive
Parts.

Interaction Role

An Interaction Role is an Interactive Part where the individuals playing the part are in the environment context
where the Behavior is used. For example, the customer is an Interaction Role in a behavior for delivering a
product.

Simple Interaction

A Simple Interaction is a kind of Interaction in which something is "transferred" from individuals playing one
interactive part to individuals playing another interactive part. For example, a document, phone number, or package
may be transferred from one department to another in a company. The transferred items must conform to a Type
specified by the Simple Interaction. A Simple Interaction can have an Expression to change the item that arrives
at the target based on the item flowing from the source. For example, a transformation may retrieve the zip code

6 Business Process Definition MetaModel, Process Definitions, v1.0

from an address flowing from the source to deliver the zip code to the target.
Simple Interactions in user (M1) models are always typed by the Behavior Occurrence (see user library Behavior
Library). This gives them the standard Event Parts, such as for start and end, so the Simple Interactions can be
ordered within an Interaction Protocol. This is different from the type of thing transferred.

Simple Interactions can refer to Simple Interactions inside the Interactive Parts being connected. This means the
transferred thing is passed along through chains of Simple Interactions from inside to outside the parts, or the other
way.

Interaction Protocol

An Interaction Protocol is a kind of Interactive Behavior where Behavior Steps are Interactions that occur
between Interaction Roles. The set of Interactions defines the purpose of the Interaction Protocol.

Condition

A Condition is a Boolean ValueSpecification that constrains some element in the models. Conditions are true if
their descriptions hold in the current state of the world, possibly including executions, and false otherwise.

Course

A Course is an ordered Succession of Happening Parts. A Course is a Composite that has connections
representing that one part of the course "follows" another in time, and possibly establishes constraints on such
followings (Succession).

Event

An Event is a Happening for dynamic entities occurring at a point in time.

Event Condition

An Event Condition is a Condition for specifying that an Event must occur in the context of a particular
Happening Over Time for the condition to hold. For instance, a condition can be on the eruption (instance of
Event) of a particular volcano (instance of Happening Over Time).

Event Part

An Event Part identifies Event (such as Start Event or End Event) for an individual Course. An Event Part is
also a Happening Part, enabling it to be connected by Successions.

Gateway

A Gateway is a kind of Course Part representing potentially complex specifications of how dynamic individuals
playing Happening Parts are ordered in time. The particular specifications are given in subtypes. At runtime,
Gateways don't have any execution trace.

Succession

A Succession is a Directed Part Connection that organizes Course Parts in series in the context of a Course. A
Succession indicates that one Course Part "follows" another in time, and possibly establishes constraints on such
followings. It can order the Event Part of its Happening Parts such as their Start or End.
Succession allows any combination of Event Part to be connected.

End -> Start
Start -> Start
Start -> Abort
etc.

A Succession doesn't need to have Happening Part on its ends, it can have untyped course parts also, such as
Gateway, but it must have something on each end. For convenience, a Succession that does not specify source

Business Process Definition MetaModel, Process Definitions, v1.0 7

event part or target event part will have the same effect as a Succession where these are respectively the End and
Start.

Time Event

A Time Event specifies a point in time that is a source of interest.

Time Event Condition

A Time Event Condition is a kind of Event Condition that is based on the occurrence of a Time Event. A Time
Event Condition is specified by referring to a Clock.

5 Additional Information
5.1 Acknowledgements
The following companies submitted this specification:

• Adaptive
• Axway Software
• Borland Software
• Model Driven Solutions
• EDS
• Lombardi Software
• MEGA International
• Unisys

The following companies and organizations support this specification:
• BPM Focus
• U.S. National Institute of Standards and Technology (NIST)

6 Metamodel and Notation Specification
This section presents the normative specification for business process definition metamodel, including its BPMN
based notation. It begins with an overview of the BPDM metamodel structure followed by a description of each sub-
package.

6.1 Overview
The Business Process Definition MetaModel package contains the models for orchestration (including BPMN) and
choreography, and their performance, enactment, and execution. It has six subpackages grouped into two categories:

• Common Behavior Model for the aspects of dynamics in common between orchestrations and
choreography (Behavior Model, and Interactive Behavior Model).

• Activity Model (including BPMN Extensions) for orchestration and Interaction Protocol Model for
choreography.

The Business Process Definition MetaModel package imports the Common Infrastructure package which
provides the framework that ties the other models to performance, enactment, and execution (Abstractions,
Composition Model, Course Model and Condition Model).

8 Business Process Definition MetaModel, Process Definitions, v1.0

Figure 1 - Dependencies of BPDM Packages

Package Comment

Business Process Definition
MetaModel

The Business Process Definition MetaModel package contains the models
for orchestration (including BPMN) and choreography, and their
performance, enactment, and execution. It has six subpackages grouped
into two categories:

• Common Behavior Model for the aspects of dynamics in common
between orchestrations and choreography (Behavior Model, and
Interactive Behavior Model).

• Activity Model (including BPMN Extensions) for orchestration and
Interaction Protocol Model for choreography.

The Business Process Definition MetaModel package imports the Common
Infrastructure package which provides the framework that ties the other
models to performance, enactment, and execution (Abstractions,
Composition Model, Course Model, and Condition Model).

Common Infrastructure The Common Abstractions package is the framework that ties the other
models to performance, enactment, and execution (Composition Model,
Course Model and Condition Model).

Composition Model The Composition Model is a framework for relating metamodels to the real
world entities they ultimately represent. It facilitates integration with
business process runtimes and rule engines, as well as uniform
performance, enactment, and execution across business process

Business Process Definition MetaModel, Process Definitions, v1.0 9

Business Process Definition MetaModel

Common Infrastructure

Common Behavior Model

Interactive Behavior
 Model

Composition Model Course Model

Activity Model

Behavior Model

Interaction Protocol Model

BPMN Extensions

Condition Model

management suites. The Composition Model enables users and vendors to
build libraries of orchestrations and choreographies, including
specialization of some orchestrations or choreographies from others. It also
enables users and vendors to define their own frameworks for recording
data about ongoing orchestrations and choreographies, for example, how
long they have been going, who is involved in them, and what resources
they are using.

Course Model The Course Model extends the Composition Model to connect parts in time
(Succession). For example, a succession connects one step in a process to
another to indicate that the second step happens after the first. The same
applies to messages in choreography.

Common Behavior Model The Common Behavior Model includes elements shared by all process
oriented behavior models.

Behavior Model The Behavior Model enables Behavior Steps to be ordered in time as parts
of other Behavior Step (see the Course Model). Vendors and users can
define their own execution patterns with connections between these
Behavior Steps. The model predefines a specific connection for races,
where Behavior Steps start at the same time and abort each other when the
first finishes. It also defines a Behavior Event Condition for detecting
lifecycle events in behavioral happenings. The Behavior Model is the most
specialized model in the Business Process Definition MetaModel that still
covers all of processes and interactions (orchestration and choreography,
see the Activity and Interaction Protocol Models).

Interactive Behavior Model The Interactive Behavior Model enables interactions to be treated like any
other step in a Behavior, ordered in time, with start and end events. The
model is the basis for flows between Behavior Steps and between
participants in a choreography (see the Activity Model and the Interaction
Protocol Model). The Interactive Behavior Model is the most specialized
model in the Business Process Definition MetaModel that still has elements
in common between processes and choreographies.

Activity Model The Activity Model is for capturing orchestrations in way that facilitates
modification as boundaries of process of business change, for example, due
to insourcing, outsourcing, mergers, and acquisitions. It uses interactions to
represent inputs and outputs, enabling choreographies to be specified
between the process and its environment, as well as between the performers
responsible for steps in the process. The Activity Model is the basis for the
BPMN model in BPDM (see the BPMN Extensions).

BPMN Extensions The BPMN Extension provides additions to the Activity Model for BPMN.
These provide BPMN names for special usages of the Business Process
Definition MetaModel concepts and additional functionality specific to
BPMN.

Interaction Protocol Model The Interaction Protocol Model is for capturing choreographies. It enables
interactions to be grouped together into larger, reusable interactions. For
example, an interaction that exchanges goods between companies might be
used with other interactions within a larger protocol representing a
partnership of the companies. This protocol might be adopted by a
standards body and reused between many pairs of companies. The
interactions in a protocol may be simple interactions that have no sub-
interactions, or may be other protocols.

Condition Model The Condition Model is for specifying boolean expressions that constrain
model elements or capture statements. It defines specialized conditions that
are represented as free text, as expressions with particular results, and as
boolean combinations of other conditions.

10 Business Process Definition MetaModel, Process Definitions, v1.0

6.2 Behavior Model

6.2.1 Introduction

The Behavior Model extends the Course Model with a number of common behavior modeling constructs, and
provides for vendor and user defined extensions. Vendors and users can define their own execution patterns with
connections between these happening parts. The model predefines a specific connection for races, where behaviors
start at the same time and abort each other when the first finishes, and for part groups that abort the steps inside
them. It extends the events and event parts of the Course Model, for example, when behaviors are aborted. It also
defines an event condition for detecting lifecycle events in behaviors. The Behavior Model is the most specialized
model in BPDM that still covers all of orchestration and choreography (see the Activity Model and Interaction
Protocol Model).

The Behavior Model introduces:

• Courses with parts that behaviors play (Behavior and Behavior Steps). These enable reuse of behaviors. A
behavior orders subbehaviors according to their course events, such as when they start and end (see the
Course Model).

• A taxonomy of events specializing starting and ending events from the Course Model, for example, for
aborting and erroring. These play event parts from a taxonomy subsetted from the start and end parts in the
Course Model, where the event parts are of Behavior Occurrence, a specialization of Course Occurrence.

• Connections for behavior steps that establish execution rules for connected steps (Compound Behavioral
Connection). One of these is a connection between steps that all start at the same time, and where the first
one to finish aborts the others (Race Connection and Race Behavior). Another connects groups that can
abort their enclosed steps (Group Abort Connection and Group Abort Behavior).

• Behavior steps for monitoring events, such as changes in time, facts, or behavior (Event Monitor). For
example, an event monitor can detect the passing of a certain point in time, a change in the truth of a
statement due to changes in facts, and the completion of a happening, such as the arrival of a message.

• Groups of behavior steps (Behavior Step Group), where the group has its own event parts, such as for
starting and ending.

Behaviors are Courses with Behavior Steps, which are Happening Parts where the type is a Behavior. This enables
behaviors to “invoke” and order other behaviors in time, as in the steps of a process model and or the interactions in
choreography. For example, the steps in a selling process are behavior steps played by behaviors such as packing
and shipping. Individual selling processes (M0 performances, enactments, or executions of selling) can have a
behavior step played by an individual (M0) packing behavior and another behavior step played by an individual
shipping behavior.

A user (M1) library in the Behavior Model adds:

• Behavior Occurrences, a specialization of Course Occurrence (see the Course Model), and generalization of
all M1 behavior models, including all orchestration and choreography models. All individual (M0) behavior
occurrences conform to Behavior Occurrence, which is the most abstract M1 model of behaviors.

• A taxonomy of events generalized by the start and end events in the Course Model. End at M1 generalizes
normal and abnormal events. Normal events generalize success and failure events, indicating whether an
M0 behavior fulfills its purpose or not. Abnormal events generalize abort and error events. Aborting means
an M0 behavior is terminated by an external source. Erroring means an M0 behavior terminates itself due to
conditions it is not prepared to handle. Abnormal ending may involve cleanup, but this must be completed
before the end of the behavior.

• A taxonomy of event parts subsetting the start and end event parts in the Course Model. The library event
parts are subsetted to align with the subclassing of event types above, which means events playing the
subsetting parts also play the subsetted parts.5 For example, an event playing an abort part on an M0
behavior also plays the abnormal end and end parts on the same individual course. Each individual (M0)
behavior occurrence will have at most one individual event conforming to the event types in the library. For
example, there is at most one abort event for each individual course occurrence.

5 Part and property subsetting are analogous to generalization, see the Composition Model.

Business Process Definition MetaModel, Process Definitions, v1.0 11

• Behaviors for compound behavioral connections, see below.

Event Monitors are Behavior Steps that detect events, including changes in time, facts (see the Course Model), or
behavior. Event monitors in user models (M1) are always typed by Behavior Occurrence or are subtypes of it that
have no behavior steps. Successions can order event monitoring steps. For example, a process can perform one step,
then perform a time event monitoring step to wait for a certain duration to elapse, then perform another step. This is
enabled by event monitors at M1 being typed by Behavior Occurrence, to define the standard event parts, for
example start part and end part.

Connected Part Bindings are Elements specifying that individuals playing the part at an end of a connection also
play a part within the connection. For example, one of the interactions between businesses in a choreography might
be a sub choreography composed of many communications between the businesses. Businesses playing a particular
role in the larger choreography also play one of the roles in the sub choreography. Bindable Connections are defined
just to categorize those connections that can carry part bindings. The player is part of the composite owning the
bindable connection. The played is part of the bindable connection. The binding requires the (M0) individuals
playing these parts to be the same. They are found by navigating from an individual composite, to the player
individuals, and to the played individuals in the connection part of the same composite. The two sets of individuals
found this way must be exactly the same. Connected part bindings are different from connections because part
bindings are about which individuals are playing certain parts in a whole, whereas connections are about links
between the individuals themselves due to playing parts in the whole. As a convenience, it is assumed that a
connection typed by a composite that has only one (non-connection) part implies bindings where that one part is
played by all the parts at all the ends of the connector. This is useful for symmetrical connectors (see Race
Connector below for an application).

Compound Behavioral Connections are Connections between behavior steps that are also Typed Parts, enabling
connections to reuse the same composite for connecting steps. BPDM defines two kinds of compound behavioral
connections:

• Race Connections are Compound Behavioral Connections that are always typed by Race Behavior, an M1
instance of Behavior defined in the Behavior user (M1) library. Race Behavior ensures that all the behavior
steps connected by Race Connection start at the same time, and that the first one to finish aborts the others.
Race Behavior contains:

• One step, called the Contestant, which is bound to all the steps connected by the M1 race connection
(see Connected Part Binding above). This ensures that all the contestants are treated the same way.

• Two immediate successions connecting the Contestant to itself. One succession refers to the start part
of the Contestant on both ends (see the Happening Model), specifying that all the contestant behaviors
start at the same time. The other succession has the finish part on one end and the abort part on the
other, specifying that any contestant happening that finishes will be accompanied by a simultaneous
abort of the others. This succession has the Irreflexive condition applied (see the Composition
Model), to prevent the finishing contestant from aborting itself.

When a race connection is created between behavior steps, it implies part bindings between the
connected steps and the Contestant in Race Behavior, with Contestant on the played end (see
Connected Part Binding above). The part bindings ensure that any individual M0 happening playing
the connected steps will also play the Contestant, establishing the start-start and finish-abort
successions between the connected steps, and the temporal constraints on the individual happenings.
The Race Behavior above can be the type for any connector that is also a typed part, but Race
Connection is always typed by Race Behavior, for convenience.

• Group Abort Connections are Compound Behavioral Connections that are always typed by Group Abort
Behavior, an M1 instance of Behavior defined in the Behavior user (M1) library. It is applied to behavior
step groups and their enclosed steps to ensure that the steps are aborted when the group is. Group Abort
Behavior contains:

• Two steps, one for the group and one for its enclosed steps (Step Group and Enclosed Step). The first
is bound to an M1 behavior step group and the second to each step in the group (see Connected Part

12 Business Process Definition MetaModel, Process Definitions, v1.0

Binding above).

• One immediate succession between the two steps above. The source is Step Group and the target is
Enclosed Step. It refers to the abort event part on both ends, specifying that any group behavior that
aborts will be accompanied by a simultaneous abort of the enclosed behaviors.

When a group abort connection is created between a behavior step group and its steps, it implies a part
binding between Step Group in the Group Abort Behavior and the connected group, with Step Group
on the played end (see Connected Part Binding above). Similarly, it implies bindings between
Enclosed Step and the steps in the group. The part bindings ensure that any individual M0 happening
playing the connected group will also play the Step Group, and any individual playing the connected
steps will also play the Enclosed Step, establishing the abort-abort successions between the connected
group and steps, and the temporal constraints on the individual happenings. The Group Abort
Behavior above can be the type for any connector that is also a typed part, but Group Abort
Connection is always typed by Group Abort Behavior, for convenience.

Users and vendors can capture their own execution patterns by defining M1 behaviors to use as the type of
compound behavioral connections. For example, some vendors might have an option on races to not abort the losing
processes. This is a variation on the Race Behavior that does not have the finish-abort successions. It can be defined
as an M1 instance of Compound Behavioral Connection that is always typed by the vendor-defined variant Race
Behavior.

Course Event Conditions are Event Conditions for detecting Course Events, for example the start and ending of a
behavior. It specifies the behavior producing the event with a behavior step, such as a step in a process or interaction
in a choreography, and specifies the event with an event part, such as the parts for starting and ending (see the
Happening Model). A Course Event condition can be the condition for an event monitoring step, enabling detection
of the starting and ending of behaviors identified by behavior steps. For example, a Course Event condition can refer
to a message part and the finish part in it to specify that the message has arrived (BPDM represents messages as
special kinds of processes, see Simple Interaction Model).

Behavior Step Groups are Part Groups (see the Composition Model) that enclose Behavior Steps, and are also
Behavior Steps themselves, typed by Behavior Occurrence in user models (M1). This gives a group of behavior
steps as a whole the capacity to produce start and end events playing the standard event parts, such as start part and
end part. For example, most process languages have a way of modeling sub processes without defining a separate
process. This is a behavior step group.

6.2.2 Metamodel Specification

The Behavior Model enables Behavior Steps to be ordered in time as parts of other Behavior Step (see the Course
Model). Vendors and users can define their own execution patterns with connections between these Behavior Steps.
The model predefines a specific connection for races, where Behavior Steps start at the same time and abort each
other when the first finishes. It also defines a Behavior Event Condition for detecting lifecycle events in Behavior.
The Behavior Model is the most specialized model in the Business Process Definition MetaModel that still covers
all of processes and interactions (orchestration and choreography, see the Activity and Interaction Protocol Models).

Business Process Definition MetaModel, Process Definitions, v1.0 13

6.2.2.1 Behavior Model Diagram

Figure 2 - Behavior Model Diagram

14 Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.2 Behavior Library: Events

Figure 3 - Behavior Library: Events

Business Process Definition MetaModel, Process Definitions, v1.0 15

6.2.2.3 Behavior Library: Behavior Occurrence

Figure 4 - Behavior Library : Behavior Occurrence

16 Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.4 Behavior Library: 'Racing' Behavior

owner courseowned step
owner c ourse

owned succession

behav ior step owner

owned succession

Racing Behavior:Behavior

Racing Contestant:Behavior Step

start/ start:Immediate Succession end/abort:Immediate Succession

Behavior Occurrence:Behavior

step type

predec essor

next succ ession

next succ ession

predec essor

Start:Event Part Abort:Event Part

Normal End:Event
 Partsource event part

suc cessor

prev ious succession

successor

prev ious succession

target event part

sourc e event part

target ev ent part

:Irreflexive
 Condition

guard

behav ior usage

The graphic al c ontainement
 means that the course owns
 event parts and suc cessions
 respectively through the 'owned
 event part' assoc iation and the
 'owned suc cession' assoc iation

BPMN Library:Package Behavior Library:
Package

nestedPackage

nestingPackage

packagedElement

owningPackage

Figure 5 - Behavior Library: 'Racing' Behavior

Business Process Definition MetaModel, Process Definitions, v1.0 17

6.2.2.5 Behavior Library: 'Group Abort Behavior'

Figure 6 - Behavior Library: 'Group Abort Behavior'

18 Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.6 Behavior Event Condition Diagram

Figure 7 - Behavior Event Condition Diagram

6.2.2.7 Behavior Step Group Diagram

Figure 8 - Behavior Step Group Diagram

Business Process Definition MetaModel, Process Definitions, v1.0 19

6.2.2.8 Connected Part Binding Diagram

Figure 9 - Connected Part Binding Diagram

6.2.2.9 Behavior

Package: Behavior Model
isAbstract: No
Generalization: “Course”

Description

A Behavior is a kind of Course that order happenings in time, as in the activities of a process model and or the
interactions in a choreography. Behavior introduces capabilities shared by both choreography and orchestration:

• Its steps are typed by Courses that provide them with start/end capabilities.
• As a Course it can organize its part with Succession. It adds the ability to order its steps according to their

start and ends (Succession).
• Rich connections can be established between its steps to enable time sychronization between them

(Compound Behavioral Connection).
• The reuse of the same Behavior is enabled by (Behavior Step).
• Detection of events in conditions, such as time events, fact changes, or behavior events can be to influence

its course (Event Monitor).
• Its steps can be organized in groups to which start/end constraints can be applied (Behavior Step Group).

Associations

owned behavioral connection : Compound
Behavioral Connection [*]

Compound Behavioral Connection owned by the Behavior
Subsets owned connection

owned step : Behavior Step [*] Behavior Step owned by the Behavior
Subsets owned course part

20 Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.10 Behavior Event Condition

Package: Behavior Model
isAbstract: No
Generalization: “Event Condition”

Description

Behavior Event Conditions are Event Conditions for detecting Events in Courses, for example the start and
ending of a Course.

It specifies the conditioning behavior step, such as a step in a process or interaction in choreography, and the
conditioning event part, such as the Event Part for starting and ending (see the Happening and Event Model).

A Behavior Event Condition can be the condition for an Event Monitor, enabling detection of the starting and
ending of Courses identified by behavior steps. For example, a Behavior Event Condition can refer to a message
and the Normal End in it to specify that the message has arrived. (The Business Process Definition MetaModel
represents messages as process steps themselves, see Interactive Behavior Model.)

Associations

conditioning behavior step : Behavior Step [1] Behavior Step that is the source of the condition, such as an
activity in a process or an interaction in a protocol.

conditioning course : Course [1] Course that specifies the context of the Event that defines
the condition. This is derived from conditioning behavior
step of the condition. This is a derived association.
Subsets conditioning happening over time

conditioning event part : Event Part [1] Event Part that specifies the Event that is the source of the
condition, such as the start (Start) or end (End).

source event : Event [1] Event that specifies the Behavior Event Condition. This is
derived from the Event Part that defines the Behavior Event
Condition. This is a derived association.
Subsets conditioning event

Constraint

[1] The conditioning event part must be an Event Part of the type of the conditioning behavior step.

6.2.2.11 Behavior Step

Package: Behavior Model
isAbstract: No
Generalization: “Happening Part”

Description

Behavior Steps is a kind of Happening Part which typed is a Behavior. This enables it to "invoke" other Behavior
and to build Behavior composites (made of sub- Behaviors).

Associations

compound behavioral step connection :
Compound Behavioral Connection [*]

Compound Behavioral Connection indicating that the lifecycle
of the Behavior Step is tied to the life cycle of other Behavior
Steps.
Subsets part connection

Business Process Definition MetaModel, Process Definitions, v1.0 21

step type : Behavior [1] Specifies the type of the Behavior Step.
The default step type is the Behavior Occurrence.
Subsets happening part type
Default: Behavior Occurrence

6.2.2.12 Behavior Step Group

Package: Behavior Model
isAbstract: No
Generalization: “Behavior Step” “Part Group”

Description

A Behavior Step Group is a kind of Part Group that is also a Behavior Step typed by the Behavior Occurrence
in user models (M1). This gives a group of Behavior Steps as a whole the capacity to produce start and end changes
playing the standard Event Parts, such as Start and End. For example, most process languages have a way of
modeling sub-processes without defining a separate process. This is a Behavior Step Group.

Associations

enclosed behavior step : Behavior Step [*] Behavior Step being part of the Behavior Step Group
Subsets enclosed part

6.2.2.13 Bindable Connection

Package: Behavior Model
isAbstract: No
Generalization: “Part Connection” “Typed Part”

Description

A Bindable Connection is a kind of Part Connection defined just to categorize those connections that can carry
Connected Part Binding.

Associations

owned part binding : Connected Part
Binding [*]

Connected Part Binding owned by the Composite.
Subsets ownedElement

6.2.2.14 Compound Behavioral Connection

Package: Behavior Model
isAbstract: No
Generalization: “Bindable Connection”

Description

A Compound Behavioral Connection is a Part Connection that enables dedicated lifecycle rule connections to
apply between Behavior Steps. These rules are described by the compound connection type of the Compound
Behavioral Connection, which is itself a Behavior. This makes Compound Behavioral Connection be itself a
Typed Part.

22 Business Process Definition MetaModel, Process Definitions, v1.0

Associations

compound connection type : Behavior [1] Behavior typing the Compound Behavioral Connection and
specifying the lifecycle rules (start/start, abort/abort) tying all
Behavior Steps connected by the Compound Behavioral
Connection.
Subsets partType

connected behavior step : Behavior Step [2..*] Behavior Step connected by the Compound Behavioral
Connection.
Subsets connected element

6.2.2.15 Connected Part Binding

Package: Behavior Model
isAbstract: No
Generalization: “Element”

Description

A Connected Part Binding is an Element specifying that individuals playing the part at an end of a Part
Connection also play a Part within the connection. For example, one of the interactions between businesses in a
choreography might be a subchoreography composed of many communications between the businesses. Businesses
playing a particular role in the larger choreography also play one of the roles in the subchoreography.

The player is part of the composite owning the bindable connection. The played is part of the bindable connection.
The binding requires the (M0) individuals playing these parts to be the same. They are found by navigating from an
individual composite, to the player individuals, and to the played individuals in the connection part of the same
composite. The two sets of individuals found this way must be exactly the same.

Connected Part Binding is different from Part Connection because part bindings are about which individuals are
playing certain parts in a whole, whereas connections are about links between the individuals themselves due to
playing parts in the whole. As a convenience, it is assumed that a connection typed by a composite that has only one
(non-connection) part implies bindings where that one part is played by all the parts at all the ends of the connector.
This is useful for symmetrical connectors.

Associations

internal played part : Typed Part [1] The played is part of the bindable connection.
player part : Typed Part [1] The player is part of the composite owning the bindable

connection.

6.2.2.16 Event Monitor

Package: Behavior Model
isAbstract: No
Generalization: “Behavior Step”

Description

An Event Monitor is a kind of Behavior Step that monitors the occurrence of an Event Condition and that has an
effect on the course of a Behavior. For instance, an Event Monitor can be used to react to the Abort Event of a
specific Course.

Associations

monitored event condition : Event Condition [1] Event Condition being monitored.
Subsets constraining condition
Subsets ownedElement

Business Process Definition MetaModel, Process Definitions, v1.0 23

BPMN Notation

Event Monitor shape with the marker of the Compensate Event instance of Event.

Figure 10 - Event Monitor monitoring a 'Compensate' Course Event Condition

Figure 11 - Event Monitor monitoring a Compound Event Condition

Event Monitor shape with a Fact Change as a maker.

Figure 12 - Event Monitor monitoring a Fact Change Condition

Event Monitor shape with a Time Event as a maker.

Figure 13 - Event Monitor monitoring a Time Event Condition

This symbol is a circle, with an open center. The circle MUST be drawn with a double thin black line. It can
alternatively represent:

1. Event Parts that are not typed by Start Event or End Event.
2. Event Monitors

Markers can be placed within the circle to indicate the nature of the Event associated with the Event Part or Event
Monitor.

24 Business Process Definition MetaModel, Process Definitions, v1.0

Compensation Event Monitor

Event Monitor
monitoring a Compound Event Condition

Event Monitor for Fact Change

Time Event Monitor

Figure 14 - Event Monitor Notation

6.2.2.17 Group Abort Connection

Package: Behavior Model
isAbstract: No
Generalization: “Compound Behavioral Connection”

Description

A Group Abort Connection is a kind of Compound Behavioral Connection that has for compound connection
type the Group Abort Behavior, an M1 instance of Behavior defined in the Behavior Library user (M1) library.
It is applied to Behavior Step Groups and their enclosed steps to ensure that the steps are aborted when the group
is. (See more details in Group Abort Behavior).

6.2.2.18 ImmediateSuccession

Package: Behavior Model
isAbstract:
Generalization: “Immediate Succession”

Description

Immediate Succession in the Business Process Definition MetaModel namespace.

6.2.2.19 Race Connection

Package: Behavior Model
isAbstract: No
Generalization: “Compound Behavioral Connection”

Description

A Race Connection is a kind of Compound Behavioral Connection that has for compound connection type the
Racing Behavior. The Racing Behavior ensures that all the connected Behavior Steps start at the same time, and
that the first one to finish aborts the others.

6.2.2.20 Succession

Package: Behavior Model
isAbstract:
Generalization: “Succession”

Description

Succession in the Business Process Definition MetaModel namespace.

Business Process Definition MetaModel, Process Definitions, v1.0 25

Event Monitor

6.2.2.21 Instance: Abnormal End Event

Class: Course Event

Description

Abnormal End Event is an Event that manifests the abnormal End Event of a BehaCourse.

Links

Played End Opposite End
Abnormal End Event: general End Event
Abnormal End Event:event part type event usage Abnormal End
Abnormal End Event:general Abort Event
Abnormal End Event:general Error Event
Abnormal End Event:packagedElement owningPackage Behavior Library

Non Normative Notation

Marker of the Normal End instance of Event.

‘Abnormal End’ Behavioral Event Instance

Figure 15 - Course Event 'Abnormal End' instance notation

6.2.2.22 Instance: Abnormal End

Class: Event Part

Description

Links

Played End Opposite End
Abnormal End: subsettedProperty End
Abnormal End:event usage event part type Abnormal End Event
Abnormal End:owned event part event part owner Behavior Occurrence
Abnormal End:subsettedProperty Error
Abnormal End:subsettedProperty Abort

Non Normative Notation

The shape of the Abnormal End instance uses the shape of its super-property (End) with marker of its type:
Abnormal End Event.

Figure 16 - Event Part : Abnormal End notation

26 Business Process Definition MetaModel, Process Definitions, v1.0

‘Abnormal End’ Event Part

6.2.2.23 Instance: Abort Event

Class: Course Event

Description

Abort Event is an Event that manifests that the course of a Course is being interrupted. The source of the Abort
Event can be internal or external to the Course.

Links

Played End Opposite End
Abort Event: general Abnormal End Event
Abort Event:event part type event usage Abort
Abort Event:induced course event course event context Abort Process
Abort Event:packagedElement owningPackage Behavior Library

BPMN Notation

Marker of the Abort Event instance of Event.

Figure 17 - Course Event 'Abort' Notation

6.2.2.24 Instance: Abort

Class: Event Part

Description

Links

Played End Opposite End
Abort: subsettedProperty Abnormal End
Abort:event usage event part type Abort Event
Abort:owned event part event part owner Behavior Occurrence
Abort:source event part group-step
Abort:target event part end/abort
Abort:target event part group-step

BPMN Notation

The shape of the Abort instance of Event Part uses the shape of its super-property (End) with the marker of its
event type: Abort Event.

Figure 18 - Event Part : Abort Notation

Business Process Definition MetaModel, Process Definitions, v1.0 27

Abort Behavioral Event Instance

Abort Event Part

6.2.2.25 Instance: Behavior Library

Class: Package

Description

User (M1) library capturing commonly needed aspects of happenings as instances of the class in the Happening
Model model. The library defines:

• Events to represent various behavior lifecycle events, such as starting and ending of individual Courses.

• A Course is called the Behavior Occurrence. It is a generalization of all M1 dynamic models (see the
Composition Model).

• Event Parts of the Behavior Occurrence for the various Events, such as start and end. These are typed by
the various M1 changes, such as Start and End Events.

Successions between the Event Parts above for universal constraints, such as the End being after the Start.

Links

Played End Opposite End
Behavior Library:nestedPackage nestingPackage BPMN Library
Behavior Library:owningPackage packagedElement Abnormal End Event
Behavior Library:owningPackage packagedElement Normal End Event
Behavior Library:owningPackage packagedElement Error Event
Behavior Library:owningPackage packagedElement Abort Event
Behavior Library:owningPackage packagedElement Behavior Occurrence
Behavior Library:owningPackage packagedElement Success Event
Behavior Library:owningPackage packagedElement Failure Event

6.2.2.26 Instance: Behavior Library

Class: Package

Description

Package including the standard Group Abort Behavior and Racing Behavior.

Links

Played End Opposite End
Behavior Library:nestedPackage nestingPackage BPMN Library
Behavior Library:owningPackage packagedElement Racing Behavior
Behavior Library:owningPackage packagedElement Group Abort Behavior

6.2.2.27 Instance: Behavior Occurrence

Class: Behavior

Description

Course that produces common behavior lifecycle changes, such as Start or End Event.

28 Business Process Definition MetaModel, Process Definitions, v1.0

Links

Played End Opposite End
Behavior Occurrence: general Course Occurrence
Behavior Occurrence:event part owner owned event part Error
Behavior Occurrence:event part owner owned event part Normal End
Behavior Occurrence:event part owner owned event part Abort
Behavior Occurrence:event part owner owned event part Success
Behavior Occurrence:event part owner owned event part Failure
Behavior Occurrence:event part owner owned event part Abnormal End
Behavior Occurrence:general Generalization
Behavior Occurrence:general Generalization
Behavior Occurrence:packagedElement owningPackage Behavior Library
Behavior Occurrence:step type behavior usage Activity 1
Behavior Occurrence:step type behavior usage Racing Contestant
Behavior Occurrence:step type behavior usage Step Group
Behavior Occurrence:step type behavior usage Enclosed Step

Constraint

[1] Normal End and Abnormal End cannot have values at the same time.
not (self.Normal End->notEmpty() and self.Abnormal End->notEmpty())

[2] Failure and Success cannot have values at the same time.
not (self.Failure->notEmpty() and self.Success->notEmpty())

[3] Abort and Error cannot have values at the same time.
not (self.Abort->notEmpty() and self.Error->notEmpty())

Business Process Definition MetaModel, Process Definitions, v1.0 29

Non Normative Notation

Figure 19 - Behavior Occurrence

6.2.2.28 Instance: Enclosed Step

Class: Behavior Step

Description

Represents the behavior of a Behavior Step within a Behavior Step Group.

Links

Played End Opposite End
Enclosed Step:behavior usage step type Behavior Occurrence
Enclosed Step:owned step behavior step owner Group Abort Behavior
Enclosed Step:successor previous succession group-step

6.2.2.29 Instance: end/abort

Class: Immediate Succession

Description

This succession has the finish part on one end and the abort part on the other, specifying that any contestant

30 Business Process Definition MetaModel, Process Definitions, v1.0

happening that finishes will be accompanied by a simultaneous abort of the others. This succession has the
Irreflexive condition applied (see the Composition Model), to prevent the finishing contestant from aborting itself.

Links

Played End Opposite End
end/abort: target event part Abort
end/abort: source event part Normal End
end/abort: guard Irreflexive Condition
end/abort:next succession predecessor Racing Contestant
end/abort:owned succession owner course Racing Behavior
end/abort:previous succession successor Racing Contestant

6.2.2.30 Instance: Error Event

Class: Course Event

Description

Error Event is an Event that manifests that an error has occurred that will lead to the End Event of the Course.
The source of the Error Event is always internal to the Course.

Links

Played End Opposite End
Error Event: general Abnormal End Event
Error Event:event part type event usage Error
Error Event:induced course event course event context Error Process
Error Event:packagedElement owningPackage Behavior Library

BPMN Notation

Marker of the Error Event instance of Event.

Figure 20 - Course Event 'Error' Instance Notation

6.2.2.31 Instance: Error

Class: Event Part

Description

Links

Played End Opposite End
Error: subsettedProperty Abnormal End
Error:event usage event part type Error Event
Error:owned event part event part owner Behavior Occurrence
Error:source event part error handling

BPMN Notation

This symbol can alternatively represent:

Business Process Definition MetaModel, Process Definitions, v1.0 31

Error Behavioral Event Instance

1. Event Part typed by the Error Event instance of Event.
2. An Error Activity

Figure 21 - Error Activity Notation or 'Error' Course Event Step

Error Event Event Part used for error handling. The Error Event Event Part is linked to the Succession instance
through the source event part association.

Figure 22 - Error Handling Notation

The shape of the Error instance of Event Part uses the shape of its super-property (End) with the marker of its
event type: Error Event.

Figure 23 - Event Part : Error Notation

6.2.2.32 Instance: Failure Event

Class: Course Event

Description

Failure Event is a kind of End Event that indicates that its Course has ended, but has not reached its purpose.

32 Business Process Definition MetaModel, Process Definitions, v1.0

Error Event Part

Behavior Step

Error Handling

Error Event Part as used in Error Handling

Links

Played End Opposite End
Failure Event: general Normal End Event
Failure Event:event part type event usage Failure
Failure Event:packagedElement owningPackage Behavior Library

Non-normative Notation

Marker of the Failure Event instance of Event.

Figure 24 - Course Event 'Failure' Instance notation

6.2.2.33 Instance: Failure

Class: Event Part

Description

Links

Played End Opposite End
Failure: subsettedProperty Normal End
Failure:event usage event part type Failure Event
Failure:owned event part event part owner Behavior Occurrence

Non Normative Notation

The shape of the Failure instance uses the shape of its super-property (End) with marker of its type:Failure Event.

Figure 25 - Event Part : Failure Notation

6.2.2.34 Instance: Group Abort Behavior

Class: Behavior

Description

Group Abort Behavior contains:

Business Process Definition MetaModel, Process Definitions, v1.0 33

Failure Behavioral Change Instance

Failure Event Part

• Two steps, one for the group and one for its enclosed steps (Step Group and Enclosed Step). The first is
bound to an M1 processing step group and the second to each step in the group (see Connected Part Binding
above).

• One immediate processing succession between the two steps above. The source is Step Group and the target
is Enclosed Step. It refers to the abort part on both ends (see the Happening and Change Model), specifying
that any group behavior that aborts will be accompanied by a simultaneous abort of the enclosed step
happenings.

• When a group abort connection is created between a processing step group and its steps, it implies a part
binding between Step Group in the Group Abort Behavior and the connected group, with Step Group on the
played end (see Connected Part Binding above). Similarly, it implies bindings between Enclosed Step and
the steps in the group. The part bindings ensure that any individual M0 happening playing the connected
group will also play the Step Group, and any individual playing the connected steps will also play the
Enclosed Step, establishing the abort-abort successions between the connected group and steps, and the
temporal constraints on the individual happenings. The Group Abort Behavior above can be the type for any
connector that is also a typed part, but Group Abort Connection is always typed by Group Abort Behavior,
for convenience.

Links

Played End Opposite End
Group Abort Behavior:behavior step owner owned step Enclosed Step
Group Abort Behavior:behavior step owner owned step Step Group
Group Abort Behavior:owner course owned succession group-step
Group Abort Behavior:packagedElement owningPackage Behavior Library

6.2.2.35 Instance: group-step

Class: Immediate Succession

Description

Links

Played End Opposite End
group-step: source event part Abort
group-step: target event part Abort
group-step:next succession predecessor Step Group
group-step:owned succession owner course Group Abort Behavior
group-step:previous succession successor Enclosed Step

6.2.2.36 Instance: ImportInfra

Class: ElementImport

Description

Import of the Common Infrastructure Library

Links

Played End Opposite End
ImportInfra: importedElement Common Infrastructure Library
ImportInfra:elementImport BPMN Library

34 Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.37 Instance: Normal End Event

Class: Course Event

Description

Normal End Event is an Event that manifests the normal End Event of a Course.

Links

Played End Opposite End
Normal End Event: general End Event
Normal End Event:event part type event usage Normal End
Normal End Event:general Success Event
Normal End Event:general Failure Event
Normal End Event:packagedElement owningPackage Behavior Library

Non-normative Notation

Marker of the Normal End Event instance of Event.

Figure 26 - Course Event 'Normal End' instance notation

6.2.2.38 Instance: Normal End

Class: Event Part

Description

Played End Opposite End
Normal End: subsettedProperty End
Normal End:event usage event part type Normal End Event
Normal End:owned event part event part owner Behavior Occurrence
Normal End:source event part end/abort
Normal End:source event part start/start
Normal End:subsettedProperty Success
Normal End:subsettedProperty Failure

Non Normative Notation

The shape of the Normal End instance uses the shape of its super-property (End) with the marker of its type:
Normal End Event.

Figure 27 - Event Part : Normal End notation

Business Process Definition MetaModel, Process Definitions, v1.0 35

‘Normal End’ Behavioral Event Instance

‘Normal End’ Event Part

6.2.2.39 Instance: Racing Behavior

Class: Behavior

Description

Racing Behavior contains:

• One Behavior Step, called the Racing Contestant, which is bound to all the steps connected by the M1
race connection. This ensures that all the contestants are treated the same way.

• Two Immediate Processing Successions connecting the Contestant to itself. One succession refers to the
start part of the Contestant on both ends (see the Happening and Change Model), specifying that all the
contestant behaviors start at the same time. The other succession has the finish part on one end and the abort
part on the other, specifying that any contestant happening that finishes will be accompanied by a
simultaneous abort of the others. This succession has the Irreflexive condition applied (see the Composition
Model), to prevent the finishing contestant from aborting itself.

Links

Played End Opposite End
Racing Behavior:behavior step owner owned step Racing Contestant
Racing Behavior:owner course owned succession start/start
Racing Behavior:owner course owned succession end/abort
Racing Behavior:packagedElement owningPackage Behavior Library

6.2.2.40 Instance: Racing Contestant

Class: Behavior Step

Description

Behavior Step of the Racing Behavior is bound to all the steps connected by the M1 race connection to ensure that
all the contestants are treated the same way.

Links

Played End Opposite End
Racing Contestant:behavior usage step type Behavior Occurrence
Racing Contestant:owned step behavior step owner Racing Behavior
Racing Contestant:predecessor next succession start/start
Racing Contestant:predecessor next succession end/abort
Racing Contestant:successor previous succession start/start
Racing Contestant:successor previous succession end/abort

6.2.2.41 Instance: start/start

Class: Immediate Succession

Description

This succession refers to the start part of the Racing Contestant on both ends (see the Happening and Change
Model introduction), specifying that all the contestant behavior start at the same time.

Links

Played End Opposite End
start/start: source event part Normal End
start/start: target event part Start

36 Business Process Definition MetaModel, Process Definitions, v1.0

Played End Opposite End
start/start:next succession predecessor Racing Contestant
start/start:owned succession owner course Racing Behavior
start/start:previous succession successor Racing Contestant

6.2.2.42 Instance: Step Group

Class: Behavior Step

Description

Represents the behavior of a Behavior Step Group regarding its Enclosed Step.

Links

Played End Opposite End
Step Group:behavior usage step type Behavior Occurrence
Step Group:owned step behavior step owner Group Abort Behavior
Step Group:predecessor next succession group-step

6.2.2.43 Instance: Success Event

Class: Course Event

Description

Success Event is a kind of End Event that indicates that its Course has ended by fulfilling its purpose.

Links

Played End Opposite End
Success Event: general Normal End Event
Success Event:event part type event usage Success
Success Event:packagedElement owningPackage Behavior Library

Non Normative Notation

Marker of the Success Event instance of Event.

Figure 28 - Course Event 'Success' Instance notation

6.2.2.44 Instance: Success

Class: Event Part

Description

Links

Played End Opposite End
Success: subsettedProperty Normal End
Success:event usage event part type Success Event
Success:owned event part event part owner Behavior Occurrence

Business Process Definition MetaModel, Process Definitions, v1.0 37

Success Behavioral Change Instance

Non Normative Notation

The shape of the Success instance uses the shape of its super-property (End) with marker of its type: Success Event.

Figure 29 - Event Part : Success Notation

6.3 Interactive Behavior Model

6.3.1 Introduction

The Interactive Behavior Model enables interactions to be treated like any other step in a behavior, ordered in time,
with start and end events. The model is the basis for flows between process steps and between participants in a
choreography (see the Activity Model and the Interaction Protocol Model). The Interactive Behavior Model is the
most specialized model in BPDM that still has elements in common between orchestration and choreography.

The Interactive Behavior Model provides:

• Behaviors with interactions and roles (Interactive Behavior)
• Interactions that have no sub interactions (Simple Interactions).
• Types for flowing entities (transferred item types).
• Expressions for changing which entities are flowing (transformation expression).
• Parts that interact within a behavior (Interaction Roles).

Interactive Behaviors are Behaviors that can have interactions as parts. Interactions are Typed Part Connections that
are also Behavior Steps, enabling them to have start and end events, and be ordered in time. This is used to define
reusable protocols and specify the way a process interacts with its environment (see the Interaction Protocol Model
and the Activity Model). Interactive Parts are defined just to categorize those Typed Parts that can be connected by
Interactions. The types of interactive parts establish requirements for the interacting individuals, for example, that
they have a minimum security clearance or market capitalization.

Simple Interactions are interactions in which something is "transferred" from individuals playing one interactive part
to individuals playing another interactive part. For example, a document, phone number, or package may be
transferred from one department to another in a company. The transferred items must conform to a Type specified
by the simple interaction. Simple Interactions can have an expression to change the item that arrives at the target
based on the item flowing from the source. For example, a transformation may retrieve the zip code from an address
flowing from the source to deliver the zip code to the target.

Simple Interactions in user (M1) models are always typed by the Behavior Occurrence (see user library in the
Behavior Model). This gives them the standard event parts, such as for start and end, so the simple interactions can
be ordered within an Interaction Protocol (see the Interaction Protocol Model). This is different from the type of
thing transferred.

Simple interactions can be bound to each other for specifying that a simple interaction is the same as some of the
simple interactions in the interactive parts it connects. For example, an interaction between steps in a process can be
bound to interactions in the connected steps that output and input transferred items (see the Activity Model). The
individuals constrained by binding are interactions as they occur at M0, for example, transferring a car with a certain

38 Business Process Definition MetaModel, Process Definitions, v1.0

Success Event Part

identification number at a certain time. These individual (M0) interactions are found by navigating from an
individual composite, to individual interactions playing a part in it, and from there to internal interactions in the
source end, and to internal interactions in the target end. The three sets of individuals found this way must be exactly
the same. Simple interaction binding is different from connections because interaction binding is about which
individuals are playing certain parts in a whole, whereas connections are about links between the individuals
themselves due to playing parts in the whole.

Interaction Roles are Interactive Parts played by individuals outside the behavior, but interacting with it. For
example, the customer is an interaction role in a behavior for delivering a product. This is specialized in other
BPDM packages for application to orchestration and choreography (see the Activity Model and the Interaction
Protocol Model).

6.3.2 Metamodel Specification

The Interactive Behavior Model enables interactions to be treated like any other step in a Behavior, ordered in
time, with start and end events. The model is the basis for flows between Behavior Steps and between participants
in a choreography (see the Activity Model and the Interaction Protocol Model). The Interactive Behavior Model is
the most specialized model in the Business Process Definition MetaModel that still has elements in common
between processes and choreographies.

6.3.2.1 Interactive Behavior Diagram

Business Process Definition MetaModel, Process Definitions, v1.0 39

Interactive Behavior

Type

Behavior

Simple Interaction

Interaction Role

Interactive Part

{readonly, union}

{readonly, union}

2..*/involved interactive part

*/involv ing interac tion

*
{subsets involv ing interac tion[*]}
{subsets source connec tion[*]}

source simple interac tion

1

{subsets involved interac tive
 part[2..*]}
{subsets target[1]}

target interac tiv e part

*
{subsets involv ing interac tion[*]}
{subsets target connec tion[*]}

target simple interac tion

1

{subsets involved interac tiv e
 part[2..*]}

{subsets source[1]}

source interac tiv e part

*

{subsets owned
 connec table
 element[*]}

owned interaction role

1

{subsets part whole[1]}

owner interactive behav ior

Interaction

1 transferred item type

*

Expression

0..1

{subsets ownedElement[*]}

transformation expression

0..1

{subsets owner[0..1]}

owned transformation expression

Behavior Step

Typed Part

Directed Part
 Connection

*

{subsets owned connec tion[*]}

owned interac tion

0..1

{subsets connec tion whole[1]}

owner interactive behav ior

Bindable Connection

Figure 30 - Interactive Behavior Diagram

40 Business Process Definition MetaModel, Process Definitions, v1.0

6.3.2.2 Simple Interaction Binding Diagram

Figure 31 - Simple Interaction Binding Diagram

6.3.2.3 Message Diagram

Figure 32 - Message Diagram

6.3.2.4 End Message

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Message”

Description

An End Message is a Message that has the following additional characteristics:

• Its target interactive part is an Interaction Role.
• It has a previous succession.
• It has a next succession to the End instance of Event Part.
• This Succession is an Immediate Succession.

The sending the message is simultaneous with the end of the process.

BPMN Notation

Notation for End Message or Simple Interaction categorized as an End Message.

Business Process Definition MetaModel, Process Definitions, v1.0 41

Figure 33 - End Message Notation

6.3.2.5 Interaction

Package: Interactive Behavior Model
isAbstract: Yes
Generalization: “Behavior Step” “Bindable Connection”

Description

An Interaction is a Behavior Step that is also a Part Connection , enabling Interaction to have start and end
changes, and be ordered in time.

An Interaction can be either a simple Simple Interaction or a set of combined Simple Interactions : a Compound
Interaction. Ultimately, an Interaction is realized by the exchange of Simple Interactions between its Interactive
Parts.

Associations

involved interactive part : Interactive Part [2..*] Interactive Part involved in the Interaction.
This is a derived union.

6.3.2.6 Interaction Role

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Interactive Part”

Description

An Interaction Role is an Interactive Part where the individuals playing the part are in the environment context
where the Behavior is used. For example, the customer is an Interaction Role in a behavior for delivering a
product.

BPMN Notation

A "black box pool" is a pool that does not have any process details.

Figure 34 - Interaction Role Notation

42 Business Process Definition MetaModel, Process Definitions, v1.0

End Message

Interaction Role

Interaction Role as a black box pool

6.3.2.7 Interactive Behavior

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Behavior”

Description

An Interactive Behavior is a kind of Behavior that can have Interactions as its Parts. To be involved in
Interactions, these Parts must be sub-types of Interactive Part.

Associations

owned interaction role : Interaction Role [*] Interaction Role owned by the Interactive Behavior.
Subsets owned connectable element

owned interaction : Interaction [*] Interaction owned by the Behavior
Subsets owned connection

6.3.2.8 Interactive Part

Package: Interactive Behavior Model
isAbstract: Yes
Generalization: “Typed Part”

Description

Interactive Part is a category of Typed Part that can be connected by Interactions. The types of interactive parts
establish requirements for the interacting individuals, for example, that they have a minimum security clearance or
market capitalization.

Associations

involving interaction : Interaction [*] Interaction that the Interactive Part is involved in.
This is a derived union.

source simple interaction : Simple Interaction [*] Simple Interaction going to the target interactive part.
Subsets involving interaction
Subsets source connection

target simple interaction : Simple Interaction [*] Simple Interaction coming from the source interactive
part.
Subsets involving interaction
Subsets target connection

6.3.2.9 Message

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Simple Interaction”

Description

A Message is a kind of Simple Interaction that has an Interaction Role as one of its Interactive Parts.

Constraint

[1] At least one of the Interactive Parts of a Message must be an Interaction Role.

Business Process Definition MetaModel, Process Definitions, v1.0 43

BPMN Notation

The shape of Message depends on its sub-types.

The line connecting a Message to its Interaction Role(s) MUST have an open arrowhead and MUST be drawn with
a dashed single black line.

The line connecting a Message to other kinds of Interactive Part MUST have a solid arrowhead and MUST be
drawn with a solid single line.

Figure 35 - Message Notation

6.3.2.10 Message Flow

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Message”

Description

A Message Flow is a Message that has no succession to any other Message or Event Part. Such a Message doesn't
have any influence on the course of its owning Interactive Behavior.

BPMN Notation

A Message Flow is a line with an open arrowhead that MUST be drawn with a dashed single black line.

Figure 36 - Message Flow Notation

6.3.2.11 Received Intermediate Message

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Message”

Description

A Received Intermediate Message is a Message that has the following additional characteristics:

• Its source interactive part is an Interaction Role.
• It has a next succession.

44 Business Process Definition MetaModel, Process Definitions, v1.0

Start Message End Message Received Intermediate Message

Message Flow

Sent Intermediate Message

Message Flow

BPMN Notation

Figure 37 - Received Intermediate Message Notation

6.3.2.12 Sent Intermediate Message

Package: Interactive Behavior Model
isAbstract:
Generalization: “Message”

Description

A Sent Intermediate Message is a Message that has the following additional characteristics:

• Its target interactive part is an Interaction Role.
• It has a previous succession.

BPMN Notation

Business Process Definition MetaModel, Process Definitions, v1.0 45

Received Intermediate Message

Record
suppliers‘
quotations

Supplier's offer

Send Quotation
Requisition to

suppliers

Invitation to tender

Supplier

Figure 38 - Sent Intermediate Message Notation

6.3.2.13 Simple Interaction

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Directed Part Connection” “Interaction”

Description

A Simple Interaction is a kind of Interaction in which something is "transferred" from individuals playing one
interactive part to individuals playing another interactive part. For example, a document, phone number, or package
may be transferred from one department to another in a company. The transferred items must conform to a Type
specified by the Simple Interaction. A Simple Interaction can have an Expression to change the item that arrives
at the target based on the item flowing from the source. For example, a transformation may retrieve the zip code
from an address flowing from the source to deliver the zip code to the target.

Simple Interactions in user (M1) models are always typed by the Behavior Occurrence (see user library Behavior
Library). This gives them the standard Event Parts, such as for start and end, so the Simple Interactions can be
ordered within an Interaction Protocol. This is different from the type of thing transferred.

Simple Interactions can refer to Simple Interactions inside the Interactive Parts being connected. This means the
transferred thing is passed along through chains of Simple Interactions from inside to outside the parts, or the other
way.

Associations

source interactive part : Interactive Part [1] Interactive Part that is the source of the Simple Interaction.
Subsets involved interactive part
Subsets source

target interactive part : Interactive Part [1] Interactive Part that is the target of the Simple Interaction.
Subsets involved interactive part
Subsets target

transferred item type : Type [1] Specifies the type of the item transferred by the Simple
Interaction.

46 Business Process Definition MetaModel, Process Definitions, v1.0

Sent Intermediate Message

Record
suppliers‘
quotations

Supplier's offer

Send Quotation
Requisition to

suppliers

Invitation to tender

Supplier

transformation expression : Expression [0..1] Expression used to transform the item that arrives at the
target based on the item flowing from the source. For
example, a transformation may retrieve the zip code from an
address flowing from the source to deliver the zip code to the
target.
Subsets ownedElement

6.3.2.14 Start Message

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Message”

Description

A Start Message is a Message that has the following additional characteristics:

• Its source interactive part is an Interaction Role.
• It has a previous succession to the Start Start Event instance of Event.
• This Succession is an Immediate Succession.

The receipt of the Start Message creates a new execution of the process.

BPMN Notation

Notation for Start Message or Simple Interaction categorized as a Start Message.

Figure 39 - Start Message Notation

6.4 Activity Model

6.4.1 Introduction

The Activity Model is for capturing orchestrations in way that facilitates modification as boundaries of process of
business change, for example, due to insourcing, outsourcing, mergers, and acquisitions. It uses interactions to
represent inputs and outputs, enabling choreographies to be specified between the process and its environment, as
well as between the performers responsible for steps in the process. The Activity Model is the basis for the BPMN
model in BPDM (see the BPMN Extension).

In the Activity Model, Processes are Interactive Behaviors that have:

• Boundaries with which processes interact to get inputs and provide outputs (Process Interaction Boundary).
• Performers for steps in the process, including a performer for the entire process (Performer Role and

Processor Role).

Business Process Definition MetaModel, Process Definitions, v1.0 47

Start Message

• Steps that interact with each other and the process boundary, and invoke other processes (Activity and
Embedded Process).

• Embedded processes for loops, with loop control features (Activity Loop and its subtypes).
• Holders hold flowing items (Holders).
• Steps for generating process lifecycle events, such as for errors and aborts.
• Derivations from other processes (Substitutable Derivations).

Process Interaction Boundaries and Processor Roles are the two top-level elements in Processes. The first represents
entities in the environment of the process and the other the actors responsible for the process itself. They are
Interactive Parts, enabling Simple interactions between them to show the inputs and outputs of a process (see the
Simple Interaction Model). Inputs are simple interactions that have the boundary as source and the processor as
target (or an activity in the processor, see below), and outputs have the processor as source (or an activity in the
processor), and the boundary as target. The transferred item type of simple interactions specifies the kind of thing
that is input or output. These interactions can be ordered in time to specify when the process is expecting its inputs
and when it will provide its outputs. Multiplicities on the interactions specify how many individuals of the item type
are required or allowed to be input and output by the process (see the Composition Model).

Performer Roles are Part Groups showing the responsibility of Actors for steps in the process (see Activity below).
Processor Roles are actually just top-level Performer Roles, enabling them to delegate responsibility for a subset of
the process steps to Performer Roles, which in turn can delegate smaller subsets to other Performer Roles. Processor
Roles and Performer Roles are also Typed Parts, for specifying Actors that can play the roles. Actors are Classifiers,
to specify requirements on them, such as having certain skills or budget.

Performer Roles are also Interactive Parts that can have interactions with each other as well to the boundary. This is
useful when the boundaries of the process change, for example, due to outsourcing or insourcing. For outsourcing,
the steps a performer role is responsible for are separated out into another process. The interactions between the
performer's steps and the steps of other performers become the interactions in the protocol between the performers.
This establishes a service contract for the outsourced steps in the activity. Role Realizations are Elements for
showing which processes satisfy the contract. For insourcing, some of the interactions to the boundary become
interactions with a performer role. This establishes the requirements on designing the steps that the performer will be
responsible for.

Activities are:

• Behavior Steps, enabling them to have start and end events, be ordered in time by successions, and nest sub
processes (see the Behavior Model).

• Typed Parts (due to being Behavior Steps), where the type is another Process. For Simple Activities the sub
processes have no sub activities, for Sub process Activities they do.

• Interactive Parts to support simple interactions with other activities and the boundary for inputs and outputs
(see the Simple Interaction Model).

Activities connected by Simple Interactions use Simple Interaction Bindings to specify which interactions in the sub
processes will flow between the activities (see the Simple Interaction Model). For example, one activity might be for
a process that outputs a document with an interaction to its boundary, and another activity might be for a process that
inputs a document with an interaction from its boundary. These processes might output and input many other
documents. The simple interaction bindings on the interaction between the activities identify which of the
interactions in the sub processes are the ones that support the flow between the activities. The bindings ensure that
whenever the document flows during the enactment of the process, that the exact same M0 flow plays all three
interaction parts simultaneously: the output interaction in one sub process, the interaction between the activities, and
the input interaction in the other sub process. In many cases, the simple interaction bindings can be derived from the
types of things flowing, so the modeler does not need to specify them manually. For example, if the sub processes
have only one interaction outputting and inputting a document, then simple interactions transferring documents
between the sub processes will bind to those internal interactions.6

Embedded Processes are Behavior Step Groups that enclose Activities, enabling embedded processes to have their
own lifecycle events, such as starting and ending, that interact with the enclosed activities. Every embedded process
6 Simple interaction bindings can be derived if the interaction between the activities has a transferred item type that is the same

or a super type of exactly one output interaction flow on the source end of the interaction, or has a transferred item type that is
the same or a subtype of exactly one input interaction flow on the target end of the interaction.

48 Business Process Definition MetaModel, Process Definitions, v1.0

has the Abort Group Connection applied to it (see the Behavior Model). This ensures the enclosed steps abort when
the group does.

Activity Loops are Embedded Processes that can execute their enclosed activities as a group multiple times.

The process can proceed past the loop in several ways:

• After all sub executions are complete, with a succession that has the loop as the source.

• After each sub execution, with succession that has the ‘Iteration End’ event part as an internal source. This
part is defined in a user (M1) library in the Activity Model, typed by the ‘Iteration End’ event also defined in
the library.

• After the first sub execution to complete, with a succession that has the ‘Iteration End’ event part as an
internal source, and a guard evaluating to the string "first iteration."

• After each sub execution, but depending on conditions, with a succession that has the ‘Iteration End’ event
part as an internal source, and a guard specified by the modeler.

Activity Loops are of two kinds:

• Conditional Loops execute their enclosed activities multiple times as a group while a specified condition is
true. If the condition is never true, the enclosed activities are never executed. The multiple sub executions
are sequential.

• MultiInstance Loops execute their enclosed activities as a group a certain number of times, as specified by
the modeler in an integer-valued expression evaluated at the time the loop begins executing. MultiInstance
Loops support the option of sequential or parallel sub executions.

Holders are Interactive Parts for storing items temporarily as they flow through the process. For example, a
document, phone number, or package can flow along simple interactions, into a holder for some period, and flow out
later. The type of the holder is the type of thing it can hold.

Substitutable Derivations are Derivations of one process from another that do not alter the interactions with the
boundary (see the Composition Model).

6.4.2 Metamodel Specification

The Activity Model is for capturing orchestrations in way that facilitates modification as boundaries of process of
business change, for example, due to insourcing, outsourcing, mergers, and acquisitions. It uses interactions to
represent inputs and outputs, enabling choreographies to be specified between the process and its environment, as
well as between the performers responsible for steps in the process. The Activity Model is the basis for the BPMN
model in BPDM (see the BPMN Extensions).

Business Process Definition MetaModel, Process Definitions, v1.0 49

6.4.2.1 Activity Model Diagram

Performer Role

{subsets ownedElement[*]}{subsets owner[0..1]}

* delegated performer role0..1delegating performer role

Process

Processor Role

Actor

0..1

{subsets partType[1]}

player actor

*

{subsets type usage[*]}

played performer role

0..1

{subsets part whole[1]}

owner process

0..1

{subsets owned connec table element[*]}

owned processor role

Activity

*

{subsets enc losing part group[*]}

activity performer *

{subsets enc losed part[*]}

performed ac tiv ity

Process Interaction
 Boundary

1

{subsets owner interactive behavior[1]}

owner process

0..1

{subsets owned interaction role[*]}

owned process interaction boundary

Behavior Step

Interactive Part

*

{subsets owned step[*]}

owned activ ity

1

{subsets behav ior step owner[1]}

owner process

Holder

*

{subsets owned connectable element[*]}

owned holder

0..1

{subsets part whole[1]}

owner process

Interactive Part
Part Group

1

{subsets step type[1]}

process type

*

{subsets behav ior usage[*]}

process usage

Interactive Part

Interaction Role

Interactive Behavior

Classifier

Figure 40 - Activity Model Diagram

50 Business Process Definition MetaModel, Process Definitions, v1.0

6.4.2.2 Activity Model Library: Simple Process instances

Figure 41 - Activity Model Library: Simple Process instances

6.4.2.3 Activity Categories Diagram

Figure 42 - Activity Categories Diagram

Business Process Definition MetaModel, Process Definitions, v1.0 51

packagedElementpackagedElement
owningPackageowningPackage

Activity Library:Package

Abort Process:
Process

Abort Event:Course
 Event

Error Process:
Process

Error Event:Course
 Event

induc ed course event

c ourse event context

induc ed course event

c ourse event context

The graphical containement means that the Library
 package ow ns 'packagedElement '

BPMN Library:Package

nestedPack age

nestingPac kage

Activity

Simple Activity

Sub-Process Activity

Behavior Step

Abort Activity

Error Activity

6.4.2.4 Activity Model Library: Loop Happening instance

Figure 43 - Activity Model Library: Loop Happening instance

52 Business Process Definition MetaModel, Process Definitions, v1.0

6.4.2.5 Embedded Process Diagram

Figure 44 - Embedded Process Diagram

Business Process Definition MetaModel, Process Definitions, v1.0 53

6.4.2.6 Process Derivation Diagram

Figure 45 - Process Derivation Diagram

6.4.2.7 Role Realization Diagram

Figure 46 - Role Realization Diagram

6.4.2.8 Abort Activity

Package: Activity Model
isAbstract: No
Generalization: “Simple Activity”

Description

An Abort Activity is a Simple Activity that interrupts the course of a Process. All activities in the Process should
be immediately ended. The Process is ended without compensation or event handling. The type of all Abort
Activity(ies) must be Abort Process provided by the BPMN Library for the Activity Model (Activity Library).

BPMN Notation

This symbol can alternatively represent:

1. Event Part typed by the Abort Event instance of Event.
2. An Abort Activity

54 Business Process Definition MetaModel, Process Definitions, v1.0

Figure 47 - Abort Activity Notation or 'Abort' Behavioral Change Part

6.4.2.9 Activity

Package: Activity Model
isAbstract: Yes
Generalization: “Behavior Step” “Interactive Part”

Description

An Activity is a kind of Behavior Step that activates a Behavior (it operates over time) in the context of a Process.
It can:

• be ordered in time by Succession,
• operate under the responsibility of a Performer Role,
• activate a sub-process or be a simple task that start and stop.

An Activity is also an Interactive Part that receives its inputs and outputs through Interactions coming from other
Interactive Parts in the Process (Activity, Interaction Role, Performer Role, Holder).

Associations

process type : Process [1] Type of the Activity
Subsets step type

BPMN Notation

An Activity is represented by a rounded corner rectangle that MUST be drawn with a single thin black line.

Figure 48 - Activity Notation

6.4.2.10 Activity Loop

Package: Activity Model
isAbstract: No
Generalization: “Embedded Process”

Description

An Activity Loop is an Embedded Process that can execute its enclosed activities multiple times. The process can
proceed past the loop in several ways:

Business Process Definition MetaModel, Process Definitions, v1.0 55

Abort Activity

An Activity

• After all subexecutions are complete, with a succession that has the loop as the source.
• After each subexecution, with succession that has the iterationEnd behavior part as an internal source. This

part is defined in a user (M1) library in the Activity Model, typed by the IterationEnd change also defined in
the library.

• After the first subexecution to complete, with a succession that has the IterationEnd as an internal source,
and a guard evaluating to the string "first iteration."

• After each subexecution, but depending on conditions, with a succession that has the iterationEnd behavior
part as an internal source, and a guard specified by the modeler.

Associations

max iteration : ValueSpecification [0..1] the maximum number of iteration
Subsets ownedElement

BPMN Notation

An Activity Loop has the shape of Activity with a small looping indicator will be displayed at its bottom-center.

Figure 49 - Activity Loop Notation

6.4.2.11 Actor

Package: Activity Model
isAbstract: No
Generalization: “Classifier”

Description

An Actor is an entity that is responsible for the execution of duties specified by a Performer Role.
Further sub-type of Actor will be defined in specifications such as the Organizational Structure Metamodel (OSM)
to add specific requirements such as and can as having certain skills or budget.

6.4.2.12 Conditional Loop

Package: Activity Model
isAbstract: No
Generalization: “Activity Loop”

Description

Conditional Loop is a kind of Activity Loop that will execute its enclosed activities multiple times as a group while
a specified condition is true. If the condition is never true, the enclosed activities are never executed. The multiple
subexecutions are sequential.

Associations

loop condition : Condition [1] Condition that controls the iterations of a Conditional Loop.

56 Business Process Definition MetaModel, Process Definitions, v1.0

Loop

6.4.2.13 Embedded Process

Package: Activity Model
isAbstract: No
Generalization: “Activity” “Behavior Step Group”

Description

An Embedded Process is a kind of Behavior Step Group that groups a set of Activity that, as a whole, act as a
Behavior Step. Thereby, an Embedded Process is typed by a Course that defines its start change and a finish
change. As any Behavior Step, an Embedded Process can be interrupted or constrained in its Course course.

Associations

enclosed activity : Activity [*] Activity that is part of the Embedded Process.
Subsets enclosed behavior step

Constraint

[1] An enclosed activity of an Embedded Process must belong to the Process owning the Embedded Process.

BPMN Notation

A Sub-Process Activity shares the same shape as the Activity object, which is a rounded rectangle. A Sub-Process
Activity is a rounded corner rectangle that MUST be drawn with a single thin black line. If the Sub-Process Activity
is also a transaction, it has a boundary drawn with a double line.

The Sub-Process Activity can be in a collapsed view that hides its details or a Sub-Process can be in an expanded
view that shows the details of its Process Type.

In the collapsed form, the Sub-Process Activity uses a marker to distinguish it as a Sub-Process Activity, rather than
a Simple Activity. The Sub-Process Activity marker MUST be a small square with a plus sign (+) inside. The square
MUST be positioned at the bottom center of the shape.

Figure 50 - Collapsed Sub-Process Activity Notation

Business Process Definition MetaModel, Process Definitions, v1.0 57

Sub-Process
Activity

+

Figure 51 - Uncollapsed Sub-Process Activity Notation

6.4.2.14 Error Activity

Package: Activity Model
isAbstract: No
Generalization: “Simple Activity”

Description

An Error Activity is a kind of Simple Activity that produces an Error Event and that ends its enclosing Course.
In the case where the Error Activity is part of an Embedded Process, the ended Course is this Embedded
Embedded Process, otherwise the ended Course is the Process that owns the Error Activity.

BPMN Notation

This symbol can alternatively represent:

1. Event Part typed by the Error Event instance of Event.
2. An Error Activity

Figure 52 - Error Activity Notation or 'Error' Behavioral Event Step

6.4.2.15 Holder

Package: Activity Model
isAbstract: No
Generalization: “Interactive Part”

Description

A Holder is an Interactive Part storing items temporarily as they flow through the Process. For example, a
document, phone number, or package can flow along simple interactions, into a holder for some period, and flow out
later. The type of the Holder is the type of thing it can hold.

58 Business Process Definition MetaModel, Process Definitions, v1.0

Non Normative Notation

A Holder is represented by a can that MUST be drawn with a single thin black line.

Figure 53 - Holder Notation

6.4.2.16 LoopTestTime

Package: Activity Model
isAbstract: No

Description

Enumeration of the following literal values:

after:

before:

6.4.2.17 Multi Instance Loop

Package: Activity Model
isAbstract: No
Generalization: “Activity Loop”

Description

Multi Instance Loop is a kind of Activity Loop that will execute its enclosed activities as a group of times, as
specified by the number of instances ValueSpecification evaluated at the time the loop begins executing. A Multi
Instance Loop supports the option of sequential or parallel subexecutions as specified by its ordering attribute.

Attributes

ordering: MultiInstanceLoopOrdering [1]

Associations

number of instances : ValueSpecification [1] Number of instance of iteration.
Subsets ownedElement

6.4.2.18 MultiInstanceLoopOrdering

Package: Activity Model
isAbstract: No

Description

Enumeration of the following literal values:

parallel:

Sequential:

Business Process Definition MetaModel, Process Definitions, v1.0 59

Holder

Holder

6.4.2.19 Performer Role

Package: Activity Model
isAbstract: No
Generalization: “Interactive Part” “Part Group”

Description

A Performer Role is a Part Group that takes responsibility of performing activities in the process. Being an
Interactive Part, a Performer Role also has responsibilities to fulfill Interactions that it is involved with other
Performer Roles or with Interaction Roles at the boundary of the Process. A Performer Role is a Typed Part for
specifying Actor that can play the role at process enactment.

A Performer Role can be decomposed into sub Performer Role to delegate responsibility for a subset of its
activities or interactions. A Performer Role may have a realization as defined by a Role Realization that further
specifies how the Performer Role will meet its responsibilities.

Associations

performed activity : Activity [*] Specifies the set of Activity(ies) that are under the responsibility of the
Performer Role.
Subsets enclosed part

player actor : Actor [0..1] Actor that, at runtime, is responsible for the execution of the
responsibilities specified by the Performer Role.
Subsets partType

BPMN Notation

A Performer Role is represented by a Lane. A lane is a sub-partition of the Pool representing the Processor Role of
the process or a sub-partition of the Lane representing its delegating performer role.

A Lane will extend the entire length of its containing Pool or Lane, either vertically or horizontally. If the pool is
invisibly bounded, the lane associated with the pool must extend the entire length of the pool. Text associated with
the Lane (the Performer Role name) can be placed inside the shape, in any direction or location, depending on the
preference of the modeler or modeling tool vendor. Our examples place the name as a banner on the left side (for
horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool name, however,
this is not a requirement.

Figure 54 - Horizontal Lane Notation

A Performer Role is represented by a Lane. A lane is a sub-partition of the Pool representing the Processor Role of
the process or a sub-partition of the Lane representing its delegating performer role.

A Lane will extend the entire length of its containing Pool or Lane, either vertically or horizontally. If the pool is
invisibly bounded, the lane associated with the pool must extend the entire length of the pool.

60 Business Process Definition MetaModel, Process Definitions, v1.0

P
ro

ce
ss

or
 R

ol
e

or
 P

er
fo

rm
er

 R
ol

e

P
er

fo
rm

er

R
ol

e
P

er
fo

rm
er

R

ol
e

P
ro

ce
ss

or
 R

ol
e

or
 P

er
fo

rm
er

 R
ol

e

P
er

fo
rm

er

R
ol

e
P

er
fo

rm
er

R

ol
e

Text associated with the Lane (the Performer Role name) can be placed inside the shape, in any direction or location,
depending on the preference of the modeler or modeling tool vendor. Our examples place the name as a banner on
the left side (for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool
name, however, this is not a requirement.

Figure 55 - Vertical Lane Notation

6.4.2.20 Process

Package: Activity Model
isAbstract: No
Generalization: “Interactive Behavior”

Description

A Process is a kind of Interactive Behavior that describes specific Activity(ies) to be performed, Interactions to
be undertaken during its execution under the authority of a Processor Role (or delegated performer roles).
The process owns the set of activities to be performed as well as the Conditions on when such activities will be
performed and by which performer role. The process also owns the set of Interactive Parts that define the flow of
information and other resources between activities, Performer Role and Interaction Roles.

A specific Interaction Role defines the set of Interactions the process is responsible of: it is the Process
Interaction Boundary. The set of Interactions attached to the Process Interaction Boundary defines the inputs
and outputs of the process.

A Process may utilize sub-processes with a Sub-Process Activity as well as be used in the context of other
processes in the same way.

Associations

owned activity : Activity [*] Activity owned by the Process.
Subsets owned step

Business Process Definition MetaModel, Process Definitions, v1.0 61

Processor Role
or Performer Role

Performer
Role

Performer
Role

owned holder : Holder [*] Holder owned by the Process.
Subsets owned connectable element

owned process interaction boundary : Process Interaction
Boundary [0..1]

Specifies the set of Interactions the process is
responsible for. This set of Interactions defines the
inputs and outputs of the process.
Subsets owned interaction role

owned processor role : Processor Role [0..1] Processor Role of the Process.
Subsets owned connectable element

substitutable derivation : Substitutable Derivation [*]

Non Normative Notation

Each process diagram has a contents area. As an option, it may have a frame and a heading as shown in the
following figure. The frame is a rectangle. The frame may be omitted and implied by the border of the diagram area
provided by a tool. In case the frame is omitted, the heading is also omitted.

The diagram contents area contains the graphical symbols. The heading is a string contained in name tag (rectangle
with cutoff corner) in the upper leftmost corner of the rectangle, with the following syntax: <process name>.

Figure 56 - Process Diagram

6.4.2.21 Process Interaction Boundary

Package: Activity Model
isAbstract: No
Generalization: “Interaction Role”

Description

The Process Interaction Boundary is the Interaction Role through which a Process interacts to get its inputs and
deliver its outputs. The process is responsible to fulfill all Interactions attached to the Process Interaction
Boundary.

BPMN Notation

A "black box pool" is a pool that does not have any process details.

62 Business Process Definition MetaModel, Process Definitions, v1.0

<Process Name>

<Process Content>

Figure 57 - Interaction Role Notation

6.4.2.22 Processor Role

Package: Activity Model
isAbstract: No
Generalization: “Performer Role”

Description

A Processor Role is the top-level Performer Role responsible for all activities and interactions at the boundary of
the Process. As all Performer Roles, it can delegate responsibility for a subset of the process activities and
interactions to Performer Roles, which in turn can delegate smaller subsets to other Performer Roles (delegated
performer role).

A Processor Role may be active or passive. An active processor will control and/or monitor the process and may
manage process resources. A passive processor delegates all responsibilities to delegee role. The actor of a passive
processor may be a "community," consensus body or group of actors who have agreed to work together in a
particular way. The actor of an active processor must be an individual, system, or organization capable of taking
action, initiating and responding to Interactions, and managing resources.

Associations

role realization : Role Realization [*] Specification of the set of Performer Role that the Processor Role
is the realization of.
Subsets ownedElement

BPMN Notation

A Processor Role is represented by a Pool. A Pool is a square-cornered rectangle that MUST be drawn with a solid
single black line.

To help with the clarity of the Diagram, A Pool will extend the entire length of the Diagram, either horizontally or
vertically. However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and modeling
tools can use Pools (and Lanes) in a flexible manner in the interest of conserving the “real estate” of a Diagram on a
screen or a printed page.

The Processor Role Pool MAY be presented without a boundary.

Figure 58 - Processor Role Notation

Business Process Definition MetaModel, Process Definitions, v1.0 63

Interaction Role

Interaction Role as a black box pool

P
ro

ce
ss

or
 R

ol
e

P
ro

ce
ss

or
 R

ol
e

6.4.2.23 Role Realization

Package: Activity Model
isAbstract: No
Generalization: “Element”

Description

A role realization takes a realized performer role and defines a processor role and the associated process that
specifies the specific process to be enacted by the specified processor role as required to meet the responsibilities of
the realized performer role. A performer role may be realized by any number of processor roles as long as they each
satisfy the responsibilities of the role.

Associations

realized performer role : Performer Role [1] Performer Role that is the specification of the Role
Realization.

6.4.2.24 Simple Activity

Package: Activity Model
isAbstract: No
Generalization: “Activity”

Description

A Simple Activity is an Activity which process type is no further composed of other activities.

Constraint

[1] A Simple Activity is typed by a process that has no owned activity.

BPMN Notation

An Activity is represented by a rounded corner rectangle that MUST be drawn with a single thin black line.

Figure 59 - Activity Notation

6.4.2.25 Sub-Process Activity

Package: Activity Model
isAbstract: No
Generalization: “Activity”

Description

A Sub-Process Activity is an Activity which process type is further composed of other activities.

Constraint

[1] A Sub-Process Activity is typed by a process that has owned activity.

64 Business Process Definition MetaModel, Process Definitions, v1.0

An Activity

BPMN Notation

A Sub-Process Activity shares the same shape as the Activity object, which is a rounded rectangle. A Sub-Process
Activity is a rounded corner rectangle that MUST be drawn with a single thin black line. If the Sub-Process Activity
is also a transaction, it has a boundary drawn with a double line.

The Sub-Process Activity can be in a collapsed view that hides its details or a Sub-Process can be in an expanded
view that shows the details of its Process Type.

In the collapsed form, the Sub-Process Activity uses a marker to distinguish it as a Sub-Process Activity, rather than
a Simple Activity. The Sub-Process Activity marker MUST be a small square with a plus sign (+) inside. The square
MUST be positioned at the bottom center of the shape.

Figure 60 - Collapsed Sub-Process Activity Notation

Figure 61 - Uncollapsed Sub-Process Activity Notation

6.4.2.26 Substitutable Derivation

Package: Activity Model
isAbstract: No
Generalization: “Derivation”

Description

A Substitutable Derivation is a kind of Derivation that derives one Process from another and that does not alter
the Interaction at the owned process interaction boundary.

Associations

derived to process : Process [1] Subsets derived to

Business Process Definition MetaModel, Process Definitions, v1.0 65

Sub-Process
Activity

+

6.4.2.27 Instance: Abort Process

Class: Process

Description

Links

Played End Opposite End
Abort Process:course event context induced course event Abort Event
Abort Process:packagedElement owningPackage Activity Library

6.4.2.28 Instance: Activity Library

Class: Package

Description

Links

Played End Opposite End
Activity Library:nestedPackage nestingPackage BPMN Library
Activity Library:nestingPackage nestedPackage Compensation Library
Activity Library:owningPackage packagedElement Activity Loop Behavior
Activity Library:owningPackage packagedElement IterationEnd Event
Activity Library:owningPackage packagedElement Error Process
Activity Library:owningPackage packagedElement Abort Process

6.4.2.29 Instance: Activity Loop Behavior

Class: Course

Description

Links

Played End Opposite End
Activity Loop Behavior:step type
Activity Loop Behavior:event part owner owned event part IterationEnd
Activity Loop Behavior:owner course owned succession start-iterationend
Activity Loop Behavior:owner course owned succession interationend-end
Activity Loop Behavior:packagedElement owningPackage Activity Library
Activity Loop Behavior:specific generalization Generalization

6.4.2.30 Instance: Error Process
Class: Process

Description

Links

Played End Opposite End
Error Process:course event context induced course event Error Event
Error Process:packagedElement owningPackage Activity Library

66 Business Process Definition MetaModel, Process Definitions, v1.0

6.4.2.31 Instance: Generalization

Class: Generalization

Description

Links

Played End Opposite End
Generalization: general Behavior Occurrence
Generalization:generalization specific Activity Loop Behavior

6.4.2.32 Instance: interationend-end

Class: Succession

Description

Links

Played End Opposite End
interationend-end:next succession predecessor IterationEnd
interationend-end:owned succession owner course Activity Loop Behavior
interationend-end:previous succession successor End

6.4.2.33 Instance: IterationEnd Event

Class: Course Event

Description

Links

Played End Opposite End
IterationEnd Event:event part type event usage IterationEnd
IterationEnd Event:packagedElement owningPackage Activity Library

BPMN Notation

Marker of the IterationEnd Event instance of Event.

Figure 62 - Behavioral Event 'Iteration End'

6.4.2.34 Instance: IterationEnd

Class: Event Part

Business Process Definition MetaModel, Process Definitions, v1.0 67

Iteration End Behavioral Event Instance

Description

Links

Played End Opposite End
IterationEnd:event usage event part type IterationEnd Event
IterationEnd:owned event part event part owner Activity Loop Behavior
IterationEnd:predecessor next succession interationend-end
IterationEnd:successor previous succession start-iterationend

6.4.2.35 Instance: start-iterationend

Class: Succession

Description

Links

Played End Opposite End
start-iterationend:next succession predecessor Start
start-iterationend:owned succession owner course Activity Loop Behavior
start-iterationend:previous succession successor IterationEnd

6.5 BPMN Extensions

6.5.1 Introduction

The BPMN Extension provides additions to the Activity Model for BPMN. These provide BPMN names for special
usages of BPDM concepts and additional functionality specific to BPMN. The BPMN Extension includes:

• Activities for scripts, tasks, termination, compensation, and cancelling, along with Embedded processes for
transactions.

• Directives for Processes and Embedded Processes, such as adhoc directives.
• Course Control Parts specific to BPMN, such as Inclusive Merge, and specializations of BPDM course

control parts, such as Inclusive Decisions.
• User (M1) library for compensation and canceling.

The descriptions of these and other elements in the BPMN Extension are available in the BPMN specification.

6.5.2 Metamodel Specification

The BPMN Extension provides additions to the Activity Model for BPMN. These provide BPMN names for special
usages of BPDM concepts and additional functionality specific to BPMN.

68 Business Process Definition MetaModel, Process Definitions, v1.0

6.5.2.1 Adhoc Extension Diagram

Figure 63 - Adhoc Extension Diagram

6.5.2.2 Activity Extensions Diagram

Figure 64 - Activity Extensions Diagram

Business Process Definition MetaModel, Process Definitions, v1.0 69

Script Activity

+language[1]:String
+body[1]:Expression

Activity

Abort Activity

Simple Activity

Terminate

Task

6.5.2.3 Gateway Extension Diagram

Figure 65 - Gateway Extension Diagram

6.5.2.4 BPMN Extensions Library: Compensate Process Instance

Figure 66 - BPMN Extensions Library: Compensate Process Instance

70 Business Process Definition MetaModel, Process Definitions, v1.0

6.5.2.5 BPMN Extensions Library: BPMN Process Occurrence Instance

Figure 67 - BPMN Extensions Library: BPMN Process Occurrence Instance

6.5.2.6 Sequence Flow Extension Diagram

Figure 68 - Sequence Flow Extension Diagram

6.5.2.7 Artifact Flow Extensions Diagram
Figure 69 - Artifact Flow Extensions Diagram

6.5.2.8 Transaction Extensions Diagram

Business Process Definition MetaModel, Process Definitions, v1.0 71

Processing Succession
from (Processing Behavior)

Sequence Flow

Simple Interaction

Artifact Sequence Flow

Artifact Flow

Figure 70 - Transaction Extensions Diagram

6.5.2.9 Compensation Extensions Diagram

Figure 71 - Compensation Extensions Diagram

6.5.2.10 Adhoc Process Directive

Package: BPMN Extensions
isAbstract: No
Generalization: “Process Directive”

Description

Attributes

AdhocOrdering: AdhocOrdering [0..1]
AdHocCompletionCondition: Expression [0..1]

6.5.2.11 AdhocOrdering

Package: BPMN Extensions
isAbstract: No

Description

Enumeration of the following literal values:

parallel:

sequential:

72 Business Process Definition MetaModel, Process Definitions, v1.0

Transaction

Embedded Process

Simple Activity

Compensate Activity

Compensating Activity

Activity

Cancel Activity

6.5.2.12 Artifact Flow

Package: BPMN Extensions
isAbstract: No
Generalization: “Simple Interaction”

Description

An Artifact Flow is a Simple Interaction that has the following characteristics:

• It has a Holder as one of its Interactive Parts.
• The other interactive part is an Activity.
• If this Activity is the source interactive part, it has a next processing succession to the Artifact Flow.
• If this Activity is the target interactive part, it has a previous processing succession from the Artifact

Flow.

6.5.2.13 Artifact Sequence Flow

Package: BPMN Extensions
isAbstract: No
Generalization: “Simple Interaction”

Description

An Artifact Sequence Flow is a Simple Interaction that has the following characteristics:

• Its Interactive Part are activities.
• The source interactive part has a next processing succession to the Artifact Sequence Flow.

BPMN Notation

An Artifact Sequence Flow is represented by a line with a solid arrowhead that MUST be drawn with a solid single
line.

The type of the element transferred by the information flow is represented by a portrait-oriented rectangle that has its
upper-right corner folded over that MUST be drawn with a solid single black line.

Figure 72 - Artifact Sequence Flow Notation

Business Process Definition MetaModel, Process Definitions, v1.0 73

Activity (to)Activity (from)

Transferred Item Type

Non Normative Notation

Figure 73 - Interaction Flow between Activities and Statement Condition

Figure 74 - Interaction Flow between Activities and Time Event Condition

6.5.2.14 Cancel Activity

Package: BPMN Extensions
isAbstract: No
Generalization: “Simple Activity”

Description

A Cancel Activity is a kind of Simple Activity that causes the Cancel Event of its enclosing Behavior.
In cases where the Cancel Activity is part of an Embedded Process, the canceled Behavior is this Embedded
Process, otherwise the canceled Behavior is the Process that owns the Cancel Activity.

BPMN Notation

This symbol can alternatively represent:

1. Event Part typed by the Cancel Event instance of Behavioral Event.
2. A Cancel Activity

Figure 75 - Cancel Activity Notation or 'Cancel' Behavioral Event Step

74 Business Process Definition MetaModel, Process Definitions, v1.0

Activity (to)Activity (from)

Transferred Item Type

Statement Condition

Activity (to)Activity (from)

Transferred Item Type

Time Condition

Cancel Activity

6.5.2.15 Compensate Activity

Package: BPMN Extensions
isAbstract: No
Generalization: “Simple Activity”

Description

Compensate Activity is a kind of Simple Activity that ends a Process and indicates that a Compensation is
necessary.

BPMN Notation

Figure 76 - Compensate Activity Notation

6.5.2.16 Compensating Activity

Package: BPMN Extensions
isAbstract: No
Generalization: “Activity”

Description

A Compensating Activity is an Activity that follows an Event Monitor conditioned by the Compensate Event
Behavioral Event. A Compensating Activity cannot have successors.

Constraint

[1] A compensating activity cannot have next processing succession.

BPMN Notation

A Compensating Activity shares the standard activity shape with the Compensate Event marker displayed in the
bottom center of the activity.

Figure 77 - Compensating Activity Notation

6.5.2.17 Complex Decision

Package: BPMN Extensions
isAbstract: No
Generalization: “Parallel Split”

Business Process Definition MetaModel, Process Definitions, v1.0 75

Compensate Activity

Compensating
Activity

Description

A Complex Decision is a Parallel Split that has an expression determining which outgoing Successions apply.

Attributes

split expression: ValueSpecification [1] Has to evaluate to a boolean value that when evaluated to
true enables the split.

BPMN Notation

Figure 78 - Complex Decision Notation

6.5.2.18 Complex Merge

Package: BPMN Extensions
isAbstract: No
Generalization: “Exclusive Join”

Description

A Complex Merge is an Exclusive Join that has an expression determining which incoming Successions must
apply for the merge to apply.

Attributes

merge expression: ValueSpecification [1]

BPMN Notation

76 Business Process Definition MetaModel, Process Definitions, v1.0

Alternative 1

Alternative 2

Default Alternative

Figure 79 - Complex Join Notation

6.5.2.19 Event Decision

Package: BPMN Extensions
isAbstract: No
Generalization: “Parallel Split”

Description

An Event Decision applies a race connector to the parts on the target end of processing successions that have the
event decision as source (see Processing Behavior). The targeted parts are change condition steps. To wait for
incoming messages, these can include behavioral change condition steps detecting the finish of simple interactions
from the boundary to the processor role.

BPMN Notation

Figure 80 - Event Decision Notation

6.5.2.20 Exclusive Decision

Package: BPMN Extensions
isAbstract: No
Generalization: “Exclusive Split”

Description

Same as Exclusive Split but with a different name in BPMN.

Business Process Definition MetaModel, Process Definitions, v1.0 77

Event Monitor 1, monitoring a Simple Interaction

Event Monitor 2, monitoring a Simple Interaction

Event Monitor 3, monitoring a Time Event

BPMN Notation

The Exclusive Split shares the same basic shape, called a Gateway, of the generic Gateway. The Exclusive Split
MAY use a marker that is shaped like an “X” and is placed within the Gateway diamond to distinguish it from other
Gateways. This marker is not required. A Diagram SHOULD be consistent in the use of the “X” internal indicator.
That is, a Diagram SHOULD NOT have some Exclusive Splits with an indicator and some Exclusive Splits without
an indicator.

The default succession is represented by a default Marker that MUST be a backslash near the beginning of the line
representing the Succession.

Figure 81 - Exclusive Split Notation

6.5.2.21 Exclusive Merge

Package: BPMN Extensions
isAbstract: No
Generalization: “Exclusive Join”

Description

Same as Exclusive Join but with a different name in BPMN.

BPMN Notation

The Exclusive Join shares the same basic shape of the generic Gateway.

78 Business Process Definition MetaModel, Process Definitions, v1.0

Alternative 1

Alternative 2

Default Alternative

Alternative 1

Alternative 2

Default Alternative

X

Figure 82 - Exclusive Merge Notation

6.5.2.22 Inclusive Decision

Package: BPMN Extensions
isAbstract: No
Generalization: “Parallel Split”

Description

Inclusive Decision is a Parallel Split that has an outgoing Succession specified as the default if none of the other
outgoing successions apply due to their conditions.

Associations

default : Succession [0..1] Succession enabled by default if no other next succession connected to
the Inclusive Decision has been enabled.

BPMN Notation

Figure 83 - Inclusive Split Notation

6.5.2.23 Inclusive Merge

Business Process Definition MetaModel, Process Definitions, v1.0 79

Condition 1

Condition 2

Default

Package: BPMN Extensions
isAbstract: No
Generalization: “Gateway”

Description

An Inclusive Merge is a Gateway that requires none of the upstream activities to be executing for the join to apply.

BPMN Notation

Figure 84 - Inclusive Merge Notation

6.5.2.24 Process Directive

Package: BPMN Extensions
isAbstract: No
Generalization: “Element”

Description

6.5.2.25 Script Activity

Package: BPMN Extensions
isAbstract: No
Generalization: “Activity”

Description

Attributes

language: String [1]
body: Expression [1]

6.5.2.26 Sequence Flow

Package: BPMN Extensions
isAbstract: No
Generalization: “Processing Succession”

Description

Sequences Flow is Processing Succession from one part to another (see Processing Behavior). If the source part of
the succession is typed (not a control part), then if the source part has no intermediate events attached, the source

80 Business Process Definition MetaModel, Process Definitions, v1.0

end refers to the end part (which can be omitted as the default), otherwise to the finish part. If the target part is
typed, then the target part refers to the start part (which can be omitted as the default).

BPMN Notation

A Succession is a line with a solid arrowhead that MUST be drawn with a solid single line.

Figure 85 - Succession Notation

6.5.2.27 Task

Package: BPMN Extensions
isAbstract: No
Generalization: “Simple Activity”

Description

BPMN name for Simple Activity.

BPMN Notation

An Activity is represented by a rounded corner rectangle that MUST be drawn with a single thin black line.

Figure 86 - Activity Notation

6.5.2.28 Terminate

Package: BPMN Extensions
isAbstract: No
Generalization: “Abort Activity”

Description

Terminate is the BPMN name for Abort Activity.

BPMN Notation

This symbol can alternatively represent:

1. Event Part typed by the Abort Event instance of Behavioral Event.
2. An Abort Activity

Business Process Definition MetaModel, Process Definitions, v1.0 81

A succession

An Activity

Abort Activity

Figure 87 - Abort Activity Notation or 'Abort' Behavioral Change Part

6.5.2.29 Transaction

Package: BPMN Extensions
isAbstract: No
Generalization: “Embedded Process”

Description

A Transaction is a kind of Embedded Process which enclosed activity (ies) can be rolled back by the means of an
Actor.

BPMN Notation

Figure 88 - Transaction Notation

6.5.2.30 Instance: Cancel Event

Class: Behavioral Event

Description

Links

Played End Opposite End
Cancel Event:event part type behavioral event usage Cancel
Cancel Event:induced behavioral event behavioral event context Cancel Process
Cancel Event:packagedElement owningPackage Compensation Library

BPMN Notation

Marker of the Cancel Event instance of Behavioral Event.

Figure 89 - Behavioral Event 'Cancel' Instance Notation

82 Business Process Definition MetaModel, Process Definitions, v1.0

Transaction

Cancel Behavioral Event Instance

6.5.2.31 Instance: Cancel Process

Class: Process

Description

6.5.2.32 Links Instance: cancel-end

Class: Happening Succession

Description

Links

Played End Opposite End
cancel-end:next happening succession predecessor Cancel
cancel-end:owned course succession owner course Process Occurrence
cancel-end:previous happening succession successor End

6.5.2.33 Instance: Cancel

Class: Event Part

Description

Links

Played End Opposite End
Cancel:behavioral event usage event part type Cancel Event
Cancel:owned event part owner behavior Process Occurrence
Cancel:predecessor next happening succession cancel-end
Cancel:successor previous happening succession start-cancel

BPMN Notation

Event Part typed by the Cancel instance of Behavioral Event.

Figure 90 - Event Part : Cancel Notation

6.5.2.34 Instance: Compensate Event

Class: Behavioral Event

Description

Links

Played End Opposite End
Compensate Event:event part type behavioral event usage Compensate
Compensate Event:induced behavioral event behavioral event context Compensate Process
Compensate Event:packagedElement owningPackage Compensation Library

Business Process Definition MetaModel, Process Definitions, v1.0 83

Cancel Event Part

BPMN Notation

Marker of the Compensate Event instance of Behavioral Event.

Figure 91 - Behavioral Event 'Compensate' Instance Notation

6.5.2.35 Instance: Compensate Process

Class: Process

Description

Links

Played End Opposite End
Compensate Process:behavioral event context induced behavioral event Compensate Event
Compensate Process:packagedElement owningPackage Compensation Library

6.5.2.36 Instance: compensate-end

Class: Happening Succession

Description

Links

Played End Opposite End
compensate-end:next happening succession predecessor Compensate
compensate-end:previous happening succession successor End

6.5.2.37 Instance: Compensate

Class: Event Part

Description

Links

Played End Opposite End
Compensate:behavioral event usage event part type Compensate Event
Compensate:owned event part owner behavior Process Occurrence
Compensate:predecessor next happening succession compensate-end
Compensate:successor previous happening succession start-compensate

6.5.2.38 Instance: Compensation Library

Class: Package

Description

Links

Played End Opposite End
Compensation Library:nestedPackage nestingPackage Activity Library
Compensation Library:owningPackage packagedElement Process Occurrence
Compensation Library:owningPackage packagedElement Cancel Event

84 Business Process Definition MetaModel, Process Definitions, v1.0

Compensate Behavioral Event Instance

Played End Opposite End
Compensation Library:owningPackage packagedElement Compensate Event
Compensation Library:owningPackage packagedElement Compensate Process
Compensation Library:owningPackage packagedElement Cancel Process

6.5.2.39 Instance: Generalization

Class: Generalization

Description

Links

Played End Opposite End
Generalization: general Behavior Occurrence
Generalization:generalization specific Process Occurrence

6.5.2.40 Instance: Process Occurrence

Class: Process

Description

Process based on the Behavior Occurrence that produces the following additional lifecycle events: Compensate
Event, Cancel Event.

Links

Played End Opposite End
Process Occurrence: owned course succession startseq-end
Process Occurrence:owner behavior owned event part Compensate
Process Occurrence:owner behavior owned event part Cancel
Process Occurrence:owner course owned course succession cancel-end
Process Occurrence:owner course owned course succession start-compensate
Process Occurrence:owner course owned course succession start-cancel
Process Occurrence:packagedElement owningPackage Compensation Library
Process Occurrence:specific generalization Generalization

6.5.2.41 Instance: start-cancel

Class: Happening Succession

Description

Links

Played End Opposite End
start-cancel:next happening succession predecessor Start
start-cancel:owned course succession owner course Process Occurrence
start-cancel:previous happening succession successor Cancel

6.5.2.42 Instance: start-compensate

Class: Happening Succession

Business Process Definition MetaModel, Process Definitions, v1.0 85

Description

Links

Played End Opposite End
start-compensate:next happening succession predecessor Start
start-compensate:owned course succession owner course Process Occurrence
start-compensate:previous happening succession successor Compensate

6.5.2.43 Instance: StartFromSequence

Class: Event Part

Description

Links

Played End Opposite End
StartFromSequence:predecessor next happening succession startseq-end

6.5.2.44 Instance: startseq-end

Class: Happening Succession

Description

Links

Played End Opposite End
startseq-end:next happening succession predecessor StartFromSequence
startseq-end:owned course succession Process Occurrence
startseq-end:previous happening succession successor End

6.6 Interaction Protocol Model

6.6.1 Introduction

The Interaction Protocol Model is for capturing choreographies. It enables interactions to be grouped together into
larger, reusable interactions. For example, an interaction that exchanges goods between companies might be used
with other interactions in a larger protocol representing a partnership of the companies. This protocol might be
adopted by a standards body and reused between many pairs of companies. The interactions in a protocol may be
simple interactions that have no sub-interactions, or may be other protocols.

The Interaction Model provides:

• Behaviors with steps that are interactions (Interaction Protocols).
• Interactions representing the reuse of protocols (Compound Interactions).
• A way to specify how a reused protocol ties in with the protocols using it (Compound Interaction Binding).

Interaction Protocols are Interactive Behaviors where the Behavior Steps are Interactions between Interaction Roles
(see Simple Interaction Model). For example, a protocol between two companies might start with one company
sending another an order, then the other sending back a product, and then the original company sending payment,
and finally receiving a receipt. These four simple interactions can be grouped into an interaction protocol, with
successions between them to specify which interaction comes before which (see the Behavior Model). The two

86 Business Process Definition MetaModel, Process Definitions, v1.0

companies are interaction roles in the protocol (see the Simple Interaction Model).
Compound Interactions are Interactions that are also Behavior Steps, enabling them to reuse Interaction Protocols.
For example, two companies might use the ordering protocol described above many times as part of a larger
partnership. This partnership is an interaction protocol that reuses the ordering protocol many times. Each reuse is
represented as a compound interaction in the larger partnership protocol. Compound Interactions are complementary
to Simple Interactions, which are Interactions that do not have sub interactions (see the Simple Interaction Model).

Compound Interaction Bindings are Connected Part Bindings that specify how reused protocols tie in with the larger
protocols reusing them (see the Behavior Model). For example, reusing the ordering protocol described above
requires specifying which part in the larger partnership identifies the buying company and which identifies the
selling company. Both companies will play these roles at some point in the larger partnership, so the bindings must
be specified for each compound interaction. Compound Interaction Bindings are also used in processes (see the
Activity Model).

6.6.2 Metamodel Specification

The Interaction Protocol Model is for capturing choreographies. It enables interactions to be grouped together into
larger, reusable interactions. For example, an interaction that exchanges goods between companies might be used
with other interactions within a larger protocol representing a partnership of the companies. This protocol might be
adopted by a standards body and reused between many pairs of companies. The interactions in a protocol may be
simple interactions that have no sub-interactions, or may be other protocols.

6.6.2.1 Interaction Protocol

Figure 92 - Interaction Protocol

6.6.2.2 Compound Interaction

Business Process Definition MetaModel, Process Definitions, v1.0 87

Package: Interaction Protocol Model
isAbstract: No
Generalization: “Interaction”

Description

A Compound Interaction is an Interaction that is also a Behavior Step, enabling it to reuse an Interaction
Protocol. Compound Interaction is complementary to Simple Interaction, which is an Interaction that doesn't
have sub-interactions.

Associations

interaction type : Interaction Protocol [0..1] Interaction Protocol that defines the type of
the Compound Interaction.

interactive part involved in interaction : Interactive Part [2..*] Subsets involved interactive part
owned binding : Compound Interaction Binding [*] Subsets owned part binding

Non Normative Notation

A compound interaction is represented by a rounded corner rectangle that MUST be drawn with a double thin black
line.

Figure 93 - Compound Interaction Notation

6.6.2.3 Compound Interaction Binding

Package: Interaction Protocol Model
isAbstract: No
Generalization: “Connected Part Binding”

Description

A Compound Interaction Binding is a Connected Part Binding that specifies how an Interaction Protocol
reused by a Compound Interaction ties in with the larger Behavior reusing it. For each Interactive Part involved
in a Compound Interaction, there is a Compound Interaction Binding that specifies which Interaction Role it
plays in the Interaction Protocol.

Associations

played interaction role : Interaction Role [1] The Interaction Role that is played by the player interactive
part connected by the Compound Interaction Binding.
Subsets internal played part

player interactive part : Interactive Part [1] The Interactive PartInteractive Part being playing the played
interaction role as defined by the Compound Interaction
Binding.
Subsets player part

6.6.2.4 Interaction Protocol

Package: Interaction Protocol Model
isAbstract: No

88 Business Process Definition MetaModel, Process Definitions, v1.0

Compound
Interaction

Generalization: “Interactive Behavior”

Description

An Interaction Protocol is a kind of Interactive Behavior where Behavior Steps are Interactions that occur
between Interaction Roles. The set of Interactions defines the purpose of the Interaction Protocol.

6.7 Class Hierarchies
The Class Hierarchies is not a real package. It groups diagrams that provide a synthesis of class hierarchies.
The BPDM Class Hierarchies is not a real package. It groups diagrams that provide a synthesis of class hierarchies.

6.7.1 Condition Hierarchy

Figure 94 - Condition Hierarchy

Business Process Definition MetaModel, Process Definitions, v1.0 89

Condition

Event Condition

Compound Condition

Fact Condition

Opaque Condition

Behavior Event
 Condition

Fact Change Condition

Time Event Condition

Irreflexive Condition

6.7.2 Happening OverTime Hierarchy

Figure 95 - Happening OverTime Hierarchy

6.7.3 Event Hierarchy

Figure 96 - Event Hierarchy

90 Business Process Definition MetaModel, Process Definitions, v1.0

Happening Over Time

Clock

Course

Behavior

Interaction Protocol

Process

Interactive Behavior

Event

Fact Change

Time Event

Cycle Event

Relative TimeDate
 Event

TimeDate Event

Course Event

6.7.4 Behavioral Step Hierarchy

Figure 97 - Behavioral Step Hierarchy

6.7.5 Simple Interaction Hierarchy

Figure 98 - Simple Interaction Hierarchy

Business Process Definition MetaModel, Process Definitions, v1.0 91

Behavior Step

Embedded Process

Event Monitor

Activity

Interaction

Compound Interaction

Simple Interaction

Sub-Process Activity

Simple Activity

Cancel Activity

Abort Activity

Behavior Step Group

Error Activity

Activity Loop

Conditional Loop

Multi Instance Loop

+ordering[1]:MultiInstanceLoopOrdering

Happening Part

Event Part

Simple Interaction

Artifact Flow

Artifact Sequence Flow

Message

End Message

Received Intermediate

 Message

Message Flow

Start Message

Sent Intermediate
 Message

6.7.6 Interactive Part Hierarchy

Figure 99 - Interactive Part Hierarchy

7 BPMN Notation Summary
7.1 Interaction Role Notation
A "black box pool" is a pool that does not have any process details.

Figure 100 - Interaction Role Notation

Represented Elements

Interaction RoleProcess Interaction Boundary

92 Business Process Definition MetaModel, Process Definitions, v1.0

Interactive Part

Interaction Role

Holder

Performer Role

Activity

Process Interaction
 Boundary

Interaction Role

Interaction Role as a black box pool

7.2 Processor Role Notation
A Processor Role is represented by a Pool. A Pool is a square-cornered rectangle that MUST be drawn with a solid
single black line.

To help with the clarity of the Diagram, A Pool will extend the entire length of the Diagram, either horizontally or
vertically. However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and modeling
tools can use Pools (and Lanes) in a flexible manner in the interest of conserving the “real estate” of a Diagram on a
screen or a printed page.

The Processor Role Pool MAY be presented without a boundary.

Figure 101 - Processor Role Notation

Represented Elements

Processor Role

7.3 Horizontal Lane Notation
A Performer Role is represented by a Lane. A lane is a sub-partition of the Pool representing the Processor Role of
the process or a sub-partition of the Lane representing its delegating performer role.

A Lane will extend the entire length of its containing Pool or Lane, either vertically or horizontally. If the pool is
invisibly bounded, the lane associated with the pool must extend the entire length of the pool.

Text associated with the Lane (the Performer Role name) can be placed inside the shape, in any direction or location,
depending on the preference of the modeler or modeling tool vendor. Our examples place the name as a banner on
the left side (for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool
name, however, this is not a requirement.

Business Process Definition MetaModel, Process Definitions, v1.0 93

Pr
oc

es
so

r R
ol

e
Pr

oc
es

so
r R

ol
e

P
ro

ce
ss

or
 R

ol
e

or
 P

er
fo

rm
er

 R
ol

e

P
er

fo
rm

er

R
ol

e
P

er
fo

rm
er

R

ol
e

P
ro

ce
ss

or
 R

ol
e

or
 P

er
fo

rm
er

 R
ol

e

P
er

fo
rm

er

R
ol

e
P

er
fo

rm
er

R

ol
e

Figure 102 - Horizontal Lane Notation

Represented Elements

Performer Role

7.4 Vertical Lane Notation

A Performer Role is represented by a Lane. A lane is a sub-partition of the Pool representing the Processor Role of
the process or a sub-partition of the Lane representing its delegating performer role.

A Lane will extend the entire length of its containing Pool or Lane, either vertically or horizontally. If the pool is
invisibly bounded, the lane associated with the pool must extend the entire length of the pool.

Text associated with the Lane (the Performer Role name) can be placed inside the shape, in any direction or location,
depending on the preference of the modeler or modeling tool vendor. Our examples place the name as a banner on
the left side (for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool
name, however, this is not a requirement.

Figure 103 - Vertical Lane Notation

Represented Elements

Performer Role

7.5 Time Event Notation
A Time Event is represented by a clock.

94 Business Process Definition MetaModel, Process Definitions, v1.0

Processor Role
or Performer Role

Performer
Role

Performer
Role

Figure 104 - Time Event Notation

Represented Elements

Time Event

7.6 Fact Change Notation

Figure 105 - Fact Change Notation

Represented Elements

Fact Change

7.7 Course Event 'Error' Instance Notation
Marker of the Error Event instance of Event.

Figure 106 - Course Event 'Error' Instance Notation

Represented Elements

 Error Event

7.8 Course Event 'Cancel' Instance Notation
Marker of the Cancel Event instance of Event.

Business Process Definition MetaModel, Process Definitions, v1.0 95

Time Event

Fact Change

Error Behavioral Event Instance

Figure 107 - Course Event 'Cancel' Instance Notation

Represented Elements

Cancel Event

7.9 Course Event 'Iteration End'

Marker of the IterationEnd Event instance of Event.

Figure 108 - Course Event 'Iteration End'

Represented Elements

IterationEnd Event

7.10 Course Event 'Abort' Notation
Marker of the Abort Event instance of Event.

Figure 109 - Course Event 'Abort' Notation

Represented Elements

Abort Event

96 Business Process Definition MetaModel, Process Definitions, v1.0

Cancel Behavioral Event Instance

Iteration End Behavioral Event Instance

Abort Behavioral Event Instance

7.11 Course Event 'Compensate' Instance Notation
Marker of the Compensate Event instance of Event.

Figure 110 - Course Event 'Compensate' Instance Notation

Represented Elements

Compensate Event

7.12 Event Part : Start Notation
An Event Part typed by the Start Event instance of Event is drawn as a circle that MUST be drawn with a single
thin line.

Figure 111 - Event Part : Start Notation

Represented Elements

Start

7.13 Event Part : Start with 'Time Event Condition' Notation
Shape of Start when it has an Event Monitor with a Time Event Condition, as its predecessor.

Figure 112 - Event Part : Start with 'Time Event Condition' Notation

Represented Elements

Start

7.14 Event Part : Start with 'Fact Change Condition' Notation

Business Process Definition MetaModel, Process Definitions, v1.0 97

Compensate Behavioral Event Instance

Start Event Part

Start with Time condition

When a Start Event Event Part is conditioned by a Fact Change Condition, a Fact Change marker is added to
the Start Event Event Part shape.

Figure 113 - Event Part : Start with 'Fact Change Condition' Notation

Represented Elements

Start

7.15 Event Part : End Notation
The shape of the End instance of Event Part is drawn as a circle that MUST be drawn with a single thick black line.

Figure 114 - Event Part : End Notation

Represented Elements

End

7.16 Event Part : Error Notation
The shape of the Error instance of Event Part use the shape of its super-property (End) with the marker of its event
type: Error Event.

Figure 115 - Event Part : Error Notation

Represented Elements

Error

98 Business Process Definition MetaModel, Process Definitions, v1.0

Start with Fact Change Condition

End Event Part

Error Event Part

7.17 Event Part : Cancel Notation
Event Part typed by the Cancel instance of Event.

Figure 116 - Event Part : Cancel Notation

Represented Elements

Cancel

7.18 Event Part : Abort Notation
The shape of the Abort instance of Event Part uses the shape of its super-property (End) with the marker of its
event type: Abort Event.

Figure 117 - Event Part : Abort Notation

Represented Elements

Abort

7.19 Error Handling Notation
Error Event Event Part used for error handling.The Error Event Event Part is linked to the Succession instance
through the source event part association.

Business Process Definition MetaModel, Process Definitions, v1.0 99

Cancel Event Part

Abort Event Part

Figure 118 - Error Handling Notation

Represented Elements

Error

7.20 Activity Notation
An Activity is represented by a rounded corner rectangle that MUST be drawn with a single thin black line.

Figure 119 - Activity Notation

Represented Elements

ActivitySimple ActivityTask

7.21 Collapsed Sub-Process Activity Notation
A Sub-Process Activity shares the same shape as the Activity object, which is a rounded rectangle. A Sub-Process
Activity is a rounded corner rectangle that MUST be drawn with a single thin black line. If the Sub-Process Activity
is also a transaction, it has a boundary drawn with a double line.

The Sub-Process Activity can be in a collapsed view that hides its details or a Sub-Process can be in an expanded
view that shows the details of its Process Type.

In the collapsed form, the Sub-Process Activity uses a marker to distinguish it as a Sub-Process Activity, rather than
a Simple Activity. The Sub-Process Activity marker MUST be a small square with a plus sign (+) inside. The square

100 Business Process Definition MetaModel, Process Definitions, v1.0

Behavior Step

Error Handling

Error Event Part as used in Error Handling

An Activity

MUST be positioned at the bottom center of the shape.

Figure 120 - Collapsed Sub-Process Activity Notation

Represented Elements

Embedded ProcessSub-Process Activity

7.22 Uncollapsed Sub-Process Activity Notation

Figure 121 - Uncollapsed Sub-Process Activity Notation

Represented Elements

Embedded ProcessSub-Process Activity

Business Process Definition MetaModel, Process Definitions, v1.0 101

Sub-Process
Activity

+

7.23 Activity Loop Notation
An Activity Loop has the shape of Activity with a small looping indicator that will be displayed at its bottom-
center.

Figure 122 - Activity Loop Notation

Represented Elements

Activity Loop

7.24 Cancel Activity Notation or 'Cancel' Event Part
This symbol can alternatively represent:

1. Event Part typed by the Cancel Event instance of Event.
2. A Cancel Activity

Figure 123 - Cancel Activity Notation or 'Cancel' Event Part

Represented Elements

Cancel Activity Cancel

7.25 Error Activity Notation or 'Error' Event Part
This symbol can alternatively represent:

1. Event Part typed by the Error Event instance of Event.
2. An Error Activity

102 Business Process Definition MetaModel, Process Definitions, v1.0

Loop

Cancel Activity

Figure 124 - Error Activity Notation or 'Error' Event Part

Represented Elements

Error Activity Error

7.26 Abort Activity Notation or 'Abort' Event Part
This symbol can alternatively represent:

• Event Part typed by the Abort Event instance of Event.
• An Abort Activity

Figure 125 - Abort Activity Notation or 'Abort' Event Part

Represented Elements

Abort ActivityTerminate

7.27 Compensate Activity Notation

Figure 126 - Compensate Activity Notation

Represented Elements

Compensate Activity

Business Process Definition MetaModel, Process Definitions, v1.0 103

Abort Activity

Compensate Activity

7.28 Compensating Activity Notation
A Compensating Activity shares the standard activity shape with the Compensate Event marker displayed in the
bottom center of the activity.

Figure 127 - Compensating Activity Notation

Represented Elements

Compensating Activity

7.29 Event Monitor Notation
This symbol is a circle, with an open center. The circle MUST be drawn with a double thin black line. It can
alternatively represent:

• Event Parts that are not typed by Start Event or End Event.
• Event Monitors

Markers can be placed within the circle to indicate the nature of the Event associated with the Event Part or Event
Monitor.

Figure 128 - Event Monitor Notation

Represented Elements

Event Monitor

7.30 Event Monitor monitoring a Time Event Condition
Event Monitor shape with a Time Event as a maker.

104 Business Process Definition MetaModel, Process Definitions, v1.0

Compensating
Activity

Event Monitor

Time Event Monitor

Figure 129 - Event Monitor monitoring a Time Event Condition

Represented Elements

Event Monitor

7.31 Event Monitor monitoring a Fact Change Condition
Event Monitor shape with a Fact Change as a maker.

Figure 130 - Event Monitor monitoring a Fact Change Condition

Represented Elements

Event Monitor

7.32 Event Monitor monitoring a 'Compensate' Behavior Event
Condition

Event Monitor shape with the marker of the Compensate Event instance of Event.

Figure 131 - Event Monitor monitoring a 'Compensate' Behavior Event Condition

Represented Elements

Event Monitor

7.33 Event Monitor monitoring a Compound Event Condition

Business Process Definition MetaModel, Process Definitions, v1.0 105

Event Monitor for Fact Change

Compensation Event Monitor

Event Monitor
monitoring a Compound Event Condition

Figure 132 - Event Monitor monitoring a Compound Event Condition

Represented Elements

Event Monitor

7.34 Succession Notation
A Succession is a line with a solid arrowhead that MUST be drawn with a solid single line.

Figure 133 - Succession Notation

Represented Elements

SuccessionSequence Flow

7.35 Event Decision Notation

Figure 134 - Event Decision Notation

Represented Elements

Event Decision

7.36 Message Notation
The shape of Message depends on its sub-types.

The line connecting a Message to its Interaction Role(s) MUST have an open arrowhead and MUST be drawn with
a dashed single black line.

The line connecting a Message to other kind of Interactive Part MUST have a solid arrowhead and MUST be
drawn with a solid single line.

106 Business Process Definition MetaModel, Process Definitions, v1.0

A succession

Event Monitor 1, monitoring a Simple Interaction

Event Monitor 2, monitoring a Simple Interaction

Event Monitor 3, monitoring a Time Event

Figure 135 - Message Notation

Represented Elements

Message

7.37 Start Message Notation
Notation for Start Message or Simple Interaction categorized as a Start Message.

Figure 136 - Start Message Notation

Represented Elements

Start Message

7.38 End Message Notation
Notation for End Message or Simple Interaction categorized as an End Message.

Figure 137 - End Message Notation

Represented Elements

End Message

Business Process Definition MetaModel, Process Definitions, v1.0 107

Start Message End Message Received Intermediate Message

Message Flow

Sent Intermediate Message

Start Message

End Message

7.39 Sent Intermediate Message Notation

Figure 138 - Sent Intermediate Message Notation

Represented Elements

Sent Intermediate Message

108 Business Process Definition MetaModel, Process Definitions, v1.0

Sent Intermediate Message

Record
suppliers‘
quotations

Supplier's offer

Send Quotation
Requisition to

suppliers

Invitation to tender

Supplier

7.40 Received Intermediate Message Notation

Figure 139 - Received Intermediate Message Notation

Represented Elements

Received Intermediate Message

7.41 Message Flow Notation
A Message Flow is a line with an open arrowhead that MUST be drawn with a dashed single black line.

Figure 140 - Message Flow Notation

Represented Elements

Message Flow

Business Process Definition MetaModel, Process Definitions, v1.0 109

Received Intermediate Message

Record
suppliers‘
quotations

Supplier's offer

Send Quotation
Requisition to

suppliers

Invitation to tender

Supplier

Message Flow

7.42 Artifact Sequence Flow Notation
An Artifact Sequence Flow is represented by a line with a solid arrowhead that MUST be drawn with a solid single
line.

The type of the element transferred by the information flow is represented by a portrait-oriented rectangle that has its
upper-right corner folded over that MUST be drawn with a solid single black line.

Figure 141 - Artifact Sequence Flow Notation

Represented Elements

Artifact Sequence Flow

7.43 Part Group Notation

Figure 142 - Part Group Notation

Represented Elements

Part Group

110 Business Process Definition MetaModel, Process Definitions, v1.0

Activity (to)Activity (from)

Transferred Item Type

Part Group

7.44 Transaction Notation

Figure 143 - Transaction Notation

Represented Elements

Transaction

7.45 Gateway Notation
A Gateway is represented by a diamond that has been used in many flow chart notations for exclusive branching and
is familiar to most modelers. The diamond MUST be drawn with a single thin black line.

It is not a requirement that predecessor and successor Successions must connect to the corners of the diamond.
Successions can connect to any position on the boundary of the Gateway.

The shape of the different sub-types of Gateway are differentiated by an internal marker. This marker MUST be
placed inside the shape, in any size or location, depending on the preference of the modeler or modeling tool vendor.

Figure 144 - Gateway Notation

Represented Elements

Gateway

7.46 Exclusive Split Notation
The Exclusive Split shares the same basic shape, called a Gateway, of the generic Gateway. The Exclusive Split
MAY use a marker that is shaped like an “X” and is placed within the Gateway diamond to distinguish it from other
Gateways. This marker is not required. A Diagram SHOULD be consistent in the use of the “X” internal indicator.
That is, a Diagram SHOULD NOT have some Exclusive Splits with an indicator and some Exclusive Splits without
an indicator.

Business Process Definition MetaModel, Process Definitions, v1.0 111

Transaction

Gateway

The default succession is represented by a default Marker that MUST be a backslash near the beginning of the line
representing the Succession.

Figure 145 - Exclusive Split Notation

Represented Elements

Exclusive DecisionExclusive Split

7.47 Exclusive Merge Notation
The Exclusive Join shares the same basic shape of the generic Gateway.

112 Business Process Definition MetaModel, Process Definitions, v1.0

Alternative 1

Alternative 2

Default Alternative

Alternative 1

Alternative 2

Default Alternative

X

Figure 146 - Exclusive Merge Notation

Represented Elements

Exclusive JoinExclusive Merge

7.48 Parallel Split Notation
The Parallel Split uses the shape of Gateway, called Gateway and MUST use a marker that is in the shape of a plus
sign and is placed within the Gateway diamond to distinguish it from other of Gateways.

Figure 147 - Parallel Split Notation

Represented Elements

Parallel Split

7.49 Parallel Join Notation
The Parallel Join uses the shape of Gateway, called Gateway and MUST use a marker that is in the shape of a plus
sign and is placed within the Gateway diamond to distinguish it from other of Gateways.

Business Process Definition MetaModel, Process Definitions, v1.0 113

+

Figure 148 - Parallel Join Notation

Represented Elements

Parallel Join

7.50 Inclusive Split Notation

Figure 149 - Inclusive Split Notation

Represented Elements

Inclusive Decision

114 Business Process Definition MetaModel, Process Definitions, v1.0

+

Condition 1

Condition 2

Default

7.51 Inclusive Merge Notation

Figure 150 - Inclusive Merge Notation

Represented Elements

Inclusive Merge

7.52 Complex Decision Notation

Figure 151 - Complex Decision Notation

Represented Elements

Complex Decision

Business Process Definition MetaModel, Process Definitions, v1.0 115

Alternative 1

Alternative 2

Default Alternative

7.53 Complex Join Notation

Figure 152 - Complex Join Notation

Represented Elements

Complex Merge

116 Business Process Definition MetaModel, Process Definitions, v1.0

8 Non-normative Notation Summary
8.1 Process Diagram
Each process diagram has a contents area. As an option, it may have a frame and a heading as shown in the
following figure. The frame is a rectangle. The frame may be omitted and implied by the border of the diagram area
provided by a tool. In case the frame is omitted, the heading is also omitted.

The diagram contents area contains the graphical symbols. The heading is a string contained in name tag (rectangle
with cutoff corner) in the upper leftmost corner of the rectangle, with the following syntax: <process name>.

Figure 153 - Process Diagram

Represented Elements

Process

8.2 Non-immediate Succession

Figure 154 - Non Immediate Succession

Represented Elements

8.3 Course Event 'Normal End' instance notation
Marker of the Normal End Event instance of Event.

Business Process Definition MetaModel, Process Definitions, v1.0 117

A non immediate succession

<Process Name>

<Process Content>

Figure 155 - Course Event 'Normal End' instance notation

Represented Elements

Normal End Event

8.4 Course Event 'Abnormal End' instance notation
Marker of the Normal End instance of Event.

Figure 156 - Course Event 'Abnormal End' instance notation

Represented Elements

Abnormal End Event

8.5 Course Event 'Failure' Instance notation
Marker of the Failure Event instance of Event.

Figure 157 - Course Event 'Failure' Instance notation

Represented Elements

Failure Event

8.6 Course Event 'Success' Instance Notation
Marker of the Success Event instance of Event.

Figure 158 - Course Event 'Success' Instance notation

118 Business Process Definition MetaModel, Process Definitions, v1.0

‘Normal End’ Behavioral Event Instance

‘Abnormal End’ Behavioral Event Instance

Failure Behavioral Change Instance

Success Behavioral Change Instance

Represented Elements

Success Event

8.7 Event Part : Normal End Notation
The shape of the Normal End instance uses the shape of its super-property (End) with the marker of its type:
Normal End Event.

Figure 159 - Event Part : Normal End notation

Represented Elements

Normal End

8.8 Event Part : Abnormal End notation
The shape of the Abnormal End instance uses the shape of its super-property (End) with marker of its type:
Abnormal End Event.

Figure 160 - Event Part : Abnormal End notation

Represented Elements

Abnormal End

8.9 Event Part : Success Notation
The shape of the Success instance uses the shape of its super-property (End) with marker of its type: Success Event.

Business Process Definition MetaModel, Process Definitions, v1.0 119

‘Normal End’ Event Part

‘Abnormal End’ Event Part

Figure 161 - Event Part : Success Notation

Represented Elements

Success

8.10 Event Part : Failure Notation
The shape of the Failure instance uses the shape of its super-property (End) with marker of its type: Failure Event.

Figure 162 - Event Part : Failure Notation

Represented Elements

Failure

8.11 Succession with Fact Change Condition
A Succession with a Condition of type Fact Change Condition is drawn as a line covered by the shape the
conditioning Fact Change.

The line has a solid arrowhead and MUST be drawn with a solid single line.

Figure 163 - Succession with Fact Change Condition

120 Business Process Definition MetaModel, Process Definitions, v1.0

Success Event Part

Failure Event Part

A succession with Fact Change Condition

Represented Elements

Succession

8.12 Succession with Time Event Condition
A Succession with a Condition of type Time Event Condition is drawn as one line covered by the shape the
conditioning Time Event.

The line has a solid arrowhead and MUST be drawn with a solid single line.

Figure 164 - Succession with Time Event Condition

Represented Elements

Succession

8.13 Interaction Flow between Activities and Statement
Condition

Figure 165 - Interaction Flow between Activities and Statement Condition

Represented Elements

Artifact Sequence Flow

Business Process Definition MetaModel, Process Definitions, v1.0 121

A succession with Time Change Condition

Activity (to)Activity (from)

Transferred Item Type

Statement Condition

8.14 Interaction Flow between Activities and Time Event
Condition

Figure 166 - Interaction Flow between Activities and Time Event Condition

Represented Elements

Artifact Sequence Flow

8.15 Holder Notation
A Holder is represented by a can that MUST be drawn with a single thin black line.

Figure 167 - Holder Notation

Represented Elements

Holder

8.16 Compound Interaction Notation
A compound interaction is represented by a rounded corner rectangle that MUST be drawn with a double thin black
line.

Figure 168 - Compound Interaction Notation

122 Business Process Definition MetaModel, Process Definitions, v1.0

Activity (to)Activity (from)

Transferred Item Type

Time Condition

Holder

Holder

Compound
Interaction

Represented Elements

Compound Interaction

8.17 Course Occurrence Diagram

Figure 169 - Course Occurrence Diagram

Represented Elements

Course Occurrence

Business Process Definition MetaModel, Process Definitions, v1.0 123

Course Occurrence

Start End

Happening Occurence

Happening Over Tim e Occurrence Event Occurrence

8.18 Behavior Occurrence

Figure 170 - Behavior Occurrence

Represented Elements

Behavior Occurrence

124 Business Process Definition MetaModel, Process Definitions, v1.0

8.19 Process Occurrence

Figure 171 - Process Occurrence

Represented Elements

Process Occurrence

Business Process Definition MetaModel, Process Definitions, v1.0 125

Compensate

Process Occurrence

Cancel

Start End

Success Failure ErrorAbort

Normal End Abnormal End

9 BPDM–BPEL Mapping

9.1 General
This section covers a non-normative mapping from BPDM constructs to WS-BPEL 2.0 elements. The basis for the
mapping is the “Mapping to BPEL” in [BPMN] (Section 11) and “BPMN to BPDM Mapping” in [BPDM] (Section
6).

9.1.1 Topological Considerations

The Business Process Definition Metamodel (BPDM) is a graph-oriented language in which control and action
nodes can be connected almost arbitrarily. In contrast, Business Process Execution Language (BPEL) is a mainly
block-structured (albeit providing graph-oriented constructs with syntactical limitations) language with a properly
nested structure. As BPDM and BPEL represent two fundamentally different classes of languages, the mapping is
technically challenging; while BPEL to BPDM mapping is trivial, not all BPDM processes can easily be converted
to BPEL.

To map a BPDM process onto BPEL code, a transformation from a graph structure to block structure is needed. For
this purpose, the process can be decomposed into components with one entry and one exit point [BPM-06-02]. These
components can then be mapped onto suitable “BPEL blocks.” The decomposition helps to define an iterative
approach that allows an incremental transformation of a “componentized” BPDM process to a block-structured
BPEL process.

A component may be well-structured so that it can be directly mapped onto BPEL structured activities, whereas a
non-well-structured component can be translated into BPEL via event-action rules. The latter approach can be
applied to translating any component to BPEL, yet it produces less readable BPEL code and will therefore be
applied only to the remaining non-well-structured components. The algorithm is explained in detail in [BPM-06-02]
that addresses the same problem in translation between BPMN and BPEL.

9.1.2 Generator Model

In general transformation from one metamodel to another metamodel requires additional information. This
information is provided in a separate model that is specific to the performed transformation. We will refer to this
model as "generator model."

If information required by BPEL and not provided by BPDM is needed, then the generator model is responsible for
providing it. Such examples are: XML namespaces, specific BPEL customizations, etc. Using the generator model
we could avoid introducing concepts and terms in BPDM that are specific for BPEL and still have the capability to
customize the produced BPEL models.

Ultimately, a generator metamodel would be required for this generator model in order to describe all possible
customizations that can be used. For the purposes of this non-normative mapping, however, it is merely indicated
which additional information is needed for the mapping (see Notational Conventions).

9.1.3 Notational Conventions

BPDM constructs are depicted in Bold typeface. The equivalent BPMN element may follow in (Parentheses). BPEL
elements are represented in <angle brackets> and attributes in italics. Marks are denoted in Bold Italics.
The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD
NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this document are to be interpreted as described in
[RFC2119].

126 Business Process Definition MetaModel, Process Definitions, v1.0

9.2 Process

BPDM BPEL

Processor Role Processor Role maps to BPEL <process> element. The
NamedElement.name maps to the name attribute of <process>.

9.3 Start Event Mappings

BPDM BPEL

Event Part typed by the Start
Behavioral Event

The only way to instantiate a business process in BPEL is to annotate a
<receive> or <pick> activity with the createInstance attribute set to
“yes.” The <receive> or <pick> will likely be placed within a
<sequence> or a <flow>.

Start Message This will map to the <receive> element. The createInstance attribute of
the <receive> element will be set to “yes.”

The Message attribute of Start maps to the variable attribute of the
<receive> element. Note that the extra spaces and non-alphanumeric
characters MUST be stripped from the variable attribute to fit with the
XML specification of the variable attribute. If there is a name collision
(because of the name change), then the transformer is responsible for
generating unique names.

The Name attribute of Simple Interaction maps to the name attribute
of a BPEL <variable> element. Note that the extra spaces and non-
alphanumeric characters MUST be stripped from the Name to fit with
the XML specification of the name attribute. Note that there may be two
or more elements with the same name after Name has been stripped.

The messageType, type, or element attribute is used to specify the type
of a variable. Exactly one of these attributes MUST be used. The
messageType attribute of the variable element refers to a WSDL
message type definition. Thus, the messageType will share the same
Name and a corresponding WSDL message must be created. Attribute
type refers to an XML Schema type (simple or complex). Attribute
element refers to an XML Schema element.

In case of using a WSDL message type definition, each Properties will
map to a <part> element of the WSDL <message>. The Name attribute
of the Property will map to the name attribute of the <part>. The Type
attribute of the Property will map to the type attribute of the <part>.

The Implementation attribute of Simple Interaction MUST be a Web
service or MUST be converted to a Web service for mapping to BPEL.
The Web Service Attributes are mapped as follows:

• The Participant attribute is mapped to the partnerLink attribute
of the BPEL activity.

• The Interface attribute is mapped to the portType attribute of the
BPEL activity.

• The Operation attribute is mapped to the operation attribute of
the BPEL activity.

Business Process Definition MetaModel, Process Definitions, v1.0 127

• InteractionFlow.transformationExpression will map to a
<fromParts> element within <receive>.

Time Condition on Start This will map to the <receive> element. The createInstance attribute of
the <receive> element will be set to “yes.”

The remaining attributes of the <receive> will be mapped as shown for
the Message Start Event (see above).

During the mapping an additional BPEL process is employed. We will
refer to this process as <NameOfStartNode> trigger. Thus the
functionality of the timing as defined in the Start Event will be
implemented in a separate process that will be started by the BPEL
Engine. The process definition will use a <wait> element for the defined
time, and then use an <invoke> to send a message that will be received by
the above <receive> element. A specific Message and Web service
implementation must be provided so that the mappings to <receive>
element can be completed.

InteractionFlow.transformationExpression will map to a <fromParts>
element within <receive>.

Fact Change Condition on Start This will map to the <receive> element. The createInstance attribute of
the <receive> element will be set to “yes.”

The remaining attributes of the <receive> element will be mapped as
shown for the Message Start Event (see above).
InteractionFlow.transformationExpression will map to a <fromParts>
element within <receive>.

Note: The Message is expected to arrive from the application that tracks
and triggers Business Rules.

9.4 End Event Mappings

BPDM BPEL

End Event Part There is no BPEL element that Finish will map to. However, it marks
the end of a path within the Process and will be used to define the
boundaries of complex BPEL elements.

End Message This will map to a BPEL <reply> or an <invoke>. The appropriate
BPEL activity will be determined by the implementation defined for the
Event. That is, the portType and operation of the Message will be used
to check to see if an upstream Message Event has the same portType
and operation. If these two attributes are matched, then the Event will
map to a <reply>, if not, the Event will map to an <invoke>.

The Message attribute of Finish maps to the variable attribute of the
<reply> or the outputVariable of the <invoke>.

See the corresponding Message Start Event above for more information
about how Simple Interaction maps to BPEL and WSDL.

The Implementation attribute of Simple Interaction MUST be a Web
service or MUST be converted to a Web service for mapping to BPEL.
The Web Service Attributes are mapped as follows:

128 Business Process Definition MetaModel, Process Definitions, v1.0

• The Participant attribute is mapped to the partnerLink attribute
of the BPEL activity.

• The Interface attribute is mapped to the portType attribute of the
BPEL activity.

• The Operation attribute is mapped to the operation attribute of
the BPEL activity.

InteractionFlow.transformationExpression will map to the
fromVariable variable of <toParts> element within <reply> or
<invoke>.

Error Activity This will map to a <throw> element. The ErrorCode attribute of Error
Activity will map to the faultName attribute of the <throw>.

Cancel Activity The mapping of Cancel Activity to BPEL is an open issue.

Abort Activity This will map to the <exit> element.

9.5 Intermediate Events

BPDM BPEL

Simple Interaction coming from
or going to the Process
Interaction Boundary that is not
connected to Start or Finish

If Simple Interaction.Simple Interaction consumer refers to the same
Participant as that of the Process that contains the Event, then this will
map to a <receive>. The createInstance attribute of the <receive>
element will be set to “no.”

If Simple Interaction.Simple Interaction producer is the same
Participant as that of the Process that contains the Event, then this will
map to a (one-way) <invoke>.

The Message attribute of the Event maps to the variable attribute of the
<receive> or the outputVariable of the <invoke>.

See the corresponding Start event above for more information about
how Simple Interaction maps to BPEL and WSDL.

The Implementation attribute of Simple Interaction MUST be a Web
service or MUST be converted to a Web service for mapping to BPEL.
The Web Service Attributes are mapped as follows:

• The Participant attribute is mapped to the partnerLink attribute
of the BPEL activity.

• The Interface attribute is mapped to the portType attribute of the
BPEL activity.

• The Operation attribute is mapped to the operation attribute of
the BPEL activity.

If the Event has no incoming Processing Succession:
• Simple Interaction.Simple Interaction consumer MUST be

the same Participant as that of the Process that contains the
Event.

Business Process Definition MetaModel, Process Definitions, v1.0 129

• The <process> could be given a <scope> (if it doesn’t already
have one).

• An <eventHandlers> element can be defined directly under
<process> or under <scope> (if one was generated).

• An <onMessage> element will be added to the <eventHandlers>
element.

• The Message attribute of the Event maps to the variable attribute
of the <onMessage>.

Further, the Implementation attribute of Simple Interaction MUST be
a Web service or MUST be converted to a Web service for mapping to
BPEL. The Web Service Attributes are mapped as follows:

• The Participant attribute is mapped to the partnerLink attribute
of the <onMessage>.

• The Interface attribute is mapped to the portType attribute of the
<onMessage>.

• The Operation attribute is mapped to the operation attribute of
<onMessage>.

Processing Succession from the
abort Event Part

The mappings of the activity (to which the Event is attached) will be
placed within a <scope>.

A <faultHandlers> element will be defined for the scope.

A <catch> element will be added to the <faultHandlers> element with
“<message name>_Exit” as the faultName attribute.

An <eventHandlers> element will be defined for the scope.

The Event will map to an <onMessage> element within the
<eventHandlers>. The mapping to the <onMessage> attributes is the
same as described for the <receive> above.

The activity for the <onMessage> will be a <throw> with “<message
name>_Exit” as the faultName attribute.

If used in an event-based decision, this will map to an <onMessage>
within a <pick>. The mapping to the <onMessage> attributes is the
same as described for the <receive> above.

Time Event Condition on
Succession

This will map to a <wait>.

TimeEvent.timeExpression maps to the until attribute of the <wait>.

Cycle Event.timeExpression maps to the for attribute of the <wait>.

If the Event has no incoming Processing Succession:
• The <process> could be given a <scope> (if it doesn’t already

have one).
• An <eventHandlers> element will be defined for the process or

the <scope> (if <scope> element was generated).
• An <onAlarm> element will be added to the <eventHandlers>

element.
• TimeEvent.timeExpression maps to the until attribute of the

<onAlarm>.
• Cycle Event.timeExpression maps to the for attribute of the

<onAlarm>.

130 Business Process Definition MetaModel, Process Definitions, v1.0

Racing Connection connecting
an Event Monitor conditioned
by a Time Event Condition

The mappings of the activity (to which the Event is attached) will be
placed within a <scope>.

A <faultHandlers> element will be defined for the scope.

A <catch> element will be added to the <faultHandlers> element with
“<Event name>_Exit” as the faultName attribute.

An <eventHandlers> element will be defined for the scope.

The Event will map to an <onAlarm> element within the
<eventHandlers>.

TimeEvent.timeExpression maps to the until attribute of the
<onAlarm>.

Cycle Event.timeExpression maps to the for attribute of the
<onAlarm>.

The activity for the <onAlarm> will be a <throw> with “<message
name>_Exit” as the faultName attribute.

If used in an event-based decision, this will map to an <onAlarm>
within a <pick>.

TimeEvent.timeExpression then maps to the until attribute of the
<onAlarm>.

Accordingly, Cycle Event.timeExpression maps to the for attribute of
the <onAlarm>.

Processing Succession from the
errorPart

Within the normal flow, Processing Succession will map to a <throw>
element.

• If the error is attached to an activity, the mappings of the activity
(to which the Event is attached) will be placed within a <scope>.
This Event will map to a <catch> element within a <scope>.

• If the Error Behavioral Event does not have an ErrorCode, then
a <catchAll> element will be added to the <faultHandlers>
element.

• If the Error Behavioral Event has an ErrorCode, then a <catch>
element will be added to the <faultHandlers> element with the
ErrorCode mapping to the faultName attribute.

Processing Succession from the
abortPart

The mapping of succession from abort to BPEL is an open issue.

Fact Change Condition on
Succession

This will map to the <receive> element. The createInstance attribute of
the <receive> element will be set to “no.” The remaining attributes of
the <receive> will be mapped as shown for the Message Start Event (see
above).

If the Event has no incoming Processing Succession:

• Simple Interaction.Simple Interaction consumer MUST be the
same Participant as that of the Process that contains the Event.

Business Process Definition MetaModel, Process Definitions, v1.0 131

• The <process> could be given a <scope> (if it doesn’t already
have one).

• An <eventHandlers> element will be defined for the process or
the <scope> (if one was generated).

• The Event will map to an <onMessage> element within the
<eventHandlers>. The mapping to the <onMessage> attributes is
the same as described for the <receive> for the Message Event
above.

Note: The Message is expected to arrive from the application that tracks
and triggers.

Racing Connection connecting a
Event Monitor monitoring a
Fact Change Condition

The mappings of the activity (to which the Event is attached) will be
placed within a <scope>.

A <faultHandlers> element will be defined for the scope.

A <catch> element will be added to the <faultHandlers> element with
“<message name>_Exit” as the faultName attribute.

An <eventHandlers> element will be defined for the scope.

The Event will map to an <onMessage> element within the
<eventHandlers>. The mapping to the <onMessage> attributes is the
same as described for the <receive> for the Message Event above.

Note: The Message is expected to arrive from the application that tracks
and triggers Business Rules.

The activity for the onMessage will be a <throw> with “<message
name>_Exit” as the faultName attribute.

If used in an event-based decision, this will map to an <onMessage>
element within <pick>. The mapping to the <onMessage> attributes is
the same as described for the <receive> for the Message Event above.

Event Monitor monitoring a
Compensation Event

Within the normal flow: Maps to a <compensate> or
<compensateScope> element. The Name of the activity referenced by
the Compensation Event will map to the target attribute of the
<compensateScope> element.

Attached to an activity boundary: The activity (to which the Event is
attached) will be placed within a <scope>. This Event maps to a
<compensationHandler> element within a <scope>.

For the <invoke> activity, there is a special shortcut to inline a
<compensationHandler> within <invoke> rather than explicitly using an
immediately enclosing scope.

132 Business Process Definition MetaModel, Process Definitions, v1.0

9.6 Activities

BPDM BPEL

Simple Activity An incoming Simple Interaction maps to a <receive> activity. The
Message attribute maps to the variable attribute of the <receive>
activity. If the Simple Interaction represents start Simple Interaction,
then the createInstance attribute of the receive will be set to “yes.”

Two Simple Interactions associated with the same activity:
• An incoming and an outgoing flow
• Map to an <invoke> activity. The InMessage attribute maps to

the inputVariable attribute of the <invoke> activity. The
OutMessage attribute maps to the outputVariable attribute.

An outgoing Simple Interaction maps to a <reply> or an <invoke>
activity. The appropriate BPEL activity will be determined by checking
if an upstream <receive> has the same portType and operation. If these
two attributes are matched, then the activity will map to a <reply>, if
not, it will map to an <invoke>. The Message attribute maps to the
variable attribute of the <reply> activity or it maps to the inputVariable
attribute of the <invoke> activity.

See the Start event above for more information about how Simple
Interaction maps to BPEL and WSDL.

Script Activity This maps to an <invoke> activity. Since this activity is performed by a
process engine, the default settings of the engine must be used to
determine the settings of the <invoke> activity. That is, partnerLink,
portType, operation, inputVariable, and maybe outputVariable are
derived by these default settings. The script itself is performed when the
appropriate Web service of the process engine is invoked.

Embedded Process This will map to a <scope> element. The scope is not an independent
<process> and will share the process variables of the higher-level
process.

Sub-Process Activity BPEL does not have a sub-process element. Thus Independent Sub-
Processes MUST map to a BPEL <process>; the contents of the Sub-
Process will be contained within a separate process. The Sub-Process
object itself maps to an <invoke> activity that “calls” the process.

BPEL does not support Reference type of Sub-Processes. However, the
Sub-Process will be used as a placeholder for the Sub-Process that will
be mapped.

Mapping for an Independent Sub-Process:
• The DiagramRef and ProcessRef attributes will identify the

process that will be used for the mapping to the BPEL process.

• The OutputPropertyMaps attribute of the referenced process
maps to the inputVariable attribute of the <invoke> activity.

• The InputPropertyMaps attribute of the referenced process maps
to the outputVariable attribute of the <invoke> activity.

Business Process Definition MetaModel, Process Definitions, v1.0 133

See the Start event above for more information about how Simple
Interaction maps to BPEL and WSDL.

Mapping for a Reference Sub-Process:

• The SubProcessRef attribute references another Sub-Process in
the Process. It is the referenced Sub-Process that will be mapped
and the mappings will be placed in the location of the Reference
Sub-Process; another copy of the entire mapping will be created
in this location (the mappings will also exist in the referenced
Sub-Process’ original location).

Course Control Part Course Control Part will map to a variety of BPEL elements (e.g.,
<if>, <pick>, <flow>) and patterns of elements.

Course Control Part potentially marks the end of a BPEL structured
element, if the correct number of flows converge.
The elements that follow Course Control Part, until all the outgoing
paths have converged, will be contained within the extent of the
mapping (e.g., they will be placed within a <sequence> within an
<if><condition> and any number of <if><elseif><condition>s).

Exclusive Split

Exclusive Join

Exclusive Split will map to <if>.

Each Gate will map to branches specified by <if> and <elseif> (within
<if>). The order of branches is maintained.

Each guard association between Succession and Condition associated
with the Gates will map to <condition> elements within <if> or
<elseif>.

The Default Gate (ExclusiveSplit.default) will map to the <else>
element of <if>.

If there is more than one element that follows the Gate or the Default
Gate, including assignments, then these elements will be placed inside a
<sequence>.

Embedded Process with an
Event Monitor connected by a
Racing Connection

This will map to <pick>. The elements of the <pick> will be determined
by the targets of the outgoing Processing Succession.

• If the Instantiate attribute is set to False, the createInstance
attribute of the <pick> MUST NOT be included OR it MUST be
set to “no.”

• If the Instantiate attribute is set to True, the createInstance
attribute of the <pick> MUST NOT be included OR it MUST be
set to “yes.”

• If the target is a Simple Activity with an incoming Simple
Interaction, it maps to an <onMessage> element within <pick>.

• The attributes of the Simple Activity will map to the appropriate
elements of the <onMessage>, such as operation and portType.

• If there is a Time Event Condition on Succession, the activity
maps to an <onAlarm> element within <pick>.

• TimeEvent.timeExpression maps to the until attribute of the
<onAlarm>.

• Cycle Event.timeExpression maps to the for attribute of the
<onAlarm>.

• If there is a Fact Event Condition on Succession, the event will
be considered as the same as receiving a message from a system

134 Business Process Definition MetaModel, Process Definitions, v1.0

that tracks and generates Rule events. Thus, this will map to an
<onMessage> element within the <pick>.

• If there is more than one element that follows the first target,
including assignments, then these elements will be placed inside
a <sequence> activity.

Parallel Split
Parallel Join

This will map to <flow>.

Inclusive Split
Inclusive Join

Inclusive Split will map to a set of <if>s within a <flow>. An additional
<if> will be required if the Default Gate (InclusiveSplit.default) is
used.

Each Gate will map to <if>, which is binary in nature, i.e., has only the
main <if> branch and the <else>.

Each guard association between Succession and Condition associated
with the Gates will map to <condition> elements within <if> or
<elseif>.

• If the Default Gate is used, the mapping to BPEL is more
complicated, as the decision about whether the Default Gate
should be taken will occur after all the other gate decisions have
been determined. Only if no other path is taken, will the default
path be taken. This means that the <if> for the Default Gate will
follow the <flow> activity generated for all the Gates of the
Gateway. Also, a <sequence> activity must encompass the
<flow> and the <if>.

• If the Default Gate is not used, the <else> element for each <if>
will contain an <empty> activity.

A <variable> must be used so that the <if> for the Default Gate will
know whether or not the default path should be taken. To do this, a
BPEL <variable> must be created with a derived name and will have a
structure as follows:

<variable name="[Gateway.Name]_noDefaultRequired"
messageType="noDefaultRequired" />

The messageType, type or element attribute is used to specify the type of a
variable. Exactly one of these attributes MUST be used. The
messageType attribute of the variable element refers to a WSDL message
type definition. Thus, the messageType will share the same Name and a
corresponding WSDL message must be created. Attribute type refers to an
XML Schema type (simple or complex). Attribute element refers to an
XML Schema element.

If a WSDL <message> element is created to support this variable, the
message will be structured as follows:

<message name="noDefaultRequired" >
<part name="noDefault" type="xsd:boolean" />

</message>

An <assign> activity will be created to initialize the <variable> before the
start of the loop. This <assign> precedes the <flow> activity that contains
all the <if>s derived from the Gates. This will be the first activity within
the <sequence> activity.

The <assign> will be structured as follows:

Business Process Definition MetaModel, Process Definitions, v1.0 135

<assign
name="[Gateway.Name]_initialize_noDefault">
<copy>

<from>false</from>
<to

variable="[Gateway.Name]_noDefaultRequired"
part="noDefault" />
</copy>

</assign>

The <condition> for the <if> will use the noDefaultRequired variable and
will be structured as follows:

<if>
<condition>

bpel:getVariableProperty(
[Gateway.Name]_noDefaultRequired,
noDefault)=true

</condition>
<sequence>

<!--The mappings of the original activity are placed
here.-->
<!--An assign activity (see below) is placed here.-->

</sequence>
<else>

<empty/>
</else>

</if>

• If there is more than one element that follows the first target,
including assignments, then these elements will be placed inside
a <sequence> activity.

• If any of the <if>s within the <flow> passes the condition of the
<if>, then the noDefaultRequired must be set to True. This will
ensure that the Default Gate will bypass the mapped activities for
the Default Gate.

An <assign> activity will be created to set the variable to True. This will
be the last activity within the <sequence> activity within the switch. The
<assign> will be structured as follows:

<assign name="[Gateway.Name]_set_noDefault">
<copy>

<from>true</from>
<to

variable="[Gateway.Name]_noDefaultRequired"
part="noDefault" />
</copy>

</assign>

Complex Split
Complex Join

N/A

136 Business Process Definition MetaModel, Process Definitions, v1.0

9.7 Flows

BPDM BPEL

Processing Succession This MAY map to a <link> element. In many situations, however,
Processing Succession will not map to a <link> element; to connect
activities that are listed in a BPEL structured activity (e.g., a
<sequence>), the <link> elements are not required. <link> elements are
only appropriate when the Processing Successions are Connecting
Objects within a <flow>. However, only the Processing Successions
that are completely contained within the boundaries of the <flow> will
be mapped to a <link>. If another structured activity (e.g., a <while>) is
contained within the flow, then the Processing Successions that would
be appropriate for the contents of the structured activity, would not be
mapped to a <link>.

If the Processing Succession is being mapped to a <link>:

• The Name attribute of the Process (NamedElement.name)
SHALL map to name attribute of the <link>. The extra spaces
and non-alphanumeric characters MUST be stripped from the
Name to fit with the XML specification of the name attribute.

• The mapping of the source activity will include a <source>
element.

• The Name of the Processing Succession
(NamedElement.name) will map to linkName attribute of the
<source> element. The extra spaces and non-alphanumeric
characters MUST be stripped from the Name to fit with the
XML specification of the linkName attribute.

If the source object is a Course Control Part and it maps to an activity,
the mapping is the same as if the source object is an activity (see
above).

If the Course Control Part does not map to an activity, the Processing
Succession will be combined with one of the Course Control Part’s
incoming Processing Successions. (There will be a separate <link> for
each of the incoming Processing Successions).

The source of the second Processing Succession will be used at the
source for the original Processing Succession. Then this mapping is the
same as if the source object is an activity (see above).

The mapping of the target activity will include a <target> element.

The Name of the Processing Succession (NamedElement.name) will
map to linkName attribute of the <target> element. The extra spaces and
non-alphanumeric characters MUST be stripped from the Name to fit
with the XML specification of the linkName attribute.

If the target object is a Gateway and it maps to an activity, the mapping
is the same as if the target object is an activity (see above).

If the Control Course Part does not map to an activity, the Processing
Succession will be combined with one of the Course Control Part’s
outgoing Processing Successions. (There will be a separate <link> for
each of the outgoing Processing Successions).

Business Process Definition MetaModel, Process Definitions, v1.0 137

The target of the second Processing Succession will be used at the
target for the original Processing Succession. Then this mapping is the
same as if the target object is an activity (see above).

Processing Succession with
Condition

A <flow> will be required and the Processing Succession will map to a
<link> element. An <empty> activity will be placed in the flow and will
contain all the <source> elements. The Condition will then map to the
transitionCondition attribute of the <source> element that is contained
in the appropriate BPEL activity.

The mapping of Processing Succession with Condition when the
source object is a Course Control Part is described in Exclusive Split/
Join and Inclusive Split/Join.

ExclusiveSplit.default
InclusiveSplit.default

See Exclusive Split/Join and Inclusive Split/Join.

Processing Succession from the
errorPart Event Part

All the activities that follow the Processing Succession, until the
Exception Flow merges back into the Normal Flow, will be mapped to
BPEL and then placed within the <faultHandlers> element for the
<scope> of the activity (and usually within a <sequence>).

If there is only one activity in the <faultHandlers> element for the scope
of the activity, then this activity will be placed within a <sequence> and
preceded by an <assign> (as described below).

The mapping of the original activity will be placed within a <sequence>
(if it had not been already). The original activity will be followed by an
<if>, with one <condition> and an empty <else> as follows:

<if>
<condition>

bpel:getVariableProperty(
[activity.Name]_normalCompletion,
normalCompletion)=true

</condition>
<sequence>

<!--The mappings of the Process activities until the
merging of the Exception Flow are placed here.-->

</sequence>
<else>
<empty/>

</else>
</if>

A <variable> must be used so that the <if> will know whether or not the
Exception Flow or Normal Flow had reached that point in the Process. It
must be created with a derived name and will have structure as follows:

<variable name=”[activity.Name]_normalCompletion”
messageType=”noDefaultRequired” />

The messageType, type or element attribute is used to specify the type of a
variable. Exactly one of these attributes MUST be used. The
messageType attribute of the variable element refers to a WSDL message
type definition. Thus, the messageType will share the same Name and a
corresponding WSDL message must be created. Attribute type refers to an
XML Schema type (simple or complex). Attribute element refers to an
XML Schema element.

138 Business Process Definition MetaModel, Process Definitions, v1.0

If a WSDL <message> element is created to support this <variable>, the
message will be structured as follows:

<message name=”noDefaultRequired” >
<part name=”normalCompletion” type=”xsd:boolean”

/>
</message>

The <assign> will be created to initialize the <variable> before the start of
the original activity. The <assign> will be structured as follows:

<assign
name=”[activity.Name]_initialize_normalCompletion”>

<copy>
<from>true</from>
<to variable=”[activity.Name]_normalCompletion”
part=”normalCompletion” />

</copy>
</assign>

If a fault is thrown and <faultHandlers> is activated, then an <assign>
activity will be used to set the <variable> to False. This will be the first
activity within the <sequence> activity of the <faultHandlers>. The
<assign> will be structured as follows:

<assign name=”[activity.Name]_set_normalCompletion”>
<copy>
<from>false</from>
<to variable=”[activity.Name]_normalCompletion”
part=”normalCompletion” />

</copy>
</assign>

Simple Interaction No specific mapping to a BPEL element. It represents a message that is
sent through a WSDL operation that is referenced in a BPEL <receive>,
<reply>, or <invoke>.

See Start, Intermediate, and End Events for mappings pertaining to
Simple Interaction.

Event Monitor monitoring
Compensation

See Compensation Connection in Intermediate Events.

9.8 Additional Constructs

BPDM BPEL

Activity with Conditional
Loop

This will map to a <forEach> activity. The <forEach> iterates its child
<scope> activity exactly N+1 times where N equals the
<finalCounterValue> minus the <startCounterValue>.

Activity with For Loop or
Multi Instance Loop

A Multi Instance Loop can be either sequential or parallel.
MultiInstanceLoop.ordering maps to the parallel (=”yes|no”) attribute of
<forEach>.

A sequential MI loop maps to <forEach> as in Basic Loop above so that
forEachCount equals to N + 1.

Business Process Definition MetaModel, Process Definitions, v1.0 139

Four flow conditions (None | One | All | Complex) exist for parallel multi-
instance loops:

• None – There is no synchronization or control of the Tokens that are
generated through the multi-instance activity. Each Token will
continue on independently and each Token will create a separate
instantiation of each activity they encounter. Basically, there is a
separate copy of the whole process, for each copy of the MI activity,
after that point. Each copy of the remainder of the process will
continue independently.

• One – Only one of the spawned processes must be completed before
the original process can continue.

• All – All of the spawned processes must be completed before the
original process can continue.

• Complex – The difference from All is that the number of completed
spawned processes required before the process flow will continue
must be determined and the processes have been completed.

The BPDM Activity Loop is kind of Embedded Process that can execute
its content multiple times. Upon completion of each iteration the activity
loop will generate Iteration Finish event. This event can be used in the
outgoing Successions to specify that a Succession should be activated on
loop iteration completion. Depending on the flow condition:

• None – Succession on Iteration Finish of Activity Loop
• One – Succession on Iteration Finish of Activity Loop with

Succession.guard evaluating to the string "first iteration only"
• All – Succession on Finish of Activity Loop
• Complex – on Iteration Finish of Activity Loop with

Succession.guard evaluating to a boolean value. If the value is True
,then the Succession will be followed.

A <completionCondition> may be used within the <forEach> to allow the
<forEach> activity to complete without executing or finishing all the
branches specified.

The <forEach> activity without a <completionCondition> completes when
all of its child <scope>s have completed. The <completionCondition>
element is optionally specified to prevent some of the children from
executing (in the serial case), or to force early termination of some of the
children (in the parallel case).

The <branches> element within <completionCondition> represents an
unsigned –integer expression used to define a completion condition of the
“at least N out of M” form. The actual value B of the expression is
calculated once, at the beginning of the <forEach> activity. It will not
change as the result of the <forEach> activity’s execution. At the end of
execution of each directly enclosed <scope> activity, the number of
completed children is compared to B, the value of the <branches>
expression. If at least B children have completed, the
<completionCondition> is triggered: No further children will be started,
and currently running children will be terminated.

The mapping to BPEL per flow condition is as follows:

140 Business Process Definition MetaModel, Process Definitions, v1.0

• None – This is not supported by <forEach>. To create this behavior,
the remainder of the process will be moved into a new derived
<process>. This process will be spawned through a one-way
<invoke> that will be placed within the <while> activity.

• One – <completionCondition> evaluates to 1.
• All – No <completionCondition> specified.
• Complex – <completionCondition> evaluates to B (1 < B < N + 1).

Holder A BPDM Process can define multiple Holder objects. A BPDM Holder
specializes TypedElement and thus can define the type of the value it can
hold.

Holder maps to a BPEL <variable>.
BPEL uses three kinds of variable declarations: WSDL message type, XML
Schema type (simple or complex), and XML Schema element.
In the case of WSDL variable declaration, the <variable> element will be
structured as follows:

<variable
name="[Process.Name]_Data"
messageType=

"[Process.Name]_ProcessDataMessage" />

The <message> element will be structured as follows:

<message name="[Process.Name]_ProcessDataMessage">
<part name="[Property.Name]"

type="xsd:[Property.Type]" />
</message>

Transaction Open issue

Part Group A <scope> provides the context which influences the execution behavior of
its enclosed activities. This behavioral context includes variables, partner
links, message exchanges, correlation sets, event handlers, fault handlers, a
compensation handler, and a termination handler. Contexts provided by
<scope> activities can be nested hierarchically, while the root context is
provided by the <process> construct.

Comment from UML2
infrastructure

Can map to the <documentation> element.
• If the Comment is associated with an object that has a straight-

forward mapping to a BPEL element, then the text of the Comment
will be placed in the <documentation> element of that object.

• If there is no straight-forward mapping to any element, then the text
will be appended to the <documentation> element of the <process>.

Simple
Interaction.transformation

This will map to BPEL <assign> activities.

9.9 References
[BPEL11] ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
[BPEL20] http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.pdf
[BPMN] http://www.omg.org/docs/dtc/06-02-01.pdf
[BPM-06-02] http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-02.pdf
[RFC2119] http://www.ietf.org/rfc/rfc2119.txt

Business Process Definition MetaModel, Process Definitions, v1.0 141

http://www.ietf.org/rfc/rfc2119.txt
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-02.pdf
http://www.omg.org/docs/dtc/06-02-01.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

10 Proof of Concept Language Mappings
The following sub-sections describe mappings to specific languages as proofs of concept.

10.1 WS-CDL Mapping

[To be completed in a later version of this specification.]

142 Business Process Definition MetaModel, Process Definitions, v1.0

Index
Abort Activity..54
Activity..5
Activity Loop..55
Actor..5, 56
Adhoc Process Directive...72
AdhocOrdering..73
Artifact Flow...73
Artifact Sequence Flow...73
Behavior..20
Behavior Event Condition...21
Behavior Model...11
Behavior Step..6, 21
Behavior Step Group...6, 22
Bindable Connection...22
Compensate Activity...75
Compensating Activity..75
Complex Decision...76
Complex Merge...76
Compliance..4
Compound Behavioral Connection...22
Compound Interaction...88
Compound Interaction Binding...89
Condition...7
Conditional Loop...56
Connected Part Binding...23
Course..7
Embedded Process...57
End Message..41
Error Activity..58
Event..7
Event Condition...7
Event Decision..77
Event Monitor..6, 23
Event Part..7
Exclusive Decision..77
Exclusive Merge..78
Gateway...7
Group Abort Connection...25
Holder..58
ImmediateSuccession..25
Inclusive Decision...79
Inclusive Merge...80
Instance: Abnormal End..26
Instance: Abnormal End Event..26
Instance: Abort..27
Instance: Abort Event..27
Instance: Abort Process...66
Instance: Activity Library...66
Instance: Activity Loop Behavior...66
Instance: Behavior Library..28
Instance: Behavior Occurrence...28
Instance: Cancel..83
Instance: Cancel Event..82
Instance: Cancel Process...83
Instance: Compensate..84

Business Process Definition MetaModel, Process Definitions, v1.0 143

Instance: Compensate Event...84
Instance: Compensate Process...84
Instance: compensate-end..84
Instance: Compensation Library...85
Instance: Enclosed Step...30
Instance: end/abort..30
Instance: Error...31
Instance: Error Event...31
Instance: Error Process..66
Instance: Failure..33
Instance: Failure Event..32
Instance: Generalization..67, 85
Instance: Group Abort Behavior...33
Instance: group-step..34
Instance: ImportInfra...34
Instance: interationend-end...67
Instance: IterationEnd..67
Instance: IterationEnd Event...67
Instance: Normal End..35
Instance: Normal End Event..35
Instance: Process Occurrence..85
Instance: Racing Behavior...36
Instance: Racing Contestant..36
Instance: start-cancel...85
Instance: start-compensate..86
Instance: start-iterationend..68
Instance: start/start...36
Instance: StartFromSequence..86
Instance: startseq-end..86
Instance: Step Group...37
Instance: Success...37
Instance: Success Event...37
Interaction..6, 42
Interaction Protocol...7, 89
Interaction Role...6, 42
Interactive Behavior..43
Links Instance: cancel-end..83
LoopTestTime...59
Message...43
Message Flow..44
Multi Instance Loop..59
Performer Role..5, 60
Process...6, 61
Process Directive...80
Process Interaction Boundary..62
Processor Role...63
Race Connection..25
Received Intermediate Message..44
Role Realization..64
Script Activity...80
Sent Intermediate Message..45
Sequence Flow..80
Simple Activity..64
Simple Interaction...6, 46
Start Message..47
Sub-Process Activity...64
Substitutable Derivation..65
Succession...7, 25
Task...81

144 Business Process Definition MetaModel, Process Definitions, v1.0

Terminate...81
Time Event..8
Time Event Condition...8

Business Process Definition MetaModel, Process Definitions, v1.0 145

146 Business Process Definition MetaModel, Process Definitions, v1.0

	1Scope
	1.1Business Process Modeling Notation (BPMN)
	1.1.1Target Audience and Use of BPDM

	1.2Other Common Business Benefits of BPDM
	1.2.1Carefully defined semantics
	1.2.2Saying just enough, but not too much
	1.2.3Improved Integration and Collaboration
	1.2.4Improved Agility
	1.2.5Business Processes supported by Service Oriented
Architectures (SOA)
	1.2.6Better Return on I.T. Investment

	1.3Process Concepts Supported by BPDM

	2Conformance
	2.1BPDM Full Compliance
	2.2BPDM Collaboration Protocol Compliance
	2.3BPDM Orchestration Process Compliance
	2.4BPDM - BPMN Compliance

	3Normative References
	4 Terms and Definitions
	5Additional Information
	5.1Acknowledgements

	6Metamodel and Notation Specification
	6.1Overview
	6.2Behavior Model
	6.2.1Introduction
	6.2.2Metamodel Specification
	6.2.2.1Behavior Model Diagram
	6.2.2.2Behavior Library: Events
	6.2.2.3Behavior Library: Behavior Occurrence
	6.2.2.4Behavior Library: 'Racing' Behavior
	6.2.2.5Behavior Library: 'Group Abort Behavior'
	6.2.2.6Behavior Event Condition Diagram
	6.2.2.7Behavior Step Group Diagram
	6.2.2.8Connected Part Binding Diagram
	6.2.2.9Behavior

	6.2.2.10Behavior Event Condition
	6.2.2.11Behavior Step
	6.2.2.12Behavior Step Group
	6.2.2.13Bindable Connection
	6.2.2.14Compound Behavioral Connection
	6.2.2.15Connected Part Binding
	6.2.2.16Event Monitor
	6.2.2.17Group Abort Connection
	6.2.2.18ImmediateSuccession
	6.2.2.19Race Connection
	6.2.2.20Succession
	6.2.2.21Instance: Abnormal End Event
	6.2.2.22Instance: Abnormal End
	6.2.2.23Instance: Abort Event
	6.2.2.24Instance: Abort
	6.2.2.25Instance: Behavior Library
	6.2.2.26Instance: Behavior Library
	6.2.2.27Instance: Behavior Occurrence
	6.2.2.28Instance: Enclosed Step
	6.2.2.29Instance: end/abort
	6.2.2.30Instance: Error Event
	6.2.2.31Instance: Error
	6.2.2.32Instance: Failure Event
	6.2.2.33Instance: Failure
	6.2.2.34Instance: Group Abort Behavior
	6.2.2.35Instance: group-step
	6.2.2.36Instance: ImportInfra
	6.2.2.37Instance: Normal End Event
	6.2.2.38Instance: Normal End
	6.2.2.39Instance: Racing Behavior
	6.2.2.40Instance: Racing Contestant
	6.2.2.41Instance: start/start
	6.2.2.42Instance: Step Group
	6.2.2.43Instance: Success Event
	6.2.2.44Instance: Success

	6.3Interactive Behavior Model
	6.3.1Introduction
	6.3.2Metamodel Specification
	6.3.2.1Interactive Behavior Diagram
	6.3.2.2Simple Interaction Binding Diagram
	6.3.2.3Message Diagram
	6.3.2.4End Message
	6.3.2.5Interaction
	6.3.2.6Interaction Role
	6.3.2.7Interactive Behavior
	6.3.2.8Interactive Part
	6.3.2.9Message
	6.3.2.10Message Flow
	6.3.2.11Received Intermediate Message
	6.3.2.12Sent Intermediate Message
	6.3.2.13Simple Interaction
	6.3.2.14Start Message

	6.4Activity Model
	6.4.1Introduction
	6.4.2Metamodel Specification

	6.4.2.1Activity Model Diagram
	6.4.2.2Activity Model Library: Simple Process instances
	6.4.2.3Activity Categories Diagram
	6.4.2.4Activity Model Library: Loop Happening instance
	6.4.2.5Embedded Process Diagram
	6.4.2.6Process Derivation Diagram
	6.4.2.7Role Realization Diagram
	6.4.2.8Abort Activity
	6.4.2.9Activity
	6.4.2.10Activity Loop
	6.4.2.11Actor
	6.4.2.12Conditional Loop
	6.4.2.13Embedded Process
	6.4.2.14Error Activity
	6.4.2.15Holder
	6.4.2.16LoopTestTime
	6.4.2.17Multi Instance Loop
	6.4.2.18MultiInstanceLoopOrdering
	6.4.2.19Performer Role
	6.4.2.20Process
	6.4.2.21Process Interaction Boundary
	6.4.2.22Processor Role
	6.4.2.23Role Realization
	6.4.2.24Simple Activity
	6.4.2.25Sub-Process Activity
	6.4.2.26Substitutable Derivation
	6.4.2.27Instance: Abort Process
	6.4.2.28Instance: Activity Library
	6.4.2.29Instance: Activity Loop Behavior
	6.4.2.30Instance: Error Process
	6.4.2.31Instance: Generalization
	6.4.2.32Instance: interationend-end
	6.4.2.33Instance: IterationEnd Event
	6.4.2.34Instance: IterationEnd
	6.4.2.35Instance: start-iterationend

	6.5BPMN Extensions
	6.5.1Introduction
	6.5.2Metamodel Specification
	6.5.2.1Adhoc Extension Diagram
	6.5.2.2Activity Extensions Diagram
	6.5.2.3Gateway Extension Diagram
	6.5.2.4BPMN Extensions Library: Compensate Process Instance
	6.5.2.5BPMN Extensions Library: BPMN Process Occurrence Instance
	6.5.2.6Sequence Flow Extension Diagram
	6.5.2.7Artifact Flow Extensions Diagram
	6.5.2.8Transaction Extensions Diagram
	6.5.2.9Compensation Extensions Diagram
	6.5.2.10Adhoc Process Directive
	6.5.2.11AdhocOrdering
	6.5.2.12Artifact Flow
	6.5.2.13Artifact Sequence Flow
	6.5.2.14Cancel Activity
	6.5.2.15Compensate Activity
	6.5.2.16Compensating Activity
	6.5.2.17Complex Decision
	6.5.2.18Complex Merge
	6.5.2.19Event Decision
	6.5.2.20Exclusive Decision
	6.5.2.21Exclusive Merge
	6.5.2.22Inclusive Decision
	6.5.2.23Inclusive Merge
	6.5.2.24Process Directive
	6.5.2.25Script Activity
	6.5.2.26Sequence Flow
	6.5.2.27Task
	6.5.2.28Terminate
	6.5.2.29Transaction
	6.5.2.30Instance: Cancel Event
	6.5.2.31Instance: Cancel Process
	6.5.2.32Links Instance: cancel-end

	6.5.2.33Instance: Cancel
	6.5.2.34Instance: Compensate Event
	6.5.2.35Instance: Compensate Process
	6.5.2.36Instance: compensate-end
	6.5.2.37Instance: Compensate
	6.5.2.38Instance: Compensation Library
	6.5.2.39Instance: Generalization
	6.5.2.40Instance: Process Occurrence
	6.5.2.41Instance: start-cancel
	6.5.2.42Instance: start-compensate
	6.5.2.43Instance: StartFromSequence
	6.5.2.44Instance: startseq-end

	6.6Interaction Protocol Model
	6.6.1Introduction
	6.6.2Metamodel Specification
	6.6.2.1Interaction Protocol
	6.6.2.2Compound Interaction
	6.6.2.3Compound Interaction Binding
	6.6.2.4Interaction Protocol

	6.7Class Hierarchies
	6.7.1 Condition Hierarchy
	6.7.2 Happening OverTime Hierarchy
	6.7.5 Simple Interaction Hierarchy
	6.7.6 Interactive Part Hierarchy

	7BPMN Notation Summary
	7.1Interaction Role Notation
	7.2Processor Role Notation
	7.3Horizontal Lane Notation
	7.4Vertical Lane Notation
	7.5Time Event Notation
	7.6Fact Change Notation
	7.7Course Event 'Error' Instance Notation
	7.8Course Event 'Cancel' Instance Notation
	7.9Course Event 'Iteration End'
	7.10Course Event 'Abort' Notation
	7.11Course Event 'Compensate' Instance Notation
	7.12Event Part : Start Notation
	7.13Event Part : Start with 'Time Event Condition' Notation
	7.14Event Part : Start with 'Fact Change Condition' Notation
	7.15Event Part : End Notation
	7.16Event Part : Error Notation
	7.17Event Part : Cancel Notation
	7.18Event Part : Abort Notation
	7.19Error Handling Notation
	7.20Activity Notation
	7.21Collapsed Sub-Process Activity Notation
	7.22Uncollapsed Sub-Process Activity Notation
	7.23Activity Loop Notation
	7.24Cancel Activity Notation or 'Cancel' Event Part
	7.25Error Activity Notation or 'Error' Event Part
	7.26Abort Activity Notation or 'Abort' Event Part
	7.27Compensate Activity Notation
	7.28Compensating Activity Notation
	7.29Event Monitor Notation
	7.30Event Monitor monitoring a Time Event Condition
	7.31Event Monitor monitoring a Fact Change Condition
	7.32Event Monitor monitoring a 'Compensate' Behavior Event Condition
	7.33Event Monitor monitoring a Compound Event Condition
	7.34Succession Notation
	7.35Event Decision Notation
	7.36Message Notation
	7.37Start Message Notation
	7.38End Message Notation
	7.39Sent Intermediate Message Notation
	7.40Received Intermediate Message Notation
	7.41Message Flow Notation
	7.42Artifact Sequence Flow Notation
	7.43Part Group Notation
	7.44Transaction Notation
	7.45Gateway Notation
	7.46Exclusive Split Notation
	7.47Exclusive Merge Notation
	7.48Parallel Split Notation
	7.49Parallel Join Notation
	7.50Inclusive Split Notation
	7.51Inclusive Merge Notation
	7.52Complex Decision Notation
	7.53Complex Join Notation

	8Non-normative Notation Summary
	8.1Process Diagram
	8.2Non-immediate Succession
	8.3Course Event 'Normal End' instance notation
	8.4Course Event 'Abnormal End' instance notation
	8.5Course Event 'Failure' Instance notation
	8.6Course Event 'Success' Instance Notation
	8.7Event Part : Normal End Notation
	8.8Event Part : Abnormal End notation
	8.9Event Part : Success Notation
	8.10Event Part : Failure Notation
	8.11Succession with Fact Change Condition
	8.12Succession with Time Event Condition
	8.13Interaction Flow between Activities and Statement Condition
	8.14Interaction Flow between Activities and Time Event Condition
	8.15Holder Notation
	8.16Compound Interaction Notation
	8.17Course Occurrence Diagram
	8.18Behavior Occurrence
	8.19Process Occurrence

	9BPDM–BPEL Mapping
	9.1.1Topological Considerations
	9.1.2Generator Model
	9.1.3Notational Conventions
	9.2Process
	9.3Start Event Mappings
	9.4End Event Mappings
	9.5Intermediate Events
	9.6Activities
	9.7Flows
	9.8Additional Constructs
	9.9References

	10Proof of Concept Language Mappings

