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Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG 
Specifications is available from the OMG website at: 

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

• CORBAservices
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• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold:  Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, 
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
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1 Scope

The Business Process Management Initiative (BPMI) has developed a standard Business Process Modeling Notation 
(BPMN). The primary goal of BPMN is to provide a notation that is readily understandable by all business users, from the 
business analysts that create the initial drafts of the processes, to the technical developers responsible for implementing 
the technology that will perform those processes, and finally, to the business people who will manage and monitor those 
processes. Thus, BPMN creates a standardized bridge for the gap between the business process design and process 
implementation.

Another goal, but no less important, is to ensure that XML languages designed for the execution of business processes, 
such as BPEL4WS (Business Process Execution Language for Web Services), can be visualized with a business-oriented 
notation.

This specification defines the notation and semantics of a Business Process Diagram (BPD) and represents the 
amalgamation of best practices within the business modeling community. The intent of BPMN is to standardize a business 
process modeling notation in the face of many different modeling notations and viewpoints. In doing so, BPMN will 
provide a simple means of communicating process information to other business users, process implementers, customers, 
and suppliers.

This version of the specification does not specify a mechanism for exchange of BPMN diagrams.

This version of the specification does not specify a mechanism for the exchange of the semantic model of a process 
depicted by a BPMN diagram.

Note – Exchange of models of BPMN process semantics and diagrams is the subject of other ongoing standards activities.

This version of the specification does not specify a normative mapping from BPMN to WSBPEL.

Note – This version does provide a non-normative mapping from BPMN to WSBPEL, but the BPMN specification itself is 
known to be incomplete with respect to capturing all the required information for WSBPEL. So the mapping is insufficient, in 
any case.

The membership of the BPMI Notation Working Group has brought forth expertise and experience with many existing 
notations and has sought to consolidate the best ideas from these divergent notations into a single standard notation. 
Examples of other notations or methodologies that were reviewed are UML Activity Diagram, UML EDOC Business 
Processes, IDEF, ebXML BPSS, Activity-Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and Event-Process Chains 
(EPCs).

2 Conformance

An implementation claiming conformance to this specification shall comply with all of the requirements set forth in 
subclauses 2.1, 2.2, and 2.3 below.

2.1 Visual Appearance

A key element of BPMN is the choice of shapes and icons used for the graphical elements identified in this specification. 
The intent is to create a standard visual language that all process modelers will recognize and understand. 
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An implementation that creates and displays BPMN Diagrams shall use the graphical elements, shapes, and markers 
specified in Clauses 9-10 as the diagrammatic elements that represent the specified concepts.

Note – There is flexibility in the size, color, line style, and text positions of the defined graphical elements, except where 
otherwise specified.

The following extensions to a BPMN Diagram are permitted:

• New markers or indicators MAY be added to the specified graphical elements. These markers or indicators could be 
used to highlight a specific attribute of a BPMN element or to represent a new subtype of the corresponding concept. 
(See also 2.4 below)

• A new shape representing a kind of Artifact may be added to a Diagram, but the new Artifact shape SHALL NOT 
conflict with the shape specified for any other BPMN object or marker.

• Graphical elements may be colored, and the coloring may have specified semantics that extend the information 
conveyed by the element as specified in this standard.

• The line style of a graphical element may be changed, but that change SHALL NOT conflict with any other line style 
required by this specification. 

An extension SHALL NOT change the specified shape of a defined graphical element or marker (e.g., changing a square 
into a triangle, or changing rounded corners into squared corners, etc.).

2.2 Structural Conformance

An implementation that creates and displays BPMN diagrams shall conform to the specifications and restrictions in 
Clauses 8-10 with respect to the connections and other diagrammatic relationships between graphical elements. Where 
permitted or required connections are specified as conditional and based on attributes of the corresponding concepts, the 
implementation shall ensure the correspondence between the connections and the values of those attributes.

Note – In general, these connections and relationships have specified semantic interpretations, which specify interactions 
among the process concepts represented by the graphical elements. Conditional relationships based on attributes represent 
specific variations in behavior. Structural conformance therefore guarantees the correct interpretation of the diagram as a 
specification of process, in terms of flows of control and information.

Throughout the document, structural specifications will appear in paragraphs using a special shaped bullet.

Example:

° A Task MAY be a target for Sequence Flow; it can have multiple incoming Flows. An Incoming Flow MAY be 
from an alternative path and/or parallel paths.

2.3 Semantic Elements

This specification defines many semantic concepts used in defining processes, and associates them with graphical 
elements, markers, and connections. To the extent that an implementation provides an interpretation of the BPMN 
diagram as a semantic specification of process, the interpretation shall be consistent with the semantic interpretation 
herein specified.
2                 Business Process Modeling Notation, v1.2



Note – The intent here is that a BPMN diagram used as a “workflow specification” will have the interpretation specified in 
this standard, somewhat extended or narrowed by the characteristics of the workflow system. Similarly, when a BPMN 
diagram used as a specification for the processes and interactions of software agents, any generated software will reflect the 
semantics of the diagram as specified in this standard, possibly narrowed or extended by the characteristics of the software 
implementation.

2.4 Attributes and Properties

This specification defines a number of attributes and properties of the semantic objects represented by the graphical 
elements, markers, and connections. Some of these attributes are purely representational and are so marked, and some 
have required representations. Some attributes are specified as mandatory, but have no representation or only optional 
representation. And some attributes are specified as optional.

For every attribute or property that is specified as mandatory, a conforming implementation SHALL provide some 
mechanism by which values of that attribute or property can be created and displayed. This mechanism SHALL permit 
the user to create or view these values for each BPMN object specified to have that attribute or property.

Where a graphical representation for that attribute or property is specified as required, that graphical representation 
SHALL be used.

Where a graphical representation for that attribute or property is specified as optional, the implementation MAY use either 
a graphical representation or some other mechanism. If a graphical representation is used, it SHALL be the representation 
specified.

Where no graphical representation for that attribute or property is specified, the implementation MAY use either a 
graphical representation or some other mechanism. If a graphical representation is used, it SHALL NOT conflict with the 
specified graphical representation of any other BPMN object.

2.5 Extended and Optional Elements

A conforming implementation is not required to support any element or attribute that is specified herein to be non-
normative or informative.

In each instance in which this specification defines a feature to be “optional,” it specifies whether the option is in:

• how the feature shall be displayed,

• whether the feature shall be displayed,

• whether the feature shall be supported.

A conforming implementation is not required to support any feature whose support is specified to be optional. If an 
implementation supports an optional feature, it SHALL support it as specified.

A conforming implementation SHALL support any “optional” feature for which the option is only in whether or how it 
shall be displayed.
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3 Normative References

3.1 Normative

RFC-2119

• Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, IETF RFC 2119, March 1997 
http://www.ietf.org/rfc/rfc2119.txt

3.2 Non-Normative

Activity Service

• Additional Structuring Mechanism for the OTS specification, OMG, June 1999 
http://www.omg.org

• J2EE Activity Service for Extended Transactions (JSR 95), JCP 
http://www.jcp.org/jsr/detail/95.jsp

BPEL4WS

• (BPEL4WS) 1.1, IBM/Microsoft/BEA/SAP/Siebel, July 2002 
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/ 

Business Process Definition

• Final Response to OMG BPD RFP, OMG, March 2007, bmi/07-03-01 
http://www.omg.org

Business Process Modeling

• Jean-Jacques Dubray, “A Novel Approach for Modeling Business Process Definitions,” 2002 
http://www.ebpml.org/ebpml2.2.doc 

Business Transaction Protocol

• OASIS BTP Technical Committee, June, 2002 
http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf 

BPML

• (BPML) 1.0, BPMI, January 2003 
http://www.BPMI.org

Dublin Core Meta Data

• Dublin Core Metadata Element Set, Dublin Core Metadata Initiative 
http://dublincore.org/documents/dces/
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ebXML BPSS

• Jean-Jacques Dubray, “A new model for ebXML BPSS Multi-party Collaborations and Web Services Choreography,” 
2002 
http://www.ebpml.org/ebpml.doc 

OMG UML

• Unified Modeling Language Specification V2.1.1: Superstructure, OMG, February 2007, formal/2007-02-05 
http://www.omg.org

Open Nested Transactions

• Concepts and Applications of Multilevel Transactions and Open Nested Transactions, Gerhard Weikum, Hans-J. 
Schek, 1992 
http://citeseer.nj.nec.com/weikum92concepts.html

RDF

• RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft 
http://www.w3.org/TR/rdf-schema/

SOAP 1.2

• SOAP Version 1.2 Part 1: Messaging Framework, W3C Working Draft 
http://www.w3.org/TR/soap12-part1/

• SOAP Version 1.2 Part21: Adjuncts, W3C Working Draft 
http://www.w3.org/TR/soap12-part2/

UDDI

• Universal Description, Discovery and Integration, Ariba, IBM and Microsoft, UDDI.org. 
http://www.uddi.org

URI

• Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, IETF RFC 2396, 
August 1998 
http://www.ietf.org/rfc/rfc2396.txt

WfMC Glossary

• Workflow Management Coalition Terminology and Glossary. 
http://www.wfmc.org/standards/docs.htm 

Web Services Transaction

• (WS-Transaction) 1.0, IBM/Microsoft/BEA, August, 2002 
http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/

WSBPEL

• Web Services Business Process Execution Language (WSBPEL) 2.0, Committee Specification, January 2007 
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.pdf
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WSDL

• Web Services Description Language (WSDL) 2.0, W3C Proposed Recommendation, May 2007 
http://www.w3.org/TR/2007/PR-wsdl20-20070523/l

XML 1.0 (Second Edition)

• Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et al., eds., W3C, 6 October 2000 
http://www.w3.org/TR/REC-xml

XML-Namespaces

• Namespaces in XML, Tim Bray et al., eds., W3C, 14 January 1999 
http://www.w3.org/TR/REC-xml-names

XML-Schema

• XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn, W3C, 2 May 
2001 
http://www.w3.org/TR/xmlschema-1//

• XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001 
http://www.w3.org/TR/xmlschema-2/

XPath

• XML Path Language (XPath) 1.0, James Clark and Steve DeRose, eds., W3C, 16 November 1999 
http://www.w3.org/TR/xpath

XPDL

• Workflow Management Coalition XML Process Definition Language, version 2.0. 
http://www.wfmc.org/standards/docs.htm 

4 Terms and Definitions

See Annex C - Glossary.

5 Symbols

There are no symbols defined in this specification.
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6 Additional Information

6.1 Conventions

The section introduces the conventions used in this document. This includes (text) notational conventions and notations 
for schema components. Also included are designated namespace definitions.

6.1.1 Typographical and Linguistic Conventions and Style

This specification incorporates the following conventions:

• The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “MUST NOT,” “SHOULD,” “SHOULD NOT,” 
“RECOMMENDED,” “MAY,” and “OPTIONAL” in this document are to be interpreted as described in RFC-2119.

• A term is a word or phrase that has a special meaning. When a term is defined, the term name is highlighted in bold 
typeface.

• A reference to another definition, section, or specification is highlighted with underlined typeface and provides a link to 
the relevant location in this specification.

• A reference to an element, attribute, or BPMN construct is highlighted with a capitalized word (e.g., Sub-Process).

• A reference to a BPEL4WS element, attribute, or construct is highlighted with an italic lower-case word, usually 
preceded by the word “BPEL4WS” (e.g., BPEL4WS pick).

• Non-normative examples are set off in boxes and accompanied by a brief explanation.

• XML and pseudo code is highlighted with mono-spaced typeface. Different font colors may be used to highlight the 
different components of the XML code.

• The cardinality of any content part is specified using the following operators:

• <none> — exactly once

• (0-1) — 0 or 1

• (0-n) — 0 or more

• (1-n) — 1 or more

• Attributes separated by | and grouped within ( and ) — alternative values

• <value> — default value

•  <type> — the type of the attribute 
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6.1.2 Abbreviations

The following abbreviations may be used throughout this document:

6.2 Structure of this Document

The BPMN specification defines the Business Process Diagram modeling objects, their semantics, their mapping to 
BPEL4WS, and is comprised of the following topics:

BPMN Overview provides an introduction to BPMN, its requirements, and discusses the range of modeling purposes that 
BPMN can convey.

Business Process Diagrams provides a summary of the BPMN graphical elements and their relationships.

Business Process Diagram Graphical Objects details the graphical representation, attributes, and semantics of the 
behavior of BPMN Diagram elements.

Business Process Diagram Connecting Objects defines the graphical objects used to connect two objects together (i.e., the 
connecting lines of the Diagram) and how flow progresses through a Process (i.e., through a straight sequence or through 
the creation of parallel or alternative paths).

BPMN by Example provides a walkthrough of a sample Process using BPMN.

Annex A: Mapping to BPEL4WS provides a mechanism for converting a Business Process to a BPEL4WS document, 
provides and example of Process mapping, and provides a full sample of BPEL4WS code based on the example process 
mapping.

Annex B: BPMN Element Attributes and Types provides the complete set of BPMN Element attributes, which are first 
presented in Chapters 8, 9, and 10, and the definition of types that support the attributes.

Annex C: Glossary presents an alphabetical index of terms that are relevant to practitioners of BPMN.

6.3 Acknowledgements

The following companies submitted and/or supported parts of this specification:

• 88Solutions

• Adobe

• Adaptive

• Appian

This abbreviation Refers to

BPEL4WS Business Process Execution Language for Web Services (see BPEL4WS). This abbreviation 
refers specifically to version 1.1 of the specification.

WSDL Web Service Description Language (see WSDL). This abbreviation refers specifically to the 
W3C Technical Note, 15 March 2001, but is intended to support future versions of the 
WSDL specification.
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7 Overview

There has been much activity in the past few years in developing web service-based XML execution languages for 
Business Process Management (BPM) systems. Languages such as BPEL4WS provide a formal mechanism for the 
definition of business processes. The key element of such languages is that they are optimized for the operation and inter-
operation of BPM Systems. The optimization of these languages for software operations renders them less suited for 
direct use by humans to design, manage, and monitor business processes. BPEL4WS has both graph and block structures 
and utilizes the principles of formal mathematical models, such as pi-calculus1. This technical underpinning provides the 
foundation for business process execution to handle the complex nature of both internal and B2B interactions and take 
advantage of the benefits of Web services. Given the nature of BPEL4WS, a complex business process could be organized 
in a potentially complex, disjointed, and unintuitive format that is handled very well by a software system (or a computer 
programmer), but would be hard to understand by the business analysts and managers tasked to develop, manage, and 
monitor the process. Thus, there is a human level of “inter-operability” or “portability” that is not addressed by these web 
service-based XML execution languages.

Business people are very comfortable with visualizing business processes in a flow-chart format. There are thousands of 
business analysts studying the way companies work and defining business processes with simple flow charts. This creates 
a technical gap between the format of the initial design of business processes and the format of the languages, such as 
BPEL4WS, that will execute these business processes. This gap needs to be bridged with a formal mechanism that maps 
the appropriate visualization of the business processes (a notation) to the appropriate execution format (a BPM execution 
language) for these business processes.

Inter-operation of business processes at the human level, rather than the software engine level, can be solved with 
standardization of the Business Process Modeling Notation (BPMN). BPMN provides a Business Process Diagram (BPD), 
which is a Diagram designed for use by the people who design and manage business processes. BPMN also provides a 
mapping to an execution language of BPM Systems (BPEL4WS). Thus, BPMN would provide a standard visualization 
mechanism for business processes defined in an execution optimized business process language.

BPMN will provide businesses with the capability of understanding their internal business procedures in a graphical 
notation and will give organizations the ability to communicate these procedures in a standard manner. Currently, there 
are scores of process modeling tools and methodologies. Given that individuals will move from one company to another 
and that companies will merge and diverge, it is likely that business analysts are required to understand multiple 
representations of business processes--potentially different representations of the same process as it moves through its 
lifecycle of development, implementation, execution, monitoring, and analysis. Therefore, a standard graphical notation 
will facilitate the understanding of the performance collaborations and business transactions within and between the 
organizations. This will ensure that businesses will understand themselves and participants in their business and will 
enable organizations to adjust to new internal and B2B business circumstances quickly. To do this, BPMN will follow the 
tradition of flowcharting notations for readability; yet still provide a mapping to the executable constructs. BPMI is using 
the experience of the business process notations that have preceded BPMN to create the next generation notation that 
combines readability, flexibility, and expandability.

BPMN will also advance the capabilities of traditional business process notations by inherently handling B2B business 
process concepts, such as public and private processes and choreographies, as well as advanced modeling concepts, such 
as exception handling, transactions, and compensation. 

1. See Milner, 1999, “Communicating and Mobile Systems: the Π-Calculus,” Cambridge University Press. ISBN 0 521 64320 1 (hc.) ISBN 
0 521 65869 1 (pbk.)
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7.1 BPMN Scope

BPMN will be constrained to support only the concepts of modeling that are applicable to business processes. This means 
that other types of modeling done by organizations for business purposes will be out of scope for BPMN. For example, 
the modeling of the following will not be a part of BPMN:

• Organizational structures and resources

• Functional breakdowns

• Data and information models

• Strategy

• Business Rules

Since these types of high-level modeling either directly or indirectly affect business processes, the relationships between 
BPMN and other high-level business modeling will be defined more formally as BPMN and other specifications are 
advanced.

In addition, while BPMN will show the flow of data (messages), and the association of data Artifacts to activities, it is not 
a data flow Diagram. 

7.1.1 Uses of BPMN

Business process modeling is used to communicate a wide variety of information to a wide variety of audiences. BPMN 
is designed to cover many types of modeling and allows the creation of end-to-end business processes. The structural 
elements of BPMN will allow the viewer to be able to easily differentiate between sections of a BPMN Diagram.

There are three basic types of sub-models within an end-to-end BPMN model:

1.  Private (internal) business processes

2.  Abstract (public) processes

3.  Collaboration (global) Processes

Note – The terminology used to describe the different types of processes has not been standardized. Definitions of these terms 
are in flux. There is work being done in the World Wide Web Consortium (W3C) and in the Organization for the Advancement 
of Structured Information Standards (OASIS) that will hopefully consolidate these terms.

Some BPMN specification terms regarding the use of Swimlanes (e.g., Pools and Lanes) are used in the descriptions 
below. Refer to “Swimlanes (Pools and Lanes)” on page 263 for more details on how these elements are used in a BPD.

Private (Internal) Business Processes

Private business processes are those internal to a specific organization and are the types of processes that have been 
generally called workflow or BPM processes (see Figure 7.1). A single private business process may be mapped to one or 
more BPEL4WS documents.
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If Swimlanes are used, then a private business process will be contained within a single Pool. The Sequence Flow of the 
Process is therefore contained within the Pool and cannot cross the boundaries of the Pool. Message Flow can cross the 
Pool boundary to show the interactions that exist between separate private business processes. Thus, a single Business 
Process Diagram may show multiple private business processes, each with separate mappings to BPEL4WS.

Figure 7.1 - Example of Private Business Process

Abstract (Public) Processes

This represents the interactions between a private business process and another process or participant (see Figure 7.2). 
Only those activities that are used to communicate outside the private business process, plus the appropriate flow control 
mechanisms, are included in the abstract process. All other “internal” activities of the private business process are not 
shown in the abstract process. Thus, the abstract process shows to the outside world the sequence of messages that are 
required to interact with that business process. A single abstract process may be mapped to a single BPEL4WS abstract 
process (however, this mapping will not be done in this version of the specification).

Abstract processes are contained within a Pool and can be modeled separately or within a larger BPMN Diagram to show 
the Message Flow between the abstract process activities and other entities. If the abstract process is in the same Diagram 
as its corresponding private business process, then the activities that are common to both processes can be associated.

Figure 7.2 - Example of an Abstract Business Process

Collaboration (Global) Processes

A collaboration process depicts the interactions between two or more business entities. These interactions are defined as 
a sequence of activities that represent the message exchange patterns between the entities involved. A single collaboration 
process may be mapped to various collaboration languages, such as ebXML BPSS, RosettaNet, or the resultant 
specification from the W3C Choreography Working Group (however, these mappings are considered as future directions 
for BPMN).
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The collaboration process can be shown as two or more abstract processes communicating with each other (see Figure 
7.3). With an abstract process, the activities for the collaboration participants can be considered the “touch-points” 
between the participants. The actual (executable) processes are likely to have much more activity and detail than what is 
shown in the abstract processes.

Figure 7.3 - Example of a Collaboration Business Process

Types of BPD Diagrams

Within and between these three BPMN sub-models, many types of Diagrams can be created. The following are the types 
of business processes that can be modeled with BPMN (those with asterisks may not map to an executable language):

• High-level private process activities (not functional breakdown)*

• Detailed private business process

• As-is or old business process*

• To-be or new business process

• Detailed private business process with interactions to one or more external entities (or “Black Box” processes)

• Two or more detailed private business processes interacting

• Detailed private business process relationship to Abstract Process 

• Detailed private business process relationship to Collaboration Process

• Two or more Abstract Processes*

• Abstract Process relationship to Collaboration Process*

• Collaboration Process only (e.g., ebXML BPSS or RosettaNet)*
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• Two or more detailed private business processes interacting through their Abstract Processes

• Two or more detailed private business processes interacting through a Collaboration Process

• Two or more detailed private business processes interacting through their Abstract Processes and a Collaboration 
Process

BPMN is designed to allow all the above types of Diagrams. However, it should be cautioned that if too many types of 
sub-models are combined, such as three or more private processes with message flow between each of them, then the 
Diagram may become too hard for someone to understand. Thus, we recommend that the modeler pick a focused purpose 
for the BPD, such as a private process, or a collaboration process. 

BPMN mappings

Since BPMN covers such a wide range of usage, it will map to more than one lower-level specification language:

• BPEL4WS are the primary languages that BPMN will map to, but they only cover a single executable private business 
process. If a BPMN Diagram depicts more than one internal business process, then there will be a separate mapping for 
each on the internal business processes. 

• The abstract sections of a BPMN Diagram will be mapped to Web service interfaces specifications, such as the abstract 
processes of BPEL4WS.

• The Collaboration model sections of a BPMN may be mapped Collaboration models such as ebXML BPSS, 
RosettaNet, and the W3C Choreography Working Group Specification (when it is completed).

This specification will only cover a mapping to BPEL4WS. Mappings to other specifications will have to be a separate 
effort, or perhaps a future direction of BPMN (beyond Version 1.0 of the BPMN specification). It is hard to predict which 
mappings will be applied to BPMN at this point, since process language specifications is a volatile area of work, with 
many new offerings and mergings. 

A BPD is not designed to graphically convey all the information required to execute a business process. Thus, the graphic 
elements of BPMN will be supported by attributes that will supply the additional information required to enable a 
mapping to BPEL4WS. A complete list of all the element attributes can be found in Annex B. 

7.1.2  Diagram Point of View

Since a BPMN Diagram may depict the Processes of different Participants, each Participant may view the Diagram 
differently. That is, the Participants have different points of view regarding how the Processes will apply to them. Some 
of the activities will be internal to the Participant (meaning performed by or under control of the Participant) and other 
activities will be external to the Participant. Each Participant will have a different perspective as to which are internal and 
external. At runtime, the difference between internal and external activities is important in how a Participant can view the 
status of the activities or trouble-shoot any problems. However, the Diagram itself remains the same. Figure 7.3, above, 
displays a Business Process that has two points of view. One point of view is of a Patient, the other is of the Doctor’s 
office. The Diagram shows the activities of both participants in the Process, but when the Process is actually being 
performed, each Participant will only have control over their own activities.

Although the Diagram point of view is important for a viewer of the Diagram to understand how the behavior of the 
Process will relate to that viewer, BPMN will not currently specify any graphical mechanisms to highlight the point of 
view. It is open to the modeler or modeling tool vendor to provide any visual cues to emphasize this characteristic of a 
Diagram. 
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7.1.3 Extensibility of BPMN and Vertical Domains

BPMN is intended to be extensible by modelers and modeling tools. This extensibility allows modelers to add non-
standard elements or Artifacts to satisfy a specific need, such as the unique requirements of a vertical domain. While 
extensible, BPMN Diagrams should still have the basic look-and-feel so that a Diagram by any modeler should be easily 
understood by any viewer of the Diagram. Thus the footprint of the basic flow elements (Events, activities, and 
Gateways) should not be altered. Nor should any new flow elements be added to a BPD, since there is no specification as 
to how Sequence and Message Flow will connect to any new Flow Object. In addition, mappings to execution languages 
may be affected if new flow elements are added. To satisfy additional modeling concepts that are not part of the basic set 
of flow elements, BPMN provides the concept of Artifacts that can be linked to the existing Flow Objects through 
Associations. Thus, Artifacts do not affect the basic Sequence or Message Flow, nor do they affect mappings to execution 
languages.

The graphical elements of BPMN are designed to be open to allow specialized markers to convey specialized information. 
For example, the three types of Events all have open centers for the markers that BPMN standardizes as well as user-
defined markers.
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8 Business Process Diagrams

This chapter provides a summary of the BPMN graphical objects and their relationships. More details on the concepts will 
be provided in 9, Business Process Diagram Graphical Objects and 10, Business Process Diagram Connecting Objects.

A goal for the development of BPMN is that the notation be simple and adoptable by business analysts. Also, there is a 
potentially conflicting requirement that BPMN provide the power to depict complex business processes and map to BPM 
execution languages. To help understand how BPMN can manage both requirements, the list of BPMN graphic elements 
is presented in two groups.

First, there is the list of core elements that will support the requirement of a simple notation. These are the elements that 
define the basic look-and-feel of BPMN. Most business processes will be modeled adequately with these elements. 
Second, there is the entire list of elements, including the core elements, which will help support requirement of a powerful 
notation to handle more advanced modeling situations. And further, the graphical elements of the notation will be 
supported by non-graphical attributes that will provide the remaining information necessary to map to an execution 
language or other business modeling purposes.

8.1 BPD Core Element Set

It should be emphasized that one of the drivers for the development of BPMN is to create a simple mechanism for 
creating business process models, while at the same time being able to handle the complexity inherent to business 
processes. The approach taken to handle these two conflicting requirements was to organize the graphical aspects of the 
notation into specific categories. This provides a small set of notation categories so that the reader of a BPMN diagram 
can easily recognize the basic types of elements and understand the diagram. Within the basic categories of elements, 
additional variation and information can be added to support the requirements for complexity without dramatically 
changing the basic look and feel of the diagram. The four basic categories of elements are:

1. Flow Objects

2. Connecting Objects

3. Swimlanes

4. Artifacts

Flow Objects are the main graphical elements to define the behavior of a Business Process. There are three Flow Objects:

1. Events

2. Activities

3. Gateways

There are three ways of connecting the Flow Objects to each other or other information. There are three Connecting 
Objects:

1. Sequence Flow

2. Message Flow

3. Association
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There are two ways of grouping the primary modeling elements through “Swimlanes:”

1. Pools

2. Lanes

Artifacts are used to provide additional information about the Process. There are three standardized Artifacts, but 
modelers or modeling tools are free to add as many Artifacts as required. There may be addition BPMN efforts to 
standardize a larger set of Artifacts for general use or for vertical markets. The current set of Artifacts include:

1. Data Object

2. Group

3. Annotation

Table 8.1 displays a list of the core modeling elements that are depicted by the notation.

Table 8.1  - Core Modeling Elements

Element Description Notation

Event An event is something that “happens” during the 
course of a business process (“Events” on page 35). 
These events affect the flow of the process and 
usually have a cause (trigger) or an impact (result). 
Events are circles with open centers to allow 
internal markers to differentiate different triggers or 
results. There are three types of Events, based on 
when they affect the flow: Start, Intermediate, and 
End.

Activity An activity is a generic term for work that company 
performs (“Activities” on page 52). An activity can 
be atomic or non-atomic (compound). The types of 
activities that are a part of a Process Model are: 
Process, Sub-Process, and Task. Tasks and Sub-
Processes are rounded rectangles. Processes are 
contained within a Pool. 

Gateway A Gateway is used to control the divergence and 
convergence of Sequence Flow (“Gateways” on 
page 70). Thus, it will determine branching, 
forking, merging, and joining of paths. Internal 
Markers will indicate the type of behavior control.
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Table 8.2 - BPD Core Element Set

Element Description Notation

Sequence Flow A Sequence Flow is used to show the order that 
activities will be performed in a Process (“Sequence 
Flow” on page 97).

Message Flow A Message Flow is used to show the flow of 
messages between two participants that are 
prepared to send and receive them (“Message Flow” 
on page 99). In BPMN, two separate Pools in a 
Diagram will represent the two participants (e.g., 
business entities or business roles).

Association An Association is used to associate information 
with Flow Objects. Text and graphical non-Flow 
Objects can be associated with Flow Objects. An 
arrowhead on the Association indicates a direction 
of flow (e.g., data), when appropriate 
(“Association” on page 101).

Pool A Pool represents a Participant in a Process (“Pool” 
on page 87) also acts as a “swimlane” and a 
graphical container for partitioning a set of 
activities from other Pools, usually in the context of 
B2B situations.

Lane A Lane is a sub-partition within a Pool and will 
extend the entire length of the Pool, either vertically 
or horizontally (“Lane” on page 89). Lanes are used 
to organize and categorize activities.

Data Object Data Objects are considered Artifacts because they 
do not have any direct effect on the Sequence Flow 
or Message Flow of the Process, but they do 
provide information about what activities require to 
be performed and/or what they produce (“Data 
Object” on page 93).

Group (a box around a 
group of objects within 
the same category)

A grouping of activities that are within the same 
category (“Group” on page 95). This type of 
grouping does not affect the Sequence Flow of the 
activities within the group. The category name 
appears on the diagram as the group label. 
Categories can be used for documentation or 
analysis purposes. Groups are one way in which 
categories of objects can be visually displayed on 
the diagram.
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8.2 BPD Extended Set

Table 8.3 displays a more extensive list of the business process concepts that could be depicted through a business process 
modeling notation.

Text Annotation 
(attached with an 
Association)

Text Annotations are a mechanism for a modeler to 
provide additional information for the reader of a 
BPMN Diagram (“Text Annotation” on page 94).

Table 8.3 - BPD Extended Element Set

Element Description Notation

Event An event is something that “happens” 
during the course of a business process. 
These events affect the flow of the 
process and usually have a cause (trigger) 
or an impact (result). There are three 
types of Events, based on when they 
affect the flow: Start, Intermediate, and 
End.

Flow Dimension (e.g., 
Start, Intermediate, End)

Start (None, 
Message, Timer, 
Conditional, Signal, 
Multiple)

Intermediate (None, 
Message, Timer, 
Error, Cancel, 
Compensation, 
Conditional, Link, 
Signal, Multiple)

End (None, Message, 
Error, Cancel, 
Compensation,     
Signal,Terminate, 
Multiple)

As the name implies, the Start Event 
indicates where a particular process will 
start (“Start” on page 36).

Intermediate Events occur between a Start 
Event and an End Event (“Intermediate” 
on page 44). They will affect the flow of 
the process, but will not start or (directly) 
terminate the process.

As the name implies, the End Event 
indicates where a process will end (“End” 
on page 40).  

Start

Intermediate

End

Table 8.2 - BPD Core Element Set

Descriptive Text
Here

Name or
Source
20                 Business Process Modeling Notation, v1.2



Type Dimension (e.g., None,  
Message, Timer, Error, 
Cancel, Compensation, 
Conditional, Link, Signal,  
Multiple, Terminate.)

Start and most Intermediate Events have 
“Triggers” that define the cause for the 
event (“Start” on page 36 and 
“Intermediate” on page 44). There are 
multiple ways that these events can be 
triggered. End Events may define a 
“Result” that is a consequence of a 
Sequence Flow ending (“End” on page 
40).  Start Events can only react to 
(“catch”) a Trigger. End Events can only 
create (“throw”) a Result. Intermediate 
Events can catch or throw Triggers. For 
the Events, Triggers that catch, the 
markers are unfilled, and for Triggers and 
Results that throw, the markers are filled.  

Task (Atomic) A Task is an atomic activity that is 
included within a Process (“Task” on 
page 64). A Task is used when the work 
in the Process is not broken down to a 
finer level of Process Model detail.

Process/Sub-Process (non-
atomic)

A Sub-Process is a compound activity 
that is included within a Process (“Sub-
Process” on page 56).  It is compound in 
that it can be broken down into a finer 
level of detail (a Process) through a set of 
sub-activities.

See Next Two Figures

Collapsed Sub-Process The details of the Sub-Process are not 
visible in the Diagram (“Sub-Process” on 
page 56). A “plus” sign in the lower-
center of the shape indicates that the 
activity is a Sub-Process and has a lower-
level of detail.

Table 8.3 - BPD Extended Element Set
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Expanded Sub-Process The boundary of the Sub-Process is 
expanded and the details (a Process) are 
visible within its boundary (“Sub-
Process” on page 56).  
Note that Sequence Flow cannot cross the 
boundary of a Sub-Process.

Gateway A Gateway is used to control the 
divergence and convergence of multiple 
Sequence Flow (“Gateways” on page 70). 
Thus, it will determine branching, 
forking, merging, and joining of paths. 

Gateway Control Types Icons within the diamond shape will 
indicate the type of flow control behavior. 
The types of control include:

• Exclusive decision and merging. 
Both Data-Based (“Data-Based” on 
page 73) and Event-Based (“Event-
Based” on page 77).  Data-Based can 
be shown with or without the “X” 
marker.

• Inclusive decision and merging 
(“Inclusive Gateways” on page 80). 

• Complex -- complex conditions and 
situations (e.g., 3 out of 5; “Complex 
Gateways” on page 83). 

• Parallel forking and joining (“Parallel 
Gateways” on page 85).  

Each type of control affects both the 
incoming and outgoing Flow.

Sequence Flow A Sequence Flow is used to show the 
order that activities will be performed in 
a Process (“Sequence Flow” on page 97). 

See next seven figures

Normal Flow Normal Sequence Flow refers to the flow 
that originates from a Start Event and 
continues through activities via 
alternative and parallel paths until it ends 
at an End Event (“Normal Flow” on page 
104).  

Table 8.3 - BPD Extended Element Set

Name
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Uncontrolled flow Uncontrolled flow refers to flow that is 
not affected by any conditions or does not 
pass through a Gateway (“Gateways” on 
page 70). The simplest example of this is 
a single Sequence Flow connecting two 
activities. This can also apply to multiple 
Sequence Flow that converge on or 
diverge from an activity. For each 
uncontrolled Sequence Flow a “Token” 
will flow from the source object to the 
target object.

Conditional flow Sequence Flow can have condition 
expressions that are evaluated at runtime 
to determine whether or not the flow will 
be used (“Sequence Flow” on page 97).

• If the conditional flow is outgoing 
from an activity, then the Sequence 
Flow will have a mini-diamond at the 
beginning of the line (see figure to the 
right).

• If the conditional flow is outgoing 
from a Gateway, then the line will not 
have a mini-diamond (see figure in 
the row above).

Default flow For Data-Based Exclusive Decisions or 
Inclusive Decisions, one type of flow is 
the Default condition flow (“Sequence 
Flow” on page 97). This flow will be 
used only if all the other outgoing 
conditional flow is not true at runtime. 
These Sequence Flow will have a 
diagonal slash that will be added to the 
beginning of the line (see the figure to the 
right).

Exception Flow Exception Flow occurs outside the 
Normal Flow of the Process and is based 
upon an Intermediate Event that occurs 
during the performance of the Process 
(“Exception Flow” on page 127).

Table 8.3 - BPD Extended Element Set

Exception
Flow
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Message Flow A Message Flow is used to show the flow 
of messages between two entities that are 
prepared to send and receive them 
(“Message Flow” on page 99). In BPMN, 
two separate Pools in the Diagram will 
represent the two entities.

Compensation Association Compensation Association occurs outside 
the Normal Flow of the Process and is 
based upon an event (a Compensation 
Intermediate Event) that is triggered 
through the failure of a Transaction or a 
Compensate Event (“Compensation 
Association” on page 129). The target of 
the Association must be marked as a 
Compensation Activity.

Data Object Data Objects are considered Artifacts 
because they do not have any direct effect 
on the Sequence Flow or Message Flow 
of the Process, but they do provide 
information about what activities require 
to be performed and/or what they produce 
(“Data Object” on page 93).

Fork BPMN uses the term “fork” to refer to 
the dividing of a path into two or more 
parallel paths (also known as an AND-
Split; “Forking Flow” on page 107).
It is a place in the Process where 
activities can be performed concurrently, 
rather than sequentially. There are two 
options: 

• Multiple Outgoing Sequence Flow 
can be used (see figure top-right). 
This represents “uncontrolled” flow 
is the preferred method for most 
situations.

• A Parallel Gateway can be used (see 
figure bottom-right). This will be 
used rarely, usually in combination 
with other Gateways.

Table 8.3 - BPD Extended Element Set

Name
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Join BPMN uses the term “join” to refer to the 
combining of two or more parallel paths 
into one path (also known as an AND-
Join or synchronization; “Joining Flow” 
on page 110). A Parallel Gateway is used 
to show the joining of multiple Flow.

Decision, Branching Point Decisions are Gateways within a business 
process where the flow of control can 
take one or more alternative paths 
(“Gates” on page 72).

See next five rows.

Exclusive An Exclusive Gateway restricts the flow 
such that only one of a set of alternatives 
may be chosen during runtime (“Gates” 
on page 72). There are two types of 
Exclusive Gateways: Data-based and 
Event-based.

Data-Based This Decision represents a branching 
point where Alternatives are based on 
conditional expressions contained within 
the outgoing Sequence Flow (“Data-
Based” on page 73). Only one of the 
Alternatives will be chosen.

Table 8.3 - BPD Extended Element Set

Default

Condition 1
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Event-Based This Decision represents a branching 
point where Alternatives are based on an 
Event that occurs at that point in the 
Process (“Event-Based” on page 77).
The specific Event, usually the receipt of 
a Message, determines which of the paths 
will be taken. Other types of Events can 
be used, such as Timer. Only one of the 
Alternatives will be chosen. There are 
two options for receiving Messages: 

• Tasks of Type Receive can be used 
(see figure top-right). 

• Intermediate Events of Type Message 
can be used (see figure bottom-right).

Inclusive This Decision represents a branching 
point where Alternatives are based on 
conditional expressions contained within 
the outgoing Sequence Flow (“Inclusive 
Gateways” on page 80).
In some sense it is a grouping of related 
independent Binary (Yes/No) Decisions. 
Since each path is independent, all 
combinations of the paths may be taken, 
from zero to all. However, it should be 
designed so that at least one path is taken. 
A Default Condition could be used to 
ensure that at least one path is taken.
There are two versions of this type of 
Decision:

• The first uses a collection of 
conditional Sequence Flow, marked 
with mini-diamonds (see top-right 
figure). 

• The second uses an Inclusive 
Gateway (see bottom-right picture).

Table 8.3 - BPD Extended Element Set

Condition 1

Condition 2

Condition 2

Condition 1
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Merging BPMN uses the term “merge” to refer to 
the exclusive combining of two or more 
paths into one path (also known as an 
OR-Join; “Merging Flow” on page 114).
A Merging Exclusive Gateway is used to 
show the merging of multiple Flow. If all 
the incoming flow is alternative, then a 
Gateway is not needed. That is, 
uncontrolled flow provides the same 
behavior.

Looping BPMN provides 2 (two) mechanisms for 
looping within a Process.

See Next Two Figures

Activity Looping The attributes of Tasks and Sub-
Processes will determine if they are 
repeated or performed once (“Looping” 
on page 118).
There are two types of loops: Standard 
and Multi-Instance. A small looping 
indicator will be displayed at the bottom-
center of the activity.

Sequence Flow Looping Loops can be created by connecting a 
Sequence Flow to an “upstream” object 
(“Looping” on page 118).
An object is considered to be upstream if 
that object has an outgoing Sequence 
Flow that leads to a series of other 
Sequence Flow, the last of which is an 
incoming Sequence Flow for the original 
object.

Multiple Instances The attributes of Tasks and Sub-
Processes will determine if they are 
repeated or performed once (“Looping” 
on page 118). A small parallel indicator 
will be displayed at the bottom-center of 
the activity.

Table 8.3 - BPD Extended Element Set
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Process Break (something out 
of the control of the process 
makes the process pause)

A Process Break is a location in the 
Process that shows where an expected 
delay will occur within a Process 
(“Intermediate” on page 44).
An Intermediate Event is used to show 
the actual behavior (see top-right figure). 
In addition, a Process Break Artifact, as 
designed by a modeler or modeling tool, 
can be associated with the Event to 
highlight the location of the delay within 
the flow.

Transaction A transaction is a Sub-Process that is 
supported by a special protocol that 
insures that all parties involved have 
complete agreement that the activity 
should be completed or cancelled (“Sub-
Process Behavior as a Transaction” on 
page 62).
The attributes of the activity will 
determine if the activity is a transaction. 
A double-lined boundary indicates that 
the Sub-Process is a Transaction.

Nested/Embedded Sub-
Process (Inline Block)

A nested (or embedded) Sub-Process is 
an activity that shares the same set of 
data as its parent process (“Embedded 
Sub-Process” on page 58). This is 
opposed to a Sub-Process that is 
independent, re-usable, and referenced 
from the parent process. Data needs to be 
passed to the referenced Sub-Process, but 
not to the nested Sub-Process.

There is no special indicator for nested Sub-
Processes

Group (a box around a group 
of objects within the same 
category)

A grouping of activities that are within 
the same category (“Group” on page 95). 
This type of grouping does not affect the 
Sequence Flow of the activities within the 
group. The category name appears on the 
diagram as the group label. Categories 
can be used for documentation or analysis 
purposes. Groups are one way in which 
categories of objects can be visually 
displayed on the diagram.

Table 8.3 - BPD Extended Element Set
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8.3 Use of Text, Color, Size, and Lines in a Diagram

Text Annotation objects can be used by the modeler to display additional information about a Process or attributes of the 
objects within the Process. 

• Flow objects and Flow MAY have labels (e.g., its name and/or other attributes) placed inside the shape, or above or 
below the shape, in any direction or location, depending on the preference of the modeler or modeling tool vendor.

• The fills that are used for the graphical elements MAY be white or clear.

• The notation MAY be extended to use other fill colors to suit the purpose of the modeler or tool (e.g., to highlight 
the value of an object attribute). 

• Flow objects and markers MAY be of any size that suits the purposes of the modeler or modeling tool. 
 

Off-Page Connector Generally used for printing, this object 
will show where the Sequence Flow 
leaves one page and then restarts on the 
next page (“Sequence Flow Jumping 
(Off-Page Connectors and Go To 
Objects)” on page 121).
A Link Intermediate Event can be used as 
an Off-Page Connector.

Association An Association is used to associate 
information with Flow Objects 
(“Association” on page 101).
Text and graphical non-Flow Objects can 
be associated with the Flow Objects.

Text Annotation (attached 
with an Association)

Text Annotations are a mechanism for a 
modeler to provide additional information 
for the reader of a BPMN Diagram 
(“Text Annotation” on page 94).

Pool A Pool represents a Participant in a 
Process (“Pool” on page 87).
It is also acts as a “swimlane” and a 
graphical container for partitioning a set 
of activities from other Pools, usually in 
the context of B2B situations.

Lanes A Lane is a sub-partition within a Pool 
and will extend the entire length of the 
Pool, either vertically or horizontally 
(“Lane” on page 89).
Lanes are used to organize and categorize 
activities within a Pool.

Table 8.3 - BPD Extended Element Set
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• The lines that are used to draw the graphical elements MAY be black.

• The notation MAY be extended to use other line colors to suit the purpose of the modeler or tool (e.g., to highlight 
the value of an object attribute).

• The notation MAY be extended to use other line styles to suit the purpose of the modeler or tool (e.g., to highlight 
the value of an object attribute) with the condition that the line style MUST NOT conflict with any current BPMN 
defined line style. Thus, the line styles of Sequence Flow, Message Flow, and Associations MUST NOT be 
modified.

8.4 Flow Object Connection Rules

An incoming Sequence Flow can connect to any location on a Flow Object (left, right, top, or bottom). Likewise, an 
outgoing Sequence Flow can connect from any location on a Flow Object (left, right, top, or bottom). Message Flow also 
has this capability. BPMN allows this flexibility, however, we also recommend that modelers use judgment or best 
practices in how Flow Objects should be connected so that readers of the Diagrams will find the behavior clear and easy 
to follow. This is even more important when a Diagram contains Sequence Flow and Message Flow. In these situations it 
is best to pick a direction of Sequence Flow, either left to right or top to bottom, and then direct the Message Flow at a 
90° angle to the Sequence Flow. The resulting Diagrams will be much easier to understand.

8.4.1 Sequence Flow Rules

Table 8.4 displays the BPMN Flow Objects and shows how these objects can connect to one another through Sequence 
Flow. The  symbol indicates that the object listed in the row can connect to the object listed in the column. The quantity 
of connections into and out of an object is subject to various configuration dependencies are not specified here. Refer to 
the sections in the next chapter for each individual object for more detailed information on the appropriate connection 
rules. Note that if a sub-process has been expanded within a Diagram, the objects within the sub-process cannot be 
connected to objects outside of the sub-process. Nor can Sequence Flow cross a Pool boundary.

Table 8.4 - Sequence Flow Connection Rules

From\To
+

Name Name

+

Name
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Note – Only those objects that can have incoming and/or outgoing Sequence Flow are shown in the table. Thus, Pool, Lane, 
Data Object, and Text Annotation are not listed in the table.

8.4.2 Message Flow Rules

Table 8.5 displays the BPMN modeling objects and shows how these objects can connect to one another through Message 
Flow. The  symbol indicates that the object listed in the row can connect to the object listed in the column. The quantity 
of connections into and out of an object is subject to various configuration dependencies are not specified here. Refer to 
the sections in the next chapter for each individual object for more detailed information on the appropriate connection 
rules. Note that Message Flow cannot connect to objects that are within the same Pool.

Note – Only those objects that can have incoming and/or outgoing Message Flow are shown in the table. Thus, Lane, 
Gateway, Data Object, and Text Annotation are not listed in the table.

8.5 Business Process Diagram Attributes

The following table displays the set of attributes of a Business Process Diagram:

Table 8.5 - Message Flow Connection Rules

From\To
 

Table 8.6 - Business Process Diagram Attributes 

Attributes Description

Id: Object This is a unique Id that distinguishes the Diagram from other Diagrams.

Name: String Name is an attribute that is text description of the Diagram.

Version (0-1) : String This defines the Version number of the Diagram.

Author (0-1) : String This holds the name of the author of the Diagram.
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8.6 Processes

A Process is an activity performed within or across companies or organizations. In BPMN a Process is depicted as a 
graph of Flow Objects, which are a set of other activities and the controls that sequence them. The concept of process is 
intrinsically hierarchical. Processes may be defined at any level from enterprise-wide processes to processes performed by 
a single person. Low-level processes may be grouped together to achieve a common business goal.

Note that BPMN defines the term Process fairly specifically and defines a Business Process more generically as a set of 
activities that are performed within an organization or across organizations. Thus a Business Process, as shown in a 
Business Process Diagram, may contain more than one separate Process. Each Process may have its own Sub-Processes 
and would be contained within a Pool (“Pool” on page 264). The individual Processes would be independent in terms of 
Sequence Flow, but could have Message Flow connecting them.

8.6.1 Attributes

The following table displays the set of attributes of a Process, and which extends the set of common BPMN Element 
attributes (see Table B.2).

Language (0-1) : String This holds the name of the language in which text is written. The default is 
English.

QueryLanguage (0-1) : String A Language MAY be provided so that the syntax of queries used in the Diagram 
can be understood.

CreationDate (0-1) : Date This defines the date on which the Diagram was created (for the current Version).

ModificationDate (0-1) : Date This defines the date on which the Diagram was last modified (for this Version).

Pools (1-n) : Pool A BPD SHALL contain one or more Pools. The boundary of one of the Pools 
MAY be invisible (especially if there is only one Pool in the Diagram). Refer to  
“Pool” on page 264 for more information about Pools.

Documentation (0-1) : String The modeler MAY add optional text documentation about the Diagram.

Table 8.7 - Process Attributes

Attributes Description

Name : String Name is an attribute that is a text description of the object.

ProcessType (None | Private | 
Abstract | Collaboration) None : 
String

ProcessType is an attribute that provides information about which lower-level 
language the Pool will be mapped. By default, the ProcessType is None (or 
undefined).

Status (None | Ready | Active | 
Cancelled | Aborting | Aborted | 
Completing | Completed) None : 
String

The Status of a Process is determined when the Process is being executed by a 
process engine. The Status of a Process can be used within Assignment 
Expressions.

Table 8.6 - Business Process Diagram Attributes 

Attributes Description
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GraphicalElements (0-n) : 
Object

The GraphicalElements attribute identifies all of the objects (e.g., Events, 
Activities, Gateways, and Artifacts) that are contained within the Business 
Process.

Performers (0-n) : String One or more Performers MAY be entered. The Performers attribute defines the 
resource that will be responsible for the Process. The Performers entry could be in 
the form of a specific individual, a group, an organization role or position, or an 
organization.

Assignments (0-n) : Assignment One or more assignment expressions MAY be made for the object. The 
Assignment SHALL be performed as defined by the AssignTime attribute. The 
details of the Assignment are defined in “Assignment” on page 273.

Properties (0-n) : Property Modeler-defined Properties MAY be added to a Process. These Properties are 
“local” to the Process. All Tasks, Sub-Process objects, and Sub-Processes that are 
embedded SHALL have access to these Properties. The fully delineated name of 
these properties are “<process name>.<property name>” (e.g., “Add 
Customer.Customer Name”). If a process is embedded within another Process, 
then the fully delineated name SHALL also be preceded by the Parent Process 
name for as many Parents there are until the top level Process. Further details 
about the definition of a Property can be found in “Property” on page 279.

InputSets (0-n) : InputSet The InputSets attribute defines the data requirements for input to the Process. 
Zero or more InputSets MAY be defined. Each Input set is sufficient to allow the 
Process to be performed (if it has first been instantiated by the appropriate signal 
arriving from an incoming Sequence Flow). Further details about the definition of 
an InputSet can be found in “InputSet” on page 278.

OutputSets (0-n) : OutputSet The OutputSets attribute defines the data requirements for output from the 
Process. Zero or more OutputSets MAY be defined. At the completion of the 
Process, only one of the OutputSets may be produced. It is up to the 
implementation of the Process to determine which set will be produced. However, 
the IORules attribute MAY indicate a relationship between an OutputSet and an 
InputSet that started the Process. Further details about the definition of an 
OutputSet can be found in “OutputSet” on page 279.

AdHoc False : Boolean AdHoc is a boolean attribute, which has a default of False. This specifies whether 
the Process is Ad Hoc or not. The activities within an Ad Hoc Process are not 
controlled or sequenced in a particular order, their performance is determined by 
the performers of the activities. If set to True, then the Ad Hoc marker SHALL be 
placed at the bottom center of the Process or the Sub-Process shape for Ad Hoc 
Processes.

[AdHoc = True only]

AdHocOrdering (0-1) 
(Sequential | Parallel) Parallel : 
String

If the Process is Ad Hoc (the AdHoc attribute is True), then the AdHocOrdering 
attribute MUST be included. This attribute defines if the activities within the 
Process can be performed in Parallel or must be performed sequentially. The 
default setting is Parallel and the setting of Sequential is a restriction on the 
performance that may be required due to shared resources. 

Table 8.7 - Process Attributes

Attributes Description
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[AdHoc = True only]

AdHocCompletionCondition 
(0-1) : Expression

If the Process is Ad Hoc (the AdHoc attribute is True), then the 
AdHocCompletionCondition attribute MUST be included. This attribute defines 
the conditions when the Process will end. 

Table 8.7 - Process Attributes

Attributes Description
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9 Business Process Diagram Graphical Objects

This section details the graphical representation and the semantics of the behavior of Business Process Diagram graphical 
elements. See Annex A for more information about how these elements map to execution languages.

9.1 Common BPMN Element Attributes

The following table displays a set of common attributes for BPMN elements (graphical elements and supporting elements).

These attributes are used for Graphical Elements [Flow Objects (Section 9.2, “Common Flow Object Attributes,” on page 
35), Connecting Objects (Section 10.1, “Graphical Connecting Objects,” on page 97), Swimlanes (Section 9.6, “Swimlanes 
(Pools and Lanes),” on page 86), and Artifacts (Section 9.7, “Artifacts,” on page 92)], and Supporting Elements 
(Section B.11, “Supporting Elements,” on page 270).

9.2 Common Flow Object Attributes

The following table displays a set of common attributes for BPMN Flow Objects (Events, Activities, and Gateways), and 
which extends the set of common BPMN Element attributes (see Table 9.1).

9.3 Events

An Event is something that “happens” during the course of a business process. These Events affect the flow of the Process 
and usually have a cause or an impact. The term “event” is general enough to cover many things in a business process. 
The start of an activity, the end of an activity, the change of state of a document, a message that arrives, etc., all could be 
considered events. However, BPMN has restricted the use of events to include only those types of events that will affect 
the sequence or timing of activities of a process. BPMN further categorizes Events into three main types: Start, 
Intermediate, and End.

Table 9.1 - Common BPMN Element Attributes

Attributes Description

Id : Object This is a unique Id that identifies the object from other objects within the 
Diagram.

Categories (0-n) : Category The modeler MAY add one or more defined Categories, which have user-defined 
semantics, and that can be used for purposes such as reporting and analysis. The 
details of Catogories are defined in “Category” on page 273.

Documentation (0-1) : String The modeler MAY add text documentation about the object.

Table 9.2 - Common Flow Object Attributes

Attributes Description

Name : String Name is an attribute that is text description of the object.

Assignments (0-n) : Assignment One or more assignment expressions MAY be made for the object. For activities 
(Task, Sub-Process, and Process), the Assignment SHALL be performed as 
defined by the AssignTime attribute. The Details of the Assignment is defined in 
Section B.11.3, “Assignment,” on page 273.
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Start and most Intermediate Events have “Triggers” that define the cause for the event. There are multiple ways that these 
events can be triggered (“Start Event Triggers” on page 38 and “Intermediate Event Triggers” on page 45). End Events 
may define a “Result” that is a consequence of a Sequence Flow ending. There are multiple types of Results that can be 
defined (“End Event Results” on page 41).

All Events share the same shape footprint, a small circle. Different line styles, as shown below, distinguish the three types 
of flow Events. All Events also have an open center so that BPMN-defined and modeler-defined icons can be included 
within the shape to help identify the Trigger or Result of the Event.

9.3.1 Common Event Attributes

The following table displays the set of attributes common to the three types of Events, and which extends the set of 
common Flow Object attributes (see Table 9.2).

9.3.2 Start

As the name implies, the Start Event indicates where a particular Process will start. In terms of Sequence Flow, the Start 
Event starts the flow of the Process, and thus, will not have any incoming Sequence Flow—no Sequence Flow can 
connect to a Start Event. 

The Start Event shares the same basic shape of the Intermediate Event and End Event, a circle with an open center so that 
markers can be placed within the circle to indicate variations of the Event. 

° A Start Event is a circle that MUST be drawn with a single thin line (see Figure 9.1). 

° The use of text, color, size, and lines for a Start Event MUST follow the rules defined in  
Section 8.3, “Use of Text, Color, Size, and Lines in a Diagram,” on page 29 with the exception that:

° The thickness of the line MUST remain thin so that the Start Event may be distinguished from the 
Intermediate and End Events.

Figure 9.1 - A Start Event

Throughout this document, we will discuss how Sequence Flow proceeds within a Process. To facilitate this discussion, 
we will employ the concept of a “Token” that will traverse the Sequence Flow and pass through the Flow Objects in the 
Process. The behavior of the Process can be described by tracking the path(s) of the Token through the Process. A Token 
will have a unique identity, called a TokenId set, that can be used to distinguish multiple Tokens that may exist because 
of concurrent Process instances or the dividing of the Token for parallel processing within a single Process instance. The 
parallel dividing of a Token creates a lower level of the TokenId set. The set of all levels of TokenId will identify a Token.

Table 9.3 - Common Event Attributes

Attributes Description

EventType (Start | End | 
Intermediate) Start : String

The EventType MUST be of type Start, End, or Intermediate.
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A Start Event generates a Token that must eventually be consumed at an End Event (which may be implicit if not 
graphically displayed). The path of Tokens should be traceable through the network of Sequence Flow, Gateways, and 
activities within a Process. There MUST NOT be any implicit flow during the course of normal Sequence Flow (i.e., there 
should always be either Sequence Flow or a graphical indicator, such as an Intermediate Event to show all the potential 
paths of Tokens). An example of implicit flow is when a Token arrives at a Gateway, but none of the Gates are valid, the 
Token would then (implicitly) pass to the end of the Process, which occurs with some modeling notations. Tokens can 
also be directed through exception handling Intermediate Events, which act like a forced end to an activity. Note: A Token 
does not traverse the Message Flow since it is a Message that is passed down those Flow (as the name implies).

Semantics of the Start Event include:

° A Start Event is OPTIONAL: a Process level—a top-level Process or an expanded Sub-Process—MAY (is not 
required to) have a Start Event:

Note – A BPD may have more than one Process level (i.e., it can include Expanded Sub-Processes). The use of Start and End 
Events is independent for each level of the Diagram.

° If a Process is complex and/or the starting conditions are not obvious, then it is RECOMMENDED that a 
Start Event be used.

° If a Start Event is not used, then the implicit Start Event for the Process SHALL NOT have a Trigger.

° If there is an End Event, then there MUST be at least one Start Event.

° If the Start Event is used, then there MUST NOT be other flow elements that do not have incoming 
Sequence Flow—all other Flow Objects MUST be a target of at least one Sequence Flow.

° Exceptions to this are activities that are defined as being Compensation activities (have the 
Compensation Marker). Compensation activities MUST NOT have any incoming Sequence Flow, even 
if there is a Start Event in the Process level. See Section 10.3, “Compensation Association,” on page 129 
for more information on Compensation activities.

° An exception to this is the Intermediate Event, which MAY be without an incoming Sequence Flow 
(when attached to an activity boundary).

° If the Start Event is not used, then all Flow Objects that do not have an incoming Sequence Flow (i.e., are 
not a target of a Sequence Flow) SHALL be instantiated when the Process is instantiated. There is an 
assumption that there is only one implicit Start Event, meaning that all the starting Flow Objects will start at 
the same time.

° Exceptions to this are activities that are defined as being Compensation activities (have the 
Compensation Marker). Compensation Activities are not considered a part of the Normal Flow and 
MUST NOT be instantiated when the Process is instantiated.

° There MAY be multiple Start Events for a given Process level. 

° Each Start Event is an independent event. That is, a Process Instance SHALL be generated when the Start 
Event is triggered.

° If the Process is used as a Sub-Process and there are multiple None Start Events, then when flow is 
transferred from the parent Process to the Sub-Process, only one of the Sub-Process’s Start Events will 
be Triggered. The TargetRef attribute of the Sequence Flow incoming to the Sub-Process object can be 
extended to identify the appropriate Start Event (as defined in the Sub-Process’s “Sequence Flow 
Connections” on page 63). 
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Note – The behavior of Process may be harder to understand if there are multiple Start Events. It is RECOMMENDED that 
this feature be used sparingly and that the modeler be aware that other readers of the Diagram may have difficulty 
understanding the intent of the Diagram.

When the trigger for a Start Event occurs, a new Process will be instantiated and a Token will be generated for each 
outgoing Sequence Flow from that event. The TokenId set for each of the Tokens will be established such that it can be 
identified that the Tokens are all from the same parallel Fork and the number of Tokens in the group. These Tokens will 
begin their flow and not wait for any other Start Event to be triggered. 

If there is a dependency for more than one Event to happen before a Process can start (e.g., two messages are required to 
start), then the Start Events must flow to the same activity within that Process. The attributes of the activity would specify 
when the activity could begin. If the attributes specify that the activity must wait for all inputs, then all Start Events will 
have to be triggered before the Process begins (see “Attributes” on page 39 (for sub-processes) and “Attributes” on page 
65 (for Tasks) for more information about activity attributes). In addition, a correlation mechanism will be required so 
that different triggered Start Events will apply to the same process instance. 

9.3.2.1 Start Event Triggers

There are many ways that business process can be started (instantiated). The Trigger for a Start Event is designed to show 
the general mechanism that will instantiate that particular Process. There are six (6) types of Start Events in BPMN: 
None, Message, Timer, Conditional, Signal, and Multiple. 

Table 9.4 displays the types of Triggers and the graphical marker that will be used for each.

Table 9.4 - Start Event Types

Trigger Description Marker

None The modeler does not display the type of Event. It is also used for a Sub-Process that 
starts when the flow is triggered by its Parent Process.

Message A Message arrives from a participant and triggers the start of the Process.

Timer A specific time-date or a specific cycle (e.g., every Monday at 9am) can be set that 
will trigger the start of the Process.

Conditional This type of event is triggered when a Condition such as “S&P 500 changes by more 
than 10% since opening,” or “Temperature above 300C” become true. The 
ConditionExpression for the Event must become false and then true before the Event 
can be triggered again.
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9.3.2.2 Attributes

Table 9.5 displays the set of attributes of a Start Event, which extends the set of common Event attributes.

9.3.2.3 Sequence Flow Connections

See Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how they may be source or targets 
of Sequence Flow.

° A Start Event MUST NOT be a target for Sequence Flow; it MUST NOT have incoming Sequence Flow.

° An exception to this is when a Start Event is used in an Expanded Sub-Process and is attached to the 
boundary of that Sub-Process. In this case, a Sequence Flow from the higher-level Process MAY connect to 
that Start Event in lieu of connecting to the actual boundary of the Sub-Process (see Figure 10.15). 

° A Start Event MUST be a source for Sequence Flow.

° Multiple Sequence Flow MAY originate from a Start Event. For each Sequence Flow that has the Start Event as 
a source, a new parallel path SHALL be generated.

° The Condition attribute for all outgoing Sequence Flow MUST be set to None.

° When a Start Event is not used, then all Flow Objects that do not have an incoming Sequence Flow SHALL 
be the start of a separate parallel path.

Each path will have a separate unique Token that will traverse the Sequence Flow. 

Trigger Description Marker

Signal A signal arrives that has been broadcast from another Process and triggers the start of 
the Process. Note that the Signal is not a Message, which has a specific target for the 
Message. Multiple Processes can have Start Events that are triggered from the same 
broadcasted Signal. The attributes of a Signal can be found in Section B.11.17, 
“Signal,” on page 280.

Multiple This means that there are multiple ways of triggering the Process. Only one of them 
will be required to start the Process. The attributes of the Start Event will define 
which of the other types of Triggers apply.

Table 9.5 - Start Event Attributes

Attributes Description

Trigger (0-n) : EventDetail Trigger (EventDetail) is an attribute that defines the type of trigger expected for a 
Start Event. Of the set of EventDetailTypes (see Section 9.3.5, “Event Details,” 
on page 49), only four (4) can be applied to a Start Event: Message, Timer, 
Conditional, and Signal (see Table 9.4).

If there is no EventDetail defined, then this is considered a None Start Event and 
the Event will not have an internal marker (see Table 9.4).

If there is more than one EventDetail defined, this is considered a Multiple Start 
Event and the Event will have the pentagon internal marker (see Table 9.4).
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9.3.2.4 Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects and how they may be source or targets 
of Message Flow.

Note – All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objects within 
the Pool boundary. They cannot connect two objects within the same Pool. 

° A Start Event MAY be the target for Message Flow; it can have 0 (zero) or more incoming Message Flow. Each 
Message Flow arriving at a Start Event represents an instantiation mechanism (a Trigger) for the process. Only 
one of the Triggers is required to start a new Process.

° The Trigger attribute of the Start Event MUST be set to “Message” or “Multiple” if there are any incoming 
Message Flow.

° The Trigger attribute of the Start Event MUST be set to “Multiple” if there are more than one incoming 
Message Flow.

° A Start Event MUST NOT be a source for Message Flow; it MUST NOT have outgoing Message Flow.

9.3.3 End

As the name implies, the End Event indicates where a process will end. In terms of Sequence Flow, the End Event ends 
the flow of the Process, and thus, will not have any outgoing Sequence Flow—no Sequence Flow can connect from an 
End Event. 

The End Event shares the same basic shape of the Start Event and Intermediate Event, a circle with an open center so that 
markers can be placed within the circle to indicate variations of the Event.

° An End Event is a circle that MUST be drawn with a single thick black line (see Figure 9.2).

° The use of text, color, size, and lines for an End Event MUST follow the rules defined in Section 8.3, “Use 
of Text, Color, Size, and Lines in a Diagram,” on page 29 with the exception that:

° The thickness of the line MUST remain thick so that the End Event may be distinguished from the 
Intermediate and Start Events. 

Figure 9.2 - End Event

To continue discussing how flow proceeds throughout the process, an End Event consumes a Token that had been 
generated from a Start Event within the same level of Process. If parallel Sequence Flow targets the End Event, then the 
Tokens will be consumed as they arrive. All the Tokens that were generated within the Process must be consumed by an 
End Event before the Process has been completed. In other circumstances, if the Process is a Sub-Process, it can be 
stopped prior to normal completion through interrupting Intermediate Events (see Section 10.2.2, “Exception Flow,” on 
page 127 for more details). In this situation the Tokens will be consumed by an Intermediate Event attached to the 
boundary of the Sub-Process.
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Semantics of the End Event include:

° There MAY be multiple End Events within a single level of a process.

° An End Event is OPTIONAL: a given Process level—a top-level Process or an expanded Sub-Process—MAY (is 
not required to) have this shape:

° If an End Event is not used, then the implicit End Event for the Process SHALL NOT have a Result.

° If there is a Start Event, then there MUST be at least one End Event.

° If an End Event is used, then there MUST NOT be other flow elements that do not have any outgoing 
Sequence Flow—all other Flow Objects MUST be a source of at least one Sequence Flow. 

° Exceptions to this are activities that are defined as being Compensation activities (have the 
Compensation Marker). Compensation Activities MUST NOT have any outgoing Sequence Flow, even 
if there is an End Event in the Process level. Section 10.3, “Compensation Association,” on page 129 for 
more information on Compensation activities.

° If the End Event is not used, then all Flow Objects that do not have any outgoing Sequence Flow (i.e., are 
not a source of a Sequence Flow) mark the end of a path in the Process. However, the process MUST NOT 
end until all parallel paths have completed.

° Exceptions to this are activities that are defined as being Compensation activities (have the 
Compensation Marker). Compensation Activities are not considered a part of the Normal Flow and 
MUST NOT mark the end of the Process.

Note – A BPD may have more than one Process level (i.e., it can include Expanded Sub-Processes). The use of Start and End 
Events is independent for each level of the Diagram.

For Processes without an End Event, a Token entering a path-ending Flow Object will be consumed when the processing 
performed by the object is completed (i.e., when the path has completed), as if the Token had then gone on to reach an 
End Event. When all Tokens for a given instance of the Process are consumed, then the Process will reach a state of being 
completed.

9.3.3.1 End Event Results

There are eight (8) types of End Events in BPMN: None, Message, Error, Cancel, Compensation, Signal, Terminate, and 
Multiple. These types define the consequence of reaching an End Event. This will be referred to as the End Event Result. 

Table 9.6 displays the types of Results and the graphical marker that will be used for each.

Table 9.6 - End Event Types

Result Description Marker

None The modeler does not display the type of Event. It is also used to show the end of 
a Sub-Process that ends, which causes the flow goes back to its Parent Process.

Message This type of End indicates that a message is sent to a participant at the conclusion 
of the Process.  
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9.3.3.2 Attributes

The following table displays the set of attributes of an End Event, which extends the set of common Event attributes (see 
Table 9.3).

Error This type of End indicates that a named Error should be generated. The Error will 
be caught by the Error intermediate event with the same ErrorCode or no 
ErrorCode that is on the boundary of the nearest enclosing parent activity 
(hierarchically). The behavior of the process is unspecified if no activity in the 
Process has such an Error intermediate event. The system executing the process 
may define additional Error handling in this case, a common one being 
termination of the process instance.

Cancel This type of End is used within a Transaction Sub-Process. It will indicate that the 
Transaction should be cancelled and will trigger a Cancel Intermediate Event 
attached to the Sub-Process boundary. In addition, it will indicate that a 
Transaction Protocol Cancel message should be sent to any Entities involved in 
the Transaction.

Compensation This type of End indicates that a Compensation is necessary. If an activity is 
identified, then that is the activity that will be compensated. Otherwise, all 
activities that have completed within the Process, starting with the top-level 
Process and including all Sub-Processes, are subject to compensation, proceeding 
in reverse order. To be compensated, an activity MUST have a Compensation 
Intermediate Event attached to its boundary.  

 

Signal This type of End indicates that a Signal will be broadcast when the End has been 
reached. Note that the Signal, which is broadcast to any Process that can receive 
the Signal, can be sent across Process levels or Pools, but is not a Message (which 
has a specific Source and Target). The attributes of a Signal can be found in 
Section B.11.17, “Signal,” on page 280.

Terminate This type of End indicates that all activities in the Process should be immediately 
ended. This includes all instances of Multi-Instances. The Process is ended 
without compensation or event handling.

 

Multiple This means that there are multiple consequences of ending the Process. All of 
them will occur (e.g., there might be multiple messages sent). The attributes of the 
End Event will define which of the other types of Results apply.

Table 9.6 - End Event Types
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9.3.3.3 Sequence Flow Connections

Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how they may be source or targets of 
Sequence Flow.

° An End Event MUST be a target for Sequence Flow.

° An End Event MAY have multiple incoming Sequence Flow.

The Flow MAY come from either alternative or parallel paths. For modeling convenience, each path MAY connect to a 
separate End Event object. The End Event is used as a Sink for all Tokens that arrive at the Event. All Tokens that are 
generated at the Start Event for that Process must eventually arrive at an End Event. The Process will be in a running state 
until all Tokens are consumed.

° An End Event MUST NOT be a source for Sequence Flow; that is, there MUST NOT be outgoing Sequence 
Flow.

° An exception to this is when an End Event is used in an Expanded Sub-Process and is attached to the 
boundary of that Sub-Process. In this case, a Sequence Flow from the higher-level Process MAY connect 
from that End Event in lieu of connecting from the actual boundary of the Sub-Process (see Figure 10.15). 

9.3.3.4 Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects and how they may be source or targets 
of Message Flow.

Note – All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objects within 
the Pool boundary. They cannot connect two objects within the same Pool. 

° An End Event MUST NOT be the target for Message Flow; it can have no incoming Message Flow. If the 
Intermediate Event has an incoming Message Flow, then it MUST NOT have an outgoing Message Flow.  

° An Intermediate Event of type Message, if it is used within Normal Flow, MAY be the source for Message Flow; 
it can have one outgoing Message Flow. If the Intermediate Event has an outgoing Message Flow, then it MUST 
NOT have an incoming Message Flow. 

Table 9.7 - End Event Attributes

Attributes Description

Result (0-n) : EventDetail Result (EventDetail) is an attribute that defines the type of result expected for an 
End Event. Of the set of EventDetailTypes (see Section 9.3.5, “Event Details,” on 
page 49), only six (6) can be applied to an End Event: Message, Error, Cancel, 
Compensation, Signal, and Terminate (see Table 9.6).

• If there is no EventDetail defined, then this is considered a None End Event 
and the Event will not have an internal marker (see Table 9.6).

• If there is more than one EventDetail defined, this is considered a Multiple 
End Event and the Event will have the pentagon internal marker (see 
Table 9.6).
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9.3.4 Intermediate

As the name implies, the Intermediate Event indicates where something happens (an Event) somewhere between the Start 
and End of a Process. It will affect the flow of the Process, but will not start or (directly) terminate the Process. 
Intermediate Events can be used to:

• show where messages are expected or sent within the Process, 

• show where delays are expected within the Process, 

• disrupt the Normal Flow through exception handling, or

• show the extra work required for compensation.

The Intermediate Event shares the same basic shape of the Start Event and End Event, a circle with an open center so that 
markers can be placed within the circle to indicate variations of the Event.

° An Intermediate Event is a circle that MUST be drawn with a double thin black line. (see Figure 9.3).

° The use of text, color, size, and lines for an Intermediate Event MUST follow the rules defined in 
Section 8.3, “Use of Text, Color, Size, and Lines in a Diagram,” on page 29 with the exception that:

° The thickness of the line MUST remain double so that the Intermediate Event may be distinguished 
from the Start and End Events. 

Figure 9.3 - Intermediate Event

One use of Intermediate Events is to represent exception or compensation handling. This will be shown by placing the 
Intermediate Event on the boundary of a Task or Sub-Process (either collapsed or expanded). Figure 9.4 displays an 
example of an Intermediate Event attached to a Task. The Intermediate Event can be attached to any location of the 
activity boundary and the outgoing Sequence Flow can flow in any direction. However, in the interest of clarity of the 
Diagram, we recommend that the modeler choose a consistent location on the boundary. For example, if the Diagram 
orientation is horizontal, then the Intermediate Events can be attached to the bottom of the activity and the Sequence Flow 
directed down, then to the right. If the Diagram orientation is vertical, then the Intermediate Events can be attached to the 
left or right side of the activity and the Sequence Flow directed to the left or right, then down.

Figure 9.4 - Task with an Intermediate Event attached to its boundary
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9.3.4.1 Intermediate Event Triggers

There are 10 types of Intermediate Events in BPMN: None, Message, Timer, Error, Cancel, Compensation, Conditional,   
Link, Signal, and Multiple. Each type of Intermediate Event will have a different icon placed in the center of the 
Intermediate Event shape to distinguish one from another.

An Intermediate Event that is placed within the normal flow of a Process can be used for one of two purposes. The Event 
can respond to (“catch”) the Event Trigger or the Event can be used to set off (“throw”) the Event Trigger. An 
Intermediate Event that is attached to the boundary of an Activity can only be used to “catch” the Event Trigger.

When a Token arrives at an Intermediate Event that is placed within the normal flow of a Process, one of two things will 
happen. If the Event is used to “throw” the Event Trigger, then Trigger of the Event will immediately occur (e.g., the 
Message will be sent) and the Token will move down the outgoing Sequence Flow. If the Event is used to “catch” the 
Event Trigger, then the Token will remain at the Event until the Trigger occurs (e.g., the Message is received). Then the 
Token will move down the outgoing Sequence Flow. 

Table 9.8 displays the types of Triggers and the graphical marker that will be used for each.

Table 9.8 - Intermediate Event Types

Trigger Description Marker

None This is valid for only Intermediate Events that are in the main flow of the Process. 
The modeler does not display the type of Event. It is used for modeling 
methodologies that use Events to indicate some change of state in the Process.

Message A message arrives from a participant and triggers the Event. This causes the Process 
to continue if it was waiting for the message, or changes the flow for exception 
handling. When used to “catch” the message, then the Event marker will be unfilled 
(see top figure on the right). In Normal Flow, Message Intermediate Events can be 
used for sending messages to a participant. When used to “throw” the message, the 
Event marker will be filled (see bottom figure on the right)  If used for exception 
handling, it will change the Normal Flow into an Exception Flow. 

    

Timer A specific time-date or a specific cycle (e.g., every Monday at 9am) can be set that 
will trigger the Event. If used within the main flow, it acts as a delay mechanism. If 
used for exception handling, it will change the Normal Flow into an Exception Flow.

Error This type of Event can only be attached to the boundary of an activity, thus it reacts 
to (catches) a named error, or to any error if a name is not specified.  

Cancel This type of Intermediate Event is used for a Transaction Sub-Process. This type of 
Event MUST be attached to the boundary of a Sub-Process. It SHALL be triggered if 
a Cancel End Event is reached within the Transaction Sub-Process. It also SHALL 
be triggered if a Transaction Protocol “Cancel” message has been received while the 
Transaction is being performed. 
Business Process Modeling Notation, v1.2        45



Compensation This is used for compensation handling--both activating and performing 
compensation. 
When used in Normal flow, this Intermediate Event indicates that a Compensation is 
necessary. Thus, it is used to “throw” the Compensation event, and the Event marker 
MUST be filled (see the bottom figure on the right). If the Event identifies an 
activity, then that is the activity (and no other) that will be compensated. Otherwise, 
the compensation is broadcast to all activities that have completed within the Process 
Instance, including the top-level Process and including all Sub-Processes. Each 
completed activity that is subject to compensation will be compensated, in the 
reverse order of the completion of the activities. To be compensated, an activity 
MUST have a Compensation Intermediate Event attached to its boundary.
When attached to the boundary of an activity, the Event will be triggered by a 
thrown compensation that identifies that activity or to a broadcast compensation. 
When used to “catch” the Compensation event, the Event marker MUST be unfilled   
(see the top figure on the right). When the Event is triggered, the Compensation 
Activity that is Associated to the Event will be performed (see Figure 9.13). 

    

Conditional This type of event is triggered when a Condition becomes true. The attributes of a 
Condition can be found in Section B.11.5, “Condition,” on page 273.

Link A Link is a mechanism for connecting two sections of a Process. Link Events can be 
used to create looping situations or to avoid long Sequence Flow lines. Link Event 
uses are limited to a single Process level (i.e., they cannot link a parent Process with 
a Sub-Process). Paired Intermediate Events can also be used as “Off-Page 
Connectors” for printing a Process across multiple pages. They can also be used as 
generic “Go To” objects within the Process level. There can be multiple Source Link 
Events, but there can only be one Target Link Event. When used to “catch” from the 
Source Link, the Event marker will be unfilled (see the top figure on the right). 
When used to “throw” to the Target Link, the Event marker will be filled (see the 
bottom figure on the right).  

 

Signal This type of event is used for sending or receiving Signals. A Signal is for general 
communication within and across Process Levels, across Pools, and between 
Business Process Diagrams. A BPMN Signal is similar to a signal flare that shot into 
the sky for anyone who might be interested to notice and then react. Thus, there is a 
source of the Signal, but no specific intended target. This is different than a BPMN 
Message, which has a specific Source and a specific Target (which can be an Entity 
or an abstract Role). This type of Intermediate Event can send or receive a Signal if 
the Event is part of a Normal Flow. The Event can only receive a Signal when 
attached to the boundary of an activity. The Signal Event differs from an Error Event 
in that the Signal defines a more general, non-error condition for interrupting 
activities (such as the successful completion of another activity) as well as having a 
larger scope than Error Events. When used to “catch” the signal, the Event marker 
will be unfilled (see the top figure on the right). When used to “throw” the signal, the 
Event marker will be filled (see the bottom figure on the right). The attributes of a 
Signal can be found in Section B.11.17, “Signal,” on page 280. 

     

Table 9.8 - Intermediate Event Types
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9.3.4.2 Attributes

The following table displays the set of attributes of an Intermediate Event, which extends the set of common Event 
attributes (see Table 9.9).

9.3.4.3 Activity Boundary Connections

An Intermediate Event can be attached to the boundary of an activity under the following conditions:

° (One or more) Intermediate Events MAY be attached directly to the boundary of an Activity.

° To be attached to the boundary of an Activity, an Intermediate Event MUST be one of the following 
Triggers: Message, Timer, Error, Cancel, Compensation, Conditional, Signal, and Multiple.

° An Intermediate Event with a Cancel Trigger MAY be attached to a Sub-Process boundary only if the 
IsATransaction attribute of the Sub-Process is set to TRUE.

9.3.4.4 Sequence Flow Connections

See Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how they may be source or targets 
of Sequence Flow.

Multiple This means that there are multiple Triggers assigned to the Event. If used within 
normal flow, the Event can “catch” the Trigger or “throw” the Triggers. When 
attached to the boundary of an activity, the Event can only “catch” the Trigger. When 
used to “catch” the Trigger, only one of the assigned Triggers is required and the 
Event marker will be unfilled (see the top figure on the right). When used to “throw” 
the Trigger (the same as a Multiple End Event), all the assigned Triggers will be 
thrown and the Event marker will be filled (see the bottom figure on the right).   

    

Table 9.9 - Intermediate Event Attributes

Attributes Description

Trigger (0-n) : EventDetail Trigger (EventDetail) is an attribute that defines the type of trigger expected for 
an Intermediate Event. Of the set of EventDetailTypes (see Section 9.3.5, “Event 
Details,” on page 49), only eight (8) can be applied to an Intermediate Event: 
Message, Timer, Error, Cancel, Compensation, Conditional, Link, and Signal (see 
Table 9.8).

• If no EventDetail is defined, then this is considered a None Intermediate 
Event and the Event will not have an internal marker (see Table 9.8).

• If more than one EventDetail is defined, this is considered a Multiple 
Intermediate Event and the Event will have the star internal marker (see 
Table 9.8).

Target (0-1) : Activity A Target MAY be included for the Intermediate Event. The Target MUST be an 
activity (Sub-Process or Task). This means that the Intermediate Event is attached 
to the boundary of the activity and is used to signify an exception or 
compensation for that activity.

Table 9.8 - Intermediate Event Types
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° The following Intermediate Events MAY be attached to the boundary of an Activity: Message, Timer, Error, 
Cancel (only Sub-Process that is a Transaction), Compensation, Conditional, Signal, and Multiple. Thus, the 
following MUST NOT: None, and Link.

° If the Intermediate Event is attached to the boundary of an activity:

° The Intermediate Event MUST NOT be a target for Sequence Flow; it cannot have an incoming Flow.

° The Intermediate Event MUST be a source for Sequence Flow; it can have one (and only one) outgoing 
Sequence Flow.

° An exception to this: an Intermediate Event with a Compensation Trigger MUST NOT have an outgoing 
Sequence Flow (it MAY have an outgoing Association).

° The following Intermediate Events MAY be used in Normal Flow: None, Message, Timer, Compensation, 
Conditional, Link, and Signal. Thus, the following MUST NOT: Cancel, Error, and Multiple.

° If the Intermediate Event is used within Normal Flow:

° Intermediate Events of the following types MUST be a target of a Sequence Flow: None and 
Compensation. They MUST have one (and only one) incoming Flow.

° Intermediate Events of the following types MAY be a target of a Sequence Flow: Message, Timer, 
Conditional, Link, and Signal. They MAY have one (and only one) incoming Flow.

Note – These types of Intermediate Events will always be ready to accept the Event Triggers (once) while the Process in 
which they are contained is active. They are NOT optional and are expected to be triggered during the performance of the 
Process.

° An Intermediate Event MUST be a source for Sequence Flow; it MUST have one (and only one) 
outgoing Sequence Flow.

° An exception to this: a Source Link Intermediate Event (as defined below), it is not required to have an 
outgoing Sequence Flow.

° An Intermediate Event with a Link Trigger MUST NOT be both a target and a source of a Sequence 
Flow.

To define the use of a Link Intermediate Event as an “Off-Page Connector” or a “Go To” object:

° A Link Intermediate Event MAY be the target (Target Link Event) or a source (Source Link Event) of a Sequence 
Flow, but MUST NOT be both a target and a source.

° If there is a Source Link Event, there MUST be a matching Target Link Event (they have the same Name)  

° There MAY be multiple Source Link Events for a single Target Link Event.

° There MUST NOT be multiple Target Link Events for a single Source Link Event.  

9.3.4.5 Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects and how they may be source or targets 
of Message Flow.

Note – All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objects within 
the Pool boundary. They cannot connect two objects within the same Pool. 
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° An Intermediate Event of type Message MAY be the target for Message Flow; it can have one incoming Message 
Flow.

° An Intermediate Event of type Message MAY be a source for Message Flow; it can have one outgoing Message 
Flow.

° An Intermediate Event of type Message MAY have an incoming Message Flow or an outgoing Message Flow, 
but not both.

9.3.5 Event Details

Event Details refers to the Triggers of Start and Intermediate Events and the Results of End Events. The types of Event 
Details are: Message, Timer, Error, Cancel, Compensation, Conditional, Link, Signal, and Terminate. A None Event is 
determined by an Event that does not specify an Event Detail. A Multiple Event is determined by an Event that specifies 
more than one Event Detail. The different types of Events, (Start, Intermediate, and End) utilize a subset of the available 
types of Event Details (see Figure 9.5).

Figure 9.5 - Event Details as Applied to Start, Intermediate, and End Events

The following sections will present the attributes common to all Event Details and the specific attributes for the Event 
Details that have additional attributes. Note that the Cancel and Terminate Event Details do not have additional attributes.
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9.3.5.1 Common Event Detail Attributes

The following table displays the set of attributes common to the types of EventDetail, and which extends the set of 
common BPMN element attributes (see Table 9.1).

9.3.5.2 Conditional Event Detail

The following table displays the set of attributes a Conditional EventDetail, and which extends the set of common Event 
Detail attributes (see Table 9.10).

9.3.5.3 Compensation Event Detail

The following table displays the set of attributes a Compensation EventDetail, and which extends the set of common 
Event Detail attributes (see Table 9.10).

Table 9.10 - Common EventDetail Attributes

Attributes Description

EventDetailType (Message | 
Timer | Error | Conditional | Link | 
Signal | Compensate | Cancel | 
Terminate) Message : String

The EventDetailType attribute defines the type of trigger expected for an Event. 
The set of types includes Message, Timer, Error, Conditional, Link, Signal, 
Compensate, Cancel, and Terminate. The EventTypes (Start, Intermediate, and 
End) will each have a subset of the EventDetailTypes that can be used. The 
EventDetailType list MAY be extended to include new types. These new types 
MAY have a new modeler- or tool-defined Marker to fit within the boundaries of 
the Event.

Table 9.11 - Conditional EventDetail Attributes

Attributes Description

ConditionRef : Condition If the Trigger is Conditional, then a Condition MUST be entered. The attributes of 
a Condition can be found in Section B.11.5, “Condition,” on page 273.

Table 9.12 - Compensation EventDetail Attributes

Attributes Description

ActivityRef (0-1) : Activity For an End Event:

• If the Result is a Compensation, then the Activity to be compensated MAY 
be supplied. If an Activity is not supplied, then the Event is broadcast to all 
completed activities in the Process Instance. 

For an Intermediate Event within Normal Flow:

• If the Trigger is a Compensation, then the Activity to be compensated MAY 
be supplied. If an Activity is not supplied, then the Event is broadcast to all 
completed activities in the Process Instance. This “throws” the 
compensation. 
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9.3.5.4 Error Event Detail

The following table displays the set of attributes an Error EventDetail, and which extends the set of common Event Detail 
attributes (see Table 9.10).

9.3.5.5 Link Event Detail

The following table displays the set of attributes a Link EventDetail, and which extends the set of common Event Detail 
attributes (see Table 9.10).

Attributes Description

ActivityRef (0-1) : Activity For an Intermediate Event attached to the boundary of an Activity: 

• This Event “catches” the compensation. No further information is required. 
The Activity the Event is attached to will provide the Id necessary to match 
the compensation event with the event that “threw” the compensation or the 
compensation will be a broadcast.

Table 9.13 - Error EventDetail Attributes

Attributes Description

ErrorCode : String For an End Event:

• If the Result is an Error, then the ErrorCode MUST be supplied. This 
“throws” the error. 

For an Intermediate Event attached to the boundary of an Activity:

• If the Trigger is an Error, then the ErrorCode MAY be entered. This Event 
“catches” the error. 

• If there is no ErrorCode, then any error SHALL trigger the Event. 

• If there is an ErrorCode, then only an error that matches the ErrorCode 
SHALL trigger the Event. 

Table 9.14 - Link EventDetail Attributes

Attributes Description

Name: String If the Trigger is a Link, then the Name MUST be entered. 
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9.3.5.6 Message Event Detail

The following table displays the set of attributes a Message EventDetail, and which extends the set of common Event 
Detail attributes (see Table 9.10).

9.3.5.7 Signal Event Detail

The following table displays the set of attributes a Signal EventDetail, and which extends the set of common Event Detail 
attributes (see Table 9.10).

9.3.5.8 Timer Event Detail

The following table displays the set of attributes a Timer EventDetail, and which extends the set of common Event Detail 
attributes (see Table 9.10).

9.4 Activities

An activity is work that is performed within a business process. An activity can be atomic or non-atomic (compound). 
The types of activities that are a part of a Business Process Diagram are: Process, Sub-Process, and Task. However, a 
Process is not a specific graphical object. Instead, it is a set of graphical objects. The following sections will focus on the 
graphical objects Sub-Process and Task. More information about Processes can be found in Section 8.6, “Processes,” on 
page 32.

Table 9.15 - Message EventDetail Attributes

Attributes Description

MessageRef : Message If the EventDetailType is a MessageRef, then a Message MUST be supplied. The 
attributes of a Message can be found in Section B.11.11, “Message,” on page 278.

Implementation (Web Service | 
Other | Unspecified) Web  
Service : String 

This attribute specifies the technology that will be used to send or receive the 
message. A Web service is the default technology.

Table 9.16 - Signal EventDetail Attributes

Attributes Description

SignalRef : Signal If the Trigger is a Signal, then a Signal Shall be entered. The attributes of a Signal 
can be found in Section B.11.17, “Signal,” on page 280.

Table 9.17 - Timer EventDetail Attributes

Attributes Description

TimeDate (0-1) : 
TimeDateExpression 

• If the Trigger is a Timer, then a TimeDate MAY be entered. 

• If a TimeDate is not entered, then a TimeCycle MUST be entered (see the 
attribute below). The attributes of a TimeDateExpression can be found in 
Section B.11.18, “TimeDateExpression,” on page 280

TimeCycle (0-1) : 
TimeDateExpression 

• If the Trigger is a Timer, then a TimeCycle MAY be entered. 

• If a TimeCycle is not entered, then a TimeDate MUST be entered (see the 
attribute above).
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9.4.1 Common Activity Attributes

The following table displays the set of attributes common to both a Sub-Process and a Task, and which extends the set of 
common Flow Object attributes (see Table 9.3) -- Note that Table 9.19 and Table 9.20 contain additional attributes that 
must be included within this set if extended by any other attribute table:

Table 9.18 - Common Activity Attributes

Attributes Description

ActivityType (Task | Sub-Process) 
Task : String

The ActivityType MUST be of type Task or Sub-Process.

Status (None | Ready | Active | 
Cancelled | Aborting | Aborted | 
Completing | Completed) None : 
String

The Status of an activity is determined when the activity is being executed by a 
process engine. The Status of an activity can be used within Assignment 
Expressions.

Performers (0-n) : String One or more Performers MAY be entered. The Performer attribute defines the 
resource that will perform or will be responsible for the activity. The Performer 
entry could be in the form of a specific individual, a group, an organization role 
or position, or an organization.

Properties (0-n) : Property Modeler-defined Properties MAY be added to an activity. These Properties are 
“local” to the activity. These Properties are only for use within the processing of 
the activity. The fully delineated name of these properties is “<process 
name>.<activity name>.<property name>” (e.g., “Add Customer.Review 
Credit.Status”). Further details about the definition of a Property can be found in 
Section B.11.15, “Property,” on page 279.

InputSets (0-n) : InputSet The InputSets attribute defines the data requirements for input to the activity. 
Zero or more InputSets MAY be defined. Each InputSet is sufficient to allow the 
activity to be performed (if it has first been instantiated by the appropriate signal 
arriving from an incoming Sequence Flow). Further details about the definition of 
an InputSet can be found in Section B.11.10, “InputSet,” on page 278. 

OutputSets (0-n) : OutputSet The OutputSets attribute defines the data requirements for output from the 
activity. Zero or more OutputSets MAY be defined. At the completion of the 
activity, only one of the OutputSets may be produced. It is up to the 
implementation of the activity to determine which set will be produced. However, 
the IORules attribute MAY indicate a relationship between an OutputSet and an 
InputSet that started the activity. Further details about the definition of an 
OutputSet can be found in Section B.11.13, “OutputSet,” on page 279. 

IORules (0-n) : Expression The IORules attribute is a collection of expressions, each of which specifies the 
required relationship between one input and one output. That is, if the activity is 
instantiated with a specified input, that activity shall complete with the specified 
output. 

StartQuantity 1 : Integer The default value is 1. The value MUST NOT be less than 1. This attribute 
defines the number of Tokens that must arrive before the activity can begin.
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9.4.1.1 Standard Loop Attributes

A Standard Loop activity will have a boolean expression that is evaluated after each cycle of the loop. If the expression 
is still True, then the loop will continue. There are two variations of the loop, which reflect the programming constructs 
of while and until. That is, a while loop will evaluate the expression before the activity is performed, which means that 
the activity may not actually be performed. The until loop will evaluate the expression after the activity has been 
performed, which means that the activity will be performed at least once.

The following are additional attributes of a Standard Loop Activity (where the LoopType attribute is set to “Standard”), 
which extends the set of common activity attributes (see Table 9.18):

9.4.1.2 Multi-Instance Loop Attributes

Multi-Instance loops reflect the programming construct for each. The loop expression for a Multi-Instance loop is a 
numeric expression evaluated only once before the activity is performed. The result of the expression evaluation will be 
an integer that will specify the number of times that the activity will be repeated.

There are also two variations of the Multi-Instance loop where the instances are either performed sequentially or in 
parallel.

CompletionQuantity 1 : Integer The default value is 1. The value MUST NOT be less than 1. This attribute 
defines the number of Tokens that must be generated from the activity. This 
number of Tokens will be sent done any outgoing Sequence Flow (assuming any 
Sequence Flow Conditions are satisfied).

LoopType (None | Standard | 
MultiInstance) None : String

LoopType is an attribute and is by default None, but MAY be set to Standard or 
MultiInstance. If so, the Loop marker SHALL be placed at the bottom center of 
the activity shape (see Figure 9.9 and Figure 9.15).
A Task of type Receive that has its Instantiate attribute set to True MUST NOT 
have a Standard or MultiInstance LoopType.

Table 9.19 - Standard Loop Activity Attributes

Attributes Description

LoopCondition : Expression Standard Loops MUST have a boolean Expression to be evaluated, plus the 
timing when the expression SHALL be evaluated. The attributes of an Expression 
can be found in Section B.11.8, “Expression,” on page 277.

LoopCounter : Integer The LoopCounter attribute is used at runtime to count the number of loops and is 
automatically updated by the process engine. The LoopCounter attribute MUST 
be incremented at the start of a loop. The modeler may use the attribute in the 
LoopCondition Expression.

LoopMaximum (0-1) : Integer The Maximum an optional attribute that provides is a simple way to add a cap to 
the number of loops. This SHALL be added to the Expression defined in the 
LoopCondition.

TestTime (Before | After) After : 
String

The expressions that are evaluated Before the activity begins are equivalent to a 
programming while function.
The expressions that are evaluated After the activity finishes are equivalent to a 
programming until function.

Table 9.18 - Common Activity Attributes

Attributes Description
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The following are additional attributes of a Multi-Instance Loop Activity (where the LoopType attribute is set to 
“MultiInstance”), which extends the set of common activity attributes (see Table 9.18):

Table 9.20 - Multi-Instance Loop Activity Attributes

Attributes Description

MI_Condition : Expression MultiInstance Loops MUST have a numeric Expression to be evaluated; the 
Expression MUST resolve to an integer. The attributes of an Expression can be 
found in Section B.11.8, “Expression,” on page 277.

LoopCounter : Integer The LoopCounter attribute is only applied for Sequential MultiInstance Loops and 
for processes that are being executed by a process engine. The attribute is updated 
at runtime by a process engine to count the number of loops as they occur. The 
LoopCounter attribute MUST be incremented at the start of a loop. Unlike a 
Standard loop, the modeler does not use this attribute in the MI_Condition 
Expression, but it can be used for tracking the status of a loop.

MI_Ordering (Sequential | 
Parallel) Sequential : String

This applies to only MultiInstance Loops. The MI_Ordering attribute defines 
whether the loop instances will be performed sequentially or in parallel. 
Sequential MI_Ordering is a more traditional loop. 
Parallel MI_Ordering is equivalent to multi-instance specifications that other 
notations, such as UML Activity Diagrams use. If set to Parallel, the Parallel 
marker SHALL replace the Loop Marker at the bottom center of the activity 
shape (see Figure 9.9 and Table 9.18).

[Parallel MI_Ordering only]

MI_FlowCondition (None | 
One | All | Complex) All : String

This attribute is equivalent to using a Gateway to control the flow past a set of 
parallel paths.

An MI_FlowCondition of “None” is the same as uncontrolled flow (no Gateway) 
and means that all activity instances SHALL generate a token that will continue 
when that instance is completed. 

An MI_FlowCondition of “One” is the same as an Exclusive Gateway and means 
that the Token SHALL continue past the activity after only one of the activity 
instances has completed. The activity will continue its other instances, but 
additional Tokens MUST NOT be passed from the activity. 

An MI_FlowCondition of “All” is the same as a Parallel Gateway and means that 
the Token SHALL continue past the activity after all of the activity instances have 
completed.

An MI_FlowCondition of “Complex” is similar to that of a Complex Gateway. The 
ComplexMI_FlowCondition attribute will determine the Token flow.

[Complex MI_FlowCondition 
only]

ComplexMI_FlowCondition 
(0-1) : Expression

If the MI_FlowCondition attribute is set to “Complex,” then an Expression Must 
be entered. This expression that MAY reference Process data. The expression will 
be evaluated after each iteration of the Activity and SHALL resolve to a boolean.

If the result of the expression evaluation is TRUE, then a Token will be sent down 
the activity’s outgoing Sequence Flow. Otherwise, no Token for that iteration will 
be sent. The attributes of an Expression can be found in the Section B.11.8, 
“Expression,” on page 277.
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9.4.2 Sub-Process

A Sub-Process is a compound activity in that it has detail that is defined as a flow of other activities. A Sub-Process is a 
graphical object within a Process Flow, but it also can be “opened up” to show another Process (either Embedded or 
Reusable). A Sub-Process object shares the same shape as the Task object, which is a rounded rectangle.

° A Sub-Process is a rounded corner rectangle that MUST be drawn with a single thin black line.

° The use of text, color, size, and lines for a Sub-Process MUST follow the rules defined in Section 8.3, “Use 
of Text, Color, Size, and Lines in a Diagram,” on page 29 with the exception that.

° The boundary drawn with a double line SHALL be reserved for Sub-Process that has its IsATransaction 
attribute set to True.

The Sub-Process can be in a collapsed view that hides its details (see Figure 9.6) or a Sub-Process can be in an expanded 
view that shows its details within the view of the Process in which it is contained (see Figure 9.7). In the collapsed form, 
the Sub-Process object uses a marker to distinguish it as a Sub-Process, rather than a Task. 

° The Sub-Process marker MUST be a small square with a plus sign (+) inside. The square MUST be positioned at 
the bottom center of the shape.

Figure 9.6 - Collapsed Sub-Process

Figure 9.7 - Expanded Sub-Process

Expanded Sub-Process may be used for multiple purposes. They can be used to “flatten” a hierarchical process so that all 
detail can be shown at the same time. They are used to create a context for exception handling that applies to a group of 
activities (Section 10.2.2, “Exception Flow,” on page 127 for more details). Compensations can be handled similarly 
(Section 10.3, “Compensation Association,” on page 129 for more details).

Expanded Sub-Process may be used as a mechanism for showing a group of parallel activities in a less-cluttered, more 
compact way. In Figure 9.8, activities “C” and “D” are enclosed in an unlabeled Expanded Sub-Process. These two 
activities will be performed in parallel. Notice that the Expanded Sub-Process does not include a Start Event or an End 
Event and the Sequence Flow to/from these Events. This usage of Expanded Sub-Processes for “parallel boxes” is the 
motivation for having Start and End Events being optional objects.

+
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Figure 9.8 - Expanded Sub-Process used as a “parallel box”

BPMN specifies five types of standard markers for Sub-Processes. The (Collapsed) Sub-Process Marker, seen in Figure 
9.6, can be combined with four other markers: a Loop Marker or a Parallel Marker, a Compensation Marker, and an Ad 
Hoc Marker. A collapsed Sub-Process may have one to three of these other markers, in all combinations except that Loop 
and Multiple Instance cannot be shown at the same time (see Figure 9.9). 

° The marker for a Sub-Process that loops MUST be a small line with an arrowhead that curls back upon itself.

° The Loop Marker MAY be used in combination with any of the other markers except the Multiple Instance 
Marker.

° The marker for a Sub-Process that has multiple instances MUST be a set of three vertical lines in parallel. 

° The Multiple Instance Marker MAY be used in combination with any of the other markers except the Loop 
Marker.

° The marker for a Sub-Process that is Ad Hoc MUST be a “tilde” symbol.

° The Ad-Hoc Marker MAY be used in combination with any of the other markers.

° The marker for a Sub-Process that is used for compensation MUST be a pair of left facing triangles (like a tape 
player “rewind” button).

° The Compensation Marker MAY be used in combination with any of the other markers.

° All the markers that are present MUST be grouped and the whole group centered at the bottom of the shape.

Figure 9.9 - Collapsed Sub-Process Markers

9.4.2.1 Attributes

The following table displays the set of attributes of a Sub-Process, which extends the set of common activity attributes 
(see Table 9.21).

A

C

D

E
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9.4.2.2 Embedded Sub-Process

An Embedded (or nested) Sub-Process object is an activity that contains other activities (a Process). The Process within 
the Process is dependent on the parent Process for instigation and has visibility to the parent’s global data. No mapping of 
data is required.

The objects within the Embedded Sub-Process, being dependent on their parent, do not have all the features of a full 
Business Process Diagram, such as Pools and Lanes. Thus, an expanded view of the Embedded Sub-Process would only 
contain Flow Objects, Connecting Objects, and Artifacts (see Figure 9.8).

• All Start Events for an Embedded Sub-Process MUST be of type None.

The following are additional attributes of an Embedded Sub-Process (where the SubProcessType attribute is set to 
“Embedded”), which extends the set of Sub-Process attributes (see Table 9.22).

Table 9.21 - Sub-Process Attributes

Attributes Description

SubProcessType (Embedded | 
Reusable | Reference) Embedded : 
String

SubProcessType is an attribute that defines whether the Sub-Process details are 
embedded within the higher level Process or refers to another, re-usable Process. 
The default is Embedded.

IsATransaction False : Boolean IsATransaction determines whether or not the behavior of the Sub-Process will 
follow the behavior of a Transaction (see “Sub-Process Behavior as a 
Transaction” on page 62).

TransactionRef (0-1) : 
Transaction

If the IsATransaction attribute is False, then a Transaction MUST NOT be 
identified. If the IsATransaction attribute is True, then a Transaction MUST be 
identified. The attributes of a Transaction can be found in the Section B.11.19, 
“Transaction,” on page 281. Note that Transactions that are in different Pools and 
are connected through Message Flow MUST have the same TransactionId.

Table 9.22 - Embedded Sub-Process Attributes

Attributes Description

GraphicalElements (0-n) : 
Object

The GraphicalElements attribute identifies all of the objects (e.g., Events, 
Activities, Gateways, and Artifacts) that are contained within the Embedded Sub-
Process.

AdHoc False : Boolean AdHoc is a boolean attribute, which has a default of False. This specifies whether 
the Embedded Sub-Process is Ad Hoc or not. The activities within an Ad Hoc 
Embedded Sub-Process are not controlled or sequenced in a particular order, their 
performance is determined by the performers of the activities.

[AdHoc = True only]

AdHocOrdering (0-1) 
(Sequential | Parallel) Parallel : 
String

If the Embedded Sub-Process is Ad Hoc (the AdHoc attribute is True), then the 
AdHocOrdering attribute MUST be included. This attribute defines if the 
activities within the Process can be performed in Parallel or must be performed 
sequentially. The default setting is Parallel and the setting of Sequential is a 
restriction on the performance that may be required due to shared resources. 
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9.4.2.3 Reusable Sub-Process

A Reusable Sub-Process object is an activity within a Process that “calls” to another Process that exists within a BDP (see 
Figure 9.10). The Process that is called is not dependent on the Reusable Sub-Process object’s parent Process for global 
data. The Reusable Sub-Process object may pass data to/from the called Process.

Figure 9.10 - A Sub-Process Object with its Details Shown in the diagram of the next Figure

The called Process will exist in a separate diagram that can have multiple Pools. Any view of the called Process 
(including an expanded view within the calling Process) would show the whole diagram in which the called Process 
resides (see Figure 9.11), but any data mapping will be only to that Process and not to any of the other Processes that 
might be in the called diagram.

[AdHoc = True only]

AdHocCompletionCondition 
(0-1) : Expression

If the Embedded Sub-Process is Ad Hoc (the AdHoc attribute is True), then a 
Completion Condition MUST be included, which defines the conditions when the 
Process will end. The Ad Hoc marker SHALL be placed at the bottom center of 
the Process or the Sub-Process shape for Ad Hoc Processes.

Table 9.22 - Embedded Sub-Process Attributes

Attributes Description

Gather basic initial
request information

[Pages 2 & 3]

Request
passes "Acid

Test"?

No

Yes

Gather detailed
request information

[Page 4]

Create capacity model
and select a standard

facility option
[Pages 5 & 6]

This Sub-Process Object
References the Diagram in the

next Figure
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Figure 9.11 - A Process and Diagram Details of the Sub-Process Object in the Previous Figure

T
ap

 R
eq

ue
st

er
(C

us
to

m
er

)

Complete
Appropriate

Request

Contact
Provider

Receive
Request

Refer to Tap
Systems

Coordinator

Request 1st-
Gate

Information

Receive 1st-
Gate

Information

Interstate
Pipeline?

No

Yes

Contact and
Inform Retail

T
ap

 P
ro

vi
de

r
(F

N
G

C
)

E
m

pl
oy

ee
A

t-
La

rg
e

R
et

ai
l

LD
C

(D
is

tr
ib

ut
or

)
La

nd
 o

r
R

ig
ht

-o
f-

W
ay

Le
ga

l
B

us
in

es
s

D
ev

el
op

m
en

t
T

ap
 S

ys
te

m
s 

C
oo

rd
in

at
or

 (
P

ro
je

ct
M

an
ag

er
)

60                 Business Process Modeling Notation, v1.2



The called Process will (MUST) be instantiated as a Sub-Process through a None Start Event. Being reusable, the Process 
could also be instantiated as a Sub-Process by other Independent Sub-Process objects (in the same or other diagrams). In 
addition, it can be instantiated as a top-level Process through a separate Start Event that has a Trigger (other than None--
see Figure 9.12).

Figure 9.12 - A Process that is used as a Sub-Process or a Top-Level Process

The following are additional attributes of a Reusable Sub-Process (where the SubProcessType attribute is set to 
“Reusable”), which extends the set of Sub-Process attributes (see Table 9.23).

9.4.2.4 Reference Sub-Process

There may be times where a modeler may want to reference another Sub-Process that has been defined. If the two Sub-
Processes share the exact same behavior and properties, then by one referencing the other, the attributes that define the 
behavior only have to be created once and maintained in only one location. 

The following table displays the set of attributes of a Reference Sub-Process (where the SubProcessType attribute is set to 
“Reference”), which extends the set of Sub-Process attributes (see Table 9.24).

Table 9.23 - Reusable Sub-Process Attributes

Attributes Description

DiagramRef: Business Process 
Diagram

The BPD MUST be identified. The attributes of a BPD can be found in the 
Section 8.5, “Business Process Diagram Attributes,” on page 31.

ProcessRef: Process A Process MUST be identified. The attributes of a Process can be found in  
Section 8.6, “Processes,” on page 32.

InputMaps (0-n) : Expression Multiple input mappings MAY be made between the Reusable Sub-Process and 
the Process referenced by this object. These mappings are in the form of an 
expression. A specific mapping expression MUST specify the mapping of 
Properties between the two Processes OR the mapping of Artifacts between the 
two Processes.

OutputMaps (0-n) : Expression Multiple output mappings MAY be made between the Reusable Sub-Process and 
the Process referenced by this object. These mappings are in the form of an 
expression. A specific mapping expression MUST specify the mapping of 
Properties between the two Processes OR the mapping of Artifacts between the 
two Processes.
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9.4.2.5 Sub-Process Behavior as a Transaction

A Sub-Process, either collapsed or expanded, can be set as being a Transaction, which will have a special behavior that is 
controlled through a transaction protocol (such as BTP or WS-Transaction). The boundary of the activity will be double-
lined to indicate that it is a Transaction (see Figure 9.13).

Figure 9.13 - An Example of a Transaction Expanded Sub-Process

There are three basic outcomes of a Transaction:

1. Successful completion: this will be shown as a normal Sequence Flow that leaves the Sub-Process.

2. Failed completion (Cancel): When a Transaction is cancelled, then the activities inside the Transaction will be 
subjected to the cancellation actions, which could include rolling back the process and compensation for specific 

Table 9.24 - Reference Sub-Process Attributes

Attributes Description

SubProcessRef : Sub-Process The Sub-Process being referenced MUST be identified. The attributes for the 
Sub-Process element can be found in Table 9.21.
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activities. Note that other mechanisms for interrupting a Sub-Process will not cause Compensation (e.g., Error, Timer, 
and anything for a non-Transaction activity). A Cancel Intermediate Event, attached to the boundary of the activity, 
will direct the flow after the Transaction has been rolled back and all compensation has been completed. The Cancel 
Intermediate Event can only be used when attached to the boundary of a Transaction activity. It cannot be used in any 
Normal Flow and cannot be attached to a non-Transaction activity. There are two mechanisms that can signal the 
cancellation of a Transaction:

• A Cancel End Event is reached within the Transaction Sub-Process. A Cancel End Event can only be used within a 
Sub-Process that is set to a Transaction.

• A Cancel Message can be received via the Transaction Protocol that is supporting the execution of the Sub-
Process.

3. Hazard: This means that something went terribly wrong and that a normal success or cancel is not possible. We are 
using an Error to show Hazards. When a Hazard happens, the activity is interrupted (without Compensation) and the 
flow will continue from the Error Intermediate Event.

The behavior at the end of a successful Transaction Sub-Process is slightly different than that of a normal Sub-Process. 
When each path of the Transaction Sub-Process reaches a non-Cancel End Event(s), the flow does not immediately move 
back up to the higher-level Parent Process, as does a normal Sub-Process. First, the transaction protocol must verify that 
all the participants have successfully completed their end of the Transaction. Most of the time this will be true and the 
flow will then move up to the higher-level Process. But it is possible that one of the participants may end up with a 
problem that causes a Cancel or a Hazard. In this case, the flow will then move to the appropriate Intermediate Event, 
even though it had apparently finished successfully.

9.4.2.6 Sequence Flow Connections

See Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how they may be source or targets 
of Sequence Flow.

° A Sub-Process MAY be a target for Sequence Flow; it can have multiple incoming Flow. Incoming Flow MAY 
be from an alternative path and/or parallel paths.

° The Incoming Sequence Flow’s attribute TargetRef MAY be extended to include both the Sub-Process object 
(at the parent level) and a Start Event that resides within the details of the Sub-Process. This provides a 
direct connection from the parent-level Sequence Flow to the lower-level Start Event for situations where 
there is more than one Start Event in the Sub-Process. The form of the extension would be “Sub-
Process.Start.”

° If the details of the Sub-Process (i.e., its Start Events) are not visible or accessible to the modeler, then 
the determination as to which Start Event, if there are multiple, will be triggered is undefined. But only 
one of the Start Events will be triggered.

Note –  If the Sub-Process has multiple incoming Sequence Flow, then this is considered uncontrolled flow. This means that 
when a Token arrives from one of the Paths, the Sub-Process will be instantiated. It will not wait for the arrival of Tokens from 
the other paths. If another Token arrives from the same path or another path, then a separate instance of the Sub-Process will be 
created. If the flow needs to be controlled, then the flow should converge on a Gateway that precedes the Sub-Process 
(Section 9.5, “Gateways,” on page 70 for more information on Gateways).

° If the Sub-Process does not have an incoming Sequence Flow, and there is no Start Event for the Process, then 
the Sub-Process MUST be instantiated when the process is instantiated.
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° Exceptions to this are Sub-Processes that are defined as being Compensation activities (have the 
Compensation Marker). Compensation Sub-Processes are not considered a part of the Normal Flow and 
MUST NOT be instantiated when the Process is instantiated.

° A Sub-Process MAY be a source for Sequence Flow; it can have multiple outgoing Flow. If there are multiple 
outgoing Sequence Flow, then this means that a separate parallel path is being created for each Flow. 

Tokens will be generated for each outgoing Sequence Flow from Sub-Process. The TokenIds for each of the Tokens will 
be set such that it can be identified that the Tokens are all from the same parallel Fork as well as the number of Tokens 
that exist in parallel.

° If the Sub-Process does not have an outgoing Sequence Flow, and there is no End Event for the Process, then the 
Sub-Process marks the end of one or more paths in the Process. When the Sub-Process ends and there are no 
other parallel paths active, then the Process MUST be completed.

° Exceptions to this are Sub-Processes that are defined as being Compensation activities (have the 
Compensation Marker). Compensation Sub-Processes are not considered a part of the Normal Flow and 
MUST NOT mark the end of the Process.

9.4.2.7 Message Flow Connections

Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects and how they may be source or targets of 
Message Flow.

Note – All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objects within 
the Pool boundary. They cannot connect two objects within the same Pool. 

° A Sub-Process MAY be the target for Message Flow; it can have zero or more incoming Message Flow.

° A Sub-Process MAY be a source for Message Flow; it can have zero or more outgoing Message Flow.

9.4.3 Task

A Task is an atomic activity that is included within a Process. A Task is used when the work in the Process is not broken 
down to a finer level of Process Model detail. Generally, an end-user and/or an application are used to perform the Task 
when it is executed.

A Task object shares the same shape as the Sub-Process, which is a rectangle that has rounded corners (see Figure 9.14).

° A Task is a rounded corner rectangle that MUST be drawn with a single thin black line.

° The use of text, color, size, and lines for a Task MUST follow the rules defined in Section 8.3, “Use of Text, 
Color, Size, and Lines in a Diagram,” on page 29.

Figure 9.14 - A Task Object

BPMN specifies three types of markers for Task: a Loop Marker or a Multiple Instance Marker and a Compensation 
Marker. A Task may have one or two of these markers (see Figure 9.15). 
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° The marker for a Task that is a standard loop MUST be a small line with an arrowhead that curls back upon 
itself.

° The Loop Marker MAY be used in combination with the Compensation Marker.

° The marker for a Task that is a multi-instance loop MUST be a set of three vertical lines in parallel. 

° The Multiple Instance Marker MAY be used in combination with the Compensation Marker.

° The marker for a Task that is used for compensation MUST be a pair of left facing triangles (like a tape player 
“rewind” button).

° The Compensation Marker MAY be used in combination with the Loop Marker or the Multiple Instance 
Marker.

° All the markers that are present MUST be grouped and the whole group centered at the bottom of the shape.

Figure 9.15 - Task Markers

In addition to categories of Task shown above, there are different types of Tasks identified within BPMN to separate the 
types of inherent behavior that Tasks might represent (see Table 9.2). However, BPMN does not specify any graphical 
indicators for the different types of Tasks. Modelers or modeling tools may choose to create their own indicators or 
markers to show the readers of the diagram the type of Task. This is permitted by BPMN as long as the basic shape of the 
Task (a rounded rectangle) is not modified. The list of Task types may be extended along with any corresponding 
indicators.

9.4.3.1 Attributes

The following table displays the set of attributes of a Task, which extends the set of common activity attributes (see Table 
9.18).

9.4.3.2 Service Task

A Service Task is a Task that provides some sort of service, which could be a Web service or an automated application. 

Table 9.25 - Task Attributes

Attributes Description

TaskType (Service | Receive | Send 
| User | Script | Manual | Reference | 
None) None : String

TaskType is an attribute that has a default of None, but MAY be set to Send, 
Receive, User, Script, Manual, Reference, or Service. The TaskType will be 
impacted by the Message Flow to and/or from the Task, if Message Flow are 
used. A TaskType of Receive MUST NOT have an outgoing Message Flow. A 
TaskType of Send MUST NOT have an incoming Message Flow. A TaskType of 
Script or Manual MUST NOT have an incoming or an outgoing Message Flow. 
The TaskType list MAY be extended to include new types. The attributes for 
specific values of TaskType can be found in Table 9.26 through Table 9.31.
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The following table displays the set of attributes of a Service Task (where the TaskType attribute is set to “Service”), 
which extends the set of Task attributes (see Table 9.25).

9.4.3.3 Receive Task

A Receive Task is a simple Task that is designed to wait for a message to arrive from an external participant (relative to 
the Business Process). Once the message has been received, the Task is completed. 

A Receive Task is often used to start a Process. In a sense, the Process is bootstrapped by the receipt of the message. In 
order for the Task to Instantiate the Process it must meet one of the following conditions:

° The Process does not have a Start Event and the Receive Task has no incoming Sequence Flow.

° The Incoming Sequence Flow for the Receive Task has a source of a Start Event.

° Note that no other incoming Sequence Flow is allowed for the Receive Task (in particular, a loop connection 
from a downstream object).

The following table displays the set of attributes of a Receive Task (where the TaskType attribute is set to “Receive”), 
which extends the set of Task attributes (see Table 9.25).

Table 9.26 - Service Task Attributes

Attributes Description

InMessageRef : Message A Message for the InMessageRef attribute MUST be entered. This indicates 
that the Message will be received at the start of the Task, after the 
availability of any defined InputSets. One or more corresponding incoming 
Message Flows MAY be shown on the diagram. However, the display of the 
Message Flow is not required. The Message is applied to all incoming 
Message Flow, but can arrive for only one of the incoming Message Flow 
for a single instance of the Task.

OutMessageRef : Message A Message for the OutMessageRef attribute MUST be entered. The sending 
of this message marks the completion of the Task, which may cause the 
production of an OutputSet. One or more corresponding outgoing Message 
Flow MAY be shown on the diagram. However, the display of the Message 
Flow is not required. The Message is applied to all outgoing Message Flow 
and the Message will be sent down all outgoing Message Flow at the 
completion of a single instance of the Task.

Implementation (Web Service | Other 
| Unspecified) Web Service : String

This attribute specifies the technology that will be used to send and receive 
the messages. A Web service is the default technology.
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9.4.3.4 Send Task

A Send Task is a simple Task that is designed to send a message to an external participant (relative to the Business 
Process). Once the message has been sent, the Task is completed. 

The following table displays the set of attributes of a Send Task (where the TaskType attribute is set to “Send”), which 
extends the set of Task attributes (see Table 9.25).

9.4.3.5 User Task

A User Task is a typical “workflow” task where a human performer performs the Task with the assistance of a software 
application and is scheduled through a task list manager of some sort. 

The following table displays the set of attributes of a User Task (where the TaskType attribute is set to “User”), which 
extends the set of Task attributes (see Table 9.25).

Table 9.27 - Receive Task Attributes

Attributes Description

MessageRef : Message A Message for the MessageRef attribute MUST be entered. This indicates 
that the Message will be received by the Task. The Message in this context 
is equivalent to an in-only message pattern (Web service). One or more 
corresponding incoming Message Flows MAY be shown on the diagram. 
However, the display of the Message Flow is not required. The Message is 
applied to all incoming Message Flow, but can arrive for only one of the 
incoming Message Flow for a single instance of the Task.

Instantiate False : Boolean Receive Tasks can be defined as the instantiation mechanism for the 
Process with the Instantiate attribute. This attribute MAY be set to true if 
the Task is the first activity after the Start Event or a starting Task if there 
is no Start Event (i.e., there are no incoming Sequence Flow). Multiple 
Tasks MAY have this attribute set to True.

Implementation (Web Service | Other | 
Unspecified) Web Service : String

This attribute specifies the technology that will be used to receive the 
message. A Web service is the default technology.

Table 9.28 - Send Task Attributes

Attributes Description

MessageRef : Message A Message for the MessageRef attribute MUST be entered. This indicates that the 
Message will be sent by the Task. The Message in this context is equivalent to an 
out-only message pattern (Web service). One or more corresponding outgoing 
Message Flow MAY be shown on the diagram. However, the display of the 
Message Flow is not required. The Message is applied to all outgoing Message 
Flow and the Message will be sent down all outgoing Message Flow at the 
completion of a single instance of the Task.

Implementation (Web Service | 
Other | Unspecified) Web  
Service : String

This attribute specifies the technology that will be used to send the message. A 
Web service is the default technology.
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9.4.3.6 Script Task

A Script Task is executed by a business process engine. The modeler or implementer defines a script in a language that 
the engine can interpret. When the Task is ready to start, the engine will execute the script. When the script is completed, 
the Task will also be completed.

The following table displays the set of attributes of a Script Task (where the TaskType attribute is set to “Script”), which 
extends the set of Task attributes (see Table 9.25).

9.4.3.7 Manual Task

A Manual Task is a Task that is expected to be performed without the aid of any business process execution engine or any 
application. An example of this could be a telephone technician installing a telephone at a customer location.

9.4.3.8 Reference Task

There may be times where a modeler may want to reference another Task that has been defined. If the two (or more) 
Tasks share the exact same behavior, then by one referencing the other, the attributes that define the behavior only have 
to be created once and maintained in only one location. 

The following table displays the set of attributes of a Reference Task (where the TaskType attribute is set to “Reference”), 
which extends the set of Task attributes (see Table 9.25).

Table 9.29 - User Task Attributes

Attributes Description

InMessageRef : Message A Message for the InMessageRef attribute MUST be entered. This indicates that 
the Message will be received at the start of the Task, after the availability of any 
defined InputSets. One or more corresponding incoming Message Flows MAY be 
shown on the diagram. However, the display of the Message Flow is not required. 
The Message is applied to all incoming Message Flow, but can arrive for only one 
of the incoming Message Flow for a single instance of the Task. 

OutMessageRef : Message A Message for the OutMessageRef attribute MUST be entered. The sending of 
this message marks the completion of the Task, which may cause the production 
of an OutputSet. One or more corresponding outgoing Message Flow MAY be 
shown on the diagram. However, the display of the Message Flow is not required. 
The Message is applied to all outgoing Message Flow and the Message will be 
sent down all outgoing Message Flow at the completion of a single instance of the 
Task.

Implementation (Web Service | 
Other | Unspecified) Other : 
String

This attribute specifies the technology that will be used by the Performers to 
perform the Task.

Table 9.30 - Script Task Attributes

Attributes Description

Script (0-1) : String The modeler MAY include a script that can be run when the Task is performed. If 
a script is not included, then the Task will act equivalent to a TaskType of None.
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9.4.3.9 Sequence Flow Connections

Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how they may be source or targets of 
Sequence Flow.

° A Task MAY be a target for Sequence Flow; it can have multiple incoming Flow. Incoming Flow MAY be from 
an alternative path and/or parallel paths.

Note – If the Task has multiple incoming Sequence Flow, then this is considered uncontrolled flow. This means that when a 
Token arrives from one of the Paths, the Task will be instantiated. It will not wait for the arrival of Tokens from the other paths. 
If another Token arrives from the same path or another path, then a separate instance of the Task will be created. If the flow 
needs to be controlled, then the flow should converge with a Gateway that precedes the Task (see Section 9.5, “Gateways,” on 
page 70 for more information on Gateways).

° If the Task does not have an incoming Sequence Flow, and there is no Start Event for the Process, then the Task 
MUST be instantiated when the process is instantiated.

° Exceptions to this are Tasks that are defined as being Compensation activities (have the Compensation 
Marker). Compensation Tasks are not considered a part of the Normal Flow and MUST NOT be instantiated 
when the Process is instantiated.

° A Task MAY be a source for Sequence Flow; it can have multiple outgoing Flow. If there are multiple outgoing 
Sequence Flow, then this means that a separate parallel path is being created for each Flow.

Tokens will be generated for each outgoing Sequence Flow from the Task. The TokenIds for each of the Tokens will be 
set such that it can be identified that the Tokens are all from the same parallel Fork as well as the number of Tokens that 
exist in parallel.

° If the Task does not have an outgoing Sequence Flow, and there is no End Event for the Process, then the Task 
marks the end of one or more paths in the Process. When the Task ends and there are no other parallel paths 
active, then the Process MUST be completed.

° Exceptions to this are Tasks that are defined as being Compensation activities (have the Compensation 
Marker). Compensation Tasks are not considered a part of the Normal Flow and MUST NOT mark the end 
of the Process.

9.4.3.10 Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects and how they may be source or targets 
of Message Flow.

Note –  All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objects within 
the Pool boundary. They cannot connect two objects within the same Pool. 

Table 9.31 - Reference Task Attributes

Attributes Description

TaskRef : Task The Task being referenced MUST be identified. The attributes for the Task 
element can be found in Table 9.25.
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° A Task MAY be the target for Message Flow; it can have zero or more incoming Message Flow. If there are 
multiple incoming Message Flow, then a single Message will be applied to all the Message Flow. However, only 
one Message can be received, from a single Message Flow, for a given instance of the Task.

° A Task MAY be a source for Message Flow; it can have zero or more outgoing Message Flow. If there are 
multiple outgoing Message Flow, then a single Message will be applied to all the Message Flow. That Message 
will be sent down all the outgoing Message Flow.

9.5 Gateways

Gateways are modeling elements that are used to control how Sequence Flow interact as they converge and diverge within 
a Process. If the flow does not need to be controlled, then a Gateway is not needed. The term “Gateway” implies that 
there is a gating mechanism that either allows or disallows passage through the Gateway--that is, as Tokens arrive at a 
Gateway, they can be merged together on input and/or split apart on output as the Gateway mechanisms are invoked. To 
be more descriptive, a Gateway is actually a collection of “Gates.” Although the Gates are not graphically depicted, the 
Gates are used by the Sequence Flow of to connect to or from the Gateway.

There are different types of Gateways (as described below) and the behavior of each type Gateway will determine how 
many of the Gates will be available for the continuation of flow. There will be one Gate for each outgoing Sequence Flow 
of the Gateway.

A Gateway is a diamond (see Figure 9.16), which has been used in many flow chart notations for exclusive branching and 
is familiar to most modelers.

° A Gateway is a diamond that MUST be drawn with a single thin black line.

° The use of text, color, size, and lines for a Gateway MUST follow the rules defined in Section 8.3, “Use of 
Text, Color, Size, and Lines in a Diagram,” on page 29.

Figure 9.16 - A Gateway

Note –  Although the shape of a Gateway is a diamond, it is not a requirement that incoming and outgoing Sequence Flow 
must connect to the corners of the diamond. Sequence Flow can connect to any position on the boundary of the Gateway 
shape.

Gateways can define all the types of business process Sequence Flow behavior: Decisions/branching (exclusive, inclusive, 
and complex), merging, forking, and joining. Thus, while the diamond has been used traditionally for exclusive decisions, 
BPMN extends the behavior of the diamonds to reflect any type of Sequence Flow control. Each type of Gateway will 
have an internal indicator or marker to show the type of Gateway that is being used (see Figure 9.17).
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Figure 9.17 - The Different types of Gateways

° The internal marker associated with the Gateway MUST be placed inside the shape, in any size or location, 
depending on the preference of the modeler or modeling tool vendor, with the exception that the marker for the 
Data-Based Exclusive Gateway is not required.

The Gateways will control the flow of both diverging and/or converging Sequence Flow. That is, a particular Gateway 
could have multiple input Gates and multiple output Gates at the same time (there is one Sequence Flow per Gate). The 
type of Gateway will determine the same type of behavior for both the diverging and converging Sequence Flow. 
Modelers and modeling tools may want to enforce a best practice of a Gateway only performing one of these functions. 
Thus, it would take two sequential Gateways to first converge and then diverge the Sequence Flow.

9.5.1 Common Gateway Features

9.5.1.1 Common Gateway Attributes

The following table displays the attributes common to Gateways, and which extends the set of common Flow Object 
attributes (see Table 9.2).

Table 9.32 - Common Gateway Attributes

Attributes Description

GatewayType (Exclusive | 
Inclusive | Complex | Parallel) 
Exclusive : String

GatewayType is by default Exclusive. The GatewayType MAY be set to 
Inclusive, Complex, or Parallel. The GatewayType will determine the behavior of 
the Gateway, both for incoming and outgoing Sequence Flow, and will determine 
the internal indicator (as shown in Figure 9.17).
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9.5.1.2 Common Gateway Sequence Flow Connections

This section applies to all Gateways. Additional Sequence Flow Connection rules will be specified for each type of 
Gateway in the sections below. See Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and 
how they may be source or targets of Sequence Flow.

° A Gateway MAY be a target for Sequence Flow; it can have zero or more incoming Sequence Flow. An 
incoming Flow MAY be from an alternative path or a parallel path.

° If the Gateway does not have an incoming Sequence Flow, and there is no Start Event for the Process, then 
the Gateway’s divergence behavior, depending on the GatewayType attribute (see below), SHALL be 
performed when the Process is instantiated. 

° A Gateway MAY be a source of Sequence Flow; it can have zero or more outgoing Flow.

° A Gateway MAY have both multiple incoming and outgoing Sequence Flow.

Note – The incoming and outgoing Sequence Flow are not required to attach to the corners of the Gateway’s diamond shape. 
Sequence Flow can attach to any location on the boundary of a Gateway.

9.5.1.3 Message Flow Connections

This section applies to all Gateways. See Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects 
and how they may be source or targets of Message Flow.

° A Gateway MUST NOT be a target for Message Flow.

° A Gateway MUST NOT be a source for Message Flow.

9.5.1.4 Gates

The following table displays the attributes of Gates, and which extends the set of common BPMN element attributes (see 
Table 9.1).

Gates (0-n) : Gate There MAY be zero or more Gates (except where noted below). Zero Gates are 
allowed if the Gateway is last object in a Process flow and there are no Start or 
End Events for the Process. If there are zero or only one incoming Sequence 
Flow, then there MUST be at least two Gates.

For Exclusive Data-Based Gateways:  When two Gates are required, one of them 
MAY be the DefaultGate.

For Exclusive Event-Based Gateways:  There MUST be two or more Gates. (Note 
that this type of Gateway does not act only as a Merge--it is always a Decision, at 
least.)

For Inclusive Gateways:  When two Gates are required, one of them MAY be the 
DefaultGate.

Table 9.32 - Common Gateway Attributes

Attributes Description
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9.5.2 Exclusive Gateways

Exclusive Gateways (Decisions) are locations within a business process where the Sequence Flow can take two or more 
alternative paths. This is basically the “fork in the road” for a process. For a given performance (or instance) of the 
process, only one of the paths can be taken (this should not be confused with forking of paths—refer to “Forking Flow” 
on page 107). A Decision is not an activity from the business process perspective, but is a type of Gateway that controls 
the Sequence Flow between activities. It can be thought of as a question that is asked at that point in the Process. The 
question has a defined set of alternative answers (Gates). Each Decision Gate is associated with a condition expression 
found within an outgoing Sequence Flow. When a Gate is chosen during the performance of the Process, the 
corresponding Sequence Flow is then chosen. A Token arriving at the Decision would be directed down the appropriate 
path, based on the chosen Gate. 

The Exclusive Decision has two or more outgoing Sequence Flow, but only one of them may be taken during the 
performance of the Process. Thus, the Exclusive Decision defines a set of alternative paths for the Token to take as it 
traverses the Flow. There are two types of Exclusive Decisions: Data-Based and Event-Based.

9.5.2.1 Data-Based

The Data-Based Exclusive Gateways are the most commonly used type of Gateways. The set of Gates for Data-Based 
Exclusive Decisions is based on the boolean expression contained in the ConditionExpression attribute of the outgoing 
Sequence Flow of the Gateway. These expressions use the values of process data to determine which path should be taken 
(hence the name Data-Based).

Note – BPMN does not specify the format of the expressions used in Gateways or any other BPMN element that uses 
expressions.

Table 9.33 - Gate Attributes

Attributes Description

OutgoingSequenceFlow : 
SequenceFlow

Each Gate MUST have an associated (outgoing) Sequence Flow. The attributes of 
a Sequence Flow can be found in Section 10.1.2, “Sequence Flow,” on page 97.

For Exclusive Event-Based, Complex, and Parallel Gateways:  The Sequence Flow 
MUST have its Condition attribute set to None (there is not an evaluation of a 
condition expression).

For Exclusive Data-Based, and Inclusive Gateways:  The Sequence Flow MUST 
have its Condition attribute set to Expression and MUST have a valid 
ConditionExpression. The ConditionExpression MUST be unique for all the Gates 
within the Gateway. If there is only one Gate (i.e., the Gateway is acting only as a 
Merge), then Sequence Flow MUST have its Condition set to None.

For DefaultGates:  The Sequence Flow MUST have its Condition attribute set to 
Otherwise.

Assignments (0-n) : Assignment One or more assignment expressions MAY be made for each Gate. The 
Assignment SHALL be performed when the Gate is selected. The details of 
Assignment are defined in Section B.11.3, “Assignment,” on page 273.
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° The Data-Based Exclusive Gateway MAY use a marker that is shaped like an “X” and is placed within the 
Gateway diamond (see Figure 9.19) to distinguish it from other Gateways. This marker is not required (see 
Figure 9.18).

° A Diagram SHOULD be consistent in the use of the “X” internal indicator. That is, a Diagram SHOULD 
NOT have some Gateways with an indicator and some Gateways without an indicator.

Figure 9.18 - An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator

Figure 9.19 - A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator

Note – The “X” internal indicator for the Data-Based Exclusive Gateway was included in BPMN to complete the set of 
indicators for the different types of Gateways (see Figure 9.17). However, it is also understood that most modelers would be 
familiar with an empty decision diamond that represents an exclusive branching of the process and that most decisions 
would probably take this form. Thus, Data-Based Exclusive Gateway internal indicator was made optional so that modelers 
and modeling tools could create diagrams that would conform with the basic flow expectations of modelers.

Default
Alternative

Alternative 2

Alternative 1

Default
Alternative

X Alternative 2

Alternative 1
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The conditions for the alternative Gates should be evaluated in a specific order. The first one that evaluates as TRUE will 
determine the Sequence Flow that will be taken. Since the behavior of this Gateway is exclusive, any other conditions that 
may actually be TRUE will be ignored; only one Gate can be chosen. One of the Gates may be “default” (or otherwise), 
and is the last Gate considered. This means that if none of the other Gates are chosen, then the default Gate will be 
chosen—along with its associated Sequence Flow. 

The default Gate is not mandatory for a Gateway. This means that if it is not used, then it is up to the modeler to insure 
that at least one Gate be valid at runtime. BPMN does not specify what will happen if there are no valid Gates. However, 
BPMN does specify that there MUST NOT be implicit flow and that all Normal Flow of a Process must be expressed 
through Sequence Flow. This would mean that a Process Model that has a Gateway that potentially does not have a valid 
Gate at runtime is an invalid model. 

Figure 9.20 - An Exclusive Merge (Gateway) (without the Internal Indicator)

Exclusive Gateways can also be used as a merge (see Figure 9.20) for alternative Sequence Flow, although it is rarely 
required for the modeler to use them this way. The merging behavior of the Gateway can also be modeled as seen in 
Figure 9.21. The behavior of Figure 9.20 and Figure 9.21 are the same if all the incoming flows are alternative.

Figure 9.21 - Uncontrolled Merging of Sequence Flow
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There are certain situations where an Exclusive Gateway is required to act as a merging object. In Figure 9.23 an 
Exclusive Gateway (labeled “Merge”) merges two alternative Sequence Flow that were generated by an upstream 
Decision. The alternative Sequence Flow are merged in preparation for a Parallel Gateway that synchronizes a set of 
parallel Sequence Flow that were generated even further upstream. If the merging Gateway was not used, then there 
would have been four incoming Sequence Flow into the Parallel Gateway. However, only three of the four Sequence Flow 
would ever pass a Token at one time. Thus, the Gateway would be waiting for a fourth Token that would never arrive. 
Thus, the Process would be stuck at the point of the Parallel Gateway.

Figure 9.22 - Exclusive Gateway that merges Sequence Flow prior to a Parallel Gateway

In simple situations, Exclusive Gateways need not be used for merging Sequence Flow, but there are more complex 
situations where they are required. Thus, a modeler should always be aware of the behavior of a situation where Sequence 
Flow are uncontrolled. Some modelers or modeling tools may, in fact, require that Exclusive Gateways be used in all 
situations as a matter of Best Practice.

9.5.2.2 Attributes

The following table displays the attributes for a Data-Based Exclusive Gateway. These attributes only apply if the 
GatewayType attribute is set to Exclusive. The following attributes extend the set of common Gateway attributes (see 
Table 9.32).

Table 9.34 - Data-Based Exclusive Gateway Attributes

Attributes Description

ExclusiveType (Data | Event) 
Data : String

ExclusiveType is by default Data. The ExclusiveType MAY be set to Event. 
Since Data-Based Exclusive Gateways are the subject of this section, the attribute 
MUST be set to Data for the attributes and behavior defined in this section to 
apply to the Gateway.

MergeDecision
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9.5.2.3 Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “Common Gateway Sequence Flow 
Connections” on page 72. See Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how 
they may be source or targets of Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for converging Sequence Flow: 

° If there are multiple incoming Sequence Flow, all of them will be used to continue the flow of the Process (as if 
there were no Gateway). That is,

° Process flow SHALL continue when a signal (a Token) arrives from any of a set of Sequence Flow.

° Signals from other Sequence Flow within that set may arrive at other times and the flow will continue 
when they arrive as well, without consideration or synchronization of signals that have arrived from 
other Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for diverging Sequence Flow: 

° If there are multiple outgoing Sequence Flow, then only one Gate (or the DefaultGate) SHALL be selected 
during performance of the Process.

° The Gate SHALL be chosen based on the result of evaluating the ConditionExpression that is defined for the 
Sequence Flow associated with the Gate.

° The Conditions associated with the Gates SHALL be evaluated in the order in which the Gates appear 
on the list for the Gateway.

° If a ConditionExpression is evaluated as “TRUE,” then that Gate SHALL be chosen and any Gates 
remaining on the list MUST NOT be evaluated.

° If none of the ConditionExpressions for the Gates are evaluated as “TRUE,” then the DefaultGate 
SHALL be chosen.

Note –  If the Gateway does not have a DefaultGate and none of the Gate ConditionExpressions are evaluated as “TRUE,” 
then the Process is considered to have an invalid model.

9.5.2.4 Event-Based

The inclusion of Event-Based Exclusive Gateways is the result of recent developments in the handling of distributed 
systems (e.g., with pi-calculus) and was derived from the BPEL4WS pick. On the input side, their behavior is the same as 
a Data-Based Exclusive Gateway (see “Data-Based” on page 73). On the output side, the basic idea is that this Decision 
represents a branching point in the process where the alternatives are based on events that occurs at that point in the 
Process, rather than the evaluation of expressions using process data. A specific event, usually the receipt of a message, 
determines which of the paths will be taken. For example, if a company is waiting for a response from a customer, they 
will perform one set of activities if the customer responds “Yes” and another set of activities if the customer responds 
“No.” The customer’s response determines which path is taken. The identity of the Message determines which path is 

MarkerVisible False : Boolean This attribute determines if the Exclusive Marker is displayed in the center of the 
Gateway diamond (an “X”). The marker is displayed if the attribute is True and it 
is not displayed if the attribute is False. By default, the marker is not displayed.

DefaultGate (0-1) : Gate A Default Gate MAY be specified (see Section 9.5.1.4, “Gates,” on page 72).

Table 9.34 - Data-Based Exclusive Gateway Attributes

Attributes Description
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taken. That is, the “Yes” Message and the “No” message are different messages—they are not the same message with 
different values within a property of the Message. The receipt of the message can be modeled with a Task of TaskType 
Receive or an Intermediate Event with a Message Trigger. In addition to Messages, other Triggers for Intermediate Events 
can be used, such as Timers. 

° The Event-Based Exclusive Gateway MUST use a marker that is the same as the Multiple Intermediate Event 
and is placed within the Gateway diamond (see Figure 9.23 and Figure 9.24) to distinguish it from other 
Gateways.

° The Event-Based Exclusive Decisions are configured by having outgoing Sequence Flow target a Task of 
TaskType Receive or an Intermediate Event (see Figure 9.23 and Figure 9.24). 

° All of the outgoing Sequence Flow must have this type of target; there cannot be a mixing of condition 
expressions and Intermediate Events for a given Decision.

Figure 9.23 - An Event-Based Decision (Gateway) Example Using Receive Tasks

Figure 9.24 - An Event-Based Decision (Gateway) Example Using Message Events

Because this Gateway is an Exclusive Gateway, the merging functionality for the Event-Based Exclusive Gateway is the 
same as the Data-Based Exclusive Gateway described in the previous section.
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A Gateway can be used to start a Process. In a sense, the Process is bootstrapped by the receipt of a message. The receipt 
of any of the messages defined by the Gateway configuration will instantiate the Process. Thus, the Gateway provides a 
set of alternative ways for the Process to begin.

In order for the Gateway to Instantiate the Process it must meet one of the following conditions:

° The Process does not have a Start Event and the Gateway has no incoming Sequence Flow.

° The Incoming Sequence Flow for the Gateway has a source of a Start Event.

° Note that no other incoming Sequence Flow are allowed for the Gateway (in particular, a loop connection 
from a downstream object).

° The Targets for the Gateway’s outgoing Sequence Flow MUST NOT be a Timer Intermediate Event.

9.5.2.5 Attributes

The following table displays the attributes for an Event-Based Exclusive Gateway. These attributes only apply if the 
GatewayType attribute is set to Exclusive. The following attributes extend the set of common Gateway attributes (see 
Table 9.38).

9.5.2.6 Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “Common Gateway Sequence Flow 
Connections” on page 72. See Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how 
they may be source or targets of Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for converging Sequence Flow: 

° If there are multiple incoming Sequence Flow, all of them will be used to continue the flow of the Process (as if 
there were no Gateway). That is,

° Process flow SHALL continue when a signal (a Token) arrives from any of a set of Sequence Flow.

° Signals from other Sequence Flow within that set may arrive at other times and the flow will continue 
when they arrive as well, without consideration or synchronization of signals that have arrived from 
other Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for diverging Sequence Flow: 

° Only one Gate SHALL be selected during performance of the Process.

° The Gate SHALL be chosen based on the Target of the Gate’s Sequence Flow.

Table 9.35 - Event-Based Exclusive Gateway Attributes

Attributes Description

ExclusiveType (Data | Event) 
Event : String

ExclusiveType is by default Data. The ExclusiveType MAY be set to Event. 
Since Event-Based Exclusive Gateways is the subject of this section, the attribute 
MUST be set to Event for the attributes and behavior defined in this section to 
apply to the Gateway.

Instantiate False : Boolean Event-Based Gateways can be defined as the instantiation mechanism for the 
Process with the Instantiate attribute. This attribute MAY be set to true if the 
Gateway is the first element after the Start Event or a starting Gateway if there is 
no Start Event (i.e., there are no incoming Sequence Flow).
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° If a Target is instantiated (e.g., a message is received or a time is exceeded), then that Gate SHALL be 
chosen and the remaining Gates MUST NOT be evaluated (i.e., their Targets will be disabled).

° The outgoing Sequence Flow Condition attribute MUST be set to None.

° The Target of the Gateway’s outgoing Sequence Flow MUST be one of the following objects:

° Task with the TaskType attribute set to Receive.

° Intermediate Event with the Trigger attribute set to Message, Timer, Signal.

° If one Gate Target is a Task, then an Intermediate Event with a Trigger Message MUST NOT be used as 
a Target for another Gate. That is, messages MUST be received by only Receive Tasks or only Message 
Events, but not a mixture of both for a given Gateway.

9.5.3 Inclusive Gateways

This Decision represents a branching point where Alternatives are based on conditional expressions contained within 
outgoing Sequence Flow. However, in this case, the True evaluation of one condition expression does not exclude the 
evaluation of other condition expressions. All Sequence Flow with a True evaluation will be traversed by a Token. In 
some sense it’s like a grouping of related independent Binary (Yes/No) Decisions--and can be modeled that way. Since 
each path is independent, all combinations of the paths may be taken, from zero to all. However, it should be designed so 
that at least one path is taken.

Note – If none of the Inclusive Decision Gate ConditionExpressions are evaluated as “TRUE,” then the Process is considered 
to have an invalid model.

There are two mechanisms for modeling this type of Decision. The first method for modeling Inclusive Decision 
situations does not actually use an Inclusive Gateway, but instead uses a collection of conditional Sequence Flow, marked 
with mini-diamonds; the Gates without the Gateway (see Figure 9.25). Conditional Sequence Flow have their Condition 
attribute set to Expression and the ConditionExpression attribute set to a boolean mathematical expression based on 
information available to the Process. These Sequence Flow are indicated by a “mini-diamond” marker at the start of the 
Sequence Flow line.

Figure 9.25 - An Inclusive Decision using Conditional Sequence Flow

There are some restrictions in using the conditional Sequence Flow (with mini-diamonds):

Condition 1

Condition 2

Default
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• The source object MUST NOT be an Event. The source object MAY be a Gateway, but the mini-diamond MUST NOT 
be displayed in this case. The source object MAY be an activity (Task or Sub-Process) and the mini-diamond SHALL 
be displayed in this case.

• A source Gateway MUST NOT be of type Parallel or Complex.

• If a conditional Sequence Flow is used from a source activity, then there MUST be at least one other outgoing 
Sequence Flow from that activity.

• The additional Sequence Flow(s) MAY also be conditional, but it is not required that they are conditional.

The second method for modeling Inclusive Decision situations uses an Inclusive Gateway (see Figure 9.26), sometimes in 
combination with other Gateways. A marker will be placed in the center of the Gateway to indicate that the behavior of 
the Gateway is inclusive.

° The Inclusive Gateway MUST use a marker that is in the shape of a circle or an “O” and is placed within the 
Gateway diamond (see Figure 9.26) to distinguish it from other Gateways.

Figure 9.26 - An Inclusive Decision using an Inclusive Gateway

The behavior of the model depicted in Figure 9.25 is equivalent to the behavior of the model depicted in Figure 9.26. 
Again, it is up to the modeler to insure that at least one of the conditions will be TRUE when the Process is performed.

When the Inclusive Gateway is used as a Merge, it will synchronize all Tokens that have been produced upstream, but at 
most one for each incoming Sequence Flow. Note: Tokens with a loop are upstream of every node in the loop. It requires 
that Tokens for all Sequence Flow that were actually produced by an upstream (by an Inclusive situation, for example) be 
synchronized. If an upstream Inclusive produces two out of a possible three Tokens, then a downstream Inclusive will 
synchronize those two Tokens and not wait for another Token, even though there are three incoming Sequence Flow (see 
Figure 9.27).

Condition 2

Condition 1

Default
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Figure 9.27 - An Inclusive Gateway Merging Sequence Flow

9.5.3.1 Attributes

The following table displays the attributes for an Inclusive Gateway. These attributes only apply if the GatewayType 
attribute is set to Inclusive. The following attributes extend the set of common Gateway attributes (see Table 9.32).

9.5.3.2 Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “Common Gateway Sequence Flow 
Connections” on page 72. See Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how 
they may be source or targets of Sequence Flow.

To define the inclusive nature of this Gateway’s behavior for converging Sequence Flow: 

° If there are multiple incoming Sequence Flow, one or more of them will be used to continue the flow of the 
Process. That is,

° Process flow SHALL continue when the signals (Tokens) arrive from all of the incoming Sequence Flow that 
are expecting a signal based on the upstream structure of the Process (e.g., an upstream Inclusive Decision).

° Some of the incoming Sequence Flow will not have signals and the pattern of which Sequence Flow will 
have signals may change for different instantiations of the Process.

Note – Incoming Sequence Flow that have a source that is a downstream activity (that is, is part of a loop) will be treated 
differently than those that have an upstream source. They will be considered as part of a different set of Sequence Flow from 
those Sequence Flow that have a source that is an upstream activity.

To define the inclusive nature of this Gateway’s behavior for diverging Sequence Flow: 

° One or more Gates SHALL be selected during performance of the Process.

Table 9.36 - Inclusive Gateway Attributes

Attributes Description

DefaultGate (0-1) : Gate A Default Gate MAY be specified (see Section 9.5.1.4, “Gates,” on page 72).
82                 Business Process Modeling Notation, v1.2



° The Gates SHALL be chosen based on the Condition expression that is defined for the Sequence Flow 
associated with the Gates.

° The Condition associated with all Gates SHALL be evaluated.

° If a Condition is evaluated as “TRUE,” then that Gate SHALL be chosen, independent of what other 
Gates have or have not been chosen.

° If none of the ConditionExpressions for the Gates are evaluated as “TRUE,” then the DefaultGate 
SHALL be chosen.

9.5.4 Complex Gateways

BPMN includes a Complex Gateway to handle situations that are not easily handled through the other types of Gateways. 
Complex Gateways can also be used to combine a set of linked simple Gateways into a single, more compact situation. 
Modelers can provide complex expressions that determine the merging and/or splitting behavior of the Gateway.

° The Complex Gateway MUST use a marker that is in the shape of an asterisk and is placed within the Gateway 
diamond (see Figure 9.28) to distinguish it from other Gateways.

When the Gateway is used as a Decision (see Figure 9.28), then an expression determines which of the outgoing 
Sequence Flow will be chosen for the Process to continue. The expression may refer to process data and the status of the 
incoming Sequence Flow. For example, an expression may evaluate Process data and then select different sets of outgoing 
Sequence Flow, based on the results of the evaluation. However, the expression should be designed so that at least one of 
the outgoing Sequence Flow will be chosen. 

Figure 9.28 - A Complex Decision (Gateway)

When the Gateway is used as a Merge (see Figure 9.29), then there will be an expression that will determine which of the 
incoming Sequence Flow will be required for the Process to continue. The expression may refer to process data and the 
status of the incoming Sequence Flow. For example, an expression may specify that any 3 out of 5 incoming Tokens will 

Alternative 2

             Alternative 1

Alternative 3

              Alternative 4
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continue the Process. Another example would be an expression that specifies that a Token is required from Sequence 
Flow “a” and that a Token from either Sequence Flow “b” or “c” is acceptable. However, the expression should be 
designed so that the Process is not stalled at that location. 

Figure 9.29 - A Complex Merge (Gateway)

9.5.4.1 Attributes

The following table displays the attributes for a Complex Gateway. These attributes only apply if the GatewayType 
attribute is set to Complex. The following attributes extend the set of common Gateway attributes (see Table 9.32).

9.5.4.2 Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “Common Gateway Sequence Flow 
Connections” on page 72. See Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how 
they may be source or targets of Sequence Flow.

To define the complex nature of this Gateway’s behavior for converging Sequence Flow: 

° If there are multiple incoming Sequence Flow, one or more of them will be used to continue the flow of the 
Process. The exact combination of incoming Sequence Flow will be determined by the Gateway’s 
IncomingCondition expression.

° Process flow SHALL continue when the appropriate number of signals (Tokens) arrives from appropriate 
incoming Sequence Flow.

Table 9.37 - Complex Gateway Attributes

Attributes Description

IncomingCondition (0-1) : 
Expression

If there are multiple incoming Sequence Flow, an IncomingCondition expression 
MUST be set by the modeler. This will consist of an expression that can reference 
Sequence Flow names and/or Process Properties (Data).

OutgoingCondition (0-1) : 
Expression

If there are multiple outgoing Sequence Flow, an OutgoingCondition expression 
MUST be set by the modeler. This will consist of an expression that can reference 
(outgoing) Sequence Flow Ids and/or Process Properties (Data).
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° Signals from other Sequence Flow within that set MAY arrive, but they MUST NOT be used to continue the 
flow of the Process. 

Note – Incoming Sequence Flow that have a source that is a downstream activity (that is, is part of a loop) will be treated 
differently than those that have an upstream source. They will be considered as part of a different set of Sequence Flow from 
those Sequence Flow that have a source that is an upstream activity.

To define the inclusive nature of this Gateway’s behavior for diverging Sequence Flow: 

° One or more Gates SHALL be selected during performance of the Process.

° The Gates SHALL be chosen based on the Gateway’s OutgoingCondition expression.

9.5.5 Parallel Gateways

Parallel Gateways provide a mechanism to synchronize parallel flow and to create parallel flow. These Gateways are not 
required to create parallel flow, but they can be used to clarify the behavior of complex situations where a string of 
Gateways are used and parallel flow is required. In addition, some modelers may wish to create a “best practice” where 
Parallel Gateways are always used for creating parallel paths. This practice will create an extra modeling element where 
one is not required, but will provide a balanced approach where forking and joining elements can be paired up.

° The Parallel Gateway MUST use a marker that is in the shape of a plus sign and is placed within the Gateway 
diamond (see Figure 9.30) to distinguish it from other Gateways.

Figure 9.30 - A Parallel Gateway

Parallel Gateways are used for synchronizing parallel flow. 
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Figure 9.31 - Joining – the joining of parallel paths

9.5.5.1 Attributes

Parallel Gateways do not have any additional Attributes beyond the common Gateway Attributes (see Table 9.32).

9.5.5.2 Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “Common Gateway Sequence Flow 
Connections” on page 72. See Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how 
they may be source or targets of Sequence Flow.

To define the parallel nature of this Gateway’s behavior for converging Sequence Flow: 

° If there are multiple incoming Sequence Flow, all of them will be used to continue the flow of the Process--the 
flow will be synchronized. That is,

° Process flow SHALL continue when a signal (a Token) has arrived from all of a set of Sequence Flow (i.e., 
the process will wait for all signals to arrive before it can continue).

Note – Incoming Sequence Flow that have a source that is a downstream activity (that is, is part of a loop) will be treated 
differently than those that have an upstream source. They will be considered as part of a different set of Sequence Flow from 
those Sequence Flow that have a source that is an upstream activity.

To define the parallel nature of this Gateway’s behavior for diverging Sequence Flow: 

° All Gates SHALL be selected during performance of the Process.

9.6 Swimlanes (Pools and Lanes)

BPMN uses the concept known as “swimlanes” to help partition and/organize activities. It is possible that a BPMN 
Diagram may depict more than one private process, as well as the processes that show the collaboration between private 
processes or Participants. If so, then each private business process will be considered as being performed by different 
Participants. Graphically, each Participant will be partitioned; that is, will be contained within a rectangular box called a 
“Pool.” Pools can have sub-Swimlanes that are called, simply, “Lanes.”

Section 7.1.1, “Uses of BPMN,” on page 12 describes the uses of BPMN for modeling private processes and the 
interactions of processes in B2B scenarios. Pools and Lanes are designed to support these uses of BPMN. 
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9.6.1 Common Swimlane Attributes

The following table displays a set of common attributes for Swimlanes (Pools and Lanes), and which extends the set of 
common BPMN Element attributes (see Table 9.1):

9.6.2 Pool

A Pool represents a Participant in the Process. A Participant can be a specific business entity (e.g., a company) or can be 
a more general business role (e.g., a buyer, seller, or manufacturer). Graphically, a Pool is a container for partitioning a 
Process from other Pools, when modeling business-to-business situations, although a Pool need not have any internal 
details (i.e., it can be a “black box”).

° A Pool is a square-cornered rectangle that MUST be drawn with a solid single black line (as seen in Figure 9.32).

° One, and only one, Pool in a diagram MAY be presented without a boundary. If there is more than one Pool 
in the diagram, then the remaining Pools MUST have a boundary.

° The use of text, color, size, and lines for a Pool MUST follow the rules defined in Section 8.3, “Use of Text, 
Color, Size, and Lines in a Diagram,” on page 29.

Figure 9.32 - A Pool

To help with the clarity of the Diagram, A Pool will extend the entire length of the Diagram, either horizontally or 
vertically. However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and modeling tools 
can use Pools (and Lanes) in a flexible manner in the interest of conserving the “real estate” of a Diagram on a screen or 
a printed page.

A Pool acts as the container for the Sequence Flow between activities. The Sequence Flow can cross the boundaries 
between Lanes of a Pool, but cannot cross the boundaries of a Pool. The interaction between Pools, e.g., in a B2B context, 
is shown through Message Flow.

Another aspect of Pools is whether or not there is any activity detailed within the Pool. Thus, a given Pool may be shown 
as a “White Box,” with all details exposed, or as a “Black Box,” with all details hidden. No Sequence Flow is associated 
with a “Black Box” Pool, but Message Flow can attach to its boundaries (see Figure 9.33). 

Table 9.38 - Common Swimlane Attributes

Attributes Description

Name : String Name is an attribute that is text description of the Swimlane.
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Figure 9.33 - Message Flow connecting to the boundaries of two Pools

For a “White Box” Pool, the activities within are organized by Sequence Flow. Message Flow can cross the Pool 
boundary to attach to the appropriate activity (see Figure 9.34).

Figure 9.34 - Message Flow connecting to Flow Objects within two Pools

All BPDs contain at least one Pool. In most cases, a BPD that consists of a single Pool will only display the activities of 
the Process and not display the boundaries of the Pool. Furthermore, a BPD may show the “main” Pool without 
boundaries. In such cases there can be, at most, only one invisibly-bounded pool in the diagram and the name of that pool 
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SHALL be the same as the diagram. Consequently, the activities that represent the work performed from the point of view 
of the modeler or the modeler’s organization are considered “internal” activities and need not be surrounded by the 
boundaries of a Pool, while the other Pools in the Diagram must have their boundary (see Figure 9.35).

Figure 9.35 - Main (Internal) Pool without boundaries

9.6.2.1 Attributes

The following table displays the identified attributes of a Pool, and which extends the set of common Swimlane attributes 
(see Table 9.40):

9.6.3 Lane

A Lane is a sub-partition within a Pool and will extend the entire length of the Pool, either vertically (see Figure 9.36) or 
horizontally (see Figure 9.37). If the pool is invisibly bounded, the lane associated with the pool must extend the entire 
length of the pool. Text associated with the Lane (e.g., its name and/or any attribute) can be placed inside the shape, in 

Table 9.39 - Pool Attributes

Attributes Description

ProcessRef (0-1) : Process The ProcessRef attribute defines the Process that is contained within the Pool. 
Each Pool MAY have a Process. The attributes for a Process can be found in 
Section 8.6, “Processes,” on page 32.

ParticipantRef : Participant The Modeler MUST define the Participant for a Pool. The Participant can be 
either a Role or an Entity. The attributes for a Participant can be found in 
Section B.11.14, “Participant,” on page 279.

Lanes (1-n) : Lane There MUST be one or more Lanes within a Pool. The attributes for a Lane can 
be found in Section 9.6.3, “Lane,” on page 89.

BoundaryVisible True : Boolean This attribute defines if the rectangular boundary for the Pool is visible. Only one 
Pool in the Diagram MAY have the attribute set to False.

MainPool False : Boolean This attribute defines if the Pool is the “main” Pool or the focus of the diagram. 
Only one Pool in the Diagram MAY have the attribute set to True.

Authorize
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+
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any direction or location, depending on the preference of the modeler or modeling tool vendor. Our examples place the 
name as a banner on the left side (for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that 
separates the Pool name, however, this is not a requirement. 

Figure 9.36 - Two Lanes in a Vertical Pool

Figure 9.37 - Two Lanes in a Horizontal Pool

Lanes are used to organize and categorize activities within a Pool. The meaning of the Lanes is up to the modeler. BPMN 
does not specify the usage of Lanes. Lanes are often used for such things as internal roles (e.g., Manager, Associate), 
systems (e.g., an enterprise application), an internal department (e.g., shipping, finance), etc. In addition, Lanes can be 
nested (see Figure 9.38) or defined in a matrix. For example, there could be an outer set of Lanes for company 
departments and then an inner set of Lanes for roles within each department.
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Figure 9.38 - An Example of Nested Lanes
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9.6.3.1 Attributes

The following table displays the identified attributes of a Lane, and which extends the set of common Swimlane attributes 
(see Table 9.43):

9.7 Artifacts

BPMN provides modelers with the capability of showing additional information about a Process that is not directly 
related to the Sequence Flow or Message Flow of the Process. 

At this point, BPMN provides three standard Artifacts: A Data Object, a Group, and an Annotation. Additional standard 
Artifacts may be added to the BPMN specification in later versions. A modeler or modeling tool may extend a BPD and 
add new types of Artifacts to a Diagram. Any new Artifact must follow the Sequence Flow and Message Flow connection 
rules (listed below). Associations can be used to link Artifacts to Flow Objects (see Section 10.1.4, “Association,” on 
page 101).

9.7.1 Common Artifact Definitions

The following sections provide definitions that a common to all Artifacts.

9.7.1.1 Common Artifact Attributes

The following table displays the identified attributes common to Artifacts, and which extends the set of common BPMN 
Element attributes (see Table 9.1):

9.7.1.2 Artifact Sequence Flow Connections

See Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how they may be source or targets 
of Sequence Flow.

° An Artifact MUST NOT be a target for Sequence Flow.

° An Artifact MUST NOT be a source for Sequence Flow.

9.7.1.3 Artifact Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects and how they may be source or targets 
of Message Flow.

° An Artifact MUST NOT be a target for Message Flow.

° An Artifact MUST NOT be a source for Message Flow.

Table 9.40 - Lane Attributes

Attributes Description

Lanes (0-*) : Lane This attribute identifies any Lanes that are nested within the current Lane.

Table 9.41 - Common Artifact Attributes

Attributes Description

ArtifactType (DataObject | Group | 
Annotation) DataObject : String

The ArtifactType MAY be set to DataObject, Group, or Annotation. 
The ArtifactType list MAY be extended to include new types.
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9.7.2 Data Object

In BPMN, a Data Object is considered an Artifact and not a Flow Object. They are considered an Artifact because they 
do not have any direct affect on the Sequence Flow or Message Flow of the Process, but they do provide information 
about what the Process does. That is, how documents, data, and other objects are used and updated during the Process. 
While the name “Data Object” may imply an electronic document, they can be used to represent many different types of 
objects, both electronic and physical.

In general, BPMN will not standardize many modeling Artifacts. These will mainly be up to modelers and modeling tool 
vendors to create for their own purposes. However, equivalents of the BPMN Data Object are used by Document 
Management oriented workflow systems and many other process modeling methodologies. Thus, this object is used 
enough that it is important to standardize its shape and behavior.

° A Data Object is a portrait-oriented rectangle that has its upper-right corner folded over that MUST be drawn 
with a solid single black line (as seen in Figure 9.39).

° The use of text, color, size, and lines for a Data Object MUST follow the rules defined in Section 8.3, “Use 
of Text, Color, Size, and Lines in a Diagram,” on page 29.

Figure 9.39 - A Data Object

As an Artifact, Data Objects generally will be associated with Flow Objects. An Association will be used to make the 
connection between the Data Object and the Flow Object. This means that the behavior of the Process can be modeled 
without Data Objects for modelers who want to reduce clutter. The same Process can be modeled with Data Objects for 
modelers who want to include more information without changing the basic behavior of the Process.

In some cases, the Data Object will be shown being sent from one activity to another, via a Sequence Flow (see Figure 
9.40). Data Objects will also be associated with Message Flow. They are not to be confused with the message itself, but 
could be thought of as the “payload” or content of some messages.

Figure 9.40 - A Data Object associated with a Sequence Flow

Name
[State]

Send
Invoice

Make
Payment

Invoice
[Approved]
Business Process Modeling Notation, v1.2        93



In other cases, the same Data Object will be shown as being an input, then an output of a Process (see Figure 9.41). 
Directionality added to the Association will show whether the Data Object is an input or an output. Also, the state 
attribute of the Data Object can change to show the impact of the Process on the Data Object.

Figure 9.41 - Data Objects shown as inputs and outputs

9.7.2.1 Attributes

The following table displays the attributes for Data Objects, which extends the set of common Artifact attributes (see 
Table 9.41 and Section 9.7.1.2). These attributes only apply if the ArtifactType attribute is set to DataObject:

9.7.3 Text Annotation

Text Annotations are a mechanism for a modeler to provide additional information for the reader of a BPMN Diagram. 

° A Text Annotation is an open rectangle that MUST be drawn with a solid single black line (as seen in Figure 
9.42).

° The use of text, color, size, and lines for a Text Annotation MUST follow the rules defined in Section 8.3, 
“Use of Text, Color, Size, and Lines in a Diagram,” on page 29.

The Text Annotation object can be connected to a specific object on the Diagram with an Association (see Figure 9.42), 
but do not affect the flow of the Process. Text associated with the Annotation can be placed within the bounds of the open 
rectangle.

Table 9.42 - Data Object Attributes

Attributes Description

Name : String Name is an attribute that is text description of the object.

State (0-1) : String State is an optional attribute that indicates the impact the Process has had on the 
Data Object. Multiple Data Objects with the same name MAY share the same 
state within one Process.

Properties (0-n) : Property Modeler-defined Properties MAY be added to a Data Object. The fully 
delineated name of these properties is “<process name>.<task name>.<property 
name>” (e.g., “Add Customer.Credit Report.Score”). Further details about the 
definition of a Property can be found in Section B.11.15, “Property,” on page 
279.
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Purchase Order
[Approved]
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Figure 9.42 - A Text Annotation

9.7.3.1 Attributes

The following table displays the attributes for Annotations, which extends the set of common Artifact attributes (see 
9.7.1.2 and Table 9.41). These attributes only apply if the ArtifactType attribute is set to Annotation:

9.7.4 Group

The Group object is an Artifact that provides a visual mechanism to group elements of a diagram informally. The 
grouping is tied to the Category supporting element (which is an attribute of all BPMN elements). That is, a Group is a 
visual depiction of a single Category. The graphical elements within the Group will be assigned the Category of the 
Group. (Note -- Categories can be highlighted through other mechanisms, such as color, as defined by a modeler or a 
modeling tool).

° A Group is a rounded corner rectangle that MUST be drawn with a solid dashed black line (as seen in Figure 
9.43).

° The use of text, color, size, and lines for a Group MUST follow the rules defined in Section 8.3, “Use of 
Text, Color, Size, and Lines in a Diagram,” on page 29.

Figure 9.43 - A Group Artifact

As an Artifact, a Group is not an activity or any Flow Object, and, therefore, cannot connect to Sequence Flow or 
Message Flow. In addition, Groups are not constrained by restrictions of Pools and Lanes. This means that a Group can 
stretch across the boundaries of a Pool to surround Diagram elements (see Figure 9.44), often to identify activities that 
exist within a distributed business-to-business transaction.

Table 9.43 - Text Annotation Attributes

Attributes Description

Text : String Text is an attribute which is text that the modeler wishes to communicate to the 
reader of the Diagram.
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Figure 9.44 - A Group around activities in different Pools

Groups are often used to highlight certain sections of a Diagram without adding additional constraints for performance, as 
a Sub-Process would. The highlighted (grouped) section of the Diagram can be separated for reporting and analysis 
purposes. Groups do not affect the flow of the Process.

9.7.4.1 Attributes

The following table displays the attributes for Groups, which extends the set of common Artifact attributes (see 9.7.1.2 
and Table 9.41). These attributes only apply if the ArtifactType attribute is set to Group:

Table 9.44 - Group Attributes

Attributes Description

CategoryRef : Category CategoryRef specifies the Category that the Group represents. Further details 
about the definition of a Category can be found in B.11.4 ”Category” on page 
273.”  The name of the Category provides the label for the Group. The graphical 
elements within the boundaries of the Group will be assigned the Category.

GraphicalElements (0-n) : 
Graphical Element

The GraphicalElements attribute identifies all of the graphical elements (e.g., 
Events, Activities, Gateways, and Artifacts) that are within the boundaries of the 
Group.
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10 Business Process Diagram Connecting Objects

This section defines the graphical objects used to connect two objects together (i.e., the connecting lines of the Diagram) 
and how the flow progresses through a Process (i.e., through a straight sequence or through the creation of parallel or 
alternative paths).

10.1 Graphical Connecting Objects

There are two ways of Connecting Objects in BPMN: a Flow, either sequence or message, and an Association. Sequence 
Flow and Message Flow, to a certain extent, represent orthogonal aspects of the business processes depicted in a model, 
although they both affect the performance of activities within a Process. In keeping with this, Sequence Flow will 
generally flow in a single direction (either left to right, or top to bottom) and Message Flow will flow at a 90° from the 
Sequence Flow. This will help clarify the relationships for a Diagram that contains both Sequence Flow and Message 
Flow. However, BPMN does not restrict this relationship between the two types of Flow. A modeler can connect either 
type of Flow in any direction at any place in the Diagram.

The next three sections will describe how these types of connections function in BPMN.

10.1.1 Common Connecting Object Attributes

The following table displays the set of attributes common to Connecting Objects (Sequence Flow, Message Flow, and 
Association), and which extends the set of common BPMN Element attributes (see Table 10.1):

10.1.2 Sequence Flow

A Sequence Flow is used to show the order that activities will be performed in a Process. Each Flow has only one source 
and only one target. The source and target must be from the set of the following Flow Objects: Events (Start, 
Intermediate, and End), Activities (Task and Sub-Process), and Gateways. During performance (or simulation) of the 
process, a Token will leave the source Flow Object, traverse down the Sequence Flow, and enter the target Flow Object.

° A Sequence Flow is a line with a solid arrowhead that MUST be drawn with a solid single line (as seen in Figure 
10.1).

Table 10.1 - Common Connecting Object Attributes

Attributes Description

Name (0-1) : String Name is an optional attribute that is text description of the Connecting Object.

SourceRef : Graphical Element SourceRef is an attribute that identifies which Graphical Element the Connecting 
Object is connected from. Note: there are restrictions as to what objects Sequence 
Flow and Message Flow can connect. Refer to the Sequence Flow Connections 
section and the Message Flow Connections section for each Flow Object, 
Swimlane, and Artifact.

TargetRef : Graphical Element TargetRef is an attribute that identifies which Graphical Element the Connecting 
Object is connected to. Note: there are restrictions as to what objects Sequence 
Flow and Message Flow can connect. Refer to the Sequence Flow Connections 
section and the Message Flow Connections section for each Flow Object, 
Swimlane, and Artifact.
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° The use of text, color, and size for Sequence Flow MUST follow the rules defined in Section 8.3, “Use of Text, 
Color, Size, and Lines in a Diagram,” on page 29.

Figure 10.1 - A Sequence Flow

BPMN does not use the term “Control Flow” when referring to the lines represented by Sequence Flow or Message Flow. 
The start of an activity is “controlled” not only by Sequence Flow (the order of activities), but also by Message Flow (a 
message arriving), as well as other process factors, such as scheduled resources. Artifacts can be Associated with 
activities to show some of these other factors. Thus, we are using a more specific term, “Sequence Flow,” since these 
lines mainly illustrate the sequence that activities will be performed. 

° A Sequence Flow MAY have a conditional expression attribute, depending on its source object.

This means that the condition expression must be evaluated before a Token can be generated and then leave the source 
object to traverse the Flow. The conditions are usually associated with Decision Gateways, but can also be used with 
activities. 

° If the source of the Sequence Flow is an activity, rather than Gateway, then a Conditional Marker, shaped as a “mini-
diamond,” MUST be used at the beginning of the Sequence Flow (see Figure 10.2).

The diamond shape is used to relate the behavior to a Gateway (also a diamond) that controls the flow within a Process. 
More information about how conditional Sequence Flow are used can be found in “Splitting Flow” on page 111.

Figure 10.2 - A Conditional Sequence Flow

A Sequence Flow that has an Exclusive Data-Based Gateway or an activity as its source can also be defined with a 
condition expression of Default. Such Sequence Flow will have a marker to show that it is a Default flow. 

° The Default Marker MUST be a backslash near the beginning of the line (see Figure 10.3).

Figure 10.3 - A Default Sequence Flow
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10.1.2.1 Attributes

The following table displays the set of attributes of a Sequence Flow, and which extends the set of common Connecting 
Object attributes (see Figure 10.43):

10.1.3 Message Flow

A Message Flow is used to show the flow of messages between two entities that are prepared to send and receive them. 
In BPMN, two separate Pools in the Diagram will represent the two entities. Thus, 

° Message Flow MUST connect two Pools, either to the Pools themselves or to Flow Objects within the Pools. They 
cannot connect two objects within the same Pool. 

Table 10.2 - Sequence Flow Attributes

Attributes Description

ConditionType (None | 
Expression | Default) None : 
String

By default, the ConditionType of a Sequence Flow is None. This means that there 
is no evaluation at runtime to determine whether or not the Sequence Flow will be 
used. Once a Token is ready to traverse the Sequence Flow (i.e., the Source is an 
activity that has completed), then the Token will do so. The normal, uncontrolled 
use of Sequence Flow, in a sequence of activities, will have a None 
ConditionType (see Figure 10.11). A None ConditionType MUST NOT be used 
if the Source of the Sequence Flow is an Exclusive Data-Based or Inclusive 
Gateway.

The ConditionType attribute MAY be set to Expression if the Source of the 
Sequence Flow is a Task, a Sub-Process, or a Gateway of type Exclusive-Data-
Based or Inclusive. If the ConditionType attribute is set to Expression, then a 
condition marker SHALL be added to the line if the Sequence Flow is outgoing 
from an activity (see Figure 10.2). However, a condition indicator MUST NOT be 
added to the line if the Sequence Flow is outgoing from a Gateway.

An Expression ConditionType MUST NOT be used if the Source of the Sequence 
Flow is an Event-Based Exclusive Gateway, a Complex Gateway, a Parallel 
Gateway, a Start Event, or an Intermediate Event. In addition, an Expression 
ConditionType MUST NOT be used if the Sequence Flow is associated with the 
Default Gate of a Gateway.

The ConditionType attribute MAY be set to Default only if the Source of the 
Sequence Flow is an activity or an Exclusive Data-Based Gateway. If the 
ConditionType is Default, then the Default marker SHALL be displayed (see 
Figure 10.3).

[ConditionType is set to 
Expression only] 
ConditionExpression: 
Expression

If the ConditionType attribute is set to Expression, then the ConditionExpression 
attribute MUST be defined as a valid expression. The expression will be 
evaluated at runtime. If the result of the evaluation is TRUE, then a Token will be 
generated and will traverse the Sequence--Subject to any constraints imposed by a 
Source that is a Gateway.
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° A Message Flow is a line with an open arrowhead that MUST be drawn with a dashed single black line (as seen in 
Figure 10.4).

° The use of text, color, size, and lines for Message Flow MUST follow the rules defined in Section 8.3, “Use of 
Text, Color, Size, and Lines in a Diagram,” on page 29.

Figure 10.4 - A Message Flow

The Message Flow can connect directly to the boundary of a Pool (See Figure 10.5), especially if the Pool does not have 
any process details within (e.g., is a “Black Box”).

Figure 10.5 - Message Flow connecting to the boundaries of two Pools

A Message Flow can also cross the boundary of a Pool and connect to a Flow Object within that Pool (see Figure 10.6). 
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Figure 10.6 - Message Flow connecting to Flow Objects within two Pools

If there is an Expanded Sub-Process in one of the Pools, then the message flow can be connected to either the boundary 
of the Sub-Process or to objects within the Sub-Process.  

10.1.3.1 Attributes

The following table displays the identified attributes of a Message Flow, and which extends the set of common 
Connecting Object attributes (see Table 10.1):

10.1.4 Association

An Association is used to associate information and Artifacts with Flow Objects. Text and graphical non-Flow Objects 
can be associated with the Flow Objects and Flow. An Association is also used to show the activities used to compensate 
for an activity. More information about compensation can be found in Section 10.3, “Compensation Association,” on page 
129. 

° An Association Flow is a line that MUST be drawn with a dotted single black line (as seen in Figure 10.7).

° The use of text, color, size, and lines for an Association MUST follow the rules defined in Section 8.3, “Use of 
Text, Color, Size, and Lines in a Diagram,” on page 29.

Table 10.3 - Message Flow Attributes

Attributes Description

MessageRef (0-1) : Message MessageRef is an optional attribute that identifies the Message that is being sent. 
The attributes of a Message can be found in Section B.11.11, “Message,” on page 
278.
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Figure 10.7 - An Association

If there is a reason to put directionality on the association then:

° A line arrowhead MAY be added to the Association line. (see Figure 10.8).

A directional Association is often used with Data Objects to show that a Data Object is either an input to or an output 
from an activity.

Figure 10.8 - A directional Association

An Association is used to connect user-defined text (an Annotation) with a Flow Object (see Figure 10.9). 

Figure 10.9 - An Association of Text Annotation

An Association is also used to associate Data Objects with other objects (see Figure 10.10). A Data Object is used to 
show how documents are used throughout a Process. See Section 9.7.2, “Data Object,” on page 93 for more information 
on Data Objects.
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Figure 10.10 - An Association connecting a Data Object with a Flow

10.1.4.1 Attributes

The following table displays the identified attributes of an Association, and which extends the set of common Connecting 
Object attributes (see Table 10.1):

10.2 Sequence Flow Mechanisms

The Sequence Flow mechanisms described in the following sections are divided into four types: Normal, Exception, Link 
Events, and Ad Hoc (no flow). Within these types of flow, BPMN can be related to specific “Workflow Patterns1.” These 
patterns began as development work by Wil van der Aalst, Arthur ter Hofstede, Bartek Kiepuszewski, and Alistair 
Barros2. Twenty-one patterns have been defined as a way to document specific behavior that can be executed by a BPM 
system. These patterns range from very simple behavior to very complex business behavior. These patterns are useful in 
that they provide a comprehensive checklist of behavior that should be accounted for by BPM system. Therefore, some of 
these patterns will be illustrated with BPMN in the following sections to show how BPMN can handle the simple and 
complex requirements for Business Process Modeling.

Table 10.4 - Association Attributes

Attributes Description

Direction (None | One | Both) 
None : String

Direction is an attribute that defines whether or not the Association shows any 
directionality with an arrowhead. The default is None (no arrowhead). A value of 
One means that the arrowhead SHALL be at the Target Object. A value of Both 
means that there SHALL be an arrowhead at both ends of the Association line.

1. http://tmitwww.tm.tue.nl/research/patterns/
2. http://tmitwww.tm.tue.nl/research/patterns/download/wfs-pat-2002.pdf
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10.2.1 Normal Flow 

Normal Sequence Flow refers to the flow that originates from a Start Event and continues through activities via 
alternative and parallel paths until it ends at an End Event. The simplest type of flow within a Process is a sequence, 
which defines the dependencies of order for a series of activities that will be performed (sequentially). A sequence is also 
Workflow Pattern #1 -- Sequence3 (see Figure 10.11).

Figure 10.11 - Workflow Pattern #1: Sequence

As stated previously, the normal Sequence Flow should be completely exposed and no flow behavior hidden. This means 
that a viewer of a BPMN Diagram will be able to trace through a series of Flow Objects and Sequence Flow, from the 
beginning to the end of a given level of the Process without any gaps or hidden “jumps” (see Figure 10.12). In this figure, 
Sequence Flow connect all the objects in the Diagram, from the Start Event to the End Event. The behavior of the Process 
shown will reflect the connections as shown and not skip any activities or “jump” to the end of the Process.

Figure 10.12 - A Process with Normal Flow

As the Process continues through the series of Sequence Flow, control mechanisms may divide or combine the Sequence 
Flow as a means of describing complex behavior. There are control mechanisms for dividing (forking and splitting) and 
for combining (joining and merging) Sequence Flow. Gateways and conditional Sequence Flow are used to accomplish 
the dividing and combining of flow. It is possible that there may be gaps in the Sequence Flow if Gateways and/or 
conditional Sequence Flow are not configured to cover all performance possibilities. In this case, a model that violates the 
flow traceability requirement will be considered an invalid model. Presumably, process development software or BPM 
test environments will be able to test a process model to ensure that the model is valid.

A casual look at the definitions of the English terms for these mechanisms (e.g., forking and splitting) would indicate that 
each pair of terms mean basically the same thing. However, their effect on the behavior of a Process is quite different. We 
will continue to use these English terms but will provide specific definitions about how they affect the performance of the 
process in the next few sections of this specification.

3.  http://tmitwww.tm.tue.nl/research/patterns/sequence.htm
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The use of an expanded Sub-Process in a Process (see Figure 10.13), which is the inclusion of one level of the Process 
within another Level of the Process, can sometimes break the traceability of the flow through the lines of the Diagram. 
The Sub-Process is not required to have a Start Event and an End Event. This means that the series of Sequence Flow will 
be disrupted from border of the Expanded Sub-Process to the first object within the Expanded Sub-Process. The flow will 
“jump” to the first object within the Expanded Sub-Process. Expanded Sub-Processes will often be used, as seen in the 
figure, to include exception handling. A requirement that modelers always include a Start Event and End Event within 
Expanded Sub-Processes would mainly add clutter to the Diagram without necessarily adding to the clarity of the 
Diagram. Thus, BPMN does not require the use of Start Events and End Events to satisfy the traceability of a Diagram 
that contains multiple levels.

Figure 10.13 - An Expanded Sub-Process without a Start Event and End Event

Of course, the Start and End Events for an Expanded Sub-Process can be included and placed entirely within its 
boundaries (see Figure 10.14). This type of model will also have a break from a completely traceable Sequence Flow as 
the flow continues from one Process level to another.
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Figure 10.14 - An Expanded Sub-Process with a Start Event and End Event Internal

However, a modeler may want to ensure the traceability of a Diagram and can use a Start Event and End Event in an 
Expanded Sub-Process. One way to do this would be to attach these events to the boundary of the Expanded Sub-Process 
(see Figure 10.15). The incoming Sequence Flow to the Sub-Process can be attached directly to the Start Event instead of 
the boundary of the Sub-Process. Likewise, the outgoing Sequence Flow from the Sub-Process can connect from the End 
Event instead of the boundary of the Sub-Process. Doing this, the Normal Flow can be traced throughout a multi-level 
Process.

Technically, the Start and End Events still reside within the Sub-Process. The use of this modeling technique is just a 
graphical short-cut to a more accurate depiction of the Process (i.e., as shown in Figure 10.14). Therefore, the Sequence 
Flow connecting to the Start Event and connecting from the End Event do not violate the Sequence Flow connection rules 
(as defined in 9.3.2.3 ”Sequence Flow Connections” on page 39 and “Sequence Flow Connections” on page 43).
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Figure 10.15 - An Expanded Sub-Process with a Start Event and End Event Attached to Boundary

When dealing with Exceptions and Compensation, the traceability requirement is also relaxed (Section 10.2.2, “Exception 
Flow,” on page 127 and Section 10.3, “Compensation Association,” on page 129).

10.2.1.1 Forking Flow

BPMN uses the term forking to refer to the dividing of a path into two or more parallel paths (also known as an AND-
Split). It is a mechanism that will allow activities to be performed concurrently, rather than sequentially. This is also 
Workflow Pattern #2 -- Parallel Split4. BPMN provides three configurations that provide forking. 

The first mechanism to create a fork is simple: a Flow Object can have two or more outgoing Sequence Flow (see Figure 
10.16). A special flow control object is not used to fork the path in this case, since it is considered uncontrolled flow; that 
is, flow will proceed down each path without any dependencies or conditions--there is no Gateway that controls the flow. 
Forking Sequence Flow can be generated from a Task, Sub-Process, or a Start Event.

4.  http://tmitwww.tm.tue.nl/research/patterns/parallel_split.htm
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Figure 10.16 - Workflow Pattern #2: Parallel Split -- Version 1

The second mechanism uses a Parallel Gateway (see Figure 10.20). For situations as shown in the Figure 10.17, a 
Gateway is not needed, since the same behavior can be created through multiple outgoing Sequence Flow, as in Figure 
10.16. However, some modelers and modeling tools may use a forking Gateway as a “best practice.” See Section 9.5.5, 
“Parallel Gateways,” on page 85 for more information on Parallel Gateways.

Figure 10.17 - Workflow Pattern #2: Parallel Split -- Version 2

Even when not required as a “best practice,” there are situations where the Parallel Gateway provides a useful indicator 
of the behavior of the Process. Figure 10.18 shows how a forking Gateway is used when the output of an Exclusive 
Decision requires that multiple activities will be performed based on one condition (Gate).
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Figure 10.18 - The Creation of Parallel Paths with a Gateway

While multiple conditional Sequence Flow, each with the exact same condition expression (see Figure 10.19), could be 
used with an Inclusive Gateway to create the behavior, the use of a forking Gateway makes the behavior much more 
obvious.

Figure 10.19 - The Creation of Parallel Paths with Equivalent Conditions

This third version of the forking mechanism uses an Expanded Sub-Process to group a set of activities to be performed in 
parallel (see Figure 10.20). The Sub-Process does not include a Start and End Event and displays the activities “floating” 
within. A configuration like this can be called a “parallel box” and can be a compact and less cluttered way of showing 
parallelism in the Process. The capability to model in this way is the reason that Start and End Events are optional in 
BPMN.
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Figure 10.20 - Workflow Pattern #2: Parallel Split -- Version 3

Most of the time, the paths that have been divided with a fork are combined back together through a join (refer to the next 
section) and synchronized before the flow will continue. However, BPMN provides the flexibility for advanced methods 
to handle complex process situations. Thus, the exact behavior will be determined by the configuration of the Sequence 
Flow and the Gateways that are used.

10.2.1.2 Joining Flow

BPMN uses the term joining to refer to the combining of two or more parallel paths into one path (also known as an 
AND-Join). A Parallel Gateway is used to synchronize two or more incoming Sequence Flow (see Figure 10.21). In 
general, this means that Tokens created at a fork will travel down parallel paths and then meet at the Parallel Gateway. 
From there, only one Token will continue. This is also Workflow Pattern #3 -- Synchronization5. See Section 9.5.5, 
“Parallel Gateways,” on page 85 for more information on Parallel Gateways.

Figure 10.21 - Workflow Pattern #3: Synchronization -- Version 1

Another mechanism for synchronization is the completion of a Sub-Process (see Figure 10.22). If there are parallel paths 
within the Sub-Process that are not synchronized with a Parallel Gateway, then they will eventually reach an End Event 
(even if the End Event is implied). The default behavior of a Sub-Process is to wait until all activity within has been 
completed before the flow will move back up to a higher level Process. Thus, the completion of a Sub-Process is a 
synchronization point.

5.  http://tmitwww.tm.tue.nl/research/synchronization.htm
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Figure 10.22 - Workflow Pattern #3: Synchronization -- Version 2

There is no specific correlation between the joining of a set of parallel paths and the forking that created the parallel 
paths. For example, an activity may have three outgoing Sequence Flow, which creates a fork of three parallel paths, but 
these three paths do not need to be joined at the same object. Figure 10.23 shows that two of three parallel paths are 
joined at Task “F.” All of the paths eventually will be joined, but this can happen through any combination of objects, 
including lone End Events. In fact, each path could end with a separate End Event, and then be synchronized as 
mentioned above.

Figure 10.23 - The Fork-Join Relationship is not Fixed

10.2.1.3 Splitting Flow

BPMN uses the term splitting to refer to the dividing of a path into two or more alternative paths (also known as an OR-
Split). It is a place in the Process where a question is asked, and the answer determines which of a set of paths is taken. 
It is the “fork in the road” where a traveler, in this case a Token, can take only one of the forks (not to be confused with 
forking—see below).
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The general concept of splitting the flow is usually referred to as a Decision. In traditional flow charting methodologies, 
Decisions are depicted as diamonds and usually are exclusive. BPMN also uses a diamond to leverage the familiarity of 
the shape, but extends the use of the diamond to handle the complex behavior of business processes (which cannot be 
handled by traditional flow charts). The diamond shape is used in both Gateways and the beginning of a conditional 
Sequence Flow (when exiting an activity). Thus, when readers of BPD see a diamond, they know that the flow will be 
controlled in some way and will not just pass from one activity to another. The location of the mini-diamond and the 
internal indicators within the Gateways will indicate how the flow will be controlled.

There are multiple configurations to split the flow within BPMN so that different types of complex behavior can be 
modeled. Conditional Sequence Flow and three types of Gateways (Exclusive, Inclusive, and Complex) are used to split 
the flow. See Section 10.1.2, “Sequence Flow,” on page 97 for details on conditional Sequence Flow. See Section 9.5, 
“Gateways,” on page 70 for details on the Gateways.

There are two basic mechanisms for making the Decision during the performance of the Process: the first is an evaluation 
of a condition expression. There are three variations of this mechanism: Exclusive, Inclusive, and Complex. The first 
variation, an Exclusive Decision, is the same as Workflow Pattern #4 -- Exclusive Choice6 (see Figure 10.24). See 9.5.2.1 
”Data-Based” on page 73 for more information on Data-Based Exclusive Gateways.

Figure 10.24 - A Data-Based Decision Example -- Workflow Pattern #4 -- Exclusive Choice

The second type of expression evaluation is the Inclusive Decision, which is also Workflow Pattern #6 -- Multiple 
Choice7. There are two configurations of the Inclusive Decision. The first type of Inclusive Decisions uses conditional 
Sequence Flow from an Activity (see Figure 10.25).

6.  http://tmitwww.tm.tue.nl/research/patterns/exclusive_choice.htm
7.  http://tmitwww.tm.tue.nl/research/patterns/multiple_choice.htm
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Figure 10.25 - Workflow Pattern #6 -- Multiple Choice -- Version 1

The second type of Inclusive Decisions uses an Inclusive Gateway to control the flow (see Figure 10.26). See 
Section 9.5.3, “Inclusive Gateways,” on page 80 for more information on Inclusive Gateways.

Figure 10.26 - Workflow Pattern #6 -- Multiple Choice -- Version 2

The third type of expression evaluation is the Complex Decision (see Figure 10.27). See Section 9.5.4, “Complex 
Gateways,” on page 83 for more information on Complex Gateways.
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Figure 10.27 - A Complex Decision (Gateway)

The second mechanism for making a Decision is the occurrence of a particular event, such as the receipt of a message 
(see Figure 10.28). See 9.5.2.4 ”Event-Based” on page 77 for more information on Event-Based Exclusive Gateways.

Figure 10.28 - An Event-Based Decision Example

10.2.1.4 Merging Flow

BPMN uses the term merging to refer to the combining of two or more alternative paths into one path (also known as an  
OR-Join). It is a place in the process where two or more alternative paths begin to traverse activities that are common to 
each of the paths. Theoretically, each alternative path can be modeled separately to a completion (an End Event). 
However, merging allows the paths to overlap and avoids the duplication of activities that are common to the separate 
paths. For a given instance of the Process, a Token would actually only see the sequence of activities that exist in one of 
the paths as if it were modeled separately to completion.
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Since there are multiple ways that Sequence Flow can be forked and split, there are multiple ways that Sequence Flow can 
be merged. There are five different Workflow Patterns that can be demonstrated with merging.

The first Workflow Pattern, Simple Merge8, the graphical mechanism to merge alternative paths is simple: there are two 
or more incoming Sequence Flow to a Flow Object (see Figure 10.29). In general, this means that a Token will travel 
down one of the alternative paths (for a given Process instance) and will continue from there. For that instance, Tokens 
will never arrive down the other alternative paths. BPMN provides two versions of a Simple Merge. 

The first version is shown in Figure 10.29. The two incoming Sequence Flow for activity “D” are uncontrolled. Since the 
two Sequence Flow are at the end of two alternative paths, created through the upstream exclusive Gateway, only one 
Token will reach activity “D” for any given instance of the Process.

Figure 10.29 - Workflow Pattern #5 -- Simple Merge – Version 1

If the multiple incoming Sequence Flow are actually parallel instead of alternative, then the end result is different, even 
though the merging configuration is the same as Figure 10.29. In Figure 10.30, the upstream behavior is parallel. Thus, 
there will be two Tokens arriving (at different times) at activity “D.” Since the flow into activity “D” is uncontrolled, each 
Token arriving at activity “D” will cause a new instance of that activity. This is an important concept that modelers of 
BPMN should understand. In addition, this type of merge is the Workflow Pattern Multiple Merge9.

Figure 10.30 - Workflow Pattern #7 -- Multiple Merge

8.  http://tmitwww.tm.tue.nl/research/patterns/simple_merge.htm
9.  http://tmitwww.tm.tue.nl/research/patterns/multiple_merge.htm
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The second version of the Simple Merge is shown in Figure 10.31. The two incoming Sequence Flow for activity “D” are 
controlled through the Exclusive Gateway. Since the two Sequence Flow are at the end of two alternative paths, created 
through the upstream exclusive Gateway, only one Token will reach the Gateway for any given instance of the Process. 
The Token will then immediately proceed to activity “D.”

Figure 10.31 - Workflow Pattern #5 -- Simple Merge – Version 2

Another merging situation is the Workflow Pattern Discriminator10. In this situation, the multiple incoming Sequence 
Flow are parallel instead of alternative (see Figure 10.32). Thus, there will be two Tokens arriving (at different times) at 
the Complex Gateway preceding activity “D.” To satisfy the Discriminator pattern, the Complex Gateway must accept the 
first Token and immediately pass it on through to the activity. When the second Token arrives, it will be excluded from 
the remainder of the flow. This means that the Token will not be passed on to the activity, but will be consumed.

Figure 10.32 - Workflow Pattern #8 -- Discriminator

The fourth type of Workflow Pattern merge is called a Synchronizing Join11. This is a situation when the merging location 
does not know ahead of time how many Tokens will be arriving at the Gateway. In some Process instances, there may be 
only one Token. In other Process instances, there may be more than one Token arriving. This type of situation is created 
when an Inclusive Decision is made up stream (see Figure 10.33). To handle this, an Inclusive Gateway can be used to 

10.  http://tmitwww.tm.tue.nl/research/patterns/discriminator.htm
11.  http://tmitwww.tm.tue.nl/research/patterns/synchronizing_join.htm
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merge the appropriate number of Tokens for each Process instance. The Gateway, following the pattern Synchronizing 
Join, will wait for all expected Tokens before the flow will continue to the next activity. See Section 9.5.3, “Inclusive 
Gateways,” on page 80 for more information on Inclusive Gateways.

Figure 10.33 - Workflow Pattern #9 -- Synchronizing Join

The fourth type of Workflow Pattern merge is called an N out of M Join12. This type of situation is more complex and can 
be handled through a Complex Gateway (see Figure 10.34). The Gateway will receive Tokens from its incoming 
Sequence Flow and evaluate an expression to determine whether or not the flow should proceed. Once the condition has 
been satisfied, if additional Tokens arrive, they will be excluded (much like the Discriminator Pattern from Figure 10.32). 
See Section 9.5.4, “Complex Gateways,” on page 83 for more information on Complex Gateways.

Figure 10.34 - Workflow Pattern #8 -- N out of M Join

There is no specific correlation between the merging of a set of paths and the splitting that occurs through a Gateway 
object. For example, a Decision may split a path into three separate paths, but these three paths do not need to be merged 
at the same object. Figure 10.35 shows that two of three alternative paths are merged at Task “F.” All of the paths 
eventually will be merged, but this can happen through any combination of objects, including lone End Events. In fact, 
each path could end with a separate End Event. 

12.  http://tmitwww.tm.tue.nl/research/patterns/n_out_of_m_join.htm
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Figure 10.35 - The Split-Merge Relationship is not Fixed

10.2.1.5 Looping

BPMN provides 2 (two) mechanisms for looping within a Process. The first involves the use of attributes of activities to 
define the loop. The second involves the connection of Sequence Flow to “upstream” objects. 

10.2.1.6 Activity Looping

The attributes of Tasks and Sub-Processes will determine if they are repeated as a loop. There are two types of loops that 
can be specified: Standard and Multi-Instance. 

For Standard Loops:

• If the loop condition is evaluated before the activity, this is generally referred to as a “while” loop. This means that the 
activities will be repeated as long as the condition is true. The activities may not be performed at all (if the condition is 
false the first time) or performed many times.

• If the loop condition is evaluated after the activity, this is generally referred to as an “until” loop. This means that the 
activities will be repeated until a condition becomes true. The activities will be performed at least once, but may be 
performed many times.

For Multi-Instance Loops:

• If the MI_Ordering is serial, then this becomes much like a while loop with a set number of iterations the loop will go 
through. These are often used in processes where a specific type of item will have a set number of sub-items or line 
items. A Multi-Instance loop will be used to process each of the line items.

• If the MI_Ordering is parallel, this is generally referred to as multiple instances of the activities. An example of this 
type of feature would be used in a process to write a book, there would be a Sub-Process to write a chapter. There 
would be as many copies or instances of the Sub-Process as there are chapters in the book. All the instances could begin 
at the same time.

Those activities that are repeated (looped) will have a loop marker placed in the bottom center of the activity shape (see 
Figure 10.36). Those activities that are Parallel Multi-Instance will have a parallel marker placed in the bottom center of 
the activity shape (see Figure 10.37).
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Figure 10.36 - A Task and a Collapsed Sub-Process with a Loop Marker

Figure 10.37 - A Task with a Parallel Marker

Expanded Sub-Processes also can have a loop marker placed at the bottom center of the Sub-Process rectangle (see Figure 
10.38). The entire contents of the Sub-Process will be repeated as defined in the attributes.

Figure 10.38 - An Expanded Sub-Process with a Loop Marker
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10.2.1.7 Sequence Flow Looping

Loops can also be created by connecting a Sequence Flow to an “upstream” object. An object is considered to be 
upstream if that object has an outgoing Sequence Flow that leads to a series of other Sequence Flow, the last of which 
turns out to be an incoming Sequence Flow to the original object. That is, that object produces a Token and that Token 
traverses a set of Sequence Flow until the Token reaches the same object again. Sequence Flow looping is the same as 
Workflow Pattern #16 -- Arbitrary Cycle13 (see Figure 10.24).

Figure 10.39 - Workflow Pattern #16 -- Arbitrary Cycle

Usually these connections follow a Decision so that the loop is not infinite (see Figure 10.40). If the Sequence Flow goes 
directly from a Decision to an upstream object, this is an “until” loop. The set of looped activities will occur until a 
certain condition is true.

Figure 10.40 - An Until Loop

A while loop is created by making the decision first and then performing the repeating activities or moving on in the 
Process (see Figure 10.41). The set of looped activities may not occur or may occur many times.

13.  http://tmitwww.tm.tue.nl/research/patterns/arbitrary_cycle.htm
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Figure 10.41 - A While Loop

10.2.1.8 Sequence Flow Jumping (Off-Page Connectors and Go To Objects)

Since process models often extend beyond the length of one printed page, there is often a concern about showing how 
Sequence Flow connections extend across the page breaks. One solution that is often employed is the use of Off-Page 
connectors to show where one page leaves off and the other begins. BPMN provides Intermediate Events of type Link for 
use as Off-Page connectors (see Figure 10.42--Note that the figure shows two different printed pages, not two Pools in 
one diagram). A pair of Link Intermediate Events is used. One of the pair is shown at the end of one page. This Event is 
named and has an incoming Sequence Flow and no outgoing Sequence Flow. The second Link Event is at the beginning 
of the next page, shares the same name, and has an outgoing Sequence Flow and no incoming Sequence Flow.
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Figure 10.42 - Link Intermediate Event Used as Off-Page Connector

Another way that Link Intermediate Events can be used is as “Go To” objects. Functionally, they would work the same as 
for Off-Page Connectors (described above), except that they could be used anywhere in the diagram--on the same page or 
across multiple pages. The general idea is that they provide a mechanism for reducing the length of Sequence Flow lines. 
Some modelers may consider long lines as being hard to follow or trace. Go To Objects can be used to avoid very long 
Sequence Flow (see Figure 10.43 and Figure 10.44). Both diagrams will behave equivalently. For Figure 10.44, if the 
“Order Rejected” path is taken from the Decision, then the Token traversing the Sequence Flow would reach the source 
Link Event and then “jump” to the target Link Event and continue down the Sequence Flow. The process would continue 
as if the Sequence Flow had directly connected the two objects.
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Figure 10.43 - Process with Long Sequence Flow

Figure 10.44 - Process with Link Intermediate Events Used as Go To Objects

Some methodologies prefer that all Sequence Flow only move in one direction; that is, forward in time. These 
methodologies do not allow Sequence Flow to connect directly to upstream objects. Some consistency in modeling can be 
gained by such a methodology, but situations that require looping become a challenge. Link Intermediate Events can be 
used to make upstream connections and create loops without violating the Sequence Flow direction restriction (see Figure 
10.45).
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Figure 10.45 - Link Intermediate Event Used for Looping

10.2.1.9 Passing Flow to and from Sub-Processes

This section reviews how flow will be passed between a parent Process and any of its Sub-Processes. The flow (e.g., a 
Token) will start at the parent Process and then move to the Sub-Process and then will move back to the parent process 
(see Figure 10.46). Most of the time the flow will reach a Sub-Process, get transferred to the Start Event of the Sub-
Process, traverse the Sequence Flow of the Sub-Process, reach the End Event of the Sub-Process, and, finally, get 
transferred back to the parent Process to continue down the outgoing Sequence Flow of the Sub-Process object. If the 
Sub-Process contains parallel Flow, then all the Flow must complete before a Token is transferred back to the parent 
Process. This functionality treats the Sub-Process as a self-contained “box” of activities.

Figure 10.46 - Example of Sub-Process with Start and End Events Inside

To make the flow between levels of a Process more obvious, a modeler has the option of placing the Start Event and the 
End Event on the boundary of the Sub-Process and connect the Sequence Flow from the Parent Process objects to/from 
these Events (see Figure 10.47).
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Figure 10.47 - Example of Sub-Process with Start and End Events on Boundary

10.2.1.10 Controlling Flow Across Processes

There may be situations within a Process where the flow is affected by or dependent on the activity that occurs in another 
Process. These events or conditions can be referred to as milestones. The process model must be able to identify and react 
to the milestone. That is, the continuation of a Process may be triggered by Signal Events, which pass the flow between 
processes (see Figure 10.48). The type of Workflow Pattern called a Milestone14. 

Figure 10.48 - Signal Events Used to Synchronize Behavior Across Processes

10.2.1.11 Avoiding Illegal Models and Unexpected Behavior

BPMN, being a graph-structured Diagram, rather than having a block-structure like BPEL4WS, provides a great 
flexibility for depicting complex process behavior in a fairly compact form. However, the free-form nature of BPMN can 
create modeling situations that cannot be executed or will behave in a manner that is not expected by the modeler. These 
types of modeling problems can occur because there is not a tight relationship between forks and joins or splits and 
merges. A block structure provides these tight relationships, but a graph-structure allows these flow control mechanisms 

14.  http://tmitwww.tm.tue.nl/research/patterns/milestone.htm
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to be mixed and matched at the discretion of the modeler. Some combinations of these control elements will create 
Processes that cannot be executed or will create behavior that was not intended by the modeler. The situation where 
alternative paths cross the implicit boundary of a group of parallel paths can cause an invalid model. 

Figure 10.49 shows such a model. Task “D” is an activity that has two incoming Sequence Flow; one from a forked path 
(after a split path) and one from a split path. This can create a problem at the Parallel Gateway that precedes Task “E,” 
which also has multiple incoming Sequence Flow. The Sequence Flow from Task “B” is crossing the implicit boundary of 
the fork created after Task “A.” As a result, if the “Yes” Sequence Flow is taken from the Decision in the Diagram 
(Variation 1), then Task “E” can expect two Tokens to arrive—one from Task “C” and one from Task “D.” However, if 
the “No” Sequence Flow is taken from the Decision (Variation 2), the Parallel Gateway will receive only one Token—one 
from Task “D.” Since the Gateway expects two Tokens, the Process will be dead-locked at that position.

Figure 10.49 - Potentially a dead-locked model

Another type of problem occurs with looping back to upstream activities. If the loop Decision is made within the implicit 
boundaries of a set of parallel paths, then the behavior of the loop becomes ambiguous (see Figure 10.50), since it is 
unclear whether Task “E” was intended to be repeated based on the loop or what would happen if Task “E” was still 
active when the loop reached that Task again.
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Figure 10.50 - Improper Looping

The use of Link Events can also create unexpected behavior. In general, Link Events not used for off-page connectors 
should be considered an advanced modeling technique and the modeler should be careful to understand the resultant 
behavior and flow of Tokens.

In general, the analysis of how Tokens will flow through the model will help find models that cannot be executed 
properly. This Token flow analysis will be used to create some of the mappings to BPEL4WS. Since BPEL4WS is 
properly executable, if the Token flow analysis cannot create a valid BPEL4WS process, then the model is not structured 
correctly.

10.2.2 Exception Flow

Exception Flow occurs outside the Normal Flow of the Process and is based upon an event (an Intermediate Event) that 
occurs during the performance of the Process. While Intermediate Events can be included in the Normal Flow to set 
delays or breaks to wait for a message, when they are attached to the boundary of an activity, either a Task or a Sub-
Process (see Figure 10.51), they create Exception Flow.

Figure 10.51 - A Task with Exception Flow (Interrupts Event Context)

By doing this, the modeler is creating an Event Context. The Event Context will respond to specific Triggers to interrupt 
the activity and redirect the flow through the Intermediate Event. The Event Context will only respond if it is active 
(running) at the time of the Trigger. If the activity has completed, then the Trigger may occur with no response. The 
source of the Trigger may be external to the Process execution, such as a message or an application error, or the Trigger 
may be caused by a “throw” Intermediate Event from any other active location within the Process. An exception to this is 
the Error event, which will only respond to Error triggers generated within the activity or in a subprocess of that activity.
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If there are a group of Tasks that the modeler wants to include in an Event Context, then a Sub-Process can be added to 
encompass the Tasks and to handle any events by having them attached to its boundary (see Figure 10.52).

Figure 10.52 - A Sub-Process with Exception Flow (Interrupts Event Context)

A Message Event occurs when a message, with the exact identity as specified in the Intermediate Event, is received by the 
Process. An Error Event occurs when the Process detects an Error. If an Error Code is specified in the Intermediate Event, 
then the code of the detected Error must match for the Event Context to respond. If the Intermediate Event does not 
specify an Error Code, then any Error will trigger a response from the Event Context .If this event does not occur while 
the Event Context is ready, then the Process will continue through the Normal Flow as defined through the Sequence 
Flow.

10.2.3 Ad Hoc

An Ad Hoc Process is a group of activities that have no pre-definable sequence relationships. A set of activities can be 
defined for the Process, but the sequence and number of performances for the activities is completely determined by the 
performers of the activities and cannot be defined beforehand. 

A Sub-Process is marked as being an Ad Hoc with a “tilde” symbol placed at the bottom center of the Sub-Process shape 
(see Figure 10.53 and Figure 10.54). Activities within the Process are disconnected from each other. During execution of 
the Process, any one or more of the activities may be active and they can be performed in almost any order or frequency.

Figure 10.53 - A Collapsed Ad Hoc Sub-Process
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Figure 10.54 - An Expanded Ad Hoc Sub-Process

The performers determine when activities will start, when they will end, what the next activity will be, and so on. 
Examples of the types of Processes that are Ad Hoc include computer code development (at a low level), sales support, 
and writing a book chapter. If we look at the details of writing a book chapter, we could see that the activities within this 
Process include: researching the topic, writing text, editing text, generating graphics, including graphics in the text, 
organizing references, etc. (see Figure 10.55). There may be some dependencies between Tasks in this Process, such as 
writing text before editing text, but there is not necessarily any correlation between an instance of writing text to an 
instance of editing text. Editing may occur infrequently and based on the text of many instances of the writing text Task.

Figure 10.55 - An Ad Hoc Process for Writing a Book Chapter

It is a challenge for a BPM engine to monitor the status of Ad Hoc Processes, usually these kind of processes are handled 
through groupware applications (such as e-mail), but BPMN allows modeling of Processes that are not necessarily 
executable and should provide the mechanisms for those BPM engines that can follow an Ad Hoc Process. Given this, at 
some point, the Process will have completed and this can be determined by evaluating a Completion Condition that 
evaluates Process attributes that will have been updated by an activity in the Process.

10.3 Compensation Association

Some activities produce complex effects or specific outputs. If the outcome is determined to be undesirable by some 
specified criteria (such as an order being cancelled), then it will be necessary to “undo” the activities. There are three 
ways this can be done:
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• Restoring of a copy of the initial values for data, thereby overwriting any changes.

• Doing nothing (if nothing has changed because the changes have been set aside until a confirmation).

• Invoking activities that undo the effects--also known as compensation.

An activity that might require compensation could be, for example, one that charges a buyer for some service and debits 
a credit card to do so. These types of activities usually need a separate activity to counter the effects of the initial activity. 
Often, a record of both activities is required, so this is another reason that the activity is not “undone.” An Intermediate 
Event of type Compensation is attached to the boundary of an activity to indicate that compensation may be necessary for 
that activity. 

One of the three mechanisms for “undo” activities, Compensation, requires specific notation and is a special circumstance 
that occurs outside the Normal Flow of the Process. For this reason, the Compensation Intermediate Event does not have 
an outgoing Sequence Flow, but instead has an outgoing directed Association (see Figure 10.56). 

Figure 10.56 - A Task with an Associated Compensation Activity

The target of this Association is the activity that will compensate for the work done in the source activity, and will be 
referred to as the Compensation Activity. The Compensation Activity is special in that it does not follow the normal 
Sequence Flow rules--as mentioned, it is outside the Normal Flow of the Process. This activity cannot have any incoming 
or outgoing Sequence Flow. The Compensation marker (as is in the Compensation Intermediate Event) will be displayed 
in the bottom center of the Activity to show this status of the activity (see the “Credit Buyer” Task in Figure 10.56). Note 
that there can be only one target activity for compensation. There cannot be a sequence of activities shown. If the 
compensation does require more than one activity, then these activities must be put inside a single Sub-Process that is the 
target of the Association. The Sub-Process can be collapsed or expanded. If the Sub-Process is expanded, then only the 
Sub-Process itself requires the Compensation marker--the activities inside the Sub-Process do not require this marker.

Only activities that have been completed can be compensated. The compensation of an activity can be triggered in two 
ways:

• The activity is inside a Transaction Sub-Process that is cancelled (see Figure 10.57). In this situation, the whole Sub-
Process will be “rewound” or rolled back--the Process flow will go backwards and any activity that requires 
compensation will be compensated. This is why the Compensation marker for Events looks like a “rewind” symbol for 
a tape player. After the compensation has been completed, the Process will continue its rollback.

• A downstream Intermediate or End Event of type Compensation “throws” a compensation identifier that is “caught” by 
the Intermediate Event attached to the boundary of the activity. The compensation is thrown in two ways: 

• The Event can specifically identify an activity that requires compensation and only that activity will be 
compensated. 
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• The Event can broadcast the need for the compensation and then all completed activities that have a Compensation 
Intermediate Event attached to their boundaries will be compensated. The compensation applies to all activities 
that have fully completed within the Process Instance (which includes all levels of the Process). The compensation 
will occur in the reverse order of the original performances on the triggered activities. 

Figure 10.57 - Compensation Shown in the context of a Transaction
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11 BPMN by Example

This section will provide an example of a business process modeled with BPMN. The process that will be described is a 
process used to help develop this notation. It is a process for resolving issues through e-mail votes (see Figure 11.1). This 
Process is small, but fairly complex and will provide examples for many of the features of BPMN. There are some 
unusual features of this business process, such as infinite loops. Although not a typical process, it will help illustrate that 
BPMN can handle simple and unusual business processes and still be easily understandable for readers of the Diagram. 
The sections below will isolate segments of the Process and highlight the modeling features as the workings of the 
Process is described.
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Figure 11.1 - E-Mail Voting Process
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The Process has a point of view that is from the perspective of the manager of the Issues List and the discussion around 
this list. From that point of view, the voting members of the working group are considered as external Participants who 
will be communicated with by messages (shown as Message Flow). 

11.1 The Beginning of the Process

The Process starts with Timer Start Event that is set to trigger the Process every Friday (see Figure 11.2). 

Figure 11.2 - The Start of the Process

The Issue List Manager will review the list and determine if there are any issues that are ready for going through the 
discussion and voting cycle. Then a Decision must be made. If there are no issues ready, then the Process is over for that 
week--to be taken up again the following week. If there are issues ready, then the Process will continue with the 
discussion cycle. The “Discussion Cycle” Sub-Process is the first activity after the “Any issues ready?” Decision and this 
Sub-Process has two incoming Sequence Flow, one of which originates from a downstream Decision and is thus part of a 
loop. It is one of a set of five complex loops that exist in the Process. The contents of the “Discussion Cycle” Sub-Process 
and the activities that follow will be described below.

11.2 The First Sub-Process

Figure 11.3 shows the details of the “Discussion Cycle” as an Expanded Sub-Process. 
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Figure 11.3 - “Discussion Cycle” Sub-Process Details

The Sub-Process starts with a Task for the Issue List Manager to send an e-mail to the working group that a set of Issues 
are now open for discussion through the working group’s message board. Since this Task sends a message to an outside 
Participant (the working group members), an outgoing Message Flow is seen from the “Discussion Cycle” Sub-Process to 
the “Voting Members” Pool in Figure 11.1. Basically, the working group will be discussing the issues for one week and 
proposing additional solutions to the issues. After the first Task, three separate parallel paths are followed, which are 
synchronized downstream. This is shown by the three outgoing Sequence Flow for that activity.

The top parallel path in the figure starts with a long-running Task, “Moderate E-mail Discussion,” that has a Timer 
Intermediate Event attached to its boundary. Although the “Moderate E-Mail Discussion” Task will never actually be 
completed normally in this model, there must be an outgoing Sequence Flow for the Task since Start and End Events are 
being used within the Process. This Sequence Flow will merge with the Sequence Flow that comes from the Timer 
Intermediate Event. A merging Exclusive Gateway is used in this situation because the next object is a joining Parallel 
Gateway (the diamond with the cross in the center) that is used to synchronize the three parallel paths. If the merging 
Gateway was not used and both Sequence Flow connected to the joining Gateway, the Process would have been stuck at 
the joining Gateway that would wait for a Token to arrive from each of the incoming Sequence Flow.

The middle parallel path of the fork contains an Intermediate Event and a Task. A Timer Intermediate Event used in the 
middle of the Process flow (not attached to the boundary of an activity) will cause a delay. This delay is set to 6 days. The 
“E-Mail Discussion Deadline Warning” Task will follow. Again, since this Task sends a message to an outside Participant, 
an outgoing Message Flow is seen from the “Discussion Cycle” Sub-Process to the “Voting Members” Pool in Figure 
11.1.

The bottom parallel path of the fork contains more than one object, first of which is Task where the issue list manager 
checks the calendar to see if there is a conference call this week. The output of the Task will be an update to the variable 
“ConCall,” which will be true or false. After the Task, an Exclusive Gateway with its two Gates follows. The Gate for  
labeled “default” Flow directly to a merging Exclusive Gateway, for the same reason as in the top parallel path. The Gate 
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for the “Yes” Sequence Flow will have a condition that checks the value of the “ConCall” variable (set in the previous 
Task) to see if there will be a conference call during the coming week. If so, the Timer Intermediate Event indicates delay, 
since all conference calls for the working group start at 9am PDT on Thursdays. The Task for moderating the conference 
call follows the delay, which is followed by the merging Gateway.

The merging Gateways in the top and bottom paths and the “E-Mail Discussion Deadline Warning” Task all flow into a 
joining Gateway. This Gateway waits for all three paths to complete before the Process Flow to the next Task, “Evaluate 
Discussion Progress.” The issue list manager will review the status of the issues and the discussions during the past week 
and decide if the discussions are over. The DiscussionOver variable will be set to TRUE or FALSE, depending on this 
evaluation. If the variable is set to FALSE, then the whole Sub-Process will be repeated, since it has looping set and the 
loop condition will test the DiscussionOver variable.

11.3 The Second Sub-Process

Figure 11.4 shows the next section of the Process, which includes the expanded details of the “Collect Votes” Sub-
Process. 
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Figure 11.4 - “Collect Votes” Sub-Process Details

This part of the process starts out with a Task for the issue list manager to send out an e-mail to announce to the working 
group, and the voting members in particular, which lets them know that the issues are now ready for voting. Since this 
Task sends a message to an outside Participant (the working group members), an outgoing Message Flow is seen from the 
“Announce Issues” Task to the “Voting Members” Pool in Figure 11.1. This Task is also a target for one of the complex 
loops in the Process.

The “Collect Votes” Sub-Process follows the Task, and is also a target of one of the looping Sequence Flow. This Sub-
Process is basically a set of four parallel paths that extend from the beginning to the end of the Sub-Process.
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The first branch of the fork leads to a Decision that determines whether or not a conference call will occur during the 
upcoming week, after the Working Group’s schedule has been checked. Basically, if there was a call last week, then there 
will not be a call this week and vice versa. The appropriate variable that was updated in the “Discussion Cycle” Process 
will be used again.

The second and third branches of the forks work the same way as the similar activities in the “Discussion Cycle” Sub-
Process, except that the “Moderate E-Mail Discussion” Task does not have a Timer Intermediate Event attached. This is 
not necessary since the whole Sub-Process is interrupted after 7 days through the Intermediate Event attached to the Sub-
Process boundary. The “E-Mail Vote Deadline Warning” Task sends a message to an outside Participant (the working 
group members), thus, an outgoing Message Flow is seen from the “Collect Votes” Sub-Process to the “Voting Members” 
Pool in Figure 11.1.

The fourth branch of the fork is rather unique in that the Diagram uses a loop that does not utilize a Decision. Thus, it is, 
as it is intended to be, an infinite loop. The policy of the working group is that voting members can vote more than once 
on an issue; that is, they can change their mind as many times as they want throughout the entire week. The first Task in 
the loop receives a message from the outside Participant (the working group members), thus, an incoming Message Flow 
is seen from the “Voting Members” Pool to the “Collect Votes” Sub-Process in Figure 11.1. The Timer Intermediate Event 
attached to the boundary of the Sub-Process is the mechanism that will end the infinite loop, since all work inside the 
Sub-Process will be ended when the time-out is triggered. All the remaining work of the Process is conducted after the 
time-out and Flow from the Timer Intermediate Event. 

Figure 11.4 shows that there are Two Tasks that follow the time-out. First, a Task will prepare all the voting results, then 
a Task will send the results to the voting members. A Document Object, “Issue Votes,” is shown in the Diagram to 
illustrate how one might be used, but it will not map to anything in the execution languages. The remaining activities of 
the Process will be described in the next section.  

11.4 The End of the Process

Figure 11.5 shows the last section of the Process, which includes a complex set of Decisions and loops. 
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Figure 11.5 - The last segment of the E-Mail Voting Process

This segment of the Process continues from where the last segment left off (as described in the section above). It contains 
four Decisions that interact with each other and create loops to upstream activities.

The first Decision “Did Enough Members Vote?” is necessary since two-thirds of the voting members are required to 
approve any solution to an issue. If less than two-thirds of the voting members cast votes, which sometimes happens, the 
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followed by the “Have the Members been Warned?” Decision. If a voting member misses a vote, they are warned. If they 
miss a second vote, they lose their status as a voting member and the voting percentages are recalculate through a Task 
(“Reduce number of Voting Members and Recalculate Vote”). If they haven’t yet been warned, then a warning is sent and 
the voting week is repeated.

If all issues are resolved, then the Process is done. If not, then another Decision is required. The voting is given two 
chances before it goes back to another cycle of discussion. The first time will see a reduction of the number of solutions 
to the two most popular based on the vote (more if there are ties). Some voting members will have to change their votes 
just because their solution is no longer valid. These two activities are placed in a Sub-Process to show how a Sub-Process 
without Start and End Events can be used to create a simple set of parallel activities. Informally, this is called a “parallel 
box.” It is not a special object, but another use of Sub-Processes. For simple situations, it can be used to show a set of 
parallel activities without the extra clutter of a lot of Sequence Flow. In actuality, these two Tasks cannot actually be done 
in parallel, but they are modeled this way to highlight the optional use of Start and End Events. 

After the parallel box, the flow loops back to the “Collect Votes” Sub-Process. If there already has been two cycles of 
voting, then the process Flow back to the “Decision Cycle” Sub-Process.
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Annex A:  Mapping to BPEL4WS

(informative)

This annex provides information and examples about how BPMN will map to BPEL4WS 1.1. This annex will cover a 
mapping to BPEL4WS that are derived by analyzing the BPMN objects and the relationships between these objects as 
described in the previous chapters. Note that there are known issues with the mapping as specified. Fixes to these issues will 
be incorporated in a later revision of the specification.

A.1 Business Process Diagram Mappings

A Business Process Diagram can be made up of a set of (semi-) independent components, which are shown as separate Pools. 
Thus, there is not a specific mapping to the diagram itself. Rather, there are separate mappings to each of the Pools that are in 
the diagram. That is, each Pool in the diagram, if it is a “white box” that contains process elements, will map to an individual 
BPEL4WS process. However, in the course of mapping the contents of the Process, there may be one or more derived 
processes necessary to handle complex behavior, such as looping. The attributes of “black box” Pools will also be used in 
determining specific BPEL4WS elements, such as partnerLink.

The following table displays a set of mappings for the attributes of a Business Process Diagram that can be mapped to 
BPEL4WS.

Table A.1 - Business Process Diagram Mappings to BPEL4WS

Business Process Diagram Mapping to BPEL4WS

Id, Name, Version, 
Author, Language, 
CreationDate, 
ModificationDate, Pool, 
and Documentation

These Elements do not map to any BPEL4WS elements or attributes.

ExpressionLanguage 
attribute

This attribute will be used for all the Processes that are within the Business Process 
Diagram. The attribute will map to the expressionLanguage attribute of each BPEL4WS 
process.

QueryLanguage attribute This attribute will be used for all the Processes that are within the Business Process 
Diagram. The attribute will map to the queryLanguage attribute of each BPEL4WS 
process.
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A.2 Business Process Mappings

There can be one or more Business Processes within a Business Process Diagram, each within a separate Pool. The following 
table displays a set of mappings from attributes of a Process to BPEL4WS elements (the mappings for the objects contained 
within a Process, its contents, are mapped separately and these mappings can be found in the sections that follow).

Table A.2 - Business Process Mappings to BPEL4WS

Process Mapping to BPEL4WS

ProcessType If the Process is to be used to create a BPEL4WS document, then the attribute 
MUST be set to Private or Abstract. If the attribute is set to Private, then the 
abstractProcess attribute of the BPEL4WS process MUST be set to “no.” If the 
attribute is set to Abstract, then the abstractProcess attribute of the BPEL4WS 
process MUST be set to “yes.”

Id, Categories, and 
Documentation

These Elements do not map to any BPEL4WS elements or attributes.

Name The Name attribute of the Process SHALL map to name attribute of the appropriate 
process. The extra spaces and non-alphanumeric characters MUST be stripped from 
the Name to fit with the XML specification of the name attribute. Note that there 
may be two or more elements with the same name after the BPMN name has been 
stripped.

GraphicalElements This is a list of all the graphical elements contained within the Process. Each of 
these elements will have their mapping, as defined in the sections below.

Properties The set of Properties of a Process, as a whole, will map to a BPEL4WS variable. 
The variable element will be structured as follows:

<variable name="[Process.Name]_Data"

messageType="[Process.Name]_ProcessDataMessage" />

The individual Properties will map to the parts of a WSDL message. The message 
element will be structured as follows:
<message name="[Process.Name]_ProcessDataMessage" >
<part name="[Property.Name]"
     type="xsd:[Property.Type]" />

</message>
 
There will be as many parts to the message as there are Properties in the input 
group.  

Correlation = True This only applies to Properties of Type = “Set.”
The Name of the Property will map to the name of a correlationSet. The Name of 
each child Property for the Set will be added to the list of properties of the 
correlationSet.

Adhoc Ad Hoc Processes are not executable. Thus, this attribute MUST be set to False if 
the Process is to be mapped to BPEL4WS.

AdHocCompletionCondition This attribute only applies to Ad Hoc Processes. Thus, it will not be mapped to 
BPEL4WS.
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u The BPEL4WS process attributes targetNamespace and xmlns MUST be provided by the modeling tool that 
generates the mapping to BPEL4WS.

A.3 Common Flow Object Mappings

The following table displays a set of mappings for the attributes common to Flow Objects (Events, Activities, and Gateways):

A.4 Events

A.4.1 Start Event Mappings

The following table displays a set of mappings from the variations of a Start Event to BPEL4WS elements. These mappings 
extend the mappings common to objects--see Section A.3, “Common Flow Object Mappings,” on page 145.

With Assignments Expression This will map to a BPEL4WS assign. Refer to the section entitled  “Assignment 
Mapping” on page 193 for more details about the mappings associated with the 
assign element.

AssignTime = Start A BPEL4WS sequence will be created and the assign will follow the instantiation of 
the process (through a receive or a pick).

AssignTime = End A BPEL4WS sequence will be created and the assign will follow. 

SuppressJoinFailure This maps to the BPEL4WS process attribute suppressJoinFailure.

EnableInstanceCompensation This maps to the BPEL4WS process attribute enableInstanceCompensation.

Table A.3 - Common Flow Object Attribute Mappings to BPEL4WS

Objects Mapping to BPEL4WS

Id, Pool, Lanes, 
Categories, and 
Documentation

These Elements do not map to any BPEL4WS elements or attributes.

Name The Name attribute of the object SHALL map to name attribute of the appropriate derived 
BPEL4WS element (as per mappings described in the sections below). The extra spaces 
and non-alphanumeric characters MUST be stripped from the Name to fit with the XML 
specification of the name attribute. Note that there may be two or more elements with the 
same name after the BPMN name has been stripped.

Assignments Each Assignments Expression will map to a BPEL4WS assign activity. Refer to the 
section entitled  “Assignment Mapping” on page 193 for more details about the mappings 
associated with the assign element.

Table A.4 - Start Event Mappings to BPEL4W

Start Event Mapping to BPEL4WS

EventType = Start and Trigger The mapping to BPEL4WS is specific to the Trigger setting. These mappings are 
defined in the rows below.

Table A.2 - Business Process Mappings to BPEL4WS

Process Mapping to BPEL4WS
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None There is no BPEL4WS element that a Start Event will map to with a Trigger that is 
None. The object(s) that are the Target(s) of Sequence Flow that originate from the 
Start Event will determine the first BPEL4WS element of the Process. 
Note that a valid BPEL4WS process must begin with a receive or a pick activity that 
has a createInstance set to “yes.” The receive or pick will likely be placed within a 
sequence or a flow.

Message This will map to the receive element. The createInstance attribute of the receive 
element will be set to “yes.”

Message The Message attribute maps to the variable attribute of the receive activity. See 
“Messages” on page 193 for more information about how a BPMN Message maps to 
BPEL4WS and WSDL.

Implementation = Web 
Service

The Implementation attribute MUST be a Web service or MUST be converted to a 
Web Service for mapping to BPEL4WS. The Web Service Attributes are mapped as 
follows:

• The Participant attribute is mapped to the partnerLink attribute of the 
BPEL4WS activity.

• The Interface attribute is mapped to the portType attribute of the BPEL4WS 
activity. 

• The Operation attribute is mapped to the operation attribute of the BPEL4WS 
activity.

Timer This will map to the receive element. The createInstance attribute of the receive 
element will be set to “yes.” The remaining attributes of the receive will be mapped 
as shown for the Message Start Event (see above).
The functionality of the timing as defined in the Start Event must be implemented in 
a separate process that will start itself, then use a wait element for the defined time, 
and then use an invoke to send a message that will be received by the above receive 
element. A specific Message and Web service implementation must be provided so 
that the mappings to receive element can be completed.

Conditional This will map to the receive element. The createInstance attribute of the receive 
element will be set to “yes.” The remaining attributes of the receive will be mapped 
the same way as for the Message Start Event (see above).
Note: The Message is expected to arrive from the application that tracks and triggers 
Business Rules.

Multiple This will map to a BPEL4WS pick - it will be required to process the messages with 
a separate onMessage for each defined Trigger. The createInstance attribute of the 
pick element will be set to “yes.” This means that a single instance of the process will 
be instantiated when the first message received through the pick onMessage is 
triggered. The onMessage mappings are the same as that of a receive and as defined 
for the Message Start Event (see above).

Table A.4 - Start Event Mappings to BPEL4W

Start Event Mapping to BPEL4WS
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A.4.2 End Event Mappings

The following table displays a set of mappings from the variations of an End Event to BPEL4WS elements (these mappings 
extend the mappings common to objects--see Section A.3, “Common Flow Object Mappings,” on page 145).

With Assignments Expression Each Assignments Expression will map to a BPEL4WS assign that will follow the 
receive. See Section A.12.2, “Assignment Mapping,” on page 193 for more details 
about the mappings associated with the assign element.

Table A.5 - End Event Mappings to BPEL4WS

End Event Mapping to BPEL4WS

EventType = End and 
Result

The mapping to BPEL4WS is specific to the Result setting. These mappings are defined in 
the rows below.

None There is no BPEL4WS element that an End Event will map to with a Result that is None. 
However, it marks the end of a path within the Process and will be used to define the 
boundaries of complex BPEL4WS elements. The object(s) that are the Source(s) of 
Sequence Flow that Target the End Event will determine the final BPEL4WS elements of 
the Process.

Message This will map to a BPEL4WS reply or an invoke. The appropriate BPEL4WS activity will 
be determined by the implementation defined for the Event. That is, the portType and 
operation of the Message will be used to check to see if an upstream Message Event has 
the same portType and operation. If these two attributes are matched, then the Event will 
map to a reply; if not, the Event will map to an invoke.

Message The Message attribute maps to the variable attribute of the reply or the outputVariable of 
the invoke. See “Messages” on page 193 for more information about how a BPMN 
Message maps to BPEL4WS and WSDL.

Implementation = Web 
Service

The Implementation attribute MUST be a Web service or MUST be converted to a Web 
Service for mapping to BPEL4WS. The Web Service Attributes are mapped as follows:

• The Participant attribute is mapped to the partnerLink attribute of the BPEL4WS 
activity.

• The Interface attribute is mapped to the portType attribute of the BPEL4WS activity. 

• The Operation attribute is mapped to the operation attribute of the BPEL4WS 
activity.

Error This will map to a throw element. The ErrorCode attribute of the Event will map to the 
faultName attribute of the throw.

Cancel The mapping of the Cancel Intermediate Event to BPEL4WS is an open issue. 

Compensation This will map to a compensate element. The Name of the activity referenced by the 
Compensation Event will map to the scope attribute of the compensate element.

Terminate This will map to the terminate element.

Table A.4 - Start Event Mappings to BPEL4W

Start Event Mapping to BPEL4WS
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A.4.2.1 Intermediate Event Mappings

The following table displays a set of mappings from the variations of an Intermediate Event to BPEL4WS elements (these 
mappings extend the mappings common to objects--see Section A.3, “Common Flow Object Mappings,” on page 145).

A.4.2.2 None Intermediate Events

The mappings for None Intermediate Events are described in the following table. These mappings extend the mappings 
common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

A.4.2.3 Message Intermediate Events

The mappings for Message Intermediate Events are described in the following table. These mappings extend the mappings 
common to Intermediate Events--refer to the section entitled “Intermediate Event Mappings” on page 148.

Multiple This will map to a combination of invoke, throw, fault, and compensation elements as they 
are defined above.

With Assignments 
Expression

This will map to a BPEL4WS assign that will precede any other mappings required by the 
Event. See Section A.12.2, “Assignment Mapping,” on page 193 for more details about 
the mappings associated with the assign element.

Table A.6 - Intermediate Event Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS

EventType = Intermediate 
and Trigger

The mapping to BPEL4WS is specific to the Trigger setting. These mappings are defined 
in the sections below.

With Assignments 
Expression

This will map to a BPEL4WS assign. See Section A.12.2, “Assignment Mapping,” on 
page 193 for more details about the mappings associated with the assign element.

Table A.7 - None Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS

Trigger = None There is no BPEL4WS element that an Intermediate Event will map to with a Trigger that 
is None. These types of Intermediate Events are often used for documentation purposes to 
show a specific state of the Process.

Table A.8 - Message Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS

Trigger = Message This mapping is defined in the next five (5) rows.

Within the Normal Flow If the Participant defined in the To attribute of the Message is the same Participant as that 
of the Process that contains the Event, then this will map to a receive. The createInstance 
attribute of the receive element will be set to “no.”
If the Participant defined in the From attribute of the Message is the same Participant as 
that of the Process that contains the Event, then this will map to a (one-way) invoke.

Table A.5 - End Event Mappings to BPEL4WS

End Event Mapping to BPEL4WS
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Message The Message attribute maps to the variable attribute of the reply or the outputVariable of 
the invoke. See “Messages” on page 193 for more information about how a BPMN 
Message maps to BPEL4WS and WSDL.

Implementation = Web 
Service

The Implementation attribute MUST be a Web service or MUST be converted to a Web 
Service for mapping to BPEL4WS. The Web Service Attributes are mapped as follows:

• The Participant attribute is mapped to the partnerLink attribute of the BPEL4WS 
activity.

• The Interface attribute is mapped to the portType attribute of the BPEL4WS activity. 

• The Operation attribute is mapped to the operation attribute of the BPEL4WS 
activity.

Without an incoming 
Sequence Flow (but not 
attached to an Activity 
Boundary)

The Participant defined in the To attribute of the Message MUST be the same Participant 
as that of the Process that contains the Event.
The process will be given a scope (if it doesn’t already have one).
An eventHandlers element will be defined for the scope.
An onMessage element will be added to the eventHandlers element.

Message The Message attribute maps to the variable attribute of the onMessage. See “Messages” 
on page 193 for more information about how a BPMN Message maps to BPEL4WS and 
WSDL.

Implementation = Web 
Service

The Implementation attribute MUST be a Web service or MUST be converted to a Web 
Service for mapping to BPEL4WS. The Web Service Attributes are mapped as follows:

• The Participant attribute is mapped to the partnerLink attribute of the onMessage.

• The Interface attribute is mapped to the portType attribute of the onMessage. 

• The Operation attribute is mapped to the operation attribute of the onMessage.

Attached to an Activity 
Boundary

The mappings of the activity (to which the Event is attached) will be placed within a 
scope.
A faultHandlers element will be defined for the scope.
A catch element will be added to the faultHandlers element with “<message name>_Exit” 
as the faultName attribute.
An eventHandlers element will be defined for the scope.
The Event will map to an onMessage element within the eventHandlers. The mapping to 
the onMessage attributes is the same as described for the receive above.
The activity for the onMessage will be a throw with “<message name>_Exit” as the 
faultName attribute.

Used in an Event-Based 
Decision

This will map to an onMessage within a pick. The mapping to the onMessage attributes is 
the same as described for the receive above.

Table A.8 - Message Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS
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A.4.2.4 Timer Intermediate Events

The mappings for Timer Intermediate Events are described in the following table. These mappings extend the mappings 
common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

A.4.2.5 Error Intermediate Events

The mappings for Error Intermediate Events are described in the following table. These mappings extend the mappings 
common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

Table A.9 - Timer Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS

Trigger = Timer This mapping is defined in the next three (3) rows.

Within the Normal Flow This will map to a wait.
The TimeDate attribute maps to the until attribute of the wait.
The TimeCycle attribute maps to the for attribute of the wait.

Without an incoming 
Sequence Flow (but not 
attached to an Activity 
Boundary)

The process will be given a scope (if it doesn’t already have one).
A eventHandlers element will be defined for the scope.
An onAlarm element will be added to the eventHandlers element.
The TimeDate attribute maps to the until attribute of the onAlarm.
The TimeCycle attribute maps to the for attribute of the onAlarm.

Attached to an Activity 
Boundary

The mappings of the activity (to which the Event is attached) will be placed within a 
scope.
A faultHandlers element will be defined for the scope.
A catch element will be added to the faultHandlers element with “<Event name>_Exit” as 
the faultName attribute.
An eventHandlers element will be defined for the scope.
The Event will map to an onAlarm element within the eventHandlers.
The TimeDate attribute maps to the until attribute of the onAlarm.
The TimeCycle attribute maps to the for attribute of the onAlarm.
The activity for the onAlarm will be a throw with “<message name>_Exit” as the 
faultName attribute.

Used in an Event-Based 
Decision

This will map to an onAlarm within a pick.
The TimeDate attribute maps to the until attribute of the onAlarm.
The TimeCycle attribute maps to the for attribute of the onAlarm.

Table A.10 - Error Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS

Trigger = Error This mapping is defined in the next two (2) rows.

Within the Normal Flow This will map to a throw element.
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Cancel Intermediate Events

The mappings for Cancel Intermediate Events are described in the following table. These mappings extend the mappings 
common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

A.4.2.6 Conditional Intermediate Events

The mappings for Conditional Intermediate Events are described in the following table. These mappings extend the mappings 
common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

Attached to an Activity 
Boundary

The mappings of the activity (to which the Event is attached) will be placed within a 
scope.
This Event will map to a catch element within a scope.
If the Error Event does not have an ErrorCode, then a catchAll element will be added to 
the faultHandlers element.
If the Error Event does have an ErrorCode, then a catch element will be added to the 
faultHandlers element with the ErrorCode mapping to the faultName attribute.

Table A.11 - Cancel Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS

Trigger = Cancel The mapping of the Cancel Intermediate Event to BPEL4WS is an open issue.

Table A.12 - Conditional Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS

Trigger = Conditional This mapping is defined in the next two (2) rows.

Within the Normal Flow This will map to the receive element. The createInstance attribute of the receive element 
will be set to “no.” The remaining attributes of the receive will be mapped as shown for 
the Message Start Event (see above).

Without an incoming 
Sequence Flow (but not 
attached to an Activity 
Boundary)

The Participant defined in the To attribute of the Message MUST be the same Participant 
as that of the Process that contains the Event.
The process will be given a scope (if it doesn’t already have one).
An eventHandlers element will be defined for the scope.
The Event will map to an onMessage element within the eventHandlers. The mapping to 
the onMessage attributes is the same as described for the receive for the Message Event 
above.
Note: The Message is expected to arrive from the application that tracks and triggers 
Business Rules.

Table A.10 - Error Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS
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A.4.2.7 Compensation Intermediate Events

The mappings for Compensation Intermediate Events are described in the following table. These mappings extend the 
mappings common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

A.4.2.8 Link Intermediate Events

Link Intermediate Events are treated as “virtual Sequence Flow” that help connect the object preceding the source Link Event 
to the object following the target Link Event. Thus, the Link Intermediate Events are transparent to the BPEL4WS mapping 
(see the Section A.21, “Handling Link Events as Go To Objects,” on page 204).

A.4.2.9 Multiple Intermediate Events

The mappings for Multiple Intermediate Events are described in the following table. These mappings extend the mappings 
common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

Attached to an Activity 
Boundary

The mappings of the activity (to which the Event is attached) will be placed within a 
scope.
A faultHandlers element will be defined for the scope.
A catch element will be added to the faultHandlers element with “<message name>_Exit” 
as the faultName attribute.
An eventHandlers element will be defined for the scope.
The Event will map to an onMessage element within the eventHandlers. The mapping to 
the onMessage attributes is the same as described for the receive for the Message Event 
above.
Note: The Message is expected to arrive from the application that tracks and triggers 
Business Rules.
The activity for the onMessage will be a throw with “<message name>_Exit” as the 
faultName attribute.

Used in an Event-Based 
Decision

This will map to an onMessage element within a pick. The mapping to the onMessage 
attributes is the same as described for the receive for the Message Event above.

Table A.13 - Compensation Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS

Trigger = Compensation This mapping is defined in the next two (2) rows.

Within the Normal Flow This will map to a compensate element. The Name of the activity referenced by the 
Compensation Event will map to the scope attribute of the compensate element.

Attached to an Activity 
Boundary

The activity (to which the Event is attached) will be placed within a scope. This Event 
maps to a compensationHandler element within a scope.

Table A.14 - Multiple Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS

Trigger = Multiple This will map to a combination of the mappings as they are defined in the Intermediate 
Event sections above.

Table A.12 - Conditional Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS
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A.5 Activities

A.5.1 Common Activity Mappings

The following table displays a set of mappings from the variations of activities to BPEL4WS elements. These mappings 
extend the mappings common to objects -- see Section A.3, “Common Flow Object Mappings,” on page 145. Note that Table 
A.16 contains additional mappings that must be included within this set if extended by any other mapping table.

A.5.2 Activity Loop Mapping

The mapping to BPEL4WS for looping activities is complex and is made up of a number of activities that will surround the 
original mapping of the activity itself (which may be complex). The description of this mapping is divided into three sections 
to describe the basic setup of the loop (common to all loops), then the details of Standard looping, then the details of Multi-
Instance looping.

A.5.3 Basic Loop Setup

The basic set up mappings, which are common to both Standard and Multi-Instance looping activities, are described in the 
following table. These mappings extend the mappings common to objects--see Section A.5.1, “Common Activity Mappings,” 
on page 153.

Table A.15 - Common Activity Mappings to BPEL4WS

Activity Mapping to BPEL4WS

Properties The set of Properties of an activity, as a whole, will map to a BPEL4WS variable. The 
variable element will be structured as follows:

<variable name="[activity.Name]_ActivityData"

messageType="[activity.Name]_ActivityDataMessage" />

The individual Properties will map to the parts of a WSDL message. The message element 
will be structured as follows:
<message name="[activity.Name]_ActivityDataMessage" >
<part name="[Property.Name]"
     type="xsd:[Property.Type]" />

</message>
 
There will be as many parts to the message as there are Properties in the input group.

With Assignments 
Expression

This will map to a BPEL4WS assign. Refer to the section entitled  “Assignment Mapping” 
on page 193 for more details about the mappings associated with the assign element.

AssignTime = Start A BPEL4WS sequence will be created and the assign will precede. 

AssignTime = End A BPEL4WS sequence will be created and the assign will follow.

Table A.16 - Basic Activity Loop Mappings to BPEL4WS

Looping Mapping to BPEL4WS

Activities with internal 
looping

Activities that have either a Standard or MultiInstance loop setting will result in a pattern 
of BPEL4WS elements, depending on the exact settings. This pattern will be placed within 
a BPEL4WS sequence activity. The details of the other mappings are described in the 
rows that follow.
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LoopCounter This attribute will map to a BPEL4WS variable, which will be part of the process 
definition. The variable will be structured as follows:
<variable name="[activity.Name]_loopCounter"
          messageType="loopCounterMessage" />
 
Note: The LoopCounter mappings described in this and the next three rows are only 
required for Multi-Instance loops and Standards loops that use the LoopMaximum 
attribute. For all looping activities, the LoopCounter can be used for reporting purposes.

Supporting WSDL 
Message

A WSDL message element will have to be created to support this variable. This message 
can be used for multiple variables. The message will be structured as follows:
<message name="loopCounterMessage" >
<part name="loopCounter" type="xsd:integer" />

</message>

Initialization of the 
LoopCounter 

An assign activity will be created to initialize the variable before the start of the loop. 
This activity precedes the while activity. This will be the first activity within the sequence 
activity. The assign will be structured as follows:
<assign name="[activity.Name]_initialize_loopCounter">
<copy>
<from expression="0"/>
<to variable="[activity.Name]_loopCounter" 
    part="loopCounter" />

</copy>
</assign>

Incrementing the 
LoopCounter

An assign activity will be created to update the loopCounter variable at the end of the 
while activity (see below). This activity will be the last activity of the sequence activity 
that is within the while activity. The assign will be structured as follows:
<assign name="[activity.Name]_increment_loopCounter">
<copy>
<from expression="
     bpws:getVariableData([activity.Name]_loopCounter,
     loopCount) + 1"/>
<to variable="[activity.Name]_loopCounter" 
    part="loopCounter" />

</copy>
</assign>

Table A.16 - Basic Activity Loop Mappings to BPEL4WS

Looping Mapping to BPEL4WS
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A.5.4 Standard Loops

The loop mappings for Standard loops are described in the following table (these mappings extend the mappings of the Basic 
Loop Setup--refer to the previous section).

Table A.17 - Standard Activity Loop Mappings to BPEL4WS

Looping Mapping to BPEL4WS

LoopType = Standard For a Standard Looping activity, the mapping of the base BPMN activity will be placed 
within a BPEL4WS sequence that is within a while, and this will follow the assign 
described in the Basic Loop Setup (see Figure A.1 and Example A.1). Section A.6, “Sub-
Process Mappings,” on page 171 or the Section A.7, “Task Mappings,” on page 173 for 
details about how the base activity will be mapped to BPEL4WS.

LoopCondition The LoopCondition, which MUST be a boolean expression, will be used as the condition 
attribute of the while element.The while condition will be structured as follows:
<while condition="[loopCondition]">

TestTime = After An After TestTime will map to the BPEL4WS while activity. However, to insure that the 
Task is performed at least once (i.e., the functionality of an until loop), a copy of the 
mapping for BPMN activity will be performed first in a sequence, followed by the while 
(which will contain the original copy of the mapping for the BPMN activity).

TestTime = Before A Before TestTime does not require any additional mappings.

LoopMaximum Any value in Maximum will be appended to the LoopCondition. For example, with a 
LoopCondition of “x < 0” and Maximum of 5 (loops), the final expression would be “(x < 
0) and ([ActivityName].LoopCounter <= 5).”
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Figure A.1 - BPMN Depiction of BPEL4WS Pattern for a Standard loop, TestTime = Before
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Example A.1 displays sample BPEL4WS code that reflects the mapping of a Standard loop.

Example A.1 - BPEL4WS Sample for a Standard Loop

A.5.5 Multi-Instance Loop Setup

The loop mappings for Multi-Instance loops are described in the following table. These mappings extend the mappings of the 
Basic Loop Settings--see “Basic Loop Setup” on page 153.

<!-- The Process data is defined first-->
<variable name="[activity.Name]_loopCounter" messageType="loopCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequence> 
<assign name="[activity.Name]_initialize_loopCounter">
<copy>
<from expression="0"/>
<to variable="[activity.Name]_loopCounter" part="loopCounter" />

</copy>
</assign>
<!-- If the TestTime is set to After, the mappings of the original activity 

are placed here, as well as within the while.-->
<while condition="[loopCondition]">
<sequence>

<!--The mappings of the original activity are placed here.-->

<assign name="[activity.Name]_increment_counter">
<copy>
<from expression="bpws:getVariableData([activity.Name]_loopCounter,loopCount)+1"/>
<to variable="[activity.Name]_loopCounter" part="loopCounter" />

</copy>
</assign>

</sequence> 
</while>

</sequence> 
<!-- The contents of the process after the looping activity are here-->

Table A.18 - Multi-Instance Activity Loop Setup Mappings to BPEL4WS

Multi-Instance Mapping to BPEL4WS

LoopType = MultiInstance For a Multi-Instance Looping activity, the mapping of the BPMN activity will be placed 
within a BPEL4WS sequence that is within a while, and this will follow the assign 
described in the Basic Loop Setup (see Figure A.1 and Example A.1). See Section A.6, 
“Sub-Process Mappings,” on page 171 or Section A.7, “Task Mappings,” on page 173 for 
details about how the base activity will be mapped to BPEL4WS.
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A.5.6 Sequential Multi-Instance Loops

The loop mappings for Sequential Multi-Instance loops are described in the following table. These mappings extend the 
mappings of the Multi-Instance Setup--refer to the section above.

MI_Condition This applies to both Sequential and Parallel MI_Ordering (see below).
The MI_Condition, which MUST be a numeric expression, will map to an assign activity. 
This will be the first activity of the generated sequence activity (as described in the row 
above).
First, a BPEL4WS variable must be created with a derived name and will have a structure 
as follows:
<variable name="[activity.Name]_forEachCount"
        messageType="forEachCounterMessage" />

 
Second, an assign activity will be used to generate the number of instances that will be 
required. The assign will be structured as follows:
<assign name="[activity.Name]_determine_instances">
<copy>
<from expression="[MI_Condition Expression]"/>
<to variable="[activity.Name]_forEachCount" 
    part="forEachCount" />

</copy>
</assign>

Supporting WSDL 
Message

A WSDL message element will have to be created to support the variable. This message 
can be used for multiple variables. The message will be structured as follows:
<message name="forEachCounterMessage" >
<part name="forEachCount" part="xsd:integer" />

</message>

The condition for the 
while

The condition attribute of the while will be a derived expression that utilizes the 
loopCounter variable and compares it to the derived forEachCount (described in the row 
above). The while condition be structured as follows:
<while condition="
      bpws:getVariableData([activity.Name]_loopCounter, 
       loopCounter) >=   
      bpws:getVariableData([activity.Name]_forEachCount, 
       forEachCount)">

Table A.19 - Sequential Multi-Instance Activity Loop Mappings to BPEL4WS

Multi-Instance Mapping to BPEL4WS

MI_Ordering = Sequential This type of looping utilizes both the Basic Loop Setup mappings and the above Multi-
Instance mappings. No further mappings are necessary. See Figure A.2 and Figure A.2 for 
the complete mappings.

Table A.18 - Multi-Instance Activity Loop Setup Mappings to BPEL4WS

Multi-Instance Mapping to BPEL4WS
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Figure A.2 - BPMN Depiction of BPEL4WS Pattern for a Sequential Multi-Instance loop
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Example A.2 displays some sample BPEL4WS code that reflects the mapping of a Standard loop.

Example A.2 - BPEL4WS Sample for a Multi-Instance Loop with Sequential Ordering

<!-- The Process data is defined first-->
<variable name="[activity.Name]_loopCounter" messageType="loopCounterMessage" />
<variable name="[activity.Name]_forEachCount" messageType="forEachCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequence> 
<assign name="[activity.Name]_initialize_loopCounter">
<copy>
<from expression="0"/>
<to variable="[activity.Name]_loopCounter" part="loopCounter" />

</copy>
</assign>
<assign name="[activity.Name]_determine_instances">
<copy>
<from expression="[MI_Condition Expression]"/>
<to variable="[activity.Name]_forEachCount" part="forEachCount" />

</copy>
</assign>
<while condition="bpws:getVariableData([activity.Name]_loopCounter,loopCounter) >=   

                    bpws:getVariableData([activity.Name]_forEachCount,forEachCount)">
<sequence> 

<!--The mappings of the original activity are placed here.-->

<assign name="[activity.Name]_increment_counter">
<copy>
<from expression="bpws:getVariableData([activity.Name]_loopCounter,loopCount)+1"/>
<to variable="[activity.Name]_loopCounter" part="loopCounter" />

</copy>
</assign>

</sequence> 
</while>

</sequence> 
<!-- The contents of the process after the looping activity are here-->
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A.5.7 Parallel Multi-Instance Loop Setup

The loop mappings for Sequential Multi-Instance loops are described in the following table. These mappings extend the 
mappings of the Multi-Instance Setup--refer to the section above.

Table A.20 - Parallel Multi-Instance Activity Loop Mappings to BPEL4WS

Multi-Instance Mapping to BPEL4WS

MI_Ordering = Parallel A BPEL4WS while activity will also be used for Parallel ordering. However, since the 
Task is to be performed in parallel, the mapping to the Tasks cannot be contained within 
the while. To get the parallel behavior, each copy of the multi-instance Task will be placed 
into a separate, derived BPEL4WS process1. A one-way invoke will be used to “spawn” 
each process and, thus, each instance of the Task. Since the invoke is only one-way, and 
doesn’t wait for a response from the process, the invoke will complete quickly and the 
while will cycle through all of its iterations quick enough that the instantiations of the 
Task mappings will be effectively, if not literally, in parallel. The setting for the 
MI_FlowCondition attribute will determine what BPEL4WS elements will follow the 
while activity. These mappings will be described in the next four sections.

The while condition The while condition will be the same as that of the Sequential ordering (see previous 
section).

Spawning the process In the while activity, a one-way invoke activity will be created and used to “spawn” each 
of the derived processes. The name attribute for each derived invoke will be in the 
following format:
<invoke name="Spawn_Process_For_[activity.Name]" ... >
 
This invoke will replace the mappings of the original activity, which was in the while for 
Standard loops and Sequential Multi-Instance Loops.

The spawned process The derived process will start with a receive that accepts the message that is sent by the 
one-way invoke that is within the while loop of the original process. The name of the 
process will be "Spawned_Process_For_[activity.Name]." The original Task 
will be mapped and those BPEL4WS elements will follow the initial receive.
After all the mapped elements have been completed, then a one-way invoke will be used to 
send a message back to the original process has a notification that the spawned process is 
completed. This will be the last element of the spawned process (see Figure A.3 and 
Example A.3). The name attribute for the derived invoke will be in the following format:
<invoke name="[activity.Name]_Completed" ... >
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Figure A.3 - Structure of Process to be Spawned for Parallel Multi-instance

Copying variables to/
from the spawned 
processes

Since the Parallel Multi-Instance Task mappings are going to be performed within a 
different process instance, the variables of the original process will need to be passed to 
the spawned process through the inputVariable of the one-way invoke that spawns the 
process. Likewise, any variables that are updated in the spawned process will need to be 
passed back to the original process through the inputVariable of the one-way invoke that 
indicates that the spawned process has completed.
Note: Once the individual derived processes are instantiated, they will be blind to any 
changes in process variables. From the BPMN point of view, all the multi-instance 
activities are within the same context as the original Process and, thus, should be able to 
utilize any dynamic changes to Process Properties (BPEL4WS variables) as they occur 
(this is especially true for multi-instance Sub-Processes). It is up to the BPEL4WS 
execution environment to provide a “virtual context” for all the derived processes to 
“share” the process variables.

Receiving completion 
messages

As mentioned above, the spawned processes will send a message back to the original 
process after it has completed performing the behavior of the original activity. A 
BPEL4WS receive activity will be used to receive the messages back from all the 
spawned processes. The settings of the MI_FlowCondition will determine. The name 
attribute for each derived receive will be structured as follows:
<receive name="[activity.Name]_Completed" ... >
 
The setting of the MI_FlowCondition attribute will determine how many receive activities 
will be required. Once the appropriate number of messages have been received back from 
the spawned processes, the original process will continue.

1. Note: BPEL4WS does not have a sub-process capability. It is likely that sub-processes, both Embedded and Reference, will be 
added to BPEL4WS in the future. When this capability has been added, the mapping for derived processes will be updated.

Table A.20 - Parallel Multi-Instance Activity Loop Mappings to BPEL4WS

Multi-Instance Mapping to BPEL4WS

Performed
Mapped

Activity(ies)

<<one-way>>
[activity.Name]_

Completed

This may be a
sequence of

activities, depending
on the mapping

Send a message
back to indicate that
the activity has been

completed.

<<receive>>
Spawn_Process_For

_[activity.Name]

Receive the instantiation
message from the one-way

invoke from the original
process
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Example A.3 displays some sample BPEL4WS code that reflects the mapping of a Multi-Instance loop that has Parallel 
ordering and must synchronize all the looped activities.

Example A.3 - BPEL4WS Sample of a derived process for Parallel Multi-Instance loops

A.5.8 Parallel Multi-Instance Loops -- Flow Condition All

The loop mappings for Parallel Multi-Instance loops that have an MI_FlowCondition of All are described in the following 
table. These mappings extend the mappings of the Parallel Multi-Instance Setup--refer to the section above.

<process name="Spawned_Process_For_[activity.Name]" ... > 
<sequence> 
<receive name="Spawn_Process_For_[activity.Name]" ... >

<!--The mappings of the original activity are placed here.-->

<invoke name="[activity.Name]_Completed" ... >
</sequence> 

</process> 

Table A.21 - Parallel Multi-Instance Activity, MI_FlowCondition = All

Multi-Instance Mapping to BPEL4WS

MI_FlowCondition = All This setting utilizes the mechanisms described above for the Parallel ordering. The “All” 
setting requires that all of the spawned processes must be completed before the original 
process can continue (see Figure A.4 and Example A.4). 

Synchronizing the 
completion of the 
spawned processes

The synchronization from the spawned processes is managed through the messages sent 
by those processes when they have completed the behavior defined by the original 
activity. These messages will be received by the original process and when the messages 
from all the spawned processes are received, then the original process can continue. To 
ensure that all the messages are received, a second while activity will be used. This while 
will contain a receive activity (for the completion messages) and an assign activity to 
increment the loop counter. The while condition attribute will be the same as the condition 
for the while that generated all the spawned processes, so that the same number of 
messages will be received as there were spawned processes. 

Resetting the loop 
Counter

Prior to the second while activity, another assign will be required to reset the loop counter. 
The contents of the assign activity will be the same as the assign that originally initialized 
the loopCounter. The name attribute for the derived assign will be in the following format:
<assign name="[activity.Name]_reset_loopCounter" ... >
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Figure A.4 - BPEL4WS Pattern of Parallel Multi-instance, MI_FlowCondition = All
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Example A.4 - BPEL4WS Sample of a Parallel Multi-Instance Loop, MI_FlowCondition = All

<!-- The Process data is defined first-->
<variable name="[activity.Name]_loopCounter" messageType="loopCounterMessage" />
<variable name="[activity.Name]_forEachCount" messageType="forEachCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequence> 
<assign name="[activity.Name]_initialize_loopCounter">
<copy>
<from expression="0"/>
<to variable="[activity.Name]_loopCounter" part="loopCounter" />

</copy>
</assign>
<assign name="[activity.Name]_determine_instances">
<copy>
<from expression="[MI_Condition Expression]"/>
<to variable="[activity.Name]_forEachCount" part="forEachCount" />

</copy>
</assign>
<while condition=" bpws:getVariableData([activity.Name]_loopCounter,loopCounter) >=   

                     bpws:getVariableData([activity.Name]_forEachCount,forEachCount)">
<sequence> 
<invoke name=" Spawn_Process_For_[activity.Name]" ... >
<assign name="[activity.Name]_increment_counter">
<copy>
<from expression="bpws:getVariableData([activity.Name]_loopCounter,loopCount)+1"/>
<to variable="[activity.Name]_loopCounter" part="loopCounter" />

</copy>
</assign>

</sequence> 
</while>
<assign name="[activity.Name]_reset_loopCounter">
<copy>
<from expression="0"/>
<to variable="[activity.Name]_loopCounter" part="loopCounter" />

</copy>
</assign>
<!-- Set a while to receive all the return messages. The condition will be the same.-->
<while condition=" bpws:getVariableData([activity.Name]_loopCounter,loopCounter) >=   

                     bpws:getVariableData([activity.Name]_forEachCount,forEachCount)">
<sequence> 
<receive name="[activity.Name]_Completed" ... >
<assign name="[activity.Name]_increment_counter">
<copy>
<from expression="bpws:getVariableData([activity.Name]_loopCounter,loopCount)+1"/>
<to variable="[activity.Name]_loopCounter" part="loopCounter" />

</copy>
</assign>

</sequence> 
</while>

</sequence> 
<!-- The contents of the process after the looping activity are here-->
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A.5.9 Parallel Multi-Instance Loops -- Flow Condition One

The loop mappings for Parallel Multi-Instance loops that have a MI_FlowCondition of One are described in the following 
table. These mappings extend the mappings of the Parallel Multi-Instance Setup--refer to the section above.

Table A.22 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = One

Multi-Instance Mapping to BPEL4WS

MI_FlowCondition = One This setting utilizes the mechanisms described above for the Parallel ordering. The “One” 
setting requires that only one of the spawned processes must be completed before the 
original process can continue (see Figure A.5 and Example A.5).

Receiving the 
completion message

Only one message is required from any one of the spawned processes before the original 
process can continue. Thus, there will be a single receive activity following the while 
activity. The receive will be the last element of the sequence that was started for the 
mapping of the Multi-Instance activity. The other spawned processes will continue their 
activities in parallel, but their completion will have no direct impact on the flow of the 
main process (their messages won’t be received).
Note: As mentioned above, it is up to the BPEL4WS execution environment to provide a 
“virtual context” for all the derived processes to “share” the process variables that may be 
updated by the spawned processes with the original process, even if there are no specific 
BPEL4WS activities to manage this information.
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Figure A.5 - BPEL4WS Pattern of Parallel Multi-instance, MI_FlowCondition = One
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Example A.5 displays some sample BPEL4WS code that reflects the mapping of a Multi-Instance loop that has Parallel 
ordering and must wait for only one of the looped activities.

Example A.5 - BPEL4WS Sample of a Parallel Multi-Instance Loop, MI_FlowCondition = One

A.5.10 Parallel Multi-Instance Loops -- Flow Condition Complex

The loop mappings for Parallel Multi-Instance loops that have an MI_FlowCondition of Complex are described in the 
following table. These mappings extend the mappings of the Parallel Multi-Instance Setup--refer to the section above.

<!-- The Process data is defined first-->
<variable name="[activity.Name]_loopCounter" messageType="loopCounterMessage" />
<variable name="[activity.Name]_forEachCount" messageType="forEachCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequence> 
<assign name="[activity.Name]_initialize_loopCounter">
<copy>
<from expression="0"/>
<to variable="[activity.Name]_loopCounter" part="loopCounter" />

</copy>
</assign>
<assign name="[activity.Name]_determine_instances">
<copy>
<from expression="[MI_Condition Expression]"/>
<to variable="[activity.Name]_forEachCount" part="forEachCount" />

</copy>
</assign>
<while condition="bpws:getVariableData([activity.Name]_loopCounter,loopCounter) >=   

                    bpws:getVariableData([activity.Name]_forEachCount,forEachCount)">
<sequence> 

<!--The mappings of the original activity are placed here.-->

<assign name="[activity.Name]_increment_counter">
<copy>
<from expression="bpws:getVariableData([activity.Name]_loopCounter,loopCount)+1"/>
<to variable="[activity.Name]_loopCounter" part="loopCounter" />

</copy>
</assign>

</sequence> 
</while>
<receive name="[activity.Name]_Completed" ... >

</sequence> 
<!-- The contents of the process after the looping activity are here-->

Table A.23 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = Complex

Multi-Instance Mapping to BPEL4WS

MI_FlowCondition = 
Complex

The mapping for this setting is almost the same as the MI_FlowCondition of All mapping 
(as described above) and seen in Figure A.4 and Example A.4. The difference is that the 
number of return messages required before the process flow will continue must be 
determined and the messages have been received. 
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A.5.11 Parallel Multi-Instance Loops -- Flow Condition None

The loop mappings for Parallel Multi-Instance loops that have an MI_FlowCondition of None are described in the following 
table. These mappings extend the mappings of the Parallel Multi-Instance Setup--refer to the section above.

The while condition for 
receiving completion 
messages

The second while in the sequence will be used to receive the appropriate number of 
completion messages. The ComplexMI_FlowCondition, which MUST be a boolean 
expression, will determine this number. The while condition will be structured as follows:
<while condition="[ComplexMI_FlowCondition]">

Table A.24 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = None

Multi-Instance Mapping to BPEL4WS

MI_FlowCondition = None This means that there is not synchronization or control of the Tokens that are generated 
through the multi-instance activity. This means that each Token will continue on 
independently and each Token will create a separate instantiation of each activity they 
encounter. Basically, it means there is a separate copy of the whole process, for each copy 
of the Multi-Instance activity, after that point. Each copy of the remainder of the process 
will continue independently. To create this behavior, the remainder of the process will be 
moved into a new, derived process.

Spawning the rest of the 
process

This process will be spawned through a one-way invoke that will be placed within the 
while activity, after the mappings of the original BPMN activity (see Figure A.6 and 
Example A.6). The name attribute for the derived invoke will be in the following format:
<invoke name=
        "Spawn_Remainder_of_Process_from_[activity.Name]"...>

Table A.23 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = Complex

Multi-Instance Mapping to BPEL4WS
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Figure A.6 - BPEL4WS Pattern of Parallel Multi-instance, MI_FlowCondition = None
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there are instances as
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End Segment
of the
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<<assign>>
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determine_
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attribute of the Multi-
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loopCounter
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BPEL4WS

sequence
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Example A.6 displays some sample BPEL4WS code that reflects the mapping of a Multi-Instance loop that has Parallel 
ordering and must wait for none of the looped activities.

Example A.6 - BPEL4WS Sample of a Parallel Multi-Instance Loop, MI_FlowCondition = None

A.6 Sub-Process Mappings

The following table displays a set of mappings from the variations of a Sub-Process to BPEL4WS elements. This extends the 
mappings that are defined for all activities--refer to the section entitled “Common Activity Mappings” on page 153.

<!-- The Process data is defined first-->
<variable name="[activity.Name]_loopCounter" messageType="loopCounterMessage" />
<variable name="[activity.Name]_forEachCount" messageType="forEachCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequence> 
<assign name="[activity.Name]_initialize_loopCounter">
<copy>
<from expression="0"/>
<to variable="[activity.Name]_loopCounter" part="loopCounter" />

</copy>
</assign>
<assign name="[activity.Name]_determine_instances">
<copy>
<from expression="[MI_Condition Expression]"/>
<to variable="[activity.Name]_forEachCount" part="forEachCount" />

</copy>
</assign>
<while condition=" bpws:getVariableData([activity.Name]_loopCounter,loopCounter) >=   

                     bpws:getVariableData([activity.Name]_forEachCount,forEachCount)">
<sequence> 

<!--The mappings of the original activity are placed here.-->

<assign name="[activity.Name]_increment_counter">
<copy>
<from expression="bpws:getVariableData([activity.Name]_loopCounter,loopCount)+1"/>
<to variable="[activity.Name]_loopCounter" part="loopCounter" />

</copy>
</assign>

</sequence> 
</while>
<invoke name="Spawn_Remainder_of_Process_from_[activity.Name]" ... >

</sequence> 
<!-- The contents of the process after the looping activity are here-->

Table A.25 - Sub-Process Mappings to BPEL4WS

Sub-Process Mapping to BPEL4WS

ActivityType = SubProcess The SubProcessType attribute will determine the exact mapping of a Sub-Process. See the 
next two sub-sections for these mappings.

IsATransaction The mapping of a Sub-Process set to a Transaction is an Open Issue. Thus, there is no 
mapping defined when the IsATransaction is set to True, or the sub-attributes 
TransactionId, TransactionProtocol, and TransactionMethod.
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A.6.1 Embedded Sub-Process

The following table displays a set of mappings from the variations of an Embedded Sub-Process to BPEL4WS elements. This 
extends the mappings that are defined for all activities--Section A.6, “Sub-Process Mappings,” on page 171.

A.6.2 Reusable Sub-Process

The following table displays a set of mappings from the variations of an Reusable Sub-Process to BPEL4WS elements. This 
extends the mappings that are defined for all activities--see Section A.6, “Sub-Process Mappings,” on page 171.

Table A.26 - Embedded Sub-Process Mappings to BPEL4WS

Sub-Process Mapping to BPEL4WS

SubProcessType = 
Embedded

This will map to a BPEL4WS scope element. The scope is not an independent 
process and will share the process variables of the higher-level process.

GraphicalElements This is a list of all the graphical elements contained within the Process. Each of these 
elements will have their mapping, as defined in the sections below.

Adhoc Ad Hoc Processes are not executable. Thus, this attribute MUST be set to False if the 
Process is to be mapped to BPEL4WS. The AdHocCompletionCondition and the 
AdHocOrdering attributes are only valid if the AdHoc attribute is True. Thus, these 
attributes will not be mapped to BPEL4WS.

Table A.27 - Reusable Sub-Process Mappings to BPEL4WS

Task Mapping to BPEL4WS

SubProcessType = 
Reusable

BPEL4WS does not have a sub-process element. Thus, Reusable Sub-Processes MUST 
map to a BPEL4WS process. That is, the contents of the Sub-Process, whether it is 
expanded or collapsed, will be contained within a separate process. The DiagramRef and 
ProcessRef attributes will identify the process that will be used for the mapping to the 
BPEL4WS process. The attributes of the other BPEL4WS process element will be filled 
from the mapping of the referenced Process. Section A.2, “Business Process Mappings,” 
on page 144 for the details of this mapping. The Sub-Process object itself maps to an 
invoke activity that “calls” the process. 

InputPropertyMaps This attribute is actually a mapping of Process Properties to the Process Properties of the 
Process being referenced by the Sub-Process Object. The OutputPropertyMaps attribute 
maps to the inputVariable attribute of the invoke activity. See “Messages” on page 193 for 
more information about how a BPMN Message maps to BPEL4WS and WSDL.

OutputPropertyMaps This attribute is actually a mapping of Process Properties to the Process Properties of the 
Process being referenced by the Sub-Process Object. The InputPropertyMaps attribute 
maps to the outputVariable attribute of the invoke activity. See “Messages” on page 193 
for more information about how a BPMN Message maps to BPEL4WS and WSDL.
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A.6.3 Reference Sub-Process

The following table displays a set of mappings from the variations of a Reference Sub-Process to BPEL4WS elements:

A.7 Task Mappings

The following table displays a set of mappings from the variations of a Task to BPEL4WS elements. This extends the 
mappings that are defined for all activities--see Section A.5.1, “Common Activity Mappings,” on page 153.

A.7.1 Service Task

The following table displays a set of mappings from the variations of a Service Task to BPEL4WS elements:

Table A.28 - Reference Sub-Process Mappings to BPEL4WS

Task Mapping to BPEL4WS

SubProcessType = 
Reference

This type of Sub-Process is not directly mapped to BPEL4WS, since BPEL4WS does not 
support this type of referencing. However, the Sub-Process will be used as a placeholder 
for the Sub-Process that will be mapped (see next row).

TaskRef: Task This attribute references another Sub-Process in the Process. It is the referenced Sub-
Process that will be mapped and the mappings will be placed in the location of the 
Reference Sub-Process. That is, another copy of the entire mapping of the referenced Sub-
Process will be created in this location (the mappings will also exist in the referenced Sub-
Process’ original location).

Table A.29 - Task Mappings to BPEL4WS

Task Mapping to BPEL4WS

ActivityType = Task The TaskType attribute will determine the exact mapping of a Task. See the next eight (8) 
sub-sections for these mappings.

Web service Mappings The Implementation attribute MUST be a Web service or MUST be converted to a Web 
Service for mapping to BPEL4WS. The Web Service Attributes are mapped as follows:

• The Participant attribute is mapped to the partnerLink attribute of the BPEL4WS 
activity.

• The Interface attribute is mapped to the portType attribute of the BPEL4WS activity. 

• The Operation attribute is mapped to the operation attribute of the BPEL4WS 
activity.

Table A.30 - ServiceTask Mappings to BPEL4WS

Task Mapping to BPEL4WS

TaskType = Service This type of Task maps to an invoke activity.

InMessage The InMessage attribute maps to the inputVariable attribute of the invoke activity. See 
“Messages” on page 193 for more information about how a BPMN Message maps to 
BPEL4WS and WSDL.
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A.7.2 Receive Task

The following table displays a set of mappings from the variations of a Receive Task to BPEL4WS elements. This extends the 
mappings that are defined for all Tasks--see Section A.7, “Task Mappings,” on page 173.

A.7.3 Send Task

The following table displays a set of mappings from the variations of a Send Task to BPEL4WS elements. 

OutMessage The OutMessage attribute maps to the outputVariable attribute of the invoke activity. See 
“Messages” on page 193 for more information about how a BPMN Message maps to 
BPEL4WS and WSDL.

Implementation = Web 
Service

This will map as defined in Table A.29.

Table A.31 - Receive Task Mappings to BPEL4WS

Task Mapping to BPEL4WS

TaskType = Receive This type of Task maps to a receive activity.

Message: Message The Message attribute maps to the variable attribute of the receive activity. See 
“Messages” on page 193 for more information about how a BPMN Message maps to 
BPEL4WS and WSDL.

Instantiate False : 
Boolean

If the Instantiate attribute of the Task is set to False, then the createInstance attribute of 
the receive will not be included or it will be set to “no.” 
If the Instantiate attribute of the Task is set to True, then the createInstance attribute of the 
receive will be set to “yes.” 

Implementation = Web 
Service

This will map as defined in Table A.29.

Table A.32 - Send Task Mappings to BPEL4WS

Task Mapping to BPEL4WS

TaskType = Send This type of Task maps to a reply or an invoke activity. The appropriate BPEL4WS 
activity will be determined by the implementation defined for the Task. That is, the 
portType and operation of the Task will be used to check to see if an upstream Receive 
Task has the same portType and operation. If these two attributes are matched, then the 
Send Task will map to a reply, if not, the Send Task will map to an invoke.

Message: Message The Message attribute maps to the variable attribute of the reply activity or it maps to the 
inputVariable attribute of the invoke activity. See “Messages” on page 193 for more 
information about how a BPMN Message maps to BPEL4WS and WSDL.

Implementation = Web 
Service

This will map as defined in Table A.29.

Table A.30 - ServiceTask Mappings to BPEL4WS

Task Mapping to BPEL4WS
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A.7.4 User Task

The following table displays a set of mappings from the variations of a User Task to BPEL4WS elements.

A.7.5 Script Task

The following table displays a set of mappings from the variations of a Script Task to BPEL4WS elements.

A.7.6 Manual Task

The Manual Task does not map to BPEL4WS. Thus, this type of Task should not be used in a Process that is intended to 
generate BPEL4WS code.

A.7.7 Reference Task

The following table displays a set of mappings from the variations of a Reference Task to BPEL4WS elements.

Table A.33 - User Task Mappings to BPEL4WS

Task Mapping to BPEL4WS

TaskType = User This type of Task maps to an invoke activity.

Performers: String The Performers is information needed by the implementation. Thus, it will be included in 
the InMessage being sent to the Web service, through the inputVariable attribute of the 
invoke activity.

InMessage The InMessage attribute maps to the inputVariable attribute of the invoke activity. See 
“Messages” on page 193 for more information about how a BPMN Message maps to 
BPEL4WS and WSDL.

OutMessage The OutMessage attribute maps to the outputVariable attribute of the invoke activity. See 
“Messages” on page 193 for more information about how a BPMN Message maps to 
BPEL4WS and WSDL.

Implementation = Web 
Service

This will map as defined in Table A.29.

Table A.34 - Script Task Mappings to BPEL4WS

Task Mapping to BPEL4WS

TaskType = Script This type of Task maps to an invoke activity. Since this activity is performed by a process 
engine, the default settings of the engine must be used to determine the settings of the 
invoke activity. That is, partnerLink, portType, operation, inputVariable, and maybe 
outputVariable are derived by these default settings. The script itself is performed when 
the appropriate Web service of the process engine in invoked.

Table A.35 - Reference Task Mappings to BPEL4WS

Task Mapping to BPEL4WS

TaskType = Reference This type of Task is not directly mapped to BPEL4WS, since BPEL4WS does not support 
this type of referencing. However, the Task will be used as a placeholder for the Task that 
will be mapped (see next row).
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A.7.8 None Task

The following table displays a set of mappings from the variations of a None Task to BPEL4WS elements.

A.8 Gateways

A.8.1 Common Gateway Mappings

The following table displays a set of mappings are common for Gateways to BPEL4WS elements (these mappings extend the 
mappings common to objects -- see Section A.3, “Common Flow Object Mappings,” on page 145):

TaskRef: Task This attribute references another Task in the Process. It is the referenced Task that will be 
mapped and the mappings will be placed in the location of the Reference Task. That is, 
another copy of the entire mapping of the referenced Task will be created in this location 
(the mappings will also exist in the referenced Task’s original location).

Table A.36 - None Task Mappings to BPEL4WS

Task Mapping to BPEL4WS

TaskType = None This type of Task maps to an empty activity.

Table A.37 - Common Gateway Mappings to BPEL4WS

Data-Based Exclusive 
Gateways

Mapping to BPEL4WS

Gateway A Gateway will map to a variety of BPEL4WS elements (e.g., switch, pick, flow) and 
patterns of elements.

Incoming Flow A Gateway, as with activities, is a location where Sequence Flow can converge. The 
convergence of Sequence Flow potentially marks the end of a BPEL4WS structured 
element, if the correct number of flow converge. See Section A.13.1, “Determining the 
Extent of a BPEL4WS Structured Element,” on page 193 for more details on converging 
of Sequence Flow and their mapping to BPEL4WS.

Outgoing Flow The mapping will begin at the location of the Gateway.
The BPMN elements that follow the Gateway, until all the outgoing paths have converged, 
will be contained within the extent of the mapping (e.g., they will be placed within a 
sequence within a switch case).
The end of the mapping will be determined by the convergence of the paths, through a 
variety of mechanisms (see Section A.13.1, “Determining the Extent of a BPEL4WS 
Structured Element,” on page 193).

Assignments associated 
with Gates

This will map to a BPEL4WS assign. See Section A.12.2, “Assignment Mapping,” on 
page 193 for more details about the mappings associated with the assign element.

Table A.35 - Reference Task Mappings to BPEL4WS

Task Mapping to BPEL4WS
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A.8.2 Exclusive

A.8.2.1 Data-Based

The following table displays a set of mappings from the variations of a Data-Based Exclusive Gateway to BPEL4WS 
elements. These mappings extend the mappings common to objects -- see Section A.8.1, “Common Gateway Mappings,” on 
page 176.

A.8.2.2 Event-Based

To relate the Event-Based Exclusive Gateway to BPEL4WS, the Gateway diamond marks the location of a BPEL4WS pick 
and the Intermediate Events that follow the Decision become the event handlers of the pick or choice. The activities that follow 
the Intermediate Events become the contents of the activity sets for the event handlers. The boundaries of the activity sets is 
actually determined by the configuration of the process; that is, the boundaries extend to where all the alternative paths are 
finally joined together (which could be the end of the Process).

Table A.38 - Data-Based Exclusive Gateway Mappings to BPEL4WS

Data-Based Exclusive 
Gateways

Mapping to BPEL4WS

Gateway (GatewayType = 
Exclusive; ExclusiveType 
= Data)

The Gateway will map to a BPEL4WS switch.

MarkerVisible This does not have a mapping to BPEL4WS. Its purpose is to determine whether or not a 
graphical marker will be displayed.

Incoming Flow

Outgoing Flow

Gates Each Gate will map to a case of the switch. The cases will be listed in the switch in the 
same order as they are listed for the Gateway.

Condition for the 
Sequence Flow 
associated with the 
Gate

This will map to the condition for a switch case.

BPMN Elements that 
follow the Gate.

If there is more than one element that follows the Gate, and this includes Assignments for 
the Gate, then these elements will be placed inside a sequence activity after these elements 
have been mapped.

DefaultGate This will map to the otherwise element of the switch.

BPMN Elements that 
follow the DefaultGate.

If there is more than one element that follows the DefaultGate, and this includes 
Assignments for the Gate, then these elements will be placed inside a sequence activity 
after these elements have been mapped.
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The following table displays a set of mappings from the variations of a Event-Based Exclusive Gateway to BPEL4WS 
elements. These mappings extend the mappings common to objects -- see Section A.8.1, “Common Gateway Mappings,” on 
page 176.

Table A.39 - Data-Based Exclusive Gateway Mappings to BPEL4WS

Event-Based Exclusive 
Gateways

Mapping to BPEL4WS

Gateway (GatewayType = 
Exclusive; ExclusiveType 
= Event)

This Gateway will map to a BPEL4WS pick. The elements of the pick will be determined 
by the targets of the outgoing Sequence Flow. The specific mappings are described in the 
rows below.

Instantiate If the Instantiate attribute of the Gateway is set to False, then the createInstance attribute 
of the pick MUST NOT be included OR it MUST be set to “no.” 
If the Instantiate attribute of the Gateway is set to True, then the createInstance attribute 
of the pick MUST be set to “yes.” 

Gate with Receive Task 
as Target

The Receive Task will map to an onMessage element within the pick.
The attributes of the Receive Task will map to the appropriate elements of the onMessage, 
such as operation and portType. See “Receive Task” on page 174 for the mapping of the 
Receive Task. Note that the name of the Task does not have a corresponding attribute 
within the onMessage element.

Gate with Message 
Intermediate Event as 
Target

A Message Intermediate Event will map to an onMessage element within the pick. 
The attributes of the Message Intermediate Event will map to the appropriate elements of 
the onMessage, such as operation and portType. See Section A.4.2.1, “Intermediate Event 
Mappings,” on page 148 for the mapping of the Message Intermediate Event.

Gate with Timer 
Intermediate Event as 
Target

A Timer Intermediate Event, which is the Target of a Sequence Flow associated with the 
Gate, will map to an onAlarm element within the pick.
The Timedate attribute of the Event will map to the until element of the onAlarm element.
The Timecycle attribute of the Event will map to the for element of the onAlarm element.

Gate with Link 
Intermediate Event as 
Target

A Link Intermediate Event, in this situation, will be considered as the same as receiving a 
message from a process. Thus, this will map to an onMessage element within the pick. 
The attributes of the Message Intermediate Event will map to the appropriate elements of 
the onMessage, such as operation and portType. See Section A.4.2.1, “Intermediate Event 
Mappings,” on page 148 for the mapping of the Message Intermediate Event.

Gate with Conditional 
Intermediate Event as 
Target

A Conditional Intermediate Event, in this situation, will be considered as the same as 
receiving a message from a system that tracks and generates Conditional events. Thus, this 
will map to an onMessage element within the pick. 
The attributes of the Message Intermediate Event will map to the appropriate elements of 
the onMessage, such as operation and portType. See Section A.4.2.1, “Intermediate Event 
Mappings,” on page 148 for the mapping of the Message Intermediate Event.

BPMN Elements that 
follow the first target of a 
Gate.

If there is more than one element that follows the first target of a Gate, and this includes 
Assignments for the Gate, then these elements will be placed inside a sequence activity 
after these elements have been mapped.
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A.8.3 Inclusive

The following table displays a set of mappings from the variations of an Inclusive Gateway to BPEL4WS elements. These 
mappings extend the mappings common to objects -- See Section A.8.1, “Common Gateway Mappings,” on page 176.

Table A.40 - Inclusive Gateway Mappings to BPEL4WS

Inclusive Gateways Mapping to BPEL4WS

Gateway (GatewayType = 
Inclusive)

The Gateway will map to a set of BPEL4WS switches within a BPEL4WS flow. An 
additional switch will be required if the DefaultGate is used (see below).

Gates Each Gate will map to a switch. Each switch will be binary in nature. That is, each switch 
will have exactly one case and one otherwise.

Condition for the 
Sequence Flow 
associated with the Gate

This will map to the condition for the switch case.

BPMN Elements that 
follow the Gate.

If there is more than one element that follows the Gate, and this includes Assignments for 
the Gate, then these elements will be placed inside a sequence activity after these elements 
have been mapped.
If a DefaultGate is used, then an assign activity will follow all the other mappings (see 
below for details).

The otherwise element 
for the switch

The otherwise element for each switch will contain an empty activity. However, if the 
DefaultGate is used, then: 

DefaultGate The DefaultGate will map to a switch. However, by using the DefaultGate, the mapping to 
BPEL4WS is more complicated (see Figure A.7 and Example A.7). This is the path that is 
taken if none of the other paths are taken. Thus, the decision about whether the Default 
Gate should be taken will occur after all the other Gate decisions have been determined. 
This means that the switch for the DefaultGate will follow the flow activity generated for 
all the Gates of the Gateway. Also, a sequence activity must encompass the flow and the 
switch.

Create the tracking 
variable

A variable must be used so that the switch for the DefaultGate will know whether or not 
the Default BPMN path should be taken. To do this, a BPEL4WS variable must be 
created with a derived name and will have a structure as follows:
<variable name="[Gateway.Name]_noDefaultRequired"
        messageType="noDefaultRequired" />

Supporting WSDL 
Message

A WSDL message element will have to be created to support this variable. This message 
can be used for multiple variables. The message will be structured as follows:
<message name="noDefaultRequired" >
<part name="noDefault" type="xsd:boolean" />

</message>
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Initialization of the 
tracking variable 

An assign activity will be created to initialize the variable before the start of the loop. 
This assign precede the flow activity that contains all the switches derived from the Gates. 
This will be the first activity within the sequence activity. The assign will be structured as 
follows:
<assign name="[Gateway.Name]_initialize_noDefault">
<copy>
<from expression="false"/>
<to variable="[Gateway.Name]_noDefaultRequired" 
    part="noDefault" />

</copy>
</assign>

The switch cases The condition for the switch case will use the noDefaultRequired variable and will be 
structured as follows:
<switch>
<case condition="bpws:getVariableProperty(

[Gateway.Name]_noDefaultRequired,noDefault)=true">
<sequence>

<!--The mappings of the original activity are placed here.-->
<!--An assign activity (see below) is placed here.-->

</sequence>
</case>
<otherwise>
<empty/>

</otherwise>
</switch>

BPMN Elements that 
follow the DefaultGate

If there is more than one element that follows the DefaultGate, and this includes 
Assignments for the Gate, then these elements will be placed inside a sequence activity 
after these elements have been mapped. An assign activity will be placed in the sequence 
after all the other mappings (see next row).

Setting of the tracking 
variable 

If any of the switches within the flow passes the condition of the switch case, then the 
noDefaultRequired must be set to True. This will ensure that the DefaultGate switch will 
bypass the mapped activities for the BPMN Default Gate.
An assign activity will be created to set the variable to True. This will be the last activity 
within the sequence activity within the switch. The assign will be structured as follows:
<assign name="[Gateway.Name]_set_noDefault">
<copy>
<from expression="true"/>
<to variable="[Gateway.Name]_noDefaultRequired" 
    part="noDefault" />

</copy>
</assign>

Table A.40 - Inclusive Gateway Mappings to BPEL4WS

Inclusive Gateways Mapping to BPEL4WS
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Figure A.7 - BPEL4WS Pattern of Inclusive Decision with two (2) Gates and a DefaultGate
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Example A.7 displays some sample BPEL4WS code that reflects the mapping of a Multi-Instance loop that has Parallel 
ordering and must synchronize all the looped activities.

Example A.7 - BPEL4WS Sample for the Pattern for an Inclusive Decision with a DefaultGate

A.8.4 Complex

The behavior and usage of Complex Gateways have not been well enough established for a mapping to BPEL4WS to be 
defined.

<!-- The Process data is defined first-->
<variable name="[activity.Name]_loopCounter" messageType="loopCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequence> 
<assign name="[Gateway.Name]_initialize_noDefault">
<copy>
<from expression="false"/>
<to variable="[Gateway.Name]_noDefaultRequired" part="noDefault" />

</copy>
</assign>
<flow>
<!--There will be as many copies of the switch below as there are Gates.-->
<switch>
<case condition="[Sequence Flow Condition">
<sequence>

    <!--The mappings of the activities are placed here.-->

<assign name="[Gateway.Name]_initialize_noDefault">
<copy>
<from expression="true"/>
<to variable="[Gateway.Name]_noDefaultRequired" part="noDefault" />

</copy>
</assign>

</sequence>
</case>
<otherwise>
<empty/>

</otherwise>
</switch>

</flow> 
<switch>
<case condition=

          "bpws:getVariableProperty([Gateway.Name]_noDefaultRequired,noDefault)=true">
<sequence>

    <!--The mappings of the activities are placed here.-->

</sequence>
</case>
<otherwise>
<empty/>

</otherwise>
</switch>

</sequence> 
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A.8.5 Parallel

The following table displays a set of mappings from the variations of a Parallel Gateway to BPEL4WS elements. These 
mappings extend the mappings common to objects --see Section A.8.1, “Common Gateway Mappings,” on page 176.

A.8.6 Pool

Pools do not have any specific Mapping to Execution Languages. However, a Pool is associated with a mapping to a specific 
lower level language. For example, one Pool may encompass a BPEL4WS document while another Pool might encompass 
B2B Collaboration process.

A.8.7 Lane

Lanes do not have any specific Mapping to Execution Languages. They are designed to help organize and communicate how 
activities are grouped in a business process.

A.8.8 Artifacts

As a general rule, Artifacts do not map to BPEL4WS elements. They provide detailed information about how data will interact 
with the Flow Objects and Flow of Processes. 

However, Text Annotations can map to the documentation element of BPM execution languages. If the Annotation is 
associated with a Flow Object and that object has a straight-forward mapping to a BPM execution language element, then the 
text of the Annotation will be placed in the documentation element of that object. If there is no straight-forward mapping to a 
BPM execution language element, then the text of the Annotation will be appended to the documentation element of the 
process.

For any new Artifact that is added to a BPD through a modeling tool, it will have to be determined whether or not that Artifact 
maps to any BPEL4WS element.

A.8.9 Sequence Flow

A Sequence Flow may not have a specific mapping to a BPEL4WS in most situations. However, when there is a section of the 
Diagram that contains parallel activities, then Sequence Flow may map to the link element. Details of this mapping are TBD. 
In general, the set of Sequence Flow within a Pool will determine how BPEL4WS elements are derived and the boundaries of 
those elements.

Table A.41 - Parallel Gateway Mappings to BPEL4WS

Parallel Gateways Mapping to BPEL4WS

Gateway (GatewayType = 
Parallel)

The Gateway will map to a BPEL4WS flow.
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The following table displays a set of mappings from Sequence Flow to BPEL4WS elements.

Table A.42 - Sequence Flow Mappings to BPEL4WS

Sequence Flow Mapping to BPEL4WS

Sequence Flow This MAY map to a BPEL4WS link element. The location of the Sequence Flow within 
the Process will determine how or if it is mapped to a link. Even if the Sequence Flow is 
not mapped to a link, attributes, such as Condition, will be mapped to BPEL4WS 
elements, as described below.

Id, Categories, and 
Documentation

These Elements do not map to any BPEL4WS elements or attributes.

Name If the Sequence is not being mapped to a link, this attribute does not map to any 
BPEL4WS elements or attributes.
If the Sequence is being mapped to a link, the Name attribute of the Process SHALL map 
to name attribute of the link. The extra spaces and non-alphanumeric characters MUST be 
stripped from the Name to fit with the XML specification of the name attribute. Note that 
there may be two or more elements with the same name after the BPMN name has been 
stripped.

Source If the Sequence is not being mapped to a link, this attribute does not map to any 
BPEL4WS elements or attributes.
If the Sequence is being mapped to a link, this mapping is described in the next four (4) 
Rows.

Source Object is an 
Activity (for a link)

The mapping of the source activity will now include a source element.
The Name of the Sequence Flow will map to linkName attribute of the source element. 
The extra spaces and non-alphanumeric characters MUST be stripped from the Name to fit 
with the XML specification of the name attribute. Note that there may be two or more 
elements with the same name after the BPMN name has been stripped.
For an exception to the location of the source element, see the description of the mapping 
for a ConditionExpression when the Source object is an Activity below.

Source Object is a 
Gateway (for a link)

This mapping is described in the next two (2) Rows.

The Gateway maps to 
an activity (e.g., switch)

This mapping is the same as if the source object is an activity (see above).

The Gateway does not 
map to an activity

This Sequence Flow will be essentially combined with one of the Gateway’s incoming 
Sequence Flow. (There will be a separate link for each of the incoming Sequence Flow). 
The Source of the second Sequence will be used at the Source for the original Sequence 
Flow. Then, this mapping is the same as if the Source object is an activity (see above).

Target If the Sequence is not being mapped to a link, this attribute does not map to any 
BPEL4WS elements or attributes.
If the Sequence is being mapped to a link, this mapping is described in the next four (4) 
Rows.
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A.9 When to Map a Sequence Flow to a BPEL4WS Link

In many situations, a Sequence Flow will not map to a BPEL4WS link element.

• To connect activities that are listed in a BPEL4WS structured activity (e.g., a sequence), the link elements are not 
required.

Target Object is an 
Activity

The mapping of the target activity will now include a target element.
The Name of the Sequence Flow will map to linkName attribute of the target element. The 
extra spaces and non-alphanumeric characters MUST be stripped from the Name to fit 
with the XML specification of the name attribute. Note that there may be two or more 
elements with the same name after the BPMN name has been stripped.

Target Object is a 
Gateway

This mapping is described in the next two (2) Rows.

The Gateway maps to 
an activity (e.g., switch)

This mapping is the same as if the target object is an activity (see above).

The Gateway does not 
map to an activity

This Sequence Flow will be essentially combined with one of the Gateway’s outgoing 
Sequence Flow. (There will be a separate link for each of the outgoing Sequence Flow). 
The Target of the second Sequence will be used at the Target for the original Sequence 
Flow. Then, this mapping is the same as if the target object is an activity (see above).

ConditionType = None If the Sequence is not being mapped to a link, this attribute does not map to any 
BPEL4WS elements or attributes.
If the Sequence is being mapped to a link, this means that there is no condition placed on 
the transition between elements (through the link). Thus, there is nothing to be mapped to 
BPEL4WS.

ConditionType = 
Expression

This mapping is described in the next two (2) Rows.

Source Object is a 
Gateway

The mapping of the Sequence Flow in this situation is described in Section A.8.2, 
“Exclusive,” on page 177, Section A.8.3, “Inclusive,” on page 179, and Section A.8.4, 
“Complex,” on page 182.

Source Object is an 
Activity

Since a Sequence Flow MUST NOT have a Condition if the Source is an activity, unless 
there are multiple outgoing Sequence Flow, a BPEL4WS flow will be required and the 
Sequence Flow will map to a link element.
An empty activity will be placed in the flow and will contain all the source elements.
The ConditionExpression will then map to the transitionCondition attribute of the source 
element that is contained in the appropriate BPEL4WS activity (see a description of 
locating the source above).

ConditionType = Default The mapping of the Sequence Flow in this situation is described in Section A.8.2, 
“Exclusive,” on page 177, Section A.8.3, “Inclusive,” on page 179, and Section A.8.4, 
“Complex,” on page 182.

Quantity 1 : Integer The mapping of the Quantity attribute, if its value is greater than one (1), BPEL4WS is an 
open issue. 

Table A.42 - Sequence Flow Mappings to BPEL4WS

Sequence Flow Mapping to BPEL4WS
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The ordering of the list in the sequence provides the direction of flow (see Example A.8).

Figure A.8 - Example: Sequence Flow that are not used for BPEL4WS links

• Link elements are only appropriate when the Sequence Flow are Connecting Objects that are within a BPEL4WS flow. 

However, it is only the Sequence Flow that are completely contained within the boundaries of the flow will be mapped to a link 
(see Example A.8). It should be noted that if another structured activity (e.g., a switch) is contained within the flow, then the 
Sequence Flow that would be appropriate for the contents of the structured activity would not be mapped to a link.

Figure A.9 - Example: A Sequence Flow that is used for a BPEL4WS link

A.9.1 Message Flow

A Message Flow does not have a specific mapping to a BPEL4WS element. It represents a message that is sent through a 
WSDL operation that is referenced in a BPEL4WS receive, reply, or invoke.
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A.9.2 Association

An Association does not have a specific mapping to an execution language element. These objects and the Artifacts they 
connect to provide additional information for the reader of the BPMN Diagram, but do not directly affect the execution of the 
Process.

A.9.3 Exception Flow

BPMN Exception Flow is all the activities, connected by Sequence Flow, which flow from an Intermediate Event attached to 
the boundary of an activity, until the flow merges back into the Normal Flow (sometimes at the point of an End Event).

BPEL4WS handles exceptions in a much more structured and programmatic manner. If triggered through a fault, the activities 
in a faultHandlers will be performed and completed, and then the process will continue from the point where the interrupted 
activity would have completed normally. Thus, the faultHandlers element is a completely contained structured element.

Since BPMN handles Exception Flow with much more flexibility, so that the modeler can have the Exception Flow go 
wherever it is appropriate, there are different challenges to the BPEL4WS mapping, depending on the configuration of the 
BPMN model.

The following table displays the mapping Exception Flow to BPEL4WS.

Additional BPEL4WS mapping patterns for Exception Flow will be described in the next three (3) sections.

A.10 The Exception Flow Merges back into the Normal Flow After the 
Activity

In this situation, the Exception Flow may contain one or more activities, but will merge back into the Normal Flow at the same 
object that follows the activity that is the source of the Exception Flow (see Figure A.10). This situation maps closely to the 
BPEL4WS mechanism for exception handling. Thus, no special mapping mechanisms are required.

Figure A.10 - Exception Flow Merging back into Normal Flow Immediately after Interrupted Activity

Table A.43 - Common Exception Flow Mappings to BPEL4WS

Exception Flow Mapping to BPEL4WS

Activities within the 
Exception Flow

All the activities that follow the attached Intermediate Event, until the Exception Flow 
merges back into the Normal Flow, will be mapped to BPEL4WS and then placed within 
the faultHandlers element for the scope of the activity (and usually within a sequence).
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A.11 The Exception Flow Merges back into the Normal Flow Further 
Downstream

In this situation, the activities in the Exception Flow substitute for some of the Normal Flow activities and, thus, the Exception 
Flow will skip these activities and merge into the Normal Flow further downstream (see Figure A.11). Alternatively, the 
exception may create a situation where the Process must end prematurely, which means that the Exception Flow will merge 
with the Normal Flow at an End Event (see Figure A.12). In either situation, special BPEL4WS patterns will have to be 
appended to the basic Exception Flow mappings.

Figure A.11 - Exception Flow Merging back into the Normal Flow Further Downstream

The following table displays the mapping Exception Flow to BPEL4WS. These mappings extend the mappings common to 
Exception Flow -- see above.

Table A.44 - Exception Flow Merging back into the Normal Flow Further Downstream

Exception Flow Mapping to BPEL4WS

Activities within the 
Exception Flow

If there is only one activity in the faultHandlers element for the scope of the activity, then 
this activity will be placed within a sequence and preceded by an assign (as described 
below).

Original Activity The mapping of the original activity will be placed within a sequence (if it had not been 
already).

After the Original Activity The original activity will now be followed by a switch, instead of what would have been 
normally mapped there.

Switch Characteristics The switch will be binary in nature. There will be one case and an otherwise element.

Create the tracking 
variable

A variable must be used so that the switch will know whether or not the Exception Flow 
or Normal Flow had reached that point in the Process. To do this, a BPEL4WS variable 
must be created with a derived name and will have a structure as follows:
<variable name=”[activty.Name]_normalCompletion"
        messageType="noDefaultRequired" />
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Supporting WSDL 
Message

A WSDL message element will have to be created to support this variable. This message 
can be used for multiple variables. The message will be structured as follows:
<message name="noDefaultRequired" >
<part name="normalCompletion" type="xsd:boolean" />

</message>

Initialization of the 
Tracking Variable 

An assign activity will be created to initialize the variable before the start of the original 
activity. It will be the first activity in the sequence described above. The assign will be 
structured as follows:
<assign name="[activity.Name]_initialize_normalCompletion">
<copy>
<from expression="true"/>
<to variable="[activity.Name]_normalCompletion" 
    part="normalCompletion" />

</copy>
</assign>

Setting of the tracking 
variable 

If a fault is thrown and faultHandlers is activated, then an assign activity will be used to 
set the variable to False. This will be the first activity within the sequence activity of the 
faultHandlers. The assign will be structured as follows:
<assign name="[activity.Name]_set_normalCompletion">
<copy>
<from expression="false"/>
<to variable="[activity.Name]_normalCompletion" 
    part="normalCompletion" />

</copy>
</assign>

Switch cases The case for the switch will contain all the mappings for all activities that occur in the 
Process until the Exception Flow has merged back (which could be the end of the 
Process), usually within a sequence. The otherwise for the switch will contain an empty 
activity.
The condition for the switch case will use the normalCompletion variable and will be  
structured as follows:
<switch>
<case condition="bpws:getVariableProperty(

[activity.Name]_normalCompletion,
        normalCompletion)=true">

<sequence>

<!--The mappings of the Process activities until the merging
    of the Exception Flow are placed here.-->

</sequence>
</case>
<otherwise>
<empty/>

</otherwise>
</switch>

Potential Invalid Model If the Exception Flow occurs in the larger context of a set of parallel activities, then the 
Exception Flow must merge back into the Normal Flow prior to the end of the parallel 
activities (a BPEL4WS flow), or this will create an invalid model.

Table A.44 - Exception Flow Merging back into the Normal Flow Further Downstream

Exception Flow Mapping to BPEL4WS
Business Process Modeling Notation, v1.2                                                                                                                                                     189



Figure A.12 - Exception Flow Merging back into the Normal Flow at the End Event

A.12 The Exception Flow Loops back into the Normal Flow Upstream

In this situation, the Exception Flow will loop back into the Normal Flow prior to the completion of the activity that is the 
source of the Exception Flow (see Figure A.13). This is a particularly challenging mapping and cannot be done entirely within 
the confines of the original BPEL4WS process. Another process will need to be derived and then “spawned” until the original 
activity can be completed normally. 

 

Figure A.13 - Example of Exception Flow Looping Back into the Normal Flow Upstream

This part of the Process will be modified at the BPEL4WS level so that the loop can be performed (through calling another 
process). If the flow moves to the faultHandlers activity, this means that the original activity will need to be performed again. 
Thus, the original activity will be duplicated in another process and the faultHandlers will contain a one-way invoke to 
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“spawn” this other process (see Figure A.14). In addition, the original process will wait with a receive activity for a message 
from the derived process that the original activity has completed normally.

Figure A.14 - Example of Modification at BPEL4WS level to Handle the Loop

The derived process will be structured much like the corresponding section of the original process (see Figure A.15). The 
mappings of the original activities, from the point of the BPMN Process where the Exception Flow loops into the Normal Flow 
to the point of the source of the Exception Flow, will be in the derived process. The same faultHandlers will be attached to the 
scope around the original activity. The faultHandlers will also contain a one-way invoke to “spawn” itself if the fault occurs 
again.

When the original activity finally completes normally, one-way invoke will be used to send a message back to the original 
process so that normal activities can continue.
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Figure A.15 - Example of a Derived Process to Handle the Looping

A.12.1   Compensation Association

The following table displays a set of mappings from a Compensation Association to BPEL4WS elements.

Table A.45 - Exception Flow Mappings to BPEL4WS

Compensation 
Association

Mapping to BPEL4WS

A Compensation 
Intermediate Event 
attached to an activity 
boundary

The mapping of the Compensation Event is described in “Compensation Intermediate 
Events” on page 152.
The mapping of the activity Associated with the Intermediate Event will follow the 
mapping rules defined in Section A.7, “Task Mappings,” on page 173 or in Section A.6, 
“Sub-Process Mappings,” on page 171 will be placed within the compensationHandler 
element.
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A.12.2 Assignment Mapping

The following table displays a set of mappings from the variations of an Assignment expression to BPEL4WS elements.

A.12.3 BPMN Supporting Type Elements

This section describes the mapping to BPEL4WS of a non-graphical elements that are part of BPMN. Messages, which are 
linked with Message Flow, do have impact on how many other BPMN elements are mapped to BPEL4WS.

A.13 Messages

The following are the mappings of a Message. These mappings are used to create a BPEL4WSE4WS XML file, plus a 
supporting WSDL supporting file. These mappings are used for a Start Event, End Event, Intermediate Event, and Task.

A.13.1 Determining the Extent of a BPEL4WS Structured Element

The structure and vocabulary of BPMN differs from BPEL4WS. BPMN allows flexible, and free-form methods of connecting 
activities through Sequence Flow. Furthermore, BPMN is cyclical in that it allows Sequence Flow to connect to upstream 
objects so that a modeler can easily visualize looping situations. BPEL4WS has a much more structured form of creating a 

Table A.46 - Assignment Mappings to BPEL4WS

Assignment Mapping to BPEL4WS

To The To attribute will map to the to element of the BPEL4WS assign activity. A variable 
and supporting WSDL message should have already be created for the Property used for 
the Assignment To attribute. Thus, the structure of the to element will be as follows:
If the Property is an attribute of a Process:
<to variable="[Process.Name]_ProcessData" 

part="[Property.Name]" />
 
If the Property is an attribute of an activity:
<to variable="[activity.Name]_ActivityData" 

part="[Property.Name]" />

From The From expression will map to the from element of the BPEL4WS assign activity. 
<from expression="[From Expression]" />

Table A.47 - Message Attributes

Attributes Description

Name The Name attribute maps to the name attribute of a BPEL4WS variable element. Note that 
the extra spaces and non-alphanumeric characters MUST be stripped from the Name to fit 
with the XML specification of the name attribute. Note that there may be two or more 
elements with the same name after the BPMN name has been stripped. The messageType 
attribute of the variable element refers to a WSDL message type definition. Thus, the 
messageType will share the same Name and a corresponding WSDL message must be 
created.

Properties Each Properties of the BPMN Message will map to a part element of the WSDL message.
The Name attribute of the Property will map to the name attribute of the part.
The Type attribute of the Property will map to the type attribute of the part.
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process flow. The flow activity in BPEL4WS does allow some flexibility with its link elements, but is acyclical. Thus, there is 
not going to be a one-to-one mapping of the BPMN elements to the BPEL4WS elements, without restricting the connection 
capability of BPMN. 

This is particularly true of the BPEL4WS. In BPEL4WS, structure elements, such as switch, pick, and while, have a clear 
beginning and end. BPMN does not provide specific markers for the start and end of these elements. The exact configuration 
of the Sequence Flow connections will determine how the Process will be mapped to the BPEL4WS elements.

To determine the appropriate merging and joining points that are needed to construct the structured elements, the configuration 
of the Process needs to be analyzed. The mechanism we are proposing is called Token Analysis. This involves the creation of 
a conceptual Token that will “traverse” all the Sequence Flow of the Process. The Token will have a hierarchical TokenId set 
that will expand/or contract based on the forking and joining and/or splitting and merging that occurs throughout the Process. 
By matching the TokenId set of Tokens that arrive at objects that have multiple incoming Sequence Flow, it will be possible to 
determine the boundaries of execution language structured activities.

A BPMN Gateway will usually indicate the start of a BPEL4WS structured element, but even this may not be one-to-one if 
there are loops involved. The end of the BPEL4WS structured element is even less obvious, since it could be marked by the 
convergence of Sequence Flow into most types of BPMN elements.

The following sections will describe how different BPMN configurations will map to the BPEL4WS structure elements and 
show how conceptual Tokens can be used to determine the extent of the BPEL4WS elements.

A.14 Identifying the Start of a BPEL4WS Element

The most basic structured element of BPEL4WS is the sequence.

u If the process, or the activity of a structured element (e.g., a switch case), contains more than one activity, then it is 
likely a sequence will be needed. Nearly any set of activities connected by Sequence Flow, which is not going to be 
mapped to the contents of a flow, will be contained within a sequence. The sequence will envelope all the remaining 
elements to the extent of the context in which the sequence exists. For example, the sequence will extend the length 
of the process, or the length of a switch case, etc.

For the other types of BPEL4WS elements, their extend is determined by tracing through the Process with conceptual Tokens:

u First the start of the BPEL4WSE4WS structured element (e.g., flow, switch, pick, etc.) must be identified. This is 
done by performing the mapping of the BPMN elements, starting with the Start Event or first element(s) if there is no 
Start Event, and proceeding down the Sequence Flow. The start of the structured element is usually a Gateway or if 
an activity has multiple outgoing Sequence Flow (see Figure A.16 and Figure A.18).

u Note that some structured elements (mainly a sequence, but including others such as a switch) are needed for 
mapping a particular BPMN activity (as described in the sections above). In these cases, the extent of these 
structured elements are known. 
194                                                                                                                                                     Business Process Modeling Notation, v1.2 



Figure A.16 - Identification of BPEL4WS structured element

u The number paths that make up the structured element MUST be determined. To do this, the all outgoing paths from 
the location of the structured element will be identified. A conceptual Token can be used to trace the paths. The 
Tokens are given an Id that uniquely identifies the precedent of the structure element being determined and the 
number of paths being traced for that element (see Figure A.17).
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Figure A.17 - The Creation of Related Tokens

A.15 Finding the End of a BPEL4WS Element

The end of a BPEL4WS structured element will be found when all the paths, which were identified at the start of the element, 
have converged.

u Trace each path until there is a merge or join with all the other paths. When all the Tokens with the appropriate Ids 
arrive at the same BPMN object and can be recombined, then the structured element SHALL be closed (see Figure 
A.18).
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Figure A.18 - Example of Recombination of Tokens

u There MAY be partial recombinations of the Tokens prior to the final recombination. In this case, one Token will 
contain all the identities of the Tokens that have been merged (see Figure A.19). Note that partial recombination of a 
Token creates another mapping issue that is described in Section A.22, “BPMN Elements that Span Multiple 
BPEL4WS Sub-Elements,” on page 205.

Figure A.19 - Example of Partial Recombination of Tokens

u End Events can be combined with other BPMN objects to complete the merging or joining of the paths of a 
BPEL4WS structured element (see Figure A.20).
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Figure A.20 - Example of Distributed Token Recombination

A.16 Nested Elements

Another structured element may occur before the first structure element is closed.

u If another structured element is encountered before all the paths are merged (see Figure A.21), then the tracing of the 
first element MUST be stopped and the tracing of the paths of the second element MUST begin. The extent of the 
second element MUST be determined before the extent of the first element can be determined. 

u This process MUST be repeated if other structured elements are encountered during the tracing of any paths of 
structured elements.
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Figure A.21 - Example of nested BPEL4WS structural elements

A.17 Handling Loops

Loops are created when the flow of the Process moves from a downstream object to an upstream object.

u If one of the paths arrives at a BPMN object that is upstream from the source of the structured element, then this 
SHALL create a looping situation. How the loop is handled depends on the type structured element is being traced 
and how many paths are included in the element.

The following sections will describe the mapping for the different type of loop configurations.

A.18 Simple Loop From a Gateway

This type of loop is created by a Gateway that has only two outgoing Sequence Flow. One Sequence Flow continues 
downstream and the other loops back upstream (see Figure A.22). Note that there might be intervening activities prior to when 
the Sequence Flow loops back upstream.

u This will map to a BPEL4WS while activity.

u The Condition for the Sequence Flow that loops back upstream will map to the condition of the while.

u All the activities that span the distance between where the loop starts and where it ends, will be mapped and 
placed within the activity for the while, usually within a sequence.
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Figure A.22 - Example of a Loop from a Decision with Two Alternative Paths

A.19 Loop/Switch Combinations From a Gateway

This type of loop is created by a Gateway that has three or more outgoing Sequence Flow. One Sequence Flow loops back 
upstream while the others continue downstream (see Figure A.23). Note that there might be intervening activities prior to 
when the Sequence Flow loops back upstream.

u This maps to both a BPEL4WS while and a switch. Both activities will be placed within a sequence, with the while 
preceding the switch.

u For the while:

u The Condition for the Sequence Flow that loops back upstream will map to the condition of the while.

u All the activities that span the distance between where the loop starts and where it ends, will be mapped and 
placed within the activity for the while, usually within a sequence.

u For the switch:

u For each additional outgoing Sequence Flow there will be a case for the switch. The details for mapping to a 
switch from a Gateway can be found in Section A.8, “Gateways,” on page 176.
200                                                                                                                                                     Business Process Modeling Notation, v1.2 



Figure A.23 - Example of a Loop from a Decision with more than Two Alternative Paths

A.20 Interleaved Loops

This is a situation where there are at least two loops involved and they are not nested (see Figure A.24). Multiple looping 
situations can map, as described above, if they are in a sequence or are fully nested (e.g., one while inside another while). 
However, if the loops overlap in a non-nested fashion, as shown in Figure A.24, then the structured element while cannot be 
used to handle the situation. Also, since a flow is acyclic, it cannot handle the behavior either.
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Figure A.24 - Example of Interleaved Loops

To handle this type of behavior, parts of the BPEL4WS process will have to be separated into one or more derived processes 
that are spawned from the main process and will also spawn or call each other (note that the examples below are using a 
spawning technique). Through this mechanism, the linear and structured elements of BPEL4WS can provide the same 
behavior that is shown through a set of cycles in a single BPMN diagram. To do this:

u The looping section of the process, where the loops first merge back (upstream) into the flow until all the paths have 
merged back to Normal Flow, shall be separated from the main process into a set of derived processes that will spawn 
each other until all the looping conditions are satisfied.

u The section of the Process that is removed will be replaced by a (one-way) invoke to spawn the derived process, 
followed by a receive to accept the message that the looping sections have completed and the main process can 
continue (see Figure A.25).

u  The name of the invoke will be in the form of:

u “Spawn_[(loop target)activity.Name]_Derived_Process”

u  The name of the receive will be in the form of:

u “[(loop target)activity.Name]_Derived_Process_Completed”
202                                                                                                                                                     Business Process Modeling Notation, v1.2 



Figure A.25 - Example of the BPEL4WS Pattern for Substituting for the Derived Process

u For each location in the Process where a Sequence Flow connects upstream, there will be a separate derived 
BPEL4WS process.

u The name of the derived process will be in the form of:

u   “[(loop target)activity.Name]_Derived_Process”

u All Gateways in this section will be mapped to switch elements, instead of while elements (see Figure A.26).

u Each time there is a Sequence Flow that loops back upstream, the activity for the switch case will be a (one-way) 
invoke that will spawn the appropriate derived process, even if the invoke spawns the same process again.

u   The name of the invoke will the same as the one describe above.

u At the end of the derived process a (one-way) invoke will be used to signal the main process that all the derived 
activity has completed and the main process can continue.

u   The name of the invoke will be in the form of:

u “[(loop target)activity.Name]_Derived_Process_Completed”

Figure A.26 - Example of a BPEL4WS Pattern for the Derived Process
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A.20.1 Infinite Loops

This type of loop is created by a Sequence Flow that loops back without an intervening Gateway to create alternative paths 
(see Figure A.27). While this may be a modeling error most of the time, there may be situations where this type of loop is 
desired, especially if it is placed within a larger activity that will eventually be interrupted.

u This will map to a while activity.

u The condition of the while will be set to an expression that will never evaluate to True, such as condition ”1 = 0.”

u All the activities that span the distance between where the loop starts and where it ends, will be mapped and 
placed within the activity for the while, usually within a sequence.

Figure A.27 - Example: An Infinite Loop

A.21 Handling Link Events as Go To Objects

As was seen in Figure 10.43, Figure 10.44, and Figure 10.45, Link Intermediate Events can be used as Go To Objects. The 
basic impact of using them in such a way is that they are a substitute using a single, longer Sequence Flow to make the same 
connection between two objects. Thus, the mapping to BPEL4WS should be done by considering them as just a single 
Sequence Flow. This means that the Intermediate Events are not mapped to any BPEL4WS element. Instead a conceptual 
Sequence Flow will be used, with the Source and Target of that Sequence Flow being the Source of the Sequence Flow going 
into the Source Link Event and the Target of the Sequence Flow coming out of the Target Link Event (see Figure A.28). The 
mapping at this point can done using all the mapping consideration described in this Chapter.
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Figure A.28 - Example: A Pair of Go To Link Events are Treated as a Single Sequence Flow

A.22 BPMN Elements that Span Multiple BPEL4WS Sub-Elements

Figure A.19 is repeated below in Figure A.29 to illustrate how BPMN objects may exist in two separate sub-elements of a 
BPEL4WS structured element at the same time. Since BPMN allows free form connections of activities and Sequence Flow, it 
is possible that two (or more) Sequence Flow will merge before all the Sequence Flow that map to a BPEL4WS structure 
element have merged. The sub-elements of a BPEL4WS structured elements are also self contained and there is no cross sub-
element flow. For example, the cases of a switch cannot interact; that is, they cannot share activities. Thus, one BPMN activity 
will need to appear in two (or more) BPEL4WS structured elements.

There are two possible mechanisms to deal with the situation. 

u First, the activities are simply duplicated in all appropriate BPEL4WS elements.

u Second, the activities that need to be duplicated can be removed from the main process and placed in a derived 
process that is called (invoked) from all locations in the BPEL4WS elements as required.

u  The name of the derived process will be in the form of:

u “[(target)object.Name]_Derived_Process”

In Figure A.29 displays this issue with an example. In that example, two Sequence Flow merge into the “Include History of 
Transactions” Task. However, the Decision that precedes the Task has three (3) alternatives. Thus, the Decision maps to a 
BPEL4WS switch with three (3) cases. The three cases are not closed until the “Include Standard Text” Task, downstream. 
This means that the “Include History of Transactions” Task will actually appear in two (2) of the three (3) cases of the switch.

Note – The use of a BPEL4WS flow will be able to handle the behavior without duplicating activities, but a flow will not 
always be available for use in these situations, particularly if a BPEL4WS pick is required.
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Figure A.29 - Example: Activity that spans two paths of a BPEL4WS Structured Element

Example A.8 displays some sample BPEL4WS code that reflects the portion of the Process that was just discussed and is 
shown in Figure A.29. Note that there are two invoke elements that have the same name attribute 
(“IncludeHistoryofTransactions”).

Example A.8 - Example: BPMN Elements that Span Multiple BPEL4WS Sub-Elements

<!--Continue with the process-->

<switch name="TypeofCustomer">
<!-- name="Established with Good Credit" -->
<case condition="bpws:getVariableProperty(ProcessData,CreditType)>”Yes, Good”">
<invoke name="IncludeApologyText" ...>
<!--This also exists in the other case--> 
<invoke name="IncludeHistoryofTransactions" ...>

</case>
<!--name="Established with poor Credit" -->
<case condition="bpws:getVariableProperty(ProcessData,CreditType)>”Yes, Poor”">
<!--This also exists in the other case--> 
<invoke name="IncludeHistoryofTransactions" ...>

</case>
<!--name="Default (New)" -->
<otherwise>
<!--Nothing happens here--> 
<empty/>

</otherwise>
</switch>
<invoke name="IncludeStandardText" ...>
<!--Continue with the process-->
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A.23 BPMN by Example (Including a Mapping to BPEL4WS)

This section will provide an example of a business process modeled with BPMN and will extend Chapter 11 by adding 
information about how the example Process will map to BPEL4WS. The process that will be described is a process used to 
help develop this notation. It is a process for resolving issues through e-mail votes (see Figure A.30). This Process is small, but 
fairly complex and will provide examples for many of the features of BPMN. There are some unusual features of this business 
process, such as infinite loops. Although not a typical process, it will help illustrate that BPMN can handle simple and unusual 
business processes and still be easily understandable for readers of the Diagram. The sections below will isolate segments of 
the Process and highlight the modeling features as the workings of the Process is described. In addition, samples of BPEL4WS 
code are provided to demonstrate how a BPMN Diagram maps to BPEL4WS. 

 

Figure A.30 - E-Mail Voting Process

The Process has a point of view that is from the perspective of the manager of the Issues List and the discussion around this 
list. From that point of view, the voting members of the working group are considered as external Participants who will be 
communicated with by messages (shown as Message Flow). 
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A.23.1 The Beginning of the Process

The Process starts with Timer Start Event that is set to trigger the Process every Friday (see Figure A.31). 

 

Figure A.31 - The Start of the Process

The Issue List Manager will review the list and determine if there are any issues that are ready for going through the discussion 
and voting cycle. Then a Decision must be made. If there are no issues ready, then the Process is over for that week--to be 
taken up again the following week. If there are issues ready, then the Process will continue with the discussion cycle. The 
“Discussion Cycle” Sub-Process is the first activity after the “Any issues ready?” Decision and this Sub-Process has two 
incoming Sequence Flow, one of which originates from a downstream Decision and is thus part of a loop. It is one of a set of 
five complex loops that exist in the Process. The contents of the “Discussion Cycle” Sub-Process and the activities that follow 
will be described below.

A.24 Mapping to BPEL4WS

BPEL4WS processes must begin with a receive activity for instantiation (i.e., it “bootstraps” itself). The “E-Mail Voting 
Process” is scheduled to start every Friday as shown by the Timer Start Event. Therefore, an additional Process will have to be 
created and implemented that will run indefinitely and will send a starting message with the list of Issues to the “E-Mail Voting 
Process” every Friday. Figure A.32 shows this Process as starting that the beginning of the Working Group and continuing 
until the end of the Working Group. Even this Process needs a message to be sent to it to signal the start of the Working Group. 
There may be another Process defined that sends that message, but that Process is not shown here. In addition, the mapping 
from the Starter Process to BPEL4WS is not shown here.
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Figure A.32 - The Ongoing Starter Process

• Within the main Process (see Figure A.31), the “Receive Issue List” Task will map to a BPEL4WS receive that has its 
createInstance attribute set to “yes.” This will receive starting message and start the process. 

• This receive will be placed inside a sequence since other activities follow the activity. The message to be received will 
contain all the variable parts that will be used in the process and their initialized values.

Note – the names of BPD objects have all non-alphanumeric characters stripped from them when they are mapped to 
BPEL4WS name elements to match the BPEL4WS element restrictions.

The modeler-defined properties of the Process will be placed in a BPEL4WS variables element named “processData.” The 
same variables element will be used in all derived processes in this example.

• The “Review Issue List” Task will map to a BPEL4WS invoke. This TaskType is User, which means that the invoke 
will be synchronous and an outputVariable included. 

Mapping an Exclusive Gateway (Decision)

• The “Any Issues Ready?” Exclusive Gateway (Decision) will map to a BPEL4WS switch. 

• The Gate for the “No” Sequence Flow will map to the otherwise case of the switch. This otherwise will only contain an 
empty activity since there is nothing to do and the Process is over. 

Note that empty does not have any corresponding activity in the BPMN Diagram, but is derived through the Diagram 
configuration.

• The Gate for the “Yes” Sequence Flow will map to other case for the switch. This case will have a condition that checks 
the number of issues that are ready. This case will handle the remainder of the Process that is shown in Figure A.30. 

This is done because the switch is a block structure and needs a definitive ending point and since the otherwise is connected to 
the end of the Process, then the end of the Process is the ending point that the case must use. The actual activities that make up 
the rest of the Process will be distributed among a set of BPEL4WS processes instead of all being within the case. The case 
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will only contain an invoke that will call another process (as a web service). The distribution of the Process activities is due to 
the overall Diagram configuration that includes three upstream Sequence Flow that define some interleaving loops.

The Impact of Interleaved Loops

If the loop shown in this section of the model were merely a simple loop, and perhaps the only loop, then a BPEL4WS while 
would be used to handle the loop. In this situation, though, the looping is handled through a set of derived processes that are 
accessed by invoking them (as a web service). There would be no specific Diagram element to represent these derived 
processes; indeed, a modeler would not want to create a set of related Processes to handle complex looping. While an 
execution engine can easily handle a complex set of language documents and elements, a business person developing and 
monitoring this process will want to see the Process in an easy-to-read format (such as BPMN) that contains the information in 
a more comprehensive, less distributed format. See Section A.20, “Interleaved Loops,” on page 201 for details about how 
interleaved loops are mapped to BPEL4WS.

In this example, all derived processes will be named “[(target of loop) activity.Name]_Derived_Process.” Any naming scheme 
will work as long as all the processes have unique names. Thus, to handle the rest of the Process, a derived nested process 
named “Discussion_Cycle_Derived_Process” is created and then a BPEL4WS invoke is used to access this process from the 
“Yes” case of the “Any issues ready?” switch. 

We shall see that later in the Process the same process is accessed through another invoke, marking the source of the loop.

All the sub-processes and derived processes in the BPEL4WS documents must be started with the receive of a message and 
then a reply to send a message back to the calling process. This means that a receive will be the first activity inside a sequence 
that will be the main activity of these processes. These receive activities will have the createInstance attribute set to “Yes.” A 
named “internal,” a portType name “processPort” will be created to support all of these process to process communications. 
The WSDL operations that will support these communications will all be named “call_<process name>” (as noted above, the 
processes are actually spawned). 

The “Discussion Cycle” Sub-Process shown in Figure A.31 will continue the sequence (after the instantiating receive) for the 
“Discussion_Cycle_Derived_Process” process. Since “Discussion Cycle” is a Sub-Process it will map to a separate 
BPEL4WS process that is accessed through an invoke. 

Mapping an Activity Loop Condition

The “Discussion Cycle” Process has a loop marker. In this situation, the looping mechanism is simple. The attributes of the 
Sub-Process will tell us the details. The “Discussion Cycle” Sub-Process’s relevant attributes are: LoopType: “Standard;” 
LoopCondition: DiscussionOver = “FALSE”; and TestTime: “After.”

This means that the invoke that calls the process will be enclosed within a while activity when the BPEL4WS is derived. The 
LoopType will map to a BPEL4WS while. The LoopCondition of the Process (as shown above) will map to the 
“DiscussionOver = False” will be the condition for the while. 

The default value for the “DiscussionOver” property is False, thus an activity within the Sub-Process will have to change it to 
True before the while loop is over. The logical opposite of the expression that is shown in the Sub-Process attributes is used 
since the EvaluationCondition property is “after.” However, a while will test the condition prior to running the activity within. 
This means that to insure that the activity is always performed at least once (to mimic the behavior of an “until”) a 
LoopCounter variable will always be added to the while condition for a BPMN activity that has its TestTime attribute set to 
“After.” 
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• The LoopCounter will be initialized to zero, and an assign will be added to the sequence prior to the while element. 

• The activity of the while will be changed to a sequence, with the invoke for the Sub-Process, which is followed by an 
assign that will increment the LoopCounter variable, inside the sequence.

We will look into the details of the “Discussion Cycle” Sub-Process in Section A.24.1, “The First Sub-Process,” on page 213. 

BPEL4WS Sample for the Beginning of the Process

Example A.9 displays some sample BPEL4WS code that reflects the portion of the Process that was just discussed and is 
shown in Figure A.31.
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<process name="EMailVotingProcess">

<!-- The Process data is defined first-->

<sequence> 

<!--This starts the beginning of the Process. The process that sends the 

 starting message every Friday is related to the Timer Start Event and is

 not shown here.-->

<receive partnerLink="Internal" portType="tns:processPort" 

operation="receiveIssueList" variable="processData" createInstance="Yes"/>

<invoke name="ReviewIssueList" partnerLink="Internal" 

 portType="tns:internalPort" operation="sendIssueList" 

 inputVariable="processData" outputVariable="processData"/>

<switch name="Anyissuesready">

<!-- name="Yes" -->

<case condition="bpws:getVariableProperty(ProcessData,NumIssues)>0">

<!--A chunk of this process is separated into a derived process so that it can be 

called from a complex loop. Thus, it is called from here and from ”Collect Votes” 

as part of a loop-->

<invoke name="Discussion_Cycle_Derived_Process" partnerLink="Internal" 

portType="tns:processPort" 

operation="call_Discussion_Cycle_Derived_Process" inputVariable="processData" 

outputVariable="processData"/>

</case>

<!--name="No" -->

<otherwise>

<!--This is one of the two ways to the end of the Process--> 

<empty/>

</otherwise>

</switch>

</sequence>

</process>

<process name="Discussion_Cycle_Derived_Process">

<!-- The Process data is defined first-->

<sequence>

<receive partnerLink="Internal" portType="tns:processPort" 

operation="call_Discussion_Cycle_Derived_Process" variable="processData" 

createInstance="Yes"/>

<!--The first Sub-Process has a loop condition, so it is within a while-->

<assign name="Discussion_Cycle_initialize_loopCounter">

<copy>

<from expression="0"/>

<to variable="Discussion_Cycle_loopCounter" part="loopCounter" />

</copy>

</assign>

<!--Since the TestTime is “After” the Sub-Process has to be performed before the 

       while-->

<invoke name="Discussion_Cycle" partnerLink="Internal" 
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Example A.9 - BPEL4WS Sample for Beginning of E-Mail Voting Process

A.24.1 The First Sub-Process

Figure A.33 shows the details of the “Discussion Cycle” as an Expanded Sub-Process. 

  portType="tns:processPort operation="call_Discussion_Cycle" 

inputVariable="processData" outputVariable="processData"/>

<while condition="bpws:getVariableProperty(ProcessData,DiscussionOver)=false">

<!--This calls the first Sub-Process-->

<sequence> 

<invoke name="Discussion_Cycle" partnerLink="Internal" 

 portType="tns:processPort operation="call_Discussion_Cycle" 

 inputVariable="processData" outputVariable="processData"/>

<assign>

<copy>

<from expression=

                 "bpws:getVariableProperty(Discussion_Cycle_loopCounter,LoopCounter)+1"/>

<to variable="Discussion_Cycle_loopCounter" part="LoopCounter"/>

</copy>

</assign>

</sequence>

</while>

<!--This calls the first another derived process to handle the rest of the 

work-->

<invoke name="Announce_Issues_Derived_Process" partnerLink="Internal" 

portType="tns:processPort" operation="call_Announce_Issues_Derived_Process" 

inputVariable="processData" outputVariable="processData"/>

<reply partnerLink="Internal" portType="tns:processPort" 

operation="call_Discussion_Cycle_Derived_Process" variable="processData" 

createInstance="Yes"/>

</sequence>

</process>

<!--A lot of other activity follows (not shown)-->
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Figure A.33 - “Discussion Cycle” Sub-Process Details

The Sub-Process starts with a Task for the Issue List Manager to send an e-mail to the working group that a set of Issues are 
now open for discussion through the working group’s message board. Since this Task sends a message to an outside Participant 
(the working group members), an outgoing Message Flow is seen from the “Discussion Cycle” Sub-Process to the “Voting 
Members” Pool in Figure A.30. Basically, the working group will be discussing the issues for one week and proposing 
additional solutions to the issues. After the first Task, three separate parallel paths are followed that are synchronized 
downstream. This is shown by the three outgoing Sequence Flow for that activity.

The top parallel path in the figure starts with a long-running Task, “Moderate E-mail Discussion,” that has a Timer 
Intermediate Event attached to its boundary. Although the “Moderate E-Mail Discussion” Task will never actually be 
completed normally in this model, there must be an outgoing Sequence Flow for the Task since Start and End Events are being 
used within the Process. This Sequence Flow will merge with the Sequence Flow that comes from the Timer Intermediate 
Event. A merging Exclusive Gateway is used in this situation because the next object is a joining Parallel Gateway (the 
diamond with the cross in the center) that is used to synchronize the three parallel paths. If the merging Gateway was not used 
and both Sequence Flow connected to the joining Gateway, the Process would have been stuck at the joining Gateway that 
would wait for a Token to arrive from each of the incoming Sequence Flow.

The middle parallel path of the fork contains an Intermediate Event and a Task. A Timer Intermediate Event used in the middle 
of the Process flow (not attached to the boundary of an activity) will cause a delay. This delay is set to 6 days. The “E-Mail 
Discussion Deadline Warning” Task will follow. Again, since this Task sends a message to an outside Participant, an outgoing 
Message Flow is seen from the “Discussion Cycle” Sub-Process to the “Voting Members” Pool in Figure A.30.

The bottom parallel path of the fork contains more than one object, first of which is Task where the issue list manager checks 
the calendar to see if there is a conference call this week. The output of the Task will be an update to the variable “ConCall,” 
which will be true or false. After the Task, an Exclusive Gateway with its two Gates follows. The Gate for labeled “default” 
Flow directly to a merging Exclusive Gateway, for the same reason as in the top parallel path. The Gate for the “Yes” Sequence 
Flow will have a condition that checks the value of the “ConCall” variable (set in the previous Task) to see if there will be a 
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conference call during the coming week. If so, the Timer Intermediate Event indicates delay, since all conference calls for the 
working group start at 9am PDT on Thursdays. The Task for moderating the conference call follows the delay, which is 
followed the merging Gateway.

The merging Gateways in the top and bottom paths and the “E-Mail Discussion Deadline Warning” Task all flow into a joining 
Gateway. This Gateway waits for all three paths to complete before the Process Flow to the next Task, “Evaluate Discussion 
Progress.” The issue list manager will review the status of the issues and the discussions during the past week and decide if the 
discussions are over. The DiscussionOver variable will be set to TRUE or FALSE, depending on this evaluation. If the variable 
is set to FALSE, then the whole Sub-Process will be repeated, since it has looping set and the loop condition will test the 
DiscussionOver variable.

A.25 Mapping to BPEL4WS

• The “Discussion Cycle” Sub-Process itself maps to a BPEL4WS process. 

Because it is a Sub-Process within a higher-level Process (the “E-Mail Voting” Process), it is invoked from the higher-
level Process. The invoke sends a message from one (higher-level) BPEL4WS process to the other (lower-level) pro-
cess for instantiation.

• This means that the process being instantiated must have a receive to start it off.

• The process being instantiated must have a reply to end it, since it is being synchronously called.

The receive and reply are not actually shown in the BPMN Diagram, but it is derived from this invoke relationship of 
“Discussion Cycle” Process being a Sub-Process to the “E-Mail Voting” Process. 

• Given this, the activity of the BPEL4WS process will be a sequence with the derived receive as the first activity. 

The Diagrams elements of Figure A.33 will determine the remaining activity(ies) of the sequence.

• The Sub-Process starts off with a Task, which maps to a BPEL4WS invoke (which is after the automatically generated 
receive that starts the process). 

• After the first Task, three separate parallel paths are followed. The forking of the flow marks the start of a BPEL4WS 
flow. The flow will extend until the Parallel Gateway, which joins the three paths.

A.25.1 The Upper Parallel Path

In the upper parallel path of the fork, the Task, “Moderate E-mail Discussion,” has a Timer Intermediate Event attached to its 
boundary. Because of this, 

• The Task is placed in its own scope with a faultHandlers. 

• The Task itself is mapped to a BPEL4WS invoke (synchronous), and will be placed in a lower-level flow, for reasons 
described below. 

The Timer Intermediate Event must be set up to create a fault at the appropriate time. To do this, 

• An eventHandlers is added to the scope. 

• An onAlarm is included in the eventHandlers and the for attribute is set to the duration that is defined in the Timer 
Intermediate Event. 

•  The onAlarm contains a throw with a fault name after the Intermediate Event with “_Exit” appended.
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The catch of a faultHandlers will be triggered by the fault generated by the above throw. Since the Timer Intermediate Event 
leads direction to the Exclusive Gateway, there is no specific activity that must be performed in response to time-out. The main 
purpose is to exit the Task. Thus, 

• A faultHandlers is added to the scope. 

•  The catch in the faultHandlers has a faultName set to Intermediate Event with “_Exit” appended. 

•  the catch will contain an empty activity.

A.25.2 The Middle Parallel Path

The middle parallel path of the fork has a string of two objects. 

• Even though this series of objects appears in the middle of a BPEL4WS flow, they will be place within a sequence  
element. 

In these situations, the sequence will continue until there is a location in the Diagram where there are multiple incoming 
Sequence Flow. When more than one Sequence Flow converge it marks the end of a BPEL4WS structure (as determined by 
structures that have been created by upstream objects). In this case, the Parallel Gateway also marks the end of the higher-level 
flow. The sequence will be listed in the higher-level flow without a source sub-element. This means that the sequence will be 
instantiated when the higher-level flow begins since it has no dependencies on any other activity. The sequence will have two 
activities:

• First, the Timer Intermediate Event used in this situation will map to a BPEL4WS wait (set to 6 days). 

• Second, the “E-Mail Discussion Deadline Warning” Task will map to an invoke that follows the wait. In addition, this 
invoke can be asynchronous since a response is not required. This means that the outputVariable will not be included. 

This middle path of the fork could have been configured in BPEL4WS without a sequence and with links instead. This is an 
example of a situation where a BPMN configuration may derive two possible BPEL4WS configurations. Since both 
BPEL4WS configurations will handle the appropriate behavior, it is up to the implementation of the BPMN to BPEL4WS 
derivation to determine which configuration will be used. BPMN does not provide any specific recommendation in these 
situations. However, the lower parallel path of the Process can also be modeled with a sequence or with links, and, to show 
how links would be used, this section of the Process will be mapped to elements in a flow that have dependencies specified by 
links. 

A.25.3   The Lower Parallel Path

The lower parallel path of the fork has a number of objects and, as just described above, will be mapped to BPEL4WS 
elements connected with links. The path also contains a Decision, which can map to a switch, as will happen later in the 
process, but in this situation the Decision is mapped to links controlled by transitionConditions. 

• The first object is a Task, which will map to an invoke (synchronous) that has two source elements referring to two of 
the links. There are two Target links because the Task is followed by the Gateway with its two Gates. This is done 
instead of a switch with a case and an otherwise.

• The ConditionExpression for the Gate labeled “Yes” will map to the source element’s transitionCondition. The 
expression checks the value of the “ConCall” property (set in the previous Task) to see if there will be a conference 
call during the coming week. 

• The Gate labeled “No” has a condition of default. For a switch, this would map to the otherwise element. However, 
since a switch is not being used, the source element’s transitionCondition must be the inverse of all the other 
transitionConditions for the activity. The expression of the other source will be placed inside a “not” function.
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The invoke will be listed in the higher-level flow without a source sub-element. This means that the invoke will be instantiated 
when the higher-level flow begins since it has no dependencies on any other activity. The remaining elements of the higher-
level flow will have a source element. Thus, they will not be instantiated until the source of the link has completed.

• The “Yes” Gate from the Gateway leads to a Timer Intermediate Event, which will map to a wait. 

•  The for element of the wait will be set for 9am PDT on the next Thursday.

•  This wait will have a target element that corresponds to the target element from the previous invoke. 

•  The wait will also have a target element to link to the following invoke.

• The “No” Gate from the Gateway leads to a merging Exclusive Gateway, which means that nothing is expected to  
happen down this path. Thus, this will map to an empty. 

•  This empty will have a target element that corresponds to the target element from the previous invoke. 

• The Task for moderating the conference call follows the wait, which will map to an invoke (synchronous). 

•  This invoke will have a target element that corresponds to the target element from the previous wait. 

There are three link elements in the flow:

• One link will have a source of the first invoke and a target of the wait.

• One link will have a source of the first invoke and a target of the empty.

• One link will have a source of the first wait and a target of the last invoke.

As mentioned above, the Parallel Gateway marks the end of the flow. 

Finally, there will be a reply at the end of the sequence that corresponds to the initial receive and lets the parent process know 
that the (sub) process has been completed.

A.25.4   After the Parallel Paths are Joined

The Task “Evaluate Discussion Progress” is intended to occur only when all the parallel paths have completed, and thus, it will 

• Map to an invoke that follows the closing of the flow.
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A.25.5   BPEL4WS Sample for the First Sub-Process

Example A.10 displays some sample BPEL4WS code that reflects the portion of the Process as described above and shown in 
Figure A.33.

<process name="Discussion_Cycle">

<!-- The Process data is defined first-->

<sequence>

<receive partnerLink="Internal" portType="tns:processPort" 

 operation="call_Discussion_Cycle" variable="processData" createInstance="Yes"/>

<invoke name="AnnounceIssuesforDiscussion" partnerLink="WGVoter" 

portType="tns:emailPort" operation="sendDiscussionAnnouncement" 

inputVariable="processData"/>

<flow>

<links>

<link name="CheckCalendarforConferenceCalltoWaituntilThursday,9am"/>

<link name="CheckCalendarforConferenceCalltoEmpty"/>

<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</links>

<!-- This is the first of the three paths of the fork. -->

<scope>

<invoke name="ModerateEmailDiscussion" partnerLink="internal" 

portType="tns:internalPort" operation="sendDiscussion" 

inputVariable="processData" outputVariable="processData"/>

<faultHandlers>

<catch faultName="7Days_Exit">

<empty/>

</catch>

</faultHandlers>

<eventHandlers>

<onAlarm for="tns:OneWeek">

<throw faultName="7Days_Exit"/>

</catch>

</eventHandlers>

</scope>

<!-- This is the second of the three paths of the fork. -->
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Example A.10 - BPEL4WS Sample of “Discussion Cycle” Sub-Process Details

A.25.6   The Second Sub-Process

Figure A.34 shows the next section of the Process, which includes the expanded details of the “Collect Votes” Sub-Process. 

<sequence>

<wait name="Delay6daysfromDiscussionAnnouncement" for="P6D"/>

<invoke name="EMailDiscussionDeadlineWarning" partnerLink="WGVoter" 

portType="tns:emailPort" operation="sendDiscussionWarning" 

inputVariable="processData">

</invoke>

</sequence>

<!-- This is the third of the three paths of the fork. -->

<invoke name="CheckCalendarforConferenceCall" partnerLink="internal" 

portType="tns:internalPort" operation="receiveCallSchedule" 

inputVariable="processData" outputVariable="processData">

<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am" 

 transitionCondition="bpws:getVariableProperty(processData,conCall)=true"/>

<source linkName="CheckCalendarforConferenceCalltoEmpty"

transitionCondition="not(bpws:getVariableProperty(processData,conCall)=true)"/>

</invoke>

<!-- name="Yes" -->

<wait name="WaituntilThursday9am" for="P6DT9H">

<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am">

<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</wait>

<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal" 

 portType="tns:internalPort" operation="sendConCall" 

 inputVariable="processData" outputVariable="processData">

<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</invoke>

<!-- name="otherwise" -->

<empty>

<target linkName="CheckCalendarforConferenceCalltoEmpty"/>

</empty>

</flow>

<invoke name="EvaluateDiscussionProgress" partnerLink="internal" 

portType="tns:internalPort" operation="receiveDiscussionStatus" 

inputVariable="processData" outputVariable="processData"/>

<reply partnerLink="Internal" portType="tns:processPort" 

 operation="call_Discussion_Cycle" variable="processData"/>

</sequence>

</process>
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Figure A.34 - “Collect Votes” Sub-Process Details

This part of the process starts out with a Task for the issue list manager to send out an e-mail to announce to the working 
group, and the voting members in particular, which lets them know that the issues are now ready for voting. Since this Task 
sends a message to an outside Participant (the working group members), an outgoing Message Flow is seen from the 
“Announce Issues” Task to the “Voting Members” Pool in Figure A.30. This Task is also a target for one of the complex loops 
in the Process.

The “Collect Votes” Sub-Process follows the Task, and is also a target of one of the looping Sequence Flow. This Sub-Process 
is basically a set of four parallel paths that extend from the beginning to the end of the Sub-Process.
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The first branch of the fork leads to a Decision that determines whether or not a conference call will occur during the 
upcoming week, after the Working Group’s schedule has been checked. Basically, if there was a call last week, then there will 
not be a call this week and vice versa. The appropriate variable that was updated in the “Discussion Cycle” Process will be 
used again.

The second and third branches forks work the same way as the similar activities in the “Discussion Cycle” Sub-Process, except 
that the “Moderate E-Mail Discussion” Task does not have a Timer Intermediate Event attached. This is not necessary since 
the whole Sub-Process is interrupted after 7 days through the Intermediate Event attached to the Sub-Process boundary. The 
“E-Mail Vote Deadline Warning” Task sends a message to an outside Participant (the working group members), thus, an 
outgoing Message Flow is seen from the “Collect Votes” Sub-Process to the “Voting Members” Pool in Figure A.30.

The fourth branch of the fork is rather unique in that the Diagram uses a loop that does not utilize a Decision. Thus, it is, as it 
is intended to be, an infinite loop. The policy of the working group is that voting members can vote more than once on an 
issue; that is, they can change their mind as many times as they want throughout the entire week. The first Task in the loop 
receives a message from the outside Participant (the working group members), thus, an incoming Message Flow is seen from 
the “Voting Members” Pool to the “Collect Votes” Sub-Process in Figure A.30. The Timer Intermediate Event attached to the 
boundary of the Sub-Process is the mechanism that will end the infinite loop, since all work inside the Sub-Process will be 
ended when the time-out is triggered. All the remaining work of the Process is conducted after the time-out and Flow from the 
Timer Intermediate Event. 

Figure A.34 shows that there are Two Tasks that follow the time-out. First, a Task will prepare all the voting results, then a 
Task will send the results to the voting members. A Document Object, “Issue Votes,” is shown in the Diagram to illustrate how 
one might be used, but it will not map to anything in the execution languages. The remaining activities of the Process will be 
described in the next section.

A.26 Mapping to BPEL4WS

A.26.1 The Loops Cause Derived Sub-Processes

• The first Task of this section of the Process is also a target for one of the complex loops in the Process, thus, it will map 
to an invoke (asynchronous) that is placed inside another derived process (“Announce_Issues_Derived_Process”). 

• This derived process will be invoked from “Discussion_Cycle_Derived_Process,” after the “Discussion Cycle” process 
has been completed, as part of the Normal Flow and then from another part of the Process as part of the looping flow. 

• Thus, “Announce_Issues_Derived_Process” will require a (instantiation) receive to accept the message from 
“Discussion_Cycle_Derived_Process” and from “Issues_wo_Majority_Derived_Process” (as we shall see later).

• The “Collect Votes” Sub-Process follows the Task, but is also a target of one of the looping Sequence Flow. Thus, it 
will also be set inside a derived process (“Collect_Votes_Derived_Process”). 

• In addition, “Collect_Votes_Derived_Process” will require a (instantiation) receive to accept the message from 
“Announce_Issues_Derived_Process” and from the fault handler of “Collect Votes” (as we shall see later). 

• The “Collect Votes” Sub-Process will map to an invoke (asynchronous) and the details will be in a process referenced 
through the invoke.
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A.26.2 The BPEL4WS Sample of the Derived Sub-Processes

Example A.11 shows sample BPEL4WS code that defines the two derived processes.

Example A.11 - BPEL4WS Sample that sets up the Access for the Second Sub-Process

A.26.3 The Paths of the Sub-Process

The “Collect Votes Sub-Process is basically a set of four parallel paths that extend from the beginning to the end of the Sub-
Process. 

• Thus, the activity for the process will be a flow. 

A.26.3.1 The Upper Parallel Path

The first branch of this Sub-Process is basically the same as the upper parallel of the previous Sub-Process. An invoke, a wait, 
and an empty will be created. In addition, three links will be created to handle the dependencies between the elements, 

<process name="Announce_Issues_Derived_Process">

<!-- This starts the middle section of the Process and is call from 

the first time and then from “Collect Votes” during a loop-->

<!-- The Process data is defined first-->

<sequence>

<receive partnerLink="Internal" portType="tns:processPort" 

 operation="call_Announce_Issues_Derived_Process" 

 variable="processData" createInstance="Yes"/>

<invoke name="AnnounceIssuesforVote" partnerLink="WGVoter" portType="tns:emailPort" 

operation="sendVoteAnnouncement" inputVariable="processData"/>

<invoke name="Collect_Votes_Derived_Process" partnerLink="Internal" 

portType="tns:processPort" 

operation="call_Collect_Votes_Derived_Process" inputVariable="processData"/>

<reply partnerLink="Internal" portType="tns:processPort" 

 operation="call_Announce_Issues_Derived_Process" 

 variable="processData" createInstance="Yes"/>

</sequence>

</process>

<process name="Collect_Votes_Derived_Process">

<!-- this calls the second Sub-Process and then continues. It is also 

 called from “Collect Votes” as part of a loop-->

<!-- The Process data is defined first-->

<sequence>

<receive partnerLink="Internal" portType="tns:processPort" 

operation="call_Collect_Votes_Derived_Process" variable="processData" 

createInstance="Yes"/>

<invoke name="Collect_Votes" partnerLink="Internal" portType="tns:processPort" 

operation="call_Collect_Votes" inputVariable="processData"/>

<reply partnerLink="Internal" portType="tns:processPort" 

operation="call_Collect_Votes_Derived_Process" variable="processData" 

createInstance="Yes"/>

</sequence>

</process>
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including the branching created by the Exclusive Gateway. See “The Lower Parallel Path” on page 216 for the details of the 
mappings.

A.26.3.2 The Middle Two Parallel Paths

The second and third branches of the fork are rather straightforward mappings of:

• Two Tasks to invokes (one synchronous and one asynchronous), and 

• A Timer Intermediate Event to a delay.

• In addition, one link is created so that one of the invokes will wait for the delay.

A.26.3.3 The Lower Parallel Path

The fourth branch of the fork is the location the infinite loop. 

• This loop will map to a BPEL4WS while with a condition of “1=0,” which will always be false.

• Inside the while is a sequence of two invokes (one synchronous and one asynchronous), which are mapped from the two 
Tasks in the loop.

A.26.4 Exiting the Second Sub-Process

To exit out of the infinite loop and the whole “Collect Votes” Sub-Process, 

• A scope will be wrapped around the main flow of the process, which will include an eventHandlers and  
a faultHandlers.

The Timer Intermediate Event must be set up to create a fault at the appropriate time. To do this, 

• An onAlarm will be placed inside the eventHandlers. The timing of the onAlarm will be determined by the time setting 
in the Intermediate Event.

• Within the onAlarm, a throw will a fault name after the Intermediate Event with “_Exit” appended.

• The catch element of the faultHandlers will be triggered by the fault generated by the above throw. 

• The activity for the catch will be a sequence and will be the source of all the remaining activities of the Process, 
since all the remaining Sequence Flow begins from the Timer Intermediate Event. 

•The first three Tasks, as shown in the figure, will map to invokes. The latter two will be placed within a 
flow.

The Document Objects shown in the figure is not mapped into BPEL4WS. The remainder of the Process will be described in 
the next section.

A.26.5   BPEL4WS Sample for the Second Sub-Process

Example A.12 shows sample BPEL4WS code that defines the “Collect Votes” Sub-Process.
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<process name="Collect_Votes">

<!--This is a nested process for the E-Mail Voting collection. It consists of 

an all and a faultHandlers (for a time-out). The all will never complete 

normally since there is an infinite loop inside. The timeout is intended to 

be the normal way of ending the process-->

<sequence>

<receive partnerLink="Internal" portType="tns:processPort" 

operation="call_Collect_Votes" variable="processData" createInstance="Yes"/>

<scope>

<flow>

<links>

<link name="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>

<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>

<link name="CheckCalendarforConferenceCalltoEmpty"/>

<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</links>

<!--This is the first of the four paths of the fork. -->

<invoke name="CheckCalendarforConferenceCall" partnerLink="internal" 

portType="tns:internalPort" operation="receiveCallSchedule" 

inputVariable="processData" outputVariable="processData">

<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am" 

transitionCondition="bpws:getVariableProperty(processData,conCall)=true"/>

<source linkName="CheckCalendarforConferenceCalltoEmpty"

transitionCondition="not(bpws:getVariableProperty(processData,conCall)=true)"/>

</invoke>

<!-- name="Yes" -->

<wait name="WaituntilThursday9am" for="P6DT9H">

<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am">

<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</wait>

<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal" 

 portType="tns:internalPort" operation="sendConCall" 

 inputVariable="processData" outputVariable="processData">

<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</invoke>

<!-- name="otherwise" -->

<empty>

<target linkName="CheckCalendarforConferenceCalltoEmpty"/>

</empty>

<!-- This is the second of the four paths of the fork. -->

<invoke name="ModerateEMailDiscussion" partnerLink="internal" 

 portType="tns:internalPort" operation="sendDiscussion" 

 inputVariable="processData" outputVariable="processData"/>

<!--This is the third of the four paths of the fork.-->

<wait name="Delay6daysfromVoteAnnouncement" for="P6D">

<source linkName="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>

</wait>
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Example A.12 - BPEL4WS Sample of the Second Sub-Process

<invoke name="EMailVoteDeadlineWarning" partnerLink="WGVoter" 

 portType="tns:emailPort" operation="sendVoteWarning" 

 inputVariable="processData">

<target linkName="Delay6daysfromVoteAnnouncementtoEMailVote DeadlineWarning"/>

</invoke>

<!--This is the fourth of the four paths of the fork. This branch of the 

all is intended to be an infinite loop that is eventually 

interrupted by the Time Out. This is necessary since any voter can 

change their vote until the deadline. -->

<while condition="1=0">

<sequence>

<receive name="ReceiveVote" partnerLink="WGVoter" portType="tns:emailPort" 

 operation="receiveVote" variable="processData"/>

<invoke name="IncrementTally" partnerLink="internal" 

 portType="tns:internalPort" operation="sendReceiveTotal" 

 inputVariable="processData" outputVariable="processData"/>

</sequence>

</while>

</flow>

<eventHandlers>

<onAlarm for="P7D">

<throw faultName="7days_Exit"/>

</onAlarm>

</eventHandlers>

<faultHandlers>

<catch faultName="7days_Exit">

<!-- The BPMN Diagram shows that the Timer Intermediate Event connects directly 

to the rest of the Process. Thus, they will show up in this activity set. -->

<sequence>

<invoke name="PrepareResults" partnerLink="internal" 

portType="tns:internalPort" operation="sendReceiveResults" 

inputVariable="processData" outputVariable="processData"/>

<flow>

<invoke name="PostResultsonWebSite" partnerLink="internal" 

portType="tns:internalPort" operation="postVotingResults" 

inputVariable="processData"/>

<invoke name="EMailResultsofVote" partnerLink="WGVoter" 

portType="tns:emailPort" operation="sendVotingResults" 

inputVariable="processData"/>

</flow>

  <!--the rest of the process is not shown-->

</faultHandlers>

</scope>

<reply partnerLink="Internal" portType="tns:processPort" 

operation="call_Collect_Votes" variable="processData" createInstance="Yes"/>

</sequence>

</process>
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A.26.6 The End of the Process

Figure A.35 shows the last section of the Process, which includes a complex set of Decisions and loops. 

 

Figure A.35 - The last segment of the E-Mail Voting Process
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This segment of the Process continues from where the last segment left off (as described in the section above). It contains four 
Decisions that interact with each other and create loops to upstream activities.

The first Decision, “Did Enough Members Vote?,” is necessary since two-thirds of the voting members are required to approve 
any solution to an issue. If less than two-thirds of the voting members cast votes, which sometimes happens, the issues can’t be 
resolved. This Decision Flow to another Decision for both of its Alternatives. The “No” Alternative is followed by the “Have 
the Members been Warned?” Decision. If a voting member misses a vote, they are warned. If they miss a second vote, they 
lose their status as a voting member and the voting percentages are recalculate through a Task (“Reduce number of Voting 
Members and Recalculate Vote”). If they haven’t yet been warned, then a warning is sent and the voting week is repeated.

If all issues are resolved, then the Process is done. If not, then another Decision is required. The voting is given two chances 
before it goes back to another cycle of discussion. The first time will see a reduction of the number of solutions to the two most 
popular based on the vote (more if there are ties). Some voting members will have to change their votes just because their 
solution is no longer valid. These two activities are placed in a Sub-Process to show how a Sub-Process without Start and End 
Events can be used to create a simple set of parallel activities. Informally, this is called a “parallel box.” It is not a special 
object, but another use of Sub-Processes. For simple situations, it can be used to show a set of parallel activities without the 
extra clutter of a lot of Sequence Flow. In actuality, these two Tasks cannot actually be done in parallel, but they are modeled 
this way to highlight the optional use of Start and End Events. 

After the parallel box, the flow loops back to the “Collect Votes” Sub-Process. If there already has been two cycles of voting, 
then the process Flow back to the “Decision Cycle” Sub-Process.

A.27 Mapping to BPEL4WS

As mentioned above, the entire contents of this segment follow a Timer Intermediate Event, which means they are contained in 
the faultHandlers of the scope within the “Collect Votes” process. 

• Each of the Decisions in this section will map to a BPEL4WS switch.

A.27.1 The First Decision

The first Decision, “Did Enough Members Vote?,” Flow to another Decision for both of its Alternatives. 

• Thus, each of the switch cases will contain another switch.

The “No” Alternative is followed by the “Have the Members been Warned?” Decision. 

• Each Alternative from this Decision is followed by a Task, which maps to Invokes (one synchronous and the other 
asynchronous). 

The “No (default)” Alternative leads to a loop. 

• This looping is handled by using an invoke (asynchronous) to the “Collect_Votes_Derived_Process” process, which 
was created just for the purpose of this loop (since it is in the context of a more complex looping situation).

Notice that the “Issues w/o Majority?” Decision can be reached through the alternative paths from two different Decisions. 
This creates a situation that has two impacts on the Mapping to Execution Languages. First, it creates a section of the Process 
in which the Alternatives from two Decisions overlap. This is possible in a graph-structured Diagram like BPMN, but in a 
block-structured (and acyclic) language like BPEL4WS, these two sections cannot overlap because they have different block 
boundaries. This means that this section must be repeated in some way in both of the appropriate switch case activities. All 
these elements could be actually duplicated or they can be separated into a derived process and then invoked from the 
appropriate place. The later method was used in this example (see Example A.13 and Example A.14).
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Note – At this point, BPMN does not specify whether a reused section of a BPMN Diagram should map to a derived process 
that is invoked from each location of duplication, or whether the section should remain intact and be duplicated in each 
appropriate location. This is left up to the specific implementation of BPMN since both solutions will behave equivalently. 

The second impact of the multiple incoming Sequence Flow into the “Issues w/o Majority?” Decision has to do with how the 
three visible loops are created (actually there are five loops). Normally, Sequence Flow loops will map to a BPEL4WS while. 
If there are multiple loops in the Process they have to be physically separated or completely nested because of the block-
structured nature of the BPEL4WS looping elements. The alternative paths of the Decisions cannot be mixed and still maintain 
the BPEL4WS blocks they way that the end of the “E-mail Voting” Process mixes the paths.

A different type of looping mechanism is required. This method requires the creation of a set of derived processes that can 
reference each other and also themselves. In this way, a block-structured language can simulate a set of interleaving loops (as 
seen in a graph-structured Diagram). 

• Thus, in this BPMN example, derived processes were created to mark places where loops can be targeted within the 
BPEL4WS code from the “downstream” elements. 

• A BPEL4WS invoke is used to re-perform activities that had already been executed in the process.
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A.27.2   BPEL4WS Sample for the End of the Process

Example A.13 displays the BPEL4WS code for first part of the end of the “E-Mail Voting Process.”

<!--This segment of the code is within the context of the “Collect 

Votes” nested process-->

<catch property="tns:OneWeek" type="duration">

<!--The BPMN Diagram shows that the Timer Intermediate Event connects directly to the   
rest of the Process. Thus, they will show up in this activity set--> 

<!--The first two actions are not shown-->

<sequence>

<invoke name="PrepareResults" partnerLink="internal" portType="tns:internalPort" 

operation="sendReceiveResults" inputVariable="processData" 

outputVariable="processData"/>

<invoke name="EMailResultsofVote" partnerLink="WGVoter" portType="tns:emailPort" 

 operation="sendVotingResults" inputVariable="processData"/>

<switch name="DidEnoughMembersVote">

<!-- name="No" -->

<case condition="bpws:getVariableProperty(ProcessData,NumVoted)>

(.7)*(bpws:getVariableProperty(ProcessData,NumVWGM))">
Business Process Modeling Notation, v1.2                                                                                                                                                     229



Example A.13 - Sample BPEL4WS code for the last section of the Process

<switch name="Havethemembersbeenwarned">

<!-- name="Yes" -->

<case condition="bpws:getVariableProperty(ProcessData,VotersWarned)=true">

<sequence>

<invoke name="ReducenumberofVotingMembersandRecalculateVote" 

 partnerLink="internal" portType="tns:internalPort" 

 operation="sendReceiveNumVoters" inputVariable="processData" 

 outputVariable="processData"/>

<!--Some elements of the process were separated into a derived 

 process since they would have been repeated. They would have 

 been repeated because they are arrived by alternative paths that 

 do not close a set of alternative paths. -->

<invoke name="Issues_wo_Majority_Derived_Process" partnerLink="Internal" 

portType="tns:processPort" 

operation="call_Issues_wo_Majority_Derived_Process" 

inputVariable="processData" outputVariable="processData"/>

</sequence>

</case>

<!-- name="No (otherwise)" -->

<otherwise>

<sequence>

<invoke name="ReannounceVotewithwarningtovotingmembers" 

partnerLink="WGVoter" portType="tns:emailPort" 

operation="sendReannounceVote" inputVariable="processData" 

outputVariable="processData"/>

<invoke name="Collect_Votes_Derived_Process" partnerLink="Internal" 

  portType="tns:processPort" 

operation="call_Collect_Votes_Derived_Process" 

 inputVariable="processData" outputVariable="processData"/>

</sequence>

</otherwise>

</switch>

</case>

<!-- name="Yes (otherwise)" -->

<otherwise>

<!-- Some elements of the process were separated into a derived process since they 

would have been repeated. They would have been repeated because they are 

arrived by alternative paths that do not close a set of alternative paths. -->

<invoke process="Issues_wo_Majority_Derived_Process" partnerLink="Internal" 

portType="tns:processPort" 

operation="call_Issues_wo_Majority_Derived_Process" 

inputVariable="processData" outputVariable="processData"/>

</otherwise>

</switch>

</sequence>

</catch>
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Example A.14 shows the BPEL4WS code for the Process from the “Issues w/o Majority?” Decision until the end of the 
Process or loops. 

• The mappings are a fairly straightforward set of switches. 

If all issues are resolved, then the Process is done. If not, then another Decision is required. 

• The “parallel box,” as is any forking situation, will map to a BPEL4WS flow. 

After the parallel box, the flow loops back to the “Collect Votes” Sub-Process. 

• This looping is handled by using an invoke (asynchronous) to the “Announce_Issues_Derived_Process” process, which 
was created just for the purpose of this loop.

If there has already been two cycles of voting, then the process Flow back to the “Decision Cycle” Sub-Process. 

• This looping is handled by using an invoke (asynchronous) to the “Discussion_Cycle_Derived_Process” process, 
which was created just for the purpose of this loop.
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Example A.13 displays the BPEL4WS code for the final derived process of the “E-Mail Voting Process.”

Example A.14 - Sample BPEL4WS code for derived process for repeated elements

<process name="Issues_wo_Majority_Derived_Process">

<sequence>

<receive partnerLink="Internal" portType="tns:processPort" 

operation="call_Issues_wo_Majority_Derived_Process" variable="processData" 

createInstance="Yes"/>

<switch name="IssueswoMajority">

<case name="Yes" condition="NoMajority=true">

<switch name="2ndTime">

<!-- name="Yes" -->

<case condition="bpws:getVariableProperty(ProcessData,VotedOnce)=true">

<!--This is done to do the complex looping situation. -->

<invoke name="Discussion_Cycle_Derived_Process" partnerLink="Internal" 

portType="tns:processPort" 

operation="call_Discussion_Cycle_Derived_Process" 

inputVariable="processData" outputVariable="processData"/>

</case>

<!-- name="No (otherwise)"-->

<otherwise>

<sequence>

<flow>

<invoke name="ReducetoTwoSolutions" partnerLink="internal" 

portType="tns:internalPort" operation="sendReceiveSolutions" 

  inputVariable="processData" outputVariable="processData"/>

<invoke name="EMailVotersthathavetoChangeVotes" partnerLink="WGVoter" 

  portType="tns:emailPort" operation="sendVoteWarning" 

  inputVariable="processData"/>

</flow>

<invoke process="Announce_Issues_Derived_Process" partnerLink="Internal" 

portType="tns:processPort" 

operation="call_Announce_Issues_Derived_Process" 

inputVariable="processData" outputVariable="processData"/>

</sequence>

</otherwise>

</switch>

</case>

<otherwise name="Nootherwise">

<!-- This is one of the two ways to the end of the Process. -->

<empty/>

</otherwise>

</switch>

<reply partnerLink="Internal" portType="tns:processPort" 

operation="call_Issues_wo_Majority_Derived_Process" variable="processData" 

createInstance="Yes"/>

</sequence>

</process>
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A.28 BPEL4WS for the E-Mail Voting Process

This section provides the complete BPEL4WS code for the example BPMN business process that is described in the “BPMN 
by Example” chapter.

<definitions

targetNamespace="http://www.website.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<message name="processDataMessage">

<part name="NumIssues" type="xsd:integer"/>

<part name="NoMajority" type="xsd:boolean"/>

<part name="VotedOnce" type="xsd:boolean"/>

<part name="NumVoted" type="xsd:integer"/>

<part name="VotersWarned" type="xsd:boolean"/>

<part name="LoopCounter" type="xsd:integer"/>

</message>

<!--processDataMessage will be received with the following parts:

   NoMajority (set to false)

  VotedOnce (set to false)

  NumVoted (set to false)

  VotersWarned (set to false)

  LoopCounter (set to 0)

 starting message every Friday is not shown here.-->

</definitions>

<!-- The Main Process -->

<process name="EMailVotingProcess">

<variables>

<variable name="processData" messageType="processDataMessage"/>

<!--processDataMessage will be received with the following parts:

  NumIssues (set to the number of unresolved Issues)

  NoMajority (set to false)

  VotedOnce (set to false)

  NumVoted (set to false)

  VotersWarned (set to false)

  LoopCounter (set to 0)

 starting message every Friday is not shown here.-->

</variables>

<sequence>

<!--This starts the beginning of the Process. The process that sends the 

 starting message every Friday is not shown here.-->

<receive partnerLink="Internal" portType="tns:processPort" 

 operation="receiveIssueList" variable="processData" createInstance="Yes"/>

<invoke name="ReviewIssueList" partnerLink=“Internal" portType="tns:internalPort" 

 operation="sendIssueList" inputVariable="processData" 

 outputVariable="processData"/>

<switch name="AnyIssuesReady">
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<!--name="Yes" -->

<case condition="bpws:getVariableProperty(ProcessData,NumIssues)>0">

<!-- A chunk of this process is separated into a derived process so that 

it can be called from a complex loop. -->

<invoke name="Discussion_Cycle_Derived_Process" partnerLink="Internal" 

        portType="tns:processPort" operation="call_Discussion_Cycle_Derived_Process" 

        inputVariable="processData" outputVariable="processData"/>

</case>

<!--name="No" -->

<otherwise>

<!--This is one of the two ways to the end of the Process.-->

<empty/>

</otherwise>

</switch>

</sequence>

<!-- A Derived Process -->

<process name="Discussion_Cycle_Derived_Process">

<variables>

<variable name="processData" messageType="processDataMessage"/>

<variable name="Discussion_Cycle_loopCounter" messageType="loopCounterMessage"/>

</variables>

<sequence>

<receive partnerLink="Internal" portType="tns:processPort" 

 operation="call_Discussion_Cycle_Derived_Process" variable="processData" 

         createInstance="Yes"/>

<!--The first Sub-Process has a loop condition, so it is within a while-->

<assign name="Discussion_Cycle_initialize_loopCounter">

<copy>

<from expression="0"/>

<to variable="Discussion_Cycle_loopCounter" part="loopCounter" />

</copy>

</assign>

<!--Since the TestTime is “After” the Sub-Process has to be performed before the 

       while-->

<invoke name="Discussion_Cycle" partnerLink="Internal" 

  portType="tns:processPort operation="call_Discussion_Cycle" 

inputVariable="processData" outputVariable="processData"/>

<while condition="bpws:getVariableProperty(ProcessData,DiscussionOver)=false">

<!--This calls the first Sub-Process-->

<sequence>

<invoke process="Discussion_Cycle" partnerLink="Internal" 

 portType="tns:processPort operation="call_Discussion_Cycle" 

 inputVariable="processData" outputVariable="processData"/>

<assign>

<copy>

<from expression=

    "bpws:getVariableProperty(Discussion_Cycle_loopCounter,LoopCounter)+1"/>
234                                                                                                                                                     Business Process Modeling Notation, v1.2 



<to variable="Discussion_Cycle_loopCounter" part="LoopCounter"/>

</copy>

</assign>

</sequence>

</while>

<!--This calls the first another derived process to handle the rest of the 

work-->

<invoke name="Announce_Issues_Derived_Process" partnerLink="Internal" 

        portType="tns:processPort" operation="call_Announce_Issues_Derived_Process" 

        inputVariable="processData"  outputVariable="processData"/>

</sequence>

</process>

</process>

<!-- A Derived Process -->

<process name="Announce_Issues_Derived_Process">

<!-- This starts the middle section of the process. -->

<variables>

<variable name="processData" messageType="processDataMessage"/>

</variables>

<sequence>

<receive partnerLink="Internal" portType="tns:processPort" 

   operation="call_Announce_Issues_Derived_Process" variable="processData" 

         createInstance="Yes"/>

<invoke name="AnnounceIssuesforVote" partnerLink="WGVoter" portType="tns:emailPort" 

 operation="sendVoteAnnouncement" inputVariable="processData"/>

<invoke name="Collect_Votes_Derived_Process" partnerLink="Internal" 

        portType="tns:processPort" operation="call_Collect_Votes_Derived_Process" 

        inputVariable="processData"  outputVariable="processData"/>

<reply partnerLink="Internal" portType="tns:processPort" 

 operation="call_Announce_Issues_Derived_Process" 

 variable="processData" createInstance="Yes"/>

</sequence>

</process>

<!-- A Derived Process -->

<process name="Collect_Votes_Derived_Process">

<!--this calls the second Sub-Process. After the Collect Votes Sub-Process 

times out, the rest of the process will be in the fault handler 

of that process. Calls from there will loop back into other processes.-->

<variables>

<variable name="processData" messageType="processDataMessage"/>

</variables>

<sequence>

<receive partnerLink="Internal" portType="tns:processPort" 

 operation="call_Collect_Votes_Derived_Process" variable="processData" 

 createInstance="Yes"/>

<invoke name="Collect_Votes" partnerLink="Internal" portType="tns:processPort" 

operation="call_Collect_Votes" inputVariable="processData" 

        outputVariable="processData"/>
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<reply partnerLink="Internal" portType="tns:processPort" 

operation="call_Collect_Votes_Derived_Process" variable="processData" 

createInstance="Yes"/>

</sequence>

</process>

<!-- A Derived Process -->

<process name="Issues_wo_Majority_Derived_Process">

<variables>

<variable name="processData" messageType="processDataMessage"/>

</variables>

<sequence>

<receive partnerLink="Internal" portType="tns:processPort" 

 operation="call_Issues_wo_Majority_Derived_Process" variable="processData" 

         createInstance="Yes"/>

<switch name="IssueswoMajority">

<case name="Yes" 

condition="bpws:getVariableProperty(ProcessData,NoMajority)=true">

<switch name="2ndTime">

<!-- name="Yes" -->

<case condition="bpws:getVariableProperty(ProcessData,VotedOnce)=true">

<!--This is done to do the complex looping situation. -->

<invoke name="Discussion_Cycle_Derived_Process" partnerLink="Internal" 

portType="tns:processPort" 

        operation="call_Discussion_Cycle_Derived_Process" 

inputVariable="processData" outputVariable="processData"/>

</case>

<!-- name="No (otherwise)" -->

<otherwise>

<sequence>

<flow>

<invoke name="ReducetoTwoSolutions" partnerLink="internal" 

portType="tns:internalPort" operation="sendReceiveSolutions" 

inputVariable="processData" outputVariable="processData"/>

<invoke name="EMail Voters that have to Change Votes" 

 partnerLink="WGVoter" portType="tns:emailPort" 

 operation="sendVoteWarning" inputVariable="processData"/>

</flow>

<invoke process="Announce_Issues_Derived_Process" partnerLink="Internal" 

 portType="tns:processPort" 

        operation="call_Announce_Issues_Derived_Process" 

 inputVariable="processData" outputVariable="processData"/>

</sequence>

</otherwise>

</switch>

</case>

<otherwise name="Nootherwise">

<!-- This is one of the two ways to the end of the Process. -->

<empty/>

</otherwise>
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</switch>

</sequence>

</process>

<!-- A User Built Process -->

<process name="Discussion_Cycle">

<!--This defines the first Sub-Process. -->

<variables>

<variable name="processData" messageType="processDataMessage"/>

</variables>

<sequence>

<receive partnerLink="Internal" portType="tns:processPort" 

operation="call_Discussion_Cycle" variable="processData" 

createInstance="Yes"/>

<invoke name="AnnounceIssuesforDiscussion" partnerLink="WGVoter" 

portType="tns:emailPort" operation="sendDiscussionAnnouncement" 

inputVariable="processData"/>

<flow>

<links>

<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>

<link name="CheckCalendarforConferenceCalltoEmpty"/>

<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</links>

<!-- This is the first of the three paths of the fork. -->

<scope>

<invoke name="ModerateEmailDiscussion" partnerLink="internal" 

portType="tns:internalPort" operation="sendDiscussion" 

inputVariable="processData" outputVariable="processData"/>

<faultHandlers>

<catch faultName="7Days_Exit">

<empty/>

</catch>

</faultHandlers>

<eventHandlers>

<onAlarm for="tns:OneWeek">

<throw faultName="7Days_Exit"/>

</catch>

</eventHandlers>

</scope>

<!-- This is the second of the three paths of the fork. -->

<sequence>

<wait name="Delay6daysfromDiscussionAnnouncement" for="P6D"/>

<invoke name="EMailDiscussionDeadlineWarning" partnerLink="WGVoter" 

 portType="tns:emailPort" operation="sendDiscussionWarning" 

 inputVariable="processData">

</invoke>

</sequence>

<!-- This is the third of the three paths of the fork. -->

<invoke name="CheckCalendarforConferenceCall" partnerLink="internal" 

portType="tns:internalPort" operation="receiveCallSchedule" 
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inputVariable="processData" outputVariable="processData">

<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am" 

 transitionCondition="bpws:getVariableProperty(processData,conCall)=true"/>

<source linkName="CheckCalendarforConferenceCalltoEmpty"

transitionCondition="not(bpws:getVariableProperty(processData,conCall)=true)"/>

</invoke>

<!-- name="Yes" -->

<wait name="WaituntilThursday9am" for="P6DT9H">

<target linkName=

"CheckCalendarforConferenceCalltoWaituntilThursday9am">

<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</wait>

<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal" 

 portType="tns:internalPort" operation="sendConCall" 

 inputVariable="processData" outputVariable="processData">

<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</invoke>

<!-- name="otherwise" -->

<empty>

<target linkName="CheckCalendarforConferenceCalltoEmpty"/>

</empty>

</flow>

<invoke name="EvaluateDiscussionProgress" partnerLink="internal" 

portType="tns:internalPort" operation="receiveDiscussionStatus" 

inputVariable="processData" outputVariable="processData"/>

<reply partnerLink="Internal" portType="tns:processPort" 

 operation="call_Discussion_Cycle" variable="processData"/>

</sequence>

</process>

<!-- A User Built Process -->

<process name="Collect_Votes">

<!--This is a process for the E-Mail Voting collection. It consists of an all and a 

 timeout event handler. The all will never complete normally since there is an

 infinite loop inside. The timeout is intended to be the normal way of ending the 

 process. -->

<variables>

<variable name="processData" messageType="processDataMessage"/>

</variables>

<sequence>

<receive partnerLink="Internal" portType="tns:processPort" 

 operation="call_Collect_Votes" variable="processData" createInstance="Yes"/>

<scope>

<flow>

<links>

<link name="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>

<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>

<link name="CheckCalendarforConferenceCalltoEmpty"/>

<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
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</links>

<!--This is the first of the four paths of the fork. -->

<invoke name="CheckCalendarforConferenceCall" partnerLink="internal" 

portType="tns:internalPort" operation="receiveCallSchedule" 

inputVariable="processData" outputVariable="processData">

<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am" 

transitionCondition="bpws:getVariableProperty(processData,conCall)=true"/>

<target linkName="CheckCalendarforConferenceCalltoEmpty"

transitionCondition="not(bpws:getVariableProperty(processData,conCall)=true)"/>

</invoke>

<!-- name="Yes" -->

<wait name="WaituntilThursday9am" for="P6DT9H">

<source linkName=

"CheckCalendarforConferenceCalltoWaituntilThursday9am">

<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</wait>

<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal" 

 portType="tns:internalPort" operation="sendConCall" 

 inputVariable="processData" outputVariable="processData">

<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</invoke>

<!-- name="otherwise" -->

<empty>

<source linkName="CheckCalendarforConferenceCalltoEmpty"/>

</empty>

<!-- This is the second of the four paths of the fork. -->

<invoke name="ModerateEMailDiscussion" partnerLink="internal" 

 portType="tns:internalPort" operation="sendDiscussion" 

 inputVariable="processData" outputVariable="processData"/>

<!--This is the third of the four paths of the fork.-->

<wait name="Delay6daysfromVoteAnnouncement" for="P6D">

<target linkName="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>

</wait>

<invoke name="EMailVoteDeadlineWarning" partnerLink="WGVoter" 

 portType="tns:emailPort" operation="sendVoteWarning" 

 inputVariable="processData">

<source linkName="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>

</invoke>

<!--This is the fourth of the four paths of the fork. This branch of the all is 

intended to be an infinite loop that is eventually interrupted by the Time 

Out. This is necessary since any voter can change their vote until the 

deadline. -->

<while condition="1=0">

<sequence>

<receive name="ReceiveVote" partnerLink="WGVoter" portType="tns:emailPort" 

operation="receiveVote" variable="processData"/>

<invoke name="IncrementTally" partnerLink="internal" 

 portType="tns:internalPort" operation="sendReceiveTotal" 

 inputVariable="processData" outputVariable="processData"/>
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</sequence>

</while>

</flow>

<eventHandlers>

<onAlarm for="P7D">

<throw faultName="7days_Exit"/>

</onAlarm>

</eventHandlers>

<faultHandlers>

<catch faultName="7days_Exit">

<!-- The BPMN Diagram shows that the Timer Intermediate Event connects 

directly to the rest of the Process. Thus, they will show up in 

this activity set. -->

<sequence>

<invoke name="PrepareResults" partnerLink="internal" 

portType="tns:internalPort" operation="sendReceiveResults" 

inputVariable="processData" outputVariable="processData"/>

<flow>

<invoke name="PostResultsonWebSite" partnerLink="internal" 

portType="tns:internalPort" operation="postVotingResults" 

inputVariable="processData"/>

<invoke name="EMailResultsofVote" partnerLink="WGVoter" 

portType="tns:emailPort" operation="sendVotingResults" 

inputVariable="processData"/>

</flow>

<switch name="DidEnoughMembersVote">

<!-- name="No" -->

<case condition="bpws:getVariableProperty(ProcessData,NumVoted)>

 (.7)*(bpws:getVariableProperty(ProcessData,NumVWGM))">

<switch name="Havethemembersbeenwarned">

<!-- name="Yes" -->

<case condition="bpws:getVariableProperty(ProcessData,

VotersWarned)=true">

<sequence>

<invoke name="ReducenumberofVotingMembersandRecalculateVote"

partnerLink="internal" portType="tns:internalPort" 

operation="sendReceiveNumVoters" inputVariable="processData" 

outputVariable="processData"/>

<!--Some elements of the process were separated into a derived process 

since they would have been repeated. They would have been 

repeated because they are arrived by alternativepaths that do not 

close a set of alternative paths. -->

<invoke name="Issues_wo_Majority_Derived_Process" partnerLink="Internal" 
PortType="tns:processPort" 

                            operation="call_Issues_wo_Majority_Derived_Process" 

inputVariable="processData" outputVariable="processData"/>

</sequence>

</case>

<!-- name="No (otherwise)" -->
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<otherwise>

<sequence>

<invoke name="ReannounceVotewithwarningtovotingmembers" 

partnerLink="WGVoter" portType="tns:emailPort" 

operation="sendReannounceVote" inputVariable="processData" 

outputVariable="processData"/>

<invoke name="Collect_Votes_Derived_Process" partnerLink="Internal" 

        portType="tns:processPort" 

operation="call_Collect_Votes_Derived_Process" 

inputVariable="processData" outputVariable="processData"/>

</sequence>

</otherwise>

</switch>

</case>

<!-- name="Yes (otherwise)" -->

<otherwise>

<!-- Some elements of the process were separated into a derived process 

since they would have been repeated. They would have been repeated 

because they are arrived by alternative that do not close a set of 

alternative paths. -->

<invoke process="Issues_wo_Majority_Derived_Process" partnerLink="Internal" 

   portType="tns:processPort" 

                        operation="call_Issues_wo_Majority_Derived_Process" 

 inputVariable="processData" outputVariable="processData"/>

</otherwise>

</switch>

</sequence>

</catch>

</faultHandlers>

</scope>

<reply partnerLink="Internal" portType="tns:processPort" 

 operation="call_Collect_Votes" variable="processData"/>

</sequence>

</process>
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Annex B:  BPMN Element Attributes and Types

(informative)

This annex provides the complete set of BPMN Element Attributes and the definition of types that support the Attributes. All 
the tables in this annex also appear in Chapters 8, 9, and 10.

The following figure displays a diagram of the relationship between the main BPMN Event elements and their attributes (see 
Figure B.1). Other diagrams in this Annex will provide more detailed information about specific groups of elements (e.g., 
Events and their related elements and attributes).
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Figure B.1 - Main BPMN Elements and Attributes
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B.1 Business Process Diagram Attributes
The following table displays the set of attributes of a Business Process Diagram:

B.2 BPMN Elements

B.2.1 Common BPMN Element Attributes

The following table displays a set of common attributes for BPMN elements (graphical elements and supporting elements).

These attributes are used for Graphical Elements [which are Flow Objects (Section B.4, “Common Flow Object 
Attributes,” on page 247), Connecting Objects (Section B.10, “Graphical Connecting Objects,” on page 267), Swimlanes 
(Section B.8, “Swimlanes (Pools and Lanes),” on page 263), and Artifacts (Section B.9, “Artifacts,” on page 264)], and 
Supporting Elements (Section B.11, “Supporting Elements,” on page 270).

Table B.1 - Business Process Diagram Attributes

Attributes Description

Id : Object This is a unique Id that distinguishes the Diagram from other Diagrams.

Name : String Name is an attribute that is text description of the Diagram.

Version (0-1) : String This defines the Version number of the Diagram.

Author (0-1) : String This holds the name of the author of the Diagram.

Language (0-1) : String This holds the name of the language in which text is written. The default is English.

QueryLanguage (0-1) : String A Language MAY be provided so that the syntax of queries used in the Diagram can 
be understood.

CreationDate (0-1) : Date This defines the date on which the Diagram was created (for this Version).

ModificationDate (0-1) : Date This defines the date on which the Diagram was last modified (for this Version).

Pools (1-n) : Pool A BPD SHALL contain one or more Pools. The boundary of one of the Pools MAY 
be invisible (especially if there is only one Pool in the Diagram). Refer to 
Section 9.6.2, “Pool,” on page 87  for more information about Pools.

Documentation (0-1) : String The modeler MAY add optional text documentation about the Diagram.

Table B.2 - Common BPMN Element Attributes

Attributes Description

Id : Object This is a unique Id that identifies the object from other objects within the Diagram.

Categories (0-n) : Category The modeler MAY add one or more defined Categories, which have user-defined 
semantics, and that can be used for purposes such as reporting and analysis. The 
details of Catogories is defined in  “Category on page 273.”

Documentation (0-1) : String The modeler MAY add text documentation about the object.
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B.2.2 Graphical Elements

Graphical Element is one of two main elements that are of type BPMN Element (see Figure B.1). The other is Supporting 
Element. There are four main types, and many subtypes, of Graphical Elements. These are: Artifacts (see Section B.9, 
“Artifacts,” on page 264), Connecting Objects (see Section B.10, “Graphical Connecting Objects,” on page 267), Flow 
Objects (see Section B.4, “Common Flow Object Attributes,” on page 247), and Swimlanes (see Section B.8, “Swimlanes 
(Pools and Lanes),” on page 263). 

B.2.3 Supporting Elements

Supporting Element (see Section B.11, “Supporting Elements,” on page 270) is one of two main elements that are of type 
BPMN Element (see Figure B.1). The other is Graphical Element.

B.3 Process Attributes
The following table displays the set of attributes of a Process, and which extends the set of common BPMN Element attributes 
(see Table B.2).

Table B.3 - Process Attributes

Attributes Description

Name : String Name is an attribute that is a text description of the object.

ProcessType (None | Private | 
Abstract | Collaboration) None : 
String

ProcessType is an attribute that provides information about which lower-level 
language the Pool will be mapped. By default, the ProcessType is None (or 
undefined).

Status (None | Ready | Active | 
Cancelled | Aborting | Aborted | 
Completing | Completed) None : 
String

The Status of a Process is determined when the Process is being executed by a 
process engine. The Status of a Process can be used within Assignment Expressions.

GraphicalElements (0-n) : 
Object

The GraphicalElements attribute identifies all of the objects (e.g., Events, Activities, 
Gateways, and Artifacts) that are contained within the Process.

Assignments (0-n) : Assignment One or more assignment expressions MAY be made for the object. The Assignment 
SHALL be performed as defined by the AssignTime attribute (see below). The 
details of Assignment are defined in  “Assignment on page 273.”

Performers (0-n) : String One or more Performers MAY be entered. The Performers attribute defines the 
resource that will be responsible for the Process. The Performers entry could be in 
the form of a specific individual, a group, an organization role or position, or an 
organization.

Properties (0-n) : Property Modeler-defined Properties MAY be added to a Process. These Properties are 
“local” to the Process. All Tasks, Sub-Process objects, and Sub-Processes that are 
embedded SHALL have access to these Properties. The fully delineated name of 
these properties is “<process name>.<property name>” (e.g., “Add 
Customer.Customer Name”). If a process is embedded within another Process, then 
the fully delineated name SHALL also be preceded by the Parent Process name for 
as many Parents there are until the top level Process. Further details about the 
definition of a Property can be found in  “Property on page 279.”
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B.4 Common Flow Object Attributes
The following table displays the set of attributes common to BPMN Flow Objects (Events, Activities, and Gateways), and 
which extends the set of common BPMN Element attributes (see Table B.2).

B.5 Events
The following figure displays a diagram of the relationship between BPMN Event elements and their attributes (see Figure 
B.2).

InputSets (0-n) : InputSet The InputSets attribute defines the data requirements for input to the Process. Zero 
or more InputSets MAY be defined. Each Input set is sufficient to allow the Process 
to be performed (if it has first been instantiated by the appropriate signal arriving 
from an incoming Sequence Flow). Further details about the definition of an 
InputSet can be found in Section B.11.10, “InputSet,” on page 278.

OutputSets (0-n) : OutputSet The OutputSets attribute defines the data requirements for output from the Process. 
Zero or more OutputSets MAY be defined. At the completion of the Process, only 
one of the OutputSets may be produced--It is up to the implementation of the 
Process to determine which set will be produced. However, the IORules attribute 
MAY indicate a relationship between an OutputSet and an InputSet that started the 
Process. Further details about the definition of an OutputSet can be found in 
Section B.11.13, “OutputSet,” on page 279.

AdHoc False : Boolean AdHoc is a boolean attribute, which has a default of False. This specifies whether 
the Process is Ad Hoc or not. The activities within an Ad Hoc Process are not 
controlled or sequenced in a particular order, their performance is determined by the 
performers of the activities. If set to True, then the Ad Hoc marker SHALL be 
placed at the bottom center of the Process or the Sub-Process shape for Ad Hoc 
Processes.

[AdHoc = True only]

AdHocOrdering (0-1) 
(Sequential | Parallel) Parallel : 
String

If the Process is Ad Hoc (the AdHoc attribute is True), then the AdHocOrdering 
attribute MUST be included. This attribute defines if the activities within the 
Process can be performed in Parallel or must be performed sequentially. The default 
setting is Parallel and the setting of Sequential is a restriction on the performance 
that may be required due to shared resources. 

[AdHoc = True only]

AdHocCompletionCondition 
(0-1) : Expression

If the Process is Ad Hoc (the AdHoc attribute is True), then the 
AdHocCompletionCondition attribute MUST be included. This attribute defines the 
conditions when the Process will end. 

Table B.4 - Common Flow Object Attributes

Attributes Description

Name : String Name is an attribute that is a text description of the object.

Assignments (0-n) : Assignment One or more assignment expressions MAY be made for the object. For activities, 
the Assignment SHALL be performed as defined by the AssignTime attribute. The 
Details of the Assignment is defined in  “Assignment on page 273.”

Table B.3 - Process Attributes

Attributes Description
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Figure B.2 - BPMN Event Elements and Attributes
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B.5.1 Common Event Attributes

The following table displays the set of attributes common to the three types of Events, and which extends the set of common 
Flow Object attributes (see Table B.4).

B.5.2 Start Event

The following table displays the set of attributes of a Start Event, which extends the set of common Event elements (see 
Table B.5).

B.5.3 End Event

The following table displays the set of attributes of an End Event, which extends the set of common Event elements (see 
Table B.5).

Table B.5 - Common Event Attributes

Attributes Description

EventType (Start | End | 
Intermediate) Start : String

The EventType MUST be of type Start, End, or Intermediate.

Table B.6 - Start Event Attributes

Attributes Description

Trigger (0-n) : EventDetail Trigger (EventDetail) is an attribute that defines the type of trigger expected for a 
Start Event. Of the set of EventDetailTypes (see Section B.11.7, “Event Details,” on 
page 274), only four (4) can be applied to a Start Event: Message, Timer, 
Conditional, and Signal (see Table 9.4).
If there is no EventDetail is defined, then this is considered a None End Event and 
the Event will not have an internal marker (see Table 9.4).
If there is more than one EventDetail is defined, this is considered a Multiple End 
Event and the Event will have the star internal marker (see Table 9.4).

Table B.7 - End Event Attributes

Attributes Description

Result (0-n) : EventDetail Result (EventDetail) is an attribute that defines the type of result expected for an 
End Event. Of the set of EventDetailTypes (see Section B.11.7, “Event Details,” on 
page 274), only six (6) can be applied to an End Event: Message, Error, Cancel, 
Compensation, Signal, and Terminate (see Table 9.6).
If there is no EventDetail is defined, then this is considered a None End Event and 
the Event will not have an internal marker (see Table 9.6).
If  more than one EventDetail is defined, this is considered a Multiple End Event and 
the Event will have the star internal marker (see Table 9.6).
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B.5.4 Intermediate Event

The following table displays the set of attributes of an Intermediate Event, which extends the set of common Event elements 
(see Table B.5).

B.6 Activities
The following figure displays a diagram of the relationship between BPMN activity elements and their attributes (see Figure 
B.3).

Table B.8 - Intermediate Event Attributes

Attributes Description

Trigger (0-n) : EventDetail Trigger (EventDetail) is an attribute that defines the type of trigger expected for an 
Intermediate Event. Of the set of EventDetailTypes (see Section B.11.7, “Event 
Details,” on page 274), only eight (8) can be applied to an Intermediate Event: 
Message, Timer, Error, Cancel, Compensation, Conditional, Link, and Signal (see 
Table 9.8).
If there is no EventDetail is defined, then this is considered a None Intermediate 
Event and the Event will not have an internal marker (see Table 9.8).
If more than one EventDetail is defined, this is considered a Multiple Intermediate 
Event and the Event will have the star internal marker (see Table 9.8).

Target (0-1) : Activity A Target MAY be included for the Intermediate Event. The Target MUST be an 
activity (Sub-Process or Task). This means that the Intermediate Event is attached 
to the boundary of the activity and is used to signify an exception or compensation 
for that activity.
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Figure B.3 - BPMN Activity Elements and Attributes
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B.6.1 Common Activity Attributes

The following table displays the set of attributes common to both a Sub-Process and a Task, and which extends the set of 
common Flow Object attributes (see Table B.4) -- Note that Figure 10.55 and Figure 10.56 contain additional attributes that 
must be included within this set if extended by any other attribute table.

Table B.9 - Common Activity Attributes

Attributes Description

ActivityType (Task | Sub-
Process) Task : String

The ActivityType MUST be of type Task or Sub-Process.

Status (None | Ready | Active | 
Cancelled | Aborting | Aborted | 
Completing | Completed) None : 
String

The Status of an activity is determined when the activity is being executed by a 
process engine. The Status of an activity can be used within Assignment 
Expressions.

Performers (0-n) : String One or more Performers MAY be entered. The Performer attribute defines the 
resource that will perform or will be responsible for the activity. The Performer 
entry could be in the form of a specific individual, a group, an organization role or 
position, or an organization.

Properties (0-n) : Property Modeler-defined Properties MAY be added to an activity. These Properties are 
“local” to the activity object. These Properties are only for use within the processing 
of the activity. The fully delineated name of these properties are “<process 
name>.<sub-process name>.<property name>” (e.g., “Add Customer.Review 
Credit.Status”). Further details about the definition of a Property can be found in  
“Property on page 279.”

InputSets (0-n) : InputSet The InputSets attribute defines the data requirements for input to the activity. Zero 
or more InputSets MAY be defined. Each Input set is sufficient to allow the activity 
to be performed (if it has first been instantiated by the appropriate signal arriving 
from an incoming Sequence Flow). Further details about the definition of an 
InputSet can be found in Section B.11.10, “InputSet,” on page 278.

OutputSets (0-n) : OutputSet The OutputSets attribute defines the data requirements for output from the activity. 
Zero or more OutputSets MAY be defined. At the completion of the activity, only 
one of the OutputSets may be produced--It is up to the implementation of the 
activity to determine which set will be produced. However, the IORules attribute 
MAY indicate a relationship between an OutputSet and an InputSet that started the 
activity. Further details about the definition of an OutputSet can be found in 
Section B.11.13, “OutputSet,” on page 279.

IORules (0-n) : Expression The IORules attribute is a collection of expressions, each of which specifies the 
required relationship between one input and one output. That is, if the activity is 
instantiated with a specified input, that activity shall complete with the specified 
output.
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Standard Loop Attributes

The following are additional attributes of a Standard Loop Activity (where the LoopType attribute is set to “Standard”), which 
extends the set of common activity attributes (see Table B.9).

StartQuantity 1 : Integer The default value is 1. The value MUST NOT be less than 1. This attribute defines 
the number of Tokens that must arrive before the activity can begin.

CompletionQuantity 1 : Integer The default value is 1. The value MUST NOT be less than 1. This attribute defines 
the number of Tokens that must be generated from the activity. This number of 
Tokens will be sent done any outgoing Sequence Flow (assuming any Sequence 
Flow Conditions are satisfied).

LoopType (None | Standard | 
MultiInstance) None : String

LoopType is an attribute and is by default None, but MAY be set to Standard or 
MultiInstance. If so, the Loop marker SHALL be placed at the bottom center of the 
activity shape (see Figure 9.6 and Figure 9.15).
A Task of type Receive that has its Instantiate attribute set to True MUST NOT have 
a Standard or MultiInstance LoopType.

Table B.10 - Standard Loop Activity Attributes

Attributes Description

LoopCondition : Expression Standard Loops MUST have a boolean Expression to be evaluated, plus the timing 
when the expression SHALL be evaluated. The attributes of an Expression can be 
found in “Expression on page 277.”

LoopCounter : Integer The LoopCounter attribute is used at runtime to count the number of loops and is 
automatically updated by the process engine. The LoopCounter attribute MUST be 
incremented at the start of a loop. The modeler may use the attribute in the 
LoopCondition Expression.

LoopMaximum (0-1) : Integer The Maximum an optional attribute that provides is a simple way to add a cap to the 
number of loops. This SHALL be added to the Expression defined in the 
LoopCondition.

TestTime (Before | After) After : 
String

The expressions that are evaluated Before the activity begins are equivalent to a 
programming while function.
The expressions that are evaluated After the activity finishes are equivalent to a 
programming until function.

Table B.9 - Common Activity Attributes

Attributes Description
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Multi-Instance Loop Attributes

The following are additional attributes of a Multi-Instance Loop Activity (where the LoopType attribute is set to 
“MultiInstance”), which extends the set of common activity attributes (see Table B.9).

Table B.11 - Multi-Instance Loop Activity Attributes

Attributes Description

MI_Condition : Expression MultiInstance Loops MUST have a numeric Expression to be evaluated--the 
Expression MUST resolve to an integer. The attributes of an Expression can be 
found in “Expression on page 277.”

LoopCounter : Integer The LoopCounter attribute is only applied for Sequential MultiInstance Loops and 
for processes that are being executed by a process engine. The attribute is updated 
at runtime by a process engine to count the number of loops as they occur. The 
LoopCounter attribute MUST be incremented at the start of a loop. Unlike a 
Standard loop, the modeler does not use this attribute in the MI_Condition 
Expression, but it can be used for tracking the status of a loop.

MI_Ordering (Sequential | 
Parallel) Sequential : String

This applies to only MultiInstance Loops. The MI_Ordering attribute defines 
whether the loop instances will be performed sequentially or in parallel. 
Sequential MI_Ordering is a more traditional loop. 
Parallel MI_Ordering is equivalent to multi-instance specifications that other 
notations, such as UML Activity Diagrams use. If set to Parallel, the Parallel marker 
SHALL replace the Loop Marker at the bottom center of the activity shape (see 
Figure 9.9 and Figure 9.15).

[Parallel MI_Ordering only]

MI_FlowCondition (None | One 
| All | Complex) All : String

This attribute is equivalent to using a Gateway to control the flow past a set of 
parallel paths.

• An MI_FlowCondition of “None” is the same as uncontrolled flow (no 
Gateway) and means that all activity instances SHALL generate a token that 
will continue when that instance is completed. 

• An MI_FlowCondition of “One” is the same as an Exclusive Gateway and 
means that the Token SHALL continue past the activity after only one of the 
activity instances has completed. The activity will continue its other 
instances, but additional Tokens MUST NOT be passed from the activity. 

• An MI_FlowCondition of “All” is the same as a Parallel Gateway and means 
that the Token SHALL continue past the activity after all of the activity 
instances have completed.

• An MI_FlowCondition of “Complex” is similar to that of a Complex 
Gateway. The ComplexMI_FlowCondition attribute will determine the 
Token flow.

[Complex MI_FlowCondition 
only]

ComplexMI_FlowCondition 
(0-1) : Expression

If the MI_FlowCondition attribute is set to “Complex,” then an Expression Must be 
entered. This Expression that MAY reference Process data. The expression will be 
evaluated after each iteration of the Activity and SHALL resolve to a boolean. If the 
result of the expression evaluation is TRUE, then a Token will be sent down the 
activity’s outgoing Sequence Flow. Otherwise, no Token will be sent. The attributes 
of an Expression can be found in “Expression on page 277.”
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B.6.2 Sub-Process

The following table displays the set of attributes of a Sub-Process, which extends the set of common activity attributes (see 
Table B.9).

Embedded Sub-Process

The following are additional attributes of an Embedded Sub-Process (where the SubProcessType attribute is set to 
“Embedded”), which extends the set of Sub-Process attributes (see Table B.12).

Table B.12 - Sub-Process Attributes

Attributes Description

SubProcessType (Embedded | 
Reusable | Reference) 
Embedded : String

SubProcessType is an attribute that defines whether the Sub-Process details are 
embedded within the higher level Process or refers to another, re-usable Process. 
The default is Embedded.

IsATransaction False : Boolean IsATransaction determines whether or not the behavior of the Sub-Process will 
follow the behavior of a Transaction (see  “Section 9.4.2.5, “Sub-Process Behavior 
as a Transaction,” on page 62”).

TransactionRef (0-1) : 
Transaction

If the IsATransaction attribute is False, then a Transaction MUST NOT be 
identified. If the IsATransaction attribute is True, then a Transaction MUST be 
identified. The attributes of a Transaction can be found in  “Section B.11.19, 
“Transaction,” on page 281.”
Note that Transactions that are in different Pools and are connected through 
Message Flow MUST have the same TransactionId.

Table B.13 - Embedded Sub-Process Attributes

Attributes Description

GraphicalElements (0-n) : 
Object

The GraphicalElements attribute identifies all of the objects (e.g., Events, Activities, 
Gateways, and Artifacts) that are contained within the Embedded Sub-Process.

AdHoc False : Boolean AdHoc is a boolean attribute that has a default of False. This specifies whether the 
Embedded Sub-Process is Ad Hoc or not. The activities within an Ad Hoc 
Embedded Sub-Process are not controlled or sequenced in a particular order, their 
performance is determined by the performers of the activities.

[AdHoc = True only]

AdHocOrdering (0-1) 
(Sequential | Parallel) Parallel : 
String

If the Embedded Sub-Process is Ad Hoc (the AdHoc attribute is True), then the 
AdHocOrdering attribute MUST be included. This attribute defines if the activities 
within the Process can be performed in Parallel or must be performed sequentially. 
The default setting is Parallel and the setting of Sequential is a restriction on the 
performance that may be required due to shared resources. 

[AdHoc = True only]

AdHocCompletionCondition 
(0-1) : Expression

If the Embedded Sub-Process is Ad Hoc (the AdHoc attribute is True), then a 
Completion Condition MUST be included, which defines the conditions when the 
Process will end. The Ad Hoc marker SHALL be placed at the bottom center of the 
Process or the Sub-Process shape for Ad Hoc Processes.
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Reusable Sub-Process Attributes

The following are additional attributes of a Reusable Sub-Process (where the SubProcessType attribute is set to “Reusable”), 
which extends the set of Sub-Process attributes (see Table B.12).

Reference Sub-Process Attributes

The following table displays the set of attributes of a Reference Sub-Process (where the SubProcessType attribute is set to 
“Reference”), which extends the set of Sub-Process attributes (see Table B.12).

B.6.3 Task

The following table displays the set of attributes of a Task, which extends the set of common activity object attributes (see 
Table B.9).

Table B.14 - Reusable Sub-Process Attributes

Attributes Description

DiagramRef : Business Process 
Diagram

The BPD MUST be identified. The attributes of a BPD can be found in  
“Section 8.5, “Business Process Diagram Attributes,” on page 31.”

ProcessRef : Process A Process MUST be identified. The attributes of a Process can be found in  
“Section 8.6, “Processes,” on page 32.”

InputMaps (0-n) : Expression Multiple input mappings MAY be made between the Reusable Sub-Process and the 
Process referenced by this object. These mappings are in the form of an expression. 
A specific mapping expression MUST specify the mapping of Properties between 
the two Processes OR the mapping of Artifacts between the two Processes.

OutputMaps (0-n) : Expression Multiple output mappings MAY be made between the Reusable Sub-Process and 
the Process referenced by this object. These mappings are in the form of an 
expression. A specific mapping expression MUST specify the mapping of 
Properties between the two Processes OR the mapping of Artifacts between the two 
Processes.

Table B.15 - Reference Sub-Process Attributes

Attributes Description

SubProcessRef : Sub-Process The Sub-Process being referenced MUST be identified. The attributes for the Sub-
Process element can be found in Table B.12.
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Service Task Attributes

The following table displays the set of attributes of a Service Task (where the TaskType attribute is set to “Service”), which 
extends the set of Task attributes (see Table B.16).

Table B.16 - Task Attributes

Attributes Description

TaskType (Service | Receive | 
Send | User | Script | Abstract | 
Manual | Reference | None) None 
: String

TaskType is an attribute that has a default of None, but MAY be set to Send, 
Receive, User, Script, Abstract, Manual, Reference, or Service. The TaskType will 
be impacted by the Message Flow to and/or from the Task, if Message Flow are 
used. A TaskType of Receive MUST NOT have an outgoing Message Flow. A 
TaskType of Send MUST NOT have an incoming Message Flow. A TaskType of 
Script or Manual MUST NOT have an incoming or an outgoing Message Flow.
The TaskType list MAY be extended to include new types. The attributes for 
specific settings of TaskType can be found in Table B.17 through Table B.22.

Table B.17 - Service Task Attributes

Attributes Description

InMessageRef : Message A Message for the InMessageRef attribute MUST be entered. This indicates that the 
Message will be received at the start of the Task, after the availability of any defined 
InputSets. One or more corresponding incoming Message Flow MAY be shown on 
the diagram. However, the display of the Message Flow is not required. The 
Message is applied to all incoming Message Flow, but can arrive for only one of the 
incoming Message Flow for a single instance of the Task.

OutMessageRef : Message A Message for the OutMessageRef attribute MUST be entered. The sending of this 
message marks the completion of the Task, which may cause the production of an 
OutputSet. One or more corresponding outgoing Message Flow MAY be shown on 
the diagram. However, the display of the Message Flow is not required. The 
Message is applied to all outgoing Message Flow and the Message will be sent down 
all outgoing Message Flow at the completion of a single instance of the Task.

Implementation (Web Service | 
Other | Unspecified) Web Service 
: String

This attribute specifies the technology that will be used to send and receive the 
messages. A Web service is the default technology.
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Receive Task Attributes

The following table displays the set of attributes of a Receive Task (where the TaskType attribute is set to “Receive”), which 
extends the set of Task attributes (see Table B.16).

Send Task Attributes

The following table displays the set of attributes of a Send Task (where the TaskType attribute is set to “Send”), which extends 
the set of Task attributes (see Table B.16).

Table B.18 - Receive Task Attributes

Attributes Description

MessageRef : Message A Message for the MessageRef attribute MUST be entered. This indicates that the 
Message will be received by the Task. The Message in this context is equivalent to 
an in-only message pattern (Web service). One or more corresponding incoming 
Message Flow MAY be shown on the diagram. However, the display of the Message 
Flow is not required. The Message is applied to all incoming Message Flow, but can 
arrive for only one of the incoming Message Flow for a single instance of the Task.

Instantiate False : Boolean Receive Tasks can be defined as the instantiation mechanism for the Process with 
the Instantiate attribute. This attribute MAY be set to true if the Task is the first 
activity after the Start Event or a starting Task if there is no Start Event. Multiple 
Tasks MAY have this attribute set to True.

Implementation (Web Service | 
Other | Unspecified) Web Service 
: String

This attribute specifies the technology that will be used to receive the message. A 
Web service is the default technology.

Table B.19 - Send Task Attributes

Attributes Description

MessageRef : Message A Message for the MessageRef attribute MUST be entered. This indicates that the 
Message will be sent by the Task. The Message in this context is equivalent to an 
out-only message pattern (Web service). One or more corresponding outgoing 
Message Flow MAY be shown on the diagram. However, the display of the Message 
Flow is not required. The Message is applied to all outgoing Message Flow and the 
Message will be sent down all outgoing Message Flow at the completion of a single 
instance of the Task.

Implementation (Web Service | 
Other | Unspecified) Web Service 
: String

This attribute specifies the technology that will be used to send the message. A Web 
service is the default technology.
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User Task Attributes

The following table displays the set of attributes of a User Task (where the TaskType attribute is set to “User”), which extends 
the set of Task attributes (see Table B.16).

Script Task Attributes

The following table displays the set of attributes of a Script Task (where the TaskType attribute is set to “Script”), which 
extends the set of Task attributes (see Table B.16).

Manual Task Attributes

The Manual Task does not contain any additional attributes beyond the set of Task attributes (see Table B.16).

Reference Task Attributes

The following table displays the set of attributes of a Reference Task (where the TaskType attribute is set to “Reference”), 
which extends the set of Task attributes (see Table B.16).

Table B.20 - User Task Attributes

Attributes Description

InMessageRef : Message A Message for the InMessageRef attribute MUST be entered. This indicates that the 
Message will be received at the start of the Task, after the availability of any defined 
InputSets. One or more corresponding incoming Message Flows MAY be shown on 
the diagram. However, the display of the Message Flow is not required. The 
Message is applied to all incoming Message Flow, but can arrive for only one of the 
incoming Message Flow for a single instance of the Task.

OutMessageRef: Message A Message for the OutMessageRef attribute MUST be entered. The sending of this 
message marks the completion of the Task, which may cause the production of an 
OutputSet. One or more corresponding outgoing Message Flow MAY be shown on 
the diagram. However, the display of the Message Flow is not required. The 
Message is applied to all outgoing Message Flow and the Message will be sent down 
all outgoing Message Flow at the completion of a single instance of the Task.

Implementation (Web Service | 
Other | Unspecified) Web Service 
: String

This attribute specifies the technology that will be used by the Performers to perform 
the Task. A Web service is the default technology.

Table B.21 - Script Task Attributes

Attributes Description

Script (0-1) : String The modeler MAY include a script that can be run when the Task is performed. If a 
script is not included, then the Task will act equivalent to a TaskType of None.

Table B.22 - Reference Task Attributes

Attributes Description

TaskRef : Task The Task being referenced MUST be identified. The attributes for the Task element 
can be found in Table B.16.
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B.7 Gateways
The following figure displays a diagram of the relationship between BPMN Gateway elements and their attributes (see Figure 
B.4). Event-Based Gateways can be defined as the instantiation mechanism for the Process with the Instantiate attribute. This 
attribute MAY be set to true if the Gateway is the first element after the Start Event or a starting Gateway if there is no Start 
Event (i.e., there are no incoming Sequence Flow).

Figure B.4 - BPMN Gateway Elements and Attributes
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B.7.1 Common Gateway Attributes

The following table displays the attributes common to Gateways, and which extends the set of common Flow Object attributes 
(see Table B.4).

B.7.2 Exclusive Gateways

Data-Based

The following table displays the attributes for a Data-Based Exclusive Gateway. These attributes only apply if the 
GatewayType attribute is set to Exclusive. The following attributes extend the set of common Gateway attributes (see 
Table B.23).

Table B.23 - Common Gateway Attributes

Attributes Description

GatewayType (Exclusive | 
Inclusive | Complex | Parallel) 
Exclusive : String

GatewayType is by default Exclusive. The GatewayType MAY be set to Inclusive, 
Complex, or Parallel. The GatewayType will determine the behavior of the 
Gateway, both for incoming and outgoing Sequence Flow, and will determine the 
internal indicator (as shown in Figure 9.17).

Gates (0-n) : Gate There MAY be zero or more Gates (except where noted below). Zero Gates are 
allowed if the Gateway is last object in a Process flow and there are no Start or End 
Events for the Process. If there are zero or only one incoming Sequence Flow, then 
there MUST be at least two Gates.

• For Exclusive Data-Based Gateways: When two Gates are required, one of 
them MAY be the DefaultGate.

• For Exclusive Event-Based Gateways:  There MUST be two or more Gates. 
(Note that this type of Gateway does not act only as a Merge--it is always a 
Decision, at least.)

• For Inclusive Gateways:  When two Gates are required, one of them MAY 
be the DefaultGate.

Table B.24 - Data-Based Exclusive Gateway Attributes

Attributes Description

ExclusiveType (Data | Event) 
Data : String

ExclusiveType is by default Data. The ExclusiveType MAY be set to Event. Since 
Data-Based Exclusive Gateways is the subject of this section, the attribute MUST 
be set to Data for the attributes and behavior defined in this section to apply to the 
Gateway.

MarkerVisible False : Boolean This attribute determines if the Exclusive Marker is displayed in the center of the 
Gateway diamond (an “X”). The marker is displayed if the attribute is True and it is 
not displayed if the attribute is False. By default, the marker is not displayed.

DefaultGate (0-1) : Gate A Default Gate MAY be specified  (see Section B.11.9, “Gate,” on page 277).
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Event-Based

The following table displays the attributes for an Event-Based Exclusive Gateway. These attributes only apply if the 
GatewayType attribute is set to Exclusive. The following attributes extend the set of common Gateway attributes (see 
Table B.23).

B.7.3 Inclusive Gateways

The following table displays the attributes for an Inclusive Gateway. These attributes only apply if the GatewayType attribute 
is set to Inclusive. The following attributes extend the set of common Gateway attributes (see Table B.23).

B.7.4 Complex Gateways

The following table displays the attributes for a Complex Gateway. These attributes only apply if the GatewayType attribute is 
set to Complex. The following attributes extend the set of common Gateway attributes (see Table B.23).

B.7.5 Parallel Gateways

Parallel Gateways do not have any additional Attributes beyond the common Gateway Attributes (see Table B.23).

Table B.25 - Event-Based Exclusive Gateway Attributes

Attributes Description

ExclusiveType (Data | Event) 
Event : String

ExclusiveType is by default Data. The ExclusiveType MAY be set to Event. Since 
Event-Based Exclusive Gateways is the subject of this section, the attribute MUST 
be set to Event for the attributes and behavior defined in this section to apply to the 
Gateway.

Instantiate False : Boolean Event-Based Gateways can be defined as the instantiation mechanism for the 
Process with the Instantiate attribute. This attribute MAY be set to true if the 
Gateway is the first element after the Start Event or a starting Gateway if there is no 
Start Event (i.e., there are no incoming Sequence Flow).

Table B.26 - Inclusive Gateway Attributes

Attributes Description

DefaultGate (0-1) : Gate A Default Gate MAY be specified (see Section B.11.9, “Gate,” on page 277).

Table B.27 - Complex Gateway Attributes

Attributes Description

IncomingCondition (0-1) : 
Expression

If there are Multiple incoming Sequence Flow, an IncomingCondition expression 
MUST be set by the modeler. This will consist of an expression that can reference 
Sequence Flow names and or Process Properties (Data).

OutgoingCondition (0-1) : 
Expression

If there are Multiple outgoing Sequence Flow, an OutgoingCondition expression 
MUST be set by the modeler. This will consist of an expression that can reference 
(outgoing) Sequence Flow Ids and or Process Properties (Data).
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B.8 Swimlanes (Pools and Lanes)
The following figure displays a diagram of the relationship between BPMN Swimlane elements and their attributes (see Figure 
B.5).

Figure B.5 - BPMN Swimlane Elements and Attributes

B.8.1 Common Swimlane Attributes

The following table displays a set of common attributes for Swimlanes (Pools and Lanes), and which extends the set of 
common BPMN Element attributes (see Table B.2).

Table B.28 - Common Swimlane Attributes

Attributes Description

Name : String Name is an attribute that is text description of the Swimlane.
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B.8.2 Pool

The following table displays the identified attributes of a Pool, and which extends the set of common Swimlane attributes (see 
Table B.28).

B.8.3 Lane

The following table displays the identified attributes of a Lane, and which extends the set of common Swimlane attributes (see 
Table B.28).

B.9 Artifacts
The following figure displays a diagram of the relationship between BPMN Artifact elements and their attributes (see Figure 
B.6).

Table B.29 - Pool Attributes

Attributes Description

ProcessRef  (0-1) : Process The ProcessRef attribute defines the Process that is contained within the Pool. Each 
Pool MAY have a Process. These attributes are used for Graphical Elements, which 
are Flow Objects (Section B.4, “Common Flow Object Attributes,” on page 247), 
Connecting Objects (Section B.10, “Graphical Connecting Objects,” on page 267), 
Swimlanes (Section B.8, “Swimlanes (Pools and Lanes),” on page 263),” Artifacts 
(Section B.9, “Artifacts,” on page 264), and Supporting Elements (Section B.11, 
“Supporting Elements,” on page 270).

ParticipantRef : Participant The Modeler MUST define the Participant for a Pool. The Participant can be either 
a Role or an Entity. The attributes for a Participant can be found in “Participant on 
page 279.”

Lanes (1-n) : Lane There MUST be one or more Lanes within a Pool. If there is only one Lane, then 
that Lane shares the name of the Pool and only the Pool name is displayed. If there 
is more than one Lane, then each Lane has to have its own name and all names are 
displayed. The attributes for a Lane can be found in “Section 9.6.3, “Lane,” on page 
89.”

BoundaryVisible True : Boolean This attribute defines if the rectangular boundary for the Pool is visible. Only one 
Pool in the Diagram MAY have the attribute set to False.

MainPool False : Boolean This attribute defines if the Pool is the “main” Pool or the focus of the diagram. Only 
one Pool in the Diagram MAY have the attribute set to True.

Table B.30 - Lane Attributes

Attributes Description

Lanes (0-*) : Lane This attribute identifies any Lanes that are nested within the current Lane.
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Figure B.6 - BPMN Artifact Elements and Attributes

B.9.1 Common Artifact Attributes

The following table displays the identified attributes common to Artifacts, and which extends the set of common BPMN 
Element attributes (see Table B.2).

Table B.31 - Common Artifact Attributes

Attributes Description

ArtifactType (DataObject | 
Group | Annotation) DataObject : 
String

The ArtifactType MAY be set to DataObject, Group, or Annotation. 
The ArtifactType list MAY be extended to include new types.
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B.9.2 Data Object

The following table displays the attributes for Data Objects, and which extends the set of common Artifact attributes (see 
Table B.31). These attributes only apply if the ArtifactType attribute is set to DataObject.

B.9.3 Text Annotation

The following table displays the attributes for Annotations, and which extends the set of common Artifact attributes (see 
Table B.31). These attributes only apply if the ArtifactType attribute is set to Annotation.

B.9.4 Group

The following table displays the attributes for Groups, and which extends the set of common Artifact attributes (see 
Table B.31). These attributes only apply if the ArtifactType attribute is set to Group.

Table B.32 - Data Object Attributes

Attributes Description

Name : String Name is an attribute that is text description of the object.

State (0-1) : String State is an optional attribute that indicates the impact the Process has had on the Data 
Object. Multiple Data Objects with the same name MAY share the same state within 
one Process.

Properties (0-n) : Properties Modeler-defined Properties MAY be added to a Data Object. The fully delineated 
name of these properties are “<process name>.<task name>.<property name>” 
(e.g., “Add Customer.Review Credit Report.Score”). Further details about the 
definition of a Property can be found in  “Property on page 279.”

Table B.33 - Text Annotation Attributes

Attributes Description

Text : String Text is an attribute that is text that the modeler wishes to communicate to the reader 
of the Diagram.

Table B.34 - Group Attributes

Attributes Description

CategoryRef : Category CategoryRef specifies the Category that the Group represents (Further details about 
the definition of a Category can be found in  “Category on page 273”). 
The name of the Category provides the label for the Group. The graphical elements 
within the boundaries of the Group will be assigned the Category.

GraphicalElements (0-n) : 
Graphical Element

The GraphicalElements attribute identifies all of the graphical elements (e.g., 
Events, Activities, Gateways, and Artifacts) that are within the boundaries of the 
Group.
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B.10 Graphical Connecting Objects
The following figure displays a diagram of the relationship between BPMN Connecting Object elements and their attributes 
(see Figure B.7).

Figure B.7 - BPMN Connecting Object Elements and Attributes
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B.10.1 Common Connecting Object Attributes

The following table displays the set of attributes common to Connecting Objects (Sequence Flow, Message Flow, and 
Association), and which extends the set of common BPMN Element attributes (see Table B.2).

B.10.2  Sequence Flow

The following table displays the set of attributes of a Sequence Flow, and which extends the set of common Connecting Object 
attributes (see Table B.35 ).

Table B.35 - Common Connecting Object Attributes

Attributes Description

Name : String Name is an attribute that is text description of the object.

SourceRef : Graphical Element SourceRef is an attribute that identifies which Graphical Element the Connecting 
Object is connected from. Note: there are restrictions as to what objects Sequence 
Flow and Message Flow can connect. Refer to the Sequence Flow Connections 
section and the Message Flow Connections section for each Flow Object, Swimlane, 
and Artifact.

TargetRef : Graphical Element Target is an attribute that identifies which Graphical Element the Connecting Object 
is connected to. Note: there are restrictions as to what objects Sequence Flow and 
Message Flow can connect. Refer to the Sequence Flow Connections section and the 
Message Flow Connections section for each Flow Object, Swimlane, and Artifact.

Table B.36 - Sequence Flow Attributes  

Attributes Description

ConditionType (None | 
Expression | Default) None : 
String

By default, the ConditionType of a Sequence Flow is None. This means that there 
is no evaluation at runtime to determine whether or not the Sequence Flow will be 
used. Once a Token is ready to traverse the Sequence Flow (i.e., the Source is an 
activity that has completed), then the Token will do so. The normal, uncontrolled 
use of Sequence Flow, in a sequence of activities, will have a None ConditionType 
(see Figure 10.1). A None ConditionType MUST NOT be used if the Source of the 
Sequence Flow is an Exclusive Data-Based or Inclusive Gateway.
The ConditionType attribute MAY be set to Expression if the Source of the 
Sequence Flow is a Task, a Sub-Process, or a Gateway of type Exclusive-Data-
Based or Inclusive. 
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B.10.3 Message Flow

The following table displays the identified attributes of a Message Flow, and which extends the set of common Connecting 
Object attributes (see Table B.35).

B.10.4   Association

The following table displays the identified attributes of an Association, and which extends the set of common Connecting 
Object attributes (see Table B.35).

Table B-36 - Sequence Flow Attributes (continued)

Attributes Description

ConditionType (None | 
Expression | Default) None : 
String

If the ConditionType attribute is set to Expression, then a condition marker SHALL 
be added to the line if the Sequence Flow is outgoing from an activity (see Figure 
10.2). However, a condition indicator MUST NOT be added to the line if the 
Sequence Flow is outgoing from a Gateway.
An Expression ConditionType MUST NOT be used if the Source of the Sequence 
Flow is an Event-Based Exclusive Gateway, a Complex Gateway, a Parallel 
Gateway, a Start Event, or an Intermediate Event. In addition, an Expression 
ConditionType MUST NOT be used if the Sequence Flow is associated with the 
Default Gate of a Gateway.
The ConditionType attribute MAY be set to Default only if the Source of the 
Sequence Flow is an activity or an Exclusive Data-Based Gateway. If the 
ConditionType is Default, then the Default marker SHALL be displayed (see 
Figure 10.3).

[ConditionType is set to 
Expression only] 
ConditionExpression : 
Expression

If the ConditionType attribute is set to Expression, then the ConditionExpression 
attribute MUST be defined as a valid expression. The expression will be evaluated 
at runtime. If the result of the evaluation is TRUE, then a Token will be generated 
and will traverse the Sequence--Subject to any constraints imposed by a Source that 
is a Gateway.

Table B.37 - Message Flow Attributes

Attributes Description

MessageRef (0-1) : Message MessageRef is an optional attribute that identifies the Message that is being sent. 
The attributes of a Message can be found in “Message on page 278.”

Table B.38 - Association Attributes

Attributes Description

Direction (None | One | Both) 
None : String

Direction is an attribute that defines whether or not the Association shows any 
directionality with an arrowhead. The default is None (no arrowhead). A value of 
One means that the arrowhead SHALL be at the Target Object. A value of Both 
means that there SHALL be an arrowhead at both ends of the Association line.
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B.11 Supporting Elements
Supporting Element is one of two main elements that are of type BPMN Element (see Figure B.1). The other is Graphical 
Element. There are 16 types, and a few subtypes, of Support Element. These are:

• Assignments (see Section B.11.3, “Assignment,” on page 273)

• Categories (see Section B.11.4, “Category,” on page 273)

• Entities (see Section B.11.5, “Condition,” on page 273)

• Event Details (see Section B.11.7, “Event Details,” on page 274)

• Expressions (see Section B.11.8, “Expression,” on page 277)

• Gates (see Section B.11.9, “Gate,” on page 277)

• Inputs (see Section B.11.10, “InputSet,” on page 278)

• Messages (see Section B.11.11, “Message,” on page 278)

• Outputs (see Section B.11.13, “OutputSet,” on page 279)

• Participants (see Section B.11.14, “Participant,” on page 279)

• Processes (see Section B.3, “Process Attributes,” on page 246)

• Properties (see Section B.11.15, “Property,” on page 279 

• Roles (see Section B.11.16, “Role,” on page 280)

• Conditions (see Section B.11.5, “Condition,” on page 273)

• Transactions (see Section B.11.19, “Transaction,” on page 281)

• Web Services (see Section B.11.20, “Web Service,” on page 281)

The following figure displays a diagram of the relationship between BPMN Supporting elements and their attributes (see 
Figure B.8).
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Figure B.8 - BPMN Supporting Elements and Attributes
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B.11.1  ArtifactInput

The following table displays the set of attributes of an ArtifactInput, which is used in the definition of attributes for InputSet, 
and which extends the set of common BPMN Element attributes (see Table B.2).

B.11.2  ArtifactOutput

The following table displays the set of attributes of an ArtifactOutput, which is used in the definition of attributes for 
OutputSet, and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.39 - ArtifactInput Attributes

Attributes Description

ArtifactRef : Artifact This attribute identifies an Artifact that will be used as an input to an activity. The 
identified Artifact will be part of an InputSet for an activity.

RequiredForStart True : 
Boolean

The default value for this attribute is True. This means that the Input is required for 
an activity to start. If set to False, then the activity MAY start within the input if it 
is available, but MAY accept the input (more than once) after the activity has 
started.  An InputSet may have some ArtifactInputs that have this attribute set to 
True and some that are set to False.

Table B.40 - ArtifactOutput Attributes

Attributes Description

ArtifactRef : Artifact This attribute identifies an Artifact that will be used as an output from an activity. 
The identified Artifact will be part of an OutputSet for an activity.

ProduceAtCompletion True : 
Boolean

The default value for this attribute is True. This means that the Output will be 
produced when an activity has been completed. If set to False, then the activity 
MAY produce the output (more than once) before it has completed. An OutputSet 
may have some ArtifactOutputs that have this attribute set to True and some that are 
set to False.
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B.11.3  Assignment

The following table displays the set of attributes of an Assignment, which is used in the definition of attributes for Process, 
Activities, Events, Gateways, and Gates, and which extends the set of common BPMN Element attributes (see Table B.2).

B.11.4  Category

The following table displays the set of attributes of a Category, which is used in the definition of attributes for all BPMN 
elements, and which extends the set of common BPMN Element attributes (see Table B.2). Since a Category is also a BPMN 
element, a Category can have Categories to create a hierarchical structure of Categories.

B.11.5  Condition

The following table displays the set of attributes of a Condition, which is used in the definition of attributes for Start Event and 
Intermediate Event, and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.41 - Assignment Attributes

Attributes Description

To : Property The target for the Assignment MUST be a Property of the Process or the activity 
itself. 

From : Expression The Expression MUST be made up of a combination of Values, Properties, and 
Attributes, which are separated by operators such as add or multiply. The expression 
language is defined in the ExpressionLanguage attribute of the Business Process 
Diagram  - see “Business Process Diagram Attributes on page 245.”

AssignTime (0-1) (Start | End) 
Start : String

An Assignment MAY have an AssignTime setting. If the Object is an activity (Task, 
Sub-Process, or Process), then the Assignment MUST have an AssignTime.
A value of Start means that the assignment SHALL occur at the start of the activity. 
This can be used to assign the higher-level (global) Properties of the Process to the 
(local) Properties of the activity as an input to the activity.
A value of End means that the assignment SHALL occur at the end of the activity. 
This can be used to assign the (local) Properties of the activity to the higher-level 
(global) Properties of the Process as an output to the activity.

Table B.42 - Category Attributes

Attributes Description

Name : String Name is an attribute that is text description of the Category and is used to visually 
distinguish the category.

Table B.43 - Condition Attributes

Attributes Description

Name (0-1) : String Name is an optional attribute that is text description of the Condition. If a Name is 
not entered, then a ConditionExpression MUST be entered (see the attribute below).

ConditionExpression  (0-1) : 
Expression

A ConditionExpression MAY be entered. In some cases the Condition itself will be 
stored and maintained in a separate application (e.g., a Rules Engine). If a 
ConditionExpression is not entered, then a Name MUST be entered (see the attribute 
above). The attributes of an Expression can be found in  “Expression on page 277.”
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B.11.6  Entity

The following table displays the set of attributes of an Entity, which is used in the definition of attributes for a Participant, and 
which extends the set of common BPMN Element attributes (see Table B.2).

B.11.7  Event Details

The following sections will present the attributes common to all Event Details and the specific attributes for the Event 
Details that have additional attributes. Note that the Cancel and Terminate Event Details do not have additional attributes.

Common EventDetail Attributes

The following table displays the set of attributes common to the types of EventDetail, and which extends the set of common 
BPMN Element attributes (see Table B.2).

Conditional Event Detail

The following table displays the set of attributes a Conditional EventDetail, and which extends the set of common Event Detail 
attributes (see Table B.45).

Table B.44 - Entity Attributes

Attributes Description

Name : String Name is an attribute that is text description of the Entity.

Table B.45 - Common EventDetail Attributes

Attributes Description  

EventDetailType (Message | 
Timer | Error | Conditional | Link | 
Signal | Compensate | Cancel | 
Terminate) Message : String

The EventDetailType attribute defines the type of trigger expected for an Event. The 
set of types includes Message, Timer, Error, Conditional, Link, Signal, Compensate, 
Cancel, and Terminate. The EventTypes (Start, Intermediate, and End) will each 
have a subset of the EventDetailTypes that can be used. The EventDetailType list 
MAY be extended to include new types. These new types MAY have a new 
modeler- or tool-defined Marker to fit within the boundaries of the Event.

Table B.46 - Conditional EventDetail Attributes

Attributes Description

ConditionRef : Condition If the Trigger is Conditional, then a Condition MUST be entered. The attributes of 
a Condition can be found in Section B.11.5, “Condition,” on page 273.
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Compensation Event Detail

The following table displays the set of attributes for a Compensation EventDetail, and which extends the set of common Event 
Detail attributes (see Table B.45).

Error Event Detail

The following table displays the set of attributes for an Error EventDetail, and which extends the set of common Event Detail 
attributes (see Table B.45).

Link Event Detail

The following table displays the set of attributes for a Link EventDetail, and which extends the set of common Event Detail 
attributes (see Table B.45).

Table B.47 - Compensation EventDetail Attributes

Attributes Description

ActivityRef (0-1)  Activity For an End Event:  If the Result is a Compensation, then the Activity that needs to 
be compensated MAY be supplied. If an Activity is not supplied, then the Event is 
broadcast to all completed activities in the Process Instance.

For an Intermediate Event within Normal Flow:  If the Trigger is a Compensation, 
then the Activity that needs to be compensated MAY be supplied. If an Activity is 
not supplied, then the Event is broadcast to all completed activities in the Process 
Instance. This “throws” the compensation.

For an Intermediate Event attached to the boundary of an Activity:  This Event 
“catches” the compensation. No further information is required. The Activity the 
Event is attached to will provide the Id necessary to match the compensation event 
with the event that “threw” the compensation or the compensation will be a 
broadcast.

Table B.48 - Error EventDetail Attributes

Attributes Description

ErrorCode : String For an End Event:  If the Result is an Error, then the ErrorCode MUST be supplied. 
This “throws” the error.

For an Intermediate Event within Normal Flow:  If the Trigger is an Error, then the 
ErrorCode MUST be entered. This “throws” the error.

For an Intermediate Event attached to the boundary of an Activity:  If the Trigger is 
an Error, then the ErrorCode MAY be entered. This Event “catches” the error. If 
there is no ErrorCode, then any error SHALL trigger the Event. If there is an 
ErrorCode, then only an error that matches the ErrorCode SHALL trigger the Event.

Table B.49 - Link EventDetail Attributes

Attributes Description

Name : String If the Trigger is a Link, then the Name MUST be entered.
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Message Event Detail

The following table displays the set of attributes for a Message EventDetail, and which extends the set of common Event 
Detail attributes (see Table B.45).

Signal Event Detail

The following table displays the set of attributes for a Signal EventDetail, and which extends the set of common Event Detail 
attributes (see Table B.45).

Timer Event Detail

The following table displays the set of attributes for a Timer EventDetail, and which extends the set of common Event Detail 
attributes (see Table B.45).

Table B.50 - Message EventDetail Attributes

Attributes Description

MessageRef : Message If the EventDetailType is a MessageRef, then the Message MUST be supplied. The 
attributes of a Message can be found in Section B.11.11, “Message,” on page 278.

Implementation (Web Service | 
Other | Unspecified) Web Service 
: String

This attribute specifies the technology that will be used to send or receive the 
message. A Web service is the default technology.

Table B.51 - Signal EventDetail Attributes

Attributes Description

SignalRef : Signal If the Trigger is a Signal, then a Signal Shall be entered. The attributes of a Signal 
can be found in Section B.11.17, “Signal,” on page 280.

Table B.52 - Timer EventDetail Attributes

Attributes Description

TimeDate (0-1) : 
TimeDateExpression 

If the Trigger is a Timer, then a TimeDate MAY be entered. If a TimeDate is not 
entered, then a TimeCycle MUST be entered (see the attribute below). The attributes 
of a TimeDateExpression can be found in Section B.11.18, “TimeDateExpression,” 
on page 280.

TimeCycle (0-1) : 
TimeDateExpression

If the Trigger is a Timer, then a TimeCycle MAY be entered. If a TimeCycle is not 
entered, then a TimeDate MUST be entered (see the attribute above).
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B.11.8  Expression

The following table displays the set of attributes of an Expression, which is used in the definition of attributes for Start Event, 
Intermediate Event, Activity, Complex Gateway, and Sequence Flow, and which extends the set of common BPMN Element 
attributes (see Table B.2).

B.11.9  Gate

The following table displays the set of attributes of a Gate, which is used in the definition of attributes for Gateways, and 
which extends the set of common BPMN Element attributes (see Table B.2).

Table B.53 - Expression Attributes

Attributes Description

ExpressionBody : String An ExpressionBody MUST be entered to provide the text of the expression, which 
will be written in the language defined by the ExpressionLanguage attribute.

ExpressionLanguage : String A Language MUST be provided to identify the language of the ExpressionBody. 
The value of the ExpressionLanguage should follow the naming conventions for the 
version of the specified language.

Table B.54 - Gate Attributes

Attributes Description

OutgoingSequenceFlowRef  : 
Sequence Flow

Each Gate MUST have an associated (outgoing) Sequence Flow. The attributes of a 
Sequence Flow can be found in Section B.10.2, “Sequence Flow,” on page 268.

For Exclusive Event-Based, Complex, and Parallel Gateways:  The Sequence Flow 
MUST have its Condition attribute set to None (there is not an evaluation of a 
condition expression).

For Exclusive Data-Based, and Inclusive Gateways:  The Sequence Flow MUST 
have its Condition attribute set to Expression and MUST have a valid 
ConditionExpression. The ConditionExpression MUST be unique for all the Gates 
within the Gateway. If there is only one Gate (i.e., the Gateway is acting only as a 
Merge), then Sequence Flow MUST have its Condition set to None.

For DefaultGates:  The Sequence Flow MUST have its Condition attribute set to 
Otherwise.

Assignments (0-n) : Assignment One or more assignment expressions MAY be made for each Gate. The Assignment 
SHALL be performed when the Gate is selected. The Assignment is defined in  
Section B.11.3, “Assignment,” on page 273.
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B.11.10  InputSet

The following table displays the set of attributes of an InputSet, which is used in the definition of common attributes for 
Activities and for attributes of a Process, and which extends the set of common BPMN Element attributes (see Table B.2).

B.11.11  Message

The following table displays the set of attributes of a Message, which is used in the definition of attributes for a Start Event, 
End Event, Intermediate Event, Task, and Message Flow, and which extends the set of common BPMN Element attributes (see 
Table B.2):

B.11.12  Object

The following table displays the set of attributes of an Object, which is used in the definition of attributes for all graphical 
elements.

Table B.55 - Input Attributes

Attributes Description

ArtifactInputs (0-n) : ArtifactInput Zero or more ArtifactInputs MAY be defined for each InputSet. For the combination 
of ArtifactInputs and PropertyInputs, there MUST be at least one item defined for 
the InputSet. An ArtifactInput is an Artifact, usually a Data Object. Note that the 
Artifacts MAY also be displayed on the diagram and MAY be connected to the 
activity through an Association; however, it is not required for them to be displayed. 
Further details about the definition of an ArtifactInput can be found in 
Section B.11.1, “ArtifactInput,” on page 272.

PropertyInputs (0-n) : Property Zero or more PropertyInputs MAY be defined for each InputSet. For the 
combination of ArtifactInputs and PropertyInputs, there MUST be at least one item 
defined for the InputSet.

Table B.56 - Message Attributes

Attributes Description

Name : String Name is an attribute that is text description of the Message.

Properties (0-n) : Property Multiple Properties MAY entered for the Message. The attributes of a Property can 
be found in “Property on page 279.”

FromRef : Participant This defines the source of the Message. The attributes for a Participant can be found 
in “Participant on page 279.”

ToRef : Participant This defines the target of the Message. The attributes for a Participant can be found 
in “Participant on page 279.”

Table B.57 - Object Attributes

Attributes Description

Id : String The Id attribute provides a unique identifier for all objects on a diagram. That is, 
each object MUST have a different value for the ObjectId attribute.
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B.11.13  OutputSet

The following table displays the set of attributes of an OutputSet, which is used in the definition of common attributes for 
Activities and for attributes of a Process, and which extends the set of common BPMN Element attributes (see Table B.2).

B.11.14  Participant

The following table displays the set of attributes of a Participant, which is used in the definition of attributes for a Pool, 
Message, and Web service, and which extends the set of common BPMN Element attributes (see Table B.2).

B.11.15  Property

The following table displays the set of attributes of a Property, which is used in the definition of attributes for a Process and 
common activity attributes, and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.58 - Output Attributes

Attributes Description

ArtifactOutputs (0-n) :  
ArtifactOutput

Zero or more ArtifactOutputs MAY be defined for each InputSet. For the 
combination of ArtifactOutputs and PropertyOutputs, there MUST be at least one 
item defined for the OutputSet. An ArtifactOutput is an Artifact, usually a Data 
Object. Note that the Artifacts MAY also be displayed on the diagram and MAY be 
connected to the activity through an Association; however, it is not required for 
them to be displayed. Further details about the definition of an ArtifactOutput can 
be found in Section B.11.2, “ArtifactOutput,” on page 272.

PropertyOutputs (0-n) : Property Zero or more PropertyOutputs MAY be defined for each InputSet. For the 
combination of ArtifactOutputs and PropertyOutputs, there MUST be at least one 
item defined for the OutputSet.

Table B.59 - Participant Attributes

Attributes Description

ParticipantType (Role | Entity) 
Role : String

Each Property has a Name (e.g., name=”Customer Name”).

[ParticipantType = “Role” only]

RoleRef (0-1) : Role

If the ParticipantType = Role, then a Role MUST be identified. The attributes for a 
Role can be found in “Role on page 280.” 

[ParticipantType = “Entity” only]

EntityRef (0-1) : Entity

If the ParticipantType = Entity, then an Entity MUST be identified. The attributes 
for an Entity can be found in  “Condition on page 273.”

Table B.60 - Property Attributes

Attributes Description

Name : String Each Property has a Name (e.g., name=”Customer Name”).
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B.11.16  Role

The following table displays the set of attributes of a Role, which is used in the definition of attributes for a Participant, and 
which extends the set of common BPMN Element attributes (see Table B.2).

B.11.17  Signal

The following table displays the set of attributes of a Signal, which is used in the definition of attributes for a Start Event, End 
Event, Intermediate Event, and which extends the set of common BPMN Element attributes (see Table B.2).

B.11.18  TimeDateExpression

The TimeDateExpression supporting element is a sub-type of the Expression Element (Expression on page 277) and uses all 
the attributes of the Expression Element.

Type : String Each Property has a Type (e.g., type=”String”). Properties may be defined 
hierarchically.

Value (0-1) : Expression Each Property MAY have a Value specified.

Correlation (0-1) False : Boolean If the Correlation attribute is set to True, then the Property is marked to be used for 
correlation (e.g., for incoming Messages).

Table B.61 - Role Attributes

Attributes Description

Name : String Name is an attribute that is text description of the Role.

Table B.62 - Message Attributes

Attributes Description

Name : String Name is an attribute that is text description of the Signal.

Properties (0-n) : Property Multiple Properties MAY be entered for the Signal. The attributes of a Property can 
be found in “Property on page 279.”

Table B.60 - Property Attributes

Attributes Description
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B.11.19  Transaction

The following table displays the set of attributes of a Transaction, which is used in the definition of attributes for a Sub-
Process, and which extends the set of common BPMN Element attributes (see Table B.2).

B.11.20  Web Service

The following table displays the set of attributes of a Web Service, which is used in the definition of attributes for Message 
Start Event, Message Intermediate Event, Message End Event, Receive Task, Send Task, Service Task, and User Task, and 
which extends the set of common BPMN Element attributes (see Table B.2).

Table B.63 - Transaction Attributes

Attributes Description

TransactionId : String The TransactionId attribute provides an identifier for the Transactions used within 
a diagram.

TransactionProtocol : String This identifies the Protocol (e.g., WS-Transaction or BTP) that will be used to 
control the transactional behavior of the Sub-Process.

TransactionMethod 
(Compensate | Store | Image) 
Compensate : String

TransactionMethod is an attribute that defines the technique that will be used to 
undo a Transaction that has been cancelled. The default is Compensate, but the 
attribute MAY be set to Store or Image. 

Table B.64 - Web Service Attributes

Attributes Description

ParticipantRef : Participant A Participant for the Web Service MUST be entered. The attributes for a Participant 
can be found in  “Participant on page 279.”

Interface : String (aka portType) An Interface for the Web Service MUST be entered.

Operation (1-n) : String One or more Operations for the Web Service MUST be entered.
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Annex C:  Glossary

(informative)

A
Activity An activity is a generic term for work that a company or organization performs via 

business processes. An activity can be atomic or non-atomic (compound). The types 
of activities that are a part of a Process Model are: Process, Sub-Process, and Task.

Abstract Process An Abstract Process represents the interactions between a private business process 
and another process or participant.

AND-Join (from the WfMC Glossary1) An AND-Join is a point in the Process where two or 
more parallel executing activities converge into a single common thread of Sequence 
Flow. See “Join.”

1. The underlined terms in this definition were changed from the original definition. “Process” is used in place of “workflow.” “Sequence 
Flow” is used in place of “control.”

AND-Split (from the WfMC Glossary2) An AND-Split is a point in the Process where a single 
thread of Sequence Flow splits into two or more threads that are executed in parallel 
within the Process, allowing multiple activities to be executed simultaneously. See 
“Fork.

Arbitrary Cycles (From the Workflow Patterns Initiative2). Pattern #11: A point in a workflow process 
when one or more activities can be done repeatedly3.

2. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
3. http://tmitwww.tm.tue.nl/research/patterns/arbitrary_cycles.htm

Artifact An Artifact is a graphical object that provides supporting information about the 
Process or elements within the Process. However, it does not directly affect the flow 
of the Process. BPMN has standardized the shape of a Data Object. Other examples 
of Artifacts include critical success factors and milestones. 

Association An Association is a dotted graphical line that is used to associate information and 
Artifacts with Flow Objects. Text and graphical non-Flow Objects can be associated 
with the Flow Objects and Flow.

Atomic Activity An atomic activity is an activity not broken down to a finer level of Process Model 
detail. It is a leaf in the tree-structure hierarchy of Process activities. Graphically it 
will appear as a Task in BPMN.
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B
Business Analyst A Business Analyst is an individual within an organization who defines, manages, or 

monitors Business Processes. They are usually distinguished from the IT specialists 
or programmers who implement the Business Process within a BPMS.

Business Process A Business Process is displayed within a Business Process Diagram (BPD). A 
Business Process contains one or more Processes.

Business Process Diagram A Business Process Diagram (BPD) is the diagram that is specified by BPMN. A 
BPD uses the graphical elements and that semantics that support these elements as 
defined in this specification.

Business Process 
Management

Business Process Management (BPM) encompasses the discovery, design, and 
deployment of business processes. In addition, BPM includes the executive, 
administrative, and supervisory control of those processes1.

1. From “Business Process Management: the Third Wave,” by Howard Smith and Peter Fingar, pg 4. 2003, Meghan-Kiffer Press.  
ISBN 0-929652-33-9

BPM System The technology that enables BPM.

C
Cancel Activity (From the Workflow Patterns Initiative2). Pattern #20: An enabled activity is 

disabled, i.e., a thread waiting for the execution of an activity is removed3.

2. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
3. http://tmitwww.tm.tue.nl/research/patterns/cancel_activity.htm

Cancel Case (From the Workflow Patterns Initiative2). Pattern #21: A case, i.e., workflow 
instance, is removed completely4.

4. http://tmitwww.tm.tue.nl/research/patterns/cancel_case.htm

Choreography Choreography is an ordered sequence of B2B message exchanges.

Collaboration Collaboration is the act of sending messages between any two Participants in a 
BPMN model. The two Participants represent two separate BPML processes.

Collaboration Process A Collaboration Process depicts the interactions between two or more business 
entities.

Collapsed Sub-Process A Collapsed Sub-Process is a Sub-Process that hides its flow details. The Collapsed 
Sub-Process object uses a marker to distinguish it as a Sub-Process, rather than a 
Task. The marker is a small square with a plus sign (+) inside.

Compensation Flow Compensation Flow defines the set of activities that are performed during the roll-
back of a transaction to compensate for activities that were performed during the 
Normal Flow of the Process. Compensation can also be called from a Compensate 
End or Intermediate Event.

Compound Activity A compound activity is an activity that has detail that is defined as a flow of other 
activities. It is a branch (or trunk) in the tree-structure hierarchy of Process activities. 
Graphically, it will appear as a Process or Sub-Process in BPMN.
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Controlled Flow Flow that proceeds from one Flow Object to another, via a Sequence Flow link, but 
is subject to either conditions or dependencies from other flow as defined by a 
Gateway.  Typically, this is seen as a Sequence flow between two activities, with a 
conditional indicator (mini-diamond) or a Sequence Flow connected to a Gateway.

D
Decision Decisions are locations within a business process where the Sequence Flow can take 

two or more alternative paths. This is basically the “fork in the road” for a process. 
For a given performance (or instance) of the process, only one of the forks can be 
taken. A Decision is a type of Gateway. See “Or-Split.”

Deferred Choice (From the Workflow Patterns Initiative1). Pattern #17: A point in the workflow 
process where one of several branches is chosen. In contrast to the exclusive split, 
the choice is not made explicitly (e.g., based on data or a decision) but several 
alternatives are offered to the environment. However, in contrast to the fork, only one 
of the alternatives is executed. This means that once the environment activates one 
of the branches the other alternative branches are withdrawn. It is important to note 
that the choice is delayed until the processing in one of the alternative branches is 
actually started, i.e., the moment of choice is as late as possible2.

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
2. http://tmitwww.tm.tue.nl/research/patterns/deferred_choice.htm

Discriminator (From the Workflow Patterns Initiative1). Pattern #8: The discriminator is a point in 
a workflow process that waits for a number of incoming branches to complete before 
activating the subsequent activity. From that moment on it waits for all remaining 
branches to complete and “ignores'' them. Once all incoming branches have been 
triggered, it resets itself so that it can be triggered again3.

3. http://tmitwww.tm.tue.nl/research/patterns/discriminator.htm

E
End Event As the name implies, the End Event indicates where a process will end. In terms of 

Sequence Flow, the End Event ends the flow of the Process, and thus, will not have 
any outgoing Sequence Flow. An End Event can have a specific Result that will 
appear as a marker within the center of the End Event shape. End Event Results are 
Message, Error, Compensation, Signal, Link, and Multiple. The End Event shares the 
same basic shape of the Start Event and Intermediate Event, a circle, but is drawn 
with a thick single line.

Event Context An Event Context is the set of activities that can be interrupted by an exception 
(Intermediate Event). This can be one activity or a group of activities in an expanded 
Sub-Process.

Exception An Exception is an event that occurs during the performance of the process that 
causes Normal Flow of the process to be diverted exclusively from Normal Flow. 
Exceptions can be generated by a time out, fault, message, etc.
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Exception Flow Exception Flow is a set of Sequence Flow that originates from an Intermediate Event 
that is attached to the boundary of an activity. The Process will not traverse this flow 
unless an Exception occurs during the performance of that activity (through an 
Intermediate Event).

Exclusive Choice (From the Workflow Patterns Initiative1). Pattern #4: A point in the workflow 
process where, based on a decision or workflow control data, one of several branches 
is chosen2.

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
2. http://tmitwww.tm.tue.nl/research/patterns/exclusive_choice.htm

Expanded Sub-Process An Expanded Sub-Process is a Sub-Process that exposes its flow detail within the 
context of its Parent Process. It will maintain its rounded rectangle shape, but will be 
enlarged to a size sufficient to display the Flow Objects within.

F
Flow A Flow is a graphical line connecting two objects in a BPD. There are two types of 

Flow: Sequence Flow and Message Flow, each with their own line style. Flow is also 
used in a generic sense (and lowercase) to describe how Tokens will traverse 
Sequence Flow from the Start Event to an End Event.

Flow Object A Flow Object is one of the set of following graphical objects: Events, Activities, and 
Gateways.

Fork A fork is a point in the Process where a single flow is divided into two or more Flow. 
It is a mechanism that will allow activities to be performed concurrently, rather than 
sequentially. BPMN uses multiple outgoing Sequence Flow or a Parallel Gateway to 
perform a Fork. See “AND-Split.”

I
Implicit Termination (From the Workflow Patterns Initiative3). Pattern #12: A given subprocess should be 

terminated when there is nothing else to be done. In other words, there are no active 
activities in the workflow and no other activity can be made active (and at the same 
time the workflow is not in deadlock)4.

3. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
4. http://tmitwww.tm.tue.nl/research/patterns/implicit_termination.htm

Interleaved Parallel Routing (From the Workflow Patterns Initiative1). Pattern #18: A set of activities is executed 
in an arbitrary order: Each activity in the set is executed, the order is decided at run-
time, and no two activities are executed at the same moment (i.e., no two activities 
are active for the same workflow instance at the same time)5.

5. http://tmitwww.tm.tue.nl/research/patterns/interleaved_parallel_routing.htm

Intermediate Event An Intermediate Event is an event that occurs after a Process has been started. It will 
affect the flow of the process, but will not start or (directly) terminate the process. An 
Intermediate Event will show where messages or delays are expected within the 
Process, disrupt the Normal Flow through exception handling, or show the extra flow 
required for compensating a transaction. The Intermediate Event shares the same 
basic shape of the Start Event and End Event, a circle, but is drawn with a thin double 
line.
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J
Join A Join is a point in the Process where two or more parallel Sequence Flow are 

combined into one Sequence Flow. BPMN uses a Parallel Gateway to perform a Join. 
See “AND-Join.”

L
Lane A Lane is a sub-partition within a Pool and will extend the entire length of the Pool, 

either vertically or horizontally. Lanes are used to organize and categorize activities 
within a Pool. The meaning of the Lanes is up to the modeler.

M
Merge A Merge is a point in the process where two or more alternative Sequence Flow are 

combined into one Sequence Flow. BPMN uses multiple incoming Sequence Flow 
or an Exclusive Gateway to perform a Merge. See “OR-Join.”

Message A Message is the object that is transmitted through a Message Flow. The Message 
will have an identity that can be used for alternative branching of a Process through 
the Event-Based Exclusive Gateway.

Message Flow A Message Flow is a dashed line that is used to show the flow of messages between 
two entities that are prepared to send and receive them. In BPMN, two separate Pools 
in the Diagram will represent the two entities.

Milestone (From the Workflow Patterns Initiative1). Pattern #19: The enabling of an activity 
depends on the case being in a specified state, i.e., the activity is only enabled if a 
certain milestone has been reached which did not expire yet. Consider three activities 
A, B, and C. Activity A is only enabled if activity B has been executed and C has not 
been executed yet, i.e., A is not enabled before the execution B and A is not enabled 
after the execution C2.

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
2. http://tmitwww.tm.tue.nl/research/patterns/milestone.htm

Multiple Choice (From the Workflow Patterns Initiative1). Pattern #6: A point in the workflow 
process where, based on a decision or workflow control data, one or more branches 
are chosen3.

3. http://tmitwww.tm.tue.nl/research/patterns/multiple_choice.htm
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Multiple Instances (From the Workflow Patterns Initiative1). Patterns #13-16: There are four defined 
patterns.  
1. For one case an activity is enabled multiple times. The number of instances of a 
given activity for a given case is known at design time.  
2. For one case an activity is enabled multiple times. The number of instances of a 
given activity for a given case is variable and may depend on characteristics of the 
case or availability of resources, but is known at some stage during runtime, before 
the instances of that activity have to be created.  
3. For one case an activity is enabled multiple times. The number of instances of a 
given activity for a given case is not known during design time, nor it is known at 
any stage during runtime, before the instances of that activity have to be created.  
4. For one case an activity is enabled multiple times. The number of instances may 
not be known at design time. After completing all instances of that activity another 
activity has to be started1.

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm

Multiple Merge (From the Workflow Patterns Initiative1). Pattern #7: Multi-merge is a point in a 
workflow process where two or more branches reconverge without synchronization. 
If more than one branch gets activated, possibly concurrently, the activity following 
the merge is started once for every incoming branch that gets activated2.

2. http://tmitwww.tm.tue.nl/research/patterns/multiple_merge.htm

N
N-out_of_M-Join (From the Workflow Patterns Initiative1). Pattern #9: N-out-of-M Join is a point in a 

workflow process where M parallel paths converge into one. The subsequent activity 
should be activated once N paths have completed. Completion of all remaining paths 
should be ignored. Similarly to the discriminator, once all incoming branches have 
“fired,” the join resets itself so that it can fire again3.

3. http://tmitwww.tm.tue.nl/research/patterns/n-out-of-m_join.htm

Normal Flow Normal Flow is the flow that originates from a Start Event and continues through 
activities via alternative and parallel paths until it ends at an End Event.

O
OR-Join (from the WfMC Glossary4) An Or-Join is a point in the Process where two or more 

alternative activity(s) Process branches re-converge to a single common activity as 
the next step within the Process. (As no parallel activity execution has occurred at the 
join point, no synchronization is required.) See “Merge.”

4. The underlined terms in this definition were changed from the original definition. “Process” is used in place of “workflow.” “Sequence 
Flow” is used in place of “control.”

OR-Split (from the WfMC Glossary1) An OR-Split is a point in the Process where a single 
thread of Sequence Flow makes a decision upon which branch to take when 
encountered with multiple alternative Process branches. See “Decision.”
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P
Parallel Split (From the Workflow Patterns Initiative1). Pattern #2: Parallel split is required when 

two or more activities need to be executed in parallel. Parallel split is easily 
supported by most workflow engines except for the most basic scheduling systems 
that do not require any degree of concurrency2.

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
2. http://tmitwww.tm.tue.nl/research/patterns/parallel_split.htm

Parent Process A Parent Process is the Process that holds a Sub-Process within its boundaries.

Participant A Participant is a business entity (e.g., a company, company division, or a customer) 
or a business role (e.g., a buyer or a seller), which controls or is responsible for a 
business process. If Pools are used, then a Participant would be associated with one 
Pool. 

Pool A Pool represents a Participant in a Process. It also acts as a “swimlane” and a 
graphical container for partitioning a set of activities from other Pools, usually in the 
context of B2B situations. It is a square-cornered rectangle that is drawn with a solid 
single line. A Pool acts as the container for the Sequence Flow between activities. 
The Sequence Flow can cross the boundaries between Lanes of a Pool, but cannot 
cross the boundaries of a Pool. The interaction between Pools, e.g., in a B2B context, 
is shown through Message Flow.

Private Business Process A private business process is internal to a specific organization and is the type of 
process that has been generally called a workflow or BPM process. A single private 
business process will map to a single BPML document.

Process A Process is any activity performed within a company or organization. In BPMN a 
Process is depicted as a network of Flow Objects, which are a set of other activities 
and the controls that sequence them.

R
Result A Result is consequence of reaching an End Event. Results can be of different types, 

including: Message, Error, Compensation, Signal, Link, and Multiple.

S
Sequence (From the Workflow Patterns Initiative3). Pattern #1: Sequence is the most basic 

workflow pattern. It is required when there is a dependency between two or more 
tasks so that one task cannot be started (scheduled) before another task is finished4.

3. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
4. http://tmitwww.tm.tue.nl/research/patterns/sequence.htm

Sequence Flow A Sequence Flow is a solid graphical line that is used to show the order that activities 
will be performed in a Process. Each Flow has only one source and only one target.

Simple Merge (From the Workflow Patterns Initiative“http://tmitwww.tm.tue.nl/research/patterns/

patterns.htm” on page 287). Pattern #5: A point in the workflow process where two or 
more alternative branches come together without synchronization. In other words the 
merge will be triggered once any of the incoming transitions are triggered5.

5. http://tmitwww.tm.tue.nl/research/patterns/simple_merge.htm
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Start Event A Start Event indicates where a particular Process will start. In terms of Sequence 
Flow, the Start Event starts the flow of the Process, and thus, will not have any 
incoming Sequence Flow. A Start Event can have a Trigger that indicates how the 
Process starts: Message, Timer, Rule, Link, or Multiple. The Start Event shares the 
same basic shape of the Intermediate Event and End Event, a circle, but is drawn with 
a single thin line.

Sub-Process A Sub-Process is a Process that is included within another Process. The Sub-Process 
can be in a collapsed view that hides its details. A Sub-Process can be in an expanded 
view that shows its details within the view of the Process in which it is contained. A 
Sub-Process shares the same shape as the Task, which is a rectangle that has rounded 
corners.

Swimlane A Swimlane is a graphical container for partitioning a set of activities from other 
activities. BPMN has two different types of Swimlanes. See “Pool” and “Lane.”

Synchronizing Join (From the Workflow Patterns Initiative1). Pattern #10: A point in the workflow 
process where multiple paths converge into one single thread. If more than one path 
is taken, synchronization of the active threads needs to take place. If only one path is 
taken, the alternative branches should reconverge without synchronization2.

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
2. http://tmitwww.tm.tue.nl/research/patterns/synchronizing_join.htm

Synchronization (From the Workflow Patterns Initiative“http://tmitwww.tm.tue.nl/research/patterns/

patterns.htm” on page 287). Pattern #3: Synchronization is required when an activity can 
be started only when two parallel threads complete3.

3. http://tmitwww.tm.tue.nl/research/patterns/synchronization.htm

T
Task A Task is an atomic activity that is included within a Process. A Task is used when 

the work in the Process is not broken down to a finer level of Process Model detail. 
Generally, an end-user and/or an application are used to perform the Task when it is 
executed. A Task object shares the same shape as the Sub-Process, which is a 
rectangle that has rounded corners.

Token A Token is a descriptive construct used to describe how the flow of a process will 
proceed at runtime. By tracking how the Token traverses the Flow Objects, gets 
diverted through alternative paths, and gets split into parallel paths, the normal 
Sequence Flow should be completely definable.A Token will have a unique identity 
that can be used to separate multiple Tokens that may exist because of concurrent 
process instances or the splitting of the Token for parallel processing within a single 
process instance.

Transaction A Transaction is a set of coordinated activities carried out by independent, loosely-
coupled systems in accordance with a contractually defined business relationship. 
This coordination leads to an agreed, consistent, and verifiable outcome across all 
participants.
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Trigger A Trigger is a mechanism that signals the start of a business process. Triggers are 
associated with Start Events and Intermediate Events and can be of the type: 
Message, Timer, Conditional, Signal, Link, and Multiple.

U
Uncontrolled Flow Flow that proceeds, unrestricted, from one Flow Object to another, via a Sequence 

Flow link, without any dependencies on another flow or any conditional expressions. 
Typically, this is seen as a Sequence flow between two activities, without a 
conditional indicator (mini-diamond) or any intervening Gateway.
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