Date: January 2009

QIRIG

QBJECT MAMAGEMENT GROUP

Business Process Model and Notation (BPMN)

Version 1.2
(with change bars)

OMG Document Number: formal/2009-01-04
Standard document URL: http://www.omg.org/spec/BPMN/1.2

Copyright © 2008, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patentsthat are brought to its attention. OMG specifications are prospective and advisory only. Prospective usersare
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE

MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk asto the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XM
Logo™, CWM™, CWM Logo™, IIOP™ MOF™ |, OMG Interface Definition Language (IDL)™ , and OMG Systems
Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’sIssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://mmww.omg.org,
under Documents, Report a Bug/l ssue (http://www.omg.org/technol ogy/agreement.htm).

Table of Contents

o 153 = T N XV
1 Y o0] 01T 1
2 (@70] 01 {0] 1 ¢ = 1 o = 1
N R VT UL AN o] o 1= T= 1 =T o] PP 1

2.2 Structural CONfOIMEANCEciieeiiiie i e e e e e e e e e ee et eaeeeeeeeaes 2

2.3 SEeMANtIC EIBMENLIS ... e et ee e ae b e aaeae e aeaeaae e 2

W AN a1 o0 (=TS U o B o] 1= (=P 3

2.5 Extended and Optional EIEMENTSeuuuiuiiiiiiiiiiiiiiiiiiiiiiieesieeeresrereveeerereeeereaereaeee 3

3 Normative ReferenCeScooovui i 4
G 00 N[0 0 ¢ = 1 1)V PSP PSPPPEPPRR 4

3.2 NON-NOIMMIALIVE ...t e e e s e e e e eeeeeeeeeee et eeeeeaaaaaataaaaaeaaaaaaaees 4

4 Terms and DefinitioNSoooveiiii e 6
SYMDOIS oo 6

6 Additional Information ..o 7
0 R @0 01 VZ=T o 1 o] o RSP 7

6.1.1 Typographical and Linguistic Conventions and Stylecccccceeeeeeiiiiivcciiieeee e, 7

6.1.2 ADDIreVIAtIONSooiiiiii e 8

6.2 Structure of thisS DOCUMENTuiiiiiiiiii e ee e es e aeeeereeeaeeeeees 8

6.3 ACKNOWIEAGEMENTS e e ee e e esbeasbsesesesesesenne e 8

7 (@ AT V1> P 11
7.1 BPMN SCOPE .ouuiiiiitiii ittt ettt e et e e et e e et b e e ettt e e e e et e e e et e eares 12

7.1.1USES Of BPIMIN .eoiiiiiii i e e e e e e e e e e e e e e e e e e et ee e an s 12

7.1.2 Diagram PoOint Of VIBWuuuiiiiiiiieioe ettt e e e 15

7.1.3 Extensibility of BPMN and Vertical DOMAINScooooiiiiiiiiiiiiaee e 16

8 BUSINESS Process Diagramscoviviiiiiiieiiiiiieeeeeiin e e e 17
8.1 BPD COre ElEMENT SOuuiiiiiiiiiiiiiiiiiiiiiiiiii ittt e ve e e e ee e eeeeeeeeeeeeeeeaeaaaaeeees 17

8.2 BPD EXIENUEA SELuuiiiiiiiiiiiiiiiiiiii ittt be e se e e e e e s aeeeeeeaeeeeeeeeaeeaeaaaaees 20

8.3 Use of Text, Color, Size, and Lines in a Diagramcccccveevvevivevieeiieerieeeeieeeeeeeen 29

8.4 Flow Object CONNECLION RUIEScouuiiiiiii e e e e e e e e e e eeaens 30

8.4.1 SequeNnCe FIOW RUIESuiiiiiiiiiiaiie ettt e e 30

8.4.2 MeSSage FIOW RUIESuuiiiiiiiiiiie e 31

8.5 Business Process Diagram AHfIDULESooooviiiiii i e 31

Business Process Modeling Notation, v1.2 i

ST e 0T 0T ST Y Y= 32

B.6.1 AIDULES ..o et e e e e e e ————— 32

9 Business Process Diagram Graphical Objectscccceevviiviiinnnne. 35
9.1 Common BPMN Element AttrDULEScoooiiiiiiiiiiiiiee e 35
9.2 Common Flow Object AtNDULEScoooiiiiiii i 35
S R B VT o | PP PPRRPPPPPPIN 35
9.3.1 Common EVent AtHDULESooviiiiiiiicc i 36

LS TG TS - | SRR 36

LS TR T T =1 T 40

9.3. 4 INtEIMEAIALEeiii i e e e e e e e e e e e e et e e e e ———————— 44

9.3 5 EVENE DELAIIS ..o e ———————————— 49

LS A o 1Y =SSP 52
9.4.1 Common ACLIVItY AHDULESuvviiiiieiii e e e 53

9.4.2 SUD-PIOCESS ...eeiiiiiiiiiie ittt ettt e ettt e e st bt e e s e sbb e e e s nbbbeeeeane 56

1S R 1= 1 ST PPTTTP 64

S T T 1= 1 =112 £ 70
9.5.1 CommOoN GateWay FEALUINESuuuuiuuieiiiiiiiieieie i e ee e e e e eeeeee e e e e ereeeeeerneee e es 71

9.5.2 EXCIUSIVE GAIEWAYS ...cceiiiieeiieiieeiieee e e e e e sttt e e s e e e e e e s s et e e ea e e e s e e s s snnrnnnaneeeeeeas 73

9.5.3 INCIUSIVE GAIEWAYS ...evieiieiiiiiiiiiiiieie et e e e s e e st e e e e e e e e s e st e e e e e aeeeseesnnennrneeeees 80

9.5.4 COMPIEX GAIEWAYS ..oeieeieeiieiiiiiieieiie e e e e e e s e e st e e e e e e e e e e s s srste s e e e e eaeeeseeannsnnrneenees 83

9.5.5 Parallel GAtEWAYSccceeiiiiiiiiieieiee et e s e sttt e e e e e e e s s e e e e e e e e s e e s 85

9.6 Swimlanes (P0O0IS and LANES)uuuiiiieeieiieiiiiiii e e ee e et s e e e e e e eee e e e e e e e e eeananes 86
9.6.1 Common Swimlane AtrDULESoooiiiiiiiii 87

9.6.2 POOI ...ttt e e e e ab e e e e e s baeee e 87

0.6.3 LN i e e e e et e e e e s e 89

SR A Y 1] = od £ PP PPUPPPPRPPR 92
9.7.1 Common Artifact DEfiNItiONSuuuiiiiiiiiiiiis e 92

O.7.2 DALA ODJECTeiieiiiiiiiii ettt et e e e e e e e e e e e e e e bbb eeaeas 93

9.7.3 TeXt ANNOTALIONcoiiiiiiiiiee e e e e e e e e e e e e e e e e s 94

S I N €] o 11 | o H TP PP PT PP PTPPTPTRTR 95

10 Business Process Diagram Connecting Objectsccccooevvvviiiienenns 97
10.1 Graphical ConNecting ODJECESuuuuiuiiiiiiiiiiiiiiiiiiiieieeiteee e e e e eeeereeereeees 97
10.1.1 Common Connecting Object ARINDULEScovvvviieeiiiii e 97

0 2 ST~ o [=T g o= o PR 97

10.1.3 MESSAQE FIOW ..oeeieieeeiii ettt e e e s e r e e e e e s e e e neeeaees 99

10.2.4 ASSOCIALION .eeieiiiiiiiieeitiiie ettt ettt e e sttt e e e s bbbt e e s be e e e e e snbeeeeessnnbbeeesssnbeeeeennnes 101

10.2 Sequence FIOW MECNANISMSuuuiiiuiiiiiiiiiiiiiiiiiriierirerrereieerrerrere e 103
0 0t I Ao .4 F= | o 104

10.2.2 EXCEPLION FIOW ..ottt ettt e e e e e et eeeaaae s 127

0 T Ao I o o 128

10.3 Compensation ASSOCIALIONuuuuruuiiiuiiiiiiiiiieueterre ... 129
11 BPMN by EXample ... 133
11.1 The Beginning Of the PrOCESSuuiuiiiiiiiiiiiiiiiiiiiieiieeeieeerereeeeseeeaeeseeeseeeeeeeaeeaeeees 135
11.2 The First SUD-PIOCESSeoiiiiiiiiiiiiiiiie ettt 135

i Business Process Modeling Notation, v1.2

11.3 The SECONA SUD-PIOCESS ...uoveeiiiiee ettt e e et e e e e e e eaes 137

11.4 The ENd Of e PTOCESS w.....ovvvevveeeeesseisseesseseises s 139
Annex A: Mapping to BPELAWS ... 143
Annex B: BPMN Element Attributes and TYpesccooeevvvviivieveiiiineeeeennn, 243
ANNEX C: GlOSSAIY ..iiiiiiiiiiiiiiii ettt e e et e e e e e eeeen 283

Business Process Modeling Notation, v1.2 i

Business Process Modeling Notation, v1.2

List of Figures

Figure 7.1 - Example of Private Business Process 13
Figure 7.2 - Example of an Abstract Business Process 13
Figure 7.3 - Example of a Collaboration Business Process 14

Figure 9.1 - A Start Event 36

Figure 9.2 - End Event 40

Figure 9.3 - Intermediate Event 44

Figure 9.4 - Task with an Intermediate Event attached to its boundary 44

Figure 9.5 - Event Details as Applied to Start, Intermediate, and End Events 49

Figure 9.6 - Collapsed Sub-Process 56

Figure 9.7 - Expanded Sub-Process 56

Figure 9.8 - Expanded Sub-Process used as a“parallel box” 57

Figure 9.9 - Collapsed Sub-Process Markers 57

Figure 9.10 - A Sub-Process Object with its Details Shown in the diagram of the next Figure 59
Figure 9.11 - A Process and Diagram Details of the Sub-Process Object in the Previous Figure 60
Figure 9.12 - A Processthat is used as a Sub-Process or a Top-Level Process 61

Figure 9.13 - An Example of a Transaction Expanded Sub-Process 62

Figure 9.14 - A Task Object 64

Figure 9.15 - Task Markers 65

Figure 9.16 - A Gateway 70

Figure 9.17 - The Different types of Gateways 71

Figure 9.18 - An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator 74
Figure 9.19 - A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator 74
Figure 9.20 - An Exclusive Merge (Gateway) (without the Internal Indicator) 75

Figure 9.21 - Uncontrolled Merging of Sequence Flow 75

Figure 9.22 - Exclusive Gateway that merges Sequence Flow prior to a Parallel Gateway 76
Figure 9.23 - An Event-Based Decision (Gateway) Example Using Receive Tasks 78

Figure 9.24 - An Event-Based Decision (Gateway) Example Using M essage Events 78

Figure 9.25 - An Inclusive Decision using Conditional Sequence Flow 80

Figure 9.26 - An Inclusive Decision using an Inclusive Gateway 81

Figure 9.27 - An Inclusive Gateway Merging Sequence Flow 82

Figure 9.28 - A Complex Decision (Gateway) 83

Figure 9.29 - A Complex Merge (Gateway) 84

Figure 9.30 - A Parallel Gateway 85

Figure 9.31 - Joining — the joining of parallel paths 86

Figure 9.32 - A Pool 87

Figure 9.33 - Message Flow connecting to the boundaries of two Pools 88

Figure 9.34 - Message Flow connecting to Flow Objects within two Pools 88

Figure 9.35 - Main (Internal) Pool without boundaries 89

Figure 9.36 - Two Lanesin aVertical Pool 90

Figure 9.37 - Two Lanesin aHorizontal Pool 90

Figure 9.38 - An Example of Nested Lanes 91

Figure 9.39 - A Data Object 93

Figure 9.40 - A Data Object associated with a Sequence Flow 93

Business Process Modeling Notation, v1.2

Figure 9.41 - Data Objects shown as inputs and outputs 94
Figure 9.42 - A Text Annotation 95

Figure 9.43 - A Group Artifact 95

Figure 9.44 - A Group around activities in different Pools 96

Figure 10.1 - A Sequence Flow 98

Figure 10.2 - A Conditional Sequence Flow 98

Figure 10.3 - A Default Sequence Flow 98

Figure 10.4 - A Message Flow 100

Figure 10.5 - Message Flow connecting to the boundaries of two Pools 100
Figure 10.6 - Message Flow connecting to Flow Objects within two Pools 101
Figure 10.7 - An Association 102

Figure 10.8 - A directional Association 102

Figure 10.9 - An Association of Text Annotation 102

Figure 10.10 - An Association connecting a Data Object with a Flow 103
Figure 10.11 - Workflow Pattern #1. Sequence 104

Figure 10.12 - A Process with Normal Flow 104

Figure 10.13 - An Expanded Sub-Process without a Start Event and End Event 105
Figure 10.14 - An Expanded Sub-Process with a Start Event and End Event Internal 106
Figure 10.15 - An Expanded Sub-Process with a Start Event and End Event Attached to Boundary 107
Figure 10.16 - Workflow Pattern #2: Parallel Split -- Version 1 108

Figure 10.17 - Workflow Pattern #2: Parallel Split -- Version 2 108

Figure 10.18 - The Creation of Paralld Paths with a Gateway 109

Figure 10.19 - The Creation of Parallel Paths with Equivalent Conditions 109
Figure 10.20 - Workflow Pattern #2: Parallel Split -- Version 3 110

Figure 10.21 - Workflow Pattern #3: Synchronization -- Version 1 110

Figure 10.22 - Workflow Pattern #3: Synchronization -- Version 2 111

Figure 10.23 - The Fork-Join Relationship is not Fixed 111

Figure 10.24 - A Data-Based Decision Example -- Workflow Pattern #4 -- Exclusive Choice 112
Figure 10.25 - Workflow Pattern #6 -- Multiple Choice -- Version 1 113
Figure 10.26 - Workflow Pattern #6 -- Multiple Choice -- Version 2 113
Figure 10.27 - A Complex Decision (Gateway) 114

Figure 10.28 - An Event-Based Decision Example 114

Figure 10.29 - Workflow Pattern #5 -- Simple Merge—Version 1 115

Figure 10.30 - Workflow Pattern #7 -- Multiple Merge 115

Figure 10.31 - Workflow Pattern #5 -- Simple Merge— Version 2 116

Figure 10.32 - Workflow Pattern #8 -- Discriminator 116

Figure 10.33 - Workflow Pattern #9 -- Synchronizing Join 117

Figure 10.34 - Workflow Pattern #8 -- N out of M Join 117

Figure 10.35 - The Split-Merge Relationship is not Fixed 118

Figure 10.36 - A Task and a Collapsed Sub-Process with a Loop Marker 119
Figure 10.37 - A Task with aParallel Marker 119

Figure 10.38 - An Expanded Sub-Process with a Loop Marker 119

Figure 10.39 - Workflow Pattern #16 -- Arbitrary Cycle 120

Figure 10.40 - An Until Loop 120

Figure 10.41 - A While Loop 121

Figure 10.42 - Link Intermediate Event Used as Off-Page Connector 122

Vi Business Process Modeling Notation, v1.2

Figure 10.43 - Process with Long Sequence Flow 123

Figure 10.44 - Process with Link Intermediate Events Used as Go To Objects 123
Figure 10.45 - Link Intermediate Event Used for Looping 124

Figure 10.46 - Example of Sub-Process with Start and End Events Inside 124
Figure 10.47 - Example of Sub-Processwith Start and End Events on Boundary 125
Figure 10.48 - Signal Events Used to Synchronize Behavior Across Processes 125
Figure 10.49 - Potentially a dead-locked model 126

Figure 10.50 - Improper Looping 127

Figure 10.51 - A Task with Exception Flow (Interrupts Event Context) 127

Figure 10.52 - A Sub-Process with Exception Flow (Interrupts Event Context) 128
Figure 10.53 - A Collapsed Ad Hoc Sub-Process 128

Figure 10.54 - An Expanded Ad Hoc Sub-Process 129

Figure 10.55 - An Ad Hoc Process for Writing a Book Chapter 129

Figure 10.56 - A Task with an Associated Compensation Activity 130

Figure 10.57 - Compensation Shown in the context of a Transaction 131

Figure 11.1 - E-Mail Voting Process 134

Figure 11.2 - The Start of the Process 135

Figure 11.3 - “Discussion Cycle” Sub-Process Details 136
Figure 11.4 - “Collect Votes’ Sub-Process Details 138

Figure 11.5 - The last segment of the E-Mail Voting Process 140

Figure A.1 - BPMN Depiction of BPEL4AWS Pattern for a Standard loop, TestTime = Before 156
Figure A.2 - BPMN Depiction of BPEL4WS Pattern for a Sequential Multi-Instance loop 159
Figure A.3 - Structure of Processto be Spawned for Parallel Multi-instance 162

Figure A.4 - BPELAWS Pattern of Parallel Multi-instance, MI_FlowCondition = All 164

Figure A.5 - BPEL4AWS Pattern of Parallel Multi-instance, MI_FlowCondition = One 167
Figure A.6 - BPEL4WS Pattern of Parallel Multi-instance, M1_FlowCondition = None 170
Figure A.7 - BPEL4AWS Pattern of Inclusive Decision with two (2) Gates and a DefaultGate 181
Figure A.8 - Example: Sequence Flow that are not used for BPEL4AWS links 186

Figure A.9 - Example: A Sequence Flow that is used for a BPEL4WS link 186

Figure A.10 - Exception Flow Merging back into Normal Flow Immediately after Interrupted Activity 187
Figure A.11 - Exception Flow Merging back into the Normal Flow Further Downstream 188
Figure A.12 - Exception Flow Merging back into the Normal Flow at the End Event 190

Figure A.13 - Example of Exception Flow Looping Back into the Normal Flow Upstream 190
Figure A.14 - Example of Modification at BPEL4WS level to Handle the Loop 191

Figure A.15 - Example of a Derived Process to Handle the L ooping 192

Figure A.16 - Identification of BPEL4WS structured element 195

Figure A.17 - The Creation of Related Tokens 196

Figure A.18 - Example of Recombination of Tokens 197

Figure A.19 - Example of Partial Recombination of Tokens 197

Figure A.20 - Example of Distributed Token Recombination 198

Figure A.21 - Example of nested BPEL4WS structura elements 199

Figure A.22 - Example of aLoop from a Decision with Two Alternative Paths 200

Figure A.23 - Example of a Loop from a Decision with more than Two Alternative Paths 201
Figure A.24 - Example of Interleaved Loops 202

Figure A.25 - Example of the BPEL4WS Pattern for Substituting for the Derived Process 203

Business Process Modeling Notation, v1.2 Vil

Figure A.26 - Example of a BPEL4AWS Pattern for the Derived Process 203

Figure A.27 - Example: An Infinite Loop 204

Figure A.28 - Example: A Pair of Go To Link Events are Treated as a Single Sequence Flow 205
Figure A.29 - Example: Activity that spans two paths of a BPEL4WS Structured Element 206

Figure A.30 - E-Mail Voting Process 207

Figure A.31 - The Start of the Process 208

Figure A.32 - The Ongoing Starter Process 209

Figure A.33 - “Discussion Cycle” Sub-Process Details 214
Figure A.34 - “Collect Votes’ Sub-Process Details 220

Figure A.35 - Thelast segment of the E-Mail V oting Process 226

Figure B.1 - Main BPMN Elements and Attributes 244

Figure B.2 - BPMN Event Elements and Attributes 248

Figure B.3 - BPMN Activity Elements and Attributes 251

Figure B.4 - BPMN Gateway Elements and Attributes 260

Figure B.5 - BPMN Swimlane Elements and Attributes 263

Figure B.6 - BPMN Artifact Elements and Attributes 265

Figure B.7 - BPMN Connecting Object Elements and Attributes 267
Figure B.8 - BPMN Supporting Elements and Attributes 271

viii

Business Process Modeling Notation, v1.2

List of Examples

Example A.1 - BPEL4WS Sample for a Standard Loop 157

Example A.2 - BPEL4WS Sample for a Multi-Instance Loop with Sequential Ordering 160
Example A.3 - BPEL4WS Sample of a derived process for Parallel Multi-Instance loops 163
Example A.4 - BPEL4WS Sample of a Paralel Multi-Instance Loop, MI_FlowCondition = All 165
Example A.5 - BPEL4WS Sample of a Parallel Multi-Instance Loop, M1_FlowCondition = One 168
Example A.6 - BPEL4WS Sample of a Parallel Multi-Instance Loop, MI_FlowCondition = None 171
Example A.7 - BPEL4WS Sample for the Pattern for an Inclusive Decision with a DefaultGate 182
Example A.8 - Example: BPMN Elements that Span Multiple BPEL4WS Sub-Elements 206
Example A.9 - BPEL4WS Sample for Beginning of E-Mail Voting Process 213

Example A.10 - BPEL4WS Sample of “Discussion Cycle” Sub-Process Details 219

Example A.11 - BPEL4WS Sample that sets up the Access for the Second Sub-Process 222
Example A.12 - BPEL4WS Sample of the Second Sub-Process 225

Example A.13 - Sample BPEL4WS code for the last section of the Process 230

Example A.14 - Sample BPEL4WS code for derived process for repeated elements 232

Business Process Modeling Notation, v1.2

Business Process Modeling Notation, v1.2

List of Tables

Table 8.1 - Core Modeling Elements 18

Table 8.2 - BPD Core Element Set 19

Table 8.3 - BPD Extended Element Set 20

Table 8.4 - Sequence Flow Connection Rules 30
Table 8.5 - Message Flow Connection Rules 31
Table 8.6 - Business Process Diagram Attributes 31
Table 8.7 - Process Attributes 32

Table 9.1 - Common BPMN Element Attributes 35
Table 9.2 - Common Flow Object Attributes 35
Table 9.3 - Common Event Attributes 36

Table 9.4 - Start Event Types 38

Table 9.5 - Start Event Attributes 39

Table 9.6 - End Event Types 41

Table 9.7 - End Event Attributes 43

Table 9.8 - Intermediate Event Types 45

Table 9.9 - Intermediate Event Attributes 47

Table 9.10 - Common EventDetail Attributes 50
Table9.11 - Conditional EventDetail Attributes 50
Table 9.12 - Compensation EventDetail Attributes 50
Table 9.13 - Error EventDetail Attributes 51

Table 9.14 - Link EventDetail Attributes 51

Table 9.15 - Message EventDetail Attributes 52
Table 9.16 - Signal EventDetail Attributes 52
Table9.17 - Timer EventDetail Attributes 52

Table 9.18 - Common Activity Attributes 53

Table 9.19 - Standard Loop Activity Attributes 54
Table 9.20 - Multi-Instance Loop Activity Attributes 55
Table 9.21 - Sub-Process Attributes 58

Table 9.22 - Embedded Sub-Process Attributes 58
Table 9.23 - Reusable Sub-Process Attributes 61
Table 9.24 - Reference Sub-Process Attributes 62
Table 9.25 - Task Attributes 65

Table 9.26 - Service Task Attributes 66

Table 9.27 - Receive Task Attributes 67

Table 9.28 - Send Task Attributes 67

Table 9.29 - User Task Attributes 68

Table 9.30 - Script Task Attributes 68

Table 9.31 - Reference Task Attributes 69

Table 9.32 - Common Gateway Attributes 71

Table 9.33 - Gate Attributes 73

Table 9.34 - Data-Based Exclusive Gateway Attributes 76
Table 9.35 - Event-Based Exclusive Gateway Attributes 79

Business Process Modeling Notation, v1.2

Xi

Table 9.36 - Inclusive Gateway Attributes 82
Table 9.37 - Complex Gateway Attributes 84
Table 9.38 - Common Swimlane Attributes 87
Table 9.39 - Pool Attributes 89

Table 9.40 - Lane Attributes 92

Table 9.41 - Common Artifact Attributes 92
Table 9.42 - Data Object Attributes 94

Table 9.43 - Text Annotation Attributes 95
Table 9.44 - Group Attributes 96

Table 10.1 - Common Connecting Object Attributes 97
Table 10.2 - Sequence Flow Attributes 99

Table 10.3 - Message Flow Attributes 101

Table 10.4 - Association Attributes 103

Table A.1 - Business Process Diagram Mappings to BPEL4AWS 143

Table A.2 - Business Process M appings to BPEL4AWS 144

Table A.3 - Common Flow Object Attribute Mappings to BPEL4WS 145

Table A.4 - Start Event Mappings to BPEL4W 145

Table A.5 - End Event Mappings to BPEL4AWS 147

Table A.6 - Intermediate Event Mappings to BPEL4WS 148

Table A.7 - None Intermediate Mappings to BPEL4WS 148

Table A.8 - Message Intermediate Mappings to BPEL4WS 148

Table A.9 - Timer Intermediate M appings to BPEL4WS 150

Table A.10 - Error Intermediate Mappings to BPEL4WS 150

Table A.11 - Cancel Intermediate Mappings to BPEL4WS 151

Table A.12 - Conditional Intermediate Mappings to BPEL4WS 151

Table A.13 - Compensation Intermediate M appings to BPEL4WS 152

Table A.14 - Multiple Intermediate Mappings to BPELAWS 152

Table A.15 - Common Activity Mappings to BPEL4WS 153

Table A.16 - Basic Activity Loop Mappings to BPEL4WS 153

Table A.17 - Standard Activity Loop Mappings to BPEL4WS 155

Table A.18 - Multi-Instance Activity Loop Setup Mappings to BPEL4AWS 157
Table A.19 - Sequential Multi-Instance Activity Loop Mappings to BPEL4WS 158
Table A.20 - Parallel Multi-Instance Activity Loop Mappings to BPEL4WS 161
Table A.21 - Parallel Multi-Instance Activity, MI_FlowCondition = All 163

Table A.22 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = One 166
Table A.23 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = Complex 168
Table A.24 - Parallel Multi-Instance Activity Loop, M1_FlowCondition = None 169
Table A.25 - Sub-Process Mappingsto BPEL4AWS 171

Table A.26 - Embedded Sub-Process Mappings to BPEL4AWS 172

Table A.27 - Reusable Sub-Process Mappings to BPEL4WS 172

Table A.28 - Reference Sub-Process Mappings to BPEL4WS 173

Table A.29 - Task Mappings to BPEL4WS 173

Table A.30 - ServiceTask Mappingsto BPEL4AWS 173

Table A.31 - Receive Task Mappingsto BPEL4WS 174

Table A.32 - Send Task Mappings to BPEL4AWS 174

Xii Business Process Modeling Notation, v1.2

Table A.33 - User Task Mappings to BPEL4AWS 175

Table A.34 - Script Task Mappings to BPEL4WS 175

Table A.35 - Reference Task Mappings to BPEL4AWS 175

Table A.36 - None Task Mappings to BPELAWS 176

Table A.37 - Common Gateway Mappingsto BPELAWS 176

Table A.38 - Data-Based Exclusive Gateway Mappings to BPEL4WS 177
Table A.39 - Data-Based Exclusive Gateway Mappings to BPEL4WS 178
Table A.40 - Inclusive Gateway Mappings to BPEL4WS 179

Table A.41 - Parallel Gateway Mappings to BPEL4AWS 183

Table A.42 - Sequence Flow Mappingsto BPEL4WS 184

Table A.43 - Common Exception Flow Mappings to BPEL4WS 187
Table A.44 - Exception Flow Merging back into the Normal Flow Further Downstream 188
Table A.45 - Exception Flow Mappings to BPEL4WS 192

Table A.46 - Assignment Mappings to BPEL4WS 193

Table A.47 - Message Attributes 193

Table B.1 - Business Process Diagram Attributes 245
Table B.2 - Common BPMN Element Attributes 245
Table B.3 - Process Attributes 246

Table B.4 - Common Flow Object Attributes 247
Table B.5 - Common Event Attributes 249

Table B.6 - Start Event Attributes 249

Table B.7 - End Event Attributes 249

Table B.8 - Intermediate Event Attributes 250

Table B.9 - Common Activity Attributes 252

Table B.10 - Standard Loop Activity Attributes 253
Table B.11 - Multi-Instance Loop Activity Attributes 254
Table B.12 - Sub-Process Attributes 255

Table B.13 - Embedded Sub-Process Attributes 255
Table B.14 - Reusable Sub-Process Attributes 256
Table B.15 - Reference Sub-Process Attributes 256
Table B.16 - Task Attributes 257

Table B.17 - Service Task Attributes 257

Table B.18 - Recelve Task Attributes 258

Table B.19 - Send Task Attributes 258

Table B.20 - User Task Attributes 259

Table B.21 - Script Task Attributes 259

Table B.22 - Reference Task Attributes 259

Table B.23 - Common Gateway Attributes 261
Table B.24 - Data-Based Exclusive Gateway Attributes 261
Table B.25 - Event-Based Exclusive Gateway Attributes 262
Table B.26 - Inclusive Gateway Attributes 262

Table B.27 - Complex Gateway Attributes 262
Table B.28 - Common Swimlane Attributes 263
Table B.29 - Pool Attributes 264

Table B.30 - Lane Attributes 264

Table B.31 - Common Artifact Attributes 265

Business Process Modeling Notation, v1.2

Xiii

Table B.32
Table B.33
Table B.34
Table B.35
Table B.36
Table B.37
Table B.38
Table B.39
Table B.40
Table B.41
Table B.42
Table B.43
Table B.44
Table B.45
Table B.46
Table B.47
Table B.48
Table B.49
Table B.50
Table B.51
Table B.52
Table B.53
Table B.54
Table B.55
Table B.56
Table B.57
Table B.58
Table B.59
Table B.60
Table B.61
Table B.62
Table B.63
Table B.64

Xiv

- Data Object Attributes 266

- Text Annotation Attributes 266

- Group Attributes 266

- Common Connecting Object Attributes 268
- Sequence Flow Attributes 268

- Message Flow Attributes 269

- Association Attributes 269

- Artifactinput Attributes 272

- ArtifactOutput Attributes 272

- Assignment Attributes 273

- Category Attributes 273

- Condition Attributes 273

- Entity Attributes 274

- Common EventDetail Attributes 274
- Conditional EventDetail Attributes 274
- Compensation EventDetail Attributes 275
- Error EventDetail Attributes 275

- Link EventDetail Attributes 275

- Message EventDetail Attributes 276
- Signal EventDetail Attributes 276

- Timer EventDetail Attributes 276

- Expression Attributes 277

- Gate Attributes 277

- Input Attributes 278

- Message Attributes 278

- Object Attributes 278

- Output Attributes 279

- Participant Attributes 279

- Property Attributes 279

- Role Attributes 280

- Message Attributes 280

- Transaction Attributes 281

- Web Service Attributes 281

Business Process Modeling Notation, v1.2

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://mww.omg.org/technol ogy/documents/spec _catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
e XMI

. CWM

. Profile specifications.

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications
. CORBAservices

Business Process Modeling Notation, v1.2 XV

e CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.

XVi Business Process Modeling Notation, v1.2

1 Scope

The Business Process M anagement Initiative (BPMI) has developed a standard Business Process Modeling Notation
(BPMN). The primary goal of BPMN isto provide a notation that is readily understandable by all business users, from the
business analysts that create the initial drafts of the processes, to the technical developers responsible for implementing
the technology that will perform those processes, and finally, to the business people who will manage and monitor those
processes. Thus, BPMN creates a standardized bridge for the gap between the business process design and process
implementation.

Another goal, but no less important, is to ensure that XML languages designed for the execution of business processes,
such as BPEL 4W'S (Business Process Execution Language for Web Services), can be visualized with a business-oriented
notation.

This specification defines the notation and semantics of a Business Process Diagram (BPD) and represents the
amalgamation of best practices within the business modeling community. The intent of BPMN is to standardize a business
process modeling notation in the face of many different modeling notations and viewpoints. In doing so, BPMN will
provide a simple means of communicating process information to other business users, process implementers, customers,
and suppliers.

This version of the specification does not specify a mechanism for exchange of BPMN diagrams.

This version of the specification does not specify a mechanism for the exchange of the semantic model of a process
depicted by a BPMN diagram.

Note — Exchange of models of BPMN process semantics and diagrams is the subject of other ongoing standards activities.
This version of the specification does not specify a normative mapping from BPMN to WSBPEL.

Note — This version does provide a non-normative mapping from BPMN to WSBPEL, but the BPMN specification itself is
known to be incomplete with respect to capturing all the required information for WSBPEL. So the mapping isinsufficient, in
any case.

The membership of the BPMI Notation Working Group has brought forth expertise and experience with many existing
notations and has sought to consolidate the best ideas from these divergent notations into a single standard notation.
Examples of other notations or methodologies that were reviewed are UML Activity Diagram, UML EDOC Business

Processes, IDEF, ebXML BPSS, Activity-Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and Event-Process Chains
(EPCs).

2 Conformance

An implementation claiming conformance to this specification shall comply with al of the requirements set forth in
subclauses 2.1, 2.2, and 2.3 below.

2.1 Visual Appearance

A key element of BPMN is the choice of shapes and icons used for the graphical elements identified in this specification.
The intent is to create a standard visual language that all process modelers will recognize and understand.

Business Process Modeling Notation, v1.2 1

An implementation that creates and displays BPMN Diagrams shall use the graphical elements, shapes, and markers
specified in Clauses 9-10 as the diagrammatic elements that represent the specified concepts.

Note — Thereisflexibility in the size, color, line style, and text positions of the defined graphical elements, except where
otherwise specified.

The following extensions to a BPMN Diagram are permitted:

» New markers or indicators MAY be added to the specified graphical elements. These markers or indicators could be
used to highlight a specific attribute of aBPMN element or to represent a new subtype of the corresponding concept.
(Seeaso 2.4 below)

« A new shape representing akind of Artifact may be added to a Diagram, but the new Artifact shape SHALL NOT
conflict with the shape specified for any other BPMN object or marker.

» Graphical elements may be colored, and the coloring may have specified semantics that extend the information
conveyed by the element as specified in this standard.

» Theline style of agraphical element may be changed, but that change SHALL NOT conflict with any other line style
required by this specification.

An extension SHALL NOT change the specified shape of a defined graphical element or marker (e.g., changing a square
into atriangle, or changing rounded corners into squared corners, etc.).

2.2 Structural Conformance

An implementation that creates and displays BPMN diagrams shall conform to the specifications and restrictions in
Clauses 8-10 with respect to the connections and other diagrammatic relationships between graphical elements. Where
permitted or required connections are specified as conditional and based on attributes of the corresponding concepts, the
implementation shall ensure the correspondence between the connections and the values of those attributes.

Note — In general, these connections and relationships have specified semantic interpretations, which specify interactions
among the process concepts represented by the graphical elements. Conditional relationships based on attributes represent
specific variationsin behavior. Structural conformance therefore guarantees the correct interpretation of the diagram as a
specification of process, in terms of flows of control and information.

Throughout the document, structural specifications will appear in paragraphs using a special shaped bullet.

Example:

° A Task MAY be atarget for Sequence Flow; it can have multiple incoming Flows. An Incoming Flow MAY be
from an alternative path and/or parallel paths.

2.3 Semantic Elements

This specification defines many semantic concepts used in defining processes, and associates them with graphical
elements, markers, and connections. To the extent that an implementation provides an interpretation of the BPMN
diagram as a semantic specification of process, the interpretation shall be consistent with the semantic interpretation
herein specified.

2 Business Process Modeling Notation, v1.2

Note — Theintent here isthat aBPMN diagram used as a “workflow specification” will have the interpretation specified in
this standard, somewhat extended or narrowed by the characteristics of the workflow system. Similarly, when aBPMN
diagram used as a specification for the processes and interactions of software agents, any generated software will reflect the
semantics of the diagram as specified in this standard, possibly narrowed or extended by the characteristics of the software
implementation.

2.4 Attributes and Properties

This specification defines a number of attributes and properties of the semantic objects represented by the graphical
elements, markers, and connections. Some of these attributes are purely representational and are so marked, and some
have required representations. Some attributes are specified as mandatory, but have no representation or only optional
representation. And some attributes are specified as optional.

For every attribute or property that is specified as mandatory, a conforming implementation SHALL provide some
mechanism by which values of that attribute or property can be created and displayed. This mechanism SHALL permit
the user to create or view these values for each BPMN object specified to have that attribute or property.

Where a graphical representation for that attribute or property is specified as required, that graphical representation
SHALL be used.

Where a graphical representation for that attribute or property is specified as optional, the implementation MAY use either
agraphical representation or some other mechanism. If a graphical representation is used, it SHALL be the representation
specified.

Where no graphical representation for that attribute or property is specified, the implementation MAY use either a
graphical representation or some other mechanism. If a graphical representation is used, it SHALL NOT conflict with the
specified graphical representation of any other BPMN aobject.

2.5 Extended and Optional Elements

A conforming implementation is not required to support any element or attribute that is specified herein to be non-
normative or informative.

In each instance in which this specification defines a feature to be “optional,” it specifies whether the option isin:
» how the feature shall be displayed,
» whether the feature shall be displayed,
» whether the feature shall be supported.

A conforming implementation is not required to support any feature whose support is specified to be optional. If an
implementation supports an optional feature, it SHALL support it as specified.

A conforming implementation SHALL support any “optional” feature for which the option is only in whether or how it
shall be displayed.

Business Process Modeling Notation, v1.2 3

3 Normative References

3.1 Normative

RFC-2119

» Key wordsfor usein RFCsto Indicate Requirement Levels, S. Bradner, IETF RFC 2119, March 1997
http://www.ietf.org/rfc/rfc2119.txt

3.2 Non-Normative

Activity Service

« Additional Structuring Mechanism for the OTS specification, OMG, June 1999
http://www.omg.org

» J2EE Activity Service for Extended Transactions (JSR 95), JCP
http://www.jcp.org/jsr/detail/95.jsp

BPEL4WS

« (BPEL4WS) 1.1, IBM/Microsoft/BEA/SAP/Siebel, July 2002
http://www-106.ibm.com/devel operworks/webservicedlibrary/ws-bpel/

Business Process Definition

» Final Responseto OMG BPD RFP, OMG, March 2007, bmi/07-03-01
http://www.omg.org

Business Process Modeling

» Jean-Jacques Dubray, “A Novel Approach for Modeling Business Process Definitions,” 2002
http://www.ebpml.org/ebpml2.2.doc

Business Transaction Protocol

« OASISBTP Technical Committee, June, 2002
http://www.0asi s-open.org/committees/downl oad.php/1184/2002-06-03.BTP_cttee spec_1.0.pdf

BPML

« (BPML) 1.0, BPMI, January 2003
http://www.BPM|.org

Dublin Core Meta Data

« Dublin Core Metadata Element Set, Dublin Core Metadata I nitiative
http://dublincore.org/documents/dces/

4 Business Process Modeling Notation, v1.2

http://www.ietf.org/rfc/rfc2119.txt
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.omg.org
http://www.jcp.org/jsr/detail/95.jsp
http://www.omg.org
http://www.ebpml.org/ebpml2.2.doc
http://www.BPMI.org
http://dublincore.org/documents/dces/

ebXML BPSS

» Jean-Jacques Dubray, “A new model for ebXML BPSS Multi-party Collaborations and Web Services Choreography,”
2002
http://www.ebpml.org/ebpml.doc

OMG UML

» Unified Modeling Language Specification V2.1.1: Superstructure, OMG, February 2007, formal/2007-02-05
http://www.omg.org

Open Nested Transactions

» Concepts and Applications of Multilevel Transactions and Open Nested Transactions, Gerhard Weikum, Hans-J.
Schek, 1992
http://citeseer.nj.nec.com/weikum92concepts.html

RDF

» RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft
http://www.w3.0rg/ TR/rdf -schema/

SOAP 1.2

» SOAP Version 1.2 Part 1: Messaging Framework, W3C Working Draft
http://www.w3.0rg/ TR/soap12-partl/

» SOAP Version 1.2 Part21: Adjuncts, W3C Working Draft
http://www.w3.0rg/ TR/soap12-part2/

uDDI

« Universal Description, Discovery and Integration, Ariba, IBM and Microsoft, UDDI.org.
http://www.uddi.org

URI

« Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, IETF RFC 2396,
August 1998
http://www.ietf.org/rfc/rfc2396.txt

WfMC Glossary

» Workflow Management Coalition Terminology and Glossary.
http://www.wfmc.org/standards/docs.htm

Web Services Transaction

» (WS-Transaction) 1.0, IBM/Microsoft/BEA, August, 2002
http://www-106.ibm.com/devel operworks/webservices/library/ws-transpec/

WSBPEL

» Web Services Business Process Execution Language (WSBPEL) 2.0, Committee Specification, January 2007
http://docs.0asis-open.org/wsbpel /2.0/CS01/wshpel -v2.0-CS01. pdf

Business Process Modeling Notation, v1.2 5

http://www.ebpml.org/ebpml.doc
http://www.omg.org
http://citeseer.nj.nec.com/weikum92concepts.html
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.uddi.org
http://www.ietf.org/rfc/rfc2396.txt
http://www.wfmc.org/standards/docs.htm

WSDL

» Web Services Description Language (WSDL) 2.0, W3C Proposed Recommendation, May 2007
http://www.w3.0rg/TR/2007/PR-wsdl 20-20070523/1

XML 1.0 (Second Edition)

» Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et a., eds., W3C, 6 October 2000
http://www.w3.0org/TR/REC-xml

XML-Namespaces

» Namespacesin XML, Tim Bray et al., eds., W3C, 14 January 1999
http://www.w3.org/TR/REC-xml-names

XML-Schema

« XML SchemaPart 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn, W3C, 2 May
2001
http://www.w3.0rg/TR/xmlschema-1//

« XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001
http://www.w3.org/TR/xmlschema-2/

XPath

» XML Path Language (XPath) 1.0, James Clark and Steve DeRose, eds., W3C, 16 November 1999
http://www.w3.org/ TR/xpath

XPDL

» Workflow Management Coalition XML Process Definition Language, version 2.0.
http://www.wfmc.org/standards/docs.htm

4 Terms and Definitions

See Annex C - Glossary.

5 Symbols

There are no symbols defined in this specification.

6 Business Process Modeling Notation, v1.2

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xmlschema-1//
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath
http://www.wfmc.org/standards/docs.htm

6 Additional Information

6.1 Conventions

The section introduces the conventions used in this document. This includes (text) notational conventions and notations
for schema components. Also included are designated namespace definitions.

6.1.1 Typographical and Linguistic Conventions and Style

This specification incorporates the following conventions:

+ Thekeywords“MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “MUST NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL" in this document are to be interpreted as described in RFC-2119.

« Atermisaword or phrase that has a specia meaning. When aterm is defined, the term name is highlighted in bold
typeface.

A referenceto another definition, section, or specification is highlighted with underlined typeface and providesalink to
the relevant location in this specification.

« A reference to an element, attribute, or BPM N construct is highlighted with a capitalized word (e.g., Sub-Process).

- A reference to a BPELA4AWS element, attribute, or construct is highlighted with an italic lower-case word, usually
preceded by the word “BPEL4WS’ (e.g., BPEL4WS pick).

» Non-normative examples are set off in boxes and accompanied by a brief explanation.

« XML and pseudo codeis highlighted with mono - spaced typeface. Different font colors may be used to highlight the
different components of the XML code.

» Thecardinality of any content part is specified using the following operators:
« <none> — exactly once
*(0-1) —O0or1
¢ (0-n) — 0 or more
* (1-n) — 1 or more

« Attributes separated by | and grouped within (and) — alternative values
 <value> — default value
» <type>— thetype of the attribute

Business Process Modeling Notation, v1.2 7

6.1.2 Abbreviations

The following abbreviations may be used throughout this document:

This abbreviation Refersto

BPEL4WS Business Process Execution Language for Web Services (see BPEL4WS). This abbreviation
refers specifically to version 1.1 of the specification.

WSDL Web Service Description Language (see WSDL). This abbreviation refers specifically to the
W3C Technical Note, 15 March 2001, but is intended to support future versions of the
WSDL specification.

6.2 Structure of this Document

The BPMN specification defines the Business Process Diagram modeling objects, their semantics, their mapping to
BPEL4WS, and is comprised of the following topics:

BPMN Overview provides an introduction to BPMN, its requirements, and discusses the range of modeling purposes that
BPMN can convey.

Business Process Diagrams provides a summary of the BPMN graphical elements and their relationships.

Business Process Diagram Graphical Objects details the graphical representation, attributes, and semantics of the
behavior of BPMN Diagram elements.

Business Process Diagram Connecting Objects defines the graphical objects used to connect two objects together (i.e., the
connecting lines of the Diagram) and how flow progresses through a Process (i.e., through a straight sequence or through
the creation of parallel or alternative paths).

BPMN by Example provides a walkthrough of a sample Process using BPMN.

Annex A: Mapping to BPEL4WS provides a mechanism for converting a Business Process to a BPEL4WS document,
provides and example of Process mapping, and provides a full sample of BPEL4WS code based on the example process

mapping.

Annex B: BPMN Element Attributes and Types provides the complete set of BPMN Element attributes, which are first
presented in Chapters 8, 9, and 10, and the definition of types that support the attributes.

Annex C: Glossary presents an alphabetical index of terms that are relevant to practitioners of BPMN.

6.3 Acknowledgements
The following companies submitted and/or supported parts of this specification:
- 88Solutions
» Adobe
» Adaptive
» Appian

8 Business Process Modeling Notation, v1.2

» Axway Software

« BEA

» BizAgi

» Boeing

» Borland

+ BPM Focus

» Business Rules Group

» Casawise

« Computas

« EDS

» Embarcadero Technologies
 Fair, Isaac & Company

» Global 360

» Graham Technology

» Hewlett-Packard

« IBM Corporation

« IBM Corporation (FileNet)

» Infosys
o iGrafx
« Intalio

« International Performance Group
e ITPearlsAG

« KnowGravity

» Lombardi Software

» MegaInternational

« NIST

» NoMagic, Inc.

« oose Innovative Informatik GmbH
» Pegasystems

- Proforma

 Sandpiper Software

Business Process Modeling Notation, v1.2

« SAP

» Software AG (webMethods)
» Sterling Commerce

« Sun

» Sun (See Beyond Technology Corporation)
» Sybase

- Tall TreeLabs

» Telelogic (Popkin Software)
 Tibco

» Troux Technologies

» Unisys

» U.S. Department of Treasury

The following person was the main author/editor of the specification: Stephen A White. The following persons were
members of the core teams that contributed to the content specification: Michael Anthony, Assaf Arkin, Sylvan Astier,
Rob Bartel, Ed Barkmeyer, Conrad Bock, Donna Burbank, Steinar Carlsen, Petko Chobantonov, Ugo Corda, Fred
Cummins, Bob Daniel, Tony Fletcher, Steven Forgey, Karl Frank, Jean-Luc Giraud, Brian James, George Keeling, Markus
Klink, Antoine Lonjon, Monica Martin, Lee Mason, Frank McCabe, Dale Moberg, Martin Owen, Pete Rivett, Suzette
Samoojh, Jesus Sanchez, Robert Shapiro, Bob Smith, Manfred Sturm, Balasubramanian (Bala) Suryanarayanan, Michelle
Vanchu-Orozco, David Williams, and Paul Wuethrich.

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality of
this specification: Ashish Agrawal, Mike Amend, Don Baisley, Steve Ball, Pranab Baruah, Olivier Bigard, Justin Brunt,
Cory Casanave, Pam Corsini, Bernard Debauche, Joachim (Jim) Frank, David Frankel, John Hall, Paul Harmon, Damion
Heredia, Cyril Jaoen, Jana Koehler, Manfred Koethe, Jochen Kuester, Philip Larson, Mike Marin, Derek Miers, Alex
Moffat, Jishnu Mukerji, Roberta Norin, Jog Raj, James Rubert, Markus Schacher, Ed Seidewitz, James Taylor, Bobbin
Teegarden, Roy Thompson, Paul Vincent, Peter Walker, and Tim Weilkiens.

10 Business Process Modeling Notation, v1.2

7 Overview

There has been much activity in the past few years in developing web service-based XML execution languages for
Business Process Management (BPM) systems. Languages such as BPEL4WS provide a formal mechanism for the
definition of business processes. The key element of such languages is that they are optimized for the operation and inter-
operation of BPM Systems. The optimization of these languages for software operations renders them less suited for
direct use by humans to design, manage, and monitor business processes. BPEL4WS has both graph and block structures
and utilizes the principles of formal mathematical models, such as pi-calculust. This technical underpinning provides the
foundation for business process execution to handle the complex nature of both internal and B2B interactions and take
advantage of the benefits of Web services. Given the nature of BPEL4WS, a complex business process could be organized
in a potentially complex, disjointed, and unintuitive format that is handled very well by a software system (or a computer
programmer), but would be hard to understand by the business analysts and managers tasked to develop, manage, and
monitor the process. Thus, there is a human level of “inter-operability” or “portability” that is not addressed by these web
service-based XML execution languages.

Business people are very comfortable with visualizing business processes in a flow-chart format. There are thousands of
business analysts studying the way companies work and defining business processes with simple flow charts. This creates
atechnical gap between the format of the initial design of business processes and the format of the languages, such as
BPEL4WS, that will execute these business processes. This gap needs to be bridged with a forma mechanism that maps
the appropriate visualization of the business processes (a notation) to the appropriate execution format (a BPM execution
language) for these business processes.

Inter-operation of business processes at the human level, rather than the software engine level, can be solved with
standardization of the Business Process Modeling Notation (BPMN). BPMN provides a Business Process Diagram (BPD),
which is a Diagram designed for use by the people who design and manage business processes. BPMN also provides a
mapping to an execution language of BPM Systems (BPEL4WS). Thus, BPMN would provide a standard visualization
mechanism for business processes defined in an execution optimized business process language.

BPMN will provide businesses with the capability of understanding their internal business procedures in a graphical
notation and will give organizations the ability to communicate these procedures in a standard manner. Currently, there
are scores of process modeling tools and methodologies. Given that individuals will move from one company to another
and that companies will merge and diverge, it is likely that business analysts are required to understand multiple
representations of business processes--potentially different representations of the same process as it moves through its
lifecycle of development, implementation, execution, monitoring, and analysis. Therefore, a standard graphical notation
will facilitate the understanding of the performance collaborations and business transactions within and between the
organizations. This will ensure that businesses will understand themselves and participants in their business and will
enable organizations to adjust to new internal and B2B business circumstances quickly. To do this, BPMN will follow the
tradition of flowcharting notations for readability; yet still provide a mapping to the executable constructs. BPMI is using
the experience of the business process notations that have preceded BPMN to create the next generation notation that
combines readability, flexibility, and expandability.

BPMN will also advance the capabilities of traditional business process notations by inherently handling B2B business
process concepts, such as public and private processes and choreographies, as well as advanced modeling concepts, such
as exception handling, transactions, and compensation.

1. SeeMilner, 1999, “Communicating and Mobile Systems:. the IT-Calculus,” Cambridge University Press. ISBN 0521 64320 1 (hc.) ISBN
0521 65869 1 (pbk.)

Business Process Modeling Notation, v1.2 11

7.1 BPMN Scope

BPMN will be constrained to support only the concepts of modeling that are applicable to business processes. This means
that other types of modeling done by organizations for business purposes will be out of scope for BPMN. For example,
the modeling of the following will not be a part of BPMN:

« Organizational structures and resources
« Functional breskdowns

 Dataand information models

« Strategy

» Business Rules

Since these types of high-level modeling either directly or indirectly affect business processes, the relationships between
BPMN and other high-level business modeling will be defined more formally as BPMN and other specifications are
advanced.

In addition, while BPMN will show the flow of data (messages), and the association of data Artifacts to activities, it is not
a data flow Diagram.

7.1.1 Uses of BPMN

Business process modeling is used to communicate a wide variety of information to a wide variety of audiences. BPMN
is designed to cover many types of modeling and allows the creation of end-to-end business processes. The structural
elements of BPMN will allow the viewer to be able to easily differentiate between sections of a BPMN Diagram.

There are three basic types of sub-models within an end-to-end BPMN model:
1. Private (internal) business processes
2. Abstract (public) processes
3. Collaboration (global) Processes

Note — The terminology used to describe the different types of processes has not been standardized. Definitions of these terms
areinflux. Thereiswork being donein the World Wide Web Consortium (W3C) and in the Organization for the Advancement
of Structured Information Standards (OASIS) that will hopefully consolidate these terms.

Some BPMN specification terms regarding the use of Swimlanes (e.g., Pools and Lanes) are used in the descriptions
below. Refer to “ Swimlanes (Pools and Lanes)” on page 263 for more details on how these elements are used in a BPD.

Private (Internal) Business Processes

Private business processes are those internal to a specific organization and are the types of processes that have been
generally called workflow or BPM processes (see Figure 7.1). A single private business process may be mapped to one or
more BPEL4WS documents.

12 Business Process Modeling Notation, v1.2

If Swimlanes are used, then a private business process will be contained within a single Pool. The Sequence Flow of the
Process is therefore contained within the Pool and cannot cross the boundaries of the Pool. Message Flow can cross the
Pool boundary to show the interactions that exist between separate private business processes. Thus, a single Business
Process Diagram may show multiple private business processes, each with separate mappings to BPEL4WS.

Determine Order Check Record of Determine Approve or Reject Notify Applicant of
. .)) - Approval or
is Complete Applicant Premium of Policy Policy Rejection

Figure 7.1 - Example of Private Business Process

Abstract (Public) Processes

This represents the interactions between a private business process and another process or participant (see Figure 7.2).
Only those activities that are used to communicate outside the private business process, plus the appropriate flow control
mechanisms, are included in the abstract process. All other “internal” activities of the private business process are not
shown in the abstract process. Thus, the abstract process shows to the outside world the sequence of messages that are
required to interact with that business process. A single abstract process may be mapped to a single BPEL4WS abstract
process (however, this mapping will not be done in this version of the specification).

Abstract processes are contained within a Pool and can be modeled separately or within alarger BPMN Diagram to show
the Message Flow between the abstract process activities and other entities. If the abstract process is in the same Diagram
as its corresponding private business process, then the activities that are common to both processes can be associated.

Patient

T | T

|
8) Pickup ygur medicine 10) Here is ypour medicine

|
|
6) 1 feF| sick and you ¢an leave
|
|
|
|
|
|
|
|
|

—————

1) I want to} see doctor

| 5) Go sge doctor |
I

\
\
\
|
9) need my medicine
\
\
|
\
\
\
|

|

|

|

|
| |
| |
| |
| |
| |
| |
& A A

Receive Send Receive
Send Appt. Prescription Medicine Send Medicine O
Symptoms ;
Pickup Request

Figure 7.2 - Example of an Abstract Business Process

Receive
Doctor
Request

Doctor’s Office

Collaboration (Global) Processes

A collaboration process depicts the interactions between two or more business entities. These interactions are defined as
a sequence of activities that represent the message exchange patterns between the entities involved. A single collaboration
process may be mapped to various collaboration languages, such as ebXML BPSS, RosettaNet, or the resultant
specification from the W3C Choreography Working Group (however, these mappings are considered as future directions
for BPMN).

Business Process Modeling Notation, v1.2 13

The collaboration process can be shown as two or more abstract processes communicating with each other (see Figure
7.3). With an abstract process, the activities for the collaboration participants can be considered the “touch-points”
between the participants. The actual (executable) processes are likely to have much more activity and detail than what is
shown in the abstract processes.

b= Receive - .
c Send Doctor Receive Appt Send Prescrintion Send Medicine Receive
Qo Request ppL. Symptoms pi p Request Medicine
— ickup
DC(_S lliness T T T
| ! | T | T
Occurs ! : !) Pick dl g ! :
8) Picku ur medicine . -
| I [py I
: ! 6) | feFI sick and you £an leave : 10) Here is)llpur medicine
1) I want to: see doctor 5) Go sde doctor ! : 9) need my medicine |
T f T t T t
| I | I | |
| i | | ! |
| ! | ! | !
1 [| | | |
= N A A
R Receive Receive Send Receive
c 5 Doctor Send Appt. Symptoms Prescription Medicine Send Medicine
g 6 Request ymp Pickup Request
o
o 0
&)
@

Figure 7.3 - Example of a Collaboration Business Process

Types of BPD Diagrams

Within and between these three BPMN sub-models, many types of Diagrams can be created. The following are the types
of business processes that can be modeled with BPMN (those with asterisks may not map to an executable language):

» High-level private process activities (not functional breakdown)*

« Detailed private business process
* As-isor old business process*
* To-be or new business process

 Detailed private business process with interactions to one or more external entities (or “Black Box” processes)
» Two or more detailed private business processes interacting

 Detailed private business process relationship to Abstract Process

« Detailed private business process relationship to Collaboration Process

« Two or more Abstract Processes*

» Abstract Process relationship to Collaboration Process*

« Collaboration Process only (e.g., ebXML BPSS or RosettaNet)*

14 Business Process Modeling Notation, v1.2

» Two or more detailed private business processes interacting through their Abstract Processes
« Two or more detailed private business processes interacting through a Collaboration Process

» Two or more detailed private business processes interacting through their Abstract Processes and a Collaboration
Process

BPMN is designed to allow all the above types of Diagrams. However, it should be cautioned that if too many types of
sub-models are combined, such as three or more private processes with message flow between each of them, then the
Diagram may become too hard for someone to understand. Thus, we recommend that the modeler pick a focused purpose
for the BPD, such as a private process, or a collaboration process.

BPMN mappings

Since BPMN covers such a wide range of usage, it will map to more than one lower-level specification language:

« BPEL4WS are the primary languages that BPMN will map to, but they only cover a single executabl e private business
process. If aBPMN Diagram depicts more than one internal business process, then there will be a separate mapping for
each on the internal business processes.

» Theabstract sections of aBPMN Diagram will be mapped to Web service interfaces specifications, such as the abstract
processes of BPEL4WS.

» The Collaboration model sections of aBPMN may be mapped Collaboration models such as ebXML BPSS,
RosettaNet, and the W3C Choreography Working Group Specification (when it is completed).

This specification will only cover a mapping to BPEL4WS. Mappings to other specifications will have to be a separate
effort, or perhaps a future direction of BPMN (beyond Version 1.0 of the BPMN specification). It is hard to predict which
mappings will be applied to BPMN at this point, since process language specifications is a volatile area of work, with
many new offerings and mergings.

A BPD is not designed to graphically convey all the information required to execute a business process. Thus, the graphic
elements of BPMN will be supported by attributes that will supply the additional information required to enable a
mapping to BPEL4AWS. A complete list of all the element attributes can be found in Annex B.

7.1.2 Diagram Point of View

Since a BPMN Diagram may depict the Processes of different Participants, each Participant may view the Diagram
differently. That is, the Participants have different points of view regarding how the Processes will apply to them. Some
of the activities will be internal to the Participant (meaning performed by or under control of the Participant) and other
activities will be external to the Participant. Each Participant will have a different perspective as to which are internal and
external. At runtime, the difference between internal and external activities is important in how a Participant can view the
status of the activities or trouble-shoot any problems. However, the Diagram itself remains the same. Figure 7.3, above,
displays a Business Process that has two points of view. One point of view is of a Patient, the other is of the Doctor’s
office. The Diagram shows the activities of both participants in the Process, but when the Process is actually being
performed, each Participant will only have control over their own activities.

Although the Diagram point of view is important for a viewer of the Diagram to understand how the behavior of the
Process will relate to that viewer, BPMN will not currently specify any graphical mechanisms to highlight the point of
view. It is open to the modeler or modeling tool vendor to provide any visual cues to emphasize this characteristic of a
Diagram.

Business Process Modeling Notation, v1.2 15

7.1.3 Extensibility of BPMN and Vertical Domains

BPMN is intended to be extensible by modelers and modeling tools. This extensibility allows modelers to add non-
standard elements or Artifacts to satisfy a specific need, such as the unique requirements of a vertical domain. While
extensible, BPMN Diagrams should still have the basic look-and-feel so that a Diagram by any modeler should be easily
understood by any viewer of the Diagram. Thus the footprint of the basic flow elements (Events, activities, and
Gateways) should not be altered. Nor should any new flow elements be added to a BPD, since there is no specification as
to how Sequence and Message Flow will connect to any new Flow Object. In addition, mappings to execution languages
may be affected if new flow elements are added. To satisfy additional modeling concepts that are not part of the basic set
of flow elements, BPMN provides the concept of Artifacts that can be linked to the existing Flow Objects through
Associations. Thus, Artifacts do not affect the basic Sequence or Message Flow, nor do they affect mappings to execution
languages.

The graphical elements of BPMN are designed to be open to allow specialized markers to convey specialized information.
For example, the three types of Events all have open centers for the markers that BPMN standardizes as well as user-
defined markers.

16 Business Process Modeling Notation, v1.2

8 Business Process Diagrams

This chapter provides a summary of the BPMN graphical objects and their relationships. More details on the concepts will
be provided in 9, Business Process Diagram Graphical Objects and 10, Business Process Diagram Connecting Objects.

A goal for the development of BPMN is that the notation be simple and adoptable by business analysts. Also, there is a
potentially conflicting requirement that BPMN provide the power to depict complex business processes and map to BPM
execution languages. To help understand how BPMN can manage both requirements, the list of BPMN graphic elements
is presented in two groups.

First, there is the list of core elements that will support the requirement of a simple notation. These are the elements that
define the basic look-and-feel of BPMN. Most business processes will be modeled adequately with these elements.
Second, there is the entire list of elements, including the core elements, which will help support requirement of a powerful
notation to handle more advanced modeling situations. And further, the graphical elements of the notation will be
supported by non-graphical attributes that will provide the remaining information necessary to map to an execution
language or other business modeling purposes.

8.1 BPD Core Element Set

It should be emphasized that one of the drivers for the development of BPMN is to create a simple mechanism for
creating business process models, while at the same time being able to handle the complexity inherent to business
processes. The approach taken to handle these two conflicting requirements was to organize the graphical aspects of the
notation into specific categories. This provides a small set of notation categories so that the reader of a BPMN diagram
can easily recognize the basic types of elements and understand the diagram. Within the basic categories of elements,
additional variation and information can be added to support the requirements for complexity without dramatically
changing the basic look and feel of the diagram. The four basic categories of elements are;

1. Flow Objects
2. Connecting Objects
3. Swimlanes

4, Artifacts

Flow Objects are the main graphical elements to define the behavior of a Business Process. There are three Flow Objects:

1. Events
2. Activities
3. Gateways

There are three ways of connecting the Flow Objects to each other or other information. There are three Connecting
Objects:

1. Sequence Flow
2. Message Flow

3. Association

Business Process Modeling Notation, v1.2 17

There are two ways of grouping the primary modeling elements through “ Swimlanes.”
1. Pooals

2. Lanes

Artifacts are used to provide additional information about the Process. There are three standardized Artifacts, but
modelers or modeling tools are free to add as many Artifacts as required. There may be addition BPMN efforts to
standardize a larger set of Artifacts for general use or for vertical markets. The current set of Artifacts include:

1. DataObject
2. Group
3. Annotation

Table 8.1 displays a list of the core modeling elements that are depicted by the notation.

Table 8.1 - Core Modeling Elements

Element Description Notation
Event An event is something that “happens’ during the
course of a business process (“Events’ on page 35).
These events affect the flow of the process and Q

usually have a cause (trigger) or an impact (result).
Events are circles with open centers to allow
internal markers to differentiate different triggers or
results. There are three types of Events, based on
when they affect the flow: Start, Intermediate, and
End.

Activity An activity is ageneric term for work that company
performs (“Activities” on page 52). An activity can
be atomic or non-atomic (compound). The types of
activities that are a part of a Process Model are:
Process, Sub-Process, and Task. Tasks and Sub-
Processes are rounded rectangles. Processes are
contained within a Pool.

Gateway A Gateway is used to control the divergence and
convergence of Sequence Flow (“Gateways’ on
page 70). Thus, it will determine branching,
forking, merging, and joining of paths. Internal
Markers will indicate the type of behavior control.

18 Business Process Modeling Notation, v1.2

Table 8.2 - BPD Core Element Set

Element

Description

Notation

Sequence Flow

A Seguence Flow is used to show the order that
activities will be performed in a Process (“ Sequence
Flow” on page 97).

Message Flow

A Message Flow is used to show the flow of
messages between two participants that are
prepared to send and receive them (“ M essage Flow”
on page 99). In BPMN, two separate Poolsin a
Diagram will represent the two participants (e.g.,
business entities or business roles).

Association

An Association is used to associate information
with Flow Objects. Text and graphical non-Flow
Objects can be associated with Flow Objects. An
arrowhead on the Association indicates a direction
of flow (e.g., data), when appropriate
(“Association” on page 101).

Pool

A Pool represents a Participant in a Process (“Pool”
on page 87) also acts as a“swimlane” and a
graphical container for partitioning a set of
activities from other Poals, usually in the context of
B2B situations.

Name

Lane

A Lane is a sub-partition within a Pool and will
extend the entire length of the Pool, either vertically
or horizontally (“Lane” on page 89). Lanes are used
to organize and categorize activities.

Name
Name | Name

Data Object

Data Objects are considered Artifacts because they
do not have any direct effect on the Sequence Flow
or Message Flow of the Process, but they do
provide information about what activities require to
be performed and/or what they produce (“Data
Object” on page 93).

Name

Group (abox around a
group of objectswithin
the same category)

A grouping of activities that are within the same
category (“Group” on page 95). This type of
grouping does not affect the Sequence Flow of the
activities within the group. The category name
appears on the diagram as the group label.
Categories can be used for documentation or
analysis purposes. Groups are one way in which
categories of objects can be visualy displayed on
the diagram.

Business Process Modeling Notation, v1.2

19

Table 8.2 - BPD Core Element Set

Text Annotations are a mechanism for a modeler to
provide additional information for the reader of a
BPMN Diagram (“Text Annotation” on page 94).

Text Annotation
(attached with an
Association)

Descriptive Text
Here

8.2 BPD Extended Set

Table 8.3 displays a more extensive list of the business process concepts that could be depicted through a business process

modeling notation.

Table 8.3 - BPD Extended Element Set

Element

Description

Notation

Event

An event is something that “happens’
during the course of a business process.
These events affect the flow of the
process and usually have a cause (trigger)
or an impact (result). There are three
types of Events, based on when they
affect the flow: Start, Intermediate, and
End.

)

Name or
Source

Flow Dimension (e.g.,
Start, Intermediate, End)

Start (None,
Message, Timer,
Conditional, Signal,
Multiple)

Intermediate (None,
Message, Timer,
Error, Cancel,
Compensation,
Conditional, Link,
Signal, Multiple)

End (None, Message,
Error, Cancel,
Compensation,
Signal,Terminate,
Multiple)

Asthe name implies, the Start Event
indicates where a particular process will
start (“ Start” on page 36).

Intermediate Events occur between a Start
Event and an End Event (“Intermediate”
on page 44). They will affect the flow of
the process, but will not start or (directly)
terminate the process.

Asthe name implies, the End Event
indicates where a process will end (“End”
on page 40).

Start Q
Intermediate @

End O

20

Business Process Modeling Notation, v1.2

Table 8.3 - BPD Extended Element Set

Type Dimension (e.g., None,
Message, Timer, Error,
Cancel, Compensation,
Conditional, Link, Signal,
Multiple, Terminate.)

Start and most Intermediate Events have
“Triggers’ that define the cause for the
event (“Start” on page 36 and
“Intermediate” on page 44). There are
multiple ways that these events can be
triggered. End Events may define a
“Result” that is a consequence of a
Sequence Flow ending (“End” on page
40). Start Events can only react to
(“catch™) a Trigger. End Events can only
create (“throw”) a Result. Intermediate
Events can catch or throw Triggers. For
the Events, Triggers that catch, the
markers are unfilled, and for Triggers and
Results that throw, the markers are filled.

Conditional

Link

Signal

“Catching” “Throwing”
— ®
Timer

eror ®
Gancel ®
Compensation @

Terminate

Multiple

®»®
OICIC]

@)
©

©
®

Task (Atomic)

A Task is an atomic activity that is
included within a Process (“Task” on
page 64). A Task is used when the work
in the Process is not broken down to a
finer level of Process Model detail.

Process/Sub-Process (non-
atomic)

A Sub-Process is a compound activity
that is included within a Process (“ Sub-
Process’ on page 56). It is compound in
that it can be broken down into a finer
level of detail (a Process) through a set of
sub-activities.

See Next Two Figures

Collapsed Sub-Process

The details of the Sub-Process are not
visible in the Diagram (“ Sub-Process’ on
page 56). A “plus’ sign in the lower-
center of the shape indicates that the
activity is a Sub-Process and has a lower-
level of detail.

Business Process Modeling Notation, v1.2

21

Table 8.3 - BPD Extended Element Set

Expanded Sub-Process

The boundary of the Sub-Process is
expanded and the details (a Process) are
visible within its boundary (“ Sub-
Process’ on page 56).

Note that Sequence Flow cannot cross the
boundary of a Sub-Process.

Gateway

A Gateway is used to control the
divergence and convergence of multiple
Sequence Flow (“Gateways’ on page 70).
Thus, it will determine branching,
forking, merging, and joining of paths.

Gateway Control Types

Icons within the diamond shape will
indicate the type of flow control behavior.
The types of control include;

» Exclusive decision and merging.
Both Data-Based (“Data-Based” on
page 73) and Event-Based (“ Event-
Based” on page 77). Data-Based can
be shown with or without the “X”
marker.

* Inclusive decision and merging
(“Inclusive Gateways’ on page 80).

» Complex -- complex conditions and
situations (e.g., 3 out of 5; “Complex
Gateways’ on page 83).

* Pardlel forkingandjoining (“Parallel
Gateways’ on page 85).

Each type of control affects both the
incoming and outgoing Flow.

Exclusive
Data-Based or

Event-Based

Inclusive

Complex

Parallel

©
*
+

Sequence Flow

A Sequence Flow is used to show the
order that activities will be performed in
a Process (“ Sequence Flow” on page 97).

See next seven figures

Norma Flow

Normal Sequence Flow refers to the flow
that originates from a Start Event and
continues through activities via
aternative and parallel paths until it ends
at an End Event (“Normal Flow” on page
104).

22

Business Process Modeling Notation, v1.2

Table 8.3 - BPD Extended Element Set

Uncontrolled flow Uncontrolled flow refersto flow that is
not affected by any conditions or does not
pass through a Gateway (“Gateways” on
page 70). The simplest example of thisis
a single Sequence Flow connecting two
activities. This can also apply to multiple
Sequence Flow that converge on or
diverge from an activity. For each
uncontrolled Sequence Flow a “Token”
will flow from the source object to the
target object.

Conditiona flow Sequence Flow can have condition
expressions that are evaluated at runtime
to determine whether or not the flow will
be used (“ Sequence Flow” on page 97).

« If the conditional flow is outgoing
from an activity, then the Sequence
Flow will have amini-diamond at the
beginning of the line (seefiguretothe
right).

« If the conditional flow is outgoing
from a Gateway, then theline will not
have a mini-diamond (see figurein
the row above).

Default flow For Data-Based Exclusive Decisions or
Inclusive Decisions, one type of flow is
the Default condition flow (“ Sequence
Flow” on page 97). This flow will be
used only if all the other outgoing
conditional flow is not true at runtime.
These Sequence Flow will have a
diagonal slash that will be added to the
beginning of the line (see the figure to the
right).

Exception Flow Exception Flow occurs outside the
Normal Flow of the Process and is based
upon an Intermediate Event that occurs
during the performance of the Process
(“Exception Flow” on page 127).

Business Process Modeling Notation, v1.2

23

Table 8.3 - BPD Extended Element Set

Message Flow

A Message Flow is used to show the flow
of messages between two entities that are
prepared to send and receive them
(“Message Flow” on page 99). In BPMN,
two separate Pools in the Diagram will
represent the two entities.

Compensation Association

Compensation Association occurs outside
the Normal Flow of the Process and is
based upon an event (a Compensation
Intermediate Event) that is triggered
through the failure of a Transaction or a
Compensate Event (“Compensation
Association” on page 129). The target of
the Association must be marked as a
Compensation Activity.

Data Object

Data Objects are considered Artifacts
because they do not have any direct effect
on the Sequence Flow or Message Flow
of the Process, but they do provide
information about what activities require
to be performed and/or what they produce
(“Data Object” on page 93).

Name

Fork

BPMN uses the term “fork” to refer to
the dividing of a path into two or more
parallel paths (also known as an AND-
Split; “Forking Flow” on page 107).

It is a place in the Process where
activities can be performed concurrently,
rather than sequentially. There are two
options:

 Multiple Outgoing Sequence Flow
can be used (see figure top-right).
This represents “ uncontrolled” flow
isthe preferred method for most
situations.

» A Parallel Gateway can be used (see
figure bottom-right). Thiswill be
used rarely, usually in combination
with other Gateways.

24

Business Process Modeling Notation, v1.2

Table 8.3 - BPD Extended Element Set

Join

BPMN usesthe term “join” to refer to the
combining of two or more parallel paths
into one path (also known as an AND-
Join or synchronization; “Joining Flow”
on page 110). A Parallel Gateway is used
to show the joining of multiple Flow.

-

Decision, Branching Point

Decisions are Gateways within a business
process where the flow of control can
take one or more alternative paths
(“Gates’ on page 72).

See next five rows.

Exclusive

An Exclusive Gateway restricts the flow
such that only one of a set of alternatives
may be chosen during runtime (“ Gates”
on page 72). There are two types of
Exclusive Gateways. Data-based and
Event-based.

Exclusive
Data-Based

X

Event-Based

Data-Based

This Decision represents a branching
point where Alternatives are based on
conditional expressions contained within
the outgoing Sequence Flow (“Data
Based” on page 73). Only one of the
Alternatives will be chosen.

Condition 1

Default

Business Process Modeling Notation, v1.2

25

Table 8.3 - BPD Extended Element Set

Event-Based

This Decision represents a branching
point where Alternatives are based on an
Event that occurs at that point in the
Process (“Event-Based” on page 77).
The specific Event, usually the receipt of
aMessage, determines which of the paths
will be taken. Other types of Events can
be used, such as Timer. Only one of the
Alternatives will be chosen. There are
two options for receiving Messages:

* Tasks of Type Receive can be used
(see figure top-right).

* Intermediate Events of Type Message
can be used (see figure bottom-right).

[Type Receive]

[Type Receive]

ke

e

@)

Inclusive

This Decision represents a branching
point where Alternatives are based on
conditional expressions contained within
the outgoing Sequence Flow (“Inclusive
Gateways’ on page 80).

In some sense it is a grouping of related
independent Binary (Y es/No) Decisions.
Since each path is independent, all
combinations of the paths may be taken,
from zero to all. However, it should be
designed so that at least one path istaken.
A Default Condition could be used to
ensure that at least one path is taken.
There are two versions of this type of
Decision:

» Thefirst uses a collection of
conditional Sequence Flow, marked
with mini-diamonds (see top-right
figure).

» The second uses an Inclusive
Gateway (see bottom-right picture).

Condition 1 :
Condition 2

Condition 1

=)

Condition 2

26

Business Process Modeling Notation, v1.2

Table 8.3 - BPD Extended Element Set

Merging

BPMN uses the term “merge” to refer to
the exclusive combining of two or more
paths into one path (also known as an
OR-Join; “Merging Flow” on page 114).
A Merging Exclusive Gateway is used to
show the merging of multiple Flow. If all
the incoming flow is alternative, then a
Gateway is not needed. That is,
uncontrolled flow provides the same
behavior.

4

Looping

BPMN provides 2 (two) mechanisms for
looping within a Process.

See Next Two Figures

Activity Looping

The attributes of Tasks and Sub-
Processes will determine if they are
repeated or performed once (“Looping”
on page 118).

There are two types of loops: Standard
and Multi-Instance. A small looping
indicator will be displayed at the bottom-
center of the activity.

Sequence Flow Looping

Loops can be created by connecting a
Sequence Flow to an “upstream” object
(“Looping” on page 118).

An object is considered to be upstream if
that object has an outgoing Sequence
Flow that leads to a series of other
Sequence Flow, the last of which isan
incoming Sequence Flow for the original
object.

Multiple Instances

The attributes of Tasks and Sub-
Processes will determine if they are
repeated or performed once (“Looping”
on page 118). A small parallel indicator
will be displayed at the bottom-center of
the activity.

o
A
e

Business Process Modeling Notation, v1.2

Table 8.3 - BPD Extended Element Set

Process Break (something out
of the control of the process
makes the process pause)

A Process Break is alocation in the
Process that shows where an expected
delay will occur within a Process
(“Intermediate” on page 44).

An Intermediate Event is used to show
the actual behavior (see top-right figure).
In addition, a Process Break Artifact, as
designed by a modeler or modeling tool,
can be associated with the Event to
highlight the location of the delay within
the flow.

Increment
Tally

Announce
Issues for Vote

Voting
Response
Received

Transaction

A transaction is a Sub-Process that is
supported by a special protocol that
insures that all parties involved have
complete agreement that the activity
should be completed or cancelled (“ Sub-
Process Behavior as a Transaction” on
page 62).

The attributes of the activity will
determine if the activity is a transaction.
A double-lined boundary indicates that
the Sub-Process is a Transaction.

Nested/Embedded Sub-
Process (Inline Block)

A nested (or embedded) Sub-Processis
an activity that shares the same set of
data as its parent process (“ Embedded
Sub-Process’ on page 58). Thisis
opposed to a Sub-Process that is
independent, re-usable, and referenced
from the parent process. Data needs to be
passed to the referenced Sub-Process, but
not to the nested Sub-Process.

Thereisno specia indicator for nested Sub-
Processes

Group (a box around a group
of objects within the same

category)

A grouping of activities that are within
the same category (“Group” on page 95).
This type of grouping does not affect the
Sequence Flow of the activities within the
group. The category name appears on the
diagram as the group label. Categories
can be used for documentation or analysis
purposes. Groups are one way in which
categories of objects can be visualy
displayed on the diagram.

28

Business Process Modeling Notation, v1.2

Table 8.3 - BPD Extended Element Set

Off-Page Connector Generally used for printing, this object
will show where the Sequence Flow

|eaves one page and then restarts on the
next page (“Sequence Flow Jumping
(Off-Page Connectors and Go To
Objects)” on page 121).

A Link Intermediate Event can be used as
an Off-Page Connector.

Association An Association is used to associate
information with Flow Objects
(“Association” on page 101).

Text and graphical non-Flow Objects can
be associated with the Flow Objects.

escriptive Text

with an Association) modeler to provide additional information Here

for the reader of aBPMN Diagram | .
(“Text Annotation” on page 94).

Text Annotation (attached Text Annotations are a mechanism for a E

Pool A Pool represents a Participant in a
Process (“Pool” on page 87).

Itisaso acts as a“swimlane” and a
graphical container for partitioning a set
of activities from other Pools, usually in
the context of B2B situations.

Name

Lanes A Lane is a sub-partition within a Pool
and will extend the entire length of the
Pool, either vertically or horizontally
(“Lane” on page 89).

Lanes are used to organize and categorize
activities within a Pool.

Name
Name | Name

8.3 Use of Text, Color, Size, and Lines in a Diagram

Text Annotation objects can be used by the modeler to display additional information about a Process or attributes of the
objects within the Process.

» Flow objectsand Flow MAY have labels (e.g., its name and/or other attributes) placed inside the shape, or above or
below the shape, in any direction or location, depending on the preference of the modeler or modeling tool vendor.

» Thefillsthat are used for the graphical elements MAY be white or clear.

» The notation MAY be extended to use other fill colorsto suit the purpose of the modeler or tool (e.g., to highlight
the value of an object attribute).

» Flow objects and markers MAY be of any size that suits the purposes of the modeler or modeling tool.

Business Process Modeling Notation, v1.2 29

» Thelinesthat are used to draw the graphical elements MAY be black.

« The notation MAY be extended to use other line colors to suit the purpose of the modeler or tool (e.g., to highlight
the value of an object attribute).

« The notation MAY be extended to use other line styles to suit the purpose of the modeler or tool (e.g., to highlight
the value of an object attribute) with the condition that the line style MUST NOT conflict with any current BPMN
defined line style. Thus, the line styles of Sequence Flow, Message Flow, and Associations MUST NOT be
modified.

8.4 Flow Object Connection Rules

An incoming Sequence Flow can connect to any location on a Flow Object (left, right, top, or bottom). Likewise, an
outgoing Sequence Flow can connect from any location on a Flow Object (left, right, top, or bottom). Message Flow also
has this capability. BPMN allows this flexibility, however, we also recommend that modelers use judgment or best
practices in how Flow Objects should be connected so that readers of the Diagrams will find the behavior clear and easy
to follow. This is even more important when a Diagram contains Sequence Flow and Message Flow. In these situations it
is best to pick a direction of Sequence Flow, either left to right or top to bottom, and then direct the Message Flow at a
90° angle to the Sequence Flow. The resulting Diagrams will be much easier to understand.

8.4.1 Sequence Flow Rules

Table 8.4 displays the BPMN Flow Objects and shows how these objects can connect to one another through Sequence
Flow. The 21 symbol indicates that the object listed in the row can connect to the object listed in the column. The quantity
of connections into and out of an object is subject to various configuration dependencies are not specified here. Refer to
the sections in the next chapter for each individual object for more detailed information on the appropriate connection
rules. Note that if a sub-process has been expanded within a Diagram, the objects within the sub-process cannot be
connected to objects outside of the sub-process. Nor can Sequence Flow cross a Pool boundary.

Table 8.4 - Sequence Flow Connection Rules

O = = [& |o Jo

Name

NEEROOEE
5

A

A

A

A

A

3 Business Process Modeling Notation, v1.2

Note — Only those objects that can have incoming and/or outgoing Sequence Flow are shown in the table. Thus, Pool, Lane,

Data Object, and Text Annotation are not listed in the table.

8.4.2 Message Flow Rules

Table 8.5 displays the BPMN modeling objects and shows how these objects can connect to one another through Message
Flow. The & symbol indicates that the object listed in the row can connect to the object listed in the column. The quantity
of connections into and out of an object is subject to various configuration dependencies are not specified here. Refer to

the sections in the next chapter for each individual object for more detailed information on the appropriate connection

rules. Note that Message Flow cannot connect to objects that are within the same Pooal.

Table 8.5 - Message Flow Connection Rules

From\To

Name

(Pool)

Name

[+

[Nm‘

®

Name @

(Pool) QA QA QA QA QA
QA QA QA QA J
QA QA QA QA J
J J J J J
@ QA QA QA QA QA

Note — Only those objects that can have incoming and/or outgoing Message Flow are shown in the table. Thus, Lane,

Gateway, Data Object, and Text Annotation are not listed in the table.

8.5 Business Process Diagram Attributes

The following table displays the set of attributes of a Business Process Diagram:

Table 8.6 - Business Process Diagram Attributes

Attributes Description
Id: Object Thisis aunique Id that distinguishes the Diagram from other Diagrams.
Name: String Name is an attribute that is text description of the Diagram.

Version (0-1) : String

This defines the Version number of the Diagram.

Author (0-1) : String

This holds the name of the author of the Diagram.

Business Process Modeling Notation, v1.2

31

Table 8.6 - Business Process Diagram Attributes

Attributes

Description

Language (0-1) : String

This holds the name of the language in which text is written. The default is
English.

QueryLanguage (0-1) : String

A Language MAY be provided so that the syntax of queries used in the Diagram
can be understood.

CreationDate (0-1) : Date

This defines the date on which the Diagram was created (for the current Version).

ModificationDate (0-1) : Date

This defines the date on which the Diagram was last modified (for this Version).

Pools (1-n) : Pool

A BPD SHALL contain one or more Pools. The boundary of one of the Pools
MAY beinvisible (especialy if there is only one Pool in the Diagram). Refer to
“Pool” on page 264 for more information about Poals.

Documentation (0-1) : String

The modeler MAY add optional text documentation about the Diagram.

8.6 Processes

A Process is an activity performed within or across companies or organizations. In BPMN a Process is depicted as a
graph of Flow Objects, which are a set of other activities and the controls that sequence them. The concept of process is
intrinsically hierarchical. Processes may be defined at any level from enterprise-wide processes to processes performed by
a single person. Low-level processes may be grouped together to achieve a common business goal.

Note that BPMN defines the term Process fairly specifically and defines a Business Process more generically as a set of
activities that are performed within an organization or across organizations. Thus a Business Process, as shown in a
Business Process Diagram, may contain more than one separate Process. Each Process may have its own Sub-Processes
and would be contained within a Pool (“Pool” on page 264). The individual Processes would be independent in terms of
Sequence Flow, but could have Message Flow connecting them.

8.6.1 Attributes

The following table displays the set of attributes of a Process, and which extends the set of common BPMN Element

attributes (see Table B.2).

Table 8.7 - Process Attributes

Attributes

Description

Name : String

Name is an attribute that is a text description of the object.

ProcessType (None | Private |

String

Abstract | Collaboration) None :

ProcessType is an attribute that provides information about which lower-level
language the Pool will be mapped. By default, the ProcessType is None (or
undefined).

Status (None | Ready | Active |
Cancelled | Aborting | Aborted |

String

Completing | Completed) None :

The Status of a Process is determined when the Process is being executed by a
process engine. The Status of a Process can be used within Assignment
Expressions.

32

Business Process Modeling Notation, v1.2

Table 8.7 - Process Attributes

Attributes

Description

GraphicalElements (0-n) :
Object

The Graphical Elements attribute identifies all of the objects (e.g., Events,
Activities, Gateways, and Artifacts) that are contained within the Business
Process.

Performers (0-n) : String

One or more Performers MAY be entered. The Performers attribute defines the
resource that will be responsible for the Process. The Performers entry could be in
the form of a specific individual, a group, an organization role or position, or an
organization.

Assignments (0-n) : Assignment

One or more assignment expressions MAY be made for the object. The
Assignment SHALL be performed as defined by the AssignTime attribute. The
details of the Assignment are defined in “Assignment” on page 273.

Properties (0-n) : Property

Modeler-defined Properties MAY be added to a Process. These Properties are
“local” to the Process. All Tasks, Sub-Process objects, and Sub-Processes that are
embedded SHALL have access to these Properties. The fully delineated name of
these properties are “ <process name>.<property name>" (e.g., “Add
Customer.Customer Name”). If a process is embedded within another Process,
then the fully delineated name SHALL also be preceded by the Parent Process
name for as many Parents there are until the top level Process. Further details
about the definition of a Property can be found in “Property” on page 279.

InputSets (0-n) : InputSet

The InputSets attribute defines the data requirements for input to the Process.
Zero or more InputSets MAY be defined. Each Input set is sufficient to allow the
Process to be performed (if it has first been instantiated by the appropriate signal
arriving from an incoming Sequence Flow). Further details about the definition of
an InputSet can be found in “InputSet” on page 278.

OutputSets (0-n) : OutputSet

The OutputSets attribute defines the data requirements for output from the
Process. Zero or more OutputSets MAY be defined. At the completion of the
Process, only one of the OutputSets may be produced. It is up to the
implementation of the Process to determine which set will be produced. However,
the IORules attribute MAY indicate a relationship between an OutputSet and an
InputSet that started the Process. Further details about the definition of an
OutputSet can be found in “OutputSet” on page 279.

AdHoc False : Boolean

AdHoc is a boolean attribute, which has a default of False. This specifies whether
the Process is Ad Hoc or not. The activities within an Ad Hoc Process are not
controlled or sequenced in a particular order, their performance is determined by
the performers of the activities. If set to True, then the Ad Hoc marker SHALL be
placed at the bottom center of the Process or the Sub-Process shape for Ad Hoc
Processes.

[AdHoc = True only]

AdHocOrdering (0-1)
(Sequential | Parallel) Parallel :
String

If the Process is Ad Hoc (the AdHoc attribute is True), then the AdHocOrdering
attribute MUST be included. This attribute defines if the activities within the
Process can be performed in Parallel or must be performed sequentially. The
default setting is Parallel and the setting of Sequential is a restriction on the
performance that may be required due to shared resources.

Business Process Modeling Notation, v1.2 33

Table 8.7 - Process Attributes

Attributes

Description

[AdHoc = True only]

AdHocCompletionCondition
(0-1) : Expression

If the Process is Ad Hoc (the AdHoc attribute is True), then the
AdHocCompletionCondition attribute MUST be included. This attribute defines

the conditions when the Process will end.

34

Business Process Modeling Notation, v1.2

9 Business Process Diagram Graphical Objects

This section details the graphical representation and the semantics of the behavior of Business Process Diagram graphical
elements. See Annex A for more information about how these elements map to execution languages.

9.1 Common BPMN Element Attributes

The following table displays a set of common attributes for BPMN elements (graphical elements and supporting elements).

Table 9.1 - Common BPMN Element Attributes

Attributes Description

Id : Object Thisis aunique Id that identifies the object from other objects within the
Diagram.

Categories (0-n) : Category The modeler MAY add one or more defined Categories, which have user-defined

semantics, and that can be used for purposes such as reporting and analysis. The
details of Catogories are defined in “Category” on page 273.

Documentation (0-1) : String The modeler MAY add text documentation about the object.

These attributes are used for Graphical Elements [Flow Objects (Section 9.2, “Common Flow Object Attributes,” on page
35), Connecting Objects (Section 10.1, “Graphical Connecting Objects,” on page 97), Swimlanes (Section 9.6, “Swimlanes
(Pools and Lanes),” on page 86), and Artifacts (Section 9.7, “ Artifacts,” on page 92)], and Supporting Elements

(Section B.11, “Supporting Elements,” on page 270).

9.2 Common Flow Object Attributes

The following table displays a set of common attributes for BPMN Flow Objects (Events, Activities, and Gateways), and
which extends the set of common BPMN Element attributes (see Table 9.1).

Table 9.2 - Common Flow Object Attributes

Attributes Description
Name : String Name is an attribute that is text description of the object.

Assignments (0-n) : Assignment | One or more assignment expressions MAY be made for the object. For activities
(Task, Sub-Process, and Process), the Assignment SHALL be performed as
defined by the AssignTime attribute. The Details of the Assignment is defined in
Section B.11.3, “Assignment,” on page 273.

9.3 Events

An Event is something that “happens’ during the course of a business process. These Events affect the flow of the Process
and usually have a cause or an impact. The term “event” is general enough to cover many things in a business process.
The start of an activity, the end of an activity, the change of state of a document, a message that arrives, etc., all could be
considered events. However, BPMN has restricted the use of events to include only those types of events that will affect
the sequence or timing of activities of a process. BPMN further categorizes Events into three main types: Start,
Intermediate, and End.

Business Process Modeling Notation, v1.2 35

Start and most Intermediate Events have “ Triggers® that define the cause for the event. There are multiple ways that these
events can be triggered (“ Start Event Triggers’ on page 38 and “Intermediate Event Triggers’ on page 45). End Events
may define a “Result” that is a consequence of a Sequence Flow ending. There are multiple types of Results that can be
defined (“End Event Results’ on page 41).

All Events share the same shape footprint, a small circle. Different line styles, as shown below, distinguish the three types
of flow Events. All Events also have an open center so that BPMN-defined and modeler-defined icons can be included
within the shape to help identify the Trigger or Result of the Event.

9.3.1 Common Event Attributes

The following table displays the set of attributes common to the three types of Events, and which extends the set of
common Flow Object attributes (see Table 9.2).

Table 9.3 - Common Event Attributes

Attributes Description

EventType (Start | End | The EventType MUST be of type Start, End, or Intermediate.
Intermediate) Start : String

9.3.2 Start

As the name implies, the Start Event indicates where a particular Process will start. In terms of Sequence Flow, the Start
Event starts the flow of the Process, and thus, will not have any incoming Sequence Flow—no Sequence Flow can
connect to a Start Event.

The Start Event shares the same basic shape of the Intermediate Event and End Event, a circle with an open center so that
markers can be placed within the circle to indicate variations of the Event.

° A Start Event is a circle that MUST be drawn with a single thin line (see Figure 9.1).

° The use of text, color, size, and lines for a Start Event MUST follow the rules defined in
Section 8.3, “Use of Text, Color, Size, and Lines in a Diagram,” on page 29 with the exception that:

° The thickness of the line MUST remain thin so that the Start Event may be distinguished from the
Intermediate and End Events.

O

Figure 9.1 - A Start Event

Throughout this document, we will discuss how Sequence Flow proceeds within a Process. To facilitate this discussion,

we will employ the concept of a“Token” that will traverse the Sequence Flow and pass through the Flow Objects in the
Process. The behavior of the Process can be described by tracking the path(s) of the Token through the Process. A Token
will have a unique identity, called a Tokenld set, that can be used to distinguish multiple Tokens that may exist because
of concurrent Process instances or the dividing of the Token for parallel processing within a single Process instance. The
parallel dividing of a Token creates alower level of the Tokenld set. The set of al levels of Tokenld will identify a Token.

36 Business Process Modeling Notation, v1.2

A Start Event generates a Token that must eventually be consumed at an End Event (which may be implicit if not
graphically displayed). The path of Tokens should be traceable through the network of Sequence Flow, Gateways, and
activities within a Process. There MUST NOT be any implicit flow during the course of normal Sequence Flow (i.e., there
should always be either Sequence Flow or a graphical indicator, such as an Intermediate Event to show all the potential
paths of Tokens). An example of implicit flow is when a Token arrives at a Gateway, but none of the Gates are valid, the
Token would then (implicitly) pass to the end of the Process, which occurs with some modeling notations. Tokens can
also be directed through exception handling Intermediate Events, which act like aforced end to an activity. Note: A Token
does not traverse the Message Flow since it is a Message that is passed down those Flow (as the name implies).

Semantics of the Start Event include:

° A Start Event is OPTIONAL: a Process level—a top-level Process or an expanded Sub-Process—MAY (is not
required to) have a Start Event:

Note — A BPD may have more than one Processlevel (i.e., it can include Expanded Sub-Processes). The use of Start and End
Eventsisindependent for each level of the Diagram.

° If aProcess is complex and/or the starting conditions are not obvious, then it is RECOMMENDED that a
Start Event be used.

° If aStart Event is not used, then the implicit Start Event for the Process SHALL NOT have a Trigger.
° If thereis an End Event, then there MUST be at least one Start Event.

° If the Start Event is used, then there MUST NOT be other flow elements that do not have incoming
Sequence Flow—all other Flow Objects MUST be atarget of at least one Sequence Flow.

° Exceptions to this are activities that are defined as being Compensation activities (have the
Compensation Marker). Compensation activities MUST NOT have any incoming Seguence Flow, even
if there is a Start Event in the Process level. See Section 10.3, “Compensation Association,” on page 129
for more information on Compensation activities.

° An exception to this is the Intermediate Event, which MAY be without an incoming Sequence Flow
(when attached to an activity boundary).

° If the Start Event is not used, then all Flow Objects that do not have an incoming Sequence Flow (i.e., are
not a target of a Sequence Flow) SHALL be instantiated when the Process is instantiated. There is an
assumption that there is only one implicit Start Event, meaning that all the starting Flow Objects will start at
the same time.

° Exceptions to this are activities that are defined as being Compensation activities (have the
Compensation Marker). Compensation Activities are not considered a part of the Normal Flow and
MUST NOT be instantiated when the Process is instantiated.

° There MAY be multiple Start Events for a given Process level.

° Each Start Event is an independent event. That is, a Process Instance SHALL be generated when the Start
Event is triggered.

° If the Process is used as a Sub-Process and there are multiple None Start Events, then when flow is
transferred from the parent Process to the Sub-Process, only one of the Sub-Process's Start Events will
be Triggered. The TargetRef attribute of the Sequence Flow incoming to the Sub-Process object can be
extended to identify the appropriate Start Event (as defined in the Sub-Process's “ Sequence Flow
Connections’ on page 63).

Business Process Modeling Notation, v1.2 37

Note — The behavior of Process may be harder to understand if there are multiple Start Events. It is RECOMMENDED that
this feature be used sparingly and that the modeler be aware that other readers of the Diagram may have difficulty
understanding the intent of the Diagram.

When the trigger for a Start Event occurs, a new Process will be instantiated and a Token will be generated for each
outgoing Sequence Flow from that event. The Tokenld set for each of the Tokens will be established such that it can be
identified that the Tokens are all from the same parallel Fork and the number of Tokens in the group. These Tokens will
begin their flow and not wait for any other Start Event to be triggered.

If there is a dependency for more than one Event to happen before a Process can start (e.g., two messages are required to
start), then the Start Events must flow to the same activity within that Process. The attributes of the activity would specify
when the activity could begin. If the attributes specify that the activity must wait for all inputs, then all Start Events will
have to be triggered before the Process begins (see “ Attributes’ on page 39 (for sub-processes) and “Attributes’ on page
65 (for Tasks) for more information about activity attributes). In addition, a correlation mechanism will be required so
that different triggered Start Events will apply to the same process instance.

9.3.2.1 Start Event Triggers

There are many ways that business process can be started (instantiated). The Trigger for a Start Event is designed to show
the general mechanism that will instantiate that particular Process. There are six (6) types of Start Events in BPMN:
None, Message, Timer, Conditional, Signal, and Multiple.

Table 9.4 displays the types of Triggers and the graphical marker that will be used for each.

Table 9.4 - Start Event Types

will trigger the start of the Process.

Conditional This type of event is triggered when a Condition such as “ S& P 500 changes by more
than 10% since opening,” or “ Temperature above 300C”" become true. The
ConditionExpression for the Event must become false and then true before the Event
can be triggered again.

Trigger Description Marker
None The modeler does not display the type of Event. It is also used for a Sub-Process that

starts when the flow is triggered by its Parent Process. O
Message A Message arrives from a participant and triggers the start of the Process.
Timer A specific time-date or a specific cycle (e.g., every Monday at 9am) can be set that

38 Business Process Modeling Notation, v1.2

Trigger Description Marker
Signal A signal arrives that has been broadcast from another Process and triggers the start of

the Process. Note that the Signal is not a Message, which has a specific target for the @
Message. Multiple Processes can have Start Events that are triggered from the same
broadcasted Signal. The attributes of a Signal can be found in Section B.11.17,
“Signal,” on page 280.
Multiple This means that there are multiple ways of triggering the Process. Only one of them

will be required to start the Process. The attributes of the Start Event will define @
which of the other types of Triggers apply.

9.3.2.2 Attributes

Table 9.5 displays the set of attributes of a Start Event, which extends the set of common Event attributes.

Table 9.5 - Start Event Attributes

Attributes Description

Trigger (0-n) : EventDetall Trigger (EventDetail) is an attribute that defines the type of trigger expected for a
Start Event. Of the set of EventDetail Types (see Section 9.3.5, “Event Details,”
on page 49), only four (4) can be applied to a Start Event: Message, Timer,
Conditional, and Signal (see Table 9.4).

If there is no EventDetail defined, then thisis considered a None Start Event and
the Event will not have an internal marker (see Table 9.4).

If there is more than one EventDetail defined, thisis considered a Multiple Start
Event and the Event will have the pentagon internal marker (see Table 9.4).

9.3.2.3 Sequence Flow Connections

See Section 8.4.1, “ Sequence Flow Rules,” on page 30 for the entire set of objects and how they may be source or targets
of Sequence Flow.

° A Start Event MUST NOT be atarget for Sequence Flow; it MUST NOT have incoming Sequence Flow.

° An exception to this is when a Start Event is used in an Expanded Sub-Process and is attached to the
boundary of that Sub-Process. In this case, a Sequence Flow from the higher-level Process MAY connect to
that Start Event in lieu of connecting to the actual boundary of the Sub-Process (see Figure 10.15).

° A Start Event MUST be a source for Sequence Flow.

° Multiple Sequence Flow MAY originate from a Start Event. For each Sequence Flow that has the Start Event as
a source, a new parallel path SHALL be generated.

° The Condition attribute for all outgoing Sequence Flow MUST be set to None.

° When a Start Event is not used, then all Flow Objects that do not have an incoming Sequence Flow SHALL
be the start of a separate parallel path.

Each path will have a separate unique Token that will traverse the Sequence Flow.

Business Process Modeling Notation, v1.2 39

9.3.2.4 Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects and how they may be source or targets
of Message Flow.

Note — All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objects within
the Pool boundary. They cannot connect two objects within the same Pool.

° A Start Event MAY be the target for Message Flow; it can have 0 (zero) or more incoming Message Flow. Each
Message Flow arriving at a Start Event represents an instantiation mechanism (a Trigger) for the process. Only
one of the Triggers is required to start a new Process.

° The Trigger attribute of the Start Event MUST be set to “Message” or “Multiple” if there are any incoming
Message Flow.

° The Trigger attribute of the Start Event MUST be set to “Multiple” if there are more than one incoming
Message Flow.

° A Start Event MUST NOT be a source for Message Flow; it MUST NOT have outgoing Message Flow.

9.3.3 End

As the name implies, the End Event indicates where a process will end. In terms of Sequence Flow, the End Event ends
the flow of the Process, and thus, will not have any outgoing Sequence Flow—no Sequence Flow can connect from an
End Event.

The End Event shares the same basic shape of the Start Event and Intermediate Event, a circle with an open center so that
markers can be placed within the circle to indicate variations of the Event.

° AnEnd Event is acircle that MUST be drawn with a single thick black line (see Figure 9.2).

° The use of text, color, size, and lines for an End Event MUST follow the rules defined in Section 8.3, “Use
of Text, Color, Size, and Lines in a Diagram,” on page 29 with the exception that:

° The thickness of the line MUST remain thick so that the End Event may be distinguished from the
Intermediate and Start Events.

O

Figure 9.2 - End Event

To continue discussing how flow proceeds throughout the process, an End Event consumes a Token that had been
generated from a Start Event within the same level of Process. If parallel Sequence Flow targets the End Event, then the
Tokens will be consumed as they arrive. All the Tokens that were generated within the Process must be consumed by an
End Event before the Process has been completed. In other circumstances, if the Process is a Sub-Process, it can be
stopped prior to normal completion through interrupting Intermediate Events (see Section 10.2.2, “Exception Flow,” on
page 127 for more details). In this situation the Tokens will be consumed by an Intermediate Event attached to the
boundary of the Sub-Process.

40 Business Process Modeling Notation, v1.2

Semantics of the End Event include:
° There MAY be multiple End Events within a single level of a process.

° AnEnd Event is OPTIONAL: agiven Process level—a top-level Process or an expanded Sub-Process—MAY (is
not required to) have this shape:

° If an End Event is not used, then the implicit End Event for the Process SHALL NOT have a Result.
° If thereis a Start Event, then there MUST be at least one End Event.

° If an End Event is used, then there MUST NOT be other flow elements that do not have any outgoing
Sequence Flow—all other Flow Objects MUST be a source of at |east one Sequence Flow.

° Exceptions to this are activities that are defined as being Compensation activities (have the
Compensation Marker). Compensation Activities MUST NOT have any outgoing Sequence Flow, even
if thereis an End Event in the Process level. Section 10.3, “Compensation Association,” on page 129 for
more information on Compensation activities.

° If the End Event is not used, then al Flow Objects that do not have any outgoing Sequence Flow (i.e., are
not a source of a Sequence Flow) mark the end of a path in the Process. However, the process MUST NOT
end until all parallel paths have completed.

° Exceptions to this are activities that are defined as being Compensation activities (have the
Compensation Marker). Compensation Activities are not considered a part of the Normal Flow and
MUST NOT mark the end of the Process.

Note — A BPD may have more than one Process level (i.e., it can include Expanded Sub-Processes). The use of Start and End
Eventsisindependent for each level of the Diagram.

For Processes without an End Event, a Token entering a path-ending Flow Object will be consumed when the processing
performed by the object is completed (i.e., when the path has completed), as if the Token had then gone on to reach an
End Event. When all Tokens for a given instance of the Process are consumed, then the Process will reach a state of being
completed.

9.3.3.1 End Event Results

There are eight (8) types of End Eventsin BPMN: None, Message, Error, Cancel, Compensation, Signal, Terminate, and
Multiple. These types define the conseguence of reaching an End Event. This will be referred to as the End Event Result.

Table 9.6 displays the types of Results and the graphical marker that will be used for each.

Table 9.6 - End Event Types

Result Description Marker
None The modeler does not display the type of Event. It is also used to show the end of

a Sub-Process that ends, which causes the flow goes back to its Parent Process. O
Message This type of End indicates that a message is sent to a participant at the conclusion

of the Process. @

Business Process Modeling Notation, v1.2 41

Table 9.6 - End Event Types

Error This type of End indicates that a named Error should be generated. The Error will

be caught by the Error intermediate event with the same ErrorCode or no @
ErrorCode that is on the boundary of the nearest enclosing parent activity
(hierarchically). The behavior of the process is unspecified if no activity in the
Process has such an Error intermediate event. The system executing the process
may define additional Error handling in this case, a common one being
termination of the process instance.

Cancel Thistype of End is used within a Transaction Sub-Process. It will indicate that the

Transaction should be cancelled and will trigger a Cancel Intermediate Event ®
attached to the Sub-Process boundary. In addition, it will indicate that a
Transaction Protocol Cancel message should be sent to any Entities involved in

the Transaction.
Compensation This type of End indicates that a Compensation is necessary. If an activity is
identified, then that is the activity that will be compensated. Otherwise, all @

activities that have completed within the Process, starting with the top-level
Process and including all Sub-Processes, are subject to compensation, proceeding
in reverse order. To be compensated, an activity MUST have a Compensation
Intermediate Event attached to its boundary.

Signa This type of End indicates that a Signal will be broadcast when the End has been

reached. Note that the Signal, which is broadcast to any Process that can receive @
the Signal, can be sent across Process levels or Poals, but is not a Message (which
has a specific Source and Target). The attributes of a Signal can be found in
Section B.11.17, “Signal,” on page 280.

Terminate This type of End indicates that all activities in the Process should be immediately
ended. This includes all instances of Multi-Instances. The Process is ended @
without compensation or event handling.

them will occur (e.g., there might be multiple messages sent). The attributes of the
End Event will define which of the other types of Results apply.

Multiple This means that there are multiple consequences of ending the Process. All of @

9.3.3.2 Attributes

The following table displays the set of attributes of an End Event, which extends the set of common Event attributes (see
Table 9.3).

42 Business Process Modeling Notation, v1.2

Table 9.7 - End Event Attributes

Attributes Description

Result (0-n) : EventDetail Result (EventDetail) is an attribute that defines the type of result expected for an
End Event. Of the set of EventDetail Types (see Section 9.3.5, “Event Details,” on
page 49), only six (6) can be applied to an End Event: Message, Error, Cancel,
Compensation, Signal, and Terminate (see Table 9.6).

« |f thereis no EventDetail defined, then thisis considered a None End Event
and the Event will not have an internal marker (see Table 9.6).

« If thereis more than one EventDetail defined, thisis considered a Multiple
End Event and the Event will have the pentagon internal marker (see
Table 9.6).

9.3.3.3 Sequence Flow Connections
Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how they may be source or targets of
Sequence Flow.

° An End Event MUST be a target for Sequence Flow.

° An End Event MAY have multiple incoming Sequence Flow.

The Flow MAY come from either alternative or parallel paths. For modeling convenience, each path MAY connect to a
separate End Event object. The End Event is used as a Sink for all Tokens that arrive at the Event. All Tokens that are
generated at the Start Event for that Process must eventually arrive at an End Event. The Process will be in arunning state
until all Tokens are consumed.

° An End Event MUST NOT be a source for Sequence Flow; that is, there MUST NOT be outgoing Sequence
Flow.

° An exception to this is when an End Event is used in an Expanded Sub-Process and is attached to the
boundary of that Sub-Process. In this case, a Sequence Flow from the higher-level Process MAY connect
from that End Event in lieu of connecting from the actual boundary of the Sub-Process (see Figure 10.15).

9.3.3.4 Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects and how they may be source or targets
of Message Flow.

Note — All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objectswithin
the Pool boundary. They cannot connect two objects within the same Pool.

° An End Event MUST NOT be the target for Message Flow; it can have no incoming Message Flow. If the
Intermediate Event has an incoming Message Flow, then it MUST NOT have an outgoing Message Flow.

° AnIntermediate Event of type Message, if it is used within Normal Flow, MAY be the source for Message Flow;
it can have one outgoing Message Flow. If the Intermediate Event has an outgoing Message Flow, then it MUST
NOT have an incoming Message Flow.

Business Process Modeling Notation, v1.2 43

9.3.4 Intermediate

Asthe name implies, the Intermediate Event indicates where something happens (an Event) somewhere between the Start
and End of a Process. It will affect the flow of the Process, but will not start or (directly) terminate the Process.
Intermediate Events can be used to:

« show where messages are expected or sent within the Process,

» show where delays are expected within the Process,

« disrupt the Normal Flow through exception handling, or

« show the extrawork required for compensation.
The Intermediate Event shares the same basic shape of the Start Event and End Event, a circle with an open center so that
markers can be placed within the circle to indicate variations of the Event.

° An Intermediate Event is a circle that MUST be drawn with a double thin black line. (see Figure 9.3).

° The use of text, color, size, and lines for an Intermediate Event MUST follow the rules defined in
Section 8.3, “Use of Text, Color, Size, and Lines in a Diagram,” on page 29 with the exception that:

° The thickness of the line MUST remain double so that the Intermediate Event may be distinguished
from the Start and End Events.

O

Figure 9.3 - Intermediate Event

One use of Intermediate Events is to represent exception or compensation handling. This will be shown by placing the
Intermediate Event on the boundary of a Task or Sub-Process (either collapsed or expanded). Figure 9.4 displays an
example of an Intermediate Event attached to a Task. The Intermediate Event can be attached to any location of the
activity boundary and the outgoing Sequence Flow can flow in any direction. However, in the interest of clarity of the
Diagram, we recommend that the modeler choose a consistent location on the boundary. For example, if the Diagram
orientation is horizontal, then the Intermediate Events can be attached to the bottom of the activity and the Sequence Flow
directed down, then to the right. If the Diagram orientation is vertical, then the Intermediate Events can be attached to the
left or right side of the activity and the Sequence Flow directed to the left or right, then down.

Moderate E-mail
Discussion

7 Days Review Status of
Discussion

Figure 9.4 - Task with an Intermediate Event attached to its boundary

44 Business Process Modeling Notation, v1.2

9.3.4.1 Intermediate Event Triggers

There are 10 types of Intermediate Events in BPMN: None, Message, Timer, Error, Cancel, Compensation, Conditional,
Link, Signal, and Multiple. Each type of Intermediate Event will have a different icon placed in the center of the
Intermediate Event shape to distinguish one from another.

An Intermediate Event that is placed within the normal flow of a Process can be used for one of two purposes. The Event
can respond to (“catch”) the Event Trigger or the Event can be used to set off (“throw”) the Event Trigger. An
Intermediate Event that is attached to the boundary of an Activity can only be used to “catch” the Event Trigger.

When a Token arrives at an Intermediate Event that is placed within the normal flow of a Process, one of two things will
happen. If the Event is used to “throw” the Event Trigger, then Trigger of the Event will immediately occur (e.g., the
Message will be sent) and the Token will move down the outgoing Sequence Flow. If the Event is used to “catch” the
Event Trigger, then the Token will remain at the Event until the Trigger occurs (e.g., the Message is received). Then the
Token will move down the outgoing Sequence Flow.

Table 9.8 displays the types of Triggers and the graphical marker that will be used for each.

Table 9.8 - Intermediate Event Types

Trigger Description Marker

None Thisisvalid for only Intermediate Events that are in the main flow of the Process.
The modeler does not display the type of Event. It is used for modeling
methodologies that use Events to indicate some change of state in the Process.

O

Message A message arrives from a participant and triggers the Event. This causes the Process
to continue if it was waiting for the message, or changes the flow for exception
handling. When used to “catch” the message, then the Event marker will be unfilled
(see top figure on the right). In Normal Flow, Message Intermediate Events can be
used for sending messages to a participant. When used to “throw” the message, the
Event marker will be filled (see bottom figure on the right) If used for exception
handling, it will change the Normal Flow into an Exception Flow.

©® @

Timer A specific time-date or a specific cycle (e.g., every Monday at 9am) can be set that
will trigger the Event. If used within the main flow, it acts as a delay mechanism. If
used for exception handling, it will change the Normal Flow into an Exception Flow.

®

Error This type of Event can only be attached to the boundary of an activity, thus it reacts
to (catches) a named error, or to any error if a name is not specified.

Cancel This type of Intermediate Event is used for a Transaction Sub-Process. This type of
Event MUST be attached to the boundary of a Sub-Process. It SHALL betriggered if
a Cancel End Event is reached within the Transaction Sub-Process. It also SHALL
be triggered if a Transaction Protocol “Cancel” message has been received while the
Transaction is being performed.

® ®

Business Process Modeling Notation, v1.2 45

Table 9.8 - Intermediate Event Types

Compensation | Thisis used for compensation handling--both activating and performing
compensation.

When used in Normal flow, this Intermediate Event indicates that a Compensation is
necessary. Thus, it is used to “throw” the Compensation event, and the Event marker
MUST be filled (see the bottom figure on the right). If the Event identifies an
activity, then that is the activity (and no other) that will be compensated. Otherwise,
the compensation is broadcast to al activities that have completed within the Process
Instance, including the top-level Process and including all Sub-Processes. Each
completed activity that is subject to compensation will be compensated, in the
reverse order of the completion of the activities. To be compensated, an activity
MUST have a Compensation Intermediate Event attached to its boundary.

When attached to the boundary of an activity, the Event will be triggered by a
thrown compensation that identifies that activity or to a broadcast compensation.
When used to “catch” the Compensation event, the Event marker MUST be unfilled
(see the top figure on the right). When the Event is triggered, the Compensation
Activity that is Associated to the Event will be performed (see Figure 9.13).

Conditional This type of event is triggered when a Condition becomes true. The attributes of a
Condition can be found in Section B.11.5, “Condition,” on page 273.

® ®

Link A Link is amechanism for connecting two sections of a Process. Link Events can be
used to create looping situations or to avoid long Sequence Flow lines. Link Event
uses are limited to a single Process level (i.e., they cannot link a parent Process with
a Sub-Process). Paired Intermediate Events can also be used as “ Off-Page
Connectors” for printing a Process across multiple pages. They can also be used as
generic “Go To” objects within the Process level. There can be multiple Source Link
Events, but there can only be one Target Link Event. When used to “catch” from the
Source Link, the Event marker will be unfilled (see the top figure on the right).
When used to “throw” to the Target Link, the Event marker will be filled (see the
bottom figure on the right).

® 0O

Signa This type of event is used for sending or receiving Signals. A Signal is for general
communication within and across Process Levels, across Pools, and between
Business Process Diagrams. A BPMN Signal is similar to asignal flare that shot into
the sky for anyone who might be interested to notice and then react. Thus, thereis a
source of the Signal, but no specific intended target. This is different than a BPMN
Message, which has a specific Source and a specific Target (which can be an Entity
or an abstract Role). This type of Intermediate Event can send or receive a Signal if
the Event is part of a Normal Flow. The Event can only receive a Signal when
attached to the boundary of an activity. The Signal Event differs from an Error Event
in that the Signal defines a more general, non-error condition for interrupting
activities (such as the successful completion of another activity) as well as having a
larger scope than Error Events. When used to “catch” the signal, the Event marker
will be unfilled (see the top figure on the right). When used to “throw” the signal, the
Event marker will be filled (see the bottom figure on the right). The attributes of a
Signal can be found in Section B.11.17, “Signal,” on page 280.

® ®

46 Business Process Modeling Notation, v1.2

Table 9.8 - Intermediate Event Types

Multiple This means that there are multiple Triggers assigned to the Event. If used within
normal flow, the Event can “catch” the Trigger or “throw” the Triggers. When

attached to the boundary of an activity, the Event can only “catch” the Trigger. When
used to “catch” the Trigger, only one of the assigned Triggers is required and the
Event marker will be unfilled (see the top figure on the right). When used to “throw”
the Trigger (the same as a Multiple End Event), al the assigned Triggers will be
thrown and the Event marker will be filled (see the bottom figure on the right).

9.3.4.2 Attributes

The following table displays the set of attributes of an Intermediate Event, which extends the set of common Event
attributes (see Table 9.9).

Table 9.9 - Intermediate Event Attributes

Attributes Description

Trigger (0-n) : EventDetall Trigger (EventDetail) is an attribute that defines the type of trigger expected for
an Intermediate Event. Of the set of EventDetail Types (see Section 9.3.5, “Event
Details,” on page 49), only eight (8) can be applied to an Intermediate Event:
Message, Timer, Error, Cancel, Compensation, Conditional, Link, and Signal (see
Table 9.8).

« |f no EventDetail is defined, then thisis considered a None Intermediate
Event and the Event will not have an internal marker (see Table 9.8).

« If more than one EventDetail is defined, thisis considered a Multiple
Intermediate Event and the Event will have the star internal marker (see
Table 9.8).

Target (0-1) : Activity A Target MAY be included for the Intermediate Event. The Target MUST be an
activity (Sub-Process or Task). This means that the Intermediate Event is attached
to the boundary of the activity and is used to signify an exception or
compensation for that activity.

9.3.4.3 Activity Boundary Connections

An Intermediate Event can be attached to the boundary of an activity under the following conditions:
° (One or more) Intermediate Events MAY be attached directly to the boundary of an Activity.

° To be attached to the boundary of an Activity, an Intermediate Event MUST be one of the following
Triggers. Message, Timer, Error, Cancel, Compensation, Conditional, Signal, and Multiple.

° An Intermediate Event with a Cancel Trigger MAY be attached to a Sub-Process boundary only if the
IsATransaction attribute of the Sub-Process is set to TRUE.

9.3.4.4 Sequence Flow Connections

See Section 8.4.1, “ Sequence Flow Rules,” on page 30 for the entire set of objects and how they may be source or targets
of Sequence Flow.

Business Process Modeling Notation, v1.2 47

° The following Intermediate Events MAY be attached to the boundary of an Activity: Message, Timer, Error,
Cancel (only Sub-Process that is a Transaction), Compensation, Conditional, Signal, and Multiple. Thus, the
following MUST NOT: None, and Link.

° If the Intermediate Event is attached to the boundary of an activity:

The Intermediate Event MUST NOT be atarget for Sequence Flow; it cannot have an incoming Flow.

° The Intermediate Event MUST be a source for Sequence Flow; it can have one (and only one) outgoing
Sequence Flow.

° An exception to this; an Intermediate Event with a Compensation Trigger MUST NOT have an outgoing
Sequence Flow (it MAY have an outgoing Association).

The following Intermediate Events MAY be used in Normal Flow: None, Message, Timer, Compensation,
Conditional, Link, and Signal. Thus, the following MUST NOT: Cancel, Error, and Multiple.

° If the Intermediate Event is used within Normal Flow:

° Intermediate Events of the following types MUST be a target of a Sequence Flow: None and
Compensation. They MUST have one (and only one) incoming Flow.

Intermediate Events of the following types MAY be a target of a Sequence Flow: Message, Timer,
Conditional, Link, and Signal. They MAY have one (and only one) incoming Flow.

Note — These types of Intermediate Events will always be ready to accept the Event Triggers (once) while the Processin
which they are contained is active. They are NOT optional and are expected to be triggered during the performance of the
Process.

° An Intermediate Event MUST be a source for Sequence Flow; it MUST have one (and only one)
outgoing Sequence Flow.

° Anexception to this: a Source Link Intermediate Event (as defined below), it is not required to have an
outgoing Sequence Flow.

° An Intermediate Event with a Link Trigger MUST NOT be both a target and a source of a Sequence
Flow.

To define the use of a Link Intermediate Event as an “ Off-Page Connector” or a“Go To” object:

° A Link Intermediate Event MAY be the target (Target Link Event) or a source (Source Link Event) of a Sequence
Flow, but MUST NOT be both atarget and a source.
° If there is a Source Link Event, there MUST be a matching Target Link Event (they have the same Name)
° There MAY be multiple Source Link Events for a single Target Link Event.

° There MUST NOT be multiple Target Link Events for a single Source Link Event.

9.3.4.5 Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects and how they may be source or targets
of Message Flow.

Note — All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objects within
the Pool boundary. They cannot connect two objects within the same Pool.

48 Business Process Modeling Notation, v1.2

° An Intermediate Event of type Message MAY be the target for Message Flow; it can have one incoming Message
Flow.

° An Intermediate Event of type Message MAY be a source for Message Flow; it can have one outgoing Message
Flow.

° An Intermediate Event of type Message MAY have an incoming Message Flow or an outgoing Message Flow,
but not both.

9.3.5 Event Details

Event Details refers to the Triggers of Start and Intermediate Events and the Results of End Events. The types of Event
Details are: Message, Timer, Error, Cancel, Compensation, Conditional, Link, Signal, and Terminate. A None Event is
determined by an Event that does not specify an Event Detail. A Multiple Event is determined by an Event that specifies
more than one Event Detail. The different types of Events, (Start, Intermediate, and End) utilize a subset of the available
types of Event Details (see Figure 9.5).

“Catching” “Throwing"
—)
Timer
Error @
Cancel ®
Compensation @
Conditional
Link
Signal @ @
Terminate @

Multiple @ @

Figure 9.5 - Event Details as Applied to Start, Intermediate, and End Events

©

The following sections will present the attributes common to all Event Details and the specific attributes for the Event
Details that have additional attributes. Note that the Cancel and Terminate Event Details do not have additional attributes.

Business Process Modeling Notation, v1.2 49

9.3.5.1 Common Event Detail Attributes

The following table displays the set of attributes common to the types of EventDetail, and which extends the set of
common BPMN element attributes (see Table 9.1).

Table 9.10 - Common EventDetail Attributes

Attributes

Description

EventDetail Type (Message |
Timer | Error | Conditional | Link |
Signal | Compensate | Cancel |
Terminate) Message : String

The EventDetail Type attribute defines the type of trigger expected for an Event.
The set of types includes Message, Timer, Error, Conditional, Link, Signal,
Compensate, Cancel, and Terminate. The EventTypes (Start, Intermediate, and
End) will each have a subset of the EventDetail Types that can be used. The
EventDetail Type list MAY be extended to include new types. These new types
MAY have a new modeler- or tool-defined Marker to fit within the boundaries of
the Event.

9.3.5.2 Conditional Event Detail

The following table displays the set of attributes a Conditional EventDetail, and which extends the set of common Event

Detail attributes (see Table 9.10).

Table 9.11 - Conditional EventDetail Attributes

Attributes

Description

ConditionRef : Condition

If the Trigger is Conditional, then a Condition MUST be entered. The attributes of
a Condition can be found in Section B.11.5, “Condition,” on page 273.

9.3.5.3 Compensation Event Detail

The following table displays the set of attributes a Compensation EventDetail, and which extends the set of common
Event Detail attributes (see Table 9.10).

Table 9.12 - Compensation EventDetail Attributes

Attributes

Description

ActivityRef (0-1) : Activity

For an End Event:

« If the Result isa Compensation, then the Activity to be compensated MAY
be supplied. If an Activity is not supplied, then the Event is broadcast to all
completed activities in the Process Instance.

For an Intermediate Event within Normal Flow:

« If the Trigger is a Compensation, then the Activity to be compensated MAY
be supplied. If an Activity is not supplied, then the Event is broadcast to all
completed activities in the Process Instance. This “throws’ the
compensation.

50

Business Process Modeling Notation, v1.2

Attributes

Description

ActivityRef (0-1) : Activity

For an Intermediate Event attached to the boundary of an Activity:

 This Event “catches’ the compensation. No further information is required.
The Activity the Event is attached to will provide the Id necessary to match
the compensation event with the event that “threw” the compensation or the
compensation will be a broadcast.

9.3.5.4 Error Event Detalil

The following table displays the set of attributes an Error EventDetail, and which extends the set of common Event Detail

attributes (see Table 9.10).

Table 9.13 - Error EventDetail Attributes

Attributes

Description

ErrorCode : String

For an End Event:

« If the Result is an Error, then the ErrorCode MUST be supplied. This
“throws’ the error.

For an Intermediate Event attached to the boundary of an Activity:

« If the Trigger isan Error, then the ErrorCode MAY be entered. This Event
“catches’ the error.

« If thereis no ErrorCode, then any error SHALL trigger the Event.

« If thereis an ErrorCode, then only an error that matches the ErrorCode
SHALL trigger the Event.

9.3.5.5 Link Event Detail

The following table displays the set of attributes a Link EventDetail, and which extends the set of common Event Detail

attributes (see Table 9.10).

Table 9.14 - Link EventDetail Attributes

Attributes

Description

Name: String

If the Trigger is a Link, then the Name MUST be entered.

Business Process Modeling Notation, v1.2

51

9.3.5.6 Message Event Detail

The following table displays the set of attributes a Message EventDetail, and which extends the set of common Event
Detail attributes (see Table 9.10).

Table 9.15 - Message EventDetail Attributes

Attributes Description

MessageRef : Message If the EventDetail Type is a MessageRef, then a Message MUST be supplied. The
attributes of a Message can be found in Section B.11.11, “Message,” on page 278.

Implementation (Web Service | | This attribute specifies the technology that will be used to send or receive the

Other | Unspecified) Web message. A Web service is the default technology.

Service : String

9.3.5.7 Signal Event Detail

The following table displays the set of attributes a Signal EventDetail, and which extends the set of common Event Detail
attributes (see Table 9.10).

Table 9.16 - Signal EventDetail Attributes

Attributes Description

SignalRef : Signal If the Trigger isa Signal, then a Signal Shall be entered. The attributes of a Signal
can be found in Section B.11.17, “Signal,” on page 280.

9.3.5.8 Timer Event Detalil

The following table displays the set of attributes a Timer EventDetail, and which extends the set of common Event Detail
attributes (see Table 9.10).

Table 9.17 - Timer EventDetail Attributes

Attributes Description
TimeDate (0-1) : « If the Trigger isa Timer, then aTimeDate MAY be entered.
TimeDateExpression « If aTimeDate is not entered, then a TimeCycle MUST be entered (see the

attribute below). The attributes of a TimeDateExpression can be found in
Section B.11.18, “TimeDateExpression,” on page 280

TimeCycle (0-1) : « If the Trigger isa Timer, then aTimeCycle MAY be entered.

TimeDateExpression « If aTimeCycleis not entered, then a TimeDate MUST be entered (see the
attribute above).

9.4 Activities

An activity is work that is performed within a business process. An activity can be atomic or non-atomic (compound).
The types of activities that are a part of a Business Process Diagram are: Process, Sub-Process, and Task. However, a
Process is not a specific graphical object. Instead, it is a set of graphical objects. The following sections will focus on the
graphical objects Sub-Process and Task. More information about Processes can be found in Section 8.6, “ Processes,” on

page 32.

52 Business Process Modeling Notation, v1.2

9.4.1 Common Activity Attributes

The following table displays the set of attributes common to both a Sub-Process and a Task, and which extends the set of
common Flow Object attributes (see Table 9.3) -- Note that Table 9.19 and Table 9.20 contain additional attributes that
must be included within this set if extended by any other attribute table:

Table 9.18 - Common Activity Attributes

Attributes Description

ActivityType (Task | Sub-Process) | The ActivityType MUST be of type Task or Sub-Process.
Task : String

Status (None | Ready | Active | The Status of an activity is determined when the activity is being executed by a
Cancelled | Aborting | Aborted | process engine. The Status of an activity can be used within Assignment
Completing | Completed) None : | Expressions.

String

Performers (0-n) : String One or more Performers MAY be entered. The Performer attribute defines the

resource that will perform or will be responsible for the activity. The Performer
entry could be in the form of a specific individual, a group, an organization role
or position, or an organization.

Properties (0-n) : Property Modeler-defined Properties MAY be added to an activity. These Properties are
“local” to the activity. These Properties are only for use within the processing of
the activity. The fully delineated name of these properties is “<process
name>.<activity name>.<property hame>" (e.g., “Add Customer.Review
Credit.Status"). Further details about the definition of a Property can be found in
Section B.11.15, “Property,” on page 279.

InputSets (0-n) : InputSet The InputSets attribute defines the data requirements for input to the activity.
Zero or more InputSets MAY be defined. Each InputSet is sufficient to allow the
activity to be performed (if it has first been instantiated by the appropriate signal
arriving from an incoming Sequence Flow). Further details about the definition of
an InputSet can be found in Section B.11.10, “InputSet,” on page 278.

OutputSets (0-n) : OutputSet The OutputSets attribute defines the data requirements for output from the
activity. Zero or more OutputSets MAY be defined. At the completion of the
activity, only one of the OutputSets may be produced. It is up to the
implementation of the activity to determine which set will be produced. However,
the IORules attribute MAY indicate a relationship between an OutputSet and an
InputSet that started the activity. Further details about the definition of an
OutputSet can be found in Section B.11.13, “OutputSet,” on page 279.

IORules (0-n) : Expression The IORules attribute is a collection of expressions, each of which specifies the
required relationship between one input and one output. That is, if the activity is
instantiated with a specified input, that activity shall complete with the specified
output.

StartQuantity 1 : Integer The default value is 1. The value MUST NOT be less than 1. This attribute
defines the number of Tokens that must arrive before the activity can begin.

Business Process Modeling Notation, v1.2 53

Table 9.18 - Common Activity Attributes

Attributes Description

CompletionQuantity 1 : Integer | The default valueis 1. The value MUST NOT be less than 1. This attribute
defines the number of Tokens that must be generated from the activity. This
number of Tokens will be sent done any outgoing Sequence Flow (assuming any
Sequence Flow Conditions are satisfied).

LoopType (None| Standard | LoopType is an attribute and is by default None, but MAY be set to Standard or
Multilnstance) None : String Multilnstance. If so, the Loop marker SHALL be placed at the bottom center of
the activity shape (see Figure 9.9 and Figure 9.15).

A Task of type Receive that has its Instantiate attribute set to True MUST NOT
have a Standard or Multilnstance LoopType.

9.4.1.1 Standard Loop Attributes

A Standard Loop activity will have a boolean expression that is evaluated after each cycle of the loop. If the expression
is still True, then the loop will continue. There are two variations of the loop, which reflect the programming constructs
of while and until. That is, a while loop will evaluate the expression before the activity is performed, which means that
the activity may not actually be performed. The until loop will evaluate the expression after the activity has been
performed, which means that the activity will be performed at least once.

The following are additional attributes of a Standard Loop Activity (where the LoopType attribute is set to “ Standard”),
which extends the set of common activity attributes (see Table 9.18):

Table 9.19 - Standard Loop Activity Attributes

Attributes Description

LoopCondition : Expression Standard Loops MUST have a boolean Expression to be evaluated, plus the
timing when the expression SHALL be evaluated. The attributes of an Expression
can be found in Section B.11.8, “Expression,” on page 277.

LoopCounter : Integer The LoopCounter attribute is used at runtime to count the number of loops and is
automatically updated by the process engine. The LoopCounter attribute MUST
be incremented at the start of aloop. The modeler may use the attribute in the
LoopCondition Expression.

LoopMaximum (0-1) : Integer The Maximum an optiona attribute that provides is a simple way to add a cap to
the number of loops. This SHALL be added to the Expression defined in the
LoopCondition.

TestTime (Before | After) After : | The expressions that are evaluated Before the activity begins are equivalent to a
String programming while function.

The expressions that are evaluated After the activity finishes are equivalent to a
programming until function.

9.4.1.2 Multi-Instance Loop Attributes

Multi-Instance loops reflect the programming construct for each. The loop expression for a Multi-Instance loop is a
numeric expression evaluated only once before the activity is performed. The result of the expression evaluation will be
an integer that will specify the number of times that the activity will be repeated.

There are also two variations of the Multi-Instance loop where the instances are either performed sequentialy or in
parallel.

54 Business Process Modeling Notation, v1.2

The following are additional attributes of a Multi-Instance Loop Activity (where the LoopType attribute is set to
“Multilnstance”), which extends the set of common activity attributes (see Table 9.18):

Table 9.20 - Multi-Instance Loop Activity Attributes

Attributes

Description

MI_Condition : Expression

Multilnstance Loops MUST have a numeric Expression to be evaluated; the
Expression MUST resolve to an integer. The attributes of an Expression can be
found in Section B.11.8, “Expression,” on page 277.

LoopCounter : Integer

The LoopCounter attribute is only applied for Sequential Multilnstance L oops and
for processes that are being executed by a process engine. The attribute is updated
at runtime by a process engine to count the number of loops as they occur. The
LoopCounter attribute MUST be incremented at the start of aloop. Unlike a
Standard loop, the modeler does not use this attribute in the MI_Condition
Expression, but it can be used for tracking the status of a loop.

MI_Ordering (Sequential |
Parallel) Sequential : String

This applies to only Multilnstance Loops. The MI_Ordering attribute defines
whether the loop instances will be performed sequentialy or in parallel.
Sequential MI_Ordering is a more traditional loop.

Parallel M1_Ordering is equivalent to multi-instance specifications that other
notations, such as UML Activity Diagrams use. If set to Parallel, the Parallel
marker SHALL replace the Loop Marker at the bottom center of the activity
shape (see Figure 9.9 and Table 9.18).

[Parallel MI_Ordering only]

MI_FlowCondition (None |
One | All | Complex) All ; String

This attribute is equivalent to using a Gateway to control the flow past a set of
parallel paths.

An MI_FlowCondition of “None” is the same as uncontrolled flow (no Gateway)
and means that al activity instances SHALL generate atoken that will continue
when that instance is compl eted.

An MI_FlowCondition of “One” is the same as an Exclusive Gateway and means
that the Token SHALL continue past the activity after only one of the activity
instances has completed. The activity will continue its other instances, but
additional Tokens MUST NOT be passed from the activity.

An MI_FlowCondition of “All” isthe same as a Parallel Gateway and means that
the Token SHALL continue past the activity after all of the activity instances have
completed.

AnMI_FlowCondition of “Complex” is similar to that of aComplex Gateway. The
ComplexMI_FlowCondition attribute will determine the Token flow.

[Complex MI_FlowCondition
only]

ComplexMI_FlowCondition
(0-1) : Expression

If the MI_FlowCondition attribute is set to “Complex,” then an Expression Must
be entered. This expression that MAY reference Process data. The expression will
be evaluated after each iteration of the Activity and SHALL resolve to a boolean.

If the result of the expression evaluation is TRUE, then a Token will be sent down
the activity’ s outgoing Sequence Flow. Otherwise, no Token for that iteration will
be sent. The attributes of an Expression can be found in the Section B.11.8,
“Expression,” on page 277.

Business Process Modeling Notation, v1.2 55

9.4.2 Sub-Process

A Sub-Process is a compound activity in that it has detail that is defined as a flow of other activities. A Sub-Processis a
graphical object within a Process Flow, but it also can be “opened up” to show another Process (either Embedded or
Reusable). A Sub-Process object shares the same shape as the Task object, which is a rounded rectangle.

° A Sub-Process is a rounded corner rectangle that MUST be drawn with a single thin black line.

° The use of text, color, size, and lines for a Sub-Process MUST follow the rules defined in Section 8.3, “Use
of Text, Color, Size, and Linesin a Diagram,” on page 29 with the exception that.

° The boundary drawn with a double line SHALL be reserved for Sub-Process that has its ISATransaction
attribute set to True.

The Sub-Process can be in a collapsed view that hides its details (see Figure 9.6) or a Sub-Process can be in an expanded
view that shows its details within the view of the Process in which it is contained (see Figure 9.7). In the collapsed form,
the Sub-Process object uses a marker to distinguish it as a Sub-Process, rather than a Task.

° The Sub-Process marker MUST be a small square with a plus sign (+) inside. The square MUST be positioned at
the bottom center of the shape.

Figure 9.6 - Collapsed Sub-Process

O (=

(& J

Figure 9.7 - Expanded Sub-Process

Expanded Sub-Process may be used for multiple purposes. They can be used to “flatten” a hierarchical process so that all
detail can be shown at the same time. They are used to create a context for exception handling that applies to a group of
activities (Section 10.2.2, “Exception Flow,” on page 127 for more details). Compensations can be handled similarly
(Section 10.3, “Compensation Association,” on page 129 for more details).

Expanded Sub-Process may be used as a mechanism for showing a group of parallel activities in a less-cluttered, more
compact way. In Figure 9.8, activities “C” and “D” are enclosed in an unlabeled Expanded Sub-Process. These two
activities will be performed in parallel. Notice that the Expanded Sub-Process does not include a Start Event or an End
Event and the Sequence Flow to/from these Events. This usage of Expanded Sub-Processes for “parallel boxes’ is the
motivation for having Start and End Events being optional objects.

56 Business Process Modeling Notation, v1.2

- @@

Figure 9.8 - Expanded Sub-Process used as a “parallel box”

BPMN specifies five types of standard markers for Sub-Processes. The (Collapsed) Sub-Process Marker, seen in Figure
9.6, can be combined with four other markers: a Loop Marker or a Parallel Marker, a Compensation Marker, and an Ad
Hoc Marker. A collapsed Sub-Process may have one to three of these other markers, in all combinations except that Loop
and Multiple Instance cannot be shown at the same time (see Figure 9.9).

° The marker for a Sub-Process that loops MUST be a small line with an arrowhead that curls back upon itself.

° The Loop Marker MAY be used in combination with any of the other markers except the Multiple Instance
Marker.

° The marker for a Sub-Process that has multiple instances MUST be a set of three vertical lines in paralel.

° The Multiple Instance Marker MAY be used in combination with any of the other markers except the Loop
Marker.

° The marker for a Sub-Process that is Ad Hoc MUST be a “tilde” symbol.
° The Ad-Hoc Marker MAY be used in combination with any of the other markers.

° The marker for a Sub-Process that is used for compensation MUST be a pair of left facing triangles (like a tape
player “rewind” button).

° The Compensation Marker MAY be used in combination with any of the other markers.
° All the markers that are present MUST be grouped and the whole group centered at the bottom of the shape.

Loop Multi-Instance Ad-Hoc Compensation

S I P O P R

Figure 9.9 - Collapsed Sub-Process Markers

9.4.2.1 Attributes

The following table displays the set of attributes of a Sub-Process, which extends the set of common activity attributes
(see Table 9.21).

Business Process Modeling Notation, v1.2 57

Table 9.21 - Sub-Process Attributes

Attributes

Description

SubProcessType (Embedded |

String

Reusable | Reference) Embedded :

SubProcessType is an attribute that defines whether the Sub-Process details are
embedded within the higher level Process or refers to another, re-usable Process.
The default is Embedded.

IsATransaction False : Boolean

IsATransaction determines whether or not the behavior of the Sub-Process will
follow the behavior of a Transaction (see “ Sub-Process Behavior as a
Transaction” on page 62).

TransactionRef (0-1) :
Transaction

If the IsATransaction attribute is False, then a Transaction MUST NOT be
identified. If the ISATransaction attribute is True, then a Transaction MUST be
identified. The attributes of a Transaction can be found in the Section B.11.19,
“Transaction,” on page 281. Note that Transactions that are in different Pools and
are connected through Message Flow MUST have the same Transactionld.

9.4.2.2 Embedded Sub-Process

An Embedded (or nested) Sub-Process object is an activity that contains other activities (a Process). The Process within
the Process is dependent on the parent Process for instigation and has visibility to the parent’s global data. No mapping of
datais required.

The objects within the Embedded Sub-Process, being dependent on their parent, do not have all the features of a full
Business Process Diagram, such as Pools and Lanes. Thus, an expanded view of the Embedded Sub-Process would only
contain Flow Objects, Connecting Objects, and Artifacts (see Figure 9.8).

» All Start Eventsfor an Embedded Sub-Process MUST be of type None.

The following are additional attributes of an Embedded Sub-Process (where the SubProcessType attribute is set to
“Embedded”), which extends the set of Sub-Process attributes (see Table 9.22).

Table 9.22 - Embedded Sub-Process Attributes

Attributes

Description

GraphicalElements (0-n) :
Object

The Graphical Elements attribute identifies all of the objects (e.g., Events,
Activities, Gateways, and Artifacts) that are contained within the Embedded Sub-
Process.

AdHoc False: Boolean

AdHoc is a boolean attribute, which has a default of False. This specifies whether
the Embedded Sub-Process is Ad Hoc or not. The activities within an Ad Hoc
Embedded Sub-Process are not controlled or sequenced in a particular order, their
performance is determined by the performers of the activities.

[AdHoc = True only]
AdHocOrdering (0-1)

String

(Sequential | Parallel) Parallel :

If the Embedded Sub-Process is Ad Hoc (the AdHoc attribute is True), then the
AdHocOrdering attribute MUST be included. This attribute defines if the
activities within the Process can be performed in Parallel or must be performed
sequentially. The default setting is Parallel and the setting of Sequential is a
restriction on the performance that may be required due to shared resources.

58

Business Process Modeling Notation, v1.2

Table 9.22 - Embedded Sub-Process Attributes

Attributes Description
[AdHoc = True only] If the Embedded Sub-Processis Ad Hoc (the AdHoc attribute is True), then a
AdHocCompletionCondition Completion Condition MUST be included, which defines the conditions when the
(0-1) : Expression Process will end. The Ad Hoc marker SHALL be placed at the bottom center of
the Process or the Sub-Process shape for Ad Hoc Processes.

9.4.2.3 Reusable Sub-Process

A Reusable Sub-Process object is an activity within a Process that “calls’ to another Process that exists within a BDP (see
Figure 9.10). The Process that is called is not dependent on the Reusable Sub-Process object’s parent Process for global
data. The Reusable Sub-Process object may pass data to/from the called Process.

Request
passes "Acid
Test"?

Create capacity model
and select a standard
facility option
[Pages 5 & 6]

Gather detailed
request information
[Page 4]

Gather basic initial
request information
[Pages 2 & 3]

Yes,

O

] This Sub-Process Object
References the Diagram in the
next Figure

Figure 9.10 - A Sub-Process Object with its Details Shown in the diagram of the next Figure

The called Process will exist in a separate diagram that can have multiple Pools. Any view of the called Process
(including an expanded view within the calling Process) would show the whole diagram in which the called Process
resides (see Figure 9.11), but any data mapping will be only to that Process and not to any of the other Processes that
might be in the called diagram.

Business Process Modeling Notation, v1.2 59

=
g
0]
S e Contact Complete ‘
g8 Provider Appropriate >
ST Request =
@ g SI)_ .
o o
© — T AN |
i I
i]
| | I
E I l Interstate
<) S Pipeline?
[| Request 1st- Receive 1st-
5 I Gate Gate
‘g . Information Information
58 |
= D
g8 | A
(S
g = | Contact and
k3] Inform Retail
> I
[2)
Q.
g I
[
[
5 I
g8
cs I
5 9
= |
0 g
° |
©
2 I
3
—
g I
T ~
>0 |
°0
o E |
g =z
= 53 |
2% |
45
@ I
— |
g I
82
=y |
e I
3 I
¢ I
14
|
[
o :19)) Receive Refer to Tap
285 Request Systems
g2 Coordinator
<
w

Figure 9.11 - A Process and Diagram Details of the Sub-Process Object in the Previous Figure

60 Business Process Modeling Notation, v1.2

The called Process will (MUST) be instantiated as a Sub-Process through a None Start Event. Being reusable, the Process
could also be instantiated as a Sub-Process by other Independent Sub-Process objects (in the same or other diagrams). In
addition, it can be instantiated as a top-level Process through a separate Start Event that has a Trigger (other than None--
see Figure 9.12).

Include
Trans- No—»@
No | actions
Evaluate Yes Include
Credit Approval Standard
Report Text
Approve? Internal
Request?

Figure 9.12 - A Process that is used as a Sub-Process or a Top-Level Process

The following are additional attributes of a Reusable Sub-Process (where the SubProcessType attribute is set to
“Reusable”), which extends the set of Sub-Process attributes (see Table 9.23).

Table 9.23 - Reusable Sub-Process Attributes

Attributes Description

Diagram Ref: Business Process The BPD MUST be identified. The attributes of a BPD can be found in the
Diagram Section 8.5, “Business Process Diagram Attributes,” on page 31.
ProcessRef: Process A Process MUST be identified. The attributes of a Process can be found in

Section 8.6, “Processes,” on page 32.

InputMaps (0-n) : Expression Multiple input mappings MAY be made between the Reusable Sub-Process and
the Process referenced by this object. These mappings are in the form of an
expression. A specific mapping expression MUST specify the mapping of
Properties between the two Processes OR the mapping of Artifacts between the
two Processes.

OutputMaps (0-n) : Expression Multiple output mappings MAY be made between the Reusable Sub-Process and
the Process referenced by this object. These mappings are in the form of an
expression. A specific mapping expression MUST specify the mapping of
Properties between the two Processes OR the mapping of Artifacts between the
two Processes.

9.4.2.4 Reference Sub-Process

There may be times where a modeler may want to reference another Sub-Process that has been defined. If the two Sub-
Processes share the exact same behavior and properties, then by one referencing the other, the attributes that define the
behavior only have to be created once and maintained in only one location.

The following table displays the set of attributes of a Reference Sub-Process (where the SubProcessType attribute is set to
“Reference”), which extends the set of Sub-Process attributes (see Table 9.24).

Business Process Modeling Notation, v1.2 61

Table 9.24 - Reference Sub-Process Attributes

Attributes Description

SubProcessRef : Sub-Process The Sub-Process being referenced MUST be identified. The attributes for the
Sub-Process element can be found in Table 9.21.

9.4.2.5 Sub-Process Behavior as a Transaction

A Sub-Process, either collapsed or expanded, can be set as being a Transaction, which will have a special behavior that is
controlled through a transaction protocol (such as BTP or WS-Transaction). The boundary of the activity will be double-
lined to indicate that it is a Transaction (see Figure 9.13).

Bookings

Book Flight ‘

Cancel
Flight

() < Succgssful
Bookings

Book Hotel

Send Hotel

“|Cancellation

L @ %

)ﬁ

Send
» Unavailability
Notice

Bookings

Handle
through
Customer
Service

Exceptions
(HEIZ &

Figure 9.13 - An Example of a Transaction Expanded Sub-Process

There are three basic outcomes of a Transaction:
1. Successful completion: thiswill be shown as anormal Sequence Flow that leaves the Sub-Process.

2. Failed completion (Cancel): When a Transaction is cancelled, then the activities inside the Transaction will be
subjected to the cancellation actions, which could include rolling back the process and compensation for specific

62 Business Process Modeling Notation, v1.2

activities. Note that other mechanismsfor interrupting a Sub-Process will not cause Compensation (e.g., Error, Timer,
and anything for a non-Transaction activity). A Cancel Intermediate Event, attached to the boundary of the activity,
will direct the flow after the Transaction has been rolled back and all compensation has been completed. The Cancel
Intermediate Event can only be used when attached to the boundary of a Transaction activity. It cannot be used in any
Normal Flow and cannot be attached to a non-Transaction activity. There are two mechanisms that can signal the
cancellation of a Transaction:

« A Cancel End Event is reached within the Transaction Sub-Process. A Cancel End Event can only be used within a
Sub-Process that is set to a Transaction.

« A Cancel Message can be received via the Transaction Protocol that is supporting the execution of the Sub-
Process.

3. Hazard: This means that something went terribly wrong and that a normal success or cancel is not possible. We are
using an Error to show Hazards. When a Hazard happens, the activity isinterrupted (without Compensation) and the
flow will continue from the Error Intermediate Event.

The behavior at the end of a successful Transaction Sub-Process is slightly different than that of a normal Sub-Process.
When each path of the Transaction Sub-Process reaches a non-Cancel End Event(s), the flow does not immediately move
back up to the higher-level Parent Process, as does a normal Sub-Process. First, the transaction protocol must verify that
all the participants have successfully completed their end of the Transaction. Most of the time this will be true and the
flow will then move up to the higher-level Process. But it is possible that one of the participants may end up with a
problem that causes a Cancel or a Hazard. In this case, the flow will then move to the appropriate Intermediate Event,
even though it had apparently finished successfully.

9.4.2.6 Sequence Flow Connections

See Section 8.4.1, “ Sequence Flow Rules,” on page 30 for the entire set of objects and how they may be source or targets
of Sequence Flow.

° A Sub-Process MAY be atarget for Sequence Flow; it can have multiple incoming Flow. Incoming Flow MAY
be from an alternative path and/or parallel paths.

° The Incoming Sequence Flow’s attribute TargetRef MAY be extended to include both the Sub-Process object
(at the parent level) and a Start Event that resides within the details of the Sub-Process. This provides a
direct connection from the parent-level Sequence Flow to the lower-level Start Event for situations where
there is more than one Start Event in the Sub-Process. The form of the extension would be “ Sub-
Process.Start.”

o

If the details of the Sub-Process (i.e., its Start Events) are not visible or accessible to the modeler, then
the determination as to which Start Event, if there are multiple, will be triggered is undefined. But only
one of the Start Events will be triggered.

Note — If the Sub-Process has multiple incoming Sequence Flow, then this is considered uncontrolled flow. This means that
when a Token arrives from one of the Paths, the Sub-Process will beinstantiated. It will not wait for the arrival of Tokensfrom
the other paths. If another Token arrives from the same path or another path, then a separate instance of the Sub-Processwill be
created. If the flow needs to be controlled, then the flow should converge on a Gateway that precedes the Sub-Process
(Section 9.5, “ Gateways,” on page 70 for more information on Gateways).

° If the Sub-Process does not have an incoming Sequence Flow, and there is no Start Event for the Process, then
the Sub-Process MUST be instantiated when the process is instantiated.

Business Process Modeling Notation, v1.2 63

° Exceptions to this are Sub-Processes that are defined as being Compensation activities (have the
Compensation Marker). Compensation Sub-Processes are not considered a part of the Normal Flow and
MUST NOT be instantiated when the Process is instantiated.

° A Sub-Process MAY be a source for Sequence Flow; it can have multiple outgoing Flow. If there are multiple
outgoing Sequence Flow, then this means that a separate parallel path is being created for each Flow.

Tokens will be generated for each outgoing Sequence Flow from Sub-Process. The Tokenlds for each of the Tokens will
be set such that it can be identified that the Tokens are all from the same parallel Fork as well as the number of Tokens
that exist in parallel.

° If the Sub-Process does not have an outgoing Sequence Flow, and there is no End Event for the Process, then the
Sub-Process marks the end of one or more paths in the Process. When the Sub-Process ends and there are no
other parallel paths active, then the Process MUST be completed.

° Exceptions to this are Sub-Processes that are defined as being Compensation activities (have the
Compensation Marker). Compensation Sub-Processes are not considered a part of the Normal Flow and
MUST NOT mark the end of the Process.

9.4.2.7 Message Flow Connections

Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects and how they may be source or targets of
Message Flow.

Note — All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objectswithin
the Pool boundary. They cannot connect two objects within the same Pool.

° A Sub-Process MAY be the target for Message Flow; it can have zero or more incoming Message Flow.

° A Sub-Process MAY be a source for Message Flow; it can have zero or more outgoing Message Flow.

9.4.3 Task

A Task is an atomic activity that is included within a Process. A Task is used when the work in the Process is not broken
down to afiner level of Process Model detail. Generally, an end-user and/or an application are used to perform the Task
when it is executed.

A Task object shares the same shape as the Sub-Process, which is a rectangle that has rounded corners (see Figure 9.14).
° A Task isarounded corner rectangle that MUST be drawn with a single thin black line.

° The use of text, color, size, and lines for a Task MUST follow the rules defined in Section 8.3, “Use of Text,
Color, Size, and Linesin a Diagram,” on page 29.

Figure 9.14 - A Task Object

BPMN specifies three types of markers for Task: a Loop Marker or a Multiple Instance Marker and a Compensation
Marker. A Task may have one or two of these markers (see Figure 9.15).

64 Business Process Modeling Notation, v1.2

° The marker for a Task that is a standard loop MUST be a small line with an arrowhead that curls back upon
itself.

° The Loop Marker MAY be used in combination with the Compensation Marker.
° The marker for a Task that is a multi-instance loop MUST be a set of three vertical linesin parallel.
° The Multiple Instance Marker MAY be used in combination with the Compensation Marker.

° The marker for a Task that is used for compensation MUST be a pair of left facing triangles (like a tape player
“rewind” button).

° The Compensation Marker MAY be used in combination with the Loop Marker or the Multiple Instance
Marker.

° All the markers that are present MUST be grouped and the whole group centered at the bottom of the shape.

Multi-Instance Compensation

(o) L) Lal

Figure 9.15 - Task Markers

In addition to categories of Task shown above, there are different types of Tasks identified within BPMN to separate the
types of inherent behavior that Tasks might represent (see Table 9.2). However, BPMN does not specify any graphical
indicators for the different types of Tasks. Modelers or modeling tools may choose to create their own indicators or
markers to show the readers of the diagram the type of Task. Thisis permitted by BPMN as long as the basic shape of the
Task (arounded rectangle) is not modified. The list of Task types may be extended along with any corresponding
indicators.

9.4.3.1 Attributes

The following table displays the set of attributes of a Task, which extends the set of common activity attributes (see Table
9.18).

Table 9.25 - Task Attributes

Attributes Description

TaskType (Service| Receive| Send | TaskType is an attribute that has a default of None, but MAY be set to Send,

| User | Script | Manual | Reference| | Receive, User, Script, Manual, Reference, or Service. The TaskType will be
None) None : String impacted by the Message Flow to and/or from the Task, if Message Flow are
used. A TaskType of Receive MUST NOT have an outgoing Message Flow. A
TaskType of Send MUST NOT have an incoming Message Flow. A TaskType of
Script or Manual MUST NOT have an incoming or an outgoing Message Flow.
The TaskType list MAY be extended to include new types. The attributes for
specific values of TaskType can be found in Table 9.26 through Table 9.31.

9.4.3.2 Service Task

A Service Task is a Task that provides some sort of service, which could be a Web service or an automated application.

Business Process Modeling Notation, v1.2 65

The following table displays the set of attributes of a Service Task (where the TaskType attribute is set to “Service”),
which extends the set of Task attributes (see Table 9.25).

Table 9.26 - Service Task Attributes

Attributes Description

A Message for the InMessageRef attribute MUST be entered. This indicates
that the Message will be received at the start of the Task, after the
availability of any defined InputSets. One or more corresponding incoming
Message Flows MAY be shown on the diagram. However, the display of the
Message Flow is not required. The Message is applied to al incoming
Message Flow, but can arrive for only one of the incoming Message Flow
for a single instance of the Task.

OutMessageRef : Message A Message for the OutMessageRef attribute MUST be entered. The sending
of this message marks the completion of the Task, which may cause the
production of an OutputSet. One or more corresponding outgoing Message
Flow MAY be shown on the diagram. However, the display of the Message
Flow is not required. The Message is applied to all outgoing Message Flow
and the Message will be sent down all outgoing Message Flow at the
completion of a single instance of the Task.

InMessageRef : Message

Implementation (Web Service | Other | This attribute specifies the technology that will be used to send and receive
| Unspecified) Web Service : String the messages. A Web service is the default technology.

9.4.3.3 Receive Task

A Receive Task is a simple Task that is designed to wait for a message to arrive from an external participant (relative to
the Business Process). Once the message has been received, the Task is completed.

A Receive Task is often used to start a Process. In a sense, the Process is bootstrapped by the receipt of the message. In
order for the Task to Instantiate the Process it must meet one of the following conditions:

° The Process does not have a Start Event and the Receive Task has no incoming Sequence Flow.
° The Incoming Sequence Flow for the Receive Task has a source of a Start Event.

° Note that no other incoming Sequence Flow is allowed for the Receive Task (in particular, aloop connection
from a downstream object).

The following table displays the set of attributes of a Receive Task (where the TaskType attribute is set to “Receive’),
which extends the set of Task attributes (see Table 9.25).

66 Business Process Modeling Notation, v1.2

Table 9.27 - Receive Task Attributes

Attributes

Description

MessageRef : Message

A Message for the MessageRef attribute MUST be entered. This indicates
that the Message will be received by the Task. The Message in this context
is equivalent to an in-only message pattern (Web service). One or more
corresponding incoming Message Flows MAY be shown on the diagram.
However, the display of the Message Flow is not required. The Message is
applied to al incoming Message Flow, but can arrive for only one of the
incoming Message Flow for a single instance of the Task.

Instantiate False : Boolean

Receive Tasks can be defined as the instantiation mechanism for the
Process with the Instantiate attribute. This attribute MAY be set to true if
the Task is the first activity after the Start Event or a starting Task if there
is no Start Event (i.e., there are no incoming Sequence Flow). Multiple
Tasks MAY have this attribute set to True.

Implementation (Web Service | Other |
Unspecified) Web Service : String

This attribute specifies the technology that will be used to receive the
message. A Web service is the default technology.

9.4.3.4 Send Task

A Send Task is a simple Task that is designed to send a message to an external participant (relative to the Business
Process). Once the message has been sent, the Task is completed.

The following table displays the set of attributes of a Send Task (where the TaskType attribute is set to “Send”), which
extends the set of Task attributes (see Table 9.25).

Table 9.28 - Send Task Attributes

Attributes Description

MessageRef : Message A Message for the MessageRef attribute MUST be entered. Thisindicates that the
Message will be sent by the Task. The Message in this context is equivalent to an
out-only message pattern (Web service). One or more corresponding outgoing
Message Flow MAY be shown on the diagram. However, the display of the
Message Flow is not required. The Message is applied to all outgoing Message
Flow and the Message will be sent down all outgoing Message Flow at the
completion of a single instance of the Task.

Service : String

Implementation (Web Service | | This attribute specifies the technology that will be used to send the message. A
Other | Unspecified) Web Web service is the default technology.

9.4.3.5 User Task

A User Task is atypical “workflow” task where a human performer performs the Task with the assistance of a software
application and is scheduled through a task list manager of some sort.

The following table displays the set of attributes of a User Task (where the TaskType attribute is set to “User”), which
extends the set of Task attributes (see Table 9.25).

Business Process Modeling Notation, v1.2

67

Table 9.29 - User Task Attributes

Attributes Description

InMessageRef : Message A Message for the InMessageRef attribute MUST be entered. This indicates that
the Message will be received at the start of the Task, after the availability of any
defined InputSets. One or more corresponding incoming Message Flows MAY be
shown on the diagram. However, the display of the Message Flow is not required.
The Message is applied to all incoming Message Flow, but can arrive for only one
of the incoming Message Flow for a single instance of the Task.

OutMessageRef : Message A Message for the OutM essageRef attribute MUST be entered. The sending of
this message marks the completion of the Task, which may cause the production
of an OutputSet. One or more corresponding outgoing Message Flow MAY be
shown on the diagram. However, the display of the Message Flow is not required.
The Message is applied to al outgoing Message Flow and the Message will be
sent down all outgoing Message Flow at the completion of a single instance of the
Task.

Implementation (Web Service | | This attribute specifies the technology that will be used by the Performers to

Other | Unspecified) Other : perform the Task.
String

9.4.3.6 Script Task

A Script Task is executed by a business process engine. The modeler or implementer defines a script in a language that
the engine can interpret. When the Task is ready to start, the engine will execute the script. When the script is completed,
the Task will also be completed.

The following table displays the set of attributes of a Script Task (where the TaskType attribute is set to “ Script”), which
extends the set of Task attributes (see Table 9.25).

Table 9.30 - Script Task Attributes

Attributes Description
Script (0-1) : String The modeler MAY include a script that can be run when the Task is performed. If
a script is not included, then the Task will act equivalent to a TaskType of None.

9.4.3.7 Manual Task

A Manual Task is aTask that is expected to be performed without the aid of any business process execution engine or any
application. An example of this could be a telephone technician installing a telephone at a customer location.

9.4.3.8 Reference Task

There may be times where a modeler may want to reference another Task that has been defined. If the two (or more)
Tasks share the exact same behavior, then by one referencing the other, the attributes that define the behavior only have
to be created once and maintained in only one location.

The following table displays the set of attributes of a Reference Task (where the TaskType attribute is set to “ Reference”),
which extends the set of Task attributes (see Table 9.25).

68 Business Process Modeling Notation, v1.2

Table 9.31 - Reference Task Attributes

Attributes Description

TaskRef : Task The Task being referenced MUST be identified. The attributes for the Task
element can be found in Table 9.25.

9.4.3.9 Sequence Flow Connections

Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and how they may be source or targets of
Sequence Flow.

o

A Task MAY be atarget for Sequence Flow; it can have multiple incoming Flow. Incoming Flow MAY be from
an alternative path and/or parallel paths.

Note — If the Task has multiple incoming Sequence Flow, then thisis considered uncontrolled flow. This means that when a
Token arrives from one of the Paths, the Task will be instantiated. It will not wait for the arrival of Tokens from the other paths.
If another Token arrives from the same path or another path, then a separate instance of the Task will be created. If the flow
needs to be controlled, then the flow should converge with a Gateway that precedes the Task (see Section 9.5, “ Gateways,” on
page 70 for more information on Gateways).

° If the Task does not have an incoming Sequence Flow, and there is no Start Event for the Process, then the Task
MUST be instantiated when the process is instantiated.

o

Exceptions to this are Tasks that are defined as being Compensation activities (have the Compensation
Marker). Compensation Tasks are not considered a part of the Normal Flow and MUST NOT be instantiated
when the Process is instantiated.

o

A Task MAY be a source for Sequence Flow; it can have multiple outgoing Flow. If there are multiple outgoing
Sequence Flow, then this means that a separate parallel path is being created for each Flow.

Tokens will be generated for each outgoing Sequence Flow from the Task. The Tokenlds for each of the Tokens will be
set such that it can be identified that the Tokens are all from the same parallel Fork as well as the number of Tokens that
exist in parallel.

° |If the Task does not have an outgoing Sequence Flow, and there is no End Event for the Process, then the Task
marks the end of one or more paths in the Process. When the Task ends and there are no other parallel paths
active, then the Process MUST be completed.

° Exceptions to this are Tasks that are defined as being Compensation activities (have the Compensation
Marker). Compensation Tasks are not considered a part of the Normal Flow and MUST NOT mark the end
of the Process.

9.4.3.10 Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects and how they may be source or targets
of Message Flow.

Note — All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objectswithin
the Pool boundary. They cannot connect two objects within the same Pool.

Business Process Modeling Notation, v1.2 69

° A Task MAY be the target for Message Flow; it can have zero or more incoming Message Flow. If there are
multiple incoming Message Flow, then a single Message will be applied to all the Message Flow. However, only
one Message can be received, from a single Message Flow, for a given instance of the Task.

° A Task MAY be a source for Message Flow; it can have zero or more outgoing Message Flow. If there are
multiple outgoing Message Flow, then a single Message will be applied to all the Message Flow. That Message
will be sent down al the outgoing Message Flow.

9.5 Gateways

Gateways are modeling elements that are used to control how Sequence Flow interact as they converge and diverge within
a Process. If the flow does not need to be controlled, then a Gateway is not needed. The term “Gateway” implies that
there is a gating mechanism that either allows or disallows passage through the Gateway--that is, as Tokens arrive at a
Gateway, they can be merged together on input and/or split apart on output as the Gateway mechanisms are invoked. To
be more descriptive, a Gateway is actually a collection of “Gates.” Although the Gates are not graphically depicted, the
Gates are used by the Sequence Flow of to connect to or from the Gateway.

There are different types of Gateways (as described below) and the behavior of each type Gateway will determine how
many of the Gates will be available for the continuation of flow. There will be one Gate for each outgoing Sequence Flow
of the Gateway.

A Gateway is adiamond (see Figure 9.16), which has been used in many flow chart notations for exclusive branching and
is familiar to most modelers.

° A Gateway is adiamond that MUST be drawn with a single thin black line.

° The use of text, color, size, and lines for a Gateway MUST follow the rules defined in Section 8.3, “Use of
Text, Color, Size, and Lines in a Diagram,” on page 29.

Figure 9.16 - A Gateway

Note — Although the shape of a Gateway is adiamond, it is not a requirement that incoming and outgoing Sequence Flow
must connect to the corners of the diamond. Sequence Flow can connect to any position on the boundary of the Gateway

shape.

Gateways can define all the types of business process Sequence Flow behavior: Decisions/branching (exclusive, inclusive,
and complex), merging, forking, and joining. Thus, while the diamond has been used traditionally for exclusive decisions,
BPMN extends the behavior of the diamonds to reflect any type of Sequence Flow control. Each type of Gateway will
have an internal indicator or marker to show the type of Gateway that is being used (see Figure 9.17).

70 Business Process Modeling Notation, v1.2

Exclusive
Data-Based or

Event-Based

Inclusive
Complex

Parallel

+HO0C

Figure 9.17 - The Different types of Gateways

° The internal marker associated with the Gateway MUST be placed inside the shape, in any size or location,
depending on the preference of the modeler or modeling tool vendor, with the exception that the marker for the
Data-Based Exclusive Gateway is not required.

The Gateways will control the flow of both diverging and/or converging Sequence Flow. That is, a particular Gateway
could have multiple input Gates and multiple output Gates at the same time (there is one Sequence Flow per Gate). The
type of Gateway will determine the same type of behavior for both the diverging and converging Sequence Flow.
Modelers and modeling tools may want to enforce a best practice of a Gateway only performing one of these functions.
Thus, it would take two sequential Gateways to first converge and then diverge the Sequence Flow.

9.5.1 Common Gateway Features

9.5.1.1 Common Gateway Attributes

The following table displays the attributes common to Gateways, and which extends the set of common Flow Object
attributes (see Table 9.2).

Table 9.32 - Common Gateway Attributes

Attributes Description

GatewayType (Exclusive | GatewayType is by default Exclusive. The GatewayType MAY be set to

Inclusive | Complex | Parallel) Inclusive, Complex, or Parallel. The Gateway Type will determine the behavior of

Exclusive : String the Gateway, both for incoming and outgoing Sequence Flow, and will determine
the internal indicator (as shown in Figure 9.17).

Business Process Modeling Notation, v1.2 71

Table 9.32 - Common Gateway Attributes

Attributes Description

Gates (0-n) : Gate There MAY be zero or more Gates (except where noted below). Zero Gates are
allowed if the Gateway is last object in a Process flow and there are no Start or
End Events for the Process. If there are zero or only one incoming Sequence
Flow, then there MUST be at least two Gates.

For Exclusive Data-Based Gateways. When two Gates are required, one of them
MAY be the DefaultGate.

For Exclusive Event-Based Gateways. There MUST be two or more Gates. (Note
that this type of Gateway does not act only asa Merge--it is always a Decision, at
least.)

For Inclusive Gateways. When two Gates are required, one of them MAY be the
DefaultGate.

9.5.1.2 Common Gateway Sequence Flow Connections

This section applies to all Gateways. Additional Sequence Flow Connection rules will be specified for each type of
Gateway in the sections below. See Section 8.4.1, “Sequence Flow Rules,” on page 30 for the entire set of objects and
how they may be source or targets of Sequence Flow.

° A Gateway MAY be atarget for Sequence Flow; it can have zero or more incoming Sequence Flow. An
incoming Flow MAY be from an alternative path or a parallel path.

° If the Gateway does not have an incoming Sequence Flow, and there is no Start Event for the Process, then
the Gateway’s divergence behavior, depending on the GatewayType attribute (see below), SHALL be
performed when the Process is instantiated.

° A Gateway MAY be a source of Sequence Flow; it can have zero or more outgoing Flow.

° A Gateway MAY have both multiple incoming and outgoing Sequence Flow.

Note — The incoming and outgoing Sequence Flow are not required to attach to the corners of the Gateway’s diamond shape.
Sequence Flow can attach to any location on the boundary of a Gateway.

9.5.1.3 Message Flow Connections

This section applies to all Gateways. See Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects
and how they may be source or targets of Message Flow.

° A Gateway MUST NOT be atarget for Message Flow.
° A Gateway MUST NOT be a source for Message Flow.

9.5.1.4 Gates

The following table displays the attributes of Gates, and which extends the set of common BPMN element attributes (see
Table 9.1).

72 Business Process Modeling Notation, v1.2

Table 9.33 - Gate Attributes

Attributes Description
OutgoingSequenceFlow : Each Gate MUST have an associated (outgoing) Sequence Flow. The attributes of
SequenceFlow a Sequence Flow can be found in Section 10.1.2, “ Sequence Flow,” on page 97.

For Exclusive Event-Based, Complex, and Parallel Gateways: The Sequence Flow
MUST haveits Condition attribute set to None (there is not an evaluation of a
condition expression).

For Exclusive Data-Based, and Inclusive Gateways: The Sequence Flow MUST
have its Condition attribute set to Expression and MUST have avalid
ConditionExpression. The ConditionExpression MUST be unique for all the Gates
within the Gateway. If thereis only one Gate (i.e., the Gateway is acting only asa
Merge), then Sequence Flow MUST have its Condition set to None.

For DefaultGates: The Sequence Flow MUST have its Condition attribute set to
Otherwise.

Assignments (0-n) : Assignment | One or more assignment expressions MAY be made for each Gate. The
Assignment SHALL be performed when the Gate is selected. The details of
Assignment are defined in Section B.11.3, “Assignment,” on page 273.

9.5.2 Exclusive Gateways

Exclusive Gateways (Decisions) are locations within a business process where the Sequence Flow can take two or more
alternative paths. Thisis basically the “fork in the road” for a process. For a given performance (or instance) of the
process, only one of the paths can be taken (this should not be confused with forking of paths—refer to “Forking Flow”
on page 107). A Decision is not an activity from the business process perspective, but is a type of Gateway that controls
the Sequence Flow between activities. It can be thought of as a question that is asked at that point in the Process. The
question has a defined set of alternative answers (Gates). Each Decision Gate is associated with a condition expression
found within an outgoing Sequence Flow. When a Gate is chosen during the performance of the Process, the
corresponding Sequence Flow is then chosen. A Token arriving at the Decision would be directed down the appropriate
path, based on the chosen Gate.

The Exclusive Decision has two or more outgoing Sequence Flow, but only one of them may be taken during the
performance of the Process. Thus, the Exclusive Decision defines a set of alternative paths for the Token to take as it
traverses the Flow. There are two types of Exclusive Decisions: Data-Based and Event-Based.

9.5.2.1 Data-Based

The Data-Based Exclusive Gateways are the most commonly used type of Gateways. The set of Gates for Data-Based
Exclusive Decisions is based on the boolean expression contained in the ConditionExpression attribute of the outgoing
Sequence Flow of the Gateway. These expressions use the values of process data to determine which path should be taken
(hence the name Data-Based).

Note — BPMN does not specify the format of the expressions used in Gateways or any other BPMN element that uses
expressions.

Business Process Modeling Notation, v1.2 73

° The Data-Based Exclusive Gateway MAY use a marker that is shaped like an “X” and is placed within the
Gateway diamond (see Figure 9.19) to distinguish it from other Gateways. This marker is not required (see
Figure 9.18).

° A Diagram SHOULD be consistent in the use of the “X” internal indicator. That is, a Diagram SHOULD
NOT have some Gateways with an indicator and some Gateways without an indicator.

Alternative 1

Alternative

Alternative

Figure 9.18 - An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator

Alternative 1

Alternative

Default
Alternative

Figure 9.19 - A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator

Note — The“X” internal indicator for the Data-Based Exclusive Gateway was included in BPMN to compl ete the set of
indicators for the different types of Gateways (see Figure 9.17). However, it is also understood that most modelers would be
familiar with an empty decision diamond that represents an exclusive branching of the process and that most decisions
would probably take this form. Thus, Data-Based Exclusive Gateway internal indicator was made optional so that modelers
and modeling tools could create diagrams that would conform with the basic flow expectations of modelers.

74 Business Process Modeling Notation, v1.2

The conditions for the alternative Gates should be evaluated in a specific order. The first one that evaluates as TRUE will
determine the Sequence Flow that will be taken. Since the behavior of this Gateway is exclusive, any other conditions that
may actually be TRUE will be ignored; only one Gate can be chosen. One of the Gates may be “default” (or otherwise),
and is the last Gate considered. This means that if none of the other Gates are chosen, then the default Gate will be
chosen—along with its associated Sequence Flow.

The default Gate is not mandatory for a Gateway. This means that if it is not used, then it is up to the modeler to insure
that at least one Gate be valid at runtime. BPMN does not specify what will happen if there are no valid Gates. However,
BPMN does specify that there MUST NOT be implicit flow and that all Normal Flow of a Process must be expressed
through Sequence Flow. This would mean that a Process Model that has a Gateway that potentially does not have a valid
Gate at runtime is an invalid model.

Figure 9.20 - An Exclusive Merge (Gateway) (without the Internal Indicator)

Exclusive Gateways can also be used as a merge (see Figure 9.20) for alternative Sequence Flow, although it is rarely
required for the modeler to use them this way. The merging behavior of the Gateway can also be modeled as seen in
Figure 9.21. The behavior of Figure 9.20 and Figure 9.21 are the same if all the incoming flows are alternative.

Figure 9.21 - Uncontrolled Merging of Sequence Flow

Business Process Modeling Notation, v1.2 75

There are certain situations where an Exclusive Gateway is required to act as a merging object. In Figure 9.23 an
Exclusive Gateway (labeled “Merge”) merges two alternative Sequence Flow that were generated by an upstream
Decision. The alternative Sequence Flow are merged in preparation for a Parallel Gateway that synchronizes a set of
parallel Sequence Flow that were generated even further upstream. If the merging Gateway was not used, then there
would have been four incoming Sequence Flow into the Parallel Gateway. However, only three of the four Sequence Flow
would ever pass a Token at one time. Thus, the Gateway would be waiting for a fourth Token that would never arrive.
Thus, the Process would be stuck at the point of the Parallel Gateway.

Decision Merge

>

Figure 9.22 - Exclusive Gateway that merges Sequence Flow prior to a Parallel Gateway

In simple situations, Exclusive Gateways need not be used for merging Sequence Flow, but there are more complex
situations where they are required. Thus, a modeler should always be aware of the behavior of a situation where Sequence
Flow are uncontrolled. Some modelers or modeling tools may, in fact, require that Exclusive Gateways be used in all
situations as a matter of Best Practice.

9.5.2.2 Attributes

The following table displays the attributes for a Data-Based Exclusive Gateway. These attributes only apply if the
GatewayType attribute is set to Exclusive. The following attributes extend the set of common Gateway attributes (see
Table 9.32).

Table 9.34 - Data-Based Exclusive Gateway Attributes

Attributes Description

ExclusiveType (Data | Event) ExclusiveType is by default Data. The ExclusiveType MAY be set to Event.

Data : String Since Data-Based Exclusive Gateways are the subject of this section, the attribute
MUST be set to Data for the attributes and behavior defined in this section to
apply to the Gateway.

76 Business Process Modeling Notation, v1.2

Table 9.34 - Data-Based Exclusive Gateway Attributes

Attributes Description

MarkerVisible False : Boolean This attribute determines if the Exclusive Marker is displayed in the center of the
Gateway diamond (an “X"). The marker is displayed if the attribute is True and it
is not displayed if the attribute is False. By default, the marker is not displayed.

DefaultGate (0-1) : Gate A Default Gate MAY be specified (see Section 9.5.1.4, “Gates,” on page 72).

9.5.2.3 Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “Common Gateway Sequence Flow
Connections’ on page 72. See Section 8.4.1, “ Sequence Flow Rules,” on page 30 for the entire set of objects and how
they may be source or targets of Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for converging Sequence Flow:

° If there are multiple incoming Sequence Flow, all of them will be used to continue the flow of the Process (as if
there were no Gateway). That is,

° Process flow SHALL continue when a signal (a Token) arrives from any of a set of Sequence Flow.

° Signals from other Sequence Flow within that set may arrive at other times and the flow will continue
when they arrive as well, without consideration or synchronization of signals that have arrived from
other Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for diverging Sequence Flow:

° If there are multiple outgoing Sequence Flow, then only one Gate (or the DefaultGate) SHALL be selected
during performance of the Process.

° The Gate SHALL be chosen based on the result of evaluating the ConditionExpression that is defined for the
Sequence Flow associated with the Gate.

° The Conditions associated with the Gates SHALL be evaluated in the order in which the Gates appear
on the list for the Gateway.

° If aConditionExpression is evaluated as “TRUE,” then that Gate SHALL be chosen and any Gates
remaining on the list MUST NOT be evaluated.

° If none of the ConditionExpressions for the Gates are evaluated as “TRUE,” then the DefaultGate
SHALL be chosen.

Note — If the Gateway does not have a DefaultGate and none of the Gate ConditionExpressions are evaluated as “ TRUE,”
then the Processis considered to have an invalid model.

9.5.2.4 Event-Based

The inclusion of Event-Based Exclusive Gateways is the result of recent developments in the handling of distributed
systems (e.g., with pi-calculus) and was derived from the BPEL4WS pick. On the input side, their behavior is the same as
a Data-Based Exclusive Gateway (see “Data-Based” on page 73). On the output side, the basic idea is that this Decision
represents a branching point in the process where the alternatives are based on events that occurs at that point in the
Process, rather than the evaluation of expressions using process data. A specific event, usually the receipt of a message,
determines which of the paths will be taken. For example, if a company is waiting for a response from a customer, they
will perform one set of activities if the customer responds “Yes’ and another set of activities if the customer responds
“No.” The customer’s response determines which path is taken. The identity of the Message determines which path is

Business Process Modeling Notation, v1.2 77

taken. That is, the “Yes” Message and the “No” message are different messages—they are not the same message with
different values within a property of the Message. The receipt of the message can be modeled with a Task of TaskType
Receive or an Intermediate Event with a Message Trigger. In addition to Messages, other Triggers for Intermediate Events
can be used, such as Timers.

° The Event-Based Exclusive Gateway MUST use a marker that is the same as the Multiple Intermediate Event
and is placed within the Gateway diamond (see Figure 9.23 and Figure 9.24) to distinguish it from other
Gateways.

The Event-Based Exclusive Decisions are configured by having outgoing Sequence Flow target a Task of
TaskType Receive or an Intermediate Event (see Figure 9.23 and Figure 9.24).

o

All of the outgoing Sequence Flow must have this type of target; there cannot be a mixing of condition
expressions and Intermediate Events for a given Decision.

[Type Receive]

[Type Receive]

Figure 9.24 - An Event-Based Decision (Gateway) Example Using Message Events

Because this Gateway is an Exclusive Gateway, the merging functionality for the Event-Based Exclusive Gateway is the
same as the Data-Based Exclusive Gateway described in the previous section.

78 Business Process Modeling Notation, v1.2

A Gateway can be used to start a Process. In a sense, the Process is bootstrapped by the receipt of a message. The receipt
of any of the messages defined by the Gateway configuration will instantiate the Process. Thus, the Gateway provides a
set of alternative ways for the Process to begin.

In order for the Gateway to Instantiate the Process it must meet one of the following conditions:
° The Process does not have a Start Event and the Gateway has no incoming Sequence Flow.
° The Incoming Sequence Flow for the Gateway has a source of a Start Event.

° Note that no other incoming Sequence Flow are allowed for the Gateway (in particular, a loop connection
from a downstream object).

° The Targets for the Gateway's outgoing Sequence Flow MUST NOT be a Timer Intermediate Event.

9.5.2.5 Attributes

The following table displays the attributes for an Event-Based Exclusive Gateway. These attributes only apply if the
GatewayType attribute is set to Exclusive. The following attributes extend the set of common Gateway attributes (see
Table 9.38).

Table 9.35 - Event-Based Exclusive Gateway Attributes
Attributes Description

ExclusiveType (Data | Event) ExclusiveType is by default Data. The ExclusiveType MAY be set to Event.
Event : String Since Event-Based Exclusive Gateways is the subject of this section, the attribute
MUST be set to Event for the attributes and behavior defined in this section to
apply to the Gateway.

Instantiate False : Boolean Event-Based Gateways can be defined as the instantiation mechanism for the
Process with the Instantiate attribute. This attribute MAY be set to true if the
Gateway is the first element after the Start Event or a starting Gateway if there is
no Start Event (i.e., there are no incoming Sequence Flow).

9.5.2.6 Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “Common Gateway Sequence Flow
Connections’ on page 72. See Section 8.4.1, “ Sequence Flow Rules,” on page 30 for the entire set of objects and how
they may be source or targets of Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for converging Sequence Flow:

° If there are multiple incoming Sequence Flow, all of them will be used to continue the flow of the Process (as if
there were no Gateway). That is,

° Process flow SHALL continue when a signal (a Token) arrives from any of a set of Sequence Flow.

° Signals from other Sequence Flow within that set may arrive at other times and the flow will continue
when they arrive as well, without consideration or synchronization of signals that have arrived from
other Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for diverging Sequence Flow:
° Only one Gate SHALL be selected during performance of the Process.
° The Gate SHALL be chosen based on the Target of the Gate’s Sequence Flow.

Business Process Modeling Notation, v1.2 79

° If aTarget isinstantiated (e.g., a message is received or atime is exceeded), then that Gate SHALL be
chosen and the remaining Gates MUST NOT be evaluated (i.e., their Targets will be disabled).

° The outgoing Sequence Flow Condition attribute MUST be set to None.

° The Target of the Gateway’s outgoing Sequence Flow MUST be one of the following objects:
° Task with the TaskType attribute set to Receive.
° Intermediate Event with the Trigger attribute set to Message, Timer, Signal.

° If one Gate Target is a Task, then an Intermediate Event with a Trigger Message MUST NOT be used as
a Target for another Gate. That is, messages MUST be received by only Receive Tasks or only Message
Events, but not a mixture of both for a given Gateway.

9.5.3 Inclusive Gateways

This Decision represents a branching point where Alternatives are based on conditional expressions contained within
outgoing Sequence Flow. However, in this case, the True evaluation of one condition expression does not exclude the
evaluation of other condition expressions. All Sequence Flow with a True evaluation will be traversed by a Token. In
some sense it’s like a grouping of related independent Binary (Yes/No) Decisions--and can be modeled that way. Since
each path is independent, all combinations of the paths may be taken, from zero to all. However, it should be designed so
that at least one path is taken.

Note — If none of the Inclusive Decision Gate ConditionExpressions are evaluated as“ TRUE,” then the Processis considered
to have an invalid model.

There are two mechanisms for modeling this type of Decision. The first method for modeling Inclusive Decision
situations does not actually use an Inclusive Gateway, but instead uses a collection of conditional Sequence Flow, marked
with mini-diamonds; the Gates without the Gateway (see Figure 9.25). Conditional Sequence Flow have their Condition
attribute set to Expression and the ConditionExpression attribute set to a boolean mathematical expression based on
information available to the Process. These Sequence Flow are indicated by a “mini-diamond”’ marker at the start of the
Sequence Flow line.

Condition 1,

Condition 2

Default

Figure 9.25 - An Inclusive Decision using Conditional Sequence Flow

There are some restrictions in using the conditional Sequence Flow (with mini-diamonds):

80 Business Process Modeling Notation, v1.2

» Thesource object MUST NOT be an Event. The source object MAY be a Gateway, but the mini-diamond MUST NOT
be displayed in this case. The source object MAY be an activity (Task or Sub-Process) and the mini-diamond SHALL
be displayed in this case.

« A source Gateway MUST NOT be of type Parallel or Complex.
- If aconditional Sequence Flow is used from a source activity, then there MUST be at least one other outgoing
Sequence Flow from that activity.
 The additional Sequence Flow(s) MAY also be conditional, but it is not required that they are conditional.

The second method for modeling Inclusive Decision situations uses an Inclusive Gateway (see Figure 9.26), sometimes in
combination with other Gateways. A marker will be placed in the center of the Gateway to indicate that the behavior of
the Gateway isinclusive.

o

The Inclusive Gateway MUST use a marker that is in the shape of a circle or an “O” and is placed within the
Gateway diamond (see Figure 9.26) to distinguish it from other Gateways.

Condition 1

Condition

Default

Figure 9.26 - An Inclusive Decision using an Inclusive Gateway

The behavior of the model depicted in Figure 9.25 is equivalent to the behavior of the model depicted in Figure 9.26.
Again, it is up to the modeler to insure that at least one of the conditions will be TRUE when the Process is performed.

When the Inclusive Gateway is used as a Merge, it will synchronize all Tokens that have been produced upstream, but at
most one for each incoming Sequence Flow. Note: Tokens with a loop are upstream of every node in the loop. It requires
that Tokens for all Sequence Flow that were actually produced by an upstream (by an Inclusive situation, for example) be
synchronized. If an upstream Inclusive produces two out of a possible three Tokens, then a downstream Inclusive will
synchronize those two Tokens and not wait for another Token, even though there are three incoming Sequence Flow (see
Figure 9.27).

Business Process Modeling Notation, v1.2 81

Figure 9.27 - An Inclusive Gateway Merging Sequence Flow

9.5.3.1 Attributes

The following table displays the attributes for an Inclusive Gateway. These attributes only apply if the GatewayType
attribute is set to Inclusive. The following attributes extend the set of common Gateway attributes (see Table 9.32).

Table 9.36 - Inclusive Gateway Attributes

Attributes Description
DefaultGate (0-1) : Gate A Default Gate MAY be specified (see Section 9.5.1.4, “Gates,” on page 72).

9.5.3.2 Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “ Common Gateway Sequence Flow
Connections’ on page 72. See Section 8.4.1, “ Sequence Flow Rules,” on page 30 for the entire set of objects and how
they may be source or targets of Sequence Flow.

To define the inclusive nature of this Gateway’s behavior for converging Sequence Flow:

° If there are multiple incoming Sequence Flow, one or more of them will be used to continue the flow of the
Process. That is,

° Process flow SHALL continue when the signals (Tokens) arrive from all of the incoming Sequence Flow that
are expecting a signal based on the upstream structure of the Process (e.g., an upstream Inclusive Decision).

° Some of the incoming Sequence Flow will not have signals and the pattern of which Sequence Flow will
have signals may change for different instantiations of the Process.

Note — Incoming Sequence Flow that have a source that is a downstream activity (that is, is part of aloop) will be treated
differently than those that have an upstream source. They will be considered as part of a different set of Sequence Flow from
those Seguence Flow that have a source that is an upstream activity.

To define the inclusive nature of this Gateway’s behavior for diverging Sequence Flow:

° One or more Gates SHALL be selected during performance of the Process.

82 Business Process Modeling Notation, v1.2

° The Gates SHALL be chosen based on the Condition expression that is defined for the Sequence Flow
associated with the Gates.

° The Condition associated with all Gates SHALL be evaluated.

° If aCondition is evaluated as “TRUE,” then that Gate SHALL be chosen, independent of what other
Gates have or have not been chosen.

° If none of the ConditionExpressions for the Gates are evaluated as “TRUE,” then the DefaultGate
SHALL be chosen.

9.5.4 Complex Gateways

BPMN includes a Complex Gateway to handle situations that are not easily handled through the other types of Gateways.
Complex Gateways can also be used to combine a set of linked simple Gateways into a single, more compact situation.
Modelers can provide complex expressions that determine the merging and/or splitting behavior of the Gateway.

o

The Complex Gateway MUST use a marker that is in the shape of an asterisk and is placed within the Gateway
diamond (see Figure 9.28) to distinguish it from other Gateways.

When the Gateway is used as a Decision (see Figure 9.28), then an expression determines which of the outgoing
Sequence Flow will be chosen for the Process to continue. The expression may refer to process data and the status of the
incoming Sequence Flow. For example, an expression may evaluate Process data and then select different sets of outgoing
Sequence Flow, based on the results of the evaluation. However, the expression should be designed so that at least one of
the outgoing Sequence Flow will be chosen.

Alternative 1

Alternative 2

Alternative 3

Alternative 4

Figure 9.28 - A Complex Decision (Gateway)
When the Gateway is used as a Merge (see Figure 9.29), then there will be an expression that will determine which of the

incoming Seguence Flow will be required for the Process to continue. The expression may refer to process data and the
status of the incoming Sequence Flow. For example, an expression may specify that any 3 out of 5 incoming Tokens will

Business Process Modeling Notation, v1.2 83

continue the Process. Another example would be an expression that specifies that a Token is required from Sequence
Flow “a’ and that a Token from either Sequence Flow “b” or “c” is acceptable. However, the expression should be
designed so that the Process is not stalled at that location.

-

Figure 9.29 - A Complex Merge (Gateway)

9.5.4.1 Attributes

The following table displays the attributes for a Complex Gateway. These attributes only apply if the GatewayType
attribute is set to Complex. The following attributes extend the set of common Gateway attributes (see Table 9.32).

Table 9.37 - Complex Gateway Attributes

Attributes

Description

IncomingCondition (0-1) :
Expression

If there are multiple incoming Sequence Flow, an IncomingCondition expression
MUST be set by the modeler. Thiswill consist of an expression that can reference
Sequence Flow names and/or Process Properties (Data).

OutgoingCondition (0-1) :
Expression

If there are multiple outgoing Sequence Flow, an OutgoingCondition expression
MUST be set by the modeler. Thiswill consist of an expression that can reference
(outgoing) Sequence Flow Ids and/or Process Properties (Data).

9.5.4.2 Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “ Common Gateway Sequence Flow
Connections’ on page 72. See Section 8.4.1, “ Sequence Flow Rules,” on page 30 for the entire set of objects and how
they may be source or targets of Sequence Flow.

To define the complex nature of this Gateway’s behavior for converging Sequence Flow:

° If there are multiple incoming Sequence Flow, one or more of them will be used to continue the flow of the
Process. The exact combination of incoming Sequence Flow will be determined by the Gateway’'s
IncomingCondition expression.

° Process flow SHALL continue when the appropriate number of signals (Tokens) arrives from appropriate

incoming Sequence Flow.

84

Business Process Modeling Notation, v1.2

° Signals from other Sequence Flow within that set MAY arrive, but they MUST NOT be used to continue the
flow of the Process.

Note — Incoming Sequence Flow that have a source that is a downstream activity (that is, is part of aloop) will be treated
differently than those that have an upstream source. They will be considered as part of adifferent set of Sequence Flow from
those Sequence Flow that have a source that is an upstream activity.

To define the inclusive nature of this Gateway’s behavior for diverging Sequence Flow:

One or more Gates SHALL be selected during performance of the Process.

° The Gates SHALL be chosen based on the Gateway’s OutgoingCondition expression.

9.5.5 Parallel Gateways

Parallel Gateways provide a mechanism to synchronize parallel flow and to create parallel flow. These Gateways are not
required to create parallel flow, but they can be used to clarify the behavior of complex situations where a string of
Gateways are used and parallel flow is required. In addition, some modelers may wish to create a “best practice” where
Parallel Gateways are always used for creating parallel paths. This practice will create an extra modeling element where
one is not required, but will provide a balanced approach where forking and joining elements can be paired up.

° The Parallel Gateway MUST use a marker that is in the shape of a plus sign and is placed within the Gateway
diamond (see Figure 9.30) to distinguish it from other Gateways.

Figure 9.30 - A Parallel Gateway

Parallel Gateways are used for synchronizing parallel flow.

Business Process Modeling Notation, v1.2 85

Figure 9.31 - Joining — the joining of parallel paths

9.5.5.1 Attributes

Parallel Gateways do not have any additional Attributes beyond the common Gateway Attributes (see Table 9.32).

9.5.5.2 Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “ Common Gateway Sequence Flow
Connections’ on page 72. See Section 8.4.1, “ Sequence Flow Rules,” on page 30 for the entire set of objects and how
they may be source or targets of Sequence Flow.

To define the parallel nature of this Gateway’s behavior for converging Sequence Flow:

° If there are multiple incoming Sequence Flow, all of them will be used to continue the flow of the Process--the
flow will be synchronized. That is,

° Process flow SHALL continue when a signal (a Token) has arrived from all of a set of Sequence Flow (i.e.,
the process will wait for all signals to arrive before it can continue).

Note — Incoming Sequence Flow that have a source that is a downstream activity (that is, is part of aloop) will be treated
differently than those that have an upstream source. They will be considered as part of a different set of Sequence Flow from
those Sequence Flow that have a source that is an upstream activity.

To define the parallel nature of this Gateway’s behavior for diverging Sequence Flow:
° All Gates SHALL be selected during performance of the Process.

9.6 Swimlanes (Pools and Lanes)

BPMN uses the concept known as “swimlanes’ to help partition and/organize activities. It is possible that a BPMN
Diagram may depict more than one private process, as well as the processes that show the collaboration between private
processes or Participants. If so, then each private business process will be considered as being performed by different
Participants. Graphically, each Participant will be partitioned; that is, will be contained within a rectangular box called a
“Pool.” Pools can have sub-Swimlanes that are called, simply, “Lanes.”

Section 7.1.1, “Uses of BPMN,” on page 12 describes the uses of BPMN for modeling private processes and the
interactions of processes in B2B scenarios. Pools and Lanes are designed to support these uses of BPMN.

86 Business Process Modeling Notation, v1.2

9.6.1 Common Swimlane Attributes

The following table displays a set of common attributes for Swimlanes (Pools and Lanes), and which extends the set of
common BPMN Element attributes (see Table 9.1):

Table 9.38 - Common Swimlane Attributes

Attributes Description
Name : String Name is an attribute that is text description of the Swimlane.
9.6.2 Pool

A Pool represents a Participant in the Process. A Participant can be a specific business entity (e.g., a company) or can be
a more general business role (e.g., a buyer, seller, or manufacturer). Graphically, a Pool is a container for partitioning a
Process from other Pools, when modeling business-to-business situations, although a Pool need not have any internal
details (i.e., it can be a “black box”).

° A Pool is asquare-cornered rectangle that MUST be drawn with a solid single black line (as seen in Figure 9.32).

° One, and only one, Pool in a diagram MAY be presented without a boundary. If there is more than one Pool
in the diagram, then the remaining Pools MUST have a boundary.

° The use of text, color, size, and lines for a Pool MUST follow the rules defined in Section 8.3, “Use of Text,
Color, Size, and Lines in a Diagram,” on page 29.

Name

Figure 9.32 - A Pool

To help with the clarity of the Diagram, A Pool will extend the entire length of the Diagram, either horizontally or
vertically. However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and modeling tools
can use Pooals (and Lanes) in a flexible manner in the interest of conserving the “real estate” of a Diagram on a screen or
a printed page.

A Pool acts as the container for the Sequence Flow between activities. The Sequence Flow can cross the boundaries
between Lanes of a Pool, but cannot cross the boundaries of a Pool. The interaction between Pools, e.g., in a B2B context,
is shown through Message Flow.

Another aspect of Pools is whether or not there is any activity detailed within the Pool. Thus, a given Pool may be shown
as a“White Box,” with all details exposed, or as a “Black Box,” with all details hidden. No Sequence Flow is associated
with a “Black Box” Pool, but Message Flow can attach to its boundaries (see Figure 9.33).

Business Process Modeling Notation, v1.2 87

- c

8 o

o=

c2

=S

<
7 7
! [

Credit Bequest Credit Response

: 47
&

Manufacturer

Figure 9.33 - Message Flow connecting to the boundaries of two Pools

For a “White Box” Pool, the activities within are organized by Sequence Flow. Message Flow can cross the Pool
boundary to attach to the appropriate activity (see Figure 9.34).

— C
8o
25 Credit Card
© = Authorization
S0
L < a -
L
-
| |
| i
| |
c 1 |
o 1 1
= | |
> 1 |
o | |
= i : Pack Goods H Ship Goods m
2] I
< | O i |
2 | i
a I I
2 | i
> | |
2 4
g w ';l;;];!ﬁ H Process Order
©
0

Figure 9.34 - Message Flow connecting to Flow Objects within two Pools
All BPDs contain at least one Pool. In most cases, a BPD that consists of a single Pool will only display the activities of

the Process and not display the boundaries of the Pool. Furthermore, a BPD may show the “main” Pool without
boundaries. In such cases there can be, at most, only one invisibly-bounded pool in the diagram and the name of that pool

88 Business Process Modeling Notation, v1.2

SHALL be the same as the diagram. Consequently, the activities that represent the work performed from the point of view
of the modeler or the modeler’s organization are considered “internal” activities and need not be surrounded by the
boundaries of a Pool, while the other Pools in the Diagram must have their boundary (see Figure 9.35).

Financial Institution

i
[
\
I
I
I
I
I
I
I
A

=
|
I
|
|
|
|
|
!
|
v

w Authorize Process Order H Pack Goods H Ship Goods m
Payment

Figure 9.35 - Main (Internal) Pool without boundaries

9.6.2.1 Attributes

The following table displays the identified attributes of a Pool, and which extends the set of common Swimlane attributes
(see Table 9.40):

Table 9.39 - Pool Attributes

Attributes Description

ProcessRef (0-1) : Process The ProcessRef attribute defines the Process that is contained within the Pool.
Each Pool MAY have a Process. The attributes for a Process can be found in
Section 8.6, “Processes,” on page 32.

ParticipantRef : Participant The Modeler MUST define the Participant for a Pool. The Participant can be
either a Role or an Entity. The attributes for a Participant can be found in
Section B.11.14, “Participant,” on page 279.

Lanes (1-n) : Lane There MUST be one or more Lanes within a Pool. The attributes for a Lane can
be found in Section 9.6.3, “Lane,” on page 89.

BoundaryVisible True: Boolean | This attribute defines if the rectangular boundary for the Pool is visible. Only one
Pool in the Diagram MAY have the attribute set to False.

MainPool False : Boolean This attribute defines if the Pool is the “main” Pool or the focus of the diagram.
Only one Pool in the Diagram MAY have the attribute set to True.

9.6.3 Lane

A Lane is a sub-partition within a Pool and will extend the entire length of the Pool, either vertically (see Figure 9.36) or
horizontally (see Figure 9.37). If the pool is invisibly bounded, the lane associated with the pool must extend the entire
length of the pool. Text associated with the Lane (e.g., its name and/or any attribute) can be placed inside the shape, in

Business Process Modeling Notation, v1.2 89

any direction or location, depending on the preference of the modeler or modeling tool vendor. Our examples place the
name as a banner on the left side (for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that
separates the Pool name, however, this is not a requirement.

Pool
Lane | Lane

Figure 9.36 - Two Lanes in a Vertical Pool

Lane

Pool

Lane

Figure 9.37 - Two Lanes in a Horizontal Pool

Lanes are used to organize and categorize activities within a Pool. The meaning of the Lanesis up to the modeler. BPMN
does not specify the usage of Lanes. Lanes are often used for such things as internal roles (e.g., Manager, Associate),
systems (e.g., an enterprise application), an internal department (e.g., shipping, finance), etc. In addition, Lanes can be
nested (see Figure 9.38) or defined in a matrix. For example, there could be an outer set of Lanes for company
departments and then an inner set of Lanes for roles within each department.

90 Business Process Modeling Notation, v1.2

o
1]
£
S
w
=3
Q
| | | |
| | |
w
] Sell to | | |
C(B Customer | | | |
| | |
| | |
| . I
@ | | |
& Accumul | |
7| Ofesms] o |
@ | |
5 | |
© | |
= | |
5 | |
=2 | |
| @
2 © |
2| |@ |
3| |8 | |
o | |
| |
| |
£ .
% Consulting Bugs |
g Required Diagnosed |
8 Bug List |
|
|
(=]
£ Y |
% Develop Develop
c Product Patch
[=)]
=
L

Figure 9.38 - An Example of Nested Lanes

Business Process Modeling Notation, v1.2

91

9.6.3.1 Attributes

The following table displays the identified attributes of a Lane, and which extends the set of common Swimlane attributes
(see Table 9.43):

Table 9.40 - Lane Attributes

Attributes Description
Lanes (0-*) : Lane This attribute identifies any Lanes that are nested within the current Lane.

9.7 Artifacts

BPMN provides modelers with the capability of showing additional information about a Process that is not directly
related to the Sequence Flow or Message Flow of the Process.

At this point, BPMN provides three standard Artifacts: A Data Object, a Group, and an Annotation. Additional standard
Artifacts may be added to the BPMN specification in later versions. A modeler or modeling tool may extend a BPD and
add new types of Artifacts to a Diagram. Any new Artifact must follow the Sequence Flow and Message Flow connection
rules (listed below). Associations can be used to link Artifacts to Flow Objects (see Section 10.1.4, “Association,” on

page 101).

9.7.1 Common Artifact Definitions
The following sections provide definitions that a common to all Artifacts.

9.7.1.1 Common Artifact Attributes

The following table displays the identified attributes common to Artifacts, and which extends the set of common BPMN
Element attributes (see Table 9.1):

Table 9.41 - Common Artifact Attributes

Attributes Description
ArtifactType (DataObject | Group | The ArtifactType MAY be set to DataObject, Group, or Annotation.
Annotation) DataObject : String The ArtifactType list MAY be extended to include new types.

9.7.1.2 Artifact Sequence Flow Connections

See Section 8.4.1, “ Sequence Flow Rules,” on page 30 for the entire set of objects and how they may be source or targets
of Sequence Flow.

° An Artifact MUST NOT be atarget for Sequence Flow.
° An Artifact MUST NOT be a source for Sequence Flow.

9.7.1.3 Artifact Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 31 for the entire set of objects and how they may be source or targets
of Message Flow.

° An Artifact MUST NOT be a target for Message Flow.
° An Artifact MUST NOT be a source for Message Flow.

92 Business Process Modeling Notation, v1.2

9.7.2 Data Object

In BPMN, a Data Object is considered an Artifact and not a Flow Object. They are considered an Artifact because they
do not have any direct affect on the Sequence Flow or Message Flow of the Process, but they do provide information
about what the Process does. That is, how documents, data, and other objects are used and updated during the Process.
While the name “Data Object” may imply an electronic document, they can be used to represent many different types of
objects, both electronic and physical.

In general, BPMN will not standardize many modeling Artifacts. These will mainly be up to modelers and modeling tool
vendors to create for their own purposes. However, equivalents of the BPMN Data Object are used by Document
Management oriented workflow systems and many other process modeling methodologies. Thus, this object is used
enough that it is important to standardize its shape and behavior.

° A Data Object is a portrait-oriented rectangle that has its upper-right corner folded over that MUST be drawn
with a solid single black line (as seen in Figure 9.39).

° The use of text, color, size, and lines for a Data Object MUST follow the rules defined in Section 8.3, “Use
of Text, Color, Size, and Lines in a Diagram,” on page 29.

Name
[State]

Figure 9.39 - A Data Object

As an Artifact, Data Objects generally will be associated with Flow Objects. An Association will be used to make the
connection between the Data Object and the Flow Object. This means that the behavior of the Process can be modeled
without Data Objects for modelers who want to reduce clutter. The same Process can be modeled with Data Objects for
modelers who want to include more information without changing the basic behavior of the Process.

In some cases, the Data Object will be shown being sent from one activity to another, via a Sequence Flow (see Figure
9.40). Data Objects will also be associated with Message Flow. They are not to be confused with the message itself, but
could be thought of as the “payload” or content of some messages.

Send Make
Invoice Payment

Invoice
[Approved]

Figure 9.40 - A Data Object associated with a Sequence Flow

Business Process Modeling Notation, v1.2 93

In other cases, the same Data Object will be shown as being an input, then an output of a Process (see Figure 9.41).
Directionality added to the Association will show whether the Data Object is an input or an output. Also, the state
attribute of the Data Object can change to show the impact of the Process on the Data Object.

Approve Purchase

Order

Purchase Order Purchase Order
[Complete] [Approved]

Figure 9.41 - Data Objects shown as inputs and outputs

9.7.2.1 Attributes

The following table displays the attributes for Data Objects, which extends the set of common Artifact attributes (see
Table 9.41 and Section 9.7.1.2). These attributes only apply if the ArtifactType attribute is set to DataObject:

Table 9.42 - Data Object Attributes

Attributes Description
Name : String Name is an attribute that is text description of the object.
State (0-1) : String State is an optiona attribute that indicates the impact the Process has had on the

Data Object. Multiple Data Objects with the same name MAY share the same
state within one Process.

Properties (0-n) : Property M odeler-defined Properties MAY be added to a Data Object. The fully
delineated name of these propertiesis “ <process name>.<task hame>.<property
name>" (e.g., “Add Customer.Credit Report.Score”). Further details about the
definition of a Property can be found in Section B.11.15, “Property,” on page
279.

9.7.3 Text Annotation

Text Annotations are a mechanism for a modeler to provide additional information for the reader of a BPMN Diagram.

° A Text Annotation is an open rectangle that MUST be drawn with a solid single black line (as seen in Figure
9.42).

° The use of text, color, size, and lines for a Text Annotation MUST follow the rules defined in Section 8.3,
“Use of Text, Color, Size, and Lines in a Diagram,” on page 29.

The Text Annotation object can be connected to a specific object on the Diagram with an Association (see Figure 9.42),
but do not affect the flow of the Process. Text associated with the Annotation can be placed within the bounds of the open
rectangle.

94 Business Process Modeling Notation, v1.2

Text Annotation Allows a
Modeler to provide
additional Information

Figure 9.42 - A Text Annotation

9.7.3.1 Attributes

The following table displays the attributes for Annotations, which extends the set of common Artifact attributes (see
9.7.1.2 and Table 9.41). These attributes only apply if the ArtifactType attribute is set to Annotation:;

Table 9.43 - Text Annotation Attributes

Attributes Description
Text : String Text is an attribute which is text that the modeler wishes to communicate to the
reader of the Diagram.

9.7.4 Group

The Group object is an Artifact that provides a visual mechanism to group elements of a diagram informally. The
grouping is tied to the Category supporting element (which is an attribute of all BPMN elements). That is, a Group is a
visual depiction of a single Category. The graphical elements within the Group will be assigned the Category of the
Group. (Note -- Categories can be highlighted through other mechanisms, such as color, as defined by a modeler or a
modeling tool).

° A Group is arounded corner rectangle that MUST be drawn with a solid dashed black line (as seen in Figure
9.43).

° The use of text, color, size, and lines for a Group MUST follow the rules defined in Section 8.3, “Use of
Text, Color, Size, and Lines in a Diagram,” on page 29.

Figure 9.43 - A Group Artifact

As an Artifact, a Group is not an activity or any Flow Object, and, therefore, cannot connect to Sequence Flow or
Message Flow. In addition, Groups are not constrained by restrictions of Pools and Lanes. This means that a Group can
stretch across the boundaries of a Pool to surround Diagram elements (see Figure 9.44), often to identify activities that
exist within a distributed business-to-business transaction.

Business Process Modeling Notation, v1.2 95

Handle Medicine
[= Send Doct Send Medi R |
en or nd Medicine ECeive
2 F"~*E"?I'U'~5"c'*l Receive Appl Requ951 Medicine
"(Tu' liness |
L Ocours & .
| : | 10} Here is y[;:.lr medicing
1 -
R wanthseeductor 5) Go sge doctor | 9) nead ITIL’ medicing | |
I ' ; | '
| | | |
@ l
E Racewa Raugwe-
= Doctor Send Appt. Medicine Send Medicine
(e Request Request
ih]
'S e e — .
[
o

Figure 9.44 - A Group around activities in different Pools

Groups are often used to highlight certain sections of a Diagram without adding additional constraints for performance, as
a Sub-Process would. The highlighted (grouped) section of the Diagram can be separated for reporting and analysis
purposes. Groups do not affect the flow of the Process.

9.7.4.1 Attributes

The following table displays the attributes for Groups, which extends the set of common Artifact attributes (see 9.7.1.2
and Table 9.41). These attributes only apply if the ArtifactType attribute is set to Group:

Table 9.44 - Group Attributes

Attributes

Description

CategoryRef : Category

CategoryRef specifies the Category that the Group represents. Further details
about the definition of a Category can be found in B.11.4 " Category” on page
273." The name of the Category provides the label for the Group. The graphical
elements within the boundaries of the Group will be assigned the Category.

Graphical Element

GraphicalElements (0-n) :

The Graphical Elements attribute identifies all of the graphical elements (e.g.,
Events, Activities, Gateways, and Artifacts) that are within the boundaries of the
Group.

96

Business Process Modeling Notation, v1.2

10 Business Process Diagram Connecting Objects

This section defines the graphical objects used to connect two objects together (i.e., the connecting lines of the Diagram)
and how the flow progresses through a Process (i.e., through a straight sequence or through the creation of parallel or
alternative paths).

10.1 Graphical Connecting Objects

There are two ways of Connecting Objects in BPMN: a Flow, either sequence or message, and an Association. Sequence
Flow and Message Flow, to a certain extent, represent orthogonal aspects of the business processes depicted in a model,
although they both affect the performance of activities within a Process. In keeping with this, Sequence Flow will
generally flow in a single direction (either left to right, or top to bottom) and Message Flow will flow at a 90° from the
Sequence Flow. This will help clarify the relationships for a Diagram that contains both Sequence Flow and Message
Flow. However, BPMN does not restrict this relationship between the two types of Flow. A modeler can connect either
type of Flow in any direction at any place in the Diagram.

The next three sections will describe how these types of connections function in BPMN.

10.1.1 Common Connecting Object Attributes

The following table displays the set of attributes common to Connecting Objects (Sequence Flow, Message Flow, and
Assaciation), and which extends the set of common BPMN Element attributes (see Table 10.1):

Table 10.1 - Common Connecting Object Attributes

Attributes Description
Name (0-1) : String Name is an optional attribute that is text description of the Connecting Object.

SourceRef : Graphical Element | SourceRef is an attribute that identifies which Graphical Element the Connecting
Object is connected from. Note: there are restrictions as to what objects Sequence
Flow and Message Flow can connect. Refer to the Sequence Flow Connections
section and the Message Flow Connections section for each Flow Object,
Swimlane, and Artifact.

TargetRef : Graphical Element | TargetRef is an attribute that identifies which Graphical Element the Connecting
Object is connected to. Note: there are restrictions as to what objects Sequence
Flow and Message Flow can connect. Refer to the Sequence Flow Connections
section and the Message Flow Connections section for each Flow Object,
Swimlane, and Artifact.

10.1.2 Sequence Flow

A Sequence Flow is used to show the order that activities will be performed in a Process. Each Flow has only one source
and only one target. The source and target must be from the set of the following Flow Objects: Events (Start,
Intermediate, and End), Activities (Task and Sub-Process), and Gateways. During performance (or simulation) of the
process, a Token will leave the source Flow Object, traverse down the Sequence Flow, and enter the target Flow Object.

° A Seguence Flow is aline with a solid arrowhead that MUST be drawn with a solid single line (as seen in Figure
10.2).

Business Process Modeling Notation, v1.2 97

° Theuse of text, color, and size for Sequence Flow MUST follow the rules defined in Section 8.3, “Use of Text,
Color, Size, and Linesin a Diagram,” on page 29.

>

Figure 10.1 - A Sequence Flow

BPMN does not use the term “Control Flow” when referring to the lines represented by Sequence Flow or Message Flow.
The start of an activity is “controlled” not only by Sequence Flow (the order of activities), but also by Message Flow (a
message arriving), as well as other process factors, such as scheduled resources. Artifacts can be Associated with
activities to show some of these other factors. Thus, we are using a more specific term, “Sequence Flow,” since these
lines mainly illustrate the sequence that activities will be performed.

° A Sequence Flow MAY have a conditional expression attribute, depending on its source object.
This means that the condition expression must be evaluated before a Token can be generated and then leave the source
object to traverse the Flow. The conditions are usually associated with Decision Gateways, but can also be used with
activities.
° If the source of the Sequence Flow is an activity, rather than Gateway, then a Conditional Marker, shaped asa“mini-
diamond,” MUST be used at the beginning of the Sequence Flow (see Figure 10.2).

The diamond shape is used to relate the behavior to a Gateway (also a diamond) that controls the flow within a Process.
More information about how conditional Sequence Flow are used can be found in “ Splitting Flow” on page 111.

<> -

Figure 10.2 - A Conditional Sequence Flow

A Sequence Flow that has an Exclusive Data-Based Gateway or an activity as its source can also be defined with a
condition expression of Default. Such Sequence Flow will have a marker to show that it is a Default flow.

° The Default Marker MUST be a backslash near the beginning of the line (see Figure 10.3).

>

Figure 10.3 - A Default Sequence Flow

98 Business Process Modeling Notation, v1.2

10.1.2.1 Attributes

The following table displays the set of attributes of a Sequence Flow, and which extends the set of common Connecting
Object attributes (see Figure 10.43):

Table 10.2 - Sequence Flow Attributes

Attributes Description

ConditionType (None | By default, the ConditionType of a Sequence Flow is None. This means that there
Expression | Default) None : is no evaluation at runtime to determine whether or not the Sequence Flow will be
String used. Once a Token is ready to traverse the Sequence Flow (i.e., the Source is an

activity that has completed), then the Token will do so. The normal, uncontrolled
use of Sequence Flow, in a sequence of activities, will have a None
ConditionType (see Figure 10.11). A None ConditionType MUST NOT be used
if the Source of the Sequence Flow is an Exclusive Data-Based or Inclusive
Gateway.

The ConditionType attribute MAY be set to Expression if the Source of the
Sequence Flow is a Task, a Sub-Process, or a Gateway of type Exclusive-Data-
Based or Inclusive. If the ConditionType attribute is set to Expression, then a
condition marker SHALL be added to the line if the Sequence Flow is outgoing
from an activity (see Figure 10.2). However, a condition indicator MUST NOT be
added to the line if the Sequence Flow is outgoing from a Gateway.

An Expression ConditionType MUST NOT be used if the Source of the Sequence
Flow is an Event-Based Exclusive Gateway, a Complex Gateway, a Parallel
Gateway, a Start Event, or an Intermediate Event. In addition, an Expression
ConditionType MUST NOT be used if the Sequence Flow is associated with the
Default Gate of a Gateway.

The ConditionType attribute MAY be set to Default only if the Source of the
Sequence Flow is an activity or an Exclusive Data-Based Gateway. If the
ConditionType is Default, then the Default marker SHALL be displayed (see

Figure 10.3).
[ConditionType is set to If the ConditionType attribute is set to Expression, then the ConditionExpression
Expression only] attribute MUST be defined as a valid expression. The expression will be
Cond|t|(_)n Expression: evaluated at runtime. If the result of the evaluation is TRUE, then a Token will be
Expression generated and will traverse the Sequence--Subject to any constraints imposed by a

Source that is a Gateway.

10.1.3 Message Flow

A Message Flow is used to show the flow of messages between two entities that are prepared to send and receive them.
In BPMN, two separate Pools in the Diagram will represent the two entities. Thus,

° Message Flow MUST connect two Pools, either to the Pools themselves or to Flow Objects within the Pools. They
cannot connect two objects within the same Pool.

Business Process Modeling Notation, v1.2 99

° A Message Flow isaline with an open arrowhead that MUST be drawn with a dashed single black line (as seenin
Figure 10.4).
° Theuse of text, color, size, and lines for Message Flow MUST follow the rules defined in Section 8.3, “Use of
Text, Color, Size, and Linesin a Diagram,” on page 29.

Figure 10.4 - A Message Flow

The Message Flow can connect directly to the boundary of a Pool (See Figure 10.5), especialy if the Pool does not have
any process details within (e.g., is a “Black Box™).

Financial
Institution

&
r |
! I

Credit Bequest Credit Response

&

Manufacturer

Figure 10.5 - Message Flow connecting to the boundaries of two Pools

A Message Flow can also cross the boundary of a Pool and connect to a Flow Object within that Pool (see Figure 10.6).

100 Business Process Modeling Notation, v1.2

= C
8o
LC) 5' Credit Card
c = Authorization
£ 2
= 7 —
L
|
| I
| I
| I
| I
T
| i
| |
c 1 1
k) . ;
5 i |
o) | "
s i | Pack Goods Ship Goods
@ L
5| ° o
=3 ! !
s ! !
| |
0 4 v
E 'A;g;nigﬁf Process Order
©
»

Figure 10.6 - Message Flow connecting to Flow Objects within two Pools

If there is an Expanded Sub-Process in one of the Pools, then the message flow can be connected to either the boundary
of the Sub-Process or to objects within the Sub-Process.

10.1.3.1 Attributes

The following table displays the identified attributes of a Message Flow, and which extends the set of common
Connecting Object attributes (see Table 10.1):

Table 10.3 - Message Flow Attributes

Attributes Description

MessageRef (0-1) : Message MessageRef is an optional attribute that identifies the Message that is being sent.
The attributes of a Message can be found in Section B.11.11, “Message,” on page
278.

10.1.4 Association

An Association is used to associate information and Artifacts with Flow Objects. Text and graphical non-Flow Objects
can be associated with the Flow Objects and Flow. An Association is also used to show the activities used to compensate
for an activity. More information about compensation can be found in Section 10.3, “Compensation Association,” on page
129.

° AnAssociation Flow isaline that MUST be drawn with a dotted single black line (as seen in Figure 10.7).

° Theuseof text, color, size, and lines for an Association MUST follow the rules defined in Section 8.3, “Use of
Text, Color, Size, and Linesin aDiagram,” on page 29.

Business Process Modeling Notation, v1.2 101

Figure 10.7 - An Association

If there is a reason to put directionality on the association then:
° Alinearrowhead MAY be added to the Association line. (see Figure 10.8).

A directional Association is often used with Data Objects to show that a Data Object is either an input to or an output
from an activity.

e >

Figure 10.8 - A directional Association

An Association is used to connect user-defined text (an Annotation) with a Flow Object (see Figure 10.9).

Announce

Issues for
Discussion

.| Allow 1 week for the
%| discussion of the Issues
— through e-mail or
calls

Figure 10.9 - An Association of Text Annotation

An Association is also used to associate Data Objects with other objects (see Figure 10.10). A Data Object is used to
show how documents are used throughout a Process. See Section 9.7.2, “Data Object,” on page 93 for more information
on Data Objects.

102 Business Process Modeling Notation, v1.2

Task A Yes Task B

No

Task C Task D

Data Object

Figure 10.10 - An Association connecting a Data Object with a Flow

10.1.4.1 Attributes

The following table displays the identified attributes of an Association, and which extends the set of common Connecting
Object attributes (see Table 10.1):

Table 10.4 - Association Attributes

Attributes Description
Direction (None | One | Both) Direction is an attribute that defines whether or not the Association shows any
None : String directionality with an arrowhead. The default is None (no arrowhead). A value of

One means that the arrowhead SHALL be at the Target Object. A value of Both
means that there SHALL be an arrowhead at both ends of the Association line.

10.2 Sequence Flow Mechanisms

The Sequence Flow mechanisms described in the following sections are divided into four types: Normal, Exception, Link
Events, and Ad Hoc (no flow). Within these types of flow, BPMN can be related to specific “Workflow Patterns®.” These
patterns began as development work by Wil van der Aalst, Arthur ter Hofstede, Bartek Kiepuszewski, and Alistair
Barros?. Twenty-one patterns have been defined as a way to document specific behavior that can be executed by a BPM
system. These patterns range from very simple behavior to very complex business behavior. These patterns are useful in
that they provide a comprehensive checklist of behavior that should be accounted for by BPM system. Therefore, some of
these patterns will be illustrated with BPMN in the following sections to show how BPMN can handle the simple and
complex requirements for Business Process Modeling.

1. http:/tmitwww.tm.tue.nl/research/patterns/
2. http://tmitwww.tm.tue.nl/research/patterns/downl oad/wf s-pat-2002. pdf

Business Process Modeling Notation, v1.2 103

10.2.1 Normal Flow
Normal Sequence Flow refers to the flow that originates from a Start Event and continues through activities via
alternative and parallel paths until it ends at an End Event. The simplest type of flow within a Process is a sequence,

which defines the dependencies of order for a series of activities that will be performed (sequentially). A sequence is also
Workflow Pattern #1 -- Sequence3 (see Figure 10.11).

o B B

Figure 10.11 - Workflow Pattern #1: Sequence

As stated previously, the normal Sequence Flow should be completely exposed and no flow behavior hidden. This means
that a viewer of a BPMN Diagram will be able to trace through a series of Flow Objects and Sequence Flow, from the
beginning to the end of a given level of the Process without any gaps or hidden “jumps” (see Figure 10.12). In this figure,
Sequence Flow connect all the objects in the Diagram, from the Start Event to the End Event. The behavior of the Process
shown will reflect the connections as shown and not skip any activities or “jump” to the end of the Process.

Rejected

Ship Order

Fill Order

Figure 10.12 - A Process with Normal Flow

Close Order

Send Invoice H Make Payment H Accept Payment

As the Process continues through the series of Sequence Flow, control mechanisms may divide or combine the Sequence
Flow as a means of describing complex behavior. There are control mechanisms for dividing (forking and splitting) and
for combining (joining and merging) Sequence Flow. Gateways and conditional Sequence Flow are used to accomplish
the dividing and combining of flow. It is possible that there may be gaps in the Sequence Flow if Gateways and/or
conditional Sequence Flow are not configured to cover all performance possibilities. In this case, amodel that violates the
flow traceability requirement will be considered an invalid model. Presumably, process development software or BPM
test environments will be able to test a process model to ensure that the model is valid.

A casual look at the definitions of the English terms for these mechanisms (e.g., forking and splitting) would indicate that
each pair of terms mean basically the same thing. However, their effect on the behavior of a Process is quite different. We
will continue to use these English terms but will provide specific definitions about how they affect the performance of the
process in the next few sections of this specification.

3. http://tmitwww.tm.tue.nl/research/patterns/sequence.htm

104 Business Process Modeling Notation, v1.2

The use of an expanded Sub-Process in a Process (see Figure 10.13), which is the inclusion of one level of the Process
within another Level of the Process, can sometimes break the traceability of the flow through the lines of the Diagram.
The Sub-Process is not required to have a Start Event and an End Event. This means that the series of Sequence Flow will
be disrupted from border of the Expanded Sub-Process to the first object within the Expanded Sub-Process. The flow will
“jump” to the first object within the Expanded Sub-Process. Expanded Sub-Processes will often be used, as seen in the
figure, to include exception handling. A requirement that modelers always include a Start Event and End Event within
Expanded Sub-Processes would mainly add clutter to the Diagram without necessarily adding to the clarity of the

Diagram. Thus, BPMN does not require the use of Start Events and End Events to satisfy the traceability of a Diagram
that contains multiple levels.

Send “No
Suppliers” To
Downstream

Activities

Repeat for Each Supplier

Yes——p Send RFQ H Receive Quote H Add Quote
From To
Upstream Downstream

Activities m O Activities

Find Optimal

Time Limit Exceeded Quote

Figure 10.13 - An Expanded Sub-Process without a Start Event and End Event
Of course, the Start and End Events for an Expanded Sub-Process can be included and placed entirely within its

boundaries (see Figure 10.14). This type of model will also have a break from a completely traceable Sequence Flow as
the flow continues from one Process level to another.

Business Process Modeling Notation, v1.2 105

Send “No

Suppliers” To

Downstream
Activities

Repeat for Each Supplier

\
\
\ Yes)
\ —Pp Send RFQ Receive Quote Add Quote
From
Upstream
Activities m O

\\[/ Time Limit Exceeded

Figure 10.14 - An Expanded Sub-Process with a Start Event and End Event Internal

To
Downstream \
Activities

Find Optimal
Quote

However, a modeler may want to ensure the traceability of a Diagram and can use a Start Event and End Event in an
Expanded Sub-Process. One way to do this would be to attach these events to the boundary of the Expanded Sub-Process
(see Figure 10.15). The incoming Sequence Flow to the Sub-Process can be attached directly to the Start Event instead of
the boundary of the Sub-Process. Likewise, the outgoing Sequence Flow from the Sub-Process can connect from the End
Event instead of the boundary of the Sub-Process. Doing this, the Normal Flow can be traced throughout a multi-level
Process.

Technically, the Start and End Events still reside within the Sub-Process. The use of this modeling technique is just a
graphical short-cut to a more accurate depiction of the Process (i.e., as shown in Figure 10.14). Therefore, the Sequence
Flow connecting to the Start Event and connecting from the End Event do not violate the Sequence Flow connection rules
(as defined in 9.3.2.3 " Sequence Flow Connections” on page 39 and “ Sequence Flow Connections’ on page 43).

106 Business Process Modeling Notation, v1.2

Send “No

Suppliers” To

Downstream
Activities

Repeat for Each Supplier

\
\
\
\ Yes .
\\ {H Send RFQ H Receive Quote H Add Quote H
\ From To
Upstream D(})Awn.s_tr_eam \
Activities m O ctivities

\\f Find Optimal

Time Limit Exceeded Quote

Figure 10.15 - An Expanded Sub-Process with a Start Event and End Event Attached to Boundary

When dealing with Exceptions and Compensation, the traceability requirement is also relaxed (Section 10.2.2, “Exception
Flow,” on page 127 and Section 10.3, “Compensation Association,” on page 129).

10.2.1.1 Forking Flow

BPMN uses the term forking to refer to the dividing of a path into two or more parallel paths (also known as an AND-
Split). It is a mechanism that will allow activities to be performed concurrently, rather than sequentially. Thisis also
Workflow Pattern #2 -- Parallel Split*. BPMN provides three configurations that provide forking.

The first mechanism to create a fork is simple: a Flow Object can have two or more outgoing Sequence Flow (see Figure
10.16). A special flow control object is not used to fork the path in this case, since it is considered uncontrolled flow; that
is, flow will proceed down each path without any dependencies or conditions--there is no Gateway that controls the flow.
Forking Sequence Flow can be generated from a Task, Sub-Process, or a Start Event.

4. http://tmitwww.tm.tue.nl/research/patterns/parallel_split.htm

Business Process Modeling Notation, v1.2 107

Parallel Split ~ /
Uncontrolled Flow
Figure 10.16 - Workflow Pattern #2: Parallel Split -- Version 1

The second mechanism uses a Parallel Gateway (see Figure 10.20). For situations as shown in the Figure 10.17, a
Gateway is not needed, since the same behavior can be created through multiple outgoing Sequence Flow, as in Figure
10.16. However, some modelers and modeling tools may use a forking Gateway as a “best practice.” See Section 9.5.5,
“Parallel Gateways,” on page 85 for more information on Paralel Gateways.

Parallel Split /
Forking

Gateway
Figure 10.17 - Workflow Pattern #2: Parallel Split -- Version 2
Even when not required as a “best practice,” there are situations where the Parallel Gateway provides a useful indicator

of the behavior of the Process. Figure 10.18 shows how a forking Gateway is used when the output of an Exclusive
Decision requires that multiple activities will be performed based on one condition (Gate).

108 Business Process Modeling Notation, v1.2

Figure 10.18 - The Creation of Parallel Paths with a Gateway

While multiple conditional Sequence Flow, each with the exact same condition expression (see Figure 10.19), could be
used with an Inclusive Gateway to create the behavior, the use of a forking Gateway makes the behavior much more
obvious.

Condition 1 - B
A Condition c
—)

Condition 2 -

Figure 10.19 - The Creation of Parallel Paths with Equivalent Conditions

This third version of the forking mechanism uses an Expanded Sub-Process to group a set of activities to be performed in
parallel (see Figure 10.20). The Sub-Process does not include a Start and End Event and displays the activities “floating”
within. A configuration like this can be called a “parallel box” and can be a compact and less cluttered way of showing
parallelism in the Process. The capability to model in this way is the reason that Start and End Events are optional in
BPMN.

Business Process Modeling Notation, v1.2 109

Parallel Split
Uncontrolled Flow /
Applies to Start
Events

Figure 10.20 - Workflow Pattern #2: Parallel Split -- Version 3

Most of the time, the paths that have been divided with afork are combined back together through ajoin (refer to the next
section) and synchronized before the flow will continue. However, BPMN provides the flexibility for advanced methods
to handle complex process situations. Thus, the exact behavior will be determined by the configuration of the Sequence
Flow and the Gateways that are used.

10.2.1.2 Joining Flow

BPMN uses the term joining to refer to the combining of two or more parallel paths into one path (also known as an
AND-Join). A Parallel Gateway is used to synchronize two or more incoming Sequence Flow (see Figure 10.21). In
general, this means that Tokens created at a fork will travel down parallel paths and then meet at the Parallel Gateway.
From there, only one Token will continue. This is also Workflow Pattern #3 -- Synchronization®. See Section 9.5.5,
“Parallel Gateways,” on page 85 for more information on Paralel Gateways.

Figure 10.21 - Workflow Pattern #3: Synchronization -- Version 1

Another mechanism for synchronization is the completion of a Sub-Process (see Figure 10.22). If there are parallel paths
within the Sub-Process that are not synchronized with a Parallel Gateway, then they will eventually reach an End Event
(even if the End Event is implied). The default behavior of a Sub-Process is to wait until all activity within has been
completed before the flow will move back up to a higher level Process. Thus, the completion of a Sub-Processis a
synchronization point.

5. http:/tmitwww.tm.tue.nl/research/synchronization.htm

110 Business Process Modeling Notation, v1.2

A
)
K\»
\\
B \ -
\ Synchronization
1 Applies to End

Events

Figure 10.22 - Workflow Pattern #3: Synchronization -- Version 2

There is no specific correlation between the joining of a set of parallel paths and the forking that created the parallel
paths. For example, an activity may have three outgoing Sequence Flow, which creates a fork of three parallel paths, but
these three paths do not need to be joined at the same object. Figure 10.23 shows that two of three parallel paths are
joined at Task “F.” All of the paths eventually will be joined, but this can happen through any combination of objects,
including lone End Events. In fact, each path could end with a separate End Event, and then be synchronized as
mentioned above.

Figure 10.23 - The Fork-Join Relationship is not Fixed

10.2.1.3 Splitting Flow

BPMN uses the term splitting to refer to the dividing of a path into two or more alternative paths (also known as an OR-
Split). It is a place in the Process where a question is asked, and the answer determines which of a set of paths is taken.
It isthe “fork in the road” where a traveler, in this case a Token, can take only one of the forks (not to be confused with

forking—see below).

Business Process Modeling Notation, v1.2 111

The general concept of splitting the flow is usually referred to as a Decision. In traditional flow charting methodologies,
Decisions are depicted as diamonds and usually are exclusive. BPMN also uses a diamond to leverage the familiarity of
the shape, but extends the use of the diamond to handle the complex behavior of business processes (which cannot be
handled by traditional flow charts). The diamond shape is used in both Gateways and the beginning of a conditional
Sequence Flow (when exiting an activity). Thus, when readers of BPD see a diamond, they know that the flow will be
controlled in some way and will not just pass from one activity to another. The location of the mini-diamond and the
internal indicators within the Gateways will indicate how the flow will be controlled.

There are multiple configurations to split the flow within BPMN so that different types of complex behavior can be
modeled. Conditional Sequence Flow and three types of Gateways (Exclusive, Inclusive, and Complex) are used to split
the flow. See Section 10.1.2, “Sequence Flow,” on page 97 for details on conditional Sequence Flow. See Section 9.5,
“Gateways,” on page 70 for details on the Gateways.

There are two basic mechanisms for making the Decision during the performance of the Process: the first is an evaluation
of a condition expression. There are three variations of this mechanism: Exclusive, Inclusive, and Complex. The first
variation, an Exclusive Decision, is the same as Workflow Pattern #4 -- Exclusive Choice® (see Figure 10.24). See 9.5.2.1
"Data-Based” on page 73 for more information on Data-Based Exclusive Gateways.

CEEE—
Condition 1
~—
CEEEE—
Condition 2
~—
)
Default
~—

Figure 10.24 - A Data-Based Decision Example -- Workflow Pattern #4 -- Exclusive Choice

The second type of expression evaluation is the Inclusive Decision, which is also Workflow Pattern #6 -- Multiple
Choice’. There are two configurations of the Inclusive Decision. The first type of Inclusive Decisions uses conditional
Sequence Flow from an Activity (see Figure 10.25).

6. http://tmitwww.tm.tue.nl/research/patterns/exclusive_choice.htm
7. http://tmitwww.tm.tue.nl/research/patterns/multiple_choice.htm

112 Business Process Modeling Notation, v1.2

Condftion 1

Condition 2

Figure 10.25 - Workflow Pattern #6 -- Multiple Choice -- Version 1

The second type of Inclusive Decisions uses an Inclusive Gateway to control the flow (see Figure 10.26). See
Section 9.5.3, “Inclusive Gateways,” on page 80 for more information on Inclusive Gateways.

Condition 1

Condition 2

Figure 10.26 - Workflow Pattern #6 -- Multiple Choice -- Version 2

The third type of expression evaluation is the Complex Decision (see Figure 10.27). See Section 9.5.4, “Complex
Gateways,” on page 83 for more information on Complex Gateways.

Business Process Modeling Notation, v1.2 113

Alternative 1

Alternative 2

Alternative 3

Alternative 4

Figure 10.27 - A Complex Decision (Gateway)

The second mechanism for making a Decision is the occurrence of a particular event, such as the receipt of a message
(see Figure 10.28). See 9.5.2.4 "Event-Based” on page 77 for more information on Event-Based Exclusive Gateways.

Massage
1
——
A ;
Message
Decision 2
S —
©
1 Day L

Figure 10.28 - An Event-Based Decision Example

10.2.1.4 Merging Flow

BPMN uses the term merging to refer to the combining of two or more alternative paths into one path (also known as an
OR-Join). It is a place in the process where two or more alternative paths begin to traverse activities that are common to
each of the paths. Theoretically, each aternative path can be modeled separately to a completion (an End Event).
However, merging allows the paths to overlap and avoids the duplication of activities that are common to the separate
paths. For a given instance of the Process, a Token would actually only see the sequence of activities that exist in one of
the paths as if it were modeled separately to completion.

114 Business Process Modeling Notation, v1.2

Since there are multiple ways that Sequence Flow can be forked and split, there are multiple ways that Sequence Flow can
be merged. There are five different Workflow Patterns that can be demonstrated with merging.

The first Workflow Pattern, Simple MergeB, the graphical mechanism to merge alternative paths is simple: there are two
or more incoming Sequence Flow to a Flow Object (see Figure 10.29). In general, this means that a Token will travel
down one of the aternative paths (for a given Process instance) and will continue from there. For that instance, Tokens
will never arrive down the other alternative paths. BPMN provides two versions of a Simple Merge.

Thefirst version is shown in Figure 10.29. The two incoming Sequence Flow for activity “D” are uncontrolled. Since the
two Sequence Flow are at the end of two alternative paths, created through the upstream exclusive Gateway, only one
Token will reach activity “D” for any given instance of the Process.

Simple Merge
Uncontrolled Flow

Exclusive Choice C
Decision Gateway
Figure 10.29 - Workflow Pattern #5 -- Simple Merge — Version 1

If the multiple incoming Sequence Flow are actually parallel instead of alternative, then the end result is different, even
though the merging configuration is the same as Figure 10.29. In Figure 10.30, the upstream behavior is parallel. Thus,
there will be two Tokens arriving (at different times) at activity “D.” Since the flow into activity “D” is uncontrolled, each
Token arriving at activity “ D” will cause a new instance of that activity. This is an important concept that modelers of
BPMN should understand. In addition, this type of merge is the Workflow Pattern Multiple Mergeg.

B }L’
A &
/
. Multlple Merge
C
Parallel Split / Uncontrolled Flow
Uncontrolled Flow

Figure 10.30 - Workflow Pattern #7 -- Multiple Merge

8. http:/tmitwww.tm.tue.nl/research/patterns/simple_merge.htm
9. http:/tmitwww.tm.tue.nl/research/patterns/multiple_merge.htm

Business Process Modeling Notation, v1.2 115

The second version of the Simple Merge is shown in Figure 10.31. The two incoming Sequence Flow for activity “D” are
controlled through the Exclusive Gateway. Since the two Sequence Flow are at the end of two alternative paths, created
through the upstream exclusive Gateway, only one Token will reach the Gateway for any given instance of the Process.

The Token will then immediately proceed to activity “D.”

Version 2
A
Exclusive Choice / c Simple Merge
Decision Gateway GMetrgmg
ateway

Figure 10.31 - Workflow Pattern #5 -- Simple Merge — Version 2

Another merging situation is the Workflow Pattern DiscriminatoriC. In this situation, the multiple incoming Sequence
Flow are parallel instead of alternative (see Figure 10.32). Thus, there will be two Tokens arriving (at different times) at
the Complex Gateway preceding activity “D.” To satisfy the Discriminator pattern, the Complex Gateway must accept the
first Token and immediately pass it on through to the activity. When the second Token arrives, it will be excluded from
the remainder of the flow. This means that the Token will not be passed on to the activity, but will be consumed.

Y

Parallel Split | [Discriminating
Uncontrolled Flow Comples
S Gateway

Figure 10.32 - Workflow Pattern #8 -- Discriminator

The fourth type of Workflow Pattern merge is called a Synchronizing Join'!. This is a situation when the merging location
does not know ahead of time how many Tokens will be arriving at the Gateway. In some Process instances, there may be
only one Token. In other Process instances, there may be more than one Token arriving. This type of situation is created
when an Inclusive Decision is made up stream (see Figure 10.33). To handle this, an Inclusive Gateway can be used to

10. http://tmitwww.tm.tue.nl/research/patterns/discriminator.htm
11. http://tmitwww.tm.tue.nl/research/patterns/synchronizing_join.htm

116 Business Process Modeling Notation, v1.2

merge the appropriate number of Tokens for each Process instance. The Gateway, following the pattern Synchronizing
Join, will wait for all expected Tokens before the flow will continue to the next activity. See Section 9.5.3, “Inclusive
Gateways,” on page 80 for more information on Inclusive Gateways.

A
Multi-Choice N
Inclusive Decision Synchronizing Merge
Gateway Merging Gateway

Figure 10.33 - Workflow Pattern #9 -- Synchronizing Join

The fourth type of Workflow Pattern mergeis called an N out of M Join*2. This type of situation is more complex and can
be handled through a Complex Gateway (see Figure 10.34). The Gateway will receive Tokens from its incoming
Sequence Flow and evaluate an expression to determine whether or not the flow should proceed. Once the condition has
been satisfied, if additional Tokens arrive, they will be excluded (much like the Discriminator Pattern from Figure 10.32).
See Section 9.5.4, “Complex Gateways,” on page 83 for more information on Complex Gateways.

B2
Parallel Split N out of M Join
—— Complex
Uncontrolled Flow
Gateway
> B3

Figure 10.34 - Workflow Pattern #8 -- N out of M Join

There is no specific correlation between the merging of a set of paths and the splitting that occurs through a Gateway
object. For example, a Decision may split a path into three separate paths, but these three paths do not need to be merged
at the same object. Figure 10.35 shows that two of three alternative paths are merged at Task “F.” All of the paths
eventually will be merged, but this can happen through any combination of objects, including lone End Events. In fact,
each path could end with a separate End Event.

12. http://tmitwww.tm.tue.nl/research/patterns/n_out_of _m_join.htm

Business Process Modeling Notation, v1.2 117

Condition 1 > B E
\
)
A > Condition 2' C
—
F
S
[Default] D
~—

Figure 10.35 - The Split-Merge Relationship is not Fixed

10.2.1.5 Looping

BPMN provides 2 (two) mechanisms for looping within a Process. The first involves the use of attributes of activities to
define the loop. The second involves the connection of Sequence Flow to “upstream” abjects.

10.2.1.6 Activity Looping

The attributes of Tasks and Sub-Processes will determine if they are repeated as a loop. There are two types of loops that
can be specified: Standard and Multi-Instance.

For Standard L oops:

« If theloop condition is evaluated before the activity, thisis generally referred to asa“while’ loop. This means that the
activities will be repeated as long as the condition is true. The activities may not be performed at all (if the condition is
false the first time) or performed many times.

- If theloop condition is evaluated after the activity, thisis generally referred to asan “until” loop. This meansthat the
activities will be repeated until a condition becomes true. The activities will be performed at |east once, but may be
performed many times.

For Multi-Instance Loops:

» If the MI_Ordering is serial, then this becomes much like a while loop with a set number of iterations the loop will go
through. These are often used in processes where a specific type of item will have a set number of sub-itemsor line
items. A Multi-Instance loop will be used to process each of the line items.

« If the MI_Ordering is paralldl, thisis generally referred to as multiple instances of the activities. An example of this
type of feature would be used in a process to write a book, there would be a Sub-Process to write a chapter. There
would be as many copies or instances of the Sub-Process as there are chaptersin the book. All the instances could begin
at the sametime.

Those activities that are repeated (looped) will have a loop marker placed in the bottom center of the activity shape (see
Figure 10.36). Those activities that are Parallel Multi-Instance will have a parallel marker placed in the bottom center of
the activity shape (see Figure 10.37).

118 Business Process Modeling Notation, v1.2

Receive Vote

@)

Discussion Cycle

O

Figure 10.36 - A Task and a Collapsed Sub-Process with a Loop Marker

Request

Quotes
1l

Figure 10.37 - A Task with a Parallel Marker

Expanded Sub-Processes also can have aloop marker placed at the bottom center of the Sub-Process rectangle (see Figure

10.38). The entire contents of the Sub-Process will be repeated as defined in the attributes.

P
Discussion Cycle (Until Discussion Over)

Moderate E-mail
Discussion

Announce Issues
for Discussion

Discussion

E-Mail Discussion
Deadline Warning

Delay 6 days from
Announcement

P,

-

Review Status of

Figure 10.38 - An Expanded Sub-Process with a Loop Marker

Business Process Modeling Notation, v1.2

119

10.2.1.7 Sequence Flow Looping

Loops can also be created by connecting a Sequence Flow to an “upstream” object. An object is considered to be
upstream if that object has an outgoing Sequence Flow that leads to a series of other Sequence Flow, the last of which
turns out to be an incoming Sequence Flow to the original object. That is, that object produces a Token and that Token
traverses a set of Sequence Flow until the Token reaches the same object again. Sequence Flow looping is the same as
Workflow Pattern #16 -- Arbitrary Cycle!® (see Figure 10.24).

a 3

> B E

2
L A 1—» c D S F G

Defauit

Figure 10.39 - Workflow Pattern #16 -- Arbitrary Cycle

Usually these connections follow a Decision so that the loop is not infinite (see Figure 10.40). If the Sequence Flow goes
directly from a Decision to an upstream object, this is an “until” loop. The set of looped activities will occur until a

certain condition is true.
Test Product

Yesp Package Product

Configure Product

No

Figure 10.40 - An Until Loop

A while loop is created by making the decision first and then performing the repeating activities or moving on in the
Process (see Figure 10.41). The set of looped activities may not occur or may occur many times.

13. http://tmitwww.tm.tue.nl/research/patterns/arbitrary _cycle.htm

120 Business Process Modeling Notation, v1.2

Yes Fix Errors Test Fixes

No Package Product

Figure 10.41 - A While Loop

10.2.1.8 Sequence Flow Jumping (Off-Page Connectors and Go To Objects)

Since process models often extend beyond the length of one printed page, there is often a concern about showing how
Sequence Flow connections extend across the page breaks. One solution that is often employed is the use of Off-Page
connectors to show where one page leaves off and the other begins. BPMN provides Intermediate Events of type Link for
use as Off-Page connectors (see Figure 10.42--Note that the figure shows two different printed pages, not two Pools in
one diagram). A pair of Link Intermediate Events is used. One of the pair is shown at the end of one page. This Event is
named and has an incoming Sequence Flow and no outgoing Sequence Flow. The second Link Event is at the beginning
of the next page, shares the same name, and has an outgoing Sequence Flow and no incoming Sequence Flow.

Business Process Modeling Notation, v1.2 121

Request Flights
within Parameters

Prepare and
Send Candidate
Itineraries

Racaive
Confirmation

Travel © N

Order Reques! Rooms

within Parameters

o A

Sand Cancallation
Motice

Page 1

Book Charge)
@ Reservations Buyer Hﬁeﬂd Confirmation

A +]

Page 2

Figure 10.42 - Link Intermediate Event Used as Off-Page Connector

Another way that Link Intermediate Events can be used is as “Go To” objects. Functionally, they would work the same as
for Off-Page Connectors (described above), except that they could be used anywhere in the diagram--on the same page or
across multiple pages. The general ideais that they provide a mechanism for reducing the length of Sequence Flow lines.
Some modelers may consider long lines as being hard to follow or trace. Go To Objects can be used to avoid very long
Sequence Flow (see Figure 10.43 and Figure 10.44). Both diagrams will behave equivalently. For Figure 10.44, if the
“Order Rejected” path is taken from the Decision, then the Token traversing the Sequence Flow would reach the source
Link Event and then “jump” to the target Link Event and continue down the Sequence Flow. The process would continue
as if the Sequence Flow had directly connected the two objects.

122 Business Process Modeling Notation, v1.2

Order rejected
Requested

Order Ship Order

Receive

Order Fill Order Close Order .
Request
Send Make Accept
Invoice Payment Payment
: E A
Invoice

Figure 10.43 - Process with Long Sequence Flow

To Close To Close

Requested

Order Ship Order

Receive

Order Close Order
Request
Send Make Accept
Invoice Payment Payment
a £ A
Invoice

Figure 10.44 - Process with Link Intermediate Events Used as Go To Objects

Some methodologies prefer that all Sequence Flow only move in one direction; that is, forward in time. These

methodol ogies do not allow Sequence Flow to connect directly to upstream objects. Some consistency in modeling can be
gained by such a methodology, but situations that require looping become a challenge. Link Intermediate Events can be
used to make upstream connections and create loops without violating the Sequence Flow direction restriction (see Figure
10.45).

Business Process Modeling Notation, v1.2 123

Corfigure Product Test Praduct Yesps Package Product

S *—@

Reconfigura Reconfigure

Figure 10.45 - Link Intermediate Event Used for Looping

10.2.1.9 Passing Flow to and from Sub-Processes

This section reviews how flow will be passed between a parent Process and any of its Sub-Processes. The flow (e.g., a
Token) will start at the parent Process and then move to the Sub-Process and then will move back to the parent process
(see Figure 10.46). Most of the time the flow will reach a Sub-Process, get transferred to the Start Event of the Sub-
Process, traverse the Sequence Flow of the Sub-Process, reach the End Event of the Sub-Process, and, finally, get
transferred back to the parent Process to continue down the outgoing Sequence Flow of the Sub-Process object. If the
Sub-Process contains parallel Flow, then all the Flow must complete before a Token is transferred back to the parent
Process. This functionality treats the Sub-Process as a self-contained “box” of activities.

Check Credit

Include History of
Transactions

Include Standard
Text

Yes

Recieve Request Continue Order...

Approve?

Receive Credit
Report

Figure 10.46 - Example of Sub-Process with Start and End Events Inside
To make the flow between levels of a Process more obvious, a modeler has the option of placing the Start Event and the

End Event on the boundary of the Sub-Process and connect the Sequence Flow from the Parent Process objects to/from
these Events (see Figure 10.47).

124 Business Process Modeling Notation, v1.2

Check Credit

Include History of

No Transactions

Include Standard
Text

Receive Credit
Report

Approve?

Recieve Request Continue Order...

Figure 10.47 - Example of Sub-Process with Start and End Events on Boundary

10.2.1.10 Controlling Flow Across Processes

There may be situations within a Process where the flow is affected by or dependent on the activity that occurs in another
Process. These events or conditions can be referred to as milestones. The process model must be able to identify and react
to the milestone. That is, the continuation of a Process may be triggered by Signal Events, which pass the flow between
processes (see Figure 10.48). The type of Workflow Pattern called a Milestone*.

B Completed

B Completed

Figure 10.48 - Signal Events Used to Synchronize Behavior Across Processes

10.2.1.11 Avoiding lllegal Models and Unexpected Behavior

BPMN, being a graph-structured Diagram, rather than having a block-structure like BPEL4AWS, provides a great
flexibility for depicting complex process behavior in afairly compact form. However, the free-form nature of BPMN can
create modeling situations that cannot be executed or will behave in a manner that is not expected by the modeler. These
types of modeling problems can occur because there is not atight relationship between forks and joins or splits and
merges. A block structure provides these tight relationships, but a graph-structure allows these flow control mechanisms

14. http://tmitwww.tm.tue.nl/research/patterns/milestone.htm

Business Process Modeling Notation, v1.2 125

to be mixed and matched at the discretion of the modeler. Some combinations of these control elements will create
Processes that cannot be executed or will create behavior that was not intended by the modeler. The situation where
alternative paths cross the implicit boundary of a group of parallel paths can cause an invalid model.

Figure 10.49 shows such a model. Task “D” is an activity that has two incoming Sequence Flow; one from a forked path
(after a split path) and one from a split path. This can create a problem at the Parallel Gateway that precedes Task “E,”
which also has multiple incoming Sequence Flow. The Sequence Flow from Task “B” is crossing the implicit boundary of
the fork created after Task “A.” As aresult, if the “Yes’ Sequence Flow is taken from the Decision in the Diagram
(Variation 1), then Task “E” can expect two Tokens to arrive—one from Task “C” and one from Task “D.” However, if
the “No” Sequence Flow is taken from the Decision (Variation 2), the Parallel Gateway will receive only one Token—one
from Task “D.” Since the Gateway expects two Tokens, the Process will be dead-locked at that position.

O~ -

No

Figure 10.49 - Potentially a dead-locked model

Another type of problem occurs with looping back to upstream activities. If the loop Decision is made within the implicit
boundaries of a set of parallel paths, then the behavior of the loop becomes ambiguous (see Figure 10.50), since it is
unclear whether Task “E” was intended to be repeated based on the loop or what would happen if Task “E” was still
active when the loop reached that Task again.

126 Business Process Modeling Notation, v1.2

) 0

E F

—— | N —
@.[AHBHC

C—) E—

D YesG

default

Figure 10.50 - Improper Looping

The use of Link Events can also create unexpected behavior. In general, Link Events not used for off-page connectors
should be considered an advanced modeling technique and the modeler should be careful to understand the resultant
behavior and flow of Tokens.

In general, the analysis of how Tokens will flow through the model will help find models that cannot be executed
properly. This Token flow analysis will be used to create some of the mappings to BPEL4WS. Since BPEL4AWS is
properly executable, if the Token flow analysis cannot create a valid BPEL4WS process, then the model is not structured
correctly.

10.2.2 Exception Flow

Exception Flow occurs outside the Normal Flow of the Process and is based upon an event (an Intermediate Event) that
occurs during the performance of the Process. While Intermediate Events can be included in the Normal Flow to set
delays or breaks to wait for a message, when they are attached to the boundary of an activity, either a Task or a Sub-
Process (see Figure 10.51), they create Exception Flow.

Moderate E-mail
Discussion

7 Days Review Status of
Discussion

Figure 10.51 - A Task with Exception Flow (Interrupts Event Context)

By doing this, the modeler is creating an Event Context. The Event Context will respond to specific Triggers to interrupt
the activity and redirect the flow through the Intermediate Event. The Event Context will only respond if it is active
(running) at the time of the Trigger. If the activity has completed, then the Trigger may occur with no response. The
source of the Trigger may be external to the Process execution, such as a message or an application error, or the Trigger
may be caused by a “throw” Intermediate Event from any other active location within the Process. An exception to thisis
the Error event, which will only respond to Error triggers generated within the activity or in a subprocess of that activity.

Business Process Modeling Notation, v1.2 127

If there are a group of Tasks that the modeler wants to include in an Event Context, then a Sub-Process can be added to
encompass the Tasks and to handle any events by having them attached to its boundary (see Figure 10.52).

Send “No
Suppliers”

Repeat for Each Supplier

Yes——p Send RFQ H Receive Quote H Add Quote

) O

\\(/ Time Limit Exceeded

Figure 10.52 - A Sub-Process with Exception Flow (Interrupts Event Context)

Find Optimal
Quote

A Message Event occurs when a message, with the exact identity as specified in the Intermediate Event, is received by the
Process. An Error Event occurs when the Process detects an Error. If an Error Code is specified in the Intermediate Event,
then the code of the detected Error must match for the Event Context to respond. If the Intermediate Event does not
specify an Error Code, then any Error will trigger a response from the Event Context .If this event does not occur while
the Event Context is ready, then the Process will continue through the Normal Flow as defined through the Sequence
Flow.

10.2.3 Ad Hoc

An Ad Hoc Process is a group of activities that have no pre-definable sequence relationships. A set of activities can be
defined for the Process, but the sequence and number of performances for the activities is completely determined by the
performers of the activities and cannot be defined beforehand.

A Sub-Process is marked as being an Ad Hoc with a “tilde” symbol placed at the bottom center of the Sub-Process shape
(see Figure 10.53 and Figure 10.54). Activities within the Process are disconnected from each other. During execution of
the Process, any one or more of the activities may be active and they can be performed in almost any order or frequency.

Name
~[+]

Figure 10.53 - A Collapsed Ad Hoc Sub-Process

128 Business Process Modeling Notation, v1.2

Name

) O
)
))

~ J

.

Figure 10.54 - An Expanded Ad Hoc Sub-Process

The performers determine when activities will start, when they will end, what the next activity will be, and so on.
Examples of the types of Processes that are Ad Hoc include computer code development (at a low level), sales support,
and writing a book chapter. If we look at the details of writing a book chapter, we could see that the activities within this
Process include: researching the topic, writing text, editing text, generating graphics, including graphics in the text,
organizing references, etc. (see Figure 10.55). There may be some dependencies between Tasks in this Process, such as
writing text before editing text, but there is not necessarily any correlation between an instance of writing text to an
instance of editing text. Editing may occur infrequently and based on the text of many instances of the writing text Task.

(A
Writing a Book Chapter
researching - .
the topic writing text editing text
eneratin including organizin
9 ting graphics in g 9
graphics text references
N ~ J

Figure 10.55 - An Ad Hoc Process for Writing a Book Chapter

It isachallenge for aBPM engine to monitor the status of Ad Hoc Processes, usually these kind of processes are handled
through groupware applications (such as e-mail), but BPMN allows modeling of Processes that are not necessarily
executable and should provide the mechanisms for those BPM engines that can follow an Ad Hoc Process. Given this, at
some point, the Process will have completed and this can be determined by evaluating a Completion Condition that
evaluates Process attributes that will have been updated by an activity in the Process.

10.3 Compensation Association

Some activities produce complex effects or specific outputs. If the outcome is determined to be undesirable by some
specified criteria (such as an order being cancelled), then it will be necessary to “undo” the activities. There are three
ways this can be done:

Business Process Modeling Notation, v1.2 129

» Restoring of acopy of theinitial values for data, thereby overwriting any changes.
« Doing nothing (if nothing has changed because the changes have been set aside until a confirmation).

« Invoking activities that undo the effects--also known as compensation.

An activity that might require compensation could be, for example, one that charges a buyer for some service and debits
acredit card to do so. These types of activities usually need a separate activity to counter the effects of the initial activity.
Often, arecord of both activities is required, so this is another reason that the activity is not “undone.” An Intermediate
Event of type Compensation is attached to the boundary of an activity to indicate that compensation may be necessary for
that activity.

One of the three mechanisms for “undo” activities, Compensation, requires specific notation and is a special circumstance
that occurs outside the Normal Flow of the Process. For this reason, the Compensation Intermediate Event does not have
an outgoing Sequence Flow, but instead has an outgoing directed Association (see Figure 10.56).

Charge
Buyer

Figure 10.56 - A Task with an Associated Compensation Activity

The target of this Association is the activity that will compensate for the work done in the source activity, and will be
referred to as the Compensation Activity. The Compensation Activity is special in that it does not follow the normal
Sequence Flow rules--as mentioned, it is outside the Normal Flow of the Process. This activity cannot have any incoming
or outgoing Sequence Flow. The Compensation marker (as is in the Compensation Intermediate Event) will be displayed
in the bottom center of the Activity to show this status of the activity (see the “Credit Buyer” Task in Figure 10.56). Note
that there can be only one target activity for compensation. There cannot be a sequence of activities shown. If the
compensation does require more than one activity, then these activities must be put inside a single Sub-Process that is the
target of the Association. The Sub-Process can be collapsed or expanded. If the Sub-Process is expanded, then only the
Sub-Process itself requires the Compensation marker--the activities inside the Sub-Process do not require this marker.

Only activities that have been completed can be compensated. The compensation of an activity can be triggered in two
ways.

» Theactivity isinside a Transaction Sub-Process that is cancelled (see Figure 10.57). In this situation, the whole Sub-
Process will be “rewound” or rolled back--the Process flow will go backwards and any activity that requires
compensation will be compensated. Thisiswhy the Compensation marker for Eventslookslike a“rewind” symbol for
atape player. After the compensation has been completed, the Process will continue its rollback.

» A downstream Intermediate or End Event of type Compensation “throws’ acompensation identifier that is* caught” by
the Intermediate Event attached to the boundary of the activity. The compensation is thrown in two ways:

 The Event can specifically identify an activity that requires compensation and only that activity will be
compensated.

130 Business Process Modeling Notation, v1.2

« The Event can broadcast the need for the compensation and then all completed activities that have a Compensation
Intermediate Event attached to their boundaries will be compensated. The compensation appliesto all activities
that have fully completed within the Process I nstance (which includes all levels of the Process). The compensation
will occur in the reverse order of the original performances on the triggered activities.

Bookings
Book Flight
_____________ Cancel
Flight
» <K Successful | Charge
C) Bookings | Buyer
Book Hotel
: .| Send Hotel
Cancellation
<K
L B———
r Failed » Unavailability

Bookings

Handle
through
Customer
Service

Figure 10.57 - Compensation Shown in the context of a Transaction

Business Process Modeling Notation, v1.2

131

132 Business Process Modeling Notation, v1.2

11 BPMN by Example

This section will provide an example of a business process modeled with BPMN. The process that will be described is a
process used to help develop this notation. It is a process for resolving issues through e-mail votes (see Figure 11.1). This
Process is small, but fairly complex and will provide examples for many of the features of BPMN. There are some
unusual features of this business process, such as infinite loops. Although not atypical process, it will help illustrate that
BPMN can handle simple and unusual business processes and still be easily understandable for readers of the Diagram.
The sections below will isolate segments of the Process and highlight the modeling features as the workings of the
Process is described.

Business Process Modeling Notation, v1.2 133

siaquapy Bunop,

mw.
m:_EH, yhm

HEQEOCDJCEM aJoN

E_P
SI8qUWaL .ﬂ
Bunon o) Buiiem _
Wi 3108,
8aunNoUUB-aY _

@jgnojesey pue
staqualy Bunop

|
|
|
_ I
_
!

s)nsay 8jop

T
|
|
|
|
|
|

Uawadunouly juallaaunouuy

|
b |TE
ﬂ_
| |
| |
| |
|
_

LBI0MN
siaquiay
qnou3 pid

810 JO
sinsay Il

ajlg gap uo
s)nsay 1s0d

-3

[A= N
1 puzg _ _
Ny oo Lo tebl
sajop sbueyn aledaud g patul]
o) sABy jeY)
SIFOA 1BN-3 oN
————
.‘I_ sanss|
—— SBI0A PA(I0D saLnaluy UaISsnNasig
SUONN|Og oM : _
0} aonpay
|
18
L anss| malnay
\ S8 A

157
anss| anjaoey

Business Process Modeling Notation, v1.2

Figure 11.1 - E-Mail Voting Process

134

The Process has a point of view that is from the perspective of the manager of the Issues List and the discussion around
this list. From that point of view, the voting members of the working group are considered as external Participants who
will be communicated with by messages (shown as Message Flow).

11.1 The Beginning of the Process

The Process starts with Timer Start Event that is set to trigger the Process every Friday (see Figure 11.2).

®

Start on
Friday

From "Yes"
Alternative of the
"2nd Time?"

.__.[User Activity Decision
To Task:
Receive Review Issue "Announce
Issue List List Issues for
J Vote"
A
: : ‘[Collapsed
: : Sub-Process
........ > >
Issue List Issue Voting List

[0 to 5 Issues]

Figure 11.2 - The Start of the Process

The Issue List Manager will review the list and determine if there are any issues that are ready for going through the
discussion and voting cycle. Then a Decision must be made. If there are no issues ready, then the Process is over for that

week--to be taken up again the following week. If there are issues ready, then the Process will continue with the

discussion cycle. The “Discussion Cycle’ Sub-Process is the first activity after the “Any issues ready?’ Decision and this
Sub-Process has two incoming Sequence Flow, one of which originates from a downstream Decision and is thus part of a
loop. It is one of aset of five complex loops that exist in the Process. The contents of the “Discussion Cycle” Sub-Process
and the activities that follow will be described below.

11.2 The First Sub-Process

Figure 11.3 shows the details of the “Discussion Cycle” as an Expanded Sub-Process.

Business Process Modeling Notation, v1.2

135

Moderate E-mail
Discussion

Review Status
of Discussion

E-Mail
Discussion
Deadline
Delay 6 days from Warning
Announcement

Announce
Issues for
Discussion

Evaluate
Discussion
Progress

Check Calendar
for Conference . . Default

ConCall

Moderate
Conference Call

S . Discussion
Wait until No

Thursday, 9am ConcCall

Figure 11.3 - “Discussion Cycle” Sub-Process Details

The Sub-Process starts with a Task for the Issue List Manager to send an e-mail to the working group that a set of Issues
are now open for discussion through the working group’s message board. Since this Task sends a message to an outside
Participant (the working group members), an outgoing Message Flow is seen from the “Discussion Cycle” Sub-Process to
the “Voting Members” Pool in Figure 11.1. Basically, the working group will be discussing the issues for one week and
proposing additional solutions to the issues. After the first Task, three separate parallel paths are followed, which are
synchronized downstream. This is shown by the three outgoing Sequence Flow for that activity.

The top parallel path in the figure starts with a long-running Task, “Moderate E-mail Discussion,” that has a Timer
Intermediate Event attached to its boundary. Although the “Moderate E-Mail Discussion” Task will never actually be
completed normally in this model, there must be an outgoing Sequence Flow for the Task since Start and End Events are
being used within the Process. This Sequence Flow will merge with the Sequence Flow that comes from the Timer
Intermediate Event. A merging Exclusive Gateway is used in this situation because the next object is a joining Parallel
Gateway (the diamond with the cross in the center) that is used to synchronize the three parallel paths. If the merging
Gateway was not used and both Sequence Flow connected to the joining Gateway, the Process would have been stuck at
the joining Gateway that would wait for a Token to arrive from each of the incoming Sequence Flow.

The middle parallel path of the fork contains an Intermediate Event and a Task. A Timer Intermediate Event used in the
middle of the Process flow (not attached to the boundary of an activity) will cause adelay. Thisdelay is set to 6 days. The
“E-Mail Discussion Deadline Warning” Task will follow. Again, since this Task sends a message to an outside Participant,
an outgoing Message Flow is seen from the “Discussion Cycle” Sub-Process to the “Voting Members’ Pool in Figure
11.1.

The bottom parallel path of the fork contains more than one object, first of which is Task where the issue list manager
checks the calendar to see if there is a conference call this week. The output of the Task will be an update to the variable
“ConCall,” which will be true or false. After the Task, an Exclusive Gateway with its two Gates follows. The Gate for
labeled “default” Flow directly to a merging Exclusive Gateway, for the same reason as in the top parallel path. The Gate

136 Business Process Modeling Notation, v1.2

for the “Yes” Sequence Flow will have a condition that checks the value of the “ConCall” variable (set in the previous
Task) to see if there will be a conference call during the coming week. If so, the Timer Intermediate Event indicates delay,
since all conference calls for the working group start at 9am PDT on Thursdays. The Task for moderating the conference
call follows the delay, which is followed by the merging Gateway.

The merging Gateways in the top and bottom paths and the “E-Mail Discussion Deadline Warning” Task all flow into a
joining Gateway. This Gateway waits for all three paths to complete before the Process Flow to the next Task, “Evaluate
Discussion Progress.” The issue list manager will review the status of the issues and the discussions during the past week
and decide if the discussions are over. The DiscussionOver variable will be set to TRUE or FALSE, depending on this
evaluation. If the variable is set to FALSE, then the whole Sub-Process will be repeated, since it has looping set and the
loop condition will test the DiscussionOver variable.

11.3 The Second Sub-Process

Figure 11.4 shows the next section of the Process, which includes the expanded details of the “Collect Votes” Sub-
Process.

Business Process Modeling Notation, v1.2 137

A Loop:
From Unnamed
Sub-Process,
C (parallel box) Collect Votes

Check Calendar
for Conference
Call

onferenc
Call in Voting
Week?

N No

Moderate
Conference Call
Discussion

Wait until
Thursday, 9am

Calendar

Announce
Issues

Moderate E-mail
Discussion

[E-Mail Vote
¥”] Deadline Warning

A Delay 6 Days

From Sub-Process:
"Discussion Cycle"
Receive Vote H Increment Tally

Vote Tally

 EEEE—
E-Mail Results
of Vote

——
Prepare

Results

A Loop:
From Task:

 EEE—
Post Results

To Decision:
@ "Did Enough
g Members Vote?"

on Web Site
~—

@ "Re-announce Vote with
E warning to voting members”

Figure 11.4 - “Collect Votes” Sub-Process Details

This part of the process starts out with a Task for the issue list manager to send out an e-mail to announce to the working
group, and the voting members in particular, which lets them know that the issues are now ready for voting. Since this
Task sends a message to an outside Participant (the working group members), an outgoing Message Flow is seen from the
“Announce Issues’ Task to the “Voting Members’ Pool in Figure 11.1. This Task is also a target for one of the complex
loops in the Process.

The “Collect Votes’ Sub-Process follows the Task, and is also a target of one of the looping Sequence Flow. This Sub-
Process is basically a set of four parallel paths that extend from the beginning to the end of the Sub-Process.

138 Business Process Modeling Notation, v1.2

The first branch of the fork leads to a Decision that determines whether or not a conference call will occur during the
upcoming week, after the Working Group’s schedule has been checked. Basically, if there was a call last week, then there
will not be a call this week and vice versa. The appropriate variable that was updated in the “Discussion Cycle” Process
will be used again.

The second and third branches of the forks work the same way as the similar activities in the “Discussion Cycle” Sub-
Process, except that the “Moderate E-Mail Discussion” Task does not have a Timer Intermediate Event attached. Thisis
not necessary since the whole Sub-Process is interrupted after 7 days through the Intermediate Event attached to the Sub-
Process boundary. The “E-Mail Vote Deadline Warning” Task sends a message to an outside Participant (the working
group members), thus, an outgoing Message Flow is seen from the “ Collect Votes” Sub-Process to the “Voting Members”
Pool in Figure 11.1.

The fourth branch of the fork is rather unique in that the Diagram uses a loop that does not utilize a Decision. Thus, it is,
asit isintended to be, an infinite loop. The policy of the working group is that voting members can vote more than once
on an issue; that is, they can change their mind as many times as they want throughout the entire week. The first Task in
the loop receives a message from the outside Participant (the working group members), thus, an incoming Message Flow
is seen from the “Voting Members” Pool to the “ Collect Votes” Sub-Process in Figure 11.1. The Timer Intermediate Event
attached to the boundary of the Sub-Process is the mechanism that will end the infinite loop, since all work inside the
Sub-Process will be ended when the time-out is triggered. All the remaining work of the Process is conducted after the
time-out and Flow from the Timer Intermediate Event.

Figure 11.4 shows that there are Two Tasks that follow the time-out. First, a Task will prepare all the voting results, then
a Task will send the results to the voting members. A Document Object, “Issue Votes,” is shown in the Diagram to
illustrate how one might be used, but it will not map to anything in the execution languages. The remaining activities of
the Process will be described in the next section.

11.4 The End of the Process

Figure 11.5 shows the last section of the Process, which includes a complex set of Decisions and loops.

Business Process Modeling Notation, v1.2 139

To Sub-Process: “
"Discussion Cycle" ‘)
B
To Task:

"Announce Issues

for Vote" c
s)

)

Reduce to
Two Solutions
-
No |)
CEE—

E-Mail Voters
that have to
Change Votes
|

2nd)
Time?

From Task:
"E-Mail Results of
Vote"

Members

Reduce number of
Voting Members
and Recalculate

Vote

Deen warned”

Re-announce
Vote with
warning to voting
members

To Sub-Process:
"Collect Votes"

E

Figure 11.5 - The last segment of the E-Mail Voting Process

This segment of the Process continues from where the last segment left off (as described in the section above). It contains
four Decisions that interact with each other and create loops to upstream activities.

The first Decision “Did Enough Members Vote?' is necessary since two-thirds of the voting members are required to
approve any solution to an issue. If less than two-thirds of the voting members cast votes, which sometimes happens, the
issues can’t be resolved. This Decision Flow to another Decision for both of its Alternatives. The “No” Alternative is

140 Business Process Modeling Notation, v1.2

followed by the “Have the Members been Warned?' Decision. If a voting member misses a vote, they are warned. If they
miss a second vote, they lose their status as a voting member and the voting percentages are recal culate through a Task
(“Reduce number of Voting Members and Recal culate Vote”). If they haven't yet been warned, then awarning is sent and
the voting week is repeated.

If all issues are resolved, then the Process is done. If not, then another Decision is required. The voting is given two
chances before it goes back to another cycle of discussion. The first time will see a reduction of the number of solutions
to the two most popular based on the vote (more if there are ties). Some voting members will have to change their votes
just because their solution is no longer valid. These two activities are placed in a Sub-Process to show how a Sub-Process
without Start and End Events can be used to create a simple set of parallel activities. Informally, thisis called a “parallél
box.” It is not a special abject, but another use of Sub-Processes. For simple situations, it can be used to show a set of
parallel activities without the extra clutter of alot of Sequence Flow. In actuality, these two Tasks cannot actually be done
in paralel, but they are modeled this way to highlight the optional use of Start and End Events.

After the parallel box, the flow loops back to the “Collect Votes” Sub-Process. If there already has been two cycles of
voting, then the process Flow back to the “Decision Cycle” Sub-Process.

Business Process Modeling Notation, v1.2 141

142 Business Process Modeling Notation, v1.2

Annex A: Mapping to BPEL4AWS

(informative)

This annex provides information and examples about how BPMN will map to BPEL4WS 1.1. This annex will cover a
mapping to BPEL4WS that are derived by analyzing the BPMN objects and the rel ationships between these objects as
described in the previous chapters. Note that there are known issues with the mapping as specified. Fixes to these issues will
be incorporated in alater revision of the specification.

A.1 Business Process Diagram Mappings

A Business Process Diagram can be made up of a set of (semi-) independent components, which are shown as separate Pools.
Thus, there is not a specific mapping to the diagram itself. Rather, there are separate mappings to each of the Pools that arein
the diagram. That is, each Pool in the diagram, if it isa“white box” that contains process elements, will map to an individual
BPEL4WS process. However, in the course of mapping the contents of the Process, there may be one or more derived
processes necessary to handle complex behavior, such as looping. The attributes of “black box” Poolswill also be used in
determining specific BPEL4WS elements, such as partnerLink.

The following table displays a set of mappings for the attributes of a Business Process Diagram that can be mapped to
BPEL4WS.

Table A.1 - Business Process Diagram Mappings to BPEL4AWS

Business Process Diagram | Mapping to BPEL4WS

Id, Name, Version, These Elements do not map to any BPEL4AWS elements or attributes.
Author, Language,
CreationDate,
ModificationDate, Pool,
and Documentation

ExpressionLanguage This attribute will be used for all the Processes that are within the Business Process
attribute Diagram. The attribute will map to the expressionLanguage attribute of each BPEL4WS
process.

QueryLanguage attribute | This attribute will be used for all the Processes that are within the Business Process
Diagram. The attribute will map to the queryLanguage attribute of each BPEL4WS
process.

Business Process Modeling Notation, v1.2 143

A.2 Business Process Mappings

There can be one or more Business Processes within a Business Process Diagram, each within a separate Pool. The following
table displays a set of mappings from attributes of a Process to BPEL4WS elements (the mappings for the objects contained
within a Process, its contents, are mapped separately and these mappings can be found in the sections that follow).

Table A.2 - Business Process Mappings to BPEL4AWS

Process

Mapping to BPEL4WS

ProcessType

If the Process is to be used to create a BPEL4WS document, then the attribute
MUST be set to Private or Abstract. If the attribute is set to Private, then the
abstractProcess attribute of the BPEL4WS process MUST be set to “no.” If the
attribute is set to Abstract, then the abstractProcess attribute of the BPEL4AWS
process MUST be set to “yes.”

Id, Categories, and
Documentation

These Elements do not map to any BPEL4WS elements or attributes.

Name

The Name attribute of the Process SHALL map to name attribute of the appropriate
process. The extra spaces and non-alphanumeric characters MUST be stripped from
the Name to fit with the XML specification of the name attribute. Note that there
may be two or more elements with the same name after the BPMN name has been
stripped.

GraphicalElements

Thisisalist of all the graphical elements contained within the Process. Each of
these elements will have their mapping, as defined in the sections below.

Properties

The set of Properties of a Process, as a whole, will map to a BPEL4WS variable.
The variable element will be structured as follows:
<variable name="[Process.Name] Data"

messageType=" [Process.Name] ProcessDataMessage" />
The individual Properties will map to the parts of a WSDL message. The message
element will be structured as follows:

<message name:"[Process.Name]_ProcessDataMessage" >
<part name="[Property.Name]"
type="xsd: [Property.Typel" />
</message>

There will be as many parts to the message as there are Properties in the input
group.

Correlation = True

This only applies to Properties of Type = “Set.”

The Name of the Property will map to the name of a correlationSet. The Name of
each child Property for the Set will be added to the list of properties of the
correlationSet.

Adhoc Ad Hoc Processes are not executable. Thus, this attribute MUST be set to False if
the Process is to be mapped to BPEL4AWS.
AdHocCompletionCondition This attribute only applies to Ad Hoc Processes. Thus, it will not be mapped to
BPEL4WS.
144 Business Process Modeling Notation, v1.2

Table A.2 - Business Process Mappings to BPEL4AWS
Process Mapping to BPEL4AWS

With Assignments Expression This will map to a BPEL4WS assign. Refer to the section entitled “Assignment
Mapping” on page 193 for more details about the mappings associated with the
assign element.

AssignTime = Start A BPEL4WS sequence will be created and the assign will follow the instantiation of
the process (through a receive or a pick).

AssignTime = End A BPELAWS sequence will be created and the assign will follow.

SuppressJoinFailure This maps to the BPEL4WS process attribute suppressJoinFailure,

EnablelnstanceCompensation | This maps to the BPEL4WS process attribute enablel nstanceCompensation.

u The BPEL4WS process attributes targetNamespace and xmins MUST be provided by the modeling tool that
generates the mapping to BPEL4WS.

A.3 Common Flow Object Mappings

The following table displays a set of mappings for the attributes common to Flow Objects (Events, Activities, and Gateways):
Table A.3 - Common Flow Object Attribute Mappings to BPEL4AWS

Objects Mapping to BPEL4WS

Id, Pool, Lanes, These Elements do not map to any BPEL4WS elements or attributes.

Categories, and

Documentation

Name The Name attribute of the object SHALL map to name attribute of the appropriate derived

BPEL4WS element (as per mappings described in the sections below). The extra spaces
and non-alphanumeric characters MUST be stripped from the Name to fit with the XML
specification of the name attribute. Note that there may be two or more elements with the
same name after the BPMN name has been stripped.

Assighments Each Assignments Expression will map to a BPEL4WS assign activity. Refer to the
section entitled “Assignment Mapping” on page 193 for more details about the mappings
associated with the assign element.

A.4 Events

A.4.1 Start Event Mappings

The following table displays a set of mappings from the variations of a Start Event to BPEL4WS elements. These mappings
extend the mappings common to objects--see Section A.3, “ Common Flow Object Mappings,” on page 145.

Table A.4 - Start Event Mappings to BPEL4W
Sart Event M apping to BPEL4WS

EventType = Start and Trigger | The mapping to BPEL4WS is specific to the Trigger setting. These mappings are
defined in the rows below.

Business Process Modeling Notation, v1.2 145

Table A.4 - Start Event Mappings to BPEL4W

Start Event

Mapping to BPEL4WS

None

There is no BPEL4WS element that a Start Event will map to with a Trigger that is
None. The object(s) that are the Target(s) of Sequence Flow that originate from the
Start Event will determine the first BPELAWS element of the Process.

Note that a valid BPEL4WS process must begin with areceive or a pick activity that
has a createlnstance set to “yes.” The receive or pick will likely be placed within a
seguence or a flow.

Message

This will map to the receive element. The createlnstance attribute of the receive
element will be set to “yes.”

Message

The Message attribute maps to the variable attribute of the receive activity. See
“Messages’ on page 193 for more information about how a BPMN Message maps to
BPEL4WS and WSDL.

Implementation = Web
Service

The Implementation attribute MUST be a Web service or MUST be converted to a
Web Service for mapping to BPEL4WS. The Web Service Attributes are mapped as
follows:

e The Participant attribute is mapped to the partnerLink attribute of the
BPEL4WS activity.

< The Interface attribute is mapped to the portType attribute of the BPEL4AWS
activity.

» The Operation attribute is mapped to the operation attribute of the BPEL4WS
activity.

Timer

This will map to the receive element. The createlnstance attribute of the receive
element will be set to “yes.” The remaining attributes of the receive will be mapped
as shown for the Message Start Event (see above).

The functionality of the timing as defined in the Start Event must be implemented in
a separate process that will start itself, then use await element for the defined time,
and then use an invoke to send a message that will be received by the above receive
element. A specific Message and Web service implementation must be provided so
that the mappings to receive element can be completed.

Conditional

This will map to the receive element. The createlnstance attribute of the receive
element will be set to “yes.” The remaining attributes of the receive will be mapped
the same way as for the Message Start Event (see above).

Note: The Message is expected to arrive from the application that tracks and triggers
Business Rules.

Multiple

Thiswill map to a BPEL4AWS pick - it will be required to process the messages with
a separate onMessage for each defined Trigger. The createlnstance attribute of the
pick element will be set to “yes.” This means that a single instance of the process will
be instantiated when the first message received through the pick onMessage is
triggered. The onMessage mappings are the same as that of a receive and as defined
for the Message Start Event (see above).

146

Business Process Modeling Notation, v1.2

Table A.4 - Start Event Mappings to BPEL4W

Start Event

Mapping to BPEL4WS

With Assignments Expression | Each Assignments Expression will map to a BPEL4WS assign that will follow the

receive. See Section A.12.2, “Assignment Mapping,” on page 193 for more details
about the mappings associated with the assign element.

A.4.2 End Event Mappings

The following table displays a set of mappings from the variations of an End Event to BPEL4WS elements (these mappings
extend the mappings common to objects--see Section A.3, “ Common Flow Object Mappings,” on page 145).

Table A.5 - End Event Mappings to BPEL4WS

End Event

Mapping to BPEL4WS

EventType = End and
Result

The mapping to BPEL4WS is specific to the Result setting. These mappings are defined in
the rows below.

None

There is no BPEL4WS element that an End Event will map to with a Result that is None.
However, it marks the end of a path within the Process and will be used to define the
boundaries of complex BPEL4WS elements. The object(s) that are the Source(s) of
Sequence Flow that Target the End Event will determine the final BPEL4WS elements of
the Process.

Message

Thiswill map to aBPEL4AWS reply or an invoke. The appropriate BPEL4AWS activity will
be determined by the implementation defined for the Event. That is, the portType and
operation of the Message will be used to check to see if an upstream Message Event has
the same portType and operation. If these two attributes are matched, then the Event will
map to areply; if not, the Event will map to an invoke.

Message

The Message attribute maps to the variable attribute of the reply or the outputVariable of
the invoke. See “Messages’ on page 193 for more information about how a BPMN
Message maps to BPEL4WS and WSDL.

Implementation = Web
Service

The Implementation attribute MUST be a Web service or MUST be converted to a Web
Service for mapping to BPEL4AWS. The Web Service Attributes are mapped as follows:

e The Participant attribute is mapped to the partnerLink attribute of the BPEL4WS
activity.
« Thelnterface attribute is mapped to the portType attribute of the BPEL4AWS activity.

* The Operation attribute is mapped to the operation attribute of the BPEL4WS
activity.

Error This will map to a throw element. The ErrorCode attribute of the Event will map to the
faultName attribute of the throw.

Cancel The mapping of the Cancel Intermediate Event to BPEL4WS is an open issue.

Compensation Thiswill map to a compensate element. The Name of the activity referenced by the
Compensation Event will map to the scope attribute of the compensate element.

Terminate Thiswill map to the terminate element.

Business Process Modeling Notation, v1.2 147

Table A.5 - End Event Mappings to BPEL4WS

End Event

Mapping to BPEL4WS

Multiple

Thiswill map to a combination of invoke, throw, fault, and compensation elements as they
are defined above.

With Assignments
Expression

Thiswill map to a BPEL4WS assign that will precede any other mappings required by the
Event. See Section A.12.2, “Assignment Mapping,” on page 193 for more details about
the mappings associated with the assign element.

A.4.2.1 Intermediate Event Mappings

The following table displays a set of mappings from the variations of an Intermediate Event to BPEL4WS elements (these
mappings extend the mappings common to objects--see Section A.3, “Common Flow Object Mappings,” on page 145).

Table A.6 - Intermediate Event Mappings to BPEL4AWS

Intermediate Event

Mapping to BPEL4WS

EventType = Intermediate
and Trigger

The mapping to BPEL4AWS is specific to the Trigger setting. These mappings are defined
in the sections below.

With Assignments
Expression

Thiswill map to a BPEL4WS assign. See Section A.12.2, “Assignment Mapping,” on
page 193 for more details about the mappings associated with the assign element.

A.4.2.2 None Intermediate Events

The mappings for None Intermediate Events are described in the following table. These mappings extend the mappings
common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

Table A.7 - None Intermediate Mappings to BPEL4AWS

Intermediate Event

Mapping to BPEL4WS

Trigger = None

There is no BPEL4WS element that an Intermediate Event will map to with a Trigger that
is None. These types of Intermediate Events are often used for documentation purposes to
show a specific state of the Process.

A.4.2.3 Message Intermediate Events

The mappings for Message | ntermediate Events are described in the following table. These mappings extend the mappings
common to Intermediate Events--refer to the section entitled “ Intermediate Event Mappings’ on page 148.

Table A.8 - Message Intermediate Mappings to BPEL4WS

Intermediate Event

Mapping to BPEL4WS

Trigger = Message

This mapping is defined in the next five (5) rows.

Within the Normal Flow

If the Participant defined in the To attribute of the Message is the same Participant as that
of the Process that contains the Event, then this will map to a receive. The createl nstance
attribute of the receive element will be set to “no.”

If the Participant defined in the From attribute of the Message is the same Participant as
that of the Process that contains the Event, then this will map to a (one-way) invoke.

148

Business Process Modeling Notation, v1.2

Table A.8 - Message Intermediate Mappings to BPEL4WS

Intermediate Event

Mapping to BPEL4WS

Message

The Message attribute maps to the variable attribute of the reply or the outputVariable of
the invoke. See “Messages’ on page 193 for more information about how a BPMN
Message maps to BPEL4WS and WSDL.

Implementation = Web
Service

The Implementation attribute MUST be a Web service or MUST be converted to a Web
Service for mapping to BPEL4AWS. The Web Service Attributes are mapped as follows:

« The Participant attribute is mapped to the partnerLink attribute of the BPEL4AWS
activity.
« Thelnterface attribute is mapped to the portType attribute of the BPEL4AWS activity.

e The Operation attribute is mapped to the operation attribute of the BPEL4WS
activity.

Without an incoming
Sequence Flow (but not
attached to an Activity
Boundary)

The Participant defined in the To attribute of the Message MUST be the same Participant
as that of the Process that contains the Event.

The process will be given a scope (if it doesn’t already have one).

An eventHandlers element will be defined for the scope.

An onMessage el ement will be added to the eventHandlers element.

Message

The Message attribute maps to the variable attribute of the onMessage. See “Messages”
on page 193 for more information about how a BPMN M essage maps to BPEL4AWS and
WSDL.

Implementation = Web
Service

The Implementation attribute MUST be a Web service or MUST be converted to a Web
Service for mapping to BPEL4AWS. The Web Service Attributes are mapped as follows:

e The Participant attribute is mapped to the partnerLink attribute of the onMessage.
« The Interface attribute is mapped to the portType attribute of the onMessage.
« The Operation attribute is mapped to the operation attribute of the onMessage.

Attached to an Activity
Boundary

The mappings of the activity (to which the Event is attached) will be placed within a
scope.

A faultHandlers element will be defined for the scope.

A catch element will be added to the faultHandlers element with “<message name>_Exit”
as the faultName attribute.

An eventHandlers element will be defined for the scope.

The Event will map to an onMessage element within the eventHandlers. The mapping to
the onMessage attributes is the same as described for the receive above.

The activity for the onMessage will be a throw with “<message name>_Exit” as the
faultName attribute.

Used in an Event-Based
Decision

This will map to an onMessage within a pick. The mapping to the onMessage attributes is
the same as described for the receive above.

Business Process Modeling Notation, v1.2

149

A.4.2.4 Timer Intermediate Events

The mappings for Timer Intermediate Events are described in the following table. These mappings extend the mappings
common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

Table A.9 - Timer Intermediate Mappings to BPEL4WS

Intermediate Event

Mapping to BPEL4WS

Trigger = Timer

This mapping is defined in the next three (3) rows.

Within the Normal Flow

Thiswill map to a wait.
The TimeDate attribute maps to the until attribute of the wait.
The TimeCycle attribute maps to the for attribute of the wait.

Without an incoming
Sequence Flow (but not
attached to an Activity
Boundary)

The process will be given a scope (if it doesn’t already have one).
A eventHandlers element will be defined for the scope.

An onAlarm element will be added to the eventHandlers element.
The TimeDate attribute maps to the until attribute of the onAlarm.
The TimeCycle attribute maps to the for attribute of the onAlarm.

Attached to an Activity
Boundary

The mappings of the activity (to which the Event is attached) will be placed within a
scope.

A faultHandlers element will be defined for the scope.

A catch element will be added to the faultHandlers el ement with “<Event name>_Exit” as
the faultName attribute.

An eventHandlers element will be defined for the scope.

The Event will map to an onAlarm element within the eventHandlers.

The TimeDate attribute maps to the until attribute of the onAlarm.

The TimeCycle attribute maps to the for attribute of the onAlarm.

The activity for the onAlarm will be a throw with “<message name>_Exit” as the
faultName attribute.

Used in an Event-Based
Decision

This will map to an onAlarm within a pick.
The TimeDate attribute maps to the until attribute of the onAlarm.
The TimeCycle attribute maps to the for attribute of the onAlarm.

A.4.2.5 Error Intermediate Events

The mappings for Error Intermediate Events are described in the following table. These mappings extend the mappings
common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

Table A.10 - Error Intermediate Mappings to BPEL4AWS

Intermediate Event

Mapping to BPEL4WS

Trigger = Error

This mapping is defined in the next two (2) rows.

Within the Normal Flow

This will map to a throw element.

150

Business Process Modeling Notation, v1.2

Table A.10 - Error Intermediate Mappings to BPEL4AWS
Intermediate Event Mapping to BPEL4WS

Attached to an Activity The mappings of the activity (to which the Event is attached) will be placed within a
Boundary scope.

This Event will map to a catch element within a scope.

If the Error Event does not have an ErrorCode, then a catchAll element will be added to
the faultHandlers element.

If the Error Event does have an ErrorCode, then a catch element will be added to the
faultHandlers element with the ErrorCode mapping to the faultName attribute.

Cancel Intermediate Events

The mappings for Cancel Intermediate Events are described in the following table. These mappings extend the mappings
common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

Table A.11 - Cancel Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS

Trigger = Cancel The mapping of the Cancel Intermediate Event to BPEL4WS is an open issue.

A.4.2.6 Conditional Intermediate Events

The mappings for Conditional Intermediate Events are described in the following table. These mappings extend the mappings
common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

Table A.12 - Conditional Intermediate Mappings to BPEL4AWS
Intermediate Event Mapping to BPEL4WS

Trigger = Conditional This mapping is defined in the next two (2) rows.

Within the Normal Flow | Thiswill map to the receive element. The createl nstance attribute of the receive element
will be set to “no.” The remaining attributes of the receive will be mapped as shown for
the Message Start Event (see above).

Without an incoming The Participant defined in the To attribute of the Message MUST be the same Participant
Sequence Flow (but not | asthat of the Process that contains the Event.

attached to an Activity The process will be given a scope (if it doesn’t already have one).

Boundary) An eventHandlers element will be defined for the scope.

The Event will map to an onMessage element within the eventHandlers. The mapping to
the onMessage attributes is the same as described for the receive for the Message Event
above.

Note: The Message is expected to arrive from the application that tracks and triggers
Business Rules.

Business Process Modeling Notation, v1.2 151

Table A.12 - Conditional Intermediate Mappings to BPEL4AWS

Intermediate Event

Mapping to BPEL4WS

Attached to an Activity
Boundary

The mappings of the activity (to which the Event is attached) will be placed within a
scope.

A faultHandlers element will be defined for the scope.

A catch element will be added to the faultHandlers element with “<message name>_Exit”
as the faultName attribute.

An eventHandlers element will be defined for the scope.

The Event will map to an onMessage element within the eventHandlers. The mapping to
the onMessage attributes is the same as described for the receive for the Message Event
above.

Note: The Message is expected to arrive from the application that tracks and triggers
Business Rules.

The activity for the onMessage will be a throw with “<message name>_Exit” as the
faultName attribute.

Used in an Event-Based
Decision

This will map to an onMessage element within a pick. The mapping to the onMessage
attributes is the same as described for the receive for the Message Event above.

A.4.2.7 Compensation Intermediate Events

The mappings for Compensation Intermediate Events are described in the following table. These mappings extend the
mappings common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

Table A.13 - Compensation Intermediate Mappings to BPEL4WS

Intermediate Event

Mapping to BPEL4WS

Trigger = Compensation

This mapping is defined in the next two (2) rows.

Within the Normal Flow

Thiswill map to a compensate element. The Name of the activity referenced by the
Compensation Event will map to the scope attribute of the compensate element.

Attached to an Activity
Boundary

The activity (to which the Event is attached) will be placed within a scope. This Event
maps to a compensationHandler element within a scope.

A.4.2.8 Link Intermediate Events

Link Intermediate Events are treated as “virtual Sequence Flow” that help connect the object preceding the source Link Event
to the object following the target Link Event. Thus, the Link Intermediate Events are transparent to the BPEL4WS mapping
(seethe Section A.21, “Handling Link Events as Go To Objects,” on page 204).

A.4.2.9 Multiple Intermediate Events

The mappings for Multiple Intermediate Events are described in the following table. These mappings extend the mappings
common to Intermediate Events--see Section A.4.2.1, “Intermediate Event Mappings,” on page 148.

Table A.14 - Multiple Intermediate Mappings to BPEL4WS

Intermediate Event

Mapping to BPEL4WS

Trigger = Multiple

Thiswill map to a combination of the mappings as they are defined in the Intermediate
Event sections above.

152

Business Process Modeling Notation, v1.2

A.5 Activities

A.5.1 Common Activity Mappings

The following table displays a set of mappings from the variations of activities to BPEL4WS elements. These mappings
extend the mappings common to objects -- see Section A.3, “Common Flow Object Mappings,” on page 145. Note that Table
A.16 contains additional mappings that must be included within this set if extended by any other mapping table.

Table A.15 - Common Activity Mappings to BPEL4WS
Activity Mapping to BPEL4WS

Properties The set of Properties of an activity, as a whole, will map to a BPEL4AWS variable. The

variable element will be structured as follows:

<variable name="[activity.Name] ActivityData"
messageType="[activity.Name] ActivityDataMessage" />

Theindividual Properties will map to the parts of a WSDL message. The message element

will be structured as follows:

<message name="[activity.Name] ActivityDataMessage" >

<part name="[Property.Name]"
type="xsd: [Property.Typel" />
</message>

There will be as many parts to the message as there are Properties in the input group.

With Assignments Thiswill map to aBPEL4WS assign. Refer to the section entitled “ Assignment Mapping”
Expression on page 193 for more details about the mappings associated with the assign element.
AssignTime = Start A BPEL4WS sequence will be created and the assign will precede.
AssignTime = End A BPELA4WS sequence will be created and the assign will follow.

A.5.2 Activity Loop Mapping

The mapping to BPEL4WS for looping activitiesis complex and is made up of anumber of activities that will surround the
original mapping of the activity itself (which may be complex). The description of this mapping is divided into three sections
to describe the basic setup of the loop (common to all loops), then the details of Standard looping, then the details of Multi-
Instance looping.

A.5.3 Basic Loop Setup

The basic set up mappings, which are common to both Standard and Multi-Instance looping activities, are described in the
following table. These mappings extend the mappings common to objects--see Section A.5.1, “Common Activity Mappings,”
on page 153.

Table A.16 - Basic Activity Loop Mappings to BPEL4WS

L ooping Mapping to BPEL4WS
Activities with internal Activities that have either a Standard or Multilnstance loop setting will result in a pattern
looping of BPEL4WS elements, depending on the exact settings. This pattern will be placed within

a BPEL4WS sequence activity. The details of the other mappings are described in the
rows that follow.

Business Process Modeling Notation, v1.2 153

Table A.16 - Basic Activity Loop Mappings to BPEL4WS

L ooping Mapping to BPEL4WS
LoopCounter This attribute will map to a BPEL4AWS variable, which will be part of the process
definition. The variable will be structured as follows:
<variable name="[activity.Name] loopCounter"

messageType="loopCounterMessage" />

Note: The LoopCounter mappings described in this and the next three rows are only
required for Multi-Instance loops and Standards loops that use the L oopMaximum
attribute. For all looping activities, the LoopCounter can be used for reporting purposes.

Supporting WSDL A WSDL message element will have to be created to support this variable. This message
Message can be used for multiple variables. The message will be structured as follows:

<message name="loopCounterMessage" >
<part name="loopCounter" type="xsd:integer" />
</message>

Initialization of the An assign activity will be created to initialize the variable before the start of the loop.
LoopCounter This activity precedes the while activity. Thiswill be the first activity within the sequence
activity. The assign will be structured as follows:

<assign name="[activity.Name] initialize loopCounter"s
<copy>
<from expression="0"/>
<to variable="[activity.Name] loopCounter"
part="loopCounter" />
</copy>
</assign>

Incrementing the An assign activity will be created to update the loopCounter variable at the end of the
LoopCounter while activity (see below). This activity will be the last activity of the sequence activity
that is within the while activity. The assign will be structured as follows:

<assign name="[activity.Name] increment loopCounter"s
<copy>
<from expression="
bpws:getVariableData ([activity.Name] loopCounter,
loopCount) + 1"/>

<to variable="[activity.Name] loopCounter"
part="loopCounter" />
</copy>
</assign>

154 Business Process Modeling Notation, v1.2

A.5.4 Standard Loops

The loop mappings for Standard loops are described in the following table (these mappings extend the mappings of the Basic
L oop Setup--refer to the previous section).

Table A.17 - Standard Activity Loop Mappings to BPEL4WS

L ooping Mapping to BPEL4WS

LoopType = Standard For a Standard Looping activity, the mapping of the base BPMN activity will be placed
within a BPEL4WS sequence that is within a while, and this will follow the assign
described in the Basic Loop Setup (see Figure A.1 and Example A.1). Section A.6, “ Sub-
Process Mappings,” on page 171 or the Section A.7, “Task Mappings,” on page 173 for
details about how the base activity will be mapped to BPEL4WS.

LoopCondition The LoopCondition, which MUST be a boolean expression, will be used as the condition
attribute of the while element.The while condition will be structured as follows:

<while condition="[loopCondition] ">

TestTime = After An After TestTime will map to the BPEL4WS while activity. However, to insure that the
Task is performed at least once (i.e., the functionality of an until loop), a copy of the
mapping for BPMN activity will be performed first in a sequence, followed by the while
(which will contain the original copy of the mapping for the BPMN activity).

TestTime = Before A Before TestTime does not require any additional mappings.

LoopMaximum Any value in Maximum will be appended to the LoopCondition. For example, with a
LoopCondition of “x < 0" and Maximum of 5 (loops), the final expression would be “(x <
0) and ([ActivityName].LoopCounter <= 5).”

Business Process Modeling Notation, v1.2 155

This represents the
. BPELAWS
This uses the Continue the sequence
Ml Conditicn
attribute of the Multi- Process :| used for the mapping of the
Instance activity - multi-instance activity
JNEE | I T LI T IS F " " e " LI T IS T IS T IS YT S-S P TS T " Y - ' IS Y - Y - ' E—-—_— -——,
I <2gs5ign=> Performed <<gssigr=> T |
[Bctvity, Mame]_ ’ Mapped [activity. Mame]_ | |)
initialize_ pp incremeant_ |
loopCountes _ - Activity lopCounter | | .
: B |
i
This represents the <" | There will be as many : ;
. !) : This reprasents the
BPELJ:WS iterations of this activity - ; Tshés L"éii:zfa B B;'pI;L-iWE
while : as required until the actities depending sequence
oo dition is satisfiad : .
genarated from the mult- pCan on the mapping within the whie activity

instance activity

Figure A.1 - BPMN Depiction of BPEL4AWS Pattern for a Standard loop, TestTime = Before

156 Business Process Modeling Notation, v1.2

Example A.1 displays sample BPEL4WS code that reflects the mapping of a Standard |oop.

<!-- The Process data is defined first--»>
<variable name="[activity.Name] loopCounter" messageType="loopCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequences
<assign name="[activity.Name] initialize loopCounter"s>
<copy>

<from expression="0"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />

</copy>
</assign>
<!-- If the TestTime is set to After, the mappings of the original activity
are placed here, as well as within the while.-->
<while condition="[loopCondition]">
<sequences>
<!--The mappings of the original activity are placed here.-->

<assign name="[activity.Name] increment counter">
<copy>

<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
</sequence>
</while>
</sequence>
<!-- The contents of the process after the looping activity are here-->

<from expression="bpws:getVariableData ([activity.Name] loopCounter, loopCount)+1"/>

Example A.1 - BPEL4WS Sample for a Standard Loop

A.5.5 Multi-Instance Loop Setup

The loop mappings for Multi-Instance loops are described in the following table. These mappings extend the mappings of the

Basic Loop Settings--see “Basic Loop Setup” on page 153.
Table A.18 - Multi-Instance Activity Loop Setup Mappings to BPEL4WS

M ulti-Instance Mapping to BPEL4WS

details about how the base activity will be mapped to BPEL4WS.

LoopType = Multilnstance | For a Multi-Instance Looping activity, the mapping of the BPMN activity will be placed
within a BPEL4WS sequence that is within a while, and this will follow the assign
described in the Basic Loop Setup (see Figure A.1 and Example A.1). See Section A.6,
“Sub-Process Mappings,” on page 171 or Section A.7, “Task Mappings,” on page 173 for

Business Process Modeling Notation, v1.2

157

Table A.18 - Multi-Instance Activity Loop Setup Mappings to BPEL4WS
M ulti-Instance Mapping to BPEL4WS

MI_Condition This applies to both Sequential and Parallel M1_Ordering (see below).
The MI_Condition, which MUST be a numeric expression, will map to an assign activity.
Thiswill be the first activity of the generated sequence activity (as described in the row

above).

First, a BPEL4WS variable must be created with a derived name and will have a structure
as follows:

<variable name="[activity.Name] forEachCount"

messageType="forEachCounterMessage" />

Second, an assign activity will be used to generate the number of instances that will be
required. The assign will be structured as follows:

<assign name="[activity.Name] determine instances">
<copy>
<from expression="[MI Condition Expression]"/>
<to variable="[activity.Name] forEachCount"
part="forEachCount" />
</copy>
</assign>
Supporting WSDL A WSDL message element will have to be created to support the variable. This message
Message can be used for multiple variables. The message will be structured as follows:

<message name="forEachCounterMessage" >
<part name="forEachCount" part="xsd:integer" />

</message>
The condition for the The condition attribute of the while will be a derived expression that utilizes the
while loopCounter variable and compares it to the derived forEachCount (described in the row

above). The while condition be structured as follows:

<while condition="
bpws:getVariableData ([activity.Name] loopCounter,
loopCounter) >=
bpws:getVariableData ([activity.Name] forEachCount,
forEachCount) ">

A.5.6 Sequential Multi-Instance Loops

The loop mappings for Sequential Multi-Instance loops are described in the following table. These mappings extend the
mappings of the Multi-Instance Setup--refer to the section above.

Table A.19 - Sequential Multi-Instance Activity Loop Mappings to BPEL4AWS

M ulti-Instance Mapping to BPEL4WS

MI_Ordering = Sequential | This type of looping utilizes both the Basic Loop Setup mappings and the above Multi-
Instance mappings. No further mappings are necessary. See Figure A.2 and Figure A.2 for
the complete mappings.

158 Business Process Modeling Notation, v1.2

This represents the

BPELAWS .
Continue the
sequence |:

used for the mapping of the Process
multi-instance activity

<<gssign=> <<gssign>> <<assign== |) |
| [activity. Name]_ [activity. Name] P:: mm:d [activity. Name]_ |
initializa_ detarming_ appe increment_ | . |
| loopCounter instances Activity loopCounter | !
| . |
| - T T To
This uses the B i .
MI_Condition . Ths;%rﬁifﬂrntss e There will be as many . This represents the
atiribute of the Multi- hile : copies of this aciivity a5 - BPELAWS
o whi ra are instances as -
Instance activity generated from the multi- determine by the) .Seque.nce.)
instance activity previous assign activity within the while activity

Figure A.2 - BPMN Depiction of BPEL4AWS Pattern for a Sequential Multi-Instance loop

Business Process Modeling Notation, v1.2 159

Example A.2 displays some sample BPEL4WS code that reflects the mapping of a Standard loop.

<!-- The Process data is defined first-->
<variable name="[activity.Name] loopCounter" messageType="loopCounterMessage" />
<variable name="[activity.Name] forEachCount" messageType="forEachCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequences
<assign name="[activity.Name] initialize loopCounter">
<copy>

<from expression="0"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
<assign name="[activity.Name] determine instances">
<copy>
<from expression="[MI_Condition Expression]"/>
<to variable="[activity.Name] forEachCount" part="forEachCount" />
</copy>
</assign>
<while condition="bpws:getVariableData ([activity.Name] loopCounter, loopCounter) >=
bpws:getVariableData ([activity.Name] forEachCount, forEachCount) ">
<sequences

<!--The mappings of the original activity are placed here.-->

<assign name="[activity.Name] increment counter"s
<copy>
<from expression="bpws:getVariableData ([activity.Name] loopCounter, loopCount)+1"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
</sequence>
</while>
</sequence>
<!-- The contents of the process after the looping activity are here-->

Example A.2 - BPEL4WS Sample for a Multi-Instance Loop with Sequential Ordering

160 Business Process Modeling Notation, v1.2

A.5.7 Parallel Multi-Instance Loop Setup

The loop mappings for Sequential Multi-Instance loops are described in the following table. These mappings extend the
mappings of the Multi-Instance Setup--refer to the section above.

Table A.20 - Parallel Multi-Instance Activity Loop Mappings to BPEL4WS

M ulti-Instance Mapping to BPEL4WS

MI_Ordering = Parallel A BPELA4WS while activity will also be used for Parallel ordering. However, since the
Task is to be performed in parallel, the mapping to the Tasks cannot be contained within
the while. To get the parallel behavior, each copy of the multi-instance Task will be placed
into a separate, derived BPEL4WS process’. A one-way invoke will be used to “spawn”
each process and, thus, each instance of the Task. Since the invoke is only one-way, and
doesn’t wait for a response from the process, the invoke will complete quickly and the
while will cycle through all of its iterations quick enough that the instantiations of the
Task mappings will be effectively, if not literally, in parallel. The setting for the
MI_FlowCondition attribute will determine what BPEL4WS elements will follow the
while activity. These mappings will be described in the next four sections.

The while condition The while condition will be the same as that of the Sequential ordering (see previous
section).
Spawning the process In the while activity, a one-way invoke activity will be created and used to “spawn” each

of the derived processes. The name attribute for each derived invoke will be in the
following format:

<invoke name="Spawn Process_For [activity.Name]" ... >

This invoke will replace the mappings of the original activity, which was in the while for
Standard loops and Sequential Multi-Instance Loops.

The spawned process The derived process will start with a receive that accepts the message that is sent by the
one-way invoke that is within the while loop of the original process. The name of the
process will be "Spawned Process For [activity.Name]." Theorigina Task
will be mapped and those BPEL4WS elements will follow the initial receive.

After all the mapped elements have been completed, then a one-way invoke will be used to
send a message back to the original process has a notification that the spawned processis
completed. Thiswill be the last element of the spawned process (see Figure A.3 and
Example A.3). The name attribute for the derived invoke will be in the following format:

<invoke name="[activity.Name] Completed" ... >

Business Process Modeling Notation, v1.2 161

Table A.20 - Parallel Multi-Instance Activity Loop Mappings to BPEL4WS
M ulti-Instance Mapping to BPEL4WS

Copying variables to/ Since the Parallel Multi-Instance Task mappings are going to be performed within a
from the spawned different process instance, the variables of the original process will need to be passed to
processes the spawned process through the inputVariable of the one-way invoke that spawns the
process. Likewise, any variables that are updated in the spawned process will need to be
passed back to the original process through the inputVariable of the one-way invoke that
indicates that the spawned process has completed.

Note: Once the individual derived processes are instantiated, they will be blind to any
changes in process variables. From the BPMN point of view, al the multi-instance
activities are within the same context as the original Process and, thus, should be able to
utilize any dynamic changes to Process Properties (BPEL4WS variables) as they occur
(this is especially true for multi-instance Sub-Processes). It is up to the BPEL4AWS
execution environment to provide a “virtual context” for all the derived processes to
“share’ the process variables.

Receiving completion As mentioned above, the spawned processes will send a message back to the origina
messages process after it has completed performing the behavior of the original activity. A
BPEL4WS receive activity will be used to receive the messages back from al the
spawned processes. The settings of the M1_FlowCondition will determine. The name
attribute for each derived receive will be structured as follows:

<receive name="[activity.Name] _Completed" ... >

The setting of the MI_FlowCondition attribute will determine how many receive activities
will be required. Once the appropriate number of messages have been received back from
the spawned processes, the original process will continue.

1. Note BPEL4WS does not have a sub-process capability. It is likely that sub-processes, both Embedded and Reference, will be
added to BPEL4WS in the future. When this capability has been added, the mapping for derived processes will be updated.

This may be a Send a message
sequence of back to indicate that
| activities, depending the activity has been

on the mapping completed.

O

<<receive>> Performed

Spawn_Process_For Mapped
_[activity.Name] Activity(ies)

Receive the instantiation
*.| message from the one-way
invoke from the original
process

<<one-way>>
[activity.Name]_
Completed

Figure A.3 - Structure of Process to be Spawned for Parallel Multi-instance

162 Business Process Modeling Notation, v1.2

Example A.3 displays some sample BPEL4WS code that reflects the mapping of a Multi-Instance loop that has Parallel
ordering and must synchronize all the looped activities.

<process name="Spawned Process For [activity.Name]" ... >
<sequence>
<receive name="Spawn Process For [activity.Name]l" ... >
<!--The mappings of the original activity are placed here.-->
<invoke name="[activity.Name] Completed" ... >
</sequence>
</process>

Example A.3 - BPEL4WS Sample of a derived process for Parallel Multi-Instance loops

A.5.8 Parallel Multi-Instance Loops -- Flow Condition All

The loop mappings for Parallel Multi-Instance loops that have an MI_FlowCondition of All are described in the following
table. These mappings extend the mappings of the Parallel Multi-Instance Setup--refer to the section above.

Table A.21 - Parallel Multi-Instance Activity, Ml_FlowCondition = Al

M ulti-Instance Mapping to BPEL4WS

MI_FlowCondition = All This setting utilizes the mechanisms described above for the Parallel ordering. The “All”
setting requires that all of the spawned processes must be completed before the original
process can continue (see Figure A.4 and Example A .4).

Synchronizing the The synchronization from the spawned processes is managed through the messages sent
completion of the by those processes when they have completed the behavior defined by the original
spawned processes activity. These messages will be received by the original process and when the messages

from all the spawned processes are received, then the original process can continue. To
ensure that all the messages are received, a second while activity will be used. This while
will contain areceive activity (for the completion messages) and an assign activity to
increment the loop counter. The while condition attribute will be the same as the condition
for the while that generated all the spawned processes, so that the same number of
messages will be received as there were spawned processes.

Resetting the loop Prior to the second while activity, another assign will be required to reset the loop counter.

Counter The contents of the assign activity will be the same as the assign that originally initialized
the loopCounter. The name attribute for the derived assign will be in the following format:
<assign name="[activity.Name] reset loopCounter" ... >

Business Process Modeling Notation, v1.2 163

This represents the
BPELAWS

sequence

used for the mapping of the

multi-instance activity

| This uses the

. MI_Caondition

| attribute of the Muli- °)
Instance activity * |

<<ASSIgN=> <<ASSIgNE>
|| [2ctvity Name]_ [activity Name]
initializa_ determine_
instances

‘ loopCounter

This represents the
BPELAWS

while
generated from the milt-
instance activity

. Thi th
Continue the Bar:-péfmtss }
| Process while

usad o synchronize the
completion of the instances

<<gsgign== teJ =<[aceives> <tl<?t55rign>> | | |
[activity Name]_reset loopGounted) = | [activity. Name]_ [a(f,:;gm:nr:d_ : | X
_loopCounter Completed InopCauntar | |

farEachCour\l)

“There will be as many |

‘1. | responses back from the

| 1 ‘spawned process as

thera are instances of |
. that process

S ONE-WE Y
Spawn_Process_For
_|activity. Mame]

<LESSIgN=E | .
[activity Mame]_ ! |
increment_ g |
loopCounter | ! |
. | “| This represents the
| . | BPEL4WS

o sequence
within the whils activity |

This regresents the

Th_ere §”tlht')e a:tlmi;r'ry ; BRELAWS
copies is activity as
there are instances as sequence

determine by the within the wiile activity

previous assign activity

Figure A.4 - BPEL4WS Pattern of Parallel Multi-instance, MI_FlowCondition = All

164

Business Process Modeling Notation, v1.2

<!-- The Process data is defined first--»>

<variable name="[activity.Name] loopCounter" messageType="loopCounterMessage" />
<variable name="[activity.Name] forEachCount" messageType="forEachCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequences
<assign name="[activity.Name] initialize loopCounter">
<copy>

<from expression="0"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
<assign name="[activity.Name] determine instances">
<copy>
<from expression="[MI_Condition Expression]"/>
<to variable="[activity.Name] forEachCount" part="forEachCount" />
</copy>
</assign>
<while condition=" bpws:getVariableData ([activity.Name] loopCounter,loopCounter) »>=
bpws:getVariableData ([activity.Name] forEachCount, forEachCount) ">
<sequences

<invoke name=" Spawn Process_ For [activity.Namel" ... >

<assign name="[activity.Name] increment counter"s
<copy>
<from expression="bpws:getVariableData ([activity.Name] loopCounter, loopCount)+1"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
</sequence>
</while>
<assign name="[activity.Name] reset loopCounter"s
<copy>
<from expression="0"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
<!-- Set a while to receive all the return messages. The condition will be the same.-->
<while condition=" bpws:getVariableData ([activity.Name] loopCounter,loopCounter) »>=
bpws:getVariableData ([activity.Name] forEachCount, forEachCount) ">

<sequences
<receive name="[activity.Name] Completed" ... >
<assign name="[activity.Name] increment counter"s>
<copy>

<from expression="bpws:getVariableData ([activity.Name] loopCounter, loopCount)+1"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
</sequence>
</while>
</sequence>
<!-- The contents of the process after the looping activity are here-->

Example A.4 - BPEL4WS Sample of a Parallel Multi-Instance Loop, MI_FlowCondition = All

Business Process Modeling Notation, v1.2 165

A.5.9 Parallel Multi-Instance Loops -- Flow Condition One

The loop mappings for Parallel Multi-Instance loops that have a MI_FlowCondition of One are described in the following
table. These mappings extend the mappings of the Parallel Multi-Instance Setup--refer to the section above.

Table A.22 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = One

Multi-Instance

Mapping to BPEL4WS

MI_FlowCondition = One

This setting utilizes the mechanisms described above for the Parallel ordering. The “One”
setting requires that only one of the spawned processes must be completed before the
original process can continue (see Figure A.5 and Example A.5).

Receiving the
completion message

Only one message is required from any one of the spawned processes before the original
process can continue. Thus, there will be a single receive activity following the while
activity. The receive will be the last element of the sequence that was started for the
mapping of the Multi-Instance activity. The other spawned processes will continue their
activities in parallel, but their completion will have no direct impact on the flow of the
main process (their messages won’t be received).

Note: As mentioned above, it is up to the BPEL4WS execution environment to provide a
“virtual context” for all the derived processes to “share” the process variables that may be
updated by the spawned processes with the original process, even if there are no specific
BPEL4WS activities to manage this information.

166

Business Process Modeling Notation, v1.2

This represents the

BPELAWS _
sequence Continue the

used for the mapping of the o] : Process
multi-instance activity "

: <cracaivas> |
| [activity. Mame]_ :
. Completed |
This uses the
| MI_Condition '
attribute of the Multi- - |
| Instance activity - L .
. ==gs5ign=> =<g5sign== <<gssign=> .
[activity Name]_ [activity Name] Srone-way== [activity Mame] | |
| initialize_ determine_ - Spaf"""t—.F_‘t N S—I]:n incrament_ -) |
: loopCounter instances —Lactvity Name; loopCounter | | |
l L_._._._._.__'.__'.__'.__'.__'.__':.__'__;_!|
This represents the - [There will be as many copies This regrasents the
BPEL‘fWS of this activity as there are - BPEL4WS
while instances as determing by sequence
generated from the multi- the previous assign activity within the while activity

instance activity

Figure A.5 - BPEL4WS Pattern of Parallel Multi-instance, MI_FlowCondition = One

Business Process Modeling Notation, v1.2 167

Example A.5 displays some sample BPEL4WS code that reflects the mapping of a Multi-Instance loop that has Parallel
ordering and must wait for only one of the looped activities.

<!-- The Process data is defined first--»>
<variable name="[activity.Name] loopCounter" messageType="loopCounterMessage" />
<variable name="[activity.Name] forEachCount" messageType="forEachCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequence>
<assign name="[activity.Name] initialize loopCounter"s
<copy>

<from expression="0"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
<assign name="[activity.Name] determine instances">
<copy>
<from expression="[MI_ Condition Expression]"/>
<to variable="[activity.Name] forEachCount" part="forEachCount" />
</copy>
</assign>
<while condition="bpws:getVariableData ([activity.Name] loopCounter,loopCounter) >=
bpws:getVariableData ([activity.Name] forEachCount, forEachCount) ">
<sequence>

<!--The mappings of the original activity are placed here.-->

<assign name="[activity.Name] increment counter">
<copy>
<from expression="bpws:getVariableData ([activity.Name] loopCounter, loopCount)+1"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
</sequence>
</while>
<receive name="[activity.Name] Completed" ... >
</sequence>
<!-- The contents of the process after the looping activity are here-->

Example A.5 - BPEL4WS Sample of a Parallel Multi-Instance Loop, MI_FlowCondition = One

A.5.10 Parallel Multi-Instance Loops -- Flow Condition Complex

The loop mappings for Parallel Multi-Instance |oops that have an MI_FlowCondition of Complex are described in the
following table. These mappings extend the mappings of the Parallel Multi-Instance Setup--refer to the section above.

Table A.23 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = Complex

M ulti-Instance Mapping to BPEL4WS
MI_FlowCondition = The mapping for this setting is amost the same as the M1_FlowCondition of All mapping
Complex (as described above) and seen in Figure A.4 and Example A.4. The difference is that the
number of return messages required before the process flow will continue must be
determined and the messages have been received.

168 Business Process Modeling Notation, v1.2

Table A.23 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = Complex

M ulti-Instance Mapping to BPEL4WS

The while condition for The second while in the sequence will be used to receive the appropriate number of

receiving completion completion messages. The ComplexM|_FlowCondition, which MUST be a boolean

messages expression, will determine this number. The while condition will be structured as follows:
<while condition="[ComplexMI FlowCondition] ">

A.5.11 Parallel Multi-Instance Loops -- Flow Condition None

The loop mappings for Parallel Multi-Instance |oops that have an MI_FlowCondition of None are described in the following
table. These mappings extend the mappings of the Parallel Multi-Instance Setup--refer to the section above.

Table A.24 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = None

M ulti-Instance Mapping to BPEL4WS

MI_FlowCondition = None | This means that there is not synchronization or control of the Tokens that are generated
through the multi-instance activity. This means that each Token will continue on
independently and each Token will create a separate instantiation of each activity they
encounter. Basically, it means there is a separate copy of the whole process, for each copy
of the Multi-Instance activity, after that point. Each copy of the remainder of the process
will continue independently. To create this behavior, the remainder of the process will be
moved into a new, derived process.

Spawning the rest of the | This process will be spawned through a one-way invoke that will be placed within the
process while activity, after the mappings of the original BPMN activity (see Figure A.6 and
Example A.6). The name attribute for the derived invoke will be in the following format:

<invoke name=
"Spawn Remainder of Process from [activity.Name]l"...>

Business Process Modeling Notation, v1.2 169

This represents the
End Segment b

sequence
- Process used for the mapping of the
multi-instance activity

This uses the
MI_Condition of the
attribute of the Multi- *,
Instance activity

<<assign>> <<assign>> <<assign>>

- - <<one-way>> e <<one-way>>
[activity.Name]_ [activity.Name] loopCounter) >=| | spawn_Process_For [activity.Name] Spawn_Process_
initialize_ determine_ - [activity.Name] increment_ Remainder
loopCounter instances forEachCount) - Y- loopCounter

This represents the < There will be as many :_f This represents the
BPELAWS copies of this activity as / BPELAWS
while there are instances as * sequence
generated from the multi- determine by the - within the while activity
instance activity previous assign activity

Figure A.6 - BPEL4WS Pattern of Parallel Multi-instance, MI_FlowCondition = None

170 Business Process Modeling Notation, v1.2

Example A.6 displays some sample BPEL4WS code that reflects the mapping of a Multi-Instance loop that has Parallel
ordering and must wait for none of the looped activities.

<!-- The Process data is defined first--»>
<variable name="[activity.Name] loopCounter" messageType="loopCounterMessage" />
<variable name="[activity.Name] forEachCount" messageType="forEachCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequence>
<assign name="[activity.Name] initialize loopCounter"s
<copy>

<from expression="0"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
<assign name="[activity.Name] determine instances">
<copy>
<from expression="[MI_ Condition Expression]"/>
<to variable="[activity.Name] forEachCount" part="forEachCount" />
</copy>
</assign>
<while condition=" bpws:getVariableData ([activity.Name] loopCounter,loopCounter) »>=
bpws:getVariableData ([activity.Name] forEachCount, forEachCount) ">
<sequence>

<!--The mappings of the original activity are placed here.-->

<assign name="[activity.Name] increment counter">
<copy>
<from expression="bpws:getVariableData ([activity.Name] loopCounter, loopCount)+1"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
</sequence>
</while>
<invoke name="Spawn Remainder of Process from [activity.Namel" ... >
</sequence>
<!-- The contents of the process after the looping activity are here-->

Example A.6 - BPEL4WS Sample of a Parallel Multi-Instance Loop, MI_FlowCondition = None

A.6 Sub-Process Mappings

The following table displays a set of mappings from the variations of a Sub-Process to BPEL4WS elements. This extends the
mappings that are defined for all activities--refer to the section entitled “ Common Activity Mappings’ on page 153.

Table A.25 - Sub-Process Mappings to BPEL4AWS

Sub-Process Mapping to BPEL4WS

ActivityType = SubProcess | The SubProcessType attribute will determine the exact mapping of a Sub-Process. See the
next two sub-sections for these mappings.

IsATransaction The mapping of a Sub-Process set to a Transaction is an Open Issue. Thus, there is no
mapping defined when the IsATransaction is set to True, or the sub-attributes
Transactionld, TransactionProtocol, and TransactionM ethod.

Business Process Modeling Notation, v1.2 171

A.6.1 Embedded Sub-Process

The following table displays a set of mappings from the variations of an Embedded Sub-Process to BPEL4AWS elements. This
extends the mappings that are defined for all activities--Section A.6, “ Sub-Process Mappings,” on page 171.

Table A.26 - Embedded Sub-Process Mappings to BPEL4AWS

Sub-Process Mapping to BPEL4AW S
SubProcessType = This will map to a BPEL4WS scope element. The scope is not an independent
Embedded process and will share the process variables of the higher-level process.

GraphicalElements

Thisisalist of al the graphical elements contained within the Process. Each of these
elements will have their mapping, as defined in the sections below.

Adhoc

Ad Hoc Processes are not executable. Thus, this attribute MUST be set to False if the
Process is to be mapped to BPEL4WS. The AdHocCompletionCondition and the
AdHocOrdering attributes are only valid if the AdHoc attribute is True. Thus, these
attributes will not be mapped to BPEL4AWS.

A.6.2 Reusable Sub-Process

The following table displays a set of mappings from the variations of an Reusable Sub-Process to BPEL4WS elements. This
extends the mappings that are defined for all activities--see Section A.6, “ Sub-Process Mappings,” on page 171.

Table A.27 - Reusable Sub-Process Mappings to BPEL4WS

Task

Mapping to BPEL4WS

SubProcessType =
Reusable

BPEL4WS does not have a sub-process element. Thus, Reusable Sub-Processes MUST
map to a BPEL4AWS process. That is, the contents of the Sub-Process, whether it is
expanded or collapsed, will be contained within a separate process. The DiagramRef and
ProcessRef attributes will identify the process that will be used for the mapping to the
BPEL4WS process. The attributes of the other BPEL4WS process element will be filled
from the mapping of the referenced Process. Section A.2, “Business Process Mappings,”
on page 144 for the details of this mapping. The Sub-Process object itself maps to an
invoke activity that “calls’ the process.

InputPropertyMaps

This attribute is actually a mapping of Process Properties to the Process Properties of the
Process being referenced by the Sub-Process Object. The OutputPropertyMaps attribute
maps to the inputVariable attribute of the invoke activity. See “Messages’ on page 193 for
more information about how a BPMN Message maps to BPEL4AWS and WSDL.

OutputPropertyMaps

This attribute is actually a mapping of Process Properties to the Process Properties of the
Process being referenced by the Sub-Process Object. The InputPropertyMaps attribute
maps to the outputVariable attribute of the invoke activity. See “Messages’ on page 193
for more information about how a BPMN Message maps to BPEL4WS and WSDL .

172

Business Process Modeling Notation, v1.2

A.6.3 Reference Sub-Process

The following table displays a set of mappings from the variations of a Reference Sub-Process to BPEL4WS elements:
Table A.28 - Reference Sub-Process Mappings to BPEL4WS

Task Mapping to BPEL4WS

SubProcessType = This type of Sub-Process is not directly mapped to BPEL4AWS, since BPEL4WS does not

Reference support this type of referencing. However, the Sub-Process will be used as a placeholder
for the Sub-Process that will be mapped (see next row).

TaskRef: Task This attribute references another Sub-Process in the Process. It is the referenced Sub-

Process that will be mapped and the mappings will be placed in the location of the
Reference Sub-Process. That is, another copy of the entire mapping of the referenced Sub-
Process will be created in this location (the mappings will also exist in the referenced Sub-
Process' original location).

A.7 Task Mappings
The following table displays a set of mappings from the variations of a Task to BPEL4WS elements. This extends the

mappings that are defined for all activities--see Section A.5.1, “Common Activity Mappings,” on page 153.
Table A.29 - Task Mappings to BPEL4WS

Task Mapping to BPEL4WS

Activity Type = Task The TaskType attribute will determine the exact mapping of a Task. See the next eight (8)
sub-sections for these mappings.

Web service Mappings The Implementation attribute MUST be a Web service or MUST be converted to a Web
Service for mapping to BPEL4AWS. The Web Service Attributes are mapped as follows:

e The Participant attribute is mapped to the partnerLink attribute of the BPEL4WS
activity.

« Thelnterface attribute is mapped to the portType attribute of the BPEL4AWS activity.

e The Operation attribute is mapped to the operation attribute of the BPEL4WS
activity.

A.7.1 Service Task

The following table displays a set of mappings from the variations of a Service Task to BPEL4WS elements:
Table A.30 - ServiceTask Mappings to BPEL4WS

Task Mapping to BPEL4WS

TaskType = Service This type of Task maps to an invoke activity.

InMessage The InMessage attribute maps to the inputVariable attribute of the invoke activity. See
“Messages’ on page 193 for more information about how a BPMN Message maps to
BPEL4WS and WSDL.

Business Process Modeling Notation, v1.2 173

Table A.30 - ServiceTask Mappings to BPEL4AWS

Task

Mapping to BPEL4WS

OutMessage

The OutM essage attribute maps to the outputVariable attribute of the invoke activity. See
“Messages’ on page 193 for more information about how a BPMN Message maps to
BPEL4WS and WSDL.

Implementation = Web
Service

Thiswill map as defined in Table A.29.

A.7.2 Receive Task

Thefollowing table displays a set of mappings from the variations of a Receive Task to BPEL4AWS elements. This extends the
mappings that are defined for all Tasks--see Section A.7, “Task Mappings,” on page 173.

Table A.31 - Receive Task Mappings to BPEL4WS

Task

Mapping to BPEL4WS

TaskType = Receive

This type of Task maps to areceive activity.

Message: Message

The Message attribute maps to the variable attribute of the receive activity. See
“Messages’ on page 193 for more information about how a BPMN Message maps to
BPEL4WS and WSDL.

Instantiate False :
Boolean

If the Instantiate attribute of the Task is set to False, then the createl nstance attribute of
the receive will not be included or it will be set to “no.”

If the Instantiate attribute of the Task is set to True, then the createl nstance attribute of the
receive will be set to “yes.”

Implementation = Web
Service

Thiswill map as defined in Table A.29.

A.7.3 Send Task

The following table displays a set of mappings from the variations of a Send Task to BPEL4WS elements.
Table A.32 - Send Task Mappings to BPEL4WS

Task

Mapping to BPEL4WS

TaskType = Send

This type of Task maps to areply or an invoke activity. The appropriate BPEL4WS
activity will be determined by the implementation defined for the Task. That is, the
portType and operation of the Task will be used to check to see if an upstream Receive
Task has the same portType and operation. If these two attributes are matched, then the
Send Task will map to areply, if not, the Send Task will map to an invoke.

Message: Message

The Message attribute maps to the variable attribute of the reply activity or it maps to the
inputVariable attribute of the invoke activity. See “Messages’ on page 193 for more
information about how a BPMN Message maps to BPEL4AWS and WSDL.

Implementation = Web
Service

Thiswill map as defined in Table A.29.

174

Business Process Modeling Notation, v1.2

A.7.4 User Task

The following table displays a set of mappings from the variations of a User Task to BPEL4WS elements.
Table A.33 - User Task Mappings to BPEL4WS

Task

Mapping to BPEL4WS

TaskType = User

This type of Task maps to an invoke activity.

Performers: String

The Performers is information needed by the implementation. Thus, it will be included in
the InMessage being sent to the Web service, through the inputVariable attribute of the
invoke activity.

InMessage The InMessage attribute maps to the inputVariable attribute of the invoke activity. See
“Messages’ on page 193 for more information about how a BPMN Message maps to
BPEL4WS and WSDL.

OutMessage The OutM essage attribute maps to the outputVariable attribute of the invoke activity. See

“Messages’ on page 193 for more information about how a BPMN Message maps to
BPEL4WS and WSDL.

Implementation = Web
Service

Thiswill map as defined in Table A.29.

A.7.5 Script Task

The following table displays a set of mappings from the variations of a Script Task to BPEL4WS elements.
Table A.34 - Script Task Mappings to BPEL4WS

Task

Mapping to BPEL4WS

TaskType = Script

This type of Task maps to an invoke activity. Since this activity is performed by a process
engine, the default settings of the engine must be used to determine the settings of the
invoke activity. That is, partnerLink, portType, operation, inputVariable, and maybe
outputVariable are derived by these default settings. The script itself is performed when
the appropriate Web service of the process engine in invoked.

A.7.6 Manual Task

The Manual Task does not map to BPEL4WS. Thus, this type of Task should not be used in a Process that is intended to

generate BPEL4AWS code.

A.7.7 Reference Task

The following table displays a set of mappings from the variations of a Reference Task to BPEL4WS elements.
Table A.35 - Reference Task Mappings to BPEL4AWS

Task

Mapping to BPEL4WS

TaskType = Reference

Thistype of Task is not directly mapped to BPEL4WS, since BPEL4WS does not support
this type of referencing. However, the Task will be used as a placeholder for the Task that
will be mapped (see next row).

Business Process Modeling Notation, v1.2

175

Table A.35 - Reference Task Mappings to BPEL4AWS
Task Mapping to BPEL4WS

TaskRef: Task This attribute references another Task in the Process. It is the referenced Task that will be
mapped and the mappings will be placed in the location of the Reference Task. That is,
another copy of the entire mapping of the referenced Task will be created in this location
(the mappings will also exist in the referenced Task’s original location).

A.7.8 None Task

The following table displays a set of mappings from the variations of a None Task to BPEL4WS elements.
Table A.36 - None Task Mappings to BPEL4WS

Task Mapping to BPEL4WS

TaskType = None This type of Task maps to an empty activity.

A.8 Gateways

A.8.1 Common Gateway Mappings

The following table displays a set of mappings are common for Gateways to BPEL4WS elements (these mappings extend the
mappings common to objects -- see Section A.3, “Common Flow Object Mappings,” on page 145):

Table A.37 - Common Gateway Mappings to BPEL4WS

Data-Based Exclusive Mapping to BPEL4WS
Gateways
Gateway A Gateway will map to a variety of BPEL4WS elements (e.g., switch, pick, flow) and

patterns of elements.

Incoming Flow A Gateway, as with activities, is a location where Sequence Flow can converge. The
convergence of Sequence Flow potentially marks the end of a BPEL4WS structured
element, if the correct number of flow converge. See Section A.13.1, “Determining the
Extent of a BPEL4WS Structured Element,” on page 193 for more details on converging
of Sequence Flow and their mapping to BPEL4WS.

Outgoing Flow The mapping will begin at the location of the Gateway.

The BPMN elements that follow the Gateway, until all the outgoing paths have converged,
will be contained within the extent of the mapping (e.g., they will be placed within a
sequence within a switch case).

The end of the mapping will be determined by the convergence of the paths, through a
variety of mechanisms (see Section A.13.1, “Determining the Extent of a BPEL4WS
Structured Element,” on page 193).

Assignments associated | Thiswill map to a BPEL4WS assign. See Section A.12.2, “ Assignment Mapping,” on
with Gates page 193 for more details about the mappings associated with the assign element.

176 Business Process Modeling Notation, v1.2

A.8.2 Exclusive

A.8.2.1 Data-Based

The following table displays a set of mappings from the variations of a Data-Based Exclusive Gateway to BPELAWS
elements. These mappings extend the mappings common to objects -- see Section A.8.1, “Common Gateway Mappings,” on

page 176.

Table A.38 - Data-Based Exclusive Gateway Mappings to BPEL4WS

Data-Based Exclusive
Gateways

Mapping to BPEL4WS

Gateway (GatewayType =
Exclusive; ExclusiveType
= Data)

The Gateway will map to a BPEL4AWS switch.

MarkerVisible

This does not have a mapping to BPEL4WS. Its purpose is to determine whether or not a
graphical marker will be displayed.

Incoming Flow

Outgoing Flow

Gates

Each Gate will map to a case of the switch. The cases will be listed in the switch in the
same order as they are listed for the Gateway.

Condition for the
Sequence Flow
associated with the
Gate

This will map to the condition for a switch case.

BPMN Elements that
follow the Gate.

If there is more than one element that follows the Gate, and this includes Assignments for
the Gate, then these elements will be placed inside a sequence activity after these elements
have been mapped.

DefaultGate

This will map to the otherwise element of the switch.

BPMN Elements that
follow the DefaultGate.

If there is more than one element that follows the DefaultGate, and this includes
Assignments for the Gate, then these elements will be placed inside a sequence activity
after these elements have been mapped.

A.8.2.2 Event-Based

To relate the Event-Based Exclusive Gateway to BPEL4AWS, the Gateway diamond marks the location of a BPEL4WS pick
and the I ntermediate Events that follow the Decision become the event handlers of the pick or choice. The activities that follow
the Intermediate Events become the contents of the activity sets for the event handlers. The boundaries of the activity setsis
actually determined by the configuration of the process; that is, the boundaries extend to where all the aternative paths are
finally joined together (which could be the end of the Process).

Business Process Modeling Notation, v1.2

177

The following table displays a set of mappings from the variations of a Event-Based Exclusive Gateway to BPEL4WS
elements. These mappings extend the mappings common to objects -- see Section A.8.1, “Common Gateway Mappings,” on
page 176.

Table A.39 - Data-Based Exclusive Gateway Mappings to BPEL4WS

Event-Based Exclusive
Gateways

Mapping to BPEL4WS

Gateway (GatewayType =
Exclusive; ExclusiveType
= Event)

This Gateway will map to a BPEL4WS pick. The elements of the pick will be determined
by the targets of the outgoing Sequence Flow. The specific mappings are described in the
rows below.

Instantiate

If the Instantiate attribute of the Gateway is set to False, then the createl nstance attribute
of the pick MUST NOT be included OR it MUST be set to “no.”

If the Instantiate attribute of the Gateway is set to True, then the createl nstance attribute
of the pick MUST be set to “yes.”

Gate with Receive Task
as Target

The Receive Task will map to an onMessage element within the pick.

The attributes of the Receive Task will map to the appropriate elements of the onMessage,
such as operation and portType. See “Receive Task” on page 174 for the mapping of the
Receive Task. Note that the name of the Task does not have a corresponding attribute
within the onMessage element.

Gate with Message
Intermediate Event as
Target

A Message Intermediate Event will map to an onMessage element within the pick.

The attributes of the Message Intermediate Event will map to the appropriate elements of
the onMessage, such as operation and portType. See Section A.4.2.1, “Intermediate Event
Mappings,” on page 148 for the mapping of the Message Intermediate Event.

Gate with Timer
Intermediate Event as
Target

A Timer Intermediate Event, which is the Target of a Sequence Flow associated with the
Gate, will map to an onAlarm element within the pick.

The Timedate attribute of the Event will map to the until element of the onAlarm element.
The Timecycle attribute of the Event will map to the for element of the onAlarm element.

Gate with Link
Intermediate Event as
Target

A Link Intermediate Event, in this situation, will be considered as the same as receiving a
message from a process. Thus, this will map to an onMessage element within the pick.
The attributes of the Message Intermediate Event will map to the appropriate elements of
the onMessage, such as operation and portType. See Section A.4.2.1, “Intermediate Event
Mappings,” on page 148 for the mapping of the Message Intermediate Event.

Gate with Conditional
Intermediate Event as
Target

A Conditional Intermediate Event, in this situation, will be considered as the same as
receiving a message from a system that tracks and generates Conditional events. Thus, this
will map to an onMessage element within the pick.

The attributes of the Message Intermediate Event will map to the appropriate elements of
the onMessage, such as operation and portType. See Section A.4.2.1, “Intermediate Event
Mappings,” on page 148 for the mapping of the Message Intermediate Event.

BPMN Elements that
follow the first target of a
Gate.

If there is more than one element that follows the first target of a Gate, and this includes
Assignments for the Gate, then these elements will be placed inside a sequence activity
after these elements have been mapped.

178

Business Process Modeling Notation, v1.2

A.8.3 Inclusive

The following table displays a set of mappings from the variations of an Inclusive Gateway to BPEL4WS elements. These
mappings extend the mappings common to objects -- See Section A.8.1, “Common Gateway Mappings,” on page 176.

Table A.40 - Inclusive Gateway Mappings to BPEL4AWS

Inclusive Gateways

Mapping to BPEL4WS

Gateway (GatewayType = | The Gateway will map to a set of BPEL4WS switches within a BPEL4WS flow. An
Inclusive) additional switch will be required if the DefaultGate is used (see below).
Gates Each Gate will map to a switch. Each switch will be binary in nature. That is, each switch

will have exactly one case and one otherwise.

Condition for the
Sequence Flow
associated with the Gate

Thiswill map to the condition for the switch case.

BPMN Elements that
follow the Gate.

If there is more than one element that follows the Gate, and this includes Assignments for
the Gate, then these elements will be placed inside a sequence activity after these elements
have been mapped.

If a DefaultGate is used, then an assign activity will follow all the other mappings (see
below for details).

The otherwise element
for the switch

The otherwise element for each switch will contain an empty activity. However, if the
DefaultGate is used, then:

DefaultGate

The DefaultGate will map to a switch. However, by using the DefaultGate, the mapping to
BPEL4WS is more complicated (see Figure A.7 and Example A.7). Thisis the path that is
taken if none of the other paths are taken. Thus, the decision about whether the Default
Gate should be taken will occur after al the other Gate decisions have been determined.
This means that the switch for the DefaultGate will follow the flow activity generated for
al the Gates of the Gateway. Also, a sequence activity must encompass the flow and the
switch.

Create the tracking
variable

A variable must be used so that the switch for the DefaultGate will know whether or not
the Default BPMN path should be taken. To do this, a BPEL4WS variable must be
created with a derived name and will have a structure as follows:

<variable name=" [Gateway.Name] noDefaultRequired"
messageType="noDefaultRequired" />

Supporting WSDL
Message

A WSDL message element will have to be created to support this variable. This message
can be used for multiple variables. The message will be structured as follows:

<message name="noDefaultRequired" >
<part name="noDefault" type="xsd:boolean" />
</message>

Business Process Modeling Notation, v1.2

179

Table A.40 - Inclusive Gateway Mappings to BPEL4AWS

Inclusive Gateways

Mapping to BPEL4WS

Initialization of the
tracking variable

An assign activity will be created to initialize the variable before the start of the loop.
This assign precede the flow activity that contains al the switches derived from the Gates.
Thiswill be the first activity within the sequence activity. The assign will be structured as
follows:

<assign name=" [Gateway.Name] initialize noDefault">
<copy>
<from expression="false"/>
<to variable="[Gateway.Name] noDefaultRequired"
part="noDefault" />
</copy>
</assign>

The switch cases

The condition for the switch case will use the noDefaultRequired variable and will be
structured as follows:

<switch>
<case condition="bpws:getVariableProperty (
[Gateway.Name] noDefaultRequired,noDefault)=true">
<sequence>

<!--The mappings of the original activity are placed here.-->
<!--An assign activity (see below) is placed here.-->

</sequence>
</case>
<otherwise>
<empty/>
</otherwises>
</switch>

BPMN Elements that
follow the DefaultGate

If there is more than one element that follows the DefaultGate, and this includes
Assignments for the Gate, then these elements will be placed inside a sequence activity
after these elements have been mapped. An assign activity will be placed in the sequence
after all the other mappings (see next row).

Setting of the tracking
variable

If any of the switches within the flow passes the condition of the switch case, then the
noDefaultRequired must be set to True. This will ensure that the DefaultGate switch will
bypass the mapped activities for the BPMN Default Gate.
An assign activity will be created to set the variable to True. This will be the last activity
within the sequence activity within the switch. The assign will be structured as follows:
<assign name="[Gateway.Name] set noDefault"s>
<copy>
<from expression="true"/>
<to variable=" [Gateway.Name] noDefaultRequired"
part="noDefault" />

</copy>
</assign>

180

Business Process Modeling Notation, v1.2

This represents the BPEL4WS

flow
| that encloses the switches for
N the Gates

This represants the BPEL4AWS
| while
generated from a Gate

This represents the BPEL4WS
! sequence
within the switch case

I There may be more

Performed

switches included within _ <<@ssign=>
| [the flow, but there must . Mapped [activity Name]_
N be at least one, " A.;tivity:igs] set_noDefault
I Otherwisa -
B <<assign>>
[activity. Name]_ — e — e — — - — — — — — — —
initialize_
. noDefault
I Performed <<assign>>
) Mapped [activity Name]
| Activitylies) set_noDefault
| Otherwise -
-

This represents the BPELAWS
| while

- generated from the

| DefaullGate

naDefault = True

Performed
Mapped
Activity(ies)

This represents the BPELAWS

sequence
that encloses the whole
paltern

; . | This represents the BPEL4WS

.. [This represents the BPELAWS

while
generated from a Gate

sequence
within the switch case

Figure A.7 - BPEL4WS Pattern of Inclusive Decision with two (2) Gates and a DefaultGate

Business Process Modeling Notation, v1.2

181

Example A.7 displays some sample BPEL4WS code that reflects the mapping of a Multi-Instance loop that has Parallel
ordering and must synchronize all the looped activities.

<!-- The Process data is defined first--»>
<variable name="[activity.Name] loopCounter" messageType="loopCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequences>
<assign name="[Gateway.Name] initialize noDefault'"s>
<copy>

<from expression="false"/>
<to variable=" [Gateway.Name] noDefaultRequired" part="noDefault" />

</copy>
</assign>
<flow>
<!--There will be as many copies of the switch below as there are Gates.-->
<switch>
<case condition="[Sequence Flow Condition"s>
<sequence>
<!--The mappings of the activities are placed here.-->

<assign name="[Gateway.Name] initialize noDefault"s>
<copy>
<from expression="true"/>
<to variable=" [Gateway.Name] noDefaultRequired" part="noDefault" />
</copy>
</assign>
</sequence>
</case>
<otherwise>
<empty/>
</otherwise>
</switch>
</flow>
<switch>
<case condition=
"bpws:getVariableProperty ([Gateway.Name] noDefaultRequired,noDefault)=true">
<sequences

<!--The mappings of the activities are placed here.-->

</sequence>
</case>
<otherwise>
<empty/>
</otherwise>
</switch>
</sequence>

Example A.7 - BPEL4WS Sample for the Pattern for an Inclusive Decision with a DefaultGate

A.8.4 Complex

The behavior and usage of Complex Gateways have not been well enough established for a mapping to BPEL4WS to be
defined.

182 Business Process Modeling Notation, v1.2

A.8.5 Parallel

The following table displays a set of mappings from the variations of a Parallel Gateway to BPEL4WS elements. These
mappings extend the mappings common to objects --see Section A.8.1, “Common Gateway Mappings,” on page 176.
Table A.41 - Parallel Gateway Mappings to BPEL4WS

Parallel Gateways Mapping to BPEL4AWS

Gateway (GatewayType = | The Gateway will map to a BPEL4WS flow.
Parallel)

A.8.6 Pool

Pools do not have any specific Mapping to Execution Languages. However, a Pool is associated with a mapping to a specific
lower level language. For example, one Pool may encompass a BPEL4WS document while another Pool might encompass
B2B Collaboration process.

A.8.7 Lane

Lanes do not have any specific Mapping to Execution Languages. They are designed to help organize and communicate how
activities are grouped in a business process.

A.8.8 Artifacts

Asageneral rule, Artifacts do not map to BPEL4WS elements. They provide detailed information about how datawill interact
with the Flow Objects and Flow of Processes.

However, Text Annotations can map to the documentation element of BPM execution languages. If the Annotation is
associated with a Flow Object and that object has a straight-forward mapping to a BPM execution language element, then the
text of the Annotation will be placed in the documentation element of that object. If there is no straight-forward mapping to a
BPM execution language element, then the text of the Annotation will be appended to the documentation element of the
process.

For any new Artifact that is added to a BPD through a modeling toal, it will have to be determined whether or not that Artifact
maps to any BPEL4WS element.
A.8.9 Sequence Flow

A Sequence Flow may not have a specific mapping to a BPEL4WSin most situations. However, when there is a section of the
Diagram that contains parallel activities, then Sequence Flow may map to the link element. Details of this mapping are TBD.

In general, the set of Sequence Flow within a Pool will determine how BPEL4WS elements are derived and the boundaries of
those elements.

Business Process Modeling Notation, v1.2 183

The following table displays a set of mappings from Sequence Flow to BPEL4WS elements.
Table A.42 - Sequence Flow Mappings to BPEL4WS

Sequence Flow M apping to BPEL4WS

Sequence Flow ThisMAY map to a BPEL4WS link element. The location of the Sequence Flow within
the Process will determine how or if it is mapped to alink. Even if the Sequence Flow is
not mapped to alink, attributes, such as Condition, will be mapped to BPEL4AWS
elements, as described below.

Id, Categories, and These Elements do not map to any BPEL4WS elements or attributes.
Documentation
Name If the Sequence is not being mapped to a link, this attribute does not map to any

BPEL4WS elements or attributes.

If the Sequence is being mapped to a link, the Name attribute of the Process SHALL map
to name attribute of the link. The extra spaces and non-alphanumeric characters MUST be
stripped from the Name to fit with the XML specification of the name attribute. Note that
there may be two or more elements with the same name after the BPMN name has been
stripped.

Source If the Sequence is not being mapped to a link, this attribute does not map to any
BPEL4WS elements or attributes.
If the Sequence is being mapped to alink, this mapping is described in the next four (4)

Rows.
Source Object is an The mapping of the source activity will now include a source element.
Activity (for a link) The Name of the Sequence Flow will map to linkName attribute of the source element.

The extra spaces and non-alphanumeric characters MUST be stripped from the Name to fit
with the XML specification of the name attribute. Note that there may be two or more
elements with the same name after the BPMN name has been stripped.

For an exception to the location of the source element, see the description of the mapping
for a ConditionExpression when the Source object is an Activity below.

Source Objectis a This mapping is described in the next two (2) Rows.
Gateway (for a link)

The Gateway maps to | This mapping is the same as if the source object is an activity (see above).
an activity (e.g., switch)

The Gateway does not | This Sequence Flow will be essentially combined with one of the Gateway’s incoming
map to an activity Sequence Flow. (There will be a separate link for each of the incoming Sequence Flow).
The Source of the second Sequence will be used at the Source for the original Sequence
Flow. Then, this mapping is the same as if the Source object is an activity (see above).

Target If the Sequence is not being mapped to a link, this attribute does not map to any
BPEL4WS elements or attributes.

If the Sequence is being mapped to alink, this mapping is described in the next four (4)
Rows.

184 Business Process Modeling Notation, v1.2

Table A.42 - Sequence Flow Mappings to BPEL4WS

Sequence Flow M apping to BPEL4WS
Target Object is an The mapping of the target activity will now include a target element.
Activity The Name of the Sequence Flow will map to linkName attribute of the target element. The

extra spaces and non-al phanumeric characters MUST be stripped from the Name to fit
with the XML specification of the name attribute. Note that there may be two or more
elements with the same name after the BPMN name has been stripped.

Target Object is a This mapping is described in the next two (2) Rows.
Gateway

The Gateway maps to | This mapping is the same as if the target object is an activity (see above).
an activity (e.g., switch)

The Gateway does not | This Sequence Flow will be essentially combined with one of the Gateway’s outgoing
map to an activity Sequence Flow. (There will be a separate link for each of the outgoing Sequence Flow).
The Target of the second Sequence will be used at the Target for the original Sequence
Flow. Then, this mapping is the same as if the target object is an activity (see above).

ConditionType = None If the Sequence is not being mapped to a link, this attribute does not map to any
BPEL4WS elements or attributes.

If the Sequence is being mapped to a link, this means that there is no condition placed on
the transition between elements (through the link). Thus, there is nothing to be mapped to

BPEL4WS.
ConditionType = This mapping is described in the next two (2) Rows.
Expression
Source Objectis a The mapping of the Sequence Flow in this situation is described in Section A.8.2,
Gateway “Exclusive,” on page 177, Section A.8.3, “Inclusive,” on page 179, and Section A.8.4,
“Complex,” on page 182.
Source Object is an Since a Sequence Flow MUST NOT have a Condition if the Source is an activity, unless
Activity there are multiple outgoing Sequence Flow, a BPEL4AWS flow will be required and the

Sequence Flow will map to alink element.

An empty activity will be placed in the flow and will contain all the source elements.
The ConditionExpression will then map to the transitionCondition attribute of the source
element that is contained in the appropriate BPEL4WS activity (see a description of
locating the source above).

ConditionType = Default | The mapping of the Sequence Flow in this situation is described in Section A.8.2,
“Exclusive,” on page 177, Section A.8.3, “Inclusive,” on page 179, and Section A.8.4,
“Complex,” on page 182.

Quantity 1 : Integer The mapping of the Quantity attribute, if its value is greater than one (1), BPEL4AWS isan
open issue.

A.9 When to Map a Sequence Flow to a BPEL4WS Link

In many situations, a Sequence Flow will not map to a BPEL4WS link element.

« To connect activities that are listed in a BPEL4WS structured activity (e.g., a sequence), the link elements are not
required.

Business Process Modeling Notation, v1.2 185

The ordering of the list in the sequence provides the direction of flow (see Example A.8).

The Tasks are mapped to be within a
BPELAWS seqguence. Thus, the
Sequence Flow are not mapped to links.

Thts reprasents the BPEL4WS
sequence

Figure A.8 - Example: Sequence Flow that are not used for BPEL4WS links

« Link elements are only appropriate when the Sequence Flow are Connecting Objects that are within a BPEL4WS flow.

However, it isonly the Sequence Flow that are completely contained within the boundaries of the flow will be mapped to alink
(see Example A.8). It should be noted that if another structured activity (e.g., a switch) is contained within the flow, then the
Sequence Flow that would be appropriate for the contents of the structured activity would not be mapped to alink.

Fill Ordar

This represants the BPFELAWS
flow

Send Invoice Accept Payment

‘| This represents tha BPELAWS
link

Figure A.9 - Example: A Sequence Flow that is used for a BPEL4WS link

A.9.1 Message Flow

A Message Flow does not have a specific mapping to a BPEL4WS element. It represents a message that is sent through a
WSDL operation that is referenced in a BPEL4AWS receive, reply, or invoke.

186

Business Process Modeling Notation, v1.2

A.9.2 Association

An Association does not have a specific mapping to an execution language element. These objects and the Artifacts they
connect to provide additional information for the reader of the BPMN Diagram, but do not directly affect the execution of the
Process.

A.9.3 Exception Flow

BPMN Exception Flow is al the activities, connected by Sequence Flow, which flow from an Intermediate Event attached to
the boundary of an activity, until the flow merges back into the Normal Flow (sometimes at the point of an End Event).

BPEL4WS handles exceptionsin a much more structured and programmatic manner. If triggered through afault, the activities
in afaultHandlers will be performed and completed, and then the process will continue from the point where the interrupted
activity would have completed normally. Thus, the faultHandlers element is a completely contained structured element.

Since BPMN handles Exception Flow with much more flexibility, so that the modeler can have the Exception Flow go
wherever it is appropriate, there are different challenges to the BPEL 4WS mapping, depending on the configuration of the
BPMN model.

The following table displays the mapping Exception Flow to BPEL4WS.
Table A.43 - Common Exception Flow Mappings to BPEL4WS

Exception Flow Mapping to BPEL4WS

Activities within the All the activities that follow the attached Intermediate Event, until the Exception Flow

Exception Flow merges back into the Normal Flow, will be mapped to BPEL4WS and then placed within
the faultHandlers element for the scope of the activity (and usually within a sequence).

Additional BPEL4WS mapping patterns for Exception Flow will be described in the next three (3) sections.

A.10 The Exception Flow Merges back into the Normal Flow After the
Activity
In this situation, the Exception Flow may contain one or more activities, but will merge back into the Normal Flow at the same

object that follows the activity that is the source of the Exception Flow (see Figure A.10). This situation maps closely to the
BPEL 4WS mechanism for exception handling. Thus, no special mapping mechanisms are required.

ID Problem
and
Resolution

Verify
Solution

Correct
Data
Problem

Figure A.10 - Exception Flow Merging back into Normal Flow Immediately after Interrupted Activity

Business Process Modeling Notation, v1.2 187

A.11 The Exception Flow Merges back into the Normal Flow Further
Downstream

In this situation, the activitiesin the Exception Flow substitute for some of the Normal Flow activities and, thus, the Exception
Flow will skip these activities and merge into the Normal Flow further downstream (see Figure A.11). Alternatively, the
exception may create a situation where the Process must end prematurely, which means that the Exception Flow will merge
with the Normal Flow at an End Event (see Figure A.12). In either situation, special BPEL4WS patterns will have to be
appended to the basic Exception Flow mappings.

This Activity is contained These Activities are now
within a contained within a
_ sequence switch
— 7 whera the atherwise is amply
- - Verify OCR HFiII Data Form
An : _ .
assign 1
will be used to set |
the tracking variable) I
An : '
assign _— = /
. g ' g This Activity Is contained
will be used to sat | within a
the tracking varable
sequence

Figure A.11 - Exception Flow Merging back into the Normal Flow Further Downstream

The following table displays the mapping Exception Flow to BPEL4WS. These mappings extend the mappings common to
Exception Flow -- see above.

Table A.44 - Exception Flow Merging back into the Normal Flow Further Downstream

Exception Flow Mapping to BPEL4AW S

Activities within the If there is only one activity in the faultHandlers element for the scope of the activity, then

Exception Flow this activity will be placed within a sequence and preceded by an assign (as described
below).

Original Activity The mapping of the original activity will be placed within a sequence (if it had not been
already).

After the Original Activity | The original activity will now be followed by a switch, instead of what would have been
normally mapped there.

Switch Characteristics The switch will be binary in nature. There will be one case and an otherwise element.
Create the tracking A variable must be used so that the switch will know whether or not the Exception Flow
variable or Normal Flow had reached that point in the Process. To do this, a BPEL4WS variable

must be created with a derived name and will have a structure as follows:
<variable name="[activty.Name]_normal Completion"
messageType="noDefaultRequired” />

188 Business Process Modeling Notation, v1.2

Table A.44 - Exception Flow Merging back into the Normal Flow Further Downstream

Exception Flow Mapping to BPEL4WS
Supporting WSDL A WSDL message element will have to be created to support this variable. This message
Message can be used for multiple variables. The message will be structured as follows:

<message name="noDefaultRequired" >
<part name="normalCompletion" type="xsd:boolean" />

</message>
Initialization of the An assign activity will be created to initialize the variable before the start of the original
Tracking Variable activity. It will be the first activity in the sequence described above. The assign will be
structured as follows:
<assign name="[activity.Name] initialize normalCompletion"s>
<copy>

<from expression="true"/>
<to variable="[activity.Name] normalCompletion"
part="normalCompletion" />
</copy>
</assign>

Setting of the tracking If afault is thrown and faultHandlers is activated, then an assign activity will be used to
variable set the variable to False. This will be the first activity within the sequence activity of the
faultHandlers. The assign will be structured as follows:

<assign name="[activity.Name] set normalCompletion"s>
<copy>
<from expression="falsge"/>
<to variable="[activity.Name] normalCompletion"
part="normalCompletion" />
</copy>
</assign>

Switch cases The case for the switch will contain all the mappings for al activities that occur in the
Process until the Exception Flow has merged back (which could be the end of the
Process), usually within a sequence. The otherwise for the switch will contain an empty
activity.

The condition for the switch case will usethe normal Completion variable and will be
structured as follows:

<switchs>
<case condition="bpws:getVariableProperty (
[activity.Name] normalCompletion,
normalCompletion)=true">
<sequence>

<!--The mappings of the Process activities until the merging
of the Exception Flow are placed here.-->

</sequence>
</case>
<otherwise>
<empty/>
</otherwise>
</switch>

Potential Invalid Model If the Exception Flow occurs in the larger context of a set of parallel activities, then the
Exception Flow must merge back into the Normal Flow prior to the end of the parallel
activities (a BPEL4AWS flow), or this will create an invalid model.

Business Process Modeling Notation, v1.2 189

This Activity is contained
within a

Sequence

Book Charge
Resarvations Buyer

Recaive

Confirmation Send Confimation

These Activities are rnow
contained within a

switch
where the othansisa is emply

assign = | - — — —
will be used to sat -

the tracking varable
Send Cancellation

Motice

" O This Activity is contained
assign . K within a
will be used to set
the tracking varable sequence

Figure A.12 - Exception Flow Merging back into the Normal Flow at the End Event

A.12 The Exception Flow Loops back into the Normal Flow Upstream

In this situation, the Exception Flow will loop back into the Normal Flow prior to the completion of the activity that isthe
source of the Exception Flow (see Figure A.13). Thisisa particularly challenging mapping and cannot be done entirely within
the confines of the original BPEL4WS process. Another process will need to be derived and then “ spawned” until the original

activity can be completed normally.

Receive Order
Response
Menxt

Step?

Problam with
Response

Send Response
Error

e

Figure A.13 - Example of Exception Flow Looping Back into the Normal Flow Upstream
This part of the Process will be modified at the BPEL4WS level so that the loop can be performed (through calling another

process). If the flow moves to the faultHandlers activity, this means that the original activity will need to be performed again.
Thus, the original activity will be duplicated in another process and the faultHandlers will contain a one-way invoke to

190 Business Process Modeling Notation, v1.2

“spawn” this other process (see Figure A.14). In addition, the original process will wait with areceive activity for amessage

from the derived process that the original activity has completed normally.

This represants a

. BPEL4WS
sequence
—_ e —— == |
| Eontlnue the
=<recelves> p
[activity. Mame] | L Process
| Completed
Receive a
| message thal the
= NBreblemwith T T Tl | derived process

Problem with —_— finally completed
Hespnnsi the criginal activity
<E<pne-way=> | ﬁﬂl‘r‘l"ﬂ“y.
Spawn_ .
ReceiveOrdarRes |
panse_
Derived_Process |
This represents a BPELAWS Call the derived
sequence .| process to try the
within a original aotivity
exceptionHandlers aaan.

Figure A.14 - Example of Modification at BPEL4AWS level to Handle the Loop

The derived process will be structured much like the corresponding section of the original process (see Figure A.15). The

mappings of the original activities, from the point of the BPMN Process where the Exception Flow loopsinto the Normal Flow
to the point of the source of the Exception Flow, will be in the derived process. The same faultHandlers will be attached to the
scope around the original activity. The faultHandlers will also contain a one-way invoke to “spawn” itself if the fault occurs

again.

When the original activity finally completes normally, one-way invoke will be used to send a message back to the original

process so that normal activities can continue.

Business Process Modeling Notation, v1.2

191

This represents a
BPELAWS
‘| sequence

ReceiveCrderResponse Derived Process

When the activity
fimally completes
rormally, send a
message back to
the criginal
Process

<<one-wWay>>
[Activity, Name]_
Complated

Receive Order
Responss

<<One-ways== |

Spawn_ .
Send ;ar;fonsa ReceveOrderRes |
ponse

Darivad_Pr:_)oaGs

b . -
(This represents a BPELAWS - This represents a BPELAWS The datived
: procass will
process sequence “spawn’ itself
— within a L
. again if the fault
exceptionHandlers accurs again,

Figure A.15 - Example of a Derived Process to Handle the

A.12.1 Compensation Association

Looping

The following table displays a set of mappings from a Compensation Association to BPEL4WS elements.

Table A.45 - Exception Flow Mappings to BPEL4AWS

Compensation Mapping to BPEL4WS

Association

A Compensation
Intermediate Event
attached to an activity
boundary

Events’ on page 152.

element.

The mapping of the Compensation Event is described in “Compensation Intermediate

The mapping of the activity Associated with the Intermediate Event will follow the
mapping rules defined in Section A.7, “Task Mappings,” on page 173 or in Section A.6,
“ Sub-Process Mappings,” on page 171 will be placed within the compensationHandler

192

Business Process Modeling Notation, v1.2

A.12.2 Assignment Mapping

The following table displays a set of mappings from the variations of an Assignment expression to BPEL4WS elements.
Table A.46 - Assignment Mappings to BPEL4WS

Assignment Mapping to BPEL4WS

To The To attribute will map to the to element of the BPEL4WS assign activity. A variable
and supporting WSDL message should have already be created for the Property used for
the Assignment To attribute. Thus, the structure of the to element will be as follows:

If the Property is an attribute of a Process:

<to variable="[Process.Name] ProcessData"
part="[Property.Name]" />

If the Property is an attribute of an activity:

<to variable="[activity.Name] ActivityData"
part="[Property.Name]" />

From The From expression will map to the from element of the BPEL4WS assign activity.

<from expression="[From Expression]" />

A.12.3 BPMN Supporting Type Elements

This section describes the mapping to BPEL4WS of a non-graphical elements that are part of BPMN. Messages, which are
linked with Message Flow, do have impact on how many other BPMN elements are mapped to BPEL4WS.

A.13 Messages

The following are the mappings of a Message. These mappings are used to create a BPELAWSE4AWS XML file, plusa
supporting WSDL supporting file. These mappings are used for a Start Event, End Event, Intermediate Event, and Task.

Table A.47 - Message Attributes

Attributes Description

Name The Name attribute maps to the name attribute of a BPEL4WS variable element. Note that
the extra spaces and non-al phanumeric characters MUST be stripped from the Name to fit
with the XML specification of the name attribute. Note that there may be two or more
elements with the same name after the BPMN name has been stripped. The messageType
attribute of the variable element refers to a WSDL message type definition. Thus, the
messageType will share the same Name and a corresponding WSDL message must be
created.

Properties Each Properties of the BPMN Message will map to a part element of the WSDL message.
The Name attribute of the Property will map to the name attribute of the part.
The Type attribute of the Property will map to the type attribute of the part.

A.13.1 Determining the Extent of a BPEL4WS Structured Element

The structure and vocabulary of BPMN differs from BPEL4WS. BPMN allows flexible, and free-form methods of connecting
activities through Sequence Flow. Furthermore, BPMN is cyclical in that it allows Sequence Flow to connect to upstream
objects so that amodeler can easily visualize looping situations. BPEL4WS has a much more structured form of creating a

Business Process Modeling Notation, v1.2 193

process flow. The flow activity in BPEL4WS does allow some flexibility with itslink elements, but is acyclical. Thus, thereis
not going to be a one-to-one mapping of the BPMN elements to the BPEL 4W'S elements, without restricting the connection
capability of BPMN.

Thisis particularly true of the BPELAWS. In BPEL4AWS, structure elements, such as switch, pick, and while, have a clear
beginning and end. BPMN does not provide specific markers for the start and end of these elements. The exact configuration
of the Sequence Flow connections will determine how the Process will be mapped to the BPEL4WS elements.

To determine the appropriate merging and joining points that are needed to construct the structured elements, the configuration
of the Process needs to be analyzed. The mechanism we are proposing is called Token Analysis. This involves the creation of
aconceptual Token that will “traverse” all the Sequence Flow of the Process. The Token will have a hierarchical Tokenld set

that will expand/or contract based on the forking and joining and/or splitting and merging that occurs throughout the Process.
By matching the Tokenld set of Tokensthat arrive at objects that have multiple incoming Sequence Flow, it will be possible to
determine the boundaries of execution language structured activities.

A BPMN Gateway will usually indicate the start of a BPEL4WS structured element, but even this may not be one-to-one if
there are loops involved. The end of the BPEL4WS structured element is even less obvious, since it could be marked by the
convergence of Sequence Flow into most types of BPMN elements.

The following sections will describe how different BPMN configurations will map to the BPEL4WS structure elements and
show how conceptual Tokens can be used to determine the extent of the BPEL4WS elements.

A.14 Identifying the Start of a BPEL4WS Element

The most basic structured element of BPEL4WS is the sequence.

u If the process, or the activity of a structured element (e.g., a switch case), contains more than one activity, thenitis
likely a sequence will be needed. Nearly any set of activities connected by Sequence Flow, which is not going to be
mapped to the contents of a flow, will be contained within a sequence. The sequence will envelope all the remaining
elements to the extent of the context in which the sequence exists. For example, the sequence will extend the length
of the process, or the length of a switch case, etc.

For the other types of BPEL4WS elements, their extend is determined by tracing through the Process with conceptual Tokens:

u First the start of the BPEL4WSE4WS structured element (e.g., flow, switch, pick, etc.) must be identified. Thisis
done by performing the mapping of the BPMN elements, starting with the Start Event or first element(s) if thereisno
Start Event, and proceeding down the Sequence Flow. The start of the structured element is usually a Gateway or if
an activity has multiple outgoing Sequence Flow (see Figure A.16 and Figure A.18).

u Notethat some structured elements (mainly a sequence, but including others such as a switch) are needed for
mapping a particular BPMN activity (as described in the sections above). In these cases, the extent of these
structured elements are known.

194 Business Process Modeling Notation, v1.2

| Start of BPELAWS
: Structured Element

| switch

Receive Problem Record Problem Problem

The entire set will
be enveloped ina -

sequence

Figure A.16 - Identification of BPEL4WS structured element

Cannot Reproduce

Corract Problem

Can Reproduce

- Statement

e

Werify Solution

—

ID Problem and
= Resoluticn

Problem

The number paths that make up the structured element MUST be determined. To do this, the all outgoing paths from
the location of the structured element will be identified. A conceptual Token can be used to trace the paths. The
Tokens are given an Id that uniquely identifies the precedent of the structure element being determined and the

number of paths being traced for that element (see Figure A.17).

Business Process Modeling Notation, v1.2

195

The Token s divided | S |
into a set of related |
Tokens)

31 Atofd |
: . Corract Problan
Cannot Reproducs .
Froblem | i Statement
| |
M 2ofd
buplication of | Verify Solution
Anather Problem -
| |
| |
| A dold |
: D Probiem and
Cin Regroduce : .
Froblem L J Resolution

Figure A.17 - The Creation of Related Tokens

A.15 Finding the End of a BPEL4WS Element
The end of a BPEL4WS structured element will be found when all the paths, which were identified at the start of the element,
have converged.

u Trace each path until thereisamerge or join with all the other paths. When all the Tokens with the appropriate |ds
arrive at the same BPMN object and can be recombined, then the structured element SHALL be closed (see Figure
A.18).

196 Business Process Modeling Notation, v1.2

[Token 7 N4 Location of
Takan

A tlof 2 A taf2 | Recombination

Post Resulis on
Wb Site

N

s 1f

| A

Prepare Results-

E-Mail Results of
YVaote

Start of BPELAWS
Structured Element
flow

f2of2 he2of2

Figure A.18 - Example of Recombination of Tokens

u There MAY be partial recombinations of the Tokens prior to the final recombination. In this case, one Token will
contain all the identities of the Tokens that have been merged (see Figure A.19). Note that partial recombination of a
Token creates another mapping issue that is described in Section A.22, “BPMN Elements that Span Multiple
BPEL4WS Sub-Elements,” on page 205.

A 1oof 3 Location of
Partial Two
Established with | Recombination .| TokenlDs in
good Credit : TTEA one Token
A 1i0f 3

and Location of

)) Inglude History of - Final
Established with ransactions " | Recombination

poor Credit

Inn:llude Standard
Text

Ar3ofld

Figure A.19 - Example of Partial Recombination of Tokens

u End Events can be combined with other BPMN objects to complete the merging or joining of the paths of a
BPEL4WS structured element (see Figure A.20).

Business Process Modeling Notation, v1.2 197

The Token
Recombination s
distributed across

: the End Events o —_ . — .
A 1:of 3 o A10f3 A
: Correct Problem o)
Cannol Reproduce | Statament - | |

rablem .
M 2ofd |

Duplication of Werify Solution ' |
Another Problem _ J :
A 2of3 A 2af 3 |
Communicate '
Resulis |
A | : J

: I Problem and : -

Cam Reproduce .
Prablem Resolution T

A 3of3

Figure A.20 - Example of Distributed Token Recombination

A.16 Nested Elements

Another structured element may occur before the first structure element is closed.

u If another structured element is encountered before all the paths are merged (see Figure A.21), then the tracing of the
first element MUST be stopped and the tracing of the paths of the second el ement MUST begin. The extent of the
second element MUST be determined before the extent of the first element can be determined.

u Thisprocess MUST be repeated if other structured elements are encountered during the tracing of any paths of
structured elements.

198 Business Process Modeling Notation, v1.2

Location of BFELAWS g;ﬁgf

Structured Element B: 1'af 2
swilch contained :

within another switch

Location of first A of 2 Nexfgteia?
BPELAWS : Recaive
Structured Send No Refarral

Element switch Option

Send Yes

Send Yes

A 1;T2,

&émz

_—— Token with a more
) complex D that is part -
Ar2of2 of two structured
elements

Figure A.21 - Example of nested BPEL4WS structural elements

A.17 Handling Loops

Loops are created when the flow of the Process moves from a downstream object to an upstream object.

u If one of the paths arrives at a BPMN object that is upstream from the source of the structured element, then this
SHALL create alooping situation. How the loop is handled depends on the type structured element is being traced
and how many paths are included in the element.

The following sections will describe the mapping for the different type of loop configurations.

A.18 Simple Loop From a Gateway

Thistype of loop is created by a Gateway that has only two outgoing Sequence Flow. One Sequence Flow continues
downstream and the other loops back upstream (see Figure A.22). Note that there might be intervening activities prior to when
the Sequence Flow loops back upstream.

u Thiswill map to aBPEL4WS while activity.
u The Condition for the Sequence Flow that loops back upstream will map to the condition of the while.

u All the activities that span the distance between where the loop starts and where it ends, will be mapped and
placed within the activity for the while, usually within a sequence.

Business Process Modeling Notation, v1.2 199

Tokens from two different Location of BPELAWS
.| levels converging indicate Structured Element while

a loop J| as determined by the loop

. 1D Problem and f : ' : Communicate
| Resclution : : ! Results

_

J Mo

Figure A.22 - Example of a Loop from a Decision with Two Alternative Paths

A.19 Loop/Switch Combinations From a Gateway

Thistype of loop is created by a Gateway that has three or more outgoing Sequence Flow. One Sequence Flow |oops back
upstream while the others continue downstream (see Figure A.23). Note that there might be intervening activities prior to
when the Sequence Flow loops back upstream.

u

200

This maps to both a BPEL4WS while and a switch. Both activities will be placed within a sequence, with the while
preceding the switch.

u For thewhile:
u The Condition for the Sequence Flow that loops back upstream will map to the condition of the while.

u All theactivities that span the distance between where the loop starts and where it ends, will be mapped and
placed within the activity for the while, usually within a sequence.

u For the switch:

u For each additional outgoing Sequence Flow there will be a case for the switch. The detailsfor mapping to a
switch from a Gateway can be found in Section A.8, “ Gateways,” on page 176.

Business Process Modeling Notation, v1.2

This path, since it results in &
loop, will be part of the
BPEL4WS wihila element.

Tokens from wo different levels . ;
Cl o converging indicate a loop .

Cancal Order

A —

Location of BPELAWS : Yo p| Sand Confirmation
while : | |
for Path 1 as datermined by the loop and a -
switch .
for paths 2 and 3 These two paths will be part of &
E— BPELAWS swilch element,

Figure A.23 - Example of a Loop from a Decision with more than Two Alternative Paths

A.20 Interleaved Loops

Thisisasituation where there are at least two loops involved and they are not nested (see Figure A.24). Multiple looping
situations can map, as described above, if they are in a sequence or are fully nested (e.g., one while inside another while).
However, if the loops overlap in anon-nested fashion, as shown in Figure A.24, then the structured element while cannot be
used to handle the situation. Also, since aflow isacyclic, it cannot handle the behavior either.

Business Process Modeling Notation, v1.2 201

Assamble
Componants

This is the section of the
.| Process that will be separated
into a sel of derved processes

Reconfigure I

Test Level 2

Test Level 1 o Package Product

Rconfigure |

Tokens from two different loops
converging at the same location
indicate interleaved loops

Figure A.24 - Example of Interleaved Loops

To handle this type of behavior, parts of the BPEL4WS process will have to be separated into one or more derived processes
that are spawned from the main process and will also spawn or call each other (note that the examples below are using a
spawning technique). Through this mechanism, the linear and structured elements of BPEL4WS can provide the same
behavior that is shown through a set of cyclesin asingle BPMN diagram. To do this:

202

u

The looping section of the process, where the loops first merge back (upstream) into the flow until all the paths have
merged back to Normal Flow, shall be separated from the main processinto a set of derived processesthat will spawn
each other until all the looping conditions are satisfied.

u The section of the Process that is removed will be replaced by a (one-way) invoke to spawn the derived process,
followed by areceive to accept the message that the looping sections have completed and the main process can
continue (see Figure A.25).

u The name of the invoke will be in the form of:
u “Spawn_[(loop target)activity.Name]_Derived Process’
u The name of the receive will bein the form of:
u “[(loop target)activity.Name]_Derived Process Completed”

Business Process Modeling Notation, v1.2

e - <<recaves>
=Zjmvakas> céne-wa-_.-t- Configure_ <=|nvoke=>
Assemble pEwn_ Product Package
Companents TestLevell_ Derived_Process Product
P Derived Process — —
Completed

Figure A.25 - Example of the BPEL4WS Pattern for Substituting for the Derived Process

u For each location in the Process where a Sequence Flow connects upstream, there will be a separate derived
BPEL4WS process.

u The name of the derived process will be in the form of:
u “[(loop target)activity.Name] Derived Process’
u All Gateways in this section will be mapped to switch elements, instead of while elements (see Figure A.26).

u Eachtimethereisa Seguence Flow that loops back upstream, the activity for the switch case will be a (one-way)
invoke that will spawn the appropriate derived process, even if the invoke spawns the same process again.

u The name of the invoke will the same as the one describe above.

u At theend of the derived process a (one-way) invoke will be used to signal the main process that all the derived
activity has completed and the main process can continue.

u The name of theinvoke will bein the form of:
u “[(loop target)activity.Name]_Derived Process Completed”

=<=Process=> Corfigure_Product_Derved_Process

<< ONE-Way=>
Spawn_
Configure_
Product_
Derived Process

=<nne-way=>

=<<invokg=> . Configure_

Configure_ T:IIH EkuZT}i Product
Product = = i Derived_Process_

Completed

CEOME-WERYE
Spawn_
Configura_
Product
Derived_Process

<<inyokes®
Test_Level 2

RunTes

<<0ne-way=>
Configure_
Product
Derivad_Process
Complated

L.

Figure A.26 - Example of a BPEL4AWS Pattern for the Derived Process

Business Process Modeling Notation, v1.2 203

A.20.1 Infinite Loops

Thistype of loop is created by a Sequence Flow that loops back without an intervening Gateway to create alternative paths
(see Figure A.27). While this may be a modeling error most of the time, there may be situations where this type of loop is
desired, especidly if it is placed within alarger activity that will eventually be interrupted.

u Thiswill map to awhile activity.
u Thecondition of thewhile will be set to an expression that will never evaluate to True, such as condition”1=0."

u All the activities that span the distance between where the |oop starts and where it ends, will be mapped and
placed within the activity for the while, usually within a sequence.

The Token amrives back The loop creates a
| upstream without going | BPFEL4WS
) through a Decision ' while

Post Status an
Web Site

Increment Tally

| | : : ' The activities are

: ‘ | contained within a

| A 1of] A1 of 1 A 1of1 Sequence
- within the wihils

Figure A.27 - Example: An Infinite Loop

A.21 Handling Link Events as Go To Objects

Aswas seen in Figure 10.43, Figure 10.44, and Figure 10.45, Link Intermediate Events can be used as Go To Objects. The
basic impact of using them in such away isthat they are a substitute using a single, longer Sequence Flow to make the same
connection between two objects. Thus, the mapping to BPEL4WS should be done by considering them asjust asingle
Sequence Flow. This means that the Intermediate Events are not mapped to any BPEL4WS element. Instead a conceptual
Sequence Flow will be used, with the Source and Target of that Sequence Flow being the Source of the Sequence Flow going
into the Source Link Event and the Target of the Sequence Flow coming out of the Target Link Event (see Figure A.28). The
mapping at this point can done using all the mapping consideration described in this Chapter.

204 Business Process Modeling Notation, v1.2

Test Product

Configure Product >

—_

E"‘a Target of the T The combination of these E |jhe Source of the

Derived Sequence ©.| ohjects creates a derived | Derived Sequence

Flow Seguence Flow for mapging to Flerw

BPEL4WS

Figure A.28 - Example: A Pair of Go To Link Events are Treated as a Single Sequence Flow

A.22 BPMN Elements that Span Multiple BPEL4WS Sub-Elements

Figure A.19 is repeated below in Figure A.29 to illustrate how BPMN objects may exist in two separate sub-elements of a
BPEL4WS structured element at the same time. Since BPMN allows free form connections of activities and Sequence Flow, it
is possible that two (or more) Sequence Flow will merge before all the Sequence Flow that map to a BPEL4WS structure
element have merged. The sub-elements of a BPEL4WS structured elements are also self contained and there is no cross sub-
element flow. For example, the cases of a switch cannot interact; that is, they cannot share activities. Thus, one BPMN activity
will need to appear in two (or more) BPEL4WS structured elements.

There are two possible mechanisms to deal with the situation.

u Firgt, the activities are simply duplicated in al appropriate BPEL4WS elements.

u Second, the activities that need to be duplicated can be removed from the main process and placed in a derived
processthat is called (invoked) from all locations in the BPEL4AWS elements as required.

u The name of the derived process will bein the form of:
u “[(target)object.Name]_Derived_Process’
In Figure A.29 displays this issue with an example. In that example, two Sequence Flow mergeinto the “Include History of
Transactions’ Task. However, the Decision that precedes the Task has three (3) alternatives. Thus, the Decision mapsto a

BPEL4WS switch with three (3) cases. The three cases are not closed until the “Include Standard Text” Task, downstream.
This means that the “Include History of Transactions’ Task will actually appear in two (2) of the three (3) cases of the switch.

Note— The use of a BPEL4WS flow will be able to handle the behavior without duplicating activities, but a flow will not
aways be available for use in these situations, particularly if a BPEL4WS pick is required.

Business Process Modeling Notation, v1.2 205

1af3 Location of

Partial Two
Established with '”“'“diif':"”g"’ *| Recombination .| TokenlDs in
good Credit N st one Tokan
W """ : ' 10f3

and Location of
. Final
Recombination

Inr#ude History of
ransactions

Established with

20f3

InTude Standard
Text

[Tolcan - W |_

Gofd

Figure A.29 - Example: Activity that spans two paths of a BPEL4WS Structured Element

Example A.8 displays some sample BPEL4WS code that reflects the portion of the Process that was just discussed and is

shown in Figure A.29. Note that there are two invoke elements that have the same name attribute
(“IncludeHistoryof Transactions”).

<!--Continue with the process-->

<switch name="TypeofCustomer">
<!-- name="Established with Good Credit" -->
<case condition="bpws:getVariableProperty (ProcessData,CreditType)>"Yes,
<invoke name="IncludeApologyText" ...>
<!--This also exists in the other case-->
<invoke name="IncludeHistoryofTransactions" ...>
</case>
<!--name="Established with poor Credit" -->
<case condition="bpws:getVariableProperty (ProcessData,CreditType)>"Yes,
<!--This also exists in the other case-->
<invoke name="IncludeHistoryofTransactions" ...>
</case>
<!--name="Default (New)" -->
<otherwise>
<!--Nothing happens here-->
<empty/>
</otherwise>
</switch>
<invoke name="IncludeStandardText" ...>
<!--Continue with the process-->

Good” ">

Poor” ">

Example A.8 - Example: BPMN Elements that Span Multiple BPEL4AWS Sub-Elements

206 Business Process Modeling Notation, v1.2

A.23 BPMN by Example (Including a Mapping to BPEL4WS)

This section will provide an example of a business process modeled with BPMN and will extend Chapter 11 by adding
information about how the example Process will map to BPEL4WS. The process that will be described is a process used to
help devel op this notation. It isa process for resolving issues through e-mail votes (see Figure A.30). This Processis small, but
fairly complex and will provide examples for many of the features of BPMN. There are some unusual features of this business
process, such as infinite loops. Although not atypical process, it will help illustrate that BPMN can handle simple and unusual
business processes and still be easily understandable for readers of the Diagram. The sections below will isolate segments of
the Process and highlight the modeling features as the workings of the Processis described. In addition, samples of BPEL4WS
code are provided to demonstrate how a BPMN Diagram maps to BPEL4WS.

Receive Issue
List

Review Issue
List

—_—

Reduce to
Two Solutions

Discussion
Cycle

Announce
Issues

@-

\ E-Mail Voters
that have to

Change Votes

Prepare
Results

Post Results E-Mail Results
on Web Site of Vote Yes

P

—q

Prd Enoudyy
Members

| DeaLIine |
Wanning
Isque

Vrlte
Announcement Announcement

Reduce number o
Voting Members
and Recalculate
Vote

Re-announce
Vote with
warning to voting

,—_—_

members
| with \/@rning
Av4

A
| Vote annl)uncment

|
| I
| |
| |
| |
| |
b 4 ! l

Voting Members

Figure A.30 - E-Mail Voting Process
The Process has a point of view that is from the perspective of the manager of the Issues List and the discussion around this

list. From that point of view, the voting members of the working group are considered as external Participants who will be
communi cated with by messages (shown as Message Flow).

Business Process Modeling Notation, v1.2 207

A.23.1 The Beginning of the Process
The Process starts with Timer Start Event that is set to trigger the Process every Friday (see Figure A.31).

From "Yes"
Alternative of the
"2nd Time?"

__,.EUser Activity Decision
\ 3
To Task:
@ Receive Review Issue "Announce
Issue List List Issues for
Start on Vote"
Friday . d A oe
I: Collapsed
: : : : Sub-Process
........ > >
Issue List Issue Voting List

[0 to 5 Issues]

Figure A.31 - The Start of the Process

ThelssueList Manager will review thelist and determineif there are any issuesthat are ready for going through the discussion
and voting cycle. Then a Decision must be made. If there are no issues ready, then the Processis over for that week--to be
taken up again the following week. If there are issues ready, then the Process will continue with the discussion cycle. The
“Discussion Cycle” Sub-Processisthefirst activity after the “ Any issues ready?’ Decision and this Sub-Process has two
incoming Sequence Flow, one of which originates from a downstream Decision and is thus part of aloop. It isone of a set of
five complex loops that exist in the Process. The contents of the “ Discussion Cycle” Sub-Process and the activities that follow
will be described below.

A.24 Mapping to BPEL4WS

BPEL4WS processes must begin with areceive activity for instantiation (i.e., it “bootstraps’ itself). The “E-Mail Voting
Process’ is scheduled to start every Friday as shown by the Timer Start Event. Therefore, an additional Process will haveto be
created and implemented that will run indefinitely and will send a starting message with the list of Issuesto the “E-Mail Voting
Process’ every Friday. Figure A.32 shows this Process as starting that the beginning of the Working Group and continuing
until the end of the Working Group. Even this Process needs a message to be sent to it to signal the start of the Working Group.
There may be another Process defined that sends that message, but that Processis not shown here. In addition, the mapping
from the Starter Process to BPEL4WS is not shown here.

208 Business Process Modeling Notation, v1.2

Working

Group Still
Check Status Active? [Send]

of Working Send Current
Group Issue List

Working Friday at

Group 6 P_M
Active Pa_\C|f|C
Time

Issue List

Figure A.32 - The Ongoing Starter Process

e Within the main Process (see Figure A.31), the “Receive Issue List” Task will map to a BPEL4WS receive that hasits
createl nstance attribute set to “yes.” Thiswill receive starting message and start the process.

« Thisreceive will be placed inside a sequence since other activities follow the activity. The message to be received will
contain all the variable parts that will be used in the process and their initialized values.

Note — the names of BPD abjects have all non-alphanumeric characters stripped from them when they are mapped to
BPEL4WS name elements to match the BPEL4WS element restrictions.

The model er-defined properties of the Process will be placed in a BPEL4WS variables element named “ processData.” The
same variables element will be used in al derived processes in this example.

e The“Review Issue List” Task will map to a BPEL4WS invoke. This TaskType is User, which means that the invoke
will be synchronous and an outputVariable included.

Mapping an Exclusive Gateway (Decision)
e The“Any Issues Ready?’ Exclusive Gateway (Decision) will map to a BPEL4WS switch.

* The Gatefor the“No” Sequence Flow will map to the otherwise case of the switch. This otherwise will only contain an
empty activity since there is nothing to do and the Processis over.

Note that empty does not have any corresponding activity in the BPMN Diagram, but is derived through the Diagram
configuration.

e TheGatefor the“Yes’ Sequence Flow will map to other case for the switch. This case will have a condition that checks
the number of issuesthat are ready. This case will handle the remainder of the Process that is shown in Figure A.30.

Thisis done because the switch is ablock structure and needs a definitive ending point and since the otherwise is connected to
the end of the Process, then the end of the Processis the ending point that the case must use. The actual activities that make up
the rest of the Process will be distributed among a set of BPEL4WS processes instead of all being within the case. The case

Business Process Modeling Notation, v1.2 209

will only contain an invoke that will call another process (as aweb service). The distribution of the Process activitiesis dueto
the overall Diagram configuration that includes three upstream Sequence Flow that define some interleaving loops.

The Impact of Interleaved Loops

If the loop shown in this section of the model were merely a simple loop, and perhaps the only loop, then a BPEL4WS while
would be used to handle the loop. In this situation, though, the looping is handled through a set of derived processes that are
accessed by invoking them (as aweb service). There would be no specific Diagram element to represent these derived
processes; indeed, a model er would not want to create a set of related Processes to handle complex looping. While an
execution engine can easily handle a complex set of language documents and € ements, a business person developing and
monitoring this process will want to see the Process in an easy-to-read format (such as BPMN) that contains the informationin
amore comprehensive, less distributed format. See Section A.20, “Interleaved Loops,” on page 201 for details about how
interleaved loops are mapped to BPEL4WS.

Inthisexample, all derived processeswill be named “[(target of loop) activity.Name]_Derived Process.” Any naming scheme
will work aslong as all the processes have unique names. Thus, to handle the rest of the Process, a derived nested process
named “Discussion_Cycle Derived Process’ is created and then a BPEL4AWS invoke is used to access this process from the
“Yes’ case of the " Any issues ready?’ switch.

We shall see that later in the Process the same process is accessed through another invoke, marking the source of the loop.

All the sub-processes and derived processes in the BPEL4WS documents must be started with the receive of a message and
then areply to send amessage back to the calling process. This means that a receive will be the first activity inside a sequence
that will be the main activity of these processes. These receive activities will have the createl nstance attribute set to “Yes.” A
named “internal,” a portType name “processPort” will be created to support al of these process to process communications.
The WSDL operations that will support these communications will all be named “call_<process name>" (as noted above, the
processes are actually spawned).

The “Discussion Cycle’ Sub-Process shown in Figure A.31 will continue the sequence (after the instantiating receive) for the
“Discussion_Cycle Derived Process’ process. Since “Discussion Cycle” isa Sub-Process it will map to a separate
BPEL4WS process that is accessed through an invoke.

Mapping an Activity Loop Condition

The “Discussion Cycle” Process has aloop marker. In this situation, the looping mechanism is simple. The attributes of the
Sub-Process will tell usthe details. The “Discussion Cycle” Sub-Process's relevant attributes are; LoopType: “ Standard;”
LoopCondition: DiscussionOver = “FALSE"; and TestTime: “After.”

This means that the invoke that calls the process will be enclosed within a while activity when the BPEL4AWS is derived. The
LoopType will map to a BPEL4AWS while. The LoopCondition of the Process (as shown above) will map to the
“DiscussionOver = False” will be the condition for the while.

The default value for the “ DiscussionOver” property is False, thus an activity within the Sub-Process will have to change it to
True before the while loop is over. The logical opposite of the expression that is shown in the Sub-Process attributes is used
since the EvaluationCondition property is “ after.” However, awhile will test the condition prior to running the activity within.
This means that to insure that the activity is aways performed at least once (to mimic the behavior of an “until”) a
LoopCounter variable will always be added to the while condition for aBPMN activity that has its TestTime attribute set to
“After.”

210 Business Process Modeling Notation, v1.2

e The LoopCounter will beinitialized to zero, and an assign will be added to the sequence prior to the while element.

« Theactivity of the while will be changed to a sequence, with the invoke for the Sub-Process, which is followed by an
assign that will increment the LoopCounter variable, inside the sequence.

We will look into the details of the “Discussion Cycle” Sub-Processin Section A.24.1, “The First Sub-Process,” on page 213.
BPEL4WS Sample for the Beginning of the Process

Example A.9 displays some sample BPEL4WS code that reflects the portion of the Process that was just discussed and is
shown in Figure A.31.

Business Process Modeling Notation, v1.2 211

<process name="EMailVotingProcess">

<!-- The Process data 1s defined first--»>
<sequences
<!--This starts the beginning of the Process. The process that sends the

starting message every Friday is related to the Timer Start Event and is
not shown here.-->
<receive partnerLink="Internal" portType="tns:processPort"
operation="receiveIssueList" variable="processData" createlInstance="Yes"/>
<invoke name="ReviewIssueList" partnerLink="Internal"
portType="tns:internalPort" operation="sendIssueList"
inputVariable="processData" outputVariable="processData"/>
<switch name="Anyissuesready">
<!-- name="Yes" -->
<case condition="bpws:getVariableProperty (ProcessData,NumIssues)>0">
<!--A chunk of this process is separated into a derived process so that it can be
called from a complex loop. Thus, it is called from here and from ”“Collect Votes”
as part of a loop-->
<invoke name="Discussion Cycle Derived Process" partnerLink="Internal"
portType="tns:processPort"
operation="call Discussion Cycle Derived Process" inputVariable="processData"
outputVariable="processData"/>
</case>
<!--name="No" -->
<otherwise>
<!--This is one of the two ways to the end of the Process-->
<empty/>
</otherwise>
</switch>
</sequence>
</process>

<process name="Discussion Cycle Derived Process">
<!-- The Process data is defined first--»>
<sequences
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Discussion Cycle Derived Process" variable="processData"
createInstance="Yes"/>
<!--The first Sub-Process has a loop condition, so it is within a while-->
<assign name="Discussion Cycle initialize loopCounter"s
<copy>
<from expression="0"/>
<to variable="Discussion Cycle loopCounter" part="loopCounter" />

</copy>
</assign>
<!--Since the TestTime is “After” the Sub-Process has to be performed before the
while-->

<invoke name="Discussion Cycle" partnerLink="Internal"

212 Business Process Modeling Notation, v1.2

portType="tns:processPort operation="call Discussion Cycle"
inputVariable="processData" outputVariable="processData"/>
<while condition="bpws:getVariableProperty (ProcessData,DiscussionOver)=false">
<!--This calls the first Sub-Process-->
<sequence>
<invoke name="Discussion Cycle" partnerLink="Internal"
portType="tns:processPort operation="call Discussion Cycle"
inputVariable="processData" outputVariable="processData"/>
<assign>
<copy>
<from expression=
"bpws :getVariableProperty (Discussion Cycle loopCounter, LoopCounter)+1"/>
<to variable="Discussion Cycle loopCounter" part="LoopCounter"/>
</copy>
</assign>
</sequence>
</while>
<!--This calls the first another derived process to handle the rest of the
work-->
<invoke name="Announce Issues Derived Process" partnerLink="Internal"
portType="tns:processPort" operation="call Announce Issues Derived Process"
inputVariable="processData" outputVariable="processData"/>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Discussion Cycle Derived Process" variable="processData"
createInstance="Yes"/>
</sequence>
</process>
<!--A lot of other activity follows (not shown)-->

Example A.9 - BPEL4WS Sample for Beginning of E-Mail Voting Process

A.24.1 The First Sub-Process
Figure A.33 shows the details of the “ Discussion Cycle” as an Expanded Sub-Process.

Business Process Modeling Notation, v1.2

213

Moderate E-mail
Discussion

Review Status
of Discussion

E-Mail
Discussion
Deadline

Delay 6 days from Warning

Announcement
Default>@

ConcCall

Evaluate
Discussion
Progress

Announce
Issues for
Discussion

Callin
iscussio|
Week?

Check Calendar
for Conference
Call

Yes Moderate
Conference Call

>) Discussion
Wait until No

Thursday, 9am ConcCall

Figure A.33 - “Discussion Cycle” Sub-Process Details

The Sub-Process starts with a Task for the Issue List Manager to send an e-mail to the working group that a set of Issues are
now open for discussion through the working group’s message board. Since this Task sends amessage to an outside Participant
(the working group members), an outgoing Message Flow is seen from the “ Discussion Cycle’ Sub-Process to the “Voting
Members” Pool in Figure A.30. Basically, the working group will be discussing the issues for one week and proposing
additional solutionsto the issues. After the first Task, three separate parallel paths are followed that are synchronized
downstream. Thisis shown by the three outgoing Sequence Flow for that activity.

Thetop parallel path in the figure starts with along-running Task, “Moderate E-mail Discussion,” that has a Timer
Intermediate Event attached to its boundary. Although the “Moderate E-Mail Discussion” Task will never actualy be
completed normally in this model, there must be an outgoing Sequence Flow for the Task since Start and End Events are being
used within the Process. This Sequence Flow will merge with the Sequence Flow that comes from the Timer Intermediate
Event. A merging Exclusive Gateway is used in this situation because the next object is ajoining Parallel Gateway (the
diamond with the cross in the center) that is used to synchronize the three parallel paths. If the merging Gateway was not used
and both Sequence Flow connected to the joining Gateway, the Process would have been stuck at the joining Gateway that
would wait for a Token to arrive from each of the incoming Sequence Flow.

The middle parallel path of the fork contains an Intermediate Event and a Task. A Timer Intermediate Event used in the middle
of the Process flow (not attached to the boundary of an activity) will cause adelay. This delay is set to 6 days. The “E-Mail
Discussion Deadline Warning” Task will follow. Again, since this Task sends a message to an outside Participant, an outgoing
Message Flow is seen from the “ Discussion Cycle” Sub-Processto the “Voting Members’ Pool in Figure A.30.

The bottom parallel path of the fork contains more than one object, first of which is Task where the issue list manager checks
the calendar to see if there is a conference call thisweek. The output of the Task will be an update to the variable “ ConCall,”
which will be true or false. After the Task, an Exclusive Gateway with its two Gates follows. The Gate for labeled “ default”
Flow directly to amerging Exclusive Gateway, for the same reason asin the top parallel path. The Gate for the“ Yes’ Sequence
Flow will have a condition that checks the value of the “ConCall” variable (set in the previous Task) to seeif there will be a

214 Business Process Modeling Notation, v1.2

conference call during the coming week. If so, the Timer Intermediate Event indicates delay, since al conference calls for the
working group start at 9am PDT on Thursdays. The Task for moderating the conference call follows the delay, which is
followed the merging Gateway.

The merging Gateways in the top and bottom paths and the “ E-Mail Discussion Deadline Warning” Task all flow into ajoining
Gateway. This Gateway waits for all three paths to compl ete before the Process Flow to the next Task, “ Evaluate Discussion
Progress.” Theissue list manager will review the status of the issues and the discussions during the past week and decide if the
discussions are over. The DiscussionOver variable will be set to TRUE or FAL SE, depending on this evaluation. If the variable
is set to FAL SE, then the whole Sub-Process will be repeated, since it has looping set and the loop condition will test the
DiscussionOver variable.

A.25 Mapping to BPEL4AWS

* The“Discussion Cycle” Sub-Process itself maps to a BPEL4WS process.

Because it is a Sub-Process within a higher-level Process (the“ E-Mail Voting” Process), it isinvoked from the higher-
level Process. The invoke sends a message from one (higher-level) BPEL4WS process to the other (lower-level) pro-
cess for instantiation.

e This means that the process being instantiated must have areceive to start it off.

» The process being instantiated must have areply to end it, sinceit is being synchronoudly called.

The receive and reply are not actually shown in the BPMN Diagram, but it is derived from thisinvoke relationship of
“Discussion Cycle” Process being a Sub-Process to the “E-Mail Voting” Process.

« Given this, the activity of the BPEL4WS process will be a sequence with the derived receive as the first activity.

The Diagrams elements of Figure A.33 will determine the remaining activity(ies) of the sequence.

¢ The Sub-Process starts off with a Task, which maps to a BPEL4WS invoke (which is after the automatically generated
receive that starts the process).

« After thefirst Task, three separate parallel paths are followed. The forking of the flow marks the start of a BPEL4WS
flow. The flow will extend until the Parallel Gateway, which joins the three paths.
A.25.1 The Upper Parallel Path

In the upper parallel path of the fork, the Task, “Moderate E-mail Discussion,” has a Timer Intermediate Event attached to its
boundary. Because of this,

e TheTask isplaced in its own scope with afaultHandlers.

e The Task itself is mapped to a BPEL4AWS invoke (synchronous), and will be placed in alower-level flow, for reasons
described bel ow.

The Timer Intermediate Event must be set up to create afault at the appropriate time. To do this,

« AneventHandlersis added to the scope.

* An onAlarmisincluded in the eventHandlers and the for attribute is set to the duration that is defined in the Timer
Intermediate Event.

« The onAlarm contains a throw with a fault name after the Intermediate Event with “_Exit” appended.

Business Process Modeling Notation, v1.2 215

The catch of afaultHandlerswill be triggered by the fault generated by the above throw. Since the Timer Intermediate Event
|eads direction to the Exclusive Gateway, there is no specific activity that must be performed in response to time-out. The main
purposeisto exit the Task. Thus,

« A faultHandlersis added to the scope.

» The catch in the faultHandlers has a faultName set to Intermediate Event with “_Exit” appended.
« the catch will contain an empty activity.

A.25.2 The Middle Parallel Path
The middle parallel path of the fork has a string of two objects.

« Even though this series of objects appearsin the middle of a BPEL4WS flow, they will be place within a sequence
element.

In these situations, the sequence will continue until there is alocation in the Diagram where there are multiple incoming
Sequence Flow. When more than one Sequence Flow converge it marks the end of a BPEL4WS structure (as determined by
structures that have been created by upstream objects). In this case, the Parallel Gateway a so marksthe end of the higher-level
flow. The sequence will be listed in the higher-level flow without a source sub-element. This means that the sequence will be
instantiated when the higher-level flow begins since it has no dependencies on any other activity. The sequence will have two
activities:

 First, the Timer Intermediate Event used in this situation will map to a BPEL4WS wait (set to 6 days).

¢ Second, the “E-Mail Discussion Deadline Warning” Task will map to an invoke that follows the wait. In addition, this
invoke can be asynchronous since a response is not required. This means that the outputVariable will not be included.

This middle path of the fork could have been configured in BPEL4WS without a sequence and with links instead. Thisis an
example of a situation where aBPMN configuration may derive two possible BPEL4WS configurations. Since both
BPEL4WS configurations will handle the appropriate behavior, it is up to the implementation of the BPMN to BPEL4AWS
derivation to determine which configuration will be used. BPMN does not provide any specific recommendation in these
situations. However, the lower parallel path of the Process can also be modeled with a sequence or with links, and, to show
how links would be used, this section of the Process will be mapped to elementsin aflow that have dependencies specified by
links.

A.25.3 The Lower Parallel Path

The lower parallel path of the fork has a number of objects and, as just described above, will be mapped to BPEL4AWS
elements connected with links. The path also contains a Decision, which can map to a switch, as will happen later in the
process, but in this situation the Decision is mapped to links controlled by transitionConditions.

« Thefirst object is a Task, which will map to an invoke (synchronous) that has two source elements referring to two of
the links. There are two Target links because the Task is followed by the Gateway with itstwo Gates. Thisis done
instead of a switch with a case and an otherwise.

 The ConditionExpression for the Gate labeled “Yes’ will map to the source element’ s transitionCondition. The
expression checksthe value of the“ ConCall” property (set in the previous Task) to seeif there will be aconference
call during the coming week.

» The Gatelabeled “No” has acondition of default. For a switch, thiswould map to the otherwise element. However,
since aswitch is not being used, the source element’ s transitionCondition must be the inverse of al the other
transitionConditions for the activity. The expression of the other source will be placed inside a“not” function.

216 Business Process Modeling Notation, v1.2

Theinvoke will be listed in the higher-level flow without a source sub-element. This means that the invoke will be instantiated
when the higher-level flow begins since it has no dependencies on any other activity. The remaining elements of the higher-
level flow will have a source element. Thus, they will not be instantiated until the source of the link has completed.

e The"“Yes’ Gate from the Gateway leads to a Timer Intermediate Event, which will map to await.
» Thefor element of the wait will be set for 9am PDT on the next Thursday.
« Thiswait will have atarget element that corresponds to the target element from the previous invoke.
« Thewait will also have atarget element to link to the following invoke.

e The“No" Gate from the Gateway leadsto a merging Exclusive Gateway, which means that nothing is expected to
happen down this path. Thus, thiswill map to an empty.

» Thisempty will have atarget element that corresponds to the target element from the previous invoke.

» The Task for moderating the conference call follows the wait, which will map to an invoke (Synchronous).

 Thisinvoke will have atarget element that corresponds to the target element from the previous wait.
There are three link elementsin the flow:
« Onelink will have a source of the first invoke and a target of the wait.
* Onelink will have a source of the first invoke and atarget of the empty.
* Onelink will have a source of the first wait and atarget of the last invoke.
As mentioned above, the Parallel Gateway marks the end of the flow.

Finally, there will be areply at the end of the sequence that corresponds to the initial receive and lets the parent process know
that the (sub) process has been compl eted.

A.25.4 After the Parallel Paths are Joined
The Task “Evaluate Discussion Progress’ is intended to occur only when all the parallel paths have completed, and thus, it will

* Map to aninvoke that follows the closing of the flow.

Business Process Modeling Notation, v1.2 217

A.25.5 BPEL4WS Sample for the First Sub-Process
Example A.10 displays some sample BPEL4WS code that reflects the portion of the Process as described above and shown in

Figure A.33.

<process name="Discussion Cycle">

<!-- The Process data is defined first--»>

<sequence>
<receive partnerLink="Internal" portType="tns:processPort"

operation="call Discussion Cycle" variable="processData" createInstance="Yes"/>
<invoke name="AnnouncelssuesforDiscussion" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendDiscussionAnnouncement"

inputVariable="processData"/>

<flow>

<links>
<link name="CheckCalendarforConferenceCalltoWaituntilThursday, 9am"/>

<link name="CheckCalendarforConferenceCalltoEmpty"/>
<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</links>
<!-- This is the first of the three paths of the fork. -->

<scope>
<invoke name="ModerateEmailDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendDiscussion"

inputVariable="processData" outputVariable="processData"/>

<faultHandlers>
<catch faultName="7Days_ Exit">
<empty/>
</catch>
</faultHandlers>

<eventHandlers>
<onAlarm for="tns:0OneWeek">

<throw faultName="7Days Exit"/>

</catch>
</eventHandlers>

</scope>
<!-- This is the second of the three paths of the fork. -->

218 Business Process Modeling Notation, v1.2

<sequence>
<wait name="Delay6daysfromDiscussionAnnouncement" for="P6D"/>
<invoke name="EMailDiscussionDeadlineWarning" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendDiscussionWarning"
inputVariable="processData">
</invoke>
</sequence>
<!-- This is the third of the three paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"
portType="tns:internalPort" operation="receiveCallSchedule"
inputVariable="processData" outputVariable="processData">
<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"
transitionCondition="bpws:getVariableProperty (processData,conCall)=true"/>
<source linkName="CheckCalendarforConferenceCalltoEmpty"
transitionCondition="not (bpws:getVariableProperty (processData,conCall)=true)"/>
</invoke>
<!-- name="Yes" -->
<wait name="WaituntilThursday9am" for="P6DTIH">
<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am">
<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</wait>
<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendConCall"
inputVariable="processData" outputVariable="processData">
<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</invoke>
<!-- name="otherwise" -->
<empty>
<target linkName="CheckCalendarforConferenceCalltoEmpty"/>
</empty>
</flow>
<invoke name="EvaluateDiscussionProgress" partnerLink="internal"
portType="tns:internalPort" operation="receiveDiscussionStatus"
inputVariable="processData" outputVariable="processData"/>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Discussion Cycle" variable="processData"/>
</sequence>
</process>

Example A.10 - BPEL4WS Sample of “Discussion Cycle” Sub-Process Details

A.25.6 The Second Sub-Process
Figure A.34 shows the next section of the Process, which includes the expanded details of the “ Collect Votes” Sub-Process.

Business Process Modeling Notation, v1.2 219

A Loop:
From Unnamed
Sub-Process

Announce
Issues

A
From Sub-Process:
"Discussion Cycle"

C (parallel box Collect Votes

Check Calendar

—p| for Conference

Call

onferenc

Week?

Calendar

Moderate E-mail

Call in Voting

Thursday, 9am

N No

Moderate
Conference Call
Discussion

Wait until

Discussion

Delay 6 Days

E-Mail Vote
Deadline Warning

A

Receive Vote H Increment Tally]J

>D

Vote Tally

Prepare
Results

A Loop:
From Task:

"Re-announce Vote with

E warning to voting members"

Figure A.34 - “Collect Votes” Sub-Process Details

)

E-Mail Results
of Vote
N——

)

Post Results
on Web Site
N—

To Decision:
@ "Did Enough
F Members Vote?"

This part of the process starts out with a Task for the issue list manager to send out an e-mail to announce to the working
group, and the voting members in particular, which lets them know that the issues are now ready for voting. Since this Task
sends a message to an outside Participant (the working group members), an outgoing Message Flow is seen from the
“Announce Issues’ Task to the “Voting Members’ Pool in Figure A.30. This Task is aso atarget for one of the complex loops

in the Process.

The“Collect Votes” Sub-Process follows the Task, and is also atarget of one of the looping Sequence Flow. This Sub-Process
isbasically aset of four parallel paths that extend from the beginning to the end of the Sub-Process.

220

Business Process Modeling Notation, v1.2

Thefirst branch of the fork leads to a Decision that determines whether or not a conference call will occur during the
upcoming week, after the Working Group’s schedul e has been checked. Basicaly, if there was a call last week, then there will
not be a call this week and vice versa. The appropriate variable that was updated in the “ Discussion Cycle’ Process will be
used again.

The second and third branches forks work the same way asthe similar activitiesin the “ Discussion Cycle” Sub-Process, except
that the “Moderate E-Mail Discussion” Task does not have a Timer Intermediate Event attached. Thisis not necessary since
the whole Sub-Process isinterrupted after 7 days through the Intermediate Event attached to the Sub-Process boundary. The
“E-Mail Vote Deadline Warning” Task sends a message to an outside Participant (the working group members), thus, an
outgoing Message Flow is seen from the “ Collect Votes” Sub-Process to the “Voting Members” Pool in Figure A.30.

The fourth branch of the fork is rather unique in that the Diagram uses aloop that does not utilize a Decision. Thus, it is, asit
isintended to be, an infinite loop. The policy of the working group is that voting members can vote more than once on an
issue; that is, they can change their mind as many times as they want throughout the entire week. The first Task in the loop
receives a message from the outside Participant (the working group members), thus, an incoming Message Flow is seen from
the “Voting Members” Pool to the “ Collect Votes’ Sub-Processin Figure A.30. The Timer Intermediate Event attached to the
boundary of the Sub-Process is the mechanism that will end the infinite loop, since all work inside the Sub-Process will be
ended when the time-out is triggered. All the remaining work of the Process is conducted after the time-out and Flow from the
Timer Intermediate Event.

Figure A.34 shows that there are Two Tasks that follow the time-out. First, a Task will prepare all the voting results, then a
Task will send the results to the voting members. A Document Object, “Issue Votes,” is shown in the Diagram to illustrate how
one might be used, but it will not map to anything in the execution languages. The remaining activities of the Process will be
described in the next section.

A.26 Mapping to BPEL4WS

A.26.1 The Loops Cause Derived Sub-Processes

» Thefirst Task of this section of the Processisalso atarget for one of the complex loops in the Process, thus, it will map
to an invoke (asynchronous) that is placed inside another derived process (“Announce_Issues Derived Process’).

» Thisderived processwill beinvoked from “Discussion_Cycle Derived Process,” after the “ Discussion Cycle” process
has been completed, as part of the Normal Flow and then from another part of the Process as part of the looping flow.

 Thus, “Announce_lssues Derived Process’ will require a (instantiation) receive to accept the message from
“Discussion_Cycle Derived Process’ and from “Issues wo_Magjority Derived Process’ (aswe shall see later).

e The“Collect Votes” Sub-Process follows the Task, but is also atarget of one of the looping Sequence Flow. Thus, it
will also be set inside a derived process (“Collect Votes Derived Process’).

« In addition, “Collect_Votes Derived Process’ will require a (instantiation) receive to accept the message from
“Announce_lssues Derived Process’ and from the fault handler of “Collect Votes’ (aswe shall see later).

e The“Collect Votes” Sub-Process will map to an invoke (asynchronous) and the details will bein aprocess referenced
through the invoke.

Business Process Modeling Notation, v1.2 221

A.26.2 The BPEL4AWS Sample of the Derived Sub-Processes
Example A.11 shows sample BPEL4WS code that defines the two derived processes.

<process name="Announce_ Issues_ Derived Process'">
<!-- This starts the middle section of the Process and is call from
the first time and then from “Collect Votes” during a loop-->
<!-- The Process data is defined first--»>
<sequences
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Announce_Issues_ Derived Process"
variable="processData" createlnstance="Yes"/>
<invoke name="AnnounceIssuesforVote" partnerLink="WGVoter" portType="tns:emailPort"
operation="sendVoteAnnouncement" inputVariable="processData"/>
<invoke name="Collect Votes_Derived Process" partnerLink="Internal"
portType="tns:processPort"
operation="call Collect Votes Derived Process" inputVariable="processData"/>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Announce_Issues Derived Process"
variable="processData" createlnstance="Yes"/>
</sequence>
</process>

<process name="Collect Votes Derived Process">
<!-- this calls the second Sub-Process and then continues. It is also
called from “Collect Votes” as part of a loop-->
<!-- The Process data is defined first--»>
<sequences
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes Derived Process" variable="processData"
createInstance="Yes"/>
<invoke name="Collect Votes" partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes" inputVariable="processData"/>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes Derived Process" variable="processData"
createInstance="Yes"/>
</sequence>
</process>

Example A.11 - BPEL4WS Sample that sets up the Access for the Second Sub-Process

A.26.3 The Paths of the Sub-Process

The “Collect Votes Sub-Processis basically a set of four parallel paths that extend from the beginning to the end of the Sub-

Process.

e Thus, the activity for the process will be aflow.

A.26.3.1 The Upper Parallel Path

Thefirst branch of this Sub-Processis basically the same as the upper parallel of the previous Sub-Process. An invoke, await,

and an empty will be created. In addition, three links will be created to handl e the dependencies between the elements,

222 Business Process Modeling Notation, v1.2

including the branching created by the Exclusive Gateway. See “The Lower Parallel Path” on page 216 for the details of the
mappings.

A.26.3.2The Middle Two Parallel Paths

The second and third branches of the fork are rather straightforward mappings of:
« Two Tasksto invokes (one synchronous and one asynchronous), and
« A Timer Intermediate Event to a delay.

« Inaddition, onelink is created so that one of the invokes will wait for the delay.

A.26.3.3The Lower Parallel Path

The fourth branch of the fork is the location the infinite loop.
e Thisloop will map to a BPEL4WS while with a condition of “1=0,” which will always be false.
« Insidethewhileisasequence of two invokes (one synchronous and one asynchronous), which are mapped from the two
Tasks in the loop.
A.26.4 Exiting the Second Sub-Process
To exit out of the infinite loop and the whole “ Collect Votes” Sub-Process,

« A scope will bewrapped around the main flow of the process, which will include an eventHandlers and
afaultHandlers.

The Timer Intermediate Event must be set up to create afault at the appropriate time. To do this,

* AnonAlarmwill be placed inside the eventHandlers. The timing of the onAlarmwill be determined by the time setting
in the Intermediate Event.

 Within the onAlarm, athrow will afault name after the Intermediate Event with “_Exit” appended.

« The catch element of the faultHandlers will be triggered by the fault generated by the above throw.

» The activity for the catch will be a sequence and will be the source of al the remaining activities of the Process,
since al the remaining Sequence Flow begins from the Timer Intermediate Event.

*The first three Tasks, as shown in the figure, will map to invokes. The latter two will be placed within a
flow.

The Document Objects shown in the figure is not mapped into BPEL4WS. The remainder of the Process will be described in
the next section.

A.26.5 BPEL4WS Sample for the Second Sub-Process
Example A.12 shows sample BPEL4W'S code that defines the “Collect Votes’ Sub-Process.

Business Process Modeling Notation, v1.2 223

<process name="Collect Votes">
<!--This is a nested process for the E-Mail Voting collection. It consists of
an all and a faultHandlers (for a time-out). The all will never complete
normally since there is an infinite loop inside. The timeout is intended to
be the normal way of ending the process-->
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes" variable="processData" createInstance="Yes"/>
<scope>
<flow>
<linkss>
<link name="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>
<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>
<link name="CheckCalendarforConferenceCalltoEmpty"/>
<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</links>
<!--This is the first of the four paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"
portType="tns:internalPort" operation="receiveCallSchedule"
inputVariable="processData" outputVariable="processData">
<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"
transitionCondition="bpws:getVariableProperty (processData,conCall)=true"/>
<source linkName="CheckCalendarforConferenceCalltoEmpty"
transitionCondition="not (bpws:getVariableProperty (processData,conCall)=true)"/>
</invoke>
<!-- name="Yes" -->
<wait name="WaituntilThursday9am" for="P6DT9H">
<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am">
<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</wait>
<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendConCall"
inputVariable="processData" outputVariable="processData">
<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</invokes>
<!-- name="otherwise" -->
<empty>
<target linkName="CheckCalendarforConferenceCalltoEmpty"/>
</empty>
<!-- This is the second of the four paths of the fork. -->

<invoke name="ModerateEMailDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendDiscussion"
inputVariable="processData" outputVariable="processData"/>
<!--This is the third of the four paths of the fork.-->
<wait name="Delayé6daysfromVoteAnnouncement" for="PeD">
<source linkName="Delayé6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>

</wait>

224 Business Process Modeling Notation, v1.2

<invoke name="EMailVoteDeadlineWarning" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVoteWarning"
inputVariable="processData">
<target linkName="Delayé6daysfromVoteAnnouncementtoEMailVote DeadlineWarning"/>
</invoke>
<!--This is the fourth of the four paths of the fork. This branch of the
all is intended to be an infinite loop that is eventually
interrupted by the Time Out. This is necessary since any voter can
change their vote until the deadline. -->
<while condition="1=0">
<sequence>
<receive name="ReceiveVote" partnerLink="WGVoter" portType="tns:emailPort"
operation="receiveVote" variable="processData"/>
<invoke name="IncrementTally" partnerLink="internal"
portType="tns:internalPort" operation="sendReceiveTotal"
inputVariable="processData" outputVariable="processData"/>
</sequence>
</while>
</flows>
<eventHandlers>
<onAlarm for="P7D">
<throw faultName="7days Exit"/>
</onAlarm>
</eventHandlers>
<faultHandlers>
<catch faultName="7days_Exit">
<!-- The BPMN Diagram shows that the Timer Intermediate Event connects directly
to the rest of the Process. Thus, they will show up in this activity set. -->
<sequence>
<invoke name="PrepareResults" partnerLink="internal"
portType="tns:internalPort" operation="sendReceiveResults"
inputVariable="processData" outputVariable="processData"/>
<flow>
<invoke name="PostResultsonWebSite" partnerLink="internal"
portType="tns:internalPort" operation="postVotingResults"
inputVariable="processData"/>
<invoke name="EMailResultsofVote" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVotingResults"
inputVariable="processData"/>
</flow>

<!--the rest of the process is not shown-->

</faultHandlers>
</scope>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes" variable="processData" createlInstance="Yes"/>
</sequence>
</process>

Example A.12 - BPEL4WS Sample of the Second Sub-Process

Business Process Modeling Notation, v1.2 225

A.26.6 The End of the Process

Figure A.35 shows the last section of the Process, which includes a complex set of Decisions and loops.

Yes

From Task:
"E-Mail Results of
Vote"

Reduce number of
Voting Members
and Recalculate

Vote

Re-announce
Vote with
warning to voting
members

To Sub-Process:
"Collect Votes"

To Sub-Process:

di
"Discussion Cycle" ‘
B
"Announce Issues

No

2nd
Time?

Figure A.35 - The last segment of the E-Mail Voting Process

226

To Task:

for Vote"

C

I

~
EE—

Reduce to
Two Solutions

| N —

—
E-Mail Voters
that have to
Change Votes

~———

Business Process Modeling Notation, v1.2

This segment of the Process continues from where the last segment | eft off (as described in the section above). It contains four
Decisions that interact with each other and create loops to upstream activities.

Thefirst Decision, “Did Enough Members Vote?,” is necessary since two-thirds of the voting members are required to approve
any solution to anissue. If less than two-thirds of the voting members cast votes, which sometimes happens, theissues can’t be
resolved. This Decision Flow to another Decision for both of its Alternatives. The “No” Alternative is followed by the “Have
the Members been Warned?’ Decision. If avoting member misses a vote, they are warned. If they miss a second vote, they
lose their status as a voting member and the voting percentages are recal culate through a Task (“Reduce number of Voting
Members and Recalculate Vote”). If they haven’t yet been warned, then awarning is sent and the voting week is repeated.

If all issues are resolved, then the Processis done. If not, then another Decision isrequired. The voting is given two chances
beforeit goes back to another cycle of discussion. Thefirst timewill see areduction of the number of solutions to the two most
popular based on the vote (more if there are ties). Some voting members will have to change their votes just because their
solution is no longer valid. These two activities are placed in a Sub-Process to show how a Sub-Process without Start and End
Events can be used to create a simple set of parallel activities. Informally, thisis called a“parallel box.” It is not a special
object, but another use of Sub-Processes. For simple situations, it can be used to show a set of parallel activities without the
extraclutter of alot of Sequence Flow. In actuality, these two Tasks cannot actually be done in paralel, but they are modeled
thisway to highlight the optional use of Start and End Events.

After the parallel box, the flow loops back to the “Collect Votes’ Sub-Process. If there already has been two cycles of voting,
then the process Flow back to the “Decision Cycle” Sub-Process.

A.27 Mapping to BPEL4WS

As mentioned above, the entire contents of this segment follow a Timer Intermediate Event, which meansthey are contained in
the faultHandlers of the scope within the “ Collect Votes’ process.

» Each of the Decisions in this section will map to a BPEL4WS switch.

A.27.1 The First Decision

Thefirst Decision, “Did Enough Members Vote?,” Flow to another Decision for both of its Alternatives.
* Thus, each of the switch cases will contain another switch.

The “No” Alternative is followed by the “Have the Members been Warned?’ Decision.

« Each Alternative from this Decision is followed by a Task, which maps to Invokes (one synchronous and the other
asynchronous).

The “No (default)” Alternative leadsto aloop.

» Thislooping is handled by using an invoke (asynchronous) to the “Collect_Votes Derived Process’ process, which
was created just for the purpose of thisloop (sinceit isin the context of a more complex looping situation).

Notice that the “1ssues w/o Mgjority?’ Decision can be reached through the alternative paths from two different Decisions.
This creates a situation that has two impacts on the Mapping to Execution Languages. First, it creates a section of the Process
in which the Alternatives from two Decisions overlap. Thisis possiblein a graph-structured Diagram like BPMN, but in a
block-structured (and acyclic) language like BPEL4WS, these two sections cannot overlap because they have different block
boundaries. This means that this section must be repeated in some way in both of the appropriate switch case activities. All
these elements could be actually duplicated or they can be separated into a derived process and then invoked from the
appropriate place. The later method was used in this example (see Example A.13 and Example A.14).

Business Process Modeling Notation, v1.2 227

Note— At this point, BPMN does not specify whether a reused section of aBPMN Diagram should map to a derived process
that is invoked from each location of duplication, or whether the section should remain intact and be duplicated in each
appropriate location. Thisis left up to the specific implementation of BPMN since both solutions will behave equivalently.

The second impact of the multiple incoming Sequence Flow into the “1ssues w/o Mgjority?’ Decision hasto do with how the
three visible loops are created (actually there are five loops). Normally, Sequence Flow loops will map to a BPEL4WS while.
If there are multiple loops in the Process they have to be physically separated or completely nested because of the block-
structured nature of the BPEL4WS looping elements. The aternative paths of the Decisions cannot be mixed and still maintain
the BPEL4WS hlocks they way that the end of the “E-mail Voting” Process mixes the paths.

A different type of looping mechanismis required. This method requires the creation of a set of derived processes that can
reference each other and also themselves. In thisway, a block-structured language can simulate a set of interleaving loops (as
seen in a graph-structured Diagram).

e Thus, inthisBPMN example, derived processes were created to mark places where loops can be targeted within the
BPEL4WS code from the “downstream” elements.

« A BPEL4WSinvokeis used to re-perform activities that had already been executed in the process.

228 Business Process Modeling Notation, v1.2

A.27.2 BPEL4WS Sample for the End of the Process
Example A.13 displays the BPEL4AWS code for first part of the end of the “E-Mail Voting Process.”

<!--This segment of the code is within the context of the “Collect
Votes” nested process-->
<catch property="tns:0neWeek" type="duration">

<!--The BPMN Diagram shows that the Timer Intermediate Event connects directly to the
rest of the Process. Thus, they will show up in this activity set-->
<!--The first two actions are not shown-->
<sequence>

<invoke name="PrepareResults" partnerLink="internal" portType="tns:internalPort"
operation="sendReceiveResults" inputVariable="processData"
outputVariable="processData"/>
<invoke name="EMailResultsofVote" partnerLink="WGVoter" portType="tns:emailPort"
operation="sendVotingResults" inputVariable="processData"/>
<switch name="DidEnoughMembersVote">
<!-- name="No" -->
<case condition="bpws:getVariableProperty (ProcessData,NumVoted) >
(.7)* (bpws:getVariableProperty (ProcessData, NumVWGM)) ">

Business Process Modeling Notation, v1.2 229

<switch name="Havethemembersbeenwarned">

<!-- name="Yes" -->
<case condition="bpws:getVariableProperty (ProcessData, VotersWarned)=true">

<sequences
<invoke name="ReducenumberofVotingMembersandRecalculateVote"
partnerLink="internal" portType="tns:internalPort"
operation="sendReceiveNumVoters" inputVariable="processData"
outputVariable="processData"/>
<!--Some elements of the process were separated into a derived
process since they would have been repeated. They would have

been repeated because they are arrived by alternative paths that

do not close a set of alternative paths. -->

<invoke name="Issues wo Majority Derived Process" partnerLink="Internal"
portType="tns:processPort"
operation="call Issues wo Majority Derived Process"
inputVariable="processData" outputVariable="processData"/>

</sequence>
</case>
<!-- name="No (otherwise)" -->
<otherwise>

<sequence>
<invoke name="ReannounceVotewithwarningtovotingmembers"

partnerLink="WGVoter" portType="tns:emailPort"
operation="sendReannounceVote" inputVariable="processData"

outputVariable="processData"/>
<invoke name="Collect Votes_ Derived Process" partnerLink="Internal"

portType="tns:processbPort"
operation="call Collect_ Votes_Derived Process"
inputVariable="processData" outputVariable="processData"/>

</sequence>
</otherwise>
</switch>

</case>

<!-- name="Yes (otherwise)" -->

<otherwise>
<!-- Some elements of the process were separated into a derived process since they

would have been repeated. They would have been repeated because they are
arrived by alternative paths that do not close a set of alternative paths
<invoke process="Issues wo Majority Derived Process" partnerLink="Internal"

portType="tns:processbPort"
operation="call Issues_wo_Majority Derived Process"

inputVariable="processData" outputVariable="processData"/>

</otherwise>
</switch>
</sequence>
</catch>

Example A.13 - Sample BPEL4WS code for the last section of the Process

230 Business Process Modeling Notation, v1.2

Example A.14 shows the BPEL4WS code for the Process from the “Issues w/o Mgjority?’ Decision until the end of the
Process or loops.

e The mappings are afairly straightforward set of switches.

If all issues are resolved, then the Processis done. If not, then another Decision is required.
e The“parallel box,” asisany forking situation, will map to a BPEL4WS flow.

After the parallel box, the flow loops back to the “Collect Votes” Sub-Process.

e Thislooping is handled by using an invoke (asynchronous) to the“ Announce |ssues Derived Process’ process, which
was created just for the purpose of thisloop.

If there has already been two cycles of voting, then the process Flow back to the “ Decision Cycle” Sub-Process.

« Thislooping is handled by using an invoke (asynchronous) to the “ Discussion_Cycle Derived_Process’ process,
which was created just for the purpose of this loop.

Business Process Modeling Notation, v1.2 231

Example A.13 displays the BPEL4WS code for the final derived process of the “E-Mail Voting Process.”

<process name="Issues wo Majority Derived Process">
<sequences
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Issues wo Majority Derived Process" variable="processData"
createInstance="Yes"/>
<switch name="IssueswoMajority">
<case name="Yes" condition="NoMajority=true"s>
<switch name="2ndTime">
<!-- name="Yes" -->
<case condition="bpws:getVariableProperty (ProcessData,VotedOnce)=true">
<!--This is done to do the complex looping situation. -->
<invoke name="Discussion Cycle Derived Process" partnerLink="Internal"
portType="tns:processPort"
operation="call Discussion Cycle Derived Process"
inputVariable="processData" outputVariable="processData"/>
</cases>
<!-- name="No (otherwise)"-->
<otherwisex>
<sequences>
<flow>
<invoke name="ReducetoTwoSolutions" partnerLink="internal"
portType="tns:internalPort" operation="sendReceiveSolutions"
inputVariable="processData" outputVariable="processData"/>
<invoke name="EMailVotersthathavetoChangeVotes" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVoteWarning"
inputVariable="processData"/>
</flow>

<invoke process="Announce Issues Derived Process" partnerLink="Internal"
portType="tns:processPort"
operation="call Announce Issues Derived Process"
inputVariable="processData" outputVariable="processData"/>
</sequence>
</otherwise>
</switch>
</case>
<otherwise name="Nootherwise">
<!-- This is one of the two ways to the end of the Process. -->
<empty/>
</otherwises>
</switch>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Issues_wo_Majority Derived Process" variable="processData"
createInstance="Yes"/>
</sequence>
</process>

Example A.14 - Sample BPEL4WS code for derived process for repeated elements

232 Business Process Modeling Notation, v1.2

A.28 BPEL4WS for the E-Mail Voting Process

This section provides the complete BPEL4WS code for the example BPMN business process that is described in the “BPMN

by Example” chapter.

<definitions
targetNamespace="http://www.website.com"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >

<message name="processDataMessage">
<part name="NumIssues" type="xsd:integer"/>
<part name="NoMajority" type="xsd:boolean"/>
<part name="VotedOnce" type="xsd:boolean"/>
<part name="NumVoted" type="xsd:integer"/>
<part name="VotersWarned" type="xsd:boolean"/>
<part name="LoopCounter" type="xsd:integer"/>
</message>
<!--processDataMessage will be received with the following parts:
NoMajority (set to false)
VotedOnce (set to false)
NumVoted (set to false)
VotersWarned (set to false)
LoopCounter (set to 0)
starting message every Friday is not shown here.-->
</definitionss>

<!-- The Main Process -->
<process name="EMailVotingProcess">
<variables>
<variable name="processData" messageType="processDataMessage"/>
<!--processDataMessage will be received with the following parts:
NumIssues (set to the number of unresolved Issues)
NoMajority (set to false)
VotedOnce (set to false)
NumVoted (set to false)
VotersWarned (set to false)
LoopCounter (set to 0)

starting message every Friday is not shown here.-->
</variables>
<sequences
<!--This starts the beginning of the Process. The process that sends the
starting message every Friday is not shown here.-->

<receive partnerLink="Internal" portType="tns:processPort"
operation="receivelssuelList" variable="processData" createlnstance="Yes"/>

<invoke name="ReviewIssueList" partnerLink=“Internal" portType="tns:internalPort"
operation="sendIssuelList" inputVariable="processData"
outputVariable="processData"/>

<switch name="AnyIssuesReady">

Business Process Modeling Notation, v1.2

233

</sequence>

<!-- A Derived Process -->
<process name="Discussion Cycle Derived Process">
<variables>

</variables>
<sequence>

<!--name="Yes" -->
<case condition="bpws:getVariableProperty (ProcessData,NumIssues)>0">
<!-- A chunk of this process is separated into a derived process so that
it can be called from a complex loop. -->
<invoke name="Discussion Cycle Derived Process" partnerLink="Internal"
portType="tns:processPort" operation="call Discussion Cycle Derived Process"
inputVariable="processData" outputVariable="processData"/>
</case>
<!--name="No" -->
<otherwise>
<!--This is one of the two ways to the end of the Process.-->
<empty/>
</otherwise>
</switch>

<variable name="processData" messageType="processDataMessage"/>
<variable name="Discussion Cycle loopCounter" messageType="loopCounterMessage"/>

<receive partnerLink="Internal" portType="tns:processPort"
operation="call Discussion Cycle Derived Process" variable="processData"
createInstance="Yes"/>
<!--The first Sub-Process has a loop condition, so it is within a while-->
<assign name="Discussion Cycle initialize loopCounter"s
<copy>
<from expression="0"/>
<to variable="Discussion Cycle loopCounter" part="loopCounter" />

</copy>
</assign>
<!--Since the TestTime is “After” the Sub-Process has to be performed before the
while-->

<invoke name="Discussion Cycle" partnerLink="Internal"
portType="tns:processPort operation="call Discussion Cycle"
inputVariable="processData" outputVariable="processData"/>
<while condition="bpws:getVariableProperty (ProcessData,DiscussionOver)=false">
<!--This calls the first Sub-Process-->
<sequences
<invoke process="Discussion Cycle" partnerLink="Internal"
portType="tns:processPort operation="call Discussion Cycle"
inputVariable="processData" outputVariable="processData"/>
<assign>
<copy>
<from expression=
"bpws:getVariableProperty (Discussion Cycle loopCounter, LoopCounter)+1"/>

234

Business Process Modeling Notation, v1.2

<to variable="Discussion Cycle loopCounter" part="LoopCounter"/>
</copy>
</assign>
</sequence>
</while>
<!--This calls the first another derived process to handle the rest of the
work-->
<invoke name="Announce_ Issues_Derived Process" partnerLink="Internal"
portType="tns:processPort" operation="call Announce Issues Derived Process"
inputVariable="processData" outputVariable="processData"/>
</sequence>
</process>
</process>
<!-- A Derived Process -->
<process name="Announce Issues Derived Process'>
<!-- This starts the middle section of the process. -->
<variables>
<variable name="processData" messageType="processDataMessage"/>
</variables>
<sequences
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Announce_Issues_Derived Process" variable="processData"
createInstance="Yes"/>
<invoke name="AnnouncelssuesforVote" partnerLink="WGVoter" portType="tns:emailPort"
operation="sendVoteAnnouncement" inputVariable="processData"/>
<invoke name="Collect Votes_Derived Process" partnerLink="Internal"
portType="tns:processPort" operation="call Collect Votes Derived Process"
inputVariable="processData" outputVariable="processData"/>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Announce_Issues_Derived Process"
variable="processData" createlInstance="Yes"/>
</sequence>
</process>

<!-- A Derived Process -->
<process name="Collect Votes Derived Process">

<!--this calls the second Sub-Process. After the Collect Votes Sub-Process
times out, the rest of the process will be in the fault handler
of that process. Calls from there will loop back into other processes.-->
<variables>

<variable name="processData" messageType="processDataMessage"/>
</variables>
<sequences
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes_Derived Process" variable="processData"
createInstance="Yes"/>
<invoke name="Collect Votes" partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes" inputVariable="processData"
outputVariable="processData"/>

Business Process Modeling Notation, v1.2

235

<reply partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes Derived Process" variable="processData"

createInstance="Yes"/>
</sequence>

</process>
<!-- A Derived Process -->
<process name="Issues_wo_Majority Derived Process">

<variables>
<variable name="processData" messageType="processDataMessage"/>
</variables>
<sequences
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Issues _wo Majority Derived Process" variable="processData"
createInstance="Yes"/>
<switch name="IssueswoMajority"s>
<case name="Yes"
condition="bpws:getVariableProperty (ProcessData,NoMajority)=true">
<switch name="2ndTime">

<!-- name="Yes" -->
<case condition="bpws:getVariableProperty (ProcessData,VVotedOnce)=true">

<!--This is done to do the complex looping situation. -->
<invoke name="Discussion Cycle Derived Process" partnerLink="Internal"
portType="tns:processbPort"
operation="call Discussion Cycle Derived Process"
inputVariable="processData" outputVariable="processData"/>

</case>
<!-- name="No (otherwise)" -->
<otherwise>

<sequence>

<flow>
<invoke name="ReducetoTwoSolutions" partnerLink="internal"

portType="tns:internalPort" operation="sendReceiveSolutions"
inputVariable="processData" outputVariable="processData"/>
<invoke name="EMail Voters that have to Change Votes"
partnerLink="WGVoter" portType="tns:emailPort"
operation="sendVoteWarning" inputVariable="processData"/>

</flows>
<invoke process="Announce_ Issues_Derived Process" partnerLink="Internal"

portType="tns:processbPort"
operation="call Announce_Issues Derived Process"
inputVariable="processData" outputVariable="processData"/>

</sequence>
</otherwise>
</switch>
</case>

<otherwise name="Nootherwise">

<!-- This is one of the two ways to the end of the Process. -->

<empty/>
</otherwise>

Business Process Modeling Notation, v1.2

236

</switch>
</sequence>
</process>
<!-- A User Built Process -->
<process name="Discussion Cycle">
<!--This defines the first Sub-Process. -->
<variables>
<variable name="processData" messageType="processDataMessage"/>
</variables>
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Discussion Cycle" variable="processData"
createInstance="Yes"/>
<invoke name="AnnounceIssuesforDiscussion" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendDiscussionAnnouncement"
inputVariable="processData"/>
<flow>
<links>
<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>
<link name="CheckCalendarforConferenceCalltoEmpty"/>
<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</links>
<!-- This is the first of the three paths of the fork. -->
<scope>
<invoke name="ModerateEmailDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendDiscussion"
inputVariable="processData" outputVariable="processData"/>
<faultHandlerss>
<catch faultName="7Days_ Exit">
<empty/>
</catch>
</faultHandlers>
<eventHandlerss>
<onAlarm for="tns:OneWeek">
<throw faultName="7Days Exit"/>
</catch>
</eventHandlers>
</scope>
<!-- This is the second of the three paths of the fork. -->
<sequence>
<wait name="Delay6daysfromDiscussionAnnouncement" for="P6D"/>
<invoke name="EMailDiscussionDeadlineWarning" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendDiscussionWarning"
inputVariable="processData">
</invoke>
</sequence>
<!-- This is the third of the three paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"
portType="tns:internalPort" operation="receiveCallSchedule"

Business Process Modeling Notation, v1.2

237

inputVariable="processData" outputVariable="processData">
<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"
transitionCondition="bpws:getVariableProperty (processData,conCall)=true"/>
<source linkName="CheckCalendarforConferenceCalltoEmpty"
transitionCondition="not (bpws:getVariableProperty (processData,conCall)=true)"/>
</invoke>
<!-- name="Yes" -->
<wait name="WaituntilThursday9am" for="P6DT9H">
<target linkName=
"CheckCalendarforConferenceCalltoWaituntilThursday9am">
<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</waits>
<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendConCall"
inputVariable="processData" outputVariable="processData">
<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</invoke>
<!-- name="otherwise" -->
<empty>
<target linkName="CheckCalendarforConferenceCalltoEmpty"/>
</empty>
</flow>
<invoke name="EvaluateDiscussionProgress" partnerLink="internal"
portType="tns:internalPort" operation="receiveDiscussionStatus"
inputVariable="processData" outputVariable="processData"/>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Discussion Cycle" variable="processData"/>
</sequence>
</process>

<!-- A User Built Process -->
<process name="Collect Votes">
<!--This is a process for the E-Mail Voting collection. It consists of an all and a
timeout event handler. The all will never complete normally since there is an
infinite loop inside. The timeout is intended to be the normal way of ending the
process. -->
<variables>
<variable name="processData" messageType="processDataMessage"/>
</variables>
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes" variable="processData" createlnstance="Yes"/>
<scope>
<flow>
<links>
<link name="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>
<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>
<link name="CheckCalendarforConferenceCalltoEmpty"/>
<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

238 Business Process Modeling Notation, v1.2

</links>
<!--This is the first of the four paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"
portType="tns:internalPort" operation="receiveCallSchedule"
inputVariable="processData" outputVariable="processData">
<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"
transitionCondition="bpws:getVariableProperty (processData,conCall)=true"/>
<target linkName="CheckCalendarforConferenceCalltoEmpty"
transitionCondition="not (bpws:getVariableProperty (processData,conCall)=true)"/>
</invoke>
<!-- name="Yes" -->
<wait name="WaituntilThursday9am" for="P6DT9H">
<source linkName=
"CheckCalendarforConferenceCalltoWaituntilThursday9am">
<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</wait>
<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendConCall"
inputVariable="processData" outputVariable="processData">
<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</invoke>
<!-- name="otherwise" -->
<empty>
<source linkName="CheckCalendarforConferenceCalltoEmpty"/>
</empty>
<!-- This is the second of the four paths of the fork. -->

<invoke name="ModerateEMailDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendDiscussion"
inputVariable="processData" outputVariable="processData"/>
<!--This is the third of the four paths of the fork.-->
<wait name="Delay6daysfromVoteAnnouncement" for="P6D">
<target linkName="Delayé6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>
</wait>
<invoke name="EMailVoteDeadlineWarning" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVoteWarning"
inputVariable="processData">
<source linkName="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>
</invoke>
<!--This is the fourth of the four paths of the fork. This branch of the all is
intended to be an infinite loop that is eventually interrupted by the Time
Out. This is necessary since any voter can change their vote until the
deadline. -->
<while condition="1=0">
<sequence>
<receive name="ReceiveVote" partnerLink="WGVoter" portType="tns:emailPort"
operation="receiveVote" variable="processData"/>
<invoke name="IncrementTally" partnerLink="internal"
portType="tns:internalPort" operation="sendReceiveTotal"
inputVariable="processData" outputVariable="processData"/>

Business Process Modeling Notation, v1.2 239

</sequence>
</while>
</flows>
<eventHandlers>
<onAlarm for="P7D">
<throw faultName="7days Exit"/>

</onAlarm>
</eventHandlers>
<faultHandlers>
<catch faultName="7days_Exit">
<!-- The BPMN Diagram shows that the Timer Intermediate Event connects

directly to the rest of the Process. Thus, they will show up in

this activity set. -->

<sequence>
<invoke name="PrepareResults" partnerLink="internal"

portType="tns:internalPort" operation="sendReceiveResults"
inputVariable="processData" outputVariable="processData"/>
<flow>
<invoke name="PostResultsonWebSite" partnerLink="internal"
portType="tns:internalPort" operation="postVotingResults"
inputVariable="processData"/>
<invoke name="EMailResultsofVote" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVotingResults"

inputVariable="processData"/>
</flow>
<switch name="DidEnoughMembersVote">

<!-- name="No" -->
<case condition="bpws:getVariableProperty (ProcessData,NumVoted) >

(.7)* (bpws:getVariableProperty (ProcessData, NumVWGM)) ">
<switch name="Havethemembersbeenwarned">
<!-- name="Yes" -->
<case condition="bpws:getVariableProperty (ProcessData,
VotersWarned) =true" >

<sequence>
<invoke name="ReducenumberofVotingMembersandRecalculateVote"

partnerLink="internal" portType="tns:internalPort"
operation="sendReceiveNumVoters" inputVariable="processData"
outputVariable="processData"/>
<!--Some elements of the process were separated into a derived process
since they would have been repeated. They would have been
repeated because they are arrived by alternativepaths that do not
close a set of alternative paths. -->
<invoke name="Issues_wo Majority Derived Process" partnerLink="Internal"

PortType="tns:processPort"
operation="call Issues wo Majority Derived Process"

inputVariable="processData" outputVariable="processData"/>

</sequence>
</case>
<l-- name="No (otherwise)" -->

240 Business Process Modeling Notation, v1.2

<otherwise>
<sequence>
<invoke name="ReannounceVotewithwarningtovotingmembers"
partnerLink="WGVoter" portType="tns:emailPort"
operation="sendReannounceVote" inputVariable="processData"
outputVariable="processData"/>
<invoke name="Collect Votes_ Derived Process" partnerLink="Internal"
portType="tns:processbPort"
operation="call Collect_ Votes_Derived Process"
inputVariable="processData" outputVariable="processData"/>

</sequence>
</otherwise>
</switch>
</case>
<!-- name="Yes (otherwise)" -->
<otherwise>
<!-- Some elements of the process were separated into a derived process

since they would have been repeated. They would have been repeated
because they are arrived by alternative that do not close a set of
alternative paths. -->
<invoke process="Issues wo Majority Derived Process" partnerLink="Internal"
portType="tns:processbPort"
operation="call Issues_wo Majority Derived Process"
inputVariable="processData" outputVariable="processData"/>
</otherwise>
</switch>
</sequence>
</catch>
</faultHandlers>
</scope>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes" variable="processData"/>
</sequence>
</process>

Business Process Modeling Notation, v1.2

241

242 Business Process Modeling Notation, v1.2

Annex B: BPMN Element Attributes and Types

(informative)

This annex provides the complete set of BPMN Element Attributes and the definition of types that support the Attributes. All
the tablesin this annex also appear in Chapters 8, 9, and 10.

The following figure displays a diagram of the relationship between the main BPMN Event elements and their attributes (see
Figure B.1). Other diagramsin this Annex will provide more detailed information about specific groups of elements (e.g.,
Events and their related elements and attributes).

Business Process Modeling Notation, v1.2 243

“Tables
Business Process Diagram

|d[1] : Object

Mame[1] : string(id])

ersion[..1] © string{idl)
Author[0..1] : string(idiy
Language[0..1] . strng(idl} = English
QueryLanguage[D.. 1] : strirglidl}
(CreationDate{0_1] : Date
MadificationDate[0..”] : Date
Pools[1.*] : Object
Documentation[0..1] : stringlidl)

==extends==

«Tablen
BPMN Element

1d[1] : Object

ICategones[0..*] : Category wTables

Documentation[D_.1] : string(idl) Process
Name[1] : stringlidl)

AN ProcessType[1] : Types = Nane

IStatus[1] | Types = None

Graphical Elements[0..%] : Graphical Elemant
Wssignmenis[D..*] : Assignment
Performers[0..*] - stringidl)

Properties[()..*] : Property

IInputSets[0.."] : InputSet

GatewayType[1] - Types = Excluisve
(Gates[0.."] : Gate

Lares[D. "] : Lane

aTablen
Activity

Wativity Type[1] : Types = Task
Staws[1] : Types = Nane
Performers[0__*] : string(idl)
IProperiies[0..*] : Property
InputSets[D..*] : InputSet
OutputSets[D.."] : OutputSet
|ORules[D..”] : Expression
StartCuantity[1] @ short(idl) = 1
(CompleticnQuantity[1] : short{idl} = 1
LoopType[1] : Types = None

IsForCompensation[1] : boolean(idl) = False

wTablew «Tablaw
. . DutputSets[D..*] | OutputSet
Graphical Element Supporting Element lAdHoc]1] boolsaniidl) = False
JAN <<@xiends>> %c-cemnds:-:-
aTablen
Flow Object
Mame[1] : string(idl)
Wssignments[d..”] : Assignment
«Tablew «Tablex
AN <<aylandss> Artifact Swimlane Con “T?uaabjlc ts
i . = i +Mame[1] : string(idl recting
[artifactType[1] : Tyvpes = DataObject [1] giicl) R0 1] Sifng 1)
ScourceRef[1] | Graphical Element
wTablen ccoxtondens FAN— TargetRef[1] : Graphical Element
Event
EventType[1] : Types = Start JANE——
«Tabler
Data Ohbject
[Mame[1] : string(idl)
; Tabl Takd
«Tablen State[0..1] ; stringiidl} e Acscsiation
Gateway Properties[0.."] : Property

Direction[1] : Types = Mone

— w Tablen
aTables Massage Flow
Pool MessageRel[0.1] | Message

ProcessRef[0..1] : Process
FaricipantRef{1] | Participant
Lanes[1.”] : Lana

BoundaryWisible[1] @ boolean(idl) = True
MainPool[1] : boolean(idl) = False

Figure B.1 - Main BPMN Elements and Attributes

244

aTables
Sequence Flow

ConditionType[1] : Types = Mone
iConditicnExpression[1] - Exprassion

Business Process Modeling Notation, v1.2

B.1 Business Process Diagram Attributes

The following table displays the set of attributes of a Business Process Diagram:

Table B.1 - Business Process Diagram Attributes

Attributes

Description

Id : Object

Thisisaunique Id that distinguishes the Diagram from other Diagrams.

Name : String

Name is an attribute that istext description of the Diagram.

Version (0-1) : String

This defines the Version number of the Diagram.

Author (0-1) : String

This holds the name of the author of the Diagram.

Language (0-1) : String

This holds the name of the language in which text iswritten. The default is English.

QueryLanguage (0-1) : String

A Language MAY be provided so that the syntax of queries used in the Diagram can
be understood.

CreationDate (0-1) : Date

This defines the date on which the Diagram was created (for this Version).

ModificationDate (0-1) : Date

This defines the date on which the Diagram was last modified (for this Version).

Pools (1-n) : Pool

A BPD SHALL contain one or more Pools. The boundary of one of the PoolsMAY
beinvisible (especially if thereis only one Pool in the Diagram). Refer to
Section 9.6.2, “Pool,” on page 87 for more information about Pools.

Documentation (0-1) : String

The modeler MAY add optional text documentation about the Diagram.

B.2 BPMN Elements

B.2.1 Common BPMN Element Attributes

The following table displays a set of common attributes for BPMN elements (graphical elements and supporting elements).

Table B.2 - Common BPMN Element Attributes

Attributes

Description

Id : Object

Thisisaunique Id that identifies the object from other objects within the Diagram.

Categories (0-n) : Category

The modeler MAY add one or more defined Categories, which have user-defined
semantics, and that can be used for purposes such as reporting and analysis. The
details of Catogoriesisdefined in “Category on page 273.”

Documentation (0-1) : String

The modeler MAY add text documentation about the object.

These attributes are used for Graphical Elements [which are Flow Objects (Section B.4, “Common Flow Object
Attributes,” on page 247), Connecting Objects (Section B.10, “Graphical Connecting Objects,” on page 267), Swimlanes
(Section B.8, “Swimlanes (Pools and Lanes),” on page 263), and Artifacts (Section B.9, “Artifacts,” on page 264)], and
Supporting Elements (Section B.11, “ Supporting Elements,” on page 270).

Business Process Modeling Notation, v1.2

245

B.2.2 Graphical Elements

Graphical Element is one of two main elements that are of type BPMN Element (see Figure B.1). The other is Supporting
Element. There are four main types, and many subtypes, of Graphical Elements. These are: Artifacts (see Section B.9,
“Artifacts,” on page 264), Connecting Objects (see Section B.10, “Graphical Connecting Objects,” on page 267), Flow
Objects (see Section B.4, “Common Flow Object Attributes,” on page 247), and Swimlanes (see Section B.8, “ Swimlanes

(Poolsand Lanes),” on page 263).

B.2.3 Supporting Elements

Supporting Element (see Section B.11, “Supporting Elements,” on page 270) is one of two main elements that are of type
BPMN Element (see Figure B.1). The other is Graphical Element.

B.3 Process Attributes

Thefollowing table displays the set of attributes of a Process, and which extends the set of common BPMN Element attributes

(see Table B.2).

Table B.3 - Process Attributes

Attributes

Description

Name : String

Name is an attribute that is a text description of the object.

ProcessType (None | Private |
Abstract | Collaboration) None :
String

ProcessTypeis an attribute that provides information about which lower-level
language the Pool will be mapped. By default, the ProcessType is None (or
undefined).

Status (None | Ready | Active |

Cancelled | Aborting | Aborted |

Completing | Completed) None :
String

The Status of a Process is determined when the Processis being executed by a
process engine. The Status of aProcess can be used within Assignment Expressions.

GraphicalElements (0-n) :
Object

The Graphical Elementsattribute identifiesall of the objects(e.g., Events, Activities,
Gateways, and Artifacts) that are contained within the Process.

Assignments (0-n) : Assignment

One or more assignment expressions MAY be made for the object. The Assignment
SHALL be performed as defined by the AssignTime attribute (see below). The
details of Assignment are defined in “ Assignment on page 273.”

Performers (0-n) : String

One or more Performers MAY be entered. The Performers attribute defines the
resource that will be responsible for the Process. The Performers entry could bein
the form of a specific individual, agroup, an organization role or position, or an
organization.

Properties (0-n) : Property

Model er-defined Properties MAY be added to a Process. These Properties are
“local” to the Process. All Tasks, Sub-Process objects, and Sub-Processes that are
embedded SHALL have access to these Properties. The fully delineated name of
these properties is “ <process name>.<property name>" (e.g., “Add
Customer.Customer Name”). If aprocessis embedded within another Process, then
the fully delineated name SHALL also be preceded by the Parent Process name for
as many Parents there are until the top level Process. Further details about the
definition of a Property can be found in “Property on page 279.”

246

Business Process Modeling Notation, v1.2

Table B.3 - Process Attributes

Attributes Description

InputSets (0-n) : InputSet The InputSets attribute defines the data requirements for input to the Process. Zero
or more InputSets MAY be defined. Each Input set issufficient to allow the Process
to be performed (if it hasfirst been instantiated by the appropriate signal arriving
from an incoming Sequence Flow). Further details about the definition of an
InputSet can be found in Section B.11.10, “InputSet,” on page 278.

OutputSets (0-n) : OutputSet The OutputSets attribute defines the data requirements for output from the Process.
Zero or more OutputSets MAY be defined. At the completion of the Process, only
one of the OutputSets may be produced--It is up to the implementation of the
Process to determine which set will be produced. However, the |ORul es attribute
MAY indicate arelationship between an OutputSet and an InputSet that started the
Process. Further details about the definition of an OutputSet can be found in
Section B.11.13, “ OutputSet,” on page 279.

AdHoc False : Boolean AdHoc is aboolean attribute, which has a default of False. This specifies whether
the Processis Ad Hoc or not. The activities within an Ad Hoc Process are not
controlled or sequenced inaparticular order, their performanceisdetermined by the
performers of the activities. If set to True, then the Ad Hoc marker SHALL be
placed at the bottom center of the Process or the Sub-Process shape for Ad Hoc

Processes.
[AdHoc = True only] If the Processis Ad Hoc (the AdHoc attribute is True), then the AdHocOrdering
AdHocOrdering (0-1) attribute MUST beincluded. This attribute defines if the activities within the
(Sequential | Parallel) Parallel : | Processcanbe performed in Parallel or must be performed sequentially. The default
String setting is Parallel and the setting of Sequential is arestriction on the performance
that may be required due to shared resources.
[AdHoc = True only] If the Processis Ad Hoc (the AdHoc attribute is True), then the
AdHocCompletionCondition | AdHocCompletionCondition attribute MUST beincluded. Thisattribute definesthe
(0-1) : Expression conditions when the Process will end.

B.4 Common Flow Object Attributes

The following table displays the set of attributes common to BPMN Flow Objects (Events, Activities, and Gateways), and
which extends the set of common BPMN Element attributes (see Table B.2).

Table B.4 - Common Flow Object Attributes

Attributes Description

Name : String Name is an attribute that is a text description of the object.

Assighments (0-n) : Assignment | One or more assignment expressions MAY be made for the object. For activities,
the Assignment SHALL be performed as defined by the AssignTime attribute. The
Details of the Assignment isdefined in “Assignment on page 273.”

B.5 Events

The following figure displays a diagram of the relationship between BPMN Event elements and their attributes (see Figure
B.2).

Business Process Modeling Notation, v1.2 247

BPMN Element «Tablew «Tablex wTablex
- aextendss P uextendss Flow Object agxiends»
|d[1] : Object Graphical Element 0 FT swinglial) Evant
ICategories[0..*] - Category ame(1] . sinngll) . EventType[1] : Types = Start
Documentation[0..1] : string(idl) pasignments{0..7] : Acsignment

ZI},<<EI1.end5>>
<<extends=> | |
aTables
Table Table
Supporting Element us“m» ! End ?
[Trigger[D..*] : EventDetail Result[0.."] : EventDetail
[I}\ ==gxtends>>

1 «Tablexs
«Tables Intermediate
Message [Trigger(0..*] : EventDetail
Mame[1] : string(idl) wTables [Target[D..1] - Activity
Froperties[d..1] : Property EventDetail
FromRef[1] : Participant EveniDetailType[1] - Types = Message|
[ToRef[1] . Participant
| LA=<exends=> |
J—
«Table» «Tables «Tablex
Condition Cancel Compensate
Mame[0..1] : string(idl) ctivi 011 Activi
\ConditionExpressionfd. 1] : string(idl) ivityRef[0. 1] - Activity
—— [1
Tables aTables
aTables *
Assignment u':'k i Errnlr
To[]: Property Mamef1] - stringiidl) ErrorCode(id..1] - string(idl)
From[1] : Exprassion
IssignTime]0 1] : Types = Start I |
wTables Tables
Conditional Message
«Tables ConditionRef[1] | Condition Massagaﬂam]: rl.l-sgsagg_ .
Expression Implementation[1] : Types = Web Service
ExpressionBody[1] @ stringlidl) I
ExpressionLanguage(1] : string(idl} | |
«Tablew «Tables
Terminate Timer
[- - -
“Tabies TimeDate[D..1] : TimeDateExprassion
Property TimeCycle[D..1] : TimeDateExpression
Marme[1] @ string(idl)
[Type[1] - siring(idl)
alue(l. 1] : Exprassion «Tables
(Carralation[1] : boclean(idl) = False Signal
SignalRef : Signal
———————
uTakles
Participant

ParticipantType[1] : Types
RoleRef[0.1] : Role
EntityRef[0..1] : Entity

Figure B.2 - BPMN Event Elements and Attributes

248 Business Process Modeling Notation, v1.2

B.5.1 Common Event Attributes
The following table displays the set of attributes common to the three types of Events, and which extends the set of common

Flow Object attributes (see Table B.4).

Table B.5 - Common Event Attributes

Attributes

Description

EventType (Start | End |
Intermediate) Start : String

The EventType MUST be of type Start, End, or Intermediate.

B.5.2 Start Event

The following table displays the set of attributes of a Start Event, which extends the set of common Event elements (see

Table B.5).

Table B.6 - Start Event Attributes

Attributes

Description

Trigger (0-n) : EventDetall

Trigger (EventDetail) is an attribute that defines the type of trigger expected for a
Start Event. Of the set of EventDetail Types (see Section B.11.7, “ Event Details,” on
page 274), only four (4) can be applied to a Start Event: Message, Timer,
Conditional, and Signal (see Table 9.4).

If thereis no EventDetail is defined, then thisis considered a None End Event and
the Event will not have an internal marker (see Table 9.4).

If thereis more than one EventDetail is defined, thisis considered a Multiple End
Event and the Event will have the star internal marker (see Table 9.4).

B.5.3 End Event

The following table displays the set of attributes of an End Event, which extends the set of common Event elements (see

Table B.5).

Table B.7 - End Event Attributes

Attributes

Description

Result (0-n) : EventDetall

Result (EventDetail) is an attribute that defines the type of result expected for an
End Event. Of the set of EventDetail Types (see Section B.11.7, “Event Details,” on
page 274), only six (6) can be applied to an End Event: Message, Error, Cancel,
Compensation, Signal, and Terminate (see Table 9.6).

If thereis no EventDetail is defined, then thisis considered a None End Event and
the Event will not have an internal marker (see Table 9.6).

If morethan one EventDetail isdefined, thisisconsidered aMultiple End Event and
the Event will have the star internal marker (see Table 9.6).

Business Process Modeling Notation, v1.2 249

B.5.4 Intermediate Event

The following table displays the set of attributes of an Intermediate Event, which extends the set of common Event elements

(see Table B.5).

Table B.8 - Intermediate Event Attributes

Attributes

Description

Trigger (0-n) : EventDetall

Trigger (EventDetail) is an attribute that defines the type of trigger expected for an
Intermediate Event. Of the set of EventDetail Types (see Section B.11.7, “Event
Details,” on page 274), only eight (8) can be applied to an Intermediate Event:
Message, Timer, Error, Cancel, Compensation, Conditional, Link, and Signal (see
Table 9.8).

If thereis no EventDetail is defined, then thisis considered a None Intermediate
Event and the Event will not have an internal marker (see Table 9.8).

If more than one EventDetail is defined, thisis considered a Multiple Intermediate
Event and the Event will have the star internal marker (see Table 9.8).

Target (0-1) : Activity

A Target MAY beincluded for the Intermediate Event. The Target MUST be an
activity (Sub-Process or Task). This means that the Intermediate Event is attached
to the boundary of the activity and is used to signify an exception or compensation
for that activity.

B.6 Activities

The following figure displays a diagram of the relationship between BPMN activity elements and their attributes (see Figure

B.3).

250

Business Process Modeling Notation, v1.2

«Tablew
BPMN Element

Id[1] - Object
(Categonies[D..”] : Categary
Documentation[0..1] : string(idl}

.{P <<gxtends>>

wTablas

Supporting Element

/_JP =<axtends>>

«Tables
Graphical Element

aTables
Fiow Object

==gxiends=> ctends=>

Mame[1] : string(idl)
IAssignments[0,."] : Assignment Ny

aTablew
Expression
ExpressionBody{1] - siring(idl)
ExpressionLanguage(1] : string(idl)

[—
«Tables

Assignment

To[1] : Property

From(1] : Expression

WssignTime[0..1] : Typas = Start

==

«Tablen
Process

Mame{1] : stringlidl)

FrocessType[1] - Types = Mone

Status[1] : Types = None

Graphical Elements[0..*] : Graphical Element
Assignments[0..*] : Assignment
Ferformers[0.."] : stringlidl}

Froperties[0.."] : Property

InputSets[0..*] : InputSet

CutputSets[0.*] - OuiputSet

AdHoc[1] © boclean(idl) = False

«Tablaw
Property
Name[1] @ string(idl)
Type(1] : string(idl)

<=gxtends>>

aSub-Tables
Ad Hoc Process

Status[1] : Types = None
<|| Performers[0_.*] - string(idl)
Froperties[0..*] : Property

« Tablex
Activity
WctivityType[1] : Types = Task

InputSets(0..*] : InputSet

10utputSets[0..*] : OutputSat

IORules[0.."] : Expressicn

StartCuantity[1] : shortfidl) = 1
ICompletionCuantity{1] : short{idl) =1
LoopType[1] : Typeas = Mone
|sForCompensation[1] : boolean(idl) = False|

f N <<gxtandgs>

aTablen
MNone

I —
wTablas
Reference

TaskRef[1] : Task

ParticipantType{1] : Types
RoleRef[0..1] : Role
EntityRef[0..1] : Entity

FropertyQutputs[0..7] : Property

1

«Tablar
Send

MessageRel[1] : Message

|mplementation[1] : Types = Web Service

————

aTablen
User

InMessageRef[1] - Message
IDuthdessageRef[1] | Message
|mplementation[1] : Types = Other

Figure B.3 - BPMN Activity Elements and Attributes

Business Process Modeling Notation, v1.2

AN
<<gutends=>
aTables «Tablaw
Task Sub-Process
TaskType(1] : Types = None SubProcessType([1] : Typas = Embedded

lsATransaction[1] | boclean(idl} = False
[TrarsactionRef[0..1] : Transaction

? =<gxtends==

uTablaw
Reusable
DizgramBRef[1] : Business Process Diagram
ProcessRef[1] : Process
IrputMaps[0..*] : Expression
Cutputiaps(0.] ; Expression

‘Value[0..1] : Expression AdHocOrdening{0..1] - Types = Parallel ——————
Correlation[1] : boolean(idl) = False AdHocCompletionCaondition[D..1] : Exp 1 Tablan
aTablen Refarence
—————— —— Script bProcessRel1] : Sub-Process
«Tablas “Tablaw Serpt0..1] : string(id) I
Message InputSet
Name[1] @ string(idl) Artifactinputs[0..%] : Artifactinput — «Tablew
Properties[0..1] | Property Propertylnputs[0..*] : Property aTablan Embedded
FromRefl1] : Participant Manual GraphicalElements[0.."] | Graphical Element
ToRef[1] - Participant IAdHoc[1] @ bockean(idl) = False
1
————— «Tables << >
wTablan OutputSet _|n=Tablen /f|) extends>
Participant ArtifactOutputs]..*] : ArtifactOutput Receive “SubTabien

Ad Hoc Process

fessageRef1] : Message
Instantiate[1] : boolean(idl) = False
Implementation[1] : Types = Web Services

[AdHocOrdenng(D.. 1] - Types = Parallsl
|AdHecCompletionCondition[0. 1] : Expression

P

wTables
Sarvice

CutMeszageRef(1] : Message
InMessageRef[l.. 1] : Message
| mplementation[1] : Types = Web Service

251

B.6.1 Common Activity Attributes

The following table displays the set of attributes common to both a Sub-Process and a Task, and which extends the set of
common Flow Object attributes (see Table B.4) -- Note that Figure 10.55 and Figure 10.56 contain additional attributes that
must be included within this set if extended by any other attribute table.

Table B.9 - Common Activity Attributes

Attributes Description

ActivityType (Task | Sub- The ActivityType MUST be of type Task or Sub-Process.

Process) Task : String

Status (None | Ready | Active | The Status of an activity is determined when the activity is being executed by a

Cancelled | Aborting | Aborted | process engine. The Status of an activity can be used within Assignment

Completing | Completed) None : Expressions

String

Performers (0-n) : String One or more Performers MAY be entered. The Performer attribute defines the
resource that will perform or will be responsible for the activity. The Performer
entry could be in the form of a specific individual, a group, an organization role or
position, or an organization.

Properties (0-n) : Property Modeler-defined Properties MAY be added to an activity. These Properties are
“local” tothe activity object. These Propertiesare only for use within the processing
of the activity. The fully delineated name of these properties are “ <process
name>.<sub-process name>.<property name>" (e.g., “Add Customer.Review
Credit.Status"). Further details about the definition of a Property can be found in
“Property on page 279.”

InputSets (0-n) : InputSet The InputSets attribute defines the data requirements for input to the activity. Zero
or more InputSetsMAY be defined. Each Input set issufficient to allow the activity
to be performed (if it has first been instantiated by the appropriate signal arriving
from an incoming Sequence Flow). Further details about the definition of an
InputSet can be found in Section B.11.10, “InputSet,” on page 278.

OutputSets (0-n) : OutputSet The OutputSets attribute defines the data requirements for output from the activity.

Zero or more OutputSets MAY be defined. At the completion of the activity, only
one of the OutputSets may be produced--It is up to the implementation of the
activity to determine which set will be produced. However, the IORules attribute
MAY indicate arelationship between an OutputSet and an InputSet that started the
activity. Further details about the definition of an OutputSet can be found in
Section B.11.13, “ OutputSet,” on page 279.

IORules (0-n) : Expression The IORules attribute is a collection of expressions, each of which specifiesthe
required relationship between one input and one output. That is, if the activity is
instantiated with a specified input, that activity shall complete with the specified
output.

252 Business Process Modeling Notation, v1.2

Table B.9 - Common Activity Attributes

Attributes

Description

StartQuantity 1 : Integer

The default valueis 1. The value MUST NOT be less than 1. This attribute defines
the number of Tokens that must arrive before the activity can begin.

CompletionQuantity 1 : Integer

The default valueis 1. Thevalue MUST NOT be lessthan 1. This attribute defines
the number of Tokens that must be generated from the activity. This number of
Tokens will be sent done any outgoing Sequence Flow (assuming any Sequence
Flow Conditions are satisfied).

LoopType (None | Standard |
Multiinstance) None : String

LoopTypeis an attribute and is by default None, but MAY be set to Standard or
Multilnstance. If so, the Loop marker SHALL be placed at the bottom center of the
activity shape (see Figure 9.6 and Figure 9.15).

A Task of type Receivethat hasits | nstantiate attribute set to True MUST NOT have
a Standard or Multilnstance LoopType.

Standard Loop Attributes

Thefollowing are additional attributes of a Standard L oop Activity (wherethe LoopType attributeis set to “ Standard”), which
extends the set of common activity attributes (see Table B.9).

Table B.10 - Standard Loop Activity Attributes

Attributes

Description

LoopCondition : Expression

Standard Loops MUST have a boolean Expression to be evaluated, plus the timing
when the expression SHALL be evaluated. The attributes of an Expression can be
found in “ Expression on page 277.”

LoopCounter : Integer

The LoopCounter attribute is used at runtime to count the number of loopsand is
automatically updated by the process engine. The LoopCounter attribute MUST be
incremented at the start of aloop. The modeler may use the attribute in the

L oopCondition Expression.

LoopMaximum (0-1) : Integer

The Maximum an optional attribute that providesisasimple way to add acap to the
number of loops. This SHALL be added to the Expression defined in the
L oopCondition.

TestTime (Before | After) After :
String

The expressions that are evaluated Before the activity begins are equivalent to a
programming while function.

The expressions that are evaluated After the activity finishes are equivalent to a
programming until function.

Business Process Modeling Notation, v1.2 253

Multi-Instance Loop Attributes

The following are additional attributes of a Multi-Instance Loop Activity (where the LoopType attributeis set to
“Multilnstance”), which extends the set of common activity attributes (see Table B.9).

Table B.11 - Multi-Instance Loop Activity Attributes

Attributes

Description

MI_Condition : Expression

Multilnstance Loops MUST have a numeric Expression to be evaluated--the
Expression MUST resolve to an integer. The attributes of an Expression can be
found in “ Expression on page 277.”

LoopCounter : Integer

The LoopCounter attribute is only applied for Sequential Multilnstance Loops and
for processes that are being executed by a process engine. The attribute is updated
at runtime by a process engine to count the number of loops as they occur. The
LoopCounter attribute MUST be incremented at the start of aloop. Unlike a
Standard loop, the modeler does not use this attribute in the MI_Condition
Expression, but it can be used for tracking the status of aloop.

MI_Ordering (Sequential |
Parallel) Sequential : String

This appliesto only Multilnstance Loops. The MI_Ordering attribute defines
whether the loop instances will be performed sequentialy or in parallel.
Sequential M1_Ordering is amore traditional 1oop.

Parallel M1_Ordering is equivalent to multi-instance specifications that other
notations, such asUML Activity Diagramsuse. If set to Parallel, the Parallel marker
SHALL replace the Loop Marker at the bottom center of the activity shape (see
Figure 9.9 and Figure 9.15).

[Parallel MI_Ordering only]

MI_FlowCondition (None | One
| All | Complex) All : String

This attribute is equivalent to using a Gateway to control the flow past a set of
parallel paths.

* An MI_FowCondition of “None” is the same as uncontrolled flow (no
Gateway) and meansthat all activity instances SHALL generate atoken that
will continue when that instance is completed.

* An MI_FlowCondition of “One” is the same as an Exclusive Gateway and
means that the Token SHALL continue past the activity after only one of the
activity instances has completed. The activity will continue its other
instances, but additional Tokens MUST NOT be passed from the activity.

« AnMI_FlowCondition of “All” isthe same as a Parallel Gateway and means
that the Token SHALL continue past the activity after al of the activity
instances have completed.

* An MI_FlowCondition of “Complex” is similar to that of a Complex
Gateway. The ComplexMI_FlowCondition attribute will determine the
Token flow.

[Complex MI_FlowCondition
only]
ComplexMI_FlowCondition
(0-1) : Expression

If theMI_FlowCondition attributeis set to “Complex,” then an Expression Must be
entered. This Expression that MAY reference Process data. The expression will be
eva uated after each iteration of the Activity and SHALL resolveto aboolean. If the
result of the expression evaluation is TRUE, then a Token will be sent down the
activity’ soutgoing Sequence Flow. Otherwise, no Tokenwill be sent. The attributes
of an Expression can be found in “ Expression on page 277.”

254

Business Process Modeling Notation, v1.2

B.6.2 Sub-Process

The following table displays the set of attributes of a Sub-Process, which extends the set of common activity attributes (see

Table B.9).

Table B.12 - Sub-Process Attributes

Attributes

Description

SubProcessType (Embedded |
Reusable | Reference)
Embedded : String

SubProcessType is an attribute that defines whether the Sub-Process details are
embedded within the higher level Process or refers to another, re-usable Process.
The default is Embedded.

IsATransaction False : Boolean

IsATransaction determines whether or not the behavior of the Sub-Process will
follow the behavior of a Transaction (see “Section 9.4.2.5, “ Sub-Process Behavior
asaTransaction,” on page 62").

TransactionRef (0-1) :
Transaction

If the IsATransaction attribute is False, then a Transaction MUST NOT be
identified. If the ISATransaction attribute is True, then a Transaction MUST be
identified. The attributes of a Transaction can be found in “Section B.11.19,
“Transaction,” on page 281."

Note that Transactions that are in different Pools and are connected through
Message Flow MUST have the same Transactionld.

Embedded Sub-Process

The following are additional attributes of an Embedded Sub-Process (where the SubProcessType attribute is set to
“Embedded”), which extends the set of Sub-Process attributes (see Table B.12).

Table B.13 - Embedded Sub-Process Attributes

Attributes

Description

GraphicalElements (0-n) :
Object

The Graphical Elementsattribute identifiesall of the objects(e.g., Events, Activities,
Gateways, and Artifacts) that are contained within the Embedded Sub-Process.

AdHoc False : Boolean

AdHoc is aboolean attribute that has a default of False. This specifies whether the
Embedded Sub-Processis Ad Hoc or not. The activitieswithin an Ad Hoc
Embedded Sub-Process are not controlled or sequenced in a particular order, their
performance is determined by the performers of the activities.

[AdHoc = True only]

AdHocOrdering (0-1)
(Sequential | Parallel) Parallel :
String

If the Embedded Sub-Processis Ad Hoc (the AdHoc attribute is True), then the
AdHocOrdering attribute MUST be included. This attribute definesif the activities
within the Process can be performed in Parallel or must be performed sequentially.
The default setting is Parallel and the setting of Sequential is arestriction on the
performance that may be required due to shared resources.

[AdHoc = True only]

AdHocCompletionCondition
(0-1) : Expression

If the Embedded Sub-Processis Ad Hoc (the AdHoc attribute is True), then a
Completion Condition MUST be included, which defines the conditions when the
Processwill end. The Ad Hoc marker SHALL be placed at the bottom center of the
Process or the Sub-Process shape for Ad Hoc Processes.

Business Process Modeling Notation, v1.2 255

Reusable Sub-Process Attributes

The following are additional attributes of a Reusable Sub-Process (where the SubProcessType attribute is set to “ Reusable”),
which extends the set of Sub-Process attributes (see Table B.12).

Table B.14 - Reusable Sub-Process Attributes

Attributes Description

DiagramRef : Business Process | The BPD MUST beidentified. The attributes of a BPD can be found in
Diagram “Section 8.5, “Business Process Diagram Attributes,” on page 31.”
ProcessRef : Process A Process MUST be identified. The attributes of a Process can be found in

“Section 8.6, “Processes,” on page 32.”

InputMaps (0-n) : Expression Multiple input mappings MAY be made between the Reusable Sub-Process and the
Process referenced by this object. These mappings are in the form of an expression.
A specific mapping expression MUST specify the mapping of Properties between
the two Processes OR the mapping of Artifacts between the two Processes.

OutputMaps (0-n) : Expression Multiple output mappings MAY be made between the Reusable Sub-Process and
the Process referenced by this object. These mappings are in the form of an
expression. A specific mapping expression MUST specify the mapping of
Properties between the two Processes OR the mapping of Artifacts between the two
Processes.

Reference Sub-Process Attributes

The following table displays the set of attributes of a Reference Sub-Process (where the SubProcessType attribute is set to
“Reference”), which extends the set of Sub-Process attributes (see Table B.12).

Table B.15 - Reference Sub-Process Attributes

Attributes Description

SubProcessRef : Sub-Process The Sub-Process being referenced MUST be identified. The attributes for the Sub-
Process element can be found in Table B.12.

B.6.3 Task

The following table displays the set of attributes of a Task, which extends the set of common activity object attributes (see
Table B.9).

256 Business Process Modeling Notation, v1.2

Table B.16 - Task Attributes

Attributes Description

TaskType (Service | Receive | TaskTypeis an attribute that has a default of None, but MAY be set to Send,
Send | User | Script | Abstract | Receive, User, Script, Abstract, Manual, Reference, or Service. The TaskType will
Manual | Reference | None) None | beimpacted by the Message Flow to and/or from the Task, if Message Flow are

: String used. A TaskType of Receive MUST NOT have an outgoing Message Flow. A

TaskType of Send MUST NOT have an incoming Message Flow. A TaskType of
Script or Manual MUST NOT have an incoming or an outgoing Message Flow.
The TaskTypelist MAY be extended to include new types. The attributes for
specific settings of TaskType can be found in Table B.17 through Table B.22.

Service Task Attributes

The following table displays the set of attributes of a Service Task (where the TaskType attribute is set to “ Service”), which
extends the set of Task attributes (see Table B.16).

Table B.17 - Service Task Attributes

Attributes Description

InMessageRef : Message A Messagefor the InMessageRef attribute MUST be entered. Thisindicatesthat the
Message will bereceived at the start of the Task, after the availability of any defined
InputSets. One or more corresponding incoming Message Flow MAY be shown on
the diagram. However, the display of the Message Flow is not required. The
Messageisapplied to all incoming Message Flow, but can arrive for only one of the
incoming Message Flow for a single instance of the Task.

OutMessageRef : Message A Message for the OutM essageRef attribute MUST be entered. The sending of this
message marks the completion of the Task, which may cause the production of an
OutputSet. One or more corresponding outgoing Message Flow MAY be shown on
the diagram. However, the display of the Message Flow is not required. The
Messageisapplied to all outgoing Message Flow and the Message will be sent down
all outgoing Message Flow at the completion of a single instance of the Task.

Implementation (Web Service | | This attribute specifies the technology that will be used to send and receive the
Other | Unspecified) Web Service | MesSages. A Web serviceisthe default technology.

: String

Business Process Modeling Notation, v1.2 257

Receive Task Attributes

The following table displays the set of attributes of a Receive Task (where the TaskType attribute is set to “ Receive”), which
extends the set of Task attributes (see Table B.16).

Table B.18 - Receive Task Attributes

Attributes Description

MessageRef : Message A Message for the MessageRef attribute MUST be entered. Thisindicates that the
Message will be received by the Task. The Message in this context is equivalent to
an in-only message pattern (Web service). One or more corresponding incoming

Message Flow MAY be shown on thediagram. However, the display of the Message
Flow isnot required. The Messageisapplied to all incoming Message Flow, but can
arrive for only one of the incoming Message Flow for a single instance of the Task.

Instantiate False : Boolean Receive Tasks can be defined as the instantiation mechanism for the Process with
the Instantiate attribute. This attribute MAY be set to true if the Task isthe first
activity after the Start Event or a starting Task if thereis no Start Event. Multiple
Tasks MAY have this attribute set to True.

Implementation (Web Service | | Thisattribute specifies the technology that will be used to receive the message. A
Other | Unspecified) Web Service Web service is the default technology.
: String

Send Task Attributes

Thefollowing table displays the set of attributes of a Send Task (where the Task Type attributeis set to “Send”), which extends
the set of Task attributes (see Table B.16).

Table B.19 - Send Task Attributes

Attributes Description

MessageRef : Message A Message for the MessageRef attribute MUST be entered. Thisindicates that the
Message will be sent by the Task. The Message in this context is equivalent to an
out-only message pattern (Web service). One or more corresponding outgoing
Message Flow MAY be shown on the diagram. However, the display of the Message
Flow isnot required. The Messageis applied to all outgoing Message Flow and the
Message will be sent down all outgoing Message Flow at the completion of asingle
instance of the Task.

Implementation (Web Service | | Thisattribute specifiesthe technology that will be used to send the message. A Web

Other | Unspecified) Web Service | Serviceis the default technology.
: String

258 Business Process Modeling Notation, v1.2

User Task Attributes

Thefollowing table displays the set of attributes of a User Task (where the TaskType attribute is set to “User”), which extends
the set of Task attributes (see Table B.16).

Table B.20 - User Task Attributes

Attributes

Description

InMessageRef : Message

A Messagefor the InM essageRef attribute MUST be entered. Thisindicatesthat the
Message will bereceived at the start of the Task, after the availability of any defined
InputSets. One or more corresponding incoming Message FlowsMAY be shown on
the diagram. However, the display of the Message Flow is not required. The
Messageisapplied to all incoming Message Flow, but can arrive for only one of the
incoming Message Flow for a single instance of the Task.

OutMessageRef: Message

A Message for the OutM essageRef attribute MUST be entered. The sending of this
message marks the completion of the Task, which may cause the production of an
OutputSet. One or more corresponding outgoing Message Flow MAY be shown on
the diagram. However, the display of the Message Flow is not required. The
Messageisapplied to all outgoing Message Flow and the Message will be sent down
all outgoing Message Flow at the completion of a single instance of the Task.

Implementation (Web Service |
Other | Unspecified) Web Service
: String

Thisattribute specifiesthe technol ogy that will be used by the Performersto perform
the Task. A Web service is the default technology.

Script Task Attributes

The following table displays the set of attributes of a Script Task (where the TaskType attribute is set to “ Script”), which
extends the set of Task attributes (see Table B.16).

Table B.21 - Script Task Attributes

Attributes

Description

Script (0-1) : String

The modeler MAY include a script that can be run when the Task is performed. If a
script is not included, then the Task will act equivalent to a TaskType of None.

Manual Task Attributes

The Manual Task does not contain any additional attributes beyond the set of Task attributes (see Table B.16).

Reference Task Attributes

The following table displays the set of attributes of a Reference Task (where the TaskType attribute is set to “ Reference”),
which extends the set of Task attributes (see Table B.16).

Table B.22 - Reference Task Attributes

Attributes

Description

TaskRef : Task

The Task being referenced MUST be identified. The attributes for the Task element
can befound in Table B.16.

Business Process Modeling Notation, v1.2 259

B.7 Gateways

The following figure displays a diagram of the relationship between BPMN Gateway elements and their attributes (see Figure
B.4). Event-Based Gateways can be defined as the instantiation mechanism for the Process with the Instantiate attribute. This
attribute MAY be set to true if the Gateway is the first element after the Start Event or a starting Gateway if there is no Start
Event (i.e., there are no incoming Sequence Flow).

aTables
Tables «Tablax
BPMN El f «Table: N !
IR emen wextendss Graphical Ef.;mem wexlendss Flow Object wextendss Gateway
- . k. l— k- }—Nama[ll + siring(idl) K l—GalewayTypa[‘I] : Typas = Excluisve
[Fategonies(0.] Cat.egu_ry . Wssignments(0.."] : Assignment Gatez[0..*] | Gate
Documentation[D.. 1] : stringiidl)
e
TreeneE AN <<gxtends=>
éﬁﬂextends:-:-
aTablexs | J
Supporting Elemeant uTables wTables
Complex Inclusive
IncomingCaondition[0..1] : Expression DefaultGate[0.1] : Gate
CutgoingCondition[0..1] ; Expression
[IS <<gxtends>>
uTElI]IQ;n aTables uTables «Tablen
Expression Connecting Ohjects Parallel Exclusive
ExpressionBody{1] - stringidl) Mamef0..1] : string(idl) ExclusiveType[1] : Types = Data
ExpressionLanguage(1] : stingiidl) SourceRed[1] : Graphical Element
TargetRef[1] : Graphical Element
LN <<extendss>
| =<gxtends>=>
aTablexs
- gnment aTablexn «Tablex
Ea[!]'r]][ll]P-FTEp:xrt;gsinn Sequence Flow Event-Based
i Tir . - ConditionType[1] : Typas = None Instantiate[1] : boolean(idl) = False
prssignTimef0. 1] : Types = Start ConditionExprassion[1] : Exprassion

| I
«Tablex aTablas aTables
Property Gate _ Daia-Based_
MName[1] : string(idl} CutgoingSequenceFlow(1] | Sequence Flow Marker\isible[1] : boolean(idl) = False
Type[1] : stringlidl) Assignments(D. 7] : Assignment DefaultGate{0..1] - Gate
aluel0..1] : Expression
Correlation[1] : boolean(idl) = False

Figure B.4 - BPMN Gateway Elements and Attributes

260 Business Process Modeling Notation, v1.2

B.7.1 Common Gateway Attributes

The following table displays the attributes common to Gateways, and which extends the set of common Flow Object attributes

(see Table B.4).

Table B.23 - Common Gateway Attributes

Attributes

Description

GatewayType (Exclusive |
Inclusive | Complex | Parallel)
Exclusive : String

GatewayTypeishby default Exclusive. The Gateway Type MAY be set to Inclusive,
Complex, or Parallel. The GatewayType will determine the behavior of the
Gateway, both for incoming and outgoing Sequence Flow, and will determine the
internal indicator (as shown in Figure 9.17).

Gates (0-n) : Gate

There MAY be zero or more Gates (except where noted below). Zero Gates are
alowed if the Gateway islast object in a Process flow and there are no Start or End
Eventsfor the Process. If there are zero or only one incoming Sequence Flow, then
there MUST be at |east two Gates.

* For Exclusive Data-Based Gateways: When two Gates are required, one of
them MAY be the DefaultGate.

* For Exclusive Event-Based Gateways: There MUST be two or more Gates.
(Notethat thistype of Gateway does not act only as a Merge--it isalways a
Decision, at least.)

« For Inclusive Gateways. When two Gates are required, one of them MAY
be the DefaultGate.

B.7.2 Exclusive Gateways

Data-Based

The following table displays the attributes for a Data-Based Exclusive Gateway. These attributes only apply if the
GatewayType attribute is set to Exclusive. The following attributes extend the set of common Gateway attributes (see

Table B.23).

Table B.24 - Data-Based Exclusive Gateway Attributes

Attributes

Description

ExclusiveType (Data | Event)
Data : String

ExclusiveTypeis by default Data. The ExclusiveType MAY be set to Event. Since
Data-Based Exclusive Gateways is the subject of this section, the attribute MUST

be set to Data for the attributes and behavior defined in this section to apply to the
Gateway.

MarkerVisible False : Boolean

This attribute determines if the Exclusive Marker is displayed in the center of the
Gateway diamond (an“X"). The marker isdisplayed if the attributeis Trueand it is
not displayed if the attribute is False. By default, the marker is not displayed.

DefaultGate (0-1) : Gate

A Default Gate MAY be specified (see Section B.11.9, “Gate,” on page 277).

Business Process Modeling Notation, v1.2 261

Event-Based

The following table displays the attributes for an Event-Based Exclusive Gateway. These attributes only apply if the
GatewayType attribute is set to Exclusive. The following attributes extend the set of common Gateway attributes (see
Table B.23).

Table B.25 - Event-Based Exclusive Gateway Attributes

Attributes Description

ExclusiveType (Data | Event) ExclusiveTypeisby default Data. The ExclusiveType MAY be set to Event. Since
Event : String Event-Based Exclusive Gateways s the subject of this section, the attribute MUST
be set to Event for the attributes and behavior defined in this section to apply to the
Gateway.

Instantiate False : Boolean Event-Based Gateways can be defined as the instantiation mechanism for the
Process with the Instantiate attribute. This attribute MAY be set to trueif the
Gateway isthefirst element after the Start Event or astarting Gateway if thereisno
Start Event (i.e., there are no incoming Sequence Flow).

B.7.3 Inclusive Gateways

The following table displays the attributes for an Inclusive Gateway. These attributes only apply if the GatewayType attribute
is set to Inclusive. The following attributes extend the set of common Gateway attributes (see Table B.23).

Table B.26 - Inclusive Gateway Attributes

Attributes Description

DefaultGate (0-1) : Gate A Default Gate MAY be specified (see Section B.11.9, “Gate,” on page 277).

B.7.4 Complex Gateways

Thefollowing table displays the attributes for a Complex Gateway. These attributes only apply if the Gateway Type attribute is
set to Complex. The following attributes extend the set of common Gateway attributes (see Table B.23).

Table B.27 - Complex Gateway Attributes

Attributes Description
IncomingCondition (0-1) : If there are Multiple incoming Sequence Flow, an IncomingCondition expression
Expression MUST be set by the modeler. Thiswill consist of an expression that can reference

Sequence Flow names and or Process Properties (Data).

OutgoingCondition (0-1) : If there are Multiple outgoing Sequence Flow, an OutgoingCondition expression
MUST be set by the modeler. Thiswill consist of an expression that can reference

Expression) -
(outgoing) Sequence Flow Ids and or Process Properties (Data).

B.7.5 Parallel Gateways
Parallel Gateways do not have any additional Attributes beyond the common Gateway Attributes (see Table B.23).

262 Business Process Modeling Notation, v1.2

B.8 Swimlanes (Pools and Lanes)

Thefollowing figure displays adiagram of the relationship between BPMN Swimlane elements and their attributes (see Figure

B.5).
wTables
BPMN Element aTablas aTablan
1aM] - Cbject jlam&ndsn Graphical Elemant dncemendsse- Swimlana
(Categones[D..”] : Category - M-d IMame[1] : string(idl)
Documentation[0..1] : string(idl}
£ =<extends>>
<<pxtends>> [|
«Tablen aTablen
Lane Paal
Lanes[0._*] : Lane ProcessRef[0.1] : Process
FarticipantRef1] : Participant
«Tables Lanes[1..*]: Lane
Supporting Element BoundaryWisibla[1] : boclean(idl) = True
MainPool[1] : boolean(idl) = False
<<extends>> /%
#Tablex aTablex «Tables «Tables
Process Participant Entity Role

Mame[1] : string(idl)
ProcessType[1] : Types = None
iStatus[1] : Types = None

Assignments0.*] @ Assignment
Performers[0..*] : string(idl)
Properties[D.."] : Property
lInputSets[0..*] : InputSet
DutputSets[0..”] ; QutputSet
AdHoc]1] © boolean(idl) = False

Graphical Elements[0.*] : Graphical Element

ParticipaniType([1] : Typas
RoleRef[0..1] : Role
EntityRef[0..1] : Entity

Mame[1] : stringl(idl)

Mame[1] : string(idl)

Figure B.5 - BPMN Swimlane Elements and Attributes

B.8.1 Common Swimlane Attributes

The following table displays a set of common attributes for Swimlanes (Pools and Lanes), and which extends the set of

common BPMN Element attributes (see Table B.2).

Table B.28 - Common Swimlane Attributes

Attributes

Description

Name : String

Name is an attribute that is text description of the Swimlane.

Business Process Modeling Notation, v1.2

263

B.8.2 Pool

Thefollowing table displays the identified attributes of a Pool, and which extends the set of common Swimlane attributes (see
Table B.28).

Table B.29 - Pool Attributes

Attributes Description

ProcessRef (0-1) : Process The ProcessRef attribute defines the Process that is contained within the Pool. Each
Pool MAY have aProcess. These attributes are used for Graphical Elements, which
are Flow Objects (Section B.4, “Common Flow Object Attributes,” on page 247),
Connecting Objects (Section B.10, “Graphical Connecting Objects,” on page 267),
Swimlanes (Section B.8, “ Swimlanes (Pools and Lanes),” on page 263),” Artifacts
(Section B.9, “Artifacts,” on page 264), and Supporting Elements (Section B.11,
“Supporting Elements,” on page 270).

ParticipantRef : Participant The Modeler MUST define the Participant for a Pool. The Participant can be either
aRole or an Entity. The attributes for a Participant can be found in “ Participant on
page 279.”

Lanes (1-n) : Lane There MUST be one or more Lanes within a Pool. If there is only one Lane, then

that Lane shares the name of the Pool and only the Pool nameis displayed. If there
is more than one Lane, then each Lane has to have its own name and all names are
displayed. The attributesfor aLane can befoundin“Section 9.6.3, “Lane,” on page
89.”

BoundaryVisible True : Boolean | Thisattribute defines if the rectangular boundary for the Pool is visible. Only one
Pool in the Diagram MAY have the attribute set to False.

MainPool False : Boolean Thisattribute definesif the Pool isthe“main” Pool or thefocus of the diagram. Only
one Poal in the Diagram MAY have the attribute set to True.

B.8.3 Lane

Thefollowing table displays theidentified attributes of aLane, and which extends the set of common Swimlane attributes (see
Table B.28).

Table B.30 - Lane Attributes

Attributes Description

Lanes (0-*) : Lane This attribute identifies any Lanes that are nested within the current Lane.

B.9 Artifacts

The following figure displays a diagram of the relationship between BPMN Artifact elements and their attributes (see Figure
B.6).

264 Business Process Modeling Notation, v1.2

wTablew
BPMN Element

Id[1] : Olject
‘Categones[D.."] : Category
Documentation[D., 1] ; strang(idl)

=<gxtends==

« Tablew
Supporting Elemant

? <<gxtends>>

wTablew
Property

Mamea[1] : string(idl}

Type[1] : string(idl)

Walue[D,, 1] Expression
Correlation[1] : boolean(idl) = False

wTables “Tables
wexlendss | Gronpical Element wextendss Artifact

isrtifactType[1] : Types = DataObject

& <<aytends=>

«Tables « Tablan
Group Data Object
ICategoryRef[1] - Category Mame[1] : sting(idl)
IGraphicalElemeants[0..”] : Graphical Element Statef0.. 1] : string(idl)
IPropariies[D.."] : Property

uTables
Annotation

Text[1] : string{idI)

Figure B.6 - BPMN Artifact Elements and Attributes

B.9.1 Common Artifact Attributes

The following table displays the identified attributes common to Artifacts, and which extends the set of common BPMN

Element attributes (see Table B.2).

Table B.31 - Common Artifact Attributes

Attributes

Description

String

ArtifactType (DataObject |
Group | Annotation) DataObject :

The ArtifactType MAY be set to DataObject, Group, or Annotation.
The ArtifactType list MAY be extended to include new types.

Business Process Modeling Notation, v1.2

265

B.9.2 Data Object

The following table displays the attributes for Data Objects, and which extends the set of common Artifact attributes (see
Table B.31). These attributes only apply if the ArtifactType attribute is set to DataObject.

Table B.32 - Data Object Attributes

Attributes

Description

Name : String

Name is an attribute that is text description of the object.

State (0-1) : String

Stateisan optional attribute that indi cates theimpact the Process has had on the Data
Object. Multiple Data Objectswith the ssmename MAY sharethe same statewithin
one Process.

Properties (0-n) : Properties

Modeler-defined Properties MAY be added to a Data Object. The fully delineated
name of these properties are “ <process name>.<task hame>.<property hame>"
(e.g., “Add Customer.Review Credit Report.Score”). Further details about the
definition of a Property can be found in “Property on page 279.”

B.9.3 Text Annotation

The following table displays the attributes for Annotations, and which extends the set of common Artifact attributes (see
Table B.31). These attributes only apply if the ArtifactType attribute is set to Annotation.

Table B.33 - Text Annotation Attributes

Attributes Description
Text : String Text isan attribute that istext that the model er wishes to communicate to the reader
of the Diagram.
B.9.4 Group

The following table displays the attributes for Groups, and which extends the set of common Artifact attributes (see
Table B.31). These attributes only apply if the ArtifactType attribute is set to Group.

Table B.34 - Group Attributes

Attributes

Description

CategoryRef : Category

CategoryRef specifiesthe Category that the Group represents (Further details about
the definition of a Category can be found in “Category on page 273").

The name of the Category providesthe label for the Group. The graphical elements
within the boundaries of the Group will be assigned the Category.

GraphicalElements (0-n) :
Graphical Element

The Graphica Elements attribute identifies all of the graphical elements (e.g.,
Events, Activities, Gateways, and Artifacts) that are within the boundaries of the
Group.

266

Business Process Modeling Notation, v1.2

B.10 Graphical Connecting Objects

The following figure displays a diagram of the relationship between BPMN Connecting Object elements and their attributes

(see Figure B.7).

uTabler
BPMN Element

Id[1] | Object
(Categories[D.."] . Category
Documentation[0..1] : string(idl)

aexiandss

uTables
Category

MName[1] : string(idl)

i Tables

uTabler
Connecting Objecis

Graphical Element

aextendss

Mame[0..1] : string(id]}
SourceRef]1] : Graphical Element
[TargetRel[1] : Graphical Element

/_II_\.-C-iexlends:-h- | &-ffaxtendsi:-b
¢ Tablew aTahlen
Supporting Elemant Soqgﬁ::lsl;luw Message Flow
Condition Type[1] : Types = None Messagerwild. 1]: Message
(ConditionExpression[1] : Expression
S e<extends=>
«Tables #Tablex
Expression —| __Association
ExpressionBody[1] : stringlidl) Riraction[1] : Types = None
ExpressionLanguage[1] - stringlidl) «Tables
Message

Name[1] : strimg(idl)
IProperties[0..1] : Property
FromRef[1] : Paricipant
ToRef[1] : Participant

«Tablew
Property

«Tablex
Participant

Mame]1] : string{idl)

Type[1] : string(idl)

Value[0..1] : Expression
Correlation[1] : boolean(idl) = False

[ParticipantType{1] : Typas
RoleRef[D..1] | Role
EntityRef[0..1] : Entity

Figure B.7 - BPMN Connecting Object Elements and Attributes

Business Process Modeling Notation, v1.2

267

B.10.1 Common Connecting Object Attributes

The following table displays the set of attributes common to Connecting Objects (Sequence Flow, Message Flow, and
Association), and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.35 - Common Connecting Object Attributes

Attributes Description

Name : String Name is an attribute that is text description of the object.

SourceRef : Graphical Element | SourceRef is an attribute that identifies which Graphical Element the Connecting
Object is connected from. Note: there are restrictions as to what objects Sequence
Flow and Message Flow can connect. Refer to the Sequence Flow Connections
section and the M essage Flow Connections section for each Flow Object, Swimlane,
and Artifact.

TargetRef : Graphical Element Target isan attribute that identifies which Graphical Element the Connecting Object
is connected to. Note: there are restrictions as to what objects Sequence Flow and

M essage Flow can connect. Refer to the Sequence Flow Connections section and the
Message Flow Connections section for each Flow Object, Swimlane, and Artifact.

B.10.2 Sequence Flow

Thefollowing table displays the set of attributes of a Sequence Flow, and which extends the set of common Connecting Object
attributes (see Table B.35).

Table B.36 - Sequence Flow Attributes

Attributes Description
ConditionType (None | By default, the ConditionType of a Sequence Flow is None. This means that there
Expression | Default) None is no evaluation at runtime to determine whether or not the Sequence Flow will be

used. Once a Token is ready to traverse the Sequence Flow (i.e., the Sourceis an
activity that has completed), then the Token will do so. The normal, uncontrolled
use of Sequence Flow, in asequence of activities, will have aNone ConditionType
(see Figure 10.1). A None ConditionType MUST NOT be used if the Source of the
Sequence Flow is an Exclusive Data-Based or Inclusive Gateway.

The ConditionType attribute MAY be set to Expression if the Source of the
Sequence Flow isa Task, a Sub-Process, or a Gateway of type Exclusive-Data-
Based or Inclusive.

String

268 Business Process Modeling Notation, v1.2

Table B-36 - Sequence Flow Attributes (continued)

Attributes

Description

ConditionType (None |
Expression | Default) None :
String

If the ConditionType attributeis set to Expression, then acondition marker SHALL
be added to the line if the Sequence Flow is outgoing from an activity (see Figure
10.2). However, a condition indicator MUST NOT be added to the lineif the
Sequence Flow is outgoing from a Gateway.

An Expression ConditionType MUST NOT be used if the Source of the Sequence
Flow is an Event-Based Exclusive Gateway, a Complex Gateway, a Parallel
Gateway, a Start Event, or an Intermediate Event. In addition, an Expression
ConditionType MUST NOT be used if the Sequence Flow is associated with the
Default Gate of a Gateway.

The ConditionType attribute MAY be set to Default only if the Source of the
Sequence Flow is an activity or an Exclusive Data-Based Gateway. If the
ConditionType is Default, then the Default marker SHALL be displayed (see
Figure 10.3).

[ConditionType is set to
Expression only]
ConditionExpression :
Expression

If the ConditionType attribute is set to Expression, then the ConditionExpression
attribute MUST be defined as a valid expression. The expression will be evaluated
at runtime. If the result of the evaluation is TRUE, then a Token will be generated
and will traverse the Sequence--Subject to any constraintsimposed by a Source that
isaGateway.

B.10.3 Message Flow

The following table displays the identified attributes of a Message Flow, and which extends the set of common Connecting

Object attributes (see Table B.35).

Table B.37 - Message Flow Attributes

Attributes

Description

MessageRef (0-1) : Message

MessageRef is an optional attribute that identifies the Message that is being sent.
The attributes of a Message can be found in “Message on page 278.”

B.10.4 Association

The following table displays the identified attributes of an Association, and which extends the set of common Connecting

Object attributes (see Table B.35).

Table B.38 - Association Attributes

Attributes

Description

Direction (None | One | Both)
None : String

Direction is an attribute that defines whether or not the Association shows any
directionality with an arrowhead. The default is None (no arrowhead). A vaue of
One means that the arrowhead SHALL be at the Target Object. A value of Both
means that there SHALL be an arrowhead at both ends of the Association line.

Business Process Modeling Notation, v1.2 269

B.11 Supporting Elements

Supporting Element is one of two main elements that are of type BPMN Element (see Figure B.1). The other is Graphical

Element. There are 16 types, and afew subtypes, of Support Element. These are:

Assignments (see Section B.11.3, “Assignment,” on page 273)
Categories (see Section B.11.4, “Category,” on page 273)
Entities (see Section B.11.5, “ Condition,” on page 273)

Event Details (see Section B.11.7, “Event Details,” on page 274)
Expressions (see Section B.11.8, “Expression,” on page 277)
Gates (see Section B.11.9, “Gate,” on page 277)

Inputs (see Section B.11.10, “InputSet,” on page 278)

Messages (see Section B.11.11, “Message,” on page 278)
Outputs (see Section B.11.13, “OutputSet,” on page 279)
Participants (see Section B.11.14, “Participant,” on page 279)
Processes (see Section B.3, “ Process Attributes,” on page 246)
Properties (see Section B.11.15, “Property,” on page 279

Roles (see Section B.11.16, “Role,” on page 280)

Conditions (see Section B.11.5, “Condition,” on page 273)
Transactions (see Section B.11.19, “Transaction,” on page 281)
Web Services (see Section B.11.20, “Web Service,” on page 281)

The following figure displays a diagram of the relationship between BPMN Supporting elements and their attributes (see
Figure B.8).

270

Business Process Modeling Notation, v1.2

«Tablew
BPMN Element

aTables

Id[1] : Cbject
(Categories[d.."] - Category
Documentation[0..1] : stringiidl)

wextends® | sypporting Element

£y =<enlends>>

«Tablexs
Process

«Tablas

Message

«Tables
Assignment

Mame[1] - string(idl)
ProcessType[1] : Types = None
Status[1] : Types = Mone

lAssignments[0,.*] : Assignment
Performers]0..*] : string{idl)
Properties[0._*] : Property
InputSets[0..”] : InputSet
CutputSets[0..*] : OutputSet
lAdHac(1] ; bookean(idl) = False

(Graphical Elements[0..”] : Graphical Element

Mamef1] : string{idl)

Properties[l..1] : Property
FromRef[1] : Participant
ToRef[1] : Participant

To[1] @ Property
From[1] : Expression
VissignTime([0..1) : Types = Start

| aTablens
aTablen Property
Participant Mame[1] : string(idl)

RoleRef[0. 1] : Role

ParticipantType[1] : Types
EntityRef{0..1] : Entity

Type[1] : string(idl)
alue(0..1] : Expression
Correlation[1] : boolean(idl) = False

1 P
«Talblem wTables «Tahles
InputSet Entity Expression

[Artifactinputs[0, %) Artifact nput
Propertyinputs[0,.*] : Property

Mame]1] : string/idl)

ExprassionBody[1] : string(idl)

ExpressionLanguage[1] : string(idl)

—

aTables

Role

«Tables
OutputSet

[I}. =<exiends>>

Name[1] : string{idl)

«Tables
TimeDateExpression

PropertyCutputs[0..*] : Property

WrtifactQutputs(D..*] ; ArtfactOutput

|

aTablan
Category

Operation[1..7] © string(idl)

—
«Tables
Web Service
— — |
ParticipantRef[1] : Participant Tahl
Interface[1] : string{id) C;nadii?onn

Mame[D..1] : string{idl}

Mame[1] : string{idl)

‘ConditionExpression[0_.1] : string(idl)

«Tablen
EventDetail

EventDetailType[1] : Types = Message

43 <=gntends=>

1

« Tables
Transaction

Transactionld[1] : strina(idl)
TranzactionProtocol[1] @ string(idl)
ITransactionMethod[1] : Types = Compensate

[
«Tablas
Compensate

|
«Tables

«Tabler
Gate

Error

lActivityRef[0..1] : Activity

ErrarCode(0..1] : string(idl)

CutgoingSequenceFlow[1] | Sequence Flow
Assignments[0..*] - Assignment

o Tablan
Link

aTablas
Message

Marme[1] - string(idl)

MassageRel[1] | Message
Implementation[1] : Types = Web Service

aTables
Conditional

wTables
Timer

ConditionRef[1] - Condition

TimeDate[0..1] : TimeDateExprassion
TimeCycle[0.,1] : TimeDateExpression

Figure B.8 - BPMN Supporting Elements and Attributes

Business Process Modeling Notation, v1.2

271

B.11.1 Artifactinput

The following table displays the set of attributes of an Artifactinput, which isused in the definition of attributes for InputSet,

and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.39 - Artifactinput Attributes

Attributes

Description

ArtifactRef : Artifact

This attribute identifies an Artifact that will be used as an input to an activity. The
identified Artifact will be part of an InputSet for an activity.

RequiredForStart True :
Boolean

The default value for this attribute is True. This means that the Input is required for
an activity to start. If set to False, then the activity MAY start within the input if it
isavailable, but MAY accept the input (more than once) after the activity has
started. An InputSet may have some Artifactinputs that have this attribute set to
True and some that are set to False.

B.11.2 ArtifactOutput

The following table displays the set of attributes of an ArtifactOutput, which is used in the definition of attributes for
OutputSet, and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.40 - ArtifactOutput Attributes

Attributes

Description

ArtifactRef : Artifact

This attribute identifies an Artifact that will be used as an output from an activity.
Theidentified Artifact will be part of an OutputSet for an activity.

ProduceAtCompletion True :
Boolean

The default value for this attribute is True. This means that the Output will be
produced when an activity has been completed. If set to False, then the activity
MAY produce the output (more than once) before it has completed. An OutputSet
may have some ArtifactOutputs that have this attribute set to True and somethat are
set to False.

272

Business Process Modeling Notation, v1.2

B.11.3 Assignment

The following table displays the set of attributes of an Assignment, which is used in the definition of attributes for Process,
Activities, Events, Gateways, and Gates, and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.41 - Assignment Attributes

Attributes Description
To : Property The target for the Assignment MUST be a Property of the Process or the activity
itself.
From : Expression The Expression MUST be made up of a combination of Values, Properties, and

Attributes, which are separated by operators such asadd or multiply. The expression
language is defined in the ExpressionLanguage attribute of the Business Process
Diagram - see “Business Process Diagram Attributes on page 245.”

AssignTime (0-1) (Start | End) AnAssignment MAY havean AssignTimesetting. If the Objectisan activity (Task,
Start : String Sub-Process, or Process), then the Assignment MUST have an AssignTime.

A value of Start meansthat the assignment SHALL occur at the start of the activity.
This can be used to assign the higher-level (global) Properties of the Process to the
(local) Properties of the activity as an input to the activity.

A value of End means that the assignment SHALL occur at the end of the activity.
This can be used to assign the (local) Properties of the activity to the higher-level
(global) Properties of the Process as an output to the activity.

B.11.4 Category

The following table displays the set of attributes of a Category, which is used in the definition of attributes for all BPMN
elements, and which extends the set of common BPMN Element attributes (see Table B.2). Since a Category isaso aBPMN
element, a Category can have Categories to create a hierarchical structure of Categories.

Table B.42 - Category Attributes

Attributes Description
Name : String Nameis an attribute that is text description of the Category and is used to visually
distinguish the category.

B.11.5 Condition

Thefollowing table displaysthe set of attributes of a Condition, which isused in the definition of attributes for Start Event and
Intermediate Event, and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.43 - Condition Attributes

Attributes Description

Name (0-1) : String Name is an optiona attribute that is text description of the Condition. If aNameis
not entered, then a ConditionExpression MUST be entered (see the attribute below).

ConditionExpression (0-1): | A ConditionExpression MAY be entered. In some cases the Condition itself will be
stored and maintained in a separate application (e.g., a Rules Engine). If a

ConditionExpressionisnot entered, thenaNameMUST beentered (seetheattribute
above). The attributes of an Expression can be found in “Expression on page 277."

Expression

Business Process Modeling Notation, v1.2 273

B.11.6 Entity

Thefollowing table displays the set of attributes of an Entity, which isused in the definition of attributes for a Participant, and
which extends the set of common BPMN Element attributes (see Table B.2).

Table B.44 - Entity Attributes

Attributes Description

Name : String Name is an attribute that istext description of the Entity.

B.11.7 Event Details
The following sections will present the attributes common to all Event Details and the specific attributes for the Event

Details that have additional attributes. Note that the Cancel and Terminate Event Details do not have additional attributes.

Common EventDetail Attributes

The following table displays the set of attributes common to the types of EventDetail, and which extends the set of common
BPMN Element attributes (see Table B.2).

Table B.45 - Common EventDetail Attributes

Attributes Description

EventDetail Type (Message | The EventDetail Type attribute defines the type of trigger expected for an Event. The

Timer | Error | Conditional | Link | | set of typesincludesMessage, Timer, Error, Conditional, Link, Signal, Compensate,

Signal | Compensate | Cancel | Cancel, and Terminate. The EventTypes (Start, Intermediate, and End) will each

Terminate) Message : String have a subset of the EventDetail Types that can be used. The EventDetail Type list
MAY be extended to include new types. These new types MAY have anew
modeler- or tool-defined Marker to fit within the boundaries of the Event.

Conditional Event Detail

Thefollowing table displaysthe set of attributes a Conditional EventDetail, and which extends the set of common Event Detail
attributes (see Table B.45).

Table B.46 - Conditional EventDetail Attributes

Attributes Description

ConditionRef : Condition If the Trigger is Conditional, then a Condition MUST be entered. The attributes of
a Condition can be found in Section B.11.5, “ Condition,” on page 273.

274 Business Process Modeling Notation, v1.2

Compensation Event Detail

Thefollowing table displaysthe set of attributesfor aCompensation EventDetail, and which extends the set of common Event
Detail attributes (see Table B.45).

Table B.47 - Compensation EventDetail Attributes

Attributes Description

ActivityRef (0-1) Activity For an End Event: If the Result is a Compensation, then the Activity that needs to
be compensated MAY be supplied. If an Activity is not supplied, then the Event is
broadcast to all completed activitiesin the Process Instance.

For an Intermediate Event within Normal Flow: If the Trigger is a Compensation,
then the Activity that needs to be compensated MAY be supplied. If an Activity is
not supplied, then the Event is broadcast to all completed activities in the Process
Instance. This “throws” the compensation.

For an Intermediate Event attached to the boundary of an Activity: This Event
“catches’ the compensation. No further information isrequired. The Activity the
Event is attached to will provide the Id necessary to match the compensation event
with the event that “threw” the compensation or the compensation will be a
broadcast.

Error Event Detalil

The following table displays the set of attributes for an Error EventDetail, and which extends the set of common Event Detail
attributes (see Table B.45).

Table B.48 - Error EventDetail Attributes

Attributes Description

ErrorCode : String For an End Event: If the Result isan Error, then the ErrorCode MUST be supplied.
This “throws’ the error.

For an Intermediate Event within Normal Flow: If the Trigger isan Error, then the
ErrorCode MUST be entered. This “throws” the error.

For an Intermediate Event attached to the boundary of an Activity: If the Trigger is
an Error, then the ErrorCode MAY be entered. This Event “catches’ the error. If
there is no ErrorCode, then any error SHALL trigger the Event. If thereisan
ErrorCode, then only an error that matchesthe ErrorCode SHALL trigger the Event.

Link Event Detail

The following table displays the set of attributes for a Link EventDetail, and which extends the set of common Event Detail
attributes (see Table B.45).

Table B.49 - Link EventDetail Attributes

Attributes Description
Name : String If the Trigger isaLink, then the Name MUST be entered.

Business Process Modeling Notation, v1.2 275

Message Event Detail

The following table displays the set of attributes for a Message EventDetail, and which extends the set of common Event
Detail attributes (see Table B.45).

Table B.50 - Message EventDetail Attributes

Attributes Description

MessageRef : Message If the EventDetail TypeisaMessageRef, then the Message MUST be supplied. The
attributes of a Message can be found in Section B.11.11, “Message,” on page 278.

Implementation (Web Service | | Thisattribute specifies the technology that will be used to send or receive the
Other | Unspecified) Web Service | message. A Web serviceisthe default technology.
: String

Signal Event Detail

The following table displays the set of attributes for a Signal EventDetail, and which extends the set of common Event Detail
attributes (see Table B.45).

Table B.51 - Signhal EventDetail Attributes

Attributes Description

SignalRef : Signal If the Trigger isa Signal, then a Signal Shall be entered. The attributes of a Signal
can be found in Section B.11.17, “Signal,” on page 280.

Timer Event Detail

The following table displays the set of attributes for a Timer EventDetail, and which extends the set of common Event Detail
attributes (see Table B.45).

Table B.52 - Timer EventDetail Attributes

Attributes Description

TimeDate (0-1) : If the Trigger isa Timer, then a TimeDate MAY be entered. If a TimeDate is not

TimeDateExpression entered, thenaTimeCycle MUST be entered (seethe attribute below). The attributes
of aTimeDateExpression can befound in Section B.11.18, “ TimeDateExpression,”
on page 280.

TimeCycle (0-1) : If the Trigger isaTimer, then aTimeCycle MAY be entered. If aTimeCycleis not

TimeDateExpression entered, then a TimeDate MUST be entered (see the attribute above).

276 Business Process Modeling Notation, v1.2

B.11.8 Expression

The following table displays the set of attributes of an Expression, which is used in the definition of attributes for Start Event,
Intermediate Event, Activity, Complex Gateway, and Sequence Flow, and which extends the set of common BPMN Element
attributes (see Table B.2).

Table B.53 - Expression Attributes

Attributes Description
ExpressionBody : String An ExpressionBody MUST be entered to provide the text of the expression, which

will be written in the language defined by the ExpressionL anguage attribute.

ExpressionLanguage : String A Language MUST be provided to identify the language of the ExpressionBody.
The value of the ExpressionL anguage should follow the naming conventionsfor the
version of the specified language.

B.11.9 Gate

The following table displays the set of attributes of a Gate, which is used in the definition of attributes for Gateways, and
which extends the set of common BPMN Element attributes (see Table B.2).

Table B.54 - Gate Attributes

Attributes Description
OutgoingSequenceFlowRef : Each Gate MUST have an associated (outgoing) Sequence Flow. The attributes of a
Sequence Flow Sequence Flow can be found in Section B.10.2, “ Sequence Flow,” on page 268.

For Exclusive Event-Based, Complex, and Parallel Gateways. The Sequence Flow
MUST have its Condition attribute set to None (there is not an evaluation of a
condition expression).

For Exclusive Data-Based, and Inclusive Gateways: The Segquence Flow MUST
have its Condition attribute set to Expression and MUST have avalid
ConditionExpression. The ConditionExpression MUST be unique for all the Gates
within the Gateway. If thereis only one Gate (i.e., the Gateway is acting only asa
Merge), then Sequence Flow MUST have its Condition set to None.

For DefaultGates: The Sequence Flow MUST have its Condition attribute set to
Otherwise.

Assignments (0-n) : Assignment | Oneor more assignment expressionsMAY be made for each Gate. The Assignment
SHALL be performed when the Gate is selected. The Assignment is defined in
Section B.11.3, “Assignment,” on page 273.

Business Process Modeling Notation, v1.2 277

B.11.10 InputSet

The following table displays the set of attributes of an InputSet, which is used in the definition of common attributes for
Activities and for attributes of a Process, and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.55 - Input Attributes

Attributes Description

Artifactlnputs (0-n) : Artifactinput | Zero or more ArtifactinputsMAY be defined for each InputSet. For the combination
of Artifactinputs and Propertylnputs, there MUST be at least one item defined for
the InputSet. An Artifactinput is an Artifact, usually a Data Object. Note that the
Artifacts MAY aso be displayed on the diagram and MAY be connected to the
activity through an Association; however, it isnot required for them to be displayed.
Further details about the definition of an Artifactinput can be found in

Section B.11.1, “Artifactinput,” on page 272.

PropertyInputs (0-n) : Property | Zero or more Propertylnputs MAY be defined for each InputSet. For the
combination of Artifactinputs and Propertyl nputs, there MUST be at |east oneitem
defined for the InputSet.

B.11.11 Message

The following table displays the set of attributes of a Message, which is used in the definition of attributes for a Start Event,
End Event, Intermediate Event, Task, and Message Flow, and which extends the set of common BPMN Element attributes (see

Table B.2):

Table B.56 - Message Attributes

Attributes Description
Name : String Nameis an attribute that is text description of the Message.
Properties (0-n) : Property Multiple Properties MAY entered for the Message. The attributes of a Property can

be found in “Property on page 279.”

FromRef : Participant This definesthe source of the Message. The attributes for a Participant can be found
in “Participant on page 279.”

ToRef : Participant This definesthe target of the Message. The attributes for a Participant can be found
in “Participant on page 279.”

B.11.12 Object

The following table displays the set of attributes of an Object, which is used in the definition of attributes for all graphical
elements.

Table B.57 - Object Attributes

Attributes Description
Id : String The Id attribute provides a unique identifier for all objects on adiagram. That is,
each object MUST have a different value for the Objectld attribute.

278 Business Process Modeling Notation, v1.2

B.11.13 OutputSet

The following table displays the set of attributes of an OutputSet, which is used in the definition of common attributes for
Activities and for attributes of a Process, and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.58 - Output Attributes

Attributes Description
ArtifactOutputs (0-n) : Zero or more ArtifactOutputs MAY be defined for each InputSet. For the
ArtifactOutput combination of ArtifactOutputs and PropertyOutputs, there MUST be at |east one

item defined for the OutputSet. An ArtifactOutput is an Artifact, usually a Data
Object. Note that the Artifacts MAY also be displayed on the diagram and MAY be
connected to the activity through an Association; however, it isnot required for
them to be displayed. Further details about the definition of an ArtifactOutput can
be found in Section B.11.2, “ArtifactOutput,” on page 272.

PropertyOutputs (0-n) : Property

Zero or more PropertyOutputs MAY be defined for each InputSet. For the
combination of ArtifactOutputs and PropertyOutputs, there MUST be at |east one
item defined for the OutputSet.

B.11.14 Participant

The following table displays the set of attributes of a Participant, which is used in the definition of attributes for a Pool,
Message, and Web service, and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.59 - Participant Attributes

Attributes

Description

ParticipantType (Role | Entity)
Role : String

Each Property has a Name (e.g., name="Customer Name”).

[ParticipantType = “Role” only]
RoleRef (0-1) : Role

If the ParticipantType = Role, then aRole MUST be identified. The attributes for a
Role can be found in “Role on page 280.”

[ParticipantType = “Entity” only]
EntityRef (0-1) : Entity

If the ParticipantType = Entity, then an Entity MUST be identified. The attributes
for an Entity can be found in “Condition on page 273.”

B.11.15 Property

The following table displays the set of attributes of a Property, which is used in the definition of attributes for a Process and
common activity attributes, and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.60 - Property Attributes

Attributes

Description

Name : String

Each Property has a Name (e.g., name="Customer Name”).

Business Process Modeling Notation, v1.2

279

Table B.60 - Property Attributes

Attributes Description

Type : String Each Property has a Type (e.g., type="String"). Properties may be defined
hierarchically.

Value (0_1) : Expression Each Property MAY haveaVaue SpeCIfled

Correlation (0-1) False : Boolean | If the Correlation attributeis set to True, then the Property is marked to be used for
correlation (e.g., for incoming Messages).

B.11.16 Role

The following table displays the set of attributes of a Role, which is used in the definition of attributes for a Participant, and
which extends the set of common BPMN Element attributes (see Table B.2).

Table B.61 - Role Attributes

Attributes Description
Name : String Name is an attribute that is text description of the Role.
B.11.17 Signal

The following table displays the set of attributes of a Signal, which is used in the definition of attributes for a Start Event, End
Event, Intermediate Event, and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.62 - Message Attributes

Attributes Description

Name : String Nameis an attribute that is text description of the Signal.

Properties (0-n) : Property Multiple PropertiesMAY be entered for the Signal. The attributes of a Property can
be found in “Property on page 279.”

B.11.18 TimeDateExpression

The TimeDateExpression supporting element is a sub-type of the Expression Element (Expression on page 277) and uses all
the attributes of the Expression Element.

280 Business Process Modeling Notation, v1.2

B.11.19 Transaction

The following table displays the set of attributes of a Transaction, which is used in the definition of attributes for a Sub-
Process, and which extends the set of common BPMN Element attributes (see Table B.2).

Table B.63 - Transaction Attributes

Attributes Description
Transactionld : String The Transactionld attribute provides an identifier for the Transactions used within
adiagram.

TransactionProtocol : String Thisidentifies the Protocol (e.g., WS-Transaction or BTP) that will be used to
control the transactional behavior of the Sub-Process.

TransactionMethod TransactionMethod is an attribute that defines the technique that will be used to
(Compensate | Store | Image) undo a Transaction that has been cancelled. The default is Compensate, but the
Compensate : String attribute MAY be set to Store or Image.

B.11.20 Web Service

The following table displays the set of attributes of a Web Service, which is used in the definition of attributes for Message
Start Event, Message Intermediate Event, Message End Event, Receive Task, Send Task, Service Task, and User Task, and
which extends the set of common BPMN Element attributes (see Table B.2).

Table B.64 - Web Service Attributes

Attributes Description

ParticipantRef : Participant A Participant for the Web Service MUST be entered. The attributes for a Participant
can befound in “Participant on page 279.”

Interface : String (akaportType) An Interface for the Web Service MUST be entered.

Operation (1-n) : String One or more Operations for the Web Service MUST be entered.

Business Process Modeling Notation, v1.2 281

282 Business Process Modeling Notation, v1.2

Annex C: Glossary

(informative)

A

Activity An activity isageneric term for work that a company or organization performsvia
business processes. An activity can be atomic or non-atomic (compound). The types
of activitiesthat are a part of a Process Model are: Process, Sub-Process, and Task.

Abstract Process An Abstract Process represents the interactions between a private business process
and another process or participant.

AND-Join (from the WfMC Glossaryt) An AND-Join is a point in the Process where two or
more parallel executing activities convergeinto asingle common thread of Sequence
Flow. See “Join.”

AND-Split (from the WIMC Glossaryz) An AND-Splitisapoint in the Process where asingle
thread of Sequence Flow splitsinto two or more threads that are executed in parallel
within the Process, allowing multiple activities to be executed simultaneously. See
“Fork.

Arbitrary Cycles (Fromthe Workflow Patterns| nitiativez). Pattern#11: A point in aworkflow process
when one or more activities can be done repeatedly3.

Artifact An Artifact isagraphical object that provides supporting information about the
Process or elements within the Process. However, it does not directly affect the flow
of the Process. BPMN has standardized the shape of a Data Object. Other examples
of Artifactsinclude critical success factors and milestones.

Association An Association is a dotted graphical line that is used to associate information and
Artifacts with Flow Objects. Text and graphical non-Flow Objects can be associated
with the Flow Objects and Flow.

Atomic Activity An atomic activity is an activity not broken down to afiner level of Process Model
detail. It isaleaf in the tree-structure hierarchy of Process activities. Graphically it
will appear asa Task in BPMN.

1. Theunderlined termsin this definition were changed from the original definition. “Process’ is used in place of “workflow.” “ Sequence
Flow” isused in place of “control.”

2. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm

3. http://tmitwww.tm.tue.nl/research/patterns/arbitrary_cycles.htm

Business Process Modeling Notation v1.2 283

B

Business Analyst

Business Process

Business Process Diagram

Business Process
Management

BPM System

C

Cancel Activity
Cancel Case

Choreography

Collaboration
Collaboration Process

Collapsed Sub-Process

Compensation Flow

Compound Activity

A Business Analyst isan individual within an organization who defines, manages, or
monitors Business Processes. They are usually distinguished from the IT specialists
or programmers who implement the Business Process within aBPMS.

A Business Process is displayed within a Business Process Diagram (BPD). A
Business Process contains one or more Processes.

A Business Process Diagram (BPD) is the diagram that is specified by BPMN. A
BPD uses the graphical elements and that semantics that support these elements as
defined in this specification.

Business Process Management (BPM) encompasses the discovery, design, and
deployment of business processes. In addition, BPM includes the executive,
administrative, and supervisory control of those processes?.

The technology that enables BPM.

(From the Workflow Patterns Initiativez). Pattern #20: An enabled activity is
disabled, i.e., athread waiting for the execution of an activity is removed®.

(From the Workflow Patterns Initiativez). Pattern #21: A case, i.e., workflow
instance, is removed completel y4.

Choreography is an ordered sequence of B2B message exchanges.

Collaboration is the act of sending messages between any two Participantsin a
BPMN model. The two Participants represent two separate BPML processes.

A Collaboration Process depicts the interactions between two or more business
entities.
A Collapsed Sub-Processis a Sub-Process that hidesits flow details. The Collapsed

Sub-Process object uses a marker to distinguish it as a Sub-Process, rather than a
Task. The marker is a small square with aplussign (+) inside.

Compensation Flow defines the set of activities that are performed during the roll-
back of atransaction to compensate for activities that were performed during the
Normal Flow of the Process. Compensation can a so be called from a Compensate
End or Intermediate Event.

A compound activity isan activity that has detail that is defined as a flow of other
activities. Itisabranch (or trunk) in the tree-structure hierarchy of Processactivities.
Graphically, it will appear as a Process or Sub-Processin BPMN.

1. From “Business Process Management: the Third Wave,” by Howard Smith and Peter Fingar, pg 4. 2003, Meghan-Kiffer Press.

ISBN 0-929652-33-9

w N

284

http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
http://tmitwww.tm.tue.nl/research/patterns/cancel _activity.htm
http://tmitwww.tm.tue.nl/research/patterns/cancel_case.htm

Business Process Modeling Notation v1.2

Controlled Flow

D

Decision

Deferred Choice

Discriminator

E
End Event

Event Context

Exception

Flow that proceeds from one Flow Object to another, via a Sequence Flow link, but
is subject to either conditions or dependencies from other flow as defined by a

Gateway. Typicaly, thisis seen as a Sequence flow between two activities, with a
conditional indicator (mini-diamond) or a Sequence Flow connected to a Gateway .

Decisions are locations within a business process where the Sequence Flow can take
two or more alternative paths. Thisis basically the “fork in the road” for a process.
For a given performance (or instance) of the process, only one of the forks can be
taken. A Decision isatype of Gateway. See " Or-Split.”

(From the Workflow Patterns Initiativel). Pattern #17: A point in the workflow
process where one of several branchesis chosen. In contrast to the exclusive split,
the choice is not made explicitly (e.g., based on data or a decision) but several
aternatives are offered to the environment. However, in contrast to the fork, only one
of the alternatives is executed. This means that once the environment activates one
of the branches the other alternative branches are withdrawn. It isimportant to note
that the choice is delayed until the processing in one of the alternative branchesis
actually started, i.e., the moment of choiceis aslate as poss ble?.

(From the Workflow Patterns Initiative®). Pattern #8: The discriminator isapoint in
aworkflow processthat waitsfor anumber of incoming branchesto complete before
activating the subsequent activity. From that moment on it waits for all remaining
branches to complete and “ignores” them. Once all incoming branches have been
triggered, it resetsitself so that it can be triggered agai ne.

As the name implies, the End Event indicates where a process will end. In terms of
Sequence Flow, the End Event ends the flow of the Process, and thus, will not have
any outgoing Sequence Flow. An End Event can have a specific Result that will
appear as amarker within the center of the End Event shape. End Event Results are
Message, Error, Compensation, Signal, Link, and Multiple. The End Event sharesthe
same basic shape of the Start Event and Intermediate Event, acircle, but is drawn
with athick singleline.

An Event Context isthe set of activities that can be interrupted by an exception
(Intermediate Event). This can be one activity or agroup of activitiesin an expanded
Sub-Process.

An Exception is an event that occurs during the performance of the process that
causes Normal Flow of the process to be diverted exclusively from Normal Flow.
Exceptions can be generated by atime out, fault, message, etc.

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
2. http://tmitwww.tm.tue.nl/research/patterns/deferred_choice.htm
3. http://tmitwww.tm.tue.nl/research/patterns/discriminator.htm

Business Process Modeling Notation v1.2

285

Exception Flow Exception Flow isaset of Sequence Flow that originates from an Intermediate Event
that is attached to the boundary of an activity. The Processwill not traverse thisflow
unless an Exception occurs during the performance of that activity (through an

Intermediate Event).

Exclusive Choice (From the Workflow Patterns Initiative®). Pattern #4: A point in the workflow
processwhere, based on adecision or workflow control data, one of several branches
is chosen?.

Expanded Sub-Process An Expanded Sub-Process is a Sub-Process that exposes its flow detail within the

context of its Parent Process. It will maintain its rounded rectangle shape, but will be
enlarged to a size sufficient to display the Flow Objects within.

Flow A Flow isagraphical line connecting two objectsin a BPD. There are two types of
Flow: Sequence Flow and Message Flow, each with their ownline style. Flow isalso
used in a generic sense (and lowercase) to describe how Tokens will traverse
Sequence Flow from the Start Event to an End Event.

Flow Object A Flow Object isone of the set of following graphical objects: Events, Activities, and
Gateways.

Fork A fork isapoint in the Processwhere asingle flow isdivided into two or more Flow.
It isamechanism that will allow activitiesto be performed concurrently, rather than
sequentially. BPMN uses multiple outgoing Sequence Flow or aParallel Gateway to
perform a Fork. See “ AND-Split.”

Implicit Termination (From the Workflow Patterns| nitiative3). Pattern #12: A given subprocess should be
terminated when there is nothing el se to be done. In other words, there are no active
activities in the workflow and no other activity can be made active (and at the same
time the workflow is not in deadlock)4.

Interleaved Parallel Routing (From the Workflow Patterns| nitiativel). Pattern #18: A set of activitiesis executed
in an arbitrary order: Each activity in the set is executed, the order is decided at run-
time, and no two activities are executed at the same moment (i.e., no two activities
are active for the same workflow instance at the sameti me)5.

Intermediate Event An Intermediate Event is an event that occurs after a Process has been started. It will
affect the flow of the process, but will not start or (directly) terminate the process. An
Intermediate Event will show where messages or delays are expected within the
Process, disrupt the Normal Flow through exception handling, or show the extraflow
required for compensating atransaction. The Intermediate Event shares the same
basi c shape of the Start Event and End Event, acircle, but isdrawn with athin double
line.

http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
http://tmitwww.tm.tue.nl/research/patterns/exclusive_choice.htm
http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
http://tmitwww.tm.tue.nl/research/patterns/implicit_termination.htm
http://tmitwww.tm.tue.nl/research/patterns/interleaved_parallel_routing.htm

agrwdpE

286 Business Process Modeling Notation v1.2

Join A Joinisapoint in the Process where two or more parallel Sequence Flow are
combined into one Sequence Flow. BPMN usesaParallel Gateway to performadJdoin.
See “AND-Join.”

L

Lane A Laneisasub-partition within a Pool and will extend the entire length of the Pool,

either vertically or horizontally. Lanes are used to organize and categorize activities
within a Pool. The meaning of the Lanes is up to the modeler.

M

Merge A Mergeisapoint in the process where two or more alternative Sequence Flow are
combined into one Sequence Flow. BPMN uses multiple incoming Sequence Flow
or an Exclusive Gateway to perform a Merge. See “ OR-Join.”

Message A Message is the object that is transmitted through a Message Flow. The Message
will have an identity that can be used for alternative branching of a Process through
the Event-Based Exclusive Gateway.

Message Flow A Message Flow is adashed line that is used to show the flow of messages between
two entitiesthat are prepared to send and receivethem. In BPMN, two separate Pools
in the Diagram will represent the two entities.

Milestone (From the Workflow Patterns Initiativel). Pattern #19: The enabling of an activity
depends on the case being in a specified state, i.e., the activity is only enabled if a
certain milestone has been reached which did not expireyet. Consider three activities
A, B, and C. Activity A isonly enabled if activity B has been executed and C has not
been executed yet, i.e., A isnot enabled before the execution B and A isnot enabled
after the execution C2.

Multiple Choice (From the Workflow Patterns Initiativel). Pattern #6: A point in the workflow
process where, based on a decision or workflow control data, one or more branches
are chosen®,

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
2. http://tmitwww.tm.tue.nl/research/patterns/milestone.htm
3. http://tmitwww.tm.tue.nl/research/patterns/multiple_choice.htm

Business Process Modeling Notation v1.2 287

Multiple Instances (From the Workflow Patterns Initiativel). Patterns #13-16: There are four defined
patterns.
1. For one case an activity is enabled multiple times. The number of instances of a
given activity for agiven caseisknown at design time.
2. For one case an activity is enabled multiple times. The number of instances of a
given activity for agiven caseis variable and may depend on characteristics of the
case or availability of resources, but is known at some stage during runtime, before
the instances of that activity have to be created.
3. For one case an activity is enabled multiple times. The number of instances of a
given activity for agiven case is not known during design time, nor it is known at
any stage during runtime, before the instances of that activity have to be created.
4. For one case an activity is enabled multiple times. The number of instances may
not be known at design time. After completing all instances of that activity another
activity hasto be started™.

Multiple Merge (From the Workflow Patterns Initiativel). Pattern #7: Multi-mergeisapointin a
workflow process where two or more branches reconverge without synchronization.
If more than one branch gets activated, possibly concurrently, the activity following
the merge is started once for every incoming branch that gets activated?.

N

N-out_of M-Join (From the Workflow Patterns Initiativel). Pattern #9: N-out-of-M Joinisapointina
workflow processwhere M parallel paths convergeinto one. The subsequent activity
should be activated once N paths have completed. Completion of all remaining paths
should be ignored. Similarly to the discriminator, once all incoming branches have
“fired,” the join resetsitself so that it can fire agai ne.

Normal Flow Normal Flow isthe flow that originates from a Start Event and continues through
activities via alternative and parallel paths until it ends at an End Event.

O

OR-Join (from the WfMC Glossary4) An Or-Joinisapoint in the Process where two or more
aternative activity(s) Process branches re-converge to a single common activity as
the next step within the Process. (Asno parallel activity execution has occurred at the
join point, no synchronization isrequired.) See “Merge.”

OR-Split (from the WEMC Gl ossaryl) An OR-Split isa point in the Process where asingle
thread of Sequence Flow makes a decision upon which branch to take when
encountered with multiple alternative Process branches. See “Decision.”

http://tmitwww.tm.tue.nl/research/patterns/patterns.htm

http://tmitwww.tm.tue.nl/research/patterns/multiple_merge.htm

http://tmitwww.tm.tue.nl/research/patterns/n-out-of-m_join.htm

The underlined terms in this definition were changed from the original definition. “Process” is used in place of “workflow.” “ Sequence
Flow” isused in place of “control.”

Eal R

288 Business Process Modeling Notation v1.2

P
Parallel Split

Parent Process

Participant

Pool

Private Business Process

Process

Result

S

Sequence

Sequence Flow

Simple Merge

(From the Workflow Patterns I nitiativel). Pattern #2: Parallel split is required when
two or more activities need to be executed in parallel. Parallel split is easily
supported by most workflow engines except for the most basic scheduling systems
that do not require any degree of concurrencyz.

A Parent Process is the Process that holds a Sub-Process within its boundaries.

A Participant isabusiness entity (e.g., acompany, company division, or acustomer)
or abusinessrole (e.g., abuyer or asdller), which controls or isresponsible for a
business process. If Pools are used, then a Participant would be associated with one
Pool.

A Pool represents a Participant in a Process. It also actsasa“swimlane” and a
graphical container for partitioning a set of activities from other Pools, usually in the
context of B2B situations. It isa square-cornered rectangle that isdrawn with asolid
singleline. A Pool acts as the container for the Sequence Flow between activities.
The Sequence Flow can cross the boundaries between Lanes of a Pool, but cannot
crossthe boundaries of aPool. Theinteraction between Pools, e.g., inaB2B context,
is shown through M essage Flow.

A private business process is internal to a specific organization and is the type of
process that has been generally called aworkflow or BPM process. A single private
business process will map to asingle BPML document.

A Processis any activity performed within a company or organization. In BPMN a
Processis depicted as anetwork of Flow Objects, which are a set of other activities
and the controls that sequence them.

A Result is consequence of reaching an End Event. Results can be of different types,
including: Message, Error, Compensation, Signal, Link, and Multiple.

(From the Workflow Patterns Initiative®). Pattern #1: Sequence is the most basic
workflow pattern. It is required when there is a dependency between two or more
tasks so that one task cannot be started (scheduled) before another task is finished?.

A Sequence Flow isasolid graphical linethat isused to show the order that activities
will be performed in a Process. Each Flow has only one source and only one target.

(From the Workflow Patterns Initi ative“ http://tmitwww.tm.tue.nl/research/patterns/
patternshtm” on page 287) pattern #5: A point in the workflow process where two or
more alternative branches cometogether without synchronization. In other wordsthe
merge will be triggered once any of the incoming transitions are triggered®.

agrwdPE

Business Process Modeling Notation v1.2

http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
http://tmitwww.tm.tue.nl/research/patterns/parallel_split.htm
http:/tmitwww.tm.tue.nl/research/patterns/patterns.htm
http://tmitwww.tm.tue.nl/research/patterns/sequence.htm
http://tmitwww.tm.tue.nl/research/patterns/simple_merge.htm

289

Start Event

Sub-Process

Swimlane

Synchronizing Join

Synchronization

Task

Token

Transaction

A Start Event indicates where a particular Process will start. In terms of Sequence
Flow, the Start Event starts the flow of the Process, and thus, will not have any
incoming Sequence Flow. A Start Event can have a Trigger that indicates how the
Process starts: Message, Timer, Rule, Link, or Multiple. The Start Event shares the
same basi ¢ shape of the Intermediate Event and End Event, acircle, but isdrawnwith
asinglethin line.

A Sub-ProcessisaProcessthat isincluded within another Process. The Sub-Process
canbeinacollapsed view that hidesitsdetails. A Sub-Process can bein an expanded
view that showsits details within the view of the Processin whichiit is contained. A
Sub-Process shares the same shape asthe Task, which isarectangle that has rounded
corners.

A Swimlane isagraphical container for partitioning a set of activities from other
activities. BPMN has two different types of Swimlanes. See “Pool” and “Lane.”

(From the Workflow Patterns Initiativel). Pattern #10: A point in the workflow
process where multiple paths converge into one single thread. If more than one path
istaken, synchronization of the active threads needsto take place. If only onepathis
taken, the alternative branches should reconverge without synchronization?.

(From the Workflow Patterns Initi ative“ http://tmitwww.tm.tue.nl/research/patterns/
patternshtm” on page 287) pattern #3: Synchronization is required when an activity can
be started only when two parallel threads complete®.

A Task isan atomic activity that isincluded within a Process. A Task isused when
the work in the Process is not broken down to afiner level of Process Model detail.
Generally, an end-user and/or an application are used to perform the Task when it is
executed. A Task object shares the same shape as the Sub-Process, whichis a
rectangle that has rounded corners.

A Token is adescriptive construct used to describe how the flow of a process will
proceed at runtime. By tracking how the Token traverses the Flow Objects, gets
diverted through alternative paths, and gets split into parallel paths, the normal
Sequence Flow should be completely definable.A Token will have a uniqueidentity
that can be used to separate multiple Tokens that may exist because of concurrent
process instances or the splitting of the Token for parallel processing within asingle
process instance.

A Transaction is a set of coordinated activities carried out by independent, loosely-
coupled systems in accordance with a contractually defined business rel ationship.
This coordination leads to an agreed, consistent, and verifiable outcome across all
participants.

1. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
2. http://tmitwww.tm.tue.nl/research/patterns/synchronizing_join.htm
3. http://tmitwww.tm.tue.nl/research/patterns/synchronization.htm

290

Business Process Modeling Notation v1.2

Trigger A Trigger is amechanism that signals the start of a business process. Triggers are
associated with Start Events and Intermediate Events and can be of the type:
Message, Timer, Conditional, Signal, Link, and Multiple.

U

Uncontrolled Flow Flow that proceeds, unrestricted, from one Flow Object to another, via a Sequence
Flow link, without any dependencies on another flow or any conditional expressions.
Typically, thisis seen as a Sequence flow between two activities, without a
conditional indicator (mini-diamond) or any intervening Gateway.

Business Process Modeling Notation v1.2 291

292 Business Process Modeling Notation v1.2

INDEX

A

abbreviations 8
Activities 250

Activity 52

Activity Service 4

Ad Hoc Process 128
Additional Information 7
Artifacts 92, 264
Association 101
attributes and properties 3

B

BPEL4WS 4, 11

BPML 4

BPMN 11

BPMN Diagram 2

BPMN element attributes and types 243

BPMN Elements 245

BPMN graphical objects 17

BPMN mappings 15

BPMN scope 12

BPMN uses 12

bullet (specia shaped) 2

Business Process Definition 4

Business Process Diagram (BPD) 1

Business process diagram attributes 31

Business Process Execution Language for Web Services
(BPEL4WS) 1

Business Process Management Initiative (BPMI) 1

Business Process Modeling 4

Business Process Modeling Notation (BPMN) 1

Business Transaction Protocol 4

C

Collaboration (Global) processes 13
Common event attributes 249
Common flow object attributes 247
Compensation activity 130
Compensation EventDetail 50
Complex Gateway 83

Conditional EventDetail 50
Conformance 1

Connecting objects 97

Connection rules 30

Connections 2

conventions (document) 7

Core element set 19

Core modeling elements 18

D

Data Object 93
Data-Based Exclusive Gateways 73

Business Process Modeling Notation, v1.2

Decision Gate 73
Definitions 6

Diagram point of view 15
Diagram types 14
Dublin Core MetaData 4

E

ebXML BPSS 5

Element set 19

Embedded (or nested) Sub-Process 58
End event 40, 249

End event results 41

Error EventDetail 51

Event 35, 247

Event Details 49

Event-Based Exclusive Gateways 77
Exception flow 127

Exclusive Gateways (Decisions) 73
Extended element set 20
Extensionsto aBPMN diagram 2

F
Forking sequence flow 107

G

Gates 72

Gateway attributes 71

Gateways 70, 80, 260

Graphica Connecting Object 267
Graphical elements 1, 35
graphical representation 3

Group 266

Group object 95

I

Inclusive Decision Gate 80
Inclusive Gateway 80
Intermediate event 44, 250
Intermediate event types 45

J
Joining flow 110

L
Lanes 86, 89
Link EventDetail 51

M

Manual Task 68

Merging flow 114

Message EventDetail 52
Message flow 31, 99

Message flow connection rules 31
modeling elements 18

N
Normal sequence flow 104

293

Normative References 4

)

OMGUML 5

Open Nested Transactions 5
Optional elements 3

P

Parallel Gateways 85
Pools 86, 87
Process 32
Processdiagrams 17

property 3

R

RDF 5

Receive Task 66
Reference Sub-Process 61
Reference Task 68
References 4

Reusable Sub-Process 59

S

Scope 1, 11, 17, 35, 97, 133
Script Task 68

semantic concepts 2

Send Task 67

Sequence flow 30, 97
Sequence flow connection rules 30
Sequence flow mechanisms 103
Service Task 65
shapesandicons 1

Signal EventDetail 52
SOAP12 5

special shaped bullet 2
Splitting flow 111

Start even typest 38

Start Event 36, 249
Sub-Process 124, 136, 255
Supporting Elements 270
Swimlanes 13, 86, 263
Symbols 6

T
Task 64, 256

Terms and definitions 6
Text Annotation 94
Timer EventDetail 52
Token 36

U

ubDI 5
URI 5

User Task 67

\Y
visual language 1

294

w

Web Services Transaction 5
WIMC Glossary 5
workflow specification 3
WSBPEL 5

WSDL 6

X

XML 1.0 (Second Edition) 6
XML-Namespaces 6
XML-Schema 6

XPath 6

XPDL 6

Business Process Modeling Notation, v1.2

	Preface
	1 Scope
	2 Conformance
	2.1 Visual Appearance
	2.2 Structural Conformance
	2.3 Semantic Elements
	2.4 Attributes and Properties
	2.5 Extended and Optional Elements

	3 Normative References
	3.1 Normative
	3.2 Non-Normative

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Conventions
	6.1.1 Typographical and Linguistic Conventions and Style
	6.1.2 Abbreviations

	6.2 Structure of this Document
	6.3 Acknowledgements

	7 Overview
	7.1 BPMN Scope
	7.1.1 Uses of BPMN
	7.1.2 Diagram Point of View
	7.1.3 Extensibility of BPMN and Vertical Domains

	8 Business Process Diagrams
	8.1 BPD Core Element Set
	8.2 BPD Extended Set
	8.3 Use of Text, Color, Size, and Lines in a Diagram
	8.4 Flow Object Connection Rules
	8.4.1 Sequence Flow Rules
	8.4.2 Message Flow Rules

	8.5 Business Process Diagram Attributes
	8.6 Processes
	8.6.1 Attributes

	9 Business Process Diagram Graphical Objects
	9.1 Common BPMN Element Attributes
	9.2 Common Flow Object Attributes
	9.3 Events
	9.3.1 Common Event Attributes
	9.3.2 Start
	9.3.3 End
	9.3.4 Intermediate
	9.3.5 Event Details

	9.4 Activities
	9.4.1 Common Activity Attributes
	9.4.2 Sub-Process
	9.4.3 Task

	9.5 Gateways
	9.5.1 Common Gateway Features
	9.5.2 Exclusive Gateways
	9.5.3 Inclusive Gateways
	9.5.4 Complex Gateways
	9.5.5 Parallel Gateways

	9.6 Swimlanes (Pools and Lanes)
	9.6.1 Common Swimlane Attributes
	9.6.2 Pool
	9.6.3 Lane

	9.7 Artifacts
	9.7.1 Common Artifact Definitions
	9.7.2 Data Object
	9.7.3 Text Annotation
	9.7.4 Group

	10 Business Process Diagram Connecting Objects
	10.1 Graphical Connecting Objects
	10.1.1 Common Connecting Object Attributes
	10.1.2 Sequence Flow
	10.1.3 Message Flow
	10.1.4 Association

	10.2 Sequence Flow Mechanisms
	10.2.1 Normal Flow
	10.2.2 Exception Flow
	10.2.3 Ad Hoc

	10.3 Compensation Association

	11 BPMN by Example
	11.1 The Beginning of the Process
	11.2 The First Sub-Process
	11.3 The Second Sub-Process
	11.4 The End of the Process

	Annex A: Mapping to BPEL4WS
	A.1 Business Process Diagram Mappings
	A.2 Business Process Mappings
	A.3 Common Flow Object Mappings
	A.4 Events
	A.5 Activities
	A.6 Sub-Process Mappings
	A.7 Task Mappings
	A.8 Gateways
	A.9 When to Map a Sequence Flow to a BPEL4WS Link
	A.10 The Exception Flow Merges back into the Normal Flow After the Activity
	A.11 The Exception Flow Merges back into the Normal Flow Further Downstream
	A.12 The Exception Flow Loops back into the Normal Flow Upstream
	A.13 Messages
	A.14 Identifying the Start of a BPEL4WS Element
	A.15 Finding the End of a BPEL4WS Element
	A.16 Nested Elements
	A.17 Handling Loops
	A.18 Simple Loop From a Gateway
	A.19 Loop/Switch Combinations From a Gateway
	A.20 Interleaved Loops
	A.21 Handling Link Events as Go To Objects
	A.22 BPMN Elements that Span Multiple BPEL4WS Sub-Elements
	A.23 BPMN by Example (Including a Mapping to BPEL4WS)
	A.24 Mapping to BPEL4WS
	A.25 Mapping to BPEL4WS
	A.26 Mapping to BPEL4WS
	A.27 Mapping to BPEL4WS
	A.28 BPEL4WS for the E-Mail Voting Process

	Annex B: BPMN Element Attributes and Types
	B.1 Business Process Diagram Attributes
	B.2 BPMN Elements
	B.2.1 Common BPMN Element Attributes
	B.2.2 Graphical Elements
	B.2.3 Supporting Elements

	B.3 Process Attributes
	B.4 Common Flow Object Attributes
	B.5 Events
	B.5.1 Common Event Attributes
	B.5.2 Start Event
	B.5.3 End Event
	B.5.4 Intermediate Event

	B.6 Activities
	B.6.1 Common Activity Attributes
	B.6.2 Sub-Process
	B.6.3 Task

	B.7 Gateways
	B.7.1 Common Gateway Attributes
	B.7.2 Exclusive Gateways
	B.7.3 Inclusive Gateways
	B.7.4 Complex Gateways
	B.7.5 Parallel Gateways

	B.8 Swimlanes (Pools and Lanes)
	B.8.1 Common Swimlane Attributes
	B.8.2 Pool
	B.8.3 Lane

	B.9 Artifacts
	B.9.1 Common Artifact Attributes
	B.9.2 Data Object
	B.9.3 Text Annotation
	B.9.4 Group

	B.10 Graphical Connecting Objects
	B.10.1 Common Connecting Object Attributes
	B.10.2 Sequence Flow
	B.10.3 Message Flow
	B.10.4 Association

	B.11 Supporting Elements
	B.11.1 ArtifactInput
	B.11.2 ArtifactOutput
	B.11.3 Assignment
	B.11.4 Category
	B.11.5 Condition
	B.11.6 Entity
	B.11.7 Event Details
	B.11.8 Expression
	B.11.9 Gate
	B.11.10 InputSet
	B.11.11 Message
	B.11.12 Object
	B.11.13 OutputSet
	B.11.14 Participant
	B.11.15 Property
	B.11.16 Role
	B.11.17 Signal
	B.11.18 TimeDateExpression
	B.11.19 Transaction
	B.11.20 Web Service

	Annex C: Glossary

