

 Date: June 2010

Business Process Model and Notation
(BPMN)

Version 2.0

OMG Document Number: dtc/2010-06-05
Standard document URL: http://www.omg.org/spec/BPMN/2.0

This OMG document replaces the submission document (bmi/2009-05-03, Alpha). It is an OMG Adopted Beta
Specification and is currently in the finalization phase. Comments on the content of this document are
welcome, and should be directed to issues@omg.org by March 1, 2010.

You may view the pending issues for this specification from the OMG revision issues web page http://
www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on June 21, 2010. If you are
reading this after that date, please download the available specification from the OMG Specifications Catalog.

Copyright © 2010, Axway
Copyright © 2010, BizAgi
Copyright © 2010, Bruce Silver Associates
Copyright © 2010, IDS Scheer
Copyright © 2010, IBM Corp.
Copyright © 2010, MEGA International
Copyright © 2010, Model Driven Solutions
Copyright © 2010, Object Management Group
Copyright © 2010, Oracle
Copyright © 2010, SAP AG
Copyright © 2010, Software AG
Copyright © 2010, TIBCO Software
Copyright © 2010, Unisys

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ , IMM™ , MOF™ , OMG Interface Definition Language (IDL)™ , and OMG
Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer

software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents
Preface xxiii
1 Scope ...1
2 Conformance ...1

2.1 Process Modeling Conformance ... 2
 2.1.1 BPMN Process Types..2
 2.1.2 BPMN Process Elements...2
 2.1.3 Visual Appearance...8
 2.1.4 Structural Conformance ...8
 2.1.5 Process Semantics ..8
 2.1.6 Attributes and Model Associations ...9
 2.1.7 Extended and Optional Elements...9
 2.1.8 Visual Interchange ...9

2.2 Process Execution Conformance.. 9
 2.2.1 Execution Semantics..10
 2.2.2 Import of Process Diagrams...10

2.3 BPEL Process Execution Conformance.. 10
2.4 Choreography Modeling Conformance ... 10

 2.4.1 BPMN Choreography Types ..10
 2.4.2 BPMN Choreography elements ...10
 2.4.3 Visual Appearance...11
 2.4.4 Choreography Semantics...11
 2.4.5 Visual Interchange ...11

2.5 Summary of BPMN Conformance Types .. 12

3 Normative References ..12
3.1 Normative.. 12
3.2 Non-Normative .. 13

4 Terms and Definitions...16
5 Symbols ...16
6 Additional Information..16

6.1 Conventions .. 16
 6.1.1 Typographical and Linguistic Conventions and Style.......................................16
 6.1.2 Abbreviations ...17

6.2 Structure of this Document.. 17
6.3 Acknowledgements ... 17

7 Overview ..21
7.1 BPMN Scope... 22

 7.1.1 Uses of BPMN..23
7.2 BPMN Elements.. 27

 7.2.1 Basic BPMN Modeling Elements ...28
Business Process Model and Notation, v2.0 vii

 7.2.2 Extended BPMN Modeling Elements ...30
7.3 BPMN Diagram Types... 41
7.4 Use of Text, Color, Size, and Lines in a Diagram 41
7.5 Flow Object Connection Rules .. 42

 7.5.1 Sequence Flow Connections Rules ...42
 7.5.2 Message Flow Connection Rules...43

7.6 BPMN Extensibility .. 44
7.7 BPMN Example ... 45

8 BPMN Core Structure..49
8.1 Infrastructure ... 51

 8.1.1 Definitions ..51
 8.1.2 Import ...53
 8.1.3 Infrastructure Package XML Schemas...54

8.2 Foundation .. 55
 8.2.1 Base Element...56
 8.2.2 Documentation ...56
 8.2.3 Extensibility ..57
 8.2.4 External Relationships ...61
 8.2.5 Root Element ...64
 8.2.6 Foundation Package XML Schemas..64

8.3 Common Elements.. 66
 8.3.1 Artifacts ..66
 8.3.2 Correlation..75
 8.3.3 Error ...81
 8.3.4 Escalation...82
 8.3.5 Events ..83
 8.3.6 Expressions..84
 8.3.7 Flow Element ...86
 8.3.8 Flow Elements Container ...88
 8.3.9 Gateways ...90
 8.3.10 Item Definition ..91
 8.3.11 Message...93
 8.3.12 Resources ..95
 8.3.13 Sequence Flow ..97
 8.3.14 Common Package XML Schemas ...100

8.4 Services... 104
 8.4.1 Interface ...104
 8.4.2 EndPoint...105
 8.4.3 Operation ...105
 8.4.4 Service Package XML Schemas..106

9 Collaboration ...109
9.1 Basic Collaboration Concepts ... 111

 9.1.1 Use of BPMN Common Elements..112
9.2 Pool and Participant .. 112

 9.2.1 Participants ..115
 9.2.2 Lanes ...121

9.3 Message Flow ... 121
viii Business Process Model and Notation, v2.0

 9.3.1 Interaction Node...124
 9.3.2 Message Flow Associations...124

9.4 Conversations ... 125
 9.4.1 Conversation Node ..130
 9.4.2 Conversation ..132
 9.4.3 Sub-Conversation ..132
 9.4.4 Call Conversation...133
 9.4.5 Global Conversation...134
 9.4.6 Conversation Link ..134
 9.4.7 Conversation Association...138
 9.4.8 Correlations..139

9.5 Process Within Collaboration .. 140
9.6 Choreography within Collaboration ... 140
9.7 Collaboration Package XML Schemas.. 142

10 Process ..149
10.1 Basic Process Concepts ... 153

 10.1.1 Types of BPMN Processes ..153
 10.1.2 Use of BPMN Common Elements..154

10.2 Activities .. 155
 10.2.1 Resource Assignment ..158
 10.2.2 Performer ...160
 10.2.3 Tasks ...160
 10.2.4 Human Interactions..170
 10.2.5 Sub-Processes...178
 10.2.6 Call Activity...189
 10.2.7 Global Task..194
 10.2.8 Loop Characteristics ..196
 10.2.9 XML Schema for Activities ...202

10.3 Items and Data.. 210
 10.3.1 Data Modeling..210
 10.3.2 Execution Semantics for Data..232
 10.3.3 Usage of Data in XPath Expressions...233
 10.3.4 XML Schema for Data..236

10.4 Events ... 240
 10.4.1 Concepts..241
 10.4.2 Start Event ...245
 10.4.3 End Event ..253
 10.4.4 Intermediate Event ...257
 10.4.5 Event Definitions ..268
 10.4.6 Handling Events...283
 10.4.7 Scopes ...288
 10.4.8 Events Package XML Schemas...290

10.5 Gateways .. 295
 10.5.1 Sequence Flow Considerations ...297
 10.5.2 Exclusive Gateway...298
 10.5.3 Inclusive Gateway..300
 10.5.4 Parallel Gateway..301
 10.5.5 Complex Gateway..303
Business Process Model and Notation, v2.0 ix

 10.5.6 Event-Based Gateway ...305
 10.5.7 Gateway Package XML Schemas..309

10.6 Compensation ... 311
 10.6.1 Compensation Handler ..311
 10.6.2 Compensation Triggering...312
 10.6.3 Relationship between Error Handling and Compensation313

10.7 Lanes... 313
10.8 Process Instances, Unmodeled Activities, and Public Processes. 317
10.9 Auditing ... 319
10.10 Monitoring.. 320
10.11 Process Package XML Schemas.. 320

11 Choreography..325
11.1 Basic Choreography Concepts.. 326
11.2 Data... 329
11.3 Use of BPMN Common Elements ... 329

 11.3.1 Sequence Flow ..330
 11.3.2 Artifacts ..331

11.4 Choreography Activities .. 331
 11.4.1 Choreography Task..333
 11.4.2 Sub-Choreography...338
 11.4.3 Call Choreography ...343
 11.4.4 Global Choreography Task ..345
 11.4.5 Looping Activities ...345
 11.4.6 The Sequencing of Activities..345

11.5 Events ... 350
 11.5.1 Start Events..350
 11.5.2 Intermediate Events ...350
 11.5.3 End Events...354

11.6 Gateways .. 355
 11.6.1 Exclusive Gateway...355
 11.6.2 Event-Based Gateway ...360
 11.6.3 Inclusive Gateway ..362
 11.6.4 Parallel Gateway ..369
 11.6.5 Complex Gateway..371
 11.6.6 Chaining Gateways ..372

11.7 Choreography within Collaboration ... 372
 11.7.1 Participants ..372
 11.7.2 Swimlanes..373

11.8 XML Schema for Choreography.. 374

12 BPMN Notation and Diagrams ...377
12.1 BPMN Diagram Interchange (BPMN DI) 377

 12.1.1 Scope ...377
 12.1.2 Diagram Definition and Interchange...377
 12.1.3 How to Read this Chapter ..378

12.2 BPMN Diagram Interchange (DI) Meta-model 378
 12.2.1 Overview ..378
x Business Process Model and Notation, v2.0

 12.2.2 Abstract Syntax..378
 12.2.3 Classifier Descriptions..381
 12.2.4 Complete BPMN DI XML Schema ...389

12.3 Notational Depiction Library and Abstract Element Resolutions... 391
 12.3.1 Labels ..391
 12.3.2 BPMNShape ..392
 12.3.3 BPMNEdge ..423

12.4 Example(s) .. 424
 12.4.1 Depicting Content in a Sub-Process ..425
 12.4.2 Multiple Lanes and Nested Lanes..430
 12.4.3 Vertical Collaboration...432
 12.4.4 Conversation..434
 12.4.5 Choreography ..436

13 BPMN Execution Semantics...439
13.1 Process Instantiation and Termination.. 440
13.2 Activities .. 440

 13.2.1 Sequence Flow Considerations ...441
 13.2.2 Activity..442
 13.2.3 Task ...444
 13.2.4 Sub-Process/Call Activity ...444
 13.2.5 Ad-Hoc Sub-Process..445
 13.2.6 Loop Activity...446
 13.2.7 Multiple Instances Activity ..446

13.3 Gateways .. 448
 13.3.1 Parallel Gateway (Fork and Join)...448
 13.3.2 Exclusive Gateway (Exclusive Decision (data-based) and Exclusive Merge)449
 13.3.3 Inclusive Gateway (Inclusive Decision and Inclusive Merge).....................450
 13.3.4 Event-based Gateway (Exclusive Decision (event-based))452
 13.3.5 Complex Gateway (related to Complex Condition and Complex Merge).....452

13.4 Events ... 455
 13.4.1 Start Events ...455
 13.4.2 Intermediate Events ...455
 13.4.3 Intermediate Boundary Events...455
 13.4.4 Event Sub-Processes...456
 13.4.5 Compensation..456
 13.4.6 End Events...458

14 Mapping BPMN Models to WS-BPEL...461
14.1 Basic BPMN-BPEL Mapping... 462

 14.1.1 Process ..463
 14.1.2 Activities...464
 14.1.3 Events ..471
 14.1.4 Gateways and Sequence Flows...477
 14.1.5 Handling Data ..481

14.2 Extended BPMN-BPEL Mapping .. 485
 14.2.1 End Events...485
 14.2.2 Loop/Switch Combinations From a Gateway...486
 14.2.3 Interleaved Loops ..486
 14.2.4 Infinite Loops..489
Business Process Model and Notation, v2.0 xi

 14.2.5 BPMN Elements that Span Multiple WSBPEL Sub-Elements489

15 Exchange Formats ..491
15.1 Interchanging Incomplete Models ... 491
15.2 Machine Readable Files.. 491
15.3 XSD... 491

 15.3.1 Document Structure ...491
 15.3.2 References within the BPMN XSD...492

15.4 XMI .. 493
15.5 XSLT Transformation between XSD and XMI............................... 493

Annex A: Changes from v1.2 ...495
Annex B: Diagram Interchange..497

15.6 Scope .. 497
15.7 Architecture ... 497
15.8 Diagram Common ... 499

 15.8.1 Overview ..499
 15.8.2 Abstract Syntax ..499
 15.8.3 Classifier Descriptions..500

15.9 Diagram Interchange... 503
 15.9.1 Overview ..503
 15.9.2 Abstract Syntax ..504
 15.9.3 Classifier Descriptions..507

Annex C: Glossary ..515
xii Business Process Model and Notation, v2.0

List of Figures

Figure 7.1 - Example of a private Business Process. 23
Figure 7.2 - Example of a public Process . 24
Figure 7.3 - An example of a Collaborative Process . 25
Figure 7.4 - An example of a Choreography . 25
Figure 7.5 - An example of a Conversation diagram . 26
Figure 7.6 - An example of a Collaboration diagram with black-box Pools . 45
Figure 7.7 - An example of a stand-alone Choreography diagram. 46
Figure 7.8 - An example of a stand-alone Process (Orchestration) diagram . 47
Figure 8.1 - A representation of the BPMN Core and Layer Structure . 49
Figure 8.2 - Class diagram showing the core packages . 50
Figure 8.3 - Class diagram showing the organization of the core BPMN elements. 51
Figure 8.4 - Definitions class diagram . 52
Figure 8.5 - Classes in the Foundation package . 55
Figure 8.6 - Extension class diagram . 57
Figure 8.7 - External Relationship Metamodel. 62
Figure 8.8 - Artifacts Metamodel . 66
Figure 8.9 - An Association . 67
Figure 8.10 - The Association Class Diagram . 68
Figure 8.11 - A Directional Association. 68
Figure 8.12 - An Association of Text Annotation . 68
Figure 8.13 - A Group Artifact . 69
Figure 8.14 - A Group around Activities in different Pools . 70
Figure 8.15 - The Group class diagram . 70
Figure 8.16 - A Text Annotation . 72
Figure 8.17 - The Correlation Class Diagram. 76
Figure 8.18 - Error class diagram . 81
Figure 8.19 - Escalation class diagram . 82
Figure 8.20 - Event class diagram . 84
Figure 8.21 - Expression class diagram . 85
Figure 8.22 - FlowElement class diagram . 87
Figure 8.23 - FlowElementContainers class diagram. 89
Figure 8.24 - Gateway class diagram . 90
Figure 8.25 - ItemDefinition class diagram . 92
Figure 8.26 - A Message. 93
Figure 8.27 - A non-initiating Message . 93
Figure 8.28 - Messages Association overlapping Message Flows . 94
Figure 8.29 - Messages shown Associated with a Choreography Task . 94
Figure 8.30 - The Message class diagram. 95
Figure 8.31 - Resource class diagram. 96
Figure 8.32 - A Sequence Flow . 97
Business Process Model and Notation, v2.0
vii

Figure 8.33 - A Conditional Sequence Flow . 97
Figure 8.34 - A Default Sequence Flow. 98
Figure 8.35 - SequenceFlow class diagram . 98
Figure 8.36 - The Service class diagram . 104
Figure 9.1 - Classes in the Collaboration package . 109
Figure 9.2 - A Pool . 112
Figure 9.3 - Message Flows connecting to the boundaries of two Pools . 113
Figure 9.4 - Message Flows connecting to Flow Objects within two Pools . 113
Figure 9.5 - Main (Internal) Pool without boundaries . 114
Figure 9.6 - Pools with a Multi-Instance Participant Markers . 115
Figure 9.7 - The Participant Class Diagram . 116
Figure 9.8 - A Pool with a Multiple Participant . 118
Figure 9.9 - The Participant Multiplicity class diagram. 118
Figure 9.10 - ParticipantAssociation class diagram . 120
Figure 9.11 - A Message Flow . 121
Figure 9.12 - A Message Flow with an Attached Message . 122
Figure 9.13 - A Message Flow passing through a Choreography Task . 122
Figure 9.14 - The Message Flow Class Diagram . 123
Figure 9.15 - MessageFlowAssociation class diagram . 125
Figure 9.16 - A Conversation diagram . 126
Figure 9.17 - A Conversation diagram where the Conversation is expanded into Message Flows 126
Figure 9.18 - Conversation diagram depicting several conversations between Participants in a related do-
main . 127
Figure 9.19 - An example of a Sub-Conversation . 128
Figure 9.20 - An example of a Sub-Conversation expanded to a Conversation and Message Flow . . . 129
Figure 9.21 - An example of a Sub-Conversation that is fully expanded . 129
Figure 9.22 - Metamodel of ConversationNode Related Elements . 131
Figure 9.23 – A Communication element . 132
Figure 9.24 – A compound Conversation element . 133
Figure 9.25 – A Call Conversation calling a GlobalConversation . 133
Figure 9.26 – A Call Conversation calling a Collaboration . 133
Figure 9.27 – A Conversation Link element . 135
Figure 9.28 – Conversation links to Activities and Events . 136
Figure 9.29 - Metamodel of Conversation Links related elements . 137
Figure 9.30 – Call Conversation Links . 138
Figure 9.31 - The ConversationAssociation class diagram . 139
Figure 9.32 - An example of a Choreography within a Collaboration . 141
Figure 9.33 - Choreography within Collaboration class diagram . 142
Figure 10.1 - An Example of a Process . 149
Figure 10.2 - Process class diagram . 150
Figure 10.3 - Process Details class diagram. 151
Figure 10.4 - Example of a private Business Process. 154
Figure 10.5 - Example of a public Process. 154
viii Business Process Model and Notation, v2.0

Figure 10.6 - Activity class diagram. 155
Figure 10.7 - The class diagram for assigning Resources . 158
Figure 10.8 - A Task object . 160
Figure 10.9 - Task markers . 161
Figure 10.10 - The Task class diagram. 161
Figure 10.11 - A Service Task Object . 162
Figure 10.12 - The Service Task class diagram . 163
Figure 10.13 - A Send Task Object . 164
Figure 10.14 - The Send Task and Receive Task class diagram . 164
Figure 10.15 - A Receive Task Object . 165
Figure 10.16 - A Receive Task Object that instantiates a Process . 166
Figure 10.17 - A User Task Object. 167
Figure 10.18 - A Manual Task Object . 168
Figure 10.19 - A Business Rule Task Object . 168
Figure 10.20 - A Script Task Object. 169
Figure 10.21 - Manual Task class diagram. 170
Figure 10.22 - User Task class diagram . 171
Figure 10.23 - HumanPerformer class diagram . 173
Figure 10.24 - Procurement Process Example . 175
Figure 10.25 - A Sub-Process object (collapsed) . 179
Figure 10.26 - A Sub-Process object (expanded) . 179
Figure 10.27 - Expanded Sub-Process used as a “Parallel Box” . 180
Figure 10.28 - Collapsed Sub-Process Markers . 180
Figure 10.29- The Sub-Process class diagram . 181
Figure 10.30 - An Event Sub-Process object (Collapsed) . 182
Figure 10.31 - An Event Sub-Process object (expanded). 182
Figure 10.32 - An example that includes Event Sub-Processes . 183
Figure 10.33 - A Transaction Sub-Process . 184
Figure 10.34 - A Collapsed Transaction Sub-Process . 185
Figure 10.35 - A collapsed Ad-Hoc Sub-Process . 186
Figure 10.36 - An expanded Ad-Hoc Sub-Process. 187
Figure 10.37 - An Ad-Hoc Sub-Process for writing a book chapter . 188
Figure 10.38 - An Ad-Hoc Sub-Process with data and sequence dependencies 189
Figure 10.39- A Call Activity object calling a Global Task. 190
Figure 10.40 - A Call Activity object calling a Process (Collapsed) . 190
Figure 10.41 - A Call Activity object calling a Process (Expanded) . 191
Figure 10.42 -The Call Activity class diagram. 192
Figure 10.43 - CallableElement class diagram . 193
Figure 10.44 - Global Tasks class diagram. 195
Figure 10.45 - LoopCharacteristics class diagram . 196
Figure 10.46 - A Task object with a Standard Loop Marker . 197
Figure 10.47 - A Sub-Process object with a Standard Loop Marker . 197
Figure 10.48 - Activity Multi-Instance marker for parallel instances . 198
Business Process Model and Notation, v2.0
ix

Figure 10.49 - Activity Multi-Instance marker for sequential instances . 198
Figure 10.50 - ItemAware class diagram . 211
Figure 10.51 - DataObject class diagram . 212
Figure 10.52 – A DataObject . 214
Figure 10.53 - A DataObject that is a collection . 214
Figure 10.54 - A Data Store . 215
Figure 10.55 - DataStore class diagram . 216
Figure 10.56 - Property class diagram . 217
Figure 10.57 - InputOutputSpecification class diagram. 219
Figure 10.58 - A DataInput . 221
Figure 10.59 - Data Input class diagram. 221
Figure 10.60 - A Data Output. 223
Figure 10.61 - Data Output class diagram . 223
Figure 10.62 - InputSet class diagram . 226
Figure 10.63 - OutputSet class diagram . 227
Figure 10.64 - DataAssociation class diagram . 229
Figure 10.65 - A Data Association . 229
Figure 10.66 - A Data Association used for an Outputs and Inputs into an Activities 229
Figure 10.67 - A Data Object shown as an output and an inputs . 231
Figure 10.68 - A Data Object associated with a Sequence Flow . 232
Figure 10.69 - The Event Class Diagram . 241
Figure 10.70 - Start Event . 245
Figure 10.71 - End Event . 254
Figure 10.72 - Intermediate Event . 258
Figure 10.73 – EventDefinition Class Diagram . 270
Figure 10.74 – Cancel Events. 271
Figure 10.75 – Compensation Events. 271
Figure 10.76 - CompensationEventDefinition Class Diagram. 272
Figure 10.77 – Conditional Events . 273
Figure 10.78 - ConditionalEventDefinition Class Diagram . 273
Figure 10.79 – Error Events . 273
Figure 10.80 - ErrorEventDefinition Class Diagram . 274
Figure 10.81 – Escalation Events . 274
Figure 10.82 - EscalationEventDefinition Class Diagram . 275
Figure 10.83 – Link Events . 275
Figure 10.84 - Link Events Used as Off-Page Connector . 276
Figure 10.85 - A Process with a long Sequence Flow . 277
Figure 10.86 - A Process with Link Intermediate Events used as Go To Objects 277
Figure 10.87 - Link Events Used for looping. 278
Figure 10.88 – Message Events . 278
Figure 10.89 - MessageEventDefinition Class Diagram . 279
Figure 10.90 – Multiple Events . 280
Figure 10.91 – None Events . 280
x Business Process Model and Notation, v2.0

Figure 10.92 – Multiple Events . 281
Figure 10.93 - SignalEventDefinition Class Diagram . 281
Figure 10.94 – Signal Events. 281
Figure 10.95 – Terminate Event . 282
Figure 10.96 – Timer Events . 282
Figure 10.97 - Exclusive start of a Process. 283
Figure 10.98 - A Process initiated by an Event-Based Gateway . 284
Figure 10.99 - Event synchronization at Process start . 284
Figure 10.100 - Example of inline Event Handling via Event Sub-Processes . 286
Figure 10.101 - Example of boundary Event Handling . 287
Figure 10.102 – A Gateway . 295
Figure 10.103 – The Different types of Gateways . 296
Figure 10.104 - Gateway class diagram . 297
Figure 10.105 - An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator . .
298
Figure 10.106 - A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator . . 299
Figure 10.107 - Exclusive Gateway class diagram. 299
Figure 10.108 - An example using an Inclusive Gateway . 300
Figure 10.109 - Inclusive Gateway class diagram . 301
Figure 10.110 - An example using an Parallel Gateway . 302
Figure 10.111 - An example of a synchronizing Parallel Gateway . 302
Figure 10.112 - Parallel Gateway class diagram . 303
Figure 10.113 - An example using a Complex Gateway . 303
Figure 10.114 - Complex Gateway class diagram . 304
Figure 10.115 – Event-Based Gateway . 305
Figure 10.116 - An Event-Based Gateway example using Message Intermediate Events. 306
Figure 10.117 - An Event-Based Gateway example using Receive Tasks. 307
Figure 10.118 – Exclusive Event-Based Gateway to start a Process . 307
Figure 10.119 – Parallel Event-Based Gateway to start a Process . 308
Figure 10.120 - Event-Based Gateway class diagram . 308
Figure 10.121- Compensation through a boundary Event . 311
Figure 10.122 - Monitoring Class Diagram. 312
Figure 10.123 - Two Lanes in a Vertical Pool . 314
Figure 10.124 - Two Lanes in a horizontal Pool . 314
Figure 10.125 - An Example of Nested Lanes . 315
Figure 10.126 - The Lane class diagram. 316
Figure 10.127 - One Process supporting to another . 319
Figure 10.128 - Auditing Class Diagram . 320
Figure 10.129 - Monitoring Class Diagram . 320
Figure 11.1 - The Choreography metamodel . 326
Figure 11.2 - An example of a Choreography . 327
Figure 11.3 - A Collaboration diagram logistics example . 328
Figure 11.4 - The corresponding Choreography diagram logistics example . 329
Business Process Model and Notation, v2.0
xi

Figure 11.5 - The use of Sequence Flows in a Choreography . 330
Figure 11.6 - The metamodel segment for a Choreography Activity. 332
Figure 11.7 - A Collaboration view of Choreography Task elements . 333
Figure 11.8 - A Choreography Task. 333
Figure 11.9 - A Collaboration view of a Choreography Task . 334
Figure 11.10 - A two-way Choreography Task . 334
Figure 11.11 - A Collaboration view of a two-way Choreography Task . 335
Figure 11.12 - Choreography Task Markers . 336
Figure 11.13 - The Collaboration view of a looping Choreography Task . 336
Figure 11.14 - The Collaboration view of a Parallel Multi-Instance Choreography Task. 337
Figure 11.15 - A Choreography Task with a multiple Participant . 337
Figure 11.16 - A Collaboration view of a Choreography Task with a multiple Participant 338
Figure 11.17- A Sub-Choreography . 339
Figure 11.18 - A Collaboration view of a Sub-Choreography . 339
Figure 11.19 - An expanded Sub-Choreography . 340
Figure 11.20 - A Collaboration view of an expanded Sub-Choreography. 340
Figure 11.21 - Sub-Choreography (Collapsed) with More than Two (2) Participants. 341
Figure 11.22 - Sub-Choreography Markers . 342
Figure 11.23 - Sub-Choreography Markers with a multi-instance Participant. 342
Figure 11.24 - A Call Choreography calling a Global Choreography Task. 343
Figure 11.25 - A Call Choreography calling a Choreography (Collapsed) . 343
Figure 11.26 - A Call Choreography calling a Choreography (expanded) . 344
Figure 11.27- The Call Choreography class diagram. 344
Figure 11.28 - A valid sequence of Choreography Activities . 346
Figure 11.29 - The corresponding Collaboration for a valid Choreography sequence 347
Figure 11.30 - A valid sequence of Choreography Activities with a two-way Activity 347
Figure 11.31 - The corresponding Collaboration for a valid Choreography sequence with a two-way Ac-
tivity . 348
Figure 11.32 - An invalid sequence of Choreography Activities . 349
Figure 11.33 - The corresponding Collaboration for an invalid Choreography sequence 349
Figure 11.34 - An example of the Exclusive Gateway. 356
Figure 11.35 - The relationship of Choreography Activity Participants across the sides of the Exclusive
Gateway shown through a Collaboration . 357
Figure 11.36 - Different Receiving Choreography Activity Participants on the output sides of the Exclu-
sive Gateway . 358
Figure 11.37 - The corresponding Collaboration view of the above Choreography Exclusive Gateway con-
figuration . 359
Figure 11.38 - An example of an Event Gateway . 360
Figure 11.39 - The corresponding Collaboration view of the above Choreography Event Gateway config-
uration. 361
Figure 11.40 - An example of a Choreography Inclusive Gateway configuration. 363
Figure 11.41 - The corresponding Collaboration view of the above Choreography Inclusive Gateway con-
figuration . 364
xii Business Process Model and Notation, v2.0

Figure 11.42 - An example of a Choreography Inclusive Gateway configuration. 365
Figure 11.43 - The corresponding Collaboration view of the above Choreography Inclusive Gateway con-
figuration. 366
Figure 11.44 - Another example of a Choreography Inclusive Gateway configuration. 367
Figure 11.45 - The corresponding Collaboration view of the above Choreography Inclusive Gateway con-
figuration. 368
Figure 11.46 - The relationship of Choreography Activity Participants across the sides of the Parallel Gate-
way . 369
Figure 11.47 - The corresponding Collaboration view of the above Choreography Parallel Gateway con-
figuration. 370
Figure 11.48 - An example of a Choreography Complex Gateway configuration. 371
Figure 11.49 - The corresponding Collaboration view of the above Choreography Complex Gateway con-
figuration. 372
Figure 11.50 - An example of a Choreography Process combined with Black Box Pools 373
Figure 11.51 - An example of a Choreography Process combined with Pools that contain Processes . 374
Figure 12.1 - BPMN Diagram . 379
Figure 12.2 - BPMN Plane . 379
Figure 12.3 - BPMN Shape. 380
Figure 12.4 - BPMN Edge . 380
Figure 12.5 - BPMN Label . 381
Figure 12.6 - Depicting a Label for a DataObjectReference with its state . 392
Figure 12.7 - Combined Compensation and Loop Characteristic Marker Example 395
Figure 12.8 - Expanded Sub-Process Example. 425
Figure 12.9 - Start and End Events on the Border Example. 427
Figure 12.10 - Collapsed Sub-Process . 428
Figure 12.11 - Contents of Collapsed Sub-Process . 429
Figure 12.12 - Nested Lanes Example . 431
Figure 12.13 - Vertical Collaboration Example . 433
Figure 12.14 - Conversation Example . 434
Figure 12.15 - Choreography Example. 436
Figure 13.1 - Behavior of multiple outgoing Sequence Flows of an Activity . 441
Figure 13.2 - The Lifecycle of a BPMN Activity. 442
Figure 13.3 - Merging and Branching Sequence Flows for a Parallel Gateway 448
Figure 13.4 - Merging and Branching Sequence Flows for an Exclusive Gateway. 449
Figure 13.5 - Merging and Branching Sequence Flows for an Inclusive Gateway 450
Figure 13.6 - Merging and branching Sequence Flows for an Event-Based Gateway. 452
Figure 13.7 - Merging and branching Sequence Flows for a Complex Gateway. 452
Figure 14.1 - A BPMN orchestration process and its block hierarchy . 462
Figure 14.2 - An example of distributed token recombination. 485
Figure 14.3 - An example of a loop from a decision with more than two alternative paths. 486
Figure 14.4 - An example of interleaved loops . 487
Figure 14.5 - An example of the WSBPEL pattern for substituting for the derived Process 488
Figure 14.6 - An example of a WSBPEL pattern for the derived Process . 488
Business Process Model and Notation, v2.0
xiii

Figure 14.7 - An example – An infinite loop . 489
Figure 14.8 - An example - Activity that spans two paths of a WSBPEL structured element. 490
Figure B.1 - Diagram Definition Architecture . 499
Figure B.2 - The Primitive Types. 499
Figure B.3 - Diagram Definition Architecture . 500
Figure B.4 - Diagram Definition Architecture . 500
Figure B.5 - Dependencies of the DI package . 504
Figure B.6 - Diagram Element . 504
Figure B.7 - Node . 505
Figure B.8 - Edge . 505
Figure B.9 - Diagram . 506
Figure B.10 - Plane. 506
Figure B.11 - Labeled Edge . 506
Figure B.12 - Labeled Shape . 507
Figure B.13 - Shape . 507
xiv Business Process Model and Notation, v2.0

List of Tables

Table 2.1 – Descriptive Conformance Sub-Class Elements and Attributes . 3
Table 2.2 – Analytic Conformance Sub-Class Elements and Attributes. 4
Table 2.3 – Common Executable Conformance Sub-Class Elements and Attributes 6
Table 2.4 – Common Executable Conformance Sub-Class Supporting Classes. 7
Table 2.5 - Types of BPMN Conformance. 12
Table 7.1 - Basic Modeling Elements. 29
Table 7.2 - BPMN Extended Modeling Elements . 30
Table 7.3 – Sequence Flow Connection Rules . 42
Table 7.4 – Message Flow Connection Rules. 44
Table 8.1 - Definitions attributes and model associations . 53
Table 8.2 – Import attributes . 54
Table 8.3 – Definitions XML schema . 54
Table 8.4 – Import XML schema. 55
Table 8.5 – BaseElement attributes and model associations . 56
Table 8.6 – Documentation attributes . 56
Table 8.7 – Extension attributes and model associations . 58
Table 8.8 – ExtensionDefinition attributes and model associations . 59
Table 8.9 - ExtensionAttributeDefinition attributes . 59
Table 8.10 – ExtensionAttributeValue model associations . 59
Table 8.11 – Extension XML schema . 60
Table 8.12 – Example Core XML schema . 60
Table 8.13 – Example Extension XML schema . 61
Table 8.14 – Sample XML instance . 61
Table 8.15 – Relationship attributes . 63
Table 8.16 – Reengineer XML schema . 63
Table 8.17 – BaseElement XML schema . 64
Table 8.18 – RootElement XML schema . 65
Table 8.19 – Relationship XML schema . 65
Table 8.20 – Association attributes and model associations . 69
Table 8.21 – Group model associations . 71
Table 8.22 –Category model associations . 71
Table 8.23 –CategoryValue attributes and model associations . 72
Table 8.24 –Text Annotation attributes . 72
Table 8.25 – Artifact XML schema. 73
Table 8.26 – Association XML schema. 73
Table 8.27 – Category XML schema. 73
Table 8.28 – CategoryValue XML schema . 74
Table 8.29 – Group XML schema . 74
Table 8.30 – Text Annotation XML schema . 74
Table 8.31 – CorrelationKey model associations . 77
Business Process Model and Notation, v2.0 xv

Table 8.32 – CorrelationProperty model associations . 78
Table 8.33 – CorrelationPropertyRetrievalExpression model associations. 78
Table 8.34 – CorrelationSubscription model associations. 79
Table 8.35 – CorrelationPropertyBinding model associations . 79
Table 8.36 – Correlation Key XML schema . 79
Table 8.37 – Correlation Property XML schema. 80
Table 8.38 – Correlation Property Binding XML schema. 80
Table 8.39 – Correlation Property Retrieval Expression XML schema . 80
Table 8.40 – Correlation Subscription XML schema . 80
Table 8.41 – Error attributes and model associations . 82
Table 8.42 – Esclation attributes and model associations . 83
Table 8.43 – FormalExpression attributes and model associations . 86
Table 8.44 – FlowElement attributes and model associations. 88
Table 8.45 – FlowElementsContainer model associations . 89
Table 8.46 – Gateway attributes . 91
Table 8.47 – ItemDefinition attributes & model associations . 92
Table 8.48 – Message attributes and model associations . 95
Table 8.49 – Resource attributes and model associations . 96
Table 8.50 – ResourceParameter attributes and model associations . 97
Table 8.51 – SequenceFlow attributes and model associations. 99
Table 8.52 – FlowNode model associations . 100
Table 8.53 – Error XML schema . 100
Table 8.54 – Escalation XML schema. 100
Table 8.55 – Expression XML schema . 100
Table 8.56 – FlowElement XML schema . 101
Table 8.57 – FlowNode XML schema. 101
Table 8.58 – FormalExpression XML schema . 101
Table 8.59 – InputOutputBinding XML schema . 102
Table 8.60 – ItemDefinition XML schema . 102
Table 8.61 – Message XML schema . 102
Table 8.62 – Resources XML schema . 102
Table 8.63 – ResourceParameter XML schema . 103
Table 8.64 – SequenceFlow XML schema . 103
Table 8.65 – Interface attributes and model associations . 105
Table 8.66 – Operation attributes and model associations . 106
Table 8.67 – Interface XML schema . 106
Table 8.68 – Operation XML schema . 106
Table 8.69 – EndPoint XML schema. 107
Table 9.1 - Collaboration Attributes and Model Associations . 110
Table 9.2 – Participant attributes and model associations . 117
Table 9.3 – PartnerEntity attributes . 117
Table 9.4 – PartnerRole attributes . 118
Table 9.5 – ParticipantMultiplicity attributes . 119
xvi Business Process Model and Notation, v2.0

Table 9.6 – ParticipantMultiplicity Instance attributes . 119
Table 9.7 – ParticipantAssociation model associations . 121
Table 9.8 – Message Flow attributes and model associations . 124
Table 9.9 – MessageFlowAssociation attributes and model associations . 125
Table 9.10 – ConversationNode Model Associations . 132
Table 9.11 – Sub-Conversation Model Associations. 133
Table 9.12 – Call Conversation Model Associations . 134
Table 9.13 – Conversation Link Attributes and Model Associations . 137
Table 9.14 – ConversationAssociation Model Associations . 139
Table 9.15 – Call Conversation XML schema . 142
Table 9.16 – Collaboration XML schema . 142
Table 9.17 – Conversation XML schema . 143
Table 9.18 – ConversationAssociation XML schema . 143
Table 9.19 – ConversationAssociation XML schema . 143
Table 9.20 – ConversationNode XML schema . 144
Table 9.21 – Conversation Node XML schema . 144
Table 9.22 – Global Conversation XML schema . 144
Table 9.23 – MessageFlow XML schema . 145
Table 9.24 – MessageFlowAssociation XML schema . 145
Table 9.25 – Participant XML schema . 145
Table 9.26 – ParticipantAssociation XML schema . 145
Table 9.27 – ParticipantMultiplicity XML schema. 146
Table 9.28 – PartnerEntity XML schema . 146
Table 9.29 – PartnerRole XML schema . 146
Table 9.30 – Sub-Conversation XML schema. 146
Table 10.1 – Process Attributes & Model Associations . 151
Table 10.2 – Process instance attributes . 153
Table 10.3 – Activity attributes and model associations . 156
Table 10.4 – Activity instance attributes . 157
Table 10.5 – Resource Role model associations. 159
Table 10.6 – ResourceAssignmentExpression model associations. 159
Table 10.7 – ResourceParameterBinding model associations . 160
Table 10.8 – Service Task model associations . 163
Table 10.9 – Send Task model associations . 165
Table 10.10 – Receive Task attributes and model associations. 167
Table 10.11 – Business Rule Task attributes and model associations. 169
Table 10.12 – Script Task attributes . 170
Table 10.13 – User Task attributes and model associations . 172
Table 10.14 – User Task instance attributes . 172
Table 10.15 – ManualTask XML schema . 173
Table 10.16 – UserTask XML schema . 174
Table 10.17 – HumanPerformer XML schema . 174
Table 10.18 – PotentialOwner XML schema . 175
Business Process Model and Notation, v2.0 xvii

Table 10.19 – XML serialization of Buyer process. 175
Table 10.20 – Sub-Process attributes. 181
Table 10.21 – Transaction Sub-Process attributes and model associations. 185
Table 10.22 – Ad-hoc Sub-Process model associations . 187
Table 10.23 – CallActivity model associations . 192
Table 10.24 – CallableElement attributes and model associations . 194
Table 10.25 – InputOutputBinding model associations. 194
Table 10.26 – Global Task model associations . 195
Table 10.27 – Loop Activity instance attributes . 197
Table 10.28 – StandardLoopCharacteristics attributes and model associations 198
Table 10.29 - MultiInstanceLoopCharacteristics attributes and model associations. 199
Table 10.30 – Multi-instance Activity instance attributes . 201
Table 10.31 – ComplexBehaviorDefinition attributes and model associations. 202
Table 10.32 – Activity XML schema . 202
Table 10.33 – AdHocSubProcess XML schema . 203
Table 10.34 – BusinessRuleTask XML schema . 203
Table 10.35 – CallableElement XML schema. 204
Table 10.36 – CallActivity XML schema . 204
Table 10.37 – GlobalBusinessRuleTask XML schema . 204
Table 10.38 – GlobalScriptTask XML schema . 205
Table 10.39 – GlobalTask XML schema. 205
Table 10.40 – LoopCharacteristics XML schema . 205
Table 10.41 – MultiInstanceLoopCharacteristics XML schema . 206
Table 10.42 – ReceiveTask XML schema. 207
Table 10.43 – ResourceRole XML schema . 207
Table 10.44 – ScriptTask XML schema . 208
Table 10.45 – SendTask XML schema . 208
Table 10.46 – ServiceTask XML schema . 208
Table 10.47 – StandardLoopCharacteristics XML schema . 209
Table 10.48 – SubProcess XML schema . 209
Table 10.49 – Task XML schema . 209
Table 10.50 – Transaction XML schema. 210
Table 10.51 – ItemAwareElement model associations . 211
Table 10.52 – DataObject attributes . 213
Table 10.53 – DataObjectReference attributes and model associations . 213
Table 10.54 – DataState attributes and model associations . 213
Table 10.55 – Data Store attributes . 216
Table 10.56 – Data Store attributes . 217
Table 10.57 – Property attributes. 218
Table 10.58 – InputOutputSpecification Attributes and Model Associations . 220
Table 10.59 – DataInput attributes and model associations . 222
Table 10.60 – DataOutput attributes and associations. 224
Table 10.61 – InputSet attributes and model associations. 226
xviii Business Process Model and Notation, v2.0

Table 10.62 – OutputSet attributes and model associations . 228
Table 10.63 – DataAssociation model associations. 230
Table 10.64 – Assignment attributes . 231
Table 10.65 – XPath Extension Function for Data Objects. 234
Table 10.66 – XPath Extension Function for Data Inputs and Data Outputs. 234
Table 10.67 – XPath Extension Functions for Properties . 235
Table 10.68 – XPath extension functions for instance attributes . 235
Table 10.69 – Assignment XML schema . 236
Table 10.70 – DataAssociation XML schema. 236
Table 10.71 – DataInput XML schema . 236
Table 10.72 – DataInputAssociation XML schema. 237
Table 10.73 – DataObject XML schema . 237
Table 10.74 – DataState XML schema . 237
Table 10.75 – DataOutput XML schema. 238
Table 10.76 – DataOutputAssociation XML schema . 238
Table 10.77 – InputOutputSpecification XML schema. 238
Table 10.78 – InputSet XML schema . 239
Table 10.79 – OutputSet XML schema . 239
Table 10.80 – Property XML schema . 240
Table 10.81 – Event model associations . 243
Table 10.82 – CatchEvent attributes and model associations . 243
Table 10.83 – ThrowEvent attributes and model associations . 244
Table 10.84 – Top-Level Process Start Event Types. 247
Table 10.85 – Sub-Process Start Event Types. 249
Table 10.86 – Event Sub-Process Start Event Types. 249
Table 10.87 – Start Event attributes. 252
Table 10.88 - End Event Types . 255
Table 10.89 – Intermediate Event Types in Normal Flow . 259
Table 10.90 – Intermediate Event Types Attached to an Activity Boundary . 262
Table 10.91 – Boundary Event attributes . 266
Table 10.92 – Possible Values of the cancelActivity Attribute. 266
Table 10.93 – Types of Events and their Markers. 269
Table 10.94 – CompensationEventDefinition attributes and model associations 272
Table 10.95 – ConditionalEventDefinition model associations . 273
Table 10.96 – ErrorEventDefinition attributes and model associations . 274
Table 10.97 – EscalationEventDefinition attributes and model associations. 275
Table 10.98 – LinkEventDefinition attributes . 278
Table 10.99 – MessageEventDefinition model associations . 279
Table 10.100 – SignalEventDefinition model associations . 281
Table 10.101 – TimerEventDefinition model associations . 282
Table 10.102 – BoundaryEvent XML schema . 290
Table 10.103 – CancelEventDefinition XML schema. 290
Table 10.104 – CatchEvent XML schema. 290
Business Process Model and Notation, v2.0 xix

Table 10.105 – CancelEventDefinition XML schema. 291
Table 10.106 – CompensateEventDefinition XML schema . 291
Table 10.107 – ConditionalEventDefinition XML schema. 291
Table 10.108 – ErrorEventDefinition XML schema . 291
Table 10.109 – EscalationEventDefinition XML schema . 292
Table 10.110 – Event XML schema . 292
Table 10.111 – EventDefinition XML schema . 292
Table 10.112 – ImplicitThrowEvent XML schema. 292
Table 10.113 – IntermediateCatchEvent XML schema. 292
Table 10.114 – IntermediateThrowEvent XML schema . 293
Table 10.115 – LinkEventDefinition XML schema . 293
Table 10.116 – MessageEventDefinition XML schema . 293
Table 10.117 – Signal XML schema . 293
Table 10.118 – SignalEventDefinition XML schema . 294
Table 10.119 – StartEvent XML schema. 294
Table 10.120 – TerminateEventDefinition XML schema . 294
Table 10.121 – ThrowEvent XML schema . 294
Table 10.122 – TimerEventDefinition XML schema . 295
Table 10.123 – ExclusiveGateway Attributes & Model Associations . 300
Table 10.124 – InclusiveGateway Attributes & Model Associations . 301
Table 10.125 – Complex Gateway model associations . 304
Table 10.126 – Instance attributes related to the Complex Gateway . 305
Table 10.127 – EventBasedGateway Attributes & Model Associations . 309
Table 10.128 – ComplexGateway XML schema. 309
Table 10.129 – EventBasedGateway XML schema . 309
Table 10.130 – ExclusiveGateway XML schema . 310
Table 10.131 – Gateway XML schema . 310
Table 10.132 – InclusiveGateway XML schema. 310
Table 10.133 – ParallelGateway XML schema . 310
Table 10.134 – LaneSet attributes and model associations . 316
Table 10.135 – Lane attributes and model associations . 317
Table 10.136 – Process XML schema . 321
Table 10.137 – Auditing XML schema . 321
Table 10.138 – GlobalTask XML schema. 321
Table 10.139 – Lane XML schema . 322
Table 10.140 – LaneSet XML schema . 322
Table 10.141 – Monitoring XML schema . 322
Table 10.142 – Performer XML schema . 323
Table 11.1 – Choreography Activity Model Associations . 332
Table 11.2 – Choreography Task Model Associations . 338
Table 11.3 – Sub-Choreography Model Associations . 342
Table 11.4 – Call Choreography Model Associations . 345
Table 11.5 – Global Choreography Task Model Associations . 345
xx Business Process Model and Notation, v2.0

Table 11.6 – Use of Start Events in Choreography . 350
Table 11.7 - Use of Intermediate Events in Choreography . 350
Table 11.8 – Use of End Events in Choreography . 354
Table 11.9 – Choreography XML schema. 374
Table 11.10 – GlobalChoreographyTask XML schema . 375
Table 11.11 – ChoreographyActivity XML schema . 375
Table 11.12 – ChoreographyTask XML schema. 375
Table 11.13 – CallChoreography XML schema . 376
Table 11.14 – SubChoreography XML schema . 376
Table 12.1 – BPMNDiagram XML schema . 381
Table 12.2 – BPMNPlane XML schema . 382
Table 12.3 – BPMNShape XML schema . 384
Table 12.4 – BPMNEdge XML schema . 386
Table 12.5 – BPMNLabel XML schema . 388
Table 12.6 – BPMNLabelStyle XML schema. 388
Table 12.7 – Complete BPMN DI XML schema . 389
Table 12.8 – Depiction Resolution for Loop Characteristic Markers. 393
Table 12.9 – Depiction Resolution for Compensation Marker . 394
Table 12.10 – Depiction Resolution for Tasks . 395
Table 12.11 – Depiction Resolution for Collapsed Sub-Processes . 396
Table 12.12 – Depiction Resolution for Expanded Sub-Processes . 397
Table 12.13 – Depiction Resolution for Collapsed Ad Hoc Sub-Processes . 397
Table 12.14 – Depiction Resolution for Expanded Ad Hoc Sub-Processes . 398
Table 12.15 – Depiction Resolution for Collapsed Transactions . 398
Table 12.16 – Depiction Resolution for Tasks . 399
Table 12.17 – Depiction Resolution for Collapsed Event Sub-Processes . 399
Table 12.18 – Depiction Resolution for Expanded Event Sub-Processes . 402
Table 12.19 – Depiction Resolution for Call Activities (Calling a Global Task) 402
Table 12.20 – Depiction Resolution for Collapsed Call Activities (Calling a Process) 403
Table 12.21 – Depiction Resolution for Expanded Call Activities (Calling a Process) 403
Table 12.22 – Depiction Resolution for Data . 404
Table 12.23 – Depiction Resolution for Events. 405
Table 12.24 – Depiction Resolution for Gateways . 411
Table 12.25 – Depiction Resolution for Artifacts . 412
Table 12.26 – Depiction Resolution for Lanes . 413
Table 12.27 – Depiction Resolution for Pools. 413
Table 12.28 – Depiction Resolution for Choreography Tasks . 414
Table 12.29 – Depiction Resolution for Sub-Choreographies (Collapsed) . 415
Table 12.30 – Depiction Resolution for Sub-Choreographies (Expanded) . 416
Table 12.31 – Depiction Resolution for Call Choreographies (Calling a Global Choreography Task) 417
Table 12.32 – Depiction Resolution for Collapsed Call Choreographies (Calling a Choreography) . . 418
Table 12.33 – Depiction Resolution for Expanded Call Choreographies (Calling a Choreography) . . 419
Table 12.34 – Depiction Resolution for Choreography Participant Bands . 419
Business Process Model and Notation, v2.0 xxi

Table 12.35 – Depiction Resolution for Conversations. 422
Table 12.36 – Depiction Resolution for Connecting Objects . 423
Table 12.37 – Expanded Sub-Process BPMN DI instance . 426
Table 12.38 – Start and End Events on the Border BPMN DI instance . 427
Table 12.39 – Collapsed Sub-Process BPMN DI instance . 429
Table 12.40 – Sub-Process Content BPMN DI instance . 430
Table 12.41 – Multiple Lanes and Nested Lanes BPMN DI instance . 431
Table 12.42 – Vertical Collaboration BPMN DI instance. 433
Table 12.43 – Conversation BPMN DI instance . 435
Table 12.44 – Choreography BPMN DI instance . 437
Table 13.1 – Parallel Gateway Execution Semantics . 448
Table 13.2 – Exclusive Gateway Execution Semantics. 449
Table 13.3 – Inclusive Gateway Execution Semantics . 451
Table 13.4 – Event-Based Gateway Execution Semantics . 452
Table 13.5 – Semantics of the Complex Gateway. 454
Table 14.1 – Common Activity Mappings to WS-BPEL . 464
Table 14.2 - Expressions mapping to WS-BPEL . 484
xxii Business Process Model and Notation, v2.0

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications
• CORBAservices
Business Process Model and Notation, v2.0 xxiii

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
xxiv Business Process Model and Notation, v2.0

1 Scope

The Object Management Group (OMG) has developed a standard Business Process Model and Notation (BPMN).
The primary goal of BPMN is to provide a notation that is readily understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the technical developers responsible for implementing the
technology that will perform those processes, and finally, to the business people who will manage and monitor those
processes. Thus, BPMN creates a standardized bridge for the gap between the business process design and process
implementation.

Another goal, but no less important, is to ensure that XML languages designed for the execution of business processes,
such as WSBPEL (Web Services Business Process Execution Language), can be visualized with a business-oriented
notation.

This specification represents the amalgamation of best practices within the business modeling community to define the
notation and semantics of Collaboration diagrams, Process diagrams, and Choreography diagrams. The intent of
BPMN is to standardize a business process model and notation in the face of many different modeling notations and
viewpoints. In doing so, BPMN will provide a simple means of communicating process information to other business
users, process implementers, customers, and suppliers.

The membership of the OMG has brought forth expertise and experience with many existing notations and has sought to
consolidate the best ideas from these divergent notations into a single standard notation. Examples of other notations or
methodologies that were reviewed are UML Activity Diagram, UML EDOC Business Processes, IDEF, ebXML BPSS,
Activity-Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and Event-Process Chains (EPCs).

2 Conformance

Software can claim compliance or conformance with BPMN 2.0 if and only if the software fully matches the applicable
compliance points as stated in the specification. Software developed only partially matching the applicable compliance
points can claim only that the software was based on this specification, but cannot claim compliance or conformance with
this specification. The specification defines four types of conformance namely Process Modeling Conformance, Process
Execution Conformance, BPEL Process Execution Conformance and Choreography Modeling Conformance.

The implementation claiming conformance to Process Modeling Conformance type is NOT REQUIRED to support
Choreography Modeling Conformance type and vice-versa. Similarly, the implementation claiming Process Execution
Conformance type is NOT REQUIRED to be conformant to the Process Modeling and Choreography Conformance
types.

The implementation claiming conformance to the Process Modeling Conformance type SHALL comply with all of the
requirements set forth in Section 2.1. The implementation claiming conformance to the Process Execution Conformance
type SHALL comply with all of the requirements set forth in Section 2.2. The implementation claiming conformance to
the BPEL Process Execution Semantics Conformance type SHALL comply with all of the requirements set forth in
Section 2.3.The implementation claiming conformance to the Choreography Conformance type SHALL comply with
all of the requirements set forth in Section 2.4. The implementation is said to have BPMN Complete Conformance if it
complies with all of the requirements stated in Sections 2.1, 2.2, 2.3, and 2.4.
Business Process Model and Notation, v2.0 1

2.1 Process Modeling Conformance
The next eight (8) sections describe Process Modeling Conformance.

2.1.1 BPMN Process Types

The implementations claiming Process Modeling Conformance MUST support the following BPMN packages:

� The BPMN core elements, which include those defined in the Infrastructure, Foundation, Common, and Service
packages (see Chapter 8).

� Process diagrams, which include the elements defined in the Process, Activities, Data, and Human Interaction
packages (see Chapter 10).

� Collaboration diagrams, which include Pools and Message Flow (see Chapter 9).

� Conversation diagrams, which include Pools, Conversations, and Conversation Links (see Chapter 9).

As an alternative to full Process Modeling Conformance, there are three (3) conformance sub-classes defined:

� Descriptive

� Analytic

� Common Executable

Descriptive is concerned with visible elements and attributes used in high-level modeling. It should be comfortable for
analysts who have used BPA flowcharting tools.

Analytic contains all of Descriptive and in total about half of the constructs in the full Process Modeling Conformance
Class. It is based on experience gathered in BPMN training and an analysis of user-patterns in the Department of Defense
Architecture Framework and planned standardization for that framework.

Both Descriptive and Analytic focus on visible elements and a minimal subset of supporting attributes/elements.

Common Executable focuses on what is needed for executable process models.

Elements and attributes not in these sub-classes are contained in the full Process Modeling Conformance class.

The elements for each sub-class are defined in the next section.

2.1.2 BPMN Process Elements

The Process Modeling Conformance type set consists of Collaboration and Process diagram elements, including all
Task types, embedded Sub-Processes, CallActivity, all Gateway types, all Event types (Start, Intermediate, and
End), Lane, Participants, Data Object (including DataInput and DataOutput), Message, Group, Text
Annotation, Sequence Flow (including conditional and default flows), Message Flow, Conversations (limited to
grouping Message Flow, and associating correlations), Correlation, and Association (including Compensation
Association). The set also includes markers (Loop, Multi-Instance, Transaction, Compensation) for Tasks and
embedded Sub-Processes).

Note: Implementations are not expected to support Choreography modeling elements such as Choreography Task
and Sub-Choreography.

For a tool to claim support for a sub-class the following criteria MUST be satisfied:

� All the elements in the sub-class MUST be supported.
2 Business Process Model and Notation, v2.0

� For each element, all the listed attributes MUST be supported.

� In general, if the sub-class doesn't mention an attribute and it is NOT REQUIRED by the schema then it is not in the
subclass. Exceptions to this rule are noted.

Descriptive Conformance Sub-Class
The Descriptive conformance sub-class elements shown in Table 2.1:

Table 2.1 – Descriptive Conformance Sub-Class Elements and Attributes

Element Attributes

participant (pool) id, name, processRef

laneSet id, lane with name, childLaneSet, flowElementRef

sequenceFlow (unconditional) id, name, sourceRef, targetRef

messageFlow id, name, sourceRef, targetRef

exclusiveGateway id, name

parallelGateway id, name

task (None) id, name

userTask id, name

serviceTask id, name

subProcess (expanded) id, name, flowElement

subProcess (collapsed) id, name, flowElement

CallActivity id, name, calledElement

DataObject id, name

TextAnnotation id, text

association/dataAssociationa id, name, sourceRef, targetRef, associationDirectionb

dataStoreReference id, name, dataStoreRef

startEvent (None) id, name

endEvent (None) id, name

messageStartEvent id, name, messageEventDefinition

messageEndEvent id, name, messageEventDefinition

timerStartEvent id, name, timerEventDefinition

terminateEndEvent id, name, terminateEventDefinition
Business Process Model and Notation, v2.0 3

Analytic Conformance Sub-Class
The Analytic conformance sub-class contains all the elements of the Descriptive conformance sub-class plus the
elements shown in Table 2.2:

documentationc text

Group id, categoryRef

a.Data Association is ABSTRACT: Data Input Association and Data Output Association will appear in
the XML serialization. These both have REQUIRED attributes[sourceRef and targetRef] which refer to
itemAwareElements. To be consistent with the metamodel, this will require the following additional elements:
ioSpecification, inputSet, outputSet, Data Input, Data Output. When a BPMN editor draws a Data
Association to an Activity or Event it should generate this supporting invisible substructure. Otherwise, the
metamodel would have to be changed to make sourceRef and targetRef optional or allow reference to
non-itemAwareElements, e.g. Activity and Event.
b.associationDirection not specified for Data Association
c.Documentation is not a visible element. It is an attribute of most elements.

Table 2.2 – Analytic Conformance Sub-Class Elements and Attributes

Element Attributes

sequenceFlow (conditional) id, name, sourceRef, targetRef, conditionExpressiona

sequenceFlow (default) id, name, sourceRef, targetRef, defaultb

sendTask id, name

receiveTask id, name

Looping Activity standardLoopCharacteristics

MultiInstance Activity multiInstanceLoopCharacteristics

exclusiveGateway Add default attribute

inclusiveGateway id, name, eventGatewayType

eventBasedGateway id, name, eventGatewayType

Link catch/throw Intermediate Event Id, name, linkEventDefinition

signalStartEvent id, name, signalEventDefinition

signalEndEvent id, name, signalEventDefinition

Catching message Intermediate
Event

id, name, messageEventDefinition

Throwing message Intermediate
Event

id, name, messageEventDefinition
4 Business Process Model and Notation, v2.0

Common Executable Conformance Sub-Class
This conformance sub-class is intended for modeling tools that can emit executable models.

Boundary message Intermediate
Event

id, name, attachedToRef, messageEventDefinition

Non-interrupting Boundary message
Intermediate Event

id, name, attachedToRef, cancelActivity=false,
messageEventDefinition

Catching timer Intermediate Event id, name, timerEventDefinition

Boundary timer Intermediate Event id, name, attachedToRef, timerEventDefinition

Non-interrupting Boundary timer
Intermediate Event

id, name, attachedToRef, cancelActivity=false, timerEventDefinition

Boundary error Intermediate Event id, name, attachedToRef, errorEventDefinition

errorEndEvent id, name, errorEventDefinition

Non-interrupting Boundary escalation
Intermediate Event

id, name, attachedToRef, cancelActivity=false,
escalationEventDefinition

Throwing escalation Intermediate
Event

id, name, escalationEventDefinition

escalationEndEvent id, name, escalationEventDefinition

Catching signal Intermediate Event id, name, signalEventDefinition

Throwing signal Intermediate Event id, name, signalEventDefinition

Boundary signal Intermediate Event id, name, attachedToRef, signalEventDefinition

Non-interrupting Boundary signal
Intermediate Event

id, name, attachedToRef, cancelActivity=false, signalEventDefinition

conditionalStartEvent id, name, conditionalEventDefinition

Catching conditional Intermediate
Event

id, name, conditionalEventDefinition

Boundary conditional Intermediate
Event

id, name, conditionalEventDefinition

Non-interrupting Boundary condi-
tional Intermediate Event

id, name, cancelActivity=false, conditionalEventDefinition

messagec id, name, add messageRef attribute to messageFlow

a.ConditionExpression, allowed only for Sequence Flow out of Gateways, MAY be null.
b.Default is an attribute of a sourceRef (exclusive or inclusive) Gateway.
c.Note that messageRef, an attribute of various message Events, is optional and not in the sub-class.
Business Process Model and Notation, v2.0 5

� Data type definition language MUST be XML Schema.

� Service Interface definition language MUST be WSDL.

� Data access language MUST be XPath.

The Common Executable conformance sub-class elements are shown in Table 2.3 and and its supporting classes in
Table 2.4:

Table 2.3. – Common Executable Conformance Sub-Class Elements and Attributes

Element Attributes

sequenceFlow (unconditional) id, (name), sourceRefa, targetRefb

sequenceFlow (conditional) id, name, sourceRef, targetRef, conditionExpressionc

sequenceFlow (default) id, name, sourceRef, targetRef, defaultd

subProcess (expanded) id, name, flowElement, loopCharacteristics, boundaryEventRefs

exclusiveGateway id, name, gatewayDirection (only converging and diverging), default

parallelGateway id, name, gatewayDirection (only converging and diverging)

startEvent (None) id, name

endEvent (None) id, name

eventBasedGateway id, name, gatewayDirection, eventGatewayType

userTask id, name, renderings, implementation, resources, ioSpecification,
dataInputAssociations, dataOutputAssociations, loopCharacteristics,
boundaryEventRefs

serviceTask id, name, implementation, operationRef, ioSpecification,
dataInputAssociations, dataOutputAssociations, loopCharacteristics,
boundaryEventRefs

callActivity id, name, calledElement, ioSpecification, dataInputAssociations,
dataOutputAssociations, loopCharacteristics, boundaryEventRefs

dataObject id, name, isCollection, itemSubjectRef

textAnnotation id, text

dataAssociation id, name, sourceRef, targetRef, assignment

messageStartEvent id, name, messageEventDefinition (either ref or contained),
dataOutput, dataOutputAssociations

messageEndEvent id, name, messageEventDefinition, (either ref or contained), dataInput,
dataInputAssociations

terminateEndEvent (Terminating trigger in combination with one of the other end events)
6 Business Process Model and Notation, v2.0

Catching message Intermediate
Event

id, name, messageEventDefinition (either ref or contained),
dataOutput, dataOutputAssociations

Throwing message Intermediate
Event

id, name, messageEventDefinition (either ref or contained), dataInput,
dataInputAssociations

Catching timer Intermediate Event id, name, timerEventDefinition (contained)

Boundary error Intermediate Event id, name, attachedToRef, errorEventDefinition, (contained or
referenced), dataOutput, dataOutputAssociations

a.Multiple outgoing connections are only allowed for converging Gateways.
b.Multiple outgoing connections are only allowed for diverging Gateways.
c.ConditionExpression, allowed only for Sequence Flow out of Gateways, MAY be null.
d.Default is an attribute of a sourceRef (exclusive or inclusive) Gateway.

Table 2.4. – Common Executable Conformance Sub-Class Supporting Classes

Element Attributes

StandardLoopCharacteristics id, loopCondition

MultiInstanceLoopCharacteristics id, isSequential, loopDataInput, inputDataItem

Rendering

Resource id, name

ResourceRole id, resourceRef, resourceAssignmentExpression

InputOutputSpecification id, dataInputs, dataOutputs

DataInput id, name, isCollection, itemSubjectRef

DataOutput id, name, isCollection, itemSubjectRef

ItemDefinition id, structure or importa

a.Structure MUST be defined by an XSD Complex Type

Operation id, name, inMessageRef, outMessageRef, errorRefs

Message id, name, structureRef

Error id, structureRef

Assignment id, from, tob

MessageEventDefinition id, messageRef, operationRef

TerminateEventDefinition id

TimerEventDefinition id, timeDate

Table 2.3. – Common Executable Conformance Sub-Class Elements and Attributes
Business Process Model and Notation, v2.0 7

2.1.3 Visual Appearance

A key element of BPMN is the choice of shapes and icons used for the graphical elements identified in this specification.
The intent is to create a standard visual language that all process modelers will recognize and understand. An
implementation that creates and displays BPMN Process Diagrams SHALL use the graphical elements, shapes, and
markers illustrated in this specification.

Note – There is flexibility in the size, color, line style, and text positions of the defined graphical elements, except where
otherwise specified (see page 41).

The following extensions to a BPMN Diagram are permitted:

� New markers or indicators MAY be added to the specified graphical elements. These markers or indicators could be
used to highlight a specific attribute of a BPMN element or to represent a new subtype of the corresponding concept.

� A new shape representing a kind of Artifact MAY be added to a Diagram, but the new Artifact shape SHALL NOT
conflict with the shape specified for any other BPMN element or marker.

� Graphical elements MAY be colored, and the coloring MAY have specified semantics that extend the information
conveyed by the element as specified in this standard.

� The line style of a graphical element MAY be changed, but that change SHALL NOT conflict with any other line
style REQUIRED by this specification.

� An extension SHALL NOT change the specified shape of a defined graphical element or marker. (e.g., changing a
square into a triangle, or changing rounded corners into squared corners, etc.).

2.1.4 Structural Conformance

An implementation that creates and displays BPMN diagrams SHALL conform to the specifications and restrictions with
respect to the connections and other diagrammatic relationships between graphical elements. Where permitted or
requested connections are specified as conditional and based on attributes of the corresponding concepts, the
implementation SHALL ensure the correspondence between the connections and the values of those attributes.

Note – In general, these connections and relationships have specified semantic interpretations, which specify interactions
among the process concepts represented by the graphical elements. Conditional relationships based on attributes represent
specific variations in behavior. Structural conformance therefore guarantees the correct interpretation of the diagram as a
specification of process, in terms of flows of control and information. Throughout the document, structural specifications will
appear in paragraphs using a special shaped bullet: Example: ♦ A TASK MAY be a target for Sequence Flow; it can have
multiple incoming Flows. An incoming Flow MAY be from an alternative path and/or parallel paths.

2.1.5 Process Semantics

This specification defines many semantic concepts used in defining Processes, and associates them with graphical
elements, markers, and connections. To the extent that an implementation provides an interpretation of the BPMN
diagram as a semantic specification of Process, the interpretation SHALL be consistent with the semantic interpretation
herein specified. In other words, the implementation claiming BPMN Process Modeling Conformance has to support the
semantics surrounding the diagram elements expressed in Chapter 10.

b.Structure MUST be defined by an XSD Complex Type
8 Business Process Model and Notation, v2.0

Note – The implementations claiming Process Modeling Conformance are not expected to support the BPMN execution
semantics described in Chapter 13.

2.1.6 Attributes and Model Associations

This specification defines a number of attributes and properties of the semantic elements represented by the graphical
elements, markers, and connections. Some of these attributes are purely representational and are so marked, and some
have mandated representations. Some attributes are specified as mandatory, but have no representation or only optional
representation. And some attributes are specified as optional. For every attribute or property that is specified as
mandatory, a conforming implementation SHALL provide some mechanism by which values of that attribute or property
can be created and displayed. This mechanism SHALL permit the user to create or view these values for each BPMN
element specified to have that attribute or property. Where a graphical representation for that attribute or property is
specified as REQUIRED, that graphical representation SHALL be used. Where a graphical representation for that
attribute or property is specified as optional, the implementation MAY use either a graphical representation or some other
mechanism. If a graphical representation is used, it SHALL be the representation specified. Where no graphical
representation for that attribute or property is specified, the implementation MAY use either a graphical representation or
some other mechanism. If a graphical representation is used, it SHALL NOT conflict with the specified graphical
representation of any other BPMN element.

2.1.7 Extended and Optional Elements

A conforming implementation is NOT REQUIRED to support any element or attribute that is specified herein to be non-
normative or informative. In each instance in which this specification defines a feature to be “optional,” it specifies
whether the option is in:

• how the feature will be displayed

• whether the feature will be displayed

• whether the feature will be supported

A conforming implementation is NOT REQUIRED to support any feature whose support is specified to be optional. If an
implementation supports an optional feature, it SHALL support it as specified. A conforming implementation SHALL
support any “optional” feature for which the option is only in whether or how it SHALL be displayed.

2.1.8 Visual Interchange

One of the main goals of this specification is to provide an interchange format that can be used to exchange BPMN
definitions (both domain model and diagram layout) between different tools. The implementation should support the
metamodel for Process types specified in Section 13.1 to enable portability of process diagrams so that users can take
business process definitions created in one vendor’s environment and use them is another vendor’s environment.

2.2 Process Execution Conformance
The next two (2) sections describe Process Execution Conformance.
Business Process Model and Notation, v2.0 9

2.2.1 Execution Semantics

The BPMN execution semantics have been fully formalized in this version of the specification. The tool claiming BPMN
Execution Conformance type MUST fully support and interpret the operational semantics and Activity life-cycle
specified in Section 14.2.2. Non-operational elements listed in Section 14 MAY be ignored by implementations claiming
BPMN Execution Conformance type. Conformant implementations MUST fully support and interpret the
underlying metamodel.

Note – The tool claiming Process Execution Conformance type is not expected to support and interpret Choreography
models. The tool claiming Process Execution Conformance type is not expected to support Process Modeling
Conformance. More precisely, the tool is not required to support graphical syntax and semantics defined in this specification.
It MAY use different graphical elements, shapes and markers, then those defined in this specification.

2.2.2 Import of Process Diagrams

The tool claiming Process Execution Conformance type MUST support import of BPMN Process diagram types
including its definitional Collaboration (see Table 10.1).

2.3 BPEL Process Execution Conformance
Special type of Process Execution Conformance that supports the BPMN mapping to WS-BPEL as specified in Section
15.1 can claim BPEL Process Execution Conformance.

Note – The tool claiming BPEL Process Execution Conformance MUST fully support Process Execution Conformance.
The tool claiming BPEL Process Execution Conformance is not expected to support and interpret Choreography models.
The tool claiming BPEL Process Execution Conformance is not expected to support Process Modeling Conformance.

2.4 Choreography Modeling Conformance
The next five (5) sections describe Choreography Conformance.

2.4.1 BPMN Choreography Types

The implementations claiming Choreography Conformance type MUST support the following BPMN packages:

� The BPMN core elements, which include those defined in the Infrastructure, Foundation, Common, and Service
packages (see Chapter 8).

� Choreography diagrams, which includes the elements defined in the Choreography, and Choreography
packages (see Chapter 11).

� Collaboration diagrams, which include Pools and Message Flow (see Chapter 9).

2.4.2 BPMN Choreography elements

The Choreography Conformance set includes Message, Choreography Task, Global Choreography Task,
Sub-Choreography (expanded and collapsed), certain types of Start Events (e.g., None, Timer, Conditional,
Signal, and Multiple), certain types of Intermediate Events (None, Message attached to Activity boundary,
Timer – normal as well as attached to Activity boundary, Timer used in Event Gateways, Cancel attached to an
10 Business Process Model and Notation, v2.0

Activity boundary, Conditional, Signal, Multiple, Link, etc.) and certain types of End Events (None and
Terminate), and Gateways. In addition, to enable Choreography within Collaboration it should support Pools and
Message Flow.

2.4.3 Visual Appearance

An implementation that creates and displays BPMN Choreography Diagrams SHALL use the graphical elements,
shapes and markers as specified in the BPMN specification. The use of text, color, size and lines for Choreography
diagram types are listed in Section 7.4.

2.4.4 Choreography Semantics

The tool claiming Choreography Conformance should fully support and interpret the graphical and execution semantics
surrounding Choreography diagram elements and Choreography diagram types.

2.4.5 Visual Interchange

The implementation should support import/export of Choreography diagram types and Collaboration diagram types
that depict Choreography within collaboration as specified in Section 9.4 to enable portability of Choreography
definitions, so that users can take BPMN definitions created in one vendor’s environment and use them is another
vendor’s environment.
Business Process Model and Notation, v2.0 11

2.5 Summary of BPMN Conformance Types
Table 2.5 summarizes the requirements for BPMN Conformance.

3 Normative References

3.1 Normative

RFC-2119
• Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, IETF RFC 2119, March 1997

http://www.ietf.org/rfc/rfc2119.txt

Table 2.5. - Types of BPMN Conformance

Category Process Modeling
Conformance

Process
Execution
Conformance

BPEL Process
Execution
Conformance

Choreography
Conformance

Visual representation
of BPMN Diagram
Types

Process diagram types
and
Collaboration diagram
types depicting
collaborations among
Process diagram types.

N/A N/A Choreography diagram
types
and
Collaboration diagram
types depicting
collaboration among
Choreography diagram
types.

BPMN Diagram
Elements that need to
be supported.

All Task types, embedded
Sub-Process, Call Activity,
all Event types, all
Gateway types, Pool,
Lane, Data Object
(including DataInput and
DataOutput), Message,
Group, Artifacts, markers
for Tasks and Sub-
Processes, Sequence
Flow, Associations, and
Message Flow.

N/A N/A Message, Choreography
Task, Global Choreography
Task, Sub-Choreography
(expanded and collapsed),
certain types of Start,
Intermediate, and End
Events, Gateways, Pools
and Message Flow.

Import/Export of
diagram types

Yes for Process and
Collaboration diagrams
that depict Process within
Collaboration.

Yes for Process
diagrams

Yes for Process
diagrams

Yes for Choreography and
Collaboration diagrams
depicting choreography
within Collaboration.

Support for Graphical
syntax and semantics

Process and Collaboration
diagrams that depict
Process within
Collaboration.

N/A N/A Choreography and
Collaboration diagrams
depicting Choreography
within Collaboration.

Support for Execution
Semantics

N/A Yes for Process
diagrams

Yes for Process
diagrams

Choreography execution
semantics
12 Business Process Model and Notation, v2.0

3.2 Non-Normative

Activity Service
• Additional Structuring Mechanism for the OTS specification, OMG, June 1999

http://www.omg.org

• J2EE Activity Service for Extended Transactions (JSR 95), JCP
http://www.jcp.org/jsr/detail/95.jsp

BPEL4People
• WS-BPEL Extension for People (BPEL4People) 1.0, June 2007

http://www.active-endpoints.com/active-bpel-for-people.htm

• http://www.active-endpoints.com/active-bpel-for-people.htm

• http://www.adobe.com/devnet/livecycle/articles/bpel4people_overview.html

• http://dev2dev.bea.com/arch2arch/

• http://www-128.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/

• http://www.oracle.com/technology/tech/standards/bpel4people/

• https://www.sdn.sap.com/irj/sdn/bpel4people

Business Process Definition Metamodel
• OMG, May 2008,

http://www.omg.org/docs/dtc/08-05-07.pdf

Business Process Modeling
• Jean-Jacques Dubray, “A Novel Approach for Modeling Business Process Definitions,” 2002

http://www.ebpml.org/ebpml2.2.doc

Business Transaction Protocol
• OASIS BTP Technical Committee, June, 2002

http://www.oasis-open.org/committees/download.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf

Dublin Core Meta Data
• Dublin Core Metadata Element Set, Dublin Core Metadata Initiative

http://dublincore.org/documents/dces/

ebXML BPSS
• Jean-Jacques Dubray, “A new model for ebXML BPSS Multi-party Collaborations and Web Services Choreography,”

2002
http://www.ebpml.org/ebpml.doc
Business Process Model and Notation, v2.0 13

OMG UML
• Unified Modeling Language Specification V2.1.2: Superstructure, OMG, Nov 2007,

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF

Open Nested Transactions
• Concepts and Applications of Multilevel Transactions and Open Nested Transactions, Gerhard Weikum, Hans-J.

Schek, 1992
http://citeseer.nj.nec.com/weikum92concepts.html

RDF
• RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft

http://www.w3.org/TR/rdf-schema/

SOAP 1.2
• SOAP Version 1.2 Part 1: Messaging Framework, W3C Working Draft

http://www.w3.org/TR/soap12-part1/

• SOAP Version 1.2 Part21: Adjuncts, W3C Working Draft
http://www.w3.org/TR/soap12-part2/

UDDI
• Universal Description, Discovery and Integration, Ariba, IBM and Microsoft, UDDI.org.

http://www.uddi.org

URI
• Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, IETF RFC 2396,

August 1998
http://www.ietf.org/rfc/rfc2396.txt

WfMC Glossary
• Workflow Management Coalition Terminology and Glossary.

http://www.wfmc.org/wfmc-standards-framework.html

Web Services Transaction
• (WS-Transaction) 1.1, OASIS, 12 July 2007,

http://www.oasis-open.org/committees/ws-tx/

Workflow Patterns
• Russell, N., ter Hofstede, A.H.M., van der Aalst W.M.P, & Mulyar, N. (2006). Workflow Control-Flow Patterns: A

Revised View. BPM Center Report BPM-06-22, BPMcentre.org
http://www.workflowpatterns.com/
14 Business Process Model and Notation, v2.0

WSBPEL
• Web Services Business Process Execution Language (WSBPEL) 2.0, OASIS Standard, April 2007

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

WS-Coordination
• Web Services Coordination (WS-Coordination) 1.1, OASIS Standard, July 2007

http://www.oasis-open.org/committees/ws-tx/

WSDL
• Web Services Description Language (WSDL) 2.0, W3C Proposed Recommendation, June 2007

http://www.w3.org/TR/wsdl20/

WS-HumanTask
• Web Services Human Task (WS-HumanTask) 1.0, June 2007

http://www.active-endpoints.com/active-bpel-for-people.htm

• http://www.adobe.com/devnet/livecycle/articles/bpel4people_overview.html

• http://dev2dev.bea.com/arch2arch/

• http://www-128.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/

• http://www.oracle.com/technology/tech/standards/bpel4people/

• https://www.sdn.sap.com/irj/sdn/bpel4people

XML 1.0 (Second Edition)
• Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et al., eds., W3C, 6 October 2000

http://www.w3.org/TR/REC-xml

XML-Namespaces
• Namespaces in XML, Tim Bray et al., eds., W3C, 14 January 1999

http://www.w3.org/TR/REC-xml-names

XML-Schema
• XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn, W3C, 2 May

2001
http://www.w3.org/TR/xmlschema-1//

• XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001
http://www.w3.org/TR/xmlschema-2/

XPath
• XML Path Language (XPath) 1.0, James Clark and Steve DeRose, eds., W3C, 16 November 1999

http://www.w3.org/TR/xpath
Business Process Model and Notation, v2.0 15

XPDL
• Workflow Management Coalition XML Process Definition Language, version 2.0.

http://www.wfmc.org/wfmc-standards-framework.html

4 Terms and Definitions

See Annex C - Glossary.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Conventions
The section introduces the conventions used in this document. This includes (text) notational conventions and notations
for schema components. Also included are designated namespace definitions.

6.1.1 Typographical and Linguistic Conventions and Style

This specification incorporates the following conventions:

• The keywords “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “MUST NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL” in this document are to be interpreted as described in RFC-2119.

• A term is a word or phrase that has a special meaning. When a term is defined, the term name is highlighted in bold
typeface.

• A reference to another definition, section, or specification is highlighted with underlined typeface and provides a link to
the relevant location in this specification.

• A reference to a graphical element is highlighted with a bold, capitalized word and will be presented with the Arial font
(e.g., Sub-Process).

• A reference to a non-graphical element or BPMN concept is highlighted by being italicized and will be presented with
the Times New Roman font (e.g., token).

• A reference to an attribute or model association will be presented with the Courier New font (e.g., Expression).

• A reference to a WSBPEL element, attribute, or construct is highlighted with an italic lower-case word, usually
preceded by the word “WSBPEL” and will be presented with the Courier New font (e.g., WSBPEL pick).

• Non-normative examples are set off in boxes and accompanied by a brief explanation.
16 Business Process Model and Notation, v2.0

• XML and pseudo code is highlighted with mono-spaced typeface. Different font colors MAY be used to highlight
the different components of the XML code.

• The cardinality of any content part is specified using the following operators:

• <none> — exactly once

• [0..1] — 0 or 1

• [0..*] — 0 or more

• [1..*] — 1 or more

• Attributes separated by | and grouped within { and } — alternative values

• <value> — default value

• <type> — the type of the attribute

6.1.2 Abbreviations

The following abbreviations are used throughout this document:

6.2 Structure of this Document
Section 7 discusses the scope of the specification and provides a summary of the elements introduced in subsequent
sections of the document.

Section 8 introduces the BPMN Core that includes basic BPMN elements needed for constructing various Business
Processes, including collaborations, orchestration Processes and Choreographies.

Elements needed for modeling of Collaborations, orchestration Processes, Conversations, and Choreographies
are introduced in sections 9, 10, 11 and 12, respectively.

Section 13 introduces the BPMN visual diagram model. Section 14 defines the execution semantics for Process
orchestrations in BPMN 2.0. Section 15 discusses a mapping of a BPMN model to WS-BPEL that is derived by
analyzing the BPMN objects and the relationships between these objects. Exchange formats and an XSLT transformation
between them are provided in Section 16.

6.3 Acknowledgements

Submitting Organizations (RFP Process)
The following companies are formal submitting members of OMG:

This abbreviation Refers to

WSBPEL Web Services Business Process Execution Language (see WSBPEL). This abbreviation
refers specifically to version 2.0 of the specification.

WSDL Web Service Description Language (see WSDL). This abbreviation refers specifically to the
W3C Technical Note, 15 March 2001, but is intended to support future versions of the WSDL
specification.
Business Process Model and Notation, v2.0 17

• Axway
• International Business Machines
• MEGA International
• Oracle
• SAP AG
• Unisys

Supporting Organizations (RFP Process)
The following organizations support this specification but are not formal submitters:

• Accenture
• Adaptive
• BizAgi
• Bruce Silver Associates
• Capgemini
• Enterprise Agility
• France Telecom
• IDS Scheer
• Intalio
• Metastorm
• Model Driven Solutions
• Nortel
• Red Hat Software
• Software AG
• TIBCO Software
• Vangent

Finalization Task Force Voting Members
The following organizations have been Voting Members of the BPMN 2.0 Finalization Task Force:

• Adaptive

• Axway Software

• BAE SYSTEMS

• BizAgi Ltd.

• CA Inc.

• Camunda Services GmbH

• Cordys

• DICOM
18 Business Process Model and Notation, v2.0

• France Telecom R&D

• Fujitsu

• Global 360, Inc.

• Hewlett-Packard

• iGrafx

• Inferware

• Intalio

• International Business Machines

• KnowGravity Inc.

• Lombardi Software

• MITRE

• U.S. National Institute of Standards and Technology

• No Magic, Inc.

• oose Innovative Informatik GmbH

• Oracle

• PNA Group

• Red Hat

• SAP AG

• Softeam

• Software AG Inc.

• TIBCO

• Trisotech

• Visumpoint

Special Acknowledgements

The following persons were members of the core teams that contributed to the content of this specification: Anurag
Aggarwal, Mike Amend, Sylvain Astier, Alistair Barros, Rob Bartel, Mariano Benitez, Conrad Bock, Gary Brown, Justin
Brunt, John Bulles, Martin Chapman, Fred Cummins, Rouven Day, Maged Elaasar, David Frankel, Denis Gagné, John
Hall, Reiner Hille-Doering, Dave Ings, Pablo Irassar, Oliver Kieselbach, Matthias Kloppmann, Jana Koehler, Frank
Michael Kraft, Tammo van Lessen, Frank Leymann, Antoine Lonjon, Sumeet Malhotra, Falko Menge, Jeff Mischkinsky,
Dale Moberg, Alex Moffat, Ralf Mueller, Sjir Nijssen, Karsten Ploesser, Pete Rivett, Michael Rowley, Bernd Ruecker,
Tom Rutt, Suzette Samoojh, Robert Shapiro, Vishal Saxena, Scott Schanel, Axel Scheithauer, Bruce Silver, Meera
Srinivasan, Antoine Toulme, Ivana Trickovic, Hagen Voelzer, Franz Weber, Andrea Westerinen and Stephen A. White.
Business Process Model and Notation, v2.0 19

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality of
this specification: im Amsden, Mariano Belaunde, Peter Carlson, Cory Casanave, Michele Chinosi, Manoj Das, Robert
Lario, Sumeet Malhotra, Henk de Man, David Marston, Neal McWhorter, Edita Mileviciene, Vadim Pevzner, Pete Rivett,
Jesus Sanchez, Markus Schacher, Sebastian Stein, and Prasad Yendluri.
20 Business Process Model and Notation, v2.0

7 Overview

There has been much activity in the past few years in developing web service-based XML execution languages for
Business Process Management (BPM) systems. Languages such as WSBPEL provide a formal mechanism for the
definition of business processes. The key element of such languages is that they are optimized for the operation and inter-
operation of BPM Systems. The optimization of these languages for software operations renders them less suited for
direct use by humans to design, manage, and monitor Business Processes. WSBPEL has both graph and block
structures and utilizes the principles of formal mathematical models, such as pi-calculus1. This technical underpinning
provides the foundation for business process execution to handle the complex nature of both internal and B2B interactions
and take advantage of the benefits of Web services. Given the nature of WSBPEL, a complex Business Process could
be organized in a potentially complex, disjointed, and unintuitive format that is handled very well by a software system
(or a computer programmer), but would be hard to understand by the business analysts and managers tasked to develop,
manage, and monitor the Process. Thus, there is a human level of “inter-operability” or “portability” that is not
addressed by these web service-based XML execution languages.

Business people are very comfortable with visualizing Business Processes in a flow-chart format. There are
thousands of business analysts studying the way companies work and defining Business Processes with simple flow
charts. This creates a technical gap between the format of the initial design of Business Processes and the format of
the languages, such as WSBPEL, that will execute these Business Processes. This gap needs to be bridged with a
formal mechanism that maps the appropriate visualization of the Business Processes (a notation) to the appropriate
execution format (a BPM execution language) for these Business Processes.

Inter-operation of Business Processes at the human level, rather than the software engine level, can be solved with
standardization of the Business Process Model and Notation (BPMN). BPMN provides a multiple diagrams, which are
designed for use by the people who design and manage Business Processes. BPMN also provides a mapping to an
execution language of BPM Systems (WSBPEL). Thus, BPMN would provide a standard visualization mechanism for
Business Processes defined in an execution optimized business process language.

BPMN provides businesses with the capability of understanding their internal business procedures in a graphical notation
and will give organizations the ability to communicate these procedures in a standard manner. Currently, there are scores
of Process modeling tools and methodologies. Given that individuals will move from one company to another and that
companies will merge and diverge, it is likely that business analysts need to understand multiple representations of
Business Processes—potentially different representations of the same Process as it moves through its lifecycle of
development, implementation, execution, monitoring, and analysis. Therefore, a standard graphical notation will facilitate
the understanding of the performance Collaborations and business transactions within and between the organizations.
This will ensure that businesses will understand themselves and participants in their business and will enable
organizations to adjust to new internal and B2B business circumstances quickly. BPMN follows the tradition of
flowcharting notations for readability and flexibility. In addition, the BPMN execution semantics is fully formalized. The
OMG is using the experience of the business process notations that have preceded BPMN to create the next generation
notation that combines readability, flexibility, and expandability.

BPMN will also advance the capabilities of traditional business process notations by inherently handling B2B Business
Process concepts, such as public and private Processes and Choreographies, as well as advanced modeling
concepts, such as exception handling, transactions, and compensation.

1. See Milner, 1999, “Communicating and Mobile Systems: the –-Calculus,” Cambridge University Press. ISBN 0 521 64320 1 (hc.) ISBN
0 521 65869 1 (pbk.)
Business Process Model and Notation, v2.0 21

7.1 BPMN Scope
This specification provides a notation and model for Business Processes and an interchange format that can be used
to exchange BPMN Process definitions (both domain model and diagram layout) between different tools. The goal of
the specification is to enable portability of Process definitions, so that users can take Process definitions created in
one vendor’s environment and use them in another vendor’s environment.

The BPMN 2.0 specification extends the scope and capabilities of the BPMN 1.2 in several areas:

• Formalizes the execution semantics for all BPMN elements

• Defines an extensibility mechanism for both Process model extensions and graphical extensions

• Refines Event composition and correlation

• Extends the definition of human interactions

• Defines a Choreography model

This specification also resolves known BPMN 1.2 inconsistencies and ambiguities.

BPMN is constrained to support only the concepts of modeling that are applicable to Business Processes. This means
that other types of modeling done by organizations for business purposes is out of scope for BPMN. Therefore, the
following are aspects that are out of the scope of this specification:

• Definition of organizational models and resources

• Modeling of functional breakdowns

• Data and information models

• Modeling of strategy

• Business rules models

Since these types of high-level modeling either directly or indirectly affects Business Processes, the relationships
between BPMN and other high-level business modeling can be defined more formally as BPMN and other specifications
are advanced.

While BPMN shows the flow of data (Messages), and the association of data artifacts to Activities, it is not a data
flow language. In addition, operational simulation, monitoring and deployment of Business Processes are out of
scope of this specification.

BPMN 2.0 can be mapped to more than one platform dependent process modeling language, e.g. WS-BPEL 2.0. This
document includes a mapping of a subset of BPMN to WS-BPEL 2.0. Mappings to other emerging standards are
considered to be separate efforts.

The specification utilizes other standards for defining data types, Expressions and service operations. These standards
are XML Schema, XPath, and WSDL, respectively.
22 Business Process Model and Notation, v2.0

7.1.1 Uses of BPMN

Business Process modeling is used to communicate a wide variety of information to a wide variety of audiences.
BPMN is designed to cover many types of modeling and allows the creation of end-to-end Business Processes. The
structural elements of BPMN allow the viewer to be able to easily differentiate between sections of a BPMN Diagram.
There are three basic types of sub-models within an end-to-end BPMN model:

• Processes (Orchestration), including:

• Private non-executable (internal) Business Processes
• Private executable (internal) Business Processes
• Public Processes

• Choreographies

• Collaborations, which can include Processes and/or Choreographies
• A view of Conversations

Private (Internal) Business Processes

Private Business Processes are those internal to a specific organization. These Processes have been generally
called workflow or BPM Processes (see Figure 10.4). Another synonym typically used in the Web services area is the
Orchestration of services. There are two (2) types of private Processes: executable and non-executable. An executable
Process is a Process that has been modeled for the purpose of being executed according to the semantics defined in
Chapter 14. Of course, during the development cycle of the Process, there will be stages where the Process does not
have enough detail to be “executable.” A non-executable Process is a private Process that has been modeled for the
purpose of documenting Process behavior at a modeler-defined level of detail. Thus, information needed for execution,
such as formal condition Expressions are typically not included in a non-executable Process.

If a swimlanes-like notation is used (e.g., a Collaboration, see below) then a private Business Process will be
contained within a single Pool. The Process flow is therefore contained within the Pool and cannot cross the
boundaries of the Pool. The flow of Messages can cross the Pool boundary to show the interactions that exist between
separate private Business Processes.

Figure 7.1 - Example of a private Business Process

Public Processes

A public Process represents the interactions between a private Business Process and another Process or
Participant (see Figure 7.2). Only those Activities that are used to communicate to the other Participant(s) are included
in the public Process. All other “internal” Activities of the private Business Process are not shown in the public
Process. Thus, the public Process shows to the outside world the Message Flows and the order of those Message
Flows that are needed to interact with that Process. Public Processes can be modeled separately or within a
Collaboration to show the flow of Messages between the public Process Activities and other Participants. Note
that the public type of Process was named “abstract” in BPMN 1.2.

 Determine
Premium of

Policy

 Determine
Order is

Complete

Check
Record of
Applicant

 Approve
or Reject

Policy

Notify
Applicant of
Approval or
Rejection
Business Process Model and Notation, v2.0 23

Figure 7.2 - Example of a public Process

Collaborations

A Collaboration depicts the interactions between two or more business entities. A Collaboration usually contains two
(2) or more Pools, representing the Participants in the Collaboration. The Message exchange between the
Participants is shown by a Message Flow that connects two (2) Pools (or the objects within the Pools). The
Messages associated with the Message Flows can also be shown. The Collaboration can be shown as two or more
public Processes communicating with each other (see Figure 7.3). With a public Process, the Activities for the
Collaboration participants can be considered the “touch-points” between the participants. The corresponding internal
(executable) Processes are likely to have much more Activity and detail than what is shown in the public Processes.
Or a Pool MAY be empty, a “black box.” Choreographies MAY be shown “in between” the Pools as they bisect the
Message Flows between the Pools. All combinations of Pools, Processes, and a Choreography are allowed in a
Collaboration.

P
at

ie
nt

I want to see doctor

Send Appt.

Go see doctor

Receive
Symptoms

I feel sick
Pickup your medicine

and you can leave

Receive
Medicine
Request

need my medicine

Here is your medicine

Receive
Doctor

Request

Send
Medicine

Send
Prescription

Pickup
24 Business Process Model and Notation, v2.0

Figure 7.3 - An example of a Collaborative Process

Choreographies

A self-contained Choreography (no Pools or Orchestration) is a definition of the expected behavior, basically a
procedural contract, between interacting Participants. While a normal Process exists within a Pool, a Choreography
exists between Pools (or Participants).

The Choreography looks similar to a private Business Process since it consists of a network of Activities,
Events, and Gateways (see Figure 7.4). However, a Choreography is different in that the Activities are interactions
that represent a set (1 or more) of Message exchanges, which involves two (2) or more Participants. In addition, unlike
a normal Process, there is no central controller, responsible entity or observer of the Process.

Figure 7.4 - An example of a Choreography

Send Doctor
Request

I want to
see doctor

Illness
Occurs

Send Appt.

Receive
Appt.

Go see doctor

Send
Symptoms

Receive
Symptoms

I feel sick

Receive
Prescription

Pickup

Pickup your medicine
and you can leave

Send
Medicine
Request

Receive
Medicine
Request

I need my medicine

Receive
Medicine

Here is your medicine

Receive
Doctor

Request

Send
Medicine

Send
Prescription

Pickup

P
at

ie
nt

R
ec

ep
tio

ni
st

/
D

oc
to

r

Doctor
Request

Patient

Dr. Office

 Handle
Symptoms

Patient

Dr. Office

Handle
Prescription

Patient

Dr. Office

Handle
Medicine

Patient

Dr. Office

I want to see
the Doctor

Go see the
Doctor

I feel sick
I need my
medicine

Here is your
medicine

Pickup your
medicine, then

leave
Business Process Model and Notation, v2.0 25

Conversations

The Conversation diagram is a particular usage of and an informal description of a Collaboration diagram. However,
the Pools of a Conversation usually do not contain a Process and a Choreography is usually not placed in
between the Pools of a Conversation diagram. A Conversation is the logical relation of Message exchanges. The
logical relation, in practice, often concerns a business object(s) of interest, e.g., “Order,” “Shipment and Delivery,” or
“Invoice.”

Message exchanges are related to each other and reflect distinct business scenarios. For example, in logistics, stock
replenishments involve the following types scenarios: creation of sales orders; assignment of carriers for shipments
combining different sales orders; crossing customs/quarantine; processing payment and investigating exceptions. Thus, a
Conversation diagram, as shown in Figure 7.5, shows Conversations (as hexagons) between Participants (Pools).
This provides a “bird’s eye” perspective of the different Conversations which relate to the domain.

Figure 7.5 - An example of a Conversation diagram

Diagram Point of View

Since a BPMN Diagram MAY depict the Processes of different Participants, each Participant could view the Diagram
differently. That is, the Participants have different points of view regarding how the Processes will apply to them. Some
of the Activities will be internal to the Participant (meaning performed by or under control of the Participant) and other

Delivery / Dispatch
Plan

Delivery
Negotiations

Shipment Schedule

Delivery / Dispatch
Plan

Delivery / Dispatch
Plan Carrier Planning

Coverage
Notification

Clearance Pre-
Notification

Truck Breakdown
Provision

Arrival/Pickup
Confirmation

Traffic Optimization
Guidance

Breakdown
Service

Locative Service

Insurance

Shipper

SupplierRetailer

Consignee

Customs/
Quarantine

Consolidator
Carrier

(Land, Sea, Rail, or Air)
26 Business Process Model and Notation, v2.0

Activities will be external to the Participant. Each Participant will have a different perspective as to which are internal
and external. At runtime, the difference between internal and external Activities is important in how a Participant can
view the status of the Activities or trouble-shoot any problems. However, the Diagram itself remains the same. Figure
7.3 displays a Business Process that has two points of view. One point of view is of a Patient, the other is of the
Doctor’s office. The Diagram shows the Activities of both participants in the Process, but when the Process is
actually being performed, each Participant will only have control over their own Activities. Although the Diagram point
of view is important for a viewer of the Diagram to understand how the behavior of the Process will relate to that
viewer, BPMN will not currently specify any graphical mechanisms to highlight the point of view. It is open to the
modeler or modeling tool vendor to provide any visual cues to emphasize this characteristic of a Diagram.

Understanding the Behavior of Diagrams

Throughout this document, we discuss how Sequence Flows are used within a Process. To facilitate this discussion,
we employ the concept of a token that will traverse the Sequence Flows and pass through the elements in the
Process. A token is a theoretical concept that is used as an aid to define the behavior of a Process that is being
performed. The behavior of Process elements can be defined by describing how they interact with a token as it
“traverses” the structure of the Process. However, modeling and execution tools that implement BPMN are NOT
REQUIRED to implement any form of token.

A Start Event generates a token that MUST eventually be consumed at an End Event (which MAY be implicit if not
graphically displayed). The path of tokens should be traceable through the network of Sequence Flows, Gateways,
and Activities within a Process.

Note – A token does not traverse a Message Flow since it is a Message that is passed down a Message Flow (as the
name implies).

7.2 BPMN Elements
It should be emphasized that one of the drivers for the development of BPMN is to create a simple and understandable
mechanism for creating Business Process models, while at the same time being able to handle the complexity inherent
to Business Processes. The approach taken to handle these two conflicting requirements was to organize the
graphical aspects of the notation into specific categories. This provides a small set of notation categories so that the reader
of a BPMN diagram can easily recognize the basic types of elements and understand the diagram. Within the basic
categories of elements, additional variation and information can be added to support the requirements for complexity
without dramatically changing the basic look and feel of the diagram. The five (5) basic categories of elements are:

• Flow Objects

• Data

• Connecting Objects

• Swimlanes

• Artifacts

Flow Objects are the main graphical elements to define the behavior of a Business Process. There are three (3) Flow
Objects:

• Events

• Activities
Business Process Model and Notation, v2.0 27

• Gateways

Data is represented with the four (4) elements:

• Data Objects

• Data Inputs

• Data Outputs

• Data Stores

There are four (4) ways of connecting the Flow Objects to each other or other information. There are four (4) Connecting
Objects:

• Sequence Flows

• Message Flows

• Associations

• Data Associations

There are two (2) ways of grouping the primary modeling elements through “Swimlanes:”

• Pools

• Lanes

Artifacts are used to provide additional information about the Process. There are two (2) standardized Artifacts,
but modelers or modeling tools are free to add as many Artifacts as necessary. There could be additional BPMN
efforts to standardize a larger set of Artifacts for general use or for vertical markets. The current set of Artifacts
includes:

• Group

• Text Annotation

7.2.1 Basic BPMN Modeling Elements

Table 7.1 displays a list of the basic modeling elements that are depicted by the notation.
28 Business Process Model and Notation, v2.0

Table 7.1 - Basic Modeling Elements

Element Description Notation
Event An Event is something that “happens” during the

course of a Process (see page 245) or a Choreog-
raphy (see page 350). These Events affect the flow
of the model and usually have a cause (trigger) or
an impact (result). Events are circles with open
centers to allow internal markers to differentiate
different triggers or results. There are three types
of Events, based on when they affect the flow:
Start, Intermediate, and End.

Activity An Activity is a generic term for work that company
performs (see page 155) in a Process. An Activity
can be atomic or non-atomic (compound). The
types of Activities that are a part of a Process
Model are: Sub-Process and Task, which are
rounded rectangles. Activities are used in both
standard Processes and in Choreographies.

Gateway A Gateway is used to control the divergence and
convergence of Sequence Flows in a Process (see
page 149) and in a Choreography (see page 355).
Thus, it will determine branching, forking, merging,
and joining of paths. Internal markers will indicate
the type of behavior control.

Sequence Flow A Sequence Flow is used to show the order that
Activities will be performed in a Process (see page
97) and in a Choreography (see page 330).

Message Flow A Message Flow is used to show the flow of Mes-
sages between two Participants that are prepared
to send and receive them (see page 121). In
BPMN, two separate Pools in a Collaboration Dia-
gram will represent the two Participants (e.g., Part-
nerEntities and/or PartnerRoles).

Association An Association is used to link information and Arti-
facts with BPMN graphical elements (see page
67). Text Annotations (see page 72) and other Arti-
facts (see page 66) can be Associated with the
graphical elements. An arrowhead on the Associa-
tion indicates a direction of flow (e.g., data), when
appropriate.

Pool A Pool is the graphical representation of a Partici-
pant in a Collaboration (see page 112). It also acts
as a “swimlane” and a graphical container for parti-
tioning a set of Activities from other Pools, usually
in the context of B2B situations. A Pool MAY have
internal details, in the form of the Process that will
be executed. Or a Pool MAY have no internal
details, i.e., it can be a "black box."

N
am

e

Business Process Model and Notation, v2.0 29

7.2.2 Extended BPMN Modeling Elements

Table 7.2 displays a more extensive list of the Business Process concepts that could be depicted through a business
process modeling notation.

Lane A Lane is a sub-partition within a Process, some-
times within a Pool, and will extend the entire
length of the Process, either vertically or horizon-
tally (see on page 313). Lanes are used to orga-
nize and categorize Activities.

Data Object Data Objects provide information about what Activ-
ities require to be performed and/or what they pro-
duce (see page 212), Data Objects can represent
a singular object or a collection of objects. Data
Input and Data Output provide the same informa-
tion for Processes.

Message A Message is used to depict the contents of a com-
munication between two Participants (as defined
by a business PartnerRole or a business Partner-
Entity—see on page 93).

Group (a box around a
group of objects within
the same category)

A Group is a grouping of graphical elements that
are within the same Category (see page 71). This
type of grouping does not affect the Sequence
Flows within the Group. The Category name
appears on the diagram as the group label. Cate-
gories can be used for documentation or analysis
purposes. Groups are one way in which Catego-
ries of objects can be visually displayed on the dia-
gram.

Text Annotation
(attached with an
Association)

Text Annotations are a mechanism for a modeler to
provide additional text information for the reader of
a BPMN Diagram (see page 72).

Table 7.2 - BPMN Extended Modeling Elements

Element Description Notation

Table 7.1 - Basic Modeling Elements

N
am

e N
am

e
N

am
e

Descriptive Text
Here
30 Business Process Model and Notation, v2.0

Event An Event is something that “happens” during
the course of a Process (see page 245) or a
Choreography (see page 350). These Events
affect the flow of the model and usually have
a cause (Trigger) or an impact (Result).
Events are circles with open centers to allow
internal markers to differentiate different Trig-
gers or Results. There are three types of
Events, based on when they affect the flow:
Start, Intermediate, and End.

Flow Dimension (e.g.,
Start, Intermediate, End)

Start

Intermediate

End

As the name implies, the Start Event indicates
where a particular Process (see page 245) or
Choreography (see page 350) will start.

Intermediate Events occur between a Start
Event and an End Event. They will affect the
flow of the Process (see page 257) or Chore-
ography (see page 350), but will not start or
(directly) terminate the Process.

As the name implies, the End Event indicates
where a Process (see page 253) or Choreog-
raphy (see page 354) will end.

Start

Intermediate

End

Type Dimension (e.g.,
None, Message, Timer,
Error, Cancel, Compen-
sation, Conditional, Link,
Signal, Multiple, Termi-
nate.)

The Start and some Intermediate Events have
“triggers” that define the cause for the Event
(see section entitled “Start Event” on
page 245 and section entitled “Intermediate
Event” on page 257). There are multiple ways
that these events can be triggered. End
Events MAY define a “result” that is a conse-
quence of a Sequence Flow path ending.
Start Events can only react to (“catch”) a trig-
ger. End Events can only create (“throw”) a
result. Intermediate Events can catch or throw
triggers. For the Events, triggers that catch,
the markers are unfilled, and for triggers and
results that throw, the markers are filled.

Additionally, some Events, which were used
to interrupt Activities in BPMN 1.1, can now
be used in a mode that does not interrupt. The
boundary of these Events is dashed (see fig-
ure to the right).

Table 7.2 - BPMN Extended Modeling Elements

Message

Timer

Error

Compensation

Conditional

Link

Multiple

Terminate

Signal

Cancel

Escalation

“Throwing”“Catching” Non-Interrupting

Parallel
Multiple
Business Process Model and Notation, v2.0 31

Activity An Activity is a generic term for work that
company performs (see page 155) in a Pro-
cess. An Activity can be atomic or non-atomic
(compound). The types of Activities that are a
part of a Process Model are: Sub-Process
and Task, which are rounded rectangles.
Activities are used in both standard Pro-
cesses and in Choreographies.

Task (Atomic) A Task is an atomic Activity that is included
within a Process (see page 160). A Task is
used when the work in the Process is not bro-
ken down to a finer level of Process detail.

Choreography Task A Choreography Task is an atomic Activity in
a Choreography (see page 333). It represents
a set of one (1) or more Message exchanges.
Each Choreography Task involves two (2)
Participants. The name of the Choreography
Task and each of the Participants are all dis-
played in the different bands that make up the
shape’s graphical notation. There are two (2)
or more Participant Bands and one Task
Name Band.

Process/Sub-Process
(non-atomic)

A Sub-Process is a compound Activity that is
included within a Process (see page 178) or
Choreography (see page 338). It is compound
in that it can be broken down into a finer level
of detail (a Process or Choreography) through
a set of sub-Activities.

See Next Four (4) Figures

Collapsed Sub-Process The details of the Sub-Process are not visible
in the Diagram (see page 178). A “plus” sign
in the lower-center of the shape indicates that
the Activity is a Sub-Process and has a lower-
level of detail.

Expanded Sub-Process The boundary of the Sub-Process is
expanded and the details (a Process) are visi-
ble within its boundary (see page 178).
Note that Sequence Flows cannot cross the
boundary of a Sub-Process.

Table 7.2 - BPMN Extended Modeling Elements

Task
Name

Choreography
Task Name

Participant A

Participant B

Sub-Process
Name
32 Business Process Model and Notation, v2.0

Collapsed Sub-Choreog-
raphy

The details of the Sub-Choreography are not
visible in the Diagram (see page 338). A
“plus” sign in the lower-center of the Task
Name Band of the shape indicates that the
Activity is a Sub-Process and has a lower-
level of detail.

Expanded Sub-Chore-
ography

The boundary of the Sub-Choreography is
expanded and the details (a Choreography)
are visible within its boundary (see page 338)

Note that Sequence Flows cannot cross the
boundary of a Sub-Choreography.

Gateway A Gateway is used to control the divergence
and convergence of Sequence Flows in a
Process (see page 295) and in a Choreogra-
phy (see page 355). Thus, it will determine
branching, forking, merging, and joining of
paths. Internal markers will indicate the type
of behavior control (see below).

Gateway Control Types Icons within the diamond shape of the Gate-
way will indicate the type of flow control
behavior. The types of control include:

• Exclusive decision and merging. Both
Exclusive (see page 298) and Event-
Based (see page 305) perform
exclusive decisions and merging.
Exclusive can be shown with or without
the “X” marker.

• Event-Based and Parallel Event-based
gateways can start a new instance of
the Process.

• Inclusive Gateway decision and
merging (see page 300)

• Complex Gateway -- complex
conditions and situations (e.g., 3 out of
5; page 303)

• Parallel Gateway forking and joining
(see page 301)

Each type of control affects both the incoming
and outgoing flow.

Table 7.2 - BPMN Extended Modeling Elements

Sub-
Choreography

Name

Participant A

Participant B

Participant B

Participant C

Choreography
Task Name

Participant C

Participant A

Choreography
Task Name

Sub-Choreography Name
Participant C
Participant A

Participant B

Parallel

Exclusive

Complex

Event-Based

Inclusive

Xor

Parallel
Event-Based
Business Process Model and Notation, v2.0 33

Sequence Flow A Sequence Flow is used to show the order
that Activities will be performed in a Process
(see page 97) and in a Choreography (see
page 330).

See next seven figures

Normal Flow Normal flow refers to paths of Sequence Flow
that do not start from an Intermediate Event
attached to the boundary of an Activity.

Uncontrolled flow Uncontrolled flow refers to flow that is not
affected by any conditions or does not pass
through a Gateway. The simplest example of
this is a single Sequence Flow connecting two
Activities. This can also apply to multiple
Sequence Flows that converge to or diverge
from an Activity. For each uncontrolled
Sequence Flows a token will flow from the
source object through the Sequence Flows
to the target object.

Conditional flow A Sequence Flow can have a condition
Expression that are evaluated at runtime to
determine whether or not the Sequence Flow
will be used (i.e., will a token travel down the
Sequence Flow – see page 97). If the condi-
tional flow is outgoing from an Activity, then
the Sequence Flow will have a mini-diamond
at the beginning of the connector (see figure
to the right). If the conditional flow is outgoing
from a Gateway, then the line will not have a
mini-diamond (see figure in the row above).

Default flow For Data-Based Exclusive Gateways or Inclu-
sive Gateways, one type of flow is the Default
condition flow (see page 97). This flow will be
used only if all the other outgoing conditional
flow is not true at runtime. These Sequence
Flows will have a diagonal slash will be
added to the beginning of the connector (see
the figure to the right).

Exception Flow Exception flow occurs outside the normal flow
of the Process and is based upon an Interme-
diate Event attached to the boundary of an
Activity that occurs during the performance of
the Process (see page 295).

Table 7.2 - BPMN Extended Modeling Elements

Exception
Flow
34 Business Process Model and Notation, v2.0

Message Flow A Message Flow is used to show the flow of
Messages between two Participants that are
prepared to send and receive them (see page
121). In BPMN, two separate Pools in a Col-
laboration Diagram will represent the two Par-
ticipants (e.g., PartnerEntities and/or
PartnerRoles).

Compensation
Association

Compensation Association occurs outside the
normal flow of the Process and is based upon
a Compensation Intermediate Event that is
triggered through the failure of a transaction
or a throw Compensation Event (see page
311). The target of the Association MUST be
marked as a Compensation Activity.

Data Object Data Objects provide information about what
Activities require to be performed and/or what
they produce (see page 212), Data Objects
can represent a singular object or a collection
of objects. Data Input and Data Output pro-
vide the same information for Processes.

Data Object

Data Objec (Collection)

Data Input Data Output

Message A Message is used to depict the contents of a
communication between two Participants (as
defined by a business PartnerRole or a
business PartnerEntity—see on page 93).

Table 7.2 - BPMN Extended Modeling Elements

Compensation
Association

Business Process Model and Notation, v2.0 35

Fork BPMN uses the term “fork” to refer to the
dividing of a path into two or more parallel
paths (also known as an AND-Split). It is a
place in the Process where activities can be
performed concurrently, rather than sequen-
tially.

There are two options:

• Multiple Outgoing Sequence Flows can
be used (see figure top-right). This
represents “uncontrolled” flow is the
preferred method for most situations.

• A Parallel Gateway can be used (see
figure bottom-right). This will be used
rarely, usually in combination with other
Gateways.

Join BPMN uses the term “join” to refer to the com-
bining of two or more parallel paths into one
path (also known as an AND-Join or synchro-
nization).

A Parallel Gateway is used to show the joining
of multiple Sequence Flows.

Decision, Branching
Point

Decisions are Gateways within a Process
(see page 295) or a Choreography (see page
355) where the flow of control can take one or
more alternative paths.

See next five rows.

Exclusive This Decision represents a branching point
where Alternatives are based on conditional
Expressions contained within the outgo-
ing Sequence Flows (see page 298 or page
355). Only one of the Alternatives will be cho-
sen.

Table 7.2 - BPMN Extended Modeling Elements

Default

Condition 1
36 Business Process Model and Notation, v2.0

Event-Based This Decision represents a branching point
where Alternatives are based on an Event
that occurs at that point in the Process (see
page 305) or Choreography (see page 360).
The specific Event, usually the receipt of a
Message, determines which of the paths will
be taken. Other types of Events can be used,
such as Timer. Only one of the Alternatives
will be chosen.

There are two options for receiving Mes-
sages:

• Tasks of Type Receive can be used
(see figure top-right).

• Intermediate Events of Type Message
can be used (see figure bottom-right).

Inclusive This Decision represents a branching point
where Alternatives are based on conditional
Expressions contained within the outgo-
ing Sequence Flows (see page 300).
In some sense it is a grouping of related inde-
pendent Binary (Yes/No) Decisions. Since
each path is independent, all combinations of
the paths MAY be taken, from zero to all.
However, it should be designed so that at
least one path is taken. A Default Condition
could be used to ensure that at least one path
is taken.

There are two versions of this type of Deci-
sion:

• The first uses a collection of conditional
Sequence Flows, marked with mini-
diamonds (see top-right figure).

• The second uses an Inclusive Gateway
(see bottom-right picture).

Table 7.2 - BPMN Extended Modeling Elements

Condition 1

Condition 2

Condition 2

Condition 1
Business Process Model and Notation, v2.0 37

Merging BPMN uses the term “merge” to refer to the
exclusive combining of two or more paths into
one path (also known as an OR-Join).
A Merging Exclusive Gateway is used to show
the merging of multiple Sequence Flows (see
upper figure to the right).
If all the incoming flow is alternative, then a
Gateway is not needed. That is, uncontrolled
flow provides the same behavior (see lower
figure to the right).

Looping BPMN provides 2 (two) mechanisms for loop-
ing within a Process.

See Next Two Figures

Activity Looping The attributes of Tasks and Sub-Processes
will determine if they are repeated or per-
formed once (see page 197). There are two
types of loops: Standard and Multi-Instance. A
small looping indicator will be displayed at the
bottom-center of the activity.

Sequence Flow Looping Loops can be created by connecting a
Sequence Flow to an “upstream” object. An
object is considered to be upstream if that
object has an outgoing Sequence Flow that
leads to a series of other Sequence Flows,
the last of which is an incoming Sequence
Flow for the original object.

Table 7.2 - BPMN Extended Modeling Elements
38 Business Process Model and Notation, v2.0

Multiple Instances The attributes of Tasks and Sub-Processes
will determine if they are repeated or per-
formed once (see page 198). A set of three
(3) horizontal liness will be displayed at the
bottom-center of the activity for sequentail
Multi-Instances (see upper figure to the right).
A set of three (3) vertical liness will be dis-
played at the bottom-center of the activity for
sequentail Multi-Instances (see lower figure to
the right).

Sequential

Parallel

Process Break (some-
thing out of the control of
the process makes the
process pause)

A Process Break is a location in the Process
that shows where an expected delay will
occur within a Process (see page 257). An
Intermediate Event is used to show the actual
behavior (see top-right figure). In addition, a
Process Break Artifact, as designed by a
modeler or modeling tool, can be associated
with the Event to highlight the location of the
delay within the flow.

Transaction A transaction is a Sub-Process that is sup-
ported by a special protocol that insures that
all parties involved have complete agreement
that the activity should be completed or can-
celled (see page 184). The attributes of the
activity will determine if the activity is a trans-
action. A double-lined boundary indicates that
the Sub-Process is a Transaction.

Table 7.2 - BPMN Extended Modeling Elements

Announce
Issues for Vote

Voting
Response

Increment
Tally
Business Process Model and Notation, v2.0 39

Nested/Embedded Sub-
Process (Inline Block)

A nested (or embedded) Sub-Process is an
activity that shares the same set of data as its
parent process (see page 178). This is
opposed to a Sub-Process that is indepen-
dent, re-usable, and referenced from the par-
ent process. Data needs to be passed to the
referenced Sub-Process, but not to the nested
Sub-Process.

There is no special indicator for nested Sub-
Processes

Group (a box around a
group of objects within
the same category)

A Group is a grouping of graphical ele-
ments that are within the same Category
(see page 69). This type of grouping does not
affect the Sequence Flows within the Group.
The Category name appears on the diagram
as the group label. Categories can be used for
documentation or analysis purposes. Groups
are one way in which Categories of objects
can be visually displayed on the diagram.

Off-Page Connector Generally used for printing, this object will
show where a Sequence Flow leaves one
page and then restarts on the next page. A
Link Intermediate Event can be used as an
Off-Page Connector.

Association An Association is used to link information and
Artifacts with BPMN graphical elements (see
page 67). Text Annotations (see page 72) and
other Artifacts (see page 66) can be Associ-
ated with the graphical elements. An arrow-
head on the Association indicates a direction
of flow (e.g., data), when appropriate.

Text Annotation
(attached with an Asso-
ciation)

Text Annotations are a mechanism for a mod-
eler to provide additional text information for
the reader of a BPMN Diagram (see page 72).

Pool A Pool is the graphical representation of a
Participant in a Collaboration (see page 112).
It also acts as a “swimlane” and a graphical
container for partitioning a set of Activities
from other Pools, usually in the context of B2B
situations. A Pool MAY have internal details,
in the form of the Process that will be exe-
cuted. Or a Pool MAY have no internal details,
i.e., it can be a "black box."

Table 7.2 - BPMN Extended Modeling Elements

Descriptive Text
Here

N
am

e

40 Business Process Model and Notation, v2.0

7.3 BPMN Diagram Types
The BPMN 2.0 aims to cover three basic models of Processes: private Processes (both executable and non-
executable), public Processes, and Choreographies. Within and between these three BPMN sub-models, many types
of Diagrams can be created. The following are examples of Business Processes that can be modeled using BPMN
2.0:

• High-level non-executable Process Activities (not functional breakdown)
• Detailed executable Business Process
• As-is or old Business Process
• To-be or new Business Process
• A description of expected behavior between two (2) or more business Participants—a Choreography.
• Detailed private Business Process (either executable or non-executable) with interactions to one or more external

Entities (or “Black Box” Processes)
• Two or more detailed executable Processes interacting
• Detailed executable Business Process relationship to a Choreography
• Two or more public Processes
• Public Process relationship to Choreography
• Two or more detailed executable Business Processes interacting through a Choreography

BPMN is designed to allow describing all above examples of Business Processes. However, the ways that different
sub-models are combined is left to tool vendors. A BPMN 2.0 compliant implementation could RECOMMEND that
modelers pick a focused purpose, such as a private Process, or Choreographies. However, the BPMN 2.0
specification makes no assumptions.

7.4 Use of Text, Color, Size, and Lines in a Diagram
Text Annotation objects can be used by the modeler to display additional information about a Process or attributes of
the objects within a BPMN Diagram.

� BPMN elements (e.g. Flow objects) MAY have labels (e.g., its name and/or other attributes) placed inside the shape,
or above or below the shape, in any direction or location, depending on the preference of the modeler or modeling
tool vendor.

� The fills that are used for the graphical elements MAY be white or clear.

� The notation MAY be extended to use other fill colors to suit the purpose of the modeler or tool (e.g., to
highlight the value of an object attribute). However,

� The markers for “throwing” Events MUST have a dark fill (see “End Event” on page 253 and “Intermediate

Lanes A Lane is a sub-partition within a Pool and will
extend the entire length of the Pool, either
vertically or horizontally (see on page 313).
Lanes are used to organize and categorize
Activities.

Table 7.2 - BPMN Extended Modeling Elements

N
am

e N
am

e
N

am
e

Business Process Model and Notation, v2.0 41

Event” on page 257 for more details).

� Participant Bands for Choreography Tasks and Sub-Choreographies that are not the initiator of the Activity
MUST have a light fill (see “Choreography Task” on page 333 and “Sub-Choreography” on page 338 for
more details).

� Flow objects and markers MAY be of any size that suits the purposes of the modeler or modeling tool.

� The lines that are used to draw the graphical elements MAY be black.

� The notation MAY be extended to use other line colors to suit the purpose of the modeler or tool (e.g., to
highlight the value of an object attribute).

� The notation MAY be extended to use other line styles to suit the purpose of the modeler or tool (e.g., to
highlight the value of an object attribute) with the condition that the line style MUST NOT conflict with any
current BPMN defined line style. Thus, the line styles of Sequence Flows, Message Flows, and Text
Associations MUST NOT be modified or duplicated.

7.5 Flow Object Connection Rules
An incoming Sequence Flow can connect to any location on a Flow Object (left, right, top, or bottom). Likewise, an
outgoing Sequence Flow can connect from any location on a Flow Object (left, right, top, or bottom). A Message
Flow also has this capability. BPMN allows this flexibility; however, we also RECOMMEND that modelers use
judgment or best practices in how Flow Objects should be connected so that readers of the Diagrams will find the
behavior clear and easy to follow. This is even more important when a Diagram contains Sequence Flows and
Message Flows. In these situations it is best to pick a direction of Sequence Flows, either left to right or top to
bottom, and then direct the Message Flows at a 90° angle to the Sequence Flows. The resulting Diagrams will be
much easier to understand.

7.5.1 Sequence Flow Connections Rules

Table 7.3 displays the BPMN Flow Objects and shows how these objects can connect to one another through Sequence
Flows. These rules apply to the connections within a Process Diagram and within a Choreography Diagram. The Ê
symbol indicates that the object listed in the row can connect to the object listed in the column. The quantity of
connections into and out of an object is subject to various configuration dependencies are not specified here. Refer to the
sections in the next chapter for each individual object for more detailed information on the appropriate connection rules.
Note that if a Sub-Process has been expanded within a Diagram, the objects within the Sub-Process cannot be
connected to objects outside of the Sub-Process. Nor can Sequence Flows cross a Pool boundary.

Table 7.3 – Sequence Flow Connection Rules

From\To

‰ Ê Ê Ê Ê

42 Business Process Model and Notation, v2.0

Only those objects that can have incoming and/or outgoing Sequence Flows are shown in the table. Thus, Pool, Lane,
Data Object, Group, and Text Annotation are not listed in the table. Also, the Activity shapes in the table represent
Activities and Sub-Processes for Processes, and Choreography Activities and Sub-Choreographies for
Choreography.

7.5.2 Message Flow Connection Rules

Table 7.4 displays the BPMN modeling objects and shows how these objects can connect to one another through
Message Flows. These rules apply to the connections within a Collaboration Diagram. The Ü symbol indicates that
the object listed in the row can connect to the object listed in the column. The quantity of connections into and out of an
object is subject to various configuration dependencies are not specified here. Refer to the sections in the next chapter for
each individual object for more detailed information on the appropriate connection rules. Note that Message Flows
cannot connect to objects that are within the same Pool.

‰ Ê Ê Ê Ê

‰ Ê Ê Ê Ê

‰ Ê Ê Ê Ê

‰ Ê Ê Ê Ê
Business Process Model and Notation, v2.0 43

Only those objects that can have incoming and/or outgoing Message Flows are shown in the table. Thus, Lane,
Gateway, Data Object, Group, and Text Annotation are not listed in the table.

7.6 BPMN Extensibility
BPMN 2.0 introduces an extensibility mechanism that allows extending standard BPMN elements with additional
attributes. It can be used by modelers and modeling tools to add non-standard elements or Artifacts to satisfy a
specific need, such as the unique requirements of a vertical domain, and still have valid BPMN Core. Extension attributes
MUST NOT contradict the semantics of any BPMN element. In addition, while extensible, BPMN Diagrams should still
have the basic look-and-feel so that a Diagram by any modeler should be easily understood by any viewer of the Diagram.
Thus the footprint of the basic flow elements (Events, Activities, and Gateways) MUST NOT be altered.

Table 7.4 – Message Flow Connection Rules

From\To

ˆ Ü Ü Ü Ü

ˆ Ü Ü Ü Ü

ˆ Ü Ü Ü Ü

ˆ Ü Ü Ü Ü

ˆ Ü Ü Ü Ü

N
am

e Pool

N
am

e Pool

44 Business Process Model and Notation, v2.0

The specification differentiates between mandatory and optional extensions (Section 8.2.3 explains the syntax used to
declare extensions). If a mandatory extension is used, a compliant implementation MUST understand the extension. If an
optional extension is used, a compliant implementation MAY ignore the extension.

7.7 BPMN Example
The following is an example of a manufacturing process from different perspectives.

Figure 7.6 - An example of a Collaboration diagram with black-box Pools

Order
Confirmation

Rejection
Shipment

Parts
Provisioning

Open
Auction

Customer

Manufacturer

Supplier Bidder
Business Process Model and Notation, v2.0 45

Figure 7.7 - An example of a stand-alone Choreography diagram

Order Reque st

Cu stomer

Ma nufacturer

Ord er
Confirma tio n

Custo me r

Man ufa cturer

Order
Rejectio n

C ustomer

Ma nufacturer

Del iver Orde r

Customer

Manufacture r

P rocure P arts

Man ufa cturer

Su ppl ier

Y es

Can Fulfill
Order ?

No

Capacity OK,
Parts Must
be Ordered

A

A

Yes

No A

YesPart Au ction

Manu factu re r

B idd er

No

Order Confirmation

Rejec tion

Part
Request

Part
Response

Part
Request

Part
Response

A ll Part s
Available?

All Parts
Obtained?

Shipment
46 Business Process Model and Notation, v2.0

Figure 7.8 - An example of a stand-alone Process (Orchestration) diagram
Business Process Model and Notation, v2.0 47

48 Business Process Model and Notation, v2.0

8 BPMN Core Structure

Note – The content of this chapter is REQUIRED for all BPMN conformance types. For more information about BPMN
conformance types, see page 2.

The proposed technical structuring of BPMN is based on the concept of extensibility layers on top of a basic series of
simple elements identified as Core Elements of the specification. From this core set of constructs, layering is used to
describe additional elements of the specification that extend and add new constructs to the specification and relies on
clear dependency paths for resolution. The XML Schema model lends itself particularly well to the proposed structuring
model with formalized import and resolution mechanics that remove ambiguities in the definitions of elements in the
outer layers of the specification.

Figure 8.1 - A representation of the BPMN Core and Layer Structure

Figure 8.1 shows the basic principles of layering that can be composed in well defined ways. The approach uses
formalization constructs for extensibility that are applied consistently to the definition.

The additional effect of layering is that compatibility layers can be built, allowing for different levels of compliance
amongst vendors, and also enabling vendors to add their own layers in support of different vertical industries or target
audiences. In addition, it provides mechanism for the redefinition of previously existing concepts without affecting
backwards compatibility, but defining two or more non-composable layers, the level of compliance with the specification
and backwards compatibility can be achieved without compromising clarity.

The BPMN specification is structured in layers, where each layer builds on top of and extends lower layers. Included is a
Core or kernel which includes the most fundamental elements of BPMN that are REQUIRED for constructing BPMN
diagrams: Process, Choreography, and Collaboration. The Core is intended to be simple, concise, and extendable,
with well defined behavior

BPMN
CoreIn

fra
st

ru
c t

ur
e

Ch
or

eo
gr

ap
hy

Data

Conversations

Hu
m

an

Com
m

on

E le m
e nts

Services

Collaboration

P
rocess

Activities
Business Process Model and Notation, v2.0 49

The Core contains three (3) sub-packages (see Figure 8.2):

• Foundation: The fundamental constructs needed for BPMN modeling.

• Service: The fundamental constructs needed for modeling services and interfaces.

• Common: Those classes which are common to the layers of Process, Choreography, and Collaboration.

Figure 8.2 - Class diagram showing the core packages

Figure 8.3 displays the organization of the main set of BPMN core model elements.
50 Business Process Model and Notation, v2.0

Figure 8.3 - Class diagram showing the organization of the core BPMN elements

8.1 Infrastructure
The BPMN Infrastructure package contains two (2) elements that are used for both abstract syntax models and diagram
models.

8.1.1 Definitions

The Definitions class is the outermost containing object for all BPMN elements. It defines the scope of visibility and the
namespace for all contained elements. The interchange of BPMN files will always be through one or more Definitions.
Business Process Model and Notation, v2.0 51

Figure 8.4 - Definitions class diagram

The Definitions element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 8.1 presents
the additional attributes and model associations of the Definitions element:
52 Business Process Model and Notation, v2.0

Table 8.1 - Definitions attributes and model associations

8.1.2 Import

The Import class is used when referencing external element, either BPMN elements contained in other BPMN
Definitions or non-BPMN elements. Imports MUST be explicitly defined.

Table 8.2 presents the attributes of Import.

Attribute Name Description/Usage

name: string The name of the Definition.

targetNamespace: string This attribute identifies the namespace associated with the
Definition and follows the convention established by XML Schema.

expressionLanguage: string [0..1] This attribute identifies the formal Expression language used in
Expressions within the elements of this Definition. The Default is
“http://www.w3.org/1999/XPath”. This value MAY be overridden on
each individual formal Expression. The language MUST be specified
in a URI format.

typeLanguage: string [0..1] This attribute identifies the type system used by the elements of this
Definition. Defaults to http://www.w3.org/2001/XMLSchema. This
value can be overridden on each individual ItemDefinition. The
language MUST be specified in a URI format.

rootElements: RootElement [0..*] This attribute lists the root elements that are at the root of this
Definitions. These elements can be referenced within this
Definitions and are visible to other Definitions.

diagrams: BPMNDiagram [0..*] This attribute lists the BPMNDiagrams that are contained within this
Definitions (see page 377 for more information on
BPMNDiagrams).

imports: Import [0..*] This attribute is used to import externally defined elements and make
them available for use by elements within this Definitions.

extensions: Extension [0..*] This attribute identifies extensions beyond the attributes and model
associations in the base BPMN specification. See page 57 for
additional information on extensibility.

relationships: Relationship [0..*] This attribute enables the extension and integration of BPMN models
into larger system/development Processes.

exporter: string [0..1] This attribute identifies the tool that is exporting the bpmn model file.

exporterVersion: string [0..1] This attribute identifies the version of the tool that is exporting the bpmn
model file.
Business Process Model and Notation, v2.0 53

8.1.3 Infrastructure Package XML Schemas

Table 8.2 – Import attributes

Attribute Name Description/Usage

importType: string Identifies the type of document being imported by providing an absolute URI that
identifies the encoding language used in the document.The value of the importType
attribute MUST be set to http://www.w3.org/2001/XMLSchema when importing
XML Schema 1.0 documents, to http://www.w3.org/TR/wsdl20/ when importing
WSDL 2.0 documents, and http://www.omg.org/spec/BPMN/20100524/MODEL
when importing BPMN 2.0 documents. Other types of documents MAY be
supported.
Importing Xml Schema 1.0, WSDL 2.0 and BPMN 2.0 types MUST be supported.

location: string [0..1] Identifies the location of the imported element.

namespace: string Identifies the namespace of the imported element.

Table 8.3 – Definitions XML schema

<xsd:element name="definitions" type="tDefinitions"/>
<xsd:complexType name="tDefinitions">

<xsd:sequence>
<xsd:element ref="import" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extension" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="rootElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="bpmndi:BPMNDiagram" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="relationship" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:attribute name="targetNamespace" type="xsd:anyURI" use="required"/>
<xsd:attribute name="expressionLanguage" type="xsd:anyURI" use="optional" default="http://

www.w3.org/1999/XPath"/>
<xsd:attribute name="typeLanguage" type="xsd:anyURI" use="optional" default="http://www.w3.org/

2001/XMLSchema"/>
<xsd:anyAttribute name="exporter" type="xsd:ID"/>
<xsd:anyAttribute name="exporterVersion" type="xsd:ID"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>

</xsd:complexType>
54 Business Process Model and Notation, v2.0

8.2 Foundation
The Foundation package contains classes which are shared amongst other packages in the Core (see Figure 8.5) of a
abstract syntax model.

Figure 8.5 - Classes in the Foundation package

Table 8.4 – Import XML schema

<xsd:element name="import" type="tImport"/>
<xsd:complexType name="tImport">

<xsd:attribute name="namespace" type="xsd:anyURI" use="required"/>
<xsd:attribute name="location" type="xsd:string" use="required"/>
<xsd:attribute name="importType" type="xsd:anyURI" use="required"/>

</xsd:complexType>
Business Process Model and Notation, v2.0 55

8.2.1 Base Element

BaseElement is the abstract super class for most BPMN elements. It provides the attributes id and documentation, which
other elements will inherit.

Table 8.5 presents the attributes and model associations for the BaseElement.

8.2.2 Documentation

All BPMN elements that inherit from the BaseElement will have the capability, through the Documentation
element, to have one (1) or more text descriptions of that element.

The Documentation element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.6 presents the additional attributes of the Documentation element:

In the BPMN schema, the tDocumentation complexType does not contain a text attribute or element. Instead, the
documentation text is expected to appear in the body of the documentation element. For example:

Table 8.5 – BaseElement attributes and model associations

Attribute Name Description/Usage

id: string This attribute is used to uniquely identify BPMN elements. The id is
REQUIRED if this element is referenced or intended to be referenced by
something else. If the element is not currently referenced and is never intended
to be referenced, the id MAY be omitted.

documentation: Documen-
tation [0..*]

This attribute is used to annotate the BPMN element, such as descriptions and
other documentation.

extensionDefinitions:
ExtensionDefinition [0..*]

This attribute is used to attach additional attributes and associations to any
BaseElement. This association is not applicable when the XML schema
interchange is used, since the XSD mechanisms for supporting anyAttribute
and any element already satisfy this requirement. See page 57 for additional
information on extensibility.

extensionValues: Exten-
sionAttributeValue [0..*]

This attribute is used to provide values for extended attributes and model
associations. This association is not applicable when the XML schema
interchange is used, since the XSD mechanisms for supporting anyAttribute
and any element already satisfy this requirement. See page 57 for additional
information on extensibility.

Table 8.6 – Documentation attributes

Attribute Name Description/Usage

text: string This attribute is used to capture the text descriptions of a BPMN element.

textFormat: string This attribute identifies the format of the text. It MUST follow the mime-type
format. The default is "text/plain."
56 Business Process Model and Notation, v2.0

<documentation>An example of how the documentation text is entered.</documentation>

8.2.3 Extensibility

The BPMN metamodel is aimed to be extensible. This allows BPMN adopters to extend the specified metamodel in a
way that allows them to be still BPMN-compliant.

It provides a set of extension elements, which allows BPMN adopters to attach additional attributes and elements to
standard and existing BPMN elements.

This approach results in more interchangeable models, because the standard elements are still intact and can still be
understood by other BPMN adopters. It’s only the additional attributes and elements that MAY be lost during interchange.

Figure 8.6 - Extension class diagram

A BPMN Extension basically consists of four different elements:

• Extension

• ExtensionDefinition
Business Process Model and Notation, v2.0 57

• ExtensionAttributeDefinition

• ExtensionAttributeValue

The core elements of an Extension are the ExtensionDefinition and ExtensionAttributeDefinition. The
latter defines a list of attributes which can be attached to any BPMN element. The attribute list defines the name and type
of the new attribute. This allows BPMN adopters to integrate any meta model into the BPMN meta model and reuse
already existing model elements.

The ExtensionDefinition itself can be created independent of any BPMN element or any BPMN definition.

In order to use an ExtensionDefinition within a BPMN model definition (Definitions element), the
ExtensionDefinition MUST be associated with an Extension element which binds the
ExtensionDefinition to a specific BPMN model definition. The Extension element itself is contained within
the BPMN element Definitions and therefore available to be associated with any BPMN element making use of the
ExtensionDefinition.

Every BPMN element which subclasses the BPMN BaseElement can be extended by additional attributes. This works
by associating a BPMN element with an ExtensionDefinition which was defined at the BPMN model definitions
level (element Definitions).

Additionally, every “extended” BPMN element contains the actual extension attribute value. The attribute value, defined
by the element ExtensionAttributeValue contains the value of type Element. It also has an association to the
corresponding attribute definition.

Extension
The Extension element binds/imports an ExtensionDefinition and its attributes to a BPMN model definition.

Table 8.7 presents the attributes and model associations for the Extension element:

ExtensionDefinition
The ExtensionDefinition class defines and groups additional attributes. This type is not applicable when the XML
schema interchange is used, since XSD Complex Types already satisfy this requirement.

Table 8.8 presents the attributes and model associations for the ExtensionDefinition element:

Table 8.7 – Extension attributes and model associations

Attribute Name Description/Usage

mustUnderstand: boolean
[0..1] = False

This flag defines if the semantics defined by the extension definition and its
attribute definition MUST be understood by the BPMN adopter in order to
process the BPMN model correctly. Defaults to False.

definition: ExtensionDefinition Defines the content of the extension.
Note that in the XML schema, this definition is provided by an external XML
schema file and is simply referenced by QName.
58 Business Process Model and Notation, v2.0

ExtensionAttributeDefinition
The ExtensionAttributeDefinition defines new attributes. This type is not applicable when the XML schema
interchange is used; since the XSD mechanisms for supporting “AnyAttribute” and “Any” type already satisfy this
requirement.

Table 8.9 presents the attributes for the ExtensionAttributeDefinition element:

ExtensionAttributeValue
The ExtensionAttributeValue contains the attribute value. This type is not applicable when the XML schema
interchange is used; since the XSD mechanisms for supporting “AnyAttribute” and “Any” type already satisfy this
requirement.

Table 8.10 presents the model associations for the ExtensionAttributeValue element:

Table 8.8 – ExtensionDefinition attributes and model associations

Attribute Name Description/Usage

name: string The name of the extension. This is used as a namespace to
uniquely identify the extension content.

extensionAttributeDefinitions:
ExtensionAttributeDefinition [0..*]

The specific attributes that make up the extension.

Table 8.9 - ExtensionAttributeDefinition attributes

Attribute Name Description/Usage

name: string The name of the extension attribute.

type: string The type that is associated with the attribute.

isReference: boolean [0..1] = False Indicates if the attribute value will be referenced or contained.

Table 8.10 – ExtensionAttributeValue model associations

Attribute Name Description/Usage

value: [Element [0..1] The contained attribute value, used when the associated
ExtensionAttributeDefinition.isReference is false.
The type of this Element MUST conform to the type specified in the
associated ExtensionAttributeDefinition.

valueRef: [Element [0..1] The referenced attribute value, used when the associated
ExtensionAttributeDefinition.isReference is true.
The type of this Element MUST conform to the type specified in the
associated ExtensionAttributeDefinition.

extensionAttributeDefinition:
ExtensionAttributeDefinition

Defines the extension attribute for which this value is being
provided.
Business Process Model and Notation, v2.0 59

Extensibility XML Schemas

XML Example
This example shows a Task, defined the BPMN Core, being extended with Inputs and Outputs defined outside of the
Core.

Table 8.11 – Extension XML schema

<xsd:element name="extension" type="tExtension"/>
<xsd:complexType name="tExtension">

<xsd:sequence>
<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="definition" type="xsd:QName"/>
<xsd:attribute name="mustUnderstand" type="xsd:boolean" use="optional"/>

</xsd:complexType>

Table 8.12 – Example Core XML schema

<xsd:schema …>

…

<xsd:element name="task" type="tTask"/>
<xsd:complexType name="tTask">

<xsd:complexContent>
<xsd:extension base="tActivity"/>

</xsd:complexContent>
</xsd:complexType>

…

</xsd:schema>
60 Business Process Model and Notation, v2.0

8.2.4 External Relationships

It is the intention of this specification to cover the basic elements necessary for the construction of semantically rich and
syntactically valid Process models to be used in the description of Processes, Choreographies and business
operations in multiple levels of abstraction. As the specification indicates, extension capabilities enable the enrichment of
the information described in BPMN and supporting models to be augmented to fulfill particularities of a given usage
model. These extensions intention is to extend the semantics of a given BPMN Artifact to provide specialization of
intent or meaning.

Table 8.13 – Example Extension XML schema

<xsd:schema …>

…

<xsd:group name="dataRequirements">
<xsd:sequence>

<xsd:element ref="dataInput" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="dataOutput" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="inputSet" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="outputSet" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>
</xsd:group>

…

</xsd:schema>

Table 8.14 – Sample XML instance

<bpmn:definitions id=”ID_1” …>

…
<bpmn:extension mustUnderstand="true" definition="bpmn:dataRequirements"/>

…
<bpmn:task name="Retrieve Customer Record" id="ID_2">

<bpmn:dataInput name="Order Input" id="ID_3">
<bpmn:typeDefinition typeRef="bo:Order" id="ID_4"/>

</bpmn:dataInput>
<bpmn:dataOutput name="Customer Record Output" id="ID_5">

<bpmn:typeDefinition typeRef="bo:CustomerRecord" id="ID_6"/>
</bpmn:dataOutput>
<bpmn:inputSet name="Inputs" id="ID_7" dataInputRefs="ID_3"/>
<bpmn:outputSet name="Outputs" id="ID_8" dataOutputRefs="ID_5"/>

</bpmn:task>

…
</bpmn:definitions>
Business Process Model and Notation, v2.0 61

Process models do not exist in isolation and generally participate in larger, more complex business and system
development Processes. The intention of the following specification element is to enable BPMN Artifacts to be
integrated in these development Processes via the specification of a non-intrusive identity/relationship model between
BPMN Artifacts and elements expressed in any other addressable domain model.

The ‘identity/relationship’ model it is reduced to the creation of families of typed relationships that enable BPMN and
non-BPMN Artifacts to be related in non intrusive manner. By simply defining ‘relationship types’ that can be
associated with elements in the BPMN Artifacts and arbitrary elements in a given addressable domain model, it
enables the extension and integration of BPMN models into larger system/development Processes.

It is that these extensions will enable, for example, the linkage of ‘derivation’ or ‘definition’ relationships between UML
artifacts and BPMN Artifacts in novel ways. So, a UML use case could be related to a Process element in the
BPMN specification without affecting the nature of the Artifacts themselves, but enabling different integration
models that traverse specialized relationships.

Simply, the model enables the external specification of augmentation relationships between BPMN Artifacts and
arbitrary relationship classification models, these external models, via traversing relationships declared in the external
definition allow for linkages between BPMN elements and other structured or non-structured metadata definitions.

The UML model for this specification follow a simple extensible pattern as shown below; where named relationships can
be established by referencing objects that exist in their given namespaces.

Figure 8.7 - External Relationship Metamodel

The Relationship element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.15 presents the additional attributes for the Relationship element:
62 Business Process Model and Notation, v2.0

In this manner, you can, for example, create relationships between different artifacts that enable external annotations used
for (for example) traceability, derivation, arbitrary classifications, etc.

An example where the ‘reengineer’ relationship is shown between elements in a Visio ™ artifact and a BPMN
Artifact.

Table 8.15 – Relationship attributes

Attribute Name Description/Usage

type: string The descriptive name of the element.

direction: RelationshipDirection
{None | Forward | Backward | Both}

This attribute specifies the direction of the relationship.

sources: [Element [1..*] This association defines artifacts that are augmented by the
relationship.

targets: [Element[1..*] This association defines artifacts used to extend the semantics of the
source element(s).

Table 8.16 – Reengineer XML schema

<?xml version="1.0" encoding="UTF-8"?>
<definitions targetNamespace=""

typeLanguage="" id="a123" expressionLanguage=""
xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL Core-Common.xsd"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:src="http://www.example.org/Processes/Old"
xmlns:tgt="http://www.example.org/Processes/New">

<import importType="http://office.microsoft.com/visio" location="OrderConfirmationProcess.vsd"
namespace="http://www.example.org/Processes/Old"/>

<import importType="http://www.omg.org/spec/BPMN/20100524/MODEL"
location="OrderConfirmationProcess.xml" namespace="http://www.example.org/Pro-
cesses/New"/>

<relationship type="reengineered" id="a234" direction="both">
<documentation>An as-is and to-be relationship. The as-is model is expressed as a Visio dia-

gram. The re-engineered process has been split in two and is captured in BPMN 2.0 for-
mat.</documentation>

<source ref="src:OrderConfirmation"/>
<target ref="tgt:OrderConfirmation_PartI"/>
<target ref="tgt:OrderConfirmation_PartII"/>

</relationship>
</definitions>
Business Process Model and Notation, v2.0 63

8.2.5 Root Element

RootElement is the abstract super class for all BPMN elements that are contained within Definitions. When
contained within Definitions, these elements have their own defined life-cycle and are not deleted with the deletion
of other elements. Examples of concrete RootElements include Collaboration, Process, and Choreography.
Depending on their use, RootElements can be referenced by multiple other elements (i.e., they can be reused). Some
RootElements MAY be contained within other elements instead of Definitions. This is done to avoid the
maintenance overhead of an independent life-cycle. For example, an EventDefinition would be contained in a
Process since it is used only there. In this case the EventDefinition would be dependent on the tool life-cycle of
the Process.

The RootElement element inherits the attributes and model associations of BaseElement (see Table 8.5), but does
not have any further attributes or model associations.

8.2.6 Foundation Package XML Schemas

Table 8.17 – BaseElement XML schema

<xsd:element name="baseElement" type="tBaseElement"/>
<xsd:complexType name="tBaseElement" abstract="true">

<xsd:sequence>
<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extensionElements" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>

</xsd:complexType>

<xsd:element name="baseElementWithMixedContent" type="tBaseElementWithMixedContent"/>
<xsd:complexType name="tBaseElementWithMixedContent" abstract="true" mixed="true">

<xsd:sequence>
<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extensionElements" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>

</xsd:complexType>

<xsd:element name="extensionElements" type="tExtensionElements"/>
<xsd:complexType name="tExtensionElements">

<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name="documentation" type="tDocumentation"/>
64 Business Process Model and Notation, v2.0

<xsd:complexType name="tDocumentation" mixed="true">
<xsd:sequence>

<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:attribute name="textFormat" type="xsd:string" default="textplain"/>

</xsd:complexType>

Table 8.18 – RootElement XML schema

<xsd:element name="rootElement" type="tRootElement"/>
<xsd:complexType name="tRootElement" abstract="true">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType

Table 8.19 – Relationship XML schema

<xsd:element name="relationship" type="tRelationship"/>
<xsd:complexType name="tRelationship">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="source" type="xsd:QName" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="target" type="xsd:QName" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="type" type="xsd:string" use="required"/>
<xsd:attribute name="direction" type="tRelationshipDirection"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="tRelationshipDirection">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="None"/>
<xsd:enumeration value="Forward"/>
<xsd:enumeration value="Backward"/>
<xsd:enumeration value="Both"/>

</xsd:restriction>
</xsd:simpleType>
Business Process Model and Notation, v2.0 65

8.3 Common Elements
The following sections define BPMN elements that MAY be used in more than one type of diagram (e.g., Process,
Collaboration, and Choreography).

8.3.1 Artifacts

BPMN provides modelers with the capability of showing additional information about a Process that is not directly
related to the Sequence Flows or Message Flows of the Process.

At this point, BPMN provides three (3) standard Artifacts: Associations, Groups, and Text Annotations.
Additional Artifacts MAY be added to the BPMN specification in later versions. A modeler or modeling tool MAY
extend a BPMN diagram and add new types of Artifacts to a Diagram. Any new Artifact MUST follow the
Sequence Flow and Message Flow connection rules (listed below). Associations can be used to link Artifacts
to Flow Objects (see page 67).

Figure 8.8 shows the Artifacts class diagram. When an Artifact is defined it is contained within a Collaboration
or a FlowElementsContainer (a Process or Choreography).

Figure 8.8 - Artifacts Metamodel
66 Business Process Model and Notation, v2.0

Common Artifact Definitions
The following sections provide definitions that are common to all Artifacts.

Artifact Sequence Flow Connections
See “Sequence Flow Rules,” on page 42 for the entire set of objects and how they MAY be source or targets of a
Sequence Flow.

� An Artifact MUST NOT be a target for a Sequence Flow.

� An Artifact MUST NOT be a source for a Sequence Flow.

Artifact Message Flow Connections
See “Message Flow Rules,” on page 43 for the entire set of objects and how they MAY be source or targets of a
Message Flow.

� An Artifact MUST NOT be a target for a Message Flow.

� An Artifact MUST NOT be a source for a Message Flow.

Association
An Association is used to associate information and Artifacts with Flow Objects. Text and graphical non-Flow
Objects can be associated with the Flow Objects and Flow. An Association is also used to show the Activity used for
compensation. More information about compensation can be found on page 311.

� An Association is line that MUST be drawn with a dotted single line (see Figure 8.9).

� The use of text, color, size, and lines for an Association MUST follow the rules defined in section “Use of Text,
Color, Size, and Lines in a Diagram” on page 41.

Figure 8.9 - An Association
Business Process Model and Notation, v2.0 67

Figure 8.10 - The Association Class Diagram

If there is a reason to put directionality on the Association then:

� A line arrowhead MAY be added to the Association line (see Figure 8.11).

� The directionality of the Association can be in one (1) direction or in both directions.

Figure 8.11 - A Directional Association

Note that directional Associations were used in BPMN 1.2 to show how Data Objects were inputs or outputs to
Activities. In BPMN 2.0, a Data Association connector is used to show inputs and outputs (see page 228). A Data
Association uses the same notation as a directed Association (as in Figure 8.11, above).

An Association is used to connect user-defined text (an Annotation) with a Flow Object (see Figure 8.12).

Figure 8.12 - An Association of Text Annotation

Announce
Issues for
Discussion

Allow 1 week for the
discussion of the

Issues — through e-
mail or calls
68 Business Process Model and Notation, v2.0

The Association element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 8.20
presents the additional attributes and model associations for an Association:

Group
The Group object is an Artifact that provides a visual mechanism to group elements of a diagram informally. The
grouping is tied to the CategoryValue supporting element. That is, a Group is a visual depiction of a single
CategoryValue. The graphical elements within the Group will be assigned the CategoryValue of the Group.
(Note -- CategoryValues can be highlighted through other mechanisms, such as color, as defined by a modeler or a
modeling tool).

� A Group is a rounded corner rectangle that MUST be drawn with a solid dashed line (as seen in Figure 8.13).

� The use of text, color, size, and lines for a Group MUST follow the rules defined in Section “Use of Text,
Color, Size, and Lines in a Diagram” on page 41.

Figure 8.13 - A Group Artifact

As an Artifact, a Group is not an Activity or any Flow Object, and, therefore, cannot connect to Sequence
Flows or Message Flows. In addition, Groups are not constrained by restrictions of Pools and Lanes. This means
that a Group can stretch across the boundaries of a Pool to surround Diagram elements (see Figure 8.14), often to
identify Activities that exist within a distributed business-to-business transaction.

Table 8.20 – Association attributes and model associations

Attributes Description

associationDirection:
AssociationDirection = None
{None | One | Both}

associationDirection is an attribute that defines whether or not the
Association shows any directionality with an arrowhead. The default is
None (no arrowhead). A value of One means that the arrowhead SHALL
be at the Target Object. A value of Both means that there SHALL be an
arrowhead at both ends of the Association line.

sourceRef: BaseElement The BaseElement that the Association is connecting from.

targetRef: BaseElement The BaseElement that the Association is connecting to.
Business Process Model and Notation, v2.0 69

Figure 8.14 - A Group around Activities in different Pools

Groups are often used to highlight certain sections of a Diagram without adding additional constraints for performance-
-as a Sub-Process would. The highlighted (grouped) section of the Diagram can be separated for reporting and analysis
purposes. Groups do not affect the flow of the Process.

Figure 8.15 shows the Group class diagram.

Figure 8.15 - The Group class diagram

P
at

ie
nt

R
ec

ep
tio

ni
st

I want to see doctor

Illness
Occurs

Go see doctor I need my medicine Here is your medicine

Receive
Appt.

Send Appt.
Receive
Doctor

Request

Send Doctor
Request

Send
Medicine
Request

Receive
Medicine

Receive
Doctor

Request

Send
Medicine

Handle Medicine
70 Business Process Model and Notation, v2.0

The Group element inherits the attributes and model associations of BaseElement (see Table 8.5), through its
relationship to Artifact. Table 8.21 presents the additional model associations for a Group:

Category
Categories, which have user-defined semantics, can be used for documentation or analysis purposes. For example,
FlowElements can be categorized has being customer oriented vs. support oriented. Furthermore, the cost and time of
Activities per Category can be calculated.

Groups are one way in which Categories of objects can be visually displayed on the diagram. That is, a Group is a
visual depiction of a single CategoryValue. The graphical elements within the Group will be assigned the
CategoryValue of the Group. The value of the CategoryValue, optionally prepended by the Category name
and delineator ":", appears on the diagram as the Group label. (Note -- Categories can be highlighted through other
mechanisms, such as color, as defined by a modeler or a modeling tool). A single Category can be used for multiple
Groups in a diagram.

The Category element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 8.22 displays the additional model associations of the Category element.

The CategoryValue element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.23 displays the attributes and model associations of the CategoryValue element.

Table 8.21 – Group model associations

Attributes Description

categoryValueRef: Category-
Value [0..1]

The categoryValueRef attribute specifies the CategoryValue that
the Group represents (Further details about the definition of a Category
and CategoryValue can be found on page 71). The name of the
Category and the value of the CategoryValue separated by delineator
"." provides the label for the Group. The graphical elements within the
boundaries of the Group will be assigned the CategoryValue.

Table 8.22 –Category model associations

Attributes Description

name: string The descriptive name of the element.

categoryValue: CategoryValue
[0..*]

The categoryValue attribute specifies one or more values of the
Category. For example, the Category is “Region” then this Category
could specify values like “North,” “South,” “West,” and “East.”
Business Process Model and Notation, v2.0 71

Text Annotation
Text Annotations are a mechanism for a modeler to provide additional information for the reader of a BPMN
Diagram.

� A Text Annotation is an open rectangle that MUST be drawn with a solid single line (as seen in Figure 8.16).

� The use of text, color, size, and lines for a Text Annotation MUST follow the rules defined in Section “Use of
Text, Color, Size, and Lines in a Diagram” on page 41.

The Text Annotation object can be connected to a specific object on the Diagram with an Association, but do not
affect the flow of the Process. Text associated with the Annotation can be placed within the bounds of the open
rectangle.

Figure 8.16 - A Text Annotation

The Text Annotation element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.24 presents the additional attributes for a Text Annotation:

Table 8.23 –CategoryValue attributes and model associations

Attributes Description

value: string This attribute provides the value of the CategoryValue element.

category: Category [0..1] The category attribute specifies the Category representing the
Category as such and contains the CategoryValue (Further details
about the definition of a Category can be found on page 71).

categorizedFlowElements:
FlowElement [0..*]

The FlowElements attribute identifies all of the elements (e.g., Events,
Activities, Gateways, and Artifacts) that are within the
boundaries of the Group.

Table 8.24 –Text Annotation attributes

Attributes Description

text: string Text is an attribute that is text that the modeler wishes to communicate
to the reader of the Diagram.

textFormat: string This attribute identifies the format of the text. It MUST follow the mime-
type format. The default is "text/plain."

Text Annotation allows
a modeler to provide
additional information
72 Business Process Model and Notation, v2.0

XML Schema for Artifacts

Table 8.25 – Artifact XML schema

<xsd:element name="artifact" type="tArtifact"/>
<xsd:complexType name="tArtifact" abstract="true">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType>

Table 8.26 – Association XML schema

<xsd:element name="association" type="tAssociation" substitutionGroup="artifact"/>
<xsd:complexType name="tAssociation">

<xsd:complexContent>
<xsd:extension base="tArtifact">

<xsd:attribute name="sourceRef" type="xsd:QName" use="required"/>
<xsd:attribute name="targetRef" type="xsd:QName" use="required"/>
<xsd:attribute name="associationDirection" type="tAssociationDirection" default="None"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="tAssociationDirection">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="None"/>
<xsd:enumeration value="One"/>
<xsd:enumeration value="Both"/>
</xsd:restriction>

</xsd:simpleType>

Table 8.27 – Category XML schema

<xsd:element name="category" type="tCategory" substitutionGroup="rootElement"/>
<xsd:complexType name="tCategory">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:sequence>
<xsd:element ref="categoryValue" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
Business Process Model and Notation, v2.0 73

Table 8.28 – CategoryValue XML schema

<xsd:element name="categoryValue" type="tCategoryValue"/>
<xsd:complexType name="tCategoryValue">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="value" type="xsd:string" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 8.29 – Group XML schema

<xsd:element name="group" type="tGroup" substitutionGroup="artifact"/>
<xsd:complexType name="tGroup">

<xsd:complexContent>
<xsd:extension base="tArtifact">

<xsd:attribute name="categoryValueRef" type="xsd:QName" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 8.30 – Text Annotation XML schema

<xsd:element name="textAnnotation" type="tTextAnnotation" substitutionGroup="artifact"/>
<xsd:complexType name="tTextAnnotation">

<xsd:complexContent>
<xsd:extension base="tArtifact">

<xsd:sequence>
<xsd:element ref="text" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="textFormat" type="xsd:string" default="textplain"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="text" type="tText"/>
<xsd:complexType name="tText" mixed="true">

<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>
74 Business Process Model and Notation, v2.0

8.3.2 Correlation

Business Processes typically can run for days or even months, requiring asynchronous communication via
Message. Also, many instances of a particular Process will typically run in parallel, e.g., many instances of an order
process, each representing a particular order. Correlation is used to associate a particular Message to an ongoing
Conversation between two particular Process instances. BPMN allows using existing Message data for correlation
purposes, e.g., for the order process, a particular instance can be identified by means of its orderID and/or
customerID, rather than requiring the introduction of technical correlation data.

The concept of Correlation facilitates the association of a Message to a Send Task or Receive Task1 often in the
context of a Conversation, which is also known as instance routing. It is a particular useful concept where there is no
infrastructure support for instance routing. Note that this association can be viewed at multiple levels, namely the
Collaboration (Conversation), Choreography, and Process level. However, the actual correlation happens during
runtime (e.g., at the Process level). Correlations describe a set of predicates on a Message (generally on the
application payload) that need to be satisfied in order for that Message to be associated to a distinct Send Task or
Receive Task. By the same token, each Send Task and each Receive Task participates in one or many
Conversations. Furthermore, it identifies the Message it sends or receives and thereby establishes the relationship to
one (or many) CorrelationKeys.

There are two, non-exclusive correlation mechanisms in place:

• In plain, key-based correlation, Messages that are exchanged within a Conversation are logically correlated by
means of one or more common CorrelationKeys. That is, any Message that is sent or received within this Con-
versation needs to carry the value of at least one of these CorrelationKey instances within its payload. A
CorrelationKey basically defines a (composite) key. The first Message that is initially sent or received initializes
one or more CorrelationKey instances associated with the Conversation, i.e., assigns values to its
CorrelationProperty instances which are the fields (partial keys) of the CorrelationKey. A
CorrelationKey is only considered valid for use, if the Message has resulted in all CorrelationProperty
fields within the key being populated with a value. If a follow-up Message derives a CorrelationKey instance,
where that CorrelationKey had previously been initialized within the Conversation, then the
CorrelationKey value in the Message and Conversation MUST match. If the follow-up Message derives a
CorrelationKey instance associated with the Conversation, that had not previously been initialized, then the
CorrelationKey value will become associated with the Conversation. As a Conversation can comprise dif-
ferent Messages that can be differently structured, each CorrelationProperty comes with as many extraction
rules (CorrelationPropertyRetrievalExpression) for the respective partial key as there are different
Messages.

In context-based correlation, the Process context (i.e., its Data Objects and Properties) can dynamically influence
the matching criterion. That is, a CorrelationKey can be complemented by a Process-specific
CorrelationSubscription. A CorrelationSubscription aggregates as many
CorrelationPropertyBindings as there are CorrelationProperties in the CorrelationKey. A
CorrelationPropertyBinding relates to a specific CorrelationProperty and also links to a
FormalExpression which denotes a dynamic extraction rule atop the Process context. At runtime, the
CorrelationKey instance for a particular Conversation is populated (and dynamically updated) from the Process
context using these FormalExpressions. In that sense, changes in the Process context can alter the correlation
condition. Correlation can be applied to Message Flows in Collaboration and Choreography, as described in
Chapters 9, Collaboration and 11, Choreography. The keys applying to a Message Flow are the keys of containers or

1. All references to Send or Receive Tasks in this section also include message catch or throw Events -- they behave identically with
respect to correlation.
Business Process Model and Notation, v2.0 75

groupings of the Message Flow, such as Collaborations, Choreographies, and Conversation Nodes, and
Choreography Activities. This might result in multiple CorrelationKeys applying to the same Message Flow,
perhaps due to multiple layers of containment. In particular, calls of Collaborations and Choreographies are special
kinds of Conversation Nodes and Choreography Activities, respectively, and are considered a kind of containment
for the purposes of correlation. The CorrelationKeys specified in the caller apply to Message Flow in a called
Collaboration or Choreography.

Figure 8.17 - The Correlation Class Diagram

CorrelationKey
A CorrelationKey represents a composite key out of one (1) or many CorrelationProperties which
essentially specify extraction Expressions atop Messages. As a result, each CorrelationProperty acts as a
partial key for the correlation. For each Message that is exhanged as part of a particular Conversation, the
76 Business Process Model and Notation, v2.0

CorrelationProperties need to provide a CorrelationPropertyRetrievalExpression which
references a FormalExpression to the Message payload. That is, for each Message (that is used in a
Conversation) there is an Expression which extracts portions of the respective Message’s payload.

The CorrelationKey element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.31 displays the additional model associations of the CorrelationKey element.

Key-based Correlation
Key-based correlation is a simple and efficient form of correlation, where one or more keys are used to identify a
Conversation. Any incoming Message can be matched against the CorrelationKey by extracting the
CorrelationProperties from the Message according to the corresponding
CorrelationPropertyRetrievalExpression and comparing the resulting composite key with the
CorrelationKey instance for this Conversation. The idea is to use a joint Conversation “token” which is used
(passed to and received from) and outgoing and incoming Message. Messages are associated to a particular
Conversation if the composite key extracted from their payload matches the CorrelationKey initialized for this
Conversation.

At runtime the first Send Task or Receive Task in a Conversation MUST populate atleast one of the
CorrelationKey instances by extracting the values of the CorrelationProperties according to the
CorrelationPropertyRetrievalExpression from the initially sent or received Message. Later in the
Conversation, the populated CorrelationKey instances are used for the described matching procedure where from
incoming Messages a composite key is extracted and used to identify the associated Conversation. Where these non-
initiating Messages derive values for CorrelationKeys, associated with the Conversation but not yet populated,
then the derived value will be associated with the Conversation instance.

The CorrelationProperty element inherits the attributes and model associations of BaseElement (see Table 8.5)
through its relationship to RootElement. Table 8.32 displays the additional model associations of the
CorrelationProperty element.

Table 8.31 – CorrelationKey model associations

Attribute Name Description/Usage

name: string [0..1] Specifies the name of the CorrelationKey.

correlationPropertyRef:
CorrelationProperty [0..*]

The CorrelationProperties, representing the partial keys of this
CorrelationKey.
Business Process Model and Notation, v2.0 77

The CorrelationPropertyRetrievalExpression element inherits the attributes and model associations of
BaseElement (see Table 8.5). Table 8.33 displays the additional model associations of the
CorrelationPropertyRetrievalExpression element.

Context-based Correlation
Context-based correlation is a more expressive form of correlation on top of key-based correlation. In addition to
implicitly populating the CorrelationKey instance from the first sent or received Message, another mechanism
relates the CorrelationKey to the Process context. That is, a Process MAY provide a
CorrelationSubscription which acts as the Process-specific counterpart to a specific CorrelationKey. In
this way, a Conversation MAY additionally refer to explicitly updateable Process context data to determine whether
or not a Message needs to be received. At runtime, the CorrelationKey instance holds a composite key that is
dynamically calculated from the Process context and automatically updated whenever the underlying Data Objects or
Properties change.

CorrelationPropertyBindings represent the partial keys of a CorrelationSubscription where each
relates to a specific CorrelationProperty in the associated CorrelationKey. A FormalExpression defines
how that CorrelationProperty instance is populated and updated at runtime from the Process context (i.e., its
Data Objects and Properties).

The CorrelationSubscription element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 8.34 displays the additional model associations of the CorrelationSubscription element.

Table 8.32 – CorrelationProperty model associations

Attribute Name Description/Usage

name: string [0..1] Specifies the name of the CorrelationProperty.

type: string [0..1] Specifies the type of the CorrelationProperty.

correlationPropertyRetrieval-
Expression: CorrelationPropertyRetrieval-
Expression [1..*]

The CorrelationPropertyRetrievalExpressions for
this CorrelationProperty, representing the associations of
FormalExpressions (extraction paths) to specific Messages
occurring in this Conversation.

Table 8.33 – CorrelationPropertyRetrievalExpression model associations

Attribute Name Description/Usage

messagePath: FormalExpression The FormalExpression that defines how to extract a
CorrelationProperty from the Message payload

messageRef: Message The specific Message the FormalExpression extracts the
CorrelationProperty from.
78 Business Process Model and Notation, v2.0

The CorrelationPropertyBinding element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 8.35 displays the additional model associations of the CorrelationPropertyBinding element.

At runtime, the correlation mechanism works as follows: When a Process instance is created the CorrelationKey
instances of all Conversations are initialized with some initial values that specify to correlate any incoming Message
for these Conversations. A SubscriptionProperty is updated whenever any of the Data Objects or
Properties changes that are referenced from the respective FormalExpression. As a result, incoming Messages
are matched against the now populated CorrelationKey instance. Later in the Process run, the
SubscriptionProperties can, again, change and implicitly change the correlation criterion. Alternatively, the
established mechanism of having the first Send Task or Receive Task populate the CorrelationKey instance
applies.

XML Schema for Correlation

Table 8.36 – Correlation Key XML schema

<xsd:element name="correlationKey" type="tCorrelationKey"/>
<xsd:complexType name="tCorrelationKey">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="correlationPropertyRef" type="xsd:QName" minOccurs="0" maxOc-

curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:String" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8.34 – CorrelationSubscription model associations

Attribute Name Description/Usage

correlationKeyRef: CorrelationKey The CorrelationKey this CorrelationSubscription refers
to.

correlationPropertyBinding:
CorrelationPropertyBinding [0..*]

The bindings to specific CorrelationProperties and
FormalExpressions (extraction rules atop the Process context).

Table 8.35 – CorrelationPropertyBinding model associations

Attribute Name Description/Usage

dataPath: FormalExpression The FormalExpression that defines the extraction rule atop the Process
context.

correlationPropertyRef:
CorrelationProperty

The specific CorrelationProperty, this
CorrelationPropertyBinding refers to.
Business Process Model and Notation, v2.0 79

Table 8.37 – Correlation Property XML schema

<xsd:element name="correlationProperty" type="tCorrelationProperty" substitutionGroup="rootElement"/>
<xsd:complexType name="tCorrelationProperty">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:sequence>
<xsd:element ref="correlationPropertyRetrievalExpression" minOccurs="1" maxOc-

curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:String" use="optional"/>
<xsd:attribute name="type" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8.38 – Correlation Property Binding XML schema

<xsd:element name="correlationPropertyBinding" type="tCorrelationPropertyBinding"/>
<xsd:complexType name="tCorrelationPropertyBinding">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="dataPath" type="tFormalExpression" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="correlationPropertyRef" type="xsd:QName" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8.39 – Correlation Property Retrieval Expression XML schema

<xsd:element name="correlationPropertyRetrievalExpression" type="tCorrelationPropertyRetrievalExpression"/>
<xsd:complexType name="tCorrelationPropertyRetrievalExpression">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="messagePath" type="tFormalExpression" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="messageRef" type="xsd:QName" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8.40 – Correlation Subscription XML schema

<xsd:element name="correlationSubscription" type="tCorrelationSubscription"/>
<xsd:complexType name=" tCorrelationSubscription ">

<xsd:complexContent>
80 Business Process Model and Notation, v2.0

<xsd:extension base="tBaseElement">
<xsd:sequence>

<xsd:element name="process" type="xsd:QName" use="required"/>
<xsd:element ref="correlationKeyRef" minOccurs="1" maxOccurs="1"/>
<xsd:element name="correlationPropertyBinding" type="xsd:QName" minOccurs="0" maxOc-

curs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

8.3.3 Error

An Error represents the content of an Error Event or the Fault of a failed Operation. An ItemDefinition is
used to specify the structure of the Error. An Error is generated when there is a critical problem in the processing of
an Activity or when the execution of an Operation failed.

Figure 8.18 - Error class diagram

The Error element inherits the attributes and model associations of BaseElement (see Table 8.5), through its
relationship to RootElement. Table 8.41 presents the additional attributes and model associations of the Error
element:
Business Process Model and Notation, v2.0 81

8.3.4 Escalation

An Escalation identifies a business situation that a Process might need to react to. An ItemDefinition is used
to specify the structure of the Escalation.

Figure 8.19 - Escalation class diagram

Table 8.41 – Error attributes and model associations

Attribute Name Description/Usage

structureRef : ItemDefinition [0..1] An ItemDefinition is used to define the “payload” of the Error.

name : string The descriptive name of the Error.

errorCode: string For an End Event:
If the result is an Error, then the errorCode MUST be supplied
(if the processType attribute of the Process is set to execut-
able) This “throws” the Error.

For an Intermediate Event within normal flow:
If the trigger is an Error, then the errorCode MUST be entered
(if the processType attribute of the Process is set to execut-
able). This “throws” the Error.

For an Intermediate Event attached to the boundary of an Activity:
If the trigger is an Error, then the errorCode MAY be entered.
This Event “catches” the Error. If there is no errorCode, then
any error SHALL trigger the Event. If there is an errorCode, then
only an Error that matches the errorCode SHALL trigger the
Event.
82 Business Process Model and Notation, v2.0

The Escalation element inherits the attributes and model associations of BaseElement (see Table 8.5), through its
relationship to RootElement. Table 8.41 presents the additional model associations of the Error element:

8.3.5 Events

An Event is something that “happens” during the course of a Process. These Events affect the flow of the Process
and usually have a cause or an impact. The term “event” is general enough to cover many things in a Process. The start
of an Activity, the end of an Activity, the change of state of a document, a Message that arrives, etc., all could be
considered Events. However, BPMN has restricted the use of Events to include only those types of Events that will
affect the sequence or timing of Activities of a Process.

Table 8.42 – Esclation attributes and model associations

Attribute Name Description/Usage

structureRef : ItemDefinition [0..1] An ItemDefinition is used to define the “payload” of the
Escalation.

name : string The descriptive name of the Escalation.

escalationCode: string For an End Event:
If the Result is an Escalation, then the escalationCode
MUST be supplied (if the processType attribute of the Process
is set to executable). This “throws” the Escalation.

For an Intermediate Event within normal flow:
If the trigger is an Escalation, then the escalationCode
MUST be entered (if the processType attribute of the Process is
set to executable). This “throws” the Escalation.

For an Intermediate Event attached to the boundary of an Activity:
If the trigger is an Escalation, then the escalationCode MAY
be entered. This Event “catches” the Escalation. If there is no
escalationCode, then any Escalation SHALL trigger the
Event. If there is an escalationCode, then only an Escala-
tion that matches the escalationCode SHALL trigger the
Event.
Business Process Model and Notation, v2.0 83

Figure 8.20 - Event class diagram

The Event element inherits the attributes and model associations of FlowElement (see Table 8.44), but adds no
additional attributes or model associations:

The details for the types of Events (Start, Intermediate, and End) are defined in the Section “Event Definitions” on
page 268.

8.3.6 Expressions

The Expression class is used to specify an Expression using natural-language text. These Expressions are not
executable. The natural language text is captured using the documentation attribute, inherited from BaseElement.

Expression inherits the attributes and model associations of BaseElement (see Table 8.5), but adds no additional
attributes or model associations.
84 Business Process Model and Notation, v2.0

Expressions are used in many places within BPMN to extract information from the different elements, normally data
elements. The most common usage is when modeling decisions, where conditional Expressions are used to direct the
flow along specific paths based on some criteria.

BPMN supports underspecified Expressions, where the logic is captured as natural-language descriptive text. It also
supports formal Expressions, where the logic is captured in an executable form using a specified Expression
language.

Figure 8.21 - Expression class diagram

Expression
The Expression class is used to specify an Expression using natural-language text. These Expressions are not
executable and are considered underspecified.

The definition of an Expression can be done in two ways: it can be contained where it is used, or it can be defined at
the Process level and then referenced where it is used.

The Expression element inherits the attributes and model associations of BaseElement (see Table 8.5), but does not
have any additional attributes or model associations.

Formal Expression
The FormalExpression class is used to specify an executable Expression using a specified Expression
language. A natural-language description of the Expression can also be specified, in addition to the formal
specification.

The default Expression language for all Expressions is specified in the Definitions element, using the
expressionLanguage attribute. It can also be overridden on each individual FormalExpression using the same
attribute.

The FormalExpression element inherits the attributes and model associations of BaseElement (see Table 8.5),
through the Expression element. Table 8.43 presents the additional attributes and model associations of the
FormalExpression:
Business Process Model and Notation, v2.0 85

8.3.7 Flow Element

FlowElement is the abstract super class for all elements that can appear in a Process flow, which are FlowNodes
(see page 99, which consist of Activities (see page 155), Choreography Activities (see page 331) Gateways (see
page 295), and Events (see page 240)), Data Objects (see page 212), Data Associations (see page 228), and
Sequence Flows (see page 97).

Table 8.43 – FormalExpression attributes and model associations

Attribute Name Description/Usage

language: string [0..1] Overrides the Expression language specified in the Definitions. The language
MUST be specified in a URI format.

body: Element The body of the Expression.
Note that this attribute is not relevant when the XML Schema is used for
interchange. Instead, the FormalExpression complex type supports mixed
content. The body of the Expression would be specified as element content.
For example:
<formalExpression id=“ID_2">
 count(../dataObject[id="CustomerRecord_1"]/emailAddress) > 0
 <evaluatesToType id="ID_3" typeRef=“xsd:boolean"/>
</formalExpression>

evaluatesToTypeRef:
ItemDefinition

The type of object that this Expression returns when evaluated. For example,
conditional Expressions evaluate to a boolean.
86 Business Process Model and Notation, v2.0

Figure 8.22 - FlowElement class diagram

The FlowElement element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 8.44
presents the additional attributes and model associations of the FlowElement element:
Business Process Model and Notation, v2.0 87

8.3.8 Flow Elements Container

FlowElementsContainer is an abstract super class for BPMN diagrams (or views) and defines the superset of
elements that are contained in those diagrams. Basically, a FlowElementsContainer contains FlowElements,
which are Events (see page 240), Gateways (see page 295), Sequence Flows (see page 97), Activities (see page
155), and Choreography Activities (see page 331).

There are four (4) types of FlowElementsContainers (see Figure 8.23): Process, Sub-Process,
Choreography, and Sub-Choreography.

Table 8.44 – FlowElement attributes and model associations

Attribute Name Description/Usage

name: string [0..1] The descriptive name of the element.

categoryValueRef: Category-
Value [0..*]

A reference to the Category Values that are associated with this Flow
Element.

auditing: Auditing [0..1] A hook for specifying audit related properties. Auditing can only be
defined for a Process.

monitoring: Monitoring [0..1] A hook for specifying monitoring related properties. Monitoring can only
be defined for a Process.
88 Business Process Model and Notation, v2.0

Figure 8.23 - FlowElementContainers class diagram

The FlowElementsContainer element inherits the attributes and model associations of BaseElement (see Table
8.5). Table 8.45 presents the additional model associations of the FlowElementsContainer element.

Table 8.45 – FlowElementsContainer model associations

Attribute Name Description/Usage

flowElements: Flow
Element [0..*]

This association specifies the particular flow elements contained in a
FlowElementContainer. Flow elements are Events, Gateways, Sequence
Flows, Activities, Data Objects, Data Associations, and Choreography
Activities.
Note that:

• Choreography Activities MUST NOT be included as a flowElement for a
Process.

• Activities, Data Associations, and Data Objects MUST NOT be included as
a flowElement for a Choreography.

laneSets: LaneSet [0..*] This attribute defines the list of LaneSets used in the FlowElementsContainer
LaneSets are not used for Choreographies or Sub-Choreographies..
Business Process Model and Notation, v2.0 89

8.3.9 Gateways

Gateways are used to control how the Process flows (how Tokens flow) through Sequence Flows as they converge
and diverge within a Process. If the flow does not need to be controlled, then a Gateway is not needed. The term
“gateway” implies that there is a gating mechanism that either allows or disallows passage through the Gateway--that is,
as tokens arrive at a Gateway, they can be merged together on input and/or split apart on output as the Gateway
mechanisms are invoked.

Gateways, like Activities, are capable of consuming or generating additional control tokens, effectively controlling the
execution semantics of a given Process. The main difference is that Gateways do not represent ‘work’ being done and
they are considered to have zero effect on the operational measures of the Process being executed (cost, time, etc.).

The Gateway controls the flow of both diverging and converging Sequence Flows. That is, a single Gateway could
have multiple input and multiple output flows. Modelers and modeling tools might want to enforce a best practice of a
Gateway only performing one of these functions. Thus, it would take two sequential Gateways to first converge and
then to diverge the Sequence Flows.

Figure 8.24 - Gateway class diagram

The details for the types of Gateways (Exclusive, Inclusive, Parallel, Event-Based, and Complex) is defined on
page 295 for Processes and on page 355 for Choreographies.
90 Business Process Model and Notation, v2.0

The Gateway class is an abstract type. Its concrete subclasses define the specific semantics of individual Gateway
types, defining how the Gateway behaves in different situations.

The Gateway element inherits the attributes and model associations of FlowElement (see Table 8.44). Table 8.46
presents the additional attributes of the Gateway element.

8.3.10 Item Definition

BPMN elements, such as DataObjects and Messages, represent items that are manipulated, transferred, transformed
or stored during Process flows. These items can be either physical items, such as the mechanical part of a vehicle, or
information items such the catalog of the mechanical parts of a vehicle.

An important characteristics of items in Process is their structure. BPMN does not require a particular format for this
data structure, but it does designate XML Schema as its default. The structure attribute references the actual data
structure.

The default format of the data structure for all elements can be specified in the Definitions element using the
typeLanguage attribute. For example, a typeLanguage value of http://www.w3.org/2001/XMLSchema”
indicates that the data structures using by elements within that Definitions are in the form of XML Schema types. If
unspecified, the default is XML schema. An Import is used to further identify the location of the data structure (if
applicable). For example, in the case of data structures contributed by an XML schema, an Import would be used to
specify the file location of that schema.

Structure definitions are always defined as separate entities, so they cannot be inlined in one of their usages. You will see
that in every mention of structure definition there is a “reference” to the element. This is why this class inherits from
RootElement.

An ItemDefinition element can specify an import reference where the proper definition of the structure is defined.

Table 8.46 – Gateway attributes

Attribute Name Description/Usage

gatewayDirection: GatewayDirection =
Unspecified

{ Unspecified | Converging | Diverging |
Mixed }

An attribute that adds constraints on how the Gateway MAY be
used.

• Unspecified: There are no constraints. The Gateway MAY
have any number of incoming and outgoing Sequence Flows.

• Converging: This Gateway MAY have multiple incoming
Sequence Flows but MUST have no more than one (1)
outgoing Sequence Flow.

• Diverging: This Gateway MAY have multiple outgoing
Sequence Flows but MUST have no more than one (1)
incoming Sequence Flow.

• Mixed: This Gateway contains multiple outgoing and multiple
incoming Sequence Flows.
Business Process Model and Notation, v2.0 91

In cases where the data structure represents a collection, the multiplicity can be projected into the attribute
isCollection. If this attribute is set to “true,” but the actual type is not a collection type, the model is considered as
invalid. BPMN compliant tools might support an automatic check for these inconsistencies and report this as an error.
The default value for this element is “false.”

The itemKind attribute specifies the nature of an item which can be a physical or an information item.

Figure 8.25 shows the ItemDefinition class diagram. When an ItemDefinition is defined it is contained in
Definitions.

Figure 8.25 - ItemDefinition class diagram

The ItemDefinition element inherits the attributes and model associations BaseElement (see Table 8.5) through
its relationship to RootElement. Table 8.47 presents the additional attributes and model associations for the
ItemDefinition element:

Table 8.47 – ItemDefinition attributes & model associations

Attribute Name Description/Usage

itemKind: ItemKind = Information
{ Information | Physical }

This defines the nature of the Item. Possible values are physical or
information. The default value is information.

structureRef: [Element [0..1] The concrete data structure to be used.

import: Import [0..1] Identifies the location of the data structure and its format. If the
importType attribute is left unspecified, the typeLanguage specified
in the Definitions that contains this ItemDefinition is assumed.

isCollection: boolean = False Setting this flag to true indicates that the actual data type is a
collection.
92 Business Process Model and Notation, v2.0

8.3.11 Message

A Message represents the content of a communication between two Participants. In BPMN 2.0, a Message is a
graphical decorator (it was a supporting element in BPMN 1.2). An ItemDefinition is used to specify the
Message structure.

When displayed in a diagram:

� In a Message is a rectangle with converging diagonal lines in the upper half of the rectangle to give the appearance
of an envelope (see Figure 8.26). It MUST be drawn with a single thin line.

� The use of text, color, size, and lines for a Message MUST follow the rules defined in Section “Use of Text,
Color, Size, and Lines in a Diagram” on page 41.

Figure 8.26 - A Message

In addition, when used in a Choreography Diagram more than one Message MAY be used for a single
Choreography Task. In this case, it is important to know the first (initiating) Message of the interaction. For return
(non-initiating) Messages the symbol of the Message is shaded with a light fill (see Figure 8.27).

Figure 8.27 - A non-initiating Message

� Any Message sent by the non-initiating Participant or Sub-Choreography MUST be shaded with a light fill..

In a Collaboration, the communication itself is represented by a Message Flow (see the Section “Message Flow”
below for more details). The Message can be optionally depicted as a graphical decorator on a Message Flow in a
Collaboration (see Figure 8.28 and Figure 8.28).
Business Process Model and Notation, v2.0 93

Figure 8.28 - Messages Association overlapping Message Flows

In a Choreography, the communication is represented by a Choreography Task (see page 333). The Message can
be depicted as a decorator with a Choreography Task in a Choreography (see Figure 8.29).

Figure 8.29 - Messages shown Associated with a Choreography Task

Figure 8.30 displays the class diagram showing the attributes and model associations for the Message element.

Confirmation

Order

Customer

Supplier

Confirmation

Suppl ier

Customer

Place
Order

Order
94 Business Process Model and Notation, v2.0

Figure 8.30 - The Message class diagram

The Message element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 8.48 presents the additional attributes and model associations for the Message
element:

8.3.12 Resources

The Resource class is used to specify resources that can be referenced by Activities. These Resources can be
Human Resources as well as any other resource assigned to Activities during Process execution time.

The definition of a Resource is “abstract,” because it only defines the Resource, without detailing how e.g., actual
user IDs are associated at runtime. Multiple Activities can utilize the same Resource.

Table 8.48 – Message attributes and model associations

Attribute Name Description/Usage

name: string Name is a text description of the Message.

itemRef : ItemDefinition [0..1] An ItemDefinition is used to define the “payload” of the
Message.
Business Process Model and Notation, v2.0 95

Every Resource can define a set of ResourceParameters. These parameters can be used at runtime to define
query e.g., into an Organizational Directory. Every Activity referencing a parameterized Resource can bind values
available in the scope of the Activity to these parameters.

Figure 8.31 - Resource class diagram

The Resource element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 8.51 presents the additional model associations for the Resource element:

As mentioned before, the Resource can define a set of parameters to define a query to resolve the actual resources
(e.g., user ids).

The ResourceParameter element inherits the attributes and model associations of BaseElement (see Table 8.5)
through its relationship to RootElement. Table 8.51 presents the additional model associations for the
ResourceParameter element:

Table 8.49 – Resource attributes and model associations

Attribute Name Description/Usage

name: string This attribute specifies the name of the Resource.

resourceParameters:
ResourceParameter [0..*]

This model association specifies the definition of the parameters
needed at runtime to resolve the Resource.
96 Business Process Model and Notation, v2.0

8.3.13 Sequence Flow

A Sequence Flow is used to show the order of Flow Elements in a Process or a Choreography. Each
Sequence Flow has only one source and only one target. The source and target MUST be from the set of the following
Flow Elements: Events (Start, Intermediate, and End), Activities (Task and Sub-Process; for Processes),
Choreography Activities (Choreography Task and Sub-Choreography; for Choreographies), and
Gateways.

� A Sequence Flow is line with a solid arrowhead that MUST be drawn with a solid single line (as seen in Figure
8.32).

� The use of text, color, size, and lines for a Sequence Flow MUST follow the rules defined in Section “Use of
Text, Color, Size, and Lines in a Diagram” on page 41.

Figure 8.32 - A Sequence Flow

A Sequence Flow can optionally define a condition Expression, indicating that the token will be passed down the
Sequence Flow only if the Expression evaluates to true. This Expression is typically used when the source of
the Sequence Flow is a Gateway or an Activity.

� A conditional outgoing Sequence Flow from an Activity MUST be drawn with a mini-diamond marker at the
beginning of the connector (as seen in Figure 8.33).

� If a conditional Sequence Flow is used from a source Activity, then there MUST be at least one other
outgoing Sequence Flow from that Activity.

� Conditional outgoing Sequence Flows from a Gateway MUST NOT be drawn with a mini-diamond marker at
the beginning of the connector.

� A source Gateway MUST NOT be of type Parallel or Event.

Figure 8.33 - A Conditional Sequence Flow

Table 8.50 – ResourceParameter attributes and model associations

Attribute Name Description/Usage

name: string Specifies the name of the query parameter.

type: ItemDefinition Specifies the type of the query parameter.

isRequired: boolean Specifies, if a parameter is optional or mandatory.
Business Process Model and Notation, v2.0 97

A Sequence Flow that has an Exclusive, Inclusive, or Complex Gateway or an Activity as its source can also be
defined with as default. Such a Sequence Flow will have a marker to show that it is a default flow. The default
Sequence Flow is taken (a token is passed) only if all the other outgoing Sequence Flows from the Activity or
Gateway are not valid (i.e., their condition Expressions are false)

� A default outgoing Sequence Flow MUST be drawn with a slash marker at the beginning of the connector (as
seen in Figure 8.34).

Figure 8.34 - A Default Sequence Flow

Figure 8.35 - SequenceFlow class diagram

The Sequence Flow element inherits the attributes and model associations of FlowElement (see Table 8.44). Table
8.51 presents the additional attributes and model associations of the Sequence Flow element:
98 Business Process Model and Notation, v2.0

Flow Node
The FlowNode element is used to provide a single element as the source and target Sequence Flow associations (see
Figure 8.35) instead of the individual associations of the elements that can connect to Sequence Flows (see the section
above). Only the Gateway, Activity, Choreography Activity, and Event elements can connect to Sequence Flows
and thus, these elements are the only ones that are sub-classes of FlowNode.

Since Gateway, Activity, Choreography Activity, and Event have their own attributes, model associations, and
inheritances; the FlowNode element does not inherit from any other BPMN element. Table 8.52 presents the additional
model associations of the FlowNode element:

Table 8.51 – SequenceFlow attributes and model associations

Attribute Name Description/Usage

sourceRef: FlowNode The FlowNode that the Sequence Flow is connecting from.
For a Process: Of the types of FlowNode, only Activities, Gateways, and Events
can be the source. However, Activities that are Event Sub-Processes are not
allowed to be a source.
For a Choreography: Of the types of FlowNode, only Choreography Activities,
Gateways, and Events can be the source.

targetRef: FlowNode The FlowNode that the Sequence Flow is connecting to.
For a Process: Of the types of FlowNode, only Activities, Gateways, and Events
can be the target. However, Activities that are Event Sub-Processes are not
allowed to be a target.
For a Choreography: Of the types of FlowNode, only Choreography Activities,
Gateways, and Events can be the target.

conditionExpression:
Expression [0..1]

An optional boolean Expression that acts as a gating condition. A token will only
be placed on this Sequence Flow if this conditionExpression evaluates to
true.

isImmediate: boolean
[0..1]

An optional boolean value specifying whether Activities or Choreography
Activities not in the model containing the Sequence Flow can occur between the
elements connected by the Sequence Flow. If the value is true, they MAY NOT
occur. If the value is false, they MAY occur. Also see the isClosed attribute on
Process, Choreography, and Collaboration. When the attribute has no value, the
default semantics depends on the kind of model containing Sequence Flows:

• For non-executable Processes (public Processes and non-executable private
Processes) and Choreographies no value has the same semantics as if the
value were false.

• For an executable Processes no value has the same semantics as if the value
were true.

• For executable Processes, the attribute MUST NOT be false.
Business Process Model and Notation, v2.0 99

8.3.14 Common Package XML Schemas

Table 8.53 – Error XML schema

<xsd:element name="error" type="tError" substitutionGroup="rootElement"/>
<xsd:complexType name="tError">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="errorCode" type="xsd:string"/>
<xsd:attribute name="structureRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8.54 – Escalation XML schema

<xsd:element name="escalation" type="tEscalation" substitutionGroup="rootElement"/>
<xsd:complexType name="tEscalation">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="escalationCode" type="xsd:string"/>
<xsd:attribute name="structureRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8.55 – Expression XML schema

<xsd:element name="expression" type="tExpression"/>
<xsd:complexType name="tExpression">

<xsd:complexContent>
<xsd:extension base="tBaseElementWithMixedContent"/>

</xsd:complexContent>
</xsd:complexType>

Table 8.52 – FlowNode model associations

Attribute Name Description/Usage

incoming: Sequence Flow [0..*] This attribute identifies the incoming Sequence Flow of the FlowNode.

outgoing: Sequence Flow [0..*] This attribute identifies the outgoing Sequence Flow of the FlowNode.
This is an ordered collection.
100 Business Process Model and Notation, v2.0

Table 8.56 – FlowElement XML schema

<xsd:element name="flowElement" type="tFlowElement"/>
<xsd:complexType name="tFlowElement" abstract="true">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element ref="auditing" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="monitoring" minOccurs="0" maxOccurs="1"/>
<xsd:element name="categoryValueRef" type="xsd:QName" minOccurs="0" maxOc-

curs="unbounded"/>
</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 8.57 – FlowNode XML schema

<xsd:element name="flowNode" type="tFlowNode"/>
<xsd:complexType name="tFlowNode" abstract="true">

<xsd:complexContent>
<xsd:extension base="tFlowElement">

<xsd:sequence>
<xsd:element name="incoming" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="outgoing" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 8.58 – FormalExpression XML schema

<xsd:element name="formalExpression" type="tFormalExpression" substitutionGroup="expression"/>
<xsd:complexType name="tFormalExpression">

<xsd:complexContent>
<xsd:extension base="tExpression">

<xsd:attribute name="language" type="xsd:anyURI" use="optional"/>
<xsd:attribute name="evaluatesToTypeRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
Business Process Model and Notation, v2.0 101

Table 8.59 – InputOutputBinding XML schema

<xsd:element name="ioBinding" type="tinputOutputBinding"/>
<xsd:complexType name="tinputOutputBinding">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name=”inputDataRef" type="xsd:IDREF"/>
<xsd:attribute name=”outputDataRef" type="xsd:IDREF"/>
<xsd:attribute name=”operationRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8.60 – ItemDefinition XML schema

<xsd:element name="itemDefinition" type="tItemDefinition" substitutionGroup="rootElement"/>
<xsd:complexType name="tItemDefinition">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:attribute name="structureRef" type="xsd:QName"/>
<xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>
<xsd:attribute name="itemKind" type="tItemKind" default="Information"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="tItemKind">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Information"/>
<xsd:enumeration value="Physical"/>

</xsd:restriction>
</xsd:simpleType>

Table 8.61 – Message XML schema

<xsd:element name="message" type="tMessage" substitutionGroup="rootElement"/>
<xsd:complexType name="tMessage">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="itemRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8.62 – Resources XML schema

<xsd:element name="resource" type="tResource" substitutionGroup="rootElement"/>
102 Business Process Model and Notation, v2.0

<xsd:complexType name="tResource">
<xsd:complexContent>

<xsd:extension base="tRootElement">
<xsd:sequence>

<xsd:element ref="resourceParameter" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
Table 8.63 – ResourceParameter XML schema

<xsd:element name="resourceParameter" type="tResourceParameter" />
<xsd:complexType name="tResourceParameter">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="type" type="xsd:QName"/>
<xsd:attribute name="isRequired" type="xsd:Boolean" />

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8.64 – SequenceFlow XML schema

<xsd:element name="sequenceFlow" type="tSequenceFlow" substitutionGroup="flowElement"/>
<xsd:complexType name="tSequenceFlow">

<xsd:complexContent>
<xsd:extension base="tFlowElement">

<xsd:sequence>
<xsd:element name="conditionExpression" type="tExpression" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="sourceRef" type="xsd:IDREF" use="required"/>
<xsd:attribute name="targetRef" type="xsd:IDREF" use="required"/>
<xsd:attribute name="isImmediate" type="xsd:boolean" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
Business Process Model and Notation, v2.0 103

8.4 Services
The Service package contains constructs necessary for modeling services, interfaces, and operations.

Figure 8.36 - The Service class diagram

8.4.1 Interface

An Interface defines a set of operations that are implemented by Services.

The Interface inherits the attributes and model associations of BaseElement (see Table 8.5) through its relationship
to RootElement. Table 8.65 presents the additional attributes and model associations of the Interface:
104 Business Process Model and Notation, v2.0

8.4.2 EndPoint

The actual definition of the service address is out of scope of BPMN 2.0. The EndPoint element is an extension point
and extends from RootElement. The EndPoint element MAY be extended with endpoint reference definitions
introduced in other specifications (e.g., WS-Addressing).

EndPoints can be specified for Participants.

8.4.3 Operation

An Operation defines Messages that are consumed and, optionally, produced when the Operation is called. It can
also define zero or more errors that are returned when operation fails. The Operation inherits the attributes and model
associations of BaseElement (see Table 8.5). Table 8.66 below presents the additional attributes and model associations
of the Operation:

Table 8.65 – Interface attributes and model associations

Attribute Name Description/Usage

name: string The descriptive name of the element.

operations: Operation [1..*] This attribute specifies operations that are defined as part of the
Interface. An Interface has at least one Operation.

callableElements: CallableElement [0..*] The CallableElements that use this Interface.

implementationRef: Element [0..1] This attribute allows to reference a concrete artifact in the underly-
ing implementation technology representing that interface, such
as a WSDL porttype.
Business Process Model and Notation, v2.0 105

8.4.4 Service Package XML Schemas

Table 8.67 – Interface XML schema

<xsd:element name="interface" type="tInterface" substitutionGroup="rootElement"/>
<xsd:complexType name="tInterface">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:sequence>
<xsd:element ref="operation" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="implementationRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8.68 – Operation XML schema

<xsd:element name="operation" type="tOperation"/>
<xsd:complexType name="tOperation">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="inMessageRef" type="xsd:QName" minOccurs="1" maxOccurs="1"/>
<xsd:element name="outMessageRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>
<xsd:element name="errorRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="implementationRef" type="xsd:QName" use="optional"/>

Table 8.66 – Operation attributes and model associations

Attribute Name Description/Usage

name: string The descriptive name of the element.

inMessageRef: Message This attribute specifies the input Message of the Operation. An Operation
has exactly one input Message.

outMessageRef: Message
[0..1]

This attribute specifies the output Message of the Operation. An Operation
has at most one input Message.

errorRef: Error [0..*] This attribute specifies errors that the Operation may return. An Operation
MAY refer to zero or more Error elements.

implementationRef: Ele-
ment [0..1]

This attribute allows to reference a concrete artifact in the underlying implemen-
tation technology representing that operation, such as a WSDL operation.
106 Business Process Model and Notation, v2.0

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 8.69 – EndPoint XML schema

<xsd:element name="endPoint" type="tEndPoint"/>
<xsd:complexType name="tEndPoint">

<xsd:complexContent>
<xsd:extension base="tRootElement"/>

</xsd:complexContent>
</xsd:complexType>
Business Process Model and Notation, v2.0 107

108 Business Process Model and Notation, v2.0

9 Collaboration

Note – The contents of this chapter are REQUIRED for BPMN Choreography Modeling Conformance, BPMN Process
Modeling Conformance, or for BPMN Complete Conformance. However, this chapter is NOT REQUIRED for, BPMN
Process Execution Conformance or BPMN BPEL Process Execution Conformance. For more information about BPMN
conformance types, see page 2.

The Collaboration package contains classes which are used for modeling Collaborations, which is a collection of
Participants shown as Pools, their interactions as shown by Message Flows, and MAY include Processes within the
Pools and/or Choreographies between the Pools (see Figure 9.1). A Choreography is an extended type of
Collaboration. When a Collaboration is defined it is contained in Definitions.

Figure 9.1 - Classes in the Collaboration package
Business Process Model and Notation, v2.0 109

The Collaboration element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 9.1 presents the additional attributes and model associations for the Collaboration
element:

Table 9.1 - Collaboration Attributes and Model Associations

Attribute Name Description/Usage

name: string Name is a text description of the Collaboration.

choreographyRef:
Choreography [0..*]

The choreographyRef model association defines the Choreographies that
can be shown between the Pools of the Collaboration. A Choreography
specifies a business contract (or the order in which messages will be
exchanged) between interacting Participants. See page 325 for more details
on Choreography.
The participantAssociations (see below) are used to map the
Participants of the Choreography to the Participants of the Collaboration.
The MessageFlowAssociations (see below) are used to map the
Message Flows of the Choreography to the Message Flows of the
Collaboration.
The conversationAssociations (see below) are used to map the
Conversations of the Choreography to the Conversations of the
Collaboration.
Note that this attribute is not applicable for Choreography or
GlobalConversation which are a subtypes of Collaboration. Thus, a
Choreography cannot reference another Choreography.

correlationKeys:
CorrelationKey [0..*]

This association specifies CorrelationKeys used to associate Messages
to a particular Collaboration.

conversationAssociations:
ConversationAssociation [0..*]

This attribute provides a list of mappings from the Conversations of a
referenced Collaboration to the Conversations of another Collaboration.
It is used when:

• When a Choreography is referenced by a Collaboration.

conversations:
ConversationNode [0..*]

The conversations model aggregation relationship allows a
Collaboration to contain Conversation elements, in order to group
Message Flows of the Collaboration and associate correlation information,
as is REQUIRED for the definitional Collaboration of a Process model. The
Conversation elements will be visualized if the Collaboration is a
Collaboration, but not for a Choreography.

conversationLinks:
ConversationLink [0..*]

This provides the Conversation Links that are used in the Collaboration.

artifacts: Artifact [0..*] This attribute provides the list of Artifacts that are contained within the
Collaboration.
110 Business Process Model and Notation, v2.0

A set of Messages Flow of a particular Collaboration MAY belong to a Conversation. A Conversation is a set of
Message Flows that share a particular purpose—i.e., they all relate to the handling of a single order (see page 125 for
more information about Conversations).

9.1 Basic Collaboration Concepts
A Collaboration usually contains two (2) or more Pools, representing the Participants in the Collaboration. The
Message exchange between the Participants is shown by a Message Flow that connects two (2) Pools (or the objects
within the Pools). The Messages associated with the Message Flows MAY also be shown. See Figure 9.3, Figure
9.4, and Figure 9.5 for examples of Collaborations.

A Pool MAY be empty, a “black box,” or MAY show a Process within. Choreographies MAY be shown “in
between” the Pools as they bisect the Message Flows between the Pools. All combinations of Pools, Processes,
and a Choreography are allowed in a Collaboration.

participants: Participant [0..*] This provides the list of Participants that are used in the Collaboration.
Participants are visualized as Pools in a Collaboration and as Participant
Bands in Choreography Activities in a Choreography.

participantAssociations:
ParticipantAssociations [0..*]

This attribute provides a list of mappings from the Participants of a
referenced Collaboration to the Participants of another Collaboration. It is
used in the following situations

• When a Choreography is referenced by the Collaboration.

• When a definitional Collaboration for a Process is referenced through
a Call Activity (and mapped to definitional Collaboration of the
calling Process).

messageFlow: Message Flow
[0..*]

This provides the list of Message Flows that are used in the Collaboration.
Message Flows are visualized in Collaboration (as dashed line) and
hidden in Choreography.

messageFlowAssociations:
Message Flow Association
[0..*]

This attribute provides a list of mappings for the Message Flows of the
Collaboration to Message Flows of a referenced model. It is used in the
following situation:

• When a Choreography is referenced by a Collaboration. This allows
the "wiring up" of the Collaboration Message Flows to the
appropriate Choreography Activities.

IsClosed: boolean = false A boolean value specifying whether Message Flows not modeled in the
Collaboration can occur when the Collaboration is carried out.

• If the value is true, they MAY NOT occur.

• If the value is false, they MAY occur.

Table 9.1 - Collaboration Attributes and Model Associations
Business Process Model and Notation, v2.0 111

9.1.1 Use of BPMN Common Elements

Some BPMN elements are common to both Process and Choreography, as well as Collaboration; they are used in
these diagrams. The next few sections will describe the use of Messages, Message Flows, Participants, Sequence
Flows, Artifacts, Correlations, Expressions, and Services in Choreography.

9.2 Pool and Participant
A Pool is the graphical representation of a Participant in a Collaboration. A Participant (see page 115) can be a
specific PartnerEntity (e.g., a company) or can be a more general PartnerRole (e.g., a buyer, seller, or
manufacturer). A Pool MAY or MAY NOT reference a Process. A Pool is NOT REQUIRED to contain a Process,
i.e., it can be a “black box.”

� A Pool is a square-cornered rectangle that MUST be drawn with a solid single line (see Figure 9.2).

� The label for the Pool MAY be placed in any location and direction within the Pool, but MUST be separated
from the contents of the Pool by a single line.

� If the Pool is a black box (i.e., does not contain a Process), then the label for the Pool MAY be placed
anywhere within the Pool without a single line separator.

� One, and only one, Pool in a diagram MAY be presented without a boundary. If there is more than one Pool in
the diagram, then the remaining Pools MUST have a boundary.

The use of text, color, size, and lines for a Pool MUST follow the rules defined in Section “Use of Text, Color, Size, and
Lines in a Diagram” on page 41.

Figure 9.2 - A Pool

To help with the clarity of the Diagram, a Pool extends the entire length of the Diagram, either horizontally or vertically.
However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and modeling tools can use
Pools in a flexible manner in the interest of conserving the “real estate” of a Diagram on a screen or a printed page.

A Pool acts as the container for the Sequence Flows between Activities (of a contained Process). The Sequence
Flows can cross the boundaries between Lanes of a Pool (see page 313 for more details on Lanes), but cannot cross
the boundaries of a Pool. That is, a Process is fully contained within the Pool. The interaction between Pools is
shown through Message Flows.

Another aspect of Pools is whether or not there is any Activity detailed within the Pool. Thus, a given Pool MAY be
shown as a “White Box,” with all details (e.g., a Process) exposed, or as a “Black Box,” with all details hidden. No
Sequence Flows are associated with a “Black Box” Pool, but Message Flows can attach to its boundaries (see
Figure 9.3).

N
am

e

112 Business Process Model and Notation, v2.0

Figure 9.3 - Message Flows connecting to the boundaries of two Pools

For a “White Box” Pool, the Activities within are organized by Sequence Flows. Message Flows can cross the
Pool boundary to attach to the appropriate Activity (see Figure 9.4).

Figure 9.4 - Message Flows connecting to Flow Objects within two Pools

M
an

uf
ac

tu
re

r
Fi

na
nc

ia
l

In
st

itu
tio

n

Credit ResponseCredit Request

D
is

tri
bu

tio
n

S
al

es

S
up

pl
ie

r
Fi

na
nc

ia
l

In
st

itu
tio

n

Authorize
Payment

Pack Goods Ship Goods

Process
Order

Credit Card
Authori-
zation
Business Process Model and Notation, v2.0 113

A Collaboration can contain two (2) or more Pools (i.e., Participants). However, a Process that represents the work
performed from the point of view of the modeler or the modeler's organization can be considered "internal" and is NOT
REQUIRED to be surrounded by the boundary of the Pool, while the other Pools in the Diagram MUST have their
boundary (see Figure 9.5).

Figure 9.5 - Main (Internal) Pool without boundaries

BPMN specifies a marker for Pools: a multi-instance marker May be displayed for a Pool (see Figure 9.6). The marker
is used if the Participant defined for the Pool is a multi-instance Participant. See page 118 for more information on
Participant multiplicity.

� The marker for a Pool that is a multi-instance MUST be a set of three vertical lines in parallel.

� The marker, if used, MUST be centered at the bottom of the shape.

Financial Institution

Process
Order

Authorize
Payment Ship GoodsPack Goods
114 Business Process Model and Notation, v2.0

Figure 9.6 - Pools with a Multi-Instance Participant Markers

9.2.1 Participants

A Participant represents a specific PartnerEntity (e.g., a company) and/or a more general PartnerRole (e.g., a
buyer, seller, or manufacturer) that are Participants in a Collaboration. A Participant is often responsible for the
execution of the Process enclosed in a Pool; however, a Pool MAY be defined without a Process.

Figure 9.7 displays the class diagram of the Participant and its relationships to other BPMN elements. When Participants
are defined they are contained within a Collaboration, which includes the sub-types of Choreography,
GlobalConversation, or GlobalChoreographyTask.

Supplier Supplier
Business Process Model and Notation, v2.0 115

Figure 9.7 - The Participant Class Diagram

The Participant element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 9.2
presents the additional attributes and model associations for the Participant element:
116 Business Process Model and Notation, v2.0

PartnerEntity
A PartnerEntity is one of the possible types of Participant (see the section above).

The PartnerEntity element inherits the attributes and model associations of BaseElement (see Figure 8.5). Table
9.3 presents the additional attributes and model associations for the PartnerEntity element:

Table 9.2 – Participant attributes and model associations

Attribute Name Description/Usage

name: string [0..1] Name is a text description of the Participant. The name of the
Participant can be displayed directly or it can be substituted by the
associated PartnerRole or PartnerEntity. Potentially, both the
PartnerEntity name and PartnerRole name can be displayed for
the Participant.

processRef: Process [0..1] The processRef attribute identifies the Process that the
Participant uses in the Collaboration. The Process will be
displayed within the Participant’s Pool.

partnerRoleRef: PartnerRole [0..*] The partnerRoleRef attribute identifies a PartnerRole that the
Participant plays in the Collaboration. Both a PartnerRole and a
PartnerEntity MAY be defined for the Participant. This attribute is
derived from the participantRefs of PartnerRole.

partnerEntityRef: PartnerEntity [0..*] The partnerEntityRef attribute identifies a PartnerEntity that
the Participant plays in the Collaboration. Both a PartnerRole and a
PartnerEntity MAY be defined for the Participant.This attribute is
derived from the participantRefs of PartnerEntity.

interfaceRef: Interface [0..*] This association defines Interfaces that a Participant supports. The
definition of Interfaces is provided on page 104.

participantMultiplicity: participant-
Multiplicity [0..1]

The participantMultiplicityRef model association is used to
define Participants that represent more than one (1) instance of the
Participant for a given interaction. See the next section for more details
on ParticipantMultiplicity.

endPointRefs: EndPoint [0..*] This attribute is used to specify the address (or endpoint reference) of
concrete services realizing the Participant.

Table 9.3 – PartnerEntity attributes

Attribute Name Description/Usage

name: string Name is a text description of the PartnerEntity.

participantRef: Participant [0..*] Specifies how the PartnerEntity participates in Collaborations and
Choreographies.
Business Process Model and Notation, v2.0 117

PartnerRole
A PartnerRole is one of the possible types of Participant (see the section above).

The PartnerRole element inherits the attributes and model associations of BaseElement (see Figure 8.5). Table 9.4
presents the additional attributes and model associations for the PartnerRole element:

Participant Multiplicity
ParticipantMultiplicity is used to define the multiplicity of a Participant.

For example, a manufacturer can request a quote from multiple suppliers in a Collaboration.

Figure 9.8 - A Pool with a Multiple Participant

The following figure shows the Participant class diagram.

Figure 9.9 - The Participant Multiplicity class diagram

Table 9.4 – PartnerRole attributes

Attribute Name Description/Usage

name: string Name is a text description of the PartnerRole.

participantRef: Participant [0..*] Specifies how the PartnerRole participates in Collaborations and
Choreographies.

Quote

Manufacturer

Supplier

Request for
Quote
118 Business Process Model and Notation, v2.0

The multi-instance marker will be displayed in bottom center of the Pool (Participant - see Figure 9.9, above), or the
Participant Band of a Choreography Activity (see page 331), when the ParticipantMultiplicity is
associated with the Participant, and the maximum attribute is either not set, or has a value of two (2) or more.

Table 9.5 presents the attributes for the ParticipantMultiplicity element:

Table 9.6 presents the Instance attributes of the ParticipantMultiplicity element:

ParticipantAssociation
These elements are used to do mapping between two elements that both contain Participants. There are situations where
the Participants in different diagrams can be defined differently because they were developed independently, but
represent the same thing. The ParticipantAssociation provides the mechanism to match up the Participants.

A ParticipantAssociation is used when an (outer) diagram with Participants contains an (inner) diagram that
also has Participants. There are four (4) usages of ParticipantAssociation. It is used when:

• A Collaboration references a Choreography for inclusion between the Collaboration’s Pools (Participants).
The Participants of the Choreography (the inner diagram) need to be mapped to the Participants of the
Collaboration (the outer diagram).

• A Call Conversation references a Collaboration or GlobalConversation. Thus, the Participants of the
Collaboration or GlobalConversation (the inner diagram) need to be mapped to the Participants referenced by
the Call Conversation (the outer element). Each Call Conversation contains its own set of
ParticipantAssociations.

• A Call Choreography references a Choreography or GlobalChoreographyTask. Thus, the Participants of
the Choreography or GlobalChoreographyTask (the inner diagram) need to be mapped to the Participants
referenced by the Call Choreography (the outer element). Each Call Choreography contains its own set of
ParticipantAssociations.

Table 9.5 – ParticipantMultiplicity attributes

Attribute Name Description/Usage

minimum: integer = 0 The minimum attribute defines minimum number of Participants that
MUST be involved in the Collaboration. If a value is specified in the
maximum attribute, it MUST be greater or equal to this minimum value.

maximum: integer [0..1] = 1 The maximum attribute defines maximum number of Participants that
MAY be involved in the Collaboration. The value of maximum MUST be
one (1) or greater, AND MUST be equal or greater than the minimum value.

Table 9.6 – ParticipantMultiplicity Instance attributes

Attribute Name Description/Usage

numParticipants: integer [0..1] The current number of the multiplicity of the Participant for this Chore-
ography or Collaboration Instance.
Business Process Model and Notation, v2.0 119

• A Call Activity within a Process that has a definitional Collaboration references another Process that also has
a definitional Collaboration. The Participants of the definitional Collaboration of the called Process (the inner
diagram) need to be mapped to the Participants of the definitional Collaboration of the calling Process (the outer
diagram).

A ParticipantAssociation can be owned by the outer diagram or one its elements. Figure 9.10 shows the class
diagram for the ParticipantAssociation element.

Figure 9.10 - ParticipantAssociation class diagram

The ParticipantAssociation element inherits the attributes and model associations of BaseElement (see Table
8.5). Table 9.7 presents the additional model associations for the ParticipantAssociation element:
120 Business Process Model and Notation, v2.0

9.2.2 Lanes

A Lane is a sub-partition within a Process (often within a Pool) and will extend the entire length of the Process level,
either vertically (see Figure 10.123) or horizontally (see Figure 10.124). See page 313 for more information on Lanes.

9.3 Message Flow
A Message Flow is used to show the flow of Messages between two Participants that are prepared to send and
receive them.

� A Message Flow MUST connect two separate Pools. They connect either to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

� A Message Flow is a line with an open circle line start and an open arrowhead line end that MUST be drawn with
a dashed single line (see Figure 9.11).

� The use of text, color, size, and lines for a Message Flow MUST follow the rules defined in Section “Use of
Text, Color, Size, and Lines in a Diagram” on page 41.

Figure 9.11 - A Message Flow

In Collaboration Diagrams (the view showing the Choreography Process Combined with Orchestration
Processes), a Message Flow can be extended to show the Message that is passed from one Participant to
another (see Figure 9.12).

Table 9.7 – ParticipantAssociation model associations

Attribute Name Description/Usage

innerParticipantRef: Participant This attribute defines the Participant of the referenced element (e.g., a
Choreography to be used in a Collaboration) that will be mapped to the
parent element (e.g., the Collaboration).

outerParticipantRef: Participant This attribute defines the Participant of the parent element (e.g., a
Collaboration references a Choreography) that will be mapped to the
referenced element (e.g., the Choreography).
Business Process Model and Notation, v2.0 121

Figure 9.12 - A Message Flow with an Attached Message

If a Choreography is included in the Collaboration, then the Message Flow will “pass-through” a Choreography
Task as it connects from one Participant to another (see Figure 9.13).

Figure 9.13 - A Message Flow passing through a Choreography Task

Confirmation

Order

Customer

Supplier

Place
Order

Order

Confirmation

Customer

Supplier

Continued...
122 Business Process Model and Notation, v2.0

Figure 9.14 displays the class diagram of a Message Flow and its relationships to other BPMN elements. When a
Message Flow is defined it is contained either within a Collaboration, a Choreography, or a
GlobalChoreographyTask.

Figure 9.14 - The Message Flow Class Diagram

The Message Flow element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 9.8
presents the additional attributes and model associations for the Message Flow element:
Business Process Model and Notation, v2.0 123

9.3.1 Interaction Node

The InteractionNode element is used to provide a single element as the source and target Message Flow
associations (see Figure 9.14, above) instead of the individual associations of the elements that can connect to Message
Flows (see the section above). Only the Pool/Participant, Activity, and Event elements can connect to Message
Flows. The InteractionNode element is also used to provide a single element for source and target of
Conversation Links, see page 134.

The InteractionNode element does not have any attributes or model associations and does not inherit from any other
BPMN element. Since Pools/Participants, Activities, and Events have their own attributes, model associations, and
inheritances, additional attributes and model associations for the InteractionNode element are not necessary.

9.3.2 Message Flow Associations

These elements are used to do mapping between two elements that both contain Message Flows. The
MessageFlowAssociation provides the mechanism to match up the Message Flows.

A MessageFlowAssociation is used when an (outer) diagram with Message Flows contains an (inner) diagram
that also has Message Flows. It is used when:

• A Collaboration references a Choreography for inclusion between the Collaboration’s Pools (Participants).
The Message Flows of the Choreography (the inner diagram) need to be mapped to the Message Flows of the
Collaboration (the outer diagram).

• A Collaboration references a Conversation that contains Message Flows. The Message Flows of the
Conversation can serve as a partial requirement for the Collaboration. Thus, the Message Flows of the
Conversation (the inner diagram) need to be mapped to the Message Flows of the Collaboration (the outer
diagram).

• A Choreography references a Conversation that contains Message Flows. The Message Flows of the
Conversation can serve as a partial requirement for the Choreography. Thus, the Message Flows of the
Conversation (the inner diagram) need to be mapped to the Message Flows of the Choreography (the outer
diagram).

Table 9.8 – Message Flow attributes and model associations

Attribute Name Description/Usage

name: string Name is a text description of the Message Flow.

sourceRef: InteractionNode The InteractionNode that the Message Flow is connecting from. Of
the types of InteractionNode, only Pools/Participants, Activities, and
Events can be the source of a Message Flow.

targetRef: InteractionNode The InteractionNode that the Message Flow is connecting to. Of the
types of InteractionNode, only Pools/Participants, Activities, and
Events can be the target of a Message Flow.

messageRef: Message [0..1] The messageRef model association defines the Message that is passed
via the Message Flow. See page 93 for more details.
124 Business Process Model and Notation, v2.0

Figure 9.15 shows the class diagram for the MessageFlowAssociation element.

Figure 9.15 - MessageFlowAssociation class diagram

The MessageFlowAssociation element inherits the attributes and model associations of BaseElement (see Table
8.5). Table 9.9 presents the additional model associations for the MessageFlowAssociation element:

9.4 Conversations
The Conversation diagram is particular usage of and an informal description of a Collaboration diagram. In general,
it is a simplified version of Collaboration, but Conversation diagrams do maintain all the features of a
Collaboration. In particular, Processes can appear within the Participants (Pools) of Conversation diagrams, to
show how Conversation and Activities are related.

The view includes two (2) additional graphical elements that do not exist in other BPMN views:

• Conversation Node elements (Conversation, Sub-Conversation, and Call Conversation)

• A Conversation Link

Table 9.9 – MessageFlowAssociation attributes and model associations

Attribute Name Description/Usage

innerMessageFlowRef: Message Flow This attribute defines the Message Flow of the referenced
element (e.g., a Choreography to be used in a Collaboration)
that will be mapped to the parent element (e.g., the
Collaboration).

outerMessageFlowRef: Message Flow This attribute defines the Message Flow of the parent element
(e.g., a Collaboration references a Choreography) that will be
mapped to the referenced element (e.g., the Choreography).
Business Process Model and Notation, v2.0 125

A Conversation is a logical grouping of Message exchanges (Message Flows) that can share a Correlation. A
Conversation is the logical relation of Message exchanges. The logical relation, in practice, often concerns a business
object(s) of interest, e.g, “Order,” “Shipment and Delivery,” and “Invoice.” Hence, a Conversation is associated with a
set of name-value pairs, or a Correlation Key (e.g., “Order Identifier,” “Delivery Identifier”), which is recorded in
the Messages that are exchanged. In this way, a Message can be routed to the specific Process instance responsible
for receiving and processing the Message.

Figure 9.16 shows a simple example of a Conversation diagram.

Figure 9.16 - A Conversation diagram

Figure 9.17 shows a variation of the example above where the Conversation node has been expanded into its
component Message Flows. Note that the diagram looks the same as a simple Collaboration diagram (as in Figure
9.3, above).

Figure 9.17 - A Conversation diagram where the Conversation is expanded into Message Flows

Message exchanges are related to each other and reflect distinct business scenarios. The relation is sometimes simple,
e.g., a request followed by a response (and can be described as part of a structural interface of a service, e.g., as a WSDL
operation definition). However for commercial business transactions managed through Business Processes, the
relation can be complex, involving long-running, reciprocal Message exchanges, and that could extend beyond bilateral
to complex, multilateral Collaborations. For example, in logistics, stock replenishments involve the following types
scenarios: creation of sales orders; assignment of carriers for shipments combining different sales orders; crossing
customs/quarantine; processing payment and investigating exceptions.

Conversation

Participant BParticipant A

Participant BParticipant A
126 Business Process Model and Notation, v2.0

In addition to an orchestration Process, Conversations are relevant to a Choreography, but the Conversations
are not visualized in a Choreography. The difference is that a Choreography provides a multi-party perspective of a
Conversation. This is because the Message exchanges modeled using Choreography Activities concern multiple
Participants, unlike an orchestration Process where the Message sending and receiving elements relate to one
Participant only. Other than the difference in perspective, the notion of Conversation remains the same across
Choreography and orchestration - and the Message exchanges of a Conversation will ultimately to be executed
through an orchestration Process.

Since Collaboration provides a top-down, design-time modeling perspective for Message exchanges and their
Conversations, an abstracted view of the all Conversations pertaining to a domain being modeled is available
through a Conversation diagram. A Conversation diagram, as depicted in Figure 9.18, shows Conversations (as
hexagons) between Participants. This provides a “bird’s eye” perspective of the different Conversations which relate
to the domain.

Figure 9.18 - Conversation diagram depicting several conversations between Participants in a related domain

Figure 9.18, above, depicts 13 distinct Conversations between collaborating Participants in a logistics domain. As
examples, Retailer and Supplier are involved in a Delivery Negotiations Conversation, and Consignee converses with
Retailer and Supplier through Delivery/Dispatch Plan and Shipment Schedule Conversations respectively. More than
two participants MAY be involved in a Conversation, e.g., Consignee, Consolidator and Shipper in Detailed Shipment

Delivery / Dispatch
Plan

Delivery
Negotiations

Shipment Schedule

Detailed Shipment
Schedule

Delivery / Dispatch
Plan

Clearance
Monitoring

Carrier Planning

Coverage
Notification

Clearance Pre-
Notification

Truck Breakdown
Provision

Arrival/Pickup
Confirmation

Traffic Optimization
Guidance

Delivery
Monitoring

Delivery
Planning

Breakdown
Service

Locative Service

Insurance

Shipper

SupplierRetailer

Consignee

Customs/
Quarantine

Consolidator
Carrier

(Land, Sea, Rail, or Air)
Business Process Model and Notation, v2.0 127

Schedule. The association of Participants to a Conversation are constrained to indicate whether one or many of
Participants are involved. For example, one instance of Retailer converses with one instance of Supplier for Deliver
Negotiations. However, one instance of Shipper converses with multiple instances of Carrier (indicated by the multi-
instance symbol of the Pool for Carrier) for Carrier Planning. Note, multiplicity in constraints of Conversation
diagrams means one or more (not zero or more).

The behavior of different Conversations is modeled through separate Choreographies, detailing the Message
exchange sequences. In practice, Conversations which are closely related could be combined in the same
Choreography models – e.g., a Message exchange in the Delivery Negotiation leads to Shipment Schedule, Delivery
Planning and Delivery/Dispatch Conversations and these could be combined together in the same Choreography.
Alternatively, they could be separated in different models.

Figure 9.19 shows a subset of the larger Conversation diagram of Figure 9.18, above. Figure 9.20 and Figure 9.21 show
the drill down into the "Delivery Negotiations" Sub-Conversation. This expands the Conversation with the
Message Flows, providing a structural view of a Conversation without the “clutter” of sequencing details in the same
diagram. Figure 9.19 also indicates the CorrelationKey involved in the Message Flows of the Conversation. For
example, Order Id is necessary for in all Messages of Message Flows in Delivery Negotiation. In addition, some
Message Flows also require Variation Id (for dealing with shipment variations on a per line item basis).

Figure 9.19 - An example of a Sub-Conversation

Figure 9.20 shows a how the Sub-Conversation of Figure 9.19, above, is expanded into a set of Message Flows and
a lower-level Conversation.

Delivery
Negotiations
(Order ID)

SupplierRetailer
128 Business Process Model and Notation, v2.0

Figure 9.20 - An example of a Sub-Conversation expanded to a Conversation and Message Flow

Figure 9.21 shows a how the Conversation of Figure 9.20, above, is also expanded into a set of Message Flows,
combined with the previous Message Flows. Note that the newly exposed Message Flows of the lower-level
Conversation will be correlated by the CorrelationKey of both the lower-level Conversation (Variation Id) and
the higher-level Sub-Conversations (Order Id).

Figure 9.21 - An example of a Sub-Conversation that is fully expanded

In Figure 9.19, above, a hierarchical structure of Conversations can be seen with one set of Message Flows
occurring within another in a parent-child relationship. In particular, after Planned Order Variations (keyed on Order Id)
at the parent, a number of Message Flows of the child follow till Retailer Order and Delivery Variations Ack (keyed on
Variation Id and Order Id). The remaining Message Flows (keyed on Order Id) are at the parent level. The child
Conversation, as such, is part of the parent Conversation. Nesting is indicated graphically on a Conversation
symbol (by a “+”), indicating a Sub-Conversation or a Call Conversation calling a Collaboration. Nesting can go
to an arbitrary number of levels.

SupplierRetailer Variations
(Variation ID)

Delivery Checkpoint Request Ack

Updated PO and Delivery Schedule Order

Delivery Checkpoint Request

SupplierRetailer

Delivery Checkpoint Request Ack

Updated PO and Delivery Schedule Order

Delivery Checkpoint Request

Planned Order Variations

Planned Order Variations Ack

Retailer Order and Delivery Variations

Retailer Order and Delivery Variations Ack
Business Process Model and Notation, v2.0 129

A common dependency between Conversations is overlap. Overlap occurs when two or more Conversations have
some Message exchanges in common but not others. As an example in Figure 9.18, above, a Message is sent as part
of Detailed Shipment Schedule (keyed on Carrier Schedule Id) to trigger Delivery Monitoring (keyed on Shipment Id).
During Delivery Monitoring, Message could be sent to Detailed Shipment Schedule (to request modifications when
transportation exceptions occur).

Splits and joins are special types of overlap scenarios. A Conversation split arises when, as part of a Conversation, a
message is exchanged between two or more Participants that at the same time spawns a new, distinct Conversation
(either between the same set of Participants or another set). Additionally, no further Message exchanges are shared by
the split Conversations as well as no subsequent merges of them occur. An example is Delivery Planning which leads
to Carrier Planning and Special Cover. A Conversation join occurs when several Conversations are merged into one
Conversation and no further Message exchanges occur in the original Conversations, i.e., these Conversations
are finalized. The generalization of a split and join is a Conversation refactor where Conversations are split into
parallel Conversations and then are merged at a later point in time.

9.4.1 Conversation Node

ConversationNode is the abstract super class for all elements that can comprise the Conversation elements of a
Collaboration diagram, which are Conversation (see page 132), Sub-Conversation (see page 132), and Call
Conversation (see page 133).
130 Business Process Model and Notation, v2.0

Figure 9.22 - Metamodel of ConversationNode Related Elements

ConversationNodes are linked to and from Participants using Conversation Links (see page 134).

The ConversationNode element inherits the attributes and model associations of BaseElement (see Table 8.5).
Table 9.10 presents the additional attributes and model associations for the ConversationNode element:
Business Process Model and Notation, v2.0 131

9.4.2 Conversation

A Conversation is an atomic element for a Conversation (Collaboration) diagram. It represents a set of Message
Flows grouped together based on a concept and/or a CorrelationKey. A Conversation will involve two (2) or
more Participants.

� A Conversation is a hexagon that MUST be drawn with a single thin line (see Figure 9.23).

Figure 9.23 – A Communication element

The Conversation element inherits the attributes and model associations of ConversationNode (see Table 9.10),
but does not contain any additional attributes or model associations.

9.4.3 Sub-Conversation

A Sub-Conversation is a ConversationNode that is a hierarchical division within the parent Collaboration. A
Sub-Conversation is a graphical object within a Collaboration, but it also can be “opened up” to show the lower-
level details of the Conversation, which consist of Message Flows, Conversations, and/or other Sub-
Conversations. The Sub-Conversation shares the Participants of its parent Conversation.

� A Sub-Conversation is a hexagon that MUST be drawn with a single thin line (see Figure 9.24).

� The Sub- Conversation marker MUST be a small square with a plus sign (+) inside. The square MUST be
positioned at the bottom center of the shape.

Table 9.10 – ConversationNode Model Associations

Attribute Name Description/Usage

name: string [0..1] Name is a text description of the ConversationNode element.

participantRefs: Partici-
pant [2..*]

This provides the list of Participants that are used in the ConversationNode
from the list provided by the ConversationNode’s parent Conversation. This
reference is visualized through a Conversation Link (see page 134).

messageFlowRefs:
MessageFlow [0..*]

A reference to all Message Flows (and consequently Messages) grouped by a
Conversation element.

correlationKeys:
CorrelationKey [0..*]

This is a list of the ConversationNode’s CorrelationKeys, which are used to
group Message Flows for the ConversationNode.
132 Business Process Model and Notation, v2.0

Figure 9.24 – A compound Conversation element

The Sub-Conversation element inherits the attributes and model associations of ConversationNode (see Table
9.10). Table 9.11 presents the additional model associations for the Sub-Conversation element:

9.4.4 Call Conversation

A Call Conversation identifies a place in the Conversation (Collaboration) where a global Conversation or a
GlobalConversation is used.

� If the Call Conversation calls a GlobalConversation, then the shape will be the same as a Conversation,
but the boundary of the shape will MUST have a thick line (see Figure 9.25).

� If the Call Conversation calls a Collaboration, then the shape will be the same as a Sub-Conversation, but
the boundary of the shape will MUST have a thick line (see Figure 9.26).

Figure 9.25 – A Call Conversation calling a GlobalConversation

Figure 9.26 – A Call Conversation calling a Collaboration

The Call Conversation element inherits the attributes and model associations of ConversationNode (see Table
9.10). Table 9.12 presents the additional model associations for the Call Conversation element:

Table 9.11 – Sub-Conversation Model Associations

Attribute Name Description/Usage

conversationNodes:
ConversationNode [0..*]

The ConversationNodes model aggregation relationship allows a Sub-
Conversation to contain other ConversationNodes, in order to group
Message Flows of the Sub-Conversation and associate correlation
information.
Business Process Model and Notation, v2.0 133

Note - The ConversationNode attribute messageFlowRef doesn't apply to Call Conversations.

9.4.5 Global Conversation

A GlobalConversation is a reusable, atomic Conversation definition that can be called from within any
Collaboration by a Call Conversation.

The GlobalConversation element inherits the attributes and model associations and Collaboration (see Table 9.1),
but does not have any additional attributes or model associations.

A GlobalConversation is a restricted type of Collaboration, it is an "empty Collaboration."

� A GlobalConversation MUST NOT contain any ConversationNodes.

Since a GlobalConversation does not have any Flow Elements, it does not require
MessageFlowAssociations, ParticipantAssociations, or ConversationAssociations or Artifacts.
It is basically a set of Participants, Message Flows, and CorrelationKeys intended for reuse. Also, the
Collaboration attribute choreographyRef is not applicable to GlobalConversation.

9.4.6 Conversation Link

Conversation Links are used to connect ConversationNodes to and from Participants (Pools -- see Figure 9.27).

� Conversation Links MUST be drawn with double thin lines.

Table 9.12 – Call Conversation Model Associations

Attribute Name Description/Usage

calledCollaborationRef:
Collaboratioin [0..1]

The element to be called, which MAY be either a Collaboration or a
GlobalConversation. The called element MUST NOT be a
Choreography or a GlobalChoreographyTask (which are sub-
types of Collaboration)

participantAssociations: Participant
Association [0..*]

This attribute provides a list of mappings from the Participants of a
referenced GlobalConversation or Conversation to the
Participants of the parent Conversation.
134 Business Process Model and Notation, v2.0

Figure 9.27 – A Conversation Link element

Processes can appear in the Participants (Pools) of Conversation diagrams, as shown in Figure 9.28. The invoicing
and ordering Conversations have links into Activities and Events of the Process in the Order Processor. The other
two Conversations do not have their links "expanded". Conversation Links into Activities that are not Send or
Receive Tasks indicate that the Activity will send or receive Messages of the Conversation at some level of
nesting.

RFQ

A Conversation Link: the
connection between a
Participant and a
Conversation Node

Procurement Supplier
Business Process Model and Notation, v2.0 135

Figure 9.28 – Conversation links to Activities and Events

Request
Product

Scheduling

Request
ShippingAssignment

Initiate Price
Calculations Complete

Price
Calculations

Send Shipping
Schedule

Process
Schedule

Process
Invoice

Send
Invoice

Receive
Order

Invoicing

Ordering

ShippingSheduling

Invoicer

Scheduler Shipper

Customer

O
rd

er
 P

ro
ce

ss
or
136 Business Process Model and Notation, v2.0

Figure 9.29 - Metamodel of Conversation Links related elements

The Conversation Link element inherits the attributes and model associations of BaseElement (see Table 8.5).
Table 9.13 presents the additional attributes and model associations for the Conversation Link element:

Conversation Links for Call Conversations show the names of Participants in nested Collaboration or global
Collaborations, as identified by ParticipantAssociations. For example, Figure 9.30 has a Collaboration on
the left with a Call Conversations to a Collaboration on the right. The Conversation Links on the left indicate

Table 9.13 – Conversation Link Attributes and Model Associations

Attribute Name Description/Usage

name: string [0..1] This attribute specifies the name of the Conversation Link.

sourceRef: InteractionNode The InteractionNode that the Conversation Link is connecting
from. A Conversation Link MUST connect to exactly one
ConversationNode. If the sourceRef is not a
ConversationNode, then the targetRef MUST be a
ConversationNode.

targetRef: InteractionNode The InteractionNode that the Conversation Link is connecting
to. A Conversation Link MUST connect to exactly one
ConversationNode. If the targetRef is not a
ConversationNode, then the sourceRef MUST be a
ConversationNode.
Business Process Model and Notation, v2.0 137

which Participants in the called Collaboration on the right correspond to which Participants in the calling
Collaboration on the left. For example, the Credit Agency Participants on the right corresponds to the Financial
Company Participant on the left. ParticipantAssociations (not shown) tie each Participant in the
Collaboration on the left to a Participant in the Collaboration on the right. They can be used to show the names of
Participants in nested Collaboration or global Collaborations.

Figure 9.30 – Call Conversation Links

9.4.7 Conversation Association

A ConversationAssociation is used within Collaborations and Choreographies to apply a reusable
Conversation to the Message Flows of those diagrams.

A ConversationAssociation is used when a diagram references a Conversation to provide Message
correlation information and/or to logically group Message Flows. It is used when:

• A Collaboration references a Choreography for inclusion between the Collaboration's Pools (Participants).
The ConversationNodes of the Choreography (the inner diagram) need to be mapped to the Conversa-
tionNodes of the Collaboration (the outer diagram).

Credit
Score

Purchase

Retailer

Financial
Company

Buyer

Credit Agency

Buyer

Credit Agency

Credit
Request

Credit
Response
138 Business Process Model and Notation, v2.0

Figure 9.31 - The ConversationAssociation class diagram

The ConversationAssociation element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 9.14 presents the additional model associations for the ConversationAssociation element:

9.4.8 Correlations

Correlations are the mechanism that is used to assign the Messages to the proper Process instance, and can be defined
for the Message Flows that belong to the a Conversation. Correlations can be used to specify Conversations
between Processes that follow a fairly simple Conversation pattern in the sense that:

• The conceptual data of the Conversation is well known and defined by the participating Processes. However this
doesn’t mandate that underlying type systems are identical. It is sufficient that the data is known “conceptually” on a
(potentially very high) business level.

• A Conversation takes place by means of simple Message exchange between Processes, no additional
agreements MUST be considered.

• There exists send and receive Tasks accepting the conceptual data of the Conversation. (An Order send by a Task

Table 9.14 – ConversationAssociation Model Associations

Attribute Name Description/Usage

innerConversationNodeRef:
ConversationNode [0..1]

This attribute defines the ConversationNodes of the
referenced element (e.g., a Choreography to be used in a
Collaboration) that will be mapped to the parent element (e.g.,
the Collaboration).

outerConversationNodeRef:
ConversationNode [0..*]

This attribute defines the ConversationNodes of the parent
element (e.g., a Collaboration references a Choreography) that
will be mapped to the referenced element (e.g., the
Choreography).
Business Process Model and Notation, v2.0 139

of a Process should be received by at least one Task of the participating Process).

• The correlation itself is defined in terms of correlation fields, which denote a subset of the conceptual data that should
be used for the correlation. (For example, if the conceptual data comprises of an order than the correlation field might
be denoted by the order ID).

In some applications it is useful to allow more Messages to be sent between Participants when a Collaboration is
carried out than are contained in the Collaboration model. This enables Participants to exchange other Messages as
needed without changing the Collaboration. If the isClosed attribute of a Collaboration has a value of false or no
value, then Participants MAY send Messages to each other without additional Message Flows in the Collaboration.
If the isClosed attribute of a Collaboration has a value of true, then Participants MAY NOT send Messages to each
other without additional Message Flows in the Collaboration. If a Collaboration contains a Choreography, then
the value of the isClosed attribute MUST be the same in both. Restrictions on unmodeled messaging specified with
isClosed apply only under the Collaboration containing the restriction. PartnerEntities and PartnerRoles
of the Participants MAY send Messages to each other under other Choreographies, Collaborations, and
Conversations.

9.5 Process Within Collaboration
Processes can be included in a Collaboration diagram. A Participant/Pool within the Collaboration can contain a
Process (but they are NOT REQUIRED). An example of this is shown in Figure 9.4, above.

When a Lane (in a Process) represents a Conversation, the Flow Elements in the Lane (or elements nested or called
in them) that send or receive Messages MUST do so as part of the Conversation represented by the Lane.

9.6 Choreography within Collaboration
Choreographies can be included in a Collaboration diagram. A Collaboration specifies how the Participants and
Message Flows in the Choreography are matched up with the Participants and Message Flows in the
Collaboration. A Collaboration uses ParticipantAssociations and MessageFlowAssociations for this
purpose.

To handle the Participants, the innerParticipant of a ParticipantAssociation refers to a Participant in the
Choreography, while the outerParticipant refers to a Participant in the Collaboration containing the
Choreography. This mapping matches the Participant Bands of the Choreography Activities in the
Choreography to the Pools in the Collaboration. Thus, the names in the Participant Bands are NOT REQUIRED
(see Figure 9.32).
140 Business Process Model and Notation, v2.0

Figure 9.32 - An example of a Choreography within a Collaboration

To handle Message Flows, the innerMessageFlow of a MessageFlowAssociation refers to a Message Flow
in the Choreography, while the outerMessageFlow refers to a Message Flow in the Collaboration containing
the Choreography. This mapping matches the Message Flows of the Choreography (which are not visible) to the
Message Flows in the Collaboration (which are visible). This allows the Message Flows of the Collaboration to
be “wired up” through the appropriate Choreography Activity in the Choreography (see Figure 9.32).

The ParticipantAssociations might be derived from the partnerEntities or partnerRoles of the
Participants. For example, if a Choreography Activity has a Participant with the same partnerEntity as a
Participant in the Collaboration containing the Choreography, then these two (2) Participants could be assumed to be
the inner and outerParticipants of a ParticipantAssociation. Similarly, Message Flows that reference
the same Message in a Call Choreography Activity and the Collaboration, could be automatically synchronized by
a MessageFlowAssociation, if only one Message Flow has that Message.

S
el

le
r

C
re

di
t A

ge
nc

y

Credit
Request

Credit
Response

 Request
Credit Score

Receive
Credit Score

Credit ID

Generate
Credit ID

Update
Customer

Info

Customer
Info Customer

Info
[Updated]

 Request Credit
Score

Provide Credit
Score
Business Process Model and Notation, v2.0 141

Figure 9.33 - Choreography within Collaboration class diagram

9.7 Collaboration Package XML Schemas

Table 9.15 – Call Conversation XML schema

<xsd:element name="callConversation" type="tCallConversation" substitutionGroup="conversationNode"/>
<xsd:complexType name="tCallConversation">

<xsd:complexContent>
<xsd:extension base="tConversationNode">

<xsd:sequence>
<xsd:element ref="participantAssociation" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="calledCollaborationRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 9.16 – Collaboration XML schema

<xsd:element name="collaboration" type="tCollaboration" substitutionGroup="rootElement"/>

142 Business Process Model and Notation, v2.0

<xsd:complexType name="tCollaboration">
<xsd:complexContent>

<xsd:extension base="tRootElement">
<xsd:sequence>

<xsd:element name="choreography" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="participant" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="messageFlow" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="conversationNode" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="conversationLink" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="conversationAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="participantAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="MessageFlowAssociation" type="tMessageFlowAssociation" minOccurs="0" maxOc-

curs="unbounded"/>
<xsd:element ref="correlationKey" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="isClosed" type="xsd:boolean" default="false"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 9.17 – Conversation XML schema

<xsd:element name="conversation" type="tConversation" substitutionGroup="conversationNode"/>
<xsd:complexType name="tConversation">

<xsd:complexContent>
<xsd:extension base="tConversationNode"/>

</xsd:complexContent>
</xsd:complexType>

Table 9.18 – ConversationAssociation XML schema

<xsd:element name="conversationAssociation" type="tConversationAssociation"/>
<xsd:complexType name="tConversationAssociation">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="innerConversationNodeRef" type="xsd:QName" use="required"/>
<xsd:attribute name="outerConversationNodeRef" type="xsd:QName" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 9.19 – ConversationAssociation XML schema

<xsd:element name="conversationLink" type="tConversationLink"/>
<xsd:complexType name="tConversationLink">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="sourceRef" type="xsd:QName" use="required"/>
Business Process Model and Notation, v2.0 143

<xsd:attribute name="targetRef" type="xsd:QName" use="required"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 9.20 – ConversationNode XML schema

<xsd:element name="conversation" type="tConversation" substitutionGroup="rootElement"/>
<xsd:complexType name="tConversation">

<xsd:complexContent>
<xsd:extension base="tCallableElement">

<xsd:sequence>
<xsd:element ref="conversationNode" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="participant" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="messageFlow" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="messageFlowRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="correlationKey" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 9.21 – Conversation Node XML schema

<xsd:element name="conversationNode" type="tConversationNode"/>
<xsd:complexType name="tConversationNode" abstract="true">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="messageFlowRef" type="xsd:QName" minOccurs="0" maxOc-

curs="unbounded"/>
<xsd:element name="participantRef" type="xsd:QName" minOccurs="0" maxOc-

curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="conversationRef" type="xsd:QName"/>
<xsd:attribute name="correlationKeyRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 9.22 – Global Conversation XML schema

<xsd:element name="globalConversation" type="tGlobalConversation" substitutionGroup="collaboration"/>
<xsd:complexType name="tGlobalConversation">

<xsd:complexContent>
<xsd:extension base="tCollaboration"/>

</xsd:complexContent>
144 Business Process Model and Notation, v2.0

</xsd:complexType>

Table 9.23 – MessageFlow XML schema

<xsd:element name="messageFlow" type="tMessageFlow"/>
<xsd:complexType name="tMessageFlow">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="sourceRef" type="xsd:QName" use="required"/>
<xsd:attribute name="targetRef" type="xsd:QName" use="required"/>
<xsd:attribute name="messageRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 9.24 – MessageFlowAssociation XML schema

<xsd:element name="messageFlowAssociation" type="tMessageFlowAssociation"/>
<xsd:complexType name="tMessageFlowAssociation">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="innerMessageFlowRef" type="xsd:QName" use="required"/>
<xsd:attribute name="outerMessageFlowRef" type="xsd:QName" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 9.25 – Participant XML schema

<xsd:element name="participant" type="tParticipant"/>
<xsd:complexType name="tParticipant">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="interfaceRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/

>
<xsd:element name="endPointRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/

>
<xsd:element ref="participantMultiplicity" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="processRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 9.26 – ParticipantAssociation XML schema

<xsd:element name="participantAssociation" type="tParticipantAssociation"/>
Business Process Model and Notation, v2.0 145

<xsd:complexType name="tParticipantAssociation">
<xsd:complexContent>

<xsd:extension base="tBaseElement">
<xsd:sequence>

<xsd:element name="innerParticipantRef" type="xsd:QName" use="required"/>
<xsd:element name="outerParticipantRef" type="xsd:QName" use="required"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 9.27 – ParticipantMultiplicity XML schema

<xsd:element name="participantMultiplicity" type="tParticipantMultiplicity"/>
<xsd:complexType name="tParticipantMultiplicity">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="minimum" type="xsd:int"/>
<xsd:attribute name="maximum" type="xsd:int"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 9.28 – PartnerEntity XML schema

<xsd:element name="partnerEntity" type="tPartnerEntity" substitutionGroup="rootElement"/>
<xsd:complexType name="tPartnerEntity">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 9.29 – PartnerRole XML schema

<xsd:element name="partnerRole" type="tPartnerRole" substitutionGroup="rootElement"/>
<xsd:complexType name="tPartnerRole">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 9.30 – Sub-Conversation XML schema

<xsd:element name="subConversation" type="tSubConversation" substituti onGroup="conversationNode"/>
146 Business Process Model and Notation, v2.0

<xsd:complexType name="tSubConversation">
<xsd:complexContent>

<xsd:extension base="tConversationNode">
<xsd:sequence>

<xsd:element ref="conversationNode" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
Business Process Model and Notation, v2.0 147

148 Business Process Model and Notation, v2.0

10 Process

Note – The content of this chapter is REQUIRED for BPMN Process Modeling Conformance or for BPMN Complete
Conformance. However, this chapter is NOT REQUIRED for BPMN Process Choreography Conformance, BPMN
Process Execution Conformance, or BPMN BPEL Process Execution Conformance. For more information about BPMN
conformance types, see page 2.

A Process describes a sequence or flow of Activities in an organization with the objective of carrying out work. In
BPMN a Process is depicted as a graph of Flow Elements, which are a set of Activities, Events, Gateways, and
Sequence Flows that define finite execution semantics (see Figure 10.1). Processes can be defined at any level from
enterprise-wide Processes to Processes performed by a single person. Low-level Processes can be grouped
together to achieve a common business goal.

Figure 10.1 - An Example of a Process

Note that BPMN uses the term Process specifically to mean a set of flow elements. It uses the terms Collaboration and
Choreography when modeling the interaction between Processes.

The Process package contains classes which are used for modeling the flow of Activities, Events, and Gateways,
and how they are sequenced within a Process (see Figure 10.2). When a Process is defined it is contained within
Definitions.
Business Process Model and Notation, v2.0 149

Figure 10.2 - Process class diagram

A Process is a CallableElement, allowing it to be referenced and reused by other Processes via the Call Activity
construct. In this capacity, a Process MAY reference a set of Interfaces that define its external behavior.

A Process is a reusable element and can be imported and used within other Definitions.

Figure 10.3 shows the details of the attributes and model associations of a Process.
150 Business Process Model and Notation, v2.0

Figure 10.3 - Process Details class diagram

The Process element inherits the attributes and model associations of CallableElement (see Table 10.24) and of
FlowElementContainer (see Table 8.45). Table 10.1 presents the additional attributes and model associations of the
Process element:

Table 10.1 – Process Attributes & Model Associations

Attribute Name Description/Usage

processType: ProcessType = none
{ None | Private | Public }

The processType attribute Provides additional information about the
level of abstraction modeled by this Process.
A public Process shows only those flow elements that are relevant to
external consumers. Internal details are not modeled. These
Processes are publicly visible and can be used within a
Collaboration. Note that the public processType was named
abstract in BPMN 1.2.
A private Process is one that is internal to a specific organization.
By default, the processType is “none,” meaning undefined.
Business Process Model and Notation, v2.0 151

isExecutable: boolean [0..1] An optional Boolean value specifying whether the Process is execut-
able.
An executable Process is a private Process that has been modeled for
the purpose of being executed according to the semantics of Chapter
14 (see page 440). Of course, during the development cycle of the Pro-
cess, there will be stages where the Process does not have enough
detail to be “executable.”
A non-executable Process is a private Process that has been modeled
for the purpose of documenting Process behavior at a modeler-defined
level of detail. Thus, information needed for execution, such as formal
condition expressions are typically not included in a non-executable
Process.
For public Processes, no value has the same semantics as if the value
were false. The value MAY not be true for public Processes.

auditing: Auditing [0..1] This attribute provides a hook for specifying audit related properties.

monitoring: Monitoring [0..1] This attribute provides a hook for specifying monitoring related proper-
ties.

artifacts: Artifact [0..*] This attribute provides the list of Artifacts that are contained within the
Process.

IsClosed: boolean = false A boolean value specifying whether interactions, such as sending and
receiving Messages and Events, not modeled in the Process can
occur when the Process is executed or performed. If the value is true,
they MAY NOT occur. If the value is false, they MAY occur.

supports: Process [0..*] Modelers can declare that they intend all executions or performances
of one Process to also be valid for another Process. This means they
expect all the executions or performances of the first Processes to also
follow the steps laid out in the second Process.

properties: Property [0..*] Modeler-defined properties MAY be added to a Process. These
properties are contained within the Process. All Tasks and Sub-
Processes SHALL have access to these properties.

resources: ResourceRole [0..*] Defines the resource that will perform or will be responsible for the
Process. The resource, e.g., a performer, can be specified in the form
of a specific individual, a group, an organization role or position, or an
organization.
Note that the assigned resources of the Process does not determine
the assigned resources of the Activities that are contained by the
Process. See more details about resource assignment on page 158.

Table 10.1 – Process Attributes & Model Associations
152 Business Process Model and Notation, v2.0

In addition, a Process instance has attributes whose values MAY be referenced by Expressions (see Table 10.2).
These values are only available when the Process is being executed.

10.1 Basic Process Concepts

10.1.1 Types of BPMN Processes

Business Process modeling is used to communicate a wide variety of information to a wide variety of audiences.
BPMN is designed to cover many types of modeling and allows the creation of end-to-end Business Processes. There
are three basic types of BPMN Processes:

• Private Non-executable (internal) Business Processes

• Private Executable (internal) Business Processes

• Public Processes

Private (Internal) Business Processes

Private Business Processes are those internal to a specific organization. These Processes have been generally
called workflow or BPM Processes (see Figure 10.4). Another synonym typically used in the Web services area is the
Orchestration of services. There are two (2) types of private Processes: executable and non-executable. An executable
Process is a Process that has been modeled for the purpose of being executed according to the semantics defined in

correlationSubscriptions:
CorrelationSubscription [0..*]

correlationSubscriptions are a feature of context-based corre-
lation (cf. section 8.3.3). CorrelationSubscriptions are used to
correlate incoming Messages against data in the Process context. A
Process MAY contain several correlationSubscriptions.

definitionalCollaborationRef:
Collaboration [0..1]

For Processes that interact with other Participants, a definitional
Collaboration can be referenced by the Process. The definitional
Collaboration specifies the Participants the Process interacts with,
and more specifically, which individual service, Send or Receive Task,
or Message Event, is connected to which Participant through
Message Flows. The definitional Collaboration need not be dis-
played.
Additionally, the definitional Collaboration can be used to include Con-
versation information within a Process.

Table 10.2 – Process instance attributes

Attribute Name Description/Usage

state: string = None See Figure 13.2 ("The Lifecycle of a BPMN
Activity") in Section 13.2.2 for permissible
values.

Table 10.1 – Process Attributes & Model Associations
Business Process Model and Notation, v2.0 153

Chapter 14 (see page 440). Of course, during the development cycle of the Process, there will be stages where the
Process does not have enough detail to be “executable.” A non-executable Process is a private Process that has been
modeled for the purpose of documenting Process behavior at a modeler-defined level of detail. Thus, information
needed for execution, such as formal condition Expressions are typically not included in a non-executable Process.

If a swimlanes-like notation is used (e.g., a Collaboration, see below) then a private Business Process will be
contained within a single Pool. The Process flow is therefore contained within the Pool and cannot cross the
boundaries of the Pool. The flow of Messages can cross the Pool boundary to show the interactions that exist between
separate private Business Processes.

Figure 10.4 - Example of a private Business Process

Public Processes

A public Process represents the interactions between a private Business Process and another Process or
Participant (see Figure 10.5). Only those Activities that are used to communicate to the other Participant(s), plus the
order of these Activities, are included in the public Process. All other “internal” Activities of the private Business
Process are not shown in the public Process. Thus, the public Process shows to the outside world the Messages,
and the order of these Messages, that are needed to interact with that Business Process. Public Processes can be
modeled separately or within a Collaboration to show the flow of Messages between the public Process Activities
and other Participants. Note that the public type of Process was named “abstract” in BPMN 1.2.

Figure 10.5 - Example of a public Process

10.1.2 Use of BPMN Common Elements

Some BPMN elements are common to both Process and Choreography, as well as Collaboration; they are used in
these diagrams. The next few sections will describe the use of Messages, Message Flows, Participants, Sequence
Flows, Artifacts, Correlations, Expressions, and Services in Choreography.

 Determine
Premium of

Policy

 Determine
Order is

Complete

Check
Record of
Applicant

 Approve
or Reject

Policy

Notify
Applicant of
Approval or
Rejection

Pa
tie

nt

I want to see doctor

Send Appt.

Go see doctor

Receive
Symptoms

I feel sick
Pickup your medicine

and you can leave

Receive
Medicine
Request

need my medicine

Here is your medicine

Receive
Doctor

Request

Send
Medicine

Send
Prescription

Pickup
154 Business Process Model and Notation, v2.0

The key graphical elements of Gateways and Events are also common to both Choreography and Process. Since
their usage has a large impact, they are described in major sections of this chapter (see page 240 for Events and page 295
for Gateways).

10.2 Activities
An Activity is work that is performed within a Business Process. An Activity can be atomic or non-atomic
(compound). The types of Activities that are a part of a Process are: Task, Sub-Process, and Call Activity, which
allows the inclusion of re-usable Tasks and Processes in the diagram. However, a Process is not a specific graphical
object. Instead, it is a set of graphical objects. The following sections will focus on the graphical objects Sub-Process
and Task.

Activities represent points in a Process flow where work is performed. They are the executable elements of a BPMN
Process.

The Activity class is an abstract element, sub-classing from FlowElement (as shown in Figure 10.6).

Concrete sub-classes of Activity specify additional semantics above and beyond that defined for the generic Activity.

Figure 10.6 - Activity class diagram

The Activity class is the abstract super class for all concrete Activity types.
Business Process Model and Notation, v2.0 155

The Activity element inherits the attributes and model associations of FlowElement (see Table 8.44). Table 10.3
presents the additional attributes and model associations of the Activity element:

Table 10.3 Activity attributes and model associations

Attribute Name Description/Usage

isForCompensation: boolean =
false

A flag that identifies whether this Activity is intended for the purposes of
compensation.
If false, then this Activity executes as a result of normal execution flow.
If true, this Activity is only activated when a Compensation Event is
detected and initiated under Compensation Event visibility scope (see
page 288 for more information on scopes).

loopCharacteristics: LoopCharac-
teristics [0..1]

An Activity MAY be performed once or MAY be repeated. If repeated,
the Activity MUST have loopCharacteristics that define the repe-
tition criteria (if the isExecutable attribute of the Process is set to
true).

resources: ResourceRole [0..*] Defines the resource that will perform or will be responsible for the
Activity. The resource, e.g., a performer, can be specified in the form of
a specific individual, a group, an organization role or position, or an orga-
nization.

default: SequenceFlow [0..1] The Sequence Flow that will receive a token when none of the
conditionExpressions on other outgoing Sequence Flows evalu-
ate to true. The default Sequence Flow should not have a
conditionExpression. Any such Expression SHALL be ignored.

ioSpecification: Input
OutputSpecification [0..1]

The InputOutputSpecification defines the inputs and outputs and
the InputSets and OutputSets for the Activity. See page 218 for
more information on the InputOutputSpecification.

properties: Property [0..*] Modeler-defined properties MAY be added to an Activity. These
properties are contained within the Activity.

boundaryEventRefs:
BoundaryEvent [0..*]

This references the Intermediate Events that are attached to the
boundary of the Activity.

dataInputAssociations: DataIn-
putAssociation [0..*]

An optional reference to the DataInputAssociations. A
DataInputAssociation defines how the DataInput of the Activity’s
InputOutputSpecification will be populated.

dataOutputAssociations:
DataOutputAssociation [0..*]

An optional reference to the DataOutputAssociations.
156 Business Process Model and Notation, v2.0

In addition, an Activity instance has attributes whose values MAY be referenced by Expressions. These values are
only available when the Activity is being executed.

Table 10.4 presents the instance attributes of the Activity element:

Sequence Flow Connections

See Section “Sequence Flow Connections Rules” on page 42 for the entire set of objects and how they MAY be sources
or targets of Sequence Flows.

� An Activity MAY be a target for Sequence Flows; it can have multiple incoming Sequence Flows. Incoming
Sequence Flows MAY be from an alternative path and/or parallel paths.

� If the Activity does not have an incoming Sequence Flow, then the Activity MUST be instantiated when the
Process is instantiated.

� There are two (2) exceptions to this: Compensation Activities and Event Sub-Processes.

Note – If the Activity has multiple incoming Sequence Flows, then this is considered uncontrolled flow. This means that
when a token arrives from one of the Paths, the Activity will be instantiated. It will not wait for the arrival of tokens from the
other paths. If another token arrives from the same path or another path, then a separate instance of the Activity will be
created. If the flow needs to be controlled, then the flow should converge on a Gateway that precedes the Activities (see 295
for more information on Gateways).

� An Activity MAY be a source for Sequence Flows; it can have multiple outgoing Sequence Flows. If there
are multiple outgoing Sequence Flows, then this means that a separate parallel path is being created for each
Sequence Flow (i.e., tokens will be generated for each outgoing Sequence Flow from the Activity).

� If the Activity does not have an outgoing Sequence Flow, then the Activity marks the end of one or more
paths in the Process. When the Activity ends and there are no other parallel paths active, then the Process

startQuantity: integer = 1 The default value is 1. The value MUST NOT be less than 1. This
attribute defines the number of tokens that MUST arrive before the
Activity can begin. Note that any value for the attribute that is greater
than 1 is an advanced type of modeling and should be used with caution.

completionQuantity: integer = 1 The default value is 1. The value MUST NOT be less than 1. This
attribute defines the number of tokens that MUST be generated from the
Activity. This number of tokens will be sent done any outgoing
Sequence Flow (assuming any Sequence Flow conditions are satis-
fied). Note that any value for the attribute that is greater than 1 is an
advanced type of modeling and should be used with caution.

Table 10.4 – Activity instance attributes

Attribute Name Description/Usage

state: string = None See Figure 13.2 ("The Lifecycle of a
BPMN Activity") in Section 13.2.2 for
permissible values.

Table 10.3 Activity attributes and model associations
Business Process Model and Notation, v2.0 157

MUST be completed.

� There are two (2) exceptions to this: Compensation Activities and Event Sub-Processes.

Message Flow Connections

See Section “Message Flow Connection Rules” on page 43 for the entire set of objects and how they MAY be sources or
targets of Message Flows.

Note – All Message Flows MUST connect two separate Pools. They MAY connect to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

� An Activity MAY be the target of a Message Flow; it can have zero (0) or more incoming Message Flows.

� An Activity MAY be a source of a Message Flow; it can have zero (0) or more outgoing Message Flows.

10.2.1 Resource Assignment

The following sections define how Resources can be defined for an Activity. Figure 10.7 displays the class diagram
for the BPMN elements used for Resource assignment.

Figure 10.7 - The class diagram for assigning Resources

Resource Role

The ResourceRole element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
10.5 presents the additional model associations of the ResourceRole element:
158 Business Process Model and Notation, v2.0

Expression Assignment

Resources can be assigned to an Activity using Expressions. These Expressions MUST return Resource
entity related data types, like Users or Groups. Different Expressions can return multiple Resources. All of them
are assigned to the respective subclass of the ResourceRole element, for example as potential owners. The semantics
is defined by the subclass.

The ResourceAssignmentExpression element inherits the attributes and model associations of BaseElement
(see Table 8.5). Table 10.6 presents the additional model associations of the ResourceAssignmentExpression
element:

Parameterized Resource Assignment

Resources support query parameters which are passed to the Resource query at runtime. Parameters MAY refer
to Task instance data using Expressions. During Resource query execution, an infrastructure can decide which of
the Parameters defined by the Resource are used. It MAY use zero (0) or more of the Parameters specified. It
MAY also override certain Parameters with values defined during Resource deployment. The deployment
mechanism for Tasks and Resources is out of scope for this specification. Resource queries are evaluated to
determine the set of Resources, e.g. people, assigned to the Activity. Failed Resource queries are treated like
Resource queries that return an empty result set. Resource queries return one Resource or a set of Resources.

The ResourceParameterBinding element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 10.7 presents the additional model associations of the ResourceParameterBinding element:

Table 10.5 – Resource Role model associations

Attribute Name Description/Usage

resourceRef: Resource [0..1] The Resource that is associated with Activity. Should not
be specified when resourceAsisgnmentExpression is
provided

resourceAssignmentExpression: Resource-
AssignmentExpression [0..1]

This defines the Expression used for the Resource
assignment (see below). Should not be specified when a
resourceRef is provided.

resourceParameterBindings: Resource-
ParameterBinding [0..*]

This defines the Parameter bindings used for the
Resource assignment (see below). Is only applicable if a
resourceRef is specified.

Table 10.6 – ResourceAssignmentExpression model associations

Attribute Name Description/Usage

expression: Expression The element ResourceAssignmentExpression MUST contain an
Expression which is used at runtime to assign resource(s) to a
ResourceRole element.
Business Process Model and Notation, v2.0 159

10.2.2 Performer

The Performer class defines the resource that will perform or will be responsible for an Activity. The performer can
be specified in the form of a specific individual, a group, an organization role or position, or an organization.

The Performer element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to ResourceRole, but does not have any additional attributes or model associations.

10.2.3 Tasks

A Task is an atomic Activity within a Process flow. A Task is used when the work in the Process cannot be broken
down to a finer level of detail. Generally, an end-user and/or applications are used to perform the Task when it is
executed.

A Task object shares the same shape as the Sub-Process, which is a rectangle that has rounded corners (see Figure
10.8).

� A Task is a rounded corner rectangle that MUST be drawn with a single thin line.

� The use of text, color, size, and lines for a Task MUST follow the rules defined in Section “Use of Text, Color,
Size, and Lines in a Diagram” on page 41.

� A boundary drawn with a thick line SHALL be reserved for Call Activity (Global Tasks) (see page
194).

� A boundary drawn with a dotted line SHALL be reserved for Event Sub-Processes (see page 181) and
thus are not allowed for Tasks.

� A boundary drawn with a double line SHALL be reserved for Transaction Sub-Processes (see page
184) and thus are not allowed for Tasks.

Figure 10.8 - A Task object

BPMN specifies three types of markers for Task: a Loop marker or a Multi-Instance marker and a Compensation
marker. A Task MAY have one or two of these markers (see Figure 10.9).

Table 10.7 – ResourceParameterBinding model associations

Attribute Name Description/Usage

parameterRef: ResourceParameter Reference to the parameter defined by the Resource.

expression: Expression The Expression that evaluates the value used to bind the
ResourceParameter.
160 Business Process Model and Notation, v2.0

� The marker for a Task that is a standard loop MUST be a small line with an arrowhead that curls back upon itself.
See page 196 for more information on loop Activities.

� The loop Marker MAY be used in combination with the compensation marker.

� The marker for a Task that is a multi-instance MUST be a set of three vertical lines. See page 198 for more
information on multi-instance Activities.

� If the multi-instance instances are set to be performed in sequence rather than parallel, then the marker will be
rotated 90 degrees (see Figure 10.49, below).

� The multi-instance marker MAY be used in combination with the compensation marker.

� The marker for a Task that is used for compensation MUST be a pair of left facing triangles (like a tape player
“rewind” button). See page 311 for more information on compensation.

� The Compensation Marker MAY be used in combination with the loop marker or the multi-instance marker.

All the markers that are present MUST be grouped and the whole group centered at the bottom of the shape.

Figure 10.9 - Task markers

Figure 10.10 displays the class diagram for the Task element.

Figure 10.10 - The Task class diagram

The Task inherits the attributes and model associations of Activity (see Table 10.3). There are no further attributes or
model associations of the Task.

Loop Multi-Instance Compensation
Business Process Model and Notation, v2.0 161

Types of Tasks

There are different types of Tasks identified within BPMN to separate the types of inherent behavior that Tasks might
represent. The list of Task types MAY be extended along with any corresponding indicators. A Task which is not further
specified is called Abstract Task (this was referred to as the None Task in BPMN 1.2). The notation of the Abstract
Task is shown in Figure 10.8.

Service Task

A Service Task is a Task that uses some sort of service, which could be a Web service or an automated application.

A Service Task object shares the same shape as the Task, which is a rectangle that has rounded corners. However, there
is a graphical marker in the upper left corner of the shape that indicates that the Task is a Service Task (see Figure
10.11).

A Service Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a marker that
distinguishes the shape from other Task types (as shown in Figure 10.11).

Figure 10.11 - A Service Task Object

The Service Task inherits the attributes and model associations of Activity (see Table 10.3). In addition the following
constraints are introduced when the Service Task references an Operation: The Service Task has exactly one
inputSet and at most one outputSet. It has a single Data Input with an ItemDefinition equivalent to the one
defined by the Message referenced by the inMessageRef attribute of the associated Operation. If the
Operation defines output Messages, the Service Task has a single Data Output that has an ItemDefinition
equivalent to the one defined by the Message referenced by the outMessageRef attribute of the associated
Operation.

The actual Participant whose service is used can be identified by connecting the Service Task to a Participant using a
Message Flows within the definitional Collaboration of the Process – see Table 10.1.
162 Business Process Model and Notation, v2.0

Figure 10.12 - The Service Task class diagram

The Service Task inherits the attributes and model associations of Activity (see Table 10.3). Table 10.8 presents
additional the model associations of the Service Task:

Send Task

A Send Task is a simple Task that is designed to send a Message to an external Participant (relative to the
Process). Once the Message has been sent, the Task is completed.

The actual Participant which the Message is sent can be identified by connecting the Send Task to a Participant using
a Message Flows within the definitional Collaboration of the Process – see Table 10.1.

A Send Task object shares the same shape as the Task, which is a rectangle that has rounded corners. However, there is
a filled envelope marker (the same marker as a throw Message Event) in the upper left corner of the shape that
indicates that the Task is a Send Task.

Table 10.8 – Service Task model associations

Attribute Name Description/Usage

implementation: string = ##webService This attribute specifies the technology that will be used to
send and receive the Messages. Valid values are
"##unspecified" for leaving the implementation technol-
ogy open, "##WebService" for the Web service technol-
ogy or a URI identifying any other technology or
coordination protocol. A Web service is the default tech-
nology.

operationRef: Operation [0..1] This attribute specifies the operation that is invoked by
the Service Task.

Business Process Model and Notation, v2.0 163

A Send Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a filled envelope
marker that distinguishes the shape from other Task types (as shown in Figure 10.13).

Figure 10.13 - A Send Task Object

Figure 10.14 - The Send Task and Receive Task class diagram

The Send Task inherits the attributes and model associations of Activity (see Table 10.3). In addition the following
constraints apply when the Send Task references a Message: The Send Task has at most one inputSet and one
Data Input. If the Data Input is present, it MUST have an ItemDefinition equivalent to the one defined by the
associated Message. At execution time, when the Send Task is executed, the data automatically moves from the Data
Input on the Send Task into the Message to be sent. If the Data Input is not present, the Message will not be
populated with data from the Process.

Table 10.9 presents the additional model associations of the Send Task:

164 Business Process Model and Notation, v2.0

Receive Task

A Receive Task is a simple Task that is designed to wait for a Message to arrive from an external Participant
(relative to the Process). Once the Message has been received, the Task is completed.

The actual Participant from which the Message is received can be identified by connecting the Receive Task to a
Participant using a Message Flows within the definitional Collaboration of the Process – see Table 10.1.

A Receive Task is often used to start a Process. In a sense, the Process is bootstrapped by the receipt of the
Message. In order for the Receive Task to instantiate the Process its instantiate attribute MUST be set to true
and it MUST NOT have any incoming Sequence Flow.

A Receive Task object shares the same shape as the Task, which is a rectangle that has rounded corners. However, there
is an unfilled envelope marker (the same marker as a catch Message Event) in the upper left corner of the shape that
indicates that the Task is a Receive Task.

A Receive Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes an unfilled
envelope marker that distinguishes the shape from other Task types (as shown in Figure 10.15). If the instantiate
attribute is set to true, the envelope marker looks like a Message Start Event (as shown in Figure 10.16).

Figure 10.15 - A Receive Task Object

Table 10.9 – Send Task model associations

Attribute Name Description/Usage

messageRef: Message [0..1] A Message for the messageRef attribute MAY be entered. This indicates that
the Message will be sent by the Task. The Message in this context is equiva-
lent to an out-only message pattern (Web service). One or more corresponding
outgoing Message Flows MAY be shown on the diagram. However, the display
of the Message Flows is NOT REQUIRED. The Message is applied to all out-
going Message Flows and the Message will be sent down all outgoing Mes-
sage Flows at the completion of a single instance of the Task.

operationRef: Operation This attribute specifies the operation that is invoked by the Send Task.

implementation: string =
##webService

This attribute specifies the technology that will be used to send and receive the
Messages. Valid values are "##unspecified" for leaving the implementation
technology open, "##WebService" for the Web service technology or a URI
identifying any other technology or coordination protocol A Web service is the
default technology.
Business Process Model and Notation, v2.0 165

Figure 10.16 - A Receive Task Object that instantiates a Process

The Receive Task inherits the attributes and model associations of Activity (see Table 10.3). In addition the following
constraints apply when the Receive Task references a Message: The Receive Task has at most one outputSet and
at most one Data output. If the Data output is present, it MUST have an ItemDefinition equivalent to the one
defined by the associated Message. At execution time, when the Receive Task is executed, the data automatically
moves from the Message to the Data Output on the Receive Task. If the Data Output is not present, the payload
within the Message will not flow out of the Receive Task and into the Process.

Table 10.10 presents the additional attributes and model associations of the Receive Task:

166 Business Process Model and Notation, v2.0

User Task

A User Task is a typical “workflow” Task where a human performer performs the Task with the assistance of a
software application and is scheduled through a task list manager of some sort.

A User Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a human figure
marker that distinguishes the shape from other Task types (as shown in Figure 10.17).

Figure 10.17 - A User Task Object

See “User Task” on page 167 within the larger section of “Human Interactions” for the details of User Tasks.

Table 10.10 – Receive Task attributes and model associations

Attribute Name Description/Usage

messageRef: Message [0..1] A Message for the messageRef attribute MAY be entered. This indi-
cates that the Message will be received by the Task. The Message in
this context is equivalent to an in-only message pattern (Web service).
One (1) or more corresponding incoming Message Flows MAY be
shown on the diagram. However, the display of the Message Flows is
NOT REQUIRED. The Message is applied to all incoming Message
Flows, but can arrive for only one (1) of the incoming Message Flows
for a single instance of the Task.

instantiate: boolean = false Receive Tasks can be defined as the instantiation mechanism for the
Process with the instantiate attribute. This attribute MAY be set to
true if the Task is the first Activity (i.e., there are no incoming Sequence
Flows). Multiple Tasks MAY have this attribute set to true.

operationRef: Operation This attribute specifies the operation through which the Receive Task
receives the Message.

implementation: string =
##webService

This attribute specifies the technology that will be used to send and
receive the Messages. Valid values are "##unspecified" for leaving the
implementation technology open, "##WebService" for the Web service
technology or a URI identifying any other technology or coordination pro-
tocol A Web service is the default technology.
Business Process Model and Notation, v2.0 167

Manual Task

A Manual Task is a Task that is expected to be performed without the aid of any business process execution engine or
any application. An example of this could be a telephone technician installing a telephone at a customer location.

A Manual Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a hand figure
marker that distinguishes the shape from other Task types (as shown in Figure 10.17).

Figure 10.18 - A Manual Task Object

See “Manual Task” on page 170 within the larger section of “Human Interactions” for the details of Manual Tasks.

Business Rule

A Business Rule Task provides a mechanism for the Process to provide input to a Business Rules Engine and to get
the output of calculations that the Business Rules Engine might provide. The InputOutputSpecification of the
Task (see page 218) will allow the Process to send data to and receive data from the Business Rules Engine.

A Business Rule Task object shares the same shape as the Task, which is a rectangle that has rounded corners.
However, there is a graphical marker in the upper left corner of the shape that indicates that the Task is a Business
Rule Task (see Figure 10.11).

A Business Rule Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a marker
that distinguishes the shape from other Task types (as shown in Figure 10.19).

Figure 10.19 - A Business Rule Task Object

The Business Rule Task inherits the attributes and model associations of Activity (see Table 10.3). Table 10.11
presents the additional attributes of the Business Rule Task:
168 Business Process Model and Notation, v2.0

Script Task

A Script Task is executed by a business process engine. The modeler or implementer defines a script in a language that
the engine can interpret. When the Task is ready to start, the engine will execute the script. When the script is completed,
the Task will also be completed.

A Script Task object shares the same shape as the Task, which is a rectangle that has rounded corners. However, there
is a graphical marker in the upper left corner of the shape that indicates that the Task is a Script Task (see Figure
10.11).

A Script Task is a rounded corner rectangle that MUST be drawn with a single thin line and includes a marker that
distinguishes the shape from other Task types (as shown in Figure 10.20).

Figure 10.20 - A Script Task Object

The Script Task inherits the attributes and model associations of Activity (see Table 10.3). Table 10.12 presents the
additional attributes of the Script Task:

Table 10.11 – Business Rule Task attributes and model associations

Attribute Name Description/Usage

implementation: string =
##unspecified

This attribute specifies the technology that will be used to implement the
Business Rule Task. Valid values are "##unspecified" for leaving the
implementation technology open, "##WebService" for the Web service
technology or a URI identifying any other technology or coordination
protocol. The default technology for this task is unspecified.
Business Process Model and Notation, v2.0 169

10.2.4 Human Interactions

Tasks with Human involvement

In many business workflows, human involvement is needed to complete certain Tasks specified in the workflow model.
BPMN specifies two different types of Tasks with human involvement, the Manual Task and the User Task.

A User Task is executed by and managed by a business process runtime. Attributes concerning the human involvement,
like people assignments and UI rendering can be specified in great detail. A Manual Task is neither executed by nor
managed by a business process runtime.

Notation

Both, the Manual Task and User Task share the same shape, which is a rectangle that has rounded corners. Manual
Tasks and User Tasks have a Icons to indicate the human involvement is REQUIRED to complete the Task (see Figure
10.15 and Figure 10.17, above).

Manual Task

A Manual Task is a Task that is not managed by any business process engine. It can be considered as an unmanaged
Task, unmanaged in the sense of that the business process engine doesn’t track the start and completion of such a Task.
An example of this could be a paper based instruction for a telephone technician to install a telephone at a customer
location.

Figure 10.21 - Manual Task class diagram

Table 10.12 – Script Task attributes

Attribute Name Description/Usage

scriptFormat: string [0..1] Defines the format of the script. This attribute value MUST be specified with a
mime-type format. And it MUST be specified if a script is provided.

script: string [0..1] The modeler MAY include a script that can be run when the Task is per-
formed. If a script is not included, then the Task will act as the equivalent of
an Abstract Task.

170 Business Process Model and Notation, v2.0

The User Task inherits the attributes and model associations of Activity (see Table 10.3), but does not have any
additional attributes or model associations.

User Task

A User Task is a typical “workflow” Task where a human performer performs the Task with the assistance of a
software application.. The lifecycle of the Task is managed by a software component (called task manager) and is
typically executed in the context of a Process.

Figure 10.22 - User Task class diagram

The User Task can be implemented using different technologies, specified by the implementation attribute. Besides
the Web service technology, any technology can be used. A User Task for instance can be implemented using WS-
HumanTask by setting the implementation attribute to "http://docs.oasis-open.org/ns/bpel4people/ws-humantask/protocol/
200803."

The User Task inherits the attributes and model associations of Activity (see Table 10.3). Table 10.13 presents the
additional attributes and model associations of the User Task. If implementations extend these attributes (e.g., to
introduce subjects or descriptions with presentation parameters), they SHOULD use attributes defined by the OASIS WS-
HumanTask specification.
Business Process Model and Notation, v2.0 171

Rendering of User Tasks

BPMN User Tasks need to be rendered on user interfaces like forms clients, portlets, etc. The Rendering element
provides an extensible mechanism for specifying UI renderings for User Tasks (Task UI). The element is optional. One
or more rendering methods can be provided in a Task definition. A User Task can be deployed on any compliant
implementation, irrespective of the fact whether the implementation supports specified rendering methods or not. The
Rendering element is the extension point for renderings. Things like language considerations are opaque for the
Rendering element because the rendering applications typically provide Multilanguage support. Where this is not the
case, providers of certain rendering types can decide to extend the rendering type in order to provide language
information for a given rendering. The content of the rendering element is not defined by this specification.

Human Performers

People can be assigned to Activities in various roles (called “generic human roles” in WS-HumanTask). BPMN 1.2
traditionally only has the Performer role. In addition to supporting the Performer role, BPMN 2.0 defines a specific
HumanPerformer element allowing specifying more specific human roles as specialization of HumanPerformer, such as
PotentialOwner.

Table 10.13 – User Task attributes and model associations

Attribute Name Description/Usage

implementation: string =
##unspecified

This attribute specifies the technology that will be used to implement the
User Task. Valid values are "##unspecified" for leaving the implementa-
tion technology open, "##WebService" for the Web service technology
or a URI identifying any other technology or coordination protocol. The
default technology for this task is unspecified.

renderings: Rendering [0..*] This attributes acts as a hook which allows BPMN adopters to specify
task rendering attributes by using the BPMN Extension mechanism.

The User Task inherits the instance attributes of Activity (see Table 8.49). Table 10.14 presents the instance
attributes of the User Task element:

Table 10.14 – User Task instance attributes

Attribute Name Description/Usage

actualOwner: string Returns the “user” who picked/claimed the User task and became
the actual owner of it. The value is a literal representing the user’s
id, email address etc.

taskPriority: integer Returns the priority of the User Task.
172 Business Process Model and Notation, v2.0

Figure 10.23 - HumanPerformer class diagram

The HumanPerformer element inherits the attributes and model associations of ResourceRole (see Table 10.5),
through its relationship to Performer, but does not have any additional attributes or model associations.

Potential Owners

Potential owners of a User Task are persons who can claim and work on it. A potential owner becomes the actual owner
of a Task, usually by explicitly claiming it.

XML Schema for Human Interactions

Table 10.15 – ManualTask XML schema

<xsd:element name="manualTask" type="tManualTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tManualTask">

<xsd:complexContent>
<xsd:extension base="tTask"/>
</xsd:complexContent>

</xsd:complexType>
Business Process Model and Notation, v2.0 173

Table 10.16 – UserTask XML schema

<xsd:element name="userTask" type="tUserTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tUserTask">

<xsd:complexContent>
<xsd:extension base="tTask">

<xsd:sequence>
<xsd:element ref="rendering" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="implementation" type="tImplementation"
default="##unspecified"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="rendering" type="tRendering"/>
<xsd:complexType name="tRendering">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tImplementation">
<xsd:union memberTypes="xsd:anyURI">

<xsd:simpleType>
<xsd:restriction base="xsd:token">

<xsd:enumeration value="##unspecified" />
<xsd:enumeration value="##WebService" />

</xsd:restriction>
</xsd:simpleType>

</xsd:union>
</xsd:simpleType>

Table 10.17 – HumanPerformer XML schema

<xsd:element name="humanPerformer" type="tHumanPerformer" substitutionGroup="performer"/>
<xsd:complexType name="tHumanPerformer">

<xsd:complexContent>
<xsd:extension base="tPerformer">

<xsd:sequence>
<xsd:element ref="peopleAssignment" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
174 Business Process Model and Notation, v2.0

Examples

Consider the following sample procurement Process from the Buyer perspective (see Figure 10.24).

Figure 10.24 - Procurement Process Example

The Process comprises of two User Tasks

• Approve Order: After the quotation handling, the order needs to be approved by some regional manager to continue
with the order and shipment handling.

• Review Order: Once the order has been shipped to the Buyer, the order and shipment documents will be reviewed
again by someone.

The details of the Resource and resource assignments are not shown in the BPMN above. See below XML sample of
the “Buyer” Process for the Resource usage and resource assignments for potential owners.

Table 10.19 – XML serialization of Buyer process

<?xml version="1.0" encoding="UTF-8"?>
<definitions id="Definition"
 targetNamespace="http://www.example.org/UserTaskExample"
 typeLanguage="http://www.w3.org/2001/XMLSchema"
 expressionLanguage="http://www.w3.org/1999/XPath"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

Table 10.18 – PotentialOwner XML schema

<xsd:element name="potentialOwner" type="tPotentialOwner" substitutionGroup="performer"/>
<xsd:complexType name="tPotentialOwner">

<xsd:complexContent>
<xsd:extension base="tHumanPerformer"/>

</xsd:complexContent>
</xsd:complexType>

Bu
ye

r

Handle
Quotations

Approved

Not
Approved

Handle
Order

Handle
Shipment

Approve
Order

Review
Order
Business Process Model and Notation, v2.0 175

 xmlns:tns="http://www.example.org/UserTaskExample">

 <resource id="regionalManager" name="Regional Manager">
 <resourceParameter id="buyerName" isRequired="true" name="Buyer Name" type="xsd:string"/>
 <resourceParameter id="region" isRequired="false" name="Region" type="xsd:string"/>
 </resource>

 <resource id="departmentalReviewer" name="Departmental Reviewer">
 <resourceParameter id="buyerName" isRequired="true" name="Buyer Name" type="xsd:string"/>
 </resource>

 <collaboration id="BuyerCollaboration" name="Buyer Collaboration">
 <participant id="BuyerParticipant" name="Buyer" processRef="BuyerProcess"/>
 </collaboration>

 <!-- Process definition -->
 <process id="BuyerProcess" name="Buyer Process">

 <laneSet id="BuyerLaneSet">
 <lane id="BuyerLane">
 <flowNodeRef>StartProcess</flowNodeRef>
 <flowNodeRef>QuotationHandling</flowNodeRef>
 <flowNodeRef>ApproveOrder</flowNodeRef>
 <flowNodeRef>OrderApprovedDecision</flowNodeRef>
 <flowNodeRef>TerminateProcess</flowNodeRef>
 <flowNodeRef>OrderAndShipment</flowNodeRef>
 <flowNodeRef>OrderHandling</flowNodeRef>
 <flowNodeRef>ShipmentHandling</flowNodeRef>
 <flowNodeRef>OrderAndShipmentMerge</flowNodeRef>
 <flowNodeRef>ReviewOrder</flowNodeRef>
 <flowNodeRef>EndProcess</flowNodeRef>
 </lane>
 </laneSet>

 <startEvent id="StartProcess"/>

 <sequenceFlow sourceRef="StartProcess" targetRef="QuotationHandling"/>

 <task id="QuotationHandling" name="Quotation Handling"/>

 <sequenceFlow sourceRef="QuotationHandling" targetRef="ApproveOrder"/>

 <userTask id="ApproveOrder" name="ApproveOrder">
 <potentialOwner>
 <resourceRef>tns:regionalManager</resourceRef>
 <resourceParameterBinding parameterRef="tns:buyerName">
176 Business Process Model and Notation, v2.0

 <formalExpression>getDataInput('order')/address/name</formalExpression>
 </resourceParameterBinding>
 <resourceParameterBinding parameterRef="tns:region">
 <formalExpression>getDataInput('order')/address/country</formalExpression>
 </resourceParameterBinding>
 </potentialOwner>
 </userTask>

 <sequenceFlow sourceRef="ApproveOrder" targetRef="OrderApprovedDecision"/>

 <exclusiveGateway id="OrderApprovedDecision" gatewayDirection="Diverging"/>

 <sequenceFlow sourceRef="OrderApprovedDecision" targetRef="OrderAndShipment">
 <conditionExpression>Was the Order Approved?</conditionExpression>
 </sequenceFlow>

 <sequenceFlow sourceRef="OrderApprovedDecision" targetRef="TerminateProcess">
 <conditionExpression>Was the Order NOT Approved?</conditionExpression>
 </sequenceFlow>

 <endEvent id="TerminateProcess">
 <terminateEventDefinition id="TerminateEvent"/>
 </endEvent>

 <parallelGateway id="OrderAndShipment" gatewayDirection="Diverging"/>

 <sequenceFlow sourceRef="OrderAndShipment" targetRef="OrderHandling"/>
 <sequenceFlow sourceRef="OrderAndShipment" targetRef="ShipmentHandling"/>

 <task id="OrderHandling" name="Order Handling"/>

 <task id="ShipmentHandling" name="Shipment Handling"/>

 <sequenceFlow sourceRef="OrderHandling" targetRef="OrderAndShipmentMerge"/>
 <sequenceFlow sourceRef="ShipmentHandling" targetRef="OrderAndShipmentMerge"/>

 <parallelGateway id="OrderAndShipmentMerge" gatewayDirection="Converging"/>

 <sequenceFlow sourceRef="OrderAndShipmentMerge" targetRef="ReviewOrder"/>

 <userTask id="ReviewOrder" name="Review Order">
 <potentialOwner>
 <resourceRef>tns:departmentalReviewer</resourceRef>
 <resourceParameterBinding parameterRef="tns:buyerName">
 <formalExpression>getDataInput('order')/address/name</formalExpression>
 </resourceParameterBinding>
Business Process Model and Notation, v2.0 177

 </potentialOwner>
 </userTask>

 <sequenceFlow sourceRef="ReviewOrder" targetRef="EndProcess"/>

 <endEvent id="EndProcess"/>

 </process>
</definitions>

10.2.5 Sub-Processes

A Sub-Process is an Activity whose internal details have been modeled using Activities, Gateways, Events, and
Sequence Flows. A Sub-Process is a graphical object within a Process, but it also can be “opened up” to show a
lower-level Process. Sub-Processes define a contextual scope that can be used for attribute visibility, transactional
scope, for the handling of exceptions (see page 283 for more details), of Events, or for compensation (see page 311 for
more details).

There are different types of Sub-Processes, which will be described in the next five (5) sections.

Embedded Sub-Process (Sub-Process)

A Sub-Process object shares the same shape as the Task object, which is a rounded rectangle.

� A Sub-Process is a rounded corner rectangle that MUST be drawn with a single thin line.

� The use of text, color, size, and lines for a Sub-Process MUST follow the rules defined in Section “Use of
Text, Color, Size, and Lines in a Diagram” on page 41 with the exception that:

� A boundary drawn with a thick line SHALL be reserved for Call Activity (Sub-Processes) (see page
189).

� A boundary drawn with a dotted line SHALL be reserved for Event Sub-Processes (see page 181).

� A boundary drawn with a double line SHALL be reserved for Transaction Sub-Processes (see page
184).

The Sub-Process can be in a collapsed view that hides its details (see Figure 10.25) or a Sub-Process can be in an
expanded view that shows its details within the view of the Process in which it is contained (see Figure 10.26). In the
collapsed form, the Sub-Process object uses a marker to distinguish it as a Sub-Process, rather than a Task.

� The Sub-Process marker MUST be a small square with a plus sign (+) inside. The square MUST be
positioned at the bottom center of the shape.
178 Business Process Model and Notation, v2.0

Figure 10.25 - A Sub-Process object (collapsed)

Figure 10.26 - A Sub-Process object (expanded)

They are used to create a context for exception handling that applies to a group of Activities (see page 283 for more
details). Compensations can be handled similarly (see page 311 for more details).

Expanded Sub-Processes can be used as a mechanism for showing a group of parallel Activities in a less-cluttered,
more compact way. In Figure 10.27, Activities “C” and “D” are enclosed in an unlabeled expanded Sub-Process.
These two Activities will be performed in parallel. Notice that the expanded Sub-Process does not include a Start
Event or an End Event and the Sequence Flows to/from these Events. This usage of expanded Sub-Processes for
“parallel boxes” is the motivation for having Start and End Events being optional objects.

Collapsed
Sub-

Process

Sub-Process
(Expanded)
Business Process Model and Notation, v2.0 179

Figure 10.27 - Expanded Sub-Process used as a “Parallel Box”

BPMN specifies five (5) types of standard markers for Sub-Processes. The (Collapsed) Sub-Process marker, seen in
Figure 10.24, can be combined with four (4) other markers: a loop marker or a multi-instance marker, a Compensation
marker, and an Ad-Hoc marker. A collapsed Sub-Process MAY have one to three of these other markers, in all
combinations except that loop and multi-instance cannot be shown at the same time (see Figure 10.28).

� The marker for a Sub-Process that loops MUST be a small line with an arrowhead that curls back upon itself.

� The loop marker MAY be used in combination with any of the other markers except the multi-instance marker.

� The marker for a Sub-Process that has multiple instances MUST be a set of three vertical lines in parallel.

� The multi-instance marker MAY be used in combination with any of the other markers except the loop marker.

� The marker for an ad-hoc Sub-Process MUST be a “tilde” symbol.

� The ad-hoc marker MAY be used in combination with any of the other markers.

� The marker for a Sub-Process that is used for compensation MUST be a pair of left facing triangles (like a tape
player “rewind” button).

� The Compensation marker MAY be used in combination with any of the other markers.

� All the markers that are present MUST be grouped and the whole group centered at the bottom of the Sub-
Process.

Figure 10.28 - Collapsed Sub-Process Markers

The Sub-Process now corresponds to the Embedded Sub-Process of BPMN 1.2. The Reusable Sub-Process of BPMN 1.2
corresponds to the Call Activity (calling a Process - see page 189).

A

C

D

E

~~

Multi-InstanceLoop Compensation Ad-Hoc Compensation
and Ad-Hoc
180 Business Process Model and Notation, v2.0

Figure 10.28 shows the class diagram related to Sub-Processes.

Figure 10.29- The Sub-Process class diagram

The Sub-Process element inherits the attributes and model associations of Activity (see Table 10.3) and of
FlowElementContainer (see Table 8.45). Table 10.3 presents the additional attributes of the Sub-Process element:

Reusable Sub-Process (Call Activity)

The reusable Sub-Process of BPMN 1.2 corresponds to the Call Activity that calls a pre-defined Process. See details
of a Call Activity on page 189.

Event Sub-Process

An Event Sub-Process is a specialized Sub-Process that is used within a Process (or Sub-Process). A Sub-
Process is defined as an Event Sub-Process when its triggeredByEvent attribute is set to true.

Table 10.20 – Sub-Process attributes

Attribute Name Description/Usage

triggeredByEvent: boolean = false A flag that identifies whether this Sub-Process is an
Event Sub-Process.

• If false, then this Sub-Process is a normal Sub-Process.

• If true, then this Sub-Process is an Event Sub-Process and is
subject to additional constraints (see page 181).

artifacts: Artifact [0..*] This attribute provides the list of Artifacts that are contained within the
Sub-Process.
Business Process Model and Notation, v2.0 181

An Event Sub-Process is not part of the normal flow of its parent Process—there are no incoming or outgoing
Sequence Flows.

� An Event Sub-Process MUST NOT have any incoming or outgoing Sequence Flows.

An Event Sub-Process MAY or MAY NOT occur while the parent Process is active, but it is possible that it will
occur many times. Unlike a standard Sub-Process, which uses the flow of the parent Process as a trigger, an Event
Sub-Process has a Start Event with a trigger. Each time the Start Event is triggered while the parent Process is
active, then the Event Sub-Process will start.

� The Start Event of an Event Sub-Process MUST have a defined trigger.

� The Start Event trigger (EventDefinition) MUST be from the following types: Message, Error,
Escalation, Compensation, Conditional, Signal, and Multiple (see page 268 for more details).

� An Event Sub-Process MUST have one and only one Start Event.

An Event Sub-Process object shares the same basic shape as the Sub-Process object, which is a rounded rectangle.

� An Event Sub-Process is a rounded corner rectangle that MUST be drawn with a single thin dotted line (see
Figure 10.30 and Figure 10.31).

� The use of text, color, size, and lines for an Event Sub-Process MUST follow the rules defined in Section
“Use of Text, Color, Size, and Lines in a Diagram” on page 41 with the exception that:

� If the Event Sub-Process is collapsed, then its Start Event will be used as a marker in the upper left corner of
the shape (see Figure 10.30).

Figure 10.30 - An Event Sub-Process object (Collapsed)

Figure 10.31 - An Event Sub-Process object (expanded)

Event Sub-
Process

Expanded Event Sub-Process
182 Business Process Model and Notation, v2.0

There are two (2) possible consequences to the parent Process when an Event Sub-Process is triggered: 1) the parent
Process can be interrupted, and 2) the parent Process can continue its work (not interrupted). This is determined by the
type of Start Event that is used. See page 249 for the list of interrupting and non-interrupting Event Sub-Process
Start Events.

Figure 10.32 provides an example of a Sub-Process that includes three (3) Event Sub-Processes. The first Event
Sub-Process is triggered by a Message, does not interrupt the Sub-Process, and can occur multiple times. The
second Event Sub-Process is used for compensation and will only occur after the Sub-Process has completed. The
third Event Sub-Process handles errors that occur while the Sub-Process is active and will stop (interrupt) the Sub-
Process if triggered.

Figure 10.32 - An example that includes Event Sub-Processes

Book Flight

Book Hotel

Booking
Booking

Get Credit
Card

Information

Notify
Customer

Failed
Booking

Update Credit Card Information

Booking

Booking
Error 1

Cancel
Flight

Cancel
Hotel

Charge
Credit Card

Update
Credit Card

Info

Handle Compensation

Flight

Hotel

Update
Customer
Record

Handle Booking Error

Flight

Hotel

Booking
Error 2

Notify
Customer
Invalid CCRetry Limit

Exceeded

Retry Limit
Exceeded

Booking
Error 2
Business Process Model and Notation, v2.0 183

Transaction

A Transaction is a specialized type of Sub-Process which will have a special behavior that is controlled through a
transaction protocol (such as WS-Transaction). The boundary of the Sub-Process will be double-lined to indicate that it
is a Transaction (see Figure 10.33).

� A Transaction Sub-Process is a rounded corner rectangle that MUST be drawn with a double thin line.

� The use of text, color, size, and lines for a transaction Sub-Process MUST follow the rules defined in
Section “Use of Text, Color, Size, and Lines in a Diagram” on page 41.

Figure 10.33 - A Transaction Sub-Process

Bookings

Book Flight

Book Hotel

Cancel
Flight

Send Hotel
Cancellation

Transaction Failed
Bookings

Exceptions
(Hazards)

Send
Unavailability

Notice

Handle
through

Customer
Service

Successful
Bookings

Charge
Buyer
184 Business Process Model and Notation, v2.0

Figure 10.34 - A Collapsed Transaction Sub-Process

The Transaction Sub-Process element inherits the attributes and model associations of Activities (see Table 10.3)
through its relationship to Sub-Process. Table 10.21 presents the additional attributes and model associations of the
Transaction Sub-Process:

There are three basic outcomes of a Transaction:

1. Successful completion: this will be shown as a normal Sequence Flow that leaves the Transaction Sub-
Process.

2. Failed completion (Cancel): When a Transaction is cancelled, the Activities inside the Transaction will be
subjected to the cancellation actions, which could include rolling back the Process and compensation (see page 311
for more information on compensation) for specific Activities. Note that other mechanisms for interrupting a
Transaction Sub-Process will not cause compensation (e.g., Error, Timer, and anything for a non-Transaction
Activity). A Cancel Intermediate Event, attached to the boundary of the Activity, will direct the flow after the

Table 10.21 – Transaction Sub-Process attributes and model associations

Attribute Name Description/Usage

method: TransactionMethod The method is an attribute that defines the Transaction method
used to commit or cancel a Transaction. For executable
Processes, it SHOULD be set to a technology specific URI,
e.g., http://schemas.xmlsoap.org/ws/2004/10/wsat
for WS-AtomicTransaction, or http://docs.oasis-
open.org/ws-tx/wsba/2006/06/AtomicOutcome for
WS-BusinessActivity. For compatibility with BPMN 1.1, it can
also be set to "##compensate", "##store", or "##image".

Bookings

Failed
Bookings

Exceptions
(Hazards)

Send
Unavailability

Notice

Handle
through

Customer
Service

Successful
Bookings

Charge
Buyer
Business Process Model and Notation, v2.0 185

Transaction has been rolled back and all compensation has been completed. The Cancel Intermediate Event
can only be used when attached to the boundary of a Transaction Sub-Process. It cannot be used in any normal
flow and cannot be attached to a non-Transaction Sub-Process. There are two mechanisms that can signal the
cancellation of a Transaction:

• A Cancel End Event is reached within the transaction Sub-Process. A Cancel End Event can only
be used within a transaction Sub-Process.

• A cancel Message can be received via the transaction protocol that is supporting the execution of the
Transaction Sub-Process.

3. Hazard: This means that something went terribly wrong and that a normal success or cancel is not possible. Error
Intermediate Events are used to show Hazards. When a Hazard happens, the Activity is interrupted (without
compensation) and the flow will continue from the Error Intermediate Event.

The behavior at the end of a successful Transaction Sub-Process is slightly different than that of a normal Sub-
Process. When each path of the Transaction Sub-Process reaches a non-Cancel End Event(s), the flow does not
immediately move back up to the higher-level parent Process, as does a normal Sub-Process. First, the transaction
protocol needs to verify that all the Participants have successfully completed their end of the Transaction. Most of the
time this will be true and the flow will then move up to the higher-level Process. But it is possible that one of the
Participants can end up with a problem that causes a Cancel or a Hazard. In this case, the flow will then move to the
appropriate Intermediate Event, even though it had apparently finished successfully.

Ad-Hoc Sub-Process

An Ad-Hoc Sub-Process is a specialized type of Sub-Process that is a group of Activities that have no REQUIRED
sequence relationships. A set of Activities can be defined for the Process, but the sequence and number of
performances for the Activities is determined by the performers of the Activities.

A Sub-Process is marked as being ad-hoc with a “tilde” symbol placed at the bottom center of the Sub-Process shape
(see Figure 10.35 and Figure 10.36).

� The marker for an Ad-Hoc Sub-Process MUST be a “tilde” symbol.

� The Ad-Hoc Marker MAY be used in combination with any of the other markers.

Figure 10.35 - A collapsed Ad-Hoc Sub-Process

~

186 Business Process Model and Notation, v2.0

Figure 10.36 - An expanded Ad-Hoc Sub-Process

The Ad-Hoc Sub-Process element inherits the attributes and model associations of Activities (see Table 10.3) through
its relationship to Sub-Process. Table 10.22 presents the additional model associations of the Ad-Hoc Sub-Process:

Activities within the Process are generally disconnected from each other. During execution of the Process, any one or
more of the Activities MAY be active and they MAY be performed multiple times. The performers determine when
Activities will start, what the next Activity will be, and so on.

Examples of the types of Processes that are Ad-Hoc include computer code development (at a low level), sales
support, and writing a book chapter. If we look at the details of writing a book chapter, we could see that the Activities
within this Process include: researching the topic, writing text, editing text, generating graphics, including graphics in
the text, organizing references, etc. (see Figure 10.37). There MAY be some dependencies between Tasks in this
Process, such as writing text before editing text, but there is not necessarily any correlation between an instance of
writing text to an instance of editing text. Editing can occur infrequently and based on the text of many instances of the
writing text Task.

Table 10.22 – Ad-hoc Sub-Process model associations

Attribute Name Description/Usage

completionCondition:
Expression

This Expression defines the conditions when the Process will end. When
the Expression is evaluated to true, the Process will be terminated.

ordering: AdHocOrdering =
Parallel
{ Parallel | Sequential }

This attribute defines if the Activities within the Process can be performed in
parallel or MUST be performed sequentially. The default setting is parallel
and the setting of sequential is a restriction on the performance that can be
needed due to shared resources. When the setting is sequential, then only
one Activity can be performed at a time. When the setting is parallel, then
zero (0) to all the Activities of the Sub-Process can be performed in parallel.

cancelRemaining-
Instances: boolean = true

This attribute is used only if ordering is parallel. It determines whether running
instances are cancelled when the completionCondition becomes true.

~

Business Process Model and Notation, v2.0 187

Figure 10.37 - An Ad-Hoc Sub-Process for writing a book chapter

Although there is no explicit Process structure, some sequence and data dependencies can be added to the details of the
Process. For example, we can extend the book chapter Ad-Hoc Sub-Process shown above and add Data Objects,
Data Associations, and even Sequence Flows (Figure 10.38).

Ad-Hoc Sub-Processes restrict the use of BPMN elements that would normally be used in Sub-Processes.

� The list of BPMN elements that MUST be used in an Ad-Hoc Sub-Process: Activity.

� The list of BPMN elements that MAY be used in an Ad-Hoc Sub-Process: Data Object, Sequence Flow,
Association, Data Association, Group, Message Flow (as a source or target), Gateway, and Intermediate
Event.

� The list of BPMN elements that MUST NOT be used in an Ad-Hoc Sub-Process: Start Event, End Event,
Conversations (graphically), Conversation Links (graphically), and Choreography Activities.

Write a Book Chapter

Research
the Topic

Write/Edit
Text

Generate
Graphics

Include
Graphics in

Text

Organize
References

Finalize
Chapter

Write Text
188 Business Process Model and Notation, v2.0

Figure 10.38 - An Ad-Hoc Sub-Process with data and sequence dependencies

The Data Objects as inputs into the Tasks act as an additional constraint for the performance of those Tasks. The
performers still determine when the Tasks will be performed, but they are now constrained in that they cannot start the
Task without the appropriate input. The addition of Sequence Flows between the Tasks (e.g., between “Generate
Graphics” and “Include Graphics in Text”) creates a dependency where the performance of the first Task MUST be
followed by a performance of the second Task. This does not mean that the second Task is to be performed immediately,
but there MUST be a performance of the second Task after the performance of the first Task.

It is a challenge for a BPM engine to monitor the status of Ad-Hoc Sub-Processes, usually these kind of Processes
are handled through groupware applications (such as e-mail), but BPMN allows modeling of Processes that are not
necessarily executable, although there are some process engines that can follow an Ad-Hoc Sub-Process. Given this, at
some point the Ad-Hoc Sub-Process will have complete and this can be determined by evaluating a
completionCondition that evaluates Process attributes that will have been updated by an Activity in the
Process.

10.2.6 Call Activity

A Call Activity identifies a point in the Process where a global Process or a Global Task is used. The Call
Activity acts as a ‘wrapper’ for the invocation of a global Process or Global Task within the execution. The
activation of a call Activity results in the transfer of control to the called global Process or Global Task.

Write a Book Chapter

Research
the Topic

Write/Edit
Text

Generate
Graphics

Include
Graphics in

Text

Organize
References

Finalize
Chapter

Topic Graphics
[completed]

Research
Notes

Chapter Text
[draft]

Chapter
[completed]

References

Write Text
Business Process Model and Notation, v2.0 189

The BPMN 2.0 Call Activity corresponds to the Reusable Sub-Process of BPMN 1.2. A BPMN 2.0 Sub-Process
corresponds to the Embedded Sub-Process of BPMN 1.2 (see the previous section).

A Call Activity object shares the same shape as the Task and Sub-Process, which is a rectangle that has rounded
corners. However, the target of what the Activity calls will determine the details of its shape.

� If the Call Activity calls a Global Task, then the shape will be the same as a Task, but the boundary of the shape
will MUST have a thick line (see Figure 10.39).

� The Call Activity MUST display the marker of the type of Global Task (e.g., the Call Activity would
display the User Task marker if calling a Global User Task).

� If the Call Activity calls a Process, then there are two (2) options:

� The details of the called Process can be hidden and the shape of the Call Activity will be the same as a
collapsed Sub-Process, but the boundary of the shape MUST have a thick line (see Figure 10.40).

If the details of the called Process are available, then the shape of the Call Activity will be the same as a expanded
Sub-Process, but the boundary of the shape MUST have a thick line (see Figure 10.41).

Figure 10.39- A Call Activity object calling a Global Task

Figure 10.40 - A Call Activity object calling a Process (Collapsed)
190 Business Process Model and Notation, v2.0

Figure 10.41 - A Call Activity object calling a Process (Expanded)

When a Process with a definitional Collaboration, calls a Process that also has a definitional Collaboration, the
Participants of the two (2) Collaborations can be matched to each other using ParticipantAssociations of the
Collaboration of the calling Process.

A Call Activity MUST fullfil the data requirements, as well as return the data produced by the CallableElement
being invoked (see Figure 10.41). This means that the elements contained in the Call Activity’s
InputOutputSpecification MUST exactly match the elements containes in the referenced CallableElement.
This includes DataInputs, DataOutputs, InputSets, and OutputSets.
Business Process Model and Notation, v2.0 191

Figure 10.42 -The Call Activity class diagram

A Call Activity can override properties and attributes of the element being called, potentially changing the behavior of
the called element based on the calling context. For example, When the Call Activity defines one or more
ResourceRole elements, the elements defined by the CallableElement are ignored and the elements defined in the
Call Activity are used instead. Also, Events that are propagated along the hierarchy (errors and escalations) are
propagated from the called element to the Call Activity (and can be handled on its boundary).

The Call Activity inherits the attributes and model associations of Activity (see Table 10.3). Table 10.23 presents the
additional model associations of the Call Activity:

Table 10.23 – CallActivity model associations

Attribute Name Description/Usage

calledElement: CallableElement
[0..1]

The element to be called, which will be either a Process or a
GlobalTask. Other CallableElements, such as Choreography,
GlobalChoreographyTask, Conversation, and
GlobalCommunication MUST NOT be called by the Call Conversation
element.
192 Business Process Model and Notation, v2.0

Callable Element

CallableElement is the abstract super class of all Activities that have been defined outside of a Process or
Choreography but which can be called (or reused), by a Call Activity, from within a Process or Choreography. It
MAY reference Interfaces that define the service operations that it provides. The BPMN elements that can be called
by Call Activities (i.e., are CallableElements) are: Process and GlobalTask (see Figure 10.43).

CallableElements are RootElements, which can be imported and used in other Definitions. When
CallableElements (e.g., Process) are defined, they are contained within Definitions.

Figure 10.43 - CallableElement class diagram

The CallableElement inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 10.24 presents the additional attributes and model associations of the
CallableElement:
Business Process Model and Notation, v2.0 193

When a CallableElement is exposed as a Service, it has to define one or more InputOutputBinding
elements. An InputOutputBinding element binds one Input and one Output of the
InputOutputSpecification to an Operation of a Service Interface. Table 10.25 presents the additional
model associations of the InputOutputBinding:

10.2.7 Global Task

A Global Task is a reusable, atomic Task definition that can be called from within any Process by a Call Activity.

Table 10.24 – CallableElement attributes and model associations

Attribute Name Description/Usage

name: string [0..1] The descriptive name of the element.

supportedInterfaceRefs:
Interface [0..*]

The Interfaces describing the external behavior provided by this
element.

ioSpecification: Input
OutputSpecification [0..1]

The InputOutputSpecification defines the inputs and outputs and
the InputSets and OutputSets for the Activity.

ioBinding: InputOutput
Binding [0..*]

The InputOutputBinding defines a combination of one InputSet
and one OutputSet in order to bind this to an operation defined in an
interface.

Table 10.25 – InputOutputBinding model associations

Attribute Name Description/Usage

inputDataRef: DataInput A reference to one specific DataInput defined as part of the
InputOutputSpecification of the Activity.

outputDataRef: DataOutput A reference to one specific DataOutput defined as part of the
InputOutputSpecification of the Activity.

operationRef: Operation A reference to one specific Operation defined as part of the Interface of
the Activity.
194 Business Process Model and Notation, v2.0

Figure 10.44 - Global Tasks class diagram

The GlobalTask inherits the attributes and model associations of Callable Element (see Table 10.24). Table 10.26
presents the additional model associations of the GlobalTask:

Types of Global Task

There are different types of Tasks identified within BPMN to separate the types of inherent behavior that Tasks might
represent. The types of Global Tasks are only a subset of standard Tasks types. Only GlobalUserTask,
GlobalManualTask, GlobalScriptTask and GlobalBusinessRuleTask are defined in BPMN. For the sake of efficiency
in this specification, the list of Task types is presented once on page 160. The behavior, attributes, and model associations
defined in that section also apply to the corresponding types of Global Tasks.

Table 10.26 – Global Task model associations

Attribute Name Description/Usage

resources: ResourceRole
[0..*]

Defines the resource that will perform or will be responsible for the
GlobalTask. In the case where the Call Activity that references this Glo-
balTask defines its own resources, they will override the ones defined here.
Business Process Model and Notation, v2.0 195

10.2.8 Loop Characteristics

Activities MAY be repeated sequentially, essentially behaving like a loop. The presence of LoopCharacteristics
signifies that the Activity has looping behavior. LoopCharacteristics is an abstract class. Concrete subclasses
define specific kinds of looping behavior.

The LoopCharacteristics inherits the attributes and model associations of BaseElement (see Table 8.5). There
are no further attributes or model associations of the LoopCharacteristics.

However, each Loop Activity instance has attributes whose values MAY be referenced by Expressions. These values
are only available when the Loop Activity is being executed.

Figure 10.45 displays the class diagram for an Activity’s loop characteristics, including the details of both the standard
loop and a multi-instance.

Figure 10.45 - LoopCharacteristics class diagram

The LoopCharacteristics element inherits the attributes and model associations of BaseElement (see Table 8.5),
but does not have any further attributes or model associations. However, a Loop Activity does have additional instance
attributes as shown in Table 10.27.
196 Business Process Model and Notation, v2.0

Standard Loop Characteristics

The StandardLoopCharacteristics class defines looping behavior based on a boolean condition. The Activity
will loop as long as the boolean condition is true. The condition is evaluated for every loop iteration, and MAY be
evaluated at the beginning or at the end of the iteration. In addition, a numeric cap can be optionally specified. The
number of iterations MAY NOT exceed this cap.

� The marker for a Task or a Sub-Process that is a standard loop MUST be a small line with an arrowhead that curls
back upon itself (see Figure 10.46 and Figure 10.47).

� The loop Marker MAY be used in combination with the Compensation Marker.

Figure 10.46 - A Task object with a Standard Loop Marker

Figure 10.47 - A Sub-Process object with a Standard Loop Marker

The StandardLoopCharacteristics element inherits the attributes and model associations of BaseElement (see
Figure 8.5), through its relationship to LoopCharacteristics. Table 10.28 presents the additional attributes and
model associations for the StandardLoopCharacteristics element:

Table 10.27 – Loop Activity instance attributes

Attribute Name Description/Usage

loopCounter: integer The LoopCounter attribute is used at runtime to count the number of loops
and is automatically updated by the process engine.
Business Process Model and Notation, v2.0 197

Multi-Instance Characteristics

The MultiInstanceLoopCharacteristics class allows for creation of a desired number of Activity instances.
The instances MAY execute in parallel or MAY be sequential. Either an Expression is used to specify or calculate the
desired number of instances or a data driven setup can be used. In that case a data input can be specified, which is able to
handle a collection of data. The number of items in the collection determines the number of Activity instances. This data
input can be produced by an input Data Association. The modeler can also configure this loop to control the tokens
produced.

� The marker for a Task or Sub-Process that is a multi-instance MUST be a set of three vertical lines.

� If the multi-instance instances are set to be performed in parallel rather than sequential (the isSequential
attribute set to false), then the lines of the marker will vertical (see Figure 10.48).

� If the multi-instance instances are set to be performed in sequence rather than parallel (the isSequential
attribute set to true), then the marker will be horizontal (see Figure 10.49).

� The Multi-Instance marker MAY be used in combination with the Compensation marker.

Figure 10.48 - Activity Multi-Instance marker for parallel instances

Figure 10.49 - Activity Multi-Instance marker for sequential instances

Table 10.28 – StandardLoopCharacteristics attributes and model associations

Attribute Name Description/Usage

testBefore: boolean = false Flag that controls whether the loop condition is evaluated at the begin-
ning (testBefore = true) or at the end (testBefore = false) of the
loop iteration.

loopMaximum: integer [0..1] Serves as a cap on the number of iterations.

loopCondition: Expression [0..1] A boolean Expression that controls the loop. The Activity will only
loop as long as this condition is true. The looping behavior MAY be
underspecified, meaning that the modeler can simply document the con-
dition, in which case the loop cannot be formally executed.
198 Business Process Model and Notation, v2.0

The MultiInstanceLoopCharacteristics element inherits the attributes and model associations of
BaseElement (see Table 8.5), through its relationship to LoopCharacteristics. Table 10.29 presents the
additional attributes and model associations for the MultiInstanceLoopCharacteristics element.

Table 10.29 - MultiInstanceLoopCharacteristics attributes and model associations

Attribute Name Description/Usage

isSequential: boolean = false This attribute is a flag that controls whether the Activity instances will
execute sequentially or in parallel.

loopCardinality: Expression [0..1] A numeric Expression that controls the number of Activity instances
that will be created. This Expression MUST evaluate to an integer.
This MAY be underspecified, meaning that the modeler MAY simply
document the condition. In such a case the loop cannot be formally
executed.
In order to initialize a valid multi-instance, either the loopCardinality
Expression or the loopDataInput MUST be specified.

loopDataInputRef:
ItemAwareElement [0..1]

This ItemAwareElement is used to determine the number of Activity
instances, one Activity instance per item in the collection of data stored
in that ItemAwareElement element.

For Tasks it is a reference to a Data Input which is part of the Activity’s
InputOutputSpecification.

For Sub-Processes it is a reference to a collection-valued Data Object
in the context that is visible to the Sub-Processes.
In order to initialize a valid multi-instance, either the loopCardinality
Expression or the loopDataInput MUST be specified.

loopDataOutputRef:
ItemAwareElement [0..1]

This ItemAwareElement specifies the collection of data, which will be
produced by the multi-instance.
For Tasks it is a reference to a Data Output which is part of the
Activity’s InputOutputSpecification.

For Sub-Processes it is a reference to a collection-valued Data Object
in the context that is visible to the Sub-Processes.

inputDataItem: DataInput [0..1] A Data Input, representing for every Activity instance the single item of
the collection stored in the loopDataInput. This Data Input can be
the source of DataInputAssociation to a data input of the Activity’s
InputOutputSpecification. The type of this Data Input MUST the
scalar of the type defined for the loopDataInput.
Business Process Model and Notation, v2.0 199

Table 10.30 lists all instance attributes available at runtime. For each instance of the Multi-Instance Activity (outer
instance), there exist a number of generated (inner) instances of the Activity at runtime.

outputDataItem: DataOutput [0..1] A Data Output, representing for every Activity instance the single item
of the collection stored in the loopDataOutput. This Data Output can
be the target of DataOutputAssociation to a data output of the
Activity’s InputOutputSpecification. The type of this Data
Output MUST the scalar of the type defined for the loopDataOutput.

behavior: MultiInstanceBehavior =
all { None | One | All | Complex }

The attribute behavior acts as a shortcut for specifying when events
SHALL be thrown from an Activity instance that is about to complete. It
can assume values of None, One, All, and Complex, resulting in the
following behavior:

• None: the EventDefinition which is associated through the
noneEvent association will be thrown for each instance
completing;

• One: the EventDefinition referenced through the oneEvent
association will be thrown upon the first instance completing;

• All: no Event is ever thrown; a token is produced after completion
of all instances

• Complex: the complexBehaviorDefinitions are consulted to
determine if and which Events to throw.

For the behaviors of none and one, a default
SignalEventDefinition will be thrown which automatically carries
the current runtime attributes of the MI Activity.

Any thrown Events can be caught by boundary Events on the Multi-
Instance Activity.

complexBehaviorDefinition: Com-
plexBehaviorDefinition [0..*]

Controls when and which Events are thrown in case behavior is set to
complex.

completionCondition: Expression
[0..1]

This attribute defines a boolean Expression that when evaluated to
true, cancels the remaining Activity instances and produces a token.

oneBehaviorEventRef: EventDefi-
nition [0..1]

The EventDefinition which is thrown when behavior is set to one
and the first internal Activity instance has completed.

noneBehaviorEventRef: EventDef-
inition [0..1]

The EventDefinition which is thrown when the behavior is set to
none and an internal Activity instance has completed.

Table 10.29 - MultiInstanceLoopCharacteristics attributes and model associations
200 Business Process Model and Notation, v2.0

Complex Behavior Definition

This element controls when and which Events are thrown in case behavior of the Multi-Instance Activity is set to
complex.

The ComplexBehaviorDefinition element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 10.31 presents the additional attributes and model associations for the
ComplexBehaviorDefinition element:

Table 10.30 – Multi-instance Activity instance attributes

Attribute Name Description/Usage

loopCounter: integer This attribute is provided for each generated (inner) instance of the
Activity. It contains the sequence number of the generated
instance, i.e., if this value of some instance in n, the instance is the
n-th instance that was generated.

numberOfInstances: integer This attribute is provided for the outer instance of the Multi-Instance
Activity only. This attribute contains the total number of inner
instances created for the Multi-Instance Activity.

numberOfActiveInstances: integer This attribute is provided for the outer instance of the Multi-Instance
Activity only. This attribute contains the number of currently active
inner instances for the Multi-Instance Activity. In case of a sequen-
tial Multi-Instance Activity, this value can’t be greater than 1. For
parallel Multi-Instance Activities, this value can’t be greater than
the value contained in numberOfInstances

numberOfCompletedInstances:
integer

This attribute is provided for the outer instance of the Multi-Instance
Activity only. This attribute contains the number of already com-
pleted inner instances for the Multi-Instance Activity.

numberOfTerminatedInstances:
integer

This attribute is provided for the outer instance of the
Multi-Instance Activity only. This attribute contains the number of
terminated inner instances for the Multi-Instance Activity. The sum
of numberOfTerminatedInstances,
numberOfCompletedInstances, and
numberOfActiveInstances always sums up to
numberOfInstances.
Business Process Model and Notation, v2.0 201

10.2.9 XML Schema for Activities

Table 10.31 – ComplexBehaviorDefinition attributes and model associations

Attribute Name Description/Usage

condition: Formal Expression This attribute defines a boolean Expression that when evaluated to true,
cancels the remaining Activity instances and produces a token.

event: ImplicitThrowEvent If the condition is true, this identifies the Event that will be thrown (to be
caught by a boundary Event on the Multi-Instance Activity).

Table 10.32 – Activity XML schema

<xsd:element name="activity" type="tActivity"/>
<xsd:complexType name="tActivity" abstract="true">

<xsd:complexContent>
<xsd:extension base="tFlowNode">

<xsd:sequence>
<xsd:element ref="ioSpecification" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="property" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataInputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataOutputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="resourceRole" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="loopCharacteristics" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="isForCompensation" type="xsd:boolean" default="false"/>
<xsd:attribute name="startQuantity" type="xsd:integer" default="1"/>
<xsd:attribute name="completetionQuantity" type="xsd:integer" default="1"/>
<xsd:attribute name="default" type="xsd:IDREF" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
202 Business Process Model and Notation, v2.0

Table 10.33 – AdHocSubProcess XML schema

<xsd:element name="adHocSubProcess" type="tAdHocSubProcess" substitutionGroup="flowElement"/>
<xsd:complexType name="tAdHocSubProcess">

<xsd:complexContent>
<xsd:extension base="tSubProcess">

<xsd:sequence>
<xsd:element name="completionCondition" type="tExpression" minOccurs="0"

maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="cancelRemainingInstances" type="xsd:boolean" default="true"/>
<xsd:attribute name="ordering" type="tAdHocOrdering" default="Parallel"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="tAdHocOrdering">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Parallel"/>
<xsd:enumeration value="Sequential"/>

</xsd:restriction>
</xsd:simpleType>

Table 10.34 – BusinessRuleTask XML schema

<xsd:element name="businessRuleTask" type="tBusinessRuleTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tBusinessRuleTask">

<xsd:complexContent>
<xsd:extension base="tTask">

<xsd:attribute name="implementation" type="tImplementation" default="##unspecified"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
Business Process Model and Notation, v2.0 203

Table 10.35 – CallableElement XML schema

<xsd:element name="callableElement" type="tCallableElement"/>
<xsd:complexType name="tCallableElement">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:sequence>
<xsd:element name="supportedInterfaceRef" type="xsd:QName" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element ref="ioSpecification" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="ioBinding" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.36 – CallActivity XML schema

<xsd:element name="callActivity" type="tCallActivity" substitutionGroup="flowElement"/>
<xsd:complexType name="tCallActivity">

<xsd:complexContent>
<xsd:extension base="tActivity">

<xsd:attribute name="calledElement" type="xsd:QName" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10.37 – GlobalBusinessRuleTask XML schema

<xsd:element name="globalBusinessRuleTask" type="tGlobalBusinessRuleTask" substitution-
Group="rootElement"/>

<xsd:complexType name="tGlobalBusinessRuleTask">
<xsd:complexContent>

<xsd:extension base="tGlobalTask">
<xsd:attribute name="implementation" type="tImplementation" default="##unspecified"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
204 Business Process Model and Notation, v2.0

Table 10.38 – GlobalScriptTask XML schema

<xsd:element name="globalScriptTask" type="tGlobalScriptTask" substitutionGroup="rootElement"/>
<xsd:complexType name="tGlobalScriptTask">

<xsd:complexContent>
<xsd:extension base="tGlobalTask">

<xsd:sequence>
<xsd:element ref="script" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="scriptLanguage" type="xsd:anyURI"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.39 – GlobalTask XML schema

<xsd:element name="globalTask" type="tGlobalTask" substitutionGroup="rootElement"/>
<xsd:complexType name="tGlobalScriptTask">

<xsd:complexContent>
<xsd:extension base="tCallableElement">

<xsd:sequence>
<xsd:element ref="resourceRole" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10.40 – LoopCharacteristics XML schema

<xsd:element name="loopCharacteristics" type="tLoopCharacteristics"/>
<xsd:complexType name="tLoopCharacteristics" abstract="true">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType>
Business Process Model and Notation, v2.0 205

Table 10.41 – MultiInstanceLoopCharacteristics XML schema

<xsd:element name="multiInstanceLoopCharacteristics" type="tMultiInstanceLoopCharacteristics"
substitutionGroup="loopCharacteristics"/>

<xsd:complexType name="tMultiInstanceLoopCharacteristics">
<xsd:complexContent>
<xsd:extension base="tLoopCharacteristics">

<xsd:sequence>
<xsd:element name="loopCardinality" type="tExpression" minOccurs="0"

maxOccurs="1"/>
<xsd:element name="loopDataInputRef" type="xsd:QName" minOccurs="0"

maxOccurs="1"/>
<xsd:element name="loopDataOutputRef" type="xsd:QName" minOccurs="0"

maxOccurs="1"/>
<xsd:element name="inputDataItem" type="tDataInput" minOccurs="0" maxOccurs="1"/

>
<xsd:element name="outputDataItem" type="tDataOutput" minOccurs="0"

maxOccurs="1"/>
<xsd:element ref="complexBehaviorDefinition" minOccurs="0" maxOc-

curs="unbounded"/>
<xsd:element name="completionCondition" type="tExpression" minOccurs="0"

maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="isSequential" type="xsd:boolean" default="false"/>
<xsd:attribute name="behavior" type="tMultiInstanceFlowCondition" default="All"/>
<xsd:attribute name="oneBehaviorEventRef" type="xsd:QName" use="optional"/>
<xsd:attribute name="noneBehaviorEventRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="tMultiInstanceFlowCondition">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="None"/>
<xsd:enumeration value="One"/>
<xsd:enumeration value="All"/>
<xsd:enumeration value="Complex"/>

</xsd:restriction>
</xsd:simpleType>
206 Business Process Model and Notation, v2.0

Table 10.42 – ReceiveTask XML schema

<xsd:element name="receiveTask" type="tReceiveTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tReceiveTask">

<xsd:complexContent>
<xsd:extension base="tTask">

<xsd:attribute name="implementation" type="tImplementation" default="##WebService"/>
<xsd:attribute name="instantiate" type="xsd:boolean" default="false"/>
<xsd:attribute name="messageRef" type="xsd:QName" use="optional"/>
<xsd:attribute name="operationRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.43 – ResourceRole XML schema

<xsd:element name="resourceRole" type="tResourceRole"/>
<xsd:complexType name="tResourceRole">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:choice>
<xsd:sequence>

<xsd:element name="resourceRef" type="xsd:QName" minOccurs="0"
maxOccurs="1"/>

<xsd:element ref="resourceParameterBinding" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:element ref="resourceAssignmentExpression" minOccurs="0" maxOccurs="1"/>

</xsd:choice>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
Business Process Model and Notation, v2.0 207

Table 10.44 – ScriptTask XML schema

<xsd:element name="scriptTask" type="tScriptTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tScriptTask">

<xsd:complexContent>
<xsd:extension base="tTask">

<xsd:sequence>
<xsd:element ref="script" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="scriptFormat" type="xsd:anyURI"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:element name="script" type="tScript"/>
<xsd:complexType name="tScript" mixed="true">

<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

Table 10.45 – SendTask XML schema

<xsd:element name="sendTask" type="tSendTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tSendTask">

<xsd:complexContent>
<xsd:extension base="tTask">

<xsd:attribute name="implementation" type="tImplementation" default="##WebService"/>
<xsd:attribute name="messageRef" type="xsd:QName" use="optional"/>
<xsd:attribute name="operationRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.46 – ServiceTask XML schema

<xsd:element name="serviceTask" type="tServiceTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tServiceTask">

<xsd:complexContent>
<xsd:extension base="tTask">

<xsd:attribute name="implementation" type="tImplementation" default="##WebService"/>
<xsd:attribute name="operationRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
208 Business Process Model and Notation, v2.0

Table 10.47 – StandardLoopCharacteristics XML schema

<xsd:element name="standardLoopCharacteristics" type="tStandardLoopCharacteristics"/>
<xsd:complexType name="tStandardLoopCharacteristics">

<xsd:complexContent>
<xsd:extension base="tLoopCharacteristics">

<xsd:sequence>
<xsd:element name="loopCondition" type="tExpression" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="testBefore" type="xsd:boolean" default="false"/>
<xsd:attribute name="loopMaximum" type="xsd:integer" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.48 – SubProcess XML schema

<xsd:element name="subProcess" type="tSubProcess" substitutionGroup="flowElement"/>
<xsd:complexType name="tSubProcess">

<xsd:complexContent>
<xsd:extension base="tActivity">

<xsd:sequence>
<xsd:element ref="laneSet" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="flowElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="triggeredByEvent" type="xsd:boolean" default="false"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.49 – Task XML schema

<xsd:element name="task" type="tTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tTask">

<xsd:complexContent>
<xsd:extension base="tActivity"/>

</xsd:complexContent>
</xsd:complexType>
Business Process Model and Notation, v2.0 209

10.3 Items and Data
A traditional requirement of Process modeling is to be able to model the items (physical or information items) that are
created, manipulated, and used during the execution of a Process. An important aspect of this is the ability to capture
the structure of that data and to query or manipulate that structure.

BPMN does not itself provide a built-in model for describing structure of data or an Expression language for querying
that data. Instead it formalizes hooks that allow for externally defined data structures and Expression languages. In
addition, BPMN allows for the co-existence of multiple data structure and Expression languages within the same
model. The compatibility and verification of these languages is outside the scope of this specification and becomes the
responsibility of the tool vendor.

BPMN designates XML Schema and XPath as its default data structure and Expression languages respectively, but
vendors are free to substitute their own languages.

10.3.1 Data Modeling

A traditional requirement of Process modeling is to be able to model the items (physical or information items) that are
created, manipulated, and used during the execution of a Process.

This requirement is realized in BPMN through various constructs: Data Objects, ItemDefinition, Properties, Data
Inputs, Data Outputs, Messages, Input Sets, Output Sets, and Data Associations.

Item-Aware Elements

Several elements in BPMN are subject to store or convey items during process execution. These elements are referenced
generally as “item-aware elements.” This is similar to the variable construct common to many languages. As with
variables, these elements have an ItemDefinition.

Table 10.50 – Transaction XML schema

<xsd:element name="transaction" type="tTransaction" substitutionGroup="flowElement"/>
<xsd:complexType name="tTransaction">

<xsd:complexContent>
<xsd:extension base="tSubProcess">

<xsd:attribute name="method" type="tTransactionMethod" default="Compensate"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tTransactionMethod">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Compensate"/>
<xsd:enumeration value="Image"/>
<xsd:enumeration value="Store"/>

</xsd:restriction>
</xsd:simpleType>
210 Business Process Model and Notation, v2.0

The data structure these elements hold is specified using an associated ItemDefinition. An ItemAwareElement
MAY be underspecified, meaning that the structure attribute of its ItemDefinition is optional if the modeler does
not wish to define the structure of the associated data.

The elements in the specification defined as item-aware elements are: Data Objects, Data Object References, Data
Stores, Properties, DataInputs and DataOutputs.

Figure 10.50 - ItemAware class diagram

The ItemAwareElement element inherits the attributes and model associations of BaseElement (see Table 8.5).
Table 10.51 presents the additional model associations of the ItemAwareElement element:

Table 10.51 – ItemAwareElement model associations

Attribute Name Description/Usage

itemSubjectRef: ItemDefinition [0..1] Specification of the items that are stored or conveyed by the
ItemAwareElement.

dataState: DataState [0..1] A reference to the DataState, which defines certain states for the data
contained in the Item.

Business Process Model and Notation, v2.0 211

Data Objects

The primary construct for modeling data within the Process flow is the DataObject element. A DataObject has a
well-defined lifecycle, with resulting access constraints.

DataObject

The Data Object class is an item-aware element. Data Object elements MUST be contained within Process or Sub-
Process elements. Data Object elements are visually displayed on a Process diagram. Data Object References are
a way to reuse Data Objects in the same diagram. They can specify different states of the same Data Object at
different points in a Process. Data Object Reference cannot specify item definitions, and Data Objects cannot
specify states. The names of Data Object References are derived by concatenating the name of the referenced Data
Data Object the state of the Data Object Reference in square brackets as follows: <Data Object Name> [<Data
Object Reference State>]

Figure 10.51 - DataObject class diagram

The DataObject element inherits the attributes and model associations of FlowElement (see Table 8.44) and
ItemAwareElement (Table 10.52). Table 10.54 presents the additional attributes of the DataObject element:
212 Business Process Model and Notation, v2.0

The Data Object Reference element inherits the attributes and model associations of ItemAwareElement (Table
10.52) and FlowElement (see Table 8.44). Table 10.53 presents the additional attributes of the Data Object
Reference element:

States

Data Object elements can optionally reference a DataState element, which is the state of the data contained in the
Data Object (see an example of DataStates used for Data Objects in Figure 7.8). The definition of these states, e.g.
possible values and any specific semantic are out of scope of this specification. Therefore, BPMN adopters can use the
State element and the BPMN extensibility capabilities to define their states.

The DataState element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.54
presents the additional attributes and model associations of the DataObject element:

Data Objects representing a Collection of Data

A DataObject element that references an ItemDefinition marked as collection has to be visualized differently,
compared to single instance data structures. The notation looks as follows:

Single instance (see Figure 10.52)

Table 10.52 – DataObject attributes

Attribute Name Description/Usage

isCollection: boolean = false Defines if the Data Object represents a collection of elements. It is needed
when no itemDefinition is referenced. If an itemDefinition is ref-
erenced, then this attribute MUST have the same value as the isCollec-
tion attribute of the referenced itemDefinition. The default value for
this attribute is false.

Table 10.53 – DataObjectReference attributes and model associations

Attribute Name Description/Usage

dataObjectRef: DataObject The Data Object referenced by the Data Object Reference.

Table 10.54 – DataState attributes and model associations

Attribute Name Description/Usage

name: string Defines the name of the DataState.
Business Process Model and Notation, v2.0 213

Figure 10.52 – A DataObject

Collection (see Figure 10.53)

Figure 10.53 - A DataObject that is a collection

Visual representations of Data Objects

Data Object can appear multiple times in a Process diagram. Each of these appearances references the same Data
Object instance. Multiple occurrences of a Data Object in a diagram are allowed to simplify diagram connections.

Lifecycle and Accessibility

The lifecycle of a Data Object is tied to the lifecycle of its parent Process or Sub-Process. When a Process or
Sub-Process is instantiated, all Data Objects contained within it are also instantiated. When a Process or Sub-
Process instance is disposed, all Data Object instances contained within it are also disposed. At this point the data
within these instances are no longer available.

The accessibility of a Data Object is driven by its lifecycle. The data within a Data Object can only be accessed when
there is guaranteed to be a live Data Object instance present. As a result, a Data Object can only be accessed by its
immediate parent (Process or Sub-Process), or by its sibling Flow Elements and their children, including Data
Object References referencing the Data Object.

For example: Consider the follow structure.
Process A

Data object 1
Task A
Sub-process A

Data object 2
Task B

Sub-process B
Data object 3
Sub-process C

Data object 4
Task C

Task D
214 Business Process Model and Notation, v2.0

“Data object 1” can be accessed by: “Process A,” “Task A,” “Sub-Process A,” “Task B,” “Sub-Process B,” “Sub-Process
C,” “Task C,” and “Task D.”

“Data object 2” can be accessed by: “Sub-Process A” and “Task B.”

“Data object 3” can be accessed by: “Sub-Process B,” “Sub-Process C,” “Task C,” and “Task D.”

“Data object 4” can be accessed by: “Sub-Process C” and “Task C.”

Data Stores

A DataStore provides a mechanism for Activities to retrieve or update stored information that will persist beyond the
scope of the Process. The same DataStore can be visualized, through a Data Store Reference, in one (1) or more
places in the Process.

The Data Store Reference is an ItemAwareElement and can thus be used as the source or target for a Data
Association. When data flows into or out of a Data Store Reference, it is effectively flowing into or out of the
DataStore that is being referenced.

The notation looks as follows (see Figure 10.54):

Figure 10.54 - A Data Store

Data
Store
Business Process Model and Notation, v2.0 215

Figure 10.55 - DataStore class diagram

The DataStore element inherits the attributes and model associations of FlowElement (see Table 8.44) through its
relationship to RootElement, and ItemAwareElement (see Table 10.51). Table 10.55 presents the additional
attributes of the DataStore element:

The Data Store Reference element inherits the attributes and model associations of FlowElement (see Table 8.44)
and ItemAwareElement (see Table 10.51). Table 10.56 presents the additional model associations of the Data Store
Reference element:

Table 10.55 – Data Store attributes

Attribute Name Description/Usage

name: string A descriptive name for the element.

capacity: integer [0..1] Defines the capacity of the Data Store. This is not needed if the
isUnlimited attribute is set to true.

isUnlimited: boolean = false If isUnlimited is set to true, then the capacity of a Data Store is set as
unlimited and will override any value of the capacity attribute.
216 Business Process Model and Notation, v2.0

Properties

Properties, like Data Objects, are item-aware elements. But, unlike Data Objects, they are not visually displayed on a
Process diagram. Certain flow elements MAY contain properties, in particular only Processes, Activities and Events
MAY contain Properties.

The Property class is a DataElement element that acts as a container for data associated with flow elements.
Property elements MUST be contained within a FlowElement. Property elements are not visually displayed on a
Process diagram.

Figure 10.56 - Property class diagram

The Property element inherits the attributes and model associations of ItemAwareElement (Table 10.51). Table
10.54 presents the additional attributes of the Property element:

Table 10.56 – Data Store attributes

Attribute Name Description/Usage

dataStoreRef: DataStore Provides the reference to a global DataStore.
Business Process Model and Notation, v2.0 217

Lifecycle and Accessibility

The lifecycle of a Property is tied to the lifecycle of its parent Flow Element. When a Flow Element is
instantiated, all Properties contained by it are also instantiated. When a Flow Element instance is disposed, all
Property instances contained by it are also disposed. At this point the data within these instances are no longer
available.

The accessibility of a Property is driven by its lifecycle. The data within a Property can only be accessed when there is
guaranteed to be a live Property instance present. As a result, a Property can only be accessed by its parent Process,
Sub-Process, or Flow Element. In case the parent is a Process or Sub-Process, then a property can be accesses by
the immediate children (including children elements) of that Process or Sub-Process. For example: Consider the
follow structure.

Process A
Task A
Sub-Process A

Task B
Sub-Process B

Sub-Process C
Task C

Task D

The Properties of “Process A” are accessible by: "Process A", "Task A", "Sub-Process A", "Task B", "Sub-Process
B", "Sub-Process C", "Task C" and "Task D"

The Properties of “Sub-Process A” are accessible by: “Sub-Process A” and “Task B.”

The Properties of “Task C” are accessible by: “Task C.”

Data Inputs and Outputs

Activities and Processes often need data in order to execute. In addition they can produce data during or as a result of
execution. Data requirements are captured as Data Inputs and InputSets. Data that is produced is captured using
Data Outputs and OutputSets. These elements are aggregated in a InputOutputSpecification class.

Certain Activities and CallableElements contain a InputOutputSpecification element to describe their
data requirements. Execution semantics are defined for the InputOutputSpecification and they apply the same
way to all elements that extend it. Not every Activity type defines inputs and outputs, only Tasks,
CallableElements (Global Tasks and Processes) MAY define their data requirements. Embedded Sub-
Processes MUST NOT define Data Inputs and Data Outputs directly, however they MAY define them indirectly via
MultiInstanceLoopCharacteristics.

Table 10.57 – Property attributes

Attribute Name Description/Usage

name: string Defines the name of the Property.
218 Business Process Model and Notation, v2.0

Figure 10.57 - InputOutputSpecification class diagram

The InputOutputSpecification element inherits the attributes and model associations of BaseElement (see
Table 8.5). Figure 10.54 presents the additional attributes and model associations of the
InputOutputSpecification element:
Business Process Model and Notation, v2.0 219

Data Input

A Data Input is a declaration that a particular kind of data will be used as input of the
InputOutputSpecification. There may be multiple Data Inputs associated with an
InputOutputSpecification.

The Data Input is an item-aware element. Data Inputs are visually displayed on a Process diagram to show the inputs
to the top-level Process or to show the inputs of a called Process (i.e. one that is referenced by a Call Activity, where
the Call Activity has been expanded to show the called Process within the context of a calling Process).

� Visualized Data Inputs have the same notation as Data Objects, except that they MUST contain a small, unfilled
block arrow (see Figure 10.58).

� Data Inputs MAY have incoming Data Associations.

� If the Data Input is directly contained by the top-level Process, it MUST not be the target of Data
Associations within the underlying model. Only Data Inputs that are contained by Activities or Events
MAY be the target of Data Associations in the model.

� If the Process is being called from a Call Activity, the Data Associations that target the Data Inputs of
the Call Activity in the underlying model MAY be visualized such that they connect to the corresponding Data
Inputs of the called Process, visually crossing the Call Activity boundary. But note that this is visualization
only. In the underlying model, the Data Associations target the Data Inputs of the Call Activity and not
the Data Inputs of the called Process.

Table 10.58 – InputOutputSpecification Attributes and Model Associations

Attribute Name Description/Usage

inputSets: InputSet [1..*] A reference to the InputSets defined by the
InputOutputSpecification. Every
InputOutputSpecification MUST define at least one InputSet.

outputSets: OutputSet [1..*] A reference to the OutputSets defined by the
InputOutputSpecification. Every Data Interface MUST define
at least one OutputSet.

dataInputs: DataInput [0..*] An optional reference to the Data Inputs of the
InputOutputSpecification. If the InputOutputSpecification
defines no Data Input, it means no data is REQUIRED to start the Activ-
ity. This is an ordered set.

dataOutputs: DataOutput [0..*] An optional reference to the Data Outputs of the
InputOutputSpecification. If the InputOutputSpecification
defines no Data Output, it means no data is REQUIRED to finish the
Activity. This is an ordered set.
220 Business Process Model and Notation, v2.0

Figure 10.58 - A DataInput

The “optional” attribute defines if a DataInput is valid even if the state is “unavailable”. The default value is false. If
the value of this attribute is true, then the execution of the Activity will not begin until a value is assigned to the
DataInput element, through the corresponding Data Associations.

States

DataInput elements can optionally reference a DataState element, which is the state of the data contained in the
DataInput. The definition of these states, e.g., possible values, and any specific semantics are out of scope of this
specification. Therefore, BPMN adopters can use the DataState element and the BPMN extensibility capabilities to
define their states.

Figure 10.59 - Data Input class diagram

The DataInput element inherits the attributes and model associations of BaseElement (see Table 8.5) and
ItemAwareElement (Table 10.52). Table 10.59 presents the additional attributes and model associations of the
DataInput element:
Business Process Model and Notation, v2.0 221

Data Output

A Data Output is a declaration that a particular kind of data can be produced as output of the
InputOutputSpecification. There MAY be multiple Data Outputs associated with a
InputOutputSpecification.

The Data Output is an item-aware element. Data Output are visually displayed on a top-level Process diagram to
show the outputs of the Process (i.e. one that is referenced by a Call Activity, where the Call Activity has been
expanded to show the called Process within the context of a calling Process).

� Visualized Data Outputs have the same notation as Data Objects, except that they MUST contain a small, filled
block arrow (see Figure 10.60).

� Data Outputs MAY have outgoing DataAssociations.

� If the Data Output is directly contained by the top-level Process, it MUST not be the source of Data
Associations within the underlying model. Only Data Outputs that are contained by Activities or Events
MAY be the target of Data Associations in the model.

� If the Process is being called from a Call Activity, the Data Associations that target the Data Outputs of
the Call Activity in the underlying model MAY be visualized such that they connect to the corresponding Data
Outputs of the called Process, visually crossing the Call Activity boundary. But note that this is
visualization only. In the underlying model, the Data Associations originate the Data Outputs of the Call
Activity and not the Data Outputs of the called Process.

Table 10.59 – DataInput attributes and model associations

Attribute Name Description/Usage

name: string [0..1] A descriptive name for the element.

inputSetRefs: InputSet [1..*] A DataInput is used in one (1) or more InputSets. This attribute is
derived from the InputSets.

inputSetwithOptional: InputSet
[0..*]

Each InputSet that uses this DataInput can determine if the Activity
can start executing with this DataInput state in “unavailable.” This
attribute lists those InputSets.

inputSetWithWhileExecuting:
Inputset [0..*]

Each InputSet that uses this DataInput can determine if the Activity
can evaluate this DataInput while executing. This attribute lists those
InputSets.

isCollection: boolean = false Defines if the DataInput represents a collection of elements. It is needed
when no itemDefinition is referenced. If an itemDefinition is ref-
erenced, then this attribute MUST have the same value as the isCol-
lection attribute of the referenced itemDefinition. The default
value for this attribute is false.
222 Business Process Model and Notation, v2.0

Figure 10.60 - A Data Output

States

DataOutput elements can optionally reference an DataState element, which is the state of the data contained in the
DataOutput. The definition of these states, e.g., possible values, and any specific semantics are out of scope of this
specification. Therefore, BPMN adopters can use the DataState element and the BPMN extensibility capabilities to
define their states.

Figure 10.61 - Data Output class diagram

The DataOutput element inherits the attributes and model associations of BaseElement (see Table 8.5) and
ItemAwareElement (Table 10.52). Table 10.60 presents the additional attributes and model associations of the
DataInput element:
Business Process Model and Notation, v2.0 223

The following describes the mapping of data inputs and outputs to the specific Activity and Event implementations:

Service Task Mapping

If the Service Task is associated with an Operation there MUST be a Message Data Input on the Service Task
and it MUST have an itemDefinition equivalent to the one defined by the Message referred to by the
inMessageRef attribute of the operation. If the operation defines output Messages, there MUST be a single Data
Output and it MUST have an itemDefinition equivalent to the one defined by Message referred to by the
outMessageRef attribute of the Operation.

Send Task Mapping

If the Send Task is associated with a Message, there MUST be at most inputSet set and at most one Data Input on
the Send Task. If the Data Input is present, it MUST have an itemDefinition equivalent to the one defined by the
associated Message. If the Data Input is not present, the Message will not be populated with data at execution time.

Recieve Task Mapping

If the Receive Task is associated with a Message, there MUST be at most outputSet set and at most one Data
Output on the Receive Task. If the Data Output is present, it MUST have an itemDefinition equivalent to the
one defined by the associated Message. If the Data Output is not present, the payloard within the Message will not
flow out of the Receive Task and into the Process.

User Task Mapping

User Tasks have access to the Data Input, Data Output and the data aware elements available in the scope of the
User Task.

Table 10.60 – DataOutput attributes and associations

Attribute Name Description/Usage

name: string [0..1] A descriptive name for the element.

outputSetRefs: OutputSet [1..*] A DataOutput is used in one (1) or more OutputSets. This attribute
is derived from the OutputSets.

outputSetwithOptional: Output-
Set [0..*]

Each OutputSet that uses this DataOutput can determine if the
Activity can complete executing without producing this DataInput.
This attribute lists those OutputSets.

outputSetWithWhileExecuting:
OutputSet [0..*]

Each OutputSet that uses this DataInput can determine if the
Activity can produce this DataOutput while executing. This attribute
lists those OutputSets.

isCollection: boolean = false Defines if the DataOutput represents a collection of elements. It is
needed when no itemDefinition is referenced. If an
itemDefinition is referenced, then this attribute MUST have the
same value as the isCollection attribute of the referenced
itemDefinition. The default value for this attribute is false.
224 Business Process Model and Notation, v2.0

Call Activity Mapping

The DataInputs and DataOutputs of the Call Activity are mapped to the corresponding elements in the
CallableElement without any explicit DataAssociation.

Script Task Mapping

Script Tasks have access to the Data Input, Data Output and the data aware elements available in the scope of the
Script Task.

Events

If any of the EventDefinitions for the Event is associated with an element that has an ItemDefinition (such as
a Message, Escalation, Error, or Signal), the following constraints apply:

• If the Event is associated with multiple EventDefinitions, there MUST be one Data Input (in the case of throw
Events) or one Data Output (in the case of catch Event) for each EventDefinition. The order of the
EventDefinitions and the order of the Data Inputs/Outputs determine which Data Input/Output
corresponds with which EventDefinition.

• For each EventDefinition and Data Input/Output pair, if the Data Input/Output is present, it MUST have an
ItemDefinition equivalent to the one defined by the Message, Escalation, Error, or Signal on the
associated EventDefinition. In the case of a throw Event, if the Data Input is not present, the Message,
Escalation, Error, or Signal will not be populated with data. In the case of a catch Event, if the Data Output
is not present, the payload within the Message, Escalation, Error, or Signal will not flow out of the Event
and into the Process.

InputSet

An InputSet is a collection of DataInput elements that together define a valid set of data inputs for a
InputOutputSpecification. An InputOutputSpecification MUST have at least one InputSet element.
An InputSet MAY reference zero or more DataInput elements. A single DataInput MAY be associated with
multiple InputSet elements, but it MUST always be referenced by at least one InputSet.

An “empty” InputSet, one that references no DataInput elements, signifies that the Activity requires no data to start
executing (this implies that either there are no data inputs or they are referenced by another input set).

InputSet elements are contained by InputOutputSpecification elements; the order in which these elements are
included defines the order in which they will be evaluated.
Business Process Model and Notation, v2.0 225

Figure 10.62 - InputSet class diagram

The InputSet element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.61
presents the additional attributes and model associations of the InputSet element:

Table 10.61 – InputSet attributes and model associations

Attribute Name Description/Usage

name: string [0..1] A descriptive name for the input set.

dataInputRefs: DataInput [0..*] The DataInput elements that collectively make up this data requirement.

optionalInputRefs: DataInput
[0..*]

The DataInput elements that are a part of the InputSet that can be in the
state of “unavailable” when the Activity starts executing. This association
MUST NOT reference a DataInput that is not listed in the
dataInputRefs.

whileExecutingInputRefs:
DataInput [0..*]

The DataInput elements that are a part of the InputSet that can be evalu-
ated while the Activity is executing. This association MUST NOT reference a
DataInput that is not listed in the dataInputRefs.

outputSetRefs: OutputSet
[0..*]

Specifies an Input/Output rule that defines which OutputSet is expected to
be created by the Activity when this InputSet became valid.
This attribute is paired with the inputSetRefs attribute of OutputSets.
This combination replaces the IORules attribute for Activities in BPMN 1.2.
226 Business Process Model and Notation, v2.0

OutputSet

An OutputSet is a collection of DataOutputs elements that together can be produced as output from an Activity or
Event. An InputOutputSpecification element MUST define at least OutputSet element. An OutputSet
MAY reference zero or more DataOutput elements. A single DataOutput MAY be associated with multiple
OutputSet elements, but it MUST always be referenced by at least one OutputSet.

An “empty” OutputSet, one that is associated with no DataOutput elements, signifies that the ACTIVITY produces
no data.

The implementation of the element where the OutputSet is defined determines the OutputSet that will be produced.
So it is up to the Activity implementation or the Event, to define which OutputSet will be produced.

Figure 10.63 - OutputSet class diagram

The OutputSet element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.62
presents the additional attributes and model associations of the OutputSet element:
Business Process Model and Notation, v2.0 227

Data Associations

Data Associations are used to move data between Data Objects, Properties, and inputs and outputs of
Activities, Processes, and GlobalTasks. Tokens do not flow along a Data Association, and as a result they have
no direct effect on the flow of the Process.

The purpose of retrieving data from Data Objects or Process Data Inputs is to fill the Activities inputs and later
push the output values from the execution of the Activity back into Data Objects or Process Data Outputs.

DataAssociation

The DataAssociation class is a BaseElement contained by an Activity or Event, used to model how data is
pushed into or pulled from item-aware elements. DataAssociation elements have one or more sources and a target;
the source of the association is copied into the target.

The ItemDefinition from the souceRef and targetRef MUST have the same ItemDefinition or the
DataAssociation MUST have a transformation Expression that transforms the source ItemDefinition into the
target ItemDefinition.

Table 10.62 – OutputSet attributes and model associations

Attribute Name Description/Usage

name: string [0..1] A descriptive name for the input set.

dataOutputRefs: DataOutput [0..*] The DataOutput elements that MAY collectively be outputted.

optionalOutputRefs: DataOutput
[0..*]

The DataOutput elements that are a part of the OutputSet that do not
have to be produced when the Activity completes executing. This asso-
ciation MUST NOT reference a DataOutput that is not listed in the
dataOutputRefs.

whileExecutingOutputRefs:
DataOutput [0..*]

The DataOutput elements that are a part of the OutputSet that can
be produced while the Activity is executing. This association MUST
NOT reference a DataOutput that is not listed in the
dataOutputRefs.

inputSetRefs: InputSet [0..*] Specifies an Input/Output rule that defines which InputSet has to
become valid to expect the creation of this OutputSet. This attribute is
paired with the outputSetRefs attribute of InputSets. This combina-
tion replaces the IORules attribute for Activities in BPMN 1.2.
228 Business Process Model and Notation, v2.0

Figure 10.64 - DataAssociation class diagram

Optionally, Data Associations can be visually represented in the diagram by using the Association connector style (see
Figure 10.65 and Figure 10.66).

Figure 10.65 - A Data Association

Figure 10.66 - A Data Association used for an Outputs and Inputs into an Activities

The core concepts of a DataAssociation are that they have sources, a target, and an optional transformation.

When a data association is “executed,” data is copied to the target. What is copied depends if there is a transformation
defined or not.

If there is no transformation defined or referenced, then only one source MUST be defined, and the contents of this source
will be copied into the target.

Research
the Topic

Research
Notes

Write Text
Business Process Model and Notation, v2.0 229

If there is a transformation defined or referenced, then this transformation Expression will be evaluated and the result
of the evaluation is copied into the target. There can be zero (0) to many sources defined in this case, but there is no
requirement that these sources are used inside the Expression.

In any case, sources are used to define if the data association can be “executed,” if any of the sources is in the state of
“unavailable,” then the data association cannot be executed, and the Activity or Event where the data association is
defined MUST wait until this condition is met.

Data Associations are always contained within another element that defines when these data associations are going to
be executed. Activities define two (2) sets of data associations, while Events define only 1 (one).

For Events, there is only one set, but they are used differently for catch or throw Events. For a catch Event, data
associations are used to push data from the Message received into Data Objects and properties. For a throw Event,
data associations are used to fill the Message that is being thrown.

As DataAssociation are used in different stages of the Process and Activity lifecycle, the possible sources and targets
vary according to that stage. This defines the scope of possible elements that can be referenced as source and target. For
example: when an Activity starts executing, the scope of valid targets include the Activity data inputs, while at the end
of the Activity execution, the scope of valid sources include Activity data outputs.

The DataAssociation element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
10.63 presents the additional model associations of the DataAssociation element:

Assignment

The Assignment class is used to specify a simple mapping of data elements using a specified Expression language.

The default Expression language for all Expressions is specified in the Definitions element, using the
expressionLanguage attribute. It can also be overridden on each individual Assignment using the same attribute.

The Assignment element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.64
presents the additional attributes of the Assignment element:

Table 10.63 – DataAssociation model associations

Attribute Name Description/Usage

transformation: Expression
[0..1]

Specifies an optional transformation Expression. The actual scope of
accessible data for that Expression is defined by the source and target of
the specific Data
Association types.

assignment: Assignment [0..*] Specifies one or more data elements Assignments. By using an
Assignment, single data structure elements can be assigned from the
source structure to the target structure.

sourceRef: ItemAwareEle-
ment [0..*]

Identifies the source of the Data Association. The source MUST be an
ItemAwareElement.

targetRef: ItemAwareElement Identifies the target of the Data Association. The target MUST be an
ItemAwareElement
230 Business Process Model and Notation, v2.0

DataInputAssociation

The DataInputAssociation can be used to associate an ItemAwareElement element with a DataInput
contained in an Activity. The source of such a DataAssociation can be every ItemAwareElement accessible in the
current scope, e.g., a Data Object, a Property or an Expression.

The DataInputAssociation element inherits the attributes and model associations of DataAssociation (see
Table 10.64), but does not contain any additional attributes or model associations.

DataOutputAssociation

The DataOutputAssociation can be used to associate a DataOutput contained within an ACTIVITY with any
ItemAwareElement accessible in the scope the association will be executed in. The target of such a
DataAssociation can be every ItemAwareElement accessible in the current scope, e.g, a Data Object, a
Property or an Expression.

The DataOutputAssociation element inherits the attributes and model associations of DataAssociation (see
Table 10.64), but does not contain any additional attributes or model associations.

Data Objects associated with a Sequence Flow

Figure 10.67 repeats Figure 10.66, above, and shows how Data Associations are used to represent inputs and outputs
of Activities.

Figure 10.67 - A Data Object shown as an output and an inputs

Alternatively, Data Objects MAY be directly associated with a Sequence Flow connector (see Figure 10.68) to
represent the same input/output relationships. This is a visual short cut that normalizes two Data Associations (e.g., as
seen in Figure 10.67, above): one from a item-aware element (e.g., an Activity) contained by the source of the
Sequence Flow, connecting to the Data Object; and the other from the Data Object connecting to a item-aware
element contained by the target of the Sequence Flow.

Table 10.64 – Assignment attributes

Attribute Name Description/Usage

from: Expression The Expression that evaluates the source of the Assignment.

to: Expression The Expression that defines the actual Assignment operation and the target
data element.

Research
the Topic

Research
Notes

Write Text
Business Process Model and Notation, v2.0 231

Figure 10.68 - A Data Object associated with a Sequence Flow

10.3.2 Execution Semantics for Data

When an element that defines a InputOutputSpecification is ready to begin execution by means of Sequence
Flow or Event being caught, the inputs of the interface are filled with data coming from elements in the context, such as
Data Objects or Properties. The way to represent these assignments is the Data Association elements.

Each defined InputSet element will be evaluated in the order they are included in the InputOutputSpecification.

For each InputSet, the data inputs it references will be evaluated if it is valid.

All data associations that define as target the data input will be evaluated, and if any of the sources of the data association
is “unavailable,” then the InputSet is “unavailable” and the next InputSet is evaluated.

The first InputSet where all data inputs are “available” (by means of data associations) is used to start the execution of
the Activity. If no InputSet is “available,” then the execution will wait until this condition is met.

The time and frequency of when and how often this condition is evaluated is out of scope this specification.
Implementations will wait for the sources of data associations to become available and then re-evaluate the InputSets.

In the case of throw and catch Events, given their nature, the execution semantics for data is different.

When a throw Event is activated, all DataInputAssociations of the event are executed, filling the Data Inputs of
the Event. Finally, DataInputs are then copied to the elements thrown by the Event (Messages, Signals, etc).
Since there are no InputSets defined for Events, the execution will never wait.

When a catch Event is activated, Data Outputs of the event are filled with the element that triggered the Event. Then
all DataOutputAssociations of the Event are executed. There are no OutputSets defined for Events.

To allow invoking a Process from both a Call Activity and via Message Flow, the Start Event and End Event
support an additional case.

In the case of a Start Event, the Data Inputs of the enclosing process are available as targets to the
DataOutputAssociations of the Event. This way the Process Data Inputs can be filled using the elements that
triggered the Start Event.

In the case of a End Event, the Data Outputs of the enclosing process are available as sources to the
DataInputAssociations of the Event. This way the resulting elements of the End Event can use the Process
Data Outputs as sources.

Research
the Topic

Research
Notes

Write Text
232 Business Process Model and Notation, v2.0

Once an InputSet becomes "available", all Data Associations whose target is any of the Data Inputs of the
InputSet are executed. These executions fill the Activity Data Inputs and the execution of the Activity can begin.
When an Activity finishes execution, all Data Associations whose sources are any of the Data Outputs of the
OutputSet are executed. These executions copy the values from the Data Outputs back to the container's context
(Data Object, Properties, etc).

Execution Semantics for DataAssociation

The execution of any Data Associations MUST follow these semantics:

• If the Data Association specifies a "transformation" Expression, this expression is evaluated and the result is copied
to the targetRef. This operation replaces completely the previous value of the targetRef element.

• For each "assignment" element specified:

• Evaluate the Assignment's "from" expression and obtain the *source value*

• Evaluate the Assignment's "to" expression and obtain the *target element*. The *target element* can be any
element in the context or a sub-element of it (e.g. a DataObject or a sub-element of it).

• Copy the *source value* to the *target element*.

• If no "transformation" Expression nor any "assignment" elements are defined in the Data Association:

• Copy the Data Association "sourceRef" value into the "targetRef". Only one sourceRef element is allowed in
this case.

10.3.3 Usage of Data in XPath Expressions

BPMN extensibility mechanism enables the usage of various languages for Expressions and queries. This section
describes how XPath is used in BPMN. It introduces a mechanism to access BPMN Data Objects, BPMN Properties,
and various instance attributes from XPath Expressions.

The accessiblity by the Expression language is defined based on the entities accessibility by the Activity that contains
the Expression. All elements accessible from the enclosing element of an XPath Expression MUST be made
available to the XPath processor.

BPMN Data Objects and BPMN Properties are defined using ItemDefinition. The XPath binding assumes that the
ItemDefinition is either an XSD complex type or an XSD element. If XSD element is used it MUST be manifested
as a node-set XPath variable with a single member node. If XSD complex type is used it MUST be manifested as a node-
set XPath variable with one member node containing the anonymous document element that contains the actual value of
the BPMN Data Object or Property.

Access to BPMN Data Objects

Table 10.65 introduces an XPath function used to access BPMN Data Objects. Argument processName names
Process and is of type string. Argument dataObjectName names Data Object and is of type string. It MUST be a
literal string.
Business Process Model and Notation, v2.0 233

Because XPath 1.0 functions do not support returning faults, an empty node set is returned in the event of an error.

Access to BPMN Data Input and Data Output

Table 10.66 introduces XPath functions used to access BPMN Data Inputs and BPMN Data Outputs. Argument
dataInputName names a Data Input and is of type string. Argument dataOutput names a Data Output and is
of type string.

Access to BPMN Properties

Table 10.67 introduces XPath functions used to access BPMN Properties.

Argument processName names Process and is of type string. Argument propertyName names property and is of
type string. Argument activityName names Activity and is of type string. Argument eventName names Event and
is of type string. These strings MUST be literal strings. The XPath extension functions return value of the submitted
property.

Because XPath 1.0 functions do not support returning faults, an empty node set is returned in the event of an error.

Table 10.65 – XPath Extension Function for Data Objects

XPath Extension Function Description/Usage

Element getDataObject (‘pro-
cessName’, ‘dataObjectName’)

This extension function returns value of submitted Data Object. Argument
processName is optional. If omitted, the process enclosing the Activity
that contains the Expression is assumed. In order to access Data
Objects defined in a parent process the processName MUST be used.
Otherwise it MUST be omitted.

Table 10.66 – XPath Extension Function for Data Inputs and Data Outputs

XPath Extension Function Description/Usage

Element getDataInput (‘dataInputName’) This extension function returns the value of the submitted Data
Input.

Element getDataOutput ('dataOutput-
Name')

This extension function returns the value of the submitted Data
Output.
234 Business Process Model and Notation, v2.0

For BPMN Instance Attributes

Table 10.68 introduces XPath functions used to access BPMN instance Attributes.

Argument processName names Process and is of type string. Argument attributeName names instance
attribute and is of type string. Argument activityName names Activity and is of type string. These strings
MUST be literal strings.

These functions return value of the submitted instance Activity. Because XPath 1.0 functions do not support returning
faults, an empty node set is returned in the event of an error.

Table 10.67 – XPath Extension Functions for Properties

XPath Extension Function Description/Usage

Element getProcessProperty
(‘processName’, ‘propertyName’)

This extension function returns value of submitted Process property.
Argument processName is optional. If omitted, the Process enclosing the
Activity that contains the Expression is assumed. In order to access
Properties defined in a parent Process the processName MUST be
used. Otherwise it MUST be omitted.

Element getActivityProperty
(‘activityName’, ‘propertyName’)

This extension function returns value of submitted Activity property.

Element getEventProperty
‘eventName’, ‘propertyName’)

This extension function returns value of submitted Event property.

Table 10.68 – XPath extension functions for instance attributes

XPath Extension Function Description/Usage

Element getProcessInstanceAt-
tribute (‘processName’,‘attributeN-
ame’)

This extension function returns value of submitted Process instance
attribute. Argument processName is optional. If omitted, the Pro-
cess enclosing the Activity that contains the Expression is
assumed. In order to access instance Attributes of a parent Process
the processName MUST be used. Otherwise it MUST be omitted.

Element getChoreographyInstance-
Attribute (‘attributeName’)

This extension function returns value of submitted Choreography
instance attribute.

Element getActivityInstanceAt-
tribute (‘activityName’, ‘attributeN-
ame’)

This extension function returns value of submitted Activity instance
attribute. User Task and loop are examples of Activities.
Business Process Model and Notation, v2.0 235

10.3.4 XML Schema for Data

Table 10.69 – Assignment XML schema

<xsd:element name="assignment" type="tAssignment" />
<xsd:complexType name="tAssignment">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="from" type="tExpression" minOccurs="1" maxOccurs="1"/>
<xsd:element name="to" type="tExpression" minOccurs="1" maxOccurs="1"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10.70 – DataAssociation XML schema

<xsd:element name="dataAssociation" type="tDataAssociation" />
<xsd:complexType name="tDataAssociation" abstract="true">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="sourceRef" type="xsd:IDREF" minOccurs="0" maxOccurs="unbounded"/

>
<xsd:element name="targetRef" type="xsd:IDREF" minOccurs="1" maxOccurs="1"/>
<xsd:element name="transformation" type="tFormalExpression" minOccurs="0" maxOc-

curs="1"/>
<xsd:element ref="assignment" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10.71 – DataInput XML schema

<xsd:element name="dataInput" type="tDataInput" />
<xsd:complexType name="tDataInput">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="name" type="xsd:string" use="optional" />
<xsd:attribute name="itemSubjectRef" type="xsd:QName" />
<xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>
<xsd:attribute name="dataState" type="xsd:IDREF"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
236 Business Process Model and Notation, v2.0

Table 10.72 – DataInputAssociation XML schema

<xsd:element name="dataInputAssociation" type="tDataInputAssociation" />
<xsd:complexType name="tDataInputAssociation">

<xsd:complexContent>
<xsd:extension base="tDataAssociation"/>

</xsd:complexContent>
</xsd:complexType>

Table 10.73 – DataObject XML schema

<xsd:element name="dataObject" type="tDataObject" />
<xsd:complexType name="tDataObject">

<xsd:complexContent>
<xsd:extension base="tFlowElement">

<xsd:sequence>
<xsd:element ref="dataState" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="itemSubjectRef" type="xsd:QName"/>
<xsd:attribute name="isCollection" type="xsd:boolean"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.74 – DataState XML schema

<xsd:element name="dataState" type="tDataState" />
<xsd:complexType name="tDataState">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
Business Process Model and Notation, v2.0 237

Table 10.75 – DataOutput XML schema

<xsd:element name="dataOutput" type="tDataOutput" />
<xsd:complexType name="tDataOutput">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="itemSubjectRef" type="xsd:QName"/>
<xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>
<xsd:attribute name="dataState" type="xsd:IDREF"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.76 – DataOutputAssociation XML schema

<xsd:element name="dataOutputAssociation" type="tDataOutputAssociation" />
<xsd:complexType name="tDataOutputAssociation">

<xsd:complexContent>
<xsd:extension base="tDataAssociation"/>

</xsd:complexContent>
</xsd:complexType>

Table 10.77 – InputOutputSpecification XML schema

<xsd:element name="ioSpecification" type="tInputOutputSpecification" />
<xsd:complexType name="tInputOutputSpecification">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element ref="dataInput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataOutput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="inputSet" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element ref="outputSet" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
238 Business Process Model and Notation, v2.0

Table 10.78 – InputSet XML schema

<xsd:element name="inputSet" type="tInputSet" />
<xsd:complexType name="tInputSet">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="dataInputRefs" type="xsd:IDREF" minOccurs="0" maxOc-

curs="unbounded"/>
<xsd:element name="optionalInputRefs" type="xsd:IDREF" minOccurs="0" maxOc-

curs="unbounded"/>
<xsd:element name="whileExecutingInputRefs" type="xsd:IDREF" minOccurs="0" maxOc-

curs="unbounded"/>
<xsd:element name="outputSetRefs" type="xsd:IDREF" minOccurs="0" maxOc-

curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" />

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.79 – OutputSet XML schema

<xsd:element name="outputSet" type="tOutputSet" />
<xsd:complexType name="tOutputSet">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="dataOutputRefs" type="xsd:IDREF" minOccurs="0" maxOc-

curs="unbounded"/>
<xsd:element name="optionalOutputRefs" type="xsd:IDREF" minOccurs="0" maxOc-

curs="unbounded"/>
<xsd:element name="whileExecutingOutputRefs" type="xsd:IDREF" minOccurs="0" maxOc-

curs="unbounded"/>
<xsd:element name="inputSetRefs" type="xsd:IDREF" minOccurs="0" maxOc-

curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
Business Process Model and Notation, v2.0 239

10.4 Events
An Event is something that “happens” during the course of a Process. These Events affect the flow of the Process
and usually have a cause or an impact and in general require or allow for a reaction. The term “event” is general enough
to cover many things in a Process. The start of an Activity, the end of an Activity, the change of state of a document,
a Message that arrives, etc., all could be considered Events.

Events allow for the description of “event-driven” Processes. In these Processes, There are three main types of
Events:

• Start Events (see page 245), which indicate where a Process will start.

• End Events (see page 253), which indicate where a path of a Process will end.

• Intermediate Events (see page 257), which indicate where something happens somewhere between the start and end
of a Process.

Within these three types, Events come in two flavors:

• Events that catch a trigger. All Start Events and some Intermediate Events are catching Events.

• Events that throw a Result. All End Events and some Intermediate Events are throwing Events that MAY
eventually be caught by another Event. Typically the trigger carries information out of the scope where the throw
Event occurred into the scope of the catching Events. The throwing of a trigger MAY be either implicit as defined by
this standard or an extension to it or explicit by a throw Event.

Table 10.80 – Property XML schema

<xsd:element name="property" type="tProperty" />
<xsd:complexType name="tProperty">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="itemSubjectRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
240 Business Process Model and Notation, v2.0

Figure 10.69 - The Event Class Diagram

10.4.1 Concepts

Depending on the type of the Event there are different strategies to forward the trigger to catching Events: publication,
direct resolution, propagation, cancellations, and compensations.

With publication a trigger MAY be received by any catching Events in any scope of the system where the trigger is
published. Events for which publication is used are grouped to Conversations. Published Events MAY participate in
several Conversations. Messages are triggers, which are generated outside of the Pool they are published in. They
typically describe B2B communicationbetween different Processes in different Pools. When Messages need to reach
a specific Process instance, correlation is used to identify the particular instance. Signals are triggers generated in the
Pool they are published. They are typically used for broadcast communication within and across Processes, across
Pools, and between Process diagrams.

Timer and Conditional triggers are implicitly thrown. When they are activated they wait for a time based or status
based condition respectively to trigger the catch Event.
Business Process Model and Notation, v2.0 241

A trigger that is propagated is forwarded from the location where the Event has been thrown to the innermost enclosing
scope instance (e.g., Process level) which has an attached Event being able to catch the trigger. Error triggers are
critical and suspend execution at the location of throwing. Escalations are non critical and execution continues at the
location of throwing. If no catching Event is found for an error or escalation trigger, this trigger is unresolved.

Termination, compensation, and cancellation are directed towards a Process or a specific Activity instance.
Termination indicates that all Activities in the Process or Activity should be immediately ended. This includes all
instances of multi-instances. It is ended without compensation or Event handling.

Compensation of a successfully completed Activity triggers its compensation handler. The compensation handler is
either user defined or implicit. The implicit compensation handler of a Sub Process calls all compensation handlers of
its enclosed Activities in the reverse order of Sequence Flow dependencies. If compensation is invoked for an
Activity that has not yet completed, or has not completed successfully, nothing happens (in particular, no error is raised).

Cancellation will terminate all running Activities and compensate all successfully completed Activities in the Sub-
Process it is applied to. If the Sub-Process is a Transaction, the Transaction is rolled back.

Data Modeling and Events

Some Events (like the Message, Escalation, Error, Signal, and Multiple Event) have the capability to carry data.
Data Association is used to push data from a Catch Event to a data element. For such Events, the following
constraints apply:

� If the Event is associated with multiple EventDefinitions, there MUST be one Data Input (in the case of
throw Events) or one Data Output (in the case of catch Events) for each EventDefinition. The order of the
EventDefinitions and the order of the Data Inputs/Outputs determine which Data Input/Output
corresponds with which EventDefinition.

� For each EventDefinition and Data Input/Output pair, if the Data Input/Output is present, it MUST have
an ItemDefinition equivalent to the one defined by the Message, Escalation, Error, or Signal on the
associated EventDefinition. In the case of a throw Event, if the Data Input is not present, the Message,
Escalation, Error, or Signal will not be populated with data. In the case of a catch Event, if the Data Output is
not present, the payload within the Message, Escalation, Error, or Signal will not flow out of the Event and
into the Process.

The execution behavior is then as follows:

� For throw Events: When the Event is activated, the data in the Data Input is automatically assigned to the
Message, Escalation, Error, or Signal referenced by the corresponding EventDefinition.

� For catch Events: When the trigger of the Event occurs (for example, the Message is received), the data is
automatically assigned to the Data Output that corresponds to the EventDefinition that described that trigger.

Common Event attributes

The Event element inherits the attributes and model associations of FlowElement (see Table 8.44). Table 10.81
presents the additional model associations of the Event element:
242 Business Process Model and Notation, v2.0

Common Catch Event attributes

The CatchEvent element inherits the attributes and model associations of Event element (see Table 10.81). Table
10.82 presents the additional attributes and model associations of the CatchEvent element:

Table 10.81 – Event model associations

Attribute Name Description/Usage

properties: Property [0..*] Modeler-defined properties MAY be added to an Event. These
properties are contained within the Event.

Table 10.82 – CatchEvent attributes and model associations

Attribute Name Description/Usage

eventDefinitionRefs: EventDefinition
[0..*]

References the reusable EventDefinitions that are triggers
expected for a catch Event. Reusable EventDefinitions are
defined as top-level elements. These EventDefinitions can be
shared by different catch and throw Events.

• If there is no EventDefinition defined, then this is
considered a catch None Event and the Event will not have
an internal marker (see Figure 10.91).

• If there is more than one EventDefinition defined, this is
considered a Catch Multiple Event and the Event will have
the pentagon internal marker (see Figure 10.90).

This is an ordered set.

eventDefinitions: EventDefinition [0..*] Defines the event EventDefinitions that are triggers expected
for a catch Event. These EventDefinitions are only valid inside
the current Event.

• If there is no EventDefinition defined, then this is
considered a catch None Event and the Event will not have
an internal marker (see Figure 10.91).

• If there is more than one EventDefinition defined, this is
considered a catch Multiple Event and the Event will have
the pentagon internal marker (see Figure 10.90).

This is an ordered set.

dataOutputAssociations: Data
OutputAssociation [0..*]

The Data Associations of the catch Event.
The dataOutputAssociation of a catch Event is used to assign
data from the Event to a data element that is in the scope of the
Event.
For a catch Multiple Event, multiple Data Associations might be
REQUIRED, depending on the individual triggers of the Event.
Business Process Model and Notation, v2.0 243

Common Throw Event Attributes

The ThrowEvent element inherits the attributes and model associations of Event element (see Table 10.81). Table
10.83 presents the additional attributes and model associations of the ThrowEvent element.

dataOutputs: DataOutput [0..*] The Data Outputs for the catch Event. This is an ordered set.

outputSet: OutputSet [0..1] The OutputSet for the catch Event

parallelMultiple: boolean = false This attribute is only relevant when the catch Event has more than
EventDefinition (Multiple).
If this value is true, then all of the types of triggers that are listed in
the catch Event MUST be triggered before the Process is
instantiated.

Table 10.83 – ThrowEvent attributes and model associations

Attribute Name Description/Usage

eventDefinitionRefs: EventDefinition
[0..*]

References the reusable EventDefinitions that are results
expected for a throw Event. Reusable EventDefinitions are
defined as top-level elements. These EventDefinitions can be
shared by different catch and throw Events.

• If there is no EventDefinition defined, then this is
considered a throw None Event and the Event will not have an
internal marker (see Figure 10.91).

• If there is more than one EventDefinition defined, this is
considered a throw Multiple Event and the Event will have the
pentagon internal marker (see Figure 10.90).

This is an ordered set.

eventDefinitions: EventDefinition [0..*] Defines the event EventDefinitions that are results expected for
a throw Event. These EventDefinitions are only valid inside the
current Event.

• If there is no EventDefinition defined, this is considered a
throw None Event and the Event will not have an Internal
marker (see Figure 10.91).

• If there is more than one EventDefinition defined, this is
considered a throw Multiple Event and the Event will have the
pentagon internal marker (see Figure 10.90).

This is an ordered set.

Table 10.82 – CatchEvent attributes and model associations
244 Business Process Model and Notation, v2.0

Implicit Throw Event

A sub-type of throw Event is the ImplicitThrowEvent. This is a non-graphical Event that this used for Multi-
Instance Activities (see page 198). The ImplicitThrowEvent element inherits the attributes and model
associations of ThrowEvent (see Table 10.84), but does not have any additional attributes or model associations.

10.4.2 Start Event

As the name implies, the Start Event indicates where a particular Process will start. In terms of Sequence Flows, the
Start Event starts the flow of the Process, and thus, will not have any incoming Sequence Flows—no Sequence
Flow can connect to a Start Event.

The Start Event shares the same basic shape of the Intermediate Event and End Event, a circle with an open center
so that markers can be placed within the circle to indicate variations of the Event.

� A Start Event is a circle that MUST be drawn with a single thin line (see Figure 10.70).

� The use of text, color, size, and lines for a Start Event MUST follow the rules defined in Section “Use of Text,
Color, Size, and Lines in a Diagram” on page 41 with the exception that:

� The thickness of the line MUST remain thin so that the Start Event can be distinguished from the
Intermediate and End Events.

Figure 10.70 - Start Event

Throughout this document, we discuss how Sequence Flows are used within a Process. To facilitate this discussion,
we employ the concept of a token that will traverse the Sequence Flows and pass through the elements in the Process.
A token is a theoretical concept that is used as an aid to define the behavior of a Process that is being performed. The
behavior of Process elements can be defined by describing how they interact with a token as it “traverses” the structure
of the Process.

Note – A token does not traverse a Message Flow since it is a Message that is passed down a Message Flow (as the
name implies).

dataInputAssociations: DataInput
Association [0..*]

The Data Associations of the throw Event.
The dataInputAssociation of a throw Event is responsible for
the assignment of a data element that is in scope of the Event to the
Event data.
For a throw Multiple Event, multiple Data Associations might be
REQUIRED, depending on the individual results of the Event.

dataInputs: DataInput [0..*] The Data Inputs for the throw Event.This is an ordered set.

inputSet: InputSet [0..1] The InputSet for the throw Event

Table 10.83 – ThrowEvent attributes and model associations

Business Process Model and Notation, v2.0 245

Semantics of the Start Event include:

� A Start Event is OPTIONAL: a Process level—a top-level Process, a Sub-Process (embedded), or a Global
Process (called Process)—MAY (is NOT REQUIRED to) have a Start Event.

Note – A Process MAY have more than one Process level (i.e., it can include Expanded Sub-Processes or Call
Activities that call other Processes). The use of Start and End Events is independent for each level of the Diagram.

� If a Process is complex and/or the starting conditions are not obvious, then it is RECOMMENDED that a Start
Event be used.

� If a Start Event is not used, then the implicit Start Event for the Process SHALL NOT have a trigger.

� If there is an End Event, then there MUST be at least one Start Event.
� All Flow Objects that do not have an incoming Sequence Flow (i.e., are not a target of a Sequence Flow)

SHALL be instantiated when the Process is instantiated.

� Exceptions to this are Activities that are defined as being Compensation Activities (it has the
Compensation marker). Compensation Activities are not considered a part of the normal flow and MUST
NOT be instantiated when the Process is instantiated. See page 311 for more information on Compensation
Activities.

� An exception to this is a catching Link Intermediate Event, which is not allowed to have incoming
Sequence Flows. See page 275 for more information on Link Intermediate Events.

� An exception to this is an Event Sub-Process, which is not allowed to have incoming Sequence Flows
and will only be instantiated when its Start Event is triggered. See page 181 for more information on Event
Sub-Processes.

� There MAY be multiple Start Events for a given Process level.

� Each Start Event is an independent Event. That is, a Process instance SHALL be generated when the Start
Event is triggered.

If the Process is used as a global Process (a callable Process that can be invoke from Call Activities of other
Processes) and there are multiple None Start Events, then when flow is transferred from the parent Process to the
global Process, only one of the global Process’s Start Events will be triggered. The targetRef attribute of a
Sequence Flow incoming to the Call Activity object can be extended to identify the appropriate Start Event.

Note – The behavior of Process can be harder to understand if there are multiple Start Events. It is RECOMMENDED
that this feature be used sparingly and that the modeler be aware that other readers of the Diagram could have difficulty
understanding the intent of the Diagram.

When the trigger for a Start Event occurs, a new Process will be instantiated and a token will be generated for each
outgoing Sequence Flow from that Event.

Start Event Triggers

Start Events can be used for three types of Processes:

• Top-level Processes

• Sub-Processes (embedded)

• Global Process (called)
246 Business Process Model and Notation, v2.0

• Event Sub-Processes

The next three (3) sections describe the types of Start Events that can be used for each of these three types of
Processes.

Start Events for Top-level Processes

There are many ways that top-level Processes can be started (instantiated). The trigger for a Start Event is designed
to show the general mechanisms that will instantiate that particular Process. There are seven (7) types of Start Events
for top-level Processes in BPMN (see Table 10.84): None, Message, Timer, Conditional, Signal, Multiple, and
Parallel.

A top-level Process that has at least one (1) None Start Event MAY be called by a Call Activity in another Process.
The None Start Event is used for invoking the Process from the Call Activity. All other types of Start Events are
only applicable when the Process is used as a top-level Process.

Table 10.84 – Top-Level Process Start Event Types

Trigger Description Marker

None The None Start Event does not have a defined trigger. There is no
specific EventDefinition subclass (see page 268) for None Start
Events. If the Start Event has no associated EventDefiniton, then the
Event MUST be displayed without a marker (see the figure on the right).

Message A Message arrives from a Participant and triggers the start of the
Process. See page 93 for more details on Messages.
If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass MessageEvent-
Definition, then the Event is a Message Start Event and MUST be
displayed with an envelope marker (see the figure to the right).
The actual Participant from which the Message is received can be identi-
fied by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process – see Table 10.1.

Timer A specific time-date or a specific cycle (e.g., every Monday at 9am) can
be set that will trigger the start of the Process.
If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass TimerEventDef-
inition, then the Event is a Timer Start Event and MUST be displayed
with a clock marker (see the figure to the right).

Business Process Model and Notation, v2.0 247

Start Events for Sub-Processes

There is only one (1) type of Start Event for Sub-Processes in BPMN (see Figure 10.82): None.

Conditional This type of event is triggered when a condition such as “S&P 500
changes by more than 10% since opening”, or “Temperature above 300C”
become true. The condition Expression for the Event MUST become
false and then true before the Event can be triggered again.
The Condition Expression of a Conditional Start Event MUST NOT
refer to the data context or instance attribute of the Process (as the Proc-
ess instance has not yet been created). Instead, it MAY refer to static
Process attributes and states of entities in the environment. The specifi-
cation of mechanisms to access such states is out of scope of the stan-
dard.
If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass ConditionalEv-
entDefinition, then the Event is a Conditional Start Event and
MUST be displayed with a lined paper marker (see the figure to the right).

Signal A Signal arrives that has been broadcast from another Process and
triggers the start of the Process. Note that the Signal is not a Message,
which has a specific target for the Message. Multiple Processes can
have Start Events that are triggered from the same broadcasted Signal.
If there is only one (1) EventDefinition associated with the Start
Event and that EventDefinition is of the subclass SignalEvent-
Definition, then the Event is a Signal Start Event and MUST be dis-
played with a triangle marker (see the figure to the right).

Multiple This means that there are multiple ways of triggering the Process. Only
one of them is REQUIRED. There is no specific EventDefinition sub-
class for Multiple Start Events. If the Start Event has more than one
associated EventDefiniton, then the Event MUST be displayed with
the Multiple Event marker (a pentagon—see the upper figure to the
right).

Parallel
Multiple

This means that there are multiple triggers REQUIRED before the Proc-
ess can be instantiated. All of the types of triggers that are listed in the
Start Event MUST be triggered before the Process is instantiated. There
is no specific EventDefinition subclass for Parallel
Multiple Start Events. If the Start Event has more than one associated
EventDefiniton and the parallelMultiple attribute of the Start
Event is true, then the Event MUST be displayed with the Parallel
Multiple Event marker (an open plus sign—see the figure to the right).

Table 10.84 – Top-Level Process Start Event Types

248 Business Process Model and Notation, v2.0

Start Events for Event Sub-Processes

A Start Event can also initiate an inline Event Sub-Process (see page 181). In that case, the same Event types as for
boundary Events are allowed (see Table 10.86), namely: Message, Timer, Escalation, Error, Compensation,
Conditional, Signal, Multiple, and Parallel.

� An Event Sub-Process MUST have a single Start Event.

Table 10.85 – Sub-Process Start Event Types

Trigger Description Marker

None The None Start Event is used for all Sub-Processes, either embedded
or called (reusable). Other types of triggers are not used for a
Sub-Process, since the flow of the Process (a token) from the parent
Process is the trigger of the Sub-Process. If the Sub-Process is called
(reusable) and has multiple Start Events, some of the other Start Events
MAY have triggers, but these Start Events would not be used in the con-
text of a Sub-Process. When the other Start Events are triggered, they
would instantiate top-level Processes.

Table 10.86 – Event Sub-Process Start Event Types

Trigger Description Marker

Message If there is only one (1) EventDefinition associated with the Start Event and
that EventDefinition is of the subclass MessageEventDefinition, then
the Event is a Message Start Event and uses an envelope marker (see the fig-
ures to the right).
For a Message Event Sub-Process that interrupts its containing Process, the
boundary of the Event is solid (see the upper figure to the right).
For a Message Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on the right).
The actual Participant from which the Message is received can be identified by
connecting the Event to a Participant using a Message Flow within the
definitional Collaboration of the Process – see Table 10.1.

Interrupting

Non- Inter-
rupting

Business Process Model and Notation, v2.0 249

Timer If there is only one (1) EventDefinition associated with the Start Event and
that EventDefinition is of the subclass TimerEventDefinition, then the
Event is a Timer Start Event and uses a clock marker (see the figures to the
right).
For a Timer Event Sub-Process that interrupts its containing Process, the
boundary of the Event is solid (see the upper figure to the right).
For a Timer Event Sub-Process that does not interrupt its containing Process,
the boundary of the Event is dashed (see the lower figure on the right).

Interrupting

Non- Inter-
rupting

Escalation Escalation Event Sub-Processes implement measures to expedite the comple-
tion of a business Activity, should it not satisfy a constraint specified on its exe-
cution (such as a time-based deadline).
The Escalation Start Event is only allowed for triggering an in-line Event Sub-
Process.
If there is only one (1) EventDefinition associated with the Start Event and
that EventDefinition is of the subclass EscalationEventDefinition,
then the Event is an Escalation Start Event and uses an arrowhead marker
(see the figures to the right).
For an Escalation Event Sub-Process that interrupts its containing Process,
the boundary of the Event is solid (see the upper figure to the right).
For an Escalation Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on the right).

Interrupting

 Non- Inter-
rupting

Error The Error Start Event is only allowed for triggering an in-line Event Sub-
Process.
If there is only one (1) EventDefinition associated with the Start Event and
that EventDefinition is of the subclass ErrorEventDefinition, then the
Event is an Error Start Event and uses a lightning marker (see the figures to the
right).
Given the nature of Errors, an Event Sub-Process with an Error trigger will
always interrupt its containing Process.

Interrupting

Table 10.86 – Event Sub-Process Start Event Types

250 Business Process Model and Notation, v2.0

Compensa-
tion

The Compensation Start Event is only allowed for triggering an in-line
Compensation Event Sub-Process (see “Compensation Handler” on page
311). This type of Event is triggered when compensation occurs.
If there is only one (1) EventDefinition associated with the Start Event and
that EventDefinition is of the subclass CompensationEventDefinition,
then the Event is a Compensation Start Event and uses a double triangle
marker (see the figure to the right). This Event does not interrupt the Process
since the Process has to be completed before this Event can be triggered.

Conditional If there is only one (1) EventDefinition associated with the Start Event and
that EventDefinition is of the subclass ConditionalEventDefinition,
then the Event is a Conditional Start Event and uses an lined page marker
(see the figures to the right).
For a Conditional Event Sub-Process that interrupts its containing Process,
then the boundary of the Event is solid (see the upper figure to the right).
For a Conditional Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on the right).

Interrupting

Non- Inter-
rupting

Signal If there is only one (1) EventDefinition associated with the Start Event and
that EventDefinition is of the subclass SignalEventDefinition, then
the Event is a Signal Start Event and uses an triangle marker (see the figures
to the right).
For a Signal Event Sub-Process that interrupts its containing Process, then the
boundary of the Event is solid (see the upper figure to the right).
For a Signal Event Sub-Process that does not interrupt its containing Process,
the boundary of the Event is dashed (see the lower figure on the right).

Interrupting

Non- Inter-
rupting

Table 10.86 – Event Sub-Process Start Event Types

Business Process Model and Notation, v2.0 251

Attributes for Start Events

For Start Events, the following additional attribute exists:

The Start Event element inherits the attributes and model associations of CatchEvent (see Table 10.82). Table 10.87
presents the additional attributes of the Start Event element:

Multiple A Multiple Event indicates that that there are multiple ways of triggering the
Event Sub-Process. Only one of them is REQUIRED to actually start the Event
Sub-Process. There is no specific EventDefinition subclass (see page 268)
for Multiple Start Events. If the Start Event has more than one associated
EventDefiniton, then the Event MUST be displayed with the Multiple Event
marker (a pentagon—see the figures on the right).
For a Multiple Event Sub-Process that interrupts its containing Process, the
boundary of the Event is solid (see the upper figure to the right).
For a Multiple Event Sub-Process that does not interrupt its containing Proc-
ess, the boundary of the Event is dashed (see the lower figure on the right).

Interrupting

Non- Inter-
rupting

Parallel
Multiple

A Parallel Multiple Event indicates that that there are multiple ways of triggering
the Event Sub-Process. All of them are REQUIRED to actually start the Event
Sub-Process. There is no specific EventDefinition subclass (see page 268)
for Parallel Multiple Start Events. If the Start Event has more than one associ-
ated EventDefiniton and the parallelMultiple attribute of the Start
Event is true, then the Event MUST be displayed with the Parallel Multiple
Event marker (an open plus sign—see the figures to the right).
For a Parallel Multiple Event Sub-Process that interrupts its containing Proc-
ess, the boundary of the Event is solid (see the upper figure to the right).
For a Parallel Multiple Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on the right).

Interrupting

Non- Inter-
rupting

Table 10.87 – Start Event attributes

Attribute Name Description/Usage

isInterrupting: boolean
= true

This attribute only applies to Start Events of Event Sub-Processes; it is ignored for
other Start Events. This attribute denotes whether the Sub-Process encompassing
the Event Sub-Process should be cancelled or not, If the encompassing Sub-
Process is not cancelled, multiple instances of the Event Sub-Process can run
concurrently. This attribute cannot be applied to Error Events (where it’s always
true), or Compensation Events (where it doesn’t apply).

Table 10.86 – Event Sub-Process Start Event Types

252 Business Process Model and Notation, v2.0

Sequence Flow Connections

See Section “Sequence Flow Connections Rules” on page 41 for the entire set of objects and how they MAY be a source
or target of a Sequence Flow.

� A Start Event MUST NOT be a target for Sequence Flows; it MUST NOT have incoming Sequence Flows.

� An exception to this is when a Start Event is used in an Expanded Sub-Process and is attached to the
boundary of that Sub-Process. In this case, a Sequence Flow from the higher-level Process MAY connect
to that Start Event in lieu of connecting to the actual boundary of the Sub-Process.

� A Start Event MUST be a source for a Sequence Flow.

� Multiple Sequence Flows MAY originate from a Start Event. For each Sequence Flow that has the Start
Event as a source, a new parallel path SHALL be generated.

� The conditionExpression attribute for all outgoing Sequence Flows MUST be set to None.

� When a Start Event is not used, then all Flow Objects that do not have an incoming Sequence Flow SHALL
be the start of a separate parallel path.

� Each path will have a separate unique token that will traverse the Sequence Flow.

Message Flow Connections

Note – All Message Flows MUST connect two separate Pools. They MAY connect to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

See Section “Message Flow Connection Rules” on page 43 for the entire set of objects and how they MAY be a source or
targets of a Message Flow.

� A Start Event MAY be the target for a Message Flow; it can have zero (0) or more incoming Message Flows.
Each Message Flow targeting a Start Event represents an instantiation mechanism (a trigger) for the Process.
Only one of the triggers is REQUIRED to start a new Process.

� A Start Event MUST NOT be a source for a Message Flow; it MUST NOT have outgoing Message Flows.

10.4.3 End Event

As the name implies, the End Event indicates where a Process will end. In terms of Sequence Flows, the End
Event ends the flow of the Process, and thus, will not have any outgoing Sequence Flows—no Sequence Flow can
connect from an End Event.

The End Event shares the same basic shape of the Start Event and Intermediate Event, a circle with an open center
so that markers can be placed within the circle to indicate variations of the Event.

� An End Event is a circle that MUST be drawn with a single thick line (see Figure 10.71).

� The use of text, color, size, and lines for an End Event MUST follow the rules defined in Section “Use of Text,
Color, Size, and Lines in a Diagram” on page 41 with the exception that:

The thickness of the line MUST remain thick so that the End Event can be distinguished from the Intermediate and
Start Events.
Business Process Model and Notation, v2.0 253

Figure 10.71 - End Event

To continue discussing how flow proceeds throughout the Process, an End Event consumes a token that had been
generated from a Start Event within the same level of Process. If parallel Sequence Flows targets the End Event,
then the tokens will be consumed as they arrive. All the tokens that were generated within the Process MUST be
consumed by an End Event before the Process has been completed. In other circumstances, if the Process is a Sub-
Process, it can be stopped prior to normal completion through interrupting Intermediate Events (See Section 10.2.2,
“exception flow,” on page 283 for more details). In this situation the tokens will be consumed by an Intermediate Event
attached to the boundary of the Sub-Process.

Semantics of the End Event include:

� There MAY be multiple End Events within a single level of a Process.

� An End Event is OPTIONAL: a given Process level—a Process or an expanded Sub-Process—MAY (is
NOT REQUIRED to) have this shape:

� If an End Event is not used, then the implicit End Event for the Process SHALL NOT have a Result.

� If there is a Start Event, then there MUST be at least one End Event.
� If the End Event is not used, then all Flow Objects that do not have any outgoing Sequence Flow (i.e., are

not a source of a Sequence Flow) mark the end of a path in the Process. However, the Process MUST
NOT end until all parallel paths have completed.

Note – A Process MAY have more than one Process level (i.e., it can include Expanded Sub-Processes or a Call
Activity that call other Processes). The use of Start and End Events is independent for each level of the Diagram.

For Processes without an End Event, a token entering a path-ending Flow Object will be consumed when the
processing performed by the object is completed (i.e., when the path has completed), as if the token had then gone on to
reach an End Event. When all tokens for a given instance of the Process are consumed, then the Process will reach
a state of being completed.

End Event Results

There are nine (9) types of End Events in BPMN: None, Message, Escalation, Error, Cancel, Compensation,
Signal, Terminate, and Multiple. These types define the consequence of reaching an End Event. This will be referred
to as the End Event Result.
254 Business Process Model and Notation, v2.0

Table 10.88 - End Event Types

Trigger Description Marker

None The None End Event does not have a defined result.
There is no specific EventDefinition subclass (see page 268) for
None End Events. If the End Event has no associated EventDefini-
ton, then the Event will be displayed without a marker (see the figure on
the right).

Message This type of End indicates that a Message is sent to a Participant at the
conclusion of the Process. See page 93 for more details on Messages.
The actual Participant from which the Message is received can be identi-
fied by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process – see Table 10.1.

Error This type of End indicates that a named Error should be generated. All
currently active threads in the particular Sub-Process are terminated as a
result. The Error will be caught by a Catch Error Intermediate Event with
the same errorCode or no errorCode which is on the boundary of the
nearest enclosing parent Activity (hierarchically). The behavior of the
Process is unspecified if no Activity in the hierarchy has such an Error
Intermediate Event. The system executing the process can define addi-
tional Error handling in this case, a common one being termination of the
Process instance.

Escalation This type of End indicates that an Escalation should be triggered. Other
active threads are not affected by this and continue to be executed. The
Escalation will be caught by a Catch Escalation Intermediate Event with
the same escalationCode or no escalationCode which is on the
boundary of the nearest enclosing parent Activity (hierarchically). The
behavior of the Process is unspecified if no Activity in the hierarchy has
such an Escalation Intermediate Event.

Cancel This type of End is used within a Transaction Sub-Process. It will indi-
cate that the Transaction should be cancelled and will trigger a Cancel
Intermediate Event attached to the Sub-Process boundary. In addition,
it will indicate that a TransactionProtocol Cancel Message should
be sent to any Entities involved in the Transaction.
Business Process Model and Notation, v2.0 255

Compensation This type of End indicates that compensation is necessary. If an Activity
is identified, and it was successfully completed, then that Activity will be
compensated. The Activity MUST be visible from the Compensation
End Event, i.e., one of the following MUST be true:

• The Compensation End Event is contained in normal flow at the
same level of Sub-Process.

• The Compensation End Event is contained in a Compensation
Event Sub-Process which is contained in the Sub-Process
containing the Activity.

• If no Activity is identified, all successfully completed Activities
visible from the Compensation End Event are compensated, in
reverse order of their Sequence Flows. Visible means one of the
following:

• The Compensation End Event is contained in normal flow and at
the same level of Sub-Process as the Activities.

• The Compensation End Event is contained in a Compensation
Event Sub-Process which is contained in the Sub-Process
containing the Activities.

To be compensated, an Activity MUST have a boundary Compensation
Event or contain a Compensation Event Sub-Process.

Signal This type of End indicates that a Signal will be broadcasted when the
End has been reached. Note that the Signal, which is broadcast to any
Process that can receive the Signal, can be sent across Process levels
or Pools, but is not a Message (which has a specific source and target).
The attributes of a Signal can be found on page 281.

Terminate This type of End indicates that all Activities in the Process should be
immediately ended. This includes all instances of multi-instances. The
Process is ended without compensation or event handling.

Multiple This means that there are multiple consequences of ending the Process.
All of them will occur (e.g., there might be multiple Messages sent).
There is no specific EventDefinition subclass (see page 268) for
Multiple End Events. If the End Event has more than one associated
EventDefiniton, then the Event will be displayed with the Multiple
Event marker (a pentagon—see the figure on the right).

Table 10.88 - End Event Types
256 Business Process Model and Notation, v2.0

Sequence Flow Connections

See Section “Sequence Flow Connections Rules” on page 42 for the entire set of objects and how they MAY be a source
or target of a Sequence Flow.

� An End Event MUST be a target for a Sequence Flow.

� An End Event MAY have multiple incoming Sequence Flows.

The Flow MAY come from either alternative or parallel paths. For modeling convenience, each path MAY connect to a
separate End Event object. The End Event is used as a Sink for all tokens that arrive at the Event. All tokens that are
generated at the Start Event for that Process MUST eventually arrive at an End Event. The Process will be in a
running state until all tokens are consumed.

� An End Event MUST NOT be a source for Sequence Flows; that is, there MUST NOT be outgoing Sequence
Flows.

� An exception to this is when an End Event is used in an Expanded Sub-Process and is attached to the
boundary of that Sub-Process. In this case, a Sequence Flow from the higher-level Process MAY connect
from that End Event in lieu of connecting from the actual boundary of the Sub-Process.

Message Flow Connections

See Section “Message Flow Connection Rules” on page 43 for the entire set of objects and how they MAY be a source or
target of a Message Flow.

Note – All Message Flows MUST connect two separate Pools. They MAY connect to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

� An End Event MUST NOT be the target of a Message Flow; it can have no incoming Message Flows..

� An End Event MAY be the source of a Message Flow; it can have zero (0) or more outgoing Message Flows.
Each Message Flow leaving the End Event will have a Message sent when the Event is triggered.

� The Result attribute of the End Event MUST be set to Message or Multiple if there are any outgoing
Message Flows.

� The Result attribute of the End Event MUST be set to Multiple if there is more than one (1) outgoing
Message Flows.

10.4.4 Intermediate Event

As the name implies, the Intermediate Event indicates where something happens (an Event) somewhere between the
start and end of a Process. It will affect the flow of the Process, but will not start or (directly) terminate the Process.
Intermediate Events can be used to:

• Show where Messages are expected or sent within the Process,

• Show delays are expected within the Process,

• Disrupt the normal flow through exception handling, or

• Show the extra work needed for compensation.

The Intermediate Event shares the same basic shape of the Start Event and End Event, a circle with an open center
so that markers can be placed within the circle to indicate variations of the Event.
Business Process Model and Notation, v2.0 257

� An Intermediate Event is a circle that MUST be drawn with a double thin line. (see Figure 10.72).

� The use of text, color, size, and lines for an Intermediate Event MUST follow the rules defined in Section
“Use of Text, Color, Size, and Lines in a Diagram” on page 41 with the exception that:

� The thickness of the line MUST remain double so that the Intermediate Event can be distinguished from the Start
and End Events.

Figure 10.72 - Intermediate Event

One use of Intermediate Events is to represent exception or compensation handling. This will be shown by placing the
Intermediate Event on the boundary of a Task or Sub-Process (either collapsed or expanded). The Intermediate
Event can be attached to any location of the Activity boundary and the outgoing Sequence Flows can flow in any
direction. However, in the interest of clarity of the Diagram, we RECOMMEND that the modeler choose a consistent
location on the boundary. For example, if the Diagram orientation is horizontal, then the Intermediate Events can be
attached to the bottom of the Activity and the Sequence Flows directed down, then to the right. If the Diagram
orientation is vertical, then the Intermediate Events can be attached to the left or right side of the Activity and the
Sequence Flows directed to the left or right, then down.

Intermediate Event Triggers

There are twelve (12) types of Intermediate Events in BPMN: None, Message, Timer, Escalation, Error, Cancel,
Compensation, Conditional, Link, Signal, Multiple, and Parallel Multiple. Each type of Intermediate Event will
have a different icon placed in the center of the Intermediate Event shape to distinguish one from another.

There are two (2) ways that Intermediate Events are used in BPMN:

An Intermediate Event that is placed within the normal flow of a Process can be used for one of two purposes. The
Event can respond to (“catch”) the Event trigger or the Event can be used to set off (“throw”) the Event trigger. An
Intermediate Event that is attached to the boundary of an Activity can only be used to “catch” the Event trigger.

Intermediate Events in Normal Flow

When a token arrives at an Intermediate Event that is placed within the normal flow of a Process, one of two things
will happen. If the Event is used to “throw” the Event trigger, then trigger of the Event will immediately occur (e.g.,
the Message will be sent) and the token will move down the outgoing Sequence Flow. If the Event is used to “catch”
the Event trigger, then the token will remain at the Event until the trigger occurs (e.g., the Message is received). Then
the token will move down the outgoing Sequence Flow.

Ten (10) of the twelve (12) Intermediate Events can be used in normal flow. Table 10.89

258 Business Process Model and Notation, v2.0

Table 10.89 – Intermediate Event Types in Normal Flow

Trigger Description Marker

None The None Intermediate Event is only valid in normal flow, i.e., it MAY
NOT be used on the boundary of an Activity. Although there is no specific
trigger for this Event, it is defined as throw Event. It is used for modeling
methodologies that use Events to indicate some change of state in the
Process.
There is no specific EventDefinition subclass (see page 268) for
None Intermediate Events. If the (throw) Intermediate Event has no
associated EventDefiniton, then the Event MUST be displayed with-
out a marker (see the figure on the right).

Throw

Message A Message Intermediate Event can be used to either send a Message
or receive a Message.
When used to “throw” the Message, the Event marker MUST be filled
(see the upper figure on the right). When used to “catch” the Message,
then the Event marker MUST be unfilled (see the lower figure on the
right). This causes the Process to continue if it was waiting for the
Message, or changes the flow for exception handling.
The actual Participant from which the Message is received can be identi-
fied by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process – see Table 10.1.
See page 93 for more details on Messages.

Throw

Catch

Timer In normal flow the Timer Intermediate Event acts as a delay mechanism
based on a specific time-date or a specific cycle (e.g., every Monday at
9am) can be set that will trigger the Event. This Event MUST be dis-
played with a clock marker (see the figure on the right).

Catch

Escalation In normal flow, the Escalation Intermediate Event raises an Escalation.
Since this is a Throw Event, the arrowhead marker will be filled (see the
figure to the right).

Throw

Business Process Model and Notation, v2.0 259

Compensation In normal flow, this Intermediate Event indicates that compensation is
necessary. Thus, it is used to "throw" the Compensation Event, and the
Event marker MUST be filled (see figure on the right). If an Activity is
identified, and it was successfully completed, then that Activity will be
compensated. The Activity MUST be visible from the Compensation
Intermediate Event, i.e., one of the following MUST be true:

• The Compensation Intermediate Event is contained in normal
flow at the same level of Sub-Process.

• The Compensation Intermediate Event is contained in a
Compensation Event Sub-Process which is contained in the Sub-
Process containing the Activity.

If no Activity is identified, all successfully completed Activities visible
from the Compensation Intermediate Event are compensated, in
reverse order of their Sequence Flows. Visible means one of the follow-
ing:

• The Compensation Intermediate Event is contained in normal
flow and at the same level of Sub-Process as the Activities.

• The Compensation Intermediate Event is contained in a
Compensation Event Sub-Process which is contained in the Sub-
Process containing the Activities.

To be compensated, an Activity MUST have a boundary Compensation
Event, or contain a Compensation Event Sub-Process.

Throw

Conditional This type of Event is triggered when a condition becomes true. A condi-
tion is a type of Expression. The attributes of an Expression can be
found page 84.

Catch

Link The Link Intermediate Events are only valid in normal flow, i.e. they MAY
NOT be used on the boundary of an Activity. A Link is a mechanism for
connecting two sections of a Process. Link Events can be used to create
looping situations or to avoid long Sequence Flow lines. Link Event uses
are limited to a single Process level (i.e., they cannot link a parent
Process with a Sub-Process). Paired Intermediate Events can also be
used as “Off-Page Connectors” for printing a Process across multiple
pages. They can also be used as generic “Go To” objects within the
Process level. There can be multiple source Link Events, but there can
only be one target Link Event.
When used to “throw” to the target Link, the Event marker will be filled
(see the top figure on the right). When used to “catch” from the source
Link, the Event marker will be unfilled (see the bottom figure on the right).

Throw

Catch

Table 10.89 – Intermediate Event Types in Normal Flow

260 Business Process Model and Notation, v2.0

Signal This type of Event is used for sending or receiving Signals. A Signal is
for general communication within and across Process levels, across
Pools, and between Business Process Diagrams. A BPMN Signal is
similar to a signal flare that shot into the sky for anyone who might be
interested to notice and then react. Thus, there is a source of the Signal,
but no specific intended target. This type of Intermediate Event can send
or receive a Signal if the Event is part of a normal flow. The Event can
only receive a Signal when attached to the boundary of an Activity. The
Signal Event differs from an Error Event in that the Signal defines a
more general, non-error condition for interrupting Activities (such as the
successful completion of another Activity) as well as having a larger
scope than Error Events. When used to “catch” the Signal, the Event
marker will be unfilled (see the middle figure on the right). When used to
“throw” the Signal, the Event marker will be filled (see the top figure on
the right). The attributes of a Signal can be found on page 281.

Throw

Catch

Multiple This means that there are multiple triggers assigned to the Event. If used
within normal flow, the Event can “catch” the trigger or “throw” the trig-
gers. When attached to the boundary of an Activity, the Event can only
“catch” the trigger. When used to “catch” the trigger, only one of the
assigned triggers is REQUIRED and the Event marker will be unfilled
(see the middle figure on the right). When used to “throw” the trigger (the
same as a Multiple End Event), all the assigned triggers will be thrown
and the Event marker will be filled (see the top figure on the right).
There is no specific EventDefinition subclass (see page 268) for
Multiple Intermediate Events. If the Intermediate Event has more than
one associated EventDefiniton, then the Event will be displayed with
the Multiple Event marker.

Throw

Catch

Parallel Multiple This means that there are multiple triggers assigned to the Event. If used
within normal flow, the Event can only “catch” the trigger. When attached
to the boundary of an Activity, the Event can only “catch” the trigger.
Unlike the normal Multiple Intermediate Event, all of the assigned trig-
gers are REQUIRED for the Event to be triggered.
The Event marker will be an unfilled plus sign (see the figure on the right).
There is no specific EventDefinition subclass (see page 268) for Par-
allel Multiple Intermediate Events. If the Intermediate Event has more
than one associated EventDefiniton and the parallelMultiple
attribute of the Intermediate Event is true, then the Event will be dis-
played with the Parallel Multiple Event marker.

Catch

Table 10.89 – Intermediate Event Types in Normal Flow

Business Process Model and Notation, v2.0 261

Intermediate Events Attached to an Activity Boundary

Table 10.90 describes the Intermediate Events that can be attached to the boundary of an Activity.

Table 10.90 – Intermediate Event Types Attached to an Activity Boundary

Trigger Description Marker

Message A Message arrives from a participant and triggers the Event. If a
Message Event is attached to the boundary of an Activity, it will change
the normal flow into an exception flow upon being triggered.
For a Message Event that interrupts the Activity to which it is attached,
the boundary of the Event is solid (see upper figure on the right). Note
that if using this notation, the attribute cancelActivity of the Activity
to which the Event is attached is implicitly set to true.
For a Message Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to false.
The actual Participant from which the Message is received can be identi-
fied by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process – see Table 10.1.

Interrupting

Non-Inter-
rupting

Timer A specific time-date or a specific cycle (e.g., every Monday at 9am) can
be set that will trigger the Event. If a Timer Event is attached to the
boundary of an Activity, it will change the normal flow into an exception
flow upon being triggered.
For a Timer Event that interrupts the Activity to which it is attached, the
boundary of the Event is solid (see upper figure on the right). Note that if
using this notation, the attribute cancelActivity of the Activity to
which the Event is attached is implicitly set to true.
For a Timer Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-Inter-
rupting

262 Business Process Model and Notation, v2.0

Escalation This type of Event is used for handling a named Escalation. If attached
to the boundary of an Activity, the Intermediate Event catches an
Escalation. In contrast to an Error, an Escalation by default is
assumed to not abort the Activity to which the boundary Event is
attached. However, a modeler can decide to override this setting by using
the notation described in the following.
For an Escalation Event that interrupts the Activity to which it is
attached, the boundary of the Event is solid (see upper figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to true.
For an Escalation Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-Inter-
rupting

Error A catch Intermediate Error Event can only be attached to the boundary
of an Activity, i.e., it MAY NOT be used in normal flow. If used in this con-
text, it reacts to (catches) a named Error, or to any Error if a name is
not specified.
Note that an Error Event always interrupts the Activity to which it is
attached, i.e., there is not a non-interrupting version of this Event. The
boundary of the Event thus always solid (see figure on the right).

Interrupting

Cancel This type of Intermediate Event is used within a Transaction Sub-Proc-
ess. This type of Event MUST be attached to the boundary of a Sub-
Process. It SHALL be triggered if a Cancel End Event is reached within
the Transaction Sub-Process. It also SHALL be triggered if a
TransactionProtocol “Cancel” Message has been received while the
transaction is being performed.
Note that a Cancel Event always interrupts the Activity to which it is
attached, i.e., there is not a non-interrupting version of this Event. The
boundary of the Event thus always solid (see figure on the right).

Interrupting

Compensation When attached to the boundary of an Activity, this Event is used to
"catch" the Compensation Event, thus the Event marker MUST be
unfilled (see figure on the right). The Event will be triggered by a thrown
compensation targeting that Activity. When the Event is triggered, the
Compensation Activity that is associated to the Event will be performed
(see page 311).
Note that the interrupting a non-interrupting aspect of other Events does
not apply in the case of a Compensation Event. Compensations can
only be triggered after completion of the Activity to which they are
attached. Thus they cannot interrupt the Activity. The boundary of the
Event is always solid.

Table 10.90 – Intermediate Event Types Attached to an Activity Boundary

Business Process Model and Notation, v2.0 263

Conditional This type of Event is triggered when a condition becomes true. A condi-
tion is a type of Expression. The attributes of an Expression can be
found page 84. If a Conditional Event is attached to the boundary of an
Activity, it will change the normal flow into an exception flow upon being
triggered.
For a Conditional Event that interrupts the Activity to which it is
attached, the boundary of the Event is solid (see upper figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to true.
For a Conditional Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-Inter-
rupting

Signal The Signal Event can receive a Signal when attached to the boundary
of an Activity. In this context, it will change the normal flow into an excep-
tion flow upon being triggered. The Signal Event differs from an Error
Event in that the Signal defines a more general, non-error condition for
interrupting Activities (such as the successful completion of another
Activity) as well as having a larger scope than Error Events. When used
to “catch” the Signal, the Event marker will be unfilled. The attributes of
a Signal can be found on page 281.
For a Signal Event that interrupts the Activity to which it is attached, the
boundary of the Event is solid (see upper figure on the right). Note that if
using this notation, the attribute cancelActivity of the Activity to
which the Event is attached is implicitly set to true.
For a Signal Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-Inter-
rupting

Table 10.90 – Intermediate Event Types Attached to an Activity Boundary

264 Business Process Model and Notation, v2.0

Multiple A Multiple Event indicates that there are multiple triggers assigned to the
Event. When attached to the boundary of an Activity, the Event can only
“catch” the trigger. In this case, only one of the assigned triggers is
REQUIRED and the Event marker will be unfilled upon being triggered,
the Event that occurred will change the normal flow into an exception
flow.
There is no specific EventDefinition subclass (see page 268) for
Multiple Intermediate Events. If the Intermediate Event has more than
one associated EventDefiniton, then the Event will be displayed with
the Multiple Event marker.
For a Multiple Event that interrupts the Activity to which it is attached,
the boundary of the Event is solid (see upper figure on the right). Note
that if using this notation, the attribute cancelActivity of the Activity
to which the Event is attached is implicitly set to true.
For a Multiple Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to false.

Interrupting

Non- Inter-
rupting

Parallel
Multiple

This means that there are multiple triggers assigned to the Event. When
attached to the boundary of an Activity, the Event can only “catch” the
trigger. Unlike the normal Multiple Intermediate Event, all of the
assigned triggers are REQUIRED for the Event to be triggered. The
Event marker will be an unfilled plus sign (see the figures on the right).
There is no specific EventDefinition subclass (see page 268) for
Parallel Multiple Intermediate Events. If the Intermediate Event has
more than one associated EventDefiniton and the
parallelMultiple attribute of the Intermediate Event is true, then the
Event will be displayed with the Parallel Multiple Event marker.
For a Parallel Multiple Event that interrupts the Activity to which it is
attached, the boundary of the Event is solid (see the upper figure to the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to true.
For a Parallel Multiple Event that does not interrupt the Activity to which
it is attached, the boundary of the Event is dashed (see the lower figure to
the right). Note that if using this notation, the attribute cancelActivity
of the Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-Inter-
rupting

Table 10.90 – Intermediate Event Types Attached to an Activity Boundary

Business Process Model and Notation, v2.0 265

Attributes for Boundary Events

For boundary Events, the following additional attributes exists:

The BoundaryEvent element inherits the attributes and model associations of CatchEvent (see Table 8.44). Table
8.46 presents the additional attributes and model associations of the Boundary Event element:

Table 10.92 specifies whether the cancel Activity attribute can be set on a boundary Event depending on the
EventDefinition it catches.

Activity Boundary Connections

An Intermediate Event can be attached to the boundary of an Activity under the following conditions:

Table 10.91 – Boundary Event attributes

Attribute Name Description/Usage

attachedTo: Activity Denotes the Activity that boundary Event is attached to.

cancelActivity:
boolean

Denotes whether the Activity should be cancelled or not, i.e., whether the boundary
catch Event acts as an Error or an Escalation. If the Activity is not cancelled,
multiple instances of that handler can run concurrently.
This attribute cannot be applied to Error Events (where it’s always true), or
Compensation Events (where it doesn’t apply).

Table 10.92 – Possible Values of the cancelActivity Attribute

Trigger Possible Values for the cancelActivity Attribute

None N/A as this event cannot be attached to the Activity border.

Message True/false

Timer True/false

Escalation True/false

Error True

Cancel True

Compensation N/A as the scope was already executed and can no longer be canceled when com-
pensation is triggered.

Conditional True/false

Signal True/false

Multiple True/false if all Event triggers allow this option (see this table for details). Otherwise
the more restrictive option, i.e. Yes in case any Error or cancel triggers are used.
266 Business Process Model and Notation, v2.0

� (One or more) Intermediate Events MAY be attached directly to the boundary of an Activity.

� To be attached to the boundary of an Activity, an Intermediate Event MUST be one of the following
triggers (EventDefinition): Message, Timer, Error, Escalation, Cancel, Compensation,
Conditional, Signal, Multiple, and Parallel Multiple.

� An Intermediate Event with a Cancel trigger MAY be attached to a Sub-Process boundary only if the
Transaction attribute of the Sub-Process is set to true.

Sequence Flow Connections

See Section “Sequence Flow Connections Rules” on page 42 for the entire set of objects and how they MAY be a source
or target of a Sequence Flow.

� If the Intermediate Event is attached to the boundary of an Activity:

� The Intermediate Event MUST NOT be a target for a Sequence Flow; it cannot have an incoming
Sequence Flows.

� The Intermediate Event MUST be a source for a Sequence Flow.

� Multiple Sequence Flows MAY originate from an Intermediate Event. For each Sequence Flow
that has the Intermediate Event as a source, a new parallel path SHALL be generated.

� An exception to this: an Intermediate Event with a Compensation trigger MUST NOT have an
outgoing Sequence Flow (it MAY have an outgoing Association).

� The Intermediate Events with the following triggers (EventDefinition) MAY be used in normal flow:
None, Message, Timer, Escalation, Compensation, Conditional, Link, Signal, Multiple, and
ParallelMultiple. Thus, the following MUST NOT: Cancel and Error.

� If the Intermediate Event is used within normal flow:

� Intermediate Events MUST be a target of a Sequence Flow.

Note – this is a change from BPMN 1.2 semantics, which allowed some Intermediate Events to not have an incoming
Sequence Flow.

� An Intermediate Event MAY have multiple incoming Sequence Flows.

Note – If the Event has multiple incoming Sequence Flows, then this is considered uncontrolled flow. This means that
when a token arrives from one of the Paths, the Event will be enabled (to catch or throw). It will not wait for the arrival of
tokens from the other paths. If another token arrives from the same path or another path, then a separate instance of the Event
will be created. If the flow needs to be controlled, then the flow should converge with a Gateway that precedes the Event
(see page 295 for more information on Gateways).

� An Intermediate Event MUST be a source for a Sequence Flow.

� Multiple Sequence Flows MAY originate from an Intermediate Event. For each Sequence Flow that has the
Intermediate Event as a source, a new parallel path SHALL be generated.

� An exception to this: a source Link Intermediate Event (as defined below), it is NOT REQUIRED to have an
outgoing Sequence Flow.

� A Link Intermediate Event MUST NOT be both a target and a source of a Sequence Flow.

To define the use of a Link Intermediate Event as an “Off-Page Connector” or a “Go To” object:

� A Link Intermediate Event MAY be the target (target Link) or a source (source Link) of a Sequence Flow,
Business Process Model and Notation, v2.0 267

but MUST NOT be both a target and a source.

� If there is a source Link, there MUST be a matching target Link (they have the same name).

� There MAY be multiple source Links for a single target Link.

� There MUST NOT be multiple target Links for a single source Link.

Message Flow Connections

See Section “Message Flow Connection Rules” on page 42 for the entire set of objects and how they MAY be a source or
target of a Message Flow.

Note – All Message Flows MUST connect two separate Pools. They MAY connect to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

� A Message Intermediate Event MAY be the target for a Message Flow; it can have one (1) incoming
Message Flow.

� A Message Intermediate Event MAY be a source for a Message Flow; it can have one (1) outgoing
Message Flow.

� A Message Intermediate Event MAY have an incoming Message Flow or an outgoing Message Flow, but
not both.

10.4.5 Event Definitions

Event Definitions refers to the triggers of Catch Events (Start and receive Intermediate Events) and the
Results of Throw Events (End Events and send Intermediate Events). The types of Event Definitions are:
CancelEventDefinition, CompensationEventDefinition, ConditionalEventDefinition,
ErrorEventDefinition, EscalationEventDefinition, MessageEventDefinition,
LinkEventDefinition, SignalEventDefinition, TerminateEventDefinition, and
TimerEventDefinition (see Table 10.93). A None Event is determined by an Event that does not specify an
Event Definition. A Multiple Event is determined by an Event that specifies more than one Event Definition. The
different types of Events (Start, End, and Intermediate) utilize a subset of the available types of Event Definitions.
268 Business Process Model and Notation, v2.0

Table 10.93 – Types of Events and their Markers

Types Start Intermediate End

Top-
Level

Event
Sub-Process
Interrupting

Event
Sub-Process
Non-
Interrupting

Catching Boundary
Interrupting

Boundary
Non-
Interrupting

Throwing

None

Message

Timer

Error

Escalation

Cancel

Compensation

Conditional

Link

Signal

Terminate

Multiple

Business Process Model and Notation, v2.0 269

The following sections will present the attributes common to all Event Definitions and the specific attributes for the
Event Definitions that have additional attributes. Note that the Cancel and Terminate Event Definitions do not have
additional attributes.

Event Definition Metamodel
Figure 10.73 shows the class diagram for the abstract class EventDefinition. When one of the EventDefinition
sub-types (e.g., TimerEventDefinition) is defined it is contained in Definitions, or a contained
EventDefinition contained in a throw/catch Event.

Figure 10.73 – EventDefinition Class Diagram

The EventDefinition element inherits the attributes and model associations of BaseElement (see Table 8.5)
through its relationship to RootElement, but does not contain any additional attributes or model associations.

The ErrorEventDefinition, EscalationEventDefinition and SignalEventDefinition subclasses
comprise of attributes to carry data. The data is defined as part of the Events package. The
MessageEventDefinition subclass comprises of an attribute that refers to a Message which is defined as part of
the Collaboration package.

The following sections will present the sub-types of EventDefinitions.

Parallel
Multiple

Table 10.93 – Types of Events and their Markers
270 Business Process Model and Notation, v2.0

Cancel Event

Cancel Events are only used in the context of modeling Transaction Sub-Processes (see page 184 for more details
on Transactions). There are two (2) variations: a catch Intermediate Event and an End Event.

� The catch Cancel Intermediate Event MUST only be attached to the boundary of a Transaction Sub-
Process and, thus, MAY NOT be used in normal flow.

� The Cancel End Event MUST only be used within a Transaction Sub-Process and, thus, MAY NOT be used
in any other type of Sub-Process or Process.

Figure 10.74 shows the variations of Cancel Events.

Figure 10.74 – Cancel Events

The CancelEventDefinition element inherits the attributes and model associations of BaseElement (see Table
8.5) through its relationship to the EventDefinition element (see page 268).

Compensation Event

Compensation Events are used in the context of triggering or handling compensation (see page 311 for more details on
compensation). There are four (4) variations: a Start Event, both a catch and throw Intermediate Event, and an End
Event.

� The Compensation Start Event MAY NOT be used for a top-level Process.

� The Compensation Start Event MAY be used for an Event Sub-Process.

� The catch Compensation Intermediate Event MUST only be attached to the boundary of an Activity and,
thus, MAY NOT be used in normal flow.

� The throw Compensation Intermediate Event MAY be used in normal flow.

� The Compensation End Event MAY be used within any Sub-Process or Process.

Figure 10.75 shows the variations of Compensation Events.

Figure 10.75 – Compensation Events

Figure 10.76 displays the class diagram for the CompensationEventDefinition.

Business Process Model and Notation, v2.0 271

Figure 10.76 - CompensationEventDefinition Class Diagram

The CompensationEventDefinition element inherits the attributes and model associations of BaseElement
(see Table 8.5) through its relationship to the EventDefinition element (see page 268). Table 10.94 presents the
additional attributes and model associations of the CompensationEventDefinition element:

Table 10.94 – CompensationEventDefinition attributes and model associations

Attribute Name Description/Usage

activityRef: Activity
[0..1]

For a Start Event:
This Event “catches” the compensation for an Event Sub-Process. No further
information is REQUIRED. The Event Sub-Process will provide the Id necessary
to match the Compensation Event with the Event that threw the compensation,
or the compensation will have been a broadcast.

For an End Event:
The Activity to be compensated MAY be supplied. If an Activity is not supplied,
then the compensation is broadcast to all completed Activities in the current Sub-
Process (if present), or the entire Process instance (if at the global level).

For an Intermediate Event within normal flow:
The Activity to be compensated MAY be supplied. If an Activity is not supplied,
then the compensation is broadcast to all completed Activities in the current Sub-
Process (if present), or the entire Process instance (if at the global level). This
“throws” the compensation.

For an Intermediate Event attached to the boundary of an Activity:
This Event “catches” the compensation. No further information is REQUIRED. The
Activity the Event is attached to will provide the Id necessary to match the Com-
pensation Event with the Event that threw the compensation, or the compensa-
tion will have been a broadcast.

waitForCompletion:
boolean = true

For a throw Compensation Event, this flag determines whether the throw Interme-
diate Event waits for the triggered compensation to complete (the default), or just
triggers the compensation and immediately continues (the BPMN 1.2 behavior).
272 Business Process Model and Notation, v2.0

Conditional Event

Figure 10.77 shows the variations of Conditional Events.

Figure 10.77 – Conditional Events

The ConditionalEventDefinition element inherits the attributes and model associations of BaseElement (see
Table 8.5) through its relationship to the EventDefinition element (see page 268). Table 10.95 presents the
additional model associations of the ConditionalEventDefinition element:

Figure 10.78 displays the class diagram for the ConditionalEventDefinition.

Figure 10.78 - ConditionalEventDefinition Class Diagram

The ConditionalEventDefinition element inherits the attributes and model associations of BaseElement (see
Table 8.5) through its relationship to the EventDefinition element (see page 268). Table 10.95 presents the
additional model associations of the ConditionalEventDefinition element:

Error Event

Figure 10.79 shows the variations of Conditional Events.

Figure 10.79 – Error Events

Table 10.95 – ConditionalEventDefinition model associations

Attribute Name Description/Usage

condition: Expression The Expression might be underspecified and provided in the form of natural lan-
guage. For executable Processes (isExecutable = true), if the trigger is Condi-
tional, then a FormalExpression MUST be entered.

Business Process Model and Notation, v2.0 273

Figure 10.80 displays the class diagram for the ErrorEventDefinition.

Figure 10.80 - ErrorEventDefinition Class Diagram

The ErrorEventDefinition element inherits the attributes and model associations of BaseElement (see Table
8.5) through its relationship to the EventDefinition element (see page 268). Table 10.96 presents the additional
attributes and model associations of the ErrorEventDefinition element:

Escalation Event Definition

Figure 10.81 shows the variations of Escalation Events.

Figure 10.81 – Escalation Events

Figure 10.82 displays the class diagram for the EscalationEventDefinition.

Table 10.96 – ErrorEventDefinition attributes and model associations

Attribute Name Description/Usage

error: Error [0..1] If the trigger is an Error, then an Error payload MAY be provided.

274 Business Process Model and Notation, v2.0

Figure 10.82 - EscalationEventDefinition Class Diagram

The EscalationEventDefinition element inherits the attributes and model associations of BaseElement (see
Table 8.5) through its relationship to the EventDefinition element (see page 268). Table 10.97 presents the
additional attributes and model associations of the EscalationEventDefinition element:

Link Event Definition

A Link Event is a mechanism for connecting two sections of a Process. Link Events can be used to create looping
situations or to avoid long Sequence Flow lines. The use of Link Events is limited to a single Process level (i.e.,
they cannot link a parent Process with a Sub-Process).

Figure 10.83 shows the variations of Link Events.

Figure 10.83 – Link Events

Paired Link Events can also be used as “Off-Page Connectors” for printing a Process across multiple pages. They can
also be used as generic “Go To” objects within the Process level. There can be multiple source Link Events, but there
can only be one target Link Event. When used to “catch” from the source Link, the Event marker will be unfilled (see
Figure 10.84: upper right). When used to “throw” to the target Link, the Event marker will be filled (see Figure 10.84:
upper: lower Left).

Table 10.97 – EscalationEventDefinition attributes and model associations

Attribute Name Description/Usage

escalationRef: Escalation
[0..1]

If the trigger is an Escalation, then an Escalation payload MAY be pro-
vided.

Business Process Model and Notation, v2.0 275

Since Process models often extend beyond the length of one printed page, there is often a concern about showing how
Sequence Flow connections extend across the page breaks. One solution that is often employed is the use of Off-Page
connectors to show where one page leaves off and the other begins. BPMN provides Intermediate Events of type Link
for use as Off-Page connectors (see Figure 10.84--Note that the figure shows two different printed pages, not two Pools
in one diagram). A pair of Link Events is used. One of the pair is shown at the end of one page. This Event is named
and has an incoming Sequence Flow and no outgoing Sequence Flows. The second Link Event is at the beginning
of the next page, shares the same name, and has an outgoing Sequence Flow and no incoming Sequence Flow.

Figure 10.84 - Link Events Used as Off-Page Connector

Another way that Link Events can be used is as “Go To” objects. Functionally, they would work the same as for Off-
Page Connectors (described above), except that they could be used anywhere in the diagram--on the same page or across
multiple pages. The general idea is that they provide a mechanism for reducing the length of Sequence Flow lines.
Some modelers can consider long lines as being hard to follow or trace. Go To Objects can be used to avoid very long

Receive
Confirmation

2 Days

Request Flights
within Parameters

Request Rooms
within Parameters

Send Cancellation
Notice

+

Prepare and
Send Candidate

Itineraries
Travel
Order

Page 1

A

A +

Book
Reservations

Page 2

Send ConfirmationCharge
Buyer

Source
Link Event

Target
Link Event
276 Business Process Model and Notation, v2.0

Sequence Flows (see Figure 10.85 and Figure 10.86). Both diagrams will behave equivalently. For Figure 10.86, if the
“Order Rejected” path is taken from the Decision, then the token traversing the Sequence Flow would reach the source
Link Event and then “jump” to the target Link Event and continue down the Sequence Flow. The Process would
continue as if the Sequence Flow had directly connected the two objects.

Figure 10.85 - A Process with a long Sequence Flow

Figure 10.86 - A Process with Link Intermediate Events used as Go To Objects

Some methodologies prefer that all Sequence Flows only move in one direction; that is, forward in time. These
methodologies do not allow Sequence Flows to connect directly to upstream objects. Some consistency in modeling
can be gained by such a methodology, but situations that require looping become a challenge. Link Events can be used
to make upstream connections and create loops without violating the Sequence Flow direction restriction (see Figure
10.87).

Receive
Order

Request

Order
accepted Fill Order

Ship Order

Send
Invoice

Make
Payment

Order rejected

Accept
Payment

Close Order

Requested
Order

Invoice

Receive
Order

Request

Order
accepted Fill Order

Ship Order

Send
Invoice

Make
Payment

Order rejected

Accept
Payment

Close Order

To Close To Close

Requested
Order

Invoice
Business Process Model and Notation, v2.0 277

Figure 10.87 - Link Events Used for looping

The LinkEventDefinition element inherits the attributes and model associations of BaseElement (see Table 8.5)
through its relationship to the EventDefinition element (see page 268). Table 10.98 presents the additional attributes
of the LinkEventDefinition element:

Message Event Definition

Figure 10.88 shows the variations of Message Events.

Figure 10.88 – Message Events

Table 10.98 – LinkEventDefinition attributes

Attribute Name Description/Usage

name: string If the trigger is a Link, then the name MUST be entered.

sources: LinkEventDef-
inition [1..*]

Used to reference the corresponding 'catch' or 'target' LinkEventDefinition, when
this LinkEventDefinition represents a 'throw' or 'source' LinkEventDefinition.

target: LinkEventDefini-
tion [1]

Used to reference the corresponding 'throw' or 'source' LinkEventDefinition,
when this LinkEventDefinition represents a 'catch' or 'target' LinkEventDefinition.

No

Configure Product Test Product Package ProductPass Test? Yes

ReconfigureReconfigure

278 Business Process Model and Notation, v2.0

Figure 10.89 displays the class diagram for the MessageEventDefinition.

Figure 10.89 - MessageEventDefinition Class Diagram

The MessageEventDefinition element inherits the attributes and model associations of BaseElement (see Table
8.5) through its relationship to the EventDefinition element (see page 268). Table 10.99 presents the additional
model associations of the MessageEventDefinition element:

Multiple Event

For a Start Event:

If the trigger is Multiple, there are multiple ways of starting the Process. Only one of them is necessary to trigger the
start of the Process. The EventDefinition subclasses will define which triggers apply

For an End Event:

If the Result is Multiple, there are multiple consequences of ending the Process. All of them will occur. The
EventDefinition subclasses will define which Results apply.

For an Intermediate Event within normal flow:

If the trigger is Multiple, only one EventDefinition is REQUIRED to catch the trigger. When used to throw, all
of the EventDefinitions are considered and the subclasses will define which Results apply.

For an Intermediate Event attached to the boundary of an Activity:

Table 10.99 – MessageEventDefinition model associations

Attribute Name Description/Usage

messageRef: Message [0..1] The Message MUST be supplied (if the isExecutable attribute of the
Process is set to true).

operationRef: Operation [0..1] This attribute specifies the Operation that is used by the Message Event.
It MUST be specified for executable Processes.
Business Process Model and Notation, v2.0 279

If the trigger is Multiple, only one EventDefinition is REQUIRED to "catch" the trigger.

Figure 10.90 shows the variations of Multiple Events.

Figure 10.90 – Multiple Events

None Event

None Events are Events that do not have a defined EventDefinition. There are three (3) variations of None
Events: a Start Event, a catch Intermediate Event, and an End Event (see Figure 10.91).

� The None Start Event MAY be used for a top-level Process or any type of Sub-Process (except an Event
Sub-Process)

� The None Start Event MAY NOT be used for an Event Sub-Process.

� The catch None Intermediate Event MUST only be used in normal flow and, thus, MAY NOT be attached to the
boundary of an Activity.

� The None End Event MAY be used within any Sub-Process or Process.

Figure 10.91 shows the variations of None Events.

Figure 10.91 – None Events

Parallel Multiple Event

For a Start Event:

If the trigger is Multiple, there are multiple triggers REQUIRED to start the Process. All of them are necessary to
trigger the start of the Process. The EventDefinition subclasses will define which triggers apply. In addition, the
parallelMultiple attribute of the Start Event MUST be set to true.

For an Intermediate Event within normal flow:

If the trigger is Multiple, all of the defined EventDefinitions are REQUIRED to trigger the Event. In addition,
the parallelMultiple attribute of the Intermediate Event MUST be set to true.

For an Intermediate Event attached to the boundary of an Activity:

If the trigger is Multiple, all of the defined EventDefinitions are REQUIRED to trigger the Event. In addition, the
parallelMultiple attribute of the Intermediate Event MUST be set to true.

Figure 10.92 shows the variations of Parallel Multiple Events.

280 Business Process Model and Notation, v2.0

Figure 10.92 – Multiple Events

Signal Event

Figure 10.93 - SignalEventDefinition Class Diagram

Figure 10.94 shows the variations of Signal Events.

Figure 10.94 – Signal Events

The SignalEventDefinition element inherits the attributes and model associations of BaseElement (see Table
8.5) through its relationship to the EventDefinition element (see page 268). Table 10.100 presents the additional
model associations of the ConditionalSignalDefinition element:

Terminate Event

Figure 10.95 shows the Terminate Event.

Table 10.100 – SignalEventDefinition model associations

Attribute Name Description/Usage

signalRef: Signal [0..1] If the trigger is a Signal, then a Signal is provided.

Business Process Model and Notation, v2.0 281

Figure 10.95 – Terminate Event

The TerminateEventDefinition element inherits the attributes and model associations of BaseElement (see
Table 8.5) through its relationship to the EventDefinition element (see page 268).

Timer Event

Figure 10.96 shows the variations of Timer Events.

Figure 10.96 – Timer Events

The TimerEventDefinition element inherits the attributes and model associations of BaseElement (see Table
8.5) through its relationship to the EventDefinition element (see page 268). Table 10.101 presents the additional
model associations of the TimerEventDefinition element:

Table 10.101 – TimerEventDefinition model associations

Attribute Name Description/Usage

timeDate: Expression [0..1] If the trigger is a Timer, then a timeDate MAY be entered. Timer attributes are
mutually exclusive and if any of the other Timer attributes is set, timeDate MUST
NOT be set (if the isExecutable attribute of the Process is set to true). The
return type of the attribute timeDate MUST conform to the ISO-8601 format for date
and time representations.

timeCycle: Expression [0..1] If the trigger is a Timer, then a timeCycle MAY be entered. Timer attributes are
mutually exclusive and if any of the other Timer attributes is set, timeCycle MUST
NOT be set (if the isExecutable attribute of the Process is set to true). The
return type of the attribute timeCycle MUST conform to the ISO-8601 format for
recurring time interval representations.

timeDuration: Expression
[0..1]

If the trigger is a Timer, then a timeDuration MAY be entered. Timer attributes
are mutually exclusive and if any of the other Timer attributes is set, timeDuration
MUST NOT be set (if the isExecutable attribute of the Process is set to true).
The return type of the attribute timeDuration MUST conform to the ISO-8601 for-
mat for time interval representations.

282 Business Process Model and Notation, v2.0

10.4.6 Handling Events

BPMN provides advanced constructs for dealing with Events that occur during the execution of a Process (i.e., the
“catching” of an Event). Furthermore, BPMN supports the explicit creation of an Event in the Process (i.e., the
“throwing” of an Event). Both catching and throwing of an Event as well as the resulting Process behavior is referred
to as Event handling. There are three (3) types of Event handlers: those that start a Process, those that are part of the
normal Sequence Flow, and those that are attached to Activities, either via boundary Events or via separate inline
handlers in case of an Event Sub-Process.

Handling Start Events

There are multiple ways in which a Process can be started. For single Start Events, handling consists of starting a new
Process instance each time the Event occurs. Sequence Flows leaving the Event are then followed as usual. For
multiple Start Events, BPMN supports several modeling scenarios that can be applied depending on the scenario.

Exclusive start: the most common scenario for starting a Process is its instantiation by exactly one out of many
possible Start Events. Each occurrence of one of these Events will lead to the creation of a new Process instance.
The following example shows two Events connected to a single Activity (see Figure 10.97). At runtime, each
occurrence of one of the Events will lead to the creation of a new instance of the Process instance and activation of the
Activity. Note that a single Multiple Start Event that contains the Message Event Definitions would behave in
the same way.

Figure 10.97 - Exclusive start of a Process

A Process can also be started via an Event-Based Gateway, as in the following example (Figure 10.98):

Activity

Message 2

Message 1
Business Process Model and Notation, v2.0 283

Figure 10.98 - A Process initiated by an Event-Based Gateway

In that case, the first matching Event will create a new instance of the Process, and waiting for the other Events
originating from the same decision stops, following the usual semantics of the Event-Based Exclusive Gateway. Note
that this is the only scenario where a Gateway can exist without an incoming Sequence Flows.

It is possible to have multiple groups of Event-Based Gateways starting a Process, provided they participate in the
same Conversation and hence share the same correlation information. In that case, one Event out of each group needs
to arrive; the first one creates a new Process instance, while the subsequent ones are routed to the existing instance,
which is identified through its correlation information.

Event synchronization: if the modeler requires several disjoint Start Events to be merged into a single Process
instance, then the following notation MUST be applied (Figure 10.99):

Figure 10.99 - Event synchronization at Process start

The Parallel Start Event MAY group several disjoint Start Events each of which MUST occur once in order for an
instance of the Process to be created. Sequence Flows leaving the Event are then followed as usual.

See page 455 for the execution semantics for the Event Handling of Start Events.

Handling Events within normal Sequence Flow (Intermediate Events)

For Intermediate Events, the handling consists of waiting for the Event to occur. Waiting starts when the
Intermediate Event is reached. Once the Event occurs, it is consumed. Sequence flows leaving the Event are
followed as usual.

Transcribe
Fax

Parse E-Mail

Handle SMS

Process
Request

Activity
284 Business Process Model and Notation, v2.0

Handling Events attached to an Activity (Intermediate boundary Events and Event Sub-Processes)

For boundary Events, handling consists of consuming the Event occurrence and either canceling the Activity the Event
is attached to, followed by normal Sequence Flows leaving that Activity, or by running an Event Handler without
canceling the Activity (only for Message, Signal, Timer and Conditional Events, not for Error Events).

An interrupting boundary Event is defined by a true value of its cancelActivity attribute. Whenever the Event
occurs, the associated Activity is terminated. A downstream token is then generated, which activates the next element of
the Process (connected to the Event by an unconditional Sequence Flow called an exception flow).

For non-interrupting boundary Events, the cancelActivity attribute is set to false. Whenever the Event occurs, the
associated Activity continues to be active. As a token is generated for the Sequence Flow from the boundary Event in
parallel to the continuing execution of the Activity, care MUST be taken when this flow is merged into the main flow of
the Process – typically it should be ended with its own End Event.

The following example shows a fragment (see Figure 10.100) from a trip booking Process. It contains a Sub-Process
that consists of a main part, and three Event Sub-Processes to deal with Events within the same context: an error
Event Sub-Process that cancels the Sub-Process, a Message Event Sub-Process that updates the state of the
Sub-Process while allowing it to continue, and a Compensation Event Sub-Process.
Business Process Model and Notation, v2.0 285

Figure 10.100 - Example of inline Event Handling via Event Sub-Processes

The following example (see Figure 10.101) shows the same fragment of that Process, using boundary Event handlers
rather than inline Event Sub-Processes. Note that in this example, the handlers do not have access to the context of
the “Booking” Sub-Process, as they run outside of it. Therefore, the actually compensation logic is shown as a black
box.

Book Flight

Book Hotel

Booking
Booking

Get Credit
Card

Information

Notify
Customer

Failed
Booking

Update Credit Card Information

Booking

Booking
Error 1

Cancel
Flight

Cancel
Hotel

Charge
Credit Card

Update
Credit Card

Info

Handle Compensation

Flight

Hotel

Update
Customer
Record

Handle Booking Error

Flight

Hotel

Booking
Error 2

Notify
Customer
Invalid CCRetry Limit

Exceeded

Retry Limit
Exceeded

Booking
Error 2
286 Business Process Model and Notation, v2.0

Figure 10.101 - Example of boundary Event Handling

Note that there is a distinction between interrupting and non-interrupting Events and the handling of these Events,
which is described in the sections below. For an interrupting Event (Error, Escalation, Message, Signal, Timer,
Conditional, Multiple, and Parallel Multiple), only one Event Sub-Process for the same Event Declaration
MUST be modeled. This excludes any further non-interrupting handlers for that Event Declaration.

The reason for this restriction lies in the nature of interrupting Event Sub-Processes and boundary Events. They
interrupt normal execution of the parent Activity and after their completion, the parent Activity is immediately
terminated. This implies that only one such handler can be executed at a time. However, this does not restrict the modeler
in specifying several interrupting handlers, if each handler refers to a different Event Declaration.

For non-interrupting Events (Escalation, Message, Signal, Timer, Conditional, Multiple, and Parallel Multiple),
an unlimited number of Event Sub-Processes for the same Event Declaration can be modeled and executed in
parallel. At runtime, they will be invoked in a non-deterministic order. The same restrictions apply for boundary Events.
During execution of a non-interrupting Event Sub-Process, execution of the parent Activity continues as normal.

If for a given Sub-Process, both an inline Event Sub-Process and a boundary Event handler are modeled that
Process the same EventDefinition, the following semantics apply:

� If the inline Event Sub-Process “rethrows” the Event after completion, the boundary Event is triggered.

� If the inline Event Sub-Process completes without “rethrowing” the Event, the Activity is considered to have

Book Flight

Book Hotel

Booking
Booking

Get Credit
Card

Information

Notify
Customer

Failed
Booking

Cancel
Flight

Cancel
Hotel

Charge
Credit Card

Notify
Customer
Invalid CCRetry Limit

Exceeded

Retry Limit
Exceeded

Booking
Error 2

Update
Credit Card

Info

 Undo
Booking
Business Process Model and Notation, v2.0 287

completed and normal Sequence Flow resumes. In other terms, the Event Sub-Process “absorbs” the Event.

Interrupting Event Handlers (Error, Escalation, Message, Signal, Timer, Conditional, Multiple, and Parallel
Multiple)

Interrupting Event Handlers are those that have the cancelActivity attribute is set to true. Whenever the Event
occurs, regardless of whether the Event is handled inline or on the boundary, the associated Activity is interrupted. If an
inline error handler is specified (in case of a Sub-Process), it is run within the context of that Sub-Process. If a
boundary Error Event is present, Sequence Flows from that boundary Event are then followed. The parent Activity
is canceled after either the error handler completes or Sequence Flow from the boundary Event is followed.

In the example above, the “Booking” Sub-Process has an Error handler that defines what should happen in case a
“Booking” Error occurs within the Sub-Process, namely, the already performed bookings are canceled using
compensation. The Error handler is then continued outside the Sub-Process through a boundary Error Event.

Non-interrupting Event Handlers (Escalation, Message, Signal, Timer, Conditional, Multiple, and Parallel
Multiple)

Interrupting Event Handlers are those that have the cancelActivity attribute is set to false.

For Event Sub-Processes, whenever the Event occurs it is consumed and the associated Event Sub-Process is
performed. If there are several Events that happen in parallel, then they are handled concurrently, i.e., several Event
Sub-Process instances are created concurrently. The non-interrupting Start Event indicates that the Event Sub-
Process instance runs concurrently to the Sub-Process proper.

For boundary Events, whenever the Event occurs the handler runs concurrently to the Activity. If an Event Sub-
Process is also specified for that Event (in case of a Sub-Process), it is run within the context of that Sub-Process.
Then, Sequence Flows from the boundary Event are followed. As a token is generated for the Sequence Flow from
the boundary Event in parallel to the continuing execution of the Activity, care MUST be taken when this flow is
merged into the main flow of the Process – typically it should be ended with its own End Event.

In the example above, an Event Handler allows to update the credit card information during the “Booking” Sub-
Process. It is triggered by a credit card information Message: such a Message can be received whenever the control
flow is within the main body of the Sub-Process. Once such a Message is received, the Activities within the
corresponding Event Handler run concurrently with the Activities within the body of the Sub-Process.

See page 455 for the exact semantics of boundary Intermediate Events and page 455 for the operational semantics of
non-interrupting Event Sub-Processes.

Handling End Events

For a Terminate End Event, all remaining active Activities within the Process are terminated.

A Cancel End Event is only allowed in the context of a Transaction Sub-Process and, as such, cancels the Sub-
Process and aborts an associated Transaction of the Sub-Process.

For all other End Events, the behavior associated with the EventDefinition is performed. When there are no
further active Activities, then the Sub-Process or Process instance is completed. See page 458 for exact semantics.

10.4.7 Scopes

A scope describes the context in which execution of an Activity happens. This consists of:
288 Business Process Model and Notation, v2.0

• The set of Data Objects available (including DataInput and DataOutput)

• The set of Events available for catching or throwing triggers

• The set of Conversations going on in that scope

In general, a scope contains exactly one main flow of Activities which is started, when the scope gets activated. Vice
versa, all Activities are enclosed by a scope. Scopes are hierarchically nested.

Scopes can have several scope instances at runtime. They are also hierarchically nested according to their generation. In
a scope instance several tokens can be active.

Scope instances in turn have a lifecycle, containing amongst others the states:

• Activated

• In execution

• Completed

• In Compensation

• Compensation

• In Error

• In Cancellation

• Cancelled

BPMN has the following model elements with scope characteristics:

• Choreography

• Pool

• Sub-Process

• Task

• Activity

• Multi-instances body

Scopes are used to define the semantics of

• Visibility of Data Objects (including DataInput and DataOutput)

• Event resolution

• Starting/stopping of token execution

The Data Objects, Events and correlation keys described by a scope can be explicitly modeled or implicitly
defined.
Business Process Model and Notation, v2.0 289

10.4.8 Events Package XML Schemas

Table 10.102 – BoundaryEvent XML schema

<xsd:element name="boundaryEvent" type="tBoundaryEvent" substitutionGroup="flowElement"/>
<xsd:complexType name="tBoundaryEvent">

<xsd:complexContent>
<xsd:extension base="tCatchEvent">

<xsd:attribute name="cancelActivity" type="xsd:boolean" default="true"/>
<xsd:attribute name="attachedToRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.103 – CancelEventDefinition XML schema

<xsd:element name="cancelEventDefinition" type="tCancelEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tCancelEventDefinition">

<xsd:complexContent>
<xsd:extension base="tEventDefinition"/>

</xsd:complexContent>
</xsd:complexType>

Table 10.104 – CatchEvent XML schema

<xsd:element name="catchEvent" type="tCatchEvent"/>
<xsd:complexType name="tCatchEvent" abstract="true">

<xsd:complexContent>
<xsd:extension base="tEvent">

<xsd:sequence>
<xsd:element ref="dataOutput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataOutputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="outputSet" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="eventDefinition" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="eventDefinitionRef" type="xsd:QName" minOccurs="0" maxOc-

curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="parallelMultiple" type="xsd:boolean" default="false"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
290 Business Process Model and Notation, v2.0

Table 10.105 – CancelEventDefinition XML schema

<xsd:element name="cancelEventDefinition" type="tCancelEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tCancelEventDefinition">

<xsd:complexContent>
<xsd:extension base="tEventDefinition"/>

</xsd:complexContent>
</xsd:complexType>

Table 10.106 – CompensateEventDefinition XML schema

<xsd:element name="compensateEventDefinition" type="tCompensateEventDefinition" substitutionGroup="event-
Definition"/>

<xsd:complexType name="tCompensateEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition">
<xsd:attribute name="waitForCompletion" type="xsd:boolean"/>
<xsd:attribute name="activityRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.107 – ConditionalEventDefinition XML schema

<xsd:element name="conditionalEventDefinition" type="tConditionalEventDefinition" substitutionGroup="eventDef-
inition"/>

<xsd:complexType name="tConditionalEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition">
<xsd:sequence>

<xsd:element name="condition" type="tExpression"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.108 – ErrorEventDefinition XML schema

<xsd:element name="errorEventDefinition" type="tErrorEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tErrorEventDefinition">

<xsd:complexContent>
<xsd:extension base="tEventDefinition">

<xsd:attribute name="errorRef" type="xsd:QName"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
Business Process Model and Notation, v2.0 291

Table 10.109 – EscalationEventDefinition XML schema

<xsd:element name="escalationEventDefinition" type="tEscalationEventDefinition"
substitutionGroup="eventDefinition"/>

<xsd:complexType name="tEscalationEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition">
<xsd:attribute name="escalationRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.110 – Event XML schema

<xsd:element name="event" type="tEvent" substitutionGroup="flowElement"/>
<xsd:complexType name="tEvent" abstract="true">

<xsd:complexContent>
<xsd:extension base="tFlowNode"/>

</xsd:complexContent>
</xsd:complexType>

Table 10.111 – EventDefinition XML schema

<xsd:element name="eventDefinition" type="tEventDefinition"/>
<xsd:complexType name="tEventDefinition" abstract="true">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType>

Table 10.112 – ImplicitThrowEvent XML schema

<xsd:element name="implicitThrowEvent" type="tImplicitThrowEvent" substitutionGroup="flowElement"/>
<xsd:complexType name="tImplicitThrowEvent">

<xsd:complexContent>
<xsd:extension base="tThrowEvent"/>

</xsd:complexContent>
</xsd:complexType>

Table 10.113 – IntermediateCatchEvent XML schema

<xsd:element name="intermediateCatchEvent" type="tIntermediateCatchEvent" substitutionGroup="flowElement"/
>

<xsd:complexType name="tIntermediateCatchEvent">
<xsd:complexContent>

<xsd:extension base="tCatchEvent"/>
</xsd:complexContent>

</xsd:complexType>
292 Business Process Model and Notation, v2.0

Table 10.114 – IntermediateThrowEvent XML schema

<xsd:element name="intermediateThrowEvent" type="tIntermediateThrowEvent" substitutionGroup="flowEle-
ment"/>

<xsd:complexType name="tIntermediateThrowEvent">
<xsd:complexContent>

<xsd:extension base="tThrowEvent"/>
</xsd:complexContent>

</xsd:complexType>

Table 10.115 – LinkEventDefinition XML schema

<xsd:element name="linkEventDefinition" type="tLinkEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tLinkEventDefinition">

<xsd:complexContent>
<xsd:extension base="tEventDefinition">

<xsd:sequence>
<xsd:element name="source" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="target" type="xsd:QName" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.116 – MessageEventDefinition XML schema

<xsd:element name="messageEventDefinition" type="tMessageEventDefinition" substitutionGroup="eventDefini-
tion"/>

<xsd:complexType name="tMessageEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition">
<xsd:sequence>

<xsd:element name="operationRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>

<xsd:attribute name="messageRef" type="xsd:QName"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10.117 – Signal XML schema

<xsd:element name="signal" type="tSignal" substitutionGroup="reusableElement"/>
<xsd:complexType name="tSignal">

<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="structureRef" type="xsd:QName"/>

</xsd:extension>
Business Process Model and Notation, v2.0 293

</xsd:complexContent>
</xsd:complexType>

Table 10.118 – SignalEventDefinition XML schema

<xsd:element name="signalEventDefinition" type="tSignalEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tSignalEventDefinition">

<xsd:complexContent>
<xsd:extension base="tEventDefinition">

<xsd:attribute name="signalRef" type="xsd:QName"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10.119 – StartEvent XML schema

<xsd:element name="startEvent" type="tStartEvent" substitutionGroup="flowElement"/>
<xsd:complexType name="tStartEvent">

<xsd:complexContent>
<xsd:extension base="tCatchEvent">

<xsd:attribute name="isInterrupting" type="xsd:boolean" default="true"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10.120 – TerminateEventDefinition XML schema

<xsd:element name="terminateEventDefinition" type="tTerminateEventDefinition" substitutionGroup="eventDefini-
tion"/>

<xsd:complexType name="tTerminateEventDefinition">
<xsd:complexContent>

<xsd:extension base="tEventDefinition"/>
</xsd:complexContent>

</xsd:complexType>

Table 10.121 – ThrowEvent XML schema

<xsd:element name="throwEvent" type="tThrowEvent"/>
<xsd:complexType name="tThrowEvent" abstract="true">

<xsd:complexContent>
<xsd:extension base="tEvent">

<xsd:sequence>
<xsd:element ref="dataInput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataInputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="inputSet" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="eventDefinition" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="eventDefinitionRef" type="xsd:QName" minOccurs="0" maxOc-

curs="unbounded"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
294 Business Process Model and Notation, v2.0

</xsd:complexType>

Table 10.122 – TimerEventDefinition XML schema

<xsd:element name="timerEventDefinition" type="tTimerEventDefinition" substitutionGroup="eventDefinition"/>
<xsd:complexType name="tTimerEventDefinition">

<xsd:complexContent>
<xsd:extension base="tEventDefinition">

<xsd:choice>
<xsd:element name="timeDate" type="tExpression" minOccurs="0" maxOccurs="1"/>
<xsd:element name="timeDuration" type="tExpression" minOccurs="0" maxOccurs="1"/>
<xsd:element name="timeCycle" type="tExpression" minOccurs="0" maxOccurs="1"/>

</xsd:choice>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

10.5 Gateways
Gateways are used to control how Sequence Flows interact as they converge and diverge within a Process. If the
flow does not need to be controlled, then a Gateway is not needed. The term “Gateway” implies that there is a gating
mechanism that either allows or disallows passage through the Gateway--that is, as tokens arrive at a Gateway, they can
be merged together on input and/or split apart on output as the Gateway mechanisms are invoked.

A Gateway is a diamond, which has been used in many flow chart notations for exclusive branching and is familiar to
most modelers.

� A Gateway is a diamond that MUST be drawn with a single thin line (see Figure 10.102).

� The use of text, color, size, and lines for a Gateway MUST follow the rules defined in Section “Use of Text,
Color, Size, and Lines in a Diagram” on page 41 with the exception that:

Figure 10.102 – A Gateway

Gateways, like Activities, are capable of consuming or generating additional tokens, effectively controlling the
execution semantics of a given Process. The main difference is that Gateways do not represent ‘work’ being done and
they are considered to have zero effect on the operational measures of the Process being executed (cost, time, etc.).

Gateways can define all the types of Business Process Sequence Flow behavior: Decisions/branching (exclusive,
inclusive, and complex), merging, forking, and joining. Thus, while the diamond has been used traditionally for exclusive
decisions, BPMN extends the behavior of the diamonds to reflect any type of Sequence Flow control. Each type of
Gateway will have an internal indicator or marker to show the type of Gateway that is being used (see Figure 10.103).
Business Process Model and Notation, v2.0 295

Figure 10.103 – The Different types of Gateways

The Gateway controls the flow of both diverging and converging Sequence Flows. That is, a single Gateway could
have multiple input and multiple output flows. Modelers and modeling tools might want to enforce a best practice of a
Gateway only performing one of these functions. Thus, it would take two sequential Gateways to first converge and
then to diverge the Sequence Flows.

Parallel

Exclusive

Complex

Event-Based

Inclusive

Xor

Parallel
Event-Based
296 Business Process Model and Notation, v2.0

Figure 10.104 - Gateway class diagram

Gateways are described in this section on an abstract level. The execution semantics of Gateways is detailed on page
448.

10.5.1 Sequence Flow Considerations

Note – Although the shape of a Gateway is a diamond, it is not a requirement that incoming and outgoing Sequence
Flows MUST connect to the corners of the diamond. Sequence Flows can connect to any position on the boundary of the
Gateway shape.

This section applies to all Gateways. Additional Sequence Flow Connection rules are specified for each type of
Gateway in the sections below.

� A Gateway MAY be a target for a Sequence Flow. It can have zero (0), one (1), or more incoming Sequence
Flows.

� If the Gateway does not have an incoming Sequence Flow, and there is no Start Event for the Process,
then the Gateway’s divergence behavior, depending on the type of Gateway (see below), SHALL be
performed when the Process is instantiated.
Business Process Model and Notation, v2.0 297

� A Gateway MAY be a source of a Sequence Flow; it can have zero (0), one (1), or more outgoing Sequence
Flows.

� A Gateway MUST have either multiple incoming Sequence Flows or multiple outgoing Sequence Flows
(i.e., it MUST merge or split the flow).

� A Gateway with a gatewayDirection of unspecified MAY have both multiple incoming and
outgoing Sequence Flows.

� A Gateway with a gatewayDirection of mixed MUST have both multiple incoming and outgoing
Sequence Flows.

� A Gateway with a gatewayDirection of converging MUST have multiple incoming Sequence
Flows, but MUST NOT have multiple outgoing Sequence Flows.

� A Gateway with a gatewayDirection of diverging MUST have multiple outgoing Sequence
Flows, but MUST NOT have multiple incoming Sequence Flows.

10.5.2 Exclusive Gateway

A diverging Exclusive Gateway (Decision) is used to create alternative paths within a Process flow. This is basically
the “diversion point in the road” for a Process. For a given instance of the Process, only one of the paths can be taken.

A Decision can be thought of as a question that is asked at a particular point in the Process. The question has a defined
set of alternative answers. Each answer is associated with a condition Expression that is associated with a Gateway’s
outgoing Sequence Flows.

� The Exclusive Gateway MAY use a marker that is shaped like an “X” and is placed within the Gateway
diamond (see Figure 10.106) to distinguish it from other Gateways. This marker is NOT REQUIRED (see Figure
10.105).

� A diagram SHOULD be consistent in the use of the “X” internal indicator. That is, a diagram SHOULD NOT
have some Gateways with an indicator and other Gateways without an indicator.

Figure 10.105 - An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator

Condition 2

Condition 1

Default
298 Business Process Model and Notation, v2.0

Figure 10.106 - A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator

Note – as a modeling preference, the Exclusive Gateways shown in examples within this specification will be shown
without the internal indicator.

A default path can optionally be identified, to be taken in the event that none of the conditional Expressions evaluate
to true. If a default path is not specified and the Process is executed such that none of the conditional Expressions
evaluates to true, a runtime exception occurs.

A converging Exclusive Gateway is used to merge alternative paths. Each incoming Sequence Flow token is routed
to the outgoing Sequence Flow without synchronization.

Figure 10.107 - Exclusive Gateway class diagram

Condition 2

Condition 1

Default
Business Process Model and Notation, v2.0 299

The Exclusive Gateway element inherits the attributes and model associations of Gateway (see Table 8.46). Table
10.123 presents the additional attributes and model associations of the Exclusive Gateway element:

10.5.3 Inclusive Gateway

A diverging Inclusive Gateway (Inclusive Decision) can be used to create alternative but also parallel paths within a
Process flow. Unlike the Exclusive Gateway, all condition Expressions are evaluated. The true evaluation of one
condition Expression does not exclude the evaluation of other condition Expressions. All Sequence Flows with
a true evaluation will be traversed by a token. Since each path is considered to be independent, all combinations of the
paths MAY be taken, from zero to all. However, it should be designed so that at least one path is taken.

� The Inclusive Gateway MUST use a marker that is in the shape of a circle or an “O” and is placed within the
Gateway diamond (see Figure 10.108) to distinguish it from other Gateways.

Figure 10.108 - An example using an Inclusive Gateway

A default path can optionally be identified, to be taken in the event that none of the conditional Expressions evaluate
to true. If a default path is not specified and the Process is executed such that none of the conditional Expressions
evaluates to true, a runtime exception occurs.

A converging Inclusive Gateway is used to merge a combination of alternative and parallel paths. A control flow token
arriving at an Inclusive Gateway MAY be synchronized with some other tokens that arrive later at this Gateway. The
precise synchronization behavior of the Inclusive Gateway can be found on page 300.

Table 10.123 – ExclusiveGateway Attributes & Model Associations

Attribute Name Description/Usage

default: SequenceFlow [0..1] The Sequence Flow that will receive a token when none of the
conditionExpressions on other outgoing Sequence Flows evaluate
to true. The default Sequence Flow should not have a
conditionExpression. Any such Expression SHALL be ignored.

Condition 2

Condition 1

Default
300 Business Process Model and Notation, v2.0

Figure 10.109 - Inclusive Gateway class diagram

The Inclusive Gateway element inherits the attributes and model associations of Gateway (see Table 8.46). Table
10.124 presents the additional attributes and model associations of the Inclusive Gateway element:

10.5.4 Parallel Gateway

A Parallel Gateway is used to synchronize (combine) parallel flows and to create parallel flows.

� The Parallel Gateway MUST use a marker that is in the shape of a plus sign and is placed within the Gateway
diamond (see Figure 10.110) to distinguish it from other Gateways.

Table 10.124 – InclusiveGateway Attributes & Model Associations

Attribute Name Description/Usage

default: SequenceFlow [0..1] The Sequence Flow that will receive a token when none of the
conditionExpressions on other Sequence Flows evaluate to true.
The default Sequence Flow should not have a conditionExpression.
Any such Expression SHALL be ignored.

Business Process Model and Notation, v2.0 301

Figure 10.110 - An example using an Parallel Gateway

Parallel Gateways are used for synchronizing parallel flow (see Figure 10.111).

Figure 10.111 - An example of a synchronizing Parallel Gateway

A Parallel Gateway creates parallel paths without checking any conditions; each outgoing Sequence Flow receives a
token upon execution of this Gateway. For incoming flows, the Parallel Gateway will wait for all incoming flows
before triggering the flow through its outgoing Sequence Flows.
302 Business Process Model and Notation, v2.0

Figure 10.112 - Parallel Gateway class diagram

The Parallel Gateway element inherits the attributes and model associations of Gateway (see Table 8.46), but adds no
additional attributes or model associations.

10.5.5 Complex Gateway

The Complex Gateway can be used to model complex synchronization behavior. An Expression
activationCondition is used to describe the precise behavior. For example, this Expression could specify that
tokens on three out of five incoming Sequence Flows are needed to activate the Gateway. What tokens are produced
by the Gateway is determined by conditions on the outgoing Sequence Flows as in the split behavior of the Inclusive
Gateway. If tokens arrive later on the two remaining Sequence Flows, those tokens cause a reset of the Gateway and
new token can be produced on the outgoing Sequence Flows. To determine whether it needs to wait for additional
tokens before it can reset, the Gateway uses the synchronization semantics of the Inclusive Gateway.

� The Complex Gateway MUST use a marker that is in the shape of an asterisk and is placed within the Gateway
diamond (see Figure 10.113) to distinguish it from other Gateways.

Figure 10.113 - An example using a Complex Gateway

Alternative 2

 Alternative 1

Alternative 3

 Alternative 4
Business Process Model and Notation, v2.0 303

The Complex Gateway has, in contrast to other Gateways, an internal state, which is represented by the boolean
instance attribute waitingForStart, which is initially true and becomes false after activation. This attribute can be
used in the conditions of the outgoing Sequence Flows to specify where tokens are produced upon activation and where
tokens are produced upon reset. It is RECOMMENDED that each outgoing Sequence Flow either get a token upon
activation or upon reset but not both. At least one outgoing Sequence Flow should receive a token upon activation but
a token MUST NOT be produced upon reset.

Figure 10.114 shows the class diagram for the Complex Gateway.

Figure 10.114 - Complex Gateway class diagram

The Complex Gateway element inherits the attributes and model associations of Gateway (see Table 8.46). Table
10.125 presents the additional model associations of the Complex Gateway element:

Table 10.125 – Complex Gateway model associations

Attribute Name Description/Usage

activationCondition: Expression
[0..1]

Determines which combination of incoming tokens will be synchro-
nized for activation of the Gateway.

default: SequenceFlow [0..1] The Sequence Flow that will receive a token when none of the
conditionExpressions on other Sequence Flows evaluate to
true. The default Sequence Flow should not have a
conditionExpression. Any such Expression SHALL be ignored.

304 Business Process Model and Notation, v2.0

10.5.6 Event-Based Gateway

The Event-Based Gateway represents a branching point in the Process where the alternative paths that follow the
Gateway are based on Events that occur, rather than the evaluation of Expressions using Process data (as with an
Exclusive or Inclusive Gateway). A specific Event, usually the receipt of a Message, determines the path that will
be taken. Basically, the decision is made by another Participant, based on data that is not visible to Process, thus,
requiring the use of the Event-Based Gateway.

For example, if a company is waiting for a response from a customer they will perform one set of Activities if the
customer responds “Yes” and another set of Activities if the customer responds “No.” The customer’s response
determines which path is taken. The identity of the Message determines which path is taken. That is, the “Yes”
Message and the “No” Message are different Messages—i.e., they are not the same Message with different values
within a property of the Message. The receipt of the Message can be modeled with an Intermediate Event with a
Message trigger or a Receive Task. In addition to Messages, other triggers for Intermediate Events can be used,
such as Timers.

The Event Gateway shares the same basic shape of the Gateways, a diamond, with a marker placed within the
diamond to indicate variations of the Gateway.

� An Event Gateway is a diamond that MUST be drawn with a single thin line.

� The use of text, color, size, and lines for an Event Gateway MUST follow the rules defined in Section “Use of
Text, Color, Size, and Lines in a Diagram” on page 41.

� The marker for the Event Gateway MUST look like a catch Multiple Intermediate Event (see Figure 10.115).

Figure 10.115 – Event-Based Gateway

Unlike other Gateways, the behavior of the Event Gateway is determined by a configuration of elements, rather than
the single Gateway.

� An Event Gateway MUST have two (2) or more outgoing Sequence Flows.

� The outgoing Sequence Flows of the Event Gateway MUST NOT have a conditionExpression.

Table 10.126 – Instance attributes related to the Complex Gateway

Attribute Name Description/Usage

activationCount: integer Refers at runtime to the number of tokens that are present on an incoming
Sequence Flow of the Complex Gateway.

waitingForStart: boolean = true Represents the internal state of the Complex Gateway. It is either waiting
for start (=true) or waiting for reset (=false).
Business Process Model and Notation, v2.0 305

The objects that are on the target end of the Gateway’s outgoing Sequence Flows are part of the configuration of the
Gateway.

� Event-Based Gateways are configured by having outgoing Sequence Flows target an Intermediate Event
or a Receive Task in any combination (see Figure 10.116 and Figure 10.117) except that:

� If Message Intermediate Events are used in the configuration, then Receive Tasks MUST NOT be used
in that configuration and vice versa.

� Receive Tasks used in an Event Gateway configuration MUST NOT have any attached Intermediate
Events.

� Only the following Intermediate Event triggers are valid: Message, Signal, Timer, Conditional,
and Multiple (which can only include the previous triggers). Thus, the following Intermediate Event
triggers are not valid: Error, Cancel, Compensation, and Link.

� Target elements in an Event Gateway configuration MUST NOT have any additional incoming Sequence
Flows (other than that from the Event Gateway).

Figure 10.116 - An Event-Based Gateway example using Message Intermediate Events

Message
1

Message
2

1 Day

Request
Response
306 Business Process Model and Notation, v2.0

Figure 10.117 - An Event-Based Gateway example using Receive Tasks

When the first Event in the Event Gateway configuration is triggered, then the path that follows that Event will used
(a token will be sent down the Event’s outgoing Sequence Flows). All the remaining paths of the Event Gateway
configuration will no longer be valid. Basically, the Event Gateway configuration is a race condition where the first
Event that is triggered wins.

There are variations of the Event Gateway that can be used at the start of the Process. The behavior and marker of the
Gateway will change.

Event Gateways can be used to instantiate a Process. By default the Gateway’s instantiate attribute is false,
but if set to true, then the Process is instantiated when the first Event of the Gateway’s configuration is triggered.

� If the Event Gateway’s instantiate attribute is set to true, then the marker for the Event Gateway looks
like a Multiple Start Event (see Figure 10.118).

Figure 10.118 – Exclusive Event-Based Gateway to start a Process

In order for an Event Gateway to instantiate a Process, it MUST not have any incoming Sequence Flows:

In some situations a modeler might want the Process to be instantiated by one of a set of Messages while still
requiring all of the Messages for the working of the same Process instance. To handle this, there is another variation
of the Event Gateway.

� If the Event Gateway’s instantiate attribute is set to true and the eventGatewayType attribute is set to
Parallel, then the marker for the Event Gateway looks like a Parallel Multiple Start Event (see Figure
10.119).

� The Event Gateway’s instantiate attribute MUST be set to true in order for the eventGatewayType

Receive
Message 1

Receive
Message 2

Request
Reponse

1 Day

Business Process Model and Notation, v2.0 307

attribute to be set to Parallel (i.e., for Event Gateway’s that do not instantiate the Process MUST be
Exclusive—a standard Parallel Gateway can be used to include parallel Events in the middle of a
Process).

Figure 10.119 – Parallel Event-Based Gateway to start a Process

The Parallel Event Gateway is also a type of race condition. In this case, however, when the first Event is triggered
and the Process is instantiated, the other Events of the Gateway configuration are not disabled. The other Events are
still waiting and are expected to be triggered before the Process can (normally) complete. In this case, The Messages
that trigger the Events of the Gateway configuration MUST share the same correlation information.

Figure 10.120 - Event-Based Gateway class diagram

The Event-Based Gateway element inherits the attributes and model associations of Gateway (see Table 8.46). Table
10.127 presents the additional attributes and model associations of the Event-Based Gateway element:
308 Business Process Model and Notation, v2.0

Event-Based Gateways can be used at the start of a Process, without having to be a target of a Sequence Flows.
There can be multiple such Event-Based Gateways at the start of a Process. Ordinary Start Events and Event-
Based Gateways can be used together.

10.5.7 Gateway Package XML Schemas

Table 10.128 – ComplexGateway XML schema

<xsd:element name="complexGateway" type="tComplexGateway" substitutionGroup="flowElement"/>
<xsd:complexType name="tComplexGateway">

<xsd:complexContent>
<xsd:extension base="tGateway">

<xsd:sequence>
<xsd:element name="activationCondition" type="tExpression" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="default" type="xsd:IDREF"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.129 – EventBasedGateway XML schema

<xsd:element name="eventBasedGateway" type="tEventBasedGateway" substitutionGroup="flowElement"/>
<xsd:complexType name="tEventBasedGateway">

<xsd:complexContent>
<xsd:extension base="tGateway">

<xsd:attribute name="instantiate" type="xsd:boolean" default="false"/>
<xsd:attribute name="eventGatewayType" type="tEventBasedGatewayType" default="Exclusive"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="tEventBasedGatewayType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Exclusive"/>
<xsd:enumeration value="Parallel"/>

Table 10.127 – EventBasedGateway Attributes & Model Associations

Attribute Name Description/Usage

instantiate: boolean = false When true, receipt of one of the Events will instantiate the Process
instance.

eventGatewayType: EventGate-
wayType = Exclusive
{ Exclusive | Parallel }

The eventGatewayType determines the behavior of the Gateway when
used to instantiate a Process (as described above).
The attribute can only be set to parallel when the instantiate
attribute is set to true.
Business Process Model and Notation, v2.0 309

</xsd:restriction>
</xsd:simpleType>

Table 10.130 – ExclusiveGateway XML schema

<xsd:element name="exclusiveGateway" type="tExclusiveGateway" substitutionGroup="flowElement"/>
<xsd:complexType name="tExclusiveGateway">

<xsd:complexContent>
<xsd:extension base="tGateway">

<xsd:attribute name="default" type="xsd:IDREF" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10.131 – Gateway XML schema

<xsd:element name="gateway" type="tGateway" abstract="true"/>
<xsd:complexType name="tGateway">

<xsd:complexContent>
<xsd:extension base="tFlowElement">

<xsd:attribute name="gatewayDirection" type="tGatewayDirection" default="Unspecified"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tGatewayDirection">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Unspecified"/>
<xsd:enumeration value="Converging"/>
<xsd:enumeration value="Diverging"/>
<xsd:enumeration value="Mixed"/>

</xsd:restriction>
</xsd:simpleType>

Table 10.132 – InclusiveGateway XML schema

<xsd:element name="inclusiveGateway" type="tInclusiveGateway" substitutionGroup="flowElement"/>
<xsd:complexType name="tInclusiveGateway">

<xsd:complexContent>
<xsd:extension base="tGateway">

<xsd:attribute name="default" type="xsd:IDREF" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10.133 – ParallelGateway XML schema

<xsd:element name="parallelGateway" type="tParallelGateway" substitutionGroup="flowElement"/>
<xsd:complexType name="tParallelGateway">

<xsd:complexContent>
310 Business Process Model and Notation, v2.0

<xsd:extension base="tGateway"/>
</xsd:complexContent>

</xsd:complexType>

10.6 Compensation
Compensation is concerned with undoing steps that were already successfully completed, because their results and
possibly side effects are no longer desired and need to be reversed. If an Activity is still active, it cannot be compensated,
but rather needs to be canceled. Cancellation in turn can result in compensation of already successfully completed
portions of an active Activity, in case of a Sub-Process.

Compensation is performed by a compensation handler. A compensation handler performs the steps necessary to reverse
the effects of an Activity. In case of a Sub-Process, the compensation handler has access to Sub-Process data at the
time of its completion (“snapshot data”).

Compensation is triggered by a throw Compensation Event, which typically will be raised by an error handler, as part
of cancellation, or recursively by another compensation handler. That Event specifies the Activity for which
compensation is to be performed, either explicitly or implicitly.

10.6.1 Compensation Handler

A compensation handler is a set of Activities that are not connected to other portions of the BPMN model. The
compensation handler starts with a catch Compensation Event. That catch Compensation Event either is a
boundary Event, or, in case of a Compensation Event Sub-Process, the handler’s Start Event.

A compensation handler connected via a boundary Event can only perform “black-box” compensation of the original
Activity. This compensation is modeled with a specialized Compensation Activity, which is connected to the boundary
Event through an Association (see Figure 10.121). The Compensation Activity, which can be either a Task or a
Sub-Process, has a marker to show that it is used for compensation only and is outside the normal flow of the
Process.

Figure 10.121- Compensation through a boundary Event

A Compensation Event Sub-Process is contained within a Process or a Sub-Process (see Figure 10.122). Like
the Compensation Activity, the Compensation Event Sub-Process is outside the normal flow of the Process.
The Event Sub-Process, which is marked with a dotted line boundary, can access data that is part of its parent, a
snapshot at the point in time when its parent completed. A Compensation Event Sub-Process can recursively trigger
compensation for Activities contained in its parent.

Book Hotel

Cancel
Hotel

Business Process Model and Notation, v2.0 311

Figure 10.122 - Monitoring Class Diagram

It is possible to specify that a Sub-Process can be compensated without having to define the compensation handler. The
Sub-Process attribute compensable, when set, specifies that default compensation is implicitly defined, which
recursively compensates all successfully completed Activities within that Sub-Process.

The example in Figure 10.122, above contains a custom Compensation Event Sub-Process, triggered by a
Compensation Start Event. Note that this compensation handler deviates from default compensation in that it runs
Compensation Activities in an order different from the order in the forward case; it also contains an additional
Activity adding Process logic that cannot be derived from the body of the Sub-Process itself.

10.6.2 Compensation Triggering

Compensation is triggered using a compensation throw Event, which can either be an Intermediate or an End
Event. The Activity which needs to be compensated is referenced. If the Activity is clear from the context, it doesn’t
have to be specified and defaults to the current Activity. A typical scenario for that is an inline error handler of a Sub-
Process that cannot recover the error, and as a result would trigger compensation for that Sub-Process. If no Activity
is specified in a “global” context, all completed Activities in the Process are compensated.

By default, compensation is triggered synchronously, that is, the compensation throw Event waits for the completion of
the triggered compensation handler. Alternatively, compensation can just be triggered without waiting for its completion,
by setting the throw Compensation Event’s waitForCompletion attribute to false.

Multiple instances typically exist for Loop or Multi-Instance Sub-Processes. Each of these has its own instance of
its Compensation Event Sub-Process, which has access to the specific snapshot data that was current at the time of
completion of that particular instance. Triggering compensation for the Multi-Instance Sub-Process individually

Booking

Boo k F lig ht

B ook H o tel

C ancel
F li ght

C an ce l
H ote l

Bo ok ing

Handle Com pensation

F lig ht H otel

U p date
C usto me r

R e co rd
312 Business Process Model and Notation, v2.0

triggers compensation for all instances within the current scope. If compensation is specified via a boundary
compensation handler, this boundary compensation handler also is invoked once for each instance of the Multi-Instance
Sub-Process in the current scope.

10.6.3 Relationship between Error Handling and Compensation

The following items define the relationship between error handling and compensation:

• Compensation employs a “presumed abort principle”, with the following consequences: Compensation of a failed
Activity results in a null operation.

• When an Activity fails, i.e., is left because an error has been thrown, it’s the error handlers responsibility to ensure
that no further compensation will be necessary once the error handler has completed.

• If no error Event Sub-Process is specified for a particular Sub-Process and a particular error, the default
behavior is to automatically call compensation for all contained Activities of that Sub-Process if that error is
thrown, ensuring the behavior in for auditing and monitoring.

10.7 Lanes
A Lane is a sub-partition within a Process (often within a Pool) and will extend the entire length of the Process
level,, either vertically (see Figure 10.122) or horizontally (see Figure 10.123).. Text associated with the Lane (e.g., its
name and/or that of any Process element attribute) can be placed inside the shape, in any direction or location,
depending on the preference of the modeler or modeling tool vendor. Our examples place the name as a banner on the left
side (for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that separates the Pool name,
however, this is not a requirement.

� A Lane is a square-cornered rectangle that MUST be drawn with a solid single line (see Figure 10.123 and Figure
10.124).

� The label for the Lane MAY be placed in any location and direction within the Lane, but MUST NOT be
separated from the contents of the Lane by a single line (except in the case that there are sub-Lanes within the
Lane).
Business Process Model and Notation, v2.0 313

Figure 10.123 - Two Lanes in a Vertical Pool

Figure 10.124 - Two Lanes in a horizontal Pool

Lanes are used to organize and categorize Activities within a Pool. The meaning of the Lanes is up to the modeler.
BPMN does not specify the usage of Lanes. Lanes are often used for such things as internal roles (e.g., Manager,
Associate), systems (e.g., an enterprise application), an internal department (e.g., shipping, finance), etc. In addition,
Lanes can be nested (see Figure 10.125) or defined in a matrix. For example, there could be an outer set of Lanes for
company departments and then an inner set of Lanes for roles within each department.

Name
NameName

N
am

e N
am

e
N

am
e

314 Business Process Model and Notation, v2.0

Figure 10.125 - An Example of Nested Lanes

Figure 10.126 shows the Lane class diagram. When a Lane is defined it is contained within a LaneSet, which is
contained within a Process.

S
al

es
M

ar
ke

tin
g

S
up

pl
ie

r

C
on

su
lti

ng

P
re

-S
al

es
P

os
t-S

al
es

E
ng

in
ee

rin
g

Bug List

Sell to
Customer

Accumulate
Require-
ments

Verify
Require-

ments

Consulting
Required

Bugs
Diagnosed

Develop
Patch

Develop
Product
Business Process Model and Notation, v2.0 315

Figure 10.126 - The Lane class diagram

The LaneSet element defines the container for one or more Lanes. A Process can contain one or more LaneSets.
Each LaneSet and its Lanes can partition the Flow Nodes in a different way.

The LaneSet element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.134
presents the additional attributes and model associations of the LaneSet element:

A Lane element defines one specific partition in a LaneSet. The Lane can define a partition element which specifies
the value and element type, a tool can use to determine the list of Flow Nodes to be partitioned into this Lane. All Lanes
in a single LaneSet MUST define partition element of the same type, e.g., all Lanes in a LaneSet reference a
Resource as the partition element, but each Lane references a different Resource instance.

The Lane element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.135
presents the additional attributes and model associations of the Lane element:

Table 10.134 – LaneSet attributes and model associations

Attribute Name Description/Usage

name: sting [0..1] The name of the LaneSet. A LaneSet is not visually displayed on a BPMN dia-
gram. Consequently, the name of the LaneSet is not displayed as well.

process: Process The Process owning the LaneSet

lanes: Lane [0..*] One or more Lane elements, which define a specific partition in the LaneSet

parentLane: Lane [0..1] The reference to a Lane element which is the parent of this LaneSet.
316 Business Process Model and Notation, v2.0

10.8 Process Instances, Unmodeled Activities, and Public Processes
A Process can be executed or performed many times, but each time is expected to follow the steps laid out in the
Process model. For example, the Process in Figure 10.1 will occur every Friday, but each instance is expected to
perform Task “Receive Issue List,” then Task “Review Issue List,” and so on, as specified in the model. Each instance
of a Process is expected to be valid for the model, but some instances might not, for example if the Process has
manual Activities, and the performers have not had proper instruction on how to carry out the Process.

In some applications it is useful to allow more Activities and Events to occur when a Process is executed or
performed than are contained in the Process model. This enables other steps to be taken as needed without changing the
Process. For example, instances of the Process in Figure 10.1 might execute or perform an extra Activity between
Task “Receive Issue List” and Task “Review Issue List.” These instances are still valid for the Process model in
Figure 10.1, because the instances still execute or perform the Activities in the Process, in the order they are modeled
and under conditions specified for them.

There are two ways to specify whether unmodeled Activities are allowed to occur in Process instances:

• If the isClosed attribute of a Process has a value of false or no value, then interactions, such as sending and
receiving Messages and Events, MAY occur in an instance without additional flow elements in the Process.
Unmodeled interactions can still be restricted on particular Sequence Flow in the Process (see next bullet). If the
isClosed attribute of a Process has a value of true, then interactions, such as sending and receiving Messages
and Events, MAY NOT occur without additional flow elements in the Process. This restriction overrides any
unmodeled interactions allowed by Sequence Flows in the next bullet.

• If the isImmediate attribute of a Sequence Flow in a Process has a value of false, then other Activities and
interactions not modeled in the Process MAY be executed or performed during the Sequence Flow. If the
isImmediate attribute has a value of true, then Activities and interactions not modeled in the Process MAY
NOT be executed or performed during Sequence Flow. In non-executable Processes (isExecutable attribute
has value false, or defaults to false), Sequence Flows with no value for isImmediate are treated as if the

Table 10.135 – Lane attributes and model associations

Attribute Name Description/Usage

name: string The name of the Lane

partitionElement:
BaseElement [0..1]

A reference to a BaseElement which specifies the partition value and partition
type. Using this partition element a BPMN compliant tool can determine the
FlowElements which have to be partitioned in this Lane.

partitionElementRef:
BaseElement [0..1]

A reference to a BaseElement which specifies the partition value and partition
type. Using this partition element a BPMN compliant tool can determine the
FlowElements which have to be partitioned in this Lane.

childLaneSet: LaneSet
[0..1]

A reference to a LaneSet element for embedded Lanes.

flowNodeRefs:
FlowNode [0..*]

The list of FlowNodes partitioned into this Lane according to the
partitionElement defined as part of the Lane element.
Business Process Model and Notation, v2.0 317

value were false. In executable Processes (isExecutable attribute has value true, or defaults to true),
Sequence Flows with no value for isImmediate are treated as if the value were true. Executable Processes
cannot have a false value for the isImmediate attribute.

Restrictions on unmodeled Activities specified with isClosed and isImmediate apply only under executions or
performances (instances) of the Process containing the restriction. These Activities MAY occur in instances of other
Processes.

When a Process allows Activities to occur that the Process does not model, those Activities might appear in other
Process models. The executions or performances (instances) of these other Processes might be valid for the original
Process. For example, a Process might be defined similar to the one in Figure 10.1 that adds an extra Activity
between Task “Receive Issue List” and Task “Review Issue List.” The Process in Figure 10.1 might use isClosed or
isImmediate to allow other Activities to occur in between Task “Receive Issue List” and Task “Review Issue List.”
When the Process is executed or performed, then instances of the other Process (the one with the extra step in
between Task “Receive Issue List” and Task “Review Issue List”) will be valid for the Process in Figure 10.1.
Modelers can declare that they intend all instances of one Process will be valid for another Process using the supports
association between the Processes. During development of these Processes, support might not actually hold, because
the association just expresses modeler intent.

A common use for model support is between private and public Processes, see Section “Overview” (page 23). A public
Process contain Activities visible to external parties, such as Participants in a Collaboration, while a private
Process includes other Activities that are not visible to external parties. The hidden Activities in a private Process
are not modeled in the public Process. However, it is expected that instances of the private Process will appear to
external parties as if they could be instances of the public Process. This means the private Process supports the public
Process (it is expected that all instances of the private Process will be valid for the public one).

A Process that supports another, as a private Process can to a public Process, does not need to be entirely similar to
the other Process. It is only REQUIRED that instances of the Process appear as if they could be instance of the other
Process. For example Figure 10.127 shows a public Process at the top with a Send Task and Receive Task. A
supporting private Process is shown at the bottom. The private Process sends and receives the same Messages, but
using Events instead of Tasks. It also introduces Activities not modeled in the public Process. However all instances
of the private Process will appear as if they could be instances of the public one, because the Messages are sent and
received in the order REQUIRED by the public Process, and the public Process allows unmodeled Activities to
occur.
318 Business Process Model and Notation, v2.0

Figure 10.127 - One Process supporting to another

In practice, a public Process looks like an underspecified private Process. Anything not specified in the public
Process is determined by the private one. For example, if none of the outgoing Sequence Flows for an Exclusive
Gateway have conditionExpressions, the private Process will determine which one of the Activities targeted
by the Sequence Flows will occur. Another example is a Timer Event with no EventDefinition. The private
Process will determine when the timer goes off.

10.9 Auditing
The Auditing element and its model associations allow defining attributes related to auditing. It leverages the BPMN
extensibility mechanism. This element is used by FlowElements and Process. The actual definition of auditing
attributes is out of scope of this specification. BPMN 2.0 implementations can define their own set of attributes and their
intended semantics.

A B

A

B

X

Y

Public Process

Private Process
Business Process Model and Notation, v2.0 319

Figure 10.128 - Auditing Class Diagram

10.10 Monitoring
The Monitoring and its model associations allow defining attributes related to monitoring. It leverages the BPMN
extensibility mechanism. This element is used by FlowElements and Process. The actual definition of monitoring
attributes is out of scope of this specification. BPMN 2.0 implementations can define their own set of attributes and their
intended semantics.

Figure 10.129 - Monitoring Class Diagram

10.11 Process Package XML Schemas
320 Business Process Model and Notation, v2.0

Table 10.136 – Process XML schema

<xsd:element name="process" type="tProcess" substitutionGroup="rootElement"/>
<xsd:complexType name="tProcess">

<xsd:complexContent>
<xsd:extension base="tCallableElement">

<xsd:sequence>
<xsd:element ref="auditing" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="monitoring" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="processRole" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="property" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="laneSet" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="flowElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="resourceRole" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="correlationSubcription" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="supports" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="processType" type="tProcessType" default="None"/>
<xsd:attribute name="isExecutable" type="xsd:boolean"use="optional"/>
<xsd:attribute name="isClosed" type="xsd:boolean" default="false"/>
<xsd:attribute name="definitionalCollaborationRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:simpleType name="tProcessType">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="None"/>
<xsd:enumeration value="Public"/>
<xsd:enumeration value="Private"/>

</xsd:restriction>
</xsd:simpleType>

Table 10.137 – Auditing XML schema

<xsd:element name="auditing" type="tAuditing"/>
<xsd:complexType name="tAuditing">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType>

Table 10.138 – GlobalTask XML schema

<xsd:element name="globalTask" type="tGlobalTask" substitutionGroup="rootElement"/>
<xsd:complexType name="tGlobalTask">

<xsd:complexContent>
<xsd:extension base="tCallableElement">

<xsd:sequence>
<xsd:element ref="resourceRole" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
Business Process Model and Notation, v2.0 321

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.139 – Lane XML schema

<xsd:element name="lane" type="tLane"/>
<xsd:complexType name="tLane">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element name="partitionElement" type="tBaseElement" minOccurs="0" maxOccurs="1"/>
<xsd:element name="flowNodeRef" type="xsd:IDREF" minOccurs="0"

maxOccurs="unbounded"/>
<xsd:element name="childLaneSet" type="tLaneSet" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="partitionElementRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.140 – LaneSet XML schema

<xsd:element name="laneSet" type="tLaneSet"/>
<xsd:complexType name="tLaneSet">

<xsd:complexContent>
<xsd:extension base="tBaseElement">

<xsd:sequence>
<xsd:element ref="lane" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.141 – Monitoring XML schema

<xsd:element name="monitoring" type="tMonitoring"/>
<xsd:complexType name="tMonitoring">

<xsd:complexContent>
<xsd:extension base="tBaseElement"/>

</xsd:complexContent>
</xsd:complexType>
322 Business Process Model and Notation, v2.0

Table 10.142 – Performer XML schema

<xsd:element name="performer" type="tPerformer" substitutionGroup="resourceRole"/>
<xsd:complexType name="tPerformer">

<xsd:complexContent>
<xsd:extension base="tResourceRole"/>

</xsd:complexContent>
</xsd:complexType>
Business Process Model and Notation, v2.0 323

324 Business Process Model and Notation, v2.0

11 Choreography

Note – The content of this chapter is REQUIRED for BPMN Choreography Modeling Conformance or for BPMN
Complete Conformance. However, this chapter is NOT REQUIRED for BPMN Process Modeling Conformance, BPMN
Process Execution Conformance, or BPMN BPEL Process Execution Conformance. For more information about BPMN
conformance types, see page 2.

A Choreography is a type of process, but differs in purpose and behavior from a standard BPMN Process. A standard
Process, or an Orchestration Process (see page 149), is more familiar to most process modelers and defines the flow
of Activities of a specific PartnerEntity or organization. In contrast, Choreography formalizes the way business
Participants coordinate their interactions. The focus is not on orchestrations of the work performed within these
Participants, but rather on the exchange of information (Messages) between these Participants.

Another way to look at Choreography is to view it as a type of business contract between two (2) or more organizations.

This entails Message (document) exchanges in an orderly fashion: e.g., first a retailer sends a purchase order request to
a supplier; next the supplier either confirms or rejects intention to investigate the order; then supplier proceeds to
investigate stock for line-items and seeks outside suppliers if necessary; accordingly the supplier sends a confirmation or
rejection back; during this period the retailer can send requests to vary the order, etc.

Message exchanges between partners go beyond simple request-response interactions into multi-cast, contingent
requests, competing receives, streaming and other service interaction patterns (REF for SIP). Moreover, they cluster
around distinct scenarios such as: creation of sales orders; assignment of carriers of shipments involving different sales
orders; managing the “red tape” of crossing customs and quarantine; processing payment and investigating exceptions. A
Choreography is a definition of expected behavior, basically a procedural business contract, between interacting
Participants (see page 112 for more information on Participants). It brings Message exchanges and their logical relation
as Conversations into view. This allows partners to plan their Business Processes for inter-operation without
introducing conflicts. An example of a conflict could arise if a retailer was allowed to send a variation on a purchase
order immediately after sending the initial request. The Message exchange sequences in Choreography models need
to be reflected in the orchestration Processes of participants. A Choreography model makes it possible to derive the
Process interfaces of each partner’s Process (REF: Decker & Weske, 2007).

To leverage the familiarity of flow charting types of Process models, BPMN Choreographies also have “activities”
that are ordered by Sequence Flows. These “activities” consist of one (1) or more interactions between Participants.
These interactions are often described as being message exchange patterns (MEPs). A MEP is the atomic unit
(“Activity”) of a Choreography.

Some MEPs involve a single Message (e.g., a “Customer” requests an “Order” from a “Supplier”). Other MEPs will
involve two (2) Messages in a request and response format (e.g., a “Supplier” request a “Credit Rating” from a
“Financial Institution,” who then returns the “Credit Rating” to the “Supplier”). There can be even more complex MEPs
that involve error Messages, for example.

A single MEP can be defined as a BPMN Choreography Task (see page 333). Thus, a Choreography defines the
order in which Choreography Tasks occur. Sub-Choreographies allow the composition/decomposition of
Choreographies.

Choreographies are designed in BPMN to allow stand-alone, scalable models of these Participant interactions.
However, since BPMN provides other Business Process modeling views, Choreographies are designed to fit
within BPMN Collaboration diagrams to display of the relationship between the Choreography and Orchestration
Processes (thus, expanding BPMN 1.2 capabilities—see page 109, above, for more information on Collaborations,
and page 372 for Choreographies within Collaborations).
Business Process Model and Notation, v2.0 325

Figure 11.1 displays the metamodel of the key BPMN elements that contribute to Choreography modeling. The
sections of this chapter will describe the characteristics of these elements and how they are used in a Choreography.

Figure 11.1 - The Choreography metamodel

Note – The Choreography element inherits the attributes and model associations of Collaboration (see Table 9.1) and
of FlowElementContainer (see Table 8.45), but does not have any additional attributes or model associations.The
Collaboration attribute choreographyRef is not applicable to Choreography.

11.1 Basic Choreography Concepts
A key to understanding Choreographies and how they are used in BPMN is their relationship to Pools (see page 112
for more information on Pools). Choreographies exist outside of or in between Pools. A Process, within a Pool,
represents the work of a specific PartnerEntity (e.g., “FedEx”), often substituted by a PartnerRole (e.g.,
“Shipper”) when a PartnerEntity is not identified and can be decided later. The PartnerEntity/PartnerRole
is called a Participant in BPMN. Pools are the graphical representation of Participants. A Choreography, on the other
hand, is a different kind of process. A Choreography defines the sequence of interactions between Participants. Thus,
326 Business Process Model and Notation, v2.0

a Choreography does not exist in a single Pool—it is not the purview of a single Participant. Each step in the
Choreography involves two (2) or more Participants (these steps are called Choreography Activities—see below).
This means that the Choreography, in BPMN terms, is defined outside of any particular Pool.

The key question that needs to be continually asked during the development of a Choreography is “what information
do the Participants in the Choreography have?” Basically, each Participant can only understand the status of the
Choreography through observable behavior of the other Participants–which are the Messages that have been sent and
received. If there are only two (2) Participants in the Choreography, then it is very simple—both Participants will be
aware of who is responsible for sending the next Message. However, if there are more than two (2) Participants, then
the modeler needs to be careful to sequence the Choreography Activities in such a way that the Participants know
when they are responsible for initiating the interactions.

Figure 11.2 presents a sample Choreography. The details of Choreography behavior and elements will be described
in the sections below.

Figure 11.2 - An example of a Choreography

To illustrate the correspondence between Collaboration and Choreography, consider an example from logistics.
Figure 11.3 shows a Collaboration where the Pools are expanded to reveal orchestration details per participant (for
Shipper, Retailer etc). Message Flows connect the elements in the different Pools related to different participants,
indicating Message exchanges. For example, a Planned Order Variations Message is sent by the Supplier to the
Retailer; the corresponding send and receive have been modeled using regular BPMN messaging Activities. Also, a
number of Messages of the same type being sent, for example a number of Retailer Order and Delivery Variations
Messages can be sent from the Retailer to the Supplier, indicated by respective multi-instances constructs (for brevity,
the actual elements for sending/receiving inside the multi-instances construct have been omitted).

Doctor
Request

Patient

Dr. Office

 Handle
Symptoms

Patient

Dr. Office

Handle
Prescription

Patient

Dr. Office

Handle
Medicine

Patient

Dr. Office

I want to see
the Doctor

Go see the
Doctor

I feel sick
I need my
medicine

Here is your
medicine

Pickup your
medicine, then

leave

Message

The unshaded Participant is
the initiator of the Activity

The bands display the names of the
Participants (Roles/Entities)
Additional Participants can be added on
additional bands (for Sub-Processes)

The Message is shaded, so it
is not the initiating Message
Business Process Model and Notation, v2.0 327

Figure 11.3 - A Collaboration diagram logistics example

The scenario modeled in Figure 11.3 entails shipment planning for the next supply replenishment variations: the Supplier
confirms all previously accepted variations for delivery with the Retailer; the Retailer sends back a number of further
possible variations; the Supplier requests to the Shipper and Consignee possible changes in delivery; accordingly, the
Retailer interacts with the Consignee and Supplier for final confirmations.

A problem with model interconnections for complex Choreographies is that they are vulnerable to errors –
interconnections might not be sequenced correctly, since the logic of Message exchanges is considered from each
partner at a time. This in turn leads to deadlocks. For example, consider the PartnerRole of Retailer in Figure 11.3
and assume that, by error, the order of Confirmation Delivery Schedule and Retailer Confirmation received (far right)
were swapped. This would result in a deadlock since both, Retailer and Consignee would wait for the other to send a
Message. Deadlocks in general, however, are not that obvious and might be difficult to recognize in a Collaboration.

Figure 11.4 shows the Choreography corresponding to the Collaboration of Figure 11.3 above.

Send
Message

Receive
Message

S
hi

pp
er

S
up

pl
ie

r

Planned
Order

Variations

C
on

si
gn

ee

R
et

ai
le

r

Receive
Message

Send
Message

Receive
Message

Send
Message

Send
Message

Receive
Message

Send
Message

Receive
Message

Send
Message

Receive
Message

Receive
Message

Send
Message

 Receive
Message

Send
Message

Send
Message

Receive
Message

Receive
Message

Send
Message

Receive
Message

Send
Message

Send
Message

Receive
Message

Order &
Delivery

Variations

Deliver
Checkpoint

Request

Shipment
Plan

Variation
Proposed

Plan & Cost
Variation

Delivery
Plan

Variation

Proposed
Plan & Cost

Variation

Updated PO
& Delivery
Schedule

PO &
Delivery

Modifications

PO &
Delivery
Schedule

Confirma-
tion of

Schedule

Confirma-
tion

Received

Finalized
Schedule

Send
Message

Receive
Message
328 Business Process Model and Notation, v2.0

Figure 11.4 - The corresponding Choreography diagram logistics example

11.2 Data
A Choreography does not have a central control mechanism and, thus, there is no mechanism for maintaining any
central Process (Choreography) data. Thus, any element in a Process that would normally depend on conditional or
assignment expressions, would not have any central source for this data to be maintained and understood by all the
Participants involved in the Choreography.

As mentioned above, neither Data Objects nor Repositories are used in Choreographies. Both of these elements
are used exclusively in Processes and require the concept of a central locus of control. Data Objects are basically
variables and there would be no central system to manage them. Data can be used in expressions that are used in
Exclusive Gateways, but only that data which has been sent through a Message in the Choreography.

11.3 Use of BPMN Common Elements
Some BPMN elements are common to both Process and Choreography diagrams, as well as Collaboration; they
are used in these diagrams. The next few sections will describe the use of Messages, Message Flows, Participants,
Sequence Flows, Artifacts, Correlations, Expressions, and Services in Choreography.

The key graphical elements of Gateways and Events are also common to both Choreography and Process. Since
their usage has a large impact, they are described in major sections of this chapter (see page 350 for Events and page 355
for Gateways).

 Planned Order
Variations

Supplier

Retailer

Deliver
Checkpoint

Request

Supplier

Retailer

Order & Delivery
Variations

Supplier

Retailer

Shipper

Supplier

Provide Item

Shipper

Supplier

Deliver Item

Consignee

Supplier

Provide Item

Consignee

Supplier

Deliver Item

Supplier

Shipper

Supplier

Consignee

Update PO
and Delivery

Schedule

Supplier

Retailer

PO and Delivery
Schedule Mods

Supplier

Retailer

Confirmation of
Delivery

Schedule

Consignee

Retailer

Retailer
Confirmation

Received

Consignee

Retailer

Finalized PO
and Delivery

Schedule

Supplier

Retailer

Accept PO and
Delivery

Schedule

Supplier

Retailer
Business Process Model and Notation, v2.0 329

11.3.1 Sequence Flow

Sequence Flows are used within Choreographies to show the sequence of the Choreography Activities, which
can have intervening Gateways. They are used in the same way as they are in Processes. They are only allowed to
connect with other Flow Objects. For Processes, they can only connect Events, Gateways, and Activities. For
Choreographies, they can only connect Events, Gateways, and Choreography Activities (see Figure 11.5).

Figure 11.5 - The use of Sequence Flows in a Choreography

There are two additional variations of Sequence Flows:

• Conditional Sequence Flows: Conditions can be added to Sequence Flows in two situations:

• From Gateways: Outgoing Sequence Flows have conditions for Exclusive and Inclusive Gateways. The
data referenced in the conditions need to be visible to two (2) or more Participants in the Choreography. The
data becomes visible if it is part of a Message that had been sent (previously) within the Choreography. See
page 355 and page 362 for more information about how Exclusive and Inclusive Gateways are used in
Choreography.

• From Choreography Activities: Outgoing Sequence Flows MAY have conditions for Choreography
Activities. Since these act similar to Inclusive Gateways, the Conditional Sequence Flows can be used
in Choreographies. The conditions have the same restrictions that apply to the visibility of the data for
Gateways.

• Default Sequence Flows: For Exclusive Gateways, Inclusive Gateways, and Choreography Activities
that have Conditional Sequence Flows, one of the outgoing Sequence Flows MAY be a Default Sequence
Flow. Because the other outgoing Sequence Flows will have appropriately visible of data as described above, the
Participants would know if all the other conditions would be false, thus the Default Sequence Flow would be
selected and the Choreography would move down that Sequence Flow.

In some applications it is useful to allow additional Messages that are not part of the defined Choreography model to
be sent between Participants when the Choreography is carried out. This enables Participants to exchange other
Messages as needed without changing the Choreography. There are two ways to specify this:

• If the isClosed attribute (from Collaboration) of a Choreography has a value of false or no value, then
Participants MAY send Messages to each other without additional Choreography Activities in the
Choreography. Unmodeled messaging can be restricted on particular Sequence Flows in the Choreography,

Place Order

Buyer

Seller

Confirm Order

Buyer

Seller

Sequence Flow will
define the order of
Choreography elements
330 Business Process Model and Notation, v2.0

see next bullet. If the isClosed attribute of a Choreography has a value of true, then Participants MAY NOT
send Messages to each other without additional Choreography Activities in the Choreography. This
restriction overrides any unmodeled messaging allowed by Sequence Flows in the next bullet.

• If the isImmediate attribute of a Sequence Flow has a value of false or no value, then Participants MAY send
Messages to each other between the elements connected by the Sequence Flow without additional
Choreography Activities in the Choreography. If the isImmediate attribute of a Sequence Flow has a
value of true, then Participants MAY NOT send Messages to each other between the elements connected by the
Sequence Flow without additional Choreography Activities in the Choreography. The value of
isImmediate attribute of a Sequence Flow has no effect if the isClosed attribute of the containing
Choreography has a value of true.

Restrictions on unmodeled messaging specified with isClosed and isImmediate applies only under the
Choreography containing the restriction. PartnerEntities and PartnerRoles of the Participants MAY send
Messages to each other under other Choreographies, Collaborations, and Conversations.

11.3.2 Artifacts

Both Text Annotations and Groups can be used within Choreographies and all BPMN diagrams. There are no
restrictions on their use.

11.4 Choreography Activities
A Choreography Activity represents a point in a Choreography flow where an interaction occurs between two (2)
or more Participants.

The Choreography Activity class is an abstract element, sub-classing from FlowElement (as shown in Figure 11.6).
When Choreography Activities are defined they are contained within a Choreography or a Sub-Choreography,
which are FlowElementContainers (other FlowElementContainers are not allowed to contain
Choreography Activities).
Business Process Model and Notation, v2.0 331

Figure 11.6 - The metamodel segment for a Choreography Activity

The Choreography Activity element inherits the attributes and model associations of FlowElement (see Table 8.44)
through its relationship to FlowNode. Table 11.1 presents the additional model associations of the Choreography
Activity element

Table 11.1 – Choreography Activity Model Associations

Attribute Name Description/Usage

participantRefs: Participant
[2..*]

A Choreography Activity has two (2) or more Participants (see page 115
for more information on Participants).

initiatingParticipantRef:
Participant

One (1) of the Participants will be the one that initiates the Choreography
Activity.

loopType:
ChoreographyLoopType =
None

A Choreography Activity MAY be performed once or MAY be repeated.
The loopType attribute will determine the appropriate marker for the
Choreography Activity (see below).

correlationKeys:
CorrelationKey [0..*]

This association specifies correlationKeys used by the Message Flow
in the Choreography Activity, including Sub-Choreographies and called
Choreographies.
332 Business Process Model and Notation, v2.0

11.4.1 Choreography Task

A Choreography Task is an atomic Activity in a Choreography Process. It represents an Interaction, which is one
(1) or two (2) Message exchanges between two (2) Participants. Using a Collaboration diagram to view these
elements (see page 109 for more information on Collaboration), we would see the two (2) Pools representing the two
(2) Participants of the Interaction (see Figure 11.7). The communication between the Participants is shown as a
Message Flow.

Figure 11.7 - A Collaboration view of Choreography Task elements

In a Choreography diagram, this Interaction is collapsed into a single object, a Choreography Task. The name of
the Choreography Task and each of the Participants are all displayed in the different bands that make up the shape’s
graphical notation. There are two (2) or more Participant Bands and one Task Name Band (see Figure 11.8).

� The Participant Band of the Participant that does not initiate the interaction MUST be shaded with a light fill.

Figure 11.8 - A Choreography Task

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

Choreography
Task Name

Participant A

Participant B

Initiating
Participant
Band

Participant
Band

Task Name
Band
Business Process Model and Notation, v2.0 333

Figure 11.9 - A Collaboration view of a Choreography Task

The interaction defined by a Choreography Task can be shown in an expanded format through a Collaboration
diagram (see Figure 11.9, above—see page 109 for more information on Collaborations). In the Collaboration view,
the Participants of the Choreography Task Participant Band’s will be represented by Pools. The interaction
between them will be a Message Flow.

Figure 11.10 - A two-way Choreography Task

P
ar

tic
ip

a
nt

 A
P

ar
tic

ip
an

t B

Receive
Message

Send
Message

Ini tiating
Message

Choreography
Task Name

Participant A

Participant B

Ini tia ting
Message

Return
Message
334 Business Process Model and Notation, v2.0

Figure 11.11 - A Collaboration view of a two-way Choreography Task

In a Choreography Diagram, the Choreography Task object shares the same shape as a Task or any other BPMN
Activity, which is a rectangle that has rounded corners.

� A Choreography Task is a rounded corner rectangle that MUST be drawn with a single line.

� The use of text, color, size, and lines for a Choreography Task MUST follow the rules defined in Section
“Use of Text, Color, Size, and Lines in a Diagram” on page 41.

The three (3) bands in the Choreography Task shape provide the distinction between this type of Task and an
Orchestration Task (in a traditional BPMN diagram).

The Message sent by either one or both of the Participants of the Choreography Task can be displayed (see Figure
11.10, above). The Message icon is shown tethered to the Participant that is the sender of the Message.

� If the Message is the initiating Message of the Choreography Task, then the Message icon MUST be
unfilled.

� If the Message is a return Message for the Choreography Task, then the Message icon MUST have a light
fill.

Note that Messages can be tethered to a Call Choreography that references a GlobalChoreographyTask, but
cannot be used for Sub-Choreographies or Call Choreography that references another Choreography.

As with a standard Orchestration Task, the Choreography Task MAY have internal markers to show how the
Choreography Task MAY be repeated. There are two types of internal markers (see Figure 11.12):

� A Choreography Task MAY have only one of the three (3) markers at one time.

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

Return
Message

Additional Internal
Activities may occur
between

Send
and Receive
Messages

Initiating
Message

Send
Message

Receive
Message
Business Process Model and Notation, v2.0 335

� The marker for a Choreography Task that is a standard loop MUST be a small line with an arrowhead that
curls back upon itself. The loopType of the Choreography Task MUST be Standard.

� The marker for a Choreography Task that is parallel multi-instance MUST be a set of three vertical lines.
The loopType of the Choreography Task MUST be MultiInstanceParallel.

� The marker for a Choreography Task that is sequential multi-instance MUST be a set of three horizontal
lines. The loopType of the Choreography Task MUST be MultiInstanceSequential.

The marker that is present MUST be centered at the bottom of the Task Name Band of the shape.

Figure 11.12 - Choreography Task Markers

Figure 11.13 - The Collaboration view of a looping Choreography Task

Choreography
Task Name

Participant A

Participant B

Choreography
Task Name

Participant A

Participant B

Choreography
Task Name

Participant A

Participant B

P
ar

tic
ip

a
nt

 A
P

ar
tic

ip
an

t B

R ece ive
Me ssag e

Se nd
Me ssag e

Messa ge
336 Business Process Model and Notation, v2.0

Figure 11.14 - The Collaboration view of a Parallel Multi-Instance Choreography Task

There are situations when a Participant for a Choreography Task is actually a multi-instance Participant. A multi-
instance Participant represents a situation where there are more than one possible related Participants (PartnerRoles/
PartnerEntities) that might be involved in the Choreography. For example, in a Choreography that involves
the shipping of a product, there can be more than one type of shipper used, depending on the destination. When a
Participant in a Choreography contains multiple instances, then a multi-instance marker will be added to the
Participant Band for that Participant (see Figure 11.15).

� The marker for a Choreography Task that is multi-instance MUST be a set of three vertical lines.

� The marker that is present MUST be centered at the bottom of the Participant Band of the shape.

The width of the Participant Band will be expanded to contain both the name of the Participant and the multi-instance
marker.

Figure 11.15 - A Choreography Task with a multiple Participant

P
ar

tic
ip

an
t

A
P

ar
tic

ip
an

t B

Send
Message

Receive
Message

Message

Choreography
Task Name

Participant A

Participant B
Business Process Model and Notation, v2.0 337

Figure 11.16 - A Collaboration view of a Choreography Task with a multiple Participant

The Choreography Task element inherits the attributes and model associations of Choreography Activity (see
Table 11.1). Table 11.2 presents the additional model associations of the Choreography Task element.

11.4.2 Sub-Choreography

A Sub-Choreography is a compound Activity in that it has detail that is defined as a flow of other Activities, in this
case, a Choreography. Each Sub-Choreography involves two (2) or more Participants. The name of the Sub-
Choreography and each of the Participants are all displayed in the different bands that make up the shape’s graphical
notation. There are two (2) or more Participant Bands and one Sub-Process Name Band.

The Sub-Choreography can be in a collapsed view that hides its details (see Figure 11.17) or a Sub-Choreography
can be expanded to show its details (a Choreography Process) within the Choreography Process in which it is
contained (see Figure 11.19). In the collapsed form, the Sub-Process object uses a marker to distinguish it as a Sub-
Choreography, rather than a Choreography Task.

The Sub-Process marker MUST be a small square with a plus sign (+) inside. The square MUST be positioned at the
bottom center of the Sub-Process Name Band within the shape.

� The Participant Band of the Participant that does not initiate the interaction MUST be shaded with a light fill.

Table 11.2 – Choreography Task Model Associations

Attribute Name Description/Usage

messageFlowRef: Message
Flow [1..*]

Although not graphical represented, Choreography Task contain one (1) or
more Message Flows that represent the interaction(s) between the
Participants referenced by the Choreography Task.

Pa
rti

ci
pa

nt
 A

P
ar

tic
ip

an
t B

R ece ive
Me ssag e

Se nd
Me ssag e

Messa ge
338 Business Process Model and Notation, v2.0

Figure 11.17- A Sub-Choreography

Figure 11.18 shows an example of a potential Collaboration view of the above Sub-Choreography.

Figure 11.18 - A Collaboration view of a Sub-Choreography

Choreography
Sub-Process

Name

Participant A

Participant B

Initiating
Participant
Band

Participant
Band

Sub-Process
Name Band

P
ar

tic
ip

an
t A

Pa
rt

ic
ip

an
t B
Business Process Model and Notation, v2.0 339

Figure 11.19 shows an example of an expanded Sub-Choreography.

Figure 11.19 - An expanded Sub-Choreography

Figure 11.20 shows an example of a potential Collaboration view of the above Sub-Choreography.

Figure 11.20 - A Collaboration view of an expanded Sub-Choreography

P arti ci pant B

P arti ci pant C

Ch oreog raphy
Ta sk Na me

Partic ipa nt C

Partic ipa nt A

Choreo grap hy
Task Name

Choreo graph y Su b-P roce ss N ame
P arti ci pan t C
P arti ci pan t A

P arti ci pan t B

Pa
rti

ci
pa

nt
 A

P
ar

tic
ip

an
t B

M1

P
ar

tic
ip

an
t C

M2

Send
Message

Receive
Message

Send
Message

Receive
Message
340 Business Process Model and Notation, v2.0

The Parent Sub-Choreography (Expanded)

The Choreography Activity shares the same shape as a Sub-Process or any other BPMN Activity, which is in this
state.

� A Sub-Choreography is a rounded corner rectangle that MUST be drawn with a single thin line.

� The use of text, color, size, and lines for a Sub-Choreography MUST follow the rules defined in Section
“Use of Text, Color, Size, and Lines in a Diagram” on page 41.

The three (3) or more partitions in the Sub-Choreography shape provide the distinction between this type of Task and
an Orchestration Sub-Process (in a traditional BPMN diagram).

It is possible for a Sub-Choreography to involve more than two (2) Participants. In this case, an additional
Participant Band will be added to the shape for each additional Participant (see Figure 11.21). The ordering and
position of the Participant Band (either in the upper or lower positions) is up to the modeler or modeling tool. In
addition, any Participant Band beyond the first two optional; it is displayed at the discretion of the modeler or
modeling tool. However, each Participant Band that is added MUST be added to the upper and lower sections of the
Sub-Choreography in an alternative manner.

Figure 11.21 - Sub-Choreography (Collapsed) with More than Two (2) Participants

As with a standard Orchestration Sub-Process, the Sub-Choreography MAY have internal markers to show how the
Sub-Choreography MAY be repeated. There are two types of internal markers (see Figure 11.22):

� A Sub-Choreography MAY have only one of the three (3) markers at one time.

� The marker for a Sub-Choreography that is a standard loop MUST be a small line with an arrowhead that
curls back upon itself. The loopType of the Sub-Choreography MUST be Standard.

� The marker for a Sub-Choreography that is parallel multi-instance MUST be a set of three vertical lines. The
loopType of the Sub-Choreography MUST be MultiInstanceParallel.

� The marker for a Sub-Choreography that is sequential multi-instance MUST be a set of three horizontal
lines. The loopType of the Sub-Choreography MUST be MultiInstanceSequential.

� The marker that is present MUST be centered at the bottom of the Sub-Process Name Band of the shape.

Choreography
Task Name

Participant A

Participant B

Participant C Choreography
Sub-Process

Name

Participant A

Participant B

Participant C

Participant D
Business Process Model and Notation, v2.0 341

Figure 11.22 - Sub-Choreography Markers

There are situations when a Participant for a Sub-Choreography is actually a multi-instance Participant. A multi-
instance Participant represents a situation where there are more than one possible related Participants (PartnerRoles/
PartnerEntities) that can be involved in the Choreography. For example, in a Choreography that involves the
shipping of a product, there can be more than one type of shipper used, depending on the destination. When a Participant
in a Choreography contains multiple instances, then a multi-instance marker will be added to the Participant Band
for that Participant (see Figure 11.23).

� The marker for a Sub-Choreography that is multi-instance MUST be a set of three vertical lines.

� The marker that is present MUST be centered at the bottom of the Participant Band of the shape.

� The width of the Participant Band will be expanded to contain both the name of the Participant and the
multi-instance marker.

Figure 11.23 - Sub-Choreography Markers with a multi-instance Participant

This includes Compensation Event Sub-Processes (contained within a Sub-Choreography) as well as the
external Compensation Activity connected through an Association.

The Sub-Choreography element inherits the attributes and model associations of Choreography Activity (see Table
11.1) and FlowElementsContainer (see Table 8.45). Table 11.3 presents the additional model associations of the
GlobalChoreographyTask element:

Table 11.3 – Sub-Choreography Model Associations

Attribute Name Description/Usage

artifacts: Artifact [0..*] This attribute provides the list of Artifacts that are contained within the Sub-
Choreography.

Choreography
Sub-Process

Name

Participant A

Participant B

Choreography
Sub-Process

Name

Participant A

Participant B

Choreography
Sub-Process

Name

Participant A

Participant B

Choreography
Sub-Process

Name

Participant A

Participant B
342 Business Process Model and Notation, v2.0

11.4.3 Call Choreography

A Call Choreography identifies a point in the Process where a global Choreography or a Global Choreography
Task is used. The Call Choreography acts as a place holder for the inclusion of the Choreography element it is
calling. This pre-defined called Choreography element becomes a part of the definition of the parent Choreography.

A Call Choreography object shares the same shape as the Choreography Task and Sub-Choreography, which is
a rectangle that has rounded corners, two (2) or more Participant Bands, and an Activity Name Band. However, the
target of what the Choreography Activity calls will determine the details of its shape.

� If the Call Choreography calls a Global Choreography Task, then the shape will be the same as a
Choreography Task, but the boundary of the shape will MUST have a thick line (see Figure 11.24)

� If the Call Choreography calls a Choreography, then there are two (2) options:

� The details of the called Choreography can be hidden and the shape will be the same as a collapsed Sub-
Choreography, but the boundary of the shape MUST have a thick line (see Figure 11.25).

� The details of the called Choreography can be shown and the shape will be the same as an expanded Sub-
Choreography, but the boundary of the shape MUST have a thick line (see Figure 11.26).

Figure 11.24 - A Call Choreography calling a Global Choreography Task

Figure 11.25 - A Call Choreography calling a Choreography (Collapsed)
Business Process Model and Notation, v2.0 343

Figure 11.26 - A Call Choreography calling a Choreography (expanded)

Figure 11.27- The Call Choreography class diagram

The Call Choreography element inherits the attributes and model associations of ChoreographyActivity (see
Figure 11.27 and Table 11.1). Table 11.4 presents the additional model associations of the Call Choreography element

344 Business Process Model and Notation, v2.0

11.4.4 Global Choreography Task

A GlobalChoreographyTask is a reusable, atomic Choreography Task definition that can be called from within
any Choreography by a Call Choreography.

The GlobalChoreographyTask element inherits the attributes and model associations of Collaboration (see Table
9.1), through its relationship to Choreography. Table 11.5 presents the additional model associations of the
GlobalChoreographyTask element

A GlobalChoreographyTask is a restricted type of Choreography, it is an "empty Choreography.

� A GlobalChoreographyTask MUST NOT contain any Flow Elements.

Since a GlobalChoreographyTask does not have any Flow Elements, it does not require
MessageFlowAssocations, ParticipantAssocations, ConversationAssocations, or Artifacts. It is
basically a set of Participants and Message Flows intended for reuse.

11.4.5 Looping Activities

Both Sub-Choreographies can have standard loops and multi-instances. Examples of Choreography Activities
with the appropriate markers can be seen in Figure 11.12 and Figure 11.22.

11.4.6 The Sequencing of Activities

There are constraints on how Choreography Activities can be sequenced (through Sequence Flows) in a
Choreography. These constraints are due to the limited visibility of the Participants, which only know of the progress
of the Choreography by the Messages that occur. When a Participant sends or receives a Message, then that
Participant knows exactly how far the Choreography has progressed. This means that the ordering of Choreography
Activities need to take into account when the Participants send or receive Messages so that they Participants are NOT
REQUIRED to guess about when it is their turn to send a Message.

Table 11.4 – Call Choreography Model Associations

Attribute Name Description/Usage

calledChoreographyRef:
CallableElement [0..1]

The element to be called, which will be either a Choreography or a
GlobalChoreographyTask.

participantAssociations:
ParticipantAssociation [0..*]

Specifies how Participants in a nested Choreography or
GlobalChoreographyTask match up with the Participants in the
Choreography referenced by the Call Choreography.

Table 11.5 – Global Choreography Task Model Associations

Attribute Name Description/Usage

initiatingParticipantRef:
Participant

One (1) of the Participants will be the one that initiates the Global
Choreography Task.
Business Process Model and Notation, v2.0 345

The basic rule of Choreography Activity sequencing is this:

� The Initiator of a Choreography Activity MUST have been involved (as Initiator or Receiver) in the previous
Choreography Activity.

Of course, the first Choreography Activity in a Choreography does not have this constraint.

Figure 11.28 shows a sequence of two (2) Choreography Activities that follow this constraint. “Participant B” is the
Initiator of “Choreography Task 2” after being the Receiver in “Choreography Task 1.” While there is no requirement that
“Participant B” sends the Message immediately, since there can be internal work that the Participant needs to do prior
to the Message. But in this situation there is no ambiguity that “Participant B” will be the Initiator of the next
Choreography Task. “Participant C” does not know exactly when the Message will arrive from “Participant B,” but
“Participant C” knows that one will arrive and there are not any additional requirements on the Participant until the
Message arrives.

Figure 11.28 - A valid sequence of Choreography Activities

Naturally, the sequence of Choreography Activities shown in Figure 11.28, above can be expanded into a
Collaboration diagram to show how the sequence can be enforced. Figure 11.29 shows the corresponding
Collaboration. The diagram shows how the Activities within the individual Pools fit with the design of the
Choreography.

Choreography
Task 2

Participant C

Participant B

Choreography
Task 1

Participant A

Participant B

The Ini tia tor o f a
Choreography Task must
be involved in the previous
Activi ty
346 Business Process Model and Notation, v2.0

Figure 11.29 - The corresponding Collaboration for a valid Choreography sequence

When determining a valid sequence of Choreography Tasks, it is important to consider the type of Choreography
Tasks that are being used. A single Choreography Task can be used for one (1) or two (2) Messages. Most of the
time there will be one (1) or two (2) Messages for a Choreography Task. Figure 11.30 shows a sequence of
Choreography Tasks, the first one being a two-way interaction, where the initiator sends a Message and gets a
response from the other Participant.

Figure 11.30 - A valid sequence of Choreography Activities with a two-way Activity

P
ar

tic
ip

an
t

A
P

ar
tic

ip
an

t B
Pa

rti
ci

pa
nt

 C

Send
Message

Receive
Message

Send
Message

Receive
Message

M1

M2

Ch oreog raphy
Ta sk 2

P arti ci pant A

P arti ci pant C

Cho reogra phy
Task 1

Partic ipan t A

Partic ipan t B
Business Process Model and Notation, v2.0 347

Figure 11.31 shows the corresponding Collaboration and how the two Choreography Tasks are reflected in the
Processes within the Pools. The Choreography Task that has two Messages is reflected by three Process
Tasks. Usually in these cases, the initiating Participant will use a single Activity to handle both the sending and
receiving of the Messages. A BPMN Service Task can be used for this purpose and these types of Tasks are often
referred to as “request-response” Tasks for Choreography modelers.

Figure 11.31 - The corresponding Collaboration for a valid Choreography sequence with a two-way Activity

Figure 11.32 shows how a sequence of Choreography Activities can be designed that would be invalid in the sense
that an Initiating Participant would not know when the appropriate time would be to send a Message. In this example,
“Participant A” is scheduled to send a Message to “Participant C” after “Participant B” sends a Message to
“Participant C.” However, “Participant A” will not know when the Message from “Participant B” has been sent. So,
there is no way to enforce the sequence that is modeled in the Choreography.

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

P
ar

tic
ip

an
t C

Sen d
Mess age

R e ce ive
Mess age

S end
M essa ge

R ece ive
Me ssag e

Se nd
and R ecei ve
M ess age s

M3M 2M 1
348 Business Process Model and Notation, v2.0

Figure 11.32 - An invalid sequence of Choreography Activities

Figure 11.33 shows the Collaboration view of the above Choreography diagram. It becomes clear that “Participant
A” will not know the appropriate time to send Message “M3” to “Participant C.” If the Message is sent too soon, then
“Participant C” will not be prepared to receive it. Thus, as a Choreography, the model in Figure 11.32, above, cannot
be enforced.

Figure 11.33 - The corresponding Collaboration for an invalid Choreography sequence

Choreography
Task 2

Participant C

Participant B

Choreography
Task 1

Participant A

Participant B

Choreography
Task 3

Participant C

Participant A

The Initiator of a
Choreography Task must
be involved in the previous
Activity

P
ar

tic
ip

an
t A

P
ar

tic
ip

a
nt

 B
Pa

rt
ic

ip
an

t C

Not Va lid –
There is no way to
enforce the seq uen ce of
“M 2” and “M 3”

R ece ive
Me ssag e

Se nd
Me ssag e

Receive
M essa ge

S end
M essa ge

Sen d
Message

Re ce ive
Message

M 1

M 2

M3
Business Process Model and Notation, v2.0 349

11.5 Events

11.5.1 Start Events

Start Events provide the graphical marker for the start of a Choreography. They are used much in the same way as
they are used for a Process (see “Start Event” on page 245).

This table shows how the types of Start Events are applied to Choreography.

I

11.5.2 Intermediate Events

Table 11.6 – Use of Start Events in Choreography

Type of Event Usage in Choreography?

None Yes. This is really just a graphical marker since the arrival of the first Message in the
Choreography is really the Trigger for the Choreography. Sub-Processes,
however, we should look at. The Parent Process can be considered the trigger.

Message No. A Message Start Event, in a stand-alone Choreography, has no way to show
who the senders or receivers of the Message should be. A Choreography Task
should be used instead. Thus, a None Start Event should be used as a graphical
marker for the “start” of the Choreography.

Timer Yes. All Participants have to have an agreement to the approximate time.

Escalation No. An Escalation is only visible to a single Participant. That Participant will have to
send a Message to the other Participants.

Error No. An Error is only visible to a single Participant. That Participant will have to send a
Message to the other Participants.

Compensation No. Compensation is handled within a single Participant (an orchestration
Process).

Conditional Yes. This is actually determined internal to Participant, but then the other Participants
know this has happened based the first interaction that follows.

Signal Yes. The source of the Signal is NOT REQUIRED (and might not even be a Participant
in the Choreography). There are no specific recipients of a Signal. All Participants of
the Choreography (to comply) MUST be able to see the Signal.

Multiple Yes. But they can only be Multiple Signals or Timers. As in Orchestration, this acts like
an OR. Any one of the incoming Signals will Trigger the Choreography. Any Signal
that follows would create a separate instance of the Choreography.

Table 11.7 - Use of Intermediate Events in Choreography

Type of Event Usage in Choreography?
350 Business Process Model and Notation, v2.0

None: in Normal Flow Yes. However, this really doesn’t have much meaning other than just document-
ing that a specific point has been reached in the Choreography. There would be
no Message exchange or any delay in the Choreography.

None: Attached to Activity
boundary

No. There would be no way for Participants to know when the Activity should be
interrupted.

Message: in Normal Flow No. A Message Intermediate Event, in a stand-alone Choreography, has no
way to show who the senders or receivers of the Message should be. A
Choreography Task should be used instead. Also, would the Event be a Catch
or a Throw?

Message: Attached to Activ-
ity boundary

Yes. Only for Choreography Tasks. The Intermediate Event has to be attached
to the Participant Band of the receiver of the Message (since it is a catch
Event). The sender of the message has to be the other Participant of the
Choreography Task.

Message: Use in Event
Gateway

No. A Message Intermediate Event, in a stand-alone Choreography, has no
way to show who the senders or receivers of the Message should be. A
Choreography Task should be used instead.

Timer: in Normal Flow Yes. Time is not precise in Choreography. It is established by the last visible
Choreography Activity. The Participants involved in the Choreography Activity
that immediately precedes will have a rough approximation of the time—there
will be no exact synchronization.

For relative timers: Only the Participants involved in the Choreography Activity
that immediately precedes the Event would know the time. The sender of the
Choreography Activity that immediately follows the timer MUST be involved in
the Choreography Activity that immediately precedes the timer.

For absolute timers (full time/date): All Participants would know the time. There
does not have to be a relationship between the Participants of the Choreography
Activities that are on either side the timer.

The sender of the Choreography Activity that immediately follows the timer is the
Participant that enforces the timer.

Table 11.7 - Use of Intermediate Events in Choreography
Business Process Model and Notation, v2.0 351

Timer: Attached to Activity
boundary

Yes. Time is not exact in this case. It is established by the last visible Event. All
Participants will have a rough approximation of the time—there will be no exact
synchronization. This includes both interrupting and escalation Events.
The Participants of the Choreography Activity that has the attached timer all
enforce the timer.
For relative timers: They all have to be involved in the Choreography Activity that
immediately precedes the Activity with the attached timer.
For absolute timers (full time/date): All Participants would know the time. They all
have to be involved in the Choreography Activity that immediately precedes the
Activity with the attached timer.

Timer: Used in Event Gate-
way

Yes. See Event-Based Gateway below.

Error: Attached to Activity
boundary

No. An Error is only visible to a single Participant. That Participant will have to
send a Message to the other Participants.

Escalation: Used in Nor-
mal Flow

No. An Escalation is only visible to a single Participant. That Participant will have
to send a Message to the other Participants.

Escalation: Attached to
Activity boundary

No. An Escalation is only visible to a single Participant. That Participant will have
to send a Message to the other Participants.

Cancel: in Normal Flow No. These are Throw Events. As with a Message Event, there would be no
indicator as to who is the source of the Cancel.

Cancel: Attached to Activity
boundary

Yes. These are Catch Events. As with a Message Event, they would be
attached to the Choreography Activity on the Participant Band that is receiv-
ing the Cancel. These would only be interrupting Events.

Compensation: in Normal
Flow

No. These are Throw Events. As with a Message, there would be no indicator
as to who is the source of the Cancel.

Compensation: Attached to
Activity boundary

Yes. These are Catch Events. As with a Message Event, they would be
attached to the Choreography Activity on the Participant Band that is receiv-
ing the Cancel.

Conditional: in Normal
Flow

Yes. This is a delay that waits for a change in data to trigger the Event. The data
are to be visible to the Participants as it was data of a previously sent Message.

Conditional: Attached to
Activity boundary

Yes. This is an interruption that waits for a change in data to trigger the Event.
The data are to be visible to the Participants as it was data of a previously sent
Message.

Conditional: Used in Event
Gateway

Yes. This is a delay that waits for a change in data to trigger the Event. The data
are to be visible to the Participants as it was data of a previously sent Message.

Table 11.7 - Use of Intermediate Events in Choreography
352 Business Process Model and Notation, v2.0

Link: in Normal Flow Yes. These types of Events merely create a virtual Sequence Flows. Thus, as
long as a Sequence Flow between two elements is valid (and within a Chore-
ography Process level), then a pair of Link Events can interrupt that
Sequence Flow.

Signal: in Normal Flow Yes. Only Catch Events can be used. For Throw Signal Events, there would be
no indicator of who is the source Participant.
This would be a delay in the Choreography that waits for the Signal. The
source of the Signal is NOT REQUIRED (and might not even be a Participant in
the Choreography). There are no specific recipients of a Signal. All Participants
of the Choreography (to comply) MUST be able to see the Signal.

Signal: Attached to Activity
boundary

Yes. These are Catch Events. This would be an interruption in the Choreogra-
phy that waits for the Signal. The source of the Signal is NOT REQUIRED (and
might not even be a Participant in the Choreography). There are no specific
recipients of a Signal. All Participants of the Choreography (to comply) MUST
be able to see the Signal. This Event MUST NOT be attached to a Participant
Band or this would suggest that that Participant is a specific recipient of the Sig-
nal.

Signal: Used in Event Gate-
way

Yes. These are Catch Events. This would be a delay in the Choreography that
waits for the Signal. The source of the Signal is NOT REQUIRED (and might not
even be a Participant in the Choreography). There are no specific recipients of
a Signal. All Participants of the Choreography (to comply) MUST be able to see
the Signal.

Multiple: in Normal Flow Yes. But they can only be a collection of valid Catch Events. As in Orchestra-
tion, this acts like an OR. Any one of the incoming triggers will continue the Cho-
reography.

Multiple: Attached to Activ-
ity Boundary

Yes. But they can only be a collection of valid Catch Events. As in Orchestra-
tion, this acts like an OR. Any one of the incoming triggers will interrupt the Cho-
reography Activity.

Table 11.7 - Use of Intermediate Events in Choreography
Business Process Model and Notation, v2.0 353

11.5.3 End Events

End Events provide a graphical marker for the end of a path within the Choreography.

Table 11.8 – Use of End Events in Choreography

Type of Event Usage in Choreography?

None Yes. This is really just a graphical marker since the sending of the previous Mes-
sage in the Choreography is really the end of the Choreography. The Partici-
pants of the Choreography would understand that they would not expect any
further Message at that point.

Message No. A Message End Event, in a stand-alone Choreography, has no way to
show who the senders or receivers of the Message should be. A Choreogra-
phy Task should be used instead. Thus, a None End Event should be used as
a graphical marker for the “end” of the Choreography

Error No. These are Throw Events and there would be no way to indicate the Partici-
pant that is the source of the Error.

Escalation No. These are Throw Events and there would be no way to indicate the Partici-
pant that is the source of the Escalation..

Cancel No. These are Throw Events. As with a Message Event, there would be no
indicator as to who is the source of the Cancel.

Compensation No. These are Throw Events. As with a Message Event, there would be no
indicator as to who is the source of the compensation.

Signal No. These are Throw Events. As with a Message Event, there would be no
indicator as to who is the source of the Signal.

Multiple No. Since there are no valid End Event Results (Terminate doesn’t count) in
Choreography, there cannot be multiple of them.

Terminate Yes. However, there would be no specific ability to terminate the Choreogra-
phy, since there is no controlling system. In this case, all Participants in the
Choreography would understand that when the Terminate End Event is
reached (actually when the Message that precedes it occurs), then no further
messages will be expected in the Choreography, even if there were parallel
paths. The use of the Terminate End Event really only works when there are
only two (2) Participants. If there are more than two (2) Participants, then any
Participant that was not involved in the last Choreography Task would not nec-
essarily know that the Terminate End Event had been reached.
354 Business Process Model and Notation, v2.0

11.6 Gateways
In an Orchestration Process, Gateways are used to create alternative and/or parallel paths for that Process.
Choreography has the same requirement of alternative and parallel paths. That is, interactions between Participants can
happen in sequence, in parallel, or through exclusive selection. While the paths of Choreography follow the same basic
patterns as that of an Orchestration Process, the lack of a central mechanism to maintain data visibility, and that there
is no central evaluation, there are constraints as to how the Gateways are used in conjunction with the Choreography
Activities that precede and follow the Gateways. These constraints are an extension of the basic sequencing constraints
that was defined on page 345. The six (6) sections that follow will define how the types of Gateways are used in
Choreography.

11.6.1 Exclusive Gateway

Exclusive Gateways (Decisions) are used to create alternative paths within a Process or a Choreography. For
details of how Exclusive Gateways are used within an Orchestration Process see page 298.

Exclusive Gateways are used in Choreography, but they are constrained by the lack of a central mechanism to store
the data that will be used in the Condition expressions of the Gateway’s outgoing Sequence Flows.
Choreographies MAY contain natural language descriptions of the Gateway’s Conditions to document the alternative
paths of the Choreography (e.g., “large orders” will go down one path while “small orders” will go down another path),
but such Choreographies would be underspecified and would not be enforceable. To create an enforceable
Choreography, the Gateway Conditions MUST be formal Condition Expressions; however:

� The data used for Gateway Conditions MUST have been in a Message that was sent prior to (upstream from) the
Gateway.

� More specifically, all Participants that are directly affected by the Gateway MUST have either sent or received
the Message(s) that contained the data used in the Conditions.

� Furthermore, all these Participants MUST have the same understanding of the data. That is, the actual
values of the data cannot selectively change after a Participant has seen a Message. Changes to data
during the course of the Choreography MUST be visible to all the Participants affected by the
Gateway.

These constraints ensure that the Participants in the Choreography understand the basis (the actual value of the data)
for the decision behind the Gateway.

One (1) or more Participants will actually “control” the Gateway decision; that is, these Participants make the decision
through the internal Orchestration Processes. The decision is manifested by the particular Message that occurs in the
Choreography (after the Gateway). This Message is the initiating Message of a Choreography Activity that
follows the Gateway. Thus, only the Participants that are the initiators of the Messages that follow the Gateway are
the ones that control the decision. This means that:

� The initiating Participants of the Choreography Activities that follow the Gateway MUST have sent or
received the Message that provided the data upon which the decision is made.

� The Message that provides the data for the Gateway MAY be in any Choreography Activity prior to the
Gateway (i.e., it does not have to immediately precede Gateway).
Business Process Model and Notation, v2.0 355

Figure 11.34 - An example of the Exclusive Gateway

Figure 11.35 shows the Collaboration that demonstrates how the above Choreography that includes an Exclusive
Gateway can be enforced.

Cho reogra phy
Task 1

Participan t A

Participan t B

Chore ograp hy
Ta sk 3

Participa nt C

P arti cipan t B

Yes

No

Chore ograp hy
Ta sk 2

P arti cipan t A

P arti cipan t B
Decision?
356 Business Process Model and Notation, v2.0

Figure 11.35 - The relationship of Choreography Activity Participants across the sides of the Exclusive Gateway
shown through a Collaboration

Usually, the initiators for the Choreography Activities that follow the Gateway will be the same Participant. That is,
there is only one (1) Participant controlling the decision. Often, the receivers of the initiating Message for those
Choreography Activities will be the same Participant. However, it is possible that there could be different Participants
receiving the initiating Message for each Choreography Activity (see Figure 11.36).

P
ar

tic
ip

an
t A

Pa
rti

ci
pa

nt
 B

M1

Pa
rt

ic
ip

an
t C

M2

M3

Decision?

Decision?

Yes

Yes

No

No

Send
Message

Receive
Message

Send
Message

Receive
Message

Send
Message

Receive
Message

Decision?

No

Yes
Business Process Model and Notation, v2.0 357

Figure 11.36 - Different Receiving Choreography Activity Participants on the output sides of the Exclusive Gateway

This configuration can only be valid if all the Participants in the Choreography Activities that follow the Gateway
have seen the data upon which the decision is made. If either “Participant B” or “Participant C” had not sent or receive a
Message with the appropriate data, then that Participant would not be able to know if they are suppose to receive a
Message at that point in the Choreography. There is also the assumption that the value of the data is consistent from
the point of view of all Participants.

Figure 11.37 displays the corresponding Collaboration view of the above Choreography Exclusive Gateway
configuration.

Choreography
Task 1

Participant A

Participant B

Choreography
Task 3

Participant A

Participant C

Yes

No

Choreography
Task 2

Participant A

Participant B
Decision?
358 Business Process Model and Notation, v2.0

Figure 11.37 - The corresponding Collaboration view of the above Choreography Exclusive Gateway configuration

The REQUIRED execution behavior of the Gateway and associated Choreography Activities are enforced through
the Business Processes of the Participants as follows:

� Each Choreography Activity and the Sequence Flow connections are reflected in each Participant Process.

� The Gateway is reflected in the Process of each Participant Process that is an initiator of Choreography
Activities that follow the Gateway

� For the receivers in Choreography Activities that follow the Gateway, an Event-Based Gateway is used to
consume the associated Message (sent as an outcome of the Gateway). When a Participant is the receiver of more
than one of the alternative Messages, the corresponding receives follow the Event-Based Gateway. If the
Participant is the receiver of only one such Message, that is also consumed through a receive following the Event-
Based Gateway. This is because the Participant Process does not know whether it will receive a Message
(since the Gateway entails a choice of outcomes).

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

M1

P
ar

tic
ip

an
t C

M2

Recieve
Message

Send
Message

M3

Decision?

Yes

No
Send

Message

Recieve
Message

Decision?

Decision?

No

Yes

Yes

No

Send
Message

Receive
Message
Business Process Model and Notation, v2.0 359

11.6.2 Event-Based Gateway

As described above, the Event-Based Gateway represents a branching point in the Process where the alternatives are
based on Events that occur at that point in the Process, rather than the evaluation of expressions using Process data.
For details of how Event-Based Gateways are used within an Orchestration Process see Section “Event-Based
Gateway” on page 305.

These Gateways are used in Choreography when the data used to make the decision is only visible to the internal
Processes of one Participant. That is, there has been no Message sent within the Choreography that would expose
the data used to make the decision. Thus, the only way that the other Participants can be aware of the results of the
decision is by the particular Message that arrives next.

� On the right side of the Gateway: either

� The senders MUST to be the same; or

� The receivers MUST to be the same

� After the first Choreography Activity occurs, the other Choreography Activities for the Gateway
MUST NOT occur.

� Message Intermediate Events MUST NOT be used in the Event-Based Gateway.

� Timer Intermediate Events MAY be used, but they restrict the participation in the Gateway.

� For relative timers: All Participants on the right side of the Gateway MUST be involved in the
Choreography Activity that immediately precedes the Gateway.

� For absolute timers (full time/date): All Participants on the right side of the Gateway MUST be involved in the
Choreography Activity that immediately precedes the Gateway.

� Signal Intermediate Events MAY be used (they are visible to all Participants)

� No other types of Intermediate Events are allowed.

Figure 11.38 - An example of an Event Gateway

Figure 11.39 displays the corresponding Collaboration view of the above Choreography Event Gateway configuration.

Choreography
Task 1

Participant A

Participant B

Choreography
Task 3

Participant A

Participant B

Decicion?

Choreography
Task 2

Participant A

Participant B
360 Business Process Model and Notation, v2.0

Figure 11.39 - The corresponding Collaboration view of the above Choreography Event Gateway configuration

The REQUIRED execution behavior of the Event-Based Gateway and associated Choreography Activities are
enforced through the Business Processes of the Participants as follows:

• Each Choreography Activity and the Sequence Flow connections is reflected in each Participant Process.

• If the senders following the Gateway are the same, the Event-Based Gateway is reflected as an Exclusive
Gateway in that Participant’s Process. This is because the choice of which Message to send is determined by the
same Participant. If the senders are different, sending occurs through different Processes.

• If the receivers are the same, the senders can be the same or different. In this case, the Event-Based Gateway is
reflected in the receiver’s Process, with the different Message receives following the Gateway.

• If the receivers are different, the senders need to be the same. The Event-Based Gateway is reflected for different
receiver Processes such that the respective receive follows the Gateway. A time-out can be used to ensure that the
Gateway does not wait indefinitely.

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B Decision?

Yes

Yes

No

No

Receive
Message

Send
Message

Receive
Message

Receive
Message

Send
Message

Send
Message

M1 M2 M3
Business Process Model and Notation, v2.0 361

11.6.3 Inclusive Gateway

Inclusive Gateways are used for modeling points of synchronization of a number of branches, not all of which are
active, after which one or more alternative branches are chosen within a Choreography flow. For example, one of more
branches MAY be activated upstream, in parallel, depending on the nature of goods in an order (e.g., large orders, fragile
goods orders, orders belonging to pre-existing shipment contracts), and these are subsequently merged. The point of
merge results in one or more risk mitigating outcomes (e.g., special insurance protection needed, special packaging
needed, and different container categories needed). Inclusive Gateways are also used within an Orchestration
Process see page 300.

Like Exclusive Gateways, Inclusive Gateways are used in a Choreography, but they are constrained by the lack
of a central mechanism to store the data that will be used in the Condition expressions of the Gateway’s outgoing
Sequence Flows. Choreographies MAY contain natural language descriptions of the Gateway’s Conditions to
document the one more alternative paths of the Choreography (e.g., “special insurance protection needed,” “special
packaging needed,” and different “container category needed”), but such Choreographies would be underspecified and
would not be enforceable. To create an enforceable Choreography, the Gateway Conditions MUST be formal
Condition Expressions. In general the following rules apply for the Expressions:

Like the enforceability of the Exclusive Gateway, the Inclusive Gateway in a Choreography requires that the data
in the Expressions of the outgoing Sequence Flows of the Gateway be available to the initiators of the
Choreography Activities of outgoing Sequence Flows. This means that the initiators of these Choreography
Activities should also be senders or receivers of Messages in Choreography Activities immediately preceding the
Gateway. The major difference, however, is that the synchronizing behavior of the Inclusive Gateway can only be
enforced through one participant. Hence, the rules for enforceability are as follows:

� The data used for Gateway Conditions MUST have been in a Message that was sent prior to (upstream from) the
Gateway.

� More specifically, all Participants that are directly affected by the Gateway MUST have either sent or received
the Message(s) that contained the data used in the Conditions.

� Furthermore, all these Participants MUST have the same understanding of the data. That is, the actual
values of the data cannot selectively change after a Participant has seen a Message. Changes to data
during the course of the Choreography MUST be visible to all the Participants affected by the
Gateway.

� Merge: In order to enforce the synchronizing merge of the Gateway, the sender of the Choreography
Activity after the Gateway MUST participate in the Gateway immediately preceding the Gateway. This
ensures that the merge can be enforced. (This relies on the assumption of logical atomicity of a Choreography
Activity, otherwise the rule would require that all receivers are the same so that the Gateway is enforced in the
receiver’s Process only).

� Split: In order to enforce the split side of the Gateway, the initiators of all Choreography Activities
immediately following the Gateway MUST be the same as the common sender or receiver of Choreography
Activities preceding the Gateway. The sender(s) of all the Choreography Activities after the Gateway
MUST be involved in all the Choreography Activities that immediately precede the Gateway.

Figure 11.40 shows an example of a Choreography with an Inclusive Gateway. The Gateway is enforced in the
corresponding Business Processes of the Participants involved. For the merge behavior to be enforced, the initiator
of Choreography Activities immediately following the Gateway participates in the Choreography Activities
immediately preceding the Gateway.
362 Business Process Model and Notation, v2.0

Figure 11.40 - An example of a Choreography Inclusive Gateway configuration

Choreography
Task 1

Participant A

Participant B

Choreography
Task 1

Participant C

Participant B

Choreography
Task 1

Participant D

Participant B

M1

M2

M3
Business Process Model and Notation, v2.0 363

Figure 11.41 - The corresponding Collaboration view of the above Choreography Inclusive Gateway configuration

Figure 11.42, a variation of Figure 11.40 above, shows an example of a Choreography illustrating the enforcement of
the split behavior of the Inclusive Gateway. For the split behavior to be enforced, the initiators of Choreography
Activities immediately following the Gateway and the receiver of Choreography Activities immediately preceding
the Gateway are the same Participant (i.e., A).

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

M1

P
ar

tic
ip

an
t C

M2

Receive
Message

Send
Message

M3

Receive
Message

P
ar

tic
ip

an
t D

Send
Message

Send
Message

Receive
Message
364 Business Process Model and Notation, v2.0

Figure 11.42 - An example of a Choreography Inclusive Gateway configuration

Choreography
Task 1

Participant A

Participant B

Choreography
Task 3

Participant A

Participant C

Condition 1

Condition 2

Choreography
Task 2

Participant A

Participant C
Decision?
Business Process Model and Notation, v2.0 365

Figure 11.43 - The corresponding Collaboration view of the above Choreography Inclusive Gateway configuration

Pa
rti

ci
pa

nt
 A

P
ar

tic
ip

an
t B

M1

P
ar

tic
ip

an
t C

M2

Decision?

Condition 1

Condition 2

Send
Message

Decision?

Condition 2

Condition 1

Receive
Message

Send
Message

Send
Message

Receive
Message

M3

Receive
Message
366 Business Process Model and Notation, v2.0

Figure 11.44 - Another example of a Choreography Inclusive Gateway configuration

Choreography
Task 1

Participant A

Participant B

Choreography
Task 3

Participant A

Participant D

Condition 1

Condition 2

Choreography
Task 2

Participant A

Participant C
Decision?
Business Process Model and Notation, v2.0 367

Figure 11.45 - The corresponding Collaboration view of the above Choreography Inclusive Gateway configuration

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

M1

Pa
rti

ci
pa

nt
 C

M2

Decision?

Condition 1

Condition 2

Send
Message

Decision?

Condition 2

Condition 1

Receive
Message

Send
Message

Send
Message

Receive
Message

Pa
rti

ci
pa

nt
 D

M3

Decision?

Condition 2

Condition 1 Receive
Message
368 Business Process Model and Notation, v2.0

11.6.4 Parallel Gateway

Parallel Gateways are used to create paths and are performed at the same time, within a Choreography flow. For
details of how Parallel Gateways are used within an Orchestration Process see page 301.

Since there is no conditionality for these Gateways, they are available as-is in Choreography. They create parallel
paths of the Choreography that all Participants are aware of.

� The sender(s) of all the Activities after the Gateway MUST be involved in all the Activities that immediately
precede the Gateway.

� If there is a chain of Gateways with no Choreography Activities in between, the Choreography
Activity that precedes the chain satisfies the above constraint.

Figure 11.46 shows the relationship of Choreography Activity Participants across the sides of the Parallel Gateway.

Figure 11.46 - The relationship of Choreography Activity Participants across the sides of the Parallel Gateway

Figure 11.47 shows the corresponding Collaboration view of the above Choreography Parallel Gateway
configuration.

Cho reogra phy
Task 1

Pa rtic ip ant A

Pa rtic ip ant B

Chore ograp hy
Task 3

Participa nt C

Participa nt B

Chore ograp hy
Task 2

Participa nt A

Participa nt B
Business Process Model and Notation, v2.0 369

Figure 11.47 - The corresponding Collaboration view of the above Choreography Parallel Gateway configuration

The REQUIRED execution behavior of the Parallel Gateway and associated Choreography Activities are enforced
through the Business Processes of the Participants as follows:

� Each Choreography Activity and the Sequence Flow connections is reflected in each Participant Process.

� If the senders following the Parallel Gateway are the same, a Parallel Gateway is reflected in the sender’s
Process followed by Message sending actions to the corresponding receivers

� If the senders are different, the Parallel Gateway is manifested by Sequence Flows followed by the sending
action in each Process.

P
ar

tic
ip

an
t A

P
ar

tic
ip

an
t B

P
ar

tic
ip

an
t C

Decision?

Yes

No

R ece ive
Me ssage

Send
Me ssage

Receive
Message

Send
Message

Receive
Message

Send
Message

M1 M3

M2
370 Business Process Model and Notation, v2.0

11.6.5 Complex Gateway

Complex Gateways can model partial merges in Business Processes where when some but not all of a set of
preceding branches complete, the Gateway fires. This can be considered the discriminator/n-of-m join pattern1 and is not
supported through the inclusive OR merge since it is not concerned with sets of branches, but rather branches which have
tokens. Applied in Choreographies, Complex Gateways can model tendering and information canvassing use cases
where requests are sent to participants who respond at different times.

Consider an e-tender which sends a request for quote to multiple service providers (e.g., warehouse storage) in a
marketplace. The e-tender Process sends out requests to each service provider and anticipates their response through
three Choreography Activities. The response branches merge at a Complex Gateway to model the requirement that
when 66% responses have arrived, an assessment of the tender can proceed. The assessment occurs after the Complex
Gateway. If the assessment reports that the reserve amount indicated by the customer cannot be met, a new iteration of
the tender is made. A key issue is to ensure that the responses should not be mixed across tender iterations. A Terminate
End Event ensures that all Activities are terminated, when a tender has been successful.

Figure 11.48 - An example of a Choreography Complex Gateway configuration

1. http://www.workflowpatterns.com/patterns/control/advanced_branching/wcp9.php

Request for Quote

Service Provider A

Purchaser

Service Provider B
Service Provider C

Quote

Purchaser

Service Provider A

Quote

Purchaser

Service Provider B

Quote

Purchaser

Service Provider C

2 of 3
responses
recieved

Sufficient
reserve
amount?

Yes

No
Business Process Model and Notation, v2.0 371

Figure 11.49 - The corresponding Collaboration view of the above Choreography Complex Gateway configuration

11.6.6 Chaining Gateways

It is possible to chain Gateways. This means that a modeler can sequence two (2) or more Gateways without any
intervening Choreography Activities, however the constraints on what participants can appear before and after the
chain MUST be observed.

11.7 Choreography within Collaboration

11.7.1 Participants

Participants are used in both Collaborations and Choreographies.

P
ur

ch
as

er
S

er
vi

ce
 P

ro
vi

de
r A

S
er

vi
ce

 P
ro

vi
de

r B

S
er

vi
ce

 P
ro

vi
de

r C

Request
Quotes

<

Request for
Quote recieved

Send
Quote

<

<

<

Quote
recieved

2 of the 3
responses
recieved

Assess the
Quotes

Sufficient
reserve
amount?

Yes

No

<

Request for
Quote recieved

Send
Quote

Quote
recieved

Quote
recieved

<

Request for
Quote recieved

Send
Quote
372 Business Process Model and Notation, v2.0

11.7.2 Swimlanes

Swimlanes, both Pools and Lanes, are not used in Choreographies. Pools are used exclusively in
Collaborations (see page 115). Participants, which can be associated to Pools, however, are used in the Participant
Bands of Choreography Tasks (see page 333) and Sub-Choreographies (see page 338). Pools can be used with
Choreography diagrams when in the context of a Collaboration diagram (see page 372).

Lanes are not used in Choreography diagrams since Lanes are sub-partitions of a Pool and Choreographies are
placed in between the Pools (if used in a Collaboration).

Figure 11.50 shows an example of a Choreography Process combined with Black Box Pools.

Figure 11.50 - An example of a Choreography Process combined with Black Box Pools

Figure 11.51 shows an example of a Choreography Process combined with Pools that contain Processes.

Dr. Office

Doctor
Request

 Handle
Symptoms

Handle
Prescription

Handle
Medicine

Here is your
medicine

Initiating
Message

The unshaded Participant
is the initiator of the Task

The names of the Participants are not
displayed in the Participant Bands since
the Pools will display those names

“Black Box” Pool

I want to see
the Doctor

Go see the
Doctor

I feel sick

Pickup your
medicine, then

leave

I need my
medicine

Patient
Business Process Model and Notation, v2.0 373

Figure 11.51 - An example of a Choreography Process combined with Pools that contain Processes

Choreography Task in Combined View

Sub-Choreography in Combined View

11.8 XML Schema for Choreography

Table 11.9 – Choreography XML schema

<xsd:element name="choreography" type="tChoreography" substitutionGroup="collaboration"/>
<xsd:complexType name="tChoreography">

<xsd:complexContent>
<xsd:extension base="tCollaboration">

<xsd:sequence>
<xsd:element ref="flowElement" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Doctor
Request

 Handle
Symptoms

Handle
Prescription

Handle
Medicine

Here is your
medicine

Orchestration
Process

I want to see
the Doctor

Go see the
Doctor

I feel sick

Pickup your
medicine, then

leave

I need my
medicine

Pa
tie

nt

Illness
Occurs

D
oc

to
r’s

 O
ffi

ce

Send Doctor
Request

Receive
Doctor

Request

Send
Appointment

Send
Medicine

Receive
Symptoms

Send
Prescription

Pickup

Receive
Medicine
Request

Receive
Appointment

Send
Symptoms

Receive
Prescription

Pickup

Send
Medicine
Request

Receive
Medicine

Pa
tie

nt
D

oc
to

r’s
 O

ffi
ce
374 Business Process Model and Notation, v2.0

Table 11.10 – GlobalChoreographyTask XML schema

<xsd:element name="globalChoreographyTask" type="tGlobalChoreographyTask"
substitutionGroup="choreography"/>

<xsd:complexType name="tGlobalChoreographyTask">
<xsd:complexContent>

<xsd:extension base="tChoreography">
<xsd:attribute name="initiatingParticipantRef" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 11.11 – ChoreographyActivity XML schema

<xsd:element name="choreographyActivity" type="tChoreographyActivity"/>
<xsd:complexType name="tChoreographyActivity" abstract="true">

<xsd:complexContent>
<xsd:extension base="tFlowNode">

<xsd:sequence>
<xsd:element name="participantRef" type="xsd:QName" minOccurs="2"

maxOccurs="unbounded"/>
<xsd:element name="correlationKey" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="initiatingParticipantRef" type="xsd:QName" use="required"/>
<xsd:attribute name="loopType" type="tChoreographyLoopType" default="None"/>

</xsd:extension>
</xsd:complexContent>

<xsd:complexType>
<xsd:simpleType name="tChoreographyLoopType">

<xsd:restriction base="xsd:string">
<xsd:enumeration value="None">
<xsd:enumeration value="Standard">
<xsd:enumeration value="MultiInstanceSequential">
<xsd:enumeration value="MultiInstanceParallel">

</xsd:restriction>
<xsd:simpleType>

Table 11.12 – ChoreographyTask XML schema

<xsd:element name="choreographyTask" type="tChoreographyTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tChoreographyTask">

<xsd:complexContent>
<xsd:extension base="tChoreographyActivity">

<xsd:sequence>
<xsd:element name="messageFlowRef" type="xsd:QName" minOccurs="1" maxOccurs="2"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
Business Process Model and Notation, v2.0 375

Table 11.13 – CallChoreography XML schema

<xsd:element name="callChoreography" type="tCallChoreography" substitutionGroup="flowElement"/>
<xsd:complexType name="tCallChoreography">

<xsd:complexContent>
<xsd:extension base="tChoreographyActivity">

<xsd:sequence>
<xsd:element ref="participantAssociation" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="calledChoreographyRef" type="xsd:QName" use="optional"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 11.14 – SubChoreography XML schema

<xsd:element name="subChoreography" type="tSubChoreography" substitutionGroup="flowElement"/>
<xsd:complexType name="tSubChoreography">

<xsd:complexContent>
<xsd:extension base="tChoreographyActivity">

<xsd:sequence>
<xsd:element ref="flowElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
376 Business Process Model and Notation, v2.0

12 BPMN Notation and Diagrams

12.1 BPMN Diagram Interchange (BPMN DI)

12.1.1 Scope

This chapter specifies the meta-model and schema for BPMN 2.0 Diagram Interchange (BPMN DI). The BPMN DI is
meant to facilitate interchange of BPMN diagrams between tools rather than being used for internal diagram
representation by the tools. The simplest interchange approach to ensure the unambiguous rendering of a BPMN diagram
was chosen for BPMN DI. As such, BPMN DI does not aim to preserve or interchange any "tool smarts" between the
source and target tools (e.g. layout smarts, efficient styling, etc.).

BPMN DI does not address or define the interchange of color information. The use of alternative colors in BPMN is non
normative. The meaning or semantic of colors might vary from tool to tool or, from user to user, potentially leading to
miss-interpretations.

BPMN DI does not ascertain that the BPMN diagram is syntactically or semantically correct.

12.1.2 Diagram Definition and Interchange

The BPMN DI meta-model, similar to the BPMN abstract syntax meta-model, is defined as a MOF-based meta-model.
As such, its instances can be serialized and interchanged using XMI. BPMN DI is also defined by an XML schema. Thus
its instances can also be serialized and interchanged using XML.

Both, BPMN DI meta-model and schema are harmonized with a draft version of the OMG Diagram Definition (DD)
standard. Annex B contains the relevant parts of the referenced DD specifications that were used as foundation for the
BPMN DI model and schema. The provided DD contains two main parts: the Diagram Commons (DC) and the Diagram
Interchange (DI). The DC defines common types like bounds and fonts, while the DI provides a framework for defining
domain specific diagram models. As a domain specific DI, BPMN DI defines a few new meta-model classes that derive
from the abstract classes from DI.

The focus of BPMN DI is the interchange of laid out shapes and edges that constitute a BPMN diagram. Each shape and
edge references a particular BPMN model element. The referenced BPMN model elements are all part of the actual
BPMN model. As such, BPMN DI is meant to only contain information that is neither present, nor derivable, from the
BPMN model when ever possible. Simply put, to render a BPMN diagram both the BPMN DI instance(s) and the
referenced BPMN model are REQUIRED.

From the BPMN DI perspective, a BPMN diagram is a particular snap shot of a BPMN model at a certain point in time.
Multiple BPMN diagrams can be exchanged referencing model elements from the same BPMN model. Each diagram
may provide an incomplete or partial depiction of the content of the BPMN model. BPMN DI does not ascertain that the
BPMN diagram is syntactically or semantically correct.

As described in Section •, a BPMN model package consists of one or more files. Each file may contain any number of
BPMN diagrams. The exporting tool is free to decide how many diagrams are exported and the importing tool is free to
decide if and how to present the contained diagrams to the user.
Business Process Model and Notation, v2.0 377

12.1.3 How to Read this Chapter

The normative BPMN 2.0 Diagram Interchange (BPMN DI) specification has three parts. Section 12.2 defines BPMN DI;
an instance of the DI meta-model provided at Annex B. Section 12.3 provides a library of the BPMN element depictions
and an unambiguous resolution between a referenced BPMN model element and its depiction. Finally, Section 12.4
provides examples to support the interpretation of the specification. Some BPMN diagram depictions along with their
XML BPMN DI serializations are provided.

12.2 BPMN Diagram Interchange (DI) Meta-model

12.2.1 Overview

The BPMN DI is an instance of the DI meta-model provided at Annex B. The basic concept of BPMN DI, as with DI in
general, is that serializing a diagram [BPMNDiagram] for interchange requires the specification of a collection of shapes
[BPMNShape] and edges [BPMNEdge] on a plane [BPMNPlane].

BPMNPlane, BPMNShape and BPMNEdge MUST reference exactly one abstract syntax BPMN element from the BPMN
model using the bpmnElement attribute. The only exception is for a Data Association connected to a Sequence Flow (See
Figure 10.68). This is a visual short cut that actually normalizes two Data Associations within the BPMN model. In this
case, the resolution is made from the BPMN DI attributes rather than the abstract syntax reference [bpmnElement] (See
Table 12.36 - Depiction Resolution for Connecting Objects).

The BPMN DI classes only define the visual properties used for depiction. All other properties that are REQUIRED for
the unambiguous depiction of the BPMN element are derived from the referenced bpmnElement.

Multiple depictions of a specific BPMN element in a single diagram is NOT allowed, except for Participants in a
choreography (i.e. Participant Bands). For example, it is not allowed to depict a Task twice in the same diagram, but it is
allowed to depict the same Task in two different diagrams.

BPMN diagrams may be an incomplete or partial depiction of the content of the BPMN model. Some BPMN elements
from a BPMN model may not be present in any of the diagram instances being interchanged.

BPMN DI does not provide for any containment concept. The BPMNPlane is an ordered collection of mixed
BPMNShape(s) and BPMNEdge(s). The order of the BPMNShape(s) and BPMNEdge(s) inside a BPMNPlane
determines their Z-order (i.e. what is in front of what). BPMNShape(s) and BPMNEdge(s) that are meant to be depicted
"on top" of other BPMNShape(s) and BPMNEdge(s) MUST appear after them in the BPMNPlane. Therefore, the
exporting tool MUST order all BPMNShape(s) and BPMNEdge(s) such that the desired depiction can be rendered.

12.2.2 Abstract Syntax

This section introduces the Abstract Syntax of BPMN DI. BPMN DI is an instance of the DI meta-model provided at
Annex B.
378 Business Process Model and Notation, v2.0

Figure 12.1 - BPMN Diagram

Figure 12.2 - BPMN Plane
Business Process Model and Notation, v2.0 379

Figure 12.3 - BPMN Shape

Figure 12.4 - BPMN Edge
380 Business Process Model and Notation, v2.0

Figure 12.5 - BPMN Label

12.2.3 Classifier Descriptions

BPMNDiagram [Class]

BPMNDiagram is a kind of diagram that depicts all or part of a BPMN model.

Description
BPMNDiagram represents a depiction of all or part of a BPMN model. It specializes DI::Diagram and redefines the root
element (the top most diagram element) to be of type BPMNPlane. A BPMN diagram can also own a collection of
BPMNStyle elements that are referenced by BPMNLabel elements in the diagram. These style elements represent the
unique appearance styles used in the diagram.

Abstract Syntax
• Figure 12.1 - BPMN Diagram

Generalizations
• DI::Diagram

Associations
• + plane : BPMNPlane [1] {redefines rootElement}

a BPMN plane element that is the container of all diagram elements in this diagram.

• + labelStyle : BPMNLabelStyle [*] {subsets style}

a collection of BPMN label styles that are owned by the diagram and referenced by label elements.

Table 12.1 – BPMNDiagram XML schema

<xsd:complexType name="BPMNDiagram">
<xsd:complexContent>

<xsd:extension base="di:Diagram">
<xsd:sequence>

<xsd:element ref="bpmndi:BPMNPlane"/>
<xsd:element ref="bpmndi:BPMNLabelStyle" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>
Business Process Model and Notation, v2.0 381

BPMNPlane [Class]

A BPMNPlane is the BPMNDiagram container of BPMNShape and BPMNEdge.

Description
A BPMNPlane specializes DI::Plane and redefines its model element reference to be of type (BPMN) BaseElement. A
BPMNPlane can only reference a BaseElement of the types: Process, SubProcess, AdHocSubProcess, Transaction,
Collaboration, Choreography or SubChoreography.

BPMNPlane element is always owned by a BPMNDiagram and represents the root diagram element of that diagram. The
plane represents a 2 dimensional surface with an origin at (0, 0) along the x and y axes with increasing coordinates to the
right and bottom. Only positive coordinates are allowed for diagram elements that are nested in a BPMNPlane. This
means that the union of all the nested elements' bounds is deemed to be located at the plane's origin point.

Abstract Syntax
• Figure 12.1 - BPMN Diagram

• Figure 12.2 - BPMN Plane

Generalizations
• DI::Plane

Associations
• + bpmnElement : BaseElement [0..1] {redefines modelElement}

a reference to either a Process, SubProcess, AdHocSubProcess, Transaction, Collaboration, Choreography or
SubChoreography in a BPMN model.

BPMNShape [Class]

BPMNShape is a kind of shape that can depict a BPMN model element.

Description
BPMNShape represents a depiction of a (typically a node) BPMN model element. It specializes DI::LabeledShape and
redefines its model element reference to be of type (BPMN) BaseElement, allowing it to reference an element from a
BPMN model.

Table 12.2 – BPMNPlane XML schema

<xsd:complexType name="BPMNPlane">
<xsd:complexContent>

<xsd:extension base="di:Plane">
<xsd:attribute name="bpmnElement" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
382 Business Process Model and Notation, v2.0

BPMNShape also contains an optional label of type BPMNLabel that can be nested in the shape when it has a visible
textual label with its own bounding box.

The shape also contains a number of normative notational options that can be specified for different types of BPMN
elements depicted by the shape. Those options, each represented by a separate property, and described below, allow for
recording the specific notational style desired for the shape.

All BPMNShape elements are owned directly by a BPMNPlane (that is the root element in a BPMNDiagram), i.e. shapes
are not nested within each other in the BPMN DI model although they may appear that way when depicted. The bounds
of a BPMNShape are always relative to that plane's origin point and are REQUIRED to be positive coordinates. Note that
the bounds' x and y coordinates are the position of the upper left corner of the shape (relative to the upper left corner of
the plane).

Abstract Syntax
• Figure 12.3 - BPMN Shape

• Figure 12.4 - BPMN Edge

Generalizations
• DI::LabeledShape

Attributes
• + isHorizontal : Boolean [0..1]

an optional attribute that should be used only for Pools and Lanes. It determines if it should be depicted horizontally
(true) or vertically (false).

• + isExpanded : Boolean [0..1]

an optional attribute that should be used only for SubProcess, AdHocSubProcess, Transaction, SubChoreographies ,
CallActivities and CallChoreographies. It determines if it should be depicted expanded (true) or collapsed (false).

• + isMarkerVisible : Boolean [0..1]

an optional attribute that should be used only for Exclusive Gateway. It determines if the marker should be depicted on
the shape (true) or not (false).

• + participantBandKind : ParticipantBandKind [0..1]

an optional attribute that should only be used for Participant Bands. If this attribute is present, it means that the
participant should be depicted as a Participant Band instead of as a Pool.

• + isMessageVisible : Boolean [0..1]

an optional attribute that should only be used for Participant Bands. It determines if an envelope decorator should be
depicted linked to the Participant Band.

• + choreographyActivityShape : BPMNShape [0..1]

an optional attribute that should only be used for Participant Bands. It is REQUIRED for a BPMNShape depicting a
Participant Band. This is REQUIRED in order to relate the Participant Band to the BPMNShape depicting the
Choreography Activity that this Participant Band is related to.
Business Process Model and Notation, v2.0 383

Associations
• + bpmnElement : BaseElement [0..1] {redefines modelElement}

a reference to a BPMN node element that this shape depicts. Note that although optional a bpmnElement must be
provided for a BPMNShape.

• + label : BPMNLabel [0..1] {subsets ownedLabel}

an optional label that is nested when the shape has a visible text label with its own bounding box.

ParticipantBandKind [Enumeration]

ParticipantBandKind defines the type of Participant Band to depict.

Description
Participant bands can be depicted in 3 ways:

-a top band is rectangular with rounded corners at the top

-a middle band is rectangular

-a bottom band is rectangular with rounded corners at the bottom

Participant bands can be depicted in 2 shadings:

-initiating (the band should not be shaded)

-non_initiating (the band should be shaded)

Abstract Syntax
• Figure 12.3 - BPMN Shape

Table 12.3 – BPMNShape XML schema

<xsd:complexType name="BPMNShape">
<xsd:complexContent>

<xsd:extension base="di:LabeledShape">
<xsd:sequence>

<xsd:element ref="bpmndi:BPMNLabel" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="bpmnElement" type="xsd:QName"/>
<xsd:attribute name="isHorizontal" type="xsd:boolean"/>
<xsd:attribute name="isExpanded" type="xsd:boolean"/>
<xsd:attribute name="isMarkerVisible" type="xsd:boolean"/>
<xsd:attribute name="isMessageVisible" type="xsd:boolean"/>
<xsd:attribute name="participantBandKind" type="bpmndi:ParticipantBandKind"/>
<xsd:attribute name="choreographyActivityShape" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
384 Business Process Model and Notation, v2.0

Literals
• top_initiating

the band should be depicted as a non shaded top band

• middle_initiating

the band should be depicted as a non shaded middle band

• bottom_initiating

the band should be depicted as a non shaded bottom band

• top_non_initiating

the band should be depicted as a shaded top band

• middle_ non_initiating

the band should be depicted as a shaded middle band

• bottom_ non_initiating

the band should be depicted as a shaded bottom band

BPMNEdge [Class]

BPMNEdge is a kind of edge that can depict a relationship between two BPMN model elements.

Description
BPMNEdge represents a depiction of a relationship between two (source and target) BPMN model elements. It specializes
DI::LabeledEdge and redefines its model element reference to be of type (BPMN) BaseElement, allowing it to reference
a relationship element from a BPMN model.

BPMNEdge also redefines its source and target references to be of type DiagramElement (either BPMNShape or
BPMNEdge).

The source or target definition should only be present if the edge is depicted between a different source or target than the
one referenced by the BPMN model element of the BPMNEdge. Only the different source or target is REQUIRED. Both
attributes should be present only if both are different. This is the case, for instance, if a Message Flow target is not
depicted in the current diagram because it is inside a black box Pool. The Message Flow could then define its target as
being the BPMNShape depicting the Pool to connect it to the boundary of that black box Pool.

BPMNEdge also contains an optional label of type BPMNLabel that can be nested in the edge when it has a visible
textual label with its own bounding box.

All BPMNEdge elements are owned directly by a BPMNPlane (that is the root element in a BPMNDiagram). The
waypoints of BPMNEdge are always relative to that plane's origin point and are REQUIRED to be positive coordinates.

Abstract Syntax
• Figure 12.4 - BPMN Edge
Business Process Model and Notation, v2.0 385

Generalizations
• DI::LabeledEdge

Associations
• + label : BPMNLabel [0..1] {subsets ownedLabel}

an optional label that is nested when the edge has a visible text label with its own bounding box.

• + bpmnElement : BaseElement [0..1] {redefines modelElement}

a reference to a connecting BPMN element that this edge depicts. Note that this reference is only optional for the
specific case of a Data Association connected to a Sequence Flow; in all other cases a referenced element must be
provided.

• + sourceElement : DiagramElement [0..1] {redefines source}

an optional reference to the edge's source element if it is different from the source inferred from the bpmnElement
association.

• + targetElement : DiagramElement [0..1] {redefines target}

an optional reference to the edge's target element if it is different from the target inferred from the bpmnElement
association.

• messageVisibleKind : MessageVisibleKind [0..1]

an optional attribute that should be used only for Message Flow. It determines if an envelope decorator should be
depicted and the kind of envelope to be depicted.

MessageVisibleKind [Enumeration]

MessageVisibleKind defines the type of envelope that is visible.

Description
MessageVisibleKind is applicable only to Participant Band and Message Flow.

Table 12.4 – BPMNEdge XML schema

<xsd:complexType name="BPMNEdge">
<xsd:complexContent>

<xsd:extension base="di:LabeledEdge">
<xsd:sequence>

<xsd:element ref="bpmndi:BPMNLabel" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="bpmnElement" type="xsd:QName" />
<xsd:attribute name="sourceElement" type="xsd:QName" />
<xsd:attribute name="targetElement" type="xsd:QName" />
<xsd:attribute name="messageVisibleKind" type="bpmndi:MessageVisibleKind" />

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
386 Business Process Model and Notation, v2.0

For Message Flow, the envelope should be positioned in the middle of the edge.

For Participant Band, the envelope should be positioned over (for top band) or under (for bottom band) and connected to
the band using an association. Note that only Choreography Task Participant Bands are allowed to show the envelope.
Middle bands being only used for a SubChoreography can thus not have envelope showing.

Abstract Syntax
• Figure 12.3 - BPMN Shape

Literals
• initiating

The envelope should be not be shaded

• non_inititating

The envelope should be shaded

BPMNLabel [Class]

BPMNLabel is a kind of label that depicts textual info about a BPMN element.

Description
BPMNLabel represents a depiction of some textual information about a BPMN element. It specializes DI::Label and
redefines its style reference to be of type BPMNLabelStyle, which contains information about the appearance of the label
(e.g. the chosen font). The referenced style is owned by the diagram that nests the label.

A BPMN label is not a top-level element but is always nested inside either a BPMNShape or a BPMNEdge. It does not
have its own reference to a BPMN element but rather inherits that reference (if any) from its parent shape or edge. The
textual info depicted by the label is derived from that referenced BPMN element.

The bounds of BPMNLabel are always relative to the containing plane's origin point. Note that the bounds' x and y
coordinates are the position of the upper left corner of the label (relative to the upper left corner of the plane).

Abstract Syntax
• Figure 12.3 - BPMN Shape

• Figure 12.4 - BPMN Edge

• Figure 12.5 - BPMN Label

Generalizations

• DI::Label

Associations
• + labelStyle : BPMNLabelStyle [0..1] {redefines style}

an optional reference to a label style (owned by the diagram) that gives the appearance options for the label. If not
specified, the style of the label can be assumed by a tool.
Business Process Model and Notation, v2.0 387

BPMNLabelStyle [Class]

BPMNLabelStyle is a kind of style that gives the appearance options for a BPMNLabel.

Description
BPMNLabelStyle represents the appearance options for elements of type BPMNLabel. It specializes DI::Style and
contains a description of a font that is used in depicting a BPMNLabel. One or more labels may reference the same
BPMNLabelStyle element, which must be owned by a BPMNDiagram.

Abstract Syntax
• Figure 12.1 - BPMN Diagram

• Figure 12.5 - BPMN Label

Generalizations
• DI::Style

Attributes
• + font : Font[1]

a font object that describes the properties of the font used for depicting the labels that reference this style.

Table 12.5 – BPMNLabel XML schema

<xsd:complexType name="BPMNLabel">
<xsd:complexContent>

<xsd:extension base="di:Label">
<xsd:attribute name="labelStyle" type="xsd:QName" />

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 12.6 – BPMNLabelStyle XML schema

<xsd:complexType name="BPMNLabelStyle">
<xsd:complexContent>

<xsd:extension base="di:Style">
<xsd:sequence>

<xsd:element ref="dc:Font"/>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
388 Business Process Model and Notation, v2.0

12.2.4 Complete BPMN DI XML Schema

Table 12.7 – Complete BPMN DI XML schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:bpmndi="http://www.omg.org/spec/
BPMN/20100524/DI" xmlns:dc="http://www.omg.org/spec/DD/20100524/DC" xmlns:di="http://www.omg.org/
spec/DD/20100524/DI" targetNamespace="http://www.omg.org/spec/BPMN/20100524/DI"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xsd:import namespace="http://www.omg.org/spec/DD/20100524/DC" schemaLocation="DC.xsd" />
<xsd:import namespace="http://www.omg.org/spec/DD/20100524/DI" schemaLocation="DI.xsd" />
<xsd:element name="BPMNDiagram" type="bpmndi:BPMNDiagram" />
<xsd:element name="BPMNPlane" type="bpmndi:BPMNPlane" />
<xsd:element name="BPMNLabelStyle" type="bpmndi:BPMNLabelStyle" />
<xsd:element name="BPMNShape" type="bpmndi:BPMNShape" substitutionGroup="di:DiagramElement" />
<xsd:element name="BPMNLabel" type="bpmndi:BPMNLabel" />
<xsd:element name="BPMNEdge" type="bpmndi:BPMNEdge" substitutionGroup="di:DiagramElement" />

<xsd:complexType name="BPMNDiagram">
<xsd:complexContent>

<xsd:extension base="di:Diagram">
<xsd:sequence>

<xsd:element ref="bpmndi:BPMNPlane" />
<xsd:element ref="bpmndi:BPMNLabelStyle" maxOccurs="unbounded" minOccurs="0" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:complexType name="BPMNPlane">
<xsd:complexContent>

<xsd:extension base="di:Plane">
<xsd:attribute name="bpmnElement" type="xsd:QName" />

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="BPMNEdge">
<xsd:complexContent>

<xsd:extension base="di:LabeledEdge">
<xsd:sequence>

<xsd:element ref="bpmndi:BPMNLabel" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="bpmnElement" type="xsd:QName" />
<xsd:attribute name="sourceElement" type="xsd:QName" />
<xsd:attribute name="targetElement" type="xsd:QName" />
<xsd:attribute name="messageVisibleKind" type="bpmndi:MessageVisibleKind" />

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
Business Process Model and Notation, v2.0 389

<xsd:complexType name="BPMNShape">
<xsd:complexContent>

<xsd:extension base="di:LabeledShape">
<xsd:sequence>

<xsd:element ref="bpmndi:BPMNLabel" minOccurs="0" />
</xsd:sequence>
<xsd:attribute name="bpmnElement" type="xsd:QName" />
<xsd:attribute name="isHorizontal" type="xsd:boolean" />
<xsd:attribute name="isExpanded" type="xsd:boolean" />
<xsd:attribute name="isMarkerVisible" type="xsd:boolean" />
<xsd:attribute name="isMessageVisible" type="xsd:boolean" />
<xsd:attribute name="participantBandKind" type="bpmndi:ParticipantBandKind" />
<xsd:attribute name="choreographyActivityShape" type="xsd:QName"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="BPMNLabel">
<xsd:complexContent>

<xsd:extension base="di:Label">
<xsd:attribute name="labelStyle" type="xsd:QName" />

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="BPMNLabelStyle">
<xsd:complexContent>

<xsd:extension base="di:Style">
<xsd:sequence>

<xsd:element ref="dc:Font" />
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="ParticipantBandKind">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="top_initiating" />
<xsd:enumeration value="middle_initiating" />
<xsd:enumeration value="bottom_initiating" />
<xsd:enumeration value="top_non_initiating" />
<xsd:enumeration value="middle_non_initiating" />
<xsd:enumeration value="bottom_non_initiating" />

</xsd:restriction>
</xsd:simpleType>

Table 12.7 – Complete BPMN DI XML schema
390 Business Process Model and Notation, v2.0

12.3 Notational Depiction Library and Abstract Element Resolutions
As a notation, BPMN specifies the depiction for each of the BPMN elements.

Serializing a BPMN diagram for interchange requires the specification of a collection of BPMNShape(s) (see page 382)
and BPMNEdge(s) (see page 385) on the BPMNPlane (see page 382) of the BPMNDiagram (see page 381). The
BPMNShape(s) and BPMNEdge(s) attributes must be populated in such a way as to allow the unambiguous rendering of
the BPMN diagram by the receiving party. More specifically, the BPMNShape(s) and BPMNEdge(s) must reference
BPMN model element [bpmnElement]. If no bpmnElement is referenced or if the reference is invalid, it is expected that
this shape or edge should not be depicted. The only exception is for a Data Association connected to a Sequence Flow
(See Figure 10.68). This is a visual short cut that actually normalizes two Data Associations within the BPMN model.
In this case, the resolution is made from the BPMN DI attributes rather than the abstract syntax reference [bpmnElement]
(See Table 12.36 - Depiction Resolution for Connecting Objects).

When rendering a BPMN diagram, the correct depiction of a BPMNShape or BPMNEdge depends mainly on the
referenced BPMN model element [bpmnElement] and its particular attributes and/or references.

The purpose of this section is to: provide a library of the BPMN element depictions, and to provide an unambiguous
resolution between the referenced BPMN model element [bpmnElement], BPMNShape or BPMNEdge and their
depiction. Depiction resolution tables are provided below for both BPMNShape (Section 12.3.2) and BPMNEdge
(Section 12.3.3).

12.3.1 Labels

Both BPMNShape and BPMNEdge may have labels (e.g., its name) placed inside the shape/edge, or above or below the
shape/edge, in any direction or location, depending on the preference of the modeler or modeling tool vendor.

Labels are optional for BPMNShape and BPMNEdge. When there is a label, the position of the label is specified by the
bounds of the BPMNLabel of the BPMNShape or BPMNEdge. Simply put, label visibility is defined by the presence of
the BPMNLabel element. The bounds of the BPMNLabel are optional and always relative to the containing
BPMNPlane's origin point (see page 387). The depiction resolution tables provided below exemplify default label
positions for BPMNShape kinds (Section 12.3.2) and BPMNEdge kinds (Section 12.3.3) if no BPMNLabel bounds are
provided.

<xsd:simpleType name="MessageVisibleKind">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="initiating" />
<xsd:enumeration value="non_initiating" />

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

Table 12.7 – Complete BPMN DI XML schema
Business Process Model and Notation, v2.0 391

The text of the label to be rendered is obtained by resolving the name attribute of the referenced BPMN model element
[bpmnElement] from the BPMNShape or BPMNEdge. In the particular case when the referenced BPMN model element
[bpmnElement] is a DataObjectReference , the text of the label to be rendered is obtained by concatenating the name
attribute of the referenced BPMN model element [bpmnElement] and the name attribute of the dataState attribute of this
DataObjectReference (see Figure 12.6 - Depicting a Label for a DataObjectReference with its state).

Figure 12.6 - Depicting a Label for a DataObjectReference with its state

The properties of the font to be used for rendering the label are optional and provided by the labelStyle of the
BPMNLabel. If not provided, the tool should use its default style to depict the label.

12.3.2 BPMNShape

Markers for Activities

Various BPMN Activities can be decorated with markers at the bottom center of the shape.

Loop Characteristic markers may need to be rendered when the referenced BPMN model element [bpmnElement] of a
BPMNShape is a Task, ServiceTask, SendTask, ReceiveTask, UserTask, ManualTask, BusinessRuleTask, ScriptTask,
SubProcess, AdHocSubProcess, Transaction or CallActivity. Note that Loop Characteristic Markers (Loop, Multi-Instance
- Parallel and Multi-Instance - Sequential) are mutually exclusive markers. That is, only one of them can be present on a
single shape. See Table 10.8 - Depiction Resolution for Loop Characteristic Markers. Note that the patterns of Markers
depicted in Table 10.8 also apply to Transaction and Call Activity which have different border depictions (i.e. double
border or thick border).

A Compensation marker may need to be rendered when the referenced BPMN model element [bpmnElement] of a
BPMNShape is a Task, ServiceTask, SendTask, ReceiveTask, UserTask, ManualTask, BusinessRuleTask, ScriptTask,
SubProcess, AdHocSubProcess, Transaction or CallActivity. See Table 12.9 - Depiction Resolution for Compensation
Marker

In the case of expandable kind of shapes, the markers (Compensation or Loop Characteristic) are placed to the left of the
+ on the shape.

The Compensation marker may be combined with a Loop Characteristic Marker. All the markers that are present must be
grouped and the whole group centered to the bottom of the shape. See Figure 12.7 - Combined Compensation and Loop
Characteristic Marker Example.

Note that in the case where the referenced BPMN model element [bpmnElement] of a BPMNShape is an
AdHocSubProcess, the shape has its tilde marker to the right of the + (See page 397).

Label
[State]
392 Business Process Model and Notation, v2.0

Table 12.8 – Depiction Resolution for Loop Characteristic Markers

Loop
Characteristic

Marker:
Depiction:

Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Standard Loop [Task, ServiceTask, SendTask,
ReceiveTask, UserTask,
ManualTask,
BusinessRuleTask,
ScriptTask, SubProcess,
AdHocSubProcess,
Transaction or CallActivity]
where loopCharacteristics is of
type
StandardLoopCharacteristics

None

Multi-Instance -
Parallel

[Task, ServiceTask, SendTask,
ReceiveTask, UserTask,
ManualTask,
BusinessRuleTask,
ScriptTask, SubProcess,
AdHocSubProcess,
Transaction or CallActivity]
where loopCharacteristics is of
type
MultipleLoopCharacteristics
with attribute isSequantial to
false

None

Label

Label

Label

Label

Label

Label
Business Process Model and Notation, v2.0 393

Multi-Instance -
Sequential

[Task, ServiceTask, SendTask,
ReceiveTask, UserTask,
ManualTask,
BusinessRuleTask,
ScriptTask, SubProcess,
AdHocSubProcess,
Transaction or CallActivity]
where loopCharacteristics is of
type
MultipleLoopCharacteristics
with attribute isSequantial to
true

None

Table 12.9 – Depiction Resolution for Compensation Marker

Compensation
Marker: Depiction:

Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Compensation [Task, ServiceTask, SendTask,
ReceiveTask, UserTask,
ManualTask,
BusinessRuleTask,
ScriptTask, SubProcess,
AdHocSubProcess,
Transaction or CallActivity]
where isForCompensation is
true

None

Table 12.8 – Depiction Resolution for Loop Characteristic Markers

Label

Label

Label

Label

Label

Label
394 Business Process Model and Notation, v2.0

Figure 12.7 - Combined Compensation and Loop Characteristic Marker Example

Tasks [BPMNShape]

There are different types of Tasks identified within BPMN. The specific Task type depiction is obtained by placing a
Task type maker in the upper left corner of the Task shape. A Task which is no further specified is called an Abstract
Task.

Tasks (Abstract, Service, Send, Receive, User, Manual, Business Rule or Script) can also have Compensation and/or Loop
Characteristic markers at the bottom center of the shape as defined above (see page 392).

Table 12.10 – Depiction Resolution for Tasks

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Abstract Task Task None

Service Task ServiceTask None

Send Task SendTask None

Receive Task ReceiveTask None

User Task UserTask None

LabelLabel

Label

Label

Label

Label

Label

Label
Business Process Model and Notation, v2.0 395

Collapsed Sub-Processes [BPMNShape]

Collapsed Sub-Processes can also have Compensation and/or Loop Characteristic markers at the bottom center of the
shape as defined above (see page 392).

Expanded Sub-Processes [BPMNShape]

Expanded Sub-Processes can also have Compensation and/or Loop Characteristic markers at the bottom center of the
shape as defined above (see page 392).

Manual Task ManualTask None

Business Rule Task BusinessRuleTask None

Script Task ScriptTask None

Table 12.11 – Depiction Resolution for Collapsed Sub-Processes

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is false

None or
isExpanded is
false

Table 12.10 – Depiction Resolution for Tasks

Label

Label

Label

Label
396 Business Process Model and Notation, v2.0

Collapsed Ad Hoc Sub-Processes [BPMNShape]

Collapsed Ad Hoc Sub-Processes can also have a Compensation marker at the bottom center of the shape as defined
above (see page 392).

Expanded Ad Hoc Sub-Processes [BPMNShape]

 Expanded Ad Hoc Sub-Processes can also have a Compensation marker at the bottom center of the shape as defined
above (see page 392).

Table 12.12 – Depiction Resolution for Expanded Sub-Processes

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Sub-Process -
Expanded

SubProcess where
triggeredByEvent is false

isExpanded is
true

Table 12.13 – Depiction Resolution for Collapsed Ad Hoc Sub-Processes

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Ad Hoc Sub-Process
- Collapsed

AdHocSubProcess None or
isExpanded is
false

Label

~
Label
Business Process Model and Notation, v2.0 397

Collapsed Transactions [BPMNShape]

Collapsed Transactions can also have Compensation and/or Loop Characteristic markers at the bottom center of the shape
as defined above (see page 392).

Expanded Transactions [BPMNShape]

Expanded Transactions can also have Compensation and/or Loop Characteristic markers at the bottom center of the shape
as defined above (see page 392).

Table 12.14 – Depiction Resolution for Expanded Ad Hoc Sub-Processes

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Ad Hoc Sub-Process
- Expanded

AdHocSubProcess None or
isExpanded is
true

Table 12.15 – Depiction Resolution for Collapsed Transactions

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Transaction -
Collapsed

Transaction None or
isExpanded is
false

~

Label

Label
398 Business Process Model and Notation, v2.0

Collapsed Event Sub-Processes [BPMNShape]

Table 12.16 – Depiction Resolution for Tasks

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Transaction -
Expanded

Transaction None or
isExpanded is
true

Table 12.17 – Depiction Resolution for Collapsed Event Sub-Processes

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Non-interrupting
Message - Event
Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has one EventDefintion of type
MessageEventDefintion and
isInterrupting is false

None or
isExpanded is
false

Interrupting -
Message - Event
Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has one EventDefintion of type
MessageEventDefintion and
isInterrupting is true

None or
isExpanded is
false

Non-interrupting -
Timer - Event Sub-
Process - Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has one EventDefintion of type
TimerEventDefintion and
isInterrupting is false

None or
isExpanded is
false

Label

Label

Label

Label
Business Process Model and Notation, v2.0 399

Interrupting - Timer -
Event Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has one EventDefintion of type
TimerEventDefintion and
isInterrupting is true

None or
isExpanded is
false

Non-interrupting -
Conditional - Event
Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has one EventDefintion of type
ConditionalEventDefintion and
isInterrupting is false

None or
isExpanded is
false

Interrupting -
Conditional - Event
Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has one EventDefintion of type
ConditionalEventDefintion and
isInterrupting is true

None or
isExpanded is
false

Non-interrupting -
Signal - Event Sub-
Process - Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has one EventDefintion of type
SignalEventDefintion and
isInterrupting is false

None or
isExpanded is
false

Interrupting - Signal
- Event Sub-
Process - Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has one EventDefintion of type
SignalEventDefintion and
isInterrupting is true

None or
isExpanded is
false

Non-interrupting-
Multiple - Event
Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has multiple EventDefintions
and isInterrupting is false

None or
isExpanded is
false

Interrupting -
Multiple - Event
Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has multiple EventDefintions
and isInterrupting is true

None or
isExpanded is
false

Table 12.17 – Depiction Resolution for Collapsed Event Sub-Processes

Label

Label

Label

Label

Label

Label

Label
400 Business Process Model and Notation, v2.0

Non-interrupting -
Parallel Multiple -
Event Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has multiple EventDefintions
and isInterrupting is false and
isParallelMultiple is true

None or
isExpanded is
false

Interrupting - Parallel
Multiple - Event Sub-
Process - Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has multiple EventDefintions
and isInterrupting is true and
isParallelMultiple is true

None or
isExpanded is
false

Non-interrupting -
Escalation - Event
Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has one EventDefintion of type
EscalationEventDefintion and
isInterrupting is false

None or
isExpanded is
false

Interrupting -
Escalation Event
Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has one EventDefintion of type
EscalationEventDefintion and
isInterrupting is true

None or
isExpanded is
false

Interrupting - Error -
Event Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has one EventDefintion of type
ErrorEventDefintion and
isInterrupting is true

None or
isExpanded is
false

Interrupting -
Compensation -
Event Sub-Process -
Collapsed

SubProcess where
triggeredByEvent is true and
the one-and-only start event
has one EventDefintion of type
CompensationEventDefintion
and isInterrupting is true

None or
isExpanded is
false

Table 12.17 – Depiction Resolution for Collapsed Event Sub-Processes

Label

Label

Label

Label

Label

Label
Business Process Model and Notation, v2.0 401

Expanded Event Sub-Processes [BPMNShape]

Call Activities (Calling a Global Task) [BPMNShape]

A Call Activity (Calling a Global Task) must display the Task type marker of the Global Task it calls.

Call Activities (Calling a Global Task) can also have Compensation and/or Loop Characteristic markers at the bottom
center of the shape as defined above (see page 392).

Table 12.18 – Depiction Resolution for Expanded Event Sub-Processes

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Event Sub-Process
- Expanded

SubProcess where
triggeredByEvent is true

isExpanded is
true

Table 12.19 – Depiction Resolution for Call Activities (Calling a Global Task)

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Call Activity CallActivity where
calledElement is unspecified
or of type GlobalTask

None

User Call Activity CallActivity where
calledElement is of type
GlobalUserTask

None

Manual Call Activity CallActivity where
calledElement is of type
GlobalManualTask

None

Label

Label

Label

Label
402 Business Process Model and Notation, v2.0

Collapsed Call Activities (Calling a Process) [BPMNShape]

Expanded Call Activities (Calling a Process) [BPMNShape]

Data [BPMNShape]

Data Inputs and Data Outputs rendering are optional and only allowed for Processes.

Business Rule Call
Activity

CallActivity where
calledElement is of type
GlobalBusinessRuleTask

None

Script Call Activity CallActivity where
calledElement is of type
GlobalScriptTask

None

Table 12.20 – Depiction Resolution for Collapsed Call Activities (Calling a Process)

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Call Activity -
Collapsed

CallActivity where
calledElement is of type
Process

None or
isExpanded is
false

Table 12.21 – Depiction Resolution for Expanded Call Activities (Calling a Process)

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Call Activity -
Expanded

CallActivity where
calledElement is of type
Process

None or
isExpanded is
true

Table 12.19 – Depiction Resolution for Call Activities (Calling a Global Task)

Label

Label

Label

Label
Business Process Model and Notation, v2.0 403

Table 12.22 – Depiction Resolution for Data

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Data Object DataObjectReference where
dataObjectRef unspecified or
is pointing to a DataObject
where isCollection is false

None

Data Object
Collection

DataObjectReference where
dataObjectRef is pointing to a
DataObject where isCollection
is true

None

Data Input DataInput where isCollection
is false

None

Data Input Collection DataInput where isCollection
is true

None

Data Output DataOutput where isCollection
is false

None

Data Output
Collection

DataOutput where isCollection
is true

None

Data Store DataStoreReference None

Label
404 Business Process Model and Notation, v2.0

Events [BPMNShape]

Table 12.23 – Depiction Resolution for Events

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

None Start Event StartEvent with no
EventDefinition

None

Interrupting -
Message Start Event

StartEvent with one
EventDefinition of type
MessageEventDefinition and
isInterrupting is true

None

Non-interrupting -
Message Start Event

StartEvent with one
EventDefinition of type
MessageEventDefinition and
isInterrupting is false

None

Interrupting - Timer
Start Event

StartEvent with one
EventDefinition of type
TimerEventDefinition and
isInterrupting is true

None

Non-interrupting -
Timer Start Event

StartEvent with one
EventDefinition of type
TimerEventDefinition and
isInterrupting is false

None

Interrupting -
Conditional Start
Event

StartEvent with one
EventDefinition of type
ConditionalEventDefinition
and isInterrupting is true

None

Non-interrupting -
Conditional Start
Event

StartEvent with one
EventDefinition of type
ConditionalEventDefinition
and isInterrupting is false

None

Interrupting Signal
Start Event

StartEvent One
EventDefinition of type
SignalEventDefinition and
isInterrupting is true

None

Label

Label

Label

Label
Business Process Model and Notation, v2.0 405

Non-interrupting -
Signal Start Event

StartEvent with one
EventDefinition of type
SignalEventDefinition and
isInterrupting is false

None

Interrupting Multiple
Start Event

StartEvent with more than one
EventDefinition,
parallelMultiple is false and
isInterrupting is true

None

Non-interrupting
Multiple Start Event

StartEvent with more than one
EventDefinition,
parallelMultiple is false and
isInterrupting is false

None

Interrupting - Parallel
Multiple Start Event

StartEvent with more than one
EventDefinition,
parallelMultiple is true and
isInterrupting is true

None

Non-interrupting -
Parallel Multiple
Start Event

StartEvent with more than one
EventDefinition,
parallelMultiple is true and
isInterrupting is false

None

Interrupting -
Escalation Start
Event

StartEvent with one
EventDefinition of type
EscalationEventDefinition and
isInterrupting is true

None

Non-interrupting -
Escalation Start
Event

StartEvent with one
EventDefinition of type
EscalationEventDefinition and
isInterrupting is false

None

Interrupting - Error
Start Event

StartEvent with one
EventDefinition of type
ErrorEventDefinition

None

Interrupting -
Compensation Start
Event

StartEvent with one
EventDefinition of type
CompensationEventDefinition

None

Interrupting - None
Intermediate Event

IntermediateThrowEvent with
no EventDefinition

None

Table 12.23 – Depiction Resolution for Events

Label
406 Business Process Model and Notation, v2.0

Catch - Message
Intermediate Event

IntermediateCatchEvent with
one EventDefinition of type
MessageEventDefinition

None

Interrupting -
Boundary - Catch -
Message
Intermediate Event

BoundaryEvent with one
EventDefinition of type
MessageEventDefinition and
cancelActivity is true

None

Non-interrupting -
Boundary - Catch -
Message
Intermediate Event

BoundaryEvent with one
EventDefinition of type
MessageEventDefinition and
cancelActivity is false

None

Throw - Message
Intermediate Event

IntermediateThrowEvent with
one EventDefinition of type
MessageEventDefinition

None

Timer Intermediate
Event

IntermediateCatchEvent with
one EventDefinition of type
TimerEventDefinition

None

Interrupting -
Boundary - Timer
Intermediate Event

BoundaryEvent with one
EventDefinition of type
TimerEventDefinition and
cancelActivity is true

None

Non-interrupting
Boundary - Timer
Intermediate Event

IntermediateCatchEvent with
one EventDefinition of type
TimerEventDefinition and
cancelActivity is false

None

Conditional
Intermediate Event

IntermediateCatchEvent with
one EventDefinition of type
ConditionalEventDefinition

None

Interrupting -
Boundary -
Conditional
Intermediate Event

BoundaryEvent with one
EventDefinition of type
ConditionalEventDefinition
and cancelActivity is true

None

Non-interrupting -
Boundary -
Conditional
 Intermediate Event

BoundaryEvent with one
EventDefinition of type
ConditionalEventDefinition
and cancelActivity is false

None

Table 12.23 – Depiction Resolution for Events
Business Process Model and Notation, v2.0 407

Catch - Signal
Intermediate Event

IntermediateCatchEvent with
one EventDefinition of type
MessageEventDefinition

None

Interrupting -
Boundary - Catch -
Signal Intermediate
Event

BoundaryEvent with one
EventDefinition of type
SignalEventDefinition and
cancelActivity is true

None

Non-interrupting-
Boundary - Catch -
Signal Intermediate
Event

BoundaryEvent with one
EventDefinition of type
SignalEventDefinition and
cancelActivity is false

None

Interrupting -
Boundary - Throw -
Signal Intermediate
Event

IntermediateThrowEvent with
one EventDefinition of type
SignalEventDefinition

None

Catch - Multiple
Intermediate Event

IntermediateCatchEvent with
more than one EventDefinition
and parallelMultiple is false

None

Interrupting -
Boundary - Catch -
Multiple
Intermediate Event

BoundaryEvent with more
than one EventDefinition,
parallelMultiple is false and
cancelActivity is true

None

Non-interrupting
Boundary - Catch -
Multiple
Intermediate Event

BoundaryEvent with more
than one EventDefinition,
parallelMultiple is false and
cancelActivity is false

None

Throw - Multiple
Intermediate Event

IntermediateThrowEvent with
more than one EventDefinition
and parallelMultiple is false

None

Catch - Parallel
Multiple
Intermediate Event

IntermediateCatchEvent with
more than one EventDefinition
and parallelMultiple is true

None

Table 12.23 – Depiction Resolution for Events
408 Business Process Model and Notation, v2.0

Interrupting -
Boundary - Catch -
Parallel Multiple
Intermediate Event

BoundaryEvent with more
than one EventDefinition,
parallelMultiple is true and
cancelActivity is true

None

Non-interrupting
Boundary - Catch -
Parallel Multiple
Intermediate Event

BoundaryEvent with more
than one EventDefinition,
parallelMultiple is true and
cancelActivity is false

None

Catch -Escalation
Intermediate Event

IntermediateCatchEvent with
one EventDefinition of type
EscalationEventDefinition

None

Interrupting -
Boundary - Catch -
Escalation
Intermediate Event

BoundaryEvent with one
EventDefinition of type
EscalationEventDefinition and
cancelActivity is true

None

Non-interrupting -
Boundary - Catch -
Escalation
Intermediate Event

BoundaryEvent with one
EventDefinition of type
EscalationEventDefinition and
cancelActivity is false

None

Throw - Escalation
Intermediate Event

IntermediateThrowEvent with
one EventDefinition of type
EscalationEventDefinition

None

Boundary - Catch -
Error Intermediate
Event

BoundaryEvent with one
EventDefinition of type
ErrorEventDefinition

None

Boundary - Catch -
Compensation
 Intermediate Event

BoundaryEvent with one
EventDefinition of type
CompensateEventDefinition

None

Throw -
Compensation
Intermediate Event

IntermediateThrowEvent with
one EventDefinition of type
CompensateEventDefinition

None

Catch - Link Inter-
mediate Event

IntermediateCatchEvent with
one EventDefinition of type
LinkEventDefinition\

None

Table 12.23 – Depiction Resolution for Events
Business Process Model and Notation, v2.0 409

Throw - Link
Intermediate Event

IntermediateThrowEvent with
one EventDefinition of type
LinkEventDefinition

None

Boundary - Catch -
Cancel Intermediate
Event

BoundaryEvent with one
EventDefinition of type
CancelEventDefinition

None

None End Event EndEvent with no
EventDefinition

None

Message End Event EndEvent with one
EventDefinition of type
MessageEventDefiniton

None

Signal End Event EndEvent with one
EventDefinition of type
SignalEventDefiniton

None

Multiple End Event EndEvent with more than one
EventDefinition

None

Escalation End
Event

EndEvent with one
EventDefinition of type
EscalationEventDefiniton

None

Error End Event EndEvent with one
EventDefinition of type
ErrorEventDefiniton

None

Compensation End
Event

EndEvent with one
EventDefinition of type
CompensateEventDefiniton

None

Cancel End Event EndEvent with one
EventDefinition of type
CancelEventDefiniton

None

Table 12.23 – Depiction Resolution for Events
410 Business Process Model and Notation, v2.0

Gateways [BPMNShape]

Terminate End Event EndEvent with one
EventDefinition of type
TerminateEventDefiniton

None

Table 12.24 – Depiction Resolution for Gateways

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Exclusive Gateway -
without Marker

ExclusiveGateway None or
isMarkerVisible is
false

Exclusive Gateway -
with Marker

ExclusiveGateway isMarkerVisible is
true

Inclusive Gateway InclusiveGateway None

Parallel Gateway ParallelGateway None

Complex Gateway ComplexGateway None

Event-Based
Gateway

EventBasedGateway where
instantiate is false

None

Table 12.23 – Depiction Resolution for Events
Business Process Model and Notation, v2.0 411

Artifacts [BPMNShape]

Event-Based
Gateway to Start a
Process

EventBasedGateway where
instantiate is true and
eventGatewayType is
exclusive

None

Parallel Event-
Based Gateway to
Start a Process

EventBasedGateway where
instantiate is true and
eventGatewayType is parallel

Table 12.25 – Depiction Resolution for Artifacts

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Group Group None

Text Annotation Text Annotation None

Table 12.24 – Depiction Resolution for Gateways

 Label

Text
412 Business Process Model and Notation, v2.0

Lanes [BPMNShape]

Pools [BPMNShape]

Table 12.26 – Depiction Resolution for Lanes

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Horizontal Lane Lane None or
isVertical is
false

Vertical Lane Lane isVertical is
true

Table 12.27 – Depiction Resolution for Pools

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Horizontal Pool Participant where
ParticipantMultiplicity is
unspecified or set and its
maximum attribute is 1

None or
isVertical is
false

Horizontal Pool -
with Multi Instance
Participant

Participant where
ParticipantMultiplicity is set
and its maximum attribute is >
1.

None or
isVertical is
false

Vertical Pool Partcipant where
ParticipantMultiplicity is
unspecified or set and its
maximum attribute is 1

isVertical is
true

La
be

l

 Label

La
be

l

La
be

l

 Label
Business Process Model and Notation, v2.0 413

Choreography Tasks [BPMNShape]

While the depictions provided in Table 12.28 - Depiction Resolution for Choreography Tasks contain Participant Bands,
Participant Bands are separate shapes that need to be separately defined. Individual Participant Bands are rendered by
separate BPMNShape(s), each Participant Band referencing the corresponding participant. See page 419.

Vertical Pool - with
Multi Instance
Participant

Participant where
ParticipantMultiplicity is set
and its maximum attribute is >
1.

isVertical is
true

Table 12.28 – Depiction Resolution for Choreography Tasks

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Choreography Task ChoreographyTask where
loopType is None

None

Choreography Task -
Loop

ChoreographyTask where
loopType is Standard

None

Choreography Task -
Sequential Multi
Instance

ChoreographyTask where
loopType is
MultiInstanceSequential

None

Table 12.27 – Depiction Resolution for Pools

 Label
414 Business Process Model and Notation, v2.0

Collapsed Sub-Choreographies [BPMNShape]

While the depictions provided in Table 12.29 - Depiction Resolution for Collapsed Sub-Choreographies contain
Participant Bands, Participant Bands are separate shapes that need to be separately defined. Individual Participant Bands
are rendered by separate BPMNShape(s), each Participant Band referencing the corresponding participant. See page 419.

Choreography Task -
Parallel Multi
Instance

ChoreographyTask where
loopType is
MultiInstanceParallel

None

Table 12.29 – Depiction Resolution for Sub-Choreographies (Collapsed)

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Sub-Choreography -
Collapsed

SubChoreography where
loopType is None

None or
isExpanded is
false

Sub-Choreography -
Loop - Collapsed

SubChoreography where
loopType is Standard

None or
isExpanded is
false

Sub-Choreography -
Sequential Multi
Instance - Collapsed

SubChoreography where
loopType is
MultiInstanceSequential

None or
isExpanded is
false

Table 12.28 – Depiction Resolution for Choreography Tasks

Label

Label

Label

Label

Label

Label
Business Process Model and Notation, v2.0 415

Expanded Sub-Choreographies [BPMNShape]

While the depiction provided in Table 12.30 - Depiction Resolution for Expanded Sub-Choreographies contains
Participant Bands, Participant Bands are separate shapes that need to be separately defined. Individual Participant Bands
are rendered by separate BPMNShape(s), each Participant Band referencing the corresponding participant. See page 419.

An expanded Sub Choreography has a loop type that is depicted exactly like the collapsed version in Table 12.29 -
Depiction Resolution for Collapsed Sub-Choreographies above.

Call Choreographies (Calling a Global Choreography Task) [BPMNShape]

While the depictions provided in Table 12.31 - Depiction Resolution for Call Choreographies (Calling a Global
Choreography Task) contain Participant Bands, Participant Bands are separate shapes that need to be separately defined.
Individual Participant Bands are rendered by separate BPMNShape(s), each Participant Band referencing the
corresponding participant. See page 419.

Sub-Choreography -
Parallel Multi
Instance - Collapsed

SubChoreography where
loopType is
MultiInstanceParallel

None or
isExpanded is
false

Table 12.30 – Depiction Resolution for Sub-Choreographies (Expanded)

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Sub-Choreography -
Expanded

SubChoreography isExpanded is
true

Table 12.29 – Depiction Resolution for Sub-Choreographies (Collapsed)

Label

Label

Label
416 Business Process Model and Notation, v2.0

Collapsed Call Choreographies (Calling a Choreography) [BPMNShape]

While the depictions provided in Table 12.32 - Depiction Resolution for Collapsed Call Choreography (Calling a
Choreography) contain Participant Bands, Participant Bands are separate shapes that need to be separately defined.
Individual Participant Bands are rendered by separate BPMNShape(s), each Participant Band referencing the
corresponding participant. See page 419.

Table 12.31 – Depiction Resolution for Call Choreographies (Calling a Global Choreography Task)

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Call Choreography
Activity calling a
Global
Choreography Task

CallChoreography where
calledChoreographyRef is
unspecified or of type
GlobalChoreographyTask and
loopType is None

None

Call Choreography
Activity calling a
Global
Choreography Task -
Loop

CallChoreography where
calledChoreographyRef is of
type GlobalChoreographyTask
and loopType is Standard

None

Call Choreography
Activity calling a
Global
Choreography Task -
Sequential Multi
Instance

CallChoreography where
calledChoreographyRef is of
type GlobalChoreographyTask
and loopType is
MultiInstanceSequential

None

Call Choreography
Activity calling a
Global
Choreography Task -
Paralle lMulti
Instance

CallChoreography where
calledChoreographyRef is of
type GlobalChoreographyTask
and loopType is
MultiInstanceParallel

None
Business Process Model and Notation, v2.0 417

Expanded Call Choreographies (Calling a Choreography) [BPMNShape]
While the depiction provided in Table 12.33 - Depiction Resolution for Expanded Call Choreographies (Calling a
Choreography) contains Participant Bands, Participant Bands are separate shapes that need to be separately defined.
Individual Participant Bands are rendered by separate BPMNShape(s), each Participant Band referencing the
corresponding participant. See page 419.

An expanded Use Sub Choreography has a loop type that is depicted exactly like the collapsed version in Table 12.32 -
Depiction Resolution for Collapsed CallChoreography (Calling a Choreography) above.

Table 12.32 – Depiction Resolution for Collapsed Call Choreographies (Calling a Choreography)

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Call Choreography
Activity calling a
Choreography

CallChoreography where
calledChoreographyRef is of
type Choreography and
loopType is None

None or
isExpanded is
false

Call Choreography
Activity calling a
Choreography -
Loop

CallChoreography where
calledChoreographyRef is of
type Choreography and
loopType is Standard

None or
isExpanded is
false

Call Choreography
Activity calling a
Choreography -
Sequential Multi
Instance

CallChoreography where
calledChoreographyRef is of
type Choreography and
loopType is
MultiInstanceSequential

None or
isExpanded is
false

Call Choreography
Activity calling a
Choreography -
Parallel Multi
Instance

CallChoreography where
calledChoreographyRef is of
type Choreography and
loopType is
MultiInstanceParallel

None or
isExpanded is
false

Label

Label

Label

Label

Label

Label

Label

Label

Label

Label

Label

Label
418 Business Process Model and Notation, v2.0

Choreography Participant Bands [BPMNShape]

Participant Bands (used in Choreography shapes) are separate shapes that need to be separately defined. Individual
Participant Bands are rendered by separate BPMNShape. Each Participant Band referencing the corresponding participant.

Note that for Participant Bands with the envelope decorator, the envelope decorator should be depicted close to the band,
vertically centered with the band, and linked to the band using a dotted line. The name of the message may be used as a
label for the envelop decorator. BPMN DI does not provide an interchange of the bounds of the label of the envelope
decorator.

The bounds of the BPMNShape representing the band do not include the envelope decorator. The envelope decorator is
therefore outside of the BPMNShape bounds. BPMN DI does not provide an interchange of the bounds of the envelope
decorator.

Table 12.33 – Depiction Resolution for Expanded Call Choreographies (Calling a Choreography)

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Call Choreography
Activity calling a
Choreography

CallChoreography where
calledChoreographyRef is of
type Choreography

isExpanded is
true

Table 12.34 – Depiction Resolution for Choreography Participant Bands

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Initiating Participant
- Top

Participant where
participantMultiplicity is
unspecified or is set and its
maximum attribute is 1

participantBandKind
is top_initiating and
isMessageVisible is
unspecified or false

Initiating Participant
- Top with Decorator

Participant where
participantMultiplicity is
unspecified or set and its
maximum attribute is 1

participantBandKind
is top_initiating and
isMessageVisible is
true
Business Process Model and Notation, v2.0 419

Initiating - Additional
Participant

Participant where
participantMultiplicity is
unspecified or set and its
maximum attribute is 1

participantBandKind
is middle_initiating

Initiating Participant
- Bottom

Participant where
participantMultiplicity is
unspecified or set and its
maximum attribute is 1

participantBandKind
is bottom_initiating
and
isMessageVisible is
unspecified or false

Initiating Participant
- Bottom with
Decorator

Participant where
participantMultiplicity is
unspecified or set and its
maximum attribute is 1

participantBandKind
is bottom_initiating
and
isMessageVisible is
true

Initiating - Top -
Multi-Instance
Participant

Participant where
participantMultiplicity is
unspecified or set and its
maximum attribute is > 1.

participantBandKind
is top_initiating and
isMessageVisible is
unspecified or false

Initiating - Top -
Multi-Instance
Participant with
Decorator

Participant where
participantMultiplicity is
unspecified or set and its
maximum attribute is > 1.

participantBandKind
is top_initiating and
isMessageVisible is
true

Initiating - Additional
Multi-Instance
Participant

Participant where
participantMultiplicity is
unspecified or set and its
maximum attribute is > 1.

participantBandKind
is middle_initiating

Initiating - Bottom -
Multi-Instance
Participant

Participant where
participantMultiplicity is
unspecified or set and its
maximum attribute is > 1.

participantBandKind
is bottom_initiating
and
isMessageVisible is
unspecified or false

Initiating - Bottom -
Multi-Instance
Participant with
Decorator

Participant where
participantMultiplicity is
unspecified or set and its
maximum attribute is > 1.

participantBandKind
is bottom_initiating
and
isMessageVisible is
true

Table 12.34 – Depiction Resolution for Choreography Participant Bands
420 Business Process Model and Notation, v2.0

Non Initiating
Participant - Top

Participant where
participantMultiplicity is set
and its maximum attribute is 1

participantBandKind
is top_non_initiating
and
isMessageVisible is
unspecified or false

Non Initiating
Participant - Top
with Decorator

Participant where
participantMultiplicity is set
and its maximum attribute is 1

participantBandKind
is top_non_initiating
and
isMessageVisible is
true

Non Initiating -
Additional Partici-
pant

Participant where
participantMultiplicity is set
and its maximum attribute is 1

participantBandKind
is
middle_non_initiating

Non Initiating
Participant - Bottom

Participant where
participantMultiplicity is set
and its maximum attribute is 1

participantBandKind
is
bottom_non_initiating
and
isMessageVisible is
unspecified or false

Non Initiating
Participant - Bottom
with Decorator

Participant where
participantMultiplicity is set
and its maximum attribute is 1

participantBandKind
is
bottom_non_initiating
and
isMessageVisible is
true

Non Initiating - Top -
Multi-Instance
Participant

Participant where
participantMultiplicity is set
and its maximum attribute is >
1.

participantBandKind
is top_non_initiating
and
isMessageVisible is
unspecified or false

Non Initiating - Top -
Multi-Instance
Participant with
Decorator

Participant where
ParticipantMultiplicity is set
and its maximum attribute is >
1.

participantBandKind
is top_non_initiating
and
isMessageVisible is
true

Non Initiating -
Additional Multi-
Instance Participant

Participant where
participantMultiplicity is set
and its maximum attribute is >
1.

participantBandKind
is
middle_non_initiating

Table 12.34 – Depiction Resolution for Choreography Participant Bands
Business Process Model and Notation, v2.0 421

Conversations [BPMNShape]

Non Initiating -
Bottom - Multi-
Instance Participant

Participant where
ParticipantMultiplicity is set
and its maximum attribute is >
1.

participantBandKind
is
bottom_non_initiating
and
isMessageVisible is
unspecified or false

Non Initiating -
Bottom - Multi-
Instance Participant
with Decorator

Participant where
participantMultiplicity is set
and its maximum attribute is >
1.

participantBandKind
is
bottom_non_initiating
and
isMessageVisible is
true

Table 12.35 – Depiction Resolution for Conversations

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Conversation Conversation None

Sub-Conversation SubConversation None

Call Conversation CallConversation where
calledCollaborationRef is a
GlobalConversation

None

Call Conversation CallConversation where
calledCollaborationRef is a
Collaboration

None

Table 12.34 – Depiction Resolution for Choreography Participant Bands
422 Business Process Model and Notation, v2.0

12.3.3 BPMNEdge

Connecting Objects [BPMNEdge]

The target [targetElement] and source [sourceElement] of a BPMNEdge may be redefined when the depiction of the
source or target of the edge is different than the target [targetRef] and source [sourceRef] of the referenced model element
[bpmnElement] (e.g. Message flow finishing on the border of a black box Pool or a collapsed Sub-Process rather than the
actual Flow Node within the Pool or Sub-Process). In such case, the targetElement and/or sourceElement of the
BPMNEdge must point to the appropriate BPMNShape or BPMNEdge.

The source [sourceElement] and target [targetElement] of a BPMNEdge can never be a BPMNShape with
participantBandKind set (i.e. only Choreography Activity can be source or target of the BPMNEdge not the Participant
Bands).

Note that for Message Flow with an envelope decorator, the envelope decorator should be at the midpoint of the message
flow. BPMN DI does not provide an interchange of the bounds of the envelope decorator.

The "diamond" at the source of the Conditional Sequence Flow should not be depicted when the source of a Conditional
Sequence Flow is a Gateway. In other words, when the source of a Conditional Sequence Flow is a Gateway, the
Conditional Sequence Flow looks like a Sequence Flow.

Even though DataInputAssociation(s) and DataOutputAssociation(s) (Directed Data Associations) always point to
DataInput(s) or DataOutput(s) as sources or targets within the BPMN model, they are mostly depicted as starting or
finishing on the border of a different depicted element and thus, the target [targetElement] or source [sourceElement] of
the BPMNEdge must be specified.

Table 12.36 – Depiction Resolution for Connecting Objects

Kind: Depiction:
Specific Depiction Resolution:

bpmnElement: BPMNShape
Attributes:

Sequence Flow SequenceFlow where default
is false and
conditionExpression is
unspecified

None

Conditional
Sequence Flow

SequenceFlow where default
is false and
conditionExpression is
specified (exception when
source is a Gateway)

None

Default
Sequence Flow

SequenceFlow where default
is true and
conditionExpression is
unspecified

None

Label

Label

Label
Business Process Model and Notation, v2.0 423

12.4 Example(s)
This section provides examples to support interpretation of the BPMN DI specification. Some BPMN diagram depictions
along with their XML BPMN DI serializations are provided. The XML samples provided in this section present only
BPMN DI instances and omit the BPMN 2.0 abstract syntax.

For readability purposes, the bpmnElement that is referenced by the BPMNPlane, BPMNShape and BPMNEdge use a
representative string pattern. This string pattern is:

BPMNModelClassName_BPMNModelNameAttributeValue

For example: "Task_Activity" for a Task named "Activity".

Message Flow MessageFlow messageVisibleKind
is unspecified

Initiating
Message Flow
with Decorator

MessageFlow messageVisibleKind
is initiating

Non-Initiating
Message Flow
with Decorator

MessageFlow messageVisibleKind
is non-initiating

Association Association where
associationDirection is none

None

Directional
Association

Association where
associationDirection is one

None

Bi -Directional
Association

Association where
associationDirection is both

None

Data Association None The targetElement of
the BPMNEdge is
itself of type
BPMNEdge where
bpmnElement is of
type SequenceFlow

Directed Data
Association

DataInputAssociation or
DataOutputAssociation

None

Conversation
Link

ConversationLink None

Table 12.36 – Depiction Resolution for Connecting Objects

Label

Label

Label

Label

Label

Label

Label

Label

Label
424 Business Process Model and Notation, v2.0

In the provided XML serializations, the di namespace refers to the Diagram Interchange namespace defined in Annex B,
and the dc namespace refers to the Diagram Common namespace also defined in Annex B.

12.4.1 Depicting Content in a Sub-Process

This section shows various ways of depicting the content of a Sub-Process of a same BPMN model.

The BPMN model contains a process composed of a none start event (named "StartEvent"), a sub-process (named
"SubProcess") and a none end event (named "EndEvent"). There is a sequence flow (named "a") between the start event
(named "StartEvent") and the sub-process (named "SubProcess") and a sequence flow (named "d") between the sub-
process (named "SubProcess") and the end event (named "EndEvent").

The sub-process (named "SubProcess") is composed of a none start event (named "SubProcessStart"), an abstract task
(named "Activity") and a none end event (named "SubProcessEnd"). There is a sequence flow (named "b") between the
start event (named "SubProcessStart") and the task (named "Activity") and a sequence flow (named "c") between the task
(named "Activity") and the end event (named "SubProcessEnd").

Expanded Sub-Process

First, a BPMN diagram depicts the BPMN model with the expanded sub-process showing its content (see Figure 12.8).
This leads to a BPMN DI serialization of a single diagram that depicts this process (see Table 12.37 - Expanded Sub-
Process BPMN DI instance).

Figure 12.8 - Expanded Sub-Process Example

SubProcess

StartEvent EndEvent

a
SubProcess

End

SubProcess
Start

Activityb c d
Business Process Model and Notation, v2.0 425

Table 12.37 – Expanded Sub-Process BPMN DI instance

<BPMNDiagram name=" Events Inside the Sub Process " resolution="72">
<BPMNPlane bpmnElement="Process_Process">

<BPMNShape bpmnElement="StartEvent_StartEvent" >
<dc:Bounds height="30.0" width="30.0" x="120.0" y="225.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="SubProcess_SubProcess" isExpanded="true">

<dc:Bounds height="168.0" width="348.0" x="192.0" y="156.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="StartEvent_SubProcessStart" id="BorderStart" >

<dc:Bounds height="30.0" width="30.0" x="228.0" y="225.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="Task_Activity">

<dc:Bounds height="68.0" width="83.0" x="324.0" y="206.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="EndEvent_SubProcessEnd">

<dc:Bounds height="32.0" width="32.0" x="468.0" y="224.0" id ="BorderEnd" />
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="EndEvent_EndEvent">

<dc:Bounds height="32.0" width="32.0" x="604.0" y="224.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNEdge bpmnElement="SequenceFlow_a" targetElement="BorderStart" >

<di:waypoint x="150.0" y="240.0"/>
<di:waypoint x="192.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>
<BPMNEdge bpmnElement="SequenceFlow_b" sourceElement="BorderStart" >

<di:waypoint x="258.0" y="240.0"/>
<di:waypoint x="324.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>
<BPMNEdge bpmnElement="SequenceFlow_c" targetElement="BorderEnd" >

<di:waypoint x="407.0" y="240.0"/>
<di:waypoint x="468.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>
<BPMNEdge bpmnElement="SequenceFlow_d" sourceElement="BorderEnd" >
<di:waypoint x="540.0" y="240.0"/>
<di:waypoint x="604.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>
426 Business Process Model and Notation, v2.0

Expanded Sub-Process with Start and End Events on Border

An alternative to depicting the same BPMN model of Section 12.4.1 would be to place the sub-process start and end
events on the border of the sub-process (see Figure 12.9). In the BPMN DI serialization of this diagram (see Table 12.40
- Expanded Sub-Process with Start and End Events on Border BPMN DI instance), the target of the sequence flow named
"a" and the source of the sequence flow named "d" are the start and end events on the boundary of the sub-process.

Compare the target of the sequence flow named "a" and the source of the sequence flow named "d" of Table 12.37 -
Expanded Sub-Process BPMN DI instance with that of Table 12.38 - Start and End Events on the Border BPMN DI
instance.

Figure 12.9 - Start and End Events on the Border Example

 </BPMNPlane>
 </BPMNDiagram>

Table 12.38 – Start and End Events on the Border BPMN DI instance

<BPMNDiagram name=" StartAndEdnEventsOnTheBorder " resolution="72">
<BPMNPlane bpmnElement="Process_Process">

<BPMNShape bpmnElement="StartEvent_StartEvent" >
<dc:Bounds height="30.0" width="30.0" x="120.0" y="225.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="SubProcess_SubProcess" isExpanded="true">

<dc:Bounds height="168.0" width="348.0" x="192.0" y="156.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="StartEvent_SubProcessStart">

<dc:Bounds height="30.0" width="30.0" x="177.0" y="225.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="Task_Activity">

<dc:Bounds height="68.0" width="83.0" x="324.0" y="206.0"/>
<BPMNLabel/>

</BPMNShape>

Table 12.37 – Expanded Sub-Process BPMN DI instance

SubProcess

StartEvent EndEvent

a
SubProcess

End

SubProcess
Start

Activityb c d
Business Process Model and Notation, v2.0 427

Collapsed Sub-Process

Alternatively, one could depict the same BPMN model of Section 12.4.1 as two diagrams. A first diagram (Figure 12.10)
depicts the process with the sub-process collapsed, while a second diagram (Figure 12.11) depicts the content of the sub-
process.

Figure 12.10 - Collapsed Sub-Process

<BPMNShape bpmnElement="EndEvent_SubProcessEnd">
<dc:Bounds height="32.0" width="32.0" x="524.0" y="224.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="EndEvent_EndEvent">

<dc:Bounds height="32.0" width="32.0" x="604.0" y="224.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNEdge bpmnElement="SequenceFlow_a">

<di:waypoint x="150.0" y="240.0"/>
<di:waypoint x="177.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>
<BPMNEdge bpmnElement="SequenceFlow_b">

<di:waypoint x="207.0" y="240.0"/>
<di:waypoint x="324.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>
<BPMNEdge bpmnElement="SequenceFlow_c">

<di:waypoint x="407.0" y="240.0"/>
<di:waypoint x="524.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>
<BPMNEdge bpmnElement="SequenceFlow_d">

<di:waypoint x="556.0" y="240.0"/>
<di:waypoint x="604.0" y="240.0"/>
<BPMNLabel/>

</BPMNEdge>
</BPMNPlane>

</BPMNDiagram>

Table 12.38 – Start and End Events on the Border BPMN DI instance

SubProcess

StartEvent

a
EndEvent

d

428 Business Process Model and Notation, v2.0

Figure 12.11 - Contents of Collapsed Sub-Process

Table 12.39 – Collapsed Sub-Process BPMN DI instance

<BPMNDiagram name="Collapsed Sub-Process" resolution="72">
<BPMNPlane bpmnElement="Process_Process">

<BPMNShape bpmnElement="StartEvent_StartEvent">
<dc:Bounds height="30.0" width="30.0" x="96.0" y="189.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="EndEvent_EndEvent">

<dc:Bounds height="32.0" width="32.0" x="308.0" y="188.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="SubProcess_SubProcess" isExpanded="false">

<dc:Bounds height="68.0" width="83.0" x="168.0" y="170.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNEdge bpmnElement="SequenceFlow_a">

<di:waypoint x="126.0" y="204.0"/>
<di:waypoint x="168.0" y="204.0"/>
<BPMNLabel/>

</BPMNEdge>
<BPMNEdge bpmnElement="SequenceFlow_d">

<di:waypoint x="251.0" y="204.0"/>
<di:waypoint x="308.0" y="204.0"/>
<BPMNLabel/>

</BPMNEdge>
</BPMNPlane>

</BPMNDiagram>

SubProcess
End

SubProcess
Start

Activityb c
Business Process Model and Notation, v2.0 429

12.4.2 Multiple Lanes and Nested Lanes

In this next example, a diagram depicting a BPMN Process is composed of a LaneSet which contains 2 lanes is presented.
The second lane contains 2 sub lanes (See Figure 12.12).

Table 12.40 – Sub-Process Content BPMN DI instance

<BPMNDiagram name="SubProcess" resolution="72">
<BPMNPlane bpmnElement="SubProcess_SubProcess">

<BPMNShape bpmnElement="StartEvent_SubProcessStart">
<dc:Bounds height="30.0" width="30.0" x="208.0" y="219.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="Task_Activity">

<dc:Bounds height="68.0" width="83.0" x="304.0" y="200.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="EndEvent_SubProcessEnd">

<dc:Bounds height="32.0" width="32.0" x="448.0" y="218.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNEdge bpmnElement="SequenceFlow_b">

<di:waypoint x="238.0" y="234.0"/>
<di:waypoint x="304.0" y="234.0"/>
<BPMNLabel/>

</BPMNEdge>
<BPMNEdge bpmnElement="SequenceFlow_c">

<di:waypoint x="387.0" y="234.0"/>
<di:waypoint x="448.0" y="234.0"/>
<BPMNLabel/>

</BPMNEdge>
</BPMNPlane>

</BPMNDiagram>
430 Business Process Model and Notation, v2.0

Figure 12.12 - Nested Lanes Example

Table 12.41 – Multiple Lanes and Nested Lanes BPMN DI instance

<BPMNDiagram name="Lanes and Nested Lanes" resolution="72">
<BPMNPlane bpmnElement="Process_LanesAndNestedLanes">

<BPMNShape bpmnElement="Lane_Lane1" isHorizontal="true">
<dc:Bounds height="144.0" width="498.0" x="87.0" y="144.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="Lane_Lane2" isHorizontal="true">

<dc:Bounds height="162.0" width="498.0" x="87.0" y="288.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="Lane_Lane2_2" isHorizontal="true">

<dc:Bounds height="78.0" width="474.0" x="111.0" y="372.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="Lane_Lane2_1" isHorizontal="true">
<dc:Bounds height="84.0" width="474.0" x="111.0" y="288.0"/>
<BPMNLabel/>

</BPMNShape>

La
ne

 1
La

ne
 2

La
ne

 2
-1

User Task

Manual
Task

Sub-
Process

La
ne

 2
-2

Document

a

b

c

Business Process Model and Notation, v2.0 431

12.4.3 Vertical Collaboration

In this example, a Collaboration between two Participants (Pool A and Pool B) is depicted. The first Participant is
depicted with a white box Pool and the second Participant is depicted with a black box Pool. This diagram also depicts
message flows that are decorated with message envelopes (See Figure 12.13).

<BPMNShape bpmnElement="DataObject_Document">
<dc:Bounds height="38.0" width="30.0" x="204.0" y="389.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="ManualTask_ManualTask">

<dc:Bounds height="58.0" width="71.0" x="162.0" y="177.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="SubProcess_SubProcess" isExpanded="false">

<dc:Bounds height="68.0" width="83.0" x="258.0" y="300.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNShape bpmnElement="UserTask_UserTask">

<dc:Bounds height="68.0" width="83.0" x="446.0" y="376.0"/>
<BPMNLabel/>

</BPMNShape>
<BPMNEdge bpmnElement="SequenceFlow_A">

<di:waypoint x="233.0" y="206.0"/>
<di:waypoint x="300.0" y="206.0"/>
<di:waypoint x="300.0" y="300.0"/>
<BPMNLabel/>

</BPMNEdge>
<BPMNEdge bpmnElement="SequenceFlow_B">

<di:waypoint x="342.0" y="334.0"/>
<di:waypoint x="387.0" y="334.0"/>
<di:waypoint x="387.0" y="410.0"/>
<di:waypoint x="446.0" y="410.0"/>
<BPMNLabel/>

</BPMNEdge>
<BPMNEdge bpmnElement="DataAssociation_C">

<di:waypoint x="234.0" y="408.0"/>
<di:waypoint x="252.0" y="409.0"/>
<di:waypoint x="252.0" y="431.0"/>
<di:waypoint x="446.0" y="430.0"/>
<BPMNLabel/>

</BPMNEdge>
</BPMNPlane>

</BPMNDiagram>

Table 12.41 – Multiple Lanes and Nested Lanes BPMN DI instance
432 Business Process Model and Notation, v2.0

Figure 12.13 - Vertical Collaboration Example

Table 12.42 – Vertical Collaboration BPMN DI instance

<BPMNDiagram name="Vertical Collaboration" resolution="72">
<BPMNPlane bpmnElement="Collaboration_Vertical_Collaboration">

<BPMNShape bpmnElement="Participant_Pool_A" isHorizontal="false">
<dc:Bounds height="258.0" width="336.0" x="96.0" y="276.0"/>

<BPMNLabel/>
</BPMNShape>

<BPMNShape bpmnElement="Lane_Lane1" isHorizontal="false">
<dc:Bounds height="228.0" width="168.0" x="96.0" y="306.0"/>

<BPMNLabel/>
</BPMNShape>

<BPMNShape bpmnElement="Lane_Lane2" isHorizontal="false">
<dc:Bounds height="228.0" width="168.0" x="264.0" y="306.0"/>

<BPMNLabel/>
</BPMNShape>

<BPMNShape bpmnElement="Participant_Pool_B" isHorizontal="false">
<dc:Bounds height="258.0" width="336.0" x="624.0" y="279.0"/>

<BPMNLabel/>
</BPMNShape>

<BPMNShape bpmnElement="TaskReceiving_Receiving">
<dc:Bounds height="68.0" width="83.0" x="145.0" y="436.0"/>

<BPMNLabel/>
</BPMNShape>

<BPMNShape bpmnElement="TaskSending_Sending">
<dc:Bounds height="68.0" width="83.0" x="282.0" y="338.0"/>

<BPMNLabel/>
</BPMNShape>

Pool A

Sending

Receiving

Lane 1 Lane 2

Pool B

a

b

Business Process Model and Notation, v2.0 433

12.4.4 Conversation

The following diagram depicts a Collaboration between 3 Participants (Participants 1, 2 and 3) including two
Conversations. The diagram also has an annotation connected to a message flow (See Section Figure 12.14).

Figure 12.14 - Conversation Example

<BPMNEdge bpmnElement="MessageFlow_a" messageVisibleKind="initiating">
<di:waypoint x="366.0" y="372.0"/>
<di:waypoint x="624.0" y="374.0"/>
<BPMNLabel/>

</BPMNEdge>
<BPMNEdge bpmnElement="MessageFlow_b" messageVisibleKind="non_initiating">

<di:waypoint x="624.0" y="470.0"/>
<di:waypoint x="228.0" y="470.0"/>
<BPMNLabel/>

</BPMNEdge>
</BPMNPlane>

</BPMNDiagram>

Table 12.42 – Vertical Collaboration BPMN DI instance

Participant 2Participant 1

P
ar

tic
ip

an
t 3

Conversation 1

a

Conversation 2

b

e
Message Annotation

c

d

f

434 Business Process Model and Notation, v2.0

Table 12.43 – Conversation BPMN DI instance

<bpmndi:BPMNDiagram name="Conversation " resolution="72">
<bpmndi:BPMNPlane bpmnElement="Collaboration_Conversation">

<bpmndi:BPMNShape bpmnElement="Participant_Participant_1" isHorizontal="false">
<dc:Bounds height="144.0" width="132.0" x="97.0" y="108.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant_2" isHorizontal="false">

<dc:Bounds height="144.0" width="120.0" x="360.0" y="108.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Conversation_Conversation_1">

<dc:Bounds height="38.0" width="38.0" x="274.0" y="168.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNEdge bpmnElement="ConversationLink_A">

<di:waypoint x="229.0" y="187.0"/>
<di:waypoint x="274.0" y="187.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge bpmnElement="ConversationLink_B">

<di:waypoint x="312.0" y="187.0"/>
<di:waypoint x="360.0" y="187.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>
<bpmndi:BPMNShape bpmnElement="Participant_Participant_3" isHorizontal="true">

<dc:Bounds height="108.0" width="384.0" x="96.0" y="396.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Conversation_Conversation_2">

<dc:Bounds height="38.0" width="38.0" x="406.0" y="305.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNEdge bpmnElement="ConversationLink_C">

<di:waypoint x="425.0" y="252.0"/>
<di:waypoint x="425.0" y="305.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge bpmnElement="ConversationLink_D">

<di:waypoint x="425.0" y="343.0"/>
<di:waypoint x="425.0" y="396.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>
<bpmndi:BPMNShape bpmnElement="TextAnnotation_MessageAnnotation">

<dc:Bounds height="23.0" width="108.0" x="210.0" y="313.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
Business Process Model and Notation, v2.0 435

12.4.5 Choreography

The following diagram depicts a Choreography consisting of 3 Choreography Activities (2 Choreography Tasks and 1
SubChoreography). This diagram also depicts Participant Bands with and without envelope decorator.

Figure 12.15 - Choreography Example

<bpmndi:BPMNEdge bpmnElement="MessageFlow_E">
<di:waypoint x="164.0" y="252.0"/>
<di:waypoint x="163.0" y="396.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge bpmnElement="Association_F">

<di:waypoint x="163.0" y="360.0"/>
<di:waypoint x="181.0" y="360.0"/>
<di:waypoint x="181.0" y="324.0"/>
<di:waypoint x="210.0" y="324.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>
</bpmndi:BPMNPlane>

</bpmndi:BPMNDiagram>

Table 12.43 – Conversation BPMN DI instance

StartEvent EndEvent
a d

Participant 1

CT 1

Participant 2

Participant 1

SC

Participant 3
Participant 2

Participant 1

CT 2

Participant 2

b c
436 Business Process Model and Notation, v2.0

Table 12.44 – Choreography BPMN DI instance

<bpmndi:BPMNDiagram name="Choreography" resolution="72">
<bpmndi:BPMNPlane bpmnElement="Choreography_Choreography">

<bpmndi:BPMNShape bpmnElement="StartEvent_StartEvent">
<dc:Bounds height="30.0" width="30.0" x="72.0" y="138.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="ChoreographyTask_CT1" id="DI_ChoreographyTask_CT1">

<dc:Bounds height="114.0" width="96.0" x="156.0" y="96.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant1"
choreographyActivityShape="DI_ChoreographyTask_CT1" isMessageVisible="true"
participantBandKind="top_non_initiating">

<dc:Bounds height="20.0" width="96.0" x="156.0" y="96.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant2"
choreographyActivityShape="DI_ChoreographyTask_CT1" isMessageVisible="true"
participantBandKind="bottom_initiating">

<dc:Bounds height="20.0" width="96.0" x="156.0" y="190.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="ChoreographyTask_CT2" id="DI_ChoreographyTask_CT2">

<dc:Bounds height="114.0" width="96.0" x="312.0" y="96.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant1"
choreographyActivityShape="DI_ChoreographyTask_CT2" isMessageVisible="false"
participantBandKind="top_non_initiating">

<dc:Bounds height="20.0" width="96.0" x="312.0" y="96.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant2"
choreographyActivityShape="DI_ChoreographyTask_CT2" isMessageVisible="true"
participantBandKind="bottom_initiating">

<dc:Bounds height="20.0" width="96.0" x="312.0" y="190.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="SubChoreography_SC" isExpanded="false">

<dc:Bounds height="117.0" width="96.0" x="468.0" y="94.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant1"
choreographyActivityShape="DI_SubChoreography_SC" isMessageVisible="false"
participantBandKind="top_non_initiating">

<dc:Bounds height="20.0" width="96.0" x="468.0" y="94.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
Business Process Model and Notation, v2.0 437

<bpmndi:BPMNShape bpmnElement="Participant_Participant3"
choreographyActivityShape="DI_SubChoreography_SC" isMessageVisible="false"
participantBandKind="bottom_non_initiating">

<dc:Bounds height="20.0" width="96.0" x="468.0" y="191.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="Participant_Participant2"
choreographyActivityShape="DI_SubChoreography_SC" isMessageVisible="false"
participantBandKind="middle_initiating">

<dc:Bounds height="20.0" width="96.0" x="468.0" y="171.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="EndEvent_EndEvent">

<dc:Bounds height="32.0" width="32.0" x="624.0" y="137.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNShape>
<bpmndi:BPMNEdge bpmnElement="SequenceFlow_a">

<di:waypoint x="102.0" y="153.0"/>
<di:waypoint x="156.0" y="153.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge bpmnElement="SequenceFlow_b">

<di:waypoint x="252.0" y="153.0"/>
<di:waypoint x="312.0" y="153.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge bpmnElement="SequenceFlow_c">

<di:waypoint x="408.0" y="153.0"/>
<di:waypoint x="468.0" y="153.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge bpmnElement="SequenceFlow_d">

<di:waypoint x="564.0" y="153.0"/>
<di:waypoint x="624.0" y="153.0"/>
<bpmndi:BPMNLabel/>

</bpmndi:BPMNEdge>
</bpmndi:BPMNPlane>

</bpmndi:BPMNDiagram>

Table 12.44 – Choreography BPMN DI instance
438 Business Process Model and Notation, v2.0

13 BPMN Execution Semantics

Note – The content of this chapter is REQUIRED for BPMN Process Execution Conformance or for BPMN Complete
Conformance. However, this chapter is NOT REQUIRED for BPMN Process Modeling Conformance, BPMN Choreography
Conformance, or BPMN BPEL Process Execution Conformance. For more information about BPMN conformance types, see
page 2.

This section defines the execution semantics for orchestrations in BPMN 2.0. The purpose of this execution semantics is
to describe a clear and precise understanding of the operation of the elements. However, for some elements only
conceptual model is provided which does not specify details needed to execute them on an engine. These elements are
called non-operational. Implementations MAY extend the semantics of non-operational elements to make them
executable, but this is considered to be an optional extension to BPMN. Non-operational elements MAY be ignored by
implementations conforming to BPMN Process Execution Conformance type. The following elements are non-
operational:

• Manual Task

• Abstract Task

• DataState

• IORules

• Ad-Hoc Process

• ItemDefinitions with an itemKind of Physical

• the inputSetWithWhileExecuting attribute of DataInput

• the outputSetWithWhileExecuting attribute of DataOutput

• the isClosed attribute of Process

• the isImmediate attribute of Sequence Flow

The execution semantics are described informally (textually), and this based on prior research involving the formalization
of execution semantics using mathematical formalisms.

This section provides the execution semantics of elements through the following structure:

• A description of the operational semantics of the element,

• Exception issues for the element where relevant,

• List of workflow patterns1supported by the element where relevant.

1. http://www.workflowpatterns.com/patterns/control/index.php
Business Process Model and Notation, v2.0 439

13.1 Process Instantiation and Termination
A Process is instantiated when one of its Start Events occurs. Each occurrence of a Start Event creates a new
Process Instance unless the Start Event participates in a Conversation that includes other Start Events. In that
case, a new Process instance is only created if none already exists for the specific Conversation (identified through
its associated correlation information) of the Event occurrence. Subsequent Start Events that share the same correlation
information as a Start Event that created a Process instance are routed to that Process instance. Note that a global
Process MUST neither have any empty Start Event nor any Gateway or Activity without incoming Sequence
Flows. An exception is the Event Gateway.

A Process can also be started via an Event-Based Gateway or a Receive Task that has no incoming Sequence
Flows and its instantiate flag set to true. If the Event-Based Gateway is exclusive, the first matching Event
will create a new instance of the Process. The Process then does not wait for the other Events originating from the
same Event-Based Gateway (see also semantics of the Event-Based Exclusive Gateway on page 452). If the
Event-Based Gateway is parallel, also the first matching Event creates a new Process instance. However, the
Process then waits for the other Events to arrive. As stated above, those Events MUST have the same correlation
information as the Event that arrived first. A Process instance completes only if all Events that succeed a Parallel
Event-Based Gateway have occurred.

To specify that the instantiation of a Process waits for multiple Start Events to happen, a Multiple Parallel Start
Event can be used.

Note that two Start Events are alternative, A Process instance triggered by one (1) of the Start Events does not wait
for an alternative Start Event to occur. Note that there MAY be multiple instantiating Parallel Event-Based
Gateways. This allows the modeler to express that either all the Events after the first Gateway occur or all the
Events after the second Gateway and so forth.

Each Start Event that occurs creates a token on its outgoing Sequence Flows, which is followed as described by the
semantics of the other Process elements.

� A Process instance is completed, if and only if the following three conditions hold:

� If the instance was created through an instantiating Parallel Gateway, then all subsequent Events (of that
Gateway) MUST have occurred.

� There is no token remaining within the Process instance.

� No Activity of the Process is still active.

For a Process instance to become completed, all tokens in that instance MUST reach an end node, i.e., a node without
outgoing Sequence Flows. A token reaching an End Event triggers the behavior associated with the Event type is,
e.g., the associated Message is sent for a Message End Event, the associated Signal is sent for a Signal End
Event, and so on. If a token reaches a Terminate End Event, the entire Process is abnormally terminated.

13.2 Activities
This section specifies the semantics of Activities. First the semantics that is common to all Activities is described.
Subsequently the semantics of special types of Activities is described.
440 Business Process Model and Notation, v2.0

13.2.1 Sequence Flow Considerations

The nature and behavior of Sequence Flows is described in 8.3.13, ’Sequence Flow’. But there are special
considerations relative to Sequence Flows when applied to Activities. An Activity that is the target of multiple
Sequence Flows participates in “uncontrolled flow.”

To facilitate the definition of Sequence Flow (and other Process elements) behavior, we employ the concept of a
token that will traverse the Sequence Flows and pass through the elements in the Process. A token is a theoretical
concept that is used as an aid to define the behavior of a Process that is being performed. The behavior of Process
elements can be defined by describing how they interact with a token as it “traverses” the structure of the Process.
However, modeling and execution tools that implement BPMN are NOT REQUIRED to implement any form of token.

Uncontrolled flow means that, for each token arriving on any incoming Sequence Flows into the Activity, the Task
will be enabled independently of the arrival of tokens on other incoming Sequence Flows. The presence of multiple
incoming Sequence Flows behaves as an exclusive gateway. If the flow of tokens into the Task needs to be
‘controlled,’ then Gateways (other than Exclusive) should be explicitly included in the Process flow prior to the
Task to fully eliminate semantic ambiguities.

If an Activity has no incoming Sequence Flows, the Activity will be instantiated when the containing Process or
Sub-Process is instantiated. Exceptions to this are Compensation Activities, as they have specialized instantiation
behavior.

Activities can also be source of Sequence Flows. If an Activity has multiple outgoing Sequence Flows, all of
them will receive a token when the Activity transitions to the Completed state. Semantics for token propagation for other
termination states is defined below. Thus, multiple outgoing Sequence Flows behaves as a parallel split. Multiple
outgoing Sequence Flows with conditions behaves as an inclusive split. A mix of multiple outgoing Sequence
Flows with and without conditions is considered as a combination of a parallel and an inclusive split as shown in the
Figure 13.1.

Figure 13.1 - Behavior of multiple outgoing Sequence Flows of an Activity

If the Activity has no outgoing Sequence Flows, the Activity will terminate without producing any tokens and
termination semantics for the container is then applied.

Token movement across a Sequence Flow does not have any timing constraints. A token might take a long or short
time to move across the Sequence Flow. If the isImmediate attribute of a Sequence Flow has a value of false,
or has no value and is taken to mean false, then Activities not in the model MAY be executed while the token is moving
along the Sequence Flow. If the isImmediate attribute of a Sequence Flow has a value of true, or has no value
and is taken to mean true, then Activities not in the model MAY NOT be executed while the token is moving along the
Sequence Flow.
Business Process Model and Notation, v2.0 441

13.2.2 Activity

An Activity is a Process step that can be atomic (Tasks) or decomposable (Sub-Processes) and is executed by
either a system (automated) or humans (manual). All Activities share common attributes and behavior such as states and
state transitions. An Activity, regardless of type, has lifecycle generally characterizing its operational semantics. The
lifecycle, described as a UML state diagram in Figure 13.2, entails states and transitions between the states.

Figure 13.2 - The Lifecycle of a BPMN Activity
442 Business Process Model and Notation, v2.0

The lifecycle of an Activity is described as follows:

� An Activity is Ready for execution if the REQUIRED number of tokens is available to activate the Activity. The
REQUIRED number of tokens (one or more) is indicated by the attribute StartQuantity. If the Activity has more
than one Incoming Sequence Flows, there is an implied Exclusive Gateway that defines the behavior.

� When some data InputSet becomes available, the Activity changes from Ready to the Active state. The
availability of a data InputSet is evaluated as follows. The data InputSets are evaluated in order. For each
InputSet, the data inputs are filled with data coming from the elements of the context such as Data Objects or
Properties by triggering the input Data Associations. An InputSet is available if each of its REQUIRED
Data Inputs is available. A data input is REQUIRED by a data InputSet if it is not optional in that InputSet.
If an InputSet is available, it is used to start the Activity. Further InputSets are not evaluated. If an
InputSet is not available, the next InputSet is evaluated. The Activity waits until one InputSet becomes
available. Please refer to Section 10.3.2 (page 232) for a description of the execution semantics for Data
Associations.

� An Activity, if Ready or Active, can be Withdrawn from being able to complete in the context of a race condition.
This situation occurs for Tasks that are attached after an Event-Based Exclusive Gateway. The first element
(Task or Event) that completes causes all other Tasks to be withdrawn.

� If an Activity fails during execution, it changes from the state Active to Failed.

� If a fault happens in the environment of the Activity, termination of the Activity is triggered, causing the
Activity to go into the state Terminated.

� If an Activity’s execution ends without anomalies, the Activity’s state changes to Completing. This intermediate
state caters for processing steps prior to completion of the Activity. An example of where this is useful is when non-
interrupting Event Handlers (proposed for BPMN 2.0) are attached to an Activity. They need to complete before
the Activity to which it is attached can complete. The state Completing of the main Activity indicates that the
execution of the main Activity has been completed, however, the main Activity is not allowed to be in the state
Completed, as it still has to wait for all non-interrupting Event Handlers to complete. The state Completing does not
allow further processing steps, otherwise allowed during the execution of the Activity. For example, new attached
non-interrupting Event Handlers MAY be created as long as the main Activity is in state Active. However, once in
the state Completing, running handlers should be completed with no possibility to create new ones.

� An Activity’s execution is interrupted if an interrupting Event is raised (such as an error) or if an interrupting
Event Sub-Process is initiated, In this case, the Activity’s state changes to Failing (in case of an error) or
Terminating (in case any other interrupting Event). All nested Activities that are not in Ready, Active or a final
state (Completed, Compensated, Failed, etc.) and non-interrupting Event Sub-Processes are terminated. The
data context of the Activity is preserved in case an interrupting Event Sub-Process is invoked. The data context
is released after the Event Sub-Process reaches a final state.

� After all completion dependencies have been fulfilled, the state of the Activity changes to Completed. The outgoing
Sequence Flows becomes active and a number of tokens, indicated by the attribute CompletionQuantity, is
placed on it. If there is more than one (1) outbound Sequence Flows for an Activity, it behaves like an implicit
Parallel Gateway. Upon completion, also a data OutputSet of the Activity is selected as follows. All
OutputSets are checked for availability in order. An OutputSet is available if all its REQUIRED Data
Outputs are available. A data output is REQUIRED by an OutputSet if it is not optional in that OutputSet. If
the data OutputSet is available, data is pushed into the context of the Activity by triggering the output Data
Associations of all its data outputs. Further OutputSets are not evaluated. If the data OutputSet is not
available, the next data OutputSet is checked. If no OutputSet is available, a runtime exception is thrown. If the
Activity has an associated IORule, the chosen OutputSet is checked against that IORule, i.e., it is checked
whether the InputSet that was used in starting the Activity instance is together with the chosen OutputSet
compliant with the IORule. If not, a runtime exception is thrown.

� Only completed Activities could, in principle, be compensated, however, the Activity can end in state Completed,
Business Process Model and Notation, v2.0 443

as compensation might not be triggered or there might be no compensation handler specified. If the compensation
handler is invoked, the Activity changes to state Compensating until either compensation finishes successfully (state
Compensated), an exceptions occurs (state Failed) or controlled or uncontrolled termination is triggered (state
Terminated).

13.2.3 Task

Task execution and completion for the different Task types are as follows:

� Service Task: Upon activation, the data in the inMessage of the Operation is assigned from the data in the
Data Input of the Service Task the Operation is invoked. On completion of the service, the data in the Data
Output of the Service Task is assigned from the data in the outMessage of the Operation, and the Service
Task completes. If the invoked service returns a fault, that fault is treated as interrupting error, and the Activity
fails.

� Send Task: Upon activation, the data in the associated Message is assigned from the data in the Data Input of
the Send Task. The Message is sent and the Send Task completes.

� Receive Task: Upon activation, the Receive Task begins waiting for the associated Message. When the
Message arrives, the data in the Data Output of the Receive Task is assigned from the data in the Message,
and Receive Task completes. For key-based correlation, only a single receive for a given CorrelationKey can
be active, and thus the Message matches at most one Process instance. For predicate-based correlation, the
Message can be passed to multiple Receive Tasks. If the Receive Task’s instantiate attribute is set to
true, the Receive Task itself can start a new Process instance.

� User Task: Upon activation, the User Task is distributed to the assigned person or group of people. When the
work has been done, the User Task completes.

� Manual Task: Upon activation, the manual task is distributed to the assigned person or group of people. When the
work has been done, the Manual Task completes. This is a conceptual model only; a Manual Task is never
actually executed by an IT system.

� Business Rule Task: Upon activation, the associated business rule is called. On completion of the business rule,
the Business Rule Task completes.

� Script Task: Upon activation, the associated script is invoked. On completion of the script, the Script Task
completes.

� Abstract Task: Upon activation, the Abstract Task completes. This is a conceptual model only; an Abstract
Task is never actually executed by an IT system.

13.2.4 Sub-Process/Call Activity

A Sub-Process is an Activity which encapsulates a Process which is in turn modeled by Activities, Gateways,
Events, and Sequence Flows. Once a Sub-Process is instantiated, its elements behave as in a normal Process.
The instantiation and completion of a Sub-Process is defined as follows.

� A Sub-Process is instantiated when it is reached by a Sequence Flow token. The Sub-Process has either a
unique empty Start Event, which gets a token upon instantiation, or it has no Start Event but Activities and
Gateways without incoming Sequence Flows. In the latter case all such Activities and Gateways get a token.
A Sub-Process MUST not have any non-empty Start Events.

� If the Sub-Process does not have incoming Sequence Flows but Start Events that are target of Sequence
Flows from outside the Sub-Process, the Sub-Process is instantiated when one of these Start Events is
reached by a token. Multiple such Start Events are alternative, i.e., each such Start Event that is reached by a
444 Business Process Model and Notation, v2.0

token generates a new instance.

� A Sub-Process instance completes when there are no more tokens in the Sub-Process and none of its
Activities is still active.

� If a “terminate” End Event is reached, the Sub-Process is abnormally terminated. For a “cancel” End Event,
the Sub-Process is abnormally terminated and the associated Transaction is aborted. Control leaves the Sub-
Process through a cancel intermediate boundary Event. For all other End Events, the behavior associated with
the Event type is performed, e.g., the associated Message is sent for a Message End Event, the associated
signal is sent for a signal End Event, and so on.

� If a global Process is called through a Call Activity, then the Call Activity has the same instantiation and
termination semantics as a Sub-Process. However, in contrast to a Sub-Process, the global Process that is
called MAY also have non-empty Start Events. These non-empty Start Events are alternative to the empty Start
Event and hence they are ignored when the Process is called from another Process.

13.2.5 Ad-Hoc Sub-Process

An Ad-Hoc Sub-Process or Process contains a number of embedded inner Activities and is intended to be executed
with a more flexible ordering compared to the typical routing of Processes. Unlike regular Processes, it does not
contain a complete, structured BPMN diagram description—i.e., from Start Event to End Event. Instead the Ad-Hoc
Sub-Process contains only Activities, Sequence Flows, Gateways, and Intermediate Events. An Ad-Hoc
Sub-Process MAY also contain Data Objects and Data Associations. The Activities within the Ad-Hoc Sub-
Process are not REQUIRED to have incoming and outgoing Sequence Flows. However, it is possible to specify
Sequence Flows between some of the contained Activities. When used, Sequence Flows will provide the same
ordering constraints as in a regular Process. To have any meaning, Intermediate Events will have an outgoing
Sequence Flows and they can be triggered multiple times while the Ad-Hoc Sub-Process is active.

The contained Activities are executed sequentially or in parallel, they can be executed multiple times in an order that is
only constrained through the specified Sequence Flows, Gateways, and data connections.

Operational semantics

� At any point in time, a subset of the embedded Activities is enabled. Initially, all Activities without incoming
Sequence Flows are enabled. One of the enabled Activities is selected for execution. This is not done by the
implementation but usually by a Human Performer. If the ordering attribute is set to sequential, another enabled
Activity can be selected for execution only if the previous one has terminated. If the ordering attribute is set to
parallel, another enabled Activity can be selected for execution at any time. This implies the possibility of the
multiple parallel instances of the same inner Activity.

� After each completion of an inner Activity, a condition specified through the completionCondition attribute
is evaluated:

� If false, the set of enabled inner Activities is updated and new Activities can be selected for execution.

� If true, the Ad-Hoc Sub-Process completes without executing further inner Activities. In case the ordering
attribute is set to parallel and the attribute cancelRemainingInstances is true, running instances of inner
Activities are canceled. If cancelRemainingInstances is set to false, the Ad-Hoc Sub-Process
completes after all remaining inner instances have completed or terminated.

� When an inner Activity with outgoing Sequence Flows completes, a number of tokens are produced on its
outgoing Sequence Flows. This number is specified through its attribute completionQuantity. The
resulting state MAY contain also other tokens on incoming Sequence Flows of either Activities, converging
Parallel or Complex Gateways, or an Intermediate Event. Then all tokens are propagated as far as possible,
i.e., all activated Gateways are executed until no Gateway and Intermediate Event is activated anymore.
Business Process Model and Notation, v2.0 445

Consequently, a state is obtained where each token is on an incoming Sequence Flow of either an inner Activity,
a converging Parallel or Complex Gateway or an Intermediate Event. An inner Activity is now enabled if it
has either no incoming Sequence Flows or there are sufficiently many tokens on its incoming Sequence Flows
(as specified through startQuantity).

Workflow patterns: WCP-17 Interleaved parallel routing.

13.2.6 Loop Activity

The Loop Activity is a type of Activity that acts as a wrapper for an inner Activity that can be executed multiple times
in sequence.

Operational semantics: Attributes can be set to determine the behavior. The Loop Activity executes the inner Activity
as long as the loopCondition evaluates to true. A testBefore attribute is set to decide when the loopCondition should be
evaluated: either before the Activity is executed or after, corresponding to a pre- and post-tested loop respectively. A
loopMaximum attribute can be set to specify a maximal number of iterations. If it is not set, the number is unbounded.

Workflow Patterns Support: WCP-21 Structured Loop.

13.2.7 Multiple Instances Activity

The multi-instance (MI) Activity is a type of Activity that acts as a wrapper for an Activity which has multiple
instances spawned in parallel or sequentially.

Operational semantics: The MI specific attributes are used to configure specific behavior. The attribute isSequential
determines whether instances are generated sequentially (true) or in parallel (false). The number of instances to be
generated is either specified by the integer-valued Expression loopCardinality or as the cardinality of a specific
collection-valued data item of the data input of the MI Activity. The latter is described in detail below.

The number of instances to be generated is evaluated once. Subsequently the number of instances are generated. If the
instances are generated sequentially, a new instance is generated only after the previous has been completed. Otherwise,
multiple instances to be executed in parallel are generated.

Attributes are available to support the different possibilities of behavior. The completionCondition Expression
is a boolean predicate that is evaluated every time an instance completes. When evaluated to true, the remaining instances
are cancelled, a token is produced for the outgoing Sequence Flows, and the MI Activity completes.

The attribute behavior defines if and when an Event is thrown from an Activity instance that is about to complete. It
has values of none, one, all, and complex, assuming the following behavior:

� none: an EventDefinition is thrown for all instances completing.

� one: an EventDefinition is thrown upon the first instance completing.

� all: no Event is ever thrown.

� complex: the complexBehaviorDefinitions are consulted to determine if and which Events to throw.

For the behaviors of none and one, an EventDefinition (which is referenced from
MultipleInstanceLoopCharacteristics through the noneEvent and oneEvent associations, respectively)
is thrown which automatically carries the current runtime attributes of the MI Activity. That is, the ItemDefinition
of these SignalEventDefinitions is implicitly given by the specific runtime attributes of the MI Activity.
446 Business Process Model and Notation, v2.0

The complexBehaviorDefinition association references multiple ComplexBehaviorDefinition entities
which each point to a boolean condition being a FormalExpression and an Event which is an
ImplicitThrowEvent. Whenever an Activity instance completes, the conditions of all
ComplexBehaviorDefinitions are evaluated. For each ComplexBehaviorDefinition whose condition is
evaluated to true, the associated Event is automatically thrown. That is, a single Activity completion can lead to
multiple different Events that are thrown. The Events can then be caught on the boundary of the MI Activity. Multiple
ComplexBehaviorDefinitions offer an easy way of implicitly spawning different flow at the MI Activity
boundary for different situations indicating different states of progress in the course of executing the MI Activity.

The completionCondition, the condition in the ComplexBehaviorDefinition, and the
DataInputAssociation of the Event in the ComplexBehaviorDefinition can refer to the MI Activity
instance attributes and the loopDataInput, loopDataOutput, inputDataItem, and outputDataItem that
are referenced from the MultiInstanceLoopCharacteristics.

In practice, an MI Activity is executed over a data collection, processing as input the data values in the collection and
producing as output data values in a collection. The input data collection is passed to the MI outer Activity’s
loopDataInput from a Data Object in the Process scope of the MI Activity. Under BPMN data flow constraints,
the Data Object is linked to MI activity’s loopDataInput through a DataInputAssociation. To indicate that
the Data Object is a collection, its respective symbol is marked with the MI indicator (three-bar). The items of the
loopDataInput collection are used to determine the number of instances REQUIRED to be executed (whether
sequentially or in parallel). Accordingly, the inner instances are created and data values from the loopDataInput are
extracted and assigned to the respective instances. Specifically, the values from the loopDataInput items are passed
to an inputDataItem, created in the scope of the outer Activity. The value in the inputDataItem can be passed
to the loopDataInput of each inner instance, where a DataInputAssociation links both. The process of
extraction is left under-specified. In practice, it would entail a special-purpose mediator which not only provides the
extraction and data assignment, but also any necessary data transformation.

Each instance processes the data value of its DataInput. It produces a value in its DataOutput if it completes
successfully. The DataOutPut value of the instance is passed to a corresponding outputDataItem in the outer
Activity, where a DataOutputAssociation links both. Each outputDataItem value is updated in the
loopDataOutput collection, in the corresponding item. The mechanism of this update is left underspecified, and again
would be implemented through a special purpose mediator. The loopDataOutput is passed to the MI Activity’s
Process scope through a Data Object that has a DataOutputAssociation linking both.

It should be noted that the collection in the Process scope should not be accessible until all its items have been written
to. This is because, it could be accessed by an Activity running concurrently, and therefore control flow through token
passing cannot guarantee that the collection is fully written before it is accessed.

The MI Activity is compensated only if all its instances have completed successfully.

Workflow Patterns Support: WCP-21 Structured Loop, Multiple Instance Patterns WCP 13, 14, 34, 36
Business Process Model and Notation, v2.0 447

13.3 Gateways
This section describes the behavior of Gateways.

13.3.1 Parallel Gateway (Fork and Join)

Figure 13.3 - Merging and Branching Sequence Flows for a Parallel Gateway

On the one hand, the Parallel Gateway is used to synchronize multiple concurrent branches (merging behavior). On the
other hand, it is used to spawn new concurrent threads on parallel branches (branching behavior).

Table 13.1 – Parallel Gateway Execution Semantics

Operational Semantics The Parallel Gateway is activated if there is at least one token on each
incoming Sequence Flow.
The Parallel Gateway consumes exactly one token from each incoming
Sequence Flow and produces exactly one token at each outgoing
Sequence Flow.
If there are excess tokens at an incoming Sequence Flow, these tokens
remain at this Sequence Flow after execution of the Gateway.

Exception Issues The Parallel Gateway cannot throw any exception.

Workflow Patterns Support Parallel Split (WCP-2)
Synchronization (WCP-3)

X1

Xm

Y1

Yn
448 Business Process Model and Notation, v2.0

13.3.2 Exclusive Gateway (Exclusive Decision (data-based) and Exclusive Merge)

Figure 13.4 - Merging and Branching Sequence Flows for an Exclusive Gateway

The Exclusive Gateway has pass-through semantics for a set of incoming branches (merging behavior). Further on,
each activation leads to the activation of exactly one out of the set of outgoing branches (branching behavior).

Table 13.2 – Exclusive Gateway Execution Semantics

Operational Semantics Each token arriving at any incoming Sequence Flows activates the gate-
way and is routed to exactly one of the outgoing Sequence Flows.
In order to determine the outgoing Sequence Flows that receives the
token, the conditions are evaluated in order. The first condition that evalu-
ates to true determines the Sequence Flow the token is sent to. No more
conditions are henceforth evaluated.
If and only if none of the conditions evaluates to true, the token is passed
on the default Sequence Flow.
In case all conditions evaluate to false and a default flow has not been
specified, an exception is thrown.

Exception Issues The exclusive gateway throws an exception in case all conditions
evaluate to false and a default flow has not been specified.

Workflow Patterns Support Exclusive Choice (WCP-4)
Simple Merge (WCP-5)
Multi-Merge (WCP-8)

Cond1

Default

X1

Xm

Y1

Y3

Cond2
Y2
Business Process Model and Notation, v2.0 449

13.3.3 Inclusive Gateway (Inclusive Decision and Inclusive Merge)

Figure 13.5 - Merging and Branching Sequence Flows for an Inclusive Gateway

The Inclusive Gateway synchronizes a certain subset of branches out of the set of concurrent incoming branches
(merging behavior). Further on, each firing leads to the creation of threads on a certain subset out of the set of outgoing
branches (branching behavior).

Cond1

Default

X1

Xm

Y1

Y3

Cond2
Y2
450 Business Process Model and Notation, v2.0

Table 13.3 – Inclusive Gateway Execution Semantics

Operational Semantics The Inclusive Gateway is activated if
• At least one incoming Sequence Flow has at least one token and

• For every directed path formed by sequence flow that
- starts with a Sequence Flow f of the diagram that has a token,
- ends with an incoming Sequence Flow of the inclusive gateway

that has no token, and
- does not visit the Inclusive Gateway,

• There is also a directed path formed by Sequence Flow that
- starts with f,
- ends with an incoming Sequence Flow of the inclusive gateway

that has a token, and
- does not visit the Inclusive Gateway.

Upon execution, a token is consumed from each incoming Sequence
Flow that has a token. A token will be produced on some of the outgoing
Sequence Flows.
In order to determine the outgoing Sequence Flows that receive a token,
all conditions on the outgoing Sequence Flows are evaluated. The eval-
uation does not have to respect a certain order.
For every condition which evaluates to true, a token MUST be passed on
the respective Sequence Flow.
If and only if none of the conditions evaluates to true, the token is passed
on the default Sequence Flow.
In case all conditions evaluate to false and a default flow has not been
specified, the Inclusive Gateway throws an exception.

Exception Issues The inclusive gateway throws an exception in case all conditions evaluate
to false and a default flow has not been specified.

Workflow Patterns Support Multi-Choice (WCP-6)
Structured Synchronizing Merge (WCP-7)
Acyclic Synchronizing Merge (WCP-37)
General Synchronizing Merge (WCP-38)
Business Process Model and Notation, v2.0 451

13.3.4 Event-based Gateway (Exclusive Decision (event-based))

Figure 13.6 - Merging and branching Sequence Flows for an Event-Based Gateway

The Event-Based Gateway has pass-through semantics for a set of incoming branches (merging behavior). Exactly one
of the outgoing branches is activated afterwards (branching behavior), depending on which of Events of the Gateway
configuration is first triggered. The choice of the branch to be taken is deferred until one of the subsequent Tasks or
Events completes. The first to complete causes all other branches to be withdrawn.

When used at the Process start as a Parallel Event Gateway, only message-based triggers are allowed. The
Message triggers that are part of the Gateway configuration MUST be part of a Conversation with the same
correlation information. After the first trigger instantiates the Process, the remaining Message triggers will be a part
of the Process instance that is already active (rather than creating new Process instances).

13.3.5 Complex Gateway (related to Complex Condition and Complex Merge)

Figure 13.7 - Merging and branching Sequence Flows for a Complex Gateway

The Complex Gateway facilitates the specification of complex synchronization behavior, in particular race situations.
The diverging behavior is similar to the Inclusive Gateway. Each incoming gate of the Complex Gateway has an
attribute activationCount, which can be used in an Expression as an integer-valued variable. This variable
represents the number of tokens that are currently on the respective incoming Sequence Flows. The Complex
Gateway has an attribute activationExpression. An activationExpression is a boolean Expression

Table 13.4 – Event-Based Gateway Execution Semantics

Exception Issues The event-based gateway cannot throw any exception.

Workflow Patterns Support Deferred Choice (WCP-16)

X1

Xm

Y1

Yn

x1

xm

y1

yn

Cond1

Condn

Default
452 Business Process Model and Notation, v2.0

that refers to data and to the activationCount of incoming gates. For example, an activationExpression
could be x1+x2+…+xm >= 3 stating that it needs 3 out of the m incoming gates to have a token in order to proceed. To
prevent undesirable oscillation of activation of the Complex Gateway, ActivationCount variables should only be
used in subexpressions of the form expr >= const where expr is an arithmetic Expression that uses only addition and
const is an Expression whose evaluation remains constant during execution of the Process.

Each outgoing Sequence Flow of the Complex Gateway has a boolean condition that is evaluated to determine
whether that Sequence Flow receives a token during the execution of the Gateway. Such a condition MAY refer to
internal state of the Complex Gateway. There are two states: waiting for start (represented by the runtime attribute
waitingForStart = true) and waiting for reset (waitingForStart=false).
Business Process Model and Notation, v2.0 453

Table 13.5 – Semantics of the Complex Gateway

Operational Semantics The Complex Gateway is in one of the two states: waiting for start or waiting for reset,
initially it is in waiting for start. If it is waiting for start, then it waits for the activa-
tionExpression to become true. The activationExpression is not evaluated
before there is at least one token on some incoming Sequence Flow. When it
becomes true, a token is consumed from each incoming Sequence Flow that has a
token. To determine which outgoing Sequence Flow receive a token, all conditions on
the outgoing Sequence Flows are evaluated (in any order). Those and only those that
evaluate to true receive a token. If no condition evaluates to true, and only then, the
default Sequence Flow receives a token. If no default flow is specified an exception is
thrown. The Gateway changes its state to waiting for reset.The Gateway remembers
from which of the incoming Sequence Flows it consumed tokens in the first phase.
When waiting for reset, the Gateway waits for a token on each of those incoming
Sequence Flows from which it has not yet received a token in the first phase unless
such a token is not expected according to the join behavior of an inclusive Gateway.
More precisely, the Gateway being waiting for reset, resets when for every directed
path formed by sequence flow that

- starts with a Sequence Flow f of the diagram that has a token,
- ends with an incoming Sequence Flow of the Complex Gateway that has

no token and has not consumed a token in the first phase, and that
- does not visit the Complex Gateway,

• There is also a directed path formed by Sequence Flow that
- starts with f,
- ends with an incoming Sequence Flow of the Complex Gateway that has a

token or from which a token was consumed in the first phase, and that,
- does not visit the Complex Gateway

If the Complex Gateway is contained in a Sub-Process, then no paths are
considered that cross the boundary of that Sub-Process.
When the Gateway resets, it consumes a token from each incoming Sequence Flow
that has a token and from which it had not yet consumed a token in the first phase. It
then evaluates all conditions on the outgoing Sequence Flows (in any order) to
determine which Sequence Flows receives a token. Those and only those that
evaluate to true receive a token. If no condition evaluates to true, and only then, the
default Sequence Flow receives a token. The Gateway changes its state back to the
state waiting for start. Note that the Gateway might not produce any tokens in this
phase and no exception is thrown. Note that the conditions on the outgoing Sequence
Flows MAY evaluate differently in the two phases, e.g., by referring to the state of the
Gateway (runtime attribute waitingForStart).

Note that if the activationCondition never becomes true in the first phase, tokens
are blocked indefinitely at the Complex Gateway, which MAY cause a deadlock of the
entire Process
454 Business Process Model and Notation, v2.0

13.4 Events
This section describes the handling of Events.

13.4.1 Start Events

For single Start Events, handling consists of starting a new Process instance each time the Event occurs. Sequence
Flows leaving the Event are then followed as usual.

If the Start Event participates in a Conversation that includes other Start Events, a new Process instance is only
created if none already exists for the specific Conversation (identified through its associated correlation information) of
the Event occurrence.

A Process can also be started via an Event-Based Gateway. In that case, the first matching Event will create a new
instance of the Process, and waiting for the other Events originating from the same decision stops, following the usual
semantics of the Event-Based Exclusive Gateway. Note that this is the only scenario where a Gateway can exist
without an incoming Sequence Flows.

It is possible to have multiple groups of Event-Based Gateways starting a Process, provided they participate in the
same Conversation and hence share the same correlation information. In that case, one Event out of each group needs
to arrive; the first one creates a new Process instance, while the subsequent ones are routed to the existing instance,
which is identified through its correlation information.

13.4.2 Intermediate Events

For Intermediate Events, the handling consists of waiting for the Event to occur. Waiting starts when the
Intermediate Event is reached. Once the Event occurs, it is consumed. Sequence Flows leaving the Event are
followed as usual. For catch Message Intermediate Events, the Message correlation behavior is the same as for
Receive Tasks -- see Section 13.2.3.

13.4.3 Intermediate Boundary Events

For boundary Events, handling first consists of consuming the Event occurrence. If the cancelActivity attribute is
set, the Activity the Event is attached to is then cancelled (in case of a multi-instance, all its instances are cancelled); if
the attribute is not set, the Activity continues execution (only possible for Message, Signal, Timer, and Conditional
Events, not for Error Events). Execution then follows the Sequence Flow connected to the boundary Event. For
boundary Message Intermediate Events, the Message correlation behavior is the same as for Receive Tasks --
see Section 13.2.3.

Exception issues The Complex Gateway throws an exception when it is activated in the state waiting
for start, no condition on any outgoing Sequence Flow evaluates to true and no
default Sequence Flow is specified.

Workflow Patterns Sup-
port

Structured Discriminator (WCP-9)
Blocking Discriminator (WCP-28)
Structured Partial Join (WCP-30)
Blocking Partial Join (WCP-31)
Business Process Model and Notation, v2.0 455

13.4.4 Event Sub-Processes

Event Sub-Processes allow to handle an Event within the context of a given Sub-Processes or Process. An
Event Sub-Process always begins with a Start Event, followed by Sequence Flows. Event Sub-Processes are
a special kind of Sub-Process: they create a scope and are instantiated like a Sub-Process, but they are not
instantiated by normal control flow but only when the associated Start Event is triggered. Event Sub-Processes are
self-contained and MUST not be connected to the rest of the Sequence Flows in the Sub-Processes; also they
cannot have attached boundary Events. They run in the context of the Sub-Process, and thus have access to its
context.

An Event Sub-Process cancels execution of the enclosing Sub-Process, if the isInterrupting attribute of its
Start Event is set; for a multi-instance Activity this cancels only the affected instance. If the isInterrupting
attribute is not set (not possible for an Error Event Sub-Processes), execution of the enclosing Sub-Process
continues in parallel to the Event Sub-Process.

An Event Sub-Process can optionally retrigger the Event through which it was triggered, to cause its continuation
outside the boundary of the associated Sub-Process. In that case the Event Sub-Process is performed when the
Event occurs; then control passes to the boundary Event, possibly canceling the Sub-Process (including running
handlers).

Operational semantics

� An Event Sub-Process becomes initiated, and thus Enabled and Running, through the Activity to which it is
attached. The Event Handler MAY only be initiated after the parent Activity is Running.

� More than one non-interrupting Event Handler MAY be initiated and they MAY be initiated at different times. There
might be multiple instances of the non-interrupting Event Handler at a time. For Event Sub-Processes triggered
by a Message, the Message correlation behavior is the same as for Receive Tasks -- see Section 13.2.3.

� Only one interrupting Event Handler MAY be initiated for a given EventDefinition within the context of the
parent Activity. Once the interrupting Event Handler is started, the parent Activity is interrupted and no new Event
Handlers can be initiated or started.An Event Sub-Process completes when all tokens have reached an End
Event, like any other Sub-Process. If the parent Activity enters the state Completing, it remains in that state until
all contained active Event Sub-Processes have completed. While the parent Activity is in the Completing state,
no new Event Sub-Processes can be initiated.

� If an interrupting Event Sub-Process is started by an error, then the parent Activity enters the state Failing and
remains in this state until the interrupting Event Handler reaches a final state. During this time, the running Event
Handler can access to the context of the parent Activity. However, new Event Handlers MUST NOT be started.

� Similarly, if an interrupting Event Sub-Process is started by a non error (e.g., Escalation), then the parent
Activity enters the state Terminating and remains in this state until the interrupting Event Handler reaches a final
state. During this time, the running Event Handler can access to the context of the parent Activity. However, new
Event Handlers MUST NOT be started.

13.4.5 Compensation

Compensation is concerned with undoing steps that were already successfully completed, because their results and
possibly side effects are no longer desired and need to be reversed. If an Activity is still active, it cannot be compensated,
but rather needs to be canceled. Cancellation in turn can result in compensation of already successfully completed
portions of an active Activity, in case of a Sub-Process.
456 Business Process Model and Notation, v2.0

Compensation is performed by a compensation handler. A compensation handler can either be a Compensation Event
Sub-Process (for a Sub-Process or Process), or an associated Compensation Activity (for any Activity). A
compensation handler performs the steps necessary to reverse the effects of an Activity. In case of a Sub-Process, its
Compensation Event Sub-Process has access to Sub-Process data at the time of its completion (“snapshot data”).

Compensation is triggered by a throw Compensation Event, which typically will be raised by an error handler, as part
of cancellation, or recursively by another compensation handler. That Event specifies the Activity for which
compensation is to be performed, either explicitly or implicitly.

Compensation Handler

A compensation handler is a set of Activities that are not connected to other portions of the BPMN model. The
compensation handler starts with a catch Compensation Event. That catch Compensation Event either is a
boundary Event, or, in case of a Compensation Event Sub-Process, the handler’s Start Event.

A compensation handler connected via a boundary Event can only perform “black-box” compensation of the original
Activity. This compensation is modeled with a specialized Compensation Activity.

A Compensation Event Sub-Process is contained within a Process or a Sub-Processes. It can access data that
is part of its parent, snapshot at the point in time when its parent has completed. A compensation Event Sub-Process
can in particular recursively trigger compensation for Activities contained in that its parent.

It is possible to specify that a Sub-Process can be compensated without having to define the compensation handler.
The Sub-Process attribute compensable, when set, specifies that default compensation is implicitly defined, which
recursively compensates all successfully completed Activities within that Sub-Process, invoking them in reverse order
of their forward execution.

Compensation Triggering

Compensation is triggered using a throw Compensation Event, which can either be an Intermediate or an End
Event. The Activity which needs to be compensated is referenced. If the Activity is clear from the context, it doesn’t
have to be specified and defaults to the current Activity. A typical scenario for that is an inline error handler of a Sub-
Process that cannot recover the error, and as a result would trigger compensation for that Sub-Process. If no
Activity is specified in a “global” context, all completed Activities in the Process are compensated.

By default, compensation is triggered synchronously, that is, the throw Compensation Event waits for the completion
of the triggered compensation handler. Alternatively, compensation can just be triggered without waiting for its
completion, by setting the throw Compensation Event’s waitForCompletion attribute to false.

Multiple instances typically exist for Loop or Multi-Instance Sub-Processes. Each of these has its own instance of
its Compensation Event Sub-Process, which has access to the specific snapshot data that was current at the time of
completion of that particular instance. Triggering compensation for the Multi-Instance Sub-Process individually
triggers compensation for all instances within the current scope. If compensation is specified via a boundary
compensation handler, this boundary compensation handler also is invoked once for each instance of the Multi-Instance
Sub-Process in the current scope.

Relationship between Error Handling and Compensation

Compensation employs a “presumed abort principle”, which has a number of consequences. First, only completed
Activities are compensated; compensation of a failed Activity results in an empty operation. Thus, when an Activity
fails, i.e., is left because an error has been thrown, it’s the error handler’s responsibility to ensure that no further
Business Process Model and Notation, v2.0 457

compensation will be necessary once the error handler has completed. Second, if no error Event Sub-Process is
specified for a particular Sub-Process and a particular error, the default behavior is to automatically call compensation
for all contained Activities of that Sub-Process if that error occurs, thus ensuring the “presumed abort” invariant.

Operational Semantics

� A Compensation Event Sub-Process becomes enabled when its parent Activity transitions into state
Completed. At that time, a snapshot of the data associated with the parent Activity is taken and kept for later usage
by the Compensation Event Sub-Process. In case the parent Activity is a multi-instance or loop, for each
instance a separate data snapshot is taken, which is used when its associated Compensation Event Sub-
Process is triggered.

� When compensation is triggered for the parent Activity, its Compensation Event Sub-Process is activated
and runs. The original context data of the parent Activity is restored from the data snapshot. In case the parent
Activity is a multi-instance or loop, for each instance the dedicated snapshot is restored and a dedicated
Compensation Event Sub-Process is activated.

� An associated Compensation Activity becomes enabled when the Activity it is associated with transitions into
state Completed. When compensation is triggered for that Activity, the associated Compensation Activity is
activated. In case the Activity is a multi-instance or loop, the Compensation Activity is triggered only once, too,
and thus has to compensate the effects of all instances.

� Default compensation ensures that Compensation Activities are performed in reverse order of the execution
of the original Activities, allowing for concurrency when there was no dependency between the original
Activities. Dependencies between original Activities that default compensation MUST consider are the
following

� A Sequence Flow between Activities A and B results in compensation of B to be performed before
compensation of A.

� A data dependency between Activities A and B, e.g., through an IORules specification in B referring to data
produced by A, results in compensation of B to be performed before compensation of A.

� If A and B are two Activities that were active as part of an Ad-Hoc Sub-Process, then compensation of B
MUST be performed before compensation of A if A completed before B started.

� Instances of a loop or sequential multi-instance are compensated in reverse order of their forward
completion. Instances of a parallel multi-instance can be compensated in parallel.

� If a Sub-Process A has a boundary Event connected to Activity B, then compensation of B MUST be
performed before compensation of A if that particular Event occurred. This also applies to multi-instances and
loops.

13.4.6 End Events

Process level end events

For a “terminate” End Event, the Process is abnormally terminated—no other ongoing Process instances are
affected.

For all other End Events, the behavior associated with the Event type is performed, e.g., the associated Message is
sent for a Message End Event, the associated signal is sent for a Signal End Event, and so on. The Process
instance is then completed, if and only if the following two conditions hold:

� All start nodes of the Process have been visited. More precisely, all Start Events have been triggered, and for all
starting Event-Based Gateways, one of the associated Events has been triggered.
458 Business Process Model and Notation, v2.0

� There is no token remaining within the Process instance.

Sub-process level end events

For a “terminate” End Event, the Sub-Process is abnormally terminated. In case of a multi-instance Sub-Process,
only the affected instance is terminated—no other ongoing Sub-Process instances or higher-level Sub-Process or
Process instances are affected.

For a “cancel” End Event, the Sub-Process is abnormally terminated and the associated transaction is aborted.
Control leaves the Sub-Process through a cancel intermediate boundary Event.

For all other End Events, the behavior associated with the Event type is performed, e.g., the associated Message is
sent for a Message End Event, the associated signal is sent for a signal End Event, and so on. The Sub-Process
instance is then completed, if and only if the following two conditions hold:

� All start nodes of the Sub-Process have been visited. More precisely, all Start Events have been triggered, and
for all starting Event-Based Gateways, one of the associated Events has been triggered.

� There is no token remaining within the Sub-Process instance.
Business Process Model and Notation, v2.0 459

460 Business Process Model and Notation, v2.0

14 Mapping BPMN Models to WS-BPEL

Note – The contents of this chapter is REQUIRED for BPMN BPEL Process Execution Conformance or for BPMN
Complete Conformance . However, this chapter is NOT REQUIRED for BPMN Process Modeling Conformance, BPMN
Process Choreography Conformance, or BPMN Process Execution Conformance. For more information about BPMN
conformance types, see page 2.

This chapter covers a mapping of a BPMN model to WS-BPEL that is derived by analyzing the BPMN objects and the
relationships between these objects.

A Business Process Diagram can be made up of a set of (semi-) independent components, which are shown as
separate Pools, each of which represents an orchestration Process. There is not a specific mapping of the diagram
itself, but rather, each of these orchestration Processes maps to an individual WS-BPEL process.

Not all BPMN orchestration Processes can be mapped to WS-BPEL in a straight-forward way. That is because BPMN
allows the modeler to draw almost arbitrary graphs to model control flow, whereas in WS-BPEL, there are certain
restrictions such as control-flow being either block-structured or not containing cycles. For example, an unstructured loop
cannot directly be represented in WS-BPEL.

To map a BPMN orchestration Process to WS-BPEL it MUST be sound, that is it MUST contain neither a deadlock nor
a lack of synchronization. A deadlock is a reachable state of the Process that contains a token on some Sequence
Flow that cannot be removed in any possible future. A lack of synchronization is a reachable state of the Process where
there is more than one token on some Sequence Flow. For further explanation of these terms, we refer to the literature.
To define the structure of BPMN Processes, we introduce the following concepts and terminology. The Gateways
and the Sequence Flows of the BPMN orchestration Process form a directed graph. A block of the diagram is a
connected sub-graph that is connected to the rest of the graph only through exactly two Sequence Flows: exactly one
Sequence Flow entering the block and exactly one Sequence Flow leaving the block. A block hierarchy for a
Process model is a set of blocks of the Process model in which each pair of blocks is either nested or disjoint and
which contains the maximal block (i.e. the whole Process model) A block that is nested in another block B is also called
a subblock of B (cf. Figure 14.1). Each block of the block hierarchy of a given BPMN orchestration Process has a
certain structure (or pattern) which provides the basis for defining the BPEL mapping.
Business Process Model and Notation, v2.0 461

Figure 14.1 - A BPMN orchestration process and its block hierarchy

The following sections define a syntactical BPEL mapping prescribing the resulting BPEL model at the syntactical level,
and a semantic BPEL mapping prescribing the resulting BPEL model in terms of its observable behavior. The syntactical
BPEL mapping is defined for a subset of BPMN models based on certain patterns of BPMN blocks, whereas the
semantical BPEL mapping (which extends the syntactical mapping) does not enforce block patterns, allowing for the
mapping a larger class of BPMN models without prescribing the exact syntactical representation in BPEL.

14.1 Basic BPMN-BPEL Mapping
 This section introduces a partial mapping function from BPMN orchestration Process models to WS-BPEL executable
Process models by recursively defining the mapping for elementary BPMN constructs such as Tasks and Events, and
for blocks following the patterns described here. Mapping a BPMN block to WS-BPEL includes mapping all of its
associated attributes. The observable behavior of a WS-BPEL process resulting from a BPEL mapping is the same as that
of the original BPMN orchestration Process.

We use the notation [BPMN construct] to denote the WS-BPEL construct resulting from mapping the BPMN construct.

Examples are

[ServiceTask] = Invoke Activity

which says that a BPMN Service Task is mapped to a WS-BPEL Invoke Activity, or
462 Business Process Model and Notation, v2.0

which says that the data-based exclusive choice controlled by the two predicates p1 and p2, containing the three BPMN
blocks G1, G2 and G3 is mapped to the WS-BPEL on the right hand side, which recursively uses the mappings of those
predicates and those sub-graphs. Note that we use the “waved rectangle” symbol throughout this section to denote BPMN
blocks.

14.1.1 Process

The following figure describes the mapping of a Process, represented by its defining Collaboration, to WS-BPEL.
The process itself is described by a contained graph G of flow elements) to WS-BPEL. The Process interacts with
Participants Q1…Qn via Conversations C1…Cm:

The partner links of the corresponding WS-BPEL process are derived from the set of interfaces associated with each
participant. Each interface of the Participant containing the Process P itself is mapped to a WS-BPEL partner link
with a “myRole” specification, each interface of each other Participant Qi is mapped to a WS-BPEL partner link with a
“partnerRole” specification.

[]p2

p1 G1

G2

G3

=

<i f><condition>[p1]</condi tion>
[G1]

<else if><condition>[p2]</condi tion>
[G2]

</else if>
<else>
[G3]

</else>
</if>

=[]
<process name="[P-name]"

targetNamespace="[targetNamespace]"
expressionLanguage="[expressionLanguage]"
suppressJoinFai lure="yes"
xmlns="http://docs.oasis-open.org/wsbpel/2.0/process/executable">

<partnerL inks>
[{P-In terfaces} UNION {Qi-Interfaces }]

</partnerLinks>
<variables>

[{dataObjects} UNION {properties}]
</variables>
<correla tionSets>

[{Ci-Corre lationKeys}]
</correlationSets>
[G]

</process>

P G

Q
1

Q
2

C1

C2
Business Process Model and Notation, v2.0 463

The variables of the corresponding WS-BPEL process are derived from the set “{dataObjects}” of all Data Objects
occurring within G, united with the set “{properties}” of all properties occurring within G, without Data Objects or
properties contained in nested Sub-Processes. See Section “Handling Data” on page 481 for more details of this
mapping.

The correlation sets of the corresponding WS-BPEL process are derived from the CorrelationKeys of the
set of Conversations C1…Cn.. See page 466 for more details of this mapping.

14.1.2 Activities

Common Activity Mappings

The following table displays a set of mappings of general BPMN Activity attributes to WS-BPEL activity attributes.

Task Mappings

The following sections contain the mappings of the variations of a Task to WS-BPEL.

Service Task

The following figure shows the mapping of a Service Task to WS-BPEL:

The partner link associated with the WS-BPEL invoke is derived from both the participant Q that the Service Task is
connected to by Mesage Flows, and from the interface referenced by the operation of the Service Task.

Receive Task

The following figure shows the mapping of a Receive Task to WS-BPEL:

Table 14.1 – Common Activity Mappings to WS-BPEL

Activity Mapping to WS-BPEL

name The name attribute of a BPMN activity is mapped to the name attribute of a WS-BPEL
activity by removing all characters not allowed in an XML NCName, and ensuring
uniqueness by adding an appropriate suffix. In the subsequent diagrams, this mapping
is represented as [name].

<invoke name="[Task-name]"
partnerLink="[Q, Task-operation- interface]"
portType="[Task-operation-in terface]"
operation="[Task-operation]">

</invoke>[]=

Service
Task

Q

464 Business Process Model and Notation, v2.0

The partner link associated with the WS-BPEL receive is derived from the interface referenced by the operation of the
Receive Task.

Send Task

The following figure shows the mapping of a Send Task to WS-BPEL:

The partner link associated with the WS-BPEL invoke is derived from both the participant Q that the Send Task is
connected to by a Message Flow, and from the interface referenced by the operation of the Send Task.

Abstract Task

The following figure shows the mapping of an Abstract Task to WS-BPEL:

Service Package

Message

For Messages with a scalar data item definition typed by an XML schema definition, the following figure shows the
mapping to WS-BPEL, using WSDL 1.1:

<receive name="[Task-name]"
createInstance="[instantiate? 'yes':'no ']"
partnerL ink="[Task-operation-interface]"
portType="[Task-operation-interface]"
operation="[Task-operation]">

</receive>
[]=

Receive
Task

<invoke name="[Task-name]"
partnerLink="[Q, Task-operation- interface]"
portType="[Task-operation-in terface]"
operation="[Task-operation]">

</invoke>[]=

Send
Task

Q

[] =
Abstract

Task
<empty name="[Task-name]">
</empty>
Business Process Model and Notation, v2.0 465

The top-level child elements of the XML schema defining the structure of the BPMN Message are mapped to the
WSDL’s message’s parts.

Interface and Operation

The following figure shows the mapping of a BPMN interface with its operations to WS-BPEL, using WSDL 1.1:

Conversations and Correlation

For those BPMN nodes sending or receiving Messages (i.e., Message Events, Service, send or Receive Tasks)
that have an associated key-based Correlation Key, the mapping of that key-based Correlation Key is as
follows:

<wsdl:message name="[msg-name]">
[xmlSchema]

</wsdl:message>
=

<Message name="msg-name">
<StructureDefinition typeLanguage=

"http :// www.w3.org/2001/XMLSchema">
xmlSchema

</StructureDefin ition>
</Message>

[]

[]=

<Interface name="if-name">
<Operations>

<Operation name="op1-name">
<inMessageRef ref="msg1i-name"/>
<outMessageRef ref="msg1o-name"/>
<errorRef ref="error1a-name"/>
...

</Operation>
...

</Operations>
</Interface>

<wsdl:portType name="[if-name]">
<operation name="[op1-name]">

<wsdl:input message="[msg1i-name]" />
<wsdl:output message="[msg1o-name]" />
<wsdl:fault name="[error1a-faultname]"

message="[error1a-name]" />
...

</operation>
...

</wsd l:portType>
466 Business Process Model and Notation, v2.0

The messageType of the BPEL property alias is appropriately derived from the itemDefinition of the Message
referenced by the BPMN Message key Expression. The name of the Message part is derived from the Message
key Expression. The Message key Expression itself is transformed into an Expression relative to that part.

The mapping of Activities with an associated key-based Correlation Key is extended to reference the above BPEL
correlation set in the corresponding BPEL correlations element. The following figure shows that mapping in the
case of a Service Task with an associated key-based Correlation Key.

The initiate attribute of the BPEL correlation element is set depending on whether or not the associated Message
Flow initiates the associated Conversations, or participates in an already existing Conversation. If there are multiple
CorrelationKeys associated with the Conversation, multiple correlation elements are used.

Sub-Process Mappings

The following table displays the mapping of an embedded Sub-Process with Adhoc=”False” to a WS-BPEL scope.
(This extends the mappings that are defined for all Activities--see page 464):

The following figure shows the mapping of a BPMN Sub-Process without an Event Sub-Process:

< KeyBa se dCorrel ati onS et na me= "c-set">
<Ke y nam e=" k-na me1 " type="k-type1"

m essa geRef="msg-na me1 ">
< M essa geK eyExpress ion

express ion Lan guag e=" lang 1">
e xp r1

< /M essageK eyExpre ss io n>
</Key>
...
<Ke y nam e=" k-na meN" />

...
< /KeyBa se dCorrel ati onS et>

[] =

< vprop:prop erty nam e=" [k-n am e1]" typ e ="[k- type1]" />
...
< vprop:prop erty nam e=" [k-n am eN]" />

< vprop:prop ertyAl ias pro pertyNam e= "[kNam e1]"
m essa geType=" [m sg-n am e1]"
pa rt= "[expr1 -part]">

< vp rop:qu ery que ryL angu age= "[lang1]">
[expr1]

< /vp ro p:q uery>
< /vprop :pro pertyA lia s>
...
< vprop:prop ertyAl ias pro pertyNam e= "[kNam eN]" />

< correla tio nSe ts>
< co rre lat ion Set nam e=" [c-se t]"

prop erti es="[k-nam e1] . .. [k-n am eN]" />
...

< /correl ati onS ets>

<invoke name="[Task-name]"
partnerLink="[Q, Task-operation-in terface]"
portType="[Task-operation-interface]"
operation="[Task-operation]">
<correlations>

<correla tion set="[Task-messageFlow-conversation-correla tionKey]"
ini tia te="[initial InConversation? 'join':'no']"/>

</corre lations>
</invoke>

[]=
Service

Task
Business Process Model and Notation, v2.0 467

The following figure shows the mapping of a BPMN Sub-Process with an Event Sub-Process. (Event Sub-
Processes could also be added to a top-level Process, in which case their mapping extends correspondingly.)

Note that in case of multiple Event Sub-Processes, there would be multiple WS-BPEL handlers.

Mapping of Event Sub-Processes

Note that if a Sub-Process contains multiple Event Sub-Processes, all become handlers of the associated WS-
BPEL scope, ordered and grouped as specified by WS-BPEL.

Non-interrupting Message Event Sub-Processes are mapped to WS-BPEL event handlers as follows:

Timer Event Sub-Processes are mapped to WS-BPEL event handlers as follows:

Error Event Sub-Processes are mapped to WS-BPEL fault handlers as follows:

=[]e

Message Handler

G

<eventHandlers>
<onEvent partnerLink="[e-operation-interface]"

operation="[e-operation]">
<scope>[G]</scope>

</onEvent>
</eventHandlers>

[]e

Timeout Handler

G =

<eventHandlers>
<onAlarm>[timer-spec]
<scope>[G]</scope>

</onAlarm>
</eventHandlers>

[]Error Handler

G =

e

<faul tHandlers>
<catch faultName="[e-fault]">

[G]
</catch>

</faul tHandlers>

[]=
<scope>

[G]
</scope>

Subprocess

G

468 Business Process Model and Notation, v2.0

A Compensation Event Sub-Process is mapped to a WS-BPEL compensation handler as follows:

Activity Loop Mapping

Standard loops with a testTime attribute “Before” or “After” execution of the Activity map to WS-BPEL while and
repeatUntil activities in a straight-forward manner. When the LoopMaximum attribute is used, additional activities
are used to maintain a loop counter.

Multi-instance Activities map to WS-BPEL forEach activities in a straight-forward manner.

Standard Loops

The mappings for standard loops to WS-BPEL are described in the following.

A standard loop with testTime= “Before” maps to WS-BPEL as follows, where p denotes the loop condition:

A standard loop with testTime= “After” maps as follows, where p denotes the loop condition:

Dealing with LoopMaximum

When the LoopMaximum attribute is specified for an Activity, the loop requires additional set up for maintaining a
counter.

[]Compensation

G =
<compensationHandler>

[G]
</compensationHandler>

[] =Task

<whi le>
<condition>[p]</condi tion>
[Task]

</while>

[] =Task

<repeatUntil>
[Task]
<condition>[not p]</condition>

</repeatUnti l>
Business Process Model and Notation, v2.0 469

A standard loop with testTime=“Before” and a LoopMaximum attribute maps to WS-BPEL as follows (again, p denotes
the loopCondition):

(The notation [counter] denotes the unique name of a variable used to hold the counter value; the actual name is
immaterial.)

A standard loop with testTime=“After” and a LoopMaximum attribute maps as follows:

Task[] =

<variable name="[counter]" type="xsd:integer"/>
...
<sequence>
<assign>

<copy>
<from><li tera l>0</l itera l></from >
<to variab le="[counter]"/>

</copy>
</assign>
<while>

<condition>[p] and $[counter] &l t; [LoopMaximum]</condi tion>
<sequence>

[G]
<assign>

<copy>
<from expression="$[counter]+1"/>
<to variable="[counter]" />

</copy>
</assign>

</sequence>
</while>

</sequence>

Task[] =

<variable name="[counter]" type="xsd:integer"/>
...
<sequence>

<assign>
<copy>

<from><li tera l>0</literal></from>
<to variable="[counter]" />

</copy>
</assign>
<repeatUntil>

<sequence>
[G]
<assign>

<copy>
<from expression="$[counter]+1"/>
<to variable="[counter]" />

</copy>
</assign>

</sequence>
<condition>[not p] or $[counter] > [LoopMaximum]</condition>

</repeatUnti l>
</sequence>
470 Business Process Model and Notation, v2.0

(The notation [counter] denotes the unique name of a variable used to hold the counter value; the actual name is
immaterial.)

Multi-Instance Activities

A BPMN Multi-Instance Task with a multiInstanceFlowCondition of “All” is mapped to WS-BPEL as
follows:

(The notation [counter] denotes the unique name of a variable used to hold the counter value; the actual name is
immaterial.)

14.1.3 Events

Start Event Mappings

The following sections detail the mapping of Start Events to WS-BPEL.

Message Start Events

A Message Start Event is mapped to WS-BPEL as shown in the following figure:

The partner link associated with the WS-BPEL receive is derived from the interface referenced by the operation of the
Message Start Event.

Error Start Events

An Error Start Event can only occur in Event Sub-Processes. This mapping is described on page 468.

Compensation Start Events

A Compensation Start Event can only occur in Event Sub-Processes. This mapping is described page 468.

[]=Task

<variable name="[counter]" type="xsd:integer"/>
...
<forEach counterName="[counter]" paral lel="[isSequential? 'no':'yes']">
<startCounterValue>1</startCounterValue>
<finalCounterValue>[condition]</finalCounterValue>
<scope>

[Task]
</scope>

</forEach>

<receive name="[e-name]"
createInstance="yes"
partnerL ink="[e-operation-interfac e]"
portType="[e-operation-in terface]"
operation="[e-operation]">

</receive>
[]=

e

Business Process Model and Notation, v2.0 471

Intermediate Event Mappings (Non-boundary)

The following sections detail the mapping of intermediate non-boundary Events to WS-BPEL.

Message Intermediate Events (Non-boundary)

A Message Intermediate Event can either be used in normal control flow, similar to a Send or Receive Task (for
throw or catch Message Intermediate Events, respectively), or it can be used in an Event Gateway. The latter is
described in more detail in 14.1.4, ’Gateways and Sequence Flows’.

The following figure describes the mapping of Message Intermediate Events to WS-BPEL:

The partner link associated with the WS-BPEL receive is derived from the interface referenced by the operation of the
Message Intermediate Event.

Timer Intermediate Events (Non-boundary)

A Timer Intermediate Event can either be used in normal control flow, or it can be used in an Event Gateway. The
latter is described in more detail in 14.1.4, ’Gateways and Sequence Flows’.

The following figure describes the mapping of a Timer Intermediate Event to WS-BPEL – note that one o the
mappings shown is chosen depending on whether the Timer Event’s TimeCycle or TimeDate attribute is used:

Compensation Intermediate Events (Non-boundary)

A Compensation Intermediate Event with its waitForCompletion property set to true, that is used within an
Event Sub-Process triggered through an error or through compensation, is mapped to WS-BPEL as follows:

[]e

<receive name="[e-name]"
createInstance="no"
partnerL ink="[e-operation-interface]"
portType="[e-operation-in terface]"
operation="[e-operation]">

</receive>

=

[]e
=

<wait name="[e-name]" for="[e-TimeCycle]"/>
or

<wait name="[e-name]" until="[e-TimeDate]"/>
472 Business Process Model and Notation, v2.0

The first mapping is used if the Compensation Event does not reference an Activity, the second mapping is used
otherwise.

End Event Mappings

The following sections detail the mapping of End Events to WS-BPEL.

None End Events

A “none” End Event marking the end of a Process is mapped to WS-BPEL as shown in the following figure:

Message End Events

A Message Start Event is mapped to WS-BPEL as shown in the following figure:

The partner link associated with the WS-BPEL invoke is derived from both the participant Q that the Message
Intermediate Event is connected to by a Message Flow, and from the interface referenced by the operation
of the Message Intermediate Event.

Error End Events

An Error End Event is mapped to WS-BPEL as shown in the following figure:

<compensate/>
or

<compensateScope target="[referencedActivi ty]"/>[]e
=

<empty name="[e-name]">
</empty>[]e

=

[] <invoke name="[e-name]"
partnerLink="[Q, e-operation-interface]"
portType="[e-operation-interface]"
operation="[e-operation]">

</invoke>

=

Q

e

Business Process Model and Notation, v2.0 473

Compensation End Events

A Compensation End Event with its waitForCompletion property set to true, that is used within an Event Sub-
Process triggered through an error or through compensation, is mapped to WS-BPEL as follows:

The first mapping is used if the Compensation Event does not reference an Activity, the second mapping is used
otherwise.

Terminate End Events

A Terminate End Event is mapped to WS-BPEL as shown in the following figure:

Boundary Intermediate Events

Message Boundary Events

A BPMN Activity with a non-interrupting Message boundary Event is mapped to a WS-BPEL scope with an event
handler as follows:

[]e
= <throw faul tName="[e-name]">

</throw>

e

<compensate/>
or

<compensateScope target="[referencedActivi ty]"/>[]=

[]e

<exi t>
</exit>=
474 Business Process Model and Notation, v2.0

The partner link associated with the WS-BPEL onEvent is derived from the interface referenced by the operation of the
boundary Message Event.

The same mapping applies to a non-interrupting boundary Timer Event, using a WS-BPEL onAlarm handler instead.

Error Boundary Events

A BPMN Activity with a boundary Error Event according to the following pattern is mapped as shown:

<scope>
<eventHandlers>

<onEvent partnerLink="[Q, e-operation-interface]"
operation="[e-operation]">

<scope>[G]</scope>
</onEvent>

</eventHandlers>
[Activity]

</scope>

[]=

Activity

e

G

Q

=

<flow>
<links>

<link name="[l1]"/>
...
<link name="[l4]"/>

</l inks>
<scope>

<sources><source linkName="[l1]" /></sources>
<faultHandlers>

<catch faul tName="[e-error]">
<empty>

<sources><source linkName="[l3]"/></sources>
</empty >

</catch>
</faultHandlers>
[Activi ty]

</scope>
<flow>

<targets><target linkName="[l1]"/></targets>
<sources><source linkName="[l2]" /></sources>
[G1]

</flow>
<flow>

<targets><target linkName="[l3]"/></targets>
<sources><source linkName="[l4]" /></sources>
[G2]

</flow>
<empty>

<sources><source linkName="[l2]" />
<source linkName="[l4]"/></sources>

</empty>
</flow>

[]Activity

G2

G1

l3

l1 l2

l4
Business Process Model and Notation, v2.0 475

Note that the case where the error handling path doesn’t join the main control flow again, is still mapped using this
pattern, by applying the following model equivalence:

Compensation Boundary Events

A BPMN Activity with a boundary Compensation Event is similarly mapped as shown:

Multiple Boundary Events, and Boundary Events with Loops

If there are multiple boundary Events for an Activity, their WS-BPEL mappings are super-imposed on the single WS-
BPEL scope wrapping the mapping of the Activity.

When the Activity is a standard loop or a multi-instance and has one or more boundary Events, the WS-BPEL loop
resulting from mapping the BPMN loop is nested inside the WS-BPEL scope resulting from mapping the BPMN
boundary Events.

The following example shows that mapping for a Sub-Process with a nested Event Sub-Process that has a standard
loop with TestTime=“Before,” a boundary Error Intermediate Event, and a boundary Compensation
Intermediate Event.

Activity

G2

G1Activity

G2

G1

[]=

<scope name="[Activity-name]">
<compensationHandler>

[G]
</compensationHandler>
[Activity]

</scope>

Activity

G

476 Business Process Model and Notation, v2.0

rces>

[

14.1.4 Gateways and Sequence Flows

The mapping of BPMN Gateways and Sequence Flows is described using BPMN blocks following particular
patterns.

Exclusive (Data-based) Decision Pattern

An exclusive data-based decision is mapped as follows:

=

<flow>
<l inks>

<link name="[l1]"/>
...
<link name="[l4]"/>

</links>
<scope>

<sources><source l inkName="[l1]"/></sources>
<faultHandlers>

<catch faultName="[e-error]">
<empty>

<sources><source linkName="[l3]"/></sou
</empty >

</catch>
</faultHandlers>
<compensationHandler>

[G3]
</compensationHandler>
<while>

<condition>[p]</condi tion>
<scope>

[Handler]
[G]

</scope>
</whi le>

</scope>
<flow>

<targets ><target linkName="[l1]"/></targets>
<sources><source l inkName="[l2]"/></sources>
[G1]

</flow>
<flow>

<targets ><target linkName="[l3]"/></targets>
<sources><source l inkName="[l4]"/></sources>
[G2]

</flow>
<empty>

<sources><source l inkName="[l2]"/>
<source l inkName="[l4]"/></sources>

</empty>
</flow>

]
Subprocess

Handler

G’

G

l4

l1

G2l3

G1

G3

l2
Business Process Model and Notation, v2.0 477

While this figure shows three branches, the pattern is generalized to n branches in an obvious manner.

Exclusive (Event-based) Decision Pattern

An Event Gateway is mapped as follows:

While this figure shows three branches with one Message Intermediate Event, one Receive Task and one Timer
Intermediate Event, the pattern is generalized to n branches with any combination of the former in an obvious manner.
The handling of Participants (BPEL partnerLinks), Event (operation) and timer details is as specified for Message
Intermediate Events, Receive Tasks, and Timer Intermediate Events, respectively. The data flow and associated
variables (not shown) are handled as for Receive Tasks/Message Intermediate Events.

Inclusive Decision Pattern

An inclusive decision pattern without an otherwise gate is mapped as follows:

[]p2

p1 G1

G2

G3

=

<i f><condition>[p1]</condi tion>
[G1]

<else if><condition>[p2]</condi tion>
[G2]

</else if>
<else>
[G3]

</else>
</if>

<pick createInstance="[instantiate? ' yes':'no']">
<onMessage partnerLink="[e1-operation- interface]"

operation="[e1-operation]">
[G1]

</onMessage>
<onMessage partnerLink="[e2-operation- interface]"

operation="[e2-operation]">
[G2]

</onMessage>
<onAlarm>

[timer-spec]
[G3]

</onAlarm>
</p ick>

[] =

G1

G2

G3

e1

timer

e2
478 Business Process Model and Notation, v2.0

While this figure shows three branches, the pattern is generalized to n branches in an obvious manner.

Note that link names in WS-BPEL MUST follow the rules of an XML NCName. Thus, the mapping of the BPMN
Sequence Flow name attribute MUST appropriately canonicalize that name, possibly ensuring uniqueness, e.g., by
appending a unique suffix. This is capture by the [linkName] notation.

[]=

<flow>
<links>

<l ink name="[link1]"/>
...
<l ink name="[link6]"/>

</l inks>

<empty>
<sources>

<source l inkName="[link1]">
<transitionCondi tion>[p1])</transi tionCondition>

</source>
<source l inkName="[link2]">

<transitionCondi tion>[p2])</transi tionCondition>
</source>
<source l inkName="[link3]">

<transitionCondi tion>[p3])</transi tionCondition>
</source>

</sources>
</empty>

<flow>
<targets><target linkName="[link1]"/></targets>
<sources><source linkName="[l ink4]"/></sources>
[G1]

</flow>

<flow>
<targets><target linkName="[link2]"/></targets>
<sources><source linkName="[l ink5]"/></sources>
[G2]

</flow>

<flow>
<targets><target linkName="[link3]"/></targets>
<sources><source linkName="[l ink6]"/></sources>
[G3]

</flow>

<empty>
<targets>

<target linkName="[l ink4]"/>
<target linkName="[l ink5]"/>
<target linkName="[l ink6]"/>

</targets>
</empty>

</flow>

p2

p1 G1

G2

p3 G3

link1

link2

link3

link4

link5

link6
Business Process Model and Notation, v2.0 479

Parallel Pattern

A parallel fork-join pattern is mapped as follows:

Sequence Pattern

A BPMN block consisting of a series of Activities connected via (unconditional) Sequence Flows is mapped to a
WS-BPEL sequence:

Structured Loop Patterns

A BPMN block consisting of a structured loop of the following pattern is mapped to a WS-BPEL while:

A BPMN block consisting of a structured loop of the following pattern is mapped to a WS-BPEL repeatUntil:

G1

G2

G3

[] =

<flow>
[G1]
[G2]
[G3]

</flow>

[] =

<sequence>
[G1]
[G2]
[G3]

</sequence>

G1 G2 G3

[] =

<while>
<condi tion>[p]</condition>
[G]

</while>

p G
480 Business Process Model and Notation, v2.0

Handling Loops in Sequence Flows

Loops are created when the flow of the Process moves from a downstream object to an upstream object. There are two
types of loops that are WS-BPEL mappable: while loops and repeat loops.

A while loop has the following structure in BPMN and is mapped as shown:

A repeat loop has the following structure in BPMN and is mapped as shown:

14.1.5 Handling Data

Data Objects

BPMN Data Objects are mapped to WS-BPEL variables. The itemDefinition of the Data Object determines the
XSD type of that variable.

Data Objects occur in the context of a Process or Sub-Process. For the associated WS-BPEL process or WS-
BPEL scope, a variable is added for each Data Object in the corresponding WS-BPEL variables section, as
follows:

[] =

p

G

<repeatUnti l>
[G]
<condition>[not p]</condition>

</repeatUntil>

[] =

<while>
<condi tion>[p]</condition>
[G]

</while>

p G

=

<repeatUnti l>
[G]
<condition>[no t p]</condi tion>

</repeatU ntil>[]p

G

Business Process Model and Notation, v2.0 481

Properties

BPMN properties can be contained in a Process, Activity, or an Event, here named the “container” of the property. A
BPMN property is mapped to a WS-BPEL variable. Its name is derived from the name of its container and the name of
the property. Note that in the case of different containers with the same name and a contained property of the same name,
the mapping to WS-BPEL ensures the names of the associated WS-BPEL variables are unique. The itemDefinition
of the property determines the XSD type of that variable.

A BPMN Process property is mapped to a WS-BPEL global variable. A BPMN Event property is mapped to a WS-
BPEL variable contained in the WS-BPEL scope representing the immediately enclosing Sub-Process of the Event (or
a global variable in case the Event is an immediate child of the Process). For a BPMN Activity property, two cases
are distinguished: In case of a Sub-Process, the WS-BPEL variable is contained in the WS-BPEL scope representing
the Sub-Process. For all other BPMN Activity properties, the WS-BPEL variable is contained in the WS-BPEL scope
representing the immediately enclosing Sub-Process of the Activity (or a global variable in case the Activity is an
immediate child of the Process).

Input and Output Sets

For a Send Task and a Service Task, the single input set is mapped to a WSDL message defining the input of the
associated WS-BPEL activity. The inputs map to the message parts of the WSDL message. For a Receive Task and a
Service Task, the single output set is mapped to a WSDL message defining the output of the associated WS-BPEL
activity. The outputs map to the message parts of the WSDL message.

The structure of the WSDL message is defined by the itemDefinitions of the data inputs of the input set:

= <variable name="[D1-name]" type="[D1-structu reDefini tion]"/>

D1[]

[]= <variable name="[{container-name}.P1-name]"
type="[P1-structureDefini tion]"/>

<property id="P1-name"
structureRef="P1-structureDefinition"/>
482 Business Process Model and Notation, v2.0

For the data outputs of the output set, the WSDL message looks as follows:

Data Associations

In this section, we assume that the input set of the Service Task has the same structure as its referenced input
Message, and the output set of the Service Task has the same structure as its reference output Message. If this is not
the case, assignments are needed, and the mapping is as described in the next section.

Data associations to and from a Service Task are mapped as follows:

Data associations from a Receive Task are mapped as follows:

[]<inputSet name="iset">
<dataInput name="input1">

<structureDefinition structure="type1"/>
</dataInput>
...

</inputSet>

=

<wsd l:message name="[iset-name]">
<part name="[input1-name]" type="[type1]"/>
...

</wsdl:message>

[]<outputSet name="oset">
<dataOutput name="output1">

<structureDefinition structure="type3"/>
</dataOutput>
...

</outpu tSet>

=

<wsd l:message name="[oset-name]">
<part name="[output1-name]" type="[type3]"/>
...

</wsdl:message>

[]=

<invoke ... >
<toParts>

<toPart part="[dataInput1-name]"
fromVariab le="[D1-name]"/>

<toPart part="[dataInput2-name]"
fromVariab le="[D2-name]"/>

</toParts>
<fromParts>

<fromPart part="[dataOutput1-name]"
fromVariab le="[D3-name]"/>

<formPart part="[dataOutput2-name]"
fromVariab le="[D4-name]"/>

</fromParts>
</invoke>

A

D1

D2

D3

D4
Business Process Model and Notation, v2.0 483

Data associations to a Send Task are mapped as follows:

Expressions

BPMN Expressions specified using XPath (e.g., a condition Expression of a Sequence Flow, or a timer cycle
Expression of a Timer Intermediate Event) are used as specified in BPMN, rewriting access to BPMN context to
refer to the mapped BPEL context.

The BPMN XPath functions for accessing context from the perspective of the current Process are mapped to BPEL
XPath functions for context access as shown in the following table. This is possible because the arguments MUST be
literal strings.

Table 14.2 - Expressions mapping to WS-BPEL

BPMN context access BPEL context access

getDataobject(dataObjectName) $[dataObjectName]

getProcessProperty(propertyName) $[{processName}.propertyName] where the right process-
Name is statistically derived.

getActivityProperty(activityName, propertyName) $[activityName.propertyName]

getEventProperty(eventName, propertyName) $[eventName.propertyName]

=[]
<receive>
<fromParts >

<fromPart part="[dataOutput1-name]"
fromVariab le="[D3-name]"/>

<formPart part="[dataOutput2-name]"
fromVariab le="[D4-name]"/>

</fromParts>
</receive>

A

D3

D4

A

D1

D2

[]=

<invoke>
<toParts>

<toPart part="[dataInput1-name]"
fromVariab le="[D1-name]"/>

<toPart part="[dataInput2-name]"
fromVariab le="[D2-name]"/>

</toParts>
</invoke>
484 Business Process Model and Notation, v2.0

Assignments

For a Service Task with assignments, the WS-BPEL mapping results in a sequence of an assign activity, an invoke
activity and another assign activity. The first assign deals with creating the service request Message from the data inputs
of the Task, the second assign deals with creating the data outputs of the Task from the service response Message.

14.2 Extended BPMN-BPEL Mapping
Additional sound BPMN Process models whose block hierarchy contains blocks that have not been addressed in the
previous section can be mapped to WS-BPEL. For such BPMN Process models, in many cases there is no preferred
single mapping of a particular block, but rather, multiple WS-BPEL patterns are possible to map that block to. Also,
additional BPMN constructs can be mapped by using capabilities not available at the time of producing this specification,
such as the upcoming OASIS BPEL4People standard to map BPMN User Tasks, or other WS-BPEL extensions.

Rather than describing or even mandating the mapping of such BPMN blocks, this specification allows for a semantic
mapping of a BPMN Process model to an executable WS-BPEL process: The observable behavior of the target WS-
BPEL process MUST match the operational semantics of the mapped BPMN Process. Also, the mappings described in
Section 15.1 SHOULD be used where applicable.

14.2.1 End Events

End Events can be combined with other BPMN objects to complete the merging or joining of the paths of a WSBPEL
structured element (see Figure 7.3).

Figure 14.2 - An example of distributed token recombination
Business Process Model and Notation, v2.0 485

14.2.2 Loop/Switch Combinations From a Gateway

This type of loop is created by a Gateway that has three or more outgoing Sequence Flows. One Sequence Flow
loops back upstream while the others continue downstream (see Figure 14.3). Note that there might be intervening
Activities prior to when the Sequence Flow loops back upstream.

• This maps to both a WSBPEL while and a switch. Both activities will be placed within a sequence, with the
while preceding the switch.

• For the while:

• The Condition for the Sequence Flow that loops back upstream will map to the condition of the while.

• All the Activities that span the distance between where the loop starts and where it ends, will be mapped and
placed within the Activity for the while, usually within a sequence.

• For the switch:

• For each additional outgoing Sequence Flows there will be a case for the switch.

Figure 14.3 - An example of a loop from a decision with more than two alternative paths

14.2.3 Interleaved Loops

This is a situation where there at least two loops involved and they are not nested (see Figure 14.4). Multiple looping
situations can map, as described above, if they are in a sequence or are fully nested (e.g., one while inside another
while). However, if the loops overlap in a non-nested fashion, as shown in the figure, then the structured element
while cannot be used to handle the situation. Also, since a flow is acyclic, it cannot handle the behavior either.
486 Business Process Model and Notation, v2.0

Figure 14.4 - An example of interleaved loops

To handle this type of behavior, parts of the WSBPEL process will have to be separated into one or more derived
processes that are spawned from the main process and will also spawn or call each other (note that the examples
below are using a spawning technique). Through this mechanism, the linear and structured elements of WSBPEL can
provide the same behavior that is shown through a set of cycles in a single BPMN diagram. To do this:

• The looping section of the Process, where the loops first merge back (upstream) into the flow until all the paths have
merged back to Normal Flow, SHALL be separated from the main WSBPEL process into a set of derived
processes that will spawn each other until all the looping conditions are satisfied.

• The section of the process that is removed will be replaced by a (one-way) invoke to spawn the derived
process, followed by a receive to accept the message that the looping sections have completed and the main
process can continue (see Figure 14.5).

• The name of the invoke will be in the form of:

• “Spawn_[(loop target)activity.Name]_Derived_Process”

• The name of the receive will be in the form of:

• [(loop target)activity.Name]_Derived_Process_Completed”
Business Process Model and Notation, v2.0 487

Figure 14.5 - An example of the WSBPEL pattern for substituting for the derived Process

For each location in the Process where a Sequence Flow connects upstream, there will be a separate derived
WSBPEL process.

• The name of the derived process will be in the form of:

• “[(loop target)activity.Name]_Derived_Process”

• All Gateways in this section will be mapped to switch elements, instead of while elements (see Figure below).

• Each time there is a Sequence Flow that loops back upstream, the Activity for the switch case will be a (one-
way) invoke that will spawn the appropriate derived process, even if the invoke spawns the same process
again.

• The name of the invoke will the same as the one describe above.

• At the end of the derived process a (one-way) invoke will be used to signal the main process that all the derived
activities have completed and the main process can continue.

• The name of the invoke will be in the form of:

• “[(loop target)activity.Name]_Derived_Process_Completed”

Figure 14.6 - An example of a WSBPEL pattern for the derived Process
488 Business Process Model and Notation, v2.0

14.2.4 Infinite Loops

This type of loop is created by a Sequence Flow that loops back without an intervening Gateway to create alternative
paths (see Figure 14.7). While this can be a modeling error most of the time, there can be situations where this type of
loop is desired, especially if it is placed within a larger Activity that will eventually be interrupted.

• This will map to a while activity.

• The condition of the while will be set to an Expression that will never evaluate to true, such as condition ”1 =
0.”

• All the activities that span the distance between where the loop starts and where it ends, will be mapped and placed
within the activity for the while, usually within a sequence.

Figure 14.7 - An example – An infinite loop

14.2.5 BPMN Elements that Span Multiple WSBPEL Sub-Elements

Figure 14.8 below illustrates how BPMN objects can exist in two separate sub-elements of a WSBPEL structured element
at the same time. Since BPMN allows free form connections of Activities and Sequence Flows, it is possible that two
(or more) Sequence Flows will merge before all the Sequence Flows that map to a WSBPEL structure element have
merged. The sub-elements of a WSBPEL structured elements are also self-contained and there is no cross sub-element
flow. For example, the cases of a switch cannot interact; that is, they cannot share activities. Thus, one BPMN
Activity will need to appear in two (or more) WSBPEL structured elements. There are two possible mechanisms to deal
with the situation:

• First, the activities are simply duplicated in all appropriate WSBPEL elements.

• Second, the activities that need to be duplicated can be removed from the main Process and placed in a derived
process that is called (invoked) from all locations in the WSBPEL elements as needed.

• The name of the derived process will be in the form of:

• “[(target)object.Name]_Derived_Process”
Business Process Model and Notation, v2.0 489

Figure 14.8 below displays this issue with an example. In that example, two Sequence Flows merge into the “Include
History of Transactions” Task. However, the Decision that precedes the Task has three (3) alternatives. Thus, the
Decision maps to a WSBPEL switch with three (3) cases. The three cases are not closed until the “Include Standard
Text” Task, downstream. This means that the “Include History of Transactions” Task will actually appear in two (2) of
the three (3) cases of the switch.

Note – the use of a WSBPEL flow will be able to handle the behavior without duplicating activities, but a flow will not
always be available for use in these situations, particularly if a WSBPEL pick is requested.

Figure 14.8 - An example - Activity that spans two paths of a WSBPEL structured element
490 Business Process Model and Notation, v2.0

15 Exchange Formats

15.1 Interchanging Incomplete Models
In practice, it is common for models to be interchanged before they are complete. This occurs frequently when doing
iterative modeling, where one user (such as a subject matter expert or business person) first defines a high-level model,
and then passes it on to another user to be completed and refined.

Such "incomplete" models are ones in which all of the mandatory attributes have not yet been filled in, or the cardinality
lowerbound of attributes and associations has not been satisfied.

XMI allows for the interchange of such incomplete models. In BPMN, we extend this capability to interchange of XML
files based on the BPMN XSD. In such XML files, implementers are expected to support this interchange by:

• Disregarding missing attributes that are marked as 'required' in the XSD.

• Reducing the lower bound of elements with 'minOccurs' greater than 0.

15.2 Machine Readable Files
BPMN 2.0 machine readable files, including XSD, XMI and XSLT files can be found in OMG Document
DTC/2010-05-04, which is a zip file containing all the files:

• XSD files are found under the XSD folder of the zip file, and the main file is XSD/BPMN20.xsd.

• XMI files are found under the XMI folder of the zip file, and the main file is XSD/BPMN20.cmof.

• XSLT files are found under the XSLT folder of the zip file.

15.3 XSD

15.3.1 Document Structure

A domain-specific set of model elements is interchanged in one or more BPMN files. The root element of each file
MUST be <bpmn:definitions>. The set of files MUST be self-contained, i.e. all definitions that are used in a file MUST
be imported directly or indirectly using the <bpmn:import> element.

Each file MUST declare a "targetNamespace" which MAY differ between multiple files of one model.

BPMN files MAY import non-BPMN files (such as XSDs and WSDLs) if the contained elements use external definitions.

Example:

main.bpmn
<?xml version="1.0" encoding="UTF-8"?>
<bpmn:definitions xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL”

targetNamespace="sample1.main" xmlns:main="sample1.main" xmlns:s1="sample1.semantic1">
<bpmn:import location="semantic1.bpmn" namespace="sample1.semantic1"
Business Process Model and Notation, v2.0 491

importType="http://www.omg.org/spec/BPMN/20100524/MODEL” />
<bpmn:import location="diagram1.bpmn" namespace="sample1.diagram1"

importType="http://www.omg.org/spec/BPMN/20100524/MODEL” />
<bpmn:collaboration>

<bpmn:participant processRef="s1:process1" id="collaboration1"></bpmn:participant>
<!-more content here -->
</bpmn:collaboration>

</bpmn:definitions>

semantic1.bpmn
<?xml version="1.0" encoding="UTF-8"?>
<bpmn:definitions xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL” "targetNam-

espace="sample1.semantic1"
xmlns:s1="sample1.semantic1">
<bpmn:process id="process1">
<!-- content here -->
</bpmn:process>

</bpmn:definitions>

diagram1.bpmn

<?xml version="1.0" encoding="UTF-8"?>
<bpmn:definitions xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/DI”

targetNamespace="sample1.diagram1"
xmlns:bpmndi="http://www.omg.org/spec/BPMNDI/1.0.0"
xmlns:d1="sample1.diagram1" xmlns:s1="sample1.semantic1"
xmlns:main="sample1.main">
<bpmndi:BPMNDiagram scale="1.0" unit="Pixel">

<bpmndi:BPMNPlane element="main:collaboration1">
<!-- content here -->
</bpmndi:BPMNPlane>

</bpmndi:BPMNDiagram>
</bpmn:definitions>

15.3.2 References within the BPMN XSD

All BPMN elements contain IDs and within the BPMN XSD, references to elements are expressed via these IDs. The
XSD IDREF type is the traditional mechanism for referencing by IDs, however it can only reference an element within
the same file. The BPMN XSD supports referencing by ID, across files, by utilizing QNames. A QName consists of two
parts: an optional namespace prefix and a local part. When used to reference a BPMN element, the local part is expected
to be the ID of the element.

For example, consider the following Process

 <process name="Patient Handling" id="Patient_Handling_Process_ID1"> ... </process>

When this Process is referenced from another file, the reference would take the following form:

 processRef="process_ns:Patient_Handling_Process_ID1"
492 Business Process Model and Notation, v2.0

where "process_ns" is the namespace prefix associated with the process namespace upon import, and
"Patient_Handling_Process_ID1" is the value of the id attribute for the Process.

The BPMN XSD utilizes IDREFs wherever possible and resorts to QName only when references can span files. In both
situations however, the reference is still based on IDs.

15.4 XMI
XMI allows the use of tags to tailor the documents that are produced using XMI. The following tage have been explicitly
set for serializing BPMN 2.0 models; the others are left at their default values:

• tag nsURI set to “"http://www.omg.org/spec/BPMN/20100524/XMI"

• tag nsPrefix set to “bpmn”

The BPMN 2.0 XMI for the interchange of diagram information will be published once the OMG Diagram Definition
RFP process has produced a specification that is sufficiently complete such that a future BPMN RFP/FTF/RTF can align
the BPMN specification with the Diagram Definition specification.

15.5 XSLT Transformation between XSD and XMI
• The XSLT transformation from XSD to XMI is in the file XSLT/BPMN20-ToXMI.xslt

• The XSLT transformation from XMI to XSD is in the file XSLT/BPMN20-FromXMI.xslt
Business Process Model and Notation, v2.0 493

494 Business Process Model and Notation, v2.0

Annex A: Changes from v1.2

(informative)

A.1 Changes from BPMN, v1.2
There have been notational and technical changes to the BPMN specification.

The major notational changes include:

• The addition of a Choreography diagram

• The addition of a Conversation diagram

• Non-interrupting Events for a Process

• Event Sub-Processes for a Process

The major technical changes include:

• A formal metamodel as shown through the class diagram figures

• Interchange formats for abstract syntax model interchange in both XMI and XSD

• Interchange formats for diagram interchange in both XMI and XSD

• XSLT transformations between the XMI and XSD formats

Other technical changes include:

• Reference Tasks are removed. These provided reusability within a single diagram, as compared to GlobalTasks, which
are resuable across multiple diagrams. GlobalTasks can be used instead of Reference Tasks, to simplify the language
and implementations."
Business Process Model and Notation, v2.0 495

496 Business Process Model and Notation, v2.0

Annex B: Diagram Interchange

(non-normative)

B.1 Scope
This annex provides documentation for a relevant subset of an alpha version of a Diagram Definition (DD) specification that is
being referenced by this specification (in section 13 - BPMN DI). The (complete version of the) DD specification is still going
through a separate submission/approval process and once finalized and adopted, a future revision of this specification may
replace this annex by a reference to that adopted DD specification.

The Diagram Definition specification provides a basis for modeling and interchanging graphical notations, specifically node
and edge style diagrams as found in BPMN, UML and SysML, for example, where the notations are tied to abstract language
syntaxes defined with MOF. The specification addresses the requirements in the Diagram Definition RFP (ad/2007-09-02).

B.2 Architecture
The DD architecture distinguishes two kinds of graphical information, depending on whether language users have control over
it. Graphics that users have control over, such as position of nodes and line routing points, are captured for interchange
between tools. Graphics that users do not have control over, such as shape and line styles defined by language standards are
not interchanged because they are the same in all diagrams conforming to the language. The DD architecture has two models
to enable specification of these two kinds of graphical information, Diagram Interchange (DI) and Diagram Graphics
(DG).(both models share common elements from a Diagram Common (DC) model). The DI and DG models are shown in
Figure B.1 by bold outlined boxes on the left and right, respectively.

The DD architecture expects language specification to define mappings between interchanged and non-interchanged graphical
information, but does not restrict how it is done. This is shown in Figure B.1 by a shaded box labeled "CS Mapping
Specification" in the middle section. The DD specification gives examples of mappings in QVT, but does not define or
recommend any particular mapping language. The overall architecture resembles typical model-view-controllers, which
separate visual rendering from underlying models, and provide a way to keep visuals and models consistent.

The first few steps of using the DD architecture are:

1. An abstract language syntax is defined separately from DD by instantiating MOF (abstract syntaxes are sometimes
called "metamodels"). This is shown in Figure B.1 by a shaded box labeled "AS" at the far middle left (the "M" levels
in the figure are described in the UML 2 Infrastructure (formal/2009-02-04))

2. Language users model their applications by instantiating elements of abstract syntax, usually through tooling for the
language. This is shown in Figure B.1 by the dashed arrow on the far lower left linked to a box labeled "Model."

3. Users typically see graphical depictions of their models in tools. This is shown in Figure B.1 by a box on the lower
right labeled "Graphics."

Users expect their graphics to appear again in other tools after models are interchanged. The DD architecture enables this in
two parts, one for graphical information that is interchanged, and another for graphical information that is not. The
interchanged information is captured in the next few steps:
Business Process Model and Notation, v2.0 497

4. The portion of graphics that users have control over is captured for interchange, such as node position and line
routing points. This is shown in Figure B.1 by a box labeled "Diagram" on the lower left. This information is linked
to user models (instances of abstract syntax), as shown by the arrow to the Model box.

5. User diagram interchange information is instantiated from a model defined along with the abstract syntax. This is
shown in Figure B.1 by a shaded box labeled "AS DI" on the left. Elements of this model are linked to elements of
abstract syntax, specifying which kinds of diagram interchange information depict which kinds of user model
elements. Diagram interchange models would typically be defined by the same community that defines the abstract
syntax, as part of the overall language specification.

6. Elements of language-specific diagram interchange models (AS DI) specialize elements of the Diagram Interchange
(DI), which is a model provided by this specification for typically needed diagram interchange information, as node
position and line routing points. This is shown in Figure B.1 by the bold box labeled "DI" on the left, with
specialization shown with a hollow headed arrow (specialization here is MOF generalization and property subsetting
and redefinition, or XSD subclassing, where DI has the general elements, and AS DI has the specific elements). DI
elements cannot be instantiated to capture diagram interchange information by themselves, they are almost entirely
abstract. This specification provides normative CMOF and XSD artifacts for DI.

The final part of using the DD architecture captures graphical information that is not interchanged:

7. Language specifications specify mappings from their diagram interchange models (instances of AS DI) to instances
of Diagram Graphics (DG), which is a model provided by this specification for typically needed graphical
information that is not interchanged, such as shape and line styles. This shown in Figure B.1 by the box labeled "DG"
on the right, and by the box labeled "CS Mapping Specification" in the middle section. The arrow at the bottom of the
middle section illustrates mappings being carried out according to the specification above it, producing a model of
diagram visuals, or directly rendering the visuals on a display. Languages specifying this mapping reduce ambiguity
and non uniformity in how their abstract syntax appears visually. The DG model is not expected to be specialized,
enabling implementations to render instances of DG elements for all applications of the DD architecture. This
specification provides normative CMOF and XSD artifacts for DG.

In the BPMN specification, the only realized part of the DD architecture so far is diagram interchange. Hence the only
documentation provided by this annex is for the Diagram Interchange (DI) package, in addition to the relevant subset of
Diagram Common (DC) package, which captures common data structure definitions. The documentation for the Diagram
Graphics (DG) package is not provided here.
498 Business Process Model and Notation, v2.0

Figure B.1 - Diagram Definition Architecture

B.3 Diagram Common
The Diagram Common (DC) package contains abstractions shared by the Diagram Interchange and the Diagram Graphics
packages.

B.3.1 Overview
The Diagram Common (DC) package contains a number of common primitive types as well as structured data types that are
used in the definition of the Diagram Interchange (DG) package (section ?B.4). The DC package itself does not depend on
other packages. Some of the types defined in this package are defined based on similar ones in other related specifications
including Cascading Style Sheets (CSS), Scalable Vector Graphics (SVG) and Office Document Format (ODF).

B.3.2 Abstract Syntax

Figure B.2 - The Primitive Types
Business Process Model and Notation, v2.0 499

Figure B.3 - Diagram Definition Architecture

Figure B.4 - Diagram Definition Architecture

B.3.3 Classifier Descriptions

Boolean [PrimitiveType]
Boolean is a primitive data type having one of two values: true or false, intended to represent the truth value of logical
expressions.

Description

Boolean is used as a type for typed elements that represent logical expressions. There are only two possible values for
Boolean:

• true - The Boolean expression is satisfied.

• false - The Boolean expression is not satisfied.

Abstract Syntax

• Figure B.2 The primitive types

Bounds [PrimitiveType]
Bounds specifies an area in some (x, y) coordinate system that is enclosed by a bounded element's top-left point, its width, and
its height.

Description

Bounds is used to specify the area of an element in some (x, y) coordinate system. The area is specified with a top-left point,
representing the element's location (distance from the origin in logical units of length), in addition to the element's width and
height (in logical units of length).
500 Business Process Model and Notation, v2.0

Abstract Syntax

• Figure B.3 (Layout Types)

Attributes

• + x : Real [1] = 0

a real number that represents the x-coordinate of the rectangle.

• + y : Real[1] = 0

a real number that represents the y-coordinate of the rectangle.

• + width : Real [1]

a real number that represents the width of the rectangle.

• + height : Real [1]

a real number that represents the height of the rectangle.

Font [PrimitiveType]
Font specifies the characteristics of a given font through a set of font properties.

Description

Font specifies a set of properties for a given font that is used when rendering text on a diagram

Abstract Syntax

• Figure B.4 The font type

Attributes

• + name : String[0..1]

the name of the font (e.g. "Times New Roman", "Arial" and "Helvetica").

• + size : Real [0..1]

a non-negative real number representing the size of the font (expressed in the used unit of length).

• + isBold : Boolean [0..1]

whether the font has a bold style.

• + isItalic : Boolean [0..1]

whether the font has an italic style.

• + isUnderline : Boolean [0..1]

whether the font has an underline style.

• + isStrikeThrough : Boolean [0..1]

whether the font has a strike-through style.
Business Process Model and Notation, v2.0 501

Integer [PrimitiveType]
Integer is a primitive data type used to represent the mathematical concept of integer.

Description

Integer is used as a type for typed elements whose values are in the infinite set of integer numbers.

Abstract Syntax

• Figure B.2 The primitive types

Point [DataType]
A Point specifies an location in some (x, y) coordinate system.

Description

Point is used to specify a location in logical unit of length from the origin of some (x, y) coordinate system. The point (0, 0) is
considered to be at the origin of that coordinate system.

Abstract Syntax

• Figure B.3 The layout types

Attributes

• + x : Real [1] = 0

a real number that represents the x-coordinate of the point.

• + y : Real [1] = 0

a real number that represents the y-coordinate of the point.

Real [PrimitiveType]
Real is a primitive data type used to represent the mathematical concept of real.

Description

Real is used as a type for typed elements whose values are in the infinite set of real numbers. Note that integer values (see
?B.3.3.4 Integer) are also considered real values and as such can be assigned to real-typed elements.

Abstract Syntax

• Figure B.2 The primitive types

String [PrimitiveType]
String is a primitive data type used to represent a sequence of characters in some suitable character set. Character sets may
include both ASCII and Unicode characters.

Description

String is used as a type for typed elements in the metamodel that have text values. The allowed values for String depend on the
semantics of the text in each context. A string value is a sequence of characters surrounded by double quotes (").
502 Business Process Model and Notation, v2.0

Abstract Syntax

• Figure B.2 The primitive types

B.4 Diagram Interchange
The Diagram Interchange (DI) package contains a model enabling interchange of graphical information that language users
have control over, such as position of nodes and line routing points. Language specifications specialize elements of DI to
define diagram interchange for a language.

B.4.1 Overview
The Diagram Interchange (DI) package contains a number of types used in the definition of diagram interchange models. The
package imports the Diagram Common package (section ?B.3), as shown in Figure B.5, that contains various relevant data
types. The DI package contains mainly abstract types that are to be properly extended and refined by concrete types in domain-
specific DI packages. In this sense, the DI package plays the role of a framework that is meant for extension rather than a
component that is ready to be used out of the box. The benefit of this design is capture common assumptions in the DI package
in order to facilitate the integration between various graphical domains that define their DI packages as extensions.

Diagrams are generally considered depictions of part or all of the elements in a domain-specific model. Therefore, one of the
best practices adopted in the design of the DI package and that can be subsumed by the extending domain-specific DI
packages is to minimize any redundancy with the depicted model when possible. For example, the text representing the name
of a UML class is not defined as part of the UML class shape. This is primarily achieved by the fact that diagram elements
reference their counterparts in the domain model as their context model elements instead of duplicating data from them. This
design has the side effect of coupling the diagram models with their corresponding domain models, which is generally a
common practice by tools. However, the DI package does not enforce this best practice and domain-specific DI packages can
decide to have some level of duplication to decouple the models.

Another best practice adopted by the DI package is to avoid defining any data that is not changeable by the user but is rather
derivable from the diagram's model context, like graphical rendering details. For example, the option to render a UML actor as
a stick man or a as rectangle can be defined in a DI model as a boolean property to allow a user to choose between them.
However, the definition of the actual line segments making up such shapes need not be interchanged in a DI model as it can be
defined in the tool itself.

Other decisions that are left to the individual domain-specific DI packages include: whether to allow 1-n vs. m-n relationships
between the domain elements and their referencing diagram elements, the formatting properties (styles) that affect the
aesthetics of diagrams rather than their semantics that are allowed to be interchanged, and the degree of pragmatic redundancy
that is allowed in the DI models to balance their footprint with the ease of their import/export.
Business Process Model and Notation, v2.0 503

B.4.2 Abstract Syntax

Figure B.5 - Dependencies of the DI package

Figure B.6 - Diagram Element

504 Business Process Model and Notation, v2.0

Figure B.7 - Node

Figure B.8 - Edge

Business Process Model and Notation, v2.0 505

Figure B.9 - Diagram

Figure B.10 - Plane

Figure B.11 - Labeled Edge
506 Business Process Model and Notation, v2.0

Figure B.12 - Labeled Shape

Figure B.13 - Shape

B.4.3 Classifier Descriptions

Diagram [Class]
Diagram is a container of a graph of diagram elements depicting all or part of a model.

Description

Diagram represents a depiction of all or part of a MOF model. A model can have one or more diagrams, each of which has a
name and a description. A diagram contains the root of a graph of diagram elements that could reference various elements in a
model. The root element is defined as a derived union, allowing domain-specific diagrams to specialize the root. All lengths
specified by diagram elements are expressed in logical units of lengths. This unit of length would map to a unit of screen
resolution (i.e. pixel) when rendering to the screen. To allow for predictable lengths when printing diagrams to paper, a
diagram can also specify an intended printing resolution in Unit Per Inch (UPI). For example, a UPI of 300 means that a
diagram element that is 300 unit wide would print as 1 inch wide on paper. A diagram can also own a collection of styles that
are referenced by its diagram elements. Styles contain unique combination of formatting properties used by different elements
across the diagram. This allows for a large number of diagram elements to reference a small number of unique styles, which
would dramatically reduce a diagram's footprint.

Abstract Syntax

• Figure B.9 Diagram

Attributes

• + name : String [0..1]
Business Process Model and Notation, v2.0 507

the name of the diagram.

• + documentation : String [0..1]

the documentation of the diagram.

• + resolution : Real [0..1]

the printing resolution of the diagram expressed in Unit Per Inch (UPI).

Associations

• ? + /rootElement : DiagramElement [1] {readOnly, union}

the root of containment for all diagram elements contained in the diagram.

• ? + /ownedStyle : Style [*] {readOnly, union}

the collection of styles owned by the diagram and referenced by its contained diagram elements.

DiagramElement [Class]
DiagramElement is the abstract supertype of all elements that can be nested in a diagram. It has two subtypes: Node and Edge.

Description

DiagramElement specifies an element that can be owned by a diagram and rendered to graphics. It is an abstract class that is
further specialized by classes Node and Edge. A diagram element can either depict (reference) another context model element
from an abstract syntax model (like UML or BPMN) or be purely notational (i.e. for enhancing the diagram understanding). In
the case of depiction, data from both the diagram element and the model element are used for rendering. For example, the text
of the name label of a UML class shape comes from the class, while the color of the label comes from the diagram element. A
diagram element can reference a maximum of one model element, which can be any MOF-based element. The model element
reference is a derived union and can be specialized in a domain-specific DI metamodel to be of a more concrete type.

Diagram elements can also own other diagram elements in a graph-like hierarchy. The collection of owned diagram elements
is defined as a derived union. Domain-specific DI metamodels can specialize this collections to define what other diagram
elements can be nested in a given diagram element.

Diagram elements can be specialized in a domain-specific DI metamodel to have domain-specific properties. Some of those
properties augment the semantics of diagram elements and are therefore defied on the diagram elements. Other properties are
considered formatting properties that influence the visual rendering of diagram elements but do not contribute to their
semantics. Examples of such formatting properties include font, fill and stroke properties. Such properties tend to have similar
values for diagram elements across the diagram and therefore to reduce the footprint of diagrams, they are defined in Style
elements that are owned by the diagram and referenced by individual diagram elements. For every unique combination of
values for the style properties there would be a separate style element that is owned by the diagram. See section ?B.4.3.10 for
more details.

There shall always be other properties that some tools wish to interchange that cannot be made normative. These can be
interchanged using the extensibility mechanism that is native to the used interchange format (for example, an XSD schema
following the XMI mapping would allow extraneous data to be placed on elements within <xmi:extension> tags, while a
different XSD schema could allow this through xsd:any and xsd:anyAttribute elements placed in the definitions of extensible
complex types).

Abstract Syntax

• Figure B.6 Diagram Element
508 Business Process Model and Notation, v2.0

• Figure B.7 Node

• Figure B.8 Edge

• Figure B.9 Diagram

• Figure B.10 Plane

Specializations

• Node

• Edge

Associations

• + /owningDiagram : Diagram [0..1] {readOnly, union}

a reference to the diagram that directly owns this diagram element. The reference is only set for the root element in a
diagram.

• + /owningElement : DiagramElement [0..1] {readOnly, union}

a reference to the diagram element that directly owns this diagram element. The reference is set for all elements except
the root element in a diagram.

• ? + /ownedElement : DiagramElement [*] {readOnly, union}

a collection of diagram elements that are owned by this diagram element.

• + /modelElement : Element [0..1] {readOnly, union}

a reference to a context model element, which can be any MOF-based element, for the diagram element.

• + /style : Style [0..1] {readOnly, union}

a reference to an optional style containing formatting properties for the diagram element.

Edge [Class]
Edge specifies a given edge in a graph of diagram elements. It represents a polyline connection between two graph elements: a
source and a target.

Description

Edge represents a given connection between two elements in a diagram, a source element and a target element. An edge often
references a relationship element (like a UML generalization or a BPMN message flow) as a context model element. It can
also be purely notational, i.e. does not reference any model element. When referencing a relationship model element, the
edge's source and target reference the relationship's source and target respectively as their model elements. If the edge's source
and target can be derived unambiguously from other info (like the edge's model element or the edge's class type), they are not
explicitly set on the edge to avoid redundancy, otherwise they need to be set. The source and target are defined as derived
unions to allow domain-specific DI metamodels to specialize them appropriately.

An edge is often depicted as a line with 2 or more points (i.e. one or more connected line segments) in the coordinate system,
called waypoints. The first point typically intersects with the edge's source, while the last point typically intersects with the
edge's target. Any points in between establish a route for the line to traverse in the diagram.
Business Process Model and Notation, v2.0 509

Abstract Syntax

• Figure B.8 Edge

• Figure B.11 Labeled Edge

Generalizations

• DiagramElement

Specializations

• LabeledEdge

Attributes

• + waypoint : Point [2..*] {ordered, nonunique}

a list of two or more points relative to the origin of the coordinate system (e.g. the origin of a containing plane) that
specifies the connected line segments of the edge.

Associations

• + /source : DiagramElement [0..1] {readOnly, union}

the edge's source diagram element, i.e. where the edge starts from. It is optional and needs to be set only if it cannot be
unambiguously derived.

• + /target : DiagramElement [0..1] {readOnly, union}

the edge's target diagram element, i.e. where the edge ends at. It is optional and needs to be set only if it cannot be
unambiguously derived.

Label [Class]
Label represents a node that is owned by another main diagram element in a plane and that depicts some (usually textual)
aspect of that element within its own separate bounds.

Description

Label represents an owned node of another diagram element, typically a LabeledShape or a LabeledEdge. A label typically
depicts some (usually textual) aspect of its owning element that needs to be laid out separately using the label's own bounds.
The bounds are optional and if not specified, the label will be positioned in its default position.

A label's model element is typically not specified as it can be derived from its owning element. However, if the model element
cannot be unambiguously derived, then a label could be given ts own separate model element to disambiguate it.

Abstract Syntax

• Figure B.11 (Labeled Edge)

• Figure B.12 Labeled Shape

Generalizations

• Node

Attributes

• + bounds : Bounds [1]
510 Business Process Model and Notation, v2.0

the bounds (x, y, width and height) of the label relative to the origin of a containing plane.

LabeledEdge [Class]
LabeledEdge represents an edge that owns a collection of labels.

Description

LabeledEdge is an edge that owns a collection of labels (section ?B.4.3.4) that depict some aspects of it. An example is a UML
association that has a number of labels (e.g. a name label, two role name labels and two multiplicity labels) positioned beside
it. The existence of a label in this collection specifies that it is visible. The separate optional bounds of the label indicate where
it should be positioned and if not specified the label can be positioned in its default position.

Abstract Syntax

Figure B.11 Labeled Edge
Generalizations

• Edge

Associations

• ? + /ownedLabel : Label [*] {readOnly, union, subsets ownedNode}

the collection of labels owned by this edge.

LabeledShape [Class]
LabeledShape represents a shape that owns a collection of labels.

Description

LabeledShape is a shape that owns a collection of labels (section B.4.3.4) that depict some aspects of it. An example is a UML
port shape that is rendered as a filled box and has a name label positioned beside it. The existence of a label in this collection
specifies that it is visible. The separate optional bounds of the label indicate where it should be positioned and if not specified
the label can be positioned in its default position.

Abstract Syntax

• Figure B.12 Labeled Shape

Generalizations

• Shape

Associations

• ? + /ownedLabel : Label [*] {readOnly, union, subsets ownedNode}

the collection of labels owned by this shape.

Node [Class]
Node specifies a given node in a graph of diagram elements.

Description

Node represents a given node (or vertex) in a diagram, which is a graph of diagram elements. A node often references a non-
relationship element (like a UML class or a BPMN activity) as a model element. It can also be purely notational, i.e. does not
reference any model element.
Business Process Model and Notation, v2.0 511

The abstract node class does not have any particular layout characteristics. However, it may gets specialized in a domain-
specific DI metamodel to define nodes that have certain layout characteristics. Examples include planes with infinite bounds,
shapes with limited bounds, tree items and graph vertices...etc.

Abstract Syntax

• Figure B.7 Node

• Figure B.10 Plane

• Figure B.11 Labeled Edge

• Figure B.12 Labeled Shape

• Figure B.13 Shape

Generalizations

• DiagramElement

Specializations

• Label

• Shaoe

• Plane

Plane [Class]

Plane is a node with an infinite bounds in the x-y coordinate system that owns a collection of shapes and edges that are laid out
relative to its origin point.

Description

Plane has an origin point (0, 0) and an infinite size along the x and y axes. The coordinate system of the plane increases along
the x-axis from left to right and along the y-axis from top to bottom. All the nested shapes and edges are laid out relative to
their plane's origin.

A plane is often chosen as a root element for a two dimensional diagram that depicts an inter-connected graph of shapes an
edges. A plane may have its own reference to a model element, in which case the whole plane is considered a depiction of that
element. Alternatively, a plane without a reference to a model element is simply a layout container for its shapes and edges.

The collection of plane elements (shapes and edges) in a plane is ordered with the order specifying the z-order of these plane
elements relative to each other. The higher the z-order, the more to the front (on top) the plane element is.

Abstract Syntax

• Figure B.10 Plane

Generalizations

• Node

Associations

• ? + planeElement : DiagramElement [*] {subsets ownedNode}

the ordered collection of diagram elements owned by this plane with the order defining the z-order of the diagram
element.
512 Business Process Model and Notation, v2.0

Shape [Class]
Shape represents a node that has bounds that is relevant to the origin of a containing plane.

Description

Shape represents a node that is directly or indirectly owned by a plane (section ?B.4.3.8) and that is laid out according to a
given bounds that is relevant to the origin of the plane. A shape does not have any particular graphical rendering, i.e. the
rendering is domain-specific.

A shape can be purely notational (i.e. does not reference any model element), like a block arrow pointing to a UML class shape
with some textual message or an overlay rectangle with some transparent fill enclosing a bunch of shapes on the diagram to
make them stand out. However, a shape often represents a depiction of a non-relational element from a business model (like
UML class or BPMN activity) and hence references such an element as its model element.

Abstract Syntax

• Figure B.13 Shape

• Figure B.12 Labeled Shape

Generalizations

• Node

Specializations

• LabeledShape

Attributes

• + bounds : Bounds [1]

the bounds (x, y, width and height) of the shape relative to the origin of a containing plane.

Style [Class]
A style is a container for a collection of properties that affect the formatting of a set of diagram elements rather than their
structure or semantics.

Description

A style represents a bag of properties that affect the appearance of a group of diagram elements. A style property (like font, fill
or stroke) is distinguishable from a property on a diagram element in that it is meant for the aesthetics of the element rather
than being part of its intrinsic syntax.

A style tends to have only a few unique value combinations for its properties across the diagram. Such combinations are
represented by different style instances owned by the diagram and referenced by the diagram elements. This allows for
conserving the footprint of diagrams (over making style instances owned by diagram elements).

Style is defined as an abstract class without prescribing any style properties to leave it up to domain-specific DI metamodels to
define concrete style classes that are applicable to their diagram element types.

Abstract Syntax

• Figure B.6 Diagram Element

• Figure B.9 Diagram
Business Process Model and Notation, v2.0 513

514 Business Process Model and Notation, v2.0

Annex C: Glossary

(informative)

A
Activity Work that a company or organization performs using business processes. An activity

can be atomic or non-atomic (compound). The types of activities that are a part of a
Process Model are: Process, Sub-Process, and Task.

Abstract Process A Process that represents the interactions between a private business process and
another process or participant.

Artifact A graphical object that provides supporting information about the Process or
elements within the Process. However, it does not directly affect the flow of the
Process.

Association A connecting object that is used to link information and Artifacts with Flow Objects.
An association is represented as a dotted graphical line with an arrowhead to
represent the direction of flow.

Atomic Activity An activity not broken down to a finer level of Process Model detail. It is a leaf in the
tree-structure hierarchy of Process activities. Graphically it will appear as a Task in
BPMN.

B
Business Analyst A specialist who analyzes business needs and problems, consults with users and

stakeholders to identify opportunities for improving business return through
information technology, and defines, manages, and monitors the requirements into
business processes.

Business Process A defined set of business activities that represent the steps required to achieve a
business objective. It includes the flow and use of information and resources.

Business Process
Management

The services and tools that support process management (for example, process
analysis, definition, processing, monitoring and administration), including support
for human and application-level interaction. BPM tools can eliminate manual
processes and automate the routing of requests between departments and
applications.

BPM System The technology that enables BPM.

C
Choreography An ordered sequence of B2B message exchanges between two or more Participants.

In a Choreography there is no central controller, responsible entity, or observer of the
Process.
Business Process Model and Notation, v2.0 515

Collaboration Collaboration is the act of sending messages between any two Participants in a
BPMN model. The two Participants represent two separate BPML processes.

Collapsed Sub-Process A Sub-Process that hides its flow details. The Collapsed Sub-Process object uses a
marker to distinguish it as a Sub-Process, rather than a Task. The marker is a small
square with a plus sign (+) inside.

Compensation Flow Flow that defines the set of activities that are performed while the transaction is being
rolled back to compensate for activities that were performed during the Normal Flow
of the Process. A Compensation Flow can also be called from a Compensate End or
Intermediate Event.

Compound Activity An activity that has detail that is defined as a flow of other activities. It is a branch
(or trunk) in the tree-structure hierarchy of Process activities. Graphically, it will
appear as a Process or Sub-Process in BPMN.

Controlled Flow Flow that proceeds from one Flow Object to another, via a Sequence Flow link, but
is subject to either conditions or dependencies from other flow as defined by a
Gateway. Typically, this is seen as a Sequence flow between two activities, with a
conditional indicator (mini-diamond) or a Sequence Flow connected to a Gateway.

D
Decision A gateway within a business process where the Sequence Flow can take one of

several alternative paths. Also known as "Or-Split."

E
End Event An Event that indicates where a path in the process will end. In terms of Sequence

Flows, the End Event ends the flow of the Process, and thus, will not have any
outgoing Sequence Flows. An End Event can have a specific Result that will appear
as a marker within the center of the End Event shape. End Event Results are Message,
Error, Compensation, Signal, Link, and Multiple. The End Event shares the same
basic shape of the Start Event and Intermediate Event, a circle, but is drawn with a
thick single line.

Event Context An Event Context is the set of activities that can be interrupted by an exception
(Intermediate Event). This can be one activity or a group of activities in an expanded
Sub-Process.

Exception An event that occurs during the performance of the Process that causes a diversion
from the Normal Flow of the Process. Exceptions can be generated by Intermediate
Events, such as time, error, or message.

Exception Flow A Sequence Flow path that originates from an Intermediate Event attached to the
boundary of an activity. The Process does not traverse this path unless the Activity
is interrupted by the triggering of a boundary Intermediate Event (an Exception - see
above).

Expanded Sub-Process A Sub-Process that exposes its flow detail within the context of its Parent Process.
An Expanded Sub-Process is displayed as a rounded rectangle that is enlarged to
display the Flow Objects within.

F

516 Business Process Model and Notation, v2.0

Flow A directional connector between elements in a Process, Collaboration, or
Choreography. A Sequence Flows represents the sequence of Flow Objects in a
Process or Choreography. A Message Flow represents the transmission of a Message
between Collaboration Participants.The term Flow is often used to represent the
overall progression of how a Process or Process segment would be performed.

Flow Object A graphical object that can be connected to or from a Sequence Flow. In a Process,
Flow Objects are Events, Activities, and Gateways. In a Choreography, Flow Objects
are Events, Choreography Activities, and Gateways.

Fork A point in the Process where one Sequence Flow path is split into two or more paths
that are run in parallel within the Process, allowing multiple activities to run
simultaneously rather than sequentially. BPMN uses multiple outgoing Sequence
Flows from Activities or Events or a Parallel Gateway to perform a Fork. Also
known as "AND-Split."

I
Intermediate Event An event that occurs after a Process has been started. An Intermediate Event affects

the flow of the process by showing where messages and delays are expected,
distributing the Normal Flow through exception handling, or showing the extra flow
required for compensation. However, an Intermediate Event does not start or directly
terminate a process. An Intermediate Event is displayed as a circle, drawn with a thin
double line.

J
Join A point in the Process where two or more parallel Sequence Flow paths are combined

into one Sequence Flow path. BPMN uses a Parallel Gateway to perform a Join. Also
known as "AND-Join."

L
Lane A partition that is used to organize and categorize activities within a Pool. A Lane

extends the entire length of the Pool either vertically or horizontally. Lanes are often
used for such things as internal roles (e.g., Manager, Associate), systems (e.g., an
enterprise application), or an internal department (e.g., shipping, finance).

M
Merge A point in the Process where two or more alternative Sequence Flow paths are

combined into one Sequence Flow path. No synchronization is required because no
parallel activity runs at the join point. BPMN uses multiple incoming Sequence
Flows for an Activity or an Exclusive Gateway to perform a Merge. Also know as
"OR-Join."

Message An Object that depicts the contents of a communication between two Participants. A
message is transmitted through a Message Flow and has an identity that can be used
for alternative branching of a Process through the Event-Based Exclusive Gateway.

Message Flow A Connecting Object that shows the flow of messages between two Participants. A
Message Flow is represented by a dashed lined.

N

Business Process Model and Notation, v2.0 517

Normal Flow A flow that originates from a Start Event and continues through activities on
alternative and parallel paths until reaching an End Event.

P
Parent Process A Process that holds a Sub-Process within its boundaries.

Participant A business entity (e.g., a company, company division, or a customer) or a business
role (e.g., a buyer or a seller) that controls or is responsible for a business process. If
Pools are used, then a Participant would be associated with one Pool. In a
Collaboration, Participants are informally known as "Pools.".

Pool A Pool represents a Participant in a Collaboration. Graphically, a Pool is a container
for partitioning a Process from other Pools/Participants. A Pool is not required to
contain a Process, i.e., it can be a "black box."

Private Business Process A process that is internal to a specific organization and is the type of process that has
been generally called a workflow or BPM process.

Process A sequence or flow of Activities in an organization with the objective of carrying out
work. In BPMN, a Process is depicted as a graph of Flow Elements, which are a set
of Activities, Events, Gateways, and Sequence Flow that adhere to a finite execution
semantics.

R
Result The consequence of reaching an End Event. Types of Results include Message,

Error, Compensation, Signal, Link, and Multiple.

S
Sequence Flow A connecting object that shows the order in which activities are performed in a

Process and is represented with a solid graphical line. Each Flow has only one source
and only one target. A Sequence Flow can cross the boundaries between Lanes of a
Pool but cannot cross the boundaries of a Pool.

Start Event An Event that indicates where a particular Process starts. The Start Event starts the
flow of the Process and does not have any incoming Sequence Flow, but can have a
Trigger. The Start Event is displayed as a circle, drawn with a single thin line.

Sub-Process A Process that is included within another Process. The Sub-Process can be in a
collapsed view that hides its details. A Sub-Process can be in an expanded view that
shows its details within the view of the Process that it is contained in. A Sub-Process
shares the same shape as the Task, which is a rectangle that has rounded corners.

Swimlane A Swimlane is a graphical container for partitioning a set of activities from other
activities. BPMN has two different types of Swimlanes. See “Pool” and “Lane.”

T
Task An atomic activity that is included within a Process. A Task is used when the work

in the Process is not broken down to a finer level of Process Model detail. Generally,
an end-user, an application, or both will perform the Task. A Task object shares the
same shape as the Sub-Process, which is a rectangle that has rounded corners.
518 Business Process Model and Notation, v2.0

Token A theoretical concept that is used as an aid to define the behavior of a Process that is
being performed. The behavior of Process elements can be defined by describing
how they interact with a token as it "traverses" the structure of the Process. For
example, a token will pass through an Exclusive Gateway, but continue down only
one of the Gateway's outgoing Sequence Flow.

Transaction A Sub-Process that represents a set of coordinated activities carried out by
independent, loosely-coupled systems in accordance with a contractually defined
business relationship. This coordination leads to an agreed, consistent, and verifiable
outcome across all participants.

Trigger A mechanism that detects an occurrence and can cause additional processing in
response, such as the start of a business Process. Triggers are associated with Start
Events and Intermediate Events and can be of the type: Message, Timer, Conditional,
Signal, Link, and Multiple.

U
Uncontrolled Flow Flow that proceeds without dependencies or conditional expressions. Typically, an

Uncontrolled Flow is a Sequence Flow between two Activities that do not have a
conditional indicator (mini-diamond) or an intervening Gateway.
Business Process Model and Notation, v2.0 519

520 Business Process Model and Notation, v2.0

	OMG’s Issue Reporting Procedure
	Table of Contents
	Preface
	1 Scope
	2 Conformance
	2.1 Process Modeling Conformance
	2.1.1 BPMN Process Types
	2.1.2 BPMN Process Elements
	2.1.3 Visual Appearance
	2.1.4 Structural Conformance
	2.1.5 Process Semantics
	2.1.6 Attributes and Model Associations
	2.1.7 Extended and Optional Elements
	2.1.8 Visual Interchange

	2.2 Process Execution Conformance
	2.2.1 Execution Semantics
	2.2.2 Import of Process Diagrams

	2.3 BPEL Process Execution Conformance
	2.4 Choreography Modeling Conformance
	2.4.1 BPMN Choreography Types
	2.4.2 BPMN Choreography elements
	2.4.3 Visual Appearance
	2.4.4 Choreography Semantics
	2.4.5 Visual Interchange

	2.5 Summary of BPMN Conformance Types

	3 Normative References
	3.1 Normative
	3.2 Non-Normative

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Conventions
	6.1.1 Typographical and Linguistic Conventions and Style
	6.1.2 Abbreviations

	6.2 Structure of this Document
	6.3 Acknowledgements

	7 Overview
	7.1 BPMN Scope
	7.1.1 Uses of BPMN

	7.2 BPMN Elements
	7.2.1 Basic BPMN Modeling Elements
	7.2.2 Extended BPMN Modeling Elements

	7.3 BPMN Diagram Types
	7.4 Use of Text, Color, Size, and Lines in a Diagram
	7.5 Flow Object Connection Rules
	7.5.1 Sequence Flow Connections Rules
	7.5.2 Message Flow Connection Rules

	7.6 BPMN Extensibility
	7.7 BPMN Example

	8 BPMN Core Structure
	8.1 Infrastructure
	8.1.1 Definitions
	8.1.2 Import
	8.1.3 Infrastructure Package XML Schemas

	8.2 Foundation
	8.2.1 Base Element
	8.2.2 Documentation
	8.2.3 Extensibility
	8.2.4 External Relationships
	8.2.5 Root Element
	8.2.6 Foundation Package XML Schemas

	8.3 Common Elements
	8.3.1 Artifacts
	8.3.2 Correlation
	8.3.3 Error
	8.3.4 Escalation
	8.3.5 Events
	8.3.6 Expressions
	8.3.7 Flow Element
	8.3.8 Flow Elements Container
	8.3.9 Gateways
	8.3.10 Item Definition
	8.3.11 Message
	8.3.12 Resources
	8.3.13 Sequence Flow
	8.3.14 Common Package XML Schemas

	8.4 Services
	8.4.1 Interface
	8.4.2 EndPoint
	8.4.3 Operation
	8.4.4 Service Package XML Schemas

	9 Collaboration
	9.1 Basic Collaboration Concepts
	9.1.1 Use of BPMN Common Elements

	9.2 Pool and Participant
	9.2.1 Participants
	9.2.2 Lanes

	9.3 Message Flow
	9.3.1 Interaction Node
	9.3.2 Message Flow Associations

	9.4 Conversations
	9.4.1 Conversation Node
	9.4.2 Conversation
	9.4.3 Sub-Conversation
	9.4.4 Call Conversation
	9.4.5 Global Conversation
	9.4.6 Conversation Link
	9.4.7 Conversation Association
	9.4.8 Correlations

	9.5 Process Within Collaboration
	9.6 Choreography within Collaboration
	9.7 Collaboration Package XML Schemas

	10 Process
	10.1 Basic Process Concepts
	10.1.1 Types of BPMN Processes
	10.1.2 Use of BPMN Common Elements

	10.2 Activities
	10.2.1 Resource Assignment
	10.2.2 Performer
	10.2.3 Tasks
	10.2.4 Human Interactions
	10.2.5 Sub-Processes
	10.2.6 Call Activity
	10.2.7 Global Task
	10.2.8 Loop Characteristics
	10.2.9 XML Schema for Activities

	10.3 Items and Data
	10.3.1 Data Modeling
	10.3.2 Execution Semantics for Data
	10.3.3 Usage of Data in XPath Expressions
	10.3.4 XML Schema for Data

	10.4 Events
	10.4.1 Concepts
	10.4.2 Start Event
	10.4.3 End Event
	10.4.4 Intermediate Event
	10.4.5 Event Definitions
	10.4.6 Handling Events
	10.4.7 Scopes
	10.4.8 Events Package XML Schemas

	10.5 Gateways
	10.5.1 Sequence Flow Considerations
	10.5.2 Exclusive Gateway
	10.5.3 Inclusive Gateway
	10.5.4 Parallel Gateway
	10.5.5 Complex Gateway
	10.5.6 Event-Based Gateway
	10.5.7 Gateway Package XML Schemas

	10.6 Compensation
	10.6.1 Compensation Handler
	10.6.2 Compensation Triggering
	10.6.3 Relationship between Error Handling and Compensation

	10.7 Lanes
	10.8 Process Instances, Unmodeled Activities, and Public Processes
	10.9 Auditing
	10.10 Monitoring
	10.11 Process Package XML Schemas

	11 Choreography
	11.1 Basic Choreography Concepts
	11.2 Data
	11.3 Use of BPMN Common Elements
	11.3.1 Sequence Flow
	11.3.2 Artifacts

	11.4 Choreography Activities
	11.4.1 Choreography Task
	11.4.2 Sub-Choreography
	11.4.3 Call Choreography
	11.4.4 Global Choreography Task
	11.4.5 Looping Activities
	11.4.6 The Sequencing of Activities

	11.5 Events
	11.5.1 Start Events
	11.5.2 Intermediate Events
	11.5.3 End Events

	11.6 Gateways
	11.6.1 Exclusive Gateway
	11.6.2 Event-Based Gateway
	11.6.3 Inclusive Gateway
	11.6.4 Parallel Gateway
	11.6.5 Complex Gateway
	11.6.6 Chaining Gateways

	11.7 Choreography within Collaboration
	11.7.1 Participants
	11.7.2 Swimlanes

	11.8 XML Schema for Choreography

	12 BPMN Notation and Diagrams
	12.1 BPMN Diagram Interchange (BPMN DI)
	12.1.1 Scope
	12.1.2 Diagram Definition and Interchange
	12.1.3 How to Read this Chapter

	12.2 BPMN Diagram Interchange (DI) Meta-model
	12.2.1 Overview
	12.2.2 Abstract Syntax
	12.2.3 Classifier Descriptions
	12.2.4 Complete BPMN DI XML Schema

	12.3 Notational Depiction Library and Abstract Element Resolutions
	12.3.1 Labels
	12.3.2 BPMNShape
	12.3.3 BPMNEdge

	12.4 Example(s)
	12.4.1 Depicting Content in a Sub-Process
	12.4.2 Multiple Lanes and Nested Lanes
	12.4.3 Vertical Collaboration
	12.4.4 Conversation
	12.4.5 Choreography

	13 BPMN Execution Semantics
	13.1 Process Instantiation and Termination
	13.2 Activities
	13.2.1 Sequence Flow Considerations
	13.2.2 Activity
	13.2.3 Task
	13.2.4 Sub-Process/Call Activity
	13.2.5 Ad-Hoc Sub-Process
	13.2.6 Loop Activity
	13.2.7 Multiple Instances Activity

	13.3 Gateways
	13.3.1 Parallel Gateway (Fork and Join)
	13.3.2 Exclusive Gateway (Exclusive Decision (data-based) and Exclusive Merge)
	13.3.3 Inclusive Gateway (Inclusive Decision and Inclusive Merge)
	13.3.4 Event-based Gateway (Exclusive Decision (event-based))
	13.3.5 Complex Gateway (related to Complex Condition and Complex Merge)

	13.4 Events
	13.4.1 Start Events
	13.4.2 Intermediate Events
	13.4.3 Intermediate Boundary Events
	13.4.4 Event Sub-Processes
	13.4.5 Compensation
	13.4.6 End Events

	14 Mapping BPMN Models to WS-BPEL
	14.1 Basic BPMN-BPEL Mapping
	14.1.1 Process
	14.1.2 Activities
	14.1.3 Events
	14.1.4 Gateways and Sequence Flows
	14.1.5 Handling Data

	14.2 Extended BPMN-BPEL Mapping
	14.2.1 End Events
	14.2.2 Loop/Switch Combinations From a Gateway
	14.2.3 Interleaved Loops
	14.2.4 Infinite Loops
	14.2.5 BPMN Elements that Span Multiple WSBPEL Sub-Elements

	15 Exchange Formats
	15.1 Interchanging Incomplete Models
	15.2 Machine Readable Files
	15.3 XSD
	15.3.1 Document Structure
	15.3.2 References within the BPMN XSD

	15.4 XMI
	15.5 XSLT Transformation between XSD and XMI

	Annex A: Changes from v1.2
	Annex B: Diagram Interchange
	B.1 Scope
	B.2 Architecture
	B.3 Diagram Common
	B.3.1 Overview
	B.3.2 Abstract Syntax
	B.3.3 Classifier Descriptions

	B.4 Diagram Interchange
	B.4.1 Overview
	B.4.2 Abstract Syntax
	B.4.3 Classifier Descriptions

	Annex C: Glossary
	(informative)

