Date: November 2008

Business Process Definition MetaModel
Volume llI: Process Definitions

Version 1.0

OMG Document Number: formal/2008-11-04

Standard document URL: http://www.omg.org/spec/BPDM/1.0

Associated File(s)*: http://www.omg.org/spec/BPDM/20080501
http://www.omg.org/spec/BPDM/20080501/Abstractions.xsd

http://www.omg.org/spec/BPDM/20080501/Activity.xsd
http://www.omg.org/spec/BPDM/20080501/BehaviorModel.xsd
http://www.omg.org/spec/BPDM/20080501/bpdm.xsd
http://www.omg.org/spec/BPDM/20080501/bpmn.cmof
http://www.omg.org/spec/BPDM/20080501/BPMNLibrary
http://www.omg.org/spec/BPDM/20080501/CommonlInfrastructure.cmof

http://www.omg.org/spec/BPDM/20080501/CommonlInfrastructureLibrary
http://www.omg.org/spec/BPDM/20080501/CompositionModel.xsd
http://www.omg.org/spec/BPDM/20080501/ConditionModel.xsd
http://www.omg.org/spec/BPDM/20080501/CourseModel.xsd
http://www.omg.org/spec/BPDM/20080501/importfile_commoninfrastructure.xsd
http://www.omg.org/spec/BPDM/20080501/InteractionProtocol.xsd
http://www.omg.org/spec/BPDM/20080501/InteractiveBehaviorModel.xsd
http://www.omg.org/spec/BPDM/20080501/xmi_infra.xsd
http://www.omg.org/spec/BPDM/20080501/VotingSample
http://www.omg.org/spec/BPDM/20080501/BPMNSamples_schema.xsd

http://www.omg.org/spec/BPDM/20080502
http://www.omg.org/spec/BPDM/20080502/xmi.xsd

Source document: BPDM Process Definitions Document without change bars (dtc/2008-05-10)
* Original file: XML schema and library (dtc/2008-05-14)

http://www.omg.org/spec/BPDM/20080501
http://www.omg.org/spec/EXPRESS/20080202

Copyright © 2008, Adaptive

Copyright © 2008, Axway Software

Copyright © 2008, Borland Software, Inc.
Copyright © 2008, EDS

Copyright © 2008, Lombardi Software

Copyright © 2008, MEGA International

Copyright © 2008, Model Driven Solution
Copyright © 2008, Object Management Group, Inc.
Copyright © 2008, Unisys

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(i1) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of
the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as
indicated above and may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA
02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, [IOP™ | MOF™ | OMG Interface Definition Language (IDL)™ ,
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials. Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance points as
stated in the specification. Software developed only partially matching the applicable compliance points may claim
only that the software was based on this specification, but may not claim compliance or conformance with this
specification. In the event that testing suites are implemented or approved by Object Management Group, Inc.,
software developed using this specification may claim compliance or conformance with the specification only if the
software satisfactorily completes the testing suites.

OMG'’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/

technology/agreement.htm).

http://www.omg.org/technology/agreement.htm
http://www.omg.org/technology/agreement.htm

Table of Contents

(IS TeTo] o1 TSP 1
1.1 Business Process Modeling Notation (BPMN)............oooiiiiiiiiiieieiie 1
1.1.1 Target Audience and Use of BPDMccccouiiiiiiiiiiiiiiieeeeee e 2
1.2 Other Common Business Benefits of BPDM............ccccccoeeiiiiiiiiiiiiieeeeeeeeeee 2
1.2.1 Carefully defined SemantiCs............coooiiiiiiiiii e 2
1.2.2 Saying just enough, but Not to0 MUChooiiiii 2
1.2.3 Improved Integration and Collaboration..................eueeiiii e, 2
1.2.4 IMProved AGIlIY........ee et e e e e 2
1.2.5 Business Processes supported by Service Oriented Architectures (SOA).................. 3
1.2.6 Better Return on LT. Investment.........ooooi e 3
1.3 Process Concepts Supported by BPDM..........ovvviiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeee 4
2 CoNfOIMANCE.........o i e 4
2.1 BPDM Full ComplianCe.........ccoooeiiiiieeeeeeeeee e, 4
2.2 BPDM Collaboration Protocol CompliancCe.........cccooeeiieeiiiiiiieeeeeeieeeeeeeeeeeeee e 5
2.3 BPDM Orchestration Process CompliancCe................ouvvvvveeereivveeveeireeinenesrennnnnnn. 5
2.4 BPDM - BPMN COMPlI@NCE.... . e e 5
3 Normative References...........coeviiiiiiii i,)
4 Terms and Definitions.........ccoooviii i, 5
5 Additional Information...............coiii i 8
5.1 ACKNOWIEAGEMENTS......uuiiiiiiiiiiii e e 8
6 Metamodel and Notation Specification...................c.c..oeeiinni. 8
8.1 OVEIVIEW.....ciiiiiiieiiiiiee ettt e e e e e e ettt e e e e e e e e st ereeaeaeeeaeeeeeeeeeeennnnnns 8
6.2 BENAVIOr MOGEL..... .o e e e e 11
L7200 I [o1 1o T ¥ T2 4o o P 11
6.2.2 Metamodel SPeCifiCation...........ooiiiiiiii oo 13
6.2.2.1 Behavior Model Diagram...........oooi et e e e e e eeeeeees 14
6.2.2.2 Behavior Library: EVENTS.........oooiiiiiii e 15
6.2.2.3 Behavior Library: Behavior OCCUITENCE.............cueviiiiiiiiiiiieiieee e 16
6.2.2.4 Behavior Library: 'Racing’ BEhavior...........ccccooiiiiiiiiii e 17
6.2.2.5 Behavior Library: 'Group Abort Behavior'.............ccooieiiiiiiiiieee e 18
6.2.2.6 Behavior Event Condition Diagram.............coociiiiiieiiiiee e 19
6.2.2.7 Behavior Step Group Diagram..........cccceoiiiie i 19
6.2.2.8 Connected Part Binding Diagram............ooooiiiiiiiiiiiiiie e 20
6.2.2.9 BERNAVIO ... ettt e et e e e e e e e e e e e neeeeeeeeeeeeenaa 20
6.2.2.10 Behavior Event Condition............cooiiiiiiiiiiee et 21
6.2.2.11 BERAVIOr SEEP.....eiiiiiiiiiii e 21
6.2.2.12 BEhavior StEP GrOUP.......ciiiiiieiiiieeeie ettt e et e e 22
6.2.2.13 Bindable CONNECHION............viiiieiiiiiie et e e e e e e e e e eeeeeeenes 22
6.2.2.14 Compound Behavioral ConNection..............ccoccuviiiiiiiiiiiieiee e 22
6.2.2.15 Connected Part BiNAINgG.........ccveiuiiiiiie e 23
6.2.2.16 EVENE MONITON. ...ttt e et e e e e et e e e e e e eeeeeenes 23
6.2.2.17 Group Abort CONNECHION.ccoiiiiiie e e e e e e e e e e eeeeeeaaes 25
6.2.2.18 IMMEdiateSUCCESSION.eeiiiiiiiiiiei ettt e et e e et e e e e e e eeeeeeeeeeeanes 25
6.2.2.19 RACE CONNECHON.ottt e e ettt e e e e et e e e e e e abeeeaaeeannnees 25
5.2.2.20 SUCCESSION.ieiiiieeeeiiiiiee e ettt e e e e ettt e e e s e saeaeeeeeassbaeeeeesassaeeaesasnsseeeeeaanssanesnnnnes 25
6.2.2.21 Instance: Abnormal End EVent...........c.oooiiiiiiiii i 26
6.2.2.22 Instance: AbNOrmMal ENd.........oouuiiiiiiiiii e 26

Business Process Definition MetaModel, Process Definitions, v1.0 i

ii
v1.0

6.2.2.23 INStance: ADOIt EVENL..........oueeeeeee et e e e e eean 27

6.2.2.24 INSTANCE: ADOI.......eiiiiie ettt e e e e e e e e e e e sntaeeeeeseenneaeeeeeeeeeeanne 27

6.2.2.25 Instance: Behavior LiDrary.............ooo e 28

6.2.2.26 Instance: Behavior LiDrary.............oooi e 28

6.2.2.27 Instance: Behavior OCCUIMTENCE........oouuuiiiieeiiiiie ettt e e ea e e eeeeeeeeaees 28

6.2.2.28 Instance: ENClOSEA StEP......c.coi i 30

6.2.2.29 InStance: €Nd/abOr....o 30

6.2.2.30 Instance: Error EVENt...... ..ot 31

6.2.2.31 INSTANCE: EITON.. oo ittt e e e e e e e st e e e e s esbaeeeeeeannnees 31

6.2.2.32 Instance: Failure EVENL...........oooiiiiiiii et e e e eeeeeeaaes 32

6.2.2.33 INStaNCe: FailUre..........ooiiiiii et 33

6.2.2.34 Instance: Group Abort BENAVION.............eiiiiiiiiiiiie e 33

6.2.2.35 INStANCE: GrOUP-StEP. .. ittt e e e et e e e e e e e e e e e e e e eeeeeaeeanes 34

6.2.2.36 Instance: IMpPortinfra............cc.ueeiiiiiiiii e 34

6.2.2.37 Instance: Normal End Event............ooo e 35

6.2.2.38 Instance: Normal ENd............oooiiiiiiii et e e 35

6.2.2.39 Instance: RACiNg BENAVIOT...........c.eiiiiiiiiii e 36

6.2.2.40 Instance: Racing Contestant...........cccuoiuiiiiiiiiiie e 36

6.2.2.41 Instance: start/start............oooeeeiiiii i 36

6.2.2.42 INStANCE: SEEP GrOUP....eiiiiiiiiiiie ettt e et e et e e e e e e e e et e e e e aaaeeaeeeeeeeeanes 37

6.2.2.43 Instance: SUCCESS EVENL........ ... 37

6.2.2.44 INSTANCE: SUCCESS. ..ot e iueieeiiiieeiiieeeteeeesteeeeateeeaaeeeessteeeaseeeaaneeeeanteeeaseeesannnnnseeeees 37

6.3 Interactive Behavior Model........... ... 38
B.3.1 INTrOdUCHION e e e e e e e e e e eaeaaeaeeeeeaaaaaaaaee 38
6.3.2 Metamodel SpecCifiCation.............uiiiiiiiiiii e 39
6.3.2.1 Interactive Behavior Diagram............ccoccuiiiiiiiiiiiiee et e e eeanes 39

6.3.2.2 Simple Interaction Binding Diagram.............cccoeruiieiiieeiiiie e 41

6.3.2.3 MeSSage DIagram.......cooo oot e e e e eeeeaee 41

6.3.2.4 ENA MESSAJE.eeeiiiiiiiiiiie ettt ettt ettt e e et e e e et e e e e e e e e e e e e e eeeenane 41

6.3.2.5 INTErACHION. ...ttt e e ettt e e e ettt e e e e e e e e e e e e eeeeeeneanenaes 42

6.3.2.6 Interaction ROIE....... ..ottt e e eeaees 42

6.3.2.7 Interactive BEhAVION...........uuiiiiiii et e e e e e e e e e e e eeeeaaees 43

6.3.2.8 INtEractive Part............ooi it e et e e eeeeaaaes 43

B.3.2.9 MESSAQE.....eiiiiiiiiiiieie ettt e e e e e e e e e e e e e e e e aeaa e e e e ———tataaarraaaaraaaaaes 43

6.3.2.10 MESSAGE FIOW....couiiiiiiiiiiitte ettt ettt 44

6.3.2.11 Received Intermediate MeSSage........ccoooiiiiiiiiiiiiiiee e 44

6.3.2.12 Sent Intermediate MESSAgE.ueiiiiiieeii e 45

6.3.2.13 SIMPIE INTEraCtioN.........eiiiiii e 46

6.3.2.14 Start MESSAQGE. ueeeiieeiieie ettt e e e e et e e e e et e e e e e e nee e e e e eeeeeeneae 47
6.4 ACHIVILY MOEL....... e e eees 47
B.4.1 INTrOdUCHION .o r e e e e e e eaeaaeaeaaaaaaaaaaaaees 47
6.4.2 Metamodel SpecCifiCation.............ueiiiiiiiiie e 49
6.4.2.1 Activity Model Diagram..........coooiiiiiiiiie e 50

6.4.2.2 Activity Model Library: Simple Process instances............cccccoccvivieiieiiiieei e 51

6.4.2.3 Activity Categories Diagram..........cccceeiuireeriieeeieeeiee e e see e ee e e seeeeanneeeennees 51

6.4.2.4 Activity Model Library: Loop Happening instance..........ccccoocoiieiiiiiiiieene 52

6.4.2.5 Embedded Process Diagram...........ccoucuiiiiiiiiiiiiiiiiiie et 53

6.4.2.6 Process Derivation Diagram...........coooi i e e e e eeeeeeaeeeeea 54

6.4.2.7 Role Realization Diagram............cooiuiiiiiiiiiiiee et 54

6.4.2.8 ADOIt ACHVILY.....coieieeiiiie ettt e e e et et e e e e e sbeeeeetre e e e e annnnnnes 54

L I o1 11/ 1RSSR 55

6.4.2.10 ACHVILY LOOP.. .. uiiiiie ittt ettt e e e e e e e e e st e e e e e s e sbe e e e e s eensneeeaeeanan 55

L S B X (o OSSR 56

6.4.2.12 ConditioNal LOOP......cccuuiiiiie ettt ettt e e et e e e e e arrr e e e e e e aer s e e bannaaas 56

6.4.2.13 EMbedded ProCess..........ooi ittt a e 57

6.4.2.14 Error ACHVILY.... ...ttt e et e e e et a e e e naeeeaeeanan 58

B.4.2. 15 HOIEN ...ttt e e et e e et e e et e e e e e e e e e e aenannes 58

6.4.2.16 LOOPTESITIME. .. .eiiiiiiiie ettt ettt e e e br e s e e annnee 59

6.4.2.17 MU INSEANCE LOOP. .. . ueuieieiiiiiiiiieiiiiee et e e e e e e e e e e e e e e s e se s ee e e e e e eeaeaaaaaaaeaeeeeneen 59

6.4.2.18 MultiinstanceLoopOrdering.........c.uviieiieiiiiiie ettt e e e eaaanaaes 59

6.4.2.19 PerfOrmeEr ROIE........ociiieieiee ettt ettt e e et e e et e e e st e e snneeeeaneeeeannes 60

Business Process Definition MetaModel, Process Definitions,

B.4.2.20 PrOCESS.ceeieeeeeeeee e et ettt e e e e e e et ae e e e e e e e —————————————————— 61

6.4.2.21 Process Interaction BOUNAArY............oooiiiiiiiiiiiiiee e 62
6.4.2.22 ProCESSOr ROIE.... ...ttt e e et e e e e eae e 63
6.4.2.23 Role REAlIZALION.coiiiiiiiii e 64
6.4.2.24 SIMPIE ACHVILY......oiiiiiiii et et e e a e e 64
6.4.2.25 SUD-Process ACHVItY.........ciiiiiieiiiie et e e e e e 64
6.4.2.26 Substitutable Derivation...............oooiiiiii e 65
6.4.2.27 INStance: ADOI PrOCESS.cii ittt e e e e e neeeeeeas 66
6.4.2.28 Instance: Activity LIDrary..........coouioiiiiii e 66
6.4.2.29 Instance: Activity LOOp BEhavior..........cccoiiiiiiiiiiiiece e 66
6.4.2.30 INStanCe: ErrOr PrOCESS.oiiiiiiiiiiiie ettt 66
6.4.2.31 Instance: Generalization..............coouiiiiiieiiie e 67
6.4.2.32 Instance: interationend-end...............oooi i 67
6.4.2.33 Instance: IterationEnd Event............cooo i 67
6.4.2.34 Instance: erationENd.............uiiiiiiii e 67
6.4.2.35 Instance: start-iterationend..............ccooi i 68
6.5 BPMN EXIENSIONS.....ooiiiiiii et e e e e e 68
B.5.1 INTrOdUCHION et e et e e e e e e e e e e e e e e e e aeaees 68
6.5.2 Metamodel SPeCifiCatioN..........couiiiiiiii i 68
6.5.2.1 Adhoc EXtension Diagram..........coouiiiieiiiiee e e ee e 69
6.5.2.2 Activity EXtEnsions DIiagram.........oocuueiiieiiiiiiieee ettt 69
6.5.2.3 Gateway EXtension Diagram...........cocueiiiiiiiniiie e 70
6.5.2.4 BPMN Extensions Library: Compensate Process Instance.............ccccccoiiiiinnnn. 70
6.5.2.5 BPMN Extensions Library: BPMN Process Occurrence Instance........................... 71
6.5.2.6 Sequence Flow Extension Diagram...........ccoocueieiiiiiiiiiiinieee e 71
6.5.2.7 Artifact Flow Extensions Diagram............ccccouiiiiiiiiiiiee e 72
6.5.2.8 Transaction Extensions Diagram............ccoceeiiiiieiiieie i 72
6.5.2.9 Compensation Extensions Diagram............cccveiiiereiiieeeiieeeieeesee e eee e eees 72
6.5.2.10 AdhOC Process Dir€ChVE.couiuuiiiiiiiiiie e 72
6.5.2.11 ADNOCOIUEIING. ... ettt ettt ettt e et sene e e e s re e e nnnnne 73
6.5.2.12 Artifact FIOW......coo ettt et e e st e e e e e e e e e nnnnnes 73
6.5.2.13 Artifact SEqQUENCE FIOW...........coiiiiiiiiii e e 73
6.5.2.14 CanCel ACHIVILY.....ooouiiiiiii e 74
6.5.2.15 Compensate ACHVILY.........coiiiiiiiiiiie et 75
6.5.2.16 Compensating ACHIVILY..........ueiiiiiiii e 75
6.5.2.17 ComMPIEX DECISION.......uviiiiiiiiiiiie ettt e e e e e e e e et e e e e e e e asesseeraaaanan 76
6.5.2.18 COMPIEX MEIGE. ...ttt ettt ettt et e e st e e e tee e e st e e snneeeeaneeeeannes 76
6.5.2.19 EVENE DECISION. ..ottt e et e e e et e e e e e e nbe e e e e e e nnesnenennnnnnn 77
6.5.2.20 EXCIUSIVE DECISION.eeiiiiiiiiiiie ettt et e et e e e e e aeeseeeennnnaan 77
6.5.2.21 EXCIUSIVE MBI, aee 78
6.5.2.22 INCIUSIVE DECISION. ..ottt e e e et e e e e e et eeeeeessenennnnnan 79
6.5.2.23 INCIUSIVE MEIQE.ttt e e e e e ettt e e e e e eeeaaaaeaaaeeeeneen 80
6.5.2.24 ProCesS DIFECHVE.uviiiiieiiiiiie ettt e e et e e e e e anas e sannnnnan 80
6.5.2.25 SCriPt ACHVITY ... eeeeeeiieeie e e e e e e e e e e e nnnnees 80
6.5.2.26 SEQUENCE FIOW.......ciiiiiiiiiiie et e e st e e e et e e e e easeaeeaaanaas 80
L T A - 1P 81
6.5.2.28 TerMINAL.eeeiiiiiiiii et et e e e et e e e et e e e e e e neennnnan 81
ORI A B I -1 g1 T (o] o PO PUUTTR 82
6.5.2.30 Instance: Cancel EVENt.............ooo e 82
6.5.2.31 Instance: CanCel PrOCESS.........ueiiiiiiiiiiie ettt e e e e 83
6.5.2.32 Links Instance: CanCel-ENd............ccuuiiiiiiiiiiiiie e 83
6.5.2.33 INSTANCE: CANCEL....ceiiiiiieeiie et e e e e e e e e e 83
6.5.2.34 Instance: Compensate EVent...........ccoooiiiiiiii i 84
6.5.2.35 Instance: Compensate ProCESS.ccuuiiiiieiiiiieiiit et 84
6.5.2.36 Instance: compensate-end.............ooooiiiiiiiiiiii e ——— 84
6.5.2.37 Instance: COMPENSALE........cocuuiiiiiiiiiii e 84
6.5.2.38 Instance: Compensation Library...........ccccouieoiiieiieeeiee e 85
6.5.2.39 Instance: Generalization..............ooiuiiiiiiieiiee e 85
6.5.2.40 InStance: ProCess OCCUITENCE.uuieiiuiieiiiie et e eieeeesiiee ettt et e e e e st e snnneees 85
6.5.2.41 Instance: start-CancCel.......... oo 85
6.5.2.42 Instance: start-Compensate...........ooooiii i ————— 86
6.5.2.43 Instance: StartFroMSEqUENCE...........coouiiiiiiice e 86

Business Process Definition MetaModel, Process Definitions, v1.0 iii

6.5.2.44 Instance: StartSEQ-ENd...........ooiiiiiiiiiii e 86

6.6 Interaction ProtoCol MOdEl.............ooeemeiiiiiee e 86
B.6.1 INtrodUCHION oo e e e e e e e e e e e eaan 86

6.6.2 Metamodel SpecCifiCation.............oooiuiiiiiiiii e 87

6.6.2.1 Interaction ProtOCOL..........coooiiii e e e eaeen 87

6.6.2.2 Compound INteraction.......... ... 88

6.6.2.3 Compound Interaction BindiNg.........cooouiiiiiiiiiii e 89

6.6.2.4 Interaction ProtOCOL............oooiiiiiiiiic e 89

6.7 Class HIErarChi@s...........oovuuieeeee et e e e e e e e ees 89
6.7.1 Condition HIErarChY........ccciiiiiiiiiiii ettt e e e e e e e e e s enaeeees 90

6.7.2 Happening OverTime HIierarChy..........cccoocuuiiiiiiiiiiiiiee e 90

6.7.5 Simple Interaction Hierarchy..............ccccoommiiiiiiiii e 92

6.7.6 Interactive Part HierarChy............oouueeiiii i 92
7 BPMN Notation Summary..........ccooovviiiiiiiiiiii e 93
7.1 Interaction Role NOtatioN.............oiiiiiiii e 93
7.2 Processor Role NOtatioNn............ooi oo 93
7.3 Horizontal Lane NOtation.............oo oo 93
7.4 Vertical Lane Notation...............ooiiii e 94
7.5Time Event NOtatioN.........couniiiiee e 95
7.6 Fact Change Notation.............oooooi 96
7.7 Course Event 'Error' Instance Notation.............coooviiiiiiiiiii e, 96
7.8 Course Event 'Cancel' Instance Notation..............coooeviiiiiiiiiiiiiii e 96
7.9 Course Event'lteration End'...........ooovniiiiii e 97
7.10 Course Event 'Abort' Notation..........cooooiiiiiiiiiieceeeceee e 97
7.11 Course Event 'Compensate’ Instance Notation..............cccoooveiiee 97
7.12 Event Part : Start Notation...........ooovvuiiiiiiieee e 98
7.13 Event Part : Start with 'Time Event Condition' Notation..................c.cccceeeenni. 98
7.14 Event Part : Start with 'Fact Change Condition' Notation................................ 98
7.15 Event Part : ENd NOtatioN..........ooiiiieieeeeee e 99
7.16 Event Part : Error Notation............coouiiiii e, 99
7.17 Event Part : Cancel Notation............ooouuiiiiiiiieeeeeee e 99
7.18 Event Part : Abort Notation...........coooouiiiii e 100
7.19 Error Handling NOatioN..........oooiiiiiiiiieee e 100
7.20 ACtivity NOtatioN.......eiii e 101
7.21 Collapsed Sub-Process Activity Notation.............cccuuveeiiiiiiiiiiiiiieeeeee 101
7.22 Uncollapsed Sub-Process Activity Notation..........................cc 102
7.23 Activity LOOP NOtatioN........c.eeiiiiieiiiie e 102
7.24 Cancel Activity Notation or 'Cancel' Event Part.............ccooovvvviiiiiiiiiiiiiieeenee, 102
7.25 Error Activity Notation or 'Error' Event Part............coo 103
7.26 Abort Activity Notation or 'Abort' Event Part............cccccocoiiiii, 103
7.27 Compensate Activity Notation..............eooeiiiiii e 104
7.28 Compensating Activity Notation............cccoooiiiiiiiiiiii e, 104
7.29 Event Monitor NOtation..............iiiiiiiee e 104
7.30 Event Monitor monitoring a Time Event Condition.................cccccoeeeeee 105
7.31 Event Monitor monitoring a Fact Change Condition.............cccccceeiiiiie. 105
7.32 Event Monitor monitoring a 'Compensate' Behavior Event Condition........... 106
7.33 Event Monitor monitoring a Compound Event Condition...............cccoevveennne. 106
7.34 Succession NOTAtioN...........uuuuiiiiii e 106

iv
v1.0

Business Process Definition MetaModel, Process Definitions,

7.35 Event DeciSion NOtAtION.c.ooe e e 107

7.36 Message NOtatioN.........ccoiii i e 107
7.37 Start Message NOtatioN..........oooiiiiiiiii e 107
7.38 End Message NOtation..............iiiiiiiiiiieic e 108
7.39 Sent Intermediate Message Notation.............cccuueiiviiiiiiii e, 109
7.40 Received Intermediate Message Notation.............coooviiiiiiiiiiicci e, 110
7.41 Message FIOW NOatioN........cooiiiiiiiiiiiee e 110
7.42 Artifact Sequence Flow Notation.................cooooo e 111
7.43 Part Group NOtation.........ooo e 111
7.44 Transaction NOTatiON...........ooiviiii e 112
7.45 Gateway NOTatiON.........oooi i 112
7.46 Exclusive Split Notation...............cc e 112
7.47 Exclusive Merge Notation..............oooii e 113
7.48 Parallel Split NotatioN.............uvviiieiiiiiieieieeeee e 114
7.49 Parallel JOin NOtatioN........coouuiieeee e 114
7.50 Inclusive Split NOtatioN.............eviiiiiiiiiiiiieeee e 115
7.51 Inclusive Merge NOTatioN..........ooiiiiiiiiii e 116
7.52 Complex Decision Notation...........ccccooiiiiiiiiiiiii 116
7.53 Complex Join NOtatioN.........ccoooeeiieeeeeee e 117
8 Non-normative Notation Summary.........cccccooooviiiiiiiiiiienene, 118
8.1 ProCess Diagram..........uueiiiiiiiiiiieiie et 118
8.2 Non-immediate SUCCESSION..........iiiiieieiieeeee e e e 118
8.3 Course Event 'Normal End' instance notation...............cooeeiiiiiiiiiiiiiee 118
8.4 Course Event 'Abnormal End' instance notation..............ccoeeiiiiiiiiiiiiieeeens 119
8.5 Course Event 'Failure' Instance notation.............cccooviveeiiiiiiiiiiieeeee e 119
8.6 Course Event 'Success' Instance Notation.............coooovvvveiiiiiiiiiiiccieeeee 119
8.7 Event Part : Normal End NoOtation..........coooveiiiiiiieeee e 120
8.8 Event Part : Abnormal End notation..............cooeeiiiiiiiii e 120
8.9 Event Part : Success NOtatioN.........ouuiieeiiieeee e 120
8.10 Event Part : Failure Notation............cooouuiiiii e 121
8.11 Succession with Fact Change Condition.............c.eeeeviiiiiiiiiiin 121
8.12 Succession with Time Event Condition............c.ueoiiiiiiiiiiiiiiiieeeeeee e 122
8.13 Interaction Flow between Activities and Statement Condition....................... 122
8.14 Interaction Flow between Activities and Time Event Condition..................... 123
LT ST i (o] o 1= g V(] = 1o o T 123
8.16 Compound Interaction Notation...............coooviviiiiiiiiiiiiiiiicc e, 123
8.17 Course Occurrence Diagram.............oueeeiiiiiiiiiiiiiieieece e 124
8.18 BENAVIOr OCCUIMENCE........uueiieieee ettt e et e e e et e e e e e e e e raaaeeeees 125
8.19 ProCeSS OCCUIMEBNCE.u i et e et e e e e e e e e e e e e e e e eaeeans 126
9 BPDM-BPEL Mapping......ccccuiieiiiiieeee e e 127
O T I CT=T 0 1Y = 127
9.1.1 Topological ConSIAErationsS.........ccccuuuiiiiiiiiiiiiiiie e eeeeeeeeaeeeees 127
L I B 1= ToT =1 (o T 1Y (oo [R 127
9.1.3 Notational CoONVENLIONS. i e e e e e e e e e 127
LS T2 o {0 Tt Y1 128
9.3 Start EVENt MapPingsS.uuuuuuueiiiiiiiiiiiiiiiiiiiesiiiaaieaeeasaaaaaasaaaasasaanaaaaaaa e eaeeans 128

Business Process Definition MetaModel, Process Definitions, v1.0 v

10

vi
v1.0

8 I oo N V=T o | 1Y/ =T o] o1 e [129

9.5 Intermediate EVENTS...........oiieee e 130
0.8 ACHVITIES. ...t e e e 134
S TR o [0V 138
LRSIV [0 [1 o] b= 1IN @0 1 151 1 U (o1 £ 140
O I U= (=] (= (o= 142
Proof of Concept Language Mappings.......c.cccceeeeivneeeennne.e. 143

Business Process Definition MetaModel, Process Definitions,

List of Figures

Figure 1 - Dependencies of BPDM Packages.........cccciiriiiinniiminesninis s s ssss s s s s s 9
Figure 2 - Behavior Model Diagram............cccvieiiiiminess i s sss s sss s sssss s s sss s s ssss s sssss s sssss s ssssssnssses 14
Figure 3 - Behavior Library: EVENts..........ccccciiiiiiii s s s s s s 15
Figure 4 - Behavior Library : Behavior OCCUITENCE.............coceiriiiiiiiirniir s isses s se s s sss s s n s s smnnnnnes 16
Figure 5 - Behavior Library: 'Racing’ Behavior ... s s 17
Figure 6 - Behavior Library: 'Group Abort Behavior'.............cooo i 18
Figure 7 - Behavior Event Condition Diagram...........cccccuimmiiimmnnsimies s s sssansee 19
Figure 8 - Behavior Step Group Diagram.........cccucceiriiiminiisiiisinie i s s sssnsees 19
Figure 9 - Connected Part Binding Diagram..........cccoccciiiemiiiininis s s sssss s sssss s sssssssssnsnes 20
Figure 10 - Event Monitor monitoring a ‘Compensate’ Course Event Condition..........ccccccvviiiiiiininieennnnnnn, 24
Figure 11 - Event Monitor monitoring a Compound Event Condition...........cccovrviinininniinicsr s 24
Figure 12 - Event Monitor monitoring a Fact Change Condition...........cccoccciiiiiiiniennncsn e 24
Figure 13 - Event Monitor monitoring a Time Event Condition...........cooooiiiicciiicc s 24
Figure 14 - Event Monitor Notation..............iei et e s 25
Figure 15 - Course Event 'Abnormal End' instance notation...........cccccuciinniinininnis e 26
Figure 16 - Event Part : Abnormal End notation...........cccccimiiiniininniinies s sssssssseenes 26
Figure 17 - Course Event 'Abort’ Notation.........ccccciiniiininiier s 27
Figure 18 - Event Part : Abort Notation............cccciiiiniiiii s 27
Figure 19 - Behavior OCCUITENCE..........ccocciriieieiiireersi s issss s s s s s s e s as s ae e s s ne s s an e s s nn e s e mn s annnnnns 30
Figure 20 - Course Event 'Error’ Instance Notation...........cccciiiiiinincsnincrs it 31
Figure 21 - Error Activity Notation or 'Error' Course Event Step.........ccccoooimiiiiiiiiinnincicieee s 32
Figure 22 - Error Handling NoOtation............oo it s 32
Figure 23 - Event Part : Error Notation..........ccccciminiimiis s s s s sssnsee 32
Figure 24 - Course Event 'Failure' Instance notation............ccccciviiimiiiniiinsir e 33
Figure 25 - Event Part : Failure Notation..........ccccciiiiiiicinnir s 33
Figure 26 - Course Event 'Normal End' instance notation...........cccccvviiiinnniiinne e 35
Figure 27 - Event Part : Normal End notation............cccciieimiiiieieens e 35
Figure 28 - Course Event 'Success' Instance notation...........cccoccciiriiiiiiinncsnicr s 37
Figure 29 - Event Part : Success Notation...........ooiiiiin e s 38
Figure 30 - Interactive Behavior Diagram...........cooo i s s s 40
Figure 31 - Simple Interaction Binding Diagram..........c..ccccurriiminmninmeinriss s s sssssssssees 41
Figure 32 - MesSage Diagram..........ccceiiiiiiiiemiiisss i s s s s s s s n e e e s s a e nnnnn e e 41
Figure 33 - End Message Notation...........cccciiiininiin i s s snnnnn e 42
Figure 34 - Interaction Role Notation..........ccccciiiiiiniinc e 42
Figure 35 - Message Notation.........ccccumiiiiniiii s 44
Figure 36 - Message FIOW NOtation.........ccccoeiiiiieiire s s 44
Figure 37 - Received Intermediate Message Notation...........ccooiiiicniciicc s 45
Figure 38 - Sent Intermediate Message Notation............cccooiiiieciincsenec e 46
Figure 39 - Start Message Notation..........cccccieiiiiiiiini i 47
Figure 40 - Activity Model Diagram...........ccciciminienniiniins i s s annnn e 50
Figure 41 - Activity Model Library: Simple Process instances...........ccocccviiimiinininnnies s 51
Figure 42 - Activity Categories Diagram..........ccoccciiieniniieinnisies s s s nnnnn e 51
Figure 43 - Activity Model Library: Loop Happening instance...........cccccuiciimmmininiieinnsees s 52
Figure 44 - Embedded Process Diagram.........cccccuiiiiiiemrriniinisnrss s ssssssss s s sssss s s sssn s s s ssss s s s s ssssssssssnes 53
Figure 45 - Process Derivation Diagram............ooiiiiiirii s ss s s mms s s 54
Figure 46 - Role Realization Diagram............coo i ms s mn e s s 54
Figure 47 - Abort Activity Notation or 'Abort’' Behavioral Change Part............ccccciniiminiininiinnncccisennnnnnens 55
Figure 48 - Activity NOtation..........ccccceiiiiiiiii i ————————— 55
Figure 49 - Activity LOOP NOtation.........ccccciiiiiiiir i s e 56
Figure 50 - Collapsed Sub-Process Activity Notation..........c.ccccoiiminiiiiiiinii e 57
Figure 51 - Uncollapsed Sub-Process Activity Notation..........ccccciiiiiiiniiiincnnii s 58
Figure 52 - Error Activity Notation or 'Error' Behavioral Event Step.........cccccucvcmiiinnnisennniinceeeennnes 58
Figure 53 - Holder NOtation........ ..ot s 59

Business Process Definition MetaModel, Process Definitions, v1.0 vii

Figure 54 - Horizontal Lane Notation...........cccoiiiiiiiiiiis i s ssnnneee 60

Figure 55 - Vertical Lane Notation...........ccccuiiiiniiiis i s s s s snnne e 61
Figure 56 - Process Diagram..........ccuieiiiiiiiesi s s s s e n e e s a e 62
Figure 57 - Interaction Role Notation...........ccccimiiiiiiiiir 63
Figure 58 - Processor Role Notation..............iiiiri e s 63
Figure 59 - Activity NOtation.............ei e 64
Figure 60 - Collapsed Sub-Process Activity Notation..........c.ccccoviminiiiiiinn e 65
Figure 61 - Uncollapsed Sub-Process Activity Notation............cccciciiiniiininiiiie e 65
Figure 62 - Behavioral Event 'lteration End'............cccooiiiiiininiiir s s snssne e 67
Figure 63 - Adhoc EXtension Diagram.........ccccceiiieriinieniinniniss i s ss s s s sn s s mmmnnnnnes 69
Figure 64 - Activity EXtensions Diagram..........cccccceimiiiiiimnniniisr s s 69
Figure 65 - Gateway EXtension Diagram..........cccucoriiiiiiiniininie s s s an s s e e s mn s ssmn e 70
Figure 66 - BPMN Extensions Library: Compensate Process Instance............ccccciriiiiiinmniincccsmns s 70
Figure 67 - BPMN Extensions Library: BPMN Process Occurrence Instance...........ccccceeevmrrnserinseessssessssnnees 7
Figure 68 - Sequence Flow Extension Diagram...........ccccuciiminiemiienminsisiss s ssssssssssssees 71
Figure 69 - Artifact Flow EXtensions Diagram...........ccccciemiiiminnsimis s s ssss s s ssssnsee 72
Figure 70 - Transaction Extensions Diagram...........cccccuiiinneiiiininie s s s sssssssnes 72
Figure 71 - Compensation Extensions Diagram...........cccoueiminininenissiis s ssssssssnes 72
Figure 72 - Artifact Sequence FIow Notation...........cccciiiiiciinncinir e 74
Figure 73 - Interaction Flow between Activities and Statement Condition...........cccccrrviiiiicniniccciiieeeneeee, 74
Figure 74 - Interaction Flow between Activities and Time Event Condition............ccccooomiiiiiciicnnicccieenee 74
Figure 75 - Cancel Activity Notation or 'Cancel' Behavioral Event Step..........ccccueeemiricmricscnnniicccceeeeeeeee 75
Figure 76 - Compensate Activity Notation...........ccccciieiiiiiiinn 75
Figure 77 - Compensating Activity Notation............cccviiiiiiiii 76
Figure 78 - Complex Decision Notation...........cccouiiiiiniiiinir s ssnnn e 76
Figure 79 - Complex Join Notation.........ccccciiiiiiininie s 77
Figure 80 - Event Decision NOtation..........cccccieiiiiicneiirr i 77
Figure 81 - Exclusive Split Notation..........cooiiiic e 78
Figure 82 - Exclusive Merge Notation.......... .. s 79
Figure 83 - Inclusive Split NOtatioN...........ccciiimiiiei e sme e e s s s mmmnn e 79
Figure 84 - Inclusive Merge Notation...........cccoiimiiiiinniii i 80
Figure 85 - Succession Notation

Figure 86 - Activity NOtation..........cccceiiiiiiiii i
Figure 87 - Abort Activity Notation or 'Abort’' Behavioral Change Part............ccccciniiiminiininiinnnccccseeeennnens 82
Figure 88 - Transaction Notation..........cccuueiiiincci 82
Figure 89 - Behavioral Event 'Cancel’ Instance Notation............ccccocoiiiiiiiicninn e 83
Figure 90 - Event Part : Cancel Notation...........oo e 83
Figure 91 - Behavioral Event 'Compensate’ Instance Notation............ccocooeriiiiiinccincsccin s 84
Figure 92 - Interaction ProtOoCOL..........ccciciiiiiiinii i e 88
Figure 93 - Compound Interaction Notation...........ccccciviiiinniiini 89
Figure 94 - Condition HIierarChy..........cccuciiiiiiii i s s nn e 90
Figure 95 - Happening OverTime Hierarchy..........ccccoiiiiminiiinir s assnsee s 90
Figure 96 - Event HierarChy..........cooiiiiiiiiien i s e 91
Figure 97 - Behavioral Step Hierarchy.........cccccuiiiiiiiincisis i s mmnne s 91
Figure 98 - Simple Interaction Hierarchy............. e s 92
Figure 99 - Interactive Part Hierarchy...........o it s 92
Figure 100 - Interaction Role Notation..........cccccciiiiiiiiinir 93
Figure 101 - Processor Role Notation...........cccivimiininis i s sssnssnes 93
Figure 102 - Horizontal Lane Notation...........cccciiiiiiiniiiisiie s s sssnne e 94
Figure 103 - Vertical Lane Notation..........ccccciiiiiimiiin s s n s s snnne e 95
Figure 104 - Time Event Notation..........cccciiiiii s 95
Figure 105 - Fact Change Notation...........ccccciiiiiiinincii it s e 96
Figure 106 - Course Event 'Error' Instance Notation...........coiiiiiiiiiince e 96
Figure 107 - Course Event 'Cancel’ Instance Notation...........c.ccccoriiiiicciincccenis e e 96
Figure 108 - Course Event 'lteration End'............cccoiiiiiiinininisii s 97
Figure 109 - Course Event "Abort’ Notation............cccucemiiiieiniiier e 97
Figure 110 - Course Event 'Compensate’ Instance Notation...........ccccccirimiiiiinininins e 97
Figure 111 - Event Part : Start Notation...........cccoiiiiinii i 98
Figure 112 - Event Part : Start with 'Time Event Condition' Notation............cccceeviiiiinininncieeenenees 98
Figure 113 - Event Part : Start with 'Fact Change Condition’ Notation............cccceecmiiiiniisninnse s 98
Figure 114 - Event Part : End Notation............. e 99
Figure 115 - Event Part : Error Notation.............ooo it 99

viii Business Process Definition MetaModel, Process Definitions,

v1.0

Figure 116 - Event Part : Cancel Notation.........cccccriiiininiiii s s sne e 99

Figure 117 - Event Part : Abort Notation...........cccuiiiiiniii e 100
Figure 118 - Error Handling Notation..........ccccceiiiiiiiiii e 100
Figure 119 - Activity Notation..........c.ccoiiiii 101
Figure 120 - Collapsed Sub-Process Activity Notation...........cccooiinicicc e 101
Figure 121 - Uncollapsed Sub-Process Activity Notation............ccccoeiimiiiiinnccniccee e 102
Figure 122 - Activity LOOP NOtation..........ccciiiimiiiiiiiis i s 102
Figure 123 - Cancel Activity Notation or 'Cancel’' Event Part............ccccccviminiiiinisine s 103
Figure 124 - Error Activity Notation or 'Error’ Event Part...........cccovcviiiniiiinnininiee s 103
Figure 125 - Abort Activity Notation or 'Abort' Event Part............cccccoviiiiiiiniie e 103
Figure 126 - Compensate Activity Notation............ccciimiiiiiinniir e 104
Figure 127 - Compensating Activity Notation............ccociiiiiininin e 104
Figure 128 - Event Monitor Notation.............coo e s 105
Figure 129 - Event Monitor monitoring a Time Event Condition...........cccccoiiieiimniecmincse e 105
Figure 130 - Event Monitor monitoring a Fact Change Condition...........ccccccininiiieiinnsninin s 105
Figure 131 - Event Monitor monitoring a ‘Compensate’' Behavior Event Condition............cccccccvviiniicinnnnnnns 106
Figure 132 - Event Monitor monitoring a Compound Event Condition...........cccocccviiiiminniinnnsnnee e 106
Figure 133 - Succession NOtation...........ccuiiiiininiir s 106
Figure 134 - Event Decision NOtation............ccccviiiiimiiiicer s 107
Figure 135 - Message NOtation...........ociiiiieii s 107
Figure 136 - Start Message Notation.............o e 108
Figure 137 - End Message Notation.............o it 108
Figure 138 - Sent Intermediate Message Notation............ccccucviiiiiininin s 109
Figure 139 - Received Intermediate Message Notation...........cccoccimiiiiiiniiinn e, 110
Figure 140 - Message FIow Notation..........cccceiiiiiiiniie s e 110
Figure 141 - Artifact Sequence FIow Notation............cccoiiiimiiniinii e 111
Figure 142 - Part Group Notation...........cooiiiiiiiir e s s
Figure 143 - Transaction Notation..........cccccciiiiiniiinicr s
Figure 144 - Gateway NOtation........... ..
Figure 145 - Exclusive Split NOtation............cccoii i sn e s
Figure 146 - Exclusive Merge Notation...........ccciimiiminnisiiise s
Figure 147 - Parallel Split Notation...........cccciiiiimiiiiiin s
Figure 148 - Parallel Join NOtation...........ccciiiiiniiiii s
Figure 149 - Inclusive Split Notation...........cccocciiiiiiiiii i
Figure 150 - Inclusive Merge Notation..........ccccucmiiiininiin i
Figure 151 - Complex Decision Notation

Figure 152 - Complex Join Notation..........ooiiii s
Figure 153 - Process Diagram...... ... i smss s s mms e ms e s s e mme e e e s e mmn e e e e e s mmnn e s e nnas
Figure 154 - Non Immediate Succession

Figure 155 - Course Event 'Normal End’ instance notation.............ccccevvmininnininnnnsnce e 119
Figure 156 - Course Event '"Abnormal End’ instance notation............cccccvirinininininne e 119
Figure 157 - Course Event 'Failure’ Instance notation...........c.ccccviiiiinmnnniincn e 119
Figure 158 - Course Event 'Success’ Instance notation............cccciriiiiiniiiinccninccisi s 119
Figure 159 - Event Part : Normal End notation...........ccccciimiiniciiin i 120
Figure 160 - Event Part : Abnormal End notation...........coiiincccmi e 120
Figure 161 - Event Part : Success Notation............cccoiiimiiiiiiiciiie e ee s e s 121
Figure 162 - Event Part : Failure Notation............ccccviiiminiiiiis i 121
Figure 163 - Succession with Fact Change Condition............cccceiriminiiniin e 121
Figure 164 - Succession with Time Event Condition...........ccccvcviiniiniiirine e 122
Figure 165 - Interaction Flow between Activities and Statement Condition............cccocvcviriniiinieiincccnee 122
Figure 166 - Interaction Flow between Activities and Time Event Condition..........c..ccccveimiiiiiniiccnnicinnnnnnes 123
Figure 167 - Holder NOtation............cceiiiiiiii e s s 123
Figure 168 - Compound Interaction Notation............coooiiiiii s 123
Figure 169 - Course Occurrence DIiagram..........c.ccccirieierirnseressressseesssseessssssessseessssmessssssesssmessssnsessessssssssssnns 124
Figure 170 - BERaVIiOr OCCUITENCE.......cciiiiuieiiieriissr s e e s e an s n e e n e e e e e e e e ane e a e nn e nnann 125
Figure 171 - ProCess OCCUITENCE........iiiiueriiiteisiisreisssss s isss s sssss e s ss s s s s s s e se s e d s a e e e e R e e e e aE e R e an e e a R e e e e e s s aann 126

Business Process Definition MetaModel, Process Definitions, v1.0 ix

1 Scope

The “Business Process Definition Metamodel” (BPDM) is a framework for understanding and specifying the
processes of an organization or community. Business processes have been at the heart of business and technology
improvement under the guise of many terms and methodologies, such as: Business Process Engineering or Re-
Engineering, Business Process Management, Business Process Execution, Total Quality Management, Process
Improvement, Business Process Modeling, and Workflow. Similar and related concepts such as Service Oriented
Architectures, Enterprise Application Integration, Flowcharts, Data Flows, Activity Diagrams, Role/Collaboration
Modeling, and Modeling and Simulation serve to enable and describe business processes.

This heritage of process related approaches has provided substantial benefit to public and private institutions and is
one of the factors that has allowed the modern enterprise to grow and prosper. This same heritage has also caused
some confusion in how these various approaches and solutions do or do not work together and how to leverage them
for a coherent and integrated solution. As of now there is a substantial asset of business process descriptions,
notations, implementations, and machinery but many of these are islands — islands of a particular technology,
methodology, or notation.

BPDM provides the capability to represent and model business processes independent of notation or methodology,
thus bringing these different approaches together into a cohesive capability. This is done using a “meta model”' — a
model of how to describe business processes — a kind of shared vocabulary of process with well defined connections
between terms and concepts. This meta model captures the meaning behind the notations and technologies in a way
that can help integrate them and leverage existing assets and new designs. The meta model behind BPDM uses the
OMG “Meta Object Facility” (MOF)* standard to capture business processes in this very general way, and to provide
an XML syntax for storing and transferring business process models between tools and infrastructures. Various
tools, methods, and technologies can then map their way to view, understand, and implement processes to and
through BPDM.

To achieve this goal, BPDM supports two fundamental and complementary views of process — “Orchestration” and
“Choreography’:

* Orchestration concepts in BPDM are represented through sequences of “Activities ” that produce results with
branching and synchronization. Orchestration is typically represented as flow charts, activity diagrams,
swim lanes, or similar notations of one task or activity following another. The orchestration of processes
describes what happens and when in order to better manage a process under the authority of some entity.

e Choreography describes how semi-independent and collaborating entities work together in a process, each of
which may have their own internal processes. Choreography captures the inferactions of roles with well
defined responsibilities within a given process. Choreography is the basis for the Service Oriented
Architecture (SOA) paradigm and helps to keep the enterprise loosely coupled and agile. The choreography
of a process focuses on the responsibilities and interactions that ultimately provide value without necessarily
requiring any coordinating authority.

In business process modeling, choreography and orchestration are effectively two sides of the same coin. BPDM
joins orchestration and choreography into a unified and coherent model.

1.1 Business Process Modeling Notation (BPMN)

BPMN has gained recognition as a flexible and business-friendly notation for process orchestration. BPDM
provides an explicit metamodel and serialization mechanism for BPMN concepts. By integrating BPMN and
BPDM both the underlying model and notation for process orchestration is covered by an integrated set of standards.
The notation for choreography, BPMN diagram interchange and the normative relationship to runtime technologies
such as BPEL is planned to be part of subsequent standards.

Meta models - http://en.wikipedia.org/wiki/Meta_model
OMG Meta Object Facility - http://www.omg.org/mof/

2

Business Process Definition MetaModel, Process Definitions, v1.0 1

111 Target Audience and Use of BPDM

At its core, BPDM provides interoperability across tools, so that different tools can depict or utilize a process
definition in different ways yet work together for the ultimate benefit of the enterprise. For example, If Vendor A
and Vendor B both support BPDM as their process exchange mechanism, then, a BPMN drawing created using
Vendor A’s modeling tool could then be opened and executed using Vendor B’s business process management
system. Therefore, BPDM is a technology specification for vendors to use to define how they serialize or exchange
their process depictions, allowing for industry interoperability. For most business analysts and process users, this is
all they really need to know about BPDM. What BPDM support means is that your process assets are not locked into
a particular tool or notation; they are assets that can work across a wide range of tools and solutions.

1.2 Other Common Business Benefits of BPDM

1.2.1 Carefully defined semantics

When diagrams are used to aid human to human communications a certain amount of “fuzziness” in what those
notations mean can be acceptable, since explanations often clear up any misunderstandings. When processes are
specifications for what people, organizations, or I.T. systems should do, those specifications must be clear and
precise. Particular attention has been paid in BPDM to make sure that the semantics behind the notations and models
are well defined, consistent and sufficient to represent most normal forms of business processes. BPDM is
sufficiently precise to model behavioral events (starting, ending, aborting, etc) of processes that allows them to be
ordered in time, and have their effects on each other precisely modeled. Formal methods?, based on logic, are
utilized to verify this precision. The precise semantics of BPDM makes sure that processes will be accurately
communicated to man and machine.

1.2.2 Saying just enough, but not too much

Specifying a business process can be a double-edged sword. Say too little and the process may be unpredictable,
inconsistent, wasteful, and not fit into the rest of the business (or the business of partners). Say too much and the
process can be a strangle-hold, preventing creativity, agility, and optimization. BPDM can’t enforce this artful
balance, but it can enable it; the basis of which is separation of concerns — separating the intended outcome of a
process from how that outcome is achieved. Where appropriate; substantial detail can be specified for how to
achieve a goal, in other cases only the “contract” is specified — the contract says what is to be accomplished without
saying how. Many of the established methods do not provide well for this separation of concerns and therefore over
specify or under specify a process. BPDM provides for separation of concerns, well defined contracts, and multiple
options for implementing a process that corresponds to its contracts.

1.2.3 Improved Integration and Collaboration

The successful modern enterprise is defined by two basic capabilities; the ability to be agile and the ability to
collaborate. Both capabilities are served by “loosely coupling” the business and the technologies that serve it. This
means that tightly coupled and monolithic processes are barriers to success. A business process design better serves
the enterprise by making it easy to collaborate with other organizations, regardless of their processes. It should be
easy to outsource, insource or change the way a part of the organization works without undue impact on the rest of
the organization or business partners. The integration of orchestration and collaboration as well as the separation of
process contract from its realization serve this goal of loose coupling.

1.2.4 Improved Agility

Agility is required to respond to external drivers, internal needs and the constant impact of legislation and
technology change. In today’s’ world — agility is survival. The combination of well defined business processes that
provide for separation of concerns with Model Driven Architecture (MDA)® * provide the exciting possibility of
being able to design, redesign and deploy new processes quickly and with minimal overhead — the enterprise is not
locked in to legacy technologies and processes. BPDM provides the business focused model that can be part of the
specification of the process for people, in terms of process “play books” and instructions, and for technologies, in

* Process Specification Language (PSL) - http://www.mel.nist.gov/psl/

Model Driven Architecture (MDA)®, is a trademark of the Object Management Group — http://www.omg.org/mda

4

2 Business Process Definition MetaModel, Process Definitions, v1.0

terms of web services, workflows, and process execution engines. In addition BPDM is technology independent —
any number of technical approaches may be used to help realize or support a business process. The BPDM model is
a model of the business, not the technology — MDA helps join these two viewpoints.

1.2.5 Business Processes supported by Service Oriented
Architectures (SOA)

SOA has become recognized as the leading architectural approach to business and technical agility and integration.
SOA structures the enterprise and supporting technologies based on services that are provided or consumed by
collaborating entities. This service oriented approach applies to both the business — in terms of how one business or
business unit serves another, and to the technologies — in terms of how application components work together by
providing and using software services. BPDM describes the business side of SOA in terms of choreography (above)
that can then be mapped to the software components that assist those business processes. This process centric SOA
approach provides for agility, loose coupling, and a better tic between business and technology. SOA helps support
both the agility and collaboration goals of BPDM.

1.2.6 Better Return on I.T. Investment

The net result of separation of concerns, support for collaboration, and enhanced agility is that I.T. investments have
better return. This return is realized by directly supporting business needs as identified in the business processes and
by supporting reuse of services, components, and supporting infrastructure across the enterprise and across
marketplaces. Since investments are more reusable, their return is not limited to a single project. Since investments
are directly tied to business needs, their business benefit can be measured. Since investments support agility and
collaboration, they can have bottom-line impact.

Business Process Definition MetaModel, Process Definitions, v1.0 3

1.3 Process Concepts Supported by BPDM

BPDM integrates multiple process approaches and notations, which are summarized as follows. BPDM provides
integrated and consistent support for the semantics of:

¢ All BPMN notation concepts

e Processes, activities, tasks, and sub-processes

* Workflow

¢ Sophisticated control of alternatives and parallel processes

e Conditional execution paths

e Signals and events

e Time-based events and conditions

¢ Events based on change in data or external conditions

* Integration with rules and rules engines through event-based semantics

* Process groups and swim-lanes

¢ Transactions, rollback, and compensation

e Process data and data flow

e Artifacts and artifact production and dependencies

e A combination of human and automated process participants

* Service Oriented Architectures and business services

e Resource and entity selection

¢ Roles, responsibilities, and collaborations

e Bi-directional and composite interactions between entities

* Automated execution with MDA and process execution engines such as BPEL (See non-normative mapping
to BPEL)

¢ Interaction protocols, services, and design by contract

* Composite processes

¢ UML activity, collaboration, and interaction diagram concepts

e Process specialization, derivation, and refinement.

In summary, BPDM standardizes the underlying semantics, model, and exchange mechanisms to improve the

efficiency, agility, and collaboration of public and private enterprises through the precise and integrated definition of
business processes.

2 Conformance

The following levels of compliance are defined for BPDM in relation software. For the following compliance points
the interpretation of the phrase “to process a model” will depend on the functionality of the software as follows:

e If the software reads process models, to “process the model” will include reading a BPDM model compliant
with the MOF-2 XMI for BPDM included as part of this specification.

e If the software writes process models, to “process the model” will include writing a BPDM model compliant
with the MOF-2 XMI for BPDM included as part of this specification.

¢ If the software executes or otherwise interprets process models, to “process the model” will include
executing or interpreting the model in accordance with the semantics as defined in this document.

21 BPDM Full Compliance

An implementation is fully compliant if it can process a model that utilizes all BPDM metamodel concrete concepts,
not necessarily including those defined in the “BPMN Extensions” package.

4 Business Process Definition MetaModel, Process Definitions, v1.0

2.2 BPDM Collaboration Protocol Compliance

An implementation is BPDM protocol compliant if it can process a collaboration protocol model that utilizes all
concrete concepts for representation of a collaboration protocol as specified in the “Interaction Protocol Process
Model” package and all included packages.

2.3 BPDM Orchestration Process Compliance

An implementation is BPDM protocol compliant if it can process an orchestration model that utilizes all concrete
concepts for representation of an orchestration process as specified in the “Activity Model” package and all included
packages.

24 BPDM - BPMN Compliance

An implementation is BPMN compliant if it can process a model that utilizes all concrete concepts for representation
of a process as specified in Section 6.5, 6.6, 6.7, 6.8 and 6.9. Each of these sections provides detailed mappings of
the BPMN notation constructs on to the BPDM metamodel. Section 7 provides a mapping summary of BPMN
notation constructs to BPDM metamodel elements.

3 Normative References

[BPEL11] ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
[BPEL20] http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.pdf
[BPMN] http://www.omg.org/cgi-bin/apps/doc?dtc/07-06-03.pdf

[BPM-06-02] http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-02.pdf
[RFC2119] http://www.ietf.org/rfc/rfc2119.txt

4 Terms and Definitions

Activity

An Activity is a kind of Behavior Step that activates a Behavior (it operates over time) in the context of a Process.
It can:

* Dbe ordered in time by Succession

e operate under the responsibility of a Performer Role

e activate a sub-processe or be a simple task that start and stop

An Activity is also an Interactive Part that receives its inputs and outputs through Interactions coming from other
Interactive Parts in the Process (Activity, Interaction Role, Performer Role, Holder).

Actor

An Actor is an entity that is responsible for the execution of duties specified by a Performer Role
Further sub-type of Actor will be defined in specifications such as the Organizational Structure Metamodel (OSM)
to add specific requirements such as and can as having certain skills or budget.

Performer Role

A Performer Role is a Part Group that takes responsibility of performing activities in the process. Being an
Interactive Part, a Performer Role also has responsibilities to fulfill Interactions that it is involved with other
Performer Roles or with Interaction Roles at the boundary of the Process. A Performer Role is a Typed Part for
specifying Actor that can play the role at process enactment.

Business Process Definition MetaModel, Process Definitions, v1.0 5

http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-02.pdf
http://www.omg.org/cgi-bin/apps/doc?dtc/07-06-03.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.pdf

A Performer Role can be decomposed into sub Performer Role to delegate responsibility for a subset of its
activities or interactions. A Performer Role may have a realization as defined by a Role Realization that further
specifies how the Performer Role will meet its responsibilities.

Process

A Process is a kind of Interactive Behavior that describes specific Activity(ies) to be performed, Interactions to
be undertaken during its execution under the authority of a Processor Role (or delegated performer roles).

The process owns the set of activities to be performed as well as the Conditions on when such activities will be
performed and by which performer role. The process also owns the set of Interactive Parts that define the flow of
information and other resources between activities, Performer Role and Interaction Roles.

A specific Interaction Role defines the set of Interactions the process is responsible of: its is the Process
Interaction Boundary. The set of Interactions attached to the Process Interaction Boundary defines the inputs
and outputs of the process.

A Process may utilize sub-processes with a Sub-Process Activity as well as be used in the context of other
processes in the same way.

Behavior Step

Behavior Steps is a kind of Happening Part which typed is a Behavior. This enables it to "invoke" other Behavior
and to build Behavior composites (made of sub- Behaviors).

Behavior Step Group

A Behavior Step Group is a kind of Part Group that is also a Behavior Step typed by the Behavior Occurrence
in user models (M1). This gives a group of Behavior Steps as a whole the capacity to produce start and end changes
playing the standard behavioral change parts, such as Start and End. For example, most process languages have a
way of modeling sub-processes without defining a separate process. This is a Behavior Step Group.

Event Monitor

An Event Monitor is a kind of Behavior Step that monitors the occurrence of an Event Condition and that has an
effect on the course of a Behavior. For instance, an Event Monitor can be used to react to the Abort Event of a
specific Course.

Interaction

An Interaction is a Behavior Step that is also a Part Connection , enabling Interaction to have start and end
changes, and be ordered in time.

An Interaction can be either a simple Simple Interaction or a set of combined Simple Interactions: a Compound
Interaction. Ultimately, an Interaction is realized by the exchange of Simple Interactions between its Interactive
Parts.

Interaction Role

An Interaction Role is an Interactive Part where the individuals playing the part are in the environment context
where the Behavior is used. For example, the customer is an Interaction Role in a behavior for delivering a
product.

Simple Interaction

A Simple Interaction is a kind of Interaction in which something is "transferred" from individuals playing one
interactive part to individuals playing another interactive part. For example, a document, phone number, or package
may be transferred from one department to another in a company. The transferred items must conform to a Type
specified by the Simple Interaction. A Simple Interaction can have an Expression to change the item that arrives
at the target based on the item flowing from the source. For example, a transformation may retrieve the zip code

6 Business Process Definition MetaModel, Process Definitions, v1.0

from an address flowing from the source to deliver the zip code to the target.

Simple Interactions in user (M 1) models are always typed by the Behavior Occurrence (see user library Behavior
Library). This gives them the standard Event Parts, such as for start and end, so the Simple Interactions can be
ordered within an Interaction Protocol. This is different from the type of thing transferred.

Simple Interactions can refer to Simple Interactions inside the Interactive Parts being connected. This means the
transferred thing is passed along through chains of Simple Interactions from inside to outside the parts, or the other
way.

Interaction Protocol

An Interaction Protocol is a kind of Interactive Behavior where Behavior Steps are Interactions that occur
between Interaction Roles. The set of Interactions defines the purpose of the Interaction Protocol.

Condition

A Condition is a Boolean ValueSpecification that constrains some element in the models. Conditions are true if
their descriptions hold in the current state of the world, possibly including executions, and false otherwise.

Course

A Course is an ordered Succession of Happening Parts. A Course is a Composite that has connections
representing that one part of the course "follows" another in time, and possibly establishes constraints on such
followings (Succession).

Event

An Event is a Happening for dynamic entities occurring at a point in time.

Event Condition

An Event Condition is a Condition for specifying that an Event must occur in the context of a particular
Happening Over Time for the condition to hold. For instance, a condition can be on the eruption (instance of
Event) of a particular volcano (instance of Happening Over Time).

Event Part

An Event Part identifies Event (such as Start Event or End Event) for an individual Course. An Event Part is
also a Happening Part, enabling it to be connected by Successions.

Gateway

A Gateway is a kind of Course Part representing potentially complex specifications of how dynamic individuals
playing Happening Parts are ordered in time. The particular specifications are given in subtypes. At runtime,
Gateways don't have any execution trace.

Succession

A Succession is a Directed Part Connection that organizes Course Parts in series in the context of a Course. A
Succession indicates that one Course Part "follows" another in time, and possibly establishes constraints on such
followings. It can order the Event Part of its Happening Parts such as their Start or End.

Succession allows any combination of Event Part to be connected.

End -> Start
Start -> Start
Start -> Abort
etc.

A Succession doesn't need to have Happening Part on its ends, it can have untyped course parts also, such as
Gateway, but it must have something on each end. For convenience, a Succession that does not specify source

Business Process Definition MetaModel, Process Definitions, v1.0 7

event part or target event part will have the same effect as a Succession where these are respectively the End and
Start.

Time Event

A Time Event specifies a point in time that is a source of interest.

Time Event Condition

A Time Event Condition is a kind of Event Condition that is based on the occurrence of a Time Event. A Time
Event Condition is specified by referring to a Clock.

5 Additional Information

5.1 Acknowledgements

The following companies submitted this specification:
e Adaptive
* Axway Software
* Borland Software
e Model Driven Solutions
« EDS
e Lombardi Software
* MEGA International
¢ Unisys

The following companies and organizations support this specification:
* BPM Focus
e U.S. National Institute of Standards and Technology (NIST)

6 Metamodel and Notation Specification

This section presents the normative specification for business process definition metamodel, including its BPMN
based notation. It begins with an overview of the BPDM metamodel structure followed by a description of each sub-
package.

6.1 Overview

The Business Process Definition MetaModel package contains the models for orchestration (including BPMN) and
choreography, and their performance, enactment, and execution. It has six subpackages grouped into two categories:

¢ Common Behavior Model for the aspects of dynamics in common between orchestrations and
choreography (Behavior Model, and Interactive Behavior Model).

e Activity Model (including BPMN Extensions) for orchestration and Interaction Protocol Model for
choreography.

The Business Process Definition MetaModel package imports the Common Infrastructure package which

provides the framework that ties the other models to performance, enactment, and execution (Abstractions,
Composition Model, Course Model and Condition Model).

8 Business Process Definition MetaModel, Process Definitions, v1.0

i

‘J

Common Infrastructure

Condition Model |<---- Conposition Model |<----- Course Model

/

N

Business Process Definition MetaModel

n

Common Behavior Model

Behavior Model Cmmmmmmmmmna s Interactive Behavior
Model
7 ™

Activity Model

BPMN Extensions

Interaction Protocol Model

Figure 1 - Dependencies of BPDM Packages

Package

Comment

Business Process Definition
MetaModel

The Business Process Definition MetaModel package contains the models
for orchestration (including BPMN) and choreography, and their
performance, enactment, and execution. It has six subpackages grouped
into two categories:

* Common Behavior Model for the aspects of dynamics in common
between orchestrations and choreography (Behavior Model, and
Interactive Behavior Model).

* Activity Model (including BPMN Extensions) for orchestration and
Interaction Protocol Model for choreography.

The Business Process Definition MetaModel package imports the Common
Infrastructure package which provides the framework that ties the other
models to performance, enactment, and execution (Abstractions,
Composition Model, Course Model, and Condition Model).

Common Infrastructure

The Common Abstractions package is the framework that ties the other
models to performance, enactment, and execution (Composition Model,
Course Model and Condition Model).

Composition Model

The Composition Model is a framework for relating metamodels to the real
world entities they ultimately represent. It facilitates integration with
business process runtimes and rule engines, as well as uniform
performance, enactment, and execution across business process

Business Process Definition MetaModel, Process Definitions, v1.0 9

management suites. The Composition Model enables users and vendors to
build libraries of orchestrations and choreographies, including
specialization of some orchestrations or choreographies from others. It also
enables users and vendors to define their own frameworks for recording
data about ongoing orchestrations and choreographies, for example, how
long they have been going, who is involved in them, and what resources
they are using.

Course Model

The Course Model extends the Composition Model to connect parts in time
(Succession). For example, a succession connects one step in a process to
another to indicate that the second step happens after the first. The same
applies to messages in choreography.

Common Behavior Model

The Common Behavior Model includes elements shared by all process
oriented behavior models.

Behavior Model

The Behavior Model enables Behavior Steps to be ordered in time as parts
of other Behavior Step (see the Course Model). Vendors and users can
define their own execution patterns with connections between these
Behavior Steps. The model predefines a specific connection for races,
where Behavior Steps start at the same time and abort each other when the
first finishes. It also defines a Behavior Event Condition for detecting
lifecycle events in behavioral happenings. The Behavior Model is the most
specialized model in the Business Process Definition MetaModel that still
covers all of processes and interactions (orchestration and choreography,
see the Activity and Interaction Protocol Models).

Interactive Behavior Model

The Interactive Behavior Model enables interactions to be treated like any
other step in a Behavior, ordered in time, with start and end events. The
model is the basis for flows between Behavior Steps and between
participants in a choreography (see the Activity Model and the Interaction
Protocol Model). The Interactive Behavior Model is the most specialized
model in the Business Process Definition MetaModel that still has elements
in common between processes and choreographies.

Activity Model

The Activity Model is for capturing orchestrations in way that facilitates
modification as boundaries of process of business change, for example, due
to insourcing, outsourcing, mergers, and acquisitions. It uses interactions to
represent inputs and outputs, enabling choreographies to be specified
between the process and its environment, as well as between the performers
responsible for steps in the process. The Activity Model is the basis for the
BPMN model in BPDM (see the BPMN Extensions).

BPMN Extensions

The BPMN Extension provides additions to the Activity Model for BPMN.
These provide BPMN names for special usages of the Business Process
Definition MetaModel concepts and additional functionality specific to
BPMN.

Interaction Protocol Model

The Interaction Protocol Model is for capturing choreographies. It enables
interactions to be grouped together into larger, reusable interactions. For
example, an interaction that exchanges goods between companies might be
used with other interactions within a larger protocol representing a
partnership of the companies. This protocol might be adopted by a
standards body and reused between many pairs of companies. The
interactions in a protocol may be simple interactions that have no sub-
interactions, or may be other protocols.

Condition Model

The Condition Model is for specifying boolean expressions that constrain
model elements or capture statements. It defines specialized conditions that
are represented as free text, as expressions with particular results, and as
boolean combinations of other conditions.

10

Business Process Definition MetaModel, Process Definitions, v1.0

6.2 Behavior Model

6.2.1 Introduction

The Behavior Model extends the Course Model with a number of common behavior modeling constructs, and
provides for vendor and user defined extensions. Vendors and users can define their own execution patterns with
connections between these happening parts. The model predefines a specific connection for races, where behaviors
start at the same time and abort each other when the first finishes, and for part groups that abort the steps inside
them. It extends the events and event parts of the Course Model, for example, when behaviors are aborted. It also
defines an event condition for detecting lifecycle events in behaviors. The Behavior Model is the most specialized
model in BPDM that still covers all of orchestration and choreography (see the Activity Model and Interaction
Protocol Model).

The Behavior Model introduces:

* Courses with parts that behaviors play (Behavior and Behavior Steps). These enable reuse of behaviors. A
behavior orders subbehaviors according to their course events, such as when they start and end (see the
Course Model).

* A taxonomy of events specializing starting and ending events from the Course Model, for example, for
aborting and erroring. These play event parts from a taxonomy subsetted from the start and end parts in the
Course Model, where the event parts are of Behavior Occurrence, a specialization of Course Occurrence.

e Connections for behavior steps that establish execution rules for connected steps (Compound Behavioral
Connection). One of these is a connection between steps that all start at the same time, and where the first
one to finish aborts the others (Race Connection and Race Behavior). Another connects groups that can
abort their enclosed steps (Group Abort Connection and Group Abort Behavior).

e Behavior steps for monitoring events, such as changes in time, facts, or behavior (Event Monitor). For
example, an event monitor can detect the passing of a certain point in time, a change in the truth of a
statement due to changes in facts, and the completion of a happening, such as the arrival of a message.

e Groups of behavior steps (Behavior Step Group), where the group has its own event parts, such as for
starting and ending.

Behaviors are Courses with Behavior Steps, which are Happening Parts where the type is a Behavior. This enables
behaviors to “invoke” and order other behaviors in time, as in the steps of a process model and or the interactions in
choreography. For example, the steps in a selling process are behavior steps played by behaviors such as packing
and shipping. Individual selling processes (MO0 performances, enactments, or executions of selling) can have a
behavior step played by an individual (MO0) packing behavior and another behavior step played by an individual
shipping behavior.

A user (M1) library in the Behavior Model adds:

* Behavior Occurrences, a specialization of Course Occurrence (see the Course Model), and generalization of
all M1 behavior models, including all orchestration and choreography models. All individual (M0) behavior
occurrences conform to Behavior Occurrence, which is the most abstract M1 model of behaviors.

* A taxonomy of events generalized by the start and end events in the Course Model. End at M1 generalizes
normal and abnormal events. Normal events generalize success and failure events, indicating whether an
MO behavior fulfills its purpose or not. Abnormal events generalize abort and error events. Aborting means
an MO behavior is terminated by an external source. Erroring means an M0 behavior terminates itself due to
conditions it is not prepared to handle. Abnormal ending may involve cleanup, but this must be completed
before the end of the behavior.

* A taxonomy of event parts subsetting the start and end event parts in the Course Model. The library event
parts are subsetted to align with the subclassing of event types above, which means events playing the
subsetting parts also play the subsetted parts.’ For example, an event playing an abort part on an M0
behavior also plays the abnormal end and end parts on the same individual course. Each individual (MO)
behavior occurrence will have at most one individual event conforming to the event types in the library. For
example, there is at most one abort event for each individual course occurrence.

> Part and property subsetting are analogous to generalization, see the Composition Model.

Business Process Definition MetaModel, Process Definitions, v1.0 1

* Behaviors for compound behavioral connections, see below.

Event Monitors are Behavior Steps that detect events, including changes in time, facts (see the Course Model), or
behavior. Event monitors in user models (M1) are always typed by Behavior Occurrence or are subtypes of it that
have no behavior steps. Successions can order event monitoring steps. For example, a process can perform one step,
then perform a time event monitoring step to wait for a certain duration to elapse, then perform another step. This is
enabled by event monitors at M1 being typed by Behavior Occurrence, to define the standard event parts, for
example start part and end part.

Connected Part Bindings are Elements specifying that individuals playing the part at an end of a connection also
play a part within the connection. For example, one of the interactions between businesses in a choreography might
be a sub choreography composed of many communications between the businesses. Businesses playing a particular
role in the larger choreography also play one of the roles in the sub choreography. Bindable Connections are defined
just to categorize those connections that can carry part bindings. The player is part of the composite owning the
bindable connection. The played is part of the bindable connection. The binding requires the (MO0) individuals
playing these parts to be the same. They are found by navigating from an individual composite, to the player
individuals, and to the played individuals in the connection part of the same composite. The two sets of individuals
found this way must be exactly the same. Connected part bindings are different from connections because part
bindings are about which individuals are playing certain parts in a whole, whereas connections are about links
between the individuals themselves due to playing parts in the whole. As a convenience, it is assumed that a
connection typed by a composite that has only one (non-connection) part implies bindings where that one part is
played by all the parts at all the ends of the connector. This is useful for symmetrical connectors (see Race
Connector below for an application).

Compound Behavioral Connections are Connections between behavior steps that are also Typed Parts, enabling
connections to reuse the same composite for connecting steps. BPDM defines two kinds of compound behavioral
connections:

* Race Connections are Compound Behavioral Connections that are always typed by Race Behavior, an M1
instance of Behavior defined in the Behavior user (M1) library. Race Behavior ensures that all the behavior
steps connected by Race Connection start at the same time, and that the first one to finish aborts the others.
Race Behavior contains:

¢ One step, called the Contestant, which is bound to all the steps connected by the M1 race connection
(see Connected Part Binding above). This ensures that all the contestants are treated the same way.

¢ Two immediate successions connecting the Contestant to itself. One succession refers to the start part
of the Contestant on both ends (see the Happening Model), specifying that all the contestant behaviors
start at the same time. The other succession has the finish part on one end and the abort part on the
other, specifying that any contestant happening that finishes will be accompanied by a simultaneous
abort of the others. This succession has the Irreflexive condition applied (see the Composition
Model), to prevent the finishing contestant from aborting itself.

When a race connection is created between behavior steps, it implies part bindings between the
connected steps and the Contestant in Race Behavior, with Contestant on the played end (see
Connected Part Binding above). The part bindings ensure that any individual MO happening playing
the connected steps will also play the Contestant, establishing the start-start and finish-abort
successions between the connected steps, and the temporal constraints on the individual happenings.
The Race Behavior above can be the type for any connector that is also a typed part, but Race
Connection is always typed by Race Behavior, for convenience.

¢ Group Abort Connections are Compound Behavioral Connections that are always typed by Group Abort
Behavior, an M1 instance of Behavior defined in the Behavior user (M1) library. It is applied to behavior
step groups and their enclosed steps to ensure that the steps are aborted when the group is. Group Abort
Behavior contains:

e Two steps, one for the group and one for its enclosed steps (Step Group and Enclosed Step). The first
is bound to an M1 behavior step group and the second to each step in the group (see Connected Part

12 Business Process Definition MetaModel, Process Definitions, v1.0

Binding above).

¢ One immediate succession between the two steps above. The source is Step Group and the target is
Enclosed Step. It refers to the abort event part on both ends, specifying that any group behavior that
aborts will be accompanied by a simultaneous abort of the enclosed behaviors.

When a group abort connection is created between a behavior step group and its steps, it implies a part
binding between Step Group in the Group Abort Behavior and the connected group, with Step Group
on the played end (see Connected Part Binding above). Similarly, it implies bindings between
Enclosed Step and the steps in the group. The part bindings ensure that any individual MO happening
playing the connected group will also play the Step Group, and any individual playing the connected
steps will also play the Enclosed Step, establishing the abort-abort successions between the connected
group and steps, and the temporal constraints on the individual happenings. The Group Abort
Behavior above can be the type for any connector that is also a typed part, but Group Abort
Connection is always typed by Group Abort Behavior, for convenience.

Users and vendors can capture their own execution patterns by defining M1 behaviors to use as the type of
compound behavioral connections. For example, some vendors might have an option on races to not abort the losing
processes. This is a variation on the Race Behavior that does not have the finish-abort successions. It can be defined
as an M1 instance of Compound Behavioral Connection that is always typed by the vendor-defined variant Race
Behavior.

Course Event Conditions are Event Conditions for detecting Course Events, for example the start and ending of a
behavior. It specifies the behavior producing the event with a behavior step, such as a step in a process or interaction
in a choreography, and specifies the event with an event part, such as the parts for starting and ending (see the
Happening Model). A Course Event condition can be the condition for an event monitoring step, enabling detection
of the starting and ending of behaviors identified by behavior steps. For example, a Course Event condition can refer
to a message part and the finish part in it to specify that the message has arrived (BPDM represents messages as
special kinds of processes, see Simple Interaction Model).

Behavior Step Groups are Part Groups (see the Composition Model) that enclose Behavior Steps, and are also
Behavior Steps themselves, typed by Behavior Occurrence in user models (M1). This gives a group of behavior
steps as a whole the capacity to produce start and end events playing the standard event parts, such as start part and
end part. For example, most process languages have a way of modeling sub processes without defining a separate
process. This is a behavior step group.

6.2.2 Metamodel Specification

The Behavior Model enables Behavior Steps to be ordered in time as parts of other Behavior Step (see the Course
Model). Vendors and users can define their own execution patterns with connections between these Behavior Steps.
The model predefines a specific connection for races, where Behavior Steps start at the same time and abort each

other when the first finishes. It also defines a Behavior Event Condition for detecting lifecycle events in Behavior.
The Behavior Model is the most specialized model in the Business Process Definition MetaModel that still covers
all of processes and interactions (orchestration and choreography, see the Activity and Interaction Protocol Models).

Business Process Definition MetaModel, Process Definitions, v1.0 13

6.2.2.1 Behavior Model Diagram

N

Behavior

—_

b behavior step ovaner shepth
{av bty owper couse{ 1] {zubsets happeringpart wpel1]

{a bty ovwed course part'T {subeets hppering usacel
owred step behanior Lizane

®

conpourdcorvecionosng #1711/ conpound correcion ype

{awbsets corpedion whilel1]} {absets partTynel1]}
i {subeets ovred cormechion (] {m@’i b Lsand
ovned behadord cornection | = | behavicr e
Compourd Behaviaral Connection

=

compaund behawiond stepcornection
{subsets part corection[]

{subests covected sement2 " Group Abort Race
2| carvectedbahavior step Comedtion Connechon

Behawior Step

£|5

Event Montar

* % condfiored event monitor
i&t@ats condbiored dereri[1.. 7}

sheets ovneD 1]
fraring condbi

R o

monkoned evert condtion

‘ Evenf Condifor |

—

Figure 2 - Behavior Model Diagram

14

Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.2 Behavior Library: Events

EPMN Library:

ele mentimpoart

Package Importlnfra: importedElement Common Infrastructure Libram:Pack aqe

Elementimpart

nestingFac kage Start Event:Course

Ewent
restedPack age
Behawiar Librarg:Package .
general End Event:Course
| Ewent
WNormal End Event: Abtwormal End Event: je neral
] Course Event Course Event
gdneral general genefal gengral H
The graphic al contain ement
""" ~=====o means that the Lbrary pack age
Success Event:Course Error Event: Course owhs 'pack agedElem ent !
Event Ewent
Failure Event:Course fbart Event:Course
] Event Event I

Figure 3 - Behavior Library: Events

Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.3

Behavior Library: Behavior Occurrence

vl par] hypee geneml general
Cousge Ocourence:Courze
eeveril =g
aril Parl
KL =
AU
S =
] Hheac] P] |
Jerk
Senarmal End Ev et Course By o
el Envd Ever P £Ue) the
eue wtpart ype
Falme teel Prope T | o Eroatie P et DHEE el
EncrE sy
T pand
AbcrtEvent Pan e LT
Sy %]
Merrnal Erxd: Evenii Pant
erderil s e
Normal End EventCourss Every
ol 1
5 1 et dPropery Enbae tedl Propery Freral
general
Fabures Esarit P
e eueit ag
eue ptparttype
eventizag | _ _
Behavor Occurence:Behavior evertpart e

Figure 4 - Behavior Library : Behavior Occurrence

16

Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.4 Behavior Library: 'Racing' Behavior

BPMN Library:Package Behavior Library:
nestingPackage Package owningPackage

nestedPackage

packagedElement

Racing Behavior.Behavior

Racing Contestant:Behavior Step LUERCEERT
next succesgion previous fsuccession
start/ start.Immediate S uccession end/abortImmediate Succession guard | xive

previous succer\cn next sufcesslon
predecessor

successor

behavior usage

~| The graphical containement

means that the course owns
step type

event parts and successions

Behavior Occurrence:Behavior respectively through the ‘owned
event part’ association and the

---- ‘owned succession’ association

Normsl End:Event

source event part Part source event part

StartEvent Part AbortEvent Part

target event part target event part

Figure 5 - Behavior Library: 'Racing' Behavior

Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.5 Behavior Library: 'Group Abort Behavior'

EPMM Libray Pac kage . Eigh avior Library: . .
pestingPac kage Pack age The gaphical containement means tha

the course owns evert parts and
successions respectively through the

- ‘awred event pat' associaton and the
owningPac kage 'owred successon' assacidion

rested Pack age

p 2k aged Elemeant
Group Abaort Beh avior :Bebawior

B—u:'—sf !3":'& : predecessar qrous -step immediats ZusEESE00 %nc;izsn_ad SSIE :
- - - - p
Lenavior dep R HE SU G e SSion Succession PIEw iOUS SUC CESSion CIrRATE S
behavior usage behavior uzage
step Lyppe step type
zoure e ewvert part target evert part
#bort:EBvent Part

Eshawior OecumenceBehawar

Figure 6 - Behavior Library: 'Group Abort Behavior'

18 Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.6 Behavior Event Condition Diagram

Behavior Event Condition

spedfied behavioral event condbon *| zpecified behaviord event condtion ‘ Apedified behavioral event condition | tspecified behavioral event condhian
{subsets spedhiedevent condition[]} {subsets spedfied event condtion]™

{subsets condtionhg happering overtime[0. 11}

L. {subzet condbioning evert[1]}
1| condtioning behavior step 1 |, oondkiening eventpat 1 /mondtioning couse 1 " i

Fsource event

Behavior Step Event Part Courze Event

Figure 7 - Behavior Event Condition Diagram

6.2.2.7 Behavior Step Group Diagram

Behavior Step

enclozed behawviar step

{subsets enclosed part[*]}

£

{zubsets enclosing part group[*
encloging behavior step group | =

Behavior S5tep Group

Figure 8 - Behavior Step Group Diagram

Business Process Definition MetaModel, Process Definitions, v1.0 19

6.2.2.8 Connected Part Binding Diagram

Typed Parf

Parf Connecfion Fpped Paif

2 +

Bindable Connection

part binding owner 1
{zubsets owner[0..17}

£fe manf
{subszets ownedE lement*]} éﬁ

owned part binding | *

Connected Part Binding

player part

1 x

intemal played part

1 S

Figure 9 - Connected Part Binding Diagram

6.2.2.9 Behavior

Package: Behavior Model
isAbstract: No
Generalization: “Course”

Description

A Behavior is a kind of Course that order happenings in time, as in the activities of a process model and or the
interactions in a choreography. Behavior introduces capabilities shared by both choreography and orchestration:

e Its steps are typed by Courses that provide them with start/end capabilities.

* Asa Course it can organize its part with Succession. It adds the ability to order its steps according to their
start and ends (Succession).

¢ Rich connections can be established between its steps to enable time sychronization between them
(Compound Behavioral Connection).

¢ The reuse of the same Behavior is enabled by (Behavior Step).

* Detection of events in conditions, such as time events, fact changes, or behavior events can be to influence
its course (Event Monitor).

* Its steps can be organized in groups to which start/end constraints can be applied (Behavior Step Group).

Associations

owned behavioral connection : Compound Compound Behavioral Connection owned by the Behavior

Behavioral Connection [*]

Subsets owned connection

owned step : Behavior Step [*] Behavior Step owned by the Behavior

20

Subsets owned course part

Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.10 Behavior Event Condition

Package: Behavior Model
isAbstract: No
Generalization: “Event Condition”

Description
Behavior Event Conditions are Event Conditions for detecting Events in Courses, for example the start and

ending of a Course.

It specifies the conditioning behavior step, such as a step in a process or interaction in choreography, and the
conditioning event part, such as the Event Part for starting and ending (see the Happening and Event Model).

A Behavior Event Condition can be the condition for an Event Monitor, enabling detection of the starting and
ending of Courses identified by behavior steps. For example, a Behavior Event Condition can refer to a message
and the Normal End in it to specify that the message has arrived. (The Business Process Definition MetaModel
represents messages as process steps themselves, see Interactive Behavior Model.)

Associations

conditioning behavior step : Behavior Step [1] Behavior Step that is the source of the condition, such as an
activity in a process or an interaction in a protocol.

conditioning course : Course [1] Course that specifies the context of the Event that defines
the condition. This is derived from conditioning behavior
step of the condition. This is a derived association.
Subsets conditioning happening over time

conditioning event part : Event Part [1] Event Part that specifies the Event that is the source of the
condition, such as the start (Start) or end (End).

source event : Event [1] Event that specifies the Behavior Event Condition. This is
derived from the Event Part that defines the Behavior Event
Condition. This is a derived association.
Subsets conditioning event

Constraint

[1] The conditioning event part must be an Event Part of the type of the conditioning behavior step.

6.2.2.11 Behavior Step

Package: Behavior Model
isAbstract: No
Generalization: “Happening Part”

Description

Behavior Steps is a kind of Happening Part which typed is a Behavior. This enables it to "invoke" other Behavior
and to build Behavior composites (made of sub- Behaviors).

Associations

compound behavioral step connection : Compound Behavioral Connection indicating that the lifecycle
Compound Behavioral Connection [*] of the Behavior Step is tied to the life cycle of other Behavior
Steps.

Subsets part connection

Business Process Definition MetaModel, Process Definitions, v1.0 21

step type : Behavior [1] Specifies the type of the Behavior Step.
The default step type is the Behavior Occurrence.
Subsets happening part type
Default: Behavior Occurrence

6.2.2.12 Behavior Step Group

Package: Behavior Model
isAbstract: No
Generalization: “Behavior Step” “Part Group”

Description

A Behavior Step Group is a kind of Part Group that is also a Behavior Step typed by the Behavior Occurrence
in user models (M1). This gives a group of Behavior Steps as a whole the capacity to produce start and end changes
playing the standard Event Parts, such as Start and End. For example, most process languages have a way of
modeling sub-processes without defining a separate process. This is a Behavior Step Group.

Associations

enclosed behavior step : Behavior Step [*] Behavior Step being part of the Behavior Step Group
Subsets enclosed part

6.2.2.13 Bindable Connection

Package: Behavior Model
isAbstract: No
Generalization: “Part Connection” “Typed Part”

Description

A Bindable Connection is a kind of Part Connection defined just to categorize those connections that can carry
Connected Part Binding.

Associations

owned part binding : Connected Part Connected Part Binding owned by the Composite.
Binding [*] Subsets ownedElement

6.2.2.14 Compound Behavioral Connection

Package: Behavior Model
isAbstract: No
Generalization: “Bindable Connection”

Description

A Compound Behavioral Connection is a Part Connection that enables dedicated lifecycle rule connections to
apply between Behavior Steps. These rules are described by the compound connection type of the Compound
Behavioral Connection, which is itself a Behavior. This makes Compound Behavioral Connection be itself a
Typed Part.

22 Business Process Definition MetaModel, Process Definitions, v1.0

Associations

compound connection type : Behavior [1] Behavior typing the Compound Behavioral Connection and
specifying the lifecycle rules (start/start, abort/abort) tying all
Behavior Steps connected by the Compound Behavioral
Connection.
Subsets partType

connected behavior step : Behavior Step [2..*] Behavior Step connected by the Compound Behavioral
Connection.
Subsets connected element

6.2.2.15 Connected Part Binding

Package: Behavior Model
isAbstract: No
Generalization: “Element”

Description

A Connected Part Binding is an Element specifying that individuals playing the part at an end of a Part
Connection also play a Part within the connection. For example, one of the interactions between businesses in a
choreography might be a subchoreography composed of many communications between the businesses. Businesses
playing a particular role in the larger choreography also play one of the roles in the subchoreography.

The player is part of the composite owning the bindable connection. The played is part of the bindable connection.
The binding requires the (MO) individuals playing these parts to be the same. They are found by navigating from an
individual composite, to the player individuals, and to the played individuals in the connection part of the same
composite. The two sets of individuals found this way must be exactly the same.

Connected Part Binding is different from Part Connection because part bindings are about which individuals are
playing certain parts in a whole, whereas connections are about links between the individuals themselves due to
playing parts in the whole. As a convenience, it is assumed that a connection typed by a composite that has only one
(non-connection) part implies bindings where that one part is played by all the parts at all the ends of the connector.
This is useful for symmetrical connectors.

Associations

internal played part : Typed Part [1] The played is part of the bindable connection.
player part : Typed Part [1] The player is part of the composite owning the bindable
connection.

6.2.2.16 Event Monitor

Package: Behavior Model
isAbstract: No
Generalization: “Behavior Step”

Description

An Event Monitor is a kind of Behavior Step that monitors the occurrence of an Event Condition and that has an
effect on the course of a Behavior. For instance, an Event Monitor can be used to react to the Abort Event of a
specific Course.

Associations

monitored event condition : Event Condition [1] Event Condition being monitored.
Subsets constraining condition
Subsets ownedElement

Business Process Definition MetaModel, Process Definitions, v1.0 23

BPMN Notation

Event Monitor shape with the marker of the Compensate Event instance of Event.

Compensation Event Monitor

Figure 10 - Event Monitor monitoring a ‘Compensate' Course Event Condition

Event Monitor
monitoring a Compound Event Condition

Figure 11 - Event Monitor monitoring a Compound Event Condition

Event Monitor shape with a Fact Change as a maker.

Event Monitorfor Fact Change
Figure 12 - Event Monitor monitoring a Fact Change Condition

Event Monitor shape with a Time Event as a maker.

Time Event Monitor
Figure 13 - Event Monitor monitoring a Time Event Condition

This symbol is a circle, with an open center. The circle MUST be drawn with a double thin black line. It can
alternatively represent:

1. Event Parts that are not typed by Start Event or End Event.
2. Event Monitors

Markers can be placed within the circle to indicate the nature of the Event associated with the Event Part or Event
Monitor.

24 Business Process Definition MetaModel, Process Definitions, v1.0

Event Monitor

Figure 14 - Event Monitor Notation

6.2.2.17 Group Abort Connection

Package: Behavior Model
isAbstract: No
Generalization: “Compound Behavioral Connection”

Description

A Group Abort Connection is a kind of Compound Behavioral Connection that has for compound connection
type the Group Abort Behavior, an M1 instance of Behavior defined in the Behavior Library user (M1) library.
It is applied to Behavior Step Groups and their enclosed steps to ensure that the steps are aborted when the group
is. (See more details in Group Abort Behavior).

6.2.2.18 ImmediateSuccession

Package: Behavior Model
isAbstract:
Generalization: “Immediate Succession”

Description

Immediate Succession in the Business Process Definition MetaModel namespace.

6.2.2.19 Race Connection

Package: Behavior Model
isAbstract: No
Generalization: “Compound Behavioral Connection”

Description

A Race Connection is a kind of Compound Behavioral Connection that has for compound connection type the
Racing Behavior. The Racing Behavior ensures that all the connected Behavior Steps start at the same time, and
that the first one to finish aborts the others.

6.2.2.20 Succession
Package: Behavior Model

isAbstract:
Generalization: “Succession”

Description

Succession in the Business Process Definition MetaModel namespace.

Business Process Definition MetaModel, Process Definitions, v1.0 25

6.2.2.21 Instance: Abnormal End Event

Class: Course Event

Description

Abnormal End Event is an Event that manifests the abnormal End Event of a BehaCourse.

Links
Played End Opposite End
Abnormal End Event: general End Event
Abnormal End Event:event part type event usage Abnormal End
Abnormal End Event:general Abort Event
Abnormal End Event:general Error Event
Abnormal End Event:packagedElement owningPackage Behavior Library

Non Normative Notation

Marker of the Normal End instance of Event.
‘Abnormal End’ Behavioral Event Instance
Figure 15 - Course Event 'Abnormal End' instance notation

6.2.2.22 Instance: Abnormal End

Class: Event Part

Description
Links
Played End Opposite End
Abnormal End: subsettedProperty End
Abnormal End:event usage event part type Abnormal End Event
Abnormal End:owned event part event part owner Behavior Occurrence

Abnormal End:subsettedProperty Error
Abnormal End:subsettedProperty Abort

Non Normative Notation

The shape of the Abnormal End instance uses the shape of its super-property (End) with marker of its type:
Abnormal End Event.

‘Abnormal End’ Event Part

Figure 16 - Event Part : Abnormal End notation

26 Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.23 Instance: Abort Event

Class: Course Event

Description

Abort Event is an Event that manifests that the course of a Course is being interrupted. The source of the Abort
Event can be internal or external to the Course.

Links

Played End

Abort Event:

Abort Event:event part type
Abort Event:induced course event
Abort Event:packagedElement

BPMN Notation

Opposite End

general Abnormal End Event
event usage Abort

course event context Abort Process
owningPackage Behavior Library

Marker of the Abort Event instance of Event.

Abort Behavioral Event Instance

Figure 17 - Course Event 'Abort’' Notation

6.2.2.24 Instance: Abort

Class: Event Part

Description
Links

Played End

Abort:

Abort:event usage
Abort:owned event part
Abort:source event part
Abort:target event part
Abort:target event part

BPMN Notation

Opposite End
subsettedProperty Abnormal End
event part type Abort Event
event part owner Behavior Occurrence
group-step
end/abort

group-step

The shape of the Abort instance of Event Part uses the shape of its super-property (End) with the marker of its

event type: Abort Event.

Abort Event Part

Figure 18 - Event Part : Abort Notation

Business Process Definition MetaModel, Process Definitions, v1.0

27

6.2.2.25 Instance: Behavior Library

Class: Package
Description

User (M1) library capturing commonly needed aspects of happenings as instances of the class in the Happening
Model model. The library defines:

¢ Events to represent various behavior lifecycle events, such as starting and ending of individual Courses.

¢ A Course is called the Behavior Occurrence. It is a generalization of all M1 dynamic models (see the
Composition Model).

¢ Event Parts of the Behavior Occurrence for the various Events, such as start and end. These are typed by
the various M1 changes, such as Start and End Events.

Successions between the Event Parts above for universal constraints, such as the End being after the Start.

Links
Played End Opposite End
Behavior Library:nestedPackage nestingPackage BPMN Library
Behavior Library:owningPackage packagedElement Abnormal End Event
Behavior Library:owningPackage packagedElement Normal End Event
Behavior Library:owningPackage packagedElement Error Event
Behavior Library:owningPackage packagedElement Abort Event
Behavior Library:owningPackage packagedElement Behavior Occurrence
Behavior Library:owningPackage packagedElement Success Event
Behavior Library:owningPackage packagedElement Failure Event

6.2.2.26 Instance: Behavior Library

Class: Package
Description

Package including the standard Group Abort Behavior and Racing Behavior.

Links
Played End Opposite End
Behavior Library:nestedPackage nestingPackage BPMN Library
Behavior Library:owningPackage packagedFElement Racing Behavior
Behavior Library:owningPackage packagedElement Group Abort Behavior

6.2.2.27 Instance: Behavior Occurrence

Class: Behavior
Description

Course that produces common behavior lifecycle changes, such as Start or End Event.

28 Business Process Definition MetaModel, Process Definitions, v1.0

Links

Played End

Behavior Occurrence:

Behavior Occurrence:event part owner
Behavior Occurrence:event part owner
Behavior Occurrence:event part owner
Behavior Occurrence:event part owner
Behavior Occurrence:event part owner
Behavior Occurrence:event part owner
Behavior Occurrence:general
Behavior Occurrence:general
Behavior Occurrence:packagedElement
Behavior Occurrence:step type
Behavior Occurrence:step type
Behavior Occurrence:step type
Behavior Occurrence:step type

Constraint

Opposite End

general Course Occurrence
owned event part Error

owned event part Normal End
owned event part Abort

owned event part Success

owned event part Failure

owned event part Abnormal End
Generalization

Generalization

owningPackage Behavior Library
behavior usage Activity 1
behavior usage Racing Contestant
behavior usage Step Group
behavior usage Enclosed Step

[1] Normal End and Abnormal End cannot have values at the same time.
not (self.Normal End->notEmpty() and self.Abnormal End->notEmpty())

[2] Failure and Success cannot have values at the same time.
not (self.Failure->notEmpty() and self.Success->notEmpty())

[3] Abort and Error cannot have values at the same time.
not (self.Abort->notEmpty() and self.Error->notEmpty())

Business Process Definition MetaModel, Process Definitions, v1.0

29

Non Normative Notation

= Course Occurrence J

= Behavior Occlirrence
Nomal End Abnomal End
Success Failure Abort Enor

Figure 19 - Behavior Occurrence

6.2.2.28 Instance: Enclosed Step

Class: Behavior Step
Description

Represents the behavior of a Behavior Step within a Behavior Step Group.

Links

Played End

Enclosed Step:behavior usage
Enclosed Step:owned step
Enclosed Step:successor

Opposite End

step type Behavior Occurrence

behavior step owner Group Abort Behavior
previous succession group-step

6.2.2.29 Instance: end/abort

Class: Immediate Succession
Description
This succession has the finish part on one end and the abort part on the other, specifying that any contestant

30 Business Process Definition MetaModel, Process Definitions, v1.0

happening that finishes will be accompanied by a simultaneous abort of the others. This succession has the

Irreflexive condition applied (see the Composition Model), to prevent the finishing contestant from aborting itself.

Links

Played End

end/abort:

end/abort:

end/abort:

end/abort:next succession
end/abort:owned succession
end/abort:previous succession

6.2.2.30 Instance: Error Event

Class: Course Event

Description

Opposite End

target event part Abort

source event part Normal End
guard Irreflexive Condition
predecessor Racing Contestant
owner course Racing Behavior
successor Racing Contestant

Error Event is an Event that manifests that an error has occurred that will lead to the End Event of the Course.
The source of the Error Event is always internal to the Course.

Links

Played End

Error Event:

Error Event:event part type

Error Event:induced course event
Error Event:packagedElement

BPMN Notation

Opposite End

general Abnormal End Event
event usage Error

course event context Error Process
owningPackage Behavior Library

Marker of the Error Event instance of Event.

N

Error Behavioral Event Instance

Figure 20 - Course Event 'Error' Instance Notation

6.2.2.31 Instance: Error

Class: Event Part
Description
Links

Played End

Error:

Error:event usage
Error:owned event part
Error:source event part

BPMN Notation

This symbol can alternatively represent:

Opposite End

subsettedProperty Abnormal End
event part type Error Event

event part owner Behavior Occurrence
error handling

Business Process Definition MetaModel, Process Definitions, v1.0

31

1. Event Part typed by the Error Event instance of Event.
2. An Error Activity

Error Activity
ar
Error Behaviaral Change Part

Figure 21 - Error Activity Notation or 'Error' Course Event Step

Error Event Event Part used for error handling. The Error Event Event Part is linked to the Succession instance
through the source event part association.

Error Event Part as used in ErrorHandling

Behavior Step

Error Handling

»

Figure 22 - Error Handling Notation

The shape of the Error instance of Event Part uses the shape of its super-property (End) with the marker of its
event type: Error Event.

Error Event Pari

Figure 23 - Event Part : Error Notation

6.2.2.32 Instance: Failure Event

Class: Course Event
Description

Failure Event is a kind of End Event that indicates that its Course has ended, but has not reached its purpose.

32 Business Process Definition MetaModel, Process Definitions, v1.0

Links

Played End Opposite End

Failure Event: general Normal End Event
Failure Event:event part type event usage Failure

Failure Event:packagedElement owningPackage Behavior Library

Non-normative Notation

Marker of the Failure Event instance of Event.

I

Failure Behavioral Change Instance

Figure 24 - Course Event 'Failure' Instance notation

6.2.2.33 Instance: Failure

Class: Event Part

Description

Links
Played End Opposite End
Failure: subsettedProperty Normal End
Failure:event usage event part type Failure Event
Failure:owned event part event part owner Behavior Occurrence

Non Normative Notation

The shape of the Failure instance uses the shape of its super-property (End) with marker of its type:Failure Event.

Failure Event Part

Figure 25 - Event Part : Failure Notation

6.2.2.34 Instance: Group Abort Behavior

Class: Behavior
Description

Group Abort Behavior contains:

Business Process Definition MetaModel, Process Definitions, v1.0 33

Two steps, one for the group and one for its enclosed steps (Step Group and Enclosed Step). The first is
bound to an M1 processing step group and the second to each step in the group (see Connected Part Binding
above).

One immediate processing succession between the two steps above. The source is Step Group and the target
is Enclosed Step. It refers to the abort part on both ends (see the Happening and Change Model), specifying
that any group behavior that aborts will be accompanied by a simultaneous abort of the enclosed step
happenings.

When a group abort connection is created between a processing step group and its steps, it implies a part
binding between Step Group in the Group Abort Behavior and the connected group, with Step Group on the
played end (see Connected Part Binding above). Similarly, it implies bindings between Enclosed Step and
the steps in the group. The part bindings ensure that any individual M0 happening playing the connected
group will also play the Step Group, and any individual playing the connected steps will also play the
Enclosed Step, establishing the abort-abort successions between the connected group and steps, and the
temporal constraints on the individual happenings. The Group Abort Behavior above can be the type for any
connector that is also a typed part, but Group Abort Connection is always typed by Group Abort Behavior,
for convenience.

Links
Played End Opposite End
Group Abort Behavior:behavior step owner owned step Enclosed Step
Group Abort Behavior:behavior step owner owned step Step Group
Group Abort Behavior:owner course owned succession group-step
Group Abort Behavior:packagedElement owningPackage Behavior Library
6.2.2.35 Instance: group-step

Class: Immediate Succession

Description

Links
Played End Opposite End
group-step: source event part Abort
group-step: target event part Abort
group-step:next succession predecessor Step Group
group-step:owned succession owner course Group Abort Behavior
group-step:previous succession successor Enclosed Step

6.2.2.36 Instance: Importinfra

Class: ElementImport

Description

Import of the Common Infrastructure Library

Links
Played End Opposite End
ImportInfra: importedElement Common Infrastructure Library
ImportInfra:elementImport BPMN Library

34

Business Process Definition MetaModel, Process Definitions, v1.0

6.2.2.37 Instance: Normal End Event

Class: Course Event
Description

Normal End Event is an Event that manifests the normal End Event of a Course.

Links
Played End Opposite End
Normal End Event: general End Event
Normal End Event:event part type event usage Normal End
Normal End Event:general Success Event
Normal End Event:general Failure Event
Normal End Event:packagedElement owningPackage Behavior Library

Non-normative Notation

Marker of the Normal End Event instance of Event.
‘Normal End’ Behavioral Event Instance

Figure 26 - Course Event 'Normal End' instance notation

6.2.2.38 Instance: Normal End

Class: Event Part

Description
Played End Opposite End
Normal End: subsettedProperty End
Normal End:event usage event part type Normal End Event
Normal End:owned event part event part owner Behavior Occurrence
Normal End:source event part end/abort
Normal End:source event part start/start
Normal End:subsettedProperty Success
Normal End:subsettedProperty Failure

Non Normative Notation

The shape of the Normal End instance uses the shape of its super-property (End) with the marker of its type:

Normal End Event.

‘Normal End’ Event Part

Figure 27 - Event Part : Normal End notation

Business Process Definition MetaModel, Process Definitions, v1.0

35

6.2.2.39 Instance: Racing Behavior

Class: Behavior
Description

Racing Behavior contains:

* One Behavior Step, called the Racing Contestant, which is bound to all the steps connected by the M1
race connection. This ensures that all the contestants are treated the same way.

e Two Immediate Processing Successions connecting the Contestant to itself. One succession refers to the
start part of the Contestant on both ends (see the Happening and Change Model), specifying that all the
contestant behaviors start at the same time. The other succession has the finish part on one end and the abort
part on the other, specifying that any contestant happening that finishes will be accompanied by a
simultaneous abort of the others. This succession has the Irreflexive condition applied (see the Composition
Model), to prevent the finishing contestant from aborting itself.

Links
Played End Opposite End
Racing Behavior:behavior step owner owned step Racing Contestant
Racing Behavior:owner course owned succession start/start
Racing Behavior:owner course owned succession end/abort
Racing Behavior:packagedElement owningPackage Behavior Library

6.2.2.40 Instance: Racing Contestant

Class: Behavior Step
Description

Behavior Step of the Racing Behavior is bound to all the steps connected by the M1 race connection to ensure that
all the contestants are treated the same way.

Links
Played End Opposite End
Racing Contestant:behavior usage step type Behavior Occurrence
Racing Contestant:owned step behavior step owner Racing Behavior
Racing Contestant:predecessor next succession start/start
Racing Contestant:predecessor next succession end/abort
Racing Contestant:successor previous succession start/start
Racing Contestant:successor previous succession end/abort

6.2.2.41 Instance: start/start

Class: Immediate Succession
Description

This succession refers to the start part of the Racing Contestant on both ends (see the Happening and Change
Model introduction), specifying that all the contestant behavior start at the same time.

Links
Played End Opposite End
start/start: source event part Normal End
start/start: target event part Start

36 Business Process Definition MetaModel, Process Definitions, v1.0

Played End

start/start:next succession
start/start:owned succession
start/start:previous succession

6.2.2.42 Instance: Step Group

Class: Behavior Step

Description

Opposite End

predecessor Racing Contestant
owner course Racing Behavior
successor Racing Contestant

Represents the behavior of a Behavior Step Group regarding its Enclosed Step.

Links

Played End

Step Group:behavior usage
Step Group:owned step
Step Group:predecessor

Opposite End

step type Behavior Occurrence

behavior step owner Group Abort Behavior
next succession group-step

6.2.2.43 Instance: Success Event

Class: Course Event

Description

Success Event is a kind of End Event that indicates that its Course has ended by fulfilling its purpose.

Links

Played End

Success Event:

Success Event:event part type
Success Event:packagedElement

Non Normative Notation

Opposite End

general Normal End Event

event usage Success
owningPackage Behavior Library

Marker of the Success Event instance of Event.

1T

Success Behavioral Change Instance

Figure 28 - Course Event 'Success' Instance notation

6.2.2.44 Instance: Success

Class: Event Part
Description
Links

Played End

Success:

Success:event usage
Success:owned event part

Opposite End

subsettedProperty Normal End

event part type Success Event

event part owner Behavior Occurrence

Business Process Definition MetaModel, Process Definitions, v1.0

37

Non Normative Notation

The shape of the Success instance uses the shape of its super-property (End) with marker of its type: Success Event.

Success Event Part

Figure 29 - Event Part : Success Notation

6.3 Interactive Behavior Model

6.3.1 Introduction

The Interactive Behavior Model enables interactions to be treated like any other step in a behavior, ordered in time,
with start and end events. The model is the basis for flows between process steps and between participants in a
choreography (see the Activity Model and the Interaction Protocol Model). The Interactive Behavior Model is the
most specialized model in BPDM that still has elements in common between orchestration and choreography.

The Interactive Behavior Model provides:

¢ Behaviors with interactions and roles (Interactive Behavior)

e Interactions that have no sub interactions (Simple Interactions).

e Types for flowing entities (transferred item types).

* Expressions for changing which entities are flowing (transformation expression).
e Parts that interact within a behavior (Interaction Roles).

Interactive Behaviors are Behaviors that can have interactions as parts. Interactions are Typed Part Connections that
are also Behavior Steps, enabling them to have start and end events, and be ordered in time. This is used to define
reusable protocols and specify the way a process interacts with its environment (see the Interaction Protocol Model
and the Activity Model). Interactive Parts are defined just to categorize those Typed Parts that can be connected by
Interactions. The types of interactive parts establish requirements for the interacting individuals, for example, that
they have a minimum security clearance or market capitalization.

Simple Interactions are interactions in which something is "transferred" from individuals playing one interactive part
to individuals playing another interactive part. For example, a document, phone number, or package may be
transferred from one department to another in a company. The transferred items must conform to a Type specified
by the simple interaction. Simple Interactions can have an expression to change the item that arrives at the target
based on the item flowing from the source. For example, a transformation may retrieve the zip code from an address
flowing from the source to deliver the zip code to the target.

Simple Interactions in user (M1) models are always typed by the Behavior Occurrence (see user library in the
Behavior Model). This gives them the standard event parts, such as for start and end, so the simple interactions can
be ordered within an Interaction Protocol (see the Interaction Protocol Model). This is different from the type of
thing transferred.

Simple interactions can be bound to each other for specifying that a simple interaction is the same as some of the
simple interactions in the interactive parts it connects. For example, an interaction between steps in a process can be
bound to interactions in the connected steps that output and input transferred items (see the Activity Model). The
individuals constrained by binding are interactions as they occur at MO, for example, transferring a car with a certain

38 Business Process Definition MetaModel, Process Definitions, v1.0

identification number at a certain time. These individual (MO0) interactions are found by navigating from an
individual composite, to individual interactions playing a part in it, and from there to internal interactions in the
source end, and to internal interactions in the target end. The three sets of individuals found this way must be exactly
the same. Simple interaction binding is different from connections because interaction binding is about which
individuals are playing certain parts in a whole, whereas connections are about links between the individuals
themselves due to playing parts in the whole.

Interaction Roles are Interactive Parts played by individuals outside the behavior, but interacting with it. For
example, the customer is an interaction role in a behavior for delivering a product. This is specialized in other
BPDM packages for application to orchestration and choreography (see the Activity Model and the Interaction
Protocol Model).

6.3.2 Metamodel Specification

The Interactive Behavior Model enables interactions to be treated like any other step in a Behavior, ordered in
time, with start and end events. The model is the basis for flows between Behavior Steps and between participants
in a choreography (see the Activity Model and the Interaction Protocol Model). The Interactive Behavior Model is
the most specialized model in the Business Process Definition MetaModel that still has elements in common
between processes and choreographies.

6.3.2.1 Interactive Behavior Diagram

Business Process Definition MetaModel, Process Definitions, v1.0 39

40

/\

Interactive Behavior

owner interactive behavior

owner interactive behavior 0.1
{subsets part whole[1 T+ {subsets connection whole[1 T+
Behavior Step ‘ ‘ Bindable Connection
{subsets owned connection[*[}
owned interaction |
Interaction Expression
Directed Part
Connection 0..1 transformation expression
{subsets ownedElement[#]}
/involving interaction | *
freadonly, union} {subsets owner[0..1 T}
0..1 owned transformation expression

{subsets owned Simple Interaction

connectable

element[+}

»| owned interaction role
Interaction Role
" source simple interaction target simple interaction

{readonly, union}

/involved interactive part

{subsets involving interaction [*]}

{subsets source connection [}

{subsets involved interactive {subsets involved interactive
part[2..%[} part[2.. %]}

{subsets target[1 T} {subsets source[1 [}

1

target interactive part

source interactive part

{subsets involving interaction [*]}

{subsets target connection [*[}|

*

transferred item type

-

Interactive Part

\/

Typed Part

Figure 30 - Interactive Behavior Diagram

Business Process Definition MetaModel, Process Definitions, v1.0

6.3.2.2 Simple Interaction Binding Diagram

bound simple interaction

Simple Interaction

0.

1

B

source intermal interaction

bound simple intaraction

B

0.1

Figure 31 - Simple Interaction Binding Diagram

6.3.2.3 Message Diagram

target internal interaction

Smple Interaction

1|5.

Message

Start Message

Received Intemediate
Message

Sent Intemediate
Meassage

End Message

Message Aow

Figure 32 - Message Diagram

6.3.2.4 End Message

Package: Interactive Behavior Model

isAbstract: No

Generalization: “Message”

Description

An End Message is a Message that has the following additional characteristics:

e [Its target interactive part is an Interaction Role.
e It has a previous succession.
e It has a next succession to the End instance of Event Part.
¢ This Succession is an Immediate Succession.

The sending the message is simultaneous with the end of the process.

BPMN Notation

Notation for End Message or Simple Interaction categorized as an End Message.

Business Process Definition MetaModel, Process Definitions, v1.0

41

End Message

Figure 33 - End Message Notation

6.3.2.5 Interaction

Package: Interactive Behavior Model
isAbstract: Yes
Generalization: “Behavior Step” “Bindable Connection”

Description
An Interaction is a Behavior Step that is also a Part Connection , enabling Interaction to have start and end

changes, and be ordered in time.

An Interaction can be either a simple Simple Interaction or a set of combined Simple Interactions : a Compound
Interaction. Ultimately, an Interaction is realized by the exchange of Simple Interactions between its Interactive
Parts.

Associations

involved interactive part : Interactive Part [2..*] Interactive Part involved in the Interaction.
This is a derived union.

6.3.2.6 Interaction Role

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Interactive Part”

Description

An Interaction Role is an Interactive Part where the individuals playing the part are in the environment context
where the Behavior is used. For example, the customer is an Interaction Role in a behavior for delivering a
product.

BPMN Notation

A "black box pool" is a pool that does not have any process details.

Interaction Role

Interaction Role as a black box pool

Figure 34 - Interaction Role Notation

42 Business Process Definition MetaModel, Process Definitions, v1.0

6.3.2.7 Interactive Behavior

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Behavior”

Description

An Interactive Behavior is a kind of Behavior that can have Interactions as its Parts. To be involved in
Interactions, these Parts must be sub-types of Interactive Part.

Associations

owned interaction role : Interaction Role [*] Interaction Role owned by the Interactive Behavior.
Subsets owned connectable element

owned interaction : Interaction [*] Interaction owned by the Behavior
Subsets owned connection

6.3.2.8 Interactive Part

Package: Interactive Behavior Model
isAbstract: Yes
Generalization: “Typed Part”

Description

Interactive Part is a category of Typed Part that can be connected by Interactions. The types of interactive parts
establish requirements for the interacting individuals, for example, that they have a minimum security clearance or
market capitalization.

Associations
involving interaction : Interaction [*] Interaction that the Interactive Part is involved in.
This is a derived union.

source simple interaction : Simple Interaction [*] Simple Interaction going to the target interactive part.
Subsets involving interaction
Subsets source connection

target simple interaction : Simple Interaction [*] Simple Interaction coming from the source interactive
part.
Subsets involving interaction
Subsets target connection

6.3.2.9 Message

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Simple Interaction”

Description

A Message is a kind of Simple Interaction that has an Interaction Role as one of its Interactive Parts.

Constraint

[1] At least one of the Interactive Parts of a Message must be an Interaction Role.

Business Process Definition MetaModel, Process Definitions, v1.0 43

BPMN Notation
The shape of Message depends on its sub-types.

The line connecting a Message to its Interaction Role(s) MUST have an open arrowhead and MUST be drawn with
a dashed single black line.

The line connecting a Message to other kinds of Interactive Part MUST have a solid arrowhead and MUST be
drawn with a solid single line.

S

Start Message End Message Received Intermediate Message Sent Intermediate Message

Ormmmmmmmmmmmmee >
Message Flow

Figure 35 - Message Notation

6.3.2.10 Message Flow

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Message”

Description

A Message Flow is a Message that has no succession to any other Message or Event Part. Such a Message doesn't
have any influence on the course of its owning Interactive Behavior.

BPMN Notation
A Message Flow is a line with an open arrowhead that MUST be drawn with a dashed single black line.

Ormrmmmmmmmmnnnnneeees >

Message Flow

Figure 36 - Message Flow Notation

6.3.2.11 Received Intermediate Message

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Message”

Description

A Received Intermediate Message is a Message that has the following additional characteristics:

e Its source interactive part is an Interaction Role.
* It has a next succession.

44 Business Process Definition MetaModel, Process Definitions, v1.0

BPMN Notation

S

Received Intermediate Message

Send Quotation Record
Requisition to suppliers’
suppliers quotations

Supplier's offer

[~

Invitation to tender

v

Supplier

Figure 37 - Received Intermediate Message Notation

6.3.2.12 Sent Intermediate Message

Package: Interactive Behavior Model
isAbstract:
Generalization: “Message”

Description

A Sent Intermediate Message is a Message that has the following additional characteristics:

e [ts target interactive part is an Interaction Role.
e It has a previous succession.

BPMN Notation

Business Process Definition MetaModel, Process Definitions, v1.0

45

C)

Sent Intermediate Message

Send Quotation Record
Requisition to suppliers’
suppliers quotations

Supplier's offer
S =
Invitation to tender

v

Supplier

Figure 38 - Sent Intermediate Message Notation

6.3.2.13 Simple Interaction

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Directed Part Connection” “Interaction”

Description

A Simple Interaction is a kind of Interaction in which something is "transferred" from individuals playing one
interactive part to individuals playing another interactive part. For example, a document, phone number, or package
may be transferred from one department to another in a company. The transferred items must conform to a Type
specified by the Simple Interaction. A Simple Interaction can have an Expression to change the item that arrives
at the target based on the item flowing from the source. For example, a transformation may retrieve the zip code
from an address flowing from the source to deliver the zip code to the target.

Simple Interactions in user (M1) models are always typed by the Behavior Occurrence (see user library Behavior
Library). This gives them the standard Event Parts, such as for start and end, so the Simple Interactions can be
ordered within an Interaction Protocol. This is different from the type of thing transferred.

Simple Interactions can refer to Simple Interactions inside the Interactive Parts being connected. This means the
transferred thing is passed along through chains of Simple Interactions from inside to outside the parts, or the other
way.

Associations

source interactive part : Interactive Part [1] Interactive Part that is the source of the Simple Interaction.
Subsets involved interactive part
Subsets source

target interactive part : Interactive Part [1] Interactive Part that is the target of the Simple Interaction.
Subsets involved interactive part
Subsets target

transferred item type : Type [1] Specifies the type of the item transferred by the Simple
Interaction.

46 Business Process Definition MetaModel, Process Definitions, v1.0

transformation expression : Expression [0..1] Expression used to transform the item that arrives at the
target based on the item flowing from the source. For
example, a transformation may retrieve the zip code from an
address flowing from the source to deliver the zip code to the
target.
Subsets ownedElement

6.3.2.14 Start Message

Package: Interactive Behavior Model
isAbstract: No
Generalization: “Message”

Description

A Start Message is a Message that has the following additional characteristics:
* Its source interactive part is an Interaction Role.
e It has a previous succession to the Start Start Event instance of Event.
e This Succession is an Immediate Succession.

The receipt of the Start Message creates a new execution of the process.

BPMN Notation

Notation for Start Message or Simple Interaction categorized as a Start Message.

Start Message

Figure 39 - Start Message Notation

6.4 Activity Model

6.4.1 Introduction

The Activity Model is for capturing orchestrations in way that facilitates modification as boundaries of process of
business change, for example, due to insourcing, outsourcing, mergers, and acquisitions. It uses interactions to
represent inputs and outputs, enabling choreographies to be specified between the process and its environment, as
well as between the performers responsible for steps in the process. The Activity Model is the basis for the BPMN
model in BPDM (see the BPMN Extension).

In the Activity Model, Processes are Interactive Behaviors that have:
* Boundaries with which processes interact to get inputs and provide outputs (Process Interaction Boundary).

e Performers for steps in the process, including a performer for the entire process (Performer Role and
Processor Role).

Business Process Definition MetaModel, Process Definitions, v1.0 47

¢ Steps that interact with each other and the process boundary, and invoke other processes (Activity and
Embedded Process).

¢ Embedded processes for loops, with loop control features (Activity Loop and its subtypes).

¢ Holders hold flowing items (Holders).

e Steps for generating process lifecycle events, such as for errors and aborts.

¢ Derivations from other processes (Substitutable Derivations).

Process Interaction Boundaries and Processor Roles are the two top-level elements in Processes. The first represents
entities in the environment of the process and the other the actors responsible for the process itself. They are
Interactive Parts, enabling Simple interactions between them to show the inputs and outputs of a process (see the
Simple Interaction Model). Inputs are simple interactions that have the boundary as source and the processor as
target (or an activity in the processor, see below), and outputs have the processor as source (or an activity in the
processor), and the boundary as target. The transferred item type of simple interactions specifies the kind of thing
that is input or output. These interactions can be ordered in time to specify when the process is expecting its inputs
and when it will provide its outputs. Multiplicities on the interactions specify how many individuals of the item type
are required or allowed to be input and output by the process (see the Composition Model).

Performer Roles are Part Groups showing the responsibility of Actors for steps in the process (see Activity below).
Processor Roles are actually just top-level Performer Roles, enabling them to delegate responsibility for a subset of
the process steps to Performer Roles, which in turn can delegate smaller subsets to other Performer Roles. Processor
Roles and Performer Roles are also Typed Parts, for specifying Actors that can play the roles. Actors are Classifiers,
to specify requirements on them, such as having certain skills or budget.

Performer Roles are also Interactive Parts that can have interactions with each other as well to the boundary. This is
useful when the boundaries of the process change, for example, due to outsourcing or insourcing. For outsourcing,
the steps a performer role is responsible for are separated out into another process. The interactions between the
performer's steps and the steps of other performers become the interactions in the protocol between the performers.
This establishes a service contract for the outsourced steps in the activity. Role Realizations are Elements for
showing which processes satisfy the contract. For insourcing, some of the interactions to the boundary become
interactions with a performer role. This establishes the requirements on designing the steps that the performer will be
responsible for.

Activities are:

* Behavior Steps, enabling them to have start and end events, be ordered in time by successions, and nest sub
processes (see the Behavior Model).

e Typed Parts (due to being Behavior Steps), where the type is another Process. For Simple Activities the sub
processes have no sub activities, for Sub process Activities they do.

¢ Interactive Parts to support simple interactions with other activities and the boundary for inputs and outputs
(see the Simple Interaction Model).

Activities connected by Simple Interactions use Simple Interaction Bindings to specify which interactions in the sub
processes will flow between the activities (see the Simple Interaction Model). For example, one activity might be for
a process that outputs a document with an interaction to its boundary, and another activity might be for a process that
inputs a document with an interaction from its boundary. These processes might output and input many other
documents. The simple interaction bindings on the interaction between the activities identify which of the
interactions in the sub processes are the ones that support the flow between the activities. The bindings ensure that
whenever the document flows during the enactment of the process, that the exact same MO flow plays all three
interaction parts simultaneously: the output interaction in one sub process, the interaction between the activities, and
the input interaction in the other sub process. In many cases, the simple interaction bindings can be derived from the
types of things flowing, so the modeler does not need to specify them manually. For example, if the sub processes
have only one interaction outputting and inputting a document, then simple interactions transferring documents
between the sub processes will bind to those internal interactions.®

Embedded Processes are Behavior Step Groups that enclose Activities, enabling embedded processes to have their
own lifecycle events, such as starting and ending, that interact with the enclosed activities. Every embedded process

¢ Simple interaction bindings can be derived if the interaction between the activities has a transferred item type that is the same

or a super type of exactly one output interaction flow on the source end of the interaction, or has a transferred item type that is
the same or a subtype of exactly one input interaction flow on the target end of the interaction.

48 Business Process Definition MetaModel, Process Definitions, v1.0

has the Abort Group Connection applied to it (see the Behavior Model). This ensures the enclosed steps abort when
the group does.

Activity Loops are Embedded Processes that can execute their enclosed activities as a group multiple times.
The process can proceed past the loop in several ways:
e After all sub executions are complete, with a succession that has the loop as the source.

* After each sub execution, with succession that has the ‘Iteration End’ event part as an internal source. This
part is defined in a user (M1) library in the Activity Model, typed by the ‘Iteration End’ event also defined in
the library.

e After the first sub execution to complete, with a succession that has the ‘Iteration End’ event part as an
internal source, and a guard evaluating to the string "first iteration."

e After each sub execution, but depending on conditions, with a succession that has the ‘Iteration End’ event
part as an internal source, and a guard specified by the modeler.

Activity Loops are of two kinds:

¢ Conditional Loops execute their enclosed activities multiple times as a group while a specified condition is
true. If the condition is never true, the enclosed activities are never executed. The multiple sub executions
are sequential.

e Multilnstance Loops execute their enclosed activities as a group a certain number of times, as specified by
the modeler in an integer-valued expression evaluated at the time the loop begins executing. Multilnstance
Loops support the option of sequential or parallel sub executions.

Holders are Interactive Parts for storing items temporarily as they flow through the process. For example, a
document, phone number, or package can flow along simple interactions, into a holder for some period, and flow out
later. The type of the holder is the type of thing it can hold.

Substitutable Derivations are Derivations of one process from another that do not alter the interactions with the
boundary (see the Composition Model).

6.4.2 Metamodel Specification

The Activity Model is for capturing orchestrations in way that facilitates modification as boundaries of process of
business change, for example, due to insourcing, outsourcing, mergers, and acquisitions. It uses interactions to
represent inputs and outputs, enabling choreographies to be specified between the process and its environment, as
well as between the performers responsible for steps in the process. The Activity Model is the basis for the BPMN
model in BPDM (see the BPMN Extensions).

Business Process Definition MetaModel, Process Definitions, v1.0 49

6.4.2.1 Activity Model Diagram

Interactive Behavior

Process

0.1Y owner process owner process Y 1 processtype /| 1Y owner process 0.1 Y ownerprocess
{subsets part whole[1 T {ubsets ownerinteractive behavior(l I {subsets step typell I {ubsets behavior step owner(1 I+ {ubsets part whole[1 Tt
Interaction Role
{subsets owned interaction role[+[}{
{subsets owned connectable element[[} A\
0.1 | owned processor role owned process interaction boundary| O-!
Processor Role Process Interaction

Boundary

JAN

Part Group Interactive Part

/\ JAN

{subsets behavior usage[*[} {subsets owned step [*]} {subsets owned connectable element[]

process usage | x| owned activity + | owned holder
Performer Role Activity Holder
{subsets enclosing part group[+l}
activity performer N
.
performed activity
{subsets enclosed part[+]}
delegating performer role Y 0..1 * | delegated performer role * | played performer role

{subsets owner[0..1 [}

{subsets ownedElement[+[:

{subsets type usage[s]:

v

v

‘ Interactive Part ‘

‘ Behavior Step

{subsets partType[1 T+

0.1 \|/ playeractor

Actor

Figure 40 - Activity Model Diagram

50 Business Process Definition MetaModel, Process Definitions, v1.0

6.4.2.2 Activity Model Library: Simple Process instances

BPMN Library:Package

The graphical containement means that the Library
package ow ns 'packagedElement’

nestingPackage

nestedPackage

Activity Library:Package

Emor Process:

Process course event context

induced course event

Emor Event:Course
Event

Abort Process

Process course event context

induced course event

Abort Event.Course

Event

Figure 41 - Activity Model Library: Simple Process instances

6.4.2.3 Activity Categories Diagram

Behavior Step
AN

Activity

|

Simple Activity

T

Error Activity Abort Activity

Figure 42 - Activity Categories Diagram

Sub-Process Activity

Business Process Definition MetaModel, Process Definitions, v1.0

51

6.4.2.4 Activity Model Library: Loop Happening instance

Behavior Dccurence:Behavior
StartEvent Part End: Event Part .
L1 S NP evenl| uzage End EEevrghEDUISB
event part type
predecessar SLCEEIE0T
general
Generalization
generalization
zpecific
Aetivity Loop Behavion:Cowrse
riest successioln prewious succession
startterationend: interationend-end:
Succession Succession
Previous sUCCession next succ ession
predecessor
IterationE nd:Ewent P art
SLCCEEEON event usdge IterationEnd Event:
Courss Event
ewvent part type

Figure 43 - Activity Model Library: Loop Happening instance

52 Business Process Definition MetaModel, Process Definitions, v1.0

6.4.2.5 Embedded Process Diagram

Activily

‘ Behawior Step Group ‘

I

I

Embedded Process

=

enclozing embedded process
{subzets enclosing behavior step group(*]}

{subsets endlozed behavor step[*T
enclozed activity

Activiiy

=

Aclivity Loop

{subsets owner0.1TH
owrer activity loop

tD1 {subset: owredE lement[]}

EI..'|| s Itetafion

Value5 pecificafion

rumber of ikstances
{subsets ownedE lement[*]:

—_

{zLbsets Dux_lr]er[[ﬂ..'l]}
0.1 § owner muki instance loop

Condiiona Loop

Multi Instance Loop

+ordening(1]:Multilig ancelLoopOrd ering

Multiln stancel oopOrdering

<¢Enumeratiori »

0. 1% conditonned loop
1| loop condifon
Condition

Sequentid=5equential
pardlel=paallel

Figure 44 - Embedded Process Diagram

Business Process Definition MetaModel, Process Definitions, v1.0

53

6.4.2.6 Process Derivation Diagram

Dervalion

AN

Sub stitutable Derivation isubsets derved from[1]} Process

substitutable derivation derived fram process

* 1

1

derived to pracess
{subsets derived ta[1]}

Figure 45 - Process Derivation Diagram

6.4.2.7 Role Realization Diagram

Proceszzor Role

1 realizing proce szor role

{zubsets awner[0..1]}

Efemant

{zubszets ownedElement[*]}

« | rale realization

Role Realization Performer Role

- 1

realized performer role

Figure 46 - Role Realization Diagram

6.4.2.8 Abort Activity

Package: Activity Model
isAbstract: No
Generalization: “Simple Activity”

Description

An Abort Activity is a Simple Activity that interrupts the course of a Process. All activities in the Process should
be immediately ended. The Process is ended without compensation or event handling. The type of all Abort
Activity(ies) must be Abort Process provided by the BPMN Library for the Activity Model (Activity Library).

BPMN Notation

This symbol can alternatively represent:

1. Event Part typed by the Abort Event instance of Event.
2. An Abort Activity

54 Business Process Definition MetaModel, Process Definitions, v1.0

Abort Activity

Figure 47 - Abort Activity Notation or 'Abort’' Behavioral Change Part

6.4.2.9 Activity

Package: Activity Model
isAbstract: Yes
Generalization: “Behavior Step” “Interactive Part”

Description
An Activity is a kind of Behavior Step that activates a Behavior (it operates over time) in the context of a Process.

It can:

¢ Dbe ordered in time by Succession,
e operate under the responsibility of a Performer Role,
e activate a sub-process or be a simple task that start and stop.

An Activity is also an Interactive Part that receives its inputs and outputs through Interactions coming from other
Interactive Parts in the Process (Activity, Interaction Role, Performer Role, Holder).

Associations

process type : Process [1] Type of the Activity
Subsets step type

BPMN Notation

An Activity is represented by a rounded corner rectangle that MUST be drawn with a single thin black line.

An Activity

Figure 48 - Activity Notation
6.4.2.10 Activity Loop
Package: Activity Model

isAbstract: No
Generalization: “Embedded Process”

Description

An Activity Loop is an Embedded Process that can execute its enclosed activities multiple times. The process can
proceed past the loop in several ways:

Business Process Definition MetaModel, Process Definitions, v1.0 55

e After all subexecutions are complete, with a succession that has the loop as the source.

* After each subexecution, with succession that has the iterationEnd behavior part as an internal source. This
part is defined in a user (M1) library in the Activity Model, typed by the IterationEnd change also defined in
the library.

e After the first subexecution to complete, with a succession that has the IterationEnd as an internal source,
and a guard evaluating to the string "first iteration."

e After each subexecution, but depending on conditions, with a succession that has the iterationEnd behavior
part as an internal source, and a guard specified by the modeler.

Associations

max iteration : ValueSpecification [0..1] the maximum number of iteration
Subsets ownedElement

BPMN Notation
An Activity Loop has the shape of Activity with a small looping indicator will be displayed at its bottom-center.

Loop

@,

Figure 49 - Activity Loop Notation
6.4.2.11 Actor

Package: Activity Model
isAbstract: No
Generalization: “Classifier”

Description

An Actor is an entity that is responsible for the execution of duties specified by a Performer Role.
Further sub-type of Actor will be defined in specifications such as the Organizational Structure Metamodel (OSM)
to add specific requirements such as and can as having certain skills or budget.

6.4.2.12 Conditional Loop

Package: Activity Model
isAbstract: No
Generalization: “Activity Loop”

Description

Conditional Loop is a kind of Activity Loop that will execute its enclosed activities multiple times as a group while
a specified condition is true. If the condition is never true, the enclosed activities are never executed. The multiple
subexecutions are sequential.

Associations

loop condition : Condition [1] Condition that controls the iterations of a Conditional Loop.

56 Business Process Definition MetaModel, Process Definitions, v1.0

6.4.2.13 Embedded Process

Package: Activity Model
isAbstract: No
Generalization: “Activity” “Behavior Step Group”

Description

An Embedded Process is a kind of Behavior Step Group that groups a set of Activity that, as a whole, act as a
Behavior Step. Thereby, an Embedded Process is typed by a Course that defines its start change and a finish
change. As any Behavior Step, an Embedded Process can be interrupted or constrained in its Course course.

Associations

enclosed activity : Activity [*] Activity that is part of the Embedded Process.
Subsets enclosed behavior step

Constraint

[1] An enclosed activity of an Embedded Process must belong to the Process owning the Embedded Process.

BPMN Notation

A Sub-Process Activity shares the same shape as the Activity object, which is a rounded rectangle. A Sub-Process
Activity is a rounded corner rectangle that MUST be drawn with a single thin black line. If the Sub-Process Activity
is also a transaction, it has a boundary drawn with a double line.

The Sub-Process Activity can be in a collapsed view that hides its details or a Sub-Process can be in an expanded
view that shows the details of its Process Type.

In the collapsed form, the Sub-Process Activity uses a marker to distinguish it as a Sub-Process Activity, rather than
a Simple Activity. The Sub-Process Activity marker MUST be a small square with a plus sign (+) inside. The square
MUST be positioned at the bottom center of the shape.

Sub-Process
Activity

Figure 50 - Collapsed Sub-Process Activity Notation

Business Process Definition MetaModel, Process Definitions, v1.0 57

O—

- /

Figure 51 - Uncollapsed Sub-Process Activity Notation

6.4.2.14 Error Activity

Package: Activity Model
isAbstract: No
Generalization: “Simple Activity”

Description

An Error Activity is a kind of Simple Activity that produces an Error Event and that ends its enclosing Course.
In the case where the Error Activity is part of an Embedded Process, the ended Course is this Embedded
Embedded Process, otherwise the ended Course is the Process that owns the Error Activity.

BPMN Notation
This symbol can alternatively represent:

1. Event Part typed by the Error Event instance of Event.
2. An Error Activity

Errar Activity
ar
Error Behavioral Change Part

Figure 52 - Error Activity Notation or 'Error' Behavioral Event Step

6.4.2.15 Holder

Package: Activity Model
isAbstract: No
Generalization: “Interactive Part”

Description

A Holder is an Interactive Part storing items temporarily as they flow through the Process. For example, a
document, phone number, or package can flow along simple interactions, into a holder for some period, and flow out
later. The type of the Holder is the type of thing it can hold.

58 Business Process Definition MetaModel, Process Definitions, v1.0

Non Normative Notation

A Holder is represented by a can that MUST be drawn with a single thin black line.

3

Holder

Figure 53 - Holder Notation

6.4.2.16 LoopTestTime

Package: Activity Model
isAbstract: No
Description

Enumeration of the following literal values:
after:

before:

6.4.2.17 Multi Instance Loop

Package: Activity Model
isAbstract: No
Generalization: “Activity Loop”

Description

Multi Instance Loop is a kind of Activity Loop that will execute its enclosed activities as a group of times, as
specified by the number of instances ValueSpecification evaluated at the time the loop begins executing. A Multi
Instance Loop supports the option of sequential or parallel subexecutions as specified by its ordering attribute.

Attributes
ordering: MultilnstanceLoopOrdering [1]

Associations

number of instances : ValueSpecification [1] Number of instance of iteration.
Subsets ownedElement

6.4.2.18 MultilnstanceLoopOrdering

Package: Activity Model
isAbstract: No

Description

Enumeration of the following literal values:
parallel:

Sequential:

Business Process Definition MetaModel, Process Definitions, v1.0 59

6.4.2.19 Performer Role

Package: Activity Model
isAbstract: No
Generalization: “Interactive Part” “Part Group”

Description

A Performer Role is a Part Group that takes responsibility of performing activities in the process. Being an
Interactive Part, a Performer Role also has responsibilities to fulfill Interactions that it is involved with other
Performer Roles or with Interaction Roles at the boundary of the Process. A Performer Role is a Typed Part for
specifying Actor that can play the role at process enactment.

A Performer Role can be decomposed into sub Performer Role to delegate responsibility for a subset of its
activities or interactions. A Performer Role may have a realization as defined by a Role Realization that further
specifies how the Performer Role will meet its responsibilities.

Associations

performed activity : Activity [*] Specifies the set of Activity(ies) that are under the responsibility of the
Performer Role.
Subsets enclosed part

player actor : Actor [0..1] Actor that, at runtime, is responsible for the execution of the
responsibilities specified by the Performer Role.
Subsets partType

BPMN Notation

A Performer Role is represented by a Lane. A lane is a sub-partition of the Pool representing the Processor Role of
the process or a sub-partition of the Lane representing its delegating performer role.

A Lane will extend the entire length of its containing Pool or Lane, either vertically or horizontally. If the pool is
invisibly bounded, the lane associated with the pool must extend the entire length of the pool. Text associated with
the Lane (the Performer Role name) can be placed inside the shape, in any direction or location, depending on the
preference of the modeler or modeling tool vendor. Our examples place the name as a banner on the left side (for
horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool name, however,
this is not a requirement.

Performer
Role

Processor Role
or Performer Role

Performer
Role

Figure 54 - Horizontal Lane Notation

A Performer Role is represented by a Lane. A lane is a sub-partition of the Pool representing the Processor Role of
the process or a sub-partition of the Lane representing its delegating performer role.

A Lane will extend the entire length of its containing Pool or Lane, either vertically or horizontally. If the pool is
invisibly bounded, the lane associated with the pool must extend the entire length of the pool.

60 Business Process Definition MetaModel, Process Definitions, v1.0

Text associated with the Lane (the Performer Role name) can be placed inside the shape, in any direction or location,
depending on the preference of the modeler or modeling tool vendor. Our examples place the name as a banner on
the left side (for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool
name, however, this is not a requirement.

Processor Role
or Performer Role

Performer Performer
Role Role

Figure 55 - Vertical Lane Notation
6.4.2.20 Process

Package: Activity Model
isAbstract: No
Generalization: “Interactive Behavior”

Description

A Process is a kind of Interactive Behavior that describes specific Activity(ies) to be performed, Interactions to
be undertaken during its execution under the authority of a Processor Role (or delegated performer roles).

The process owns the set of activities to be performed as well as the Conditions on when such activities will be
performed and by which performer role. The process also owns the set of Interactive Parts that define the flow of
information and other resources between activities, Performer Role and Interaction Roles.

A specific Interaction Role defines the set of Interactions the process is responsible of: it is the Process
Interaction Boundary. The set of Interactions attached to the Process Interaction Boundary defines the inputs
and outputs of the process.

A Process may utilize sub-processes with a Sub-Process Activity as well as be used in the context of other
processes in the same way.

Associations

owned activity : Activity [*] Activity owned by the Process.
Subsets owned step

Business Process Definition MetaModel, Process Definitions, v1.0 61

owned holder : Holder [*]

owned process interaction boundary : Process Interaction

Boundary [0..1]

owned processor role : Processor Role [0..1]

substitutable derivation : Substitutable Derivation [*]

Non Normative Notation

Holder owned by the Process.
Subsets owned connectable element

Specifies the set of Interactions the process is
responsible for. This set of Interactions defines the
inputs and outputs of the process.

Subsets owned interaction role

Processor Role of the Process.
Subsets owned connectable element

Each process diagram has a contents area. As an option, it may have a frame and a heading as shown in the
following figure. The frame is a rectangle. The frame may be omitted and implied by the border of the diagram area
provided by a tool. In case the frame is omitted, the heading is also omitted.

The diagram contents area contains the graphical symbols. The heading is a string contained in name tag (rectangle
with cutoff corner) in the upper leftmost corner of the rectangle, with the following syntax: <process name>.

-5 <Process Name>)

<Process Content>

Figure 56 - Process Diagram

6.4.2.21 Process Interaction Boundary

Package: Activity Model
isAbstract: No
Generalization: “Interaction Role”

Description

The Process Interaction Boundary is the Interaction Role through which a Process interacts to get its inputs and
deliver its outputs. The process is responsible to fulfill all Interactions attached to the Process Interaction

Boundary.

BPMN Notation

A "black box pool" is a pool that does not have any process details.

62 Business Process Definition MetaModel, Process Definitions, v1.0

Interaction Role

Interaction Role as a black box pool

Figure 57 - Interaction Role Notation

6.4.2.22 Processor Role

Package: Activity Model
isAbstract: No
Generalization: ‘“Performer Role”

Description

A Processor Role is the top-level Performer Role responsible for all activities and interactions at the boundary of
the Process. As all Performer Roles, it can delegate responsibility for a subset of the process activities and
interactions to Performer Roles, which in turn can delegate smaller subsets to other Performer Roles (delegated
performer role).

A Processor Role may be active or passive. An active processor will control and/or monitor the process and may
manage process resources. A passive processor delegates all responsibilities to delegee role. The actor of a passive
processor may be a "community," consensus body or group of actors who have agreed to work together in a
particular way. The actor of an active processor must be an individual, system, or organization capable of taking
action, initiating and responding to Interactions, and managing resources.

Associations

role realization : Role Realization [*] Specification of the set of Performer Role that the Processor Role
is the realization of.
Subsets ownedFElement

BPMN Notation

A Processor Role is represented by a Pool. A Pool is a square-cornered rectangle that MUST be drawn with a solid
single black line.

To help with the clarity of the Diagram, A Pool will extend the entire length of the Diagram, either horizontally or
vertically. However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and modeling
tools can use Pools (and Lanes) in a flexible manner in the interest of conserving the “real estate” of a Diagram on a
screen or a printed page.

The Processor Role Pool MAY be presented without a boundary.

Processor Role

Figure 58 - Processor Role Notation

Business Process Definition MetaModel, Process Definitions, v1.0 63

6.4.2.23 Role Realization

Package: Activity Model
isAbstract: No
Generalization: “Element”

Description

A role realization takes a realized performer role and defines a processor role and the associated process that
specifies the specific process to be enacted by the specified processor role as required to meet the responsibilities of
the realized performer role. A performer role may be realized by any number of processor roles as long as they each
satisfy the responsibilities of the role.

Associations

realized performer role : Performer Role [1] Performer Role that is the specification of the Role
Realization.

6.4.2.24 Simple Activity

Package: Activity Model
isAbstract: No
Generalization: “Activity”

Description

A Simple Activity is an Activity which process type is no further composed of other activities.

Constraint

[1] A Simple Activity is typed by a process that has no owned activity.

BPMN Notation
An Activity is represented by a rounded corner rectangle that MUST be drawn with a single thin black line.

An Activity

Figure 59 - Activity Notation

6.4.2.25 Sub-Process Activity

Package: Activity Model
isAbstract: No
Generalization: “Activity”

Description

A Sub-Process Activity is an Activity which process type is further composed of other activities.

Constraint

[1] A Sub-Process Activity is typed by a process that has owned activity.

64 Business Process Definition MetaModel, Process Definitions, v1.0

BPMN Notation

A Sub-Process Activity shares the same shape as the Activity object, which is a rounded rectangle. A Sub-Process
Activity is a rounded corner rectangle that MUST be drawn with a single thin black line. If the Sub-Process Activity
is also a transaction, it has a boundary drawn with a double line.

The Sub-Process Activity can be in a collapsed view that hides its details or a Sub-Process can be in an expanded
view that shows the details of its Process Type.

In the collapsed form, the Sub-Process Activity uses a marker to distinguish it as a Sub-Process Activity, rather than
a Simple Activity. The Sub-Process Activity marker MUST be a small square with a plus sign (+) inside. The square
MUST be positioned at the bottom center of the shape.

Sub-Process
Activity

Figure 60 - Collapsed Sub-Process Activity Notation

g —
O—

N\ /

Figure 61 - Uncollapsed Sub-Process Activity Notation

6.4.2.26 Substitutable Derivation

Package: Activity Model
isAbstract: No
Generalization: ‘“Derivation”

Description

A Substitutable Derivation is a kind of Derivation that derives one Process from another and that does not alter
the Interaction at the owned process interaction boundary.

Associations

derived to process : Process [1] Subsets derived to

Business Process Definition MetaModel, Process Definitions, v1.0 65

6.4.2.27 Instance: Abort Process

Class: Process
Description
Links

Played End

Abort Process:course event context
Abort Process:packagedElement

6.4.2.28 Instance: Activity Library

Class: Package
Description
Links

Played End

Activity Library:nestedPackage
Activity Library:nestingPackage
Activity Library:owningPackage
Activity Library:owningPackage
Activity Library:owningPackage
Activity Library:owningPackage

6.4.2.29

Class: Course
Description
Links

Played End

Activity Loop Behavior:step type
Activity Loop Behavior:event part owner
Activity Loop Behavior:owner course
Activity Loop Behavior:owner course
Activity Loop Behavior:packagedElement
Activity Loop Behavior:specific

6.4.2.30 Instance: Error Process
Class: Process

Description
Links

Played End
Error Process:course event context
Error Process:packagedElement

66

Opposite End
induced course event Abort Event
owningPackage Activity Library

Opposite End

nestingPackage BPMN Library
nestedPackage Compensation Library
packagedElement Activity Loop Behavior
packagedElement IterationEnd Event
packagedElement Error Process
packagedElement Abort Process

Instance: Activity Loop Behavior

Opposite End

owned event part IterationEnd
owned succession start-iterationend
owned succession interationend-end
owningPackage Activity Library
generalization Generalization

Opposite End
induced course event Error Event
owningPackage Activity Library

Business Process Definition MetaModel, Process Definitions, v1.0

6.4.2.31 Instance: Generalization

Class: Generalization

Description

Links
Played End Opposite End
Generalization: general Behavior Occurrence
Generalization:generalization specific Activity Loop Behavior

6.4.2.32 Instance: interationend-end

Class: Succession

Description
Links
Played End Opposite End
interationend-end:next succession predecessor IterationEnd
interationend-end:owned succession owner course Activity Loop Behavior
interationend-end:previous succession successor End

6.4.2.33 Instance: IterationEnd Event

Class: Course Event

Description

Links
Played End Opposite End
IterationEnd Event:event part type event usage IterationEnd
IterationEnd Event:packagedElement owningPackage Activity Library

BPMN Notation

Marker of the IterationEnd Event instance of Event.

O

lteration End Behavioral Event Instance
Figure 62 - Behavioral Event 'lteration End’

6.4.2.34 Instance: IterationEnd

Class: Event Part

Business Process Definition MetaModel, Process Definitions, v1.0

67

Description

Links
Played End Opposite End
IterationEnd:event usage event part type IterationEnd Event
IterationEnd:owned event part event part owner Activity Loop Behavior
IterationEnd:predecessor next succession interationend-end
IterationEnd:successor previous succession start-iterationend

6.4.2.35 Instance: start-iterationend

Class: Succession

Description

Links
Played End Opposite End
start-iterationend:next succession predecessor Start
start-iterationend:owned succession owner course Activity Loop Behavior
start-iterationend:previous succession successor IterationEnd

6.5 BPMN Extensions

6.5.1 Introduction

The BPMN Extension provides additions to the Activity Model for BPMN. These provide BPMN names for special
usages of BPDM concepts and additional functionality specific to BPMN. The BPMN Extension includes:

* Activities for scripts, tasks, termination, compensation, and cancelling, along with Embedded processes for
transactions.

e Directives for Processes and Embedded Processes, such as adhoc directives.

e Course Control Parts specific to BPMN, such as Inclusive Merge, and specializations of BPDM course
control parts, such as Inclusive Decisions.

e User (M1) library for compensation and canceling.

The descriptions of these and other elements in the BPMN Extension are available in the BPMN specification.
6.5.2 Metamodel Specification

The BPMN Extension provides additions to the Activity Model for BPMN. These provide BPMN names for special
usages of BPDM concepts and additional functionality specific to BPMN.

68 Business Process Definition MetaModel, Process Definitions, v1.0

6.5.2.1 Adhoc Extension Diagram

Process

0.1

B

oWner process

fsubszets owner[0..1]}

Embedded Process

{subzets ownedElement[*]}
owned proceszs directive

0.1 owner embedded process
{subszets awnerd0..1]}

{zubszets ownedElement[*]}
* | owned process directive

Process Directive

Adhoc Process Directive

+AdhocOrdering[0..1 JAdhocO rdering
+AdHocCompletionC ondition[0..1 T E«prezzion

Figure 63 - Adhoc Extension Diagram

Lleme nf

6.5.2.2 Activity Extensions Diagram

Activity

LF

Script Activity

Hanguage[1]:String
+oody[1]:Expression

Simple Activity

Zﬁ

Abort Activity

%

Task

Temminate

Figure 64 - Activity Extensions Diagram

Business Process Definition MetaModel, Process Definitions, v1.0

69

6.5.2.3 Gateway Extension Diagram

&N
I [
pp— —— [s | [verame I
I | | |
| i |
Figure 65 - Gateway Extension Diagram
6.5.2.4 BPMN Extensions Library: Compensate Process Instance
Activiw Library P ackage
The graphical containement means that the Library
package owns 'packagedElerment

nestingPackage

neztedPackage
Compens ation Library:Package
Compenzate Process . Lom er'fsale Event:

Fies beh avioral event contest Behawvioral Event

. induced behawioral event

owningPackage
Cancel Process g Cancel Event:

“Process behavioral event context Beh avioral Event

induced behavioral e vent

Figure 66 - BPMN Extensions Library: Compensate Process Instance

70 Business Process Definition MetaModel, Process Definitions, v1.0

6.5.2.5

Stat Buart:

enat pat bype

BPMN Extensions Library: BPMN Process Occurrence Instance

behaniced evert usage Eebmvior Chourance Bebenior
Jan Beart Pan . .
Brd:Euart Pat : ; 7
Icwari11 predecessor statand: ﬁgﬁ?ﬂrm —‘IL bebeniord evert u;agen : %m%
rest happenng) A oesTr |WPE =1 St pat pe .
ER==
Accesaor [Ep——
pedecesa medenessor
Awcesar
gxad Thew, - _
Thagraghicd cortarement means Il;nat the
3 — pacr‘gbd-a\pclcw"rsbdla\an = la?
e il ard succesaons respadively troughthe
Ereraliz=ion| orredbehaana chagepat’ associatonand
the'oened suceession assodaion
spenific -
pevoshappayng secesam [oor Fsat_'_eerd:
Starth =
Lvert Gt preds essT i ﬁc\n
rethareatd | 5 reeaos rexthappenirg accesam
Agcemion L —/————
predecessa
@EEE:EM . Eoort
Sharto | prenicie hgppening auscesacn =3 bt st Liage %ﬂ = g
rest happering gcﬁﬂ:ﬂ p— | SN QA e
esan L —————
Cavel Euert Pat
Aarbearod: accessT o] beberora evert LEa0 C“iEm:
et happerig auccesson ceaan | PrevoLs heppering sLcsession enert fatype
predecessor
rait happenng sucoetam
cacdend, | previous happerig sudesson
Blocess Chourancs Plocess

Figure 67 - BPMN Extensions Library: BPMN Process Occurrence Instance

6.5.2.6

Sequence Flow Extension Diagram

Processing Succession
from (Processing Behavior)

%

Sequence Flow

Figure 68 - Sequence Flow Extension Diagram

6.5.2.7 Art

Figure 69 - Art

£ s 'EI---- E"‘--'—"‘.:"““ ")iagram
Simple Interaction

gram

6.5.28 Ti

ransaction Extensions Diag

ram

Artifact S equence Flow

Artifact Flow

1 Mel

s, v1.0

7

Embedded Process

%

Transaction

Figure 70 - Transaction Extensions Diagram

6.5.2.9 Compensation Extensions Diagram

Activity
Simple Activity Compensating Activity
Compensate Activity Cancel Activity

Figure 71 - Compensation Extensions Diagram
6.5.2.10 Adhoc Process Directive

Package: BPMN Extensions
isAbstract: No
Generalization: “Process Directive”

Description
Attributes
AdhocOrdering: AdhocOrdering [0..1]

AdHocCompletionCondition: Expression [0..1]
6.5.2.11 AdhocOrdering

Package: BPMN Extensions
isAbstract: No

Description

Enumeration of the following literal values:
parallel:

sequential:

72 Business Process Definition MetaModel, Process Definitions, v1.0

6.5.2.12 Artifact Flow

Package: BPMN Extensions
isAbstract: No
Generalization: “Simple Interaction”

Description

An Artifact Flow is a Simple Interaction that has the following characteristics:

e It has a Holder as one of its Interactive Parts.

e The other interactive part is an Activity.

» If this Activity is the source interactive part, it has a next processing succession to the Artifact Flow.

o If this Activity is the target interactive part, it has a previous processing succession from the Artifact
Flow.

6.5.2.13 Artifact Sequence Flow

Package: BPMN Extensions
isAbstract: No
Generalization: “Simple Interaction”

Description
An Artifact Sequence Flow is a Simple Interaction that has the following characteristics:

e Its Interactive Part are activities.
e The source interactive part has a next processing succession to the Artifact Sequence Flow.

BPMN Notation

An Artifact Sequence Flow is represented by a line with a solid arrowhead that MUST be drawn with a solid single
line.

The type of the element transferred by the information flow is represented by a portrait-oriented rectangle that has its
upper-right corner folded over that MUST be drawn with a solid single black line.

) it

Activity (from) J : rL Activity (to)

B

Transferred Iltem Type

Figure 72 - Artifact Sequence Flow Notation

Business Process Definition MetaModel, Process Definitions, v1.0 73

Non Normative Notation

] Statement Condition (

Activity (from) J 'E‘ 'L Activity (to)

Transferred Item Type

Figure 73 - Interaction Flow between Activities and Statement Condition

] Time Condition (
Activity (from) J @ :L Activity (to)

Transferred Item Type

Figure 74 - Interaction Flow between Activities and Time Event Condition

6.5.2.14 Cancel Activity

Package: BPMN Extensions
isAbstract: No
Generalization: “Simple Activity”

Description

A Cancel Activity is a kind of Simple Activity that causes the Cancel Event of its enclosing Behavior.
In cases where the Cancel Activity is part of an Embedded Process, the canceled Behavior is this Embedded
Process, otherwise the canceled Behavior is the Process that owns the Cancel Activity.

BPMN Notation

This symbol can alternatively represent:

1. Event Part typed by the Cancel Event instance of Behavioral Event.
2. A Cancel Activity

Cancel Activity

Figure 75 - Cancel Activity Notation or 'Cancel' Behavioral Event Step

74 Business Process Definition MetaModel, Process Definitions, v1.0

6.5.2.15 Compensate Activity

Package: BPMN Extensions
isAbstract: No
Generalization: “Simple Activity”

Description

Compensate Activity is a kind of Simple Activity that ends a Process and indicates that a Compensation is
necessary.

BPMN Notation

Compensate Activity

Figure 76 - Compensate Activity Notation
6.5.2.16 Compensating Activity

Package: BPMN Extensions
isAbstract: No
Generalization: “Activity”

Description

A Compensating Activity is an Activity that follows an Event Monitor conditioned by the Compensate Event
Behavioral Event. A Compensating Activity cannot have successors.

Constraint

[1] A compensating activity cannot have next processing succession.

BPMN Notation

A Compensating Activity shares the standard activity shape with the Compensate Event marker displayed in the
bottom center of the activity.

Compensating
Activity
<

Figure 77 - Compensating Activity Notation

6.5.2.17 Complex Decision
Package: BPMN Extensions

isAbstract: No
Generalization: “Parallel Split”

Business Process Definition MetaModel, Process Definitions, v1.0 75

Description

A Complex Decision is a Parallel Split that has an expression determining which outgoing Successions apply.

Attributes

split expression: ValueSpecification [1] Has to evaluate to a boolean value that when evaluated to
true enables the split.

BPMN Notation

Alternative 1

Alternative 2

SEMENEE

Default Alternative

Figure 78 - Complex Decision Notation

6.5.2.18 Complex Merge
Package: BPMN Extensions

isAbstract: No
Generalization: “Exclusive Join”

Description
A Complex Merge is an Exclusive Join that has an expression determining which incoming Successions must

apply for the merge to apply.

Attributes

merge expression: ValueSpecification [1]

BPMN Notation

76 Business Process Definition MetaModel, Process Definitions, v1.0

N\
S

>®

N\
J

\. /

Figure 79 - Complex Join Notation
6.5.2.19 Event Decision

Package: BPMN Extensions
isAbstract: No
Generalization: “Parallel Split”

Description

An Event Decision applies a race connector to the parts on the target end of processing successions that have the
event decision as source (see Processing Behavior). The targeted parts are change condition steps. To wait for
incoming messages, these can include behavioral change condition steps detecting the finish of simple interactions
from the boundary to the processor role.

BPMN Notation

=

Event Monitor 1, monitoring a Simple Interaction

=

Event Monitor2, monitoring a Simple Interaction

&)

Event Monitor 3, monitoring a Time Event

Y

Figure 80 - Event Decision Notation
6.5.2.20 Exclusive Decision

Package: BPMN Extensions
isAbstract: No
Generalization: “Exclusive Split”

Description

Same as Exclusive Split but with a different name in BPMN.

Business Process Definition MetaModel, Process Definitions, v1.0 77

BPMN Notation

The Exclusive Split shares the same basic shape, called a Gateway, of the generic Gateway. The Exclusive Split
MAY use a marker that is shaped like an “X” and is placed within the Gateway diamond to distinguish it from other
Gateways. This marker is not required. A Diagram SHOULD be consistent in the use of the “X” internal indicator.
That is, a Diagram SHOULD NOT have some Exclusive Splits with an indicator and some Exclusive Splits without
an indicator.

The default succession is represented by a default Marker that MUST be a backslash near the beginning of the line
representing the Succession.

Alternative 1

Alternative 2

Default Alternative

Alternative 1

r—)
y-Atemetie?

Alternative 2

Default Alternative

r
|

Figure 81 - Exclusive Split Notation

6.5.2.21 Exclusive Merge

Package: BPMN Extensions
isAbstract: No
Generalization: “Exclusive Join”

Description

Same as Exclusive Join but with a different name in BPMN.

BPMN Notation

The Exclusive Join shares the same basic shape of the generic Gateway.

78 Business Process Definition MetaModel, Process Definitions, v1.0

Figure 82 - Exclusive Merge Notation
6.5.2.22 Inclusive Decision

Package: BPMN Extensions
isAbstract: No
Generalization: “Parallel Split”

Description

Inclusive Decision is a Parallel Split that has an outgoing Succession specified as the default if none of the other

outgoing successions apply due to their conditions.

Associations

default : Succession [0..1] Succession enabled by default if no other next succession connected to

the Inclusive Decision has been enabled.

BPMN Notation

Condition 1

Condition 2

Figure 83 - Inclusive Split Notation

6.5.2.23 Inclusive Merge

Business Process Definition MetaModel, Process Definitions, v1.0

79

Package: BPMN Extensions
isAbstract: No
Generalization: “Gateway”

Description

An Inclusive Merge is a Gateway that requires none of the upstream activities to be executing for the join to apply.

BPMN Notation

— |
B
)

Figure 84 - Inclusive Merge Notation
6.5.2.24 Process Directive

Package: BPMN Extensions
isAbstract: No
Generalization: “Element”

Description
6.5.2.25 Script Activity

Package: BPMN Extensions
isAbstract: No
Generalization: “Activity”

Description
Attributes

language: String [1]
body: Expression [1]

6.5.2.26 Sequence Flow
Package: BPMN Extensions

isAbstract: No
Generalization: “Processing Succession”

Description
Sequences Flow is Processing Succession from one part to another (see Processing Behavior). If the source part of

the succession is typed (not a control part), then if the source part has no intermediate events attached, the source

80 Business Process Definition MetaModel, Process Definitions, v1.0

end refers to the end part (which can be omitted as the default), otherwise to the finish part. If the target part is
typed, then the target part refers to the start part (which can be omitted as the default).

BPMN Notation

A Succession is a line with a solid arrowhead that MUST be drawn with a solid single line.

[
»

A succession

Figure 85 - Succession Notation
6.5.2.27 Task

Package: BPMN Extensions
isAbstract: No
Generalization: “Simple Activity

L3

Description

BPMN name for Simple Activity.

BPMN Notation

An Activity is represented by a rounded corner rectangle that MUST be drawn with a single thin black line.

An Activity

Figure 86 - Activity Notation

6.5.2.28 Terminate

Package: BPMN Extensions
isAbstract: No
Generalization: “Abort Activity”

Description

Terminate is the BPMN name for Abort Activity.

BPMN Notation

This symbol can alternatively represent:

1. Event Part typed by the Abort Event instance of Behavioral Event.
2. An Abort Activity

Abort Activity

Business Process Definition MetaModel, Process Definitions, v1.0

Figure 87 - Abort Activity Notation or 'Abort’' Behavioral Change Part

6.5.2.29 Transaction

Package: BPMN Extensions
isAbstract: No
Generalization: “Embedded Process”

Description

A Transaction is a kind of Embedded Process which enclosed activity (ies) can be rolled back by the means of an
Actor.

BPMN Notation

Transaction

Figure 88 - Transaction Notation

6.5.2.30 Instance: Cancel Event

Class: Behavioral Event

Description
Links
Played End Opposite End
Cancel Event:event part type behavioral event usage Cancel
Cancel Event:induced behavioral event behavioral event context Cancel Process
Cancel Event:packagedElement owningPackage Compensation Library

BPMN Notation

Marker of the Cancel Event instance of Behavioral Event.

X

Cancel Behavioral Event Instance

Figure 89 - Behavioral Event 'Cancel’ Instance Notation

82 Business Process Definition MetaModel, Process Definitions, v1.0

6.5.2.31 Instance: Cancel Process

Class: Process

Description
6.5.2.32 Links Instance: cancel-end

Class: Happening Succession
Description
Links

Played End

cancel-end:next happening succession
cancel-end:owned course succession
cancel-end:previous happening succession

6.5.2.33 Instance: Cancel

Class: Event Part
Description
Links

Played End

Cancel:behavioral event usage
Cancel:owned event part
Cancel:predecessor
Cancel:successor

BPMN Notation

Opposite End

predecessor Cancel

owner course Process Occurrence
successor End

Opposite End

event part type Cancel Event

owner behavior Process Occurrence

next happening succession cancel-end
previous happening succession start-cancel

Event Part typed by the Cancel instance of Behavioral Event.

Cancel Event Parl

Figure 90 - Event Part : Cancel Notation

6.5.2.34 Instance: Compensate Event

Class: Behavioral Event
Description
Links

Played End
Compensate Event:event part type

Opposite End
behavioral event usage Compensate

Compensate Event:induced behavioral event
Compensate Event:packagedElement

behavioral event context Compensate Process
owningPackage Compensation Library

Business Process Definition MetaModel, Process Definitions, v1.0

83

BPMN Notation

Marker of the Compensate Event instance of Behavioral Event.

<«

Compensate Behavioral Event Instance

Figure 91 - Behavioral Event 'Compensate’ Instance Notation

6.5.2.35 Instance: Compensate Process

Class: Process
Description
Links

Played End
Compensate Process:behavioral event context
Compensate Process:packagedElement

6.5.2.36 Instance: compensate-end

Class: Happening Succession
Description
Links

Played End
compensate-end:next happening succession
compensate-end:previous happening succession

6.5.2.37 Instance: Compensate

Class: Event Part
Description
Links

Played End

Compensate:behavioral event usage
Compensate:owned event part
Compensate:predecessor
Compensate:successor

Opposite End
induced behavioral event Compensate Event
owningPackage Compensation Library

Opposite End
predecessor Compensate
successor End

Opposite End

event part type Compensate Event

owner behavior Process Occurrence

next happening succession compensate-end
previous happening succession start-compensate

6.5.2.38 Instance: Compensation Library

Class: Package
Description
Links

Played End

Compensation Library:nestedPackage
Compensation Library:owningPackage
Compensation Library:owningPackage

84

Opposite End

nestingPackage Activity Library
packagedElement Process Occurrence
packagedElement Cancel Event

Business Process Definition MetaModel, Process Definitions, v1.0

Played End Opposite End

Compensation Library:owningPackage packagedElement Compensate Event
Compensation Library:owningPackage packagedElement Compensate Process
Compensation Library:owningPackage packagedElement Cancel Process

6.5.2.39 Instance: Generalization

Class: Generalization

Description

Links
Played End Opposite End
Generalization: general Behavior Occurrence
Generalization:generalization specific Process Occurrence

6.5.2.40 Instance: Process Occurrence

Class: Process
Description

Process based on the Behavior Occurrence that produces the following additional lifecycle events: Compensate
Event, Cancel Event.

Links
Played End Opposite End
Process Occurrence: owned course succession startseq-end
Process Occurrence:owner behavior owned event part Compensate
Process Occurrence:owner behavior owned event part Cancel
Process Occurrence:owner course owned course succession cancel-end
Process Occurrence:owner course owned course succession start-compensate
Process Occurrence:owner course owned course succession start-cancel
Process Occurrence:packagedElement owningPackage Compensation Library
Process Occurrence:specific generalization Generalization

6.5.2.41 Instance: start-cancel

Class: Happening Succession

Description

Links
Played End Opposite End
start-cancel:next happening succession predecessor Start
start-cancel:owned course succession owner course Process Occurrence
start-cancel:previous happening succession successor Cancel

6.5.2.42 Instance: start-compensate

Class: Happening Succession

Business Process Definition MetaModel, Process Definitions, v1.0 85

Description

Links
Played End Opposite End
start-compensate:next happening succession predecessor Start
start-compensate:owned course succession owner course Process Occurrence
start-compensate:previous happening succession successor Compensate

6.5.2.43 Instance: StartFromSequence

Class: Event Part

Description

Links
Played End Opposite End
StartFromSequence:predecessor next happening succession startseq-end

6.5.2.44 Instance: startseq-end

Class: Happening Succession

Description

Links
Played End Opposite End
startseq-end:next happening succession predecessor StartFromSequence
startseq-end:owned course succession Process Occurrence
startseq-end:previous happening succession successor End

6.6 Interaction Protocol Model

6.6.1 Introduction

The Interaction Protocol Model is for capturing choreographies. It enables interactions to be grouped together into
larger, reusable interactions. For example, an interaction that exchanges goods between companies might be used
with other interactions in a larger protocol representing a partnership of the companies. This protocol might be
adopted by a standards body and reused between many pairs of companies. The interactions in a protocol may be
simple interactions that have no sub-interactions, or may be other protocols.

The Interaction Model provides:

* Behaviors with steps that are interactions (Interaction Protocols).
¢ Interactions representing the reuse of protocols (Compound Interactions).
* A way to specify how a reused protocol ties in with the protocols using it (Compound Interaction Binding).

Interaction Protocols are Interactive Behaviors where the Behavior Steps are Interactions between Interaction Roles
(see Simple Interaction Model). For example, a protocol between two companies might start with one company
sending another an order, then the other sending back a product, and then the original company sending payment,
and finally receiving a receipt. These four simple interactions can be grouped into an interaction protocol, with
successions between them to specify which interaction comes before which (see the Behavior Model). The two

86 Business Process Definition MetaModel, Process Definitions, v1.0

companies are interaction roles in the protocol (see the Simple Interaction Model).

Compound Interactions are Interactions that are also Behavior Steps, enabling them to reuse Interaction Protocols.
For example, two companies might use the ordering protocol described above many times as part of a larger
partnership. This partnership is an interaction protocol that reuses the ordering protocol many times. Each reuse is
represented as a compound interaction in the larger partnership protocol. Compound Interactions are complementary
to Simple Interactions, which are Interactions that do not have sub interactions (see the Simple Interaction Model).

Compound Interaction Bindings are Connected Part Bindings that specify how reused protocols tie in with the larger
protocols reusing them (see the Behavior Model). For example, reusing the ordering protocol described above
requires specifying which part in the larger partnership identifies the buying company and which identifies the
selling company. Both companies will play these roles at some point in the larger partnership, so the bindings must
be specified for each compound interaction. Compound Interaction Bindings are also used in processes (see the
Activity Model).

6.6.2 Metamodel Specification

The Interaction Protocol Model is for capturing choreographies. It enables interactions to be grouped together into
larger, reusable interactions. For example, an interaction that exchanges goods between companies might be used
with other interactions within a larger protocol representing a partnership of the companies. This protocol might be
adopted by a standards body and reused between many pairs of companies. The interactions in a protocol may be
simple interactions that have no sub-interactions, or may be other protocols.

6.6.2.1 Interaction Protocol

‘ Intemc tive Behavior

| Behawior Step | | Bindable Connection |
£|5 LTiE vl oo s)
Ielerachion Interacfon Protocal

rivia g irderacian riferachon hoe M0

{ relertly, i) {reschefi rea st typed 1)

Compound interation

s el part B ineg) ray

Connected Part
Binding Tk o s e

Interaction Role

Compound Interac Son Binding i

loteaclive Pae

Figure 92 - Interaction Protocol

6.6.2.2 Compound Interaction

Business Process Definition MetaModel, Process Definitions, v1.0 87

Package: Interaction Protocol Model
isAbstract: No
Generalization: “Interaction”

Description

A Compound Interaction is an Interaction that is also a Behavior Step, enabling it to reuse an Interaction
Protocol. Compound Interaction is complementary to Simple Interaction, which is an Interaction that doesn't
have sub-interactions.

Associations

interaction type : Interaction Protocol [0..1] Interaction Protocol that defines the type of
the Compound Interaction.

interactive part involved in interaction : Interactive Part [2..*] Subsets involved interactive part

owned binding : Compound Interaction Binding [*] Subsets owned part binding

Non Normative Notation

A compound interaction is represented by a rounded corner rectangle that MUST be drawn with a double thin black
line.

Compound
Interaction

Figure 93 - Compound Interaction Notation

6.6.2.3 Compound Interaction Binding

Package: Interaction Protocol Model
isAbstract: No
Generalization: “Connected Part Binding”

Description

A Compound Interaction Binding is a Connected Part Binding that specifies how an Interaction Protocol
reused by a Compound Interaction ties in with the larger Behavior reusing it. For each Interactive Part involved
in a Compound Interaction, there is a Compound Interaction Binding that specifies which Interaction Role it
plays in the Interaction Protocol.

Associations

played interaction role : Interaction Role [1] The Interaction Role that is played by the player interactive
part connected by the Compound Interaction Binding.
Subsets internal played part

player interactive part : Interactive Part [1] The Interactive PartInteractive Part being playing the played
interaction role as defined by the Compound Interaction
Binding.
Subsets player part

6.6.2.4 Interaction Protocol

Package: Interaction Protocol Model
isAbstract: No

88 Business Process Definition MetaModel, Process Definitions, v1.0

Generalization: “Interactive Behavior”
Description

An Interaction Protocol is a kind of Interactive Behavior where Behavior Steps are Interactions that occur
between Interaction Roles. The set of Interactions defines the purpose of the Interaction Protocol.

6.7 Class Hierarchies

The Class Hierarchies is not a real package. It groups diagrams that provide a synthesis of class hierarchies.
The BPDM Class Hierarchies is not a real package. It groups diagrams that provide a synthesis of class hierarchies.

6.7.1 Condition Hierarchy

Condition

T

Opaque Condition Fact Condition Event Condition Compound Condition
Ireflexive Condition Behavior Event Time Event Condition Fact Change Condition
Condition

Figure 94 - Condition Hierarchy

Business Process Definition MetaModel, Process Definitions, v1.0 89

6.7.2 Happening OverTime Hierarchy

Happening Over Time

T

Clock

Course

T

Behavior

T

Interactive Behavior

T

Interaction Protocol Process
Figure 95 - Happening OverTime Hierarchy
6.7.3 Event Hierarchy
Event
Course Event Time Event Fact Change
Cycle Event TimeDate Event Relative TimeDate
Event

Figure 96 - Event Hierarchy

90

Business Process Definition MetaModel, Process Definitions, v1.0

6.7.4

Behavioral Step Hierarchy

Happening Part

Event Part

Behavior Step

[

Event Monitor

Activity

Interaction

Behavior Step Group

Compound Interaction

Simple Interaction

Sub-Process Activity

Simple Activity

Cancel Activity

Emor Activity

Abort Activity

Figure 97 - Behavioral Step Hierarchy

6.7.5

Simple Interaction Hierarchy

Simple Interaction

Embedded Process

T

Activity Loop

-

Conditional Loop

Multi Instance Loop

ordering[1]:MultiinstanceL.oopOrdering

Artifact Flow

Message

Artifact Sequence Flow

Received Intemmediate
Message

Start Message

Sent Intermediate
Message

End Message

Message Flow

Figure 98 - Simple Interaction Hierarchy

Business Process Definition MetaModel, Process Definitions, v1.0

6.7.6 Interactive Part Hierarchy

Interactive Part

1

Interaction Role Performer Role Activity Holder

T

Process Interaction
Boundary

Figure 99 - Interactive Part Hierarchy

7 BPMN Notation Summary

71 Interaction Role Notation

A "black box pool" is a pool that does not have any process details.

Interaction Role

Interaction Role as a black box pool

Figure 100 - Interaction Role Notation

Represented Elements

Interaction RoleProcess Interaction Boundary

92 Business Process Definition MetaModel, Process Definitions, v1.0

7.2 Processor Role Notation

A Processor Role is represented by a Pool. A Pool is a square-cornered rectangle that MUST be drawn with a solid
single black line.

To help with the clarity of the Diagram, A Pool will extend the entire length of the Diagram, either horizontally or
vertically. However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and modeling
tools can use Pools (and Lanes) in a flexible manner in the interest of conserving the “real estate” of a Diagram on a
screen or a printed page.

The Processor Role Pool MAY be presented without a boundary.

Processor Role

Figure 101 - Processor Role Notation

Represented Elements

Processor Role

7.3 Horizontal Lane Notation

A Performer Role is represented by a Lane. A lane is a sub-partition of the Pool representing the Processor Role of
the process or a sub-partition of the Lane representing its delegating performer role.

A Lane will extend the entire length of its containing Pool or Lane, either vertically or horizontally. If the pool is
invisibly bounded, the lane associated with the pool must extend the entire length of the pool.

Text associated with the Lane (the Performer Role name) can be placed inside the shape, in any direction or location,
depending on the preference of the modeler or modeling tool vendor. Our examples place the name as a banner on
the left side (for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool
name, however, this is not a requirement.

Performer
Role

Processor Role
or Performer Role

Performer
Role

Business Process Definition MetaModel, Process Definitions, v1.0 93

Figure 102 - Horizontal Lane Notation

Represented Elements

Performer Role

7.4 Vertical Lane Notation

A Performer Role is represented by a Lane. A lane is a sub-partition of the Pool representing the Processor Role of
the process or a sub-partition of the Lane representing its delegating performer role.

A Lane will extend the entire length of its containing Pool or Lane, either vertically or horizontally. If the pool is
invisibly bounded, the lane associated with the pool must extend the entire length of the pool.

Text associated with the Lane (the Performer Role name) can be placed inside the shape, in any direction or location,
depending on the preference of the modeler or modeling tool vendor. Our examples place the name as a banner on
the left side (for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool
name, however, this is not a requirement.

Processor Role
or Performer Role

Performer Performer
Role Role

Figure 103 - Vertical Lane Notation

Represented Elements

Performer Role

7.5 Time Event Notation

A Time Event is represented by a clock.

94 Business Process Definition MetaModel, Process Definitions, v1.0

Time Event

Figure 104 - Time Event Notation

Represented Elements

Time Event

7.6 Fact Change Notation

FactChange

Figure 105 - Fact Change Notation

Represented Elements

Fact Change

7.7 Course Event 'Error’ Instance Notation

Marker of the Error Event instance of Event.

N

Error Behavioral Event Instance

Figure 106 - Course Event 'Error' Instance Notation

Represented Elements

Error Event

7.8 Course Event 'Cancel’ Instance Notation

Marker of the Cancel Event instance of Event.

Business Process Definition MetaModel, Process Definitions, v1.0

95

X

Cancel Behavioral Event Instance

Figure 107 - Course Event 'Cancel’ Instance Notation

Represented Elements

Cancel Event

7.9 Course Event 'lIteration End'

Marker of the IterationEnd Event instance of Event.

O

lteration End Behavioral Event Instance

Figure 108 - Course Event 'lteration End’

Represented Elements

IterationEnd Event

710 Course Event 'Abort' Notation

Marker of the Abort Event instance of Event.

Abort Behavioral Event Instance

Figure 109 - Course Event 'Abort’ Notation

Represented Elements

Abort Event

96 Business Process Definition MetaModel, Process Definitions, v1.0

7.1 Course Event 'Compensate’ Instance Notation

Marker of the Compensate Event instance of Event.

<«

Compensate Behavioral Event Instance

Figure 110 - Course Event 'Compensate’ Instance Notation

Represented Elements

Compensate Event

712 Event Part : Start Notation

An Event Part typed by the Start Event instance of Event is drawn as a circle that MUST be drawn with a single
thin line.

Start Event Part

Figure 111 - Event Part : Start Notation

Represented Elements

Start

713 Event Part : Start with 'Time Event Condition' Notation

Shape of Start when it has an Event Monitor with a Time Event Condition, as its predecessor.

Start with Time condition
Figure 112 - Event Part : Start with 'Time Event Condition' Notation

Represented Elements

Start

7.14 Event Part : Start with 'Fact Change Condition' Notation

Business Process Definition MetaModel, Process Definitions, v1.0 97

When a Start Event Event Part is conditioned by a Fact Change Condition, a Fact Change marker is added to
the Start Event Event Part shape.

Start with Fact Change Condition

Figure 113 - Event Part : Start with 'Fact Change Condition' Notation

Represented Elements

Start

7.15 Event Part : End Notation

The shape of the End instance of Event Part is drawn as a circle that MUST be drawn with a single thick black line.

End Event Part

Figure 114 - Event Part : End Notation

Represented Elements
End

7.16 Event Part : Error Notation

The shape of the Error instance of Event Part use the shape of its super-property (End) with the marker of its event
type: Error Event.

Error Event Part
Figure 115 - Event Part : Error Notation

Represented Elements

Error

98 Business Process Definition MetaModel, Process Definitions, v1.0

717 Event Part : Cancel Notation

Event Part typed by the Cancel instance of Event.

Cancel Event Pari
Figure 116 - Event Part : Cancel Notation

Represented Elements

Cancel

718 Event Part : Abort Notation

The shape of the Abort instance of Event Part uses the shape of its super-property (End) with the marker of its
event type: Abort Event.

Abort Event Part

Figure 117 - Event Part : Abort Notation

Represented Elements

Abort

7.19 Error Handling Notation

Error Event Event Part used for error handling. The Error Event Event Part is linked to the Succession instance
through the source event part association.

Business Process Definition MetaModel, Process Definitions, v1.0 929

Error Event Partas used in ErrorHandling

Behavior Step

Error Handling
>

Figure 118 - Error Handling Notation

Represented Elements

Error

7.20 Activity Notation

An Activity is represented by a rounded corner rectangle that MUST be drawn with a single thin black line.

An Activity

Figure 119 - Activity Notation

Represented Elements

ActivitySimple ActivityTask

7.21 Collapsed Sub-Process Activity Notation

A Sub-Process Activity shares the same shape as the Activity object, which is a rounded rectangle. A Sub-Process
Activity is a rounded corner rectangle that MUST be drawn with a single thin black line. If the Sub-Process Activity
is also a transaction, it has a boundary drawn with a double line.

The Sub-Process Activity can be in a collapsed view that hides its details or a Sub-Process can be in an expanded
view that shows the details of its Process Type.

In the collapsed form, the Sub-Process Activity uses a marker to distinguish it as a Sub-Process Activity, rather than
a Simple Activity. The Sub-Process Activity marker MUST be a small square with a plus sign (+) inside. The square

100 Business Process Definition MetaModel, Process Definitions, v1.0

MUST be positioned at the bottom center of the shape.

Sub-Process
Activity

Figure 120 - Collapsed Sub-Process Activity Notation

Represented Elements

Embedded ProcessSub-Process Activity

7.22 Uncollapsed Sub-Process Activity Notation

4 >[:)
L
9 Lé—%:

Figure 121 - Uncollapsed Sub-Process Activity Notation

Represented Elements

Embedded ProcessSub-Process Activity

Business Process Definition MetaModel, Process Definitions, v1.0 101

7.23 Activity Loop Notation

An Activity Loop has the shape of Activity with a small looping indicator that will be displayed at its bottom-
center.

Loop

9,

Figure 122 - Activity Loop Notation

Represented Elements

Activity Loop

7.24 Cancel Activity Notation or '‘Cancel' Event Part

This symbol can alternatively represent:

1. Event Part typed by the Cancel Event instance of Event.
2. A Cancel Activity

Cancel Activity

Figure 123 - Cancel Activity Notation or 'Cancel’ Event Part

Represented Elements

Cancel Activity Cancel

7.25 Error Activity Notation or 'Error' Event Part

This symbol can alternatively represent:

1. Event Part typed by the Error Event instance of Event.
2. An Error Activity

102 Business Process Definition MetaModel, Process Definitions, v1.0

Errar Activity
or
Error Behavioral Change Part

Figure 124 - Error Activity Notation or 'Error' Event Part

Represented Elements

Error Activity Error

7.26 Abort Activity Notation or 'Abort’' Event Part

This symbol can alternatively represent:

e Event Part typed by the Abort Event instance of Event.
* An Abort Activity

Abort Activity

Figure 125 - Abort Activity Notation or 'Abort' Event Part
Represented Elements

Abort ActivityTerminate

7.27 Compensate Activity Notation

Compensate Activity

Figure 126 - Compensate Activity Notation

Represented Elements

Compensate Activity

Business Process Definition MetaModel, Process Definitions, v1.0 103

7.28 Compensating Activity Notation

A Compensating Activity shares the standard activity shape with the Compensate Event marker displayed in the
bottom center of the activity.

Compensating
Activity
<«

Figure 127 - Compensating Activity Notation

Represented Elements

Compensating Activity

7.29 Event Monitor Notation

This symbol is a circle, with an open center. The circle MUST be drawn with a double thin black line. It can
alternatively represent:

* Event Parts that are not typed by Start Event or End Event.
* Event Monitors

Markers can be placed within the circle to indicate the nature of the Event associated with the Event Part or Event
Monitor.

Event Monitor

Figure 128 - Event Monitor Notation

Represented Elements

Event Monitor

7.30 Event Monitor monitoring a Time Event Condition

Event Monitor shape with a Time Event as a maker.

Time Event Monitor

104 Business Process Definition MetaModel, Process Definitions, v1.0

Figure 129 - Event Monitor monitoring a Time Event Condition

Represented Elements

Event Monitor

7.31 Event Monitor monitoring a Fact Change Condition

Event Monitor shape with a Fact Change as a maker.

Event Monitorfor Fact Change

Figure 130 - Event Monitor monitoring a Fact Change Condition

Represented Elements

Event Monitor

7.32 Event Monitor monitoring a ‘Compensate' Behavior Event
Condition

Event Monitor shape with the marker of the Compensate Event instance of Event.

Compensation Event Monitor

Figure 131 - Event Monitor monitoring a ‘Compensate’ Behavior Event Condition

Represented Elements

Event Monitor

7.33 Event Monitor monitoring a Compound Event Condition

Event Monitor
monitoring a Compound Event Condition

Business Process Definition MetaModel, Process Definitions, v1.0 105

Figure 132 - Event Monitor monitoring a Compound Event Condition

Represented Elements

Event Monitor

7.34 Succession Notation

A Succession is a line with a solid arrowhead that MUST be drawn with a solid single line.

v

A succession

Figure 133 - Succession Notation
Represented Elements

SuccessionSequence Flow

7.35 Event Decision Notation

)

Event Monitor 1, monitoring a Simple Interaction

Event Monitor2, monitoring a Simple Interaction

>©

Event Monitor 3, monitoring a Time Event

Y

Figure 134 - Event Decision Notation

Represented Elements

Event Decision

7.36 Message Notation

The shape of Message depends on its sub-types.

The line connecting a Message to its Interaction Role(s) MUST have an open arrowhead and MUST be drawn with
a dashed single black line.

The line connecting a Message to other kind of Interactive Part MUST have a solid arrowhead and MUST be
drawn with a solid single line.

106 Business Process Definition MetaModel, Process Definitions, v1.0

© S O

Start Message End Message Received Intemediate Message Sent Intermediate Message

Ormmmmmm e >
Message Flow

Figure 135 - Message Notation
Represented Elements

Message

7.37 Start Message Notation

Notation for Start Message or Simple Interaction categorized as a Start Message.

Start Message

Figure 136 - Start Message Notation

Represented Elements

Start Message

7.38 End Message Notation

Notation for End Message or Simple Interaction categorized as an End Message.

End Message

Figure 137 - End Message Notation

Represented Elements

End Message

Business Process Definition MetaModel, Process Definitions, v1.0 107

7.39 Sent Intermediate Message Notation

C

Sent Intermediate Message

Send Quotation Record
Requisitionto suppliers
suppliers quotations

I

Supplier's offer

O =(

Inv itationlto tender

v

<

Supplier

Figure 138 - Sent Intermediate Message Notation

Represented Elements

Sent Intermediate Message

108

Business Process Definition MetaModel, Process Definitions, v1.0

7.40 Received Intermediate Message Notation

=

Received Intermediate Message

Send Quotation Record
Requisition to suppliers’
suppliers quotations

!

Supplier's offer
[~

Invitation.to tender

v

Supplier

Figure 139 - Received Intermediate Message Notation

Represented Elements

Received Intermediate Message

7.41 Message Flow Notation

A Message Flow is a line with an open arrowhead that MUST be drawn with a dashed single black line.

O mrmmmmmmmmnnnnneeees >

Message Flow

Figure 140 - Message Flow Notation

Represented Elements

Message Flow

Business Process Definition MetaModel, Process Definitions, v1.0

109

7.42 Artifact Sequence Flow Notation

An Artifact Sequence Flow is represented by a line with a solid arrowhead that MUST be drawn with a solid single
line.

The type of the element transferred by the information flow is represented by a portrait-oriented rectangle that has its
upper-right corner folded over that MUST be drawn with a solid single black line.

] {

Activity (from) J , 'L Activity (to)

Transferred Iltem Type

Figure 141 - Artifact Sequence Flow Notation

Represented Elements

Artifact Sequence Flow

7.43 Part Group Notation

Part Group

Figure 142 - Part Group Notation

Represented Elements

Part Group

110 Business Process Definition MetaModel, Process Definitions, v1.0

7.44 Transaction Notation

Transaction

Figure 143 - Transaction Notation

Represented Elements

Transaction

7.45 Gateway Notation

A Gateway is represented by a diamond that has been used in many flow chart notations for exclusive branching and
is familiar to most modelers. The diamond MUST be drawn with a single thin black line.

It is not a requirement that predecessor and successor Successions must connect to the corners of the diamond.
Successions can connect to any position on the boundary of the Gateway.

The shape of the different sub-types of Gateway are differentiated by an internal marker. This marker MUST be
placed inside the shape, in any size or location, depending on the preference of the modeler or modeling tool vendor.

Gateway

Figure 144 - Gateway Notation

Represented Elements

Gateway

7.46 Exclusive Split Notation

The Exclusive Split shares the same basic shape, called a Gateway, of the generic Gateway. The Exclusive Split
MAY use a marker that is shaped like an “X” and is placed within the Gateway diamond to distinguish it from other
Gateways. This marker is not required. A Diagram SHOULD be consistent in the use of the “X” internal indicator.
That is, a Diagram SHOULD NOT have some Exclusive Splits with an indicator and some Exclusive Splits without
an indicator.

Business Process Definition MetaModel, Process Definitions, v1.0 111

The default succession is represented by a default Marker that MUST be a backslash near the beginning of the line
representing the Succession.

T
Alternative 1

Alternative 2

>

Default Alternative

g

Alternative 1

>

Alternative 2

X g

Default Alternative

>

Figure 145 - Exclusive Split Notation

Represented Elements

Exclusive DecisionExclusive Split

7.47 Exclusive Merge Notation

The Exclusive Join shares the same basic shape of the generic Gateway.

112 Business Process Definition MetaModel, Process Definitions, v1.0

Figure 146 - Exclusive Merge Notation

Represented Elements

Exclusive JoinExclusive Merge

7.48 Parallel Split Notation

The Parallel Split uses the shape of Gateway, called Gateway and MUST use a marker that is in the shape of a plus
sign and is placed within the Gateway diamond to distinguish it from other of Gateways.

N

((.

H>—>
NN

Figure 147 - Parallel Split Notation

Represented Elements

Parallel Split

7.49 Parallel Join Notation

The Parallel Join uses the shape of Gateway, called Gateway and MUST use a marker that is in the shape of a plus
sign and is placed within the Gateway diamond to distinguish it from other of Gateways.

Business Process Definition MetaModel, Process Definitions, v1.0 113

Figure 148 - Parallel Join Notation

Represented Elements

Parallel Join

7.50 Inclusive Split Notation

Condition 1

Condition 2

Figure 149 - Inclusive Split Notation

Represented Elements

Inclusive Decision

114 Business Process Definition MetaModel, Process Definitions, v1.0

7.51 Inclusive Merge Notation

O

Figure 150 - Inclusive Merge Notation

Represented Elements

Inclusive Merge

7.52 Complex Decision Notation

Alternative 1

Alternative 2
% >

Default Alternative

Figure 151 - Complex Decision Notation

Represented Elements

Complex Decision

Business Process Definition MetaModel, Process Definitions, v1.0 115

7.53 Complex Join Notation

®

\ /
N\
\. J

Figure 152 - Complex Join Notation

Represented Elements

Complex Merge

116 Business Process Definition MetaModel, Process Definitions, v1.0

8 Non-normative Notation Summary

8.1 Process Diagram

Each process diagram has a contents area. As an option, it may have a frame and a heading as shown in the
following figure. The frame is a rectangle. The frame may be omitted and implied by the border of the diagram area
provided by a tool. In case the frame is omitted, the heading is also omitted.

The diagram contents area contains the graphical symbols. The heading is a string contained in name tag (rectangle
with cutoff corner) in the upper leftmost corner of the rectangle, with the following syntax: <process name>.

> <Process Name>)

<Process Content>

Figure 153 - Process Diagram

Represented Elements

Process

8.2 Non-immediate Succession

Anon immediate succession

Figure 154 - Non Immediate Succession

Represented Elements

8.3 Course Event 'Normal End' instance notation

Marker of the Normal End Event instance of Event.

Business Process Definition MetaModel, Process Definitions, v1.0 117

v

‘Normal End’ Behavioral Event Instance

Figure 155 - Course Event 'Normal End’ instance notation

Represented Elements

Normal End Event

8.4 Course Event 'Abnormal End' instance notation

Marker of the Normal End instance of Event.

DA

‘Abnormal End’ Behavioral Event Instance

Figure 156 - Course Event 'Abnormal End' instance notation

Represented Elements

Abnormal End Event

8.5 Course Event 'Failure' Instance notation

Marker of the Failure Event instance of Event.
Failure Behavioral Change Instance

Figure 157 - Course Event 'Failure’ Instance notation

Represented Elements

Failure Event

8.6 Course Event 'Success’ Instance Notation

Marker of the Success Event instance of Event.

Success Behavioral Change Instance

Figure 158 - Course Event 'Success’ Instance notation

118 Business Process Definition MetaModel, Process Definitions, v1.0

Represented Elements

Success Event

8.7 Event Part : Normal End Notation

The shape of the Normal End instance uses the shape of its super-property (End) with the marker of its type:
Normal End Event.

‘Normal End’ Event Part

Figure 159 - Event Part : Normal End notation

Represented Elements
Normal End

8.8 Event Part : Abnormal End notation

The shape of the Abnormal End instance uses the shape of its super-property (End) with marker of its type:
Abnormal End Event.

‘Abnormal End’ Event Part

Figure 160 - Event Part : Abnormal End notation

Represented Elements

Abnormal End

8.9 Event Part : Success Notation

The shape of the Success instance uses the shape of its super-property (End) with marker of its type: Success Event.

Business Process Definition MetaModel, Process Definitions, v1.0 119

Success Event Part

Figure 161 - Event Part : Success Notation

Represented Elements

Success

8.10 Event Part : Failure Notation

The shape of the Failure instance uses the shape of its super-property (End) with marker of its type: Failure Event.

Failure Event Part

Figure 162 - Event Part : Failure Notation

Represented Elements

Failure

8.11 Succession with Fact Change Condition

A Succession with a Condition of type Fact Change Condition is drawn as a line covered by the shape the
conditioning Fact Change.

The line has a solid arrowhead and MUST be drawn with a solid single line.

E N
= -

A succession with Fact Change Condition

Figure 163 - Succession with Fact Change Condition

120 Business Process Definition MetaModel, Process Definitions, v1.0

Represented Elements

Succession

8.12 Succession with Time Event Condition

A Succession with a Condition of type Time Event Condition is drawn as one line covered by the shape the
conditioning Time Event.

The line has a solid arrowhead and MUST be drawn with a solid single line.

A succession with Time Change Condition

N
»

Figure 164 - Succession with Time Event Condition

Represented Elements

Succession

8.13 Interaction Flow between Activities and Statement

Condition
] Statement Condition (
Activity (from) J E :L Activity (to)

Transferred Item Type

Figure 165 - Interaction Flow between Activities and Statement Condition

Represented Elements

Artifact Sequence Flow

Business Process Definition MetaModel, Process Definitions, v1.0

121

8.14 Interaction Flow between Activities and Time Event
Condition

Time Condition

Activity (from)] @ :[Activity (to)

Transferred Item Type

Figure 166 - Interaction Flow between Activities and Time Event Condition

Represented Elements

Artifact Sequence Flow

8.15 Holder Notation

A Holder is represented by a can that MUST be drawn with a single thin black line.

—

Holder

Figure 167 - Holder Notation

Represented Elements
Holder

8.16 Compound Interaction Notation

A compound interaction is represented by a rounded corner rectangle that MUST be drawn with a double thin black
line.

Compound
Interaction

Figure 168 - Compound Interaction Notation

122 Business Process Definition MetaModel, Process Definitions, v1.0

Represented Elements

Compound Interaction

8.17 Course Occurrence Diagram

OO Happening Occurence J

OO Happening Over Time Occurrence O-O-O Event Occurrence

OS-OO Course Occurrence

Figure 169 - Course Occurrence Diagram

Represented Elements

Course Occurrence

Business Process Definition MetaModel, Process Definitions, v1.0

123

8.18 Behavior Occurrence

O Course Occurrence

-2 Behavior Occlirrence

Nomal End Abnormmal End

® O

Success Failure Abont Error

Figure 170 - Behavior Occurrence

Represented Elements

Behavior Occurrence

124 Business Process Definition MetaModel, Process Definitions, v1.0

8.19 Process Occurrence

Process Occurrence)

Compensate

T
Normal End

Success Failure

1
Abnormal End

Abort Error

Figure 171 - Process Occurrence

Represented Elements

Process Occurrence

Business Process Definition MetaModel, Process Definitions, v1.0

125

9 BPDM-BPEL Mapping

9.1 General

This section covers a non-normative mapping from BPDM constructs to WS-BPEL 2.0 elements. The basis for the
mapping is the “Mapping to BPEL” in [BPMN] (Section 11) and “BPMN to BPDM Mapping” in [BPDM] (Section
6).

9.11 Topological Considerations

The Business Process Definition Metamodel (BPDM) is a graph-oriented language in which control and action
nodes can be connected almost arbitrarily. In contrast, Business Process Execution Language (BPEL) is a mainly
block-structured (albeit providing graph-oriented constructs with syntactical limitations) language with a properly
nested structure. As BPDM and BPEL represent two fundamentally different classes of languages, the mapping is
technically challenging; while BPEL to BPDM mapping is trivial, not all BPDM processes can easily be converted
to BPEL.

To map a BPDM process onto BPEL code, a transformation from a graph structure to block structure is needed. For
this purpose, the process can be decomposed into components with one entry and one exit point [BPM-06-02]. These
components can then be mapped onto suitable “BPEL blocks.” The decomposition helps to define an iterative
approach that allows an incremental transformation of a “componentized” BPDM process to a block-structured
BPEL process.

A component may be well-structured so that it can be directly mapped onto BPEL structured activities, whereas a
non-well-structured component can be translated into BPEL via event-action rules. The latter approach can be
applied to translating any component to BPEL, yet it produces less readable BPEL code and will therefore be
applied only to the remaining non-well-structured components. The algorithm is explained in detail in [BPM-06-02]
that addresses the same problem in translation between BPMN and BPEL.

9.1.2 Generator Model

In general transformation from one metamodel to another metamodel requires additional information. This
information is provided in a separate model that is specific to the performed transformation. We will refer to this
model as "generator model."

If information required by BPEL and not provided by BPDM is needed, then the generator model is responsible for
providing it. Such examples are: XML namespaces, specific BPEL customizations, etc. Using the generator model

we could avoid introducing concepts and terms in BPDM that are specific for BPEL and still have the capability to
customize the produced BPEL models.

Ultimately, a generator metamodel would be required for this generator model in order to describe all possible
customizations that can be used. For the purposes of this non-normative mapping, however, it is merely indicated
which additional information is needed for the mapping (see Notational Conventions).

9.1.3 Notational Conventions

BPDM constructs are depicted in Bold typeface. The equivalent BPMN element may follow in (Parentheses). BPEL
elements are represented in <angle brackets> and attributes in italics. Marks are denoted in Bold Italics.

The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” “SHOULD,” “SHOULD
NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” in this document are to be interpreted as described in
[RFC2119].

126 Business Process Definition MetaModel, Process Definitions, v1.0

9.2 Process

BPDM

BPEL

Processor Role

Processor Role maps to BPEL <process> element. The
NamedElement.name maps to the name attribute of <process>.

9.3 Start Event Mappings

BPDM

BPEL

Event Part typed by the Start
Behavioral Event

The only way to instantiate a business process in BPEL is to annotate a
<receive> or <pick> activity with the createlnstance attribute set to
“yes.” The <receive> or <pick> will likely be placed within a
<sequence> or a <flow>.

Start Message

This will map to the <receive> element. The createlnstance attribute of
the <receive> element will be set to “yes.”

The Message attribute of Start maps to the variable attribute of the
<receive> element. Note that the extra spaces and non-alphanumeric
characters MUST be stripped from the variable attribute to fit with the
XML specification of the variable attribute. If there is a name collision
(because of the name change), then the transformer is responsible for
generating unique names.

The Name attribute of Simple Interaction maps to the name attribute
of a BPEL <variable> element. Note that the extra spaces and non-
alphanumeric characters MUST be stripped from the Name to fit with
the XML specification of the name attribute. Note that there may be two
or more elements with the same name after Name has been stripped.

The messageType, type, or element attribute is used to specify the type
of a variable. Exactly one of these attributes MUST be used. The
messageType attribute of the variable element refers to a WSDL
message type definition. Thus, the messageType will share the same
Name and a corresponding WSDL message must be created. Attribute
type refers to an XML Schema type (simple or complex). Attribute
element refers to an XML Schema element.

In case of using a WSDL message type definition, each Properties will
map to a <part> element of the WSDL <message>. The Name attribute
of the Property will map to the name attribute of the <part>. The Type

attribute of the Property will map to the type attribute of the <part>.

The Implementation attribute of Simple Interaction MUST be a Web

service or MUST be converted to a Web service for mapping to BPEL.
The Web Service Attributes are mapped as follows:

* The Participant attribute is mapped to the partnerLink attribute

of the BPEL activity.

* The Interface attribute is mapped to the portType attribute of the
BPEL activity.

* The Operation attribute is mapped to the operation attribute of
the BPEL activity.

Business Process Definition MetaModel, Process Definitions, v1.0 127

* InteractionFlow.transformationExpression will map to a
<fromParts> element within <receive>.

Time Condition on Start This will map to the <receive> element. The createlnstance attribute of
the <receive> element will be set to “yes.”

The remaining attributes of the <receive> will be mapped as shown for
the Message Start Event (see above).

During the mapping an additional BPEL process is employed. We will
refer to this process as <NameOfStartNode> trigger. Thus the
functionality of the timing as defined in the Start Event will be
implemented in a separate process that will be started by the BPEL
Engine. The process definition will use a <wait> element for the defined
time, and then use an <invoke> to send a message that will be received by
the above <receive> element. A specific Message and Web service
implementation must be provided so that the mappings to <receive>
element can be completed.

InteractionFlow.transformationExpression will map to a <fromParts>
element within <receive>.

Fact Change Condition on Start This will map to the <receive> element. The createlnstance attribute of
the <receive> element will be set to “yes.”

The remaining attributes of the <receive> element will be mapped as
shown for the Message Start Event (see above).
InteractionFlow.transformationExpression will map to a <fromParts>
element within <receive>.

Note: The Message is expected to arrive from the application that tracks
and triggers Business Rules.

9.4 End Event Mappings

BPDM BPEL

End Event Part There is no BPEL element that Finish will map to. However, it marks
the end of a path within the Process and will be used to define the
boundaries of complex BPEL elements.

End Message This will map to a BPEL <reply> or an <invoke>. The appropriate
BPEL activity will be determined by the implementation defined for the
Event. That is, the portType and operation of the Message will be used
to check to see if an upstream Message Event has the same portType
and operation. If these two attributes are matched, then the Event will
map to a <reply>, if not, the Event will map to an <invoke>.

The Message attribute of Finish maps to the variable attribute of the
<reply> or the outputVariable of the <invoke>.

See the corresponding Message Start Event above for more information
about how Simple Interaction maps to BPEL and WSDL.

The Implementation attribute of Simple Interaction MUST be a Web
service or MUST be converted to a Web service for mapping to BPEL.
The Web Service Attributes are mapped as follows:

128 Business Process Definition MetaModel, Process Definitions, v1.0

* The Participant attribute is mapped to the partnerLink attribute

of the BPEL activity.

* The Interface attribute is mapped to the portType attribute of the
BPEL activity.

* The Operation attribute is mapped to the operation attribute of
the BPEL activity.

InteractionFlow.transformationExpression will map to the
fromVariable variable of <toParts> element within <reply> or
<invoke>.

Error Activity This will map to a <throw> element. The ErrorCode attribute of Error
Activity will map to the faultName attribute of the <throw>.
Cancel Activity The mapping of Cancel Activity to BPEL is an open issue.
Abort Activity This will map to the <exit> element.
9.5 Intermediate Events
BPDM BPEL

Simple Interaction coming from
or going to the Process
Interaction Boundary that is not
connected to Start or Finish

If Simple Interaction.Simple Interaction consumer refers to the same
Participant as that of the Process that contains the Event, then this will
map to a <receive>. The createlnstance attribute of the <receive>
element will be set to “no.”

If Simple Interaction.Simple Interaction producer is the same
Participant as that of the Process that contains the Event, then this will
map to a (one-way) <invoke>.

The Message attribute of the Event maps to the variable attribute of the
<receive> or the outputVariable of the <invoke>.

See the corresponding Start event above for more information about
how Simple Interaction maps to BPEL and WSDL.

The Implementation attribute of Simple Interaction MUST be a Web

service or MUST be converted to a Web service for mapping to BPEL.
The Web Service Attributes are mapped as follows:

* The Participant attribute is mapped to the partnerLink attribute

of the BPEL activity.

* The Interface attribute is mapped to the portType attribute of the
BPEL activity.

* The Operation attribute is mapped to the operation attribute of
the BPEL activity.

If the Event has no incoming Processing Succession:

* Simple Interaction.Simple Interaction consumer MUST be
the same Participant as that of the Process that contains the
Event.

Business Process Definition MetaModel, Process Definitions, v1.0 129

¢ The <process> could be given a <scope> (if it doesn’t already
have one).

* An <eventHandlers> element can be defined directly under
<process> or under <scope> (if one was generated).

* An <onMessage> element will be added to the <eventHandlers>
element.

* The Message attribute of the Event maps to the variable attribute
of the <onMessage>.
Further, the Implementation attribute of Simple Interaction MUST be
a Web service or MUST be converted to a Web service for mapping to
BPEL. The Web Service Attributes are mapped as follows:

* The Participant attribute is mapped to the partnerLink attribute
of the <onMessage>.

* The Interface attribute is mapped to the portType attribute of the
<onMessage>.

* The Operation attribute is mapped to the operation attribute of
<onMessage>.

Processing Succession from the
abort Event Part

The mappings of the activity (to which the Event is attached) will be
placed within a <scope>.

A <faultHandlers> element will be defined for the scope.

A <catch> element will be added to the <faultHandlers> element with
“<message name>_ Exit” as the faultName attribute.

An <eventHandlers> element will be defined for the scope.

The Event will map to an <onMessage> element within the
<eventHandlers>. The mapping to the <onMessage> attributes is the
same as described for the <receive> above.

The activity for the <onMessage> will be a <throw> with “<message
name>_ Exit” as the faultName attribute.

If used in an event-based decision, this will map to an <onMessage>
within a <pick>. The mapping to the <onMessage> attributes is the
same as described for the <receive> above.

Time Event Condition on
Succession

This will map to a <wait>.
TimeEvent.timeExpression maps to the until attribute of the <wait>.
Cycle Event.timeExpression maps to the for attribute of the <wait>.

If the Event has no incoming Processing Succession:

* The <process> could be given a <scope> (if it doesn’t already
have one).

* An <eventHandlers> element will be defined for the process or
the <scope> (if <scope> element was generated).

* An <onAlarm> element will be added to the <eventHandlers>
element.

¢ TimeEvent.timeExpression maps to the until attribute of the
<onAlarm>.

* Cycle Event.timeExpression maps to the for attribute of the
<onAlarm>,

130

Business Process Definition MetaModel, Process Definitions, v1.0

Racing Connection connecting The mappings of the activity (to which the Event is attached) will be
an Event Monitor conditioned placed within a <scope>.

by a Time Event Condition
A <faultHandlers> element will be defined for the scope.

A <catch> element will be added to the <faultHandlers> element with
“<Event name>_ Exit” as the faultName attribute.

An <eventHandlers> element will be defined for the scope.

The Event will map to an <onAlarm> element within the
<eventHandlers>.

TimeEvent.timeExpression maps to the until attribute of the
<onAlarm>.

Cycle Event.timeExpression maps to the for attribute of the
<onAlarm>,

The activity for the <onAlarm> will be a <throw> with “<message
name>_Exit” as the faultName attribute.

If used in an event-based decision, this will map to an <onAlarm>
within a <pick>.

TimeEvent.timeExpression then maps to the until attribute of the
<onAlarm>.

Accordingly, Cycle Event.timeExpression maps to the for attribute of
the <onAlarm>.

Processing Succession from the Within the normal flow, Processing Succession will map to a <throw>
errorPart element.

¢ If the error is attached to an activity, the mappings of the activity
(to which the Event is attached) will be placed within a <scope>.
This Event will map to a <catch> element within a <scope>.

¢ If the Error Behavioral Event does not have an ErrorCode, then
a <catchAll> element will be added to the <faultHandlers>
element.

¢ If the Error Behavioral Event has an ErrorCode, then a <catch>
element will be added to the <faultHandlers> element with the
ErrorCode mapping to the faultName attribute.

Processing Succession from the The mapping of succession from abort to BPEL is an open issue.

abortPart

Fact Change Condition on This will map to the <receive> element. The createlnstance attribute of

Succession the <receive> element will be set to “no.” The remaining attributes of
the <receive> will be mapped as shown for the Message Start Event (see
above).

If the Event has no incoming Processing Succession:

¢ Simple Interaction.Simple Interaction consumer MUST be the
same Participant as that of the Process that contains the Event.

Business Process Definition MetaModel, Process Definitions, v1.0 131

¢ The <process> could be given a <scope> (if it doesn’t already
have one).

¢ An <eventHandlers> element will be defined for the process or
the <scope> (if one was generated).

e The Event will map to an <onMessage> element within the
<eventHandlers>. The mapping to the <onMessage> attributes is
the same as described for the <receive> for the Message Event
above.

Note: The Message is expected to arrive from the application that tracks
and triggers.

Racing Connection connecting a The mappings of the activity (to which the Event is attached) will be
Event Monitor monitoring a placed within a <scope>.

Fact Change Condition
A <faultHandlers> element will be defined for the scope.

A <catch> element will be added to the <faultHandlers> element with
“<message name>_ Exit” as the faultName attribute.

An <eventHandlers> element will be defined for the scope.

The Event will map to an <onMessage> element within the
<eventHandlers>. The mapping to the <onMessage> attributes is the
same as described for the <receive> for the Message Event above.

Note: The Message is expected to arrive from the application that tracks
and triggers Business Rules.

The activity for the onMessage will be a <throw> with “<message
name>_Exit” as the faultName attribute.

If used in an event-based decision, this will map to an <onMessage>
element within <pick>. The mapping to the <onMessage> attributes is
the same as described for the <receive> for the Message Event above.

Event Monitor monitoring a Within the normal flow: Maps to a <compensate> or

Compensation Event <compensateScope> element. The Name of the activity referenced by
the Compensation Event will map to the target attribute of the
<compensateScope> element.

Attached to an activity boundary: The activity (to which the Event is
attached) will be placed within a <scope>. This Event maps to a
<compensationHandler> element within a <scope>.

For the <invoke> activity, there is a special shortcut to inline a
<compensationHandler> within <invoke> rather than explicitly using an
immediately enclosing scope.

132 Business Process Definition MetaModel, Process Definitions, v1.0

9.6 Activities

BPDM

BPEL

Simple Activity

An incoming Simple Interaction maps to a <receive> activity. The
Message attribute maps to the variable attribute of the <receive>
activity. If the Simple Interaction represents start Simple Interaction,
then the createlnstance attribute of the receive will be set to “yes.”

Two Simple Interactions associated with the same activity:
¢ An incoming and an outgoing flow
¢ Map to an <invoke> activity. The InMessage attribute maps to
the inputVariable attribute of the <invoke> activity. The
OutMessage attribute maps to the outputVariable attribute.

An outgoing Simple Interaction maps to a <reply> or an <invoke>
activity. The appropriate BPEL activity will be determined by checking
if an upstream <receive> has the same portType and operation. If these
two attributes are matched, then the activity will map to a <reply>, if
not, it will map to an <invoke>. The Message attribute maps to the
variable attribute of the <reply> activity or it maps to the inputVariable
attribute of the <invoke> activity.

See the Start event above for more information about how Simple
Interaction maps to BPEL and WSDL.

Script Activity

This maps to an <invoke> activity. Since this activity is performed by a
process engine, the default settings of the engine must be used to
determine the settings of the <invoke> activity. That is, partnerLink,
portType, operation, inputVariable, and maybe outputVariable are
derived by these default settings. The script itself is performed when the
appropriate Web service of the process engine is invoked.

Embedded Process

This will map to a <scope> element. The scope is not an independent
<process> and will share the process variables of the higher-level
process.

Sub-Process Activity

BPEL does not have a sub-process element. Thus Independent Sub-
Processes MUST map to a BPEL <process>; the contents of the Sub-
Process will be contained within a separate process. The Sub-Process
object itself maps to an <invoke> activity that “calls” the process.

BPEL does not support Reference type of Sub-Processes. However, the
Sub-Process will be used as a placeholder for the Sub-Process that will
be mapped.

Mapplng for an Independent Sub-Process:
The DiagramRef and ProcessRef attributes will identify the
process that will be used for the mapping to the BPEL process.

e The OutputPropertyMaps attribute of the referenced process
maps to the inputVariable attribute of the <invoke> activity.

e The InputPropertyMaps attribute of the referenced process maps
to the outputVariable attribute of the <invoke> activity.

Business Process Definition MetaModel, Process Definitions, v1.0 133

See the Start event above for more information about how Simple
Interaction maps to BPEL and WSDL.

Mapping for a Reference Sub-Process:

e The SubProcessRef attribute references another Sub-Process in
the Process. It is the referenced Sub-Process that will be mapped
and the mappings will be placed in the location of the Reference
Sub-Process; another copy of the entire mapping will be created
in this location (the mappings will also exist in the referenced
Sub-Process’ original location).

Course Control Part

Course Control Part will map to a variety of BPEL elements (e.g.,
<if>, <pick>, <flow>) and patterns of elements.

Course Control Part potentially marks the end of a BPEL structured
element, if the correct number of flows converge.

The elements that follow Course Control Part, until all the outgoing
paths have converged, will be contained within the extent of the
mapping (e.g., they will be placed within a <sequence> within an
<if><condition> and any number of <if><elseif><condition>s).

Exclusive Split

Exclusive Join

Exclusive Split will map to <if>.

Each Gate will map to branches specified by <if> and <elseif> (within
<if>). The order of branches is maintained.

Each guard association between Succession and Condition associated
with the Gates will map to <condition> elements within <if> or
<elseif>.

The Default Gate (ExclusiveSplit.default) will map to the <else>
element of <if>.

If there is more than one element that follows the Gate or the Default
Gate, including assignments, then these elements will be placed inside a
<sequence>.

Embedded Process with an
Event Monitor connected by a
Racing Connection

This will map to <pick>. The elements of the <pick> will be determined
by the targets of the outgoing Processing Succession.

e If the Instantiate attribute is set to False, the createlnstance
attribute of the <pick> MUST NOT be included OR it MUST be
set to “no.”

e If the Instantiate attribute is set to True, the createlnstance
attribute of the <pick> MUST NOT be included OR it MUST be
set to “yes.”

e If'the target is a Simple Activity with an incoming Simple
Interaction, it maps to an <onMessage> element within <pick>.

e The attributes of the Simple Activity will map to the appropriate
elements of the <onMessage>, such as operation and portType.

e Ifthere is a Time Event Condition on Succession, the activity
maps to an <onAlarm> element within <pick>.

¢ TimeEvent.timeExpression maps to the until attribute of the
<onAlarm>.

* Cycle Event.timeExpression maps to the for attribute of the
<onAlarm>.

e If there is a Fact Event Condition on Succession, the event will
be considered as the same as receiving a message from a system

134

Business Process Definition MetaModel, Process Definitions, v1.0

that tracks and generates Rule events. Thus, this will map to an
<onMessage> element within the <pick>.

e If there is more than one element that follows the first target,
including assignments, then these elements will be placed inside
a <sequence> activity.

Parallel Split
Parallel Join

This will map to <flow>.

Inclusive Split
Inclusive Join

Inclusive Split will map to a set of <if>s within a <flow>. An additional
<if> will be required if the Default Gate (InclusiveSplit.default) is
used.

Each Gate will map to <if>, which is binary in nature, i.e., has only the
main <if> branch and the <else>.

Each guard association between Succession and Condition associated
with the Gates will map to <condition> elements within <if> or
<elseif>.

e If the Default Gate is used, the mapping to BPEL is more
complicated, as the decision about whether the Default Gate
should be taken will occur after all the other gate decisions have
been determined. Only if no other path is taken, will the default
path be taken. This means that the <if> for the Default Gate will
follow the <flow> activity generated for all the Gates of the
Gateway. Also, a <sequence> activity must encompass the
<flow> and the <if>.

e If the Default Gate is not used, the <else> element for each <if>
will contain an <empty> activity.

A <variable> must be used so that the <if> for the Default Gate will
know whether or not the default path should be taken. To do this, a
BPEL <variable> must be created with a derived name and will have a
structure as follows:

<variable name="[Gateway.Name] noDefaultRequired"
messageType="noDefaul tRequired" />

The messageType, type or element attribute is used to specify the type of a
variable. Exactly one of these attributes MUST be used. The
messageType attribute of the variable element refers to a WSDL message
type definition. Thus, the messageType will share the same Name and a
corresponding WSDL message must be created. Attribute #ype refers to an
XML Schema type (simple or complex). Attribute element refers to an
XML Schema element.

If a WSDL <message> element is created to support this variable, the
message will be structured as follows:

<message name="noDefaultRequired" >
<part name="noDefault" type="xsd:boolean" />
</message>

An <assign> activity will be created to initialize the <variable> before the
start of the loop. This <assign> precedes the <flow> activity that contains
all the <if>s derived from the Gates. This will be the first activity within
the <sequence> activity.

The <assign> will be structured as follows:

Business Process Definition MetaModel,

Process Definitions, v1.0 135

<assign

name="[Gateway.Name] initialize noDefault">
<copy>
<from>false</from>
<to
variable="[Gateway.Name] noDefaultRequired"
part="noDefault" />
</copy>
</assign>

The <condition> for the <if> will use the noDefaultRequired variable and
will be structured as follows:

<if>
<condition>
bpel:getVariableProperty (
[Gateway.Name] noDefaultRequired,
noDefault)=true
</condition>
<sequence>
<!--The mappings of the original activity are placed
here.-->
<!--An assign activity (see below) 1is placed here.-->
</sequence>
<else>
<empty/>
</else>
</if>

e If there is more than one element that follows the first target,
including assignments, then these elements will be placed inside
a <sequence> activity.

e If any of the <if>s within the <flow> passes the condition of the
<if>, then the noDefaultRequired must be set to True. This will
ensure that the Default Gate will bypass the mapped activities for
the Default Gate.

An <assign> activity will be created to set the variable to True. This will
be the last activity within the <sequence> activity within the switch. The
<assign> will be structured as follows:

<assign name="[Gateway.Name] set noDefault">
<copy>
<from>true</from>
<to
variable="[Gateway.Name] noDefaultRequired"
part="noDefault" />
</copy>
</assign>

Complex Split
Complex Join

N/A

136

Business Process Definition MetaModel, Process Definitions, v1.0

9.7 Flows

BPDM BPEL

Processing Succession This MAY map to a <link> element. In many situations, however,
Processing Succession will not map to a <link> element; to connect
activities that are listed in a BPEL structured activity (e.g., a
<sequence>), the <link> elements are not required. <link> elements are
only appropriate when the Processing Successions are Connecting
Objects within a <flow>. However, only the Processing Successions
that are completely contained within the boundaries of the <flow> will
be mapped to a <link>. If another structured activity (e.g., a <while>) is
contained within the flow, then the Processing Successions that would
be appropriate for the contents of the structured activity, would not be
mapped to a <link>.

If the Processing Succession is being mapped to a <link>:

¢ The Name attribute of the Process (NamedElement.name)
SHALL map to name attribute of the <link>. The extra spaces
and non-alphanumeric characters MUST be stripped from the
Name to fit with the XML specification of the name attribute.

* The mapping of the source activity will include a <source>
element.

e The Name of the Processing Succession
(NamedElement.name) will map to /inkName attribute of the
<source> element. The extra spaces and non-alphanumeric
characters MUST be stripped from the Name to fit with the
XML specification of the linkName attribute.

If the source object is a Course Control Part and it maps to an activity,
the mapping is the same as if the source object is an activity (see
above).

If the Course Control Part does not map to an activity, the Processing
Succession will be combined with one of the Course Control Part’s
incoming Processing Successions. (There will be a separate <link> for
each of the incoming Processing Successions).

The source of the second Processing Succession will be used at the
source for the original Processing Succession. Then this mapping is the
same as if the source object is an activity (see above).

The mapping of the target activity will include a <target> element.

The Name of the Processing Succession (NamedElement.name) will
map to /inkName attribute of the <target> element. The extra spaces and
non-alphanumeric characters MUST be stripped from the Name to fit
with the XML specification of the /inkName attribute.

If the target object is a Gateway and it maps to an activity, the mapping
is the same as if the target object is an activity (see above).

If the Control Course Part does not map to an activity, the Processing
Succession will be combined with one of the Course Control Part’s
outgoing Processing Successions. (There will be a separate <link> for
each of the outgoing Processing Successions).

Business Process Definition MetaModel, Process Definitions, v1.0 137

The target of the second Processing Succession will be used at the
target for the original Processing Succession. Then this mapping is the
same as if the target object is an activity (see above).

Processing Succession with
Condition

A <flow> will be required and the Processing Succession will map to a
<link> element. An <empty> activity will be placed in the flow and will
contain all the <source> elements. The Condition will then map to the
transitionCondition attribute of the <source> element that is contained
in the appropriate BPEL activity.

The mapping of Processing Succession with Condition when the
source object is a Course Control Part is described in Exclusive Split/
Join and Inclusive Split/Join.

ExclusiveSplit.default
InclusiveSplit.default

See Exclusive Split/Join and Inclusive Split/Join.

Processing Succession from the
errorPart Event Part

All the activities that follow the Processing Succession, until the
Exception Flow merges back into the Normal Flow, will be mapped to
BPEL and then placed within the <faultHandlers> element for the
<scope> of the activity (and usually within a <sequence>).

If there is only one activity in the <faultHandlers> element for the scope
of the activity, then this activity will be placed within a <sequence> and
preceded by an <assign> (as described below).

The mapping of the original activity will be placed within a <sequence>
(if it had not been already). The original activity will be followed by an
<if>, with one <condition> and an empty <else> as follows:

<if>
<condition>
bpel:getVariableProperty (
[activity.Name] normalCompletion,
normalCompletion)=true
</condition>
<sequence>
<!--The mappings of the Process activities until the
merging of the Exception Flow are placed here.-->
</sequence>
<else>
<empty/>
</else>
</if>

A <variable> must be used so that the <if> will know whether or not the
Exception Flow or Normal Flow had reached that point in the Process. It
must be created with a derived name and will have structure as follows:

<variable name="[activity.Name] normalCompletion”
messageType="noDefaultRequired” />

The messageType, type or element attribute is used to specify the type of a
variable. Exactly one of these attributes MUST be used. The
messageType attribute of the variable element refers to a WSDL message
type definition. Thus, the messageType will share the same Name and a
corresponding WSDL message must be created. Attribute #ype refers to an
XML Schema type (simple or complex). Attribute element refers to an
XML Schema element.

138

Business Process Definition MetaModel, Process Definitions, v1.0

If a WSDL <message> element is created to support this <variable>, the
message will be structured as follows:

<message name="noDefaultRequired” >
<part name="normalCompletion” type="xsd:boolean”
/>

</message>

The <assign> will be created to initialize the <variable> before the start of
the original activity. The <assign> will be structured as follows:

<assign
name="[activity.Name] initialize normalCompletion”>
<copy>
<from>true</from>
<to variable="[activity.Name] normalCompletion”
part="normalCompletion” />
</copy>
</assign>

If a fault is thrown and <faultHandlers> is activated, then an <assign>
activity will be used to set the <variable> to False. This will be the first
activity within the <sequence> activity of the <faultHandlers>. The
<assign> will be structured as follows:

<assign name="[activity.Name] set normalCompletion”>
<copy>
<from>false</from>
<to variable="[activity.Name] normalCompletion”
part="normalCompletion” />
</copy>
</assign>

Simple Interaction

No specific mapping to a BPEL element. It represents a message that is
sent through a WSDL operation that is referenced in a BPEL <receive>,
<reply>, or <invoke>.

See Start, Intermediate, and End Events for mappings pertaining to
Simple Interaction.

Event Monitor monitoring
Compensation

See Compensation Connection in Intermediate Events.

9.8 Additional Constructs

BPDM

BPEL

Activity with Conditional
Loop

This will map to a <forEach> activity. The <forEach> iterates its child
<scope> activity exactly N+1 times where N equals the
<finalCounterValue> minus the <startCounterValue>.

Activity with For Loop or
Multi Instance Loop

A Multi Instance Loop can be either sequential or parallel.
MultilnstanceLoop.ordering maps to the parallel (=”yes|no”) attribute of
<forEach>.

A sequential MI loop maps to <forEach> as in Basic Loop above so that
forEachCount equals to N + 1.

Business Process Definition MetaModel, Process Definitions, v1.0 139

Four flow conditions (None | One | All | Complex) exist for parallel multi-
instance loops:

* None — There is no synchronization or control of the Tokens that are
generated through the multi-instance activity. Each Token will
continue on independently and each Token will create a separate
instantiation of each activity they encounter. Basically, there is a
separate copy of the whole process, for each copy of the MI activity,
after that point. Each copy of the remainder of the process will
continue independently.

¢ One — Only one of the spawned processes must be completed before
the original process can continue.

e All— All of the spawned processes must be completed before the
original process can continue.

e Complex — The difference from All is that the number of completed
spawned processes required before the process flow will continue
must be determined and the processes have been completed.

The BPDM Activity Loop is kind of Embedded Process that can execute
its content multiple times. Upon completion of each iteration the activity
loop will generate Iteration Finish event. This event can be used in the
outgoing Successions to specify that a Succession should be activated on
loop iteration completion. Depending on the flow condition:

e None — Succession on Iteration Finish of Activity Loop

e One — Succession on Iteration Finish of Activity Loop with
Succession.guard evaluating to the string "first iteration only"

e All — Succession on Finish of Activity Loop

e Complex — on Iteration Finish of Activity Loop with
Succession.guard evaluating to a boolean value. If the value is True
,2then the Succession will be followed.

A <completionCondition> may be used within the <forEach> to allow the
<forEach> activity to complete without executing or finishing all the
branches specified.

The <forEach> activity without a <completionCondition> completes when
all of its child <scope>s have completed. The <completionCondition>
element is optionally specified to prevent some of the children from
executing (in the serial case), or to force early termination of some of the
children (in the parallel case).

The <branches> element within <completionCondition> represents an
unsigned —integer expression used to define a completion condition of the
“at least N out of M” form. The actual value B of the expression is
calculated once, at the beginning of the <forEach> activity. It will not
change as the result of the <forEach> activity’s execution. At the end of
execution of each directly enclosed <scope> activity, the number of
completed children is compared to B, the value of the <branches>
expression. If at least B children have completed, the
<completionCondition> is triggered: No further children will be started,
and currently running children will be terminated.

The mapping to BPEL per flow condition is as follows:

140

Business Process Definition MetaModel, Process Definitions, v1.0

¢ None — This is not supported by <forEach>. To create this behavior,
the remainder of the process will be moved into a new derived
<process>. This process will be spawned through a one-way
<invoke> that will be placed within the <while> activity.

¢ One — <completionCondition> evaluates to 1.

e All - No <completionCondition> specified.

* Complex — <completionCondition> evaluates to B (1 <B <N+ 1).

Holder A BPDM Process can define multiple Holder objects. A BPDM Holder
specializes TypedElement and thus can define the type of the value it can
hold.

Holder maps to a BPEL <variable>.

BPEL uses three kinds of variable declarations: WSDL message type, XML
Schema type (simple or complex), and XML Schema element.

In the case of WSDL variable declaration, the <variable> element will be
structured as follows:

<variable
name="[Process.Name] Data"
messageType=

" [Process.Name] ProcessDataMessage" />

The <message> element will be structured as follows:

<message name="[Process.Name] ProcessDataMessage">
<part name="[Property.Name]"
type="xsd: [Property.Typel" />
</message>
Transaction Open issue
Part Group A <scope> provides the context which influences the execution behavior of

its enclosed activities. This behavioral context includes variables, partner
links, message exchanges, correlation sets, event handlers, fault handlers, a
compensation handler, and a termination handler. Contexts provided by
<scope> activities can be nested hierarchically, while the root context is
provided by the <process> construct.

Comment from UML2 Can map to the <documentation> element.

infrastructure ¢ If the Comment is associated with an object that has a straight-
forward mapping to a BPEL element, then the text of the Comment
will be placed in the <documentation> element of that object.

e Ifthere is no straight-forward mapping to any element, then the text
will be appended to the <documentation> element of the <process>.

Simple This will map to BPEL <assign> activities.
Interaction.transformation

9.9 References

[BPEL11] ftp://wwwb.software.ibm.com/software/developet/library/ws-bpel.pdf
[BPEL20] http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.pdf
[BPMN] http://www.omg.org/docs/dtc/06-02-01.pdf

[BPM-06-02] http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-02.pdf
[RFC2119] http://www.ietf.org/rfc/rfc2119.txt

Business Process Definition MetaModel, Process Definitions, v1.0 141

http://www.ietf.org/rfc/rfc2119.txt
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2006/BPM-06-02.pdf
http://www.omg.org/docs/dtc/06-02-01.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

10 Proof of Concept Language Mappings

The following sub-sections describe mappings to specific languages as proofs of concept.

101 WS-CDL Mapping

[To be completed in a later version of this specification.]

142 Business Process Definition MetaModel, Process Definitions, v1.0

Index

AADOTT ACHIVILY ..eevviitieteiieteeiesteete it et e bt et e st esbeeteesseeseesseeseessesseesseassesseassenseessesseessanseenseeseenseeseensesseensesssensesssensesssensensns 54
A CHIVIEY ..evteettenteeetete et e ste et e st et e st e testtebe s st et e essenseessesseess et e enseessenseeaten s e eRt e s e eR s e s st eRte s e esse Rt enseeReenbeeseenseeReenseenneaseenneeenraeans 5
ACHIVITY LLOOP. 0. e ettietiiieeiteeteet ettt ettt et e et et e et et e e se e beess e beessasseess e beessaeseesseeseessesssessesseesseessessaessensaesasseessbeeensseeenres 55
Y2110) S TSP RRR RS PRRRRPRRTTRt 5,56
AQNOC PrOCESS DITECLIVE. . .cuviiiiiiiieeiiieitie st et sttt et e et e et e steeteesebeebeessseesseeasseessaesssaesseessseasseessseensaassseessasesasssaeesansses 72
AGNOCOTIARIING. ...ttt ettt ettt e et e et e a et e e st e bt ea e e eb e e et e ebeemeeebeemeeebeemteebeenteebeenbeeseenteeaeennneesnnees 73
ATTITACT FLOWuiiiiiiiiieicie ettt s e et e e et e e bt eetbeeabeesabeesaeessseeasaessseeabeassseeaseessbeansaessseansaensssaeaeasssaeeeansnes 73
ATHTACE SEQUENCE FIOW ..ottt ettt ettt et ettt s a et b e b e et et enaeesane s 73
7S] 1T 14 o SRS PR 20
Behavior EVENt CONAITION.ccuiiieiieieriieiesieeteste e st etesteestesteessesssesseesaesseesaesseessesseessesseassessesnsesseensessesnsessessnssessnsees 21
BERAaVIOr MOMEL......ccuiiiieiiiiicieie ettt ettt ete et e e bt e b e e st e beesaesbeesaesaeessesseessesssessesseenseessesseessassesseensseesnseas 11
BERAVIOT STEP.....uiiiiiitieiiiiteeie ettt ettt e et e e e e e bt et e e te e beeae e beest e beessese et b e s e esbeeteesbeertenbeere e beertesbeeenteeeasraeenenes 6,21
Behavior StEP GIOUP. ... ecueetieiietietiet ettt ettt ettt et et ete et e e bt e st e saeeaeesaeeaeesbeemeeebeenteeseanseeneenteeneenseenseeeanteeenns 6,22
BiNdable COMMECIION. .. .ccuvieitieiiiieieeeieeieeeie et e ste et e sttt et e stteebeessseeseessseesseessseenseaasseesseesssessseesssaenseessseeseesanssseeesansse 22
COMPENSALE ACTIVILY ...ueeueettrtirtietirterteet ettt ettt et et ettt et e et e e bt ettt e sbe st et e b et et ea b et esteateutebeebesbeebesae et e bt saentesmbeenbeenbeenas 75
COMPENSALING ACTIVILY ..cveetirtirtirtietertertet ettt ettt et ettt ettt ettt et et et e st este bt ebeebesbesbe et e ebesbe st et ente st ennenneneenbeenas 75
COMPIEX DIECISION.eeeieuiieeiestieieeteete et estestestesetesseeeteteeesesseesseeseesseaseessesssesseassesseassesseessenseessesssensenssasseessenssessnsseesnsees 76
(070300101 15 Q1Y (<3 TSP PR 76
COMPIIANCE......c.vieieiieiieieeiect ettt ettt et e e te et e eteese et esaeeseesbeessesbeessasseassassaesseesaesseessesseessesseassesseessesssessesssessenssensenseansennns 4
Compound Behavioral CONMECHION.c.cciiriiiieriieterte et ete st ettt ebe et esesseeseestesseeseesseessesseessesssessesseessssesssseesnsees 22
COMPOUNG INEEIACLION.etieititieii ettt sttt ettt e sttt ee et e e et e e te e et es e e et ssee bt eaeebeemeeabeemeesbeanseeseanseeneennneesnneas 88
Compound Interaction BINAING.........cooiiiiiiiiiiiee ettt ettt ettt e s bt et e st e et e s beeebteesaeees 89
COMAITION. 1..ttettieiee ettt ettt ettt e et et e ete e bt e etbe e teeebeeeteeeabe e saeesseesseassaassseesseansseasseassseanseesssaenseessseeasaasseenbeessseanseesasssseaannns 7
CONAILIONAL LLOOP. ...ttt ettt ettt ettt e bt e bt e bt s bt bt ekt b e sa et et e b et esseatenteneeateneeueebesbee e 56
ConNECted Part BInAINg.........cccooviiiiiieieiieiesieeteetieie ettt et ste et s aeetesaaesbesssesseesaesseessenseessesseessesssensesseensesssensensns 23
COUTSE. .. ettt ettt et ettt et e st e b e e at e e bt e sab e e bteset e e bt e sat e e bteeabeeabtesabeenseesa b e e steeateenbeeeabeenbeesabeenseesabeensbeeabeenbteenbeenbaesabeeenns 7
EMDEAAEA PrOCESS. ... ccuvietiiiiieiieiieteete ettt ettt ettt ettt e s teesb e teesbesteesbeeteessesseessesseesseessesseessesseessesseesseseessesseessenseesseas 57
BN IMESSAGE.....veevtivieiiietieti ettt ettt et e it et e s te et e et e esbeeteesseeseebeeseasbeessesaeessesseessesssesseessesseessenseessesseensesaeessesseensesssessensnas 41
2§ (o) AN 7 74 /USRS 58
)| ARSI 7
EVENE CONAITION.eitiiiiieiiteectieciie et ettt e et e et e st e e bt e eebe e teeeaaeebeeeaseeseessseassaeasseessaasseesssesssaesssessseasseasseessseenseensseensaeens 7
EVEINE DICISION. ... eieutietieeiieitie et ettt et e et e st e et e e it e e beeetbeeabeeeaseeaseessseanseessssensaaasseenseassseenseessseansaassseesnsssaeasassseeesansnes 77
g A LY 0 1 VLo) SR RRURRRTRRN 6,23
L DS 1L o 1 A OO PO P PP PPOTUPPP 7
EXCIUSIVE DIECISION.cuvivieuiiitietietietietteteetteete et e steestesteesbesteessesteessesssessaessasseessasseessasseessesseassesssessesssessesssansesseesnssessnses 77
EXCIUSIVE IMIIZE..... . eeuvietientietieteete et etesteeste st e b e e taesbeeteesbeessebeesaeeseessesaeessesseesseessesseessasseessenseesseaseessessaessesssessessseseennsens 78
L€ 21 (5 | 7P PRRRSSPRRRSRTSIN 7
GIOUP ADOIT COMMECTION. ...ttt ettt ettt ettt a et e s et et e sa e e be e st e bt es b e ebeemeees e et e eae e et eseesaeemeesbeemtenbeesanneesanees 25
HOLAET ...ttt et e s e et e s te e et e e e tae e beesaseeabeessbeesseesaseasseesaseeabaessseenseessbeansaessseanssasaseenbeesssaeaeansnes 58
IIMMEAIALESUCCESSION.teeeiieiiecitietee et et ettt e et e e bt e st e eteestbe e beeesse e beeesseesseessseassaessseasssassseensaessseanseesssennssseeessssseeas 25
INCIUSIVE DIECISION.vivieiiieeietieieetteie st ete st ete st e teetebe e et et e esseeseesseesaessesssessesssesseessanseessenseesseassenseassesseassenssassnsseennsens 79
INCIUSIVE IMLEIZE..... e euveeieeieciiete ettt et et e tteett et esteeseeseeesse st e e s e essesseess et e ansenseenseeseensesseensesssesseessesseansenseansensaansenseenssesnnses 80
Instance: ADNOIMAL ENd........cc.ioiiiiiiiiiiciiecc ettt ettt ettt te b s re e be s aaesbeesbesbeesbasseesseeteesseeseensseeenreas 26
Instance: AbNOrmal ENd EVENL.........ccoociiiiiiiiiciicieieeee ettt sttt beesa et e e saesbeessesaaessesseessesssessessnas 26
INSTANCE: ADOTTeiieiiietie ettt ettt ettt e et e et e s ve e teesebe e teessseesseeassaesseessseassaessseansaaasseenseaesseenseesssaensaessseesnsssesesansssenas 27
INSTANCE: ADOTT EVENL.....eiitiiiiieitieiitecite ettt ettt ettt e sttt et e s eae e beessbeesseessbaesseessseasssessseassaesssaenseessseenseessseanseesanssseens 27
INSTANCE: ADOTT PrOCESS. ... viitiiiiiietieciii ettt et e ettt et e st e e ete e et e e beeeaaeebeeeabeesseeseseenseessseasssassssassaessseenseeseseansaessseeeesnssseeas 66
INStANCE: ACHVIEY LIDTATY...c.eiiiiitiiiiiieie ettt ettt e et e et e e et eneesaeeneesseenseeseenteesmseeenseesnneesnnees 66
Instance: ACtiVity LOODP BERAVIOT........c.coiiiiiiiieiiieiesieeeeee ettt ettt e s e b e esseseessaeessaesnsseesnsees 66
INStanCe: BEhaVIor LIDIATY.......cccveiiieiiiiieieiieie sttt sttt ettt ettt et e s te e s e sse e sessaesseessesbeensesseensenseensenseensseesnses 28
Instance: BEhavior OCCUITEICE.ieruieeieeitieeteeieesteesiteeteesteesaeeteesaeesteessseeseessseesseesssessseesssesnsessssseeesanssseeesnnsssees 28
INSEANCE: CANCEL.......icviiiiieieieciecteeteet ettt ettt et et e et e s te e e e s beesbe s st esbeessesseessesseeseesseessesseessesseessesssessaesssaeesssaeensseesnses 83
INStANCE: CANCE] EVENL.....eiciiiiiiiiieiiecit ettt ettt et e et e e tae e teessbeesseessbeessaesaseessaeasseensaessseesseesssansssseeesasssenns 82
INSTANCE: CANCE] PTOCESS. ... vietiiiiiieiieeiecctie e et et e it e st e et e e tte e beeesbeesseessbaesseessseessaeasaeesseessseesseesssaenseessseesnssseaesasssenas 83
INStANCe: COMPENSALE......c..ooeiiiiiiiieieieete ettt ettt ettt et et et e bt s e et e et e eas et e e st e saeesnesaeennesueennesanenneesannee 84

Business Process Definition MetaModel, Process Definitions, v1.0 143

Instance: COMPENSALE EVENL.......cciiiiiiiiiiiiiiiiie ettt ettt sttt e st e e bt e sttt esbeesabeesbeesabeenbeessbbaeessnssbeeessnnseeas 84

InStance: COMPENSALE PTrOCESS.iivuiiiiiiiiieriietie ettt ettt ettt et e st e e bt e sate e bt esabeenbeesabeenbeesateenbaesateenbaenaseas 84
INStaNCe: COMPENSATE-CI.c.eervieeiiiieiieitieeteite et e et et e et ebeetee bt eseesteesaesseessesseessesssesseassesseessenseessesseessesssessesssessesssessensnas 84
Instance: CoOmMPENSAtION LIDIATY........ceccviiieiiieieiiietecte ettt ettt et e ettt e e te et e eseesbeesaesseessesseessesssessaesssaeesssasanssessnsens 85
INStANCE: ENCIOSEA STEP......iouieiiiieieee ettt sttt sttt ettt e e et e es e et e enteea e et e eseenaeeneeaeemeenneeennees 30
INStANCE: @NA/ADOIL.........eieietie e e et e e et e e et e e et e e et e e e eteeeeteeeeeaaeeeeaaee e ettt nneraaaeeeeaaaaans 30
INSEANCE: EITOT. ... e et e et ettt e e e e e eta e e e e e e e ttbaaeeeeeebaaeeeeeeettasaeeeeaasaeseeeeaareeesesseererrrrraes 31
INStANCE: EITOT EVENL....ccoiiiiiiiiiieeee et e ettt e e e e ettt e e e e e eatbeeeeeeeabeeeeeeeestaseeeseeattseeeeeenssssssenes 31
INStANCE: EITOT PrOCESS. . c.uviiiiiiiiieiiie ettt e et e e et e e e tbeeesaaaeeestseeeesesesssaeesssseeanssesesssaeassssaeaaaasannes 66
INSTANCE: FAIIUTE......ccuiiiiiiiiecieccee ettt ettt et e e et e e e tbeeateeeabe e beesese e saeeaaeesbeeesseenseessbeensaesaseesnnsseeeesnsreens 33
INSTANCE: FAIIUIE BEVENL.....ccviiiiiiitiiiii ettt et e e et e et e et e e aeeeteeeaaeeeaeeeaseeeteeeaseeseesaseeeseeeaseeseeeennnreens 32
INStANCE: GENETALIZATION.veiiiiiii ittt ee e et e e eat e e e eaaaeesaeeeseaeeesenaeeesnteeesnneesnnseessnteeesesesnnnnnnes 67, 85
Instance: Group ADOIt BERAVIOT.........c.oiiiiiiiiee ettt sttt sttt e e et et e st em e e enteeeneeeeaneas 33
IR T (011 o R 1<) o OO OSSPSR 34
Instance: IMPOTEINTTA.occiiiiiiiiie ettt ettt et et b e bt sttt be s b et b et enbeenbee e 34
Instance: INtEratioNENA-EIIA.c...ooiiii ittt e e e eee e e et e e e e e e e e e e eaaeeeenaeeeeaee e et nneeaeaeeeeaaaaaas 67
InStance: TLeTatiONENG...........coiiiiiiiiiii ettt et et e et e s v e e beeeabeeteeeaseeteeeaseeseesebeeseesaseeraenaneas 67
Instance: TteratioNENd EVENL...........c.ooiiiiiiiiiiiceceeee ettt ettt et s v e e te e e ebe e teeeaaeesbeeeabeeteeeensbeeeesnsreeas 67
InStance: NOTMAL BNQ.......cc.oiiiiiiiiiiie ettt ettt e e et e e e et e etaeeeteeeaeeeeteeeaeeeteeeaeeeeseeeaseenseeeennnneens 35
Instance: Normal ENA EVENL..........ccoiiiiiiiiiiiiieceee ettt et ett e et eateeeteeeaaeeeaeeeaveeeseeeareeereeeanens 35
INStanCe: PrOCESS OCCUITEICE.veiieueiieeteee et eetee et e et e e et e e e ette e et eeeeae e e etee e e aeeeeeseeeeeseeeeseeeeeseeseenseesaseeeeeeeeannns 85
Instance: RACING BERAVIOL........cc.iiiiiiiiiee ettt ettt ettt et sae et sae et et e nbeese e beenees 36
Instance: RACING CONESTANL.eiueruirtirtertititeietet ettt ettt ettt ettt ettt et et et es b eatebeebesbesbesae et e sbeseestesmteeabeebeenas 36
INSTANCE: STATT-CANCEL.......eiieeeeiieiee ettt et e e et e e et e e e eaeeeeaeeeeesaeeeenseeeeseeeenseesensreeeenneeeeeeeeeeeaanes 85
INStANCE: STATE-COMPEINISALE.c.uvieuiieriiieiieeite ettt et et et e sttt e beesateeabeesabeesbeesabeenseesseeessaessseenbeesabeenseessbaaeesanssseeessnnsseeas 86
Instance: Start-1teratiONENA.c..civieiuieiiieitieeie ettt et e et eeteeetreeeteeeaeeebeeeabeeteeseseesaesaseesaeesseenseeeaseenseeeessseeeesnsseens 68
INSTANCE: STATT/STATT. .. .evvievieieeeetie ettt e ettt et ettt e e aeeeteeeteeeteeeaeeeeteeeaseeeteeeaseeseseaseeeseeeaseeaseeesssentesenseenseesaseeseeenseensreens 36
Instance: StartFTOMSEQUEIICE.c.eiiiiiiieeie ettt ettt ettt et e st e et e e seteebeessteesseesssessseesssaenseesnseenseesssaeesanssseens 86
0] T YT T 4 Lo USRS 86
INSEANCE: SEEP GIOUP. .. ettt ettt ea et e at e bt e e e bt e st e bt ea e e eb e em e e eb e emeeeb e e et eaee et emeesbeemeesaeenteenbeesnnneesnnees 37
IS AN . SUCCESS. . vveeiieeitiiiee e e ettt eect e e ee ettt e e e ettt e e e e eeetaeeeeeeettaaeeeeeeaassaeeeeeaassaeeeeeaaatsseeeseassssseeseeassseeeeesnsssessssnsrnes 37
INStANCE: SUCCESS EVEIL.....ooiiiiiiiiiiiieeee e et e e et e e e e et ee e e e eeettaeeeeeeetsaeeeeeeaataeeeeeeanssaeeeeeennees 37
ST 1SS = To7 5 (o) « USSR 6,42
INEETACTION PIOTOCOL.viiiieiiieeiee ettt ee e et e e e e et e e e e e e eaeeeeeaeeeeeaeeeeenaeeeenneeeensseseennnssnnnneeeeens 7, 89
| RTEc e Tes o) 1 BB AXo) (=TSR 6,42
INEEIACTIVE BERAVIOL.......oiiitiiiiiiiiie ettt ettt e e et e et eeete e eaveeeteeeaseeeteeeaseebeeeaseeteeeensseeeeennnreeas 43
Links INStance: CANCEI-CIA............oooiiiiiiiie e e et e et e e e et e e e ae e e eeteeeeeaaeeeenaarreaeeaaaaens 83
LOOPTESTTIIMIE. ...ttt ettt ettt e e et b et e b et e b et e ea e e bt es e e bt emeeebeemeesbeemtesbeemeeebeenteeenbeeenneesnnees 59
IMLESSAZE.veeueeieentenie ettt ettt ettt ettt et a e et ae e s a e e bt e h et e a et e a et e h e e bt e a e et e e et e s he e s sh e eanente e etneesannee 43
IMESSAZE FLOW ...ttt ettt ettt ettt e te et e st e et e s st e at e s e eaeeeseemeeeseemseeseenseeseenseentanseenee st eneenseeneenneeennees 44
IMULEL INSEANCE LLOOP.....ueeuiiieieiiieieieeiieie ettt ettt et et e e s te et e saeessesseessessaessasssesseessensaessanseessanseessesseensseesssassnsseennsens 59
PEIfOIMIET ROIE.......eeiiieeiie e et e e e e e e et e e e e e e e eaeeeeteeeeeaseeeeaaeesenteeeeeeeeennnnnsnnnes 5, 60
PrOCESS ettt et e e e et e e ea———teeeaa———eeeeaa———t e e e e e ———teeeaat——eteesan—reaeeeanaraaeeaarees 6, 61
PrOCESS DITECTIVE. ...ecuviieieietee ettt ettt et et et e et et e e v e eeteeetaeeeteeeaeeeeteeeaseeeseeeeseeseeeaseeesseeassenteeeaseensesseseeseeeaseeseeeennreens 80
Process Interaction BOUNAAIY.........coiiiuiiiiiiee ettt ettt ettt b e esbe e e et e e e b e eteeaeeneeeneeas 62
PrOCESSOT ROIC.......eeiiieieee et e e e e e et e e et e e e tee e e etaeeeeaeeeeeteeeeeateeeeteseetennraaaaens 63
R ot) 11 1T 5 (o) o WO 25
Received INtermediate IMESSAZE.ecueeieriieieitieieetieieeteeteetee e eate et esee st eaeesseeneesseeneeeseensesseenseeseenseeseanseeneanseeneennseesnnees 44
ROIE REAIIZATION.ecoviiiivieciie ettt ettt et et e et e et e eveeetseeeteeeteeebeeetseeaseesaseeseestseesaessssessaeesseensaesaseeseesssaeeeennssaeesannnes 64
SCIIPE ACHIVILY ..t evretieiesteeie et ete st ete st et e et ebeette st este st essesseessesseassesseessesssenseassenseessanssassenseansesssansesssensesnseesseeensseannsaeens 80
Sent INtErMEAIAte IMESSAZE.c..ecueiriiieieiteiieiteeieiteet et eetee e eseeteeseereesseeseesseessasteessaseessesssesseassessesssasseessesseessesssassessseans 45
SEQUENCE FLOW.....cutiitiiiieiiitiei ettt ettt sttt et e et e b e e st e beessesteesseeseessesaeessesssesbeesbesseessasseessesseesseassaeersseeassneennsneans 80
N 31000 0] (S5 A USSP 64
STMPLE TNEEIACTION. ...ttt ettt ettt b et e b et e e bt et e bt et e e st et e emeesbeemeesbeenteeembeeesmneeeanneean 6,46
STATE IMESSAZE. ... evvenveentieieete ettt ettt ettt ettt sae et e et et et e s e bt e et e bt esa e satea e s at e st sane bt eas et e e s e bt e st e et e e et e et neeeanneens 47
SUD-PTOCESS ACTIVILY . .veuteuteueeiieiirtintiriert ettt sttt ettt et eae et e be bt e b e b s ettt esae e et et et enteateatebeebe e bt sae et e benbenbeesueeeaneentee 64
SUDSHIULADIE DETIVALION.viiiviiirieciie et cetee et et ete et e vt eeteeebeeeteeereeetaeeaseesteeeaseeesaeeaseesaeeaseeessesaseensaesnseeeseeeennnseeaeans 65
T (ot eTotoTS o) o WU TSR 7,25
TASK 1. ettt ettt ettt ettt ettt ettt e ete e ettt et e e ae e eaeeeteeeteeeteeeteeeteea—eeatteebeeeteeeteeateeeaeeateeeaeenteeeaeeataeereeeattreeeeenrareens 81

144 Business Process Definition MetaModel, Process Definitions, v1.0

TEIIUNALE.veeeeeeeee et et e et e et e eeae e e e eaaeeeeteeeeeaseseeaaeeeenteeeeeaeeeeenaeeeenteeeenaaeeeenateeeraeeeeaeeeennneeesneeeanes 81

Time Event.................
Time Event Condition

Business Process Definition MetaModel, Process Definitions, v1.0 145

146 Business Process Definition MetaModel, Process Definitions, v1.0

	1Scope
	1.1Business Process Modeling Notation (BPMN)
	1.1.1Target Audience and Use of BPDM

	1.2Other Common Business Benefits of BPDM
	1.2.1Carefully defined semantics
	1.2.2Saying just enough, but not too much
	1.2.3Improved Integration and Collaboration
	1.2.4Improved Agility
	1.2.5Business Processes supported by Service Oriented
Architectures (SOA)
	1.2.6Better Return on I.T. Investment

	1.3Process Concepts Supported by BPDM

	2Conformance
	2.1BPDM Full Compliance
	2.2BPDM Collaboration Protocol Compliance
	2.3BPDM Orchestration Process Compliance
	2.4BPDM - BPMN Compliance

	3Normative References
	4 Terms and Definitions
	5Additional Information
	5.1Acknowledgements

	6Metamodel and Notation Specification
	6.1Overview
	6.2Behavior Model
	6.2.1Introduction
	6.2.2Metamodel Specification
	6.2.2.1Behavior Model Diagram
	6.2.2.2Behavior Library: Events
	6.2.2.3Behavior Library: Behavior Occurrence
	6.2.2.4Behavior Library: 'Racing' Behavior
	6.2.2.5Behavior Library: 'Group Abort Behavior'
	6.2.2.6Behavior Event Condition Diagram
	6.2.2.7Behavior Step Group Diagram
	6.2.2.8Connected Part Binding Diagram
	6.2.2.9Behavior

	6.2.2.10Behavior Event Condition
	6.2.2.11Behavior Step
	6.2.2.12Behavior Step Group
	6.2.2.13Bindable Connection
	6.2.2.14Compound Behavioral Connection
	6.2.2.15Connected Part Binding
	6.2.2.16Event Monitor
	6.2.2.17Group Abort Connection
	6.2.2.18ImmediateSuccession
	6.2.2.19Race Connection
	6.2.2.20Succession
	6.2.2.21Instance: Abnormal End Event
	6.2.2.22Instance: Abnormal End
	6.2.2.23Instance: Abort Event
	6.2.2.24Instance: Abort
	6.2.2.25Instance: Behavior Library
	6.2.2.26Instance: Behavior Library
	6.2.2.27Instance: Behavior Occurrence
	6.2.2.28Instance: Enclosed Step
	6.2.2.29Instance: end/abort
	6.2.2.30Instance: Error Event
	6.2.2.31Instance: Error
	6.2.2.32Instance: Failure Event
	6.2.2.33Instance: Failure
	6.2.2.34Instance: Group Abort Behavior
	6.2.2.35Instance: group-step
	6.2.2.36Instance: ImportInfra
	6.2.2.37Instance: Normal End Event
	6.2.2.38Instance: Normal End
	6.2.2.39Instance: Racing Behavior
	6.2.2.40Instance: Racing Contestant
	6.2.2.41Instance: start/start
	6.2.2.42Instance: Step Group
	6.2.2.43Instance: Success Event
	6.2.2.44Instance: Success

	6.3Interactive Behavior Model
	6.3.1Introduction
	6.3.2Metamodel Specification
	6.3.2.1Interactive Behavior Diagram
	6.3.2.2Simple Interaction Binding Diagram
	6.3.2.3Message Diagram
	6.3.2.4End Message
	6.3.2.5Interaction
	6.3.2.6Interaction Role
	6.3.2.7Interactive Behavior
	6.3.2.8Interactive Part
	6.3.2.9Message
	6.3.2.10Message Flow
	6.3.2.11Received Intermediate Message
	6.3.2.12Sent Intermediate Message
	6.3.2.13Simple Interaction
	6.3.2.14Start Message

	6.4Activity Model
	6.4.1Introduction
	6.4.2Metamodel Specification

	6.4.2.1Activity Model Diagram
	6.4.2.2Activity Model Library: Simple Process instances
	6.4.2.3Activity Categories Diagram
	6.4.2.4Activity Model Library: Loop Happening instance
	6.4.2.5Embedded Process Diagram
	6.4.2.6Process Derivation Diagram
	6.4.2.7Role Realization Diagram
	6.4.2.8Abort Activity
	6.4.2.9Activity
	6.4.2.10Activity Loop
	6.4.2.11Actor
	6.4.2.12Conditional Loop
	6.4.2.13Embedded Process
	6.4.2.14Error Activity
	6.4.2.15Holder
	6.4.2.16LoopTestTime
	6.4.2.17Multi Instance Loop
	6.4.2.18MultiInstanceLoopOrdering
	6.4.2.19Performer Role
	6.4.2.20Process
	6.4.2.21Process Interaction Boundary
	6.4.2.22Processor Role
	6.4.2.23Role Realization
	6.4.2.24Simple Activity
	6.4.2.25Sub-Process Activity
	6.4.2.26Substitutable Derivation
	6.4.2.27Instance: Abort Process
	6.4.2.28Instance: Activity Library
	6.4.2.29Instance: Activity Loop Behavior
	6.4.2.30Instance: Error Process
	6.4.2.31Instance: Generalization
	6.4.2.32Instance: interationend-end
	6.4.2.33Instance: IterationEnd Event
	6.4.2.34Instance: IterationEnd
	6.4.2.35Instance: start-iterationend

	6.5BPMN Extensions
	6.5.1Introduction
	6.5.2Metamodel Specification
	6.5.2.1Adhoc Extension Diagram
	6.5.2.2Activity Extensions Diagram
	6.5.2.3Gateway Extension Diagram
	6.5.2.4BPMN Extensions Library: Compensate Process Instance
	6.5.2.5BPMN Extensions Library: BPMN Process Occurrence Instance
	6.5.2.6Sequence Flow Extension Diagram
	6.5.2.7Artifact Flow Extensions Diagram
	6.5.2.8Transaction Extensions Diagram
	6.5.2.9Compensation Extensions Diagram
	6.5.2.10Adhoc Process Directive
	6.5.2.11AdhocOrdering
	6.5.2.12Artifact Flow
	6.5.2.13Artifact Sequence Flow
	6.5.2.14Cancel Activity
	6.5.2.15Compensate Activity
	6.5.2.16Compensating Activity
	6.5.2.17Complex Decision
	6.5.2.18Complex Merge
	6.5.2.19Event Decision
	6.5.2.20Exclusive Decision
	6.5.2.21Exclusive Merge
	6.5.2.22Inclusive Decision
	6.5.2.23Inclusive Merge
	6.5.2.24Process Directive
	6.5.2.25Script Activity
	6.5.2.26Sequence Flow
	6.5.2.27Task
	6.5.2.28Terminate
	6.5.2.29Transaction
	6.5.2.30Instance: Cancel Event
	6.5.2.31Instance: Cancel Process
	6.5.2.32Links Instance: cancel-end

	6.5.2.33Instance: Cancel
	6.5.2.34Instance: Compensate Event
	6.5.2.35Instance: Compensate Process
	6.5.2.36Instance: compensate-end
	6.5.2.37Instance: Compensate
	6.5.2.38Instance: Compensation Library
	6.5.2.39Instance: Generalization
	6.5.2.40Instance: Process Occurrence
	6.5.2.41Instance: start-cancel
	6.5.2.42Instance: start-compensate
	6.5.2.43Instance: StartFromSequence
	6.5.2.44Instance: startseq-end

	6.6Interaction Protocol Model
	6.6.1Introduction
	6.6.2Metamodel Specification
	6.6.2.1Interaction Protocol
	6.6.2.2Compound Interaction
	6.6.2.3Compound Interaction Binding
	6.6.2.4Interaction Protocol

	6.7Class Hierarchies
	6.7.1 Condition Hierarchy
	6.7.2 Happening OverTime Hierarchy
	6.7.5 Simple Interaction Hierarchy
	6.7.6 Interactive Part Hierarchy

	7BPMN Notation Summary
	7.1Interaction Role Notation
	7.2Processor Role Notation
	7.3Horizontal Lane Notation
	7.4Vertical Lane Notation
	7.5Time Event Notation
	7.6Fact Change Notation
	7.7Course Event 'Error' Instance Notation
	7.8Course Event 'Cancel' Instance Notation
	7.9Course Event 'Iteration End'
	7.10Course Event 'Abort' Notation
	7.11Course Event 'Compensate' Instance Notation
	7.12Event Part : Start Notation
	7.13Event Part : Start with 'Time Event Condition' Notation
	7.14Event Part : Start with 'Fact Change Condition' Notation
	7.15Event Part : End Notation
	7.16Event Part : Error Notation
	7.17Event Part : Cancel Notation
	7.18Event Part : Abort Notation
	7.19Error Handling Notation
	7.20Activity Notation
	7.21Collapsed Sub-Process Activity Notation
	7.22Uncollapsed Sub-Process Activity Notation
	7.23Activity Loop Notation
	7.24Cancel Activity Notation or 'Cancel' Event Part
	7.25Error Activity Notation or 'Error' Event Part
	7.26Abort Activity Notation or 'Abort' Event Part
	7.27Compensate Activity Notation
	7.28Compensating Activity Notation
	7.29Event Monitor Notation
	7.30Event Monitor monitoring a Time Event Condition
	7.31Event Monitor monitoring a Fact Change Condition
	7.32Event Monitor monitoring a 'Compensate' Behavior Event Condition
	7.33Event Monitor monitoring a Compound Event Condition
	7.34Succession Notation
	7.35Event Decision Notation
	7.36Message Notation
	7.37Start Message Notation
	7.38End Message Notation
	7.39Sent Intermediate Message Notation
	7.40Received Intermediate Message Notation
	7.41Message Flow Notation
	7.42Artifact Sequence Flow Notation
	7.43Part Group Notation
	7.44Transaction Notation
	7.45Gateway Notation
	7.46Exclusive Split Notation
	7.47Exclusive Merge Notation
	7.48Parallel Split Notation
	7.49Parallel Join Notation
	7.50Inclusive Split Notation
	7.51Inclusive Merge Notation
	7.52Complex Decision Notation
	7.53Complex Join Notation

	8Non-normative Notation Summary
	8.1Process Diagram
	8.2Non-immediate Succession
	8.3Course Event 'Normal End' instance notation
	8.4Course Event 'Abnormal End' instance notation
	8.5Course Event 'Failure' Instance notation
	8.6Course Event 'Success' Instance Notation
	8.7Event Part : Normal End Notation
	8.8Event Part : Abnormal End notation
	8.9Event Part : Success Notation
	8.10Event Part : Failure Notation
	8.11Succession with Fact Change Condition
	8.12Succession with Time Event Condition
	8.13Interaction Flow between Activities and Statement Condition
	8.14Interaction Flow between Activities and Time Event Condition
	8.15Holder Notation
	8.16Compound Interaction Notation
	8.17Course Occurrence Diagram
	8.18Behavior Occurrence
	8.19Process Occurrence

	9BPDM–BPEL Mapping
	9.1.1Topological Considerations
	9.1.2Generator Model
	9.1.3Notational Conventions
	9.2Process
	9.3Start Event Mappings
	9.4End Event Mappings
	9.5Intermediate Events
	9.6Activities
	9.7Flows
	9.8Additional Constructs
	9.9References

	10Proof of Concept Language Mappings

