ISO/IEC 19510:2013(E)
Date: November 2013

Information technology - Object Management Group
Business Process Model and Notation

formal/2013-11-03

This version has been formally published by 1SO as the 2013 edition standard: |SO/IEC 19510.

ISO/IEC 19510:2013(E)

Table of Contents

L0 S\TAY 0 (o [T XXVIl
[(0o U1 1] o IR XXViil
S o] o 1P 1
I T <Y o 1= - | TP 1

A e] o1 {0] 11 F=1 ¢ (o= N 1
2 I 1= o= - | 1

2.2 Process Modeling ConformanCeccooviiiiieiiiiiiiiiiiiiiee e eee e eeeeeaeanns 2

2.2.1 BPMN PrOCESS TYPES ..iiiiiiiiiiiiit ettt s ss s s s s e s s e e e e e e aaaeaeasaeeeeeeeaeeeseeeeennnnnnnnnnnn 2

2.2.2 BPMN ProcCess EIBMENTSooeuuuieiiiiiieiee e e e e e s eebaa s 3

WA AT U= Y o] o 1T 1= o o= PR 8

2.2.4 Structural CONFOMMANCEuuiiiiiieiiee e e e e e e e e e e s e e s e eeban s 8

2.2.5 PrOCESS SEMANTICS ..ciiiivvieiiiiieiiiieei e ettt e e e e et e e e e s e e e e e s e e e eaae s e e s eeebab e eeassanraaneens 9

2.2.6 Attributes and Model ASSOCIALIONSuueiiiiiieiiiieee e ee e 9

2.2.7 Extended and Optional EIEMENTScc.vuviiiieiiieee e e 9

2.2.8 Visual INtEIChANGEcooii e e e e e e s e e e e e e 10

2.3 Process Execution CONfOMMANCEcoviiriiie i e 10

2.3.1 EXECULION SEMANTICS . .cvviiiiiti ittt e et e e e et e e e e e e e et e e e et e e e e et e e s st e e aeanaas 10

2.3.2 Import Of ProCeSS DIAGIAIMSceiiiiiiiiiiiiitiie ittt e e e eeaa e 10

2.4 BPEL Process Execution ConformancCecoccuevvvviiiieiiiieiieeieeeiieeenn 10

2.5 Choreography Modeling Conformanceccccceeeviiieeeieeieeieiceeeieiiiins 10

2.5.1 BPMN Choreography TYPES ...ceicieeiiiiiiiiiiiiieieeteeae e s ssssiienteeeeesae e e s e s snnnnnsenneeeeeeeeees 10

2.5.2 BPMN Choreography EIEMENLScooociiiiiiiiiiiee e 11

AT AT U= Y o] o 1T 1= g o PR 11

2.5.4 Choreography SEMANLICSuuuiiiiieeieiiiiiiir e e e e e s s s e e e e e e e e rerrereee e e 11

2.5.5 Visual INtErChANGEcccio i e e e e e e e e e s 11

2.6 Summary of BPMN Conformance TYPEScccceveiiiieeiiiiiiiiieeiiiiiii s 12

S NOrMaAtiVe REFEIENCES ...veieieee e 12
G J0 A 1T o =T - | 12

G T N[0 T4 0 4 F= 11 1Y/ 13

IR T (o] B N[0 0 = 11\ V/ 13

4 Terms and DEefiNItIONS ...cvnieeie e e e e 16
5 SYMDBOIS ... 16
6 Additional INfOrmMatioNooviieiie e 16
LT O 0T 1 VZ=T 0110] 1 1 16

6.1.1 Typographical and Linguistic Conventions and Stylecccccciiiiiiiiiiiiieenneenn, 16

(ST A AN o o] (2NV/ = (o] T 17

6.2 Structure of thiS DOCUMENLuiiieiiii et e e e e e e e e 17

© ISO/IEC 2013 - All rights reserved iii

ISO/IEC 19510:2013(E)

6.3 ACKNOWIEAGMENTSeeiiiiiieii e 17
T OVEIVIEW ..ttt e et e e et e e et e e e aa e e e et e eeees 19
4% R 1= 1T - | PP PPPPPPPPPPPRP PN 19
7.2 BPIMN SCOPE ..ttt e et e e e e et e e e e enanas 20
7.2.1USES OF BPMN .ttt nnne e 21

7.3 BPMN EIBMENTS ..ooeiiiiiiiiiiiiiiieeee ettt 25
7.3.1 Basic BPMN Modeling EIEMENtScoooiiiiiiiiiiiiiieecee e 26
7.3.2 Extended BPMN Modeling EIemMENtSccuuiiiiiiiiiiiiieiiieeeeee e 29

7.4 BPMN Diagram TYPES ...ccoeuiiiiiieiiiieiee ettt ettt e e e e 39
7.5 Use of Text, Color, Size, and Lines in a Diagramcoouvvvivvennennnn. 39
7.6 Flow Object Connection RUIESuvvvieiiiiiiiiiiii e 40
7.6.1 Sequence Flow Connections RUIESooouiiiiiiiiiiiiiie e 40
7.6.2 Message Flow Connection RUIESoooiiiiiiiiiiieei e 41

7.7 BPMN EXtENSIDIIILY ...ccooieeeeee e e 42
7.8 BPMN EXQMPIE ooeeniiiiic e 43
8 BPMN COre STUCLUIEcoeeiiiiiieeee e 47
8.1 GBNEIAI ...ttt a7
T2] = 1) 1 U (1 10 (=T 49
8.2.1 DEFINILIONS ..eiiieieiiie ettt 49

S T2 1 1 4] Lo] 51
8.2.3 Infrastructure Package XML SChemas........cccccuveiiieiieei i 52

S RGN e 01U T =i [o PP UU PSR 53
8.3.1 BASE EIBMENT ...ttt bbb e e e e e e 54
8.3.2 DOCUMENTALIONtieiiiiiiii ettt ettt e e e e e e e et b bt e e e e e e e e s e e s e nneabeeeeees 54
8.3.3 EXIENSIDIIILY ...t 55
8.3.4 External RelationShips ... 59
8.3.5 ROOL EIBMENT ...ttt e e e e e e e ee e 62
8.3.6 Foundation Package XML SChemascccuuiiiiiiiiiiiii e 62

8.4 ComMmMON EIEMENTSoiiiiiiiiiiiiie e 64
S O Y 1] = T £ TP UP TSP 64
S @do] =] F- L1 To] o H PR TP ORP 72

S T T B =l £ (0] S PP PP PP TP 79
8.4, 4 ESCAIALION ...ttt e e e e e e e e 80
8.5 EVBINTS oo e e e e e e e et e e e e e bbb e 81
8.4.6 EXPIESSIONSeeeieiiiiiiie ettt et e e e e e e bbb e e e e e e e e e e a e aeeaaaaaas 82
8.4.7 FIOW EIBMENT ..ottt e e e e e e e e e bbe e e e 84
8.4.8 FIowW Elements CONTAINETuuiiiiiiiiieaiae ittt e e e e e e 86
84,9 GABWAYS ...iiiieieeee ettt e e e e e e e et e e et e et eeeeeababe e abnn e s 88
8.4.10 Item DEfinitiONeeiiiiii e e 89

S T B Y (=S 7= o S PP PU PP P TR PTPRRR 91

8.4, 12 RESOUITES ...euiiieie e e ettt e s e e e e e e e e e e e e e aaaaeeeeeeeeeeeeebsbnbennnnnnanan 93
8.4.13 SEQUENCE FIOW ..ottt et e e e e e e e et e e e eas 95
8.4.14 Common Package XML SChemMascooicuiiiiiiiiiiiiie e 98

8.5 SEIVICES ..ttt 101
ST 1 (=T o = Lo = PP PR 102
8.5. 2 ENAPOINT ..ottt 103

iv © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

SRR I @] o 1T - 1 o RS S 103
8.5.4 Service Package XML SChemMaAscccooiviiiiiiiiiiiccc e 104

S OT0] 1 F=1 Y0 = (] 0] o 1P 107
S IR A =Y =T = | 107
9.2 Basic Collaboration CONCEPLSccovvvviieiiiiiiiiiiieie e e 110
9.2.1 Use of BPMN CommOn EIEMENTSuuvuuiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeveveve e 110

9.3 P00l and PartiCIPANTueioiiiiiieeeeee e e e e eeeaeenenaas 111
LSRG A o V[o =) P 113

Lo TR T - 1 1 SRS 119

9.4 MESSAQE FIOW ..o e e e e 119
9.4.1 INtEracCtion NOGEouiiiiiiiiiie it e et e e e e e e e ea b e e e e e e e aabaeaeeeees 122
9.4.2 Message FIOW ASSOCIAtIONSc.eiiiiiiiiiiiiiiiiiiie e 122

S ST 001 01 V/=T SF= 110 1S 123
9.5.1 ConVeErsation NOUEcoooiiiiiiiiiieeeee et e e e e e e e e e e e e e e e e e e eeeeeee e ae e 127
O.5.2 CONVEISALION .uuuviiiiieiiiiii et e e s et e e e e e e e e e eeaeeeeeeeesaeseaesrerasararanas 129
9.5.3 SUD-CONVEISALION ...ccoiiiiiiiiiiieieeee e e e e e e e e e e e e e e e e ee e e e abeseseabe b aanes 129
9.5.4 Call CONVEISALION ...ccoeiiiiieiieeieeeeee e e e et e e e e e e e e e e e e e e e ee e e e eaeseaesberaraaaaanes 130
9.5.5 Global CONVEISALIONcccoeiiiiiiieiiiieeeeeeeee et e aeeeeesbaranes 131
9.5.6 ConVErsation LINKoooiiiiiiiiii e e e e 131
9.5.7 CoNnversation ASSOCIALIONcuvvueiriiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeessrereerrrrrrrarara 134
9.5.8 COITEIALIONS ..vvutiiiiiieiiieie et s et et e e e e e e e e aaeeeseeeeeeesesseesbarares 135

9.6 Process within Collaborationcccoooiiiiiiiiiee, 136
9.7 Choreography within Collaborationccccceeviiiiiiiiieiiieeis 136
9.8 Collaboration Package XML Schemascccccceeeviiiiiiiieiiiiieccceeeiiiiins 138
JO PrOCESS oo 143
O IR R =Y o [T = 143
10.2 BasSiC ProCess CONCEPLS ..uuuuiiiiiiiiieieeieieiieeeeietiires s e s e e e e e e e eeaeeeeaneannnns 147
10.2.1 Types Of BPIMN PrOCESSEScooiieiiiiiiiiiiiie ettt e e e e e e e 147
10.2.2 Use of BPMN Common EIEMENTSovviiiiiiiiiiiieeeeeee e 148
O TG T AN 11/ 1 =1 149
10.3.1 RESOUICE ASSIGNMENT ..uuviiiiiieeeieiiiieiieeiie e e e eee e s s e sssbertrerrereeeeseesssnnrnrnaereeeaeeeans 152
O IR T2 m =T o (o] 1 1= SRR RPPPPPPPRPRRN 154
F0.3.3 TASKS coiiiiiiiiieiititiieiit e eerte e et et e e e e e e e e e ee e e et e ee et e saaeee bbb bbb e eeseseeeaaaeaeaeaeaeaeaereaaaaes 154
10.3.4 HUMAN INEEIACLIONS ..vvvvviriiiiiiiiieieieieeeeeeeeeeee ettt ee e ee e e e e e e e e e e e eeeeaaeens 163
10.3.5 SUD-PIOCESSESoevvtititiitiiiiiiiiiieieieie e e e e e e e e e e e et et e e ee e e e s e e e e e e eeeeaeaeaeas 171
10.3.6 CaAll ACHIVILY 1oeeiiiiee e et e s et e e e e et e e e s rre e e e e ennes 182
10.3.7 GIODAI TASK ..eevviriiiiiiiiicie et e s s e e e e e e e e e e e e aeaeeeeaaaanes 186
10.3.8 LOOP CharacteriStICSuuiiiiieeieiiiiiiiiiiieii e ee e e s e e ssste e e e e e s e e s s s aeeeeaaeee e s 188
10.3.9 XML Schema for ACHVILIESoooiiiiiiiiieieeeee e e e e e e e e e eeaaaaanes 194
10.4 ItEMS AN DALA ...uvieviiiiiiiie e 202
10.4.1 Data MOAEIING ...cooieiiiiiee ettt e e e s eeeaeaa e e 202
10.4.2 Execution Semantics for Datacooouiiiieiiiiiiiee e 224
10.4.3 Usage of Data in XPath EXPreSSIONSccuiiiiiiiiiiiiiiiiiieiiee e 225
10.4.4 XML SChema for DAtaccooieiiiiiiiiieeeieie ettt eeeaba e 228
J0.5 EVENTS oot e ra e 232
O 0 R 0] o Tod=T o] £ T TP PO P PP PP PPPPPPRPPPPPRIN 233
ORI = T V=T o | U USROS 237

© ISO/IEC 2013 - All rights reserved \Y

ISO/IEC 19510:2013(E)

Vi

LO.5.3 ENU EVENE .ottt et e e e e et e e e snnnnaeeens 245
10.5.4 Intermediate EVENToiiiiiiiiiiie ettt e aee e 248
10.5.5 EVENE DEFINILIONS ...vvviiiiiiiiiie ettt s 259
10.5.6 HANAIING EVENLS ..oceviiiiieiciieiiie ettt e e e s e e e e e e e e e e s e s nnrnnaneee e 274
00 o o o 1= 280
10.5.8 Events Package XML SChEMAScccuvviiiiiiieee it e e e ssireveen e e e e 281
L10.6 GAEBWAYS ..evuiiiiiiiiiiti ettt e et et e e e e et e e e e e e e e b e e eaa e e ea e aaan s 286
10.6.1 Sequence FIow CoNnSIAerationscccuuviiiiiiieiiiiiiiieiie e 288
10.6.2 EXCIUSIVE GAIEWAYiieeiiiiiieieeae ettt e e e e et e e e e e e e e e e s nbanbseeaeeaaeas 289
10.6.3 INCIUSIVE GAIEWAYcoiiiiiiiieieiee ettt e et e e e e e e e e e ennnnbeeeeeas 291
10.6.4 Parallel GatEWAYooiiiiiiiiie ettt e e e e e e e e ee e s 292
10.6.5 COMPIEX GAIEWAYcoieetiiiiieeeee e e ettt e e e e e e e et e e e e e e e e e e e s s e annbbabeeeeaaaeeas 294
10.6.6 EVENt-BASEA GAIEWAYevveriiiiiiieeieiiiitiie et e e e e e e ettt e e e e e e e e e s e e anabbnbeeeeaaaeeas 296
10.6.7 Gateway Package XML SChemascccccuueiiiiiiiiieiiiie e 300
10.7 COMPENSALION eevvieeieiiiiiiiies s e e e e e e e e e e e e e et e et e e e e e e aeeeeaaeeeeeesnennes 301
10.7.1 Compensation HANAIEEooviiiiiiiiiiiiie e e e a e e 302
10.7.2 Compensation THGOEING ...uuueeereeeeeeeiiiiiriieeerreeeeesssssasnrerrerereeeesssssanssrrnrnrrereeees 303
10.7.3 Relationship between Error Handling and Compensationccccccccvvvvennen.. 304
L1O.8 LANES .. a e e 304
10.9 Process Instances, Unmodeled Activities, and Public Processes 308
0 0 AN W o 1] o USROS 310
10.11 MONIEOFING ..eeeeiiieeeieeeieeti e e e e e e e e e e ee e bbb e e e s e e e e e e e eaaeeeeeesnenen 310
10.12 Process Package XML SChemascccccceriiiiiiiiiniieniiec e, 311
O To] (=To o | =T o] 1 | 315
11,1 GENEIAI .ot 315
11.2 Basic Choreography CONCEPLScceeveiieeiiiiiiiiiiiiaan e ee e e e e e e eeeeeeeeieeens 317
G R B I | = PP 319
11.4 Use of BPMN Common EIEMENtSeeviiiiiieiiiiiiiiiiieiiiiiee 319
5 ST~ o [= g o= o S 320
L11.4.2 ATLIFACES oooiieeiee ettt ettt e e e e e e e e e b aeee e 321
11.5 Choreography ACHVILIEScccooeiiiiiiiiiiiieeieiiiire e 321
11.5.1 Choreography TASKuueeeiiiieaaiiai ittt ettt e e e e e reeeeaaaeeas 323
11.5.2 SUD-ChOreographyeeiiiieiiiiiieee e 328
11.5.3 Call Choreographyo 333
11.5.4 Global Choreography TasK ... 335
11.5.5 LOOPING ACHIVITIES .eeiiiiiiiiiitiee ettt e e e e e e ee s 335
11.5.6 The Sequencing Of ACHVITIEScouiiiiiiiiiiiiiieiie e 335
L11.6 EVENLS ..o 339
T11.6.1 SHAIM EVENLS ..o e e e e e e e e e e e et e eeeeesbeeeaeabnbnnnaans 339
11.6.2 Intermediate EVENLSoooiiiiiiiiii et 340
L11.6.3 ENU EVENLS ..oeiiiiiii ittt ettt a e e ettt e e e e e e e e e s e nbebbeaeeeaaaaeeas 343
L11.7 GAEBWAYS .eevuiiiiiiiiiii ettt e e e et e e e e et e e e e e e e e b e e e eaa e e e e b e e anan s 344
11.7.1 EXCIUSIVE GAEWAYcccuevviieieieieeeeeeeess ittt e e e e e e e e e e s e snnstanaaneeeeeeeesessnnennrnennneeeeas 344
11.7.2 EVENt-BASEA GAEWAYuevvviiiiiiiieeeeeiiiiiiiieiieeeeeeeeesesssntnntnneseeeeaeeeesennnnsnnnneneees 349
11.7.3 INCIUSIVE GAIEWAY ...cccioeieeiieiieieeee e e e e e e see sttt e e e e e e e e s e e s st r e e e e e e e e s e e ennnnnnneeees 351
11.7.4 Parallel GatEWAYcooiiuieiiiiriiie e e e e e e sttt e e e e e s s e s e e e e e e e e e s e s renneeeeees 358
A ST 0] 0] o] (o Q1= 117 PR 360

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

11.7.6 ChaiNiNg GAEWAYSeeeerreeieririeeiiiiierreeesreeesrer e st e s snneesaree e s e e senreenneeeans 361
11.8 Choreography within Collaborationceviiiiiiiiiiieieeeeeeeeeeeee, 361
11.8.1 PArtiCIPANTS ..oiiiieiiieiiititt ettt ettt e e e e e e et et e e e e e e e e e e bnnbbeeeaeeaaaaeeaans 361
11.8.2 SWIMIANES ...ttt ettt et a e e e e e e e e bbbsbereeaaaaeaesaannne 362
11.9 XML Schema for Choreographyccccovvvmiiiiiiiiii e 363
12 BPMN Notation and Diagramsccccoevveiieeeiiiiieeeeiin e 367
12.1 BPMN Diagram Interchange (BPMN DI)ouuuiiiiiiiiiniiiiiieiiiiieeeeee, 367
0 It o 0 o = PRI 367
12.1.2 Diagram Definition and INtErchangeccccccooveevciiieiiieie e 367
12.1.3 How to Read thisS CIAUSEccoiiiiiiiiiieiii e 368
12.2 BPMN Diagram Interchange (DI) Meta-modelccccevvviviininnnns 368
12.2.0 OVEIVIEW ..eeeiieeiee ettt ettt ettt et e e e e e e e e e e bbb et e e e e e e e e e e e e aannbebeaeeaaaaaaaans 368
12.2.2 ADSEFACE SYNTAX ..ottt e et e e e e e e s e aeeaaaaaeeaas 368
12.2.3 Classifier DESCIPLIONSiiiiiiiiieiiiiee et e e e e e e 370
12.2.4 Complete BPMN DI XML SChEMAcuuiiiiiiiiiaiiiiiiiiiiie et 378
12.3 Notational Depiction Library and Abstract Element Resolutions 380
12.3. 1 LADEIS oot 381
R B = Y 1N S g =T o PR 381
12.3.3 BPMNEUQEoiiiiiiie ettt ne e 410
12.4 EXAMPIE(S) iieieiiiiiiieei it e e 412
12.4.1 Depicting Content in & SUD-ProCESScccooiiiiiiiiiiiiiiiiie e 412
12.4.2 Multiple Lanes and NesSted LANEeSeeiiiiiiaiiiiiiiiiiiiieeeeee e 417
12.4.3 Vertical CollabOrationcooiiiiiiiiiiiiiiiiie e 418
12.4.4 CONVEISALION ..iiiiiiiitiite ettt ettt e et e e e ettt e et e e e e e e e e e st e beaeeeaeaaaeaeas 419
S O o] £=To o] £=T o] o |V PSP PPPPPPT 421

13 BPMN Execution SEMANLICSuuuiiieeiiiiiiiiiiineeeeeeeeiiiiee e e, 425
G T A 7= 1= = | 425
13.2 Process Instantiation and Terminationcccccceevvviiiiniiiiiiiiiininnnnnn 426
L13.3 ACHIVITIES ..t e e et e e e et e e e e e e eeaaes 426
13.3.1 Sequence FIOW CoNSIAErationScciieeiaiiiiiiiiiiiiiiee e ee e 427
L3032 ACHIVILY weeeeitieittt ettt ettt ettt ettt a et e s ea e e et e e b e e abe e et e e e eaan e e e 428
TS e T 1= T U U PP PP OPRRTOURTOURTN 430
13.3.4 SUD-Process/Call ACLIVILYcooiiiiiiiiiiiiiie e 430
13.3.5 Ad-HOC SUD-PIOCESStiiiiiiiiiieiiiie ettt e e 431
13.3.6 LOOP ACHVILY oieieeiiieiiie ettt ettt e e e e e e e st e e e e e e e e e e e e aanes 432
13.3.7 Multiple INStANCES ACHIVILYoooiiiiiiiiiieii e e e 432
134 GABWAYS ..eevuniiiiiiieeiiiie et e et e et e et e e e e et e et e e e e e aaaan 434
13.4.1 Parallel Gateway (FOrk and JOiN)eeeieiiiaaiiiiiiiiiiiie e 434
13.4.2 Exclusive Gateway (Exclusive Decision (data-based) and Exclusive Merge) ... 434
13.4.3 Inclusive Gateway (Inclusive Decision and Inclusive Merge)cccccceeeeeennins 435
13.4.4 Event-based Gateway (Exclusive Decision (event-based))cccocvveeeeeeeennnn. 437
13.4.5 Complex Gateway (related to Complex Condition and Complex Merge) 437
L35 EVBNIS oot 439
13.5. 1 STAM EVENES ..ottt e e 439
13.5.2 Intermediate EVENLSoooiiiiiiiiiiiecre e 440
13.5.3 Intermediate Boundary EVENLScccvvviiiiiiiiecis it eee e e eee e e e e e 440
13.5.4 EVENE SUD-PIOCESSEScciviiiiiiiiiieiie ittt 440

© ISO/IEC 2013 - All rights reserved vii

ISO/IEC 19510:2013(E)

13.5.5 COMPENSALION .veeviieeeeiisiiitittieereereeeeessssssteeieeeeeeeeeeseesnanannbaaereereeeeeesesnnnrnnnnneeees 441

13.5.6 ENU EVENES .ooiiiiiiiiiie ettt ettt e e et e e s nabe e e e e s nnbeeeeene 443

14 Mapping BPMN Models to WS-BPELcccceeiiviiiiiieeeii 445
I I =T o 1= - PP 445

14.2 Basic BPMN-BPEL Mappingcccooeeeiieiiieieeieiiiiiise e s e e e e e e eeeeeeneennnnnes 446

TA.2.0 PIrOCESS ...uuueetieeeteieeeee et e ettt et e e e e e e ettt e et e e e ae s s bbb e e ettt e e e e e e aannn e e reeeeeas 447

L14.2.2 ACHVILIES ettt ettt e ettt e e s bbbt e e e sabe e e e annnaee s 448

TA.2.3 EVENES .ottt e et e e e e e e e e e e e e e e e e e e e as 455

14.2.4 Gateways and SequeNnCe FIOWScccuuviiiiiiiiie e 461

0 SR -V T | o I - - SO 465

14.3 Extended BPMN-BPEL Mappingcooouiiiiiiiiimiiiiineeee e 469

e Tt I Y o [A= o | PPN 469

14.3.2 Loop/Switch Combinations From a Gatewayocccuuveiiieeieeeeeniinieeieeeen 469

14.3.3 INterleaved LOOPSccoiiiiiiiiiiiiie ettt e e e e e e e 470

14.3.4 INFINIEE LOOPS .eeeeeiiieeeeii ettt ettt ettt e e e e e e e e s be e e eeaeas 473

14.3.5 BPMN Elements that Span Multiple WSBPEL Sub-Elementscccvveeeee. 473

15 Exchange FOrmMatsccoovuiiieiiiiii e 475
15.1 Interchanging Incomplete Modelsoiiiiiiiiiiiieei, 475

15.2 Machine Readable Filescoiiiiiiieiecce e 475

L5.3 XS i 475

15.3.1 DOCUMENT STTUCTUIE ...iiiiiiiiiiei ittt e ettt s e e e e ettt e e e e e e et e e e e e eat e e e aeennen 475

15.3.2 References within the BPMN XSDcoiiiiiiiiiiiiieeee e 476

L15.4 XM oo 477

15.5 XSLT Transformation between XSD and XMIc.cccooeeeiiiiiiiineininnnns a77

Annex A - Changes from V1.2........ccooooiiiii e 479
Annex B - Diagram Interchange..........cccocooiiiiiiiiiiiinee e, 481
ANNEX C - GlOSSANYcoviiiiieeiei e e 499
Annex D - Legal Informationccooeviii i 505

viii © ISO/IEC 2013 - All rights reserved

List of Figures

Figure 7.1 — Example of a private Business Process 21

Figure 7.2 — Example of apublic Process 22

Figure 7.3 — An example of a Collaborative Process 23

Figure 7.4 — An example of a Choreography 23

Figure 7.5 — An example of a Conversation diagram 24

Figure 7.6 — An example of a Collaboration diagram with black-box Pools 43
Figure 7.7 — An example of a stand-alone Choreography diagram 44
Figure 7.8 — An example of a stand-alone Process (Orchestration) diagram 45
Figure 8.1 — A representation of the BPMN Core and Layer Structure 47
Figure 8.2 — Class diagram showing the core packages 48

Figure 8.3 — Class diagram showing the organization of the core BPMN e ements 49
Figure 8.4 — Definitions class diagram 50

Figure 8.5 — Classes in the Foundation package 53

Figure 8.6 — Extension class diagram 55

Figure 8.7 — External Relationship Metamodel 60

Figure 8.8 — Artifacts Metamodel 64

Figure 8.9 — An Association 65

Figure 8.10 — The Association Class Diagram 65

Figure 8.11 — A Directional Association 66

Figure 8.12 — An Association of Text Annotation 66

Figure 8.13 — A Group Artifact 67

Figure 8.14 — A Group around Activitiesin different Pools 67

Figure 8.15 — The Group class diagram 68

Figure 8.16 — A Text Annotation 69

Figure 8.17 — The Correlation Class Diagram 74

Figure 8.18 — Error class diagram 79

Figure 8.19 — Escalation class diagram 80

Figure 8.20 — Event class diagram 82

Figure 8.21 — Expression class diagram 83

Figure 8.22 — FlowElement class diagram 85

Figure 8.23 — FlowElementContainers class diagram 87

Figure 8.24 — Gateway class diagram 88

Figure 8.25 — ItemDefinition class diagram 90

Figure 8.26 — A Message 91

Figure 8.27 — A non-initiating Message 91

Figure 8.28 — Messages Association overlapping Message Flows 92
Figure 8.29 — Messages shown Associated with a Choreography Task 92
Figure 8.30 — The Message class diagram 93

Figure 8.31 — Resource class diagram 94

Figure 8.32 — A Sequence Flow 95

Figure 8.33 — A Conditional Sequence Flow 95

Figure 8.34 — A Default Sequence Flow 96

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Xi

ISO/IEC 19510:2013(E)

Figure 8.35 — SequenceFlow class diagram 96

Figure 8.36 — The Service class diagram 102

Figure 9.1 — Classesin the Collaboration package 108

Figure 9.2 — A Pool 111

Figure 9.3 — Message Flows connecting to the boundaries of two Pools 112
Figure 9.4 — Message Flows connecting to Flow Objects within two Pools 112
Figure 9.5 —Main (Internal) Pool without boundaries 113

Figure 9.6 — Pools with a Multi-Instance Participant Markers 113

Figure 9.7 — The Participant Class Diagram 114

Figure 9.8 — A Pool with a Multiple Participant 116

Figure 9.9 — The Participant Multiplicity class diagram 116

Figure 9.10 — ParticipantAssociation class diagram 118

Figure 9.11 — A Message Flow 119

Figure 9.12 — A Message Flow with an Attached M essage 120

Figure 9.13 — A Message Flow passing through a Choreography Task 120
Figure 9.14 — The Message Flow Class Diagram 121

Figure 9.15 — MessageFl owA ssociation class diagram 123

Figure 9.16 — A Conversation diagram 124

Figure 9.17 — A Conversation diagram where the Conversation is expanded into Message Flows 124
Figure 9.18 — Conversation diagram depicting several conversations between Participants in arelated domain 125
Figure 9.19 — An example of a Sub-Conversation 126

Figure 9.20 — An example of a Sub-Conversation expanded to a Conversation and Message Flow 126
Figure 9.21 — An example of a Sub-Conversation that is fully expanded 127
Figure 9.22 — Metamodel of ConversationNode Related Elements 128
Figure 9.23 — A Communication element 129

Figure 9.24 — A compound Conversation element 130

Figure 9.25 — A Call Conversation calling a Global Conversation 130
Figure 9.26 — A Call Conversation calling a Collaboration 130

Figure 9.27 — A Conversation Link element 131

Figure 9.28 — Conversation links to Activities and Events 132

Figure 9.29 — Metamodel of Conversation Links related elements 133
Figure 9.30 — Call Conversation Links 134

Figure 9.31 — The ConversationAssociation class diagram 135

Figure 9.32 — An example of a Choreography within a Collaboration 137
Figure 9.33— Choreography within Collaboration class diagram 138

Figure 10.1 — An Example of a Process 143

Figure 10.2 — Process class diagram 144

Figure 10.3 — Process Details class diagram 145

Figure 10.4 — Example of a private Business Process 148

Figure 10.5 — Example of a public Process 148

Figure 10.6 — Activity class diagram 149

Figure 10.7 — The class diagram for assigning Resources 152

Figure 10.8 — A Task object 154

Figure 10.9 — Task markers 155

Figure 10.10 — The Task class diagram 155

Figure 10.11 — A Service Task Object 156

Figure 10.12 — The Service Task class diagram 157

Xii © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Figure 10.13 — A Send Task Object 158

Figure 10.14 — The Send Task and Receive Task class diagram 158
Figure 10.15 — A Receive Task Object 159

Figure 10.16 — A Receive Task Object that instantiates a Process 160
Figure 10.17 — A User Task Object 161

Figure 10.18 — A Manual Task Object 161

Figure 10.19 — A Business Rule Task Object 162

Figure 10.20 — A Script Task Object 162

Figure 10.21 — Manual Task class diagram 163

Figure 10.22 — User Task class diagram 164

Figure 10.23 — HumanPerformer class diagram 165

Figure 10.24 — Procurement Process Example 168

Figure 10.25 — A Sub-Process object (collapsed) 171

Figure 10.26 — A Sub-Process object (expanded) 172

Figure 10.27 — Expanded Sub-Process used as a “Parallel Box” 172
Figure 10.28 — Collapsed Sub-Process Markers 173

Figure 10.29— The Sub-Process class diagram 173

Figure 10.30 — An Event Sub-Process object (Collapsed) 175

Figure 10.31 — An Event Sub-Process object (expanded) 175

Figure 10.32 — An example that includes Event Sub-Processes 176
Figure 10.33 — A Transaction Sub-Process 177

Figure 10.34 — A Collapsed Transaction Sub-Process 177

Figure 10.35 — A collapsed Ad-Hoc Sub-Process 179

Figure 10.36 — An expanded Ad-Hoc Sub-Process 179

Figure 10.37 — An Ad-Hoc Sub-Process for writing a book chapter 181
Figure 10.38 — An Ad-Hoc Sub-Process with data and sequence dependencies 182
Figure 10.39— A Call Activity object calling a Global Task 183

Figure 10.40 — A Call Activity object calling a Process (Collapsed) 183
Figure 10.41 — A Call Activity object calling a Process (Expanded) 183
Figure 10.42 —The Call Activity class diagram 184

Figure 10.43 — CallableElement class diagram 185

Figure 10.44 — Global Tasks class diagram 187

Figure 10.45 — LoopCharacteristics class diagram 188

Figure 10.46 — A Task object with a Standard Loop Marker 189

Figure 10.47 — A Sub-Process object with a Standard Loop Marker 189
Figure 10.48 — Activity Multi-Instance marker for parallel instances 190
Figure 10.49 — Activity Multi-Instance marker for sequential instances 190
Figure 10.50 - ItemAware class diagram 203

Figure 10.51 — DataObject class diagram 204

Figure 10.52 — A DataObject 206

Figure 10.53 — A DataObject that is a collection 206

Figure 10.54 — A Data Store 207

Figure 10.55 — DataStore class diagram 207

Figure 10.56 — Property class diagram 209

Figure 10.57 — InputOutputSpecification class diagram 211

Figure 10.58 — A Datalnput 213

Figure 10.59 — Data Input class diagram 213

© ISO/IEC 2013 - All rights reserved Xiii

ISO/IEC 19510:2013(E)

Figure 10.60 — A Data Output 215

Figure 10.61 — Data Output class diagram 215

Figure 10.62 — InputSet class diagram 218

Figure 10.63 — OutputSet class diagram 219

Figure 10.64 — DataA ssociation class diagram 221

Figure 10.65 — A Data Association 221

Figure 10.66 — A Data Association used for an Outputs and Inputs into an Activities 221
Figure 10.67 — A Data Object shown as an output and an inputs 223

Figure 10.68 — A Data Object associated with a Sequence Flow 224

Figure 10.69 — The Event Class Diagram 233

Figure 10.70 — Start Event 238

Figure 10.71 — End Event 245

Figure 10.72 — Intermediate Event 249

Figure 10.73 — EventDefinition Class Diagram 261

Figure 10.74 — Cancel Events 262

Figure 10.75 — Compensation Events 262

Figure 10.76 — CompensationEventDefinition Class Diagram 262

Figure 10.77 — Conditional Events 263

Figure 10.78 — Conditiona EventDefinition Class Diagram 264

Figure 10.79 — Error Events 264

Figure 10.80 — ErrorEventDefinition Class Diagram 265

Figure 10.81 — Escalation Events 265

Figure 10.82 — EscalationEventDefinition Class Diagram 266

Figure 10.83 — Link Events 266

Figure 10.84 — Link Events Used as Off-Page Connector 267

Figure 10.85 — A Process with along Sequence Flow 268

Figure 10.86 — A Process with Link Intermediate Events used as Go To Objects 268
Figure 10.87 — Link Events Used for looping 269

Figure 10.88 — M essage Events 269

Figure 10.89 — MessageEventDefinition Class Diagram 270

Figure 10.90 — Multiple Events 271

Figure 10.91 — None Events 271

Figure 10.92 — Multiple Events 272

Figure 10.93 — SignalEventDefinition Class Diagram 272

Figure 10.94 — Signal Events 272

Figure 10.95 — Terminate Event 273

Figure 10.96 — Timer Events 273

Figure 10.97 — Exclusive start of a Process 274

Figure 10.98 — A Process initiated by an Event-Based Gateway 275

Figure 10.99 — Event synchronization at Process start 275

Figure 10.100 — Example of inline Event Handling via Event Sub-Processes 277
Figure 10.101 — Example of boundary Event Handling 278

Figure 10.102 — A Gateway 286

Figure 10.103 — The Different types of Gateways 287

Figure 10.104 — Gateway class diagram 288

Figure 10.105 — An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator 289
Figure 10.106 — A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator 290

Xiv © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Figure 10.107 — Exclusive Gateway class diagram 290

Figure 10.108 — An example using an Inclusive Gateway 291

Figure 10.109 — Inclusive Gateway class diagram 292

Figure 10.110 — An example using an Parallel Gateway 293

Figure 10.111 — An example of a synchronizing Parallel Gateway 293

Figure 10.112 — Parallel Gateway class diagram 294

Figure 10.113 — An example using a Complex Gateway 294

Figure 10.114 — Complex Gateway class diagram 295

Figure 10.115 — Event-Based Gateway 296

Figure 10.116 — An Event-Based Gateway example using Message Intermediate Events 297
Figure 10.117 — An Event-Based Gateway example using Receive Tasks 297
Figure 10.118 — Exclusive Event-Based Gateway to start a Process 298

Figure 10.119 — Parallel Event-Based Gateway to start a Process 298

Figure 10.120 — Event-Based Gateway class diagram 299

Figure 10.121- Compensation through a boundary Event 302

Figure 10.122 — Monitoring Class Diagram 303

Figure 10.123 — Two Lanesin aVertical Pool 305

Figure 10.124 — Two Lanes in a horizontal Pool 305

Figure 10.125 — An Example of Nested Lanes 306

Figure 10.126 — The Lane class diagram 307

Figure 10.127 — One Process supporting to another 309

Figure 10.128 — Auditing Class Diagram 310

Figure 10.129 — Monitoring Class Diagram 311

Figure 11.1 — The Choreography metamodel 316

Figure 11.2 — An example of a Choreography 317

Figure 11.3 — A Collaboration diagram logistics example 318

Figure 11.4 — The corresponding Choreography diagram logistics example 319
Figure 11.5 — The use of Sequence Flows in a Choreography 320

Figure 11.6 — The metamodel segment for a Choreography Activity 322

Figure 11.7 — A Collaboration view of Choreography Task elements 323

Figure 11.8 — A Choreography Task 323

Figure 11.9 — A Collaboration view of a Choreography Task 324

Figure 11.10 — A two-way Choreography Task 324

Figure 11.11 — A Collaboration view of atwo-way Choreography Task 325
Figure 11.12 — Choreography Task Markers 326

Figure 11.13 — The Collaboration view of alooping Choreography Task 326
Figure 11.14 — The Collaboration view of a Parallel Multi-Instance Choreography Task 327
Figure 11.15 — A Choreography Task with a multiple Participant 327

Figure 11.16 — A Collaboration view of a Choreography Task with a multiple Participant 328
Figure 11.17— A Sub-Choreography 329

Figure 11.18 — A Caollaboration view of a Sub-Choreography 329

Figure 11.19 — An expanded Sub-Choreography 330

Figure 11.20 — A Collaboration view of an expanded Sub-Choreography 330
Figure 11.21 — Sub-Choreography (Collapsed) with More than Two Participants 331
Figure 11.22 — Sub-Choreography Markers 332

Figure 11.23 — Sub-Choreography Markers with a multi-instance Participant 332
Figure 11.24 — A Call Choreography calling a Global Choreography Task 333

© ISO/IEC 2013 - All rights reserved XV

ISO/IEC 19510:2013(E)

Figure 11.25 - A Call Choreography calling a Choreography (Collapsed) 333
Figure 11.26 — A Call Choreography calling a Choreography (expanded) 334
Figure 11.27— The Call Choreography class diagram 334
Figure 11.28 — A valid sequence of Choreography Activities 336
Figure 11.29 — The corresponding Collaboration for a valid Choreography sequence 337
Figure 11.30 — A valid sequence of Choreography Activities with atwo-way Activity 337
Figure 11.31 — The corresponding Collaboration for a valid Choreography sequence with atwo-way Activity 338
Figure 11.32 — An invalid sequence of Choreography Activities 338
Figure 11.33 — The corresponding Collaboration for an invalid Choreography sequence 339
Figure 11.34 — An example of the Exclusive Gateway 345
Figure 11.35 — The relationship of Choreography Activity Participants across the sides
of the Exclusive Gateway shown through a Collaboration 346
Figure 11.36 — Different Receiving Choreography Activity Participants
on the output sides of the Exclusive Gateway 347
Figure 11.37 — The corresponding Collaboration view of the above
Choreography Exclusive Gateway configuration 348
Figure 11.38 — An example of an Event Gateway 349
Figure 11.39 — The corresponding Collaboration view of the above Choreography Event Gateway configuration 350
Figure 11.40 — An example of a Choreography Inclusive Gateway configuration 352
Figure 11.41 — The corresponding Collaboration view of the above Choreography Inclusive Gateway
configuration 353
Figure 11.42 — An example of a Choreography Inclusive Gateway configuration 354
Figure 11.43 — The corresponding Collaboration view of the above Choreography
Inclusive Gateway configuration 355
Figure 11.44 — Another example of a Choreography Inclusive Gateway configuration 356
Figure 11.45 — The corresponding Collaboration view of the above Choreography
Inclusive Gateway configuration 357
Figure 11.46 — The relationship of Choreography Activity Participants
across the sides of the Parallel Gateway 358
Figure 11.47 — The corresponding Collaboration view of the above
Choreography Parallel Gateway configuration 359
Figure 11.48 — An example of a Choreography Complex Gateway configuration 360
Figure 11.49 — The corresponding Collaboration view of the above Choreography Complex Gateway
configuration 361
Figure 11.50 — An example of a Choreography Process combined with Black Box Pools 362
Figure 11.51 — An example of a Choreography Process combined with Pools that contain Processes 363
Figure 12.1 — BPMN Diagram 369
Figure 12.2 —BPMN Plane 369
Figure 12.3 — BPMN Shape 369
Figure 12.4 — BPMN Edge 370
Figure 12.5-BPMN Label 370
Figure 12.6 — Depicting a Label for a DataObjectReference with its state 381
Figure 12.7 — Combined Compensation and Loop Characteristic Marker Example 384
Figure 12.8 — Expanded Sub-Process Example 413
Figure 12.9 — Start and End Events on the Border Example 414
Figure 12.10 — Collapsed Sub-Process 415
Figure 12.11 — Contents of Collapsed Sub-Process 416

XVi © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Figure 12.12 — Nested Lanes Example 417

Figure 12.13 — Vertical Collaboration Example 418

Figure 12.14 — Conversation Example 420

Figure 12.15 — Choreography Example 422

Figure 13.1 — Behavior of multiple outgoing Sequence Flows of an Activity 427

Figure 13.2 — The Lifecycle of aBPMN Activity 428

Figure 13.3 — Merging and Branching Sequence Flows for a Parallel Gateway 434
Figure 13.4 — Merging and Branching Sequence Flows for an Exclusive Gateway 434
Figure 13.5 — Merging and Branching Sequence Flows for an Inclusive Gateway 435
Figure 13.6 — Merging and branching Sequence Flows for an Event-Based Gateway 437
Figure 13.7 — Merging and branching Sequence Flows for a Complex Gateway 437
Figure 14.1 — A BPMN orchestration process and its block hierarchy 446

Figure 14.2 — An example of distributed token recombination 469

Figure 14.3 — An example of aloop from a decision with more than two aternative paths 470
Figure 14.4 — An example of interleaved loops 471

Figure 14.5 — An example of the WSBPEL pattern for substituting for the derived Process 472
Figure 14.6 — An example of aWSBPEL pattern for the derived Process 472

Figure 14.7 — An example: An infiniteloop 473

Figure 14.8 — An example: Activity that spans two paths of a WSBPEL structured element 474
Figure B.1 — Diagram Definition Architecture 483

Figure B.2 — The Primitive Types 483

Figure B.3 — Diagram Definition Architecture 484

Figure B.4 — Diagram Definition Architecture 484

Figure B.5 — Dependencies of the DI package 488

Figure B.6 — Diagram Element 488

Figure B.7 — Node 488

Figure B.8 — Edge 489

Figure B.9 — Diagram 489

Figure B.10 — Plane 489

Figure B.11 — Labeled Edge 490

Figure B.12 — Labeled Shape 490

Figure B.13 — Shape 490

© ISO/IEC 2013 - All rights reserved XVii

ISO/IEC 19510:2013(E)

xviii © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

List of Tables

Table 2.1 — Descriptive Conformance Sub-Class Elements and Attributes 3
Table 2.2 — Analytic Conformance Sub-Class Elements and Attributes 4
Table 2.3 — Common Executable Conformance Sub-Class Elements and Attributes 6
Table 2.4 — Common Executable Conformance Sub-Class Supporting Classes 7
Table 2.5 — Types of BPMN Conformance 12

Table 7.1 — Basic Modeling Elements 27

Table 7.2 — BPMN Extended Modeling Elements 29

Table 7.3 — Sequence Flow Connection Rules 40

Table 7.4 — Message Flow Connection Rules 42

Table 8.1 — Definitions attributes and model associations 50

Table 8.2 — Import attributes 52

Table 8.3 — Definitions XML schema 52

Table 8.4 — Import XML schema 53

Table 8.5 — BaseElement attributes and model associations 54

Table 8.6 — Documentation attributes 54

Table 8.7 — Extension attributes and model associations 56

Table 8.8 — ExtensionDefinition attributes and model associations 57
Table 8.9 — ExtensionAttributeDefinition attributes 57

Table 8.10 — ExtensionAttributeValue model associations 57

Table 8.11 — Extension XML schema 58

Table 8.12 — Example Core XML schema 58

Table 8.13 — Example Extension XML schema 59

Table 8.14 — Sample XML instance 59

Table 8.15 — Relationship attributes 61

Table 8.16 — Reengineer XML schema 61

Table 8.17 — BaseElement XML schema 62

Table 8.18 — RootElement XML schema 63

Table 8.19 — Relationship XML schema 63

Table 8.20 — Association attributes and model associations 66

Table 8.21 — Group model associations 68

Table 8.22 — Category model associations 69

Table 8.23 — CategoryV a ue attributes and model associations 69

Table 8.24 — Text Annotation attributes 70

Table 8.25 — Artifact XML schema 70

Table 8.26 — Association XML schema 70

Table 8.27 — Category XML schema 70

Table 8.28 — CategoryVaue XML schema 71

Table 8.29 — Group XML schema 71

Table 8.30 — Text Annotation XML schema 71

Table 8.31- CorrelationK ey model associations 75

Table 8.32 — CorrelationProperty model associations 75

Table 8.33 — CorrelationPropertyRetrieval Expression model associations 76

© ISO/IEC 2013 - All rights reserved XiX

ISO/IEC 19510:2013(E)

Table 8.34 — CorrelationSubscription model associations 76
Table 8.35 — CorrelationPropertyBinding model associations 77
Table 8.36 — Correlation Key XML schema 77

Table 8.37 — Correlation Property XML schema 77

Table 8.38 — Correlation Property Binding XML schema 78
Table 8.39 — Correlation Property Retrieval Expression XML schema 78
Table 8.40 — Correlation Subscription XML schema 78

Table 8.41 — Error attributes and model associations 80

Table 8.42 — Esclation attributes and model associations 81
Table 8.43 — Formal Expression attributes and model associations 84
Table 8.44 — FlowElement attributes and model associations 86
Table 8.45 — FlowElementsContainer model associations 87
Table 8.46 — Gateway attributes 89

Table 8.47 — ItemDefinition attributes & model associations 90
Table 8.48 — Message attributes and modd associations 93

Table 8.49 — Resource attributes and model associations 94
Table 8.50 — ResourceParameter attributes and model associations 95
Table 8.51 — SequenceFlow attributes and model associations 97
Table 8.52 — FlowNode model associations 98

Table 8.53 — Error XML schema 98

Table 8.54 — Escalation XML schema 98

Table 8.55 — Expression XML schema 98

Table 8.56 — FlowElement XML schema 99

Table 8.57 — FlowNode XML schema 99

Table 8.58 — Formal Expression XML schema 99

Table 8.59 — InputOutputBinding XML schema 99

Table 8.60 — ItemDefinition XML schema 100

Table 8.61 — Message XML schema 100

Table 8.62 — Resources XML schema 100

Table 8.63 — ResourceParameter XML schema 101

Table 8.64 — SequenceFlow XML schema 101

Table 8.65 — Interface attributes and model associations 103
Table 8.66 — Operation attributes and model associations 104
Table 8.67 — Interface XML schema 104

Table 8.68 — Operation XML schema 104

Table 8.69 — EndPoint XML schema 105

Table 9.1 — Collaboration Attributes and Model Associations 108
Table 9.2 — Participant attributes and model associations 115
Table 9.3 — PartnerEntity attributes 115

Table 9.4 — PartnerRol e attributes 116

Table 9.5 — ParticipantMultiplicity attributes 117

Table 9.6 — ParticipantMultiplicity Instance attributes 117

Table 9.7 — ParticipantA ssociation model associations 119

Table 9.8 — Message Flow attributes and model associations 122
Table 9.9 — MessageFlowA ssociation attributes and model associations 123
Table 9.10 — ConversationNode Model Associations 129

Table 9.11 — Sub-Conversation Model Associations 130

XX

© ISO/IEC 2013 - All rights reserved

Table 9.12 — Call Conversation Model Associations 131

Table 9.13 — Conversation Link Attributes and Model Associations 133
Table 9.14 — ConversationAssociation Model Associations 135
Table 9.15 — Call Conversation XML schema 138

Table 9.16 — Collaboration XML schema 138

Table 9.17 — Conversation XML schema 139

Table 9.18 — ConversationAssociation XML schema 139

Table 9.19 — ConversationAssociation XML schema 139

Table 9.20 — ConversationNode XML schema 140

Table 9.21 — Conversation Node XML schema 140

Table 9.22 — Globa Conversation XML schema 140

Table 9.23 — MessageFlow XML schema 140

Table 9.24 — MessageFlowAssociation XML schema 141

Table 9.25 — Participant XML schema 141

Table 9.26 — ParticipantAssociation XML schema 141

Table 9.27 — ParticipantMultiplicity XML schema 142

Table 9.28 — PartnerEntity XML schema 142

Table 9.29 — PartnerRole XML schema 142

Table 9.30 — Sub-Conversation XML schema 142

Table 10.1 — Process Attributes & Model Associations 145

Table 10.2 — Process instance attributes 147

Table 10.3 — Activity attributes and model associations 150

Table 10.4— Activity instance attributes 151

Table 10.5 — Resource Role model associations 153

Table 10.6 — ResourceAssignmentExpression model associations 153
Table 10.7 — ResourceParameterBinding model associations 154
Table 10.8 — Service Task model associations 157

Table 10.9 — Send Task model associations 159

Table 10.10 — Receive Task attributes and model associations 160
Table 10.11 — Business Rule Task attributes and model associations 162
Table 10.12 — Script Task attributes 163

Table 10.13 — User Task attributes and model associations 164

Table 10.14 — User Task instance attributes 165

Table 10.15 - Manua Task XML schema 166

Table 10.16 — UserTask XML schema 167

Table 10.17 — HumanPerformer XML schema 168

Table 10.18 — Potential Owner XML schema 168

Table 10.19 — XML seriaization of Buyer process 169

Table 10.20 — Sub-Process attributes 174

Table 10.21 — Transaction Sub-Process attributes and model associations 178
Table 10.22 — Ad-hoc Sub-Process model associations 180

Table 10.23 — Call Activity model associations 185

Table 10.24 — CdllableElement attributes and model associations 186
Table 10.25 — InputOutputBinding model associations 186

Table 10.26 — Global Task model associations 187

Table 10.27 — Loop Activity instance attributes 189

Table 10.28 — StandardL oopCharacteristics attributes and model associations 190

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

XXi

ISO/IEC 19510:2013(E)

Table 10.29 — Multil nstancel. oopCharacteristics attributes and model associations 191
Table 10.30 — Multi-instance Activity instance attributes 193

Table 10.31 — ComplexBehaviorDefinition attributes and model associations 194
Table 10.32 — Activity XML schema 194

Table 10.33 — AdHocSubProcess XML schema 195

Table 10.34 — BusinessRuleTask XML schema 195

Table 10.35 — CallableElement XML schema 196

Table 10.36 — CallActivity XML schema 196

Table 10.37 — GlobalBusinessRuleTask XML schema 196

Table 10.38 — Global ScriptTask XML schema 197

Table 10.39 — Global Task XML schema 197

Table 10.40 — LoopCharacteristics XML schema 197

Table 10.41 — Multilnstancel oopCharacteristics XML schema 198

Table 10.42 — ReceiveTask XML schema 199

Table 10.43 — ResourceRole XML schema 199

Table 10.44 — ScriptTask XML schema 200

Table 10.45 — SendTask XML schema 200

Table 10.46 — ServiceTask XML schema 200

Table 10.47 — StandardL oopCharacteristics XML schema 201

Table 10.48 — SubProcess XML schema 201

Table 10.49 — Task XML schema 201

Table 10.50 — Transaction XML schema 202

Table 10.51 — ItemAwareElement model associations 203

Table 10.52 — DataObject attributes 205

Table 10.53 — DataObjectReference attributes and model associations 205
Table 10.54 — DataState attributes and model associations 205

Table 10.55 — Data Store attributes 208

Table 10.56 — Data Store attributes 208

Table 10.57 — Property attributes 209

Table 10.58 — InputOutputSpecification Attributes and Model Associations 212
Table 10.59 — Datal nput attributes and model associations 214

Table 10.60 — DataOutput attributes and associations 216

Table 10.61 — InputSet attributes and model associations 218

Table 10.62 — OutputSet attributes and model associations 220

Table 10.63 — DataA ssociation model associations 222

Table 10.64 — Assignment attributes 223

Table 10.65 — X Path Extension Function for Data Objects 226

Table 10.66 — X Path Extension Function for Data Inputs and Data Outputs 226
Table 10.67 — X Path Extension Functions for Properties 227

Table 10.68 — X Path extension functions for instance attributes 228

Table 10.69 — Assignment XML schema 228

Table 10.70 — DataAssociation XML schema 229

Table 10.71 — Datalnput XML schema 229

Table 10.72 — DatalnputAssociation XML schema 229

Table 10.73 — DataObject XML schema 230

Table 10.74 — DataState XML schema 230

Table 10.75 — DataOutput XML schema 230

XXii © ISO/IEC 2013 - All rights reserved

Table 10.76 — DataOutputAssociation XML schema 230

Table 10.77 — InputOutputSpecification XML schema 231

Table 10.78 — InputSet XML schema 231

Table 10.79 — OutputSet XML schema 232

Table 10.80 — Property XML schema 232

Table 10.81 — Event model associations 235

Table 10.82 — CatchEvent attributes and model associations 235
Table 10.83 — ThrowEvent attributes and model associations 236
Table 10.84 — Top-Level Process Start Event Types 239

Table 10.85 — Sub-Process Start Event Types 241

Table 10.86 — Event Sub-Process Start Event Types 241

Table 10.87 — Start Event attributes 244

Table 10.88 — End Event Types 246

Table 10.89 — Intermediate Event Typesin Normal Flow 250
Table 10.90 — Intermediate Event Types Attached to an Activity Boundary 253
Table 10.91 — Boundary Event attributes 257

Table 10.92 — Possible Values of the cancel Activity Attribute 257
Table 10.93 — Types of Events and their Markers 260

Table 10.94 — CompensationEventDefinition attributes and model associations 263
Table 10.95 — Conditional EventDefinition model associations 264
Table 10.96 — ErrorEventDefinition attributes and model associations 265
Table 10.97 — Escal ationEventDefinition attributes and model associations 266
Table 10.98 — LinkEventDefinition attributes 269

Table 10.99 — MessageEventDefinition model associations 270
Table 10.100 — Signa EventDefinition model associations 272
Table 10.101 — TimerEventDefinition model associations 273
Table 10.102 — BoundaryEvent XML schema 281

Table 10.103 — Cancel EventDefinition XML schema 281

Table 10.104 — CatchEvent XML schema 281

Table 10.105 — Cancel EventDefinition XML schema 281

Table 10.106 — CompensateEventDefinition XML schema 282
Table 10.107 — Conditiona EventDefinition XML schema 282
Table 10.108 — ErrorEventDefinition XML schema 282

Table 10.109 — EscalationEventDefinition XML schema 282
Table 10.110 — Event XML schema 283

Table 10.111 — EventDefinition XML schema 283

Table 10.112 — ImplicitThrowEvent XML schema 283

Table 10.113 — IntermediateCatchEvent XML schema 283

Table 10.114 — IntermediateThrowEvent XML schema 283

Table 10.115 — LinkEventDefinition XML schema 283

Table 10.116 — MessageEventDefinition XML schema 284

Table 10.117 — Signal XML schema 284

Table 10.118 — Signa EventDefinition XML schema 284

Table 10.119 — StartEvent XML schema 285

Table 10.120 — TerminateEventDefinition XML schema 285
Table 10.121 — ThrowEvent XML schema 285

Table 10.122 — TimerEventDefinition XML schema 285

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

XXiii

ISO/IEC 19510:2013(E)

Table 10.123 — ExclusiveGateway Attributes & Model Associations 291
Table 10.124 — InclusiveGateway Attributes & Model Associations 292
Table 10.125 — Complex Gateway model associations 295

Table 10.126 — Instance attributes related to the Complex Gateway 296
Table 10.127 — EventBasedGateway Attributes & Model Associations 299
Table 10.128 — ComplexGateway XML schema 300

Table 10.129 — EventBasedGateway XML schema 300

Table 10.130 — ExclusiveGateway XML schema 300

Table 10.131 — Gateway XML schema 300

Table 10.132 — InclusiveGateway XML schema 301

Table 10.133 — Parallel Gateway XML schema 301

Table 10.134 — LaneSet attributes and model associations 307

Table 10.135 — Lane attributes and model associations 308

Table 10.136 — Process XML schema 311

Table 10.137 — Auditing XML schema 312

Table 10.138 — Global Task XML schema 312

Table 10.139 — Lane XML schema 312

Table 10.140 — LaneSet XML schema 312

Table 10.141—- Monitoring XML schema 313

Table 10.142 — Performer XML schema 313

Table 11.1 — Choreography Activity Model Associations 322

Table 11.2 — Choreography Task Model Associations 328

Table 11.3 — Sub-Choreography Model Associations 332

Table 11.4 — Call Choreography Model Associations 335

Table 11.5 — Global Choreography Task Model Associations 335

Table 11.6 — Use of Start Events in Choreography 340

Table 11.7 — Use of Intermediate Events in Choreography 340

Table 11.8 — Use of End Events in Choreography 343

Table 11.9 — Choreography XML schema 363

Table 11.10 — Global Choreography Task XML schema 364

Table 11.11 — ChoreographyActivity XML schema 364

Table 11.12 — ChoreographyTask XML schema 364

Table 11.13 — CallChoreography XML schema 365

Table 11.14 — SubChoreography XML schema 365

Table 12.1 — BPMNDiagram XML schema 371

Table 12.2 — BPMNPlane XML schema 372

Table 12.3 — BPMNShape XML schema 374

Table 12.4 — BPMNEdge XML schema 376

Table 12.5-BPMNLabel XML schema 377

Table 12.6 — BPMNL abel Style XML schema 378

Table 12.7 — Complete BPMN DI XML schema 378

Table 12.8 — Depiction Resolution for Loop Compensation Marker 382
Table 12.9 — Depiction Resolution for Tasks 385

Table 12.10 — Depiction Resolution for Collapsed Sub-Processes 386
Table 12.11 — Depiction Resolution for Expanded Sub-Processes 386
Table 12.12 — Depiction Resolution for Collapsed Ad Hoc Sub-Processes 387
Table 12.13 — Depiction Resolution for Expanded Ad Hoc Sub-Processes 387

XXiV

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 12.14 — Depiction Resolution for Collapsed Transactions 387

Table 12.15 — Depiction Resolution for Tasks 388

Table 12.16 — Depiction Resolution for Collapsed Event Sub-Processes 388

Table 12.17 — Depiction Resolution for Expanded Event Sub-Processes 391

Table 12.18 — Depiction Resolution for Call Activities (Calling a Global Task) 391
Table 12.19 — Depiction Resolution for Collapsed Call Activities (Calling a Process) 392
Table 12.20 — Depiction Resolution for Expanded Call Activities (Calling a Process) 392
Table 12.21 — Depiction Resolution for Data 393

Table 12.22 — Depiction Resolution for Events 394

Table 12.23 — Depiction Resolution for Gateways 400

Table 12.24 — Depiction Resolution for Artifacts 401

Table 12.25 — Depiction Resolution for Lanes 401

Table 12.26 — Depiction Resolution for Pools 402

Table 12.27 — Depiction Resolution for Choreography Tasks 403

Table 12.28 — Depiction Resolution for Sub-Choreographies (Collapsed) 404

Table 12.29 — Depiction Resolution for Sub-Choreographies (Expanded) 405

Table 12.30 — Depiction Resolution for Call Choreographies (Calling a Global Choreography Task) 405
Table 12.31 — Depiction Resolution for Collapsed Call Choreographies (Calling a Choreography) 406
Table 12.32 — Depiction Resolution for Expanded Call Choreographies (Calling a Choreography) 407
Table 12.33 — Depiction Resol ution for Choreography Participant Bands 408

Table 12.34 — Depiction Resolution for Conversations 410

Table 12.35 — Depiction Resolution for Connecting Objects 411

Table 12.36 — Expanded Sub-Process BPMN DI instance 413

Table 12.37 — Start and End Events on the Border BPMN DI instance 414

Table 12.38 — Collapsed Sub-Process BPMN DI instance 416

Table 12.39 — Sub-Process Content BPMN DI instance 416

Table 12.40 — Multiple Lanes and Nested Lanes BPMN DI instance 417

Table 12.41 — Vertical Collaboration BPMN DI instance 418

Table 12.42 — Conversation BPMN DI instance 420

Table 12.43 — Choreography BPMN DI instance 422

Table 13.1 — Parallel Gateway Execution Semantics 434

Table 13.2 — Exclusive Gateway Execution Semantics 435

Table 13.3 — Inclusive Gateway Execution Semantics 436

Table 13.4 — Event-Based Gateway Execution Semantics 437

Table 13.5 — Semantics of the Complex Gateway 438

Table 14.1 — Common Activity Mappings to WS-BPEL 448

Table 14.2 — Expressions mapping to WS-BPEL 468

© ISO/IEC 2013 - All rights reserved

XXV

ISO/IEC 19510:2013(E)

XXVi © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Foreword

SO (the International Organization for Standardization) is a worldwide federation of national standards bodies (1SO
member bodies). The work of preparing International Standards is normally carried out through 1SO technical
committees. Each member body interested in a subject for which atechnical committee has been established has the right
to be represented on that committee. International organizations, governmental and non-governmental, in liaison with
IS0, also take part in the work. 1SO collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the |SO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the
technical committees are circulated to the member bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. 1SO
shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 19510 was prepared by Technical Committee ISO/IEC JTC1, Information technology, in collaboration with the
Object Management Group (OMG), following the submission and processing as a Publicly Available Specification (PAS)
of the OMG Business Process Model and Notation (BPMN), version 2.0.1.

ISO/IEC 19510, under the general title Information technology - Open distributed processing - Business Process Model
and Notation (BPMN) specification, apart from this introductory material isidentical with that for the OMG specification
for Business Process Model and Notation, version 2.0.1.

© ISO/IEC 2013 - All rights reserved XXVii

ISO/IEC 19510:2013(E)

Introduction

The primary goa of BPMN is to provide a notation that is readily understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the technical developers responsible for implementing the
technology that will perform those processes, and finaly, to the business people who will manage and monitor those
processes. Thus, BPMN creates a standardized bridge for the gap between the business process design and process
implementation.

This specification represents the amalgamation of best practices within the business modeling community to define the
notation and semantics of Collaboration diagrams, Process diagrams, and Choreography diagrams. The intent of BPMN is
to standardize a business process model and notation in the face of many different modeling notations and viewpoints. In
doing so, BPMN will provide a simple means of communicating process information to other business users, process
implementers, customers, and suppliers.

The specification provided by this International Standard is identical to OMG BPMN 2.0.1.

XXViii © ISO/IEC 2013 - All rights reserved

INTERNATIONAL STANDARD ISO/IEC 19510:2013(E)

Information technology - Object Management Group
Business Process Model and Notation

1 Scope

1.1 General

The Object Management Group (OMG) has developed a standard Business Process M odel and Notation (BPMN).
The primary goal of BPMN isto provide anotation that is readily understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the technical developers responsible for implementing the
technology that will perform those processes, and finally, to the business people who will manage and monitor those
processes. Thus, BPMN creates a standardized bridge for the gap between the business process design and process
implementation.

Another goal, but no less important, is to ensure that XML languages designed for the execution of business processes,
such as WSBPEL (Web Services Business Process Execution Language), can be visualized with a business-oriented
notation.

This International Standard represents the amalgamation of best practices within the business modeling community to
define the notation and semantics of Collaboration diagrams, Process diagrams, and Choreography diagrams. The
intent of BPMN is to standardize a business process model and notation in the face of many different modeling notations
and viewpoints. In doing so, BPMN will provide a simple means of communicating process information to other business
users, process implementers, customers, and suppliers.

The membership of the OMG has brought forth expertise and experience with many existing notations and has sought to
consolidate the best ideas from these divergent notations into a single standard notation. Examples of other notations or
methodol ogies that were reviewed are UML Activity Diagram, UML EDOC Business Processes, IDEF, ebXML BPSS,
Activity-Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and Event-Process Chains (EPCs).

2 Conformance

2.1 General

Software can claim compliance or conformance with BPMN 2.0 if and only if the software fully matches the applicable
compliance points as stated in the International Standard. Software developed only partially matching the applicable
compliance points can claim only that the software was based on this International Standard, but cannot claim compliance
or conformance with this International Standard. The International Standard defines four types of conformance namely
Process Modeling Confor mance, Process Execution Conformance, BPEL Process Execution Conformance, and
Choreography Modeling Conformance.

© ISO/IEC 2013 - All rights reserved 1

ISO/IEC 19510:2013(E)

The implementation claiming conformance to Process M odeling Conformance type is NOT REQUIRED to support
Choreography M odeling Confor mance type and vice-versa. Similarly, the implementation claiming Process Execution
Conformance type is NOT REQUIRED to be conformant to the Process M odeling and Choreography Conformance

types.

The implementation claiming conformance to the Process M odeling Confor mance type SHALL comply with all of the
requirements set forth in sub clause 2.1. The implementation claiming conformance to the Process Execution
Conformance type SHALL comply with all of the requirements set forth in sub clause 2.2. The implementation claiming
conformance to the BPEL Process Execution Semantics Conformance type SHALL comply with all of the
requirements set forth in sub clause 2.3. The implementation claiming conformance to the Choreography Confor mance
type SHALL comply with all of the requirements set forth in sub clause 2.4. The implementation is said to have BPMN
Complete Conformance if it complies with all of the requirements stated in sub clauses 2.1, 2.2, 2.3, and 2.4.

2.2 Process Modeling Conformance

The next eight sub clauses describe Process M odeling Conformance.
2.21 BPMN Process Types

The implementations claiming Process M odeling Conformance MUST support the following BPMN packages:

¢ The BPMN core elements, which include those defined in the | nfrastructure, Foundation, Common, and Service
packages (see Clause 8).

& Process diagrams, which include the elements defined in the Process, Activities, Data, and Human Interaction
packages (see Clause 10).

& Collaboration diagrams, which include Pools and Message Flow (see Clause 9).

& Conversation diagrams, which include Pools, Conversations, and Conversation Links (see Clause 9).

As an alternative to full Process M odeling Conformance, there are three conformance sub-classes defined:
& Descriptive
€ Analytic

4 Common Executable

Descriptive is concerned with visible elements and attributes used in high-level modeling. It should be comfortable for
analysts who have used BPA flowcharting tools.

Analytic contains all of Descriptive and in total about half of the constructs in the full Process M odeling Confor mance
Class. It is based on experience gathered in BPMN training and an analysis of user-patterns in the Department of Defense
Architecture Framework and planned standardization for that framework.

Both Descriptive and Analytic focus on visible elements and a minimal subset of supporting attributes/elements.
Common Executable focuses on what is needed for executable process models.
Elements and attributes not in these sub-classes are contained in the full Process M odeling Conformance class.

The elements for each sub-class are defined in the next sub clause.

2 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

2.2.2 BPMN Process Elements

The Process M odeling Confor mance type set consists of Collaboration and Process diagram elements, including all
Task types, embedded Sub-Processes, CallActivity, all Gateway types, all Event types (Start, Intermediate, and
End), Lane, Participants, Data Object (including Datalnput and DataOutput), Message, Group, Text
Annotation, Sequence Flow (including conditional and default flows), Message Flow, Conversations (limited to
grouping Message Flow, and associating correlations), Correlation, and Association (including Compensation
Association). The set also includes markers (Loop, Multi-Instance, Transaction, Compensation) for Tasks and
embedded Sub-Processes).

NOTE: Implementations are not expected to support Choreography modeling elements such as Choreography Task and
Sub-Choreography.
For a tool to claim support for a sub-class the following criteria MUST be satisfied:

& All the elementsin the sub-class MUST be supported.

& For each element, al the listed attributes MUST be supported.

€ Ingenerd, if the sub-class doesn’t mention an attribute and it is NOT REQUIRED by the schema, then it isnot in the
subclass. Exceptions to this rule are noted.

Descriptive Conformance Sub-Class

The Descriptive conformance sub-class elements are shown in Table 2.1.

Table 2.1 — Descriptive Conformance Sub-Class Elements and Attributes

Element Attributes

participant (pool) id, name, processRef

laneSet id, lane with name, childLaneSet, flowElementRef
sequenceFlow (unconditional) id, name, sourceRef, targetRef
messageFlow id, name, sourceRef, targetRef
exclusiveGateway id, name

parallelGateway id, name

task (None) id, name

userTask id, name

serviceTask id, name

subProcess (expanded) id, name, flowElement
subProcess (collapsed) id, name, flowElement
CallActivity id, name, calledElement
DataObject id, name

© ISO/IEC 2013 - All rights reserved 3

ISO/IEC 19510:2013(E)

Table 2.1 — Descriptive Conformance Sub-Class Elements and Attributes

TextAnnotation

id, text

association/dataAssociation?

id, name, sourceRef, targetRef, associationDirection®

endEvent (None)

dataStoreReference id, name, dataStoreRef
startEvent (None) id, name
id, name

messageStartEvent

id, name, messageEventDefinition

messageEndEvent

id, name, messageEventDefinition

timerStartEvent

id, name, timerEventDefinition

terminateEndEvent

id, name, terminateEventDefinition

documentation®

text

Group

id, categoryRef

a Data Association iSABSTRACT:

Data Input Association and Data Output Association will appear in

the XML serialization. These both have REQUIRED attributes [sourceRef and targetRef] which refer to
itemAwareElements. To be consistent with the metamodel, thiswill require the following additional
dements. ioSpecification, inputSet, outputSet, Data Input, Data Output. When aBPMN editor
draws aData Association toan Activity or Event it should generate this supporting invisible substructure.
Otherwise, the metamodel would have to be changed to make sourceRef and targetRef optional or allow
referenceto non-itemAwareElements, €.g., Activity and Event.

b. associationDirection not specified for Data Association

C. Documentation isnot avisible element. It isan attribute of most elements.

Analytic Conformance Sub-Class

The Analytic conformance sub-class contains all the elements of the Descriptive conformance sub-class plus the

elements shown in Table 2.2.

Table 2.2 — Analytic Conformance Sub-Class Elements and Attributes

Element

Attributes

sequenceFlow (conditional)

id, name, sourceRef, targetRef, conditionExpression?

sequenceFlow (default)

id, name, sourceRef, targetRef, default?

sendTask id, name
receiveTask id, name
Looping Activity standardLoopCharacteristics

Multilnstance Activity

multiinstanceLoopCharacteristics

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 2.2 — Analytic Conformance Sub-Class Elements and Attributes

exclusiveGateway

Add default attribute

inclusiveGateway

id, name, eventGatewayType

eventBasedGateway

id, name, eventGatewayType

Link catch/throw Intermediate Event

Id, name, linkEventDefinition

signalStartEvent

id, name, signalEventDefinition

signalEndEvent

id, name, signalEventDefinition

Catching message Intermediate
Event

id, name, messageEventDefinition

Throwing message Intermediate
Event

id, name, messageEventDefinition

Boundary message Intermediate
Event

id, name, attachedToRef, messageEventDefinition

Non-interrupting Boundary message
Intermediate Event

id, name, attachedToRef, cancelActivity=false,
messageEventDefinition

Catching timer Intermediate Event

id, name, timerEventDefinition

Boundary timer Intermediate Event

id, name, attachedToRef, timerEventDefinition

Non-interrupting Boundary timer
Intermediate Event

id, name, attachedToRef, cancelActivity=false, timerEventDefinition

Boundary error Intermediate Event

id, name, attachedToRef, errorEventDefinition

errorEndEvent

id, name, errorEventDefinition

Non-interrupting Boundary escalation
Intermediate Event

id, name, attachedToRef, cancelActivity=false,
escalationEventDefinition

Throwing escalation Intermediate
Event

id, name, escalationEventDefinition

escalationEndEvent

id, name, escalationEventDefinition

Catching signal Intermediate Event

id, name, signalEventDefinition

Throwing signal Intermediate Event

id, name, signalEventDefinition

Boundary signal Intermediate Event

id, name, attachedToRef, signalEventDefinition

Non-interrupting Boundary signal
Intermediate Event

id, name, attachedToRef, cancelActivity=false, signalEventDefinition

conditionalStartEvent

id, name, conditionalEventDefinition

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 2.2 — Analytic Conformance Sub-Class Elements and Attributes

Catching conditional Intermediate
Event

id, name, conditionalEventDefinition

Boundary conditional Intermediate
Event

id, name, conditionalEventDefinition

Non-interrupting Boundary condi-
tional Intermediate Event

id, name, cancelActivity=false, conditionalEventDefinition

message®

id, name, add messageRef attribute to messageFlow

a. ConditionExpression, alowedonly for Sequence Flow out of Gateways, MAY be null.
b. Default isan attribute of a sourceRef (exclusive or inclusive) Gateway.
¢. Notethat messageRef, an attribute of various message Events, is optional and not in the sub-class.

Common Executable Conformance Sub-Class

This conformance sub-class is intended for modeling tools that can emit executable models.
& Datatype definition language MUST be XML Schema.
& Service Interface definition language MUST be WSDL.
& Dataaccess|anguage MUST be XPath.

The Common Executable conformance sub-class elements are shown in Table 2.3 and its supporting classes in Table 2.4.

Table 2.3 — Common Executable Conformance Sub-Class Elements and Attributes

Element

Attributes

sequenceFlow (unconditional)

id, (name), sourceRef?, targetRefb

sequenceFlow (conditional)

id, name, sourceRef, targetRef, conditionExpression®

sequenceFlow (default)

id, name, sourceRef, targetRef, defaultd

subProcess (expanded)

id, name, flowElement, loopCharacteristics, boundaryEventRefs

exclusiveGateway

id, name, gatewayDirection (only converging and diverging), default

parallelGateway

id, name, gatewayDirection (only converging and diverging)

startEvent (None)

id, name

endEvent (None)

id, name

eventBasedGateway id, name, gatewayDirection, eventGatewayType
userTask id, name, renderings, implementation, resources, ioSpecification,
datalnputAssociations, dataOutputAssociations, loopCharacteristics,
boundaryEventRefs
6 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 2.3 — Common Executable Conformance Sub-Class Elements and Attributes

serviceTask id, name, implementation, operationRef, ioSpecification,
datalnputAssociations, dataOutputAssociations, loopCharacteristics,
boundaryEventRefs

callActivity id, name, calledElement, ioSpecification, datalnputAssociations,
dataOutputAssociations, loopCharacteristics, boundaryEventRefs

dataObject id, name, isCollection, itemSubjectRef

textAnnotation

id, text

dataAssociation

id, name, sourceRef, targetRef, assignment

messageStartEvent id, name, messageEventDefinition (either ref or contained),
dataOutput, dataOutputAssociations
messageEndEvent id, name, messageEventDefinition, (either ref or contained), datalnput,

datalnputAssociations

terminateEndEvent

(Terminating trigger in combination with one of the other end events)

Catching message Intermediate
Event

id, name, messageEventDefinition (either ref or contained),
dataOutput, dataOutputAssociations

Throwing message Intermediate
Event

id, name, messageEventDefinition (either ref or contained), datalnput,
datalnputAssociations

Catching timer Intermediate Event

id, name, timerEventDefinition (contained)

Boundary error Intermediate Event

id, name, attachedToRef, errorEventDefinition, (contained or
referenced), dataOutput, dataOutputAssociations

a. Multiple outgoing connections are only allowed for converging Gateways.

b. Multiple outgoing connections are only allowed for diverging Gateways.

C. ConditionExpression, alowed only for Sequence Flow out of Gateways, MAY be null.
d. Default isan attribute of asourceRef (exclusive or inclusive) Gateway.

Table 2.4 — Common Executable Conformance Sub-Class Supporting Classes

Element

Attributes

StandardLoopCharacteristics

id, loopCondition

MultiinstancelLoopCharacteristics

id, isSequential, loopDatalnput, inputDataltem

Rendering

Resource

id, name

ResourceRole

id, resourceRef, resourceAssignmentExpression

InputOutputSpecification

id, datalnputs, dataOutputs

Datalnput

id, name, isCollection, itemSubjectRef

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 2.4 — Common Executable Conformance Sub-Class Supporting Classes

DataOutput id, name, isCollection, itemSubjectRef
IltemDefinition id, structure or import?

Operation id, name, inMessageRef, outMessageRef, errorRefs
Message id, name, structureRef

Error id, structureRef

Assignment id, from, toP

MessageEventDefinition id, messageRef, operationRef
TerminateEventDefinition id

TimerEventDefinition id, timeDate

a. Structure MUST be defined by an XSD Complex Type
b. Structure MUST be defined by an XSD Complex Type

2.2.3 Visual Appearance

A key element of BPMN is the choice of shapes and icons used for the graphical elements identified in this International
Standard. The intent is to create a standard visual language that all process modelers will recognize and understand. An
implementation that creates and displays BPMN Process Diagrams SHALL use the graphical elements, shapes, and
markers illustrated in this International Standard.

NOTE: Thereisflexibility inthe size, color, line style, and text positions of the defined graphical elements, except where
otherwise specified (see page 41).

The following extensions to a BPMN Diagram are permitted:

¢ New markersor indicators MAY be added to the specified graphical elements. These markers or indicators could be
used to highlight a specific attribute of aBPMN element or to represent a new subtype of the corresponding concept.

€ A new shaperepresenting akind of Artifact MAY be added to a Diagram, but the new Artifact shape SHALL NOT
conflict with the shape specified for any other BPMN element or marker.

& Graphical elements MAY be colored, and the coloring MAY have specified semantics that extend the information
conveyed by the element as specified in this International Standard.

& Thelinestyle of agraphical element MAY be changed, but that change SHALL NOT conflict with any other line
style REQUIRED by this International Standard.

¢ Anextension SHALL NOT change the specified shape of a defined graphical element or marker (e.g., changing a
sgquare into atriangle, or changing rounded cornersinto squared corners, etc.).

2.2.4 Structural Conformance
An implementation that creates and displays BPMN diagrams SHALL conform to the specifications and restrictions with
respect to the connections and other diagrammatic relationships between graphical elements. Where permitted or

requested connections are specified as conditional and based on attributes of the corresponding concepts, the
implementation SHALL ensure the correspondence between the connections and the values of those attributes.

8 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

NOTE: In general, these connections and relationships have specified semantic interpretations, which specify interactions
among the process concepts represented by the graphical elements. Conditional relationships based on attributes represent
specific variationsin behavior. Structural conformance therefore guarantees the correct interpretation of the diagram asa
specification of process, in terms of flows of control and information. Throughout the document, structural specifications will
appear in paragraphs using a special shaped bullet: Example: ¢ A TASK MAY be atarget for Sequence Flow; it can have
multiple incoming Flows. An incoming Flow MAY be from an aternative path and/or parallel paths.

2.2.5 Process Semantics

This International Standard defines many semantic concepts used in defining Processes, and associates them with
graphical elements, markers, and connections. To the extent that an implementation provides an interpretation of the
BPMN diagram as a semantic specification of Process, the interpretation SHALL be consistent with the semantic
interpretation herein specified. In other words, the implementation claiming BPM N Process M odeling Confor mance has
to support the semantics surrounding the diagram elements expressed in Clause 10.

NOTE: The implementations claiming Process M odeling Confor mance are not expected to support the BPMN execution
semantics described in Clause 13.

2.2.6 Attributes and Model Associations

This International Standard defines a number of attributes and properties of the semantic elements represented by the
graphical elements, markers, and connections. Some of these attributes are purely representational and are so marked, and
some have mandated representations. Some attributes are specified as mandatory, but have no representation or only
optional representation. And some attributes are specified as optional. For every attribute or property that is specified as
mandatory, a conforming implementation SHALL provide some mechanism by which values of that attribute or property
can be created and displayed. This mechanism SHALL permit the user to create or view these values for each BPMN
element specified to have that attribute or property. Where a graphical representation for that attribute or property is
specified as REQUIRED, that graphical representation SHALL be used. Where a graphical representation for that
attribute or property is specified as optional, the implementation MAY use either a graphical representation or some other
mechanism. If a graphical representation is used, it SHALL be the representation specified. Where no graphical
representation for that attribute or property is specified, the implementation MAY use either a graphical representation or
some other mechanism. If a graphical representation is used, it SHALL NOT conflict with the specified graphical
representation of any other BPMN element.

2.2.7 Extended and Optional Elements

A conforming implementation is NOT REQUIRED to support any element or attribute that is specified herein to be non-
normative or informative. In each instance in which this International Standard defines a feature to be “optional,” it
specifies whether the option isin:

 how the feature will be displayed,
» whether the feature will be displayed,
» whether the feature will be supported.

A conforming implementation is NOT REQUIRED to support any feature whose support is specified to be optional. If an
implementation supports an optional feature, it SHALL support it as specified. A conforming implementation SHALL
support any “optional” feature for which the option is only in whether or how it SHALL be displayed.

© ISO/IEC 2013 - All rights reserved 9

ISO/IEC 19510:2013(E)

2.2.8 Visual Interchange

One of the main goals of this International Standard is to provide an interchange format that can be used to exchange
BPMN definitions (both domain model and diagram layout) between different tools. The implementation should support
the metamodel for Process types specified in sub clause 13.1 to enable portability of process diagrams so that users can
take business process definitions created in one vendor’s environment and use them is another vendor’s environment.

2.3 Process Execution Conformance

The next two sub clauses describe Process Execution Confor mance.
2.3.1 Execution Semantics

The BPMN execution semantics have been fully formalized in this version of the International Standard. The tool
claiming BPMN Execution Conformance type MUST fully support and interpret the operational semantics and
Activity life-cycle specified in sub clause 14.2.2. Non-operational elements listed in Clause 14 MAY be ignored by
implementations claiming BPMN Execution Conformance type. Conformant implementations MUST fully support
and interpret the underlying metamodel.

NOTE: Thetool claiming Process Execution Conformancetype is not expected to support and interpret Choreography
models. Thetool claiming Process Execution Confor mancetypeisnot expected to support Process M odeling Confor mance.
More precisely, thetool isnot required to support graphical syntax and semanticsdefined in thisInternational Standard. It MAY
use different graphical elements, shapes and markers, than those defined in this International Standard.

2.3.2 Import of Process Diagrams

The tool claiming Process Execution Confor mance type MUST support import of BPMN Process diagram types
including its definitional Collaboration (see Table 10.1).
2.4 BPEL Process Execution Conformance

Special type of Process Execution Conformance that supports the BPMN mapping to WS-BPEL as specified in sub clause
15.1 can claim BPEL Process Execution Confor mance.

NOTE: Thetool claiming BPEL Process Execution Conformance MUST fully support Process Execution Confor mance.
Thetool claiming BPEL Process Execution Confor mance is not expected to support and interpret Choreography models.
The tool claiming BPEL Process Execution Conformance is not expected to support Process M odeling Confor mance.

2.5 Choreography Modeling Conformance

The next five sub clauses describe Choreography Confor mance.
2.5.1 BPMN Choreography Types

The implementations claiming Choreography Confor mance type MUST support the following BPMN packages:

¢ The BPMN core elements, which include those defined in the Infrastructure, Foundation, Common, and Service
packages (see Clause 8).

10 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

& Choreography diagrams, which includes the elements defined in the Choreography, and Choreography
packages (see Clause 11).

& Collaboration diagrams, which include Pools and Message Flow (see Clause 9).
2.5.2 BPMN Choreography Elements

The Choreography Conformance set includes Message, Choreography Task, Global Choreography Task,
Sub-Choreography (expanded and collapsed), certain types of Start Events (e.g., None, Timer, Conditional,
Signal, and Multiple), certain types of Intermediate Events (None, Message attached to Activity boundary,
Timer —normal as well as attached to Activity boundary, Timer used in Event Gateways, Cancel attached to an
Activity boundary, Conditional, Signal, Multiple, Link, etc.) and certain types of End Events (None and
Terminate), and Gateways. In addition, to enable Choreography within Collaboration it should support Pools and
Message Flow.

2.5.3 Visual Appearance

An implementation that creates and displays BPMN Choreography Diagrams SHALL use the graphical elements,
shapes, and markers as specified in the BPMN International Standard. The use of text, color, size and lines for
Choreography diagram types are listed in sub clause 7.4.

2.5.4 Choreography Semantics

The tool claiming Choreography Confor mance should fully support and interpret the graphical and execution semantics
surrounding Choreography diagram elements and Choreography diagram types.

2.5.5 Visual Interchange
The implementation should support import/export of Choreography diagram types and Collaboration diagram types
that depict Choreography within collaboration as specified in sub clause 9.4 to enable portability of Choreography

definitions, so that users can take BPMN definitions created in one vendor’s environment and use them is another
vendor’s environment.

© ISO/IEC 2013 - All rights reserved 11

ISO/IEC 19510:2013(E)

2.6

Summary of BPMN Conformance Types

Table 2.5 summarizes the requirements for BPMN Conformance.

Table 2.5 — Types of BPMN Conformance

Category Process Modeling Process BPEL Process | Choreography

Conformance Execution Execution Conformance
Conformance Conformance

Visual representation of Process diagram types N/A N/A Choreography diagram types

BPMN Diagram Types and and
Collaboration diagram types Collaboration diagram types
depicting collaborations depicting collaboration among
among Process diagram Choreography diagram types.
types.

BPMN DiagramElements | All Task types, embedded N/A N/A Message, Choreography Task,

syntax and semantics

diagrams that depict Process
within Collaboration.

that need to be supported. | Sub-Process, Call Activity, Global Choreography Task,
all Event types, al Gateway Sub-Choreography
types, Pool, Lane, Data (expanded and collapsed),
Object (including Datal nput certain types of Start,
and DataOutput), Message, Intermediate, and End Events,
Group, Artifacts, markers for Gateways, Pools and Message
Tasks and Sub-Processes, Flow.
SequenceFlow, Associations,
and Message Flow.

Import/Export of diagram | Yesfor Process and Yesfor Process Yesfor Process Yesfor Choreography and

types Collaboration diagrams that diagrams diagrams Collaboration diagrams
depict Process within depicting choreography within
Collaboration. Collaboration.

Support for Graphical Process and Collaboration N/A N/A Choreography and

Collaboration diagrams
depicting Choreography
within Collaboration.

Support for Execution
Semantics

N/A

Yesfor Process
diagrams

Yesfor Process
diagrams

Choreography execution
semantics

3 Normative References

3.1 General

The following referenced documents are indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)

applies.

12

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

3.2 Normative

OMG UML

+ OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2 -
http://www.omg.org/spec/UML/2.1.2/Superstructure

OMG MOF

» Object Management Group - Meta Object Facility (MOF) Core Specification, V2.0
http://www.omg.org/spec/MOF/2.0

RFC-2119

» Key wordsfor usein RFCsto Indicate Requirement Levels, S. Bradner, IETF RFC 2119, March 1997
http://www.ietf.org/rfc/rfc2119.txt

3.3 Non-Normative

Activity Service

» Additional Structuring Mechanism for the OTS Specification, OMG, June 1999
http://www.omg.org

» J2EE Activity Service for Extended Transactions (JSR 95), JCP
http://www.jcp.org/jsr/detail /95.jsp

BPEL4People

» WS-BPEL Extension for People (BPEL4People) Specification Version 1.1, Committee Specification,
17 August 2010
http://docs.0asis-open.org/bpel 4peopl e/bpel 4peopl e- 1. 1-spec-cs-01.html

Business Process Definition Metamodel

+ OMG May 2008,
http://www.omg.org/docs/dtc/08-05-07. pdf

Business Process Modeling

 Jean-Jacques Dubray, “A Novel Approach for Modeling Business Process Definitions,” 2002
http://www.ebpml.org/ebpml 2.2.doc

Business Transaction Protocol

+ OASISBTP Technica Committee, June, 2002
http://www.0asi s-open.org/committees/downl oad.php/1184/2002-06-03.BTP_cttee_spec_1.0.pdf

© ISO/IEC 2013 - All rights reserved 13

ISO/IEC 19510:2013(E)

Dublin Core Meta Data

« Dublin Core Metadata Element Set, Dublin Core Metadata Initiative
http://dublincore.org/documents/dces/

ebXML BPSS

» Jean-Jacques Dubray, “A new model for ebXML BPSS Mullti-party Collaborations and Web Services Choreography,”
2002
http://www.ebpml.org/ebpml.doc

Open Nested Transactions

» Concepts and Applications of Multilevel Transactions and Open Nested Transactions, Gerhard Weikum, Hans-J.
Schek, 1992
http://citeseer.nj.nec.com/weikum92concepts.html

RDF

» RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft
http://www.w3.org/TR/rdf-schema/

SOAP 1.2

» SOAP Version 1.2 Part 1: Messaging Framework, W3C Working Draft
http://www.w3.0rg/TR/soapl2-partl/

» SOAP Version 1.2 Part21: Adjuncts, W3C Working Draft
http://www.w3.0rg/TR/soapl2-part2/

uDDI

 Universal Description, Discovery and Integration, Ariba, IBM and Microsoft, UDDI.org.
http://www.uddi.org

URI

« Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, IETF RFC 2396,
August 1998
http://www.ietf.org/rfc/rfc2396.txt

WfMC Glossary

» Workflow Management Coalition Terminology and Glossary
http://www.wfmc.org/wfmc-standards-framework.html

Web Services Transaction

» (WS-Transaction) 1.1, OASIS, 12 July 2007,
http://www.0asi s-open.org/committees/ws-tx/

14 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Workflow Patterns

» Russdl, N., ter Hofstede, A.H.M., van der Aalst W.M.P, & Mulyar, N. (2006). Workflow Control-Flow Patterns: A
Revised View. BPM Center Report BPM-06-22, BPMcentre.org
http://www.workflowpatterns.com/

WSBPEL

» Web Services Business Process Execution Language (WSBPEL) 2.0, OASIS Standard, April 2007
http://docs.oasis-open.org/wsbpel /2.0/0S/wsbpel -v2.0-OS.html

WS-Coordination

» Web Services Coordination (WS-Coordination) 1.1, OASIS Standard, July 2007
http://www.0asi s-open.org/committees/ws-tx/

WSDL

» Web Services Description Language (WSDL) 2.0, W3C Proposed Recommendation, June 2007
http://www.w3.org/TR/wsdl 20/

WS-HumanTask

» Web Services Human Task (WS-HumanTask) 1.1, August 2010
http://docs.oasis-open.org/bpel 4peopl e/ws-humantask-1.1-spec-cs-01.html

XML 1.0 (Second Edition)

» Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et a., eds., W3C, 6 October 2000
http://mww.w3.org/ TR/REC-xml

XML-Namespaces

» Namespacesin XML, Tim Bray et a., eds., W3C, 14 January 1999
http://www.w3.0rg/ TR/REC-xml-names

XML-Schema

» XML SchemaPart 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah Mendel sohn, W3C, 2 May
2001
http://www.w3.0org/ TR/xml schema-1//

« XML Schema Part 2; Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001
http://www.w3.0org/ TR/xml schema-2/

XPath

» XML Path Language (XPath) 1.0, James Clark and Steve DeRose, eds., W3C, 16 November 1999
http://www.w3.0rg/ TR/xpath

© ISO/IEC 2013 - All rights reserved 15

ISO/IEC 19510:2013(E)

XPDL

» Workflow Management Coalition XML Process Definition Language, version 2.0.
http://www.wfmc.org/wfmc-standards-framework.html

4 Terms and Definitions

NOTE: See Annex C - Glossary.

5 Symbols

NOTE: There are no symbols defined.

6 Additional Information

6.1 Conventions

The sub clause introduces the conventions used in this document. This includes (text) notational conventions and
notations for schema components. Also included are designated namespace definitions.

6.1.1 Typographical and Linguistic Conventions and Style

This International Standard incorporates the following conventions:

+ Thekeywords“MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “MUST NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL" in this document are to be interpreted as described in RFC-2119.

« Atermisaword or phrase that has a special meaning. When aterm is defined, the term name is highlighted in bold
typeface.

A reference to another definition, sub clause, or specification is highlighted with underlined typeface and provides a
link to the relevant location in this International Standard.

» A referenceto agraphical element is highlighted with abold, capitalized word and will be presented with the Arial
font (e.g., Sub-Process).

A reference to anon-graphical element or BPMN concept is highlighted by being italicized and will be presented with
the Times New Roman font (e.g., token).

« A referenceto an attribute or model association will be presented with the Courier New font (e.g., Expression).

» A reference to a WSBPEL element, attribute, or construct is highlighted with an italic lower-case word, usualy
preceded by the word “WSBPEL” and will be presented with the Courier New font (e.g., WSBPEL pick).

» Non-normative examples are set off in boxes and accompanied by a brief explanation.

16 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

» XML and pseudo codeis highlighted with mono - spaced typeface. Different font colors MAY be used to highlight
the different components of the XML code.

» Thecardinality of any content part is specified using the following operators:
e <none> — exactly once
e [0.1]—O0Oor1
e [0.*] — 0or more
e [1.*]— 1ormore
« Attributes separated by | and grouped within { and } — aternative values
» <value> — default value
e <type>— thetype of the attribute

6.1.2 Abbreviations

The following abbreviations are used throughout:

This abbreviation Refers to

WSBPEL Web Services Business Process Execution Language (see WSBPEL). This abbreviation refers
specifically to version 2.0 of this International Standard.

WSDL Web Service Description Language (see WSDL). This abbreviation refers specifically to the W3C
Technical Note, 15 March 2001, but isintended to support future versions of the WSDL specification.

6.2 Structure of this Document

Clause 1 discusses the scope of the document and provides a summary of the elements introduced in subsequent clauses
of the document.

Clause 7 introduces the BPMN Core that includes basic BPMN elements needed for constructing various Business
Processes, including collaborations, orchestration Processes and Choreographies.

Elements needed for modeling of Collaborations, orchestration Processes, Conversations, and Choreographies
are introduced in Clauses 8, 9, 10 and 11, respectively.

Clause 13 introduces the BPMN visual diagram model. Clause 14 defines the execution semantics for Process
orchestrations in BPMN 2.0. Clause 14 discusses a mapping of a BPMN model to WS-BPEL that is derived by
analyzing the BPMN objects and the relationships between these objects. Exchange formats and an XSLT transformation
between them are provided in Clause 15.

6.3 Acknowledgments

Submitting Organizations

The following companies are formal submitting members of OMG:

« Axway
+ International Business Machines

© ISO/IEC 2013 - All rights reserved 17

ISO/IEC 19510:2013(E)

MEGA International
« Oracle
+ SAPAG
» Unisys

Supporting Organizations
The following organizations support this International Standard but are not formal submitters:;

» Accenture

» Adaptive

+ BizAgi

 Bruce Silver Associates
» Capgemini

» Enterprise Agility
 France Telecom

» |DS Scheer

 Intaio

* Metastorm

« Model Driven Solutions
» Nortel

» Red Hat Software

» Software AG

» TIBCO Software

« Vangent

Special Acknowledgments

The following persons were members of the core teams that contributed to the content of this International Standard:
Anurag Aggarwal, Mike Amend, Sylvain Astier, Alistair Barros, Rob Bartel, Mariano Benitez, Conrad Bock, Gary
Brown, Justin Brunt, John Bulles, Martin Chapman, Fred Cummins, Rouven Day, Maged Elaasar, David Frankel, Denis
Gagné, John Hall, Reiner Hille-Doering, Dave Ings, Pablo Irassar, Oliver Kieselbach, Matthias Kloppmann, Jana K oehler,
Frank Michael Kraft, Tammo van Lessen, Frank Leymann, Antoine Lonjon, Sumeet Malhotra, Falko Menge, Jeff
Mischkinsky, Dale Moberg, Alex Moffat, Ralf Mueller, Sjir Nijssen, Karsten Ploesser, Pete Rivett, Michael Rowley,
Bernd Ruecker, Tom Rutt, Suzette Samoojh, Robert Shapiro, Vishal Saxena, Scott Schanel, Axel Scheithauer, Bruce
Silver, Meera Srinivasan, Antoine Toulme, Ivana Trickovic, Hagen Voelzer, Franz Weber, Andrea Westerinen and Stephen
A. White.

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality of
this International Standard: im Amsden, Mariano Belaunde, Peter Carlson, Cory Casanave, Michele Chinosi, Manoj Das,
Robert Lario, Sumeet Malhotra, Henk de Man, David Marston, Neal McWhorter, Edita Mileviciene, Vadim Pevzner, Pete
Rivett, Jesus Sanchez, Markus Schacher, Sebastian Stein, and Prasad Yendluri.

18 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

7 Overview

7.1 General

There has been much activity in the past few years in developing web service-based XML execution languages for
Business Process Management (BPM) systems. Languages such as WSBPEL provide a forma mechanism for the
definition of business processes. The key element of such languages is that they are optimized for the operation and inter-
operation of BPM Systems. The optimization of these languages for software operations renders them less suited for
direct use by humans to design, manage, and monitor Business Processes. WSBPEL has both graph and block structures
and utilizes the principles of formal mathematical models, such as pi-calculust. This technical underpinning provides the
foundation for business process execution to handle the complex nature of both internal and B2B interactions and takes
advantage of the benefits of Web services. Given the nature of WSBPEL, a complex Business Process could be
organized in a potentially complex, disjointed, and unintuitive format that is handled very well by a software system (or
a computer programmer), but would be hard to understand by the business analysts and managers tasked to develop,
manage, and monitor the Process. Thus, thereis a human level of “inter-operability” or “portability” that is not addressed
by these web service-based XML execution languages.

Business people are very comfortable with visualizing Business Processes in a flow-chart format. There are thousands
of business analysts studying the way companies work and defining Business Processes with simple flow charts. This
creates a technical gap between the format of the initial design of Business Processes and the format of the languages,
such as WSBPEL, that will execute these Business Processes. This gap needs to be bridged with a formal mechanism
that maps the appropriate visualization of the Business Processes (a notation) to the appropriate execution format (a
BPM execution language) for these Business Processes.

Inter-operation of Business Processes at the human level, rather than the software engine level, can be solved with
standardization of the Business Process Model and Notation (BPMN). BPMN provides multiple diagrams, which are
designed for use by the people who design and manage Business Processes. BPMN also provides a mapping to an
execution language of BPM Systems (WSBPEL). Thus, BPMN would provide a standard visualization mechanism for
Business Processes defined in an execution optimized business process language.

BPMN provides businesses with the capability of understanding their internal business procedures in a graphical notation
and will give organizations the ability to communicate these procedures in a standard manner. Currently, there are scores
of Process modeling tools and methodologies. Given that individuals will move from one company to another and that
companies will merge and diverge, it is likely that business analysts need to understand multiple representations of
Business Processes—potentially different representations of the same Process as it moves through its lifecycle of
development, implementation, execution, monitoring, and analysis. Therefore, a standard graphical notation will facilitate
the understanding of the performance Collaborations and business transactions within and between the organizations.
This will ensure that businesses will understand themselves and participants in their business and will enable
organizations to adjust to new internal and B2B business circumstances quickly. BPMN follows the tradition of
flowcharting notations for readability and flexibility. In addition, the BPMN execution semantics is fully formalized. The
OMG is using the experience of the business process notations that have preceded BPMN to create the next generation
notation that combines readability, flexibility, and expandability.

1. SeeMilner, 1999, “ Communicating and Mobile Systems: the —Calculus,” Cambridge University Press. ISBN 0 521 64320 1
(hc.) ISBN 0521 65869 1 (pbk.)

© ISO/IEC 2013 - All rights reserved 19

ISO/IEC 19510:2013(E)

BPMN will also advance the capabilities of traditional business process notations by inherently handling B2B Business
Process concepts, such as public and private Processes and Choreographies, as well as advanced modeling concepts,
such as exception handling, transactions, and compensation.

7.2 BPMN Scope

This International Standard provides a notation and model for Business Processes and an interchange format that can be
used to exchange BPMN Process definitions (both domain model and diagram layout) between different tools. The goal
of the International Standard is to enable portability of Process definitions, so that users can take Process definitions
created in one vendor’s environment and use them in another vendor’s environment.

The BPMN 2.0.1 International Standard extends the scope and capabilities of the BPMN 1.2 in several areas:

» Formalizes the execution semantics for all BPMN elements.

» Defines an extensibility mechanism for both Process model extensions and graphical extensions.
» Refines Event composition and correlation.

 Extends the definition of human interactions.

« DefinesaChoreography model.

This International Standard also resolves known BPMN 1.2 inconsistencies and ambiguities.

BPMN is constrained to support only the concepts of modeling that are applicable to Business Processes. This means
that other types of modeling done by organizations for business purposes is out of scope for BPMN. Therefore, the
following are aspects that are out of the scope of this International Standard:

« Definition of organizational models and resources,

» Modeling of functional breakdowns,

 Data and information models,

» Modeling of strategy,

 Businessrules models.
Since these types of high-level modeling either directly or indirectly affects Business Processes, the relationships

between BPMN and other high-level business modeling can be defined more formally as BPMN and other specifications
are advanced.

While BPMN shows the flow of data (Messages), and the association of data artifacts to Activities, it is not a data flow
language. In addition, operational simulation, monitoring, and deployment of Business Processes are out of scope of
this International Standard.

BPMN 2.0.1 can be mapped to more than one platform dependent process modeling language, e.g., WS-BPEL 2.0. This
International Standard includes a mapping of a subset of BPMN to WS-BPEL 2.0. Mappings to other emerging standards
are considered to be separate efforts.

The International Standard utilizes other standards for defining data types, Expressions, and service operations. These
standards are XML Schema, XPath, and WSDL, respectively.

20 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

7.2.1 Uses of BPMN

Business Process modeling is used to communicate a wide variety of information to a wide variety of audiences. BPMN
is designed to cover many types of modeling and allows the creation of end-to-end Business Processes. The structural
elements of BPMN allow the viewer to be able to easily differentiate between sections of a BPMN Diagram. There are
three basic types of sub-models within an end-to-end BPMN model:

1. Processes (Orchestration), including:
* Private non-executable (internal) Business Processes
« Private executable (internal) Business Processes
* Public Processes

2. Choreographies

3. Collaborations, which can include Processes and/or Choreographies

* A view of Conversations

Private (Internal) Business Processes

Private Business Processes are those internal to a specific organization. These Processes have been generally called
workflow or BPM Processes (see Figure 10.4). Another synonym typically used in the Web services area is the
Orchestration of services. There are two types of private Processes: executable and non-executable. An executable
Process is a Process that has been modeled for the purpose of being executed according to the semantics defined in
Clause 14. Of course, during the development cycle of the Process, there will be stages where the Process does not have
enough detail to be “executable.” A non-executable Process is a private Process that has been modeled for the purpose
of documenting Process behavior at a modeler-defined level of detail. Thus, information needed for execution, such as
formal condition Expressions are typically not included in a non-executable Process.

If a swimlanes-like notation is used (e.g., a Collaboration, see below) then a private Business Process will be contained
within a single Pool. The Process flow is therefore contained within the Pool and cannot cross the boundaries of the
Pool. The flow of Messages can cross the Pool boundary to show the interactions that exist between separate private
Business Processes.

Order is Record of Premium of or Reject Applicant of

Complete Applicant Policy Policy Aggjrg(\:{[?cl):r

X Determine 2 check “ZDetermine & Approve Notify |

Figure 7.1 — Example of a private Business Process

Public Processes

A public Process represents the interactions between a private Business Process and another Process or Participant
(see Figure 7.2). Only those Activities that are used to communicate to the other Participant(s) are included in the public
Process. All other “internal” Activities of the private Business Process are not shown in the public Process. Thus, the
public Process shows to the outside world the Message Flows and the order of those Message Flows that are needed to
interact with that Process. Public Processes can be modeled separately or within a Collaboration to show the flow of
Messages between the public Process Activities and other Participants. Note that the public type of Process was named
“abstract” in BPMN 1.2.

© ISO/IEC 2013 - All rights reserved 21

ISO/IEC 19510:2013(E)

Patient

o

T ? | feeTsick Pickup yo% medicine T Here is yo?r medicine

and you Can leave
| want to gee doctor -
1 doctor | | need my [medicine |

Go seq
l

Recelve Receive Send Recelve Send
Doctor Send Appt. Symptoms Prescription Medicine Medicine
Request ymp Pickup Request

Figure 7.2 — Example of a public Process

Collaborations

A Collaboration depicts the interactions between two or more business entities. A Collaboration usually contains two or
more Pools, representing the Participants in the Collaboration. The Message exchange between the Participantsis
shown by a Message Flow that connects two Pools (or the objects within the Pools). The Messages associated with the
Message Flows can also be shown. The Collaboration can be shown as two or more public Processes communicating
with each other (see Figure 7.3). With a public Process, the Activities for the Collaboration participants can be
considered the “touch-points’ between the participants. The corresponding internal (executable) Processes are likely to
have much more Activity and detail than what is shown in the public Processes. Or a Pool MAY be empty, a “black
box.” Choreographies MAY be shown “in between” the Pools as they bisect the Message Flows between the Pools. All
combinations of Pools, Processes, and a Choreography are allowed in a Collaboration.

22 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

I= .
2 Send Doctor Receive Send Recglvg Se'nq Receive
< Prescription Medicine S
a Request Appt. Symptoms Picku Request Medicine
lliness p q
Occurs T A A T [AY
Iwal1t to I feel sick Pick LI dici | need m>J medicine I
see doctor Go see doctor | Ickup yodr medicine . -
and you gan leave Here is yoyr medicine
| | | | | |
B v l v v 1
[. .
S g Receive . Send Receive
88 Doctor Send Appt. SR;CF:S/;S Prescription Medicine Mggir;(ijne
A Request ymp Pickup Request
o)
x

Figure 7.3 — An example of a Collaborative Process

Choreographies
A self-contained Choreography (no Pools or Orchestration) is a definition of the expected behavior, basically a

procedural contract, between interacting Participants. While a normal Process exists within a Pool, a Choreography
exists between Pools (or Participants).

The Choreography looks similar to a private Business Process since it consists of a network of Activities, Events, and
Gateways (see Figure 7.4). However, a Choreography is different in that the Activities are interactions that represent a
set (1 or more) of Message exchanges, which involves two or more Participants. In addition, unlike a normal Process,

there is no central controller, responsible entity, or observer of the Process.

| want to see . I need my
the Doctor I feel S'Cklzl medicine
Patient Patient Patient Patient
C) Doctor Handle Handle Handle O
Request Symptoms Prescription Medicine
Dr. Office Dr. Office Dr. Office Dr. Office
Go see the i Pickup your Here is your
Doctor medll(;'gsé then IZI medicine

Figure 7.4 — An example of a Choreography

© ISO/IEC 2013 - All rights reserved

23

ISO/IEC 19510:2013(E)

Conversations

The Conversation diagram is a particular usage of and an informal description of a Collaboration diagram. However, the
Pools of a Conversation usually do not contain a Process and a Choreography is usually not placed in between the
Pools of a Conversation diagram. A Conversation is the logical relation of Message exchanges. The logical relation, in
practice, often concerns a business object(s) of interest, e.g., “Order,” “Shipment and Delivery,” or “Invoice.”

Message exchanges are related to each other and reflect distinct business scenarios. For example, in logistics, stock
replenishments involve the following type scenarios. creation of sales orders; assignment of carriers for shipments
combining different sales orders; crossing customs/quarantine; processing payment, and investigating exceptions. Thus, a
Conversation diagram, as shown in Figure 7.5, shows Conversations (as hexagons) between Participants (Pools). This
provides a “bird's eye” perspective of the different Conversations that relate to the domain.

. Delivery Supplier
Retailer Negotiations
Delivery / Dispatch Consignee Shipment Schedule
Plan —
_/ _/

AN O
(]

R Dehver;};ll Dispatch Carrier Planning Shi
Consolidator an] pper
/\ Carrier /\
__/ (Land, Sea, Rail, or Air) _/
Clearance Pre- Coverage
Customs/ Notification Notification Insurance
1
uarantine {)
= — 1] —
Breakdown l ‘ Locative Service
Service
Truck Breakdown Arrival/Pickup Traffic Optimizatior|

Provision Confirmation Guidance

Figure 7.5 — An example of a Conversation diagram

Diagram Point of View

Since a BPMN Diagram MAY depict the Processes of different Participants, each Participant could view the Diagram
differently. That is, the Participants have different points of view regarding how the Processes will apply to them. Some
of the Activities will be internal to the Participant (meaning performed by or under control of the Participant) and other
Activities will be external to the Participant. Each Participant will have a different perspective as to which are internal
and external. At runtime, the difference between internal and external Activities is important in how a Participant can

24 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

view the status of the Activities or troubleshoot any problems. However, the Diagram itself remains the same. Figure 7.3
displays a Business Process that has two points of view. One point of view is of a Patient, the other is of the Doctor’s
office. The Diagram shows the Activities of both participants in the Process, but when the Process is actually being
performed, each Participant will only have control over their own Activities. Although the Diagram point of view is
important for a viewer of the Diagram to understand how the behavior of the Process will relate to that viewer, BPMN
will not currently specify any graphical mechanisms to highlight the point of view. It is open to the modeler or modeling
tool vendor to provide any visual cues to emphasize this characteristic of a Diagram.

Understanding the Behavior of Diagrams

Throughout this International Standard, we discuss how Sequence Flows are used within a Process. To facilitate this
discussion, we employ the concept of atoken that will traverse the Sequence Flows and pass through the elements in the
Process. A token is a theoretical concept that is used as an aid to define the behavior of a Process that is being
performed. The behavior of Process elements can be defined by describing how they interact with a token as it
“traverses’ the structure of the Process. However, modeling and execution tools that implement BPMN are NOT
REQUIRED to implement any form of token.

A Start Event generates a token that MUST eventually be consumed at an End Event (which MAY be implicit if not
graphically displayed). The path of tokens should be traceable through the network of Sequence Flows, Gateways, and
Activities within a Process.

NOTE: A token does not traverse aMessage Flow sinceit isaMessage that is passed down a Message Flow (as the name
implies).

7.3 BPMN Elements

It should be emphasized that one of the drivers for the development of BPMN is to create a simple and understandable
mechanism for creating Business Process models, while at the same time being able to handle the complexity inherent
to Business Processes. The approach taken to handle these two conflicting requirements was to organize the graphical
aspects of the notation into specific categories. This provides a small set of notation categories so that the reader of a
BPMN diagram can easily recognize the basic types of elements and understand the diagram. Within the basic categories
of elements, additional variation and information can be added to support the requirements for complexity without
dramatically changing the basic look and feel of the diagram. The five basic categories of elements are:

Flow Objects

Data

Connecting Objects
Swimlanes
Artifacts

ag c D E

Flow Objects are the main graphical elements to define the behavior of a Business Process. There are three Flow
Objects:

1. Events
2. Activities
3. Gateways

Data is represented with the four elements:

© ISO/IEC 2013 - All rights reserved 25

ISO/IEC 19510:2013(E)

Data Objects
Data Inputs
Data Outputs
Data Stores

Eal R I

There are four ways of connecting the Flow Objects to each other or other information. There are four Connecting
Objects:

1. Sequence Flows
2. Message Flows
3. Associations
4. Data Associations
There are two ways of grouping the primary modeling elements through “ Swimlanes:”
1. Poals

2. Lanes

Artifactsare used to provide additional information about the Process. There are two standardized Artifacts, but
model ers or modeling tools are free to add as many Artifacts as necessary. There could be additional BPMN efforts to
standardize a larger set of Artifacts for general use or for vertical markets. The current set of Artifacts includes:

« Group
« Text Annotation

7.3.1 Basic BPMN Modeling Elements

Table 7.1 displays a list of the basic modeling elements that are depicted by the notation.

Table 7.1 — Basic Modeling Elements

Element Description Notation

Event An Event is something that “happens” during the
course of a Process (see page 237) or a
Choreography (see page 339). These Events
affect the flow of the model and usually have a
cause (trigger) or an impact (result). Events are
circles with open centers to allow internal markers
to differentiate different triggers or results. There
are three types of Events, based on when they
affect the flow: Start, Intermediate, and End.

Activity An Activity is a generic term for work that company
performs (see page 149) in a Process. An Activity
can be atomic or non-atomic (compound). The
types of Activities that are a part of a Process
Model are: Sub-Process and Task, which are
rounded rectangles. Activities are used in both
standard Processes and in Choreographies.

26 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 7.1 — Basic Modeling Elements

Gateway A Gateway is used to control the divergence and
convergence of Sequence Flows in a Process
(see page 143) and in a Choreography (see page
344). Thus, it will determine branching, forking,
merging, and joining of paths. Internal markers will
indicate the type of behavior control.

Sequence Flow A Sequence Flow is used to show the order that
Activities will be performed in a Process (see page >
95) and in a Choreography (see page 320).

Message Flow A Message Flow is used to show the flow of
Messages between two Participants that are O = e e —— P

prepared to send and receive them (see page
119). In BPMN, two separate Pools in a
Collaboration Diagram will represent the two
Participants (e.g., PartnerEntities and/or
PartnerRoles).

Association An Association is used to link information and
Artifacts with BPMN graphical elements (see page
65). Text Annotations (see page 69) and other | i, >
Artifacts (see page 64) can be Associated with the
graphical elements. An arrowhead on the
Association indicates a direction of flow (e.qg.,
data), when appropriate.

Pool A Pool is the graphical representation of a
Participant in a Collaboration (see page 111). It
also acts as a “swimlane” and a graphical
container for partitioning a set of Activities from
other Pools, usually in the context of B2B
situations. A Pool MAY have internal details, in the
form of the Process that will be executed. Or a
Pool MAY have no internal details, i.e., it can be a
“black box.”

Name

Lane A Lane is a sub-partition within a Process,
sometimes within a Pool, and will extend the entire
length of the Process, either vertically or
horizontally (see on page 304). Lanes are used to
organize and categorize Activities.

Name
Name | Name

Data Object Data Objects provide information about what
Activities require to be performed and/or what they
produce (see page 204), Data Objects can
represent a singular object or a collection of
objects. Data Input and Data Output provide the
same information for Processes.

Message A Message is used to depict the contents of a
communication between two Participants (as
defined by a business PartnerRole or a business
PartnerEntity—see on page 91).

<

© ISO/IEC 2013 - All rights reserved 27

ISO/IEC 19510:2013(E)

Table 7.1 — Basic Modeling Elements

Group (a box around a
group of objects within
the same category)

A Group is a grouping of graphical elements that
are within the same Category (see page 68). This
type of grouping does not affect the Sequence
Flows within the Group. The Category name
appears on the diagram as the group label.
Categories can be used for documentation or
analysis purposes. Groups are one way in which
Categories of objects can be visually displayed on
the diagram.

Text Annotation
(attached with an
Association)

Text Annotations are a mechanism for a modeler
to provide additional text information for the reader
of a BPMN Diagram (see page 69).

.7Descriptive Text

Here

7.3.2 Extended BPMN Modeling Elements

Table 7.2 displays a more extensive list of the Business Process concepts that could be depicted through a business
process modeling notation.

Table 7.2 — BPMN Extended Modeling Elements

Element

Description

Notation

Event

An Event is something that “happens” during
the course of a Process (see page 237) or a
Choreography (see page 339). These Events
affect the flow of the model and usually have
a cause (Trigger) or an impact (Result).
Events are circles with open centers to allow
internal markers to differentiate different
Triggers or Results. There are three types of
Events, based on when they affect the flow:
Start, Intermediate, and End.

Flow Dimension (e.g., Sart, Intermediate, End)

28

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 7.2 — BPMN Extended Modeling Elements

Start Start

Intermediate As the name implies, the Start Event indicates
where a particular Process (see page 237) or
Choreography (see page 339) will start.

Intermediate

Intermediate Events occur between a Start
Event and an End Event. They will affect the
flow of the Process (see page 248) or
Choreography (see page 340), but will not
start or (directly) terminate the Process.

End As the name implies, the End Event indicates

where a Process (see page 245) or End

Choreography (see page 343) will end.
Type Dimension (e.g., The Start and some Intermediate Events have L - _
None, Message, Timer, “triggers” that define the cause for the Event catehing Throwing NOT;'TIe"“p:'\ng
Error, Cancel, (see section entitled “Start Event” on Message @ = (@;"
Compensation, page 237 and section entitled “Intermediate Timer o) (@;,}
Conditional, Link, Signal, | Event’ on page 248). There are multiple ways =%
Multiple, Terminate.) that these events can be triggered. End Error @

Events MAY define a “result” that is a escaiation (A) NN

consequence of a Sequence Flow path
ending. Start Events can only react to
(“catch”) a trigger. End Events can only create | Compensation

Cancel

AR

00DBRO®OO
® ©

(“throw”) a result. Intermediate Events can Conditional B (;é‘,\,
catch or throw triggers. For the Events, -
triggers that catch, the markers are unfilled, Link

and for triggers and results that throw, the Signal A :\.’A:.\,
markers are filled. @ 8 o

Terminate

Additionally, some Events, which were used Multiple @ @ ::6_:) (-: :-‘.
to interrupt Activities in BPMN 1.1, can now Parallel 7 P
be used in a mode that does not interrupt. The | Multiple @ g

boundary of these Events is dashed (see
figure to the right).

© ISO/IEC 2013 - All rights reserved 29

ISO/IEC 19510:2013(E)

Table 7.2 — BPMN Extended Modeling Elements

Activity

An Activity is a generic term for work that
company performs (see page 149) in a
Process. An Activity can be atomic or non-
atomic (compound). The types of Activities
that are a part of a Process Model are: Sub-
Process and Task, which are rounded
rectangles. Activities are used in both
standard Processes and in Choreographies.

Task (Atomic)

A Task is an atomic Activity that is included
within a Process (see page 154). A Task is
used when the work in the Process is not
broken down to a finer level of Process detail.

)

Task
Name

~—_—

Choreography Task

A Choreography Task is an atomic Activity in
a Choreography (see page 323). It represents
a set of one (1) or more Message exchanges.
Each Choreography Task involves two (2)
Participants. The name of the Choreography
Task and each of the Participants are all
displayed in the different bands that make up
the shape’s graphical notation. There are two
(2) or more Participant Bands and one Task
Name Band.

Participant A

Choreography
Task Name

Participant B

Process/Sub-Process
(non-atomic)

A Sub-Process is a compound Activity that is
included within a Process (see page 171) or
Choreography (see page 328). Itis compound
in that it can be broken down into a finer level
of detail (a Process or Choreography) through
a set of sub-Activities.

See Next Four Figures

Collapsed Sub-Process

The details of the Sub-Process are not visible
in the Diagram (see page 171). A “plus” sign
in the lower-center of the shape indicates that
the Activity is a Sub-Process and has a lower-
level of detail.

Sub-Process
Name

Expanded Sub-Process

The boundary of the Sub-Process is
expanded and the details (a Process) are
visible within its boundary (see page 171).
Note that Sequence Flows cannot cross the
boundary of a Sub-Process.

30

© ISO/IEC 2013 - All rights reserved

Table 7.2 — BPMN Extended Modeling Elements

Collapsed Sub-
Choreography

The details of the Sub-Choreography are not
visible in the Diagram (see page 328). A
“plus” sign in the lower-center of the Task
Name Band of the shape indicates that the
Activity is a Sub-Process and has a lower-
level of detail.

Participant A

Choreography
Name
[+

Participant B

Expanded Sub-

The boundary of the Sub-Choreography is

and convergence of Sequence Flows in a
Process (see page 286) and in a
Choreography (see page 344). Thus, it will
determine branching, forking, merging, and
joining of paths. Internal markers will indicate
the type of behavior control (see below).

. Partici| t A
Choreography expanded and the details (a Choreography) Parichani
are visible within its boundary (see page 328). Sub-Choreography Name
Note that Sequence Flows cannot cross the Participant C Participant A
boundary of a Sub-Choreography. Choreography | choreography
() Task Name Task Name
Participant B Participant C
Participant B
Gateway A Gateway is used to control the divergence

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

31

ISO/IEC 19510:2013(E)

Table 7.2 — BPMN Extended Modeling Elements

Gateway Control Types

Icons within the diamond shape of the
Gateway will indicate the type of flow control
behavior. The types of control include:

« Exclusive decision and merging. Both
Exclusive (see page 289) and Event-Based
(see page 296) perform exclusive
decisions and merging Exclusive can be
shown with or without the “X” marker.

* Event-Based and Parallel Event-based
gateways can start a new instance of the
Process.

« Inclusive Gateway decision and merging
(see page 291).

« Complex Gateway -- complex conditions
and situations (e.g., 3 out of 5; page 294).

« Parallel Gateway forking and joining (see
page 292).

Each type of control affects both the incoming
and outgoing flow.

Exclusive or

Event-Based

0
@ O

Parallel
Event-Based

Inclusive

Complex

Parallel

Sequence Flow

A Sequence Flow is used to show the order
that Activities will be performed in a Process
(see page 95) and in a Choreography (see
page 320).

See next seven figures

Normal Flow Normal flow refers to paths of Sequence Flow

that do not start from an Intermediate Event

attached to the boundary of an Activity. >
Uncontrolled flow Uncontrolled flow refers to flow that is not

affected by any conditions or does not pass >

through a Gateway. The simplest example of
this is a single Sequence Flow connecting two
Activities. This can also apply to multiple
Sequence Flows that converge to or diverge
from an Activity. For each uncontrolled
Sequence Flows a token will flow from the
source object through the Sequence Flows
to the target object.

32

© ISO/IEC 2013 - All rights reserved

Table 7.2 — BPMN Extended Modeling Elements

ISO/IEC 19510:2013(E)

Conditional flow

A Sequence Flow can have a condition
Expression that are evaluated at runtime to
determine whether or not the Sequence Flow
will be used (i.e., will a token travel down the
Sequence Flow — see page 95). If the
conditional flow is outgoing from an Activity,
then the Sequence Flow will have a mini-
diamond at the beginning of the connector
(see figure to the right). If the conditional flow
is outgoing from a Gateway, then the line will
not have a mini-diamond (see figure in the
row above).

Default flow

For Data-Based Exclusive Gateways or
Inclusive Gateways, one type of flow is the
Default condition flow (see page 95). This flow
will be used only if all the other outgoing
conditional flow is not true at runtime. These
Sequence Flows will have a diagonal slash
will be added to the beginning of the
connector (see the figure to the right).

Exception Flow

Exception flow occurs outside the normal flow
of the Process and is based upon an
Intermediate Event attached to the boundary
of an Activity that occurs during the
performance of the Process (see page 286).

&

xception
Flow
Message Flow A Message Flow is used to show the flow of
Messages between two Participants that are
prepared to send and receive them (see page O o o o o o — [‘,::\-

119). In BPMN, two separate Pools in a
Collaboration Diagram will represent the two
Participants (e.g., PartnerEntities and/or
PartnerRoles).

Compensation
Association

Compensation Association occurs outside the
normal flow of the Process and is based upon
a Compensation Intermediate Event that is
triggered through the failure of a transaction
or a throw Compensation Event (see page
301). The target of the Association MUST be
marked as a Compensation Activity.

)

Association

© ISO/IEC 2013 - All rights reserved

33

ISO/IEC 19510:2013(E)

Table 7.2 — BPMN Extended Modeling Elements

Data Object

Data Objects provide information about what
Activities require to be performed and/or what
they produce (see page 204), Data Objects
can represent a singular object or a collection
of objects. Data Input and Data Output
provide the same information for Processes.

Data Object

]

Data Object (Collection)

]

Data Input Data Output

Message

A Message is used to depict the contents of a
communication between two Participants (as
defined by a business PartnerRole oOr a

business PartnerEntity—see on page 91).

[

Fork

BPMN uses the term “fork” to refer to the
dividing of a path into two or more parallel
paths (also known as an AND-Split). Itis a
place in the Process where activities can be
performed concurrently, rather than
sequentially.

There are two options:

« Multiple Outgoing Sequence Flows can be
used (see figure top-right). This represents
“uncontrolled” flow is the preferred method
for most situations.

« A Parallel Gateway can be used (see figure
bottom-right). This will be used rarely,
usually in combination with other
Gateways.

L
T

34

© ISO/IEC 2013 - All rights reserved

Table 7.2 — BPMN Extended Modeling Elements

ISO/IEC 19510:2013(E)

Join

BPMN uses the term “join” to refer to the
combining of two or more parallel paths into
one path (also known as an AND-Join or
synchronization).

A Parallel Gateway is used to show the joining
of multiple Sequence Flows.

Decision, Branching
Point

Decisions are Gateways within a Process
(see page 286) or a Choreography (see page
344) where the flow of control can take one or
more alternative paths.

See next five rows.

Exclusive

This Decision represents a branching point
where Alternatives are based on conditional
Expressions contained within the
outgoing Sequence Flows (see page 289 or
page 344). Only one of the Alternatives will be
chosen.

Condition

Event-Based

This Decision represents a branching point
where Alternatives are based on an Event
that occurs at that point in the Process (see
page 296) or Choreography (see page 349).
The specific Event, usually the receipt of a
Message, determines which of the paths will
be taken. Other types of Events can be used,
such as Timer. Only one of the Alternatives
will be chosen.

There are two options for receiving
Messages:

« Tasks of Type Receive can be used (see
figure top-right).

« Intermediate Events of Type Message can
be used (see figure bottom-right).

©—

© ISO/IEC 2013 - All rights reserved

35

ISO/IEC 19510:2013(E)

Table 7.2 — BPMN Extended Modeling Elements

Inclusive

This Decision represents a branching point
where Alternatives are based on conditional
Expressions contained within the
outgoing Sequence Flows (see page 291).

In some sense it is a grouping of related
independent Binary (Yes/No) Decisions.
Since each path is independent, all
combinations of the paths MAY be taken, from
zero to all. However, it should be designed so
that at least one path is taken. A Default
Condition could be used to ensure that at
least one path is taken.

There are two versions of this type of
Decision:

« The first uses a collection of conditional
Sequence Flows, marked with mini-
diamonds (see top-right figure).

e The second uses an Inclusive Gateway
(see bottom-right picture).

Condition 1

Condition 2

Condition 1

Condition 2

Merging

BPMN uses the term “merge” to refer to the
exclusive combining of two or more paths into
one path (also known as an OR-Join).

A Merging Exclusive Gateway is used to show
the merging of multiple Sequence Flows (see
upper figure to the right).

If all the incoming flow is alternative, then a
Gateway is not needed. That is, uncontrolled
flow provides the same behavior (see lower
figure to the right).

O]
e

Looping

BPMN provides two mechanisms for looping
within a Process.

See Next Two Figures

Activity Looping

The attributes of Tasks and Sub-Processes
will determine if they are repeated or
performed once (see page 189). There are
two types of loops: Standard and Multi-
Instance. A small looping indicator will be
displayed at the bottom-center of the activity.

.

36

© ISO/IEC 2013 - All rights reserved

Table 7.2 — BPMN Extended Modeling Elements

ISO/IEC 19510:2013(E)

Sequence Flow Looping

Loops can be created by connecting a
Sequence Flow to an “upstream” object. An
object is considered to be upstream if that
object has an outgoing Sequence Flow that
leads to a series of other Sequence Flows,
the last of which is an incoming Sequence
Flow for the original object.

Multiple Instances

The attributes of Tasks and Sub-Processes
will determine if they are repeated or
performed once (see page 190). A set of three
horizontal lines will be displayed at the
bottom-center of the activity for sequential
Multi-Instances (see upper figure to the right).
A set of three vertical lines will be displayed at
the bottom-center of the activity for sequential
Multi-Instances (see lower figure to the right).

Sequential

Parallel

Process Break
(something out of the
control of the process
makes the process
pause)

A Process Break is a location in the Process
that shows where an expected delay will
occur within a Process (see page 248). An
Intermediate Event is used to show the actual
behavior (see top-right figure). In addition, a
Process Break Artifact, as designed by a
modeler or modeling tool, can be associated
with the Event to highlight the location of the
delay within the flow.

Announce

Issues for Vote

Increment
Tally

Voting
Response

Transaction

A transaction is a Sub-Process that is
supported by a special protocol that insures
that all parties involved have complete
agreement that the activity should be
completed or canceled (see page 176). The
attributes of the activity will determine if the
activity is a transaction. A double-lined
boundary indicates that the Sub-Process is a
Transaction.

© ISO/IEC 2013 - All rights reserved

37

ISO/IEC 19510:2013(E)

Table 7.2 — BPMN Extended Modeling Elements

Nested/Embedded Sub-
Process (Inline Block)

A nested (or embedded) Sub-Process is an
activity that shares the same set of data as its
parent process (see page 171). This is
opposed to a Sub-Process that is
independent, re-usable, and referenced from
the parent process. Data needs to be passed
to the referenced Sub-Process, but not to the
nested Sub-Process.

Thereis no specia indicator for nested Sub-
Processes

Group (a box around a
group of objects within
the same category)

A Group is a grouping of graphical
elements that are within the same Category
(see page 66). This type of grouping does not
affect the Sequence Flows within the Group.
The Category nhame appears on the diagram
as the group label. Categories can be used for
documentation or analysis purposes. Groups
are one way in which Categories of objects
can be visually displayed on the diagram.

Off-Page Connector

Generally used for printing, this object will
show where a Sequence Flow leaves one
page and then restarts on the next page. A
Link Intermediate Event can be used as an
Off-Page Connector.

Association

An Association is used to link information and
Artifacts with BPMN graphical elements (see
page 65). Text Annotations (see page 69) and
other Artifacts (see page 64) can be
Associated with the graphical elements. An
arrowhead on the Association indicates a
direction of flow (e.g., data), when
appropriate.

Text Annotation
(attached with an
Association)

Text Annotations are a mechanism for a
modeler to provide additional text information
for the reader of a BPMN Diagram (see page
69).

‘7Descriptive Text
: Here

Pool

A Pool is the graphical representation of a
Participant in a Collaboration (see page 111).
It also acts as a “swimlane” and a graphical
container for partitioning a set of Activities
from other Pools, usually in the context of B2B
situations. A Pool MAY have internal details,
in the form of the Process that will be
executed. Or a Pool MAY have no internal
details, i.e., it can be a “black box.”

Name

38

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 7.2 — BPMN Extended Modeling Elements

Lanes A Lane is a sub-partition within a Pool and will
extend the entire length of the Pool, either g
vertically or horizontally (see on page 304). g 3
Lanes are used to organize and categorize Slo
Activities. §

7.4 BPMN Diagram Types

The BPMN 2.0.1 aims to cover three basic models of Processes: private Processes (both executable and non-
executable), public Processes, and Choreographies. Within and between these three BPMN sub-models, many types of
Diagrams can be created. The following are examples of Business Processes that can be modeled using BPMN 2.0.1:

» High-level non-executable Process Activities (not functional breakdown).

« Detailed executable Business Process.

« As-isor old Business Process.

« To-be or new Business Process.

A description of expected behavior between two (2) or more business Participants—a Choreography.

» Detailed private Business Process (either executable or non-executable) with interactions to one or more external
Entities (or “Black Box” Processes).

» Two or more detailed executable Processes interacting.

 Detailed executable Business Process relationship to a Choreography.

« Two or more public Processes.

» Public Process relationship to Choreography.

» Two or more detailed executable Business Processes interacting through a Choreography.

BPMN is designed to allow describing all above examples of Business Processes. However, the ways that different sub-
models are combined is |eft to tool vendors. A BPMN 2.0.1 compliant implementation could RECOMMEND that
modelers pick afocused purpose, such as a private Process, or Choreographies. However, the BPMN 2.0.1 International
Standard makes no assumptions.

7.5 Use of Text, Color, Size, and Lines in a Diagram

Text Annotation objects can be used by the modeler to display additional information about a Process or attributes of the
objects within a BPMN Diagram.

¢ BPMN dements (e.g., Flow objects) MAY havelabels (e.g., its name and/or other attributes) placed inside the shape,
or above or below the shape, in any direction or location, depending on the preference of the modeler or modeling
tool vendor.

€ Thefillsthat are used for the graphical elements MAY be white or clear.

€ Thenotation MAY be extended to use other fill colors to suit the purpose of the modeler or toal (e.g., to
highlight the value of an object attribute). However,

€ themarkersfor “throwing” Events MUST have adark fill (see “End Event” on page 245 and “Intermediate
Event” on page 248 for more details).

© ISO/IEC 2013 - All rights reserved 39

ISO/IEC 19510:2013(E)

€ Participant Bands for Choreography Tasks and Sub-Choreographies that are not the initiator of the Activity
MUST have alight fill (see “Choreography Task” on page 323 and “ Sub-Choreography” on page 328 for
more details).

€ Flow objects and markers MAY be of any size that suits the purposes of the modeler or modeling tool.
@ Thelinesthat are used to draw the graphical elements MAY be black.

€ Thenotation MAY be extended to use ather line colors to suit the purpose of the modeler or tool (e.g., to
highlight the value of an object attribute).

€ Thenotation MAY be extended to use ather line styles to suit the purpose of the modeler or tool (e.g., to
highlight the value of an object attribute) with the condition that the line style MUST NOT conflict with any
current BPMN defined line style. Thus, the line styles of Sequence Flows, Message Flows, and Text
Associations MUST NOT be modified or duplicated.

7.6 Flow Object Connection Rules

An incoming Sequence Flow can connect to any location on a Flow Object (left, right, top, or bottom). Likewise, an
outgoing Sequence Flow can connect from any location on a Flow Object (left, right, top, or bottom). A Message Flow
also has this capability.

NOTE: BPMN alows thisflexibility; however, we also RECOMMEND that modelers use judgment or best practices in how
Flow Objects should be connected so that readers of the Diagramswill find the behavior clear and easy to follow. Thisis even
more important when aDiagram contains Sequence Flows and Message Flows. Inthese situationsit isbest to pick adirection
of Sequence Flows, either left to right or top to bottom, and then direct the Message Flows at a 90° angle to the Sequence

Flows. The resulting Diagrams will be much easier to understand.

7.6.1 Sequence Flow Connections Rules

Table 7.3 displays the BPMN Flow Objects and shows how these objects can connect to one another through Sequence
Flows. These rules apply to the connections within a Process Diagram and within a Choreography Diagram. The 7
symbol indicates that the object listed in the row can connect to the object listed in the column. The quantity of
connections into and out of an object is subject to various configuration dependencies are not specified here. Refer to the
sub clauses in the next clause for each individual object for more detailed information on the appropriate connection
rules. Note that if a Sub-Process has been expanded within a Diagram, the objects within the Sub-Process cannot be
connected to objects outside of the Sub-Process, nor can Sequence Flows cross a Pool boundary.

Table 7.3 — Sequence Flow Connection Rules

From\To O @ O
O %o 2 A 2 A

40 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 7.3 — Sequence Flow Connection Rules

— %o 2 A A A
%o 2 A A A

H
C %o 72 2 2 2
@ %o 2 2 2 2

Only those objects that can have incoming and/or outgoing Sequence Flows are shown in the table. Thus, Pool, Lane,
Data Object, Group, and Text Annotation are not listed in the table. Also, the Activity shapes in the table represent
Activities and Sub-Processes for Processes, and Choreography Activities and Sub-Choreographies for
Choreography.

7.6.2 Message Flow Connection Rules

Table 7.4 displays the BPMN modeling objects and shows how these objects can connect to one another through Message
Flows. These rules apply to the connections within a Collaboration Diagram. The ¢! symbol indicates that the object
listed in the row can connect to the object listed in the column. The quantity of connections into and out of an object is
subject to various configuration dependencies that are not specified here. Refer to the sub clauses in the next clause for
each individual object for more detailed information on the appropriate connection rules. Note that Message Flows
cannot connect to objects that are within the same Pool.

© ISO/IEC 2013 - All rights reserved 41

ISO/IEC 19510:2013(E)

Table 7.4— Message Flow Connection Rules

From\To
. Pool)
’ a a a a
Pool
’ a a a a
— ’ a a a a
A
’ a a QA QA
@ ’ a a a a

Only those objects that can have incoming and/or outgoing Message Flows are shown in the table. Thus, Lane, Gateway,
Data Object, Group, and Text Annotation are not listed in the table.

7.7 BPMN Extensibility

BPMN 2.0.1 introduces an extensibility mechanism that allows extending standard BPMN elements with additional
attributes. It can be used by modelers and modeling tools to add non-standard elements or Artifacts to satisfy a
specific need, such as the unique requirements of a vertical domain, and still have valid BPMN Core. Extension attributes
MUST NOT contradict the semantics of any BPMN element. In addition, while extensible, BPMN Diagrams should still
have the basic look-and-feel so that a Diagram by any modeler should be easily understood by any viewer of the Diagram.
Thus the footprint of the basic flow elements (Events, Activities, and Gateways) MUST NOT be altered.

The International Standard differentiates between mandatory and optional extensions (sub clause 8.3.3 explains the syntax
used to declare extensions). If a mandatory extension is used, a compliant implementation MUST understand the
extension. If an optional extension is used, a compliant implementation MAY ignore the extension.

42 © ISO/IEC 2013 - All rights reserved

7.8 BPMN Example

The following is an example of a manufacturing process from different perspectives.

o
k= = —90

Confirlnation

ShipLent

T
Rej+tion
|

i I

Pf!ns Open
Provisioning Au:Tion

| v
Supplier Bidder

Figure 7.6 — An example of a Collaboration diagram with black-box Pools

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

43

ISO/IEC 19510:2013(E)

@ o Customer Customer
A Yes Order . .
— Confirmation =1 Deliver Order
Manufacturer Manufacturer
———————— —
Order E Confirmation E Shipme nt E
Customer Can Eulfill C ustomer
Order ? ord
rder
O—P Order Request |—< No Lt .
Rejection
Ng
Manufacturer Part Manufacturer
Request El =,
Rejection
Manufacturer All Parts e IZI
Available %, Part
——| Procure Parts Request L .
Capacity OK, H
parts Must 4 Manufz;cturer
be Ordered Su p!)| ier All Parts
H) Obtained?
Part Part Auction @
Response
No
Bidder A
LI
£
Part
Response

Figure 7.7 — An example of a stand-alone Choreography diagram

44

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

»

Parts (1.m}

- |
: Send
Create Order

Canfirmation ’_F-rf.;c':;"t;:?: -
7 ; |
: Retriaren Orddor Cﬂ@m|
Capaity & = |
Parts Aailable rier =

D8 Ordor B o o ¢ e s e e e e e — m—
[Subeniflisd]
Relrieve Capacity nat .;CEJ Send

Manut. Capacity

Parts List & Pans Available

Available

&

Arrives

Part Roguisition

(1.n)

Capacky OK,
Parts{Must
be Orpared

Procure Parts
=738

Pan Requisition |
{1.n}

Part Roquisition
1.0}

i Part Will Ba
Available on

Figure 7.8 — An example of a stand-alone Process (Orchestration) diagram

© ISO/IEC 2013 - All rights reserved

Unavaiable

Procured
arts

Rejection bo
Custoemar

45

ISO/IEC 19510:2013(E)

46

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

8 BPMN Core Structure

8.1 General

NOTE: The content of this clauseis REQUIRED for all BPMN conformance types. For more information about BPMN
conformance types, see page 1.

The technical structuring of BPMN is based on the concept of extensibility layers on top of a basic series of simple
elements identified as Core Elements of the International Standard. From this core set of constructs, layering is used to
describe additional elements that extend and add new constructs to the International Standard and relies on clear
dependency paths for resolution. The XML Schema model lends itself particularly well to the structuring model with
formalized import and resolution mechanics that remove ambiguities in the definitions of elements in the outer layers of
the International Standard.

% Ctivities

Figure 8.1 — A representation of the BPMN Core and Layer Structure

Figure 8.1 shows the basic principles of layering that can be composed in well defined ways. The approach uses
formalization constructs for extensibility that are applied consistently to the definition.

The additional effect of layering is that compatibility layers can be built, allowing for different levels of compliance
among vendors, and also enabling vendors to add their own layers in support of different vertical industries or target
audiences. In addition, it provides a mechanism for the redefinition of previously existing concepts without affecting
backwards compatibility, but defining two or more non-composable layers, the level of compliance with the International
Standard and backwards compatibility can be achieved without compromising clarity.

© ISO/IEC 2013 - All rights reserved 47

ISO/IEC 19510:2013(E)

The BPMN International Standard is structured in layers, where each layer builds on top of and extends lower layers.
Included is a Core or kernel that includes the most fundamental elements of BPMN, which are REQUIRED for
constructing BPMN diagrams: Process, Choreography, and Collaboration. The Core is intended to be simple,
concise, and extendable with well defined behavior.

The Core contains four sub-packages (see Figure 8.2):

1

2
3.
4

Infrastructure: Two elementsthat are used for both abstract syntax models and diagram models.
Foundation: The fundamental constructs needed for BPMN modeling.
Service: Thefundamental constructs needed for modeling services and interfaces.

Common: Those classes which are common to the layers of Process, Choreography, and Collaboration.

£ Core

£33 Foundation

£ Common

£ Service

Figure 8.2 — Class diagram showing the core packages

NOTE: To simplify the diagram, the Infrastructure package is not shown in Figure 8.2.

Figure 8.3 displays the organization of the main set of BPMN core model elements.

48

© ISO/IEC 2013 - All rights reserved

Do fiitions
{Trom infysabruchure]

= noolDements *

4+ dafinfion

0.1

+ dofirdton

+ dafirahon

=

e
{froem Feaundstion]

v supportedinter facefofs

+ Calablellemens

Callabar ation | Callablethenrent
[Fren Collaber abion] {From Common}
= & colabhiaton

+ -+ chersagrapnyital

| et aped vy
(Froes Choresgr apiry]

Proceds
{Frosm. Process]

HlohalConversation
(Tege Correeruationa]

| GhobalChoreograpdy Task
o Ehadsaaraphy |

. & i § - -
{From Camersn i {frem rllnbew aiean)
& mmesagetel
& | b ADOr

= Tigroel

{Fresm Irfr mitrisctun s

* = relatiorshcn

| Relaticndgn
[Found s

Figure 8.3 — Class diagram showing the organization of the core BPMN elements

8.2 Infrastructure

The BPMN Infrastructure package contains two elements that are used for both abstract syntax models and diagram

models.

8.2.1 Definitions

Interface

-

(o Ramviw

w mbefaieies

|| Participant
Form Colataa adieri

Gilodwall ask

(s Frocess)

Baseblement

[T w Frourelaliond

ISO/IEC 19510:2013(E)

The Definitions class is the outermost containing object for all BPMN elements. It defines the scope of visibility and the
namespace for all contained elements. The interchange of BPMN files will always be through one or more Definitions.

© ISO/IEC 2013 - All rights reserved

49

ISO/IEC 19510:2013(E)

=

Egid : String
E pefinitions -
(From Infrastructure) + definition
[Eg name : 5tring 01
[Eg targetNamespace : String "
[Eg expressionLanguage ; String
g typelanguage : String
[Eg exporter ; 5tring
[Eg exporterversion : 5tring +| definitions
1
+ definition
1
+ definition
1
1

| BaseElement

(From Foundation)

| RootElement

+ rootElements (From Foundation)

| BPMNDiagram

. =
+ diagrams
(from BPMMDI)

= tmport
+ imports
P [Eg importType © String
* Eg location © String
[Eg namespace : String

[z
+ relationships

" g type : Stiing

[Eg direction : RelationshipDirection

+ extensions [Q Extension

(From Foundation)
[Eg mustUnderstand ; Boolean

-

Figure 8.4 — Definitions class diagram

(From Infrastructure)

= Relationship
(From Foundation)

]
+ documentation

1
.,
7] Documentation
(from Foundation)
[text : String
g textFormat : String

The Definitions element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 8.1 presents

the additional attributes and model associations of the Definitions element.

Table 8.1 — Definitions attributes and model association

Attribute Name

Description/Usage

name: string

The name of the Definition.

targetNamespace: string

This attribute identifies the namespace associated with the
Definition and follows the convention established by XML Schema.

expressionLanguage: string [0..1]

in a URI format.

This attribute identifies the formal Expression language used in
Expressions within the elements of this Definition. The Default is
“http://www.w3.0rg/1999/XPath”. This value MAY be overridden on
each individual formal Expression. The language MUST be specified

50

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 8.1 — Definitions attributes and model association

typeLanguage: string [0..1]

This attribute identifies the type system used by the elements of this
Definition. Defaults to http://www.w3.0rg/2001/XMLSchema. This
value can be overridden on each individual TtemDefinition. The
language MUST be specified in a URI format.

rootElements: RootElement [0..*]

This attribute lists the root elements that are at the root of this
Definitions. These elements can be referenced within this
Definitions and are visible to other Definitions.

diagrams: BPMNDiagram [0..*]

This attribute lists the BPMNDiagrams that are contained within this
Definitions (see page 365 for more information on
BPMNDiagrams).

imports: Import [0..*]

This attribute is used to import externally defined elements and make
them available for use by elements within this Definitions.

extensions: Extension [0..*]

This attribute identifies extensions beyond the attributes and model
associations in the base BPMN specification. See page 57 for
additional information on extensibility.

relationships: Relationship [0..*]

This attribute enables the extension and integration of BPMN models
into larger system/development Processes.

exporter: string [0..1]

This attribute identifies the tool that is exporting the bpmn model file.

exporterVersion: string [0..1]

This attribute identifies the version of the tool that is exporting the bpmn
model file.

8.2.2 Import

The Import classis used when referencing external element, either BPMN elements contained in other BPMN
Definitions or non-BPMN elements. Imports MUST be explicitly defined.

Table 8.2 presents the attributes of Tmport.

© ISO/IEC 2013 - All rights reserved

51

ISO/IEC 19510:2013(E)

Table 8.2 — Import attributes

Attribute Name

Description/Usage

importType: string

Identifies the type of document being imported by providing an absolute URI that
identifies the encoding language used in the document.The value of the importType
attribute MUST be set to http://www.w3.0rg/2001/XMLSchema when importing XML
Schema 1.0 documents, to http://www.w3.org/TR/wsdI20/ when importing WSDL 2.0
documents, and http://www.omg.org/spec/BPMN/20100524/MODEL when importing
BPMN 2.0 documents. Other types of documents MAY be supported.

Importing Xml Schema 1.0, WSDL 2.0 and BPMN 2.0 types MUST be supported.

location: string [0..1]

Identifies the location of the imported element.

namespace: string

Identifies the namespace of the imported element.

8.2.3 Infrastructure Package XML Schemas

Table 8.3 — Definitions XML schema

<xsd:element name="definitions" type="tDefinitions"/>
<xsd:complexType name="tDefinitions">

<xsd:sequence>

<xsd:element ref="import" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element ref="extension" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="rootElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="bpmndi:BPMNDiagram" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="relationship" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="id" type="xsd:ID" use="optional"/>

<xsd:attribute name="targetNamespace" type="xsd:anyURI" use="required"/>

<xsd:attribute name="expressionLanguage" type="xsd:anyURI" use="optional" default="http://
www.w3.0rg/1999/XPath"/>

<xsd:attribute name="typeLanguage" type="xsd:anyURI" use="optional" default="http://www.w3.org/
2001/XMLSchema"/>

<xsd:anyAttribute name="exporter" type="xsd:|D"/>

<xsd:anyAttribute name="exporterVersion" type="xsd:ID"/>

<xsd:anyAttribute namespace="##other" processContents="lax"/>

</xsd:complexType>

52

© ISO/IEC 2013 - All rights reserved

Table 8.4 — Import XML schema

<xsd:element name="import" type="timport"/>
<xsd:complexType name="timport">

ISO/IEC 19510:2013(E)

<xsd:attribute name="namespace" type="xsd:anyURI" use="required"/>
<xsd:attribute name="location" type="xsd:string" use="required"/>
<xsd:attribute name="importType" type="xsd:anyURI" use="required"/>

</xsd:complexType>

8.3 Foundation

The Foundation package contains classes that are shared among other packages in the Core (see Figure 8.5) of an

abstract syntax model.

=] RootElement

(From Foundation)

+ rootElements |
=

+ definition 0.1
&] Definitions
(From Infrastructure)
[Eg name : String
[Eg targetMamespace © String
[Eg expressionLanguage : Sting
Eg typelanguage : String
[Eg exporter @ String
[Eg exporterersion : String

+ definition

+ definition 1 1 + definition 1
= [z}
& * + relationships
| Relationship
(From Foundation)
. b t [Eg type : String
+ Imports [Eg direction : RelationshipDirection
=
& E Import
(from Infrastructure)
[importType : 5tiing
[Eg location : String
[Eg namespace : String
1 1
+ extensions
=] Extension

(From Foundation)
g mustUnderstand : Boolean

Figure 8.5 — Classes in the Foundation package

© ISO/IEC 2013 - All rights reserved

=] ExtensionAttributeValue

(From Foundation)

+ extensionValues | *

1
= BaseFlement] Documentation
(From Foundation) (From Foundation)
Egid : String + documentation | Eg text : String

®

| ExtensionDefinition
(From Foundation)
[Eg name : 5tring

1

®

[Eg, textFormat @ String
1 Ll

wanumeration»
=] RelationshipDirection
(From Foundation)
= MNone
= Forward
= Backward
= Both

+ extensionDefinitions

+ extensionAttributeDefinitions

| ExtensionAttributeDefinition

(From Foundation)

[Eg name : 5tring
[Eg type @ String
g isReference : Boolean

53

ISO/IEC 19510:2013(E)

8.3.1 Base Element

BaseElement is the abstract super class for most BPMN elements. It provides the attributes id and documentation, which
other elements will inherit.

Table 8.5 presents the attributes and model associations for the BaseElement.

Table 8.5 — BaseElement attributes and model associations

Attribute Name Description/Usage

id: string This attribute is used to uniquely identify BPMN elements. The id is
REQUIRED if this element is referenced or intended to be referenced by
something else. If the element is not currently referenced and is never
intended to be referenced, the id MAY be omitted.

documentation: This attribute is used to annotate the BPMN element, such as descriptions
Documentation [0..*] and other documentation.

extensionDefinitions: This attribute is used to attach additional attributes and associations to any
ExtensionDefinition [0..4] BaseElement. This association is not applicable when the XML schema

interchange is used, since the XSD mechanisms for supporting
anyAttribute and any element already satisfy this requirement. See page
57 for additional information on extensibility.

extensionValues: This attribute is used to provide values for extended attributes and model
ExtensionAttributeValue [0..*] associations. This association is not applicable when the XML schema
interchange is used, since the XSD mechanisms for supporting
anyAttribute and any element already satisfy this requirement. See page
57 for additional information on extensibility.

8.3.2 Documentation

All BPMN elements that inherit from the BaseElement will have the capability, through the Documentation
element, to have one (1) or more text descriptions of that element.

The Documentation element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.6 presents the additional attributes of the Documentation element.

Table 8.6 — Documentation attributes

Attribute Name Description/Usage

text: string This attribute is used to capture the text descriptions of a BPMN element.

textFormat: string This attribute identifies the format of the text. It MUST follow the mime-type
format. The default is "text/plain."

In the BPMN schema, the tDocumentation complexType does not contain a text attribute or element. Instead, the
documentation text is expected to appear in the body of the documentation element. For example:

54 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

<documentation>An example of how the documentation text is entered.</documentations

8.3.3 Extensibility

The BPMN metamodel is aimed to be extensible. This allows BPMN adopters to extend the specified metamodel in a
way that allows them to be still BPMN-compliant.

It provides a set of extension elements, which allows BPMN adopters to attach additional attributes and elements to
standard and existing BPMN elements.

This approach results in more interchangeable models, because the standard elements are still intact and can still be
understood by other BPMN adopters. It's only the additional attributes and elements that MAY be lost during interchange.

il] Definitions
(from Infrastructure)
[Eg name : String
[Eg targetNamespace © String
[Eg expressionlLanguage © String | 1
[Eg typelanguage @ String
[Eg exporter 1 String 1
[Eg exporterVersion : String

+ extensions | Extension
[=] (from Foundation)
g mustUnderstand : Boolean

=

1 . + definition
Q.Baseaam.mt + extensionDefinitions =] ExtensionDefinition
(from Foundation) (From Foundation)
Egid : String -

[Eg name : 5tring
1

+ extensionAttributeDefinitions | *
| ExtensionAttributeDefinition
(From Foundation)
[Eg name : 5tring
[Eg type : Stiing
g isReference ; Boolean
+ extensionAttributeDefinition 1

+ extensionValues [pxtensionAttributevalue
(From Foundation)
1 -
* 1
* |+ documentation
| Documentation
(From Foundation) [
[text © String
[textFormat @ String

+valueRef| 0.1 0.1 4 yaue

=/ Element
(From CMOF)

Figure 8.6 — Extension class diagram

A BPMN Extension basically consists of four different elements:

1. Extension

2. ExtensionDefinition

3. ExtensionAttributeDefinition
4

ExtensionAttributeValue

© ISO/IEC 2013 - All rights reserved 55

ISO/IEC 19510:2013(E)

The core elements of an Extension arethe ExtensionDefinition and ExtensionAttributeDefinition. The
latter defines a list of attributes that can be attached to any BPMN element. The attribute list defines the name and type
of the new attribute. This allows BPMN adopters to integrate any meta model into the BPMN meta model and reuse
already existing model elements.

The ExtensionDefinition itself can be created independent of any BPMN element or any BPMN definition.

In order to use an ExtensionDefinition within a BPMN model definition (Definitions element), the
ExtensionDefinition MUST be associated with an Extension element that binds the
ExtensionDefinition to aspecific BPMN model definition. The Extension element itself is contained within
the BPMN element Definitions and therefore available to be associated with any BPMN element making use of the
ExtensionDefinition.

Every BPMN element which subclasses the BPMN BaseElement can be extended by additional attributes. This works
by associating a BPMN element with an ExtensionDefinition, which was defined at the BPMN model definitions
level (element Definitions).

Additionally, every “extended” BPMN element contains the actual extension attribute value. The attribute value, defined
by the element ExtensionAttributeValue contains the value of type Element. It also has an association to the
corresponding attribute definition.

Extension

The Extension element binds/imports an ExtensionDefinition and its attributes to a BPMN model definition.

Table 8.7 presents the attributes and model associations for the Extension element.

Table 8.7 — Extension attributes and model associations

Attribute Name Description/Usage
mustUnderstand: boolean [0..1] = | This flag defines if the semantics defined by the extension definition and its
False attribute definition MUST be understood by the BPMN adopter in order to

process the BPMN model correctly. Defaults to False.

definition: ExtensionDefinition Defines the content of the extension.
Note that in the XML schema, this definition is provided by an external XML
schema file and is simply referenced by QName.

ExtensionDefinition

The ExtensionDefinition class defines and groups additional attributes. This type is not applicable when the XML
schema interchange is used, since XSD Complex Types aready satisfy this requirement.

Table 8.8 presents the attributes and model associations for the ExtensionDefinition element.

56 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 8.8 — ExtensionDefinition attributes and model associations

Attribute Name

Description/Usage

name: string

The name of the extension. This is used as a namespace to
uniquely identify the extension content.

extensionAttributeDefinitions:
ExtensionAttributeDefinition [0..*]

The specific attributes that make up the extension.

ExtensionAttributeDefinition

The ExtensionAttributeDefinition defines new attributes. This type is not applicable when the XML schema
interchange is used; since the XSD mechanisms for supporting “AnyAttribute” and “Any” type already satisfy this

requirement.

Table 8.9 presents the attributes for the ExtensionAttributeDefinition element.

Table 8.9- ExtensionAttributeDefinition attributes

Attribute Name

Description/Usage

name: string

The name of the extension attribute.

type: string

The type that is associated with the attribute.

isReference: boolean [0..1] = False

Indicates if the attribute value will be referenced or contained.

ExtensionAttributeValue

The ExtensionAttributeValue contains the attribute value. This type is not applicable when the XML schema

interchange is used; since the XSD mechanisms for supporting “AnyAttribute” and “Any” type already satisfy this

requirement.

Table 8.10 presents the model associations for the ExtensionAttributeValue element.

Table 8.10 — ExtensionAttributeValue model associations

Attribute Name

Description/Usage

value: [Element [0..1]

The contained attribute value, used when the associated
ExtensionAttributeDefinition.isReference is false.

The type of this Element MUST conform to the type specified in the
associated ExtensionAttributeDefinition.

valueRef: [Element [0..1]

The referenced attribute value, used when the associated
ExtensionAttributeDefinition.isReference is true.
The type of this Element MUST conform to the type specified in the
associated ExtensionAttributeDefinition.

extensionAttributeDefinition:
ExtensionAttribute Definition

Defines the extension attribute for which this value is being
provided.

© ISO/IEC 2013 - All rights reserved

57

ISO/IEC 19510:2013(E)

Extensibility XML Schemas

Table 8.11 — Extension XML schema

<xsd:element name="extension" type="tExtension"/>
<xsd:complexType name="tExtension">

<xsd:sequence>

<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="definition" type="xsd:QName"/>

<xsd:attribute name="mustUnderstand" type="xsd:boolean" use="optional"/>
</xsd:complexType>

XML Example

This example shows a Task, defined the BPMN Core, being extended with Inputs and Outputs defined outside of the
Core.

Table 8.12 — Example Core XML schema

<xsd:schema ...>

<xsd:element name="task" type="tTask"/>
<xsd:complexType name="tTask">
<xsd:complexContent>
<xsd:extension base="tActivity"/>
</xsd:complexContent>
</xsd:complexType>

</xsd:schema>

58 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 8.13 — Example Extension XML schema

<xsd:schema ...>

<xsd:group name="dataRequirements">
<xsd:sequence>
<xsd:element ref="datalnput" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="dataOutput" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="inputSet" minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="outputSet" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:group>

</xsd:schema>

Table 8.14 — Sample XML instance

<bpmn:definitions id="ID_1" ...>

<bpmn:extension mustUnderstand="true" definition="bpmn:dataRequirements"/>

<bpmn:task name="Retrieve Customer Record" id="ID_2">
<bpmn:datalnput name="Order Input" id="ID_3">
<bpmn:typeDefinition typeRef="bo:Order" id="ID_4"/>
</bpmn:datalnput>
<bpmn:dataOutput name="Customer Record Output" id="ID_5">
<bpmn:typeDefinition typeRef="bo:CustomerRecord" id="ID_6"/>
</bpmn:dataOutput>
<bpmn:inputSet nhame="Inputs" id="ID_7" datalnputRefs="ID_3"/>
<bpmn:outputSet name="Outputs" id="ID_8" dataOutputRefs="ID_5"/>
</bpmn:task>

</bpmn:definitions>

8.3.4 External Relationships

It is the intention of this International Standard to cover the basic elements necessary for the construction of semantically
rich and syntactically valid Process models to be used in the description of Processes, Choreographies, and
business operations in multiple levels of abstraction. As the International Standard indicates, extension capabilities enable
the enrichment of the information described in BPMN and supporting models to be augmented to fulfill particularities of
a given usage model. These extensions' intention is to extend the semantics of a given BPMN Artifact to provide
specialization of intent or meaning.

© ISO/IEC 2013 - All rights reserved 59

ISO/IEC 19510:2013(E)

Process models do not exist in isolation and generally participate in larger, more complex business and system
development Processes. The intention of the following element is to enable BPMN Artifacts to be integrated in
these development Processes via the specification of a non-intrusive identity/relationship model between BPMN
Artifacts and elements expressed in any other addressable domain model.

The ‘identity/relationship’ model is reduced to the creation of families of typed relationships that enable BPMN and non-
BPMN Artifacts to berelated in non intrusive manner. By simply defining ‘ relationship types’ that can be associated
with elements in the BPMN Artifacts and arbitrary elements in a given addressable domain model, it enables the
extension and integration of BPMN models into larger system/development Processes.

It is that these extensions will enable, for example, the linkage of ‘derivation’ or ‘definition’ relationships between UML
artifacts and BPMN Artifacts in novel ways. So, a UML use case could be related to a Process element in the
BPMN International Standard without affecting the nature of the Artifacts themselves, but enabling different
integration models that traverse specialized relationships.

Simply, the model enables the external specification of augmentation relationships between BPMN Artifacts and
arbitrary relationship classification models, these external models, via traversing relationships declared in the external
definition allow for linkages between BPMN elements and other structured or non-structured metadata definitions.

The UML model for this International Standard follows a simple extensible pattern as shown below; where named
relationships can be established by referencing objects that exist in their given namespaces.

] BaseFlement + documentation -
(from Foundation) | Documentation
[E& id : Strir 1 * (From Foundation)
=id st :
- ° [Eg text @ String

[Eg textFormat @ String

=] Relationship
(From Foundation)

g type : Stiing

55 direction : RelationshipDirection «enumeration»

[RelationshipDirection
(From Foundation)
=IMNone
=lForward
=1Backward
= Baoth
+ SOUMCEs 1.* 1.* | + targets
= £l Element

(from CMOF)

Figure 8.7 — External Relationship Metamodel

The Relationship element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.15 presents the additional attributes for the Relationship element.

60 © ISO/IEC 2013 - All rights reserved

Table 8.15 — Relationship attributes

ISO/IEC 19510:2013(E)

Attribute Name

Description/Usage

type: string

The descriptive name of the element.

direction: RelationshipDirection {None |
Forward | Backward | Both}

This attribute specifies the direction of the relationship.

sources: [Element [1..*]

This association defines artifacts that are augmented by the
relationship.

targets: [Element[1..*]

This association defines artifacts used to extend the semantics of the
source element(s).

In this manner you can, for example, create relationships between different artifacts that enable external annotations used
for traceability, derivation, arbitrary classifications, etc.

An example where the ‘reengineer’ relationship is shown between elements in a Visio ™ artifact and a BPMN

Artifact.

Table 8.16 — Reengineer XML schema

<?xml version="1.0" encoding="UTF-8"?>

<definitions targetNamespace=

typeLanguage="" id="al123" expressionLanguage=""

xsi:schemal ocation="http://www.omg.org/spec/BPMN/20100524/MODEL Core-Common.xsd"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:src="http://www.example.org/Processes/OIld"
xmins:tgt="http://www.example.org/Processes/New">

<import importType="http://office.microsoft.com/visio" location="OrderConfirmationProcess.vsd"
namespace="http://www.example.org/Processes/Old"/>

<import importType="http://www.omg.org/spec/BPMN/20100524/MODEL"
location="OrderConfirmationProcess.xml"
namespace="http://www.example.org/Processes/New"/>

<relationship type="reengineered" id="a234" direction="both">
<documentation>An as-is and to-be relationship. The as-is model is expressed as a Visio dia-
gram. The re-engineered process has been split in two and is captured in BPMN 2.0 for-

mat.</documentation>

<source ref="src:OrderConfirmation"/>
<target ref="tgt:OrderConfirmation_Partl"/>
<target ref="tgt:OrderConfirmation_Partll"/>

</relationship>
</definitions>

© ISO/IEC 2013 - All rights reserved

61

ISO/IEC 19510:2013(E)

8.3.5 Root Element

RootElement isthe abstract super class for all BPMN elements that are contained within Definitions. When
contained within Definitions, these elements have their own defined life-cycle and are not deleted with the deletion
of other elements. Examples of concrete RootElements include Collaboration, Process, and Choreography.
Depending on their use, RootElements can be referenced by multiple other elements (i.e., they can be reused). Some
RootElements MAY be contained within other elements instead of Definitions. Thisis done to avoid the
maintenance overhead of an independent life-cycle. For example, an EventDefinition would be contained in a
Process since it is used only there. In this case the EventDefinition would be dependent on the tool life-cycle of
the Process.

The RootElement element inherits the attributes and model associations of BaseElement (see Table 8.5), but does
not have any further attributes or model associations.

8.3.6 Foundation Package XML Schemas

Table 8.17 — BaseElement XML schema

<xsd:element name="baseElement" type="tBaseElement"/>
<xsd:complexType name="tBaseElement" abstract="true">
<xsd:sequence>

<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extensionElements" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:complexType>

<xsd:element name="baseElementWithMixedContent" type="tBaseElementWithMixedContent"/>
<xsd:complexType name="tBaseElementWithMixedContent" abstract="true" mixed="true">
<xsd:sequence>
<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extensionElements" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:complexType>

<xsd:element name="extensionElements" type="tExtensionElements"/>
<xsd:complexType name="tExtensionElements">
<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="documentation" type="tDocumentation"/>
<xsd:complexType name="tDocumentation" mixed="true">

62 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:attribute name="textFormat" type="xsd:string" default="textplain"/>

</xsd:complexType>

Table 8.18 — RootElement XML schema

<xsd:element name="rootElement" type="tRootElement"/>
<xsd:complexType name="tRootElement" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType

Table 8.19 — Relationship XML schema

<xsd:element name="relationship" type="tRelationship"/>
<xsd:complexType name="tRelationship">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>

<xsd:element name="source" type="xsd:QName" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="target" type="xsd:QName" minOccurs="1" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="type" type="xsd:string" use="required"/>
<xsd:attribute name="direction" type="tRelationshipDirection"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tRelationshipDirection">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="None"/>
<xsd:enumeration value="Forward"/>
<xsd:enumeration value="Backward"/>
<xsd:enumeration value="Both"/>
</xsd:restriction>
</xsd:simpleType>

© ISO/IEC 2013 - All rights reserved

63

ISO/IEC 19510:2013(E)

8.4 Common Elements

The following sub clauses define BPMN elements that MAY be used in more than one type of diagram (e.g., Process,
Collaboration, and Choreography).

8.4.1 Artifacts

BPMN provides modelers with the capability of showing additional information about a Process that is not directly
related to the Sequence Flows or Message Flows of the Process.

At this point, BPMN provides three standard Artifacts: Associations, Groups, and Text Annotations.
Additional Artifacts MAY be added to the BPMN International Standard in later versions. A modeler or modeling
tool MAY extend a BPMN diagram and add new types of Artifacts to a Diagram. Any new Artifact MUST
follow the Sequence Flow and Message Flow connection rules (listed below). Associations can be used to link

Artifacts to Flow Objects (see page 67).

Figure 8.8 showsthe Artifacts class diagram. When an Artifact isdefined it is contained within aCollaboration
or aFlowElementsContainer (aProcess or Choreography).

£ collaboration £ subChoreography £ SubProcess = Process
(from Collaboration) (From ChoreographyActivities) (From Activities) (From Process)
[Eg name : 5tring EjtriggeredByE\rent : Boolean [Eg processType : ProcessType
[Eg isClosed : Boolean [Eg isClosed : Boolean
[Eg isExecutable : Boolean
0.1 0.1 0.1 0.1
* |, 4 artifacts * .y artifacts w artifacts q..q. 7 artifact
] Artifact = BaseElement
(From Artifacts) (From Foundation)
Egid: String
1
+ documentation, *
] Association | Group | TextAnnotation | Documentation
(From Artifacts) (From Artifacts) (From Artifacts) (From Foundation)
[Eg, associationDirection © AssociationDirection [Eg, text : String [Eg, text : String

[Eg, textFormat : String [Eg, textFormat @ String

«enumeration»
[E] AssociationDirection
(From Artifacts)
= Morne
= One
=1 Bath

Figure 8.8 — Artifacts Metamodel

Common Artifact Definitions
The following sub clauses provide definitions that are common to all Artifacts.

Artifact Sequence Flow Connections

See “ Sequence Flow Connections Rules’ on page 40 for the entire set of objects and how they MAY be source or targets
of aSequence Flow.

64 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

€ AnArtifact MUST NOT be atarget for aSequence Flow.
€ AnArtifact MUST NOT be asourcefor aSequence Flow.

Artifact Message Flow Connections

See “Message Flow Connection Rules’ on page 41 for the entire set of objects and how they MAY be source or targets of
aMessage Flow.

€ AnArtifact MUST NOT be atarget for aMessage Flow.
€ AnArtifact MUST NOT be asource for aMessage Flow.

Association

An Association is used to associate information and Artifacts with Flow Objects. Text and graphical non-Flow
Objects can be associated with the Flow Objects and Flow. An Association is also used to show the Activity used for
compensation. More information about compensation can be found on page 300.

€ AnAssociation islinethat MUST be drawn with a dotted single line (see Figure 8.9).

€ Theuseof text, color, size, and lines for an Association MUST follow the rules defined in “Use of Text, Color, Size,
and Linesin a Diagram” on page 39.

Figure 8.9 — An Association

] BaseElement
(From Foundation)
g id : String
+ sourceRef 1 + targetRef
+ outgoing * + incoming | =
=] Association «enumeration»
(From Artif acts) =] ASSOC|at|an|rectlon
[Eg associationDirection : AssociationDirection (from Artifacts)
-) ') = Nore
= Cne
=1 Both

] Artifact
(From Artifacts)

Figure 8.10 — The Association Class Diagram

If there is a reason to put directionality on the Association then:
€ Alinearrowhead MAY be added to the Association line (see Figure 8.11).
€ Thedirectionality of the Association can bein one (1) direction or in both directions.

© ISO/IEC 2013 - All rights reserved 65

ISO/IEC 19510:2013(E)

.............................. >

Figure 8.11 — A Directional Association

Note that directional Associations were used in BPMN 1.2 to show how Data Objects were inputs or outputs to
Activities. InBPMN 2.0.1, aData Association connector is used to show inputs and outputs (see page 220). A Data
Association uses the same notation as a directed Association (asin Figure 8.11, above).

An Association is used to connect user-defined text (an Annotation) with a Flow Object (see Figure 8.12).

Announce

Issues for
Discussion

Allow 1 week for the

| discussion of the
Issues — through e-

mail or calls

Figure 8.12 — An Association of Text Annotation

The Association element inherits the attributes and model associations of BaseElement (See Table 8.5). Table 8.20
presents the additional attributes and model associations for an Association.

Table 8.20 — Association attributes and model associations

Attributes Description

associationDirection: associationDirection iS an attribute that defines whether or not the
AssociationDirection = None {None | | Association shows any directionality with an arrowhead. The default is
One | Both} None (no arrowhead). A value of One means that the arrowhead SHALL

be at the Target Object. A value of Both means that there SHALL be an
arrowhead at both ends of the Association line.

sourceRef: BaseElement The BaseElement that the Association is connecting from.
targetRef: BaseElement The BaseElement that the Association is connecting to.
Group

The Group object isan Artifact that provides a visual mechanism to group elements of a diagram informally. The
grouping is tied to the CategoryVvalue supporting element. That is, a Group is avisua depiction of asingle
CategoryValue. The graphical elements within the Group will be assigned the CategoryVvalue of the Group.
(NOTE - categoryValues can be highlighted through other mechanisms, such as color, as defined by a modeler or a
modeling tool).

€ A Group isarounded corner rectangle that MUST be drawn with a solid dashed line (as seen in Figure 8.13).

66 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

€ Theuseof text, color, size, and lines for aGroup MUST follow the rules defined in “Use of Text, Color, Size,

and Linesin a Diagram” on page 39.

I
|
I
|
|
|

- EEE S e

.] . o — et

Figure 8.13 — A Group Artifact

Asan Artifact, aGroup isnot an Activity or any Flow Object, and, therefore, cannot connect to Sequence
Flows or Message Flows. In addition, Groups are not constrained by restrictions of Pools and Lanes. This means
that a Group can stretch across the boundaries of a Pool to surround Diagram elements (see Figure 8.14), often to

identify Activities that exist within a distributed business-to-business transaction.

= [[
.E Send Doctor Receive Mgc?ircl:?ne Receive
I Request Appt. Medicine
o | liness g PP Request
Occurs T PaY
| want to 1ee doctor Go seeIdoctor I I need mylmedicine Here is yo.lr medicine |
l l
. v It ' v)\ |
2 . N7 . N7
c Ehecewe (] I E]Recelve (] .
o Send
= Doctor Send Appt. Doctor S
=% Medicine
) Request I Request
o .
o)
o —_— s — s — s — s — s —

Figure 8.14 — A Group around Activities in different Pools

Groups are often used to highlight certain sub clauses of a Diagram without adding additional constraints for
performance, as a Sub-Process would. The highlighted (grouped) sub clause of the Diagram can be separated for
reporting and analysis purposes. Groups do not affect the flow of the Process.

Figure 8.15 shows the Group class diagram.

© ISO/IEC 2013 - All rights reserved

67

ISO/IEC 19510:2013(E)

= Artifact
(From Artifacts)
= Group = RootElement
(From ArtiFacts) (From Foundation)
0.1

+ categoryValueRef
| BaseElement

(From Foundation) Q CategoryValue * 1 Q Category
id @ Strin (From Artifacts) (From Artifacts)
=id : St . .
- : Egvalue : Sting + categoryValue (g name : String

* + categoryValueRef

* | + [categorizedFlowElements

=] FlowElement
(from Commaon)
[Eg name : 5tring

Figure 8.15 — The Group class diagram

The Group element inherits the attributes and model associations of BaseElement (see Table 8.5), through its
relationship to Artifact. Table 8.21 presents the additional model associations for a Group.

Table 8.21 — Group model associations

Attributes Description

categoryValueRef: CategoryValue [0..1] | The categoryValueRef attribute specifies the Categoryvalue
that the Group represents. (Further details about the definition of a
Category and CategoryValue can be found on page 70.) The
name of the Category and the value of the Categoryvalue
separated by delineator "." provides the label for the Group. The
graphical elements within the boundaries of the Group will be

assigned the CategoryValue.

Category

Categories, which have user-defined semantics, can be used for documentation or analysis purposes. For example,
FlowElements can be categorized as being customer oriented vs. support oriented. Furthermore, the cost and time of
Activities per Category can be calculated.

Groups are one way in which Categories of objects can be visually displayed on the diagram. That is, aGroup isa
visual depiction of a single CategoryValue. The graphical elements within the Group will be assigned the
CategoryValue of the Group. The value of the CategoryValue, optionally prepended by the Category name
and delineator ":", appears on the diagram as the Group label. (NOTE - Categories can be highlighted through other
mechanisms, such as color, as defined by a modeler or a modeling tool). A single Category can be used for multiple
Groups in adiagram.

68 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

The category element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 8.22 displays the additional model associations of the Category element.

Table 8.22 — Category model associations

Attributes Description
name: string The descriptive name of the element.
categoryValue: CategoryValue [0..*] The categoryVvalue attribute specifies one or more values of the

Category. For example, the Category is “Region” then this
Category could specify values like “North,” “South,” “West,” and
“East.”

The categoryValue element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.23 displays the attributes and model associations of the CategoryVvalue element.

Table 8.23 — CategoryValue attributes and model associations

Attributes Description
value: string This attribute provides the value of the CategoryVvalue element.
category: Category [0..1] The category attribute specifies the Category representing the

Category as such and contains the Categoryvalue (Further details
about the definition of a Category can be found on page 70).

categorizedFlowElements: The FlowElements attribute identifies all of the elements (e.g., Events,
FlowElement [0..%] Activities, Gateways, and Artifacts) that are within the
boundaries of the Group.

Text Annotation
Text Annotations are a mechanism for a modeler to provide additional information for the reader of a BPMN Diagram.

€ A Text Annotation isan open rectangle that MUST be drawn with a solid single line (as seen in Figure 8.16).

€ Theuse of text, color, size, and linesfor a Text Annotation MUST follow the rules defined in “Use of Text,
Color, Size, and Linesin a Diagram” on page 39.

The Text Annotation object can be connected to a specific object on the Diagram with an Association, but does not
affect the flow of the Process. Text associated with the Annotation can be placed within the bounds of the open
rectangle.

Text Annotation allows
a modeler to provide
additional information

Figure 8.16 — A Text Annotation

© ISO/IEC 2013 - All rights reserved 69

ISO/IEC 19510:2013(E)

The Text Annotation element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.24 presents the additional attributes for a Text Annotation.

Table 8.24 —Text Annotation attributes

Attributes Description

text: string Text is an attribute that is text that the modeler wishes to communicate
to the reader of the Diagram.

textFormat: string This attribute identifies the format of the text. It MUST follow the mime-
type format. The default is "text/plain.”

XML Schema for Artifacts

Table 8.25 — Artifact XML schema

<xsd:element name="artifact" type="tArtifact"/>
<xsd:complexType name="tArtifact" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType>

Table 8.26 — Association XML schema

<xsd:element name="association" type="tAssociation" substitutionGroup="artifact"/>
<xsd:complexType name="tAssociation">
<xsd:complexContent>
<xsd:extension base="tArtifact">
<xsd:attribute name="sourceRef" type="xsd:QName" use="required"/>
<xsd:attribute name="targetRef" type="xsd:QName" use="required"/>
<xsd:attribute name="associationDirection" type="tAssociationDirection" default="None"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tAssociationDirection">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="None"/>
<xsd:enumeration value="One"/>
<xsd:enumeration value="Both"/>
</xsd:restriction>
</xsd:simpleType>

Table 8.27 — Category XML schema

<xsd:element name="category" type="tCategory" substitutionGroup="rootElement"/>

70 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

<xsd:complexType name="tCategory">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element ref="categoryValue" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>\
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.28 — CategoryValue XML schema

<xsd:element name="categoryValue" type="tCategoryValue"/>
<xsd:complexType name="tCategoryValue">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="value" type="xsd:string" use="optional"/>\
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.29 — Group XML schema

<xsd:element name="group" type="tGroup" substitutionGroup="artifact"/>
<xsd:complexType name="tGroup">
<xsd:complexContent>
<xsd:extension base="tArtifact">
<xsd:attribute name="categoryValueRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.30— Text Annotation XML schema

<xsd:element name="textAnnotation" type="tTextAnnotation" substitutionGroup="artifact"/>
<xsd:complexType name="tTextAnnotation">
<xsd:complexContent>
<xsd:extension base="tArtifact">
<xsd:sequence>
<xsd:element ref="text" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="textFormat" type="xsd:string" default="textplain"/>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

© ISO/IEC 2013 - All rights reserved 71

ISO/IEC 19510:2013(E)

<xsd:element name="text" type="tText"/>
<xsd:complexType name="tText" mixed="true">
<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

8.4.2 Correlation

Business Processes typicaly can run for days or even months, requiring asynchronous communication via
Message. Also, many instances of a particular Process will typically run in paralel, e.g., many instances of an order
process, each representing a particular order. Correlation is used to associate a particular Message to an ongoing
Conversation between two particular Process instances. BPMN allows using existing Message data for correlation
purposes, e.g., for the order process, a particular instance can be identified by means of its orderID and/or
customerID, rather than requiring the introduction of technical correlation data.

The concept of Correlation facilitates the association of a Message to a Send Task or Receive Task?! often in the
context of a Conversation, which is also known as instance routing. It is a particular useful concept where there is no
infrastructure support for instance routing. Note that this association can be viewed at multiple levels, namely the
Collaboration (Conversation), Choreography, and Process level. However, the actual correlation happens during
runtime (e.g., at the Process level). Correlations describe a set of predicates on a Message (generaly on the
application payload) that need to be satisfied in order for that Message to be associated to a distinct Send Task or
Receive Task. By the same token, each Send Task and each Receive Task participates in one or many
Conversations. Furthermore, it identifies the Message it sends or receives and thereby establishes the relationship to
one (or many) CorrelationKeys.

There are two, non-exclusive correlation mechanisms in place:

1. Inplain, key-based correlation, Messages that are exchanged within aConversation arelogically correlated by
means of one or more common CorrelationKeys. That is, any Message that is sent or received within this
Conversation needsto carry the value of at least one of these CorrelationKey instances within its payload. A
CorrelationKey basically defines a (composite) key. Thefirst Message that isinitially sent or received
initializes one or more CorrelationKey instances associated with the Conversation, i.e., assigns valuesto its
CorrelationProperty instancesthat arethe fields (partial keys) of the CorrelationKey. A
CorrelationKey isonly considered valid for use, if the Message hasresulted in all
CorrelationProperty fieldswithin the key being populated with avalue. If afollow-up Message derivesa
CorrelationKey instance, wherethat CorrelationKey had previously beeninitialized within the
Conversation, thenthe CorrelationKey valuein the Message and Conversation MUST match. If the
follow-up Message derivesa CorrelationKey instance associated with the Conversation, that had not
previously been initialized, then the CorrelationKey value will become associated with the Conversation. As
aConversation can comprise different Messages that can be differently structured, each
CorrelationProperty comeswith asmany extraction rules
(CorrelationPropertyRetrievalExpression) for the respective partial key asthere are different
Messages.

1. All referencesto Send or Receive Tasks in this sub clause a so include message catch or throw Events; they
behave identically with respect to correlation.

72 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

2. Incontext-based correlation, the Process context (i.e., its Data Objects and Properties) can dynamically
influence the matching criterion. That is, aCorrelationKey can be complemented by a Process-specific
CorrelationSubscription. A CorrelationSubscription aggregatesas many
CorrelationPropertyBindings asthereare CorrelationPropertiesinthe CorrelationKey. A
CorrelationPropertyBinding relatesto aspecific CorrelationProperty and asolinksto a
FormalExpression that denotes adynamic extraction rule atop the Process context. At runtime, the
CorrelationKey instancefor aparticular Conversation is populated (and dynamically updated) from the
Process context using these FormalExpressions. Inthat sense, changesinthe Process context can alter the
correlation condition.

Correlation can be applied to Message Flows in Collaboration and Choreography, as described in Clause 9,
"Collaboration’ and 11, * Choreography’. The keys applying to a Message Flow are the keys of containers or groupings
of the Message Flow, such as Collaborations, Choreographies, and Conversation Nodes, and Choreography
Activities. This might result in multiple CorrelationKeys applying to the same Message Flow, perhaps due to
multiple layers of containment. In particular, calls of Collaborations and Choreographies are special kinds of
Conversation Nodes and Choreography Activities, respectively, and are considered a kind of containment for the
purposes of correlation. The CorrelationKeys specified in the caller apply to Message Flow in acalled
Collaboration or Choreography.

© ISO/IEC 2013 - All rights reserved 73

ISO/IEC 19510:2013(E)

=] choreography =] GlobalChoreographyTask
(From Choreography) (From Choreography)

+ choreographyRef * *

+ collaboration| *

= collaboration] GlobalConversation
(From Collaboration) (From Conversations)
[Eg name : String
g isClosed : Boolean

+ collaboration + conversations | conversationNode
1 . (From Conversations)
1 [Eg name : String

+ collaboration
0.1+ collaboration

®

+ correlationkeys " 0.1
| CorrelationKey "
* (From Common) 4+ rorrelationkeys
[Eg name : Stiing + conversationNode *
1 | + correlationkeyRef + messageFlowRefs
+ messageFlows] MessageFlow
5 from Collaborati
= CorrelationSubscription I . * (from Cola m? ion)
g + correlationSubscriptions [5g name : 5tring
(From Common) +
* 1 + messageRef | 0..1
| Process |Message
(from Process) (From Common)
0.1 [Eg processType : ProcessType [Eg name ; 5tring
g isClosed ; Boolean + messageRef/ |\ 1
[Eg isExecutable ; Boolean
* + correlationPropertyRef -
1.* Q CorrelationPropertyRetrievalExpression
Q CorrelationProperty 1 (From Common)
(from Common) + correlationproperty . . : :
[5g name : 5tring + correlationPropertyRetrievalExpression + correlationset (0.1

+ coﬁ‘elatian&'opuaft;orreIationPropertngf_F correlationPropertyBinding

] correlationPropertyBinding + messagePath 1 -
(From Common) 0.1 + dataPath Q FormalExpression
(From Common)

[Eg language : String
= ttemDefinition 1 g body : Element
(From Common)
[Eg itemkind ; Itemkind
[structureRef : Element
[isCollection : Boolean

o1t type

Figure 8.17 — The Correlation Class Diagram

CorrelationKey

A CorrelationKey represents a composite key out of one or many CorrelationProperties that essentially
specify extraction Expressions atop Messages. As aresult, each CorrelationProperty acts as a partial key
for the correlation. For each Message that is exchanged as part of a particular Conversation, the
CorrelationProperties need to provide a CorrelationPropertyRetrievalExpression which
references a FormalExpression to the Message payload. That is, for each Message (that is used in a
Conversation) there is an Expression, which extracts portions of the respective Message’s payload.

The CorrelationKey element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
8.31 displays the additional model associations of the CorrelationKey element.

74 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 8.31 — CorrelationKey model associations

Attribute Name Description/Usage

name: string [0..1] Specifies the name of the CorrelationKey.

correlationPropertyRef: The CorrelationProperties, representing the partial keys of this
CorrelationProperty [0..*] CorrelationKey.

Key-based Correlation

Key-based correlation is a simple and efficient form of correlation, where one or more keys are used to identify a
Conversation. Any incoming Message can be matched against the CorrelationKey by extracting the
CorrelationProperties from the Message according to the corresponding
CorrelationPropertyRetrievalExpression and comparing the resulting composite key with the
CorrelationKey instance for this Conversation. Theideaisto use ajoint Conversation “token” which is used
(passed to and received from) and outgoing and incoming Message. Messages are associated to a particular
Conversation if the composite key extracted from their payload matches the CorrelationKey initialized for this
Conversation.

At runtime the first Send Task or Receive Task in aConversation MUST populate at |least one of the
CorrelationKey instances by extracting the values of the CorrelationProperties according to the
CorrelationPropertyRetrievalExpression from theinitialy sent or received Message. Later in the
Conversation, the populated CorrelationKey instances are used for the described matching procedure where from
incoming Messages a composite key is extracted and used to identify the associated Conversation. Where these non-
initiating Messages derive values for CorrelationKeys, associated with the Conversation but not yet populated,
then the derived value will be associated with the Conversation instance.

The CorrelationProperty element inherits the attributes and model associations of BaseElement (see Table 8.5)
through its relationship to RootElement. Table 8.32 displays the additional model associations of the
CorrelationProperty element.

Table 8.32 — CorrelationProperty model associations

Attribute Name Description/Usage

name: string [0..1] Specifies the name of the CorrelationProperty.

type: string [0..1] Specifies the type of the CorrelationProperty.

correlationPropertyRetrieval- The CorrelationPropertyRetrievalExpressions for

EXDFES§IOHZ . . this CorrelationProperty, representing the associations of

CorrelationPropertyRetrievalExpression [1..1] FormalExpressions (extraction paths) to specific Messages
occurring in this Conversation.

The CorrelationPropertyRetrievalExpression element inherits the attributes and model associations of
BaseElement (see Table 8.5). Table 8.33 displays the additional model associations of the
CorrelationPropertyRetrievalExpression element.

© ISO/IEC 2013 - All rights reserved 75

ISO/IEC 19510:2013(E)

Table 8.33 — CorrelationPropertyRetrievalExpression model associations

Attribute Name Description/Usage

messagePath: FormalExpression The FormalExpression that defines how to extract a
CorrelationProperty from the Message payload.

messageRef: Message The specific Message the FormalExpression extracts the
CorrelationProperty from.

Context-based Correlation

Context-based correlation is a more expressive form of correlation on top of key-based correlation. In addition to
implicitly populating the CorrelationKey instance from the first sent or received Message, another mechanism
relates the CorrelationKey to the Process context. That is, a Process MAY provide a
CorrelationSubscription that acts asthe Process-specific counterpart to a specific CorrelationKey. In this
way, a Conversation MAY additionally refer to explicitly updateable Process context data to determine whether or
not a Message needs to be received. At runtime, the CorrelationKey instance holds a composite key that is
dynamically calculated from the Process context and automatically updated whenever the underlying Data Objects or
Properties change.

CorrelationPropertyBindings represent the partial keys of a CorrelationSubscription where each
relates to a specific CorrelationProperty inthe associated CorrelationKey. A FormalExpression defines
how that CorrelationProperty instanceis populated and updated at runtime from the Process context (i.e., its
Data Objects and Properties).

The CorrelationSubscription element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 8.34 displays the additional model associations of the CorrelationSubscription element.

Table 8.34 — CorrelationSubscription model associations

Attribute Name Description/Usage

correlationKeyRef: CorrelationKey The CorrelationKey this CorrelationSubscription refers
to.

correlationPropertyBinding: The bindings to specific CorrelationProperties and

CorrelationPropertyBinding [0..*] FormalExpressions (extraction rules atop the Process context).

The CorrelationPropertyBinding element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 8.35 displays the additional model associations of the CorrelationPropertyBinding element.

76 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 8.35 — CorrelationPropertyBinding model associations

Attribute Name Description/Usage

dataPath: FormalExpression The FormalExpression that defines the extraction rule atop the Process
context.

correlationPropertyRef: The specific CorrelationProperty, this

CorrelationProperty CorrelationPropertyBinding refers to.

At runtime, the correlation mechanism works as follows: When a Process instance is created the CorrelationKey
instances of all Conversations areinitialized with some initial values that specify to correlate any incoming Message
for these Conversations. A SubscriptionProperty is updated whenever any of the Data Objects or
Properties changesthat are referenced from the respective FormalExpression. Asaresult, incoming Messages
are matched against the now populated CorrelationKey instance. Later in the Process run, the
SubscriptionProperties can again change and implicitly change the correlation criterion. Alternatively, the
established mechanism of having the first Send Task or Receive Task populate the CorrelationKey instance

applies.

XML Schemafor Correlation

Table 8.36 — Correlation Key XML schema

<xsd:element name="correlationKey" type="tCorrelationKey"/>
<xsd:complexType name="tCorrelationKey">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="correlationPropertyRef" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:String" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.37 — Correlation Property XML schema

<xsd:element name="correlationProperty" type="tCorrelationProperty" substitutionGroup="rootElement"/>
<xsd:complexType name="tCorrelationProperty">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element ref="correlationPropertyRetrievalExpression" minOccurs="1" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:String" use="optional"/>
<xsd:attribute name="type" type="xsd:QName"/>
</xsd:extension>

© ISO/IEC 2013 - All rights reserved 77

ISO/IEC 19510:2013(E)

</xsd:complexContent>
</xsd:complexType>

Table 8.38 — Correlation Property Binding XML schema

<xsd:element name="correlationPropertyBinding" type="tCorrelationPropertyBinding"/>
<xsd:complexType name="tCorrelationPropertyBinding">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="dataPath" type="tFormalExpression" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="correlationPropertyRef" type="xsd:QName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.39 — Correlation Property Retrieval Expression XML schema

<xsd:element name="correlationPropertyRetrievalExpression" type="tCorrelationPropertyRetrievalExpression"/>
<xsd:complexType name="tCorrelationPropertyRetrievalExpression">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="messagePath" type="tFormalExpression" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="messageRef" type="xsd:QName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.40 — Correlation Subscription XML schema

<xsd:element name="correlationSubscription" type="tCorrelationSubscription"/>
<xsd:complexType name="tCorrelationSubscription ">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="process" type="xsd:QName" use="required"/>
<xsd:element ref="correlationKeyRef" minOccurs="1" maxOccurs="1"/>
<xsd:element name="correlationPropertyBinding" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

78 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

8.4.3 Error

An Error represents the content of an Error Event or the Fault of afailled Operation. An ItemDefinition is
used to specify the structure of the Exrror. An Error is generated when there is a critical problem in the processing of
an Activity or when the execution of an Operation failed.

| RootElement

(From Foundation)

= Error
(from Common)
[Eg name : 5tring

0..1.+ structureRef

] temDefinition
(From Common)
[Eg itemkind ; Ttemkind
[Eg structureRef : Elernent
[isCollection @ Boclean

Figure 8.18 — Error class diagram
The Error element inherits the attributes and model associations of BaseElement (see Table 8.5), through its

relationship to RootElement. Table 8.41 presents the additional attributes and model associations of the Error
element.

© ISO/IEC 2013 - All rights reserved 79

ISO/IEC 19510:2013(E)

Table 8.41 — Error attributes and model associations

Attribute Name Description/Usage

structureRef : ltemDefinition [0..1] An ItemDefinition is used to define the “payload” of the Exrror.
name : string The descriptive name of the Error.

errorCode: string For an End Event:

If the result is an Error, then the errorCode MUST be supplied
(if the processType attribute of the Process is set to execut -
able) This “throws” the Error.

For an Intermediate Event within normal flow:

If the trigger is an Error, then the errorCode MUST be entered
(if the processType attribute of the Process is set to execut -
able). This “throws” the Error.

For an Intermediate Event attached to the boundary of an Activity:
If the trigger is an Error, then the errorCode MAY be entered.
This Event “catches” the Error. If there is no errorCode, then
any error SHALL trigger the Event. If there is an errorCode, then
only an Error that matches the errorCode SHALL trigger the
Event.

8.4.4 Escalation

An Escalation identifies a business situation that a Process might need to react to. An ITtemDefinition isused
to specify the structure of the Escalation.

| EscalationEventDefinition
(from Events)

®

0.1, + escalationRef
= Escalation
(from Events)
[Eg name : 5tring
[Eg escalationCode : String
L

0.1+ structureRef
| itemDefinition
(From Common)
g itemkind : Ttemkind
g structureRef © Element
g isCollection : Boolean

Figure 8.19 — Escalation class diagram

80 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

The Escalation element inherits the attributes and model associations of BaseElement (see Table 8.5), through its
relationship to RootElement. Table 8.41 presents the additional model associations of the Error element.

Table 8.42 — Escalation attributes and model associations

Attribute Name

Description/Usage

structureRef : ItemDefinition [0..1]

An ItemDefinition is used to define the “payload” of the
Escalation.

name : string

The descriptive name of the Escalation.

escalationCode: string

For an End Event:
If the Result is an Escalation, then the escalationCode
MUST be supplied (if the processType attribute of the Process
is set to executable). This “throws” the Escalation.

For an Intermediate Event within normal flow:

If the trigger is an Escalation, then the escalationCode
MUST be entered (if the processType attribute of the Process is
set to executable). This “throws” the Escalation.

For an Intermediate Event attached to the boundary of an Activity:
If the trigger is an Escalation, then the escalationCode MAY
be entered. This Event “catches” the Escalation. If there is no
escalationCode, then any Escalation SHALL trigger the
Event. If there is an escalationCode, then only an Escala-
tion that matches the escalationCode SHALL trigger the
Event.

8.4.5 Events

An Event is something that happens during the course of a Process. These Events affect the flow of the Process and
usually have a cause or an impact. The term event is general enough to cover many thingsin aProcess. The start of an
Activity, the end of an Activity, the change of state of a document, a Message that arrives, etc., all could be considered
Events. However, BPMN has restricted the use of Events to include only those types of Events that will affect the
sequence or timing of Activities of a Process.

© ISO/IEC 2013 - All rights reserved

81

ISO/IEC 19510:2013(E)

— Rasetiement Donanentation
; (Frem Foumdation) + documantation ATvem Faundation)
LG 3Ung & luxt : Bring
1 ® .\r-,'.ulL'F\'.'lnul Ehirwg
Flowlement
{Fames Coemman)
& Name | SEing

| Howvode =, i
{Frem Cirrerenn) + propertes [Fraem Dk}

L N 1 Bhing

=evert 0.1

= Ewvenit
[heom Evenin]
DatlalmpustAssodation + Sialnoutisiociaton + CatalAlDUtSEecation || DataOutputAssodation
[Froaen Piska) e Duata)
. .
B:d vt
| ThrowEvent L . = b
(Trem Everts) + averiDafrtionfaty [From Events)
y i + et Defrinor®efs | * . o ek | Boclean
GEt & i = - - = = =
0.1 | = reuteEt | Inputhet 2.2 Y B e liatian 0.1 :mm DutcutGat 0.1
* 4+ datainguits [from Eventa] + datalutpus |
: b + et Darfrataons # i o
= Dl algmat = Datalulput
o Dala) tivem Data)
& name : Shirg B Narmee ¢ S
o5 B ckartion : Boclean & isColertion © Bonlaan
< Implicit ThrowDvent IntermediateThrowDvent — EnclEvent | SharlCvent = IntermediateCalchfvent = BourxharyCvent
{fvom Everida) (lram Ewenla) {Feam Ewerda) [Fiem Everda) (leam Ewena) {Troe Everda)
& ainterupting : Boclean & carcelic ity - Bockean

+ bowrdarybventials *
+ atchedToRel
= Activily
[rem Balivitien]
& nForCompesation | Bockean

& YA tCuantity @ Inbape
& compietonCuantty | Inteper

Figure 8.20 — Event class diagram

The Event element inherits the attributes and model associations of FlowElement (See Table 8.44), but adds no
additional attributes or model associations.

The details for the types of Events (Start, Intermediate, and End) are defined in “Event Definitions” on page 258.

8.4.6 Expressions

The Expression classis used to specify an Expression using natural-language text. These Expressions are not
executable. The natural language text is captured using the documentation attribute, inherited from BaseElement.

Expression inherits the attributes and model associations of BaseElement (See Table 8.5), but adds no additional
attributes or model associations.

82 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Expressions are used in many places within BPMN to extract information from the different elements, normally data
elements. The most common usage is when modeling decisions, where conditional Expressions are used to direct the
flow along specific paths based on some criteria.

BPMN supports underspecified Expressions, where the logic is captured as natural-language descriptive text. It also
supports formal Expressions, where the logic is captured in an executable form using a specified Expression
language.

| BaseElement =] Documentation
{from Foundation) . (from Foundation)
- - + documentation -
|_q-')ld 1 String [text © String
1 * | g textFormat @ String

] Expression
(from Common)

| FormalExpression £ 1temDefinition

(From Common) + evaluatesToTypeRef (from Commen)
g language : String [Eg itemkind © Ttemkind
it * 1 | EgstructureRef ; Element

[Eg body : Element
Doy [Eg isCollection : Boolean

Figure 8.21 — Expression class diagram

Expression

The Expression classis used to specify an Expression using natural-language text. These Expressions are not
executable and are considered underspecified.

The definition of an Expression can be donein two ways: it can be contained where it is used, or it can be defined at
the Process level and then referenced where it is used.

The Expression eement inherits the attributes and model associations of BaseElement (See Table 8.5), but does not
have any additional attributes or model associations.

Formal Expression

The FormalExpression classis used to specify an executable Expression using a specified Expression
language. A natural-language description of the Expression can also be specified, in addition to the formal
specification.

The default Expression language for all Expressions is specified in the Definitions element, using the
expressionLanguage attribute. It can also be overridden on each individual FormalExpression using the same
attribute.

The FormalExpression element inherits the attributes and model associations of BaseElement (see Table 8.5),
through the Expression element. Table 8.43 presents the additional attributes and model associations of the
FormalExpression.

© ISO/IEC 2013 - All rights reserved 83

ISO/IEC 19510:2013(E)

Table 8.43 — FormalExpression attributes and model associations

Attribute Name Description/Usage

language: string [0..1] Overridesthe Expression language specified inthe Def initions. The language
MUST be specified in a URI format.

body: Element The body of the Expression.

Note that this attribute is not relevant when the XML Schema is used for

interchange. Instead, the FormalExpression complex type supports mixed

content. The body of the Expression would be specified as element content.

For example:

<formalExpression id="ID_2">
count(../dataObject[id="CustomerRecord_1"]/emailAddress) > 0
<evaluatesToType id="ID_3" typeRef="xsd:boolean"/>

</formalExpression>

evaluatesToTypeRef: The type of object that this Expression returns when evaluated. For example,
ItemDefinition conditional Expressions evaluate to a boolean.

8.4.7 Flow Element

FlowElement is the abstract super class for all elements that can appear in a Process flow, which are FlowNodes
(see page 99, which consist of Activities (see page 149), Choreography Activities (see page 319) Gateways (see
page 285), and Events (see page 231), Data Objects (see page 204), Data Associations (see page 220), and
Sequence Flows (see page 97).

84 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

| Docummentation - Dasellenent
v o Fonursdabicn) {lvem Foundation)
£ tout | Stng of

1 | Egpd:sTng
i tewtFormat : Sting <

(= FlowtlementsContainer | Aupcitineg | Manitaring || CategoryValue
(froem Camman) [From Process] [Frem Prodess) {From et scte)
- g value 1 STINg
- - v audting 1 4 maonitering
+ O Lo

+ -:il:.awrwmf
- + flowEements

+ [eategmiredowllemenls
0.1 0.1 -
{Fram Commen)
g name : String
1 . .
|| Datalbject || Fow~ode pr— | Sequenceflow | DataStoreReference
(Froe Datka) {Fram Comman) + NComing {Frem Comman) [Frem Diaka)
% B oleg ory ; Bookean S Elmwrmechate ;| Bookean
1 -
+ soacefel + ot
0..v
o1 * e itionE oo ey
| Activity | Evenit | Gateway | Faparesaion
(From Activits) ([From Evants) [r:rnlnlal.emm"
g BFoTCompengation @ Booean

g StartCuaantity | Integer

L gatewanDyacton | babewayDyection
-4 complebionDuantily @ babege

| Clumreograpdapac vty
[Frem Chrogr apby Actiitees)
eg lopType | ChoreoaphyLoop Tvps

Figure 8.22 — FlowElement class diagram

The FlowElement element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 8.44
presents the additional attributes and model associations of the FlowElement element.

© ISO/IEC 2013 - All rights reserved 85

ISO/IEC 19510:2013(E)

Table 8.44 — FlowElement attributes and model associations

Attribute Name Description/Usage

name: string [0..1] The descriptive name of the element.

categoryValueRef: CategoryValue | A reference to the Category Values that are associated with this Flow
[0..%] Element.

auditing: Auditing [0..1] A hook for specifying audit related properties. Auditing can only be
defined for a Process.

monitoring: Monitoring [0..1] A hook for specifying monitoring related properties. Monitoring can only
be defined for a Process.

8.4.8 Flow Elements Container

FlowElementsContainer isan abstract super class for BPMN diagrams (or views) and defines the superset of
elements that are contained in those diagrams. Basically, a FlowElementsContainer contains FlowElements,
which are Events (see page 231), Gateways (see page 285), Sequence Flows (see page 97), Activities (see page
149), and Choreography Activities (see page 319).

There are four (4) types of FlowElementsContainers (see Figure 8.23): Process, Sub-Process,
Choreography, and Sub-Choreography.

86 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

] Documentation
(from Foundation)
[Eg text : Stiing
[Eg textFormat @ String
w
+ documentatior)
1
| BaseElement
(from Foundation)
g id : String

| HowElement | FlowElementsContainer

(from Common) L2 + container (From Common) + laneSets Q LaneSet
Egname : String {From Process)
+ flowElements 1 0.1 * g name : String
| Process | choreography
(From Process) (From Choreography)

Eg processType : ProcessType
g isClosed : Boolean
g isExecutable : Boolean

] subProcess | subChoreography
(From Activities) (from ChoreographyActivities)
g triggeredByEvent ; Boolean

Figure 8.23 — FlowElementContainers class diagram

The FlowElementsContainer element inherits the attributes and model associations of BaseElement (see Table
8.5). Table 8.45 presents the additional model associations of the FlowElementsContainer element.

Table 8.45 — FlowElementsContainer model associations

Attribute Name Description/Usage

flowElements: Flow This association specifies the particular flow elements contained in a

Element [0..] FlowElementContainer. Flow elements are Events, Gateways, Sequence
Flows, Activities, Data Objects, Data Associations, and Choreography
Activities.
Note that:

e Choreography Activities MUST NOT be included as a f1owElement for a
Process.

« Activities, Data Associations, and Data Objects MUST NOT be included as
a flowElement for a Choreography.

laneSets: LaneSet [0..”] This attribute defines the list of LaneSets used in the FlowElementsContainer
LaneSets are not used for Choreographies or Sub-Choreographies.

© ISO/IEC 2013 - All rights reserved 87

ISO/IEC 19510:2013(E)

8.4.9 Gateways

Gateways are used to control how the Process flows (how Tokens flow) through Sequence Flows as they converge
and diverge within a Process. If the flow does not need to be controlled, then a Gateway is not needed. The term
“gateway” implies that there is a gating mechanism that either allows or disallows passage through the Gateway; that is,
as tokens arrive at a Gateway, they can be merged together on input and/or split apart on output as the Gateway
mechanisms are invoked.

Gateways, like Activities, are capable of consuming or generating additional control tokens, effectively controlling the
execution semantics of agiven Process. The main difference is that Gateways do not represent ‘work’ being done and
they are considered to have zero effect on the operational measures of the Process being executed (cost, time, etc.).

The Gateway controls the flow of both diverging and converging Sequence Flows. That is, a single Gateway could
have multiple input and multiple output flows. Modelers and modeling tools might want to enforce a best practice of a
Gateway only performing one of these functions. Thus, it would take two sequential Gateways to first converge and
then to diverge the Sequence Flows.

BaseElement i
%‘om Foiroa = Documentation R
idl : St + docurnentation| ("o Foundation) =] EventBasedGatewayType
Egd : sting " g text : String (From Gakeways)
1 [Eg textFormat : String = Parallel
= Exclusive
Q HowElement enumeration
(from Common) [GatewayDirection

| EventBasedGateway
(From Gateways)
[Cg instantiate : Boolean
[Eg eventGatewayType : EventBasedGatewayType

[Eg name : 5tring e
= Linspecified

= Converging

| FlowNode = Diverging

(From Common) =1 Mixed

| Gateway
(from Gateways)

[Eg gatewayDirection : GatewayDirection

| ExclusiveGateway = InclusiveGateway] parallelGateway | ComplexGateway
(From Gateways) (from Gakeways) (from Gateways) (From Gateways)
, T indusiveGateway + complexGateway| ™ 0.1

+ exclusiveGateway + complexGateway

0.1, 4 default 0.1/, 4+ default
| SequenceFlow 0.1
(From Common) + defadlt + activationCondition | 0..1
g isimmediate : Boolean -
Expression
+ conditionExpression (from Eommon)
0.1 0.1

Figure 8.24 — Gateway class diagram

The details for the types of Gateways (Exclusive, Inclusive, Parallel, Event-Based, and Complex) is defined on
page 285 for Processes and on page 342 for Choreographies.

88 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

The Gateway class is an abstract type. Its concrete subclasses define the specific semantics of individual Gateway
types, defining how the Gateway behaves in different situations.

The Gateway element inherits the attributes and model associations of FlowElement (see Table 8.44). Table 8.46
presents the additional attributes of the Gateway element.

Table 8.46 — Gateway attributes

Attribute Name Description/Usage
gL;Jatewa¥DiJection: GatewayDirection = An attribute that adds constraints on how the Gateway MAY be
nspecifie

{ Unspecified | Converging | Diverging | Mixed } used.

* Unspecified: There are no constraints. The Gateway MAY
have any number of incoming and outgoing Sequence
Flows.

» Converging: This Gateway MAY have multiple incoming
Sequence Flows but MUST have no more than one (1)
outgoing Sequence Flow.

» Diverging: This Gateway MAY have multiple outgoing
Sequence Flows but MUST have no more than one (1)
incoming Sequence Flow.

» Mixed: This Gateway contains multiple outgoing and
multiple incoming Sequence Flows.

8.4.10 Item Definition

BPMN elements, such as DataObjects and Messages, represent items that are manipulated, transferred,
transformed, or stored during Process flows. These items can be either physical items, such as the mechanical part of a
vehicle, or information items such the catalog of the mechanical parts of a vehicle.

An important characteristics of items in Process is their structure. BPMN does not require a particular format for this
data structure, but it does designate XML Schema as its default. The structure attribute references the actual data
structure.

The default format of the data structure for all elements can be specified in the Definitions element using the
typeLanguage attribute. For example, a typeLanguage value of http://www.w3.0rg/2001/XMLSchema”
indicates that the data structures using by elements within that Definitions are in the form of XML Schema types. If
unspecified, the default is XML schema. An Import is used to further identify the location of the data structure (if
applicable). For example, in the case of data structures contributed by an XML schema, an Import would be used to
specify the file location of that schema.

Structure definitions are always defined as separate entities, so they cannot be inlined in one of their usages. You will see
that in every mention of structure definition there is a “reference” to the element. This is why this class inherits from
RootElement.

An ItemDefinition element can specify an import reference where the proper definition of the structure is defined.

© ISO/IEC 2013 - All rights reserved 89

ISO/IEC 19510:2013(E)

In cases where the data structure represents a collection, the multiplicity can be projected into the attribute
isCollection. If this attributeis set to “true,” but the actual type is not a collection type, the model is considered as
invalid. BPMN compliant tools might support an automatic check for these inconsistencies and report this as an error.
The default value for this element is “false.”

The itemKind attribute specifies the nature of an item which can be a physical or an information item.

Figure 8.25 shows the ItemDefinition class diagram. When an ItemDefinition is defined it is contained in
Definitions.

| RootElement

(From Foundation)

B] import = ttemDefinition
0.1 " (From Common)
[Eg iterkind : Ttemkind
+ import g structureRef : Element
[Eg isCollection : Boolean

[importType : 5tring
[Eg location : String
[Eg namespace : String

«enumeration»
[=] ItemKind
(From Common)
=l Physical
=1 Information

Figure 8.25 — IltemDefinition class diagram
The ItemDefinition element inherits the attributes and model associations BaseElement (see Table 8.5) through

its relationship to RootElement. Table 8.47 presents the additional attributes and model associations for the
ItemDefinition element.

Table 8.47 — ItemDefinition attributes & model associations

Attribute Name Description/Usage

itemKind: ltemKind = Information This defines the nature of the Item. Possible values are physical or
{ Information | Physical } information. The default value is information.

structureRef: [Element [0..1] The concrete data structure to be used.

import: Import [0..1] Identifies the location of the data structure and its format. If the

importType attribute is left unspecified, the typeLanguage specified
in the Definitions that contains this ItemDefinition is assumed.

isCollection: boolean = False Setting this flag to true indicates that the actual data type is a
collection.

90 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

8.4.11 Message

A Message represents the content of a communication between two Participants. In BPMN 2.0.1, aMessage isa
graphical decorator (it was a supporting element in BPMN 1.2). An ItemDefinition is used to specify the
Message structure.

When displayed in a diagram:

€ InaMessage isarectanglewith converging diagonal linesin the upper half of the rectangle to give the appearance
of an envelope (see Figure 8.26). It MUST be drawn with asingle thin line.

¢ Theuseof text, color, size, and linesfor aMessage MUST follow the rules defined in “Use of Text, Color,
Size, and Linesin a Diagram” on page 39.

Figure 8.26 — A Message

In addition, when used in a Choreography Diagram more than one Message MAY be used for a single
Choreography Task. In this case, it is important to know the first (initiating) Message of the interaction. For return
(non-initiating) Messages the symbol of the Message is shaded with alight fill (see Figure 8.27).

Figure 8.27 — A non-initiating Message
€ Any Message sent by the non-initiating Participant or Sub-Choreography MUST be shaded with alight fill.

InaCollaboration, the communication itself is represented by a Message Flow (see “Message Flow” below for more
details). The Message can be optionally depicted as a graphical decorator on a Message Flow in a Collaboration
(see Figure 8.28 and Figure 8.29).

© ISO/IEC 2013 - All rights reserved 91

ISO/IEC 19510:2013(E)

Customer

T
|
|
Order EZI
|
|
|
|
|
|
AV

A
|
|
|
|
|
|
|

Izl Confirmation
|

N

Supplier

Figure 8.28 — Messages Association overlapping Message Flows

In a Choreography, the communication is represented by a Choreography Task (see page 321). The Message can
be depicted as a decorator with a Choreography Task in a Choreography (see Figure 8.29).

Order

M

Customer

Place
Order

Supplier

Confirmation

Figure 8.29 — Messages shown Associated with a Choreography Task

Figure 8.30 displays the class diagram showing the attributes and model associations for the Message element.

92 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

= MessageFlow =] RootElement £ TtemDefinition
(from Collaboration) * (From Foundation) (From Common)
[5g name : String [Eg itemkind : Ttemkind

g structureRef ; Element
g isCollection : Boolean

0.1 + itemRef

0..1 4 messageRef + message
] Message Ref
o ReceiveTask + messageRef {From Common) + messageRe
(From Activities) Egname : String 0.1
@implementation 1 String * 0.1

g instantiate : Boolean + messageRef ‘0.1 1 7'+ inMessageRef 0..1' '+ putMessageRef

-
Q MessageEventDefinition
(From Events)

= sendTask £ operation
(From Activities) (From Service) 0.1
[implementation : String * g name : String + operationRef

[Eg implementationRef : Element

0.1
+ operationfef
.

| serviceTask
(From Activities)
@implementation 1 String

Figure 8.30 — The Message class diagram

The Message element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 8.48 presents the additional attributes and model associations for the Message
element.

Table 8.48 — Message attributes and model associations

Attribute Name Description/Usage

name: string Name is a text description of the Message.

itemRef : ItemDefinition [0..1] An ItemDefinition is used to define the “payload” of the
Message.

8.4.12 Resources

The Resource classis used to specify resources that can be referenced by Activities. These Resources can be
Human Resources as well as any other resource assigned to Activities during Process execution time.

The definition of a Resource is “abstract,” because it only defines the Resource, without detailing how e.g., actual
user 1Ds are associated at runtime. Multiple Activities can utilize the same Resource.

© ISO/IEC 2013 - All rights reserved 93

ISO/IEC 19510:2013(E)

Every Resource can define a set of ResourceParameters. These parameters can be used at runtime to define
query e.g., into an Organizational Directory. Every Activity referencing a parameterized Resource can bind values
available in the scope of the Activity to these parameters.

= RootElement = BaseElement = Documentation
(From Foundation) (From Foundation) . (From Foundation)
: - + documentation -
== id : String [Eg text © String
1 * [Eg textFormat : String
| Resource R | & ResourceParameter

(From Common) + resourceParametery (from Common) oA = ItemDefinition

g name : 5tring Eg name : String N (From Comman)

1 * | EgisRequired ! Boolean [Eg itemkind ; Ttemkind
+ YPe g structureRef : Element
[Eg isCollection : Boolean

Figure 8.31 — Resource class diagram

The Resource element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to RootElement. Table 8.51 presents the additional model associations for the Resource element.

Table 8.49 — Resource attributes and model associations

Attribute Name Description/Usage

name: string This attribute specifies the name of the Resource.
resourceParameters: This model association specifies the definition of the parameters
ResourceParameter [0..*] needed at runtime to resolve the Resource.

As mentioned before, the Resource can define a set of parameters to define a query to resolve the actual resources
(e.g., user ids).

The ResourceParameter element inherits the attributes and model associations of BaseElement (see Table 8.5)
through its relationship to RootElement. Table 8.51 presents the additional model associations for the
ResourceParameter element.

94 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 8.50 — ResourceParameter attributes and model associations

Attribute Name Description/Usage

name: string Specifies the name of the query parameter.

type: ltemDefinition Specifies the type of the query parameter.
isRequired: boolean Specifies, if a parameter is optional or mandatory.

8.4.13 Sequence Flow

A Sequence Flow is used to show the order of Flow Elements in a Process or a Choreography. Each
Sequence Flow has only one source and only one target. The source and target MUST be from the set of the following
Flow Elements: Events (Start, Intermediate, and End), Activities (Task and Sub-Process; for Processes),
Choreography Activities (Choreography Task and Sub-Choreography; for Choreographies), and
Gateways.

€ A Sequence Flow islinewith asolid arrowhead that MUST be drawn with a solid single line (as seen in Figure
8.32).

€ Theuseof text, color, size, and lines for a Sequence Flow MUST follow the rules defined in “Use of Text,
Color, Size, and Linesin a Diagram” on page 39.

>

Figure 8.32 — A Sequence Flow

A Sequence Flow can optionally define a condition Expression, indicating that the token will be passed down the
Sequence Flow only if the Expression evaluates to true. This Expression is typically used when the source of
the Sequence Flow is a Gateway or an Activity.

€ A conditional outgoing Sequence Flow from an Activity MUST be drawn with a mini-diamond marker at the
beginning of the connector (as seen in Figure 8.33).

€ |If aconditional Sequence Flow isused from a source Activity, then there MUST be at |east one other
outgoing Sequence Flow from that Activity.

€ Conditional outgoing Sequence Flows from aGateway MUST NOT be drawn with a mini-diamond marker at
the beginning of the connector.

€ A source Gateway MUST NOT be of type Parallel or Event.

< -

Figure 8.33 — A Conditional Sequence Flow

© ISO/IEC 2013 - All rights reserved 95

ISO/IEC 19510:2013(E)

A Sequence Flow that has an Exclusive, Inclusive, or Complex Gateway or an Activity as its source can also be
defined with as default. Such a Sequence Flow will have a marker to show that it is a default flow. The default
Sequence Flow istaken (atoken is passed) only if al the other outgoing Sequence Flows from the Activity or
Gateway are not valid (i.e., their condition Expressions are false).

€ A default outgoing Sequence Flow MUST be drawn with a slash marker at the beginning of the connector (as
seen in Figure 8.34).

\\ »

Figure 8.34 — A Default Sequence Flow

| FlowElement
(from Commaon)
[Eg name : 5tring

] sequenceFlow
(from Commaon)

[Eg isimmediate : Boolean

* |+ outgoing * + incoming 0.1
+default | 0.1
L sourceRef 1 * targetRef + conditionExpression| 0.1
ow! Xpression
FlowNode E i
(From Common) (From Common)
+ activity 1
| Gateway | Event =] choreographyActivity] Activity
(from Gateways) (from Events) (From ChoreographyActivities) (from Activities)
g datewayDirection | GatewayDirection @IoupType 1 ChoreographyLoopType [isForCompensation Boolean

[startQuantity : Integer
g completionQuantity : Integer

Figure 8.35 — SequenceFlow class diagram

The Sequence Flow element inherits the attributes and model associations of FlowElement (see Table 8.44). Table
8.51 presents the additional attributes and model associations of the Sequence Flow element.

96 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 8.51 — SequenceFlow attributes and model associations

Attribute Name Description/Usage

sourceRef: FlowNode The FlowNode that the Sequence Flow is connecting from.

For a Process: Of the types of FlowNode, only Activities, Gateways, and Events
can be the source. However, Activities that are Event Sub-Processes are not
allowed to be a source.

For a Choreography: Of the types of FlowNode, only Choreography Activities,
Gateways, and Events can be the source.

targetRef: FlowNode The FlowNode that the Sequence Flow is connecting to.

For a Process: Of the types of FlowNode, only Activities, Gateways, and Events
can be the target. However, Activities that are Event Sub-Processes are not
allowed to be a target.

For a Choreography: Of the types of FlowNode, only Choreography Activities,
Gateways, and Events can be the target.

conditionExpression: An optional boolean Expression that acts as a gating condition. A token will only

Expression [0..1] be placed on this Sequence Flow if this conditionExpression evaluates to
true.

isimmediate: boolean An optional boolean value specifying whether Activities or Choreography

[0.1] Activities not in the model containing the Sequence Flow can occur between the

elements connected by the Sequence Flow. If the value is true, they MAY NOT
occur. If the value is false, they MAY occur. Also see the isClosed attribute on
Process, Choreography, and Collaboration. When the attribute has no value, the
default semantics depends on the kind of model containing Sequence Flows:

» For non-executable Processes (public Processes and non-executable private
Processes) and Choreographies no value has the same semantics as if the
value were false.

* For an executable Processes no value has the same semantics as if the value
were true.

» For executable Processes, the attribute MUST NOT be false.

Flow Node

The FlowNode element is used to provide a single element as the source and target Sequence Flow associations (see
Figure 8.35) instead of the individual associations of the elements that can connect to Sequence Flows (see above).
Only the Gateway, Activity, Choreography Activity, and Event elements can connect to Sequence Flows and
thus, these elements are the only ones that are sub-classes of FlowNode.

Since Gateway, Activity, Choreography Activity, and Event have their own attributes, model associations, and
inheritances; the F1owNode element does not inherit from any other BPMN element. Table 8.52 presents the additional
model associations of the F1owNode element.

© ISO/IEC 2013 - All rights reserved 97

ISO/IEC 19510:2013(E)

Table 8.52 — FlowNode model associations

Attribute Name Description/Usage

incoming: Sequence Flow [0..*] This attribute identifies the incoming Sequence Flow of the FlowNode.

outgoing: Sequence Flow [0..*] This attribute identifies the outgoing Sequence Flow of the FlowNode.
This is an ordered collection.

8.4.14 Common Package XML Schemas

Table 8.53 — Error XML schema

<xsd:element name="error" type="tError" substitutionGroup="rootElement"/>
<xsd:complexType name="tError">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="errorCode" type="xsd:string"/>
<xsd:attribute name="structureRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.54 — Escalation XML schema

<xsd:element name="escalation" type="tEscalation" substitutionGroup="rootElement"/>
<xsd:complexType name="tEscalation">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="escalationCode" type="xsd:string"/>
<xsd:attribute name="structureRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.55 — Expression XML schema

<xsd:element name="expression" type="tExpression"/>
<xsd:complexType name="tExpression">
<xsd:complexContent>
<xsd:extension base="tBaseElementWithMixedContent"/>
</xsd:complexContent>
</xsd:complexType>

98 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(

Table 8.56 — FlowElement XML schema

<xsd:element name="flowElement" type="tFlowElement"/>
<xsd:complexType name="tFlowElement" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element ref="auditing" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="monitoring" minOccurs="0" maxOccurs="1"/>
<xsd:element name="categoryValueRef" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.57 — FlowNode XML schema

<xsd:element name="flowNode" type="tFlowNode"/>
<xsd:complexType name="tFlowNode" abstract="true">
<xsd:complexContent>
<xsd:extension base="tFlowElement">
<xsd:sequence>
<xsd:element name="incoming" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="outgoing" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.58— FormalExpression XML schema

<xsd:element name="formalExpression" type="tFormalExpression" substitutionGroup="expression"/>
<xsd:complexType name="tFormalExpression">
<xsd:complexContent>
<xsd:extension base="tExpression">
<xsd:attribute name="language" type="xsd:anyURI" use="optional"/>
<xsd:attribute name="evaluatesToTypeRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.59 — InputOutputBinding XML schema

<xsd:element name="ioBinding" type="tinputOutputBinding"/>
<xsd:complexType name="tinputOutputBinding">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="inputDataRef" type="xsd:IDREF"/>

© ISO/IEC 2013 - All rights reserved

E)

99

ISO/IEC 19510:2013(E)

<xsd:attribute name="outputDataRef" type="xsd:IDREF"/>
<xsd:attribute name="operationRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.60 — ItemDefinition XML schema

<xsd:element name="itemDefinition" type="tltemDefinition" substitutionGroup="rootElement"/>
<xsd:complexType name="tltemDefinition">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="structureRef" type="xsd:QName"/>
<xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>
<xsd:attribute name="itemKind" type="tltemKind" default="Information"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tltemKind">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Information"/>
<xsd:enumeration value="Physical"/>
</xsd:restriction>
</xsd:simpleType>

Table 8.61 — Message XML schema

<xsd:element name="message" type="tMessage" substitutionGroup="rootElement"/>
<xsd:complexType name="tMessage">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="itemRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.62 — Resources XML schema

<xsd:element name="resource" type="tResource" substitutionGroup="rootElement"/>
<xsd:complexType name="tResource">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element ref="resourceParameter" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:extension>

100 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

</xsd:complexContent>
</xsd:complexType>

Table 8.63 — ResourceParameter XML schema

<xsd:element name="resourceParameter" type="tResourceParameter" />
<xsd:complexType name="tResourceParameter">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="type" type="xsd:QName"/>
<xsd:attribute name="isRequired" type="xsd:Boolean" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.64 — SequenceFlow XML schema

<xsd:element name="sequenceFlow" type="tSequenceFlow" substitutionGroup="flowElement"/>
<xsd:complexType name="tSequenceFlow">
<xsd:complexContent>
<xsd:extension base="tFlowElement">
<xsd:sequence>
<xsd:element name="conditionExpression" type="tExpression” minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="sourceRef" type="xsd:IDREF" use="required"/>
<xsd:attribute name="targetRef" type="xsd:IDREF" use="required"/>
<xsd:attribute name="isimmediate" type="xsd:boolean" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

8.5 Services

The Service package contains constructs necessary for modeling services, interfaces, and operations.

© ISO/IEC 2013 - All rights reserved 101

ISO/IEC 19510:2013(E)

= operation
(From Service)
[Eg name : String
g implementationRef : Element

+ operations | 1..*

| Message
+ inMessageRef (from Common)
" 1 [Eg name : String

+ outMessageRef

* 0.1
+ erroRefs
= Error
w - (From Common)
[Eg name : String
== errorCode : String
=] BaseElement

(from Foundation)

g id : String

1

* '+ documentation

=] Documentation

(From Foundation)

1 [Eg text © String
[Eg textFormat : String

| Interface
(From Service)

[Eg name : String

Eg implementationRef | Element

+ interfaceRefs

M

] participant
(From Collaboration)
[Eg name : String

| RootElement
(From Foundation)

+ supportedinterfaceRefs

+ calableElements | *

=] callableElement
(From Common)
[Eg name : String

+ endPaintRefs H EndPoint
(From Service)

- Ll

Figure 8.36 — The Service class diagram

8.5.1 Interface

An Interface defines a set of operations that are implemented by Services.

The Interface inherits the attributes and model associations of BaseElement (see Table 8.5) through its relationship
to RootElement. Table 8.65 presents the additional attributes and model associations of the Interface.

102

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 8.65 — Interface attributes and model associations

Attribute Name Description/Usage
name: string The descriptive name of the element.
operations: Operation [1..%] This attribute specifies operations that are defined as part of the

Interface. An Interface has at least one Operation.

callableElements: CallableElement [0..] The callableElements that use this Interface.

implementationRef: Element [0..1] This attribute allows to reference a concrete artifact in the underly-
ing implementation technology representing that interface, such
as a WSDL porttype.

8.5.2 EndPoint

The actual definition of the service address is out of scope of BPMN 2.0. The EndPoint element is an extension point
and extends from RootElement. The EndPoint element MAY be extended with endpoint reference definitions
introduced in other specifications (e.g., WS-Addressing).

EndPoints can be specified for Participants.
8.5.3 Operation

An Operation defines Messages that are consumed and, optionally, produced when the Operation iscalled. It can
also define zero or more errors that are returned when operation fails. The Operation inherits the attributes and model
associations of BaseElement (See Table 8.5). Table 8.66 below presents the additional attributes and model associations
of the Operation.

© ISO/IEC 2013 - All rights reserved 103

ISO/IEC 19510:2013(E)

Table 8.66 — Operation attributes and model associations

Attribute Name Description/Usage
name: string The descriptive name of the element.
inMessageRef: Message This attribute specifies the input Message of the Operation. An Operation

has exactly one input Message.

ooutll\/lessageRef: Message This attribute specifies the output Message of the Operation. An Operation
[0-11 has at most one input Message.

errorRef: Error [0..%] This attribute specifies errors that the Operation may return. An Operation
MAY refer to zero or more Error elements.

implementationRef: Element This attribute allows to reference a concrete artifact in the underlying implemen-
[0..1] tation technology representing that operation, such as a WSDL operation.

8.5.4 Service Package XML Schemas

Table 8.67 — Interface XML schema

<xsd:element name="interface" type="tinterface" substitutionGroup="rootElement"/>
<xsd:complexType name="tInterface">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element ref="operation" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="implementationRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 8.68 — Operation XML schema

<xsd:element name="operation" type="tOperation"/>
<xsd:complexType name="tOperation">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="inMessageRef" type="xsd:QName" minOccurs="1" maxOccurs="1"/>
<xsd:element name="outMessageRef" type="xsd:QName" minOccurs="0" maxOccurs="1"/>
<xsd:element name="errorRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="implementationRef" type="xsd:QName" use="optional"/>
</xsd:extension>

104 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

</xsd:complexContent>
</xsd:complexType>

Table 8.69 — EndPoint XML schema

<xsd:element name="endPoint" type="tEndPoint"/>
<xsd:complexType name="tEndPoint">
<xsd:complexContent>
<xsd:extension base="tRootElement"/>
</xsd:complexContent>
</xsd:complexType>

© ISO/IEC 2013 - All rights reserved 105

ISO/IEC 19510:2013(E)

106 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

9 Collaboration

9.1 General

NOTE: The contents of this clause are REQUIRED for BPMN Chor eography M odeling Confor mance, BPMN Process
M odeling Confor mance, or for BPMN Complete Confor mance. However, this clause is NOT REQUIRED for BPMN
Process Execution Conformance or BPMN BPEL Process Execution Conformance. For more information about BPMN
conformance types, see page 1.

The Ccollaboration package contains classes that are used for modeling Collaborations, which is a collection of
Participants shown as Pools, their interactions as shown by Message Flows, and MAY include Processes within the
Pools and/or Choreographies between the Pools (see Figure 9.1). A Choreography is an extended type of
Collaboration. When a Collaboration is defined it is contained in Definitions.

© ISO/IEC 2013 - All rights reserved 107

ISO/IEC 19510:2013(E)

= RootElement
{Frem Fourndation)
+ messagarkwAsscciatons 1 0.1 +part — || Participant Association
" m Collaher ation
_ r + colabaration || Collaboration . L j
= g i o Urom Colaboration] o collabioration o participrldsocialon ™ o pelcpanlAsociation. *

{From Collabor stion) Eg ranre : Shing

I lEChosed | Boolean

* s massagaFlowissocisbon * 4 mesageFlw Awocialion + InmerParticipantfief L + outerParticipantfef 1

|| Participant
(Froem Callaharation))
1.5 rruaﬂélaﬁsaum-bm-:ﬂl‘ 1+ outerMessageriowref g hame ; 5ting 2.t
Messagellow
{From Collsbor ation)
[Shing

- 1 + parlicipariRels
* s mesmageriow ¥+ messageflows 1
+ processief o1 + participantMuitipheity 0.1
0.1 massagaRef + colabaratian [Process [ParticipantMultiplicity
Message {Fram Pracess) {Frm Collahoratisn)
(Froem Crmsmen) L
‘alhln':s\“lllg 1t
1 + o sationLinks. »
| ConversationAssocation = ConversationLink

{hvem Cormrercalions)
I Name ! Sting
1 + COMYerstaonAEsociahons

* *
1 + frcomingConer salionlinks + foutgongComversationLinks
— Choreography 1+ targatref 1 + soarceraf
{From Choreography) [Traterare biewaterde
{From Collsbor ation)
+ cheraographyfef .
-
: + colabaration 0.1 + collaboration + Conversations | Conversationiode
| | BlobalChoreography Task - (Froem Comeersations)
h -
(From: Chorsngrapin) 0.1 g name ; 5ty
0.1
+ conridationkiys =+ Comelabonkeys
-
= GlobalConversation = Correlationkey
{hem Cormerealions) [lrem Commen) *
g name ! 5ting
subCormarsation .l
EAthm! - o.1 + caledColaboration®e! E&.ﬂl_‘.ﬂrnuulﬁm
[Frowm Aatfacts) a1 [From Conversations]
+ atifacts
-
= CallConversation = Conversation
[From Conversationns) {hvem Correer salions)

Figure 9.1 — Classes in the Collaboration package
The Collaboration element inherits the attributes and model associations of BaseElement (see Table 8.5) through its

relationship to RootElement. Table 9.1 presents the additional attributes and model associations for the Collaboration
element.

Table 9.1 — Collaboration Attributes and Model Associations

Attribute Name Description/Usage

name: string Name is a text description of the Collaboration.

108 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 9.1 — Collaboration Attributes and Model Associations

choreographyRef:
Choreography [0..*]

The choreographyRef model association defines the Choreographies that
can be shown between the Pools of the Collaboration. A Choreography
specifies a business contract (or the order in which messages will be
exchanged) between interacting Participants. See page 315 for more details
on Choreography.

The participantAssociations (see below) are used to map the
Participants of the Choreography to the Participants of the Collaboration.

The MessageFlowAssociations (See below) are used to map the
Message Flows of the Choreography to the Message Flows of the
Collaboration.

The conversationAssociations (see below) are used to map the
Conversations of the Choreography to the Conversations of the
Collaboration.

Note that this attribute is not applicable for Choreography or
GlobalConversation which are a subtypes of Collaboration. Thus, a
Choreography cannot reference another Choreography.

correlationKeys:
CorrelationKey [0..*]

This association specifies CorrelationKeys used to associate Messages
to a particular Collaboration.

conversationAssociations:
ConversationAssociation [0..*]

This attribute provides a list of mappings from the Conversations of a
referenced Collaboration to the Conversations of another Collaboration.
It is used when:

» When a Choreography is referenced by a Collaboration.

conversations:
ConversationNode [0..*]

The conversations model aggregation relationship allows a
Collaboration to contain Conversation elements, in order to group
Message Flows of the Collaboration and associate correlation information,
as is REQUIRED for the definitional Collaboration of a Process model. The
Conversation elements will be visualized if the Collaboration is a
Collaboration, but not for a Choreography.

conversationLinks:
ConversationLink [0..*]

This provides the Conversation Links that are used in the Collaboration.

artifacts: Artifact [0..*]

This attribute provides the list of Artifacts that are contained within the
Collaboration.

participants: Participant [0..*]

This provides the list of Participants that are used in the Collaboration.
Participants are visualized as Pools in a Collaboration and as Participant
Bands in Choreography Activities in a Choreography.

© ISO/IEC 2013 - All rights reserved

109

ISO/IEC 19510:2013(E)

Table 9.1 — Collaboration Attributes and Model Associations

participantAssociations: This attribute provides a list of mappings from the Participants of a
ParticipantAssociations [0..*]
referenced Collaboration to the Participants of another Collaboration. It is
used in the following situations
« When a Choreography is referenced by the Collaboration.
* When a definitional Collaboration for a Process is referenced through

a Call Activity (and mapped to definitional Collaboration of the
calling Process).

mefsageFlow: Message Flow This provides the list of Message Flows that are used in the Collaboration.
[0.] Message Flows are visualized in Collaboration (as dashed line) and
hidden in Choreography.

messageFlowAssociations: This attribute provides a list of mappings for the Message Flows of the
Message Flow Association [0.."] Collaboration to Message Flows of a referenced model. It is used in the
following situation:

« When a Choreography is referenced by a Collaboration. This allows

the "wiring up" of the Collaboration Message Flows to the
appropriate Choreography Activities.

IsClosed: boolean = false A boolean value specifying whether Message Flows not modeled in the
Collaboration can occur when the Collaboration is carried out.

« If the value is true, they MAY NOT occur.
« If the value is false, they MAY occur.

A set of Messages Flow of aparticular Collaboration MAY belong to a Conversation. A Conversation is a set of
Message Flows that share a particular purpose (i.e., they all relate to the handling of a single order - see page 123 for
more information about Conversations).

9.2 Basic Collaboration Concepts

A Collaboration usually contains two or more Pools, representing the Participants in the Collaboration. The
Message exchange between the Participants is shown by a Message Flow that connects two Pools (or the objects
within the Pools). The Messages associated with the Message Flows MAY also be shown. See 9.3, 9.4, and 9.5 for
examples of Collaborations.

A Pool MAY be empty, a “black box,” or MAY show a Process within. Choreographies MAY be shown “in
between” the Pools as they bisect the Message Flows between the Pools. All combinations of Pools, Processes,
and a Choreography are allowed in a Collaboration.

9.2.1 Use of BPMN Common Elements

Some BPMN elements are common to both Process and Choreography, as well as Collaboration; they are used in
these diagrams. The next few sub clauses will describe the use of Messages, Message Flows, Participants,
Sequence Flows, Artifacts, Correlations, Expressions, and Services in Choreography.

110 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

9.3 Pool and Participant

A Pool isthe graphical representation of a Participant in a Collaboration. A Participant (see page 113) can be a
specific PartnerEntity (e.g., acompany) or can be a more genera PartnerRole (e.g., a buyer, seller, or
manufacturer). A Pool MAY or MAY NOT reference a Process. A Pool is NOT REQUIRED to contain a Process,
i.e., it can be a “black box.”

€ A Pool isasguare-cornered rectangle that MUST be drawn with asolid single line (see Figure 9.2).

€ Thelabel for thePool MAY be placed in any location and direction within the Pool, but MUST be separated
from the contents of the Pool by asingle line.

€ If the Pool isahblack box (i.e., does not contain a Process), then the label for the Pool MAY be placed
anywhere within the Pool without a single line separator.

€ One and only one, Pool in adiagram MAY be presented without a boundary. If there is more than one Pool in
the diagram, then the remaining Pools MUST have a boundary.

The use of text, color, size, and lines for a Pool MUST follow the rules defined in “Use of Text, Color, Size, and Lines
in a Diagram” on page 39.

Name

Figure 9.2 — A Pool

To help with the clarity of the Diagram, a Pool extends the entire length of the Diagram, either horizontally or vertically.
However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and modeling tools can use
Pools in aflexible manner in the interest of conserving the “real estate” of a Diagram on a screen or a printed page.

A Pool acts as the container for the Sequence Flows between Activities (of a contained Process). The Sequence
Flows can cross the boundaries between Lanes of a Pool (see page 304 for more details on Lanes), but cannot cross
the boundaries of a Pool. That is, a Process is fully contained within the Pool. The interaction between Pools is
shown through Message Flows.

Another aspect of Pools is whether or not there is any Activity detailed within the Pool. Thus, a given Pool MAY be
shown as a “White Box,” with all details (e.g., a Process) exposed, or as a “Black Box,” with all details hidden. No
Sequence Flows are associated with a “Black Box” Pool, but Message Flows can attach to its boundaries (see
Figure 9.3).

© ISO/IEC 2013 - All rights reserved 111

ISO/IEC 19510:2013(E)

Financial
Institution

Credit Request Credit Response

¢

Manufacturer

Figure 9.3 — Message Flows connecting to the boundaries of two Pools

For a “White Box” Pool, the Activities within are organized by Sequence Flows. Message Flows can cross the

Pool boundary to attach to the appropriate Activity (see Figure 9.4).

8 5 Credit Card
% i Authori-
£ 3 zation
w c
AN
]
| l
: o
3 | |
s | Pack Goods Ship Goods
(2]
g |6 | |
2 I
= It
@ Authorize Process
< Payment Order
« [+]

Figure 9.4 — Message Flows connecting to Flow Objects within two Pools

A Collaboration can contain two (2) or more Pools (i.e., Participants). However, a Process that represents the work
performed from the point of view of the modeler or the modeler’s organization can be considered “internal” and is NOT
REQUIRED to be surrounded by the boundary of the Pool, while the other Pools in the Diagram MUST have their

boundary (see Figure 9.5).

112

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Financial Institution

uthorlze Process 2 = .
Payment Order Pack Goods Ship Goods

Figure 9.5 — Main (Internal) Pool without boundaries

BPMN specifies a marker for Pools: a multi-instance marker May be displayed for a Pool (see Figure 9.6). The marker
is used if the Participant defined for the Pool is a multi-instance Participant. See page 116 for more information on
Participant multiplicity.

€ Themarker for aPool that is amulti-instance MUST be a set of three vertical linesin parallel.

€ Themarker, if used, MUST be centered at the bottom of the shape.

Supplier Supplier

Figure 9.6 — Pools with a Multi-Instance Participant Markers
9.3.1 Participants

A Participant represents a specific PartnerEntity (e.g., a company) and/or a more general PartnerRole (0., a
buyer, seller, or manufacturer) that are Participants in a Collaboration. A Participant is often responsible for the
execution of the Process enclosed in a Pool; however, a Pool MAY be defined without a Process.

Figure 9.7 displays the class diagram of the Participant and its relationships to other BPMN elements. When Participants
are defined they are contained within a Collaboration, which includes the sub-types of Choreography,
GlobalConversation, or GlobalChoreographyTask.

© ISO/IEC 2013 - All rights reserved 113

ISO/IEC 19510:2013(E)

|= Baseflament = Documentation
oo Fineatican’ + doCUmantaton =y e i)
5 i 5ung 1 » | Eptent 3t
kg tewtFommat : Stiing
L EndPaint . i
(frcm Sarvice) L InteractionNode
+ endPontiefs (i Colladsasrakion]
-
= Participant
+ tlatingPartiopantfief {frem Colaber iion] - 1 o
| | mragraphyActivity | g name | T + particpants i| Colishoration
{From Chorsographyactites) * 115 bl Py + colabaration [From Colabor stion)
g loonType * Chiveo@aphiLo.. + particinantiaty 1 name ! Sting
ind] + InnerParticipantief i:m\,-;ﬂ + EAeknan
" 2. 1 + colaboationigd. .1 a2
T o colldewalion
T GlaksalChwor + outerPartizipantlar
skt “'“:;FT'* + nlatngParticpanial = ;:
- + 3 | P lickanl Associalbon
. [From Colabor stion) + e b gan L Ao L lore:
1 -
v pal oy
. .
+ parbopantief + parbicpantiaf + choreographyfief *
0.1+ partcpantMulbobcity « = jpartneriokaaf + & [partraEnbeyRef | Choreography
= = = Cha 1]
e tiplicity L Partnerfole = PartnerEntity Jirosicharigrapny)

{lacm Cullaba alice)
L MmN | Integss
L mmaiimum ! Integer

[From Eernmen)

[ef name ; Sting

(e Crammn]
L name | 5tmg
0.1 4 processdaf

= & interfacafafs ! Process
= Interlace {from Proceas)
T 1 = E e Type 1 ProcssType
{From Serace) = RootClement BT i
L& Name 1 Sng {From Feaaradation) g wlioged | Bockean

g ImplermentationRel © Buoment 5§ BErecutable © Doglean

Figure 9.7 — The Participant Class Diagram

The Participant element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 9.2
presents the additional attributes and model associations for the Participant element.

114 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 9.2 — Participant attributes and model associations

Attribute Name

Description/Usage

name: string [0..1]

Name is a text description of the Participant. The name of the
Participant can be displayed directly or it can be substituted by the
associated PartnerRole Or PartnerEntity. Potentially, both the
PartnerEntity name and PartnerRole name can be displayed for
the Participant.

processRef: Process [0..1]

The processRef attribute identifies the Process that the
Participant uses in the Collaboration. The Process will be
displayed within the Participant’s Pool.

partnerRoleRef: PartnerRole [0..*]

The partnerRoleRef attribute identifies a PartnerRole that the
Participant plays in the Collaboration. Both a PartnerRole and a
PartnerEntity MAY be defined for the Participant. This attribute is
derived from the participantRefs of PartnerRole.

partnerEntityRef: PartnerEntity [0..*]

The partnerEntityRef attribute identifies a PartnerEntity that

the Participant plays in the Collaboration. Both a PartnerRole and a
PartnerEntity MAY be defined for the Participant.This attribute is

derived from the participantRefs of PartnerEntity.

interfaceRef: Interface [0..*]

This association defines Interfaces that a Participant supports. The
definition of Interfaces is provided on page 102.

participantMultiplicity:
participantMultiplicity [0..1]

The participantMultiplicityRef model association is used to
define Participants that represent more than one (1) instance of the

Participant for a given interaction. See the next sub clause for more

details on ParticipantMultiplicity.

endPointRefs: EndPoint [0..*]

This attribute is used to specify the address (or endpoint reference) of
concrete services realizing the Participant.

PartnerEntity

A PartnerEntity isone of the possible types of Participant (see above).

The PartnerEntity element inherits the attributes and model associations of BaseElement (see Figure 8.5). Table
9.3 presents the additional attributes and model associations for the PartnerEntity element.

Table 9.3 — PartnerEntity attributes

Attribute Name

Description/Usage

name: string

Name is a text description of the PartnerEntity.

participantRef: Participant [0..*]

Specifies how the PartnerEnt ity participates in Collaborations and
Choreographies.

© ISO/IEC 2013 - All rights reserved

115

ISO/IEC 19510:2013(E)

PartnerRole
A PartnerRole isone of the possible types of Participant (see above).

The PartnerRole element inherits the attributes and model associations of BaseElement (see Figure 8.5). Table 9.4
presents the additional attributes and model associations for the PartnerRole element.

Table 9.4 — PartnerRole attributes

Attribute Name Description/Usage

name: string

Name is a text description of the PartnerRole.

participantRef: Participant [0..*]

Choreographies.

Specifies how the PartnerRole participates in Collaborations and

Participant Multiplicity

ParticipantMultiplicity isused to define the multiplicity of a Participant.

For example, a manufacturer can request a quote from multiple suppliers in a Collaboration.

Manufacturer

P
f
et ape

L

Supplier

Figure 9.8 — A Pool with a Multiple Participant

The following figure shows the Participant class diagram.

] participant
(from Collaboration)
[Eg name : 5tring

= ParticipantMultiplicity
(from Collaboration)
+ participantMultiplicity_| Eg minimum ; Integer
0.1 [Eg maximum : Integer

Figure 9.9 — The Participant Multiplicity class diagram

116

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

The multi-instance marker will be displayed in bottom center of the Pool (Participant - see Figure 9.9, above), or the
Participant Band of a Choreography Activity (see page 321), when the ParticipantMultiplicityis
associated with the Participant, and the maximum attribute is either not set, or has a value of two or more.

Table 9.5 presents the attributes for the ParticipantMultiplicity element.

Table 9.5 — ParticipantMultiplicity attributes

Attribute Name Description/Usage

minimum: integer = 0 The minimum attribute defines minimum number of Participants that
MUST be involved in the Collaboration. If a value is specified in the
maximum attribute, it MUST be greater or equal to this minimum value.

maximum: integer [0..1] = 1 The maximum attribute defines maximum number of Participants that MAY
be involved in the Collaboration. The value of maximum MUST be one or
greater, AND MUST be equal or greater than the minimum value.

Table 9.6 presents the Instance attributes of the ParticipantMultiplicity element.

Table 9.6 — ParticipantMultiplicity Instance attributes

Attribute Name Description/Usage

numParticipants: integer [0..1] The current number of the multiplicity of the Participant for this
Choreography or Collaboration Instance.

ParticipantAssociation

These elements are used to do mapping between two elements that both contain Participants. There are situations where
the Participants in different diagrams can be defined differently because they were developed independently, but
represent the same thing. The ParticipantAssociation provides the mechanism to match up the Participants.

A ParticipantAssociation isused when an (outer) diagram with Participants contains an (inner) diagram that
also has Participants. There are four usages of ParticipantAssociation. Itis used when:

1. A Collaboration referencesaChoreography for inclusion between the Collaboration’s Pools (Participants).
The Participants of the Choreography (the inner diagram) need to be mapped to the Participants of the
Collaboration (the outer diagram).

2. A Call Conversation references a Collaboration or GlobalConversation. Thus, the Participants of the
Collaboration or GlobalConversation (theinner diagram) need to be mapped to the Participants referenced
by the Call Conversation (the outer element). Each Call Conversation containsits own set of
ParticipantAssociations.

3. ACall Choreography referencesaChoreography or GlobalChoreographyTask. Thus, the Participants of
the Choreography or GlobalChoreographyTask (the inner diagram) need to be mapped to the Participants
referenced by the Call Choreography (the outer element). Each Call Choreography containsits own set of
ParticipantAssociations.

© ISO/IEC 2013 - All rights reserved 117

ISO/IEC 19510:2013(E)

4. A Call Activity withinaProcess that has adefinitional Collaboration references another Process that also has
adefinitional Collaboration. The Participants of the definitional Collaboration of the called Process (theinner
diagram) need to be mapped to the Participants of the definitional Collaboration of the calling Process (the outer

diagram).

A ParticipantAssociation can be owned by the outer diagram or one its elements. Figure 9.10 shows the class
diagram for the ParticipantAssociation element.

| BaseElement | Documentation
(from Foundation) _ (From Foundation)
+ documentation g text : Stiing

Egid : String
1 " [Eg textFormat : String
+ participantAssociations
£ participantAssociation * 0.1 I callconversation
(from Collaboration) (from Conversations)
+ callConversation
* + collaboration H collaboration
(from Collaboration)
0.l = e
+ participantAssociations ""V name ' S.t”ng
. . [Eg isClosed : Boolean
* 4+ participantAssociations 1 + collaboration *

+ collaboration
+ outerParticipantRef 1 1 + innerParticipantRef

"

| participant
(From Collaboration) -
[E3 name : String + participants + choreographyRef| *
= choreography

0.1 /. + calChoreographyActivity (From Choreography)

= callchoreography
(from ChoreographyActivities)

Figure 9.10 — ParticipantAssociation class diagram

The ParticipantAssociation element inherits the attributes and model associations of BaseElement (see Table
8.5). Table 9.7 presents the additional model associations for the ParticipantAssociation element.

118 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 9.7 — ParticipantAssociation model associations

Attribute Name Description/Usage

innerParticipantRef: Participant This attribute defines the Participant of the referenced element (e.g., a
Choreography to be used in a Collaboration) that will be mapped to the

parent element (e.g., the Collaboration).

outerParticipantRef: Participant This attribute defines the Participant of the parent element (e.g., a
Collaboration references a Choreography) that will be mapped to the
referenced element (e.g., the Choreography).

9.3.2 Lanes

A Lane is asub-partition within aProcess (often within a Pool) and will extend the entire length of the Process level,
either vertically (see Figure 10.123) or horizontally (see Figure 10.124). See page 304 for more information on Lanes.

9.4 Message Flow

A Message Flow is used to show the flow of Messages between two Participants that are prepared to send and
receive them.

€ A Message Flow MUST connect two separate Pools. They connect either to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

€ A Message Flow isalinewith an open circle line start and an open arrowhead line end that MUST be drawn with
adashed single line (see Figure 9.11).
€ Theuseof text, color, size, and linesfor aMessage Flow MUST follow the rules defined in “Use of
Text, Color, Size, and Linesin a Diagram” on page 39.

Figure 9.11 — A Message Flow

In Collaboration Diagrams (the view showing the Choreography Process Combined with Orchestration Processes),
aMessage Flow can be extended to show the Message that is passed from one Participant to another (see Figure

9.12).

© ISO/IEC 2013 - All rights reserved 119

ISO/IEC 19510:2013(E)

Customer

T
I
I
Order EZI
|
I
I
|
I
I
\Z

A
I
|
|
|
I
|
|

EI Confirmation
|

|

Supplier

Figure 9.12 — A Message Flow with an Attached Message

If aChoreography isincluded in the Collaboration, then the Message Flow will “pass-through” a Choreography
Task as it connects from one Participant to another (see Figure 9.13).

Customer

T

l |

l |
Order E] :

l |

|]

Eontinued...

O Place .
-
Order

|
|
|
|
|SZ| Confirmation
|

Supplier

Figure 9.13 — A Message Flow passing through a Choreography Task

120 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Figure 9.14 displays the class diagram of a Message Flow and its relationships to other BPMN elements. When a
Message Flow is defined it is contained either within a Collaboration, a Choreography, or a
GlobalChoreographyTask.

| Documentation £ BaseElement £/ Message
(From Foundation) (from Foundation) (from Common)
g text : String * 1 | Egid:Sting [Eg name : String

[Eg textFormat : String + documentation

+ messageRef '|0..1

+ collaboration + messageFlows
= collaboration = MessageFlow
(From Collabor ation) 1 * (from Collaboration)
[Eg name @ String [Eg name : String

g isClosed ; Boolean

+lrcoiaboration

- * i..2
* + participants + sourceRef |1 1 | + targetRef
] Participant] InteractionNode
(from Collaboration) (from Collaboration)
[Eg name : 5tring
+ participantRefs
2. . e
+ initiatingParticipantRef
1 2..*+ participantRefs
-
] conversationNode = Task = Event
(from Conversations) (From Activities) (From Events)
[Eg name : 5tring
* *
| ChoreographyActivity + choreographyTask 0.1
(From ChoreographyActivities)
g loopType : ChoreographyLoopType K ChoreographyTask

(from ChoreographyActivities)

Figure 9.14 — The Message Flow Class Diagram

The Message Flow element inherits the attributes and model associations of BaseElement (See Table 8.5). Table 9.8
presents the additional attributes and model associations for the Message Flow element.

© ISO/IEC 2013 - All rights reserved 121

ISO/IEC 19510:2013(E)

Table 9.8 — Message Flow attributes and model associations

Attribute Name Description/Usage
name: string Name is a text description of the Message Flow.
sourceRef: InteractionNode The InteractionNode that the Message Flow is connecting from. Of

the types of InteractionNode, only Pools/Participants, Activities, and
Events can be the source of a Message Flow.

targetRef: InteractionNode The InteractionNode that the Message Flow is connecting to. Of the
types of InteractionNode, only Pools/Participants, Activities, and
Events can be the target of a Message Flow.

messageRef: Message [0..1] The messageRef model association defines the Message that is passed
via the Message Flow (see page 91 for more details).

9.4.1 Interaction Node

The InteractionNode element is used to provide a single element as the source and target Message Flow
associations (see Figure 9.14, above) instead of the individual associations of the elements that can connect to Message
Flows (see above). Only the Pool/Participant, Activity, and Event elements can connect to Message Flows. The
InteractionNode element isalso used to provide asingle element for source and target of Conversation Links, see
page 131.

The InteractionNode element does not have any attributes or model associations and does not inherit from any other
BPMN element. Since Pools/Participants, Activities, and Events have their own attributes, model associations, and
inheritances, additional attributes and model associations for the InteractionNode element are not necessary.

9.4.2 Message Flow Associations

These elements are used to do mapping between two elements that both contain Message Flows. The
MessageFlowAssociation provides the mechanism to match up the Message Flows.

A MessageFlowAssociation is used when an (outer) diagram with Message Flows contains an (inner) diagram
that also has Message Flows. It is used when:

« A Collaboration references a Choreography for inclusion between the Collaboration’s Pools (Participants).
The Message Flows of the Choreography (the inner diagram) need to be mapped to the Message Flows of the
Collaboration (the outer diagram).

« A Collaboration referencesa Conversation that contains Message Flows. The Message Flows of the
Conversation can serve as apartial requirement for the Collaboration. Thus, the Message Flows of the
Conversation (the inner diagram) need to be mapped to the Message Flows of the Collaboration (the outer
diagram).

« A Choreography referencesaConversation that contains Message Flows. The Message Flows of the
Conversation can serve as a partial requirement for the Choreography. Thus, the Message Flows of the
Conversation (the inner diagram) need to be mapped to the Message Flows of the Choreography (the outer
diagram).

122 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Figure 9.15 shows the class diagram for the MessageFlowAssociation element.

] BaseElement =] Documentation
(From Foundation) + documentation (From Foundation)
g id : String [Eg text : String
1 * [E textFormat © String

Q MessageFlowAssociation

{From Collaboration)] choreography

(from Choreography)

+ choreographyRef|. *

+ collaboration |,

* 1 E collaboration
(From Collabor ation)

+ messageFlowAssociations [Eg hame : 5tring
* * 53 isClosed : Boolean

+ innerMessageFlowRef ! + outerMessageFlowRef

| MessageFlow
(From Collaboration)

[5g name : 5tring

Figure 9.15 — MessageFlowAssociation class diagram

The MessageFlowAssociation element inherits the attributes and model associations of BaseElement (see Table
8.5). Table 9.9 presents the additional model associations for the MessageFlowAssociation element.

Table 9.9 — MessageFlowAssociation attributes and model associations

Attribute Name Description/Usage

innerMessageFlowRef: Message Flow This attribute defines the Message Flow of the referenced
element (e.g., a Choreography to be used in a Collaboration)
that will be mapped to the parent element (e.g., the
Collaboration).

outerMessageFlowRef: Message Flow This attribute defines the Message Flow of the parent element
(e.g., a Collaboration references a Choreography) that will be
mapped to the referenced element (e.g., the Choreography).

9.5 Conversations

The Conversation diagram is particular usage of and an informal description of a Collaboration diagram. In general,
it is a simplified version of Collaboration, but Conversation diagrams do maintain all the features of a
Collaboration. In particular, Processes can appear within the Participants (Pools) of Conversation diagrams, to
show how Conversation and Activities are related.

The view includes two additional graphical elements that do not exist in other BPMN views:
1. Conversation Node elements (Conversation, Sub-Conversation, and Call Conversation)

2. A Conversation Link

© ISO/IEC 2013 - All rights reserved 123

ISO/IEC 19510:2013(E)

A Conversation is alogical grouping of Message exchanges (Message Flows) that can share a Correlation. A
Conversation isthe logical relation of Message exchanges. The logical relation, in practice, often concerns a business
object(s) of interest, e.g., “Order,” “Shipment and Delivery,” and “Invoice.” Hence, a Conversation is associated with a
set of name-value pairs, or aCorrelation Key (e.g., “Order Identifier,” “Delivery Identifier”), which is recorded in
the Messages that are exchanged. In this way, a Message can be routed to the specific Process instance responsible
for receiving and processing the Message.

Figure 9.16 shows a simple example of a Conversation diagram.

Participant A Participant B

Conversation

L /N
_/

Figure 9.16 — A Conversation diagram

Figure 9.17 shows a variation of the example above where the Conversation node has been expanded into its
component Message Flows. Note that the diagram looks the same as a simple Collaboration diagram (as in Figure
9.3, above).

Participant A Participant B
¢ >
< 0}
< 0]
¢ >

Figure 9.17 — A Conversation diagram where the Conversation is expanded into Message Flows

Message exchanges are related to each other and reflect distinct business scenarios. The relation is sometimes simple,
for example, a request followed by a response, and can be described as part of a structural interface of a service (e.g., as
aWSDL operation definition). However for commercial business transactions managed through Business Processes,
the relation can be complex, involving long-running, reciprocal Message exchanges, and that could extend beyond
bilateral to complex, multilateral Collaborations. For example, in logistics, stock replenishments involve the following
types scenarios: creation of sales orders, assignment of carriers for shipments combining different sales orders, crossing
customs/quarantine, processing payment, and investigating exceptions.

124 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

In addition to an orchestration Process, Conversations are relevant to a Choreography, but the Conversations are
not visualized in a Choreography. The difference is that a Choreography provides a multi-party perspective of a
Conversation. Thisis because the Message exchanges modeled using Choreography Activities concern multiple
Participants, unlike an orchestration Process where the Message sending and receiving elements relate to one
Participant only. Other than the difference in perspective, the notion of Conversation remains the same across
Choreography and orchestration, and the Message exchanges of a Conversation will be executed ultimately through

an orchestration Process.

Since Collaboration provides a top-down, design-time modeling perspective for Message exchanges and their
Conversations, an abstracted view of the all Conversations pertaining to a domain being modeled is available
through a Conversation diagram. A Conversation diagram, as depicted in Figure 9.18, shows Conversations (as
hexagons) between Participants. This provides a “bird's eye” perspective of the different Conversations that relate to
the domain.

. Delivery Supplier
Retailer Negotiations
Delivery / Dispatch Consignee Shipment Schedule
Plan
_/ _/
Delivery /\ <: Delivgry
Monitoring _/ Planning
Detailed Shipment
Schedule
Delivery / Dispatch . .
Consolidator Plan Carrier Planning Shipper
/\ Carrier /\
__/ (Land, Sea, Rail, or Air) _/
Clearance
Monitoring
Clearance Pre- Coverage
Customs/ Notification Notification Insurance
uarantine {)
2 — mn —
Breakdown —J L J L Locative Service
Service

Truck Breakdown
Provision

Arrival/Pickup
Confirmation

Traffic Optimization|
Guidance

Figure 9.18 — Conversation diagram depicting several conversations between Participants in a related domain

Figure 9.18 depicts 13 distinct Conversations between collaborating Participants in a logistics domain. As examples,
Retailer and Supplier are involved in a Delivery Negotiations Conversation, and Consignee converses with Retailer and
Supplier through Delivery/Dispatch Plan and Shipment Schedule Conversations respectively. More than two
participants MAY be involved in a Conversation, e.g., Consignee, Consolidator and Shipper in Detailed Shipment

© ISO/IEC 2013 - All rights reserved 125

ISO/IEC 19510:2013(E)

Schedule. The association of Participants to a Conversation are constrained to indicate whether one or many of
Participants are involved. For example, one instance of Retailer converses with one instance of Supplier for Deliver
Negotiations. However, one instance of Shipper converses with multiple instances of Carrier (indicated by the multi-
instance symbol of the Pool for Carrier) for Carrier Planning. Note, multiplicity in constraints of Conversation
diagrams means one or more (not zero or more).

The behavior of different Conversations is modeled through separate Choreographies, detailing the Message
exchange sequences. In practice, Conversations which are closely related could be combined in the same
Choreography models. For example, a Message exchange in the Delivery Negotiation leads to Shipment Schedule,
Delivery Planning, and Delivery/Dispatch Conversations and these could be combined together in the same
Choreography. Alternatively, they could be separated in different models.

Figure 9.19 shows a subset of the larger Conversation diagram of Figure 9.18, above. Figure 9.20 and Figure 9.21 show
the drill down into the “Delivery Negotiations” Sub-Conversation. This expands the Conversation with the
Message Flows, providing a structural view of a Conversation without the “clutter” of sequencing details in the same
diagram. Figure 9.19 also indicates the CorrelationKey involved in the Message Flows of the Conversation. For
example, Order Id is necessary for in all Messages of Message Flows in Delivery Negotiation. In addition, some
Message Flows also require Variation Id (for dealing with shipment variations on a per line item basis).

Retailer Delivery Supplier
Negotiations
(Order ID)

—(=

Figure 9.19 — An example of a Sub-Conversation

Figure 9.20 shows how the Sub-Conversation of Figure 9.19, above, is expanded into a set of Message Flows and a
lower-level Conversation.

R etailer Supplier

V ariations
(Variation ID)

j —

<] — — —T= T — = == —

Figure 9.20 — An example of a Sub-Conversation expanded to a Conversation and Message Flow

126 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Figure 9.21 shows how the Conversation of Figure 9.20 is also expanded into a set of Message Flows, combined with
the previous Message Flows. Note that the newly exposed Message Flows of the lower-level Conversation will be
correlated by the CorrelationKey of both the lower-level Conversation (Variation 1d) and the higher-level Sub-
Conversations (Order 1d).

Retailer o Supplier
— _ _ _Planned Order Variations _ __ __
_ _ Planned Order Variations Ack_ _ _
I: _Retailer Order and Delivery Variations _ |

Figure 9.21 — An example of a Sub-Conversation that is fully expanded

In Figure 9.19 a hierarchical structure of Conversations can be seen with one set of Message Flows occurring within
another in a parent-child relationship. In particular, after Planned Order Variations (keyed on Order 1d) at the parent, a
number of Message Flows of the child follow till Retailer Order and Delivery Variations Ack (keyed on Variation Id
and Order 1d). The remaining Message Flows (keyed on Order 1d) are at the parent level. The child Conversation, as
such, is part of the parent Conversation. Nesting is indicated graphically on a Conversation symbol (by a“+"),
indicating a Sub-Conversation or a Call Conversation calling a Collaboration. Nesting can go to an arbitrary
number of levels.

A common dependency between Conversations is overlap. Overlap occurs when two or more Conversations have
some Message exchanges in common but not others. As an example in Figure 9.18, a Message is sent as part of
Detailed Shipment Schedule (keyed on Carrier Schedule Id) to trigger Delivery Monitoring (keyed on Shipment 1d).
During Delivery Monitoring, Message could be sent to Detailed Shipment Schedule (to request modifications when
transportation exceptions occur).

Solits and joins are special types of overlap scenarios. A Conversation split arises when, as part of a Conversation, a
message is exchanged between two or more Participants that at the same time spawns a new, distinct Conversation
(either between the same set of Participants or another set). Additionally, no further Message exchanges are shared by
the split Conversations as well as no subsequent merges of them occur. An example is Delivery Planning which leads
to Carrier Planning and Special Cover. A Conversation join occurs when several Conversations are merged into one
Conversation and no further Message exchanges occur in the original Conversations, i.e., these Conversations
are finalized. The generalization of a split and join is a Conversation refactor where Conversations are split into
parallel Conversations and then are merged at a later point in time.

9.5.1 Conversation Node

ConversationNode isthe abstract super class for all elements that can comprise the Conversation elements of a
Collaboration diagram, which are Conversation (see page 129), Sub-Conversation (see page 129), and Call
Conversation (see page 130).

© ISO/IEC 2013 - All rights reserved 127

ISO/IEC 19510:2013(E)

] GlobalConversation
(From Conversations)

| choreography
(from Choreography)

+ choreographyRef | *

+ collaboration|

= collaboration
(from Collaboration)
[Eg name : 5tring
g isClosed : Boolean

+ calledCollaborationRef

0.1

1 0.1 0.1
1 | BaseElement

tind COllaboration
+ colaboratiort + colaboration Egid : Sting

* |+ messageFlows + conversations
=] MessageFlow
(from Collaberation)

[Eg name : String

+ messageFlowRefs
L

* | + participants

] Participant 2.* "
(From Collaboration)

[Eg name : String *

+ participantRefs

0.1

[subConversation
(From Conversations)

+ correlationkeys

Q ParticipantAssociation
(From Collaboration)

+ participantAssociations /*

0.1

] callconversation

N (From Conversations)

®

| CorrelationKey
(From Common)

[Eg name : 5tring

* 4 correlationkeys

0.1

| conversationNode
(From Conversations)

[Eg name : 5tring

+ conversationModes

+ subConversation

] conversation
(from Conversations)

Figure 9.22 — Metamodel of ConversationNode Related Elements

ConversationNodes are linked to and from Participants using Conversation Links (see page 131).

The ConversationNode element inherits the attributes and model associations of BaseElement (see Table 8.5).
Table 9.10 presents the additional attributes and model associations for the ConversationNode element.

128

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 9.10 — ConversationNode Model Associations

Attribute Name Description/Usage
name: string [0..1] Name is a text description of the ConversationNode element.
anr:]icipantRefSi Participant This provides the list of Participants that are used in the ConversationNode

from the list provided by the ConversationNode's parent Conversation. This
reference is visualized through aConversation Link (see page 131).

messageF'OWRGZS: A referenceto all Message Flows (and consequently Messages) grouped by a
MessageFlow [0.7] Conversation element.

correlationKeys: Thisisalist of the ConversationNode's CorrelationKeys, which are used to
CorrelationKey [0..*] .
group Message Flows for the ConversationNode.

9.5.2 Conversation

A Conversation is an atomic element for a Conversation (Collaboration) diagram. It represents a set of Message
Flows grouped together based on a concept and/or a CorrelationKey. A Conversation will involve two or more
Participants.

€ A Conversation isahexagon that MUST be drawn with asingle thin line (see Figure 9.23).

O

Figure 9.23 — A Communication element

The Conversation element inherits the attributes and model associations of ConversationNode (see Table 9.10),
but does not contain any additional attributes or model associations.

9.5.3 Sub-Conversation

A Sub-Conversation isaConversationNode that is a hierarchical division within the parent Collaboration. A
Sub-Conversation isagraphical object within a Collaboration, but it also can be “opened up” to show the lower-level
details of the Conversation, which consist of Message Flows, Conversations, and/or other Sub-Conversations.
The Sub-Conversation shares the Participants of its parent Conversation.

€ A Sub-Conversation is ahexagon that MUST be drawn with asingle thin line (see Figure 9.24).

€ TheSub- Conversation marker MUST be a small square with aplus sign (+) inside. The square MUST be
positioned at the bottom center of the shape.

© ISO/IEC 2013 - All rights reserved 129

ISO/IEC 19510:2013(E)

Figure 9.24 — A compound Conversation element

The Sub-Conversation element inherits the attributes and model associations of ConversationNode (see Table
9.10). Table 9.11 presents the additional model associations for the Sub-Conversation element.

Table 9.11 — Sub-Conversation Model Associations

Attribute Name Description/Usage

conversationNodes: The ConversationNodes model aggregation relationship allows a Sub-
ConversationNode [0..*] . . , .

Conversation to contain other ConversationNodes, in order to group
Message Flows of the Sub-Conversation and associate correlation
information.

9.5.4 Call Conversation

A Call Conversation identifies a place in the Conversation (Collaboration) where a global Conversation or a
GlobalConversation is used.

& |If theCall Conversation callsaGlobalConversation, then the shapewill be the same asaConversation,
but the boundary of the shape will MUST have athick line (see Figure 9.25).

& |If theCall Conversation callsa Collaboration, then the shape will be the same asa Sub-Conversation, but
the boundary of the shape will MUST have athick line (see Figure 9.26).

Figure 9.25 — A Call Conversation calling a GlobalConversation

Figure 9.26 — A Call Conversation calling a Collaboration

The Call Conversation element inherits the attributes and model associations of ConversationNode (see Table
9.10). Table 9.12 presents the additional model associations for the Call Conversation element.

130 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 9.12 — Call Conversation Model Associations

Attribute Name Description/Usage

calledCollaborationRef:

The element to be called, which MAY be either a Collaboration or a
Collaboration [0..1]

GlobalConversation. The called element MUST NOT be a
Choreography or a GlobalChoreographyTask (which are sub-
types of Collaboration)

participantAssociations: Participant

'pa This attribute provides a list of mappings from the Participants of a
Association [0..*]

referenced GlobalConversation or Conversation to the
Participants of the parent Conversation.

NOTE: The ConversationNode atribute messageFlowRef doesn’t apply to Call Conversations.

9.5.5 Global Conversation

A GlobalConversation is areusable, atomic Conversation definition that can be called from within any
Collaboration by a Call Conversation.

The GlobalConversation element inherits the attributes and model associations and Collaboration (see Table 9.1),
but does not have any additional attributes or model associations.

A GlobalConversation isarestricted type of Collaboration, it is an “empty Collaboration.”
€ AcGlobalConversation MUST NOT contain any ConversationNodes.

Since aGlobalConversation does not have any Flow Elements, it does not require
MessageFlowAssociations, ParticipantAssociations, Of ConversationAssociations or Artifacts.
Itis basically a set of Participants, Message Flows, and CorrelationKeys intended for reuse. Also, the
Collaboration attribute choreographyRef is not applicable to GlobalConversation.

9.5.6 Conversation Link

Conversation Links are used to connect ConversationNodes to and from Participants (Pools -- see Figure 9.27).

€ Conversation Links MUST be drawn with double thin lines.

Procurement Supplier

RFQ
) 4

A Conversation Link: the
connection between a
Participant and a
Conversation Node

Figure 9.27 — A Conversation Link element

© ISO/IEC 2013 - All rights reserved 131

ISO/IEC 19510:2013(E)

Processes can appear in the Participants (Pools) of Conversation diagrams, as shown in Figure 9.28. The invoicing
and ordering Conversations have links into Activities and Events of the Process in the Order Processor. The other
two Conversations do not have their links “expanded.” Conversation Links into Activities that are not Send or
Receive Tasks indicate that the Activity will send or receive Messages of the Conversation at some level of
nesting.

Invoicer

|| Invoicing
(7 \ ; A\

—
ri.(. E Price
Initiate Price

—> Calculations

Calculations Complete

Process

Invoice

{

P

]

Receive() . Request Process Send Shippi Send
pping
Order g Assignment Shipping Schedule Invoice

Schedule

Order Processor

D ———

Scheduling

N——] Product
Request

\—

Sheduling <:II:> Shipping <:>

Scheduler Ordering Shipper

\ {1 /)

o

Customer

Figure 9.28 — Conversation links to Activities and Events

132 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

| BaseElement
(From Foundation)
Egid : String

=] collaboration

(From Collaboration)
g name : String] conversationLink
g, isClosed : Boolean + conversationLinks [From Conversations)

1 " [Eg name : String

+1collaboration

« + conversations
L L

| ConversationNode
(From Conversations)

[Eg name ; String

+ fincomingConversationLinks + foutgoingConversationLinks

. + targetRef + sourceRef
« 4 conversationMode 1 1
] InteractionNode
* (from Collaboration)
+ participants o+ participantRefs
] Participant
(from Collaboration)
g name : 5tring
= Task = Event
(From Activities) (From Events)

Figure 9.29 — Metamodel of Conversation Links related elements

The Conversation Link element inherits the attributes and model associations of BaseElement (See Table 8.5). Table
9.13 presents the additional attributes and model associations for the Conversation Link element.

Table 9.13 — Conversation Link Attributes and Model Associations

Attribute Name Description/Usage
name: string [0..1] This attribute specifies the name of the Conversation Link.
sourceRef: InteractionNode The InteractionNode that the Conversation Link is connecting

from. A Conversation Link MUST connect to exactly one
ConversationNode. If the sourceRef is not a
ConversationNode, then the targetRef MUST be a
ConversationNode.

targetRef: InteractionNode The InteractionNode that the Conversation Link is connecting
to. A Conversation Link MUST connect to exactly one
ConversationNode. If the targetRef is not a
ConversationNode, then the sourceRef MUST be a
ConversationNode.

Conversation Links for Call Conversations show the names of Participants in nested Collaboration or global
Collaborations, as identified by ParticipantAssociations. For example, Figure 9.30 has a Collaboration on
the left with a Call Conversations to a Collaboration on the right. The Conversation Links on the left indicate

© ISO/IEC 2013 - All rights reserved 133

ISO/IEC 19510:2013(E)

which Participants in the called Collaboration on the right correspond to which Participants in the calling
Collaboration on the left. For example, the Credit Agency Participants on the right corresponds to the Financial
Company Participant on the left. ParticipantAssociations (not shown) tie each Participant in the
Collaboration on the left to a Participant in the Collaboration on the right. They can be used to show the names of
Participants in nested Collaboration or global Collaborations.

Financial
Company

Credit Agency

Credit
Score Credit
Purchase Request

Retailer

Figure 9.30 — Call Conversation Links

9.5.7 Conversation Association

Credit Agency

]
!

T

Credit
Response

Buyer

!

A ConversationAssociation isused within Collaborations and Choreographies to apply a reusable
Conversation to the Message Flows of those diagrams.

A ConversationAssociation isused when a diagram references a Conversation to provide Message
correlation information and/or to logically group Message Flows. It is used when:

« A Collaboration references a Choreography for inclusion between the Collaboration’s Pools (Participants).
The ConversationNodes of the Choreography (theinner diagram) need to be mapped to the
ConversationNodes of the Collaboration (the outer diagram).

134

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

| BaseElement
Egid : String

=] ConversationAssociation

=] collaboration

1 1

[Eg name : String
=5 isClosed @ Boolean
= + converstaionAssociations

* .

+ collaboration . -
+ conversationAssociation + conversationAssociation
* + choreographyRef + innerConversationModeRef| 1 + outerConversationModeRef 1
=] choreography | conversationNode

(From Choreography) (From Conversations)
[Eg name : 5tring

Figure 9.31 — The ConversationAssociation class diagram

The ConversationAssociation element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 9.14 presents the additional model associations for the ConversationAssociation element.

Table 9.14 — ConversationAssociation Model Associations

Attribute Name Description/Usage

innerConversationNodeRef: This attribute defines the ConversationNodes of the referenced

ConversationNode [0..1] element (e.g., a Choreography to be used in a Collaboration) that will
be mapped to the parent element (e.g., the Collaboration).

outerConversationNodeRef: This attribute defines the ConversationNodes of the parent element

ConversationNode [0..*] (e.g., a Collaboration references a Choreography) that will be mapped

to the referenced element (e.g., the Choreography).

9.5.8 Correlations

Correlations are the mechanism that is used to assign the Messages to the proper Process instance, and can be defined
for the Message Flows that belong to the Conversation. Correlations can be used to specify Conversations between
Processes that follow afairly ssmple Conversation pattern in the sense that:

» The conceptual data of the Conversation iswell known and defined by the participating Processes. However this
doesn’'t mandate that underlying type systems are identical. It is sufficient that the data is known “conceptualy” on a
(potentially very high) business level.

« A Conversation takes place by means of smple Message exchange between Processes, no additiona
agreements MUST be considered.

» There exists send and receive Tasks accepting the conceptual data of the Conversation. (An Order send by aTask
of aProcess should bereceived by at least one Task of the participating Process).

© ISO/IEC 2013 - All rights reserved 135

ISO/IEC 19510:2013(E)

» Thecorrelation itself is defined in terms of correlation fields, which denote a subset of the conceptual data that should
be used for the correlation. (For example, if the conceptual data comprises an order, then the correlation field might be
denoted by the order ID).

In some applications it is useful to allow more Messages to be sent between Participants when a Collaboration is
carried out than are contained in the Collaboration model. This enables Participants to exchange other Messages as
needed without changing the Collaboration. If the isClosed attribute of a Collaboration has a value of false or no
value, then Participants MAY send Messages to each other without additional Message Flows in the Collaboration.
If the isClosed attribute of a Collaboration has avalue of true, then Participants MAY NOT send Messages to each
other without additional Message Flows in the Collaboration. If a Collaboration contains a Choreography, then
the value of the isClosed attribute MUST be the same in both. Restrictions on unmodeled messaging specified with
isClosed apply only under the Collaboration containing the restriction. PartnerEntities and PartnerRoles
of the Participants MAY send Messages to each other under other Choreographies, Collaborations, and
Conversations.

9.6 Process within Collaboration

Processes can be included in a Collaboration diagram. A Participant/Pool within the Collaboration can contain a
Process (but they are NOT REQUIRED). An example of this is shown in Figure 9.4.

When a Lane (in a Process) represents a Conversation, the Flow Elementsin the Lane (or elements nested or called
in them) that send or receive Messages MUST do so as part of the Conversation represented by the Lane.

9.7 Choreography within Collaboration

Choreographies can be included in a Collaboration diagram. A Collaboration specifies how the Participants and
Message Flows in the Choreography are matched up with the Participants and Message Flows in the
Collaboration. A Collaboration uses ParticipantAssociations and MessageFlowAssociations for this
purpose.

To handle the Participants, the innerParticipant of aParticipantAssociation refersto a Participant in the
Choreography, while the outerParticipant refersto a Participant in the Collaboration containing the
Choreography. This mapping matches the Participant Bands of the Choreography Activities in the
Choreography to the Pools in the Collaboration. Thus, the names in the Participant Bands are NOT REQUIRED
(see Figure 9.32).

136 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

>
(&)
[
(0]
(@]
<
S
o
(@]
A T
| .
I Credit
| Response
C) : Request Credit : Provide Credit : O
Score Score
| |
Credit E |
Request |
I |
ﬁ ... 4
........ _ ! | ﬁ
a3 . I
Culsrt]?gwer : : >D N | Customer
_ Cl'edlﬂD\g/ | Vv, v/ : " |3f(‘): ,
L (=S (= paate
3 ' Generate Request Receive Cldgg;t%r
Credit ID Credit Score Credit Score Info

Figure 9.32 — An example of a Choreography within a Collaboration

To handle Message Flows, the innerMessageFlow of aMessageFlowAssociation refersto aMessage Flow
in the Choreography, while the outerMessageF1low refers to a Message Flow in the Collaboration containing
the Choreography. This mapping matches the Message Flows of the Choreography (which are not visible) to the
Message Flows in the Collaboration (which are visible). This allows the Message Flows of the Collaboration to
be “wired up” through the appropriate Choreography Activity in the Choreography (see Figure 9.32).

The ParticipantAssociations might be derived from the partnerEntities or partnerRoles of the
Participants. For example, if a Choreography Activity has a Participant with the same partnerEntity asa
Participant in the Collaboration containing the Choreography, then these two Participants could be assumed to be
the inner and outerParticipants of aParticipantAssociation. Similarly, Message Flows that reference
the same Message in a Call Choreography Activity and the Collaboration, could be automatically synchronized by
aMessageFlowAssociation, if only one Message Flow has that Message.

© ISO/IEC 2013 - All rights reserved 137

ISO/IEC 19510:2013(E)

= choreographyActivity
{From ChoreographyActivities)
LCgloopType @ ChoreographyloopType

* *

+ messageFlows

+ initiatingParticipantRef 1 2% + participantRefs

=] Participant "
(From Collaboration)

Eg name : String + participants

+ outerParticipantRef | 1 1 + innerParticipantRef

+ collaboration
1

* *

= MessageFlow
(from Collaboration)

g name : String

+ innerMessageFlowRef * 1 1 /4% puterMessageFlowRef

-

- *
=] MessageFlowAssociation
(from Collaboration)

+ messageFlow Associations -

+ collaboration

1
=] collaboration

(from Collaboration)
[Eg name : String
g isClosed : Boolean

= ParticipantAssociation

(From Collaboration) * 0.1

+ participantAssociations

+ H collaboration

-

+ choreographyRef

] choreography
(From Choreography)

Figure 9.33 — Choreography within Collaboration class diagram

9.8 Collaboration Package XML Schemas

Table 9.15 — Call Conversation XML schema

<xsd:element name="callConversation" type="tCallConversation" substitutionGroup="conversationNode"/>
<xsd:complexType name="tCallConversation">
<xsd:complexContent>
<xsd:extension base="tConversationNode">
<xsd:sequence>
<xsd:element ref="participantAssociation" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="calledCollaborationRef" type="xsd:QName" use="optional"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 9.16 — Collaboration XML schema

<xsd:element name="collaboration" type="tCollaboration" substitutionGroup="rootElement"/>
<xsd:complexType name="tCollaboration">
<xsd:complexContent>
<xsd:extension base="tRootElement">

<xsd:sequence>
<xsd:element name="choreography" minOccurs="0" maxOccurs="unbounded"/>

138 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

<xsd:element ref="participant” minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="messageFlow" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="conversationNode" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="conversationLink" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="conversationAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="participantAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="MessageFlowAssociation" type="tMessageFlowAssociation" minOccurs="0" maxOc-
curs="unbounded"/>

<xsd:element ref="correlationKey" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="isClosed" type="xsd:boolean" default="false"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.17 — Conversation XML schema

<xsd:element name="conversation" type="tConversation" substitutionGroup="conversationNode"/>
<xsd:complexType name="tConversation">

<xsd:complexContent>
<xsd:extension base="tConversationNode"/>
</xsd:complexContent>
</xsd:complexType>

Table 9.18 — ConversationAssociation XML schema

<xsd:element name="conversationAssociation" type="tConversationAssociation"/>
<xsd:complexType name="tConversationAssociation">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="innerConversationNodeRef" type="xsd:QName" use="required"/>
<xsd:attribute name="outerConversationNodeRef" type="xsd:QName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.19 — ConversationAssociation XML schema

<xsd:element name="conversationLink" type="tConversationLink"/>
<xsd:complexType name="tConversationLink">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="sourceRef" type="xsd:QName" use="required"/>
<xsd:attribute name="targetRef" type="xsd:QName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

© ISO/IEC 2013 - All rights reserved 139

ISO/IEC 19510:2013(E)

Table 9.20 — ConversationNode XML schema

<xsd:element name="conversation" type="tConversation" substitutionGroup="rootElement"/>
<xsd:complexType name="tConversation">
<xsd:complexContent>
<xsd:extension base="tCallableElement">
<xsd:sequence>
<xsd:element ref="conversationNode" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="participant" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="messageFlow" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="messageFlowRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="correlationKey" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 9.21 — Conversation Node XML schema

<xsd:element name="conversationNode" type="tConversationNode"/>
<xsd:complexType name="tConversationNode" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="messageFlowRef" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="participantRef" type="xsd:QName" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="conversationRef" type="xsd:QName"/>
<xsd:attribute name="correlationKeyRef" type="xsd:QName"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 9.22 — Global Conversation XML schema

<xsd:element name="globalConversation" type="tGlobalConversation" substitutionGroup="collaboration"/>
<xsd:complexType name="tGlobalConversation">
<xsd:complexContent>
<xsd:extension base="tCollaboration"/>

</xsd:complexContent>
</xsd:complexType>

Table 9.23 — MessageFlow XML schema

<xsd:element name="messageFlow" type="tMessageFlow"/>
<xsd:complexType name="tMessageFlow">
<xsd:complexContent>
<xsd:extension base="tBaseElement">

140 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="sourceRef" type="xsd:QName" use="required"/>
<xsd:attribute name="targetRef" type="xsd:QName" use="required"/>
<xsd:attribute name="messageRef" type="xsd:QName"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.24 — MessageFlowAssociation XML schema

<xsd:element name="messageFlowAssociation" type="tMessageFlowAssociation"/>
<xsd:complexType name="tMessageFlowAssociation">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="innerMessageFlowRef" type="xsd:QName" use="required"/>
<xsd:attribute name="outerMessageFlowRef" type="xsd:QName" use="required"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.25 — Participant XML schema

<xsd:element name="participant" type="tParticipant"/>
<xsd:complexType name="tParticipant">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>

<xsd:element name="interfaceRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/

>

<xsd:element name="endPointRef" type="xsd:QName" minOccurs="0" maxOccurs="unbounded"/

>
<xsd:element ref="participantMultiplicity” minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="processRef" type="xsd:QName" use="optional"/>

</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 9.26 — ParticipantAssociation XML schema

<xsd:element name="participantAssociation" type="tParticipantAssociation"/>
<xsd:complexType name="tParticipantAssociation">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="innerParticipantRef" type="xsd:QName" use="required"/>
<xsd:element name="outerParticipantRef" type="xsd:QName" use="required"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

© ISO/IEC 2013 - All rights reserved

141

ISO/IEC 19510:2013(E)

</xsd:complexType>

Table 9.27 — ParticipantMultiplicity XML schema

<xsd:element name="participantMultiplicity" type="tParticipantMultiplicity"/>
<xsd:complexType name="tParticipantMultiplicity">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="minimum" type="xsd:int"/>
<xsd:attribute name="maximum" type="xsd:int"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.28 — PartnerEntity XML schema

<xsd:element name="partnerEntity" type="tPartnerEntity" substitutionGroup="rootElement"/>
<xsd:complexType name="tPartnerEntity">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.29 — PartnerRole XML schema

<xsd:element name="partnerRole" type="tPartnerRole" substitutionGroup="rootElement"/>
<xsd:complexType name="tPartnerRole">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 9.30 — Sub-Conversation XML schema

<xsd:element name="subConversation" type="tSubConversation" substitutionGroup="conversationNode"/>
<xsd:complexType name="tSubConversation">
<xsd:complexContent>
<xsd:extension base="tConversationNode">

<xsd:sequence>
<xsd:element ref="conversationNode" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

142 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

10 Process

10.1 General

NOTE: The content of this clauseis REQUIRED for BPMN Process M odeling Confor mance or for BPMN Complete
Conformance. However, this clauseisNOT REQUIRED for BPMN Process Chor eography Confor mance, BPMN Process
Execution Conformance, or BPMN BPEL Process Execution Confor mance. For more information about BPMN
conformance types, see page 1.

A Process describes a sequence or flow of Activities in an organization with the objective of carrying out work. In
BPMN a Process is depicted as a graph of Flow Elements, which are a set of Activities, Events, Gateways, and
Sequence Flows that define finite execution semantics (see Figure 10.1). Processes can be defined at any level from
enterprise-wide Processes to Processes performed by a single person. Low-level Processes can be grouped
together to achieve a common business goal.

(D)=

Two

Weeks q‘
equest
,—»@—» Hold Hold Reply
Hold
Book

Cancel
Request

Decline
Hold

Receive
et Book
O—-[EI Book }—F&atus }—>
Request
Available

axX ™
Checkout Checkout
Book Reply
S

Note that BPMN uses the term Process specifically to mean a set of flow elements. It uses the terms Collaboration and
Choreography when modeling the interaction between Processes.

Figure 10.1 — An Example of a Process

The Process package contains classes that are used for modeling the flow of Activities, Events, and Gateways, and
how they are sequenced within a Process (see Figure 10.2). When a Process is defined it is contained within
Definitions.

© ISO/IEC 2013 - All rights reserved 143

ISO/IEC 19510:2013(E)

=] Collaboration
(from Collaboration)
[Eg name : 5tring
g isClosed : Boolean
0.1

-

[Eg processType : ProcessType
[Eg isClosed : Boolean
[Eg isExecutable ; Boolean

[Eg name : 5tring

= Activity

(From Activities)
[Eg, isForCompensation Boaolean
[Eg startQuantity : Integer
@completionQuantity : Integer

«enumeration»

= ProcessType

(From Process)
=1 None] Event
= Public (From Events)
=l Private

+ definitionalCollaborationRef

=] ResourceRole
(From Activities)

+ resources’| *

+ proce 8.1 " + supports

= Process
(from Process)

=] AowElementsContainer

(from Common)

1 ¢ + container

* + flowElernents

| FlowElement
(from Comman)

| FlowNode 1
(From Common)

N | sequenceFlow

+ sourceRef {From Common)
+ outgoing g isimmediate : Boolean
1

+ targetRef
+ incoming

] Gateway
(From Gateways)
[Eg gatewayDirection : GatewayDirection

Figure 10.2 — Process class diagram

| GlobalTask

(from Process)

| callableElement
(From Common)
[Egname : 5tiing

| RootElement

(From Foundation)

| BaseEfement
(From Foundation)

» | + documentation

=] Documentation
(From Foundation)
[Eg text : String
[Eg textFormat : String

0.1 + conditionExpression

=] Expression
(From Common)

A Process isaCallableElement, allowing it to be referenced and reused by other Processes viathe Call Activity
construct. In this capacity, a Process MAY reference a set of Interfaces that define its external behavior.

A Process is areusable element and can be imported and used within other Definitions.

Figure 10.3 shows the details of the attributes and model associations of a Process.

144

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

= collaboration | callableElement
(From Collabor ation) (From Common)
[Eg name : 5tring [Eg name : 5tring

[Eg isClosed : Boolean
0..1 /4 definitionalCollaborationRef

* * + supports |*

| Process
(from Process)
[Eg processType : ProcessType
[Eg isClosed : Boolean
[Eg isExecutable : Boolean

0.1 0.1 0.1 0.1 0.1 1
0.1, + auditing 0..1 |+ monitoring * 4+ properties ¥ resources p..1 t+ artifact * + cormelationSubscriptions
=] Auditing = Monitoring = Property =|ResourceRole] Artifact] correlationSubscription
(from Process) (From Process) (from Data) (From Activities) (from Common)
[Eg name : 5tring [Eg name : 5tring
| FlowElementsContainer +laneSets | | LaneSet
(From Common) (From Process)
0.1 * | Egname : String

Figure 10.3 — Process Details class diagram

The Process element inherits the attributes and model associations of CallableElement (See Table 10.24) and of
FlowElementContainer (See Table 8.45). Table 10.1 presents the additional attributes and model associations of the
Process element:

Table 10.1 — Process Attributes & Model Associations

Attribute Name Description/Usage

processType: ProcessType = none The processType attribute Provides additional information about the
{'None | Private | Public } - .

level of abstraction modeled by this Process.
A public Process shows only those flow elements that are relevant to
external consumers. Internal details are not modeled. These
Processes are publicly visible and can be used within a
Collaboration. Note that the public processType was named
abstract in BPMN 1.2.
A private Process is one that is internal to a specific organization.
By default, the processType is “none,” meaning undefined.

© ISO/IEC 2013 - All rights reserved 145

ISO/IEC 19510:2013(E)

Table 10.1 — Process Attributes & Model Associations

isExecutable: boolean [0..1] An optional Boolean value specifying whether the Process is execut-
able.

An executable Process is a private Process that has been modeled for
the purpose of being executed according to the semantics of Clause 14
(see page 426). Of course, during the development cycle of the Pro-
cess, there will be stages where the Process does not have enough
detail to be “executable.”

A non-executable Process is a private Process that has been modeled
for the purpose of documenting Process behavior at a modeler-defined
level of detail. Thus, information needed for execution, such as formal
condition expressions are typically not included in a non-executable
Process.

For public Processes, no value has the same semantics as if the value
were false. The value MAY not be true for public Processes.

auditing: Auditing [0..1] This attribute provides a hook for specifying audit related properties.

monitoring: Monitoring [0..1] This attribute provides a hook for specifying monitoring related proper-
ties.

artifacts: Artifact [0..] This attribute provides the list of Artifacts that are contained within the
Process.

IsClosed: boolean = false A boolean value specifying whether interactions, such as sending and

receiving Messages and Events, not modeled in the Process can
occur when the Process is executed or performed. If the value is true,
they MAY NOT occur. If the value is false, they MAY occur.

supports: Process [0.."] Modelers can declare that they intend all executions or performances
of one Process to also be valid for another Process. This means they
expect all the executions or performances of the first Processes to also
follow the steps laid out in the second Process.

properties: Property [0..”] Modeler-defined properties MAY be added to a Process. These
properties are contained within the Process. All Tasks and Sub-
Processes SHALL have access to these properties.

resources: ResourceRole [0..”] Defines the resource that will perform or will be responsible for the
Process. The resource, e.g., a performer, can be specified in the form
of a specific individual, a group, an organization role or position, or an
organization.

Note that the assigned resources of the Process does not determine
the assigned resources of the Activities that are contained by the
Process. See more details about resource assignment on page 152.

146 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.1 — Process Attributes & Model Associations

correlationSubscriptions: correlationSubscriptions are a feature of context-based correlation
CorrelationSubscription [0..*] (cf. sub clause 8.3.3). CorrelationSubscriptions are used to
correlate incoming Messages against data in the Process context. A
Process MAY contain several correlationSubscriptions.

definitionalCollaborationRef: For Processes that interact with other Participants, a definitional
Collaboration [0..1] Collaboration can be referenced by the Process. The definitional
Collaboration specifies the Participants the Process interacts with,
and more specifically, which individual service, Send or Receive Task,
or Message Event, is connected to which Participant through
Message Flows. The definitional Collaboration need not be
displayed.

Additionally, the definitional Collaboration can be used to include
Conversation information within a Process.

In addition, a Process instance has attributes whose values MAY be referenced by Expressions (see Table 10.2).
These values are only available when the Process is being executed.

Table 10.2 — Process instance attributes

Attribute Name Description/Usage

state: string = None See Figure 13.2 ("The Lifecycle of a BPMN Activity") in
Section 13.3.2 for permissible values.

10.2 Basic Process Concepts

10.2.1 Types of BPMN Processes

Business Process modeling is used to communicate a wide variety of information to a wide variety of audiences.
BPMN is designed to cover many types of modeling and allows the creation of end-to-end Business Processes. There
are three basic types of BPMN Processes:

1. Private Non-executable (internal) Business Processes
2. Private Executable (internal) Business Processes

3. PublicProcesses

10.2.1.1 Private (Internal) Business Processes

Private Business Processes are those internal to a specific organization. These Processes have been generally
called workflow or BPM Processes (see Figure 10.4). Another synonym typically used in the Web services areais the
Orchestration of services. There are two types of private Processes: executable and non-executable. An executable
Process isaProcess that has been modeled for the purpose of being executed according to the semantics defined in
Clause 14 (see page 426). Of course, during the development cycle of the Process, there will be stages where the

© ISO/IEC 2013 - All rights reserved 147

ISO/IEC 19510:2013(E)

Process does not have enough detail to be “executable.” A non-executable Process is aprivate Process that has been
modeled for the purpose of documenting Process behavior at a modeler-defined level of detail. Thus, information
needed for execution, such as formal condition Expressions are typically not included in a non-executable Process.

If a swimlanes-like notation is used (e.g., a Collaboration, see below), then a private Business Process will be
contained within a single Pool. The Process flow is therefore contained within the Pool and cannot cross the
boundaries of the Pool. The flow of Messages can cross the Pool boundary to show the interactions that exist between
separate private Business Processes.

Determine Check etermine Approve N Notify
. - Apphcant of
Order is Record of Premium of or Reject
Complete Applicant Policy Policy Approval or
Rejection

Figure 10.4 — Example of a private Business Process

10.2.1.2 Public Processes

A public Process represents the interactions between a private Business Process and another Process or
Participant (see Figure 10.5). Only those Activities that are used to communicate to the other Participant(s), plus the
order of these Activities, are included in the public Process. All other “internal” Activities of the private Business
Process are not shown in the public Process. Thus, the public Process shows to the outside world the Messages,
and the order of these Messages, that are needed to interact with that Business Process. Public Processes can be
modeled separately or within a Collaboration to show the flow of Messages between the public Process Activities
and other Participants. Note that the public type of Process was named “abstract” in BPMN 1.2.

Patient

T ? | feeTsick Pickup yo? medicine T Here is yoﬁ medicine

and you can leave
| want to gee doctor -
1 Go sel%doctor | | need myI‘nedu:me |

Recelve Receive Send Rece|ve send
Doctor Send Appt. Symptoms Prescription Medicine Medicine
Request ymp Pickup Request

Figure 10.5 — Example of a public Process

10.2.2 Use of BPMN Common Elements

Some BPMN elements are common to both Process and Choreography, as well as Collaboration; they are used in
these diagrams. The next few sub clauses will describe the use of Messages, Message Flows, Participants,
Sequence Flows, Artifacts, Correlations, Expressions, and Services in Choreography.

The key graphical elements of Gateways and Events are also common to both Choreography and Process. Since
their usage has a large impact, they are described in major sub clauses of this clause (see page 232 for Events and page
286 for Gateways).

148 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

10.3 Activities

An Activity iswork that is performed within a Business Process. An Activity can be atomic or non-atomic
(compound). The types of Activities that are a part of a Process are: Task, Sub-Process, and Call Activity, which
allows the inclusion of re-usable Tasks and Processes in the diagram. However, a Process is not a specific graphical
object. Instead, it is a set of graphical objects. The following sub clauses will focus on the graphical objects Sub-
Process and Task.

Activities represent pointsin a Process flow where work is performed. They are the executable elements of a BPMN
Process.

The Activity class is an abstract element, sub-classing from FlowElement (as shown in Figure 10.6).

Concrete sub-classes of Activity specify additional semantics above and beyond that defined for the generic Activity.

Tou kDol gk Sgeecilicalion

(rem Data) e ; |.rf:,ni.'mn] ;
DatalnpartAssociation ol Comaer) E e TS
I Name !
0.1 - iaSpecication (rom Diska)
* '+ fowElements
* | + datalnoutAssociations
Datatultpast Association
{From Data} Property [SequenceFlow
. {From Dt s) (i Comman
+ CataluiDULASECCItIoNS £ name : Sting £ Kimmeadate - Bockean
+ prope les .+ v dafadt 0.1
0.1 0.1
.1 1 1 + oL
— ACELY Mowflement sConlainer
[Fram Btikizs] flrem Commen)]
& BForCompsngation ; Bockaan
& StartQuantity © Integer
£ complstiondauantity : Intege
0.1 a1 & attachid ToRef 1
Callactivity Task - SubProcess
. R [Fram Activies) (Froem Activies) (from Artivities)
- & UigperediyDvent | Doskan
ResourceRcle
(Freen Brtrvities] w
& Name ; String 0.1 + loopCharactenistics Qi.l| 5 cadodBlemontiof .
boundaryEventfeds
LoopCharacteristics CalldeElervert * € anit
Perlormer (From Acthitics) w':':ﬁm.:' (Freem Evernts)
{frem Process) i@ rame : Shing & carcelActvity : Boclean
= StandardLoopCharactenistics Multilnstancel sopCharacteristics
{irem Botiviies] [Froem Ackrabees)

I testBefore @ Doclean & Eseguentia @ Bockean

& beharion ; MultiiretanceBehavion

Figure 10.6 — Activity class diagram

The Activity class is the abstract super class for all concrete Activity types.

The Activity element inherits the attributes and model associations of FlowElement (see Table 8.44). Table 10.3
presents the additional attributes and model associations of the Activity element.

© ISO/IEC 2013 - All rights reserved 149

ISO/IEC 19510:2013(E)

Table 10.3 — Activity attributes and model associations

Attribute Name

Description/Usage

isForCompensation: boolean = false

A flag that identifies whether this Activity is intended for the purposes of
compensation.

If false, then this Activity executes as a result of normal execution flow.
If true, this Activity is only activated when a Compensation Event is
detected and initiated under Compensation Event visibility scope (see
page 280 for more information on scopes).

loopCharacteristics:
LoopCharacteristics [0..1]

An Activity MAY be performed once or MAY be repeated. If repeated,
the Activity MUST have loopCharacteristics that define the repe-
tition criteria (if the i sExecutable attribute of the Process is set to
true).

resources: ResourceRole [0..*]

Defines the resource that will perform or will be responsible for the
Activity. The resource, e.g., a performer, can be specified in the form of
a specific individual, a group, an organization role or position, or an orga-
nization.

default: SequenceFlow [0..1]

The Sequence Flow that will receive a token when none of the
conditionExpressions on other outgoing Sequence Flows evalu-
ate to true. The default Sequence Flow should not have a
conditionExpression. Any such Expression SHALL be ignored.

ioSpecification: Input
OutputSpecification [0..1]

The InputOutputSpecification defines the inputs and outputs and
the InputSets and OutputSets for the Activity. See page 210 for
more information on the InputOutputSpecification.

properties: Property [0..*]

Modeler-defined properties MAY be added to an Activity. These
properties are contained within the Activity.

boundaryEventRefs:
BoundaryEvent [0..*]

This references the Intermediate Events that are attached to the
boundary of the Activity.

datalnputAssociations:
DatalnputAssociation [0..*]

An optional reference to the DataInputAssociations. A
DataInputAssociation defines how the Datalnput of the Activity’s
InputOutputSpecification will be populated.

dataOutputAssociations:
DataOutputAssociation [0..*]

An optional reference to the DataOutputAssociations.

startQuantity: integer = 1

The default value is 1. The value MUST NOT be less than 1. This attri-
bute defines the number of tokens that MUST arrive before the

Activity can begin. Note that any value for the attribute that is greater
than 1 is an advanced type of modeling and should be used with caution.

150

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.3 — Activity attributes and model associations

completionQuantity: integer = 1 The default value is 1. The value MUST NOT be less than 1. This attri-
bute defines the number of tokens that MUST be generated from the
Activity. This number of tokens will be sent done any outgoing
Sequence Flow (assuming any Sequence Flow conditions are satis-
fied). Note that any value for the attribute that is greater than 1 is an
advanced type of modeling and should be used with caution.

In addition, an Activity instance has attributes whose values MAY be referenced by Expressions. These values are
only available when the Activity is being executed.

Table 10.4 presents the instance attributes of the Activity element.

Table 10.4 — Activity instance attributes

Attribute Name Description/Usage

state: string = None See Figure 13.2 ("The Lifecycle of a BPMN Activity") in Section 13.3.2
for permissible values.

Sequence Flow Connections
See “ Sequence Flow Connections Rules’ on page 40 for the entire set of objects and how they MAY be sources or targets
of Sequence Flows.

€ AnActivity MAY be atarget for Sequence Flows; it can have multiple incoming Sequence Flows. Incoming
Sequence Flows MAY be from an alternative path and/or parallel paths.
€ |f the Activity does not have anincoming Sequence Flow, then the Activity MUST be instantiated when the
Process isinstantiated.

€ There are two exceptions to this: Compensation Activities and Event Sub-Processes.

NOTE: If the Activity has multiple incoming Sequence Flows, then thisis considered uncontrolled flow. This means that
when atoken arrives from one of the Paths, the Activity will be instantiated. It will not wait for the arrival of tokens from the
other paths. If another token arrives from the same path or another path, then a separate instance of the Activity will be created.
If the flow needsto be controlled, then the flow should converge on aGateway that precedesthe Activities (see“ Gateways”
on page 286 for more information on Gateways).

€ AnActivity MAY beasourcefor Sequence Flows; it can have multiple outgoing Sequence Flows. If there

are multiple outgoing Sequence Flows, then this means that a separate parallel path isbeing created for each
Sequence Flow (i.e., tokens will be generated for each outgoing Sequence Flow from the Activity).

€ |f the Activity does not have an outgoing Sequence Flow, then the Activity marks the end of one or more
pathsin the Process. When the Activity ends and there are no other parallel paths active, then the Process

MUST be completed.
€ Thereare two exceptions to this: Compensation Activities and Event Sub-Processes.

Message Flow Connections

See “Message Flow Connection Rules’ on page 41 for the entire set of objects and how they MAY be sources or targets
of Message Flows.

© ISO/IEC 2013 - All rights reserved 151

ISO/IEC 19510:2013(E)

NOTE: All Message Flows MUST connect two separate Pools. They MAY connect to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

€ AnActivity MAY bethetarget of aMessage Flow; it can have zero (0) or more incoming Message Flows.

€ AnActivity MAY beasource of aMessage Flow; it can have zero (0) or more outgoing Message Flows.

10.3.1 Resource Assignment

The following sub clauses define how Resources can be defined for an Activity. Figure 10.7 displays the class diagram
for the BPMN elements used for Resource assignment.

| Process =] BaseElement
(From Process)) (from Foundation)
[Eg processType : ProcessType T Process 5id : String

[Eg isClosed ; Boolean

[Eg IsExecutable ; Boolean 0.1

+ resources \/ *
| ResourceRole
(From Activitizs)
[Eg name : 5tring
+ resources ™
E Activity 1
(From Activities)
[Eg, isForCompensation : Boolean
[Eg startQuantity : Integer 0.1
chompletionQuantity : Integer

| Performer
(from Process)

= HumanPerformer
(From HumanInteraction)

| ResourceParameter
(From Commen)
+ resourceParameters Eg name : String

. | EgisRequired : Boolean

+ parameterRef 1

1
+ resourceRef | Resource
(From Common)
* 0.1 Egname : String
1
+ resourceParameterBindings *
Q ResourceParameterBinding
" (From Activities)
0.1

+ eXpression 1
= Expression
(From Common)

+ expressiont 1

+ resourceAssignmentExpression

| PotentialOwner
(From HumanInteraction)

0.1
Q ResourceAssignmentExpression
0.1 (from Activities)

Figure 10.7 — The class diagram for assigning Resources

Resource Role

The ResourceRole element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
10.5 presents the additional model associations of the ResourceRole element.

152

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.5 — Resource Role model associations

Attribute Name Description/Usage

resourceRef: Resource [0..1] The Resource that is associated with Activity. Should not
be specified when resourceAssignmentExpression is
provided.

resourceAssignmentExpression: This defines the Expression used for the Resource

ResourceAssignmentExpression [0..1] assignment (see below). Should not be specified when a

resourceRef is provided.

resourceParameterBindings: Resource- This defines the Parameter bindings used for the
ParameterBinding [0..*] . . .

Resource assignment (see below). Is only applicable if a
resourceRef is specified.

Expression Assignment

Resources can be assigned to an Activity using Expressions. These Expressions MUST return Resource
entity related data types, like Users or Groups. Different Expressions can return multiple Resources. All of them
are assigned to the respective subclass of the ResourceRole element, for example as potential owners. The semantics
is defined by the subclass.

The ResourceAssignmentExpression element inherits the attributes and model associations of BaseElement
(see Table 8.5). Table 10.6 presents the additional model associations of the ResourceAssignmentExpression
element.

Table 10.6 — ResourceAssignmentExpression model associations

Attribute Name Description/Usage

expression: Expression The element ResourceAssignmentExpression MUST contain an
Expression which is used at runtime to assign resource(s) to a
ResourceRole element.

Parameterized Resource Assignment

Resources support query parameters that are passed to the Resource query at runtime. Parameters MAY refer to
Task instance data using Expressions. During Resource query execution, an infrastructure can decide which of the
Parameters defined by the Resource are used. It MAY use zero (0) or more of the Parameters specified. It MAY
also override certain Parameters with values defined during Resource deployment. The deployment mechanism for
Tasks and Resources is out of scope for this document. Resource queries are evaluated to determine the set of
Resources, e.0., people, assigned to the Activity. Failed Resource queries are treated like Resource queries that
return an empty result set. Resource queries return one Resource or a set of Resources.

The ResourceParameterBinding element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 10.7 presents the additional model associations of the ResourceParameterBinding element.

© ISO/IEC 2013 - All rights reserved 153

ISO/IEC 19510:2013(E)

Table 10.7 — ResourceParameterBinding model associations

Attribute Name Description/Usage

parameterRef: ResourceParameter Reference to the parameter defined by the Resource.

expression: Expression The Expression that evaluates the value used to bind the
ResourceParameter.

10.3.2 Performer

The Performer class defines the resource that will perform or will be responsible for an Activity. The performer can
be specified in the form of a specific individual, a group, an organization role or position, or an organization.

The Performer element inherits the attributes and model associations of BaseElement (see Table 8.5) through its
relationship to ResourceRole, but does not have any additional attributes or model associations.

10.3.3 Tasks

A Task is an atomic Activity within aProcess flow. A Task is used when the work in the Process cannot be broken
down to afiner level of detail. Generally, an end-user and/or applications are used to perform the Task when it is
executed.

A Task object shares the same shape as the Sub-Process, which is arectangle that has rounded corners (see Figure
10.8).
€ A Task isarounded corner rectangle that MUST be drawn with asingle thin line.

€ Theuse of text, color, size, and linesfor aTask MUST follow the rules defined in “ Use of Text, Color,
Size, and Linesin a Diagram” on page 39.

€ A boundary drawn with athick line SHALL bereserved for Call Activity (Global Tasks)
(see page 186).

€ A boundary drawn with a dotted line SHALL be reserved for Event Sub-Processes (see page 174) and
thus are not alowed for Tasks.

€ A boundary drawn with adouble line SHALL be reserved for Transaction Sub-Processes
(see page 176) and thus are not allowed for Tasks.

Figure 10.8 — A Task object

BPMN specifies three types of markers for Task: aLoop marker or a Multi-Instance marker and a Compensation
marker. A Task MAY have one or two of these markers (see Figure 10.9).

154 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

€ Themarker for aTask that is a standard loop MUST be asmall line with an arrowhead that curls back upon itself.
See page 188 for more information on loop Activities.

€ Theloop Marker MAY be used in combination with the compensation marker.

€ Themarker for aTask that is a multi-instance MUST be a set of three vertical lines. See page 190 for more
information on multi-instance Activities.
€ If the multi-instance instances are set to be performed in sequence rather than parallel, then the marker will be
rotated 90 degrees (see Figure 10.49).

€ Themulti-instance marker MAY be used in combination with the compensation marker.

¢ Themarker for a Task that is used for compensation MUST be a pair of Ieft facing triangles (like a tape player
“rewind” button). See page 301 for more information on compensation.

€ TheCompensation Marker MAY be used in combination with the loop marker or the multi-instance marker.

All the markers that are present MUST be grouped and the whole group centered at the bottom of the shape.

Loop Multi-Instance Compensation

@,

Figure 10.9 — Task markers

Figure 10.10 displays the class diagram for the Task element.

=] Activity
(From Activities) +ioSpecification |] InputOutputSpecification
[Eg isForCompensation : Boolean (From Data)

[Eg startQuantity : Integer 0.1 0.1
Eg completionQuantity ; Integer

= Task

(from Activities)

=] BusinessRuleTask
(From Activities)
Eg implementation : String

| SendTask QF_SBWKE.T.aSR =] ManualTask
(From Activities) : (Iom_ P.ctlwtle.s) (from HumanInteraction)
& implemnentation : String [Eg implementation ; String
B imple :

| ReceiveTask =] userTask =] ScriptTask
(From Activities) (From HumanInteraction) (from Activities)
== implernentation @ String == implementation : String [scriptFormat @ String

[Eg instantiate : Boaolean [script © 5tring

Figure 10.10 — The Task class diagram

The Task inherits the attributes and model associations of Activity (see Table 10.3). There are no further attributes or
model associations of the Task.

© ISO/IEC 2013 - All rights reserved 155

ISO/IEC 19510:2013(E)

10.3.3.1 Types of Tasks

There are different types of Tasks identified within BPMN to separate the types of inherent behavior that Tasks might
represent. The list of Task types MAY be extended along with any corresponding indicators. A Task which is not further
specified is called Abstract Task (this was referred to as the None Task in BPMN 1.2). The notation of the Abstract
Task is shown in Figure 10.8.

Service Task
A Service Task is a Task that uses some sort of service, which could be a Web service or an automated application.
A Service Task object shares the same shape as the Task, which is arectangle that has rounded corners. However, there

is a graphical marker in the upper left corner of the shape that indicates that the Task is a Service Task (see Figure
10.12).

A Service Task is arounded corner rectangle that MUST be drawn with a single thin line and includes a marker that
distinguishes the shape from other Task types (as shown in Figure 10.11).

\\ J/

Figure 10.11 — A Service Task Object

The Service Task inherits the attributes and model associations of Activity (see Table 10.3). In addition the following
constraints are introduced when the Service Task references an Operation: The Service Task has exactly one
inputSet and at most one outputSet. It hasasingle Data Input with an TtemDefinition equivalent to the one
defined by the Message referenced by the inMessageRef attribute of the associated Operation. If the
Operation defines output Messages, the Service Task has a single Data Output that hasan ITtemDefinition
equivalent to the one defined by the Message referenced by the outMessageRef attribute of the associated
Operation.

The actual Participant whose service is used can be identified by connecting the Service Task to a Participant using a
Message Flows within the definitional Collaboration of the Process — see Table 10.1.

156 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

= Activity

(From Activities)
[Eg isForCompensation Boolean
[Eg startQuantity : Integer
==Y completionQuantity ; Integer

=] Message
(from Comman)
[5g name : 5ting

+ outMessageRef (0.1 1 |+ inMessageRef
= Task
(From Activities)
- -
| serviceTask _ = Operation
(From Activities) + operationRef (From Service)
== implementation : String " 0 [5g name : 5ting

[5g implementationRef | Element
+ operations | 1..*

1

= Interface
(From Service)

[Eg name : String

g implementationRef : Element

Figure 10.12 — The Service Task class diagram

The Service Task inherits the attributes and model associations of Activity (see Table 10.3). Table 10.8 presents
additional the model associations of the Service Task.

Table 10.8 — Service Task model associations

Attribute Name Description/Usage

implementation: string = ##webService This attribute specifies the technology that will be used to
send and receive the Messages. Valid values are "##unspec-
ified" for leaving the implementation technology open,
"##WebService" for the Web service technology or a URI
identifying any other technology or coordination protocol. A
Web service is the default technology.

operationRef: Operation [0..1] This attribute specifies the operation that is invoked by the
Service Task.

Send Task

A Send Task isasimple Task that is designed to send a Message to an external Participant (relative to the
Process). Once the Message has been sent, the Task is completed.

The actual Participant which the Message is sent can be identified by connecting the Send Task to a Participant using
a Message Flows within the definitional Collaboration of the Process (see Table 10.1).

A Send Task object shares the same shape as the Task, which is a rectangle that has rounded corners. However, there is
afilled envelope marker (the same marker as a throw Message Event) in the upper left corner of the shape that
indicates that the Task is a Send Task.

© ISO/IEC 2013 - All rights reserved 157

ISO/IEC 19510:2013(E)

A Send Task is arounded corner rectangle that MUST be drawn with a single thin line and includes a filled envelope
marker that distinguishes the shape from other Task types (as shown in Figure 10.13).

f)

\, 7

Figure 10.13 — A Send Task Object

H Activity
(From Activities)
[Eg IsForCompensation : Boolean
g startQuantity @ Integer

= Task
(From Activities)

| sendTask | ReceiveTask
(From Activities) (From Activities)
Eg implernentation : String == implementation : String

[Eg instantiate : Boolean

- -

+ messageRef /0.1 0..1. |4 messageRef

] Message
(From Common)
[Eg name : 5tring

+ outMessageRef’ 0.1 1 + inMessageRef

- -

| Operation
(From Service)

0..1 ‘% pperationRef 0..1'//+ pperationRef

[Eg name : String
[Eg implementationRef : Element

Figure 10.14 — The Send Task and Receive Task class diagram

The Send Task inherits the attributes and model associations of Activity (see Table 10.3). In addition the following
constraints apply when the Send Task references a Message: The Send Task has at most one inputSet and one
Data Input. If the Data Input is present, it MUST have an ItemDefinition equivalent to the one defined by the
associated Message. At execution time, when the Send Task is executed, the data automatically moves from the Data
Input on the Send Task into the Message to be sent. If the Data Input is not present, the Message will not be
populated with data from the Process.

Table 10.9 presents the additional model associations of the Send Task.

158 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.9 — Send Task model associations

Attribute Name Description/Usage

messageRef: Message [0..1] A Message for the messageRef attribute MAY be entered. This indicates that
the Message will be sent by the Task. The Message in this context is
equivalent to an out-only message pattern (Web service). One or more
corresponding outgoing Message Flows MAY be shown on the diagram.
However, the display of the Message Flows is NOT REQUIRED. The Message
is applied to all outgoing Message Flows and the Message will be sent down
all outgoing Message Flows at the completion of a single instance of the Task.

operationRef: Operation This attribute specifies the operation that is invoked by the Send Task.
implementation: string = This attribute specifies the technology that will be used to send and receive the
##webService

Messages. Valid values are "##unspecified" for leaving the implementation
technology open, "##WebService" for the Web service technology or a URI
identifying any other technology or coordination protocol A Web service is the
default technology.

Receive Task

A Receive Task isasimple Task that is designed to wait for a Message to arrive from an external Participant
(relative to the Process). Once the Message has been received, the Task is completed.

The actual Participant from which the Message is received can be identified by connecting the Receive Task to a
Participant using a Message Flows within the definitional Collaboration of the Process — see Table 10.1.

A Receive Task is often used to start a Process. In a sense, the Process is bootstrapped by the receipt of the
Message. In order for the Receive Task to instantiate the Process its instantiate attribute MUST be set to true
and it MUST NOT have any incoming Sequence Flow.

A Receive Task object shares the same shape as the Task, which is arectangle that has rounded corners. However, there
is an unfilled envelope marker (the same marker as a catch Message Event) in the upper left corner of the shape that
indicates that the Task is a Receive Task.

A Receive Task is arounded corner rectangle that MUST be drawn with a single thin line and includes an unfilled
envelope marker that distinguishes the shape from other Task types (as shown in Figure 10.15). If the instantiate
attribute is set to true, the envelope marker looks like a Message Start Event (as shown in Figure 10.16).

™

Figure 10.15 — A Receive Task Object

© ISO/IEC 2013 - All rights reserved 159

ISO/IEC 19510:2013(E)

Figure 10.16 — A Receive Task Object that instantiates a Process

The Receive Task inherits the attributes and model associations of Activity (see Table 10.3). In addition the following
constraints apply when the Receive Task references aMessage: The Receive Task has at most one outputSet and
at most one Data output. If the Data output is present, it MUST have an TtemDefinition equivalent to the one
defined by the associated Message. At execution time, when the Receive Task is executed, the data automatically
moves from the Message to the Data Output on the Receive Task. If the Data Output is not present, the payload
within the Message will not flow out of the Receive Task and into the Process.

Table 10.10 presents the additional attributes and model associations of the Receive Task.

Table 10.10 — Receive Task attributes and model associations

Attribute Name Description/Usage

messageRef: Message[0..1] A Message for the messageRef attribute MAY be entered. This indicates
that the Message will be received by the Task. The Message in this context
is equivalent to an in-only message pattern (Web service). One (1) or more
corresponding incoming Message Flows MAY be shown on the diagram.
However, the display of the Message Flows is NOT REQUIRED. The
Message is applied to all incoming Message Flows, but can arrive for only
one (1) of the incoming Message Flows for a single instance of the Task.

instantiate: boolean = false Receive Tasks can be defined as the instantiation mechanism for the
Process with the instantiate attribute. This attribute MAY be set to true if
the Task is the first Activity (i.e., there are no incoming Sequence Flows).
Multiple Tasks MAY have this attribute set to true.

operationRef: Operation This attribute specifies the operation through which the Receive Task
receives the Message.

implementation: string = This attribute specifies the technology that will be used to send and receive
f#webService the Messages. Valid values are "##unspecified" for leaving the implementa-
tion technology open, "##WebService" for the Web service technology or a
URI identifying any other technology or coordination protocol A Web service
is the default technology.

User Task

A User Task is atypical “workflow” Task where a human performer performs the Task with the assistance of a
software application and is scheduled through a task list manager of some sort.

160 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

A User Task is arounded corner rectangle that MUST be drawn with a single thin line and includes a human figure
marker that distinguishes the shape from other Task types (as shown in Figure 10.17).

= ,

\ J

Figure 10.17 — A User Task Object

See “User Task” on page 160 within the larger section of “Human Interactions” for the details of User Tasks.

Manual Task
A Manual Task is a Task that is expected to be performed without the aid of any business process execution engine or
any application. An example of this could be a telephone technician installing a telephone at a customer location.

A Manual Task is arounded corner rectangle that MUST be drawn with a single thin line and includes a hand figure
marker that distinguishes the shape from other Task types (as shown in Figure 10.17).

&=

\. J

Figure 10.18 — A Manual Task Object

See “Manual Task” on page 163 within the larger section of “Human Interactions’ for the details of Manual Tasks.

Business Rule

A Business Rule Task provides a mechanism for the Process to provide input to a Business Rules Engine and to get
the output of calculations that the Business Rules Engine might provide. The InputOutputSpecification of the
Task (see page 210) will allow the Process to send data to and receive data from the Business Rules Engine.

A Business Rule Task object shares the same shape as the Task, which is a rectangle that has rounded corners.
However, there is a graphical marker in the upper left corner of the shape that indicates that the Task is a Business
Rule Task (see Figure 10.11).

A Business Rule Task isarounded corner rectangle that MUST be drawn with a single thin line and includes a marker
that distinguishes the shape from other Task types (as shown in Figure 10.19).

© ISO/IEC 2013 - All rights reserved 161

ISO/IEC 19510:2013(E)

=

\ S

Figure 10.19 — A Business Rule Task Object

The Business Rule Task inherits the attributes and model associations of Activity (see Table 10.3). Table 10.11
presents the additional attributes of the Business Rule Task.

Table 10.11 — Business Rule Task attributes and model associations

Attribute Name Description/Usage
implementation: string = This attribute specifies the technology that will be used to implement the
##unspecified Business Rule Task. Valid values are "##unspecified" for leaving the

implementation technology open, "##WebService" for the Web service
technology or a URI identifying any other technology or coordination protocol.
The default technology for this task is unspecified.

Script Task

A Script Task is executed by a business process engine. The modeler or implementer defines a script in a language that
the engine can interpret. When the Task is ready to start, the engine will execute the script. When the script is completed,
the Task will also be completed.

A Script Task object shares the same shape as the Task, which is a rectangle that has rounded corners. However, there
is a graphical marker in the upper left corner of the shape that indicates that the Task is a Script Task (see Figure
10.11).

A Script Task is arounded corner rectangle that MUST be drawn with a single thin line and includes a marker that
distinguishes the shape from other Task types (as shown in Figure 10.20).

7

=1

Figure 10.20 — A Script Task Object

The Script Task inherits the attributes and model associations of Activity (see Table 10.3). Table 10.12 presents the
additional attributes of the Script Task.

162 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.12 — Script Task attributes

Attribute Name Description/Usage

scriptFormat: string [0..1] Defines the format of the script. This attribute value MUST be specified with a
mime-type format. And it MUST be specified if a script is provided.

script: string [0..1] The modeler MAY include a script that can be run when the Task is per-
formed. If a script is not included, then the Task will act as the equivalent of
an Abstract Task.

10.3.4 Human Interactions

10.3.4.1 Tasks with Human involvement

In many business workflows, human involvement is needed to complete certain Tasks specified in the workflow model.
BPMN specifies two different types of Tasks with human involvement, the Manual Task and the User Task.

A User Task is executed by and managed by a business process runtime. Attributes concerning the human involvement,
like people assignments and Ul rendering can be specified in great detail. A Manual Task is neither executed by nor
managed by a business process runtime.

Notation

Both, the Manual Task and User Task share the same shape, which is a rectangle that has rounded corners. Manual
Tasks and User Tasks have alcons to indicate the human involvement is REQUIRED to complete the Task (see Figure
10.15 and Figure 10.17).

Manual Task

A Manual Task is a Task that is not managed by any business process engine. It can be considered as an unmanaged
Task, unmanaged in the sense of that the business process engine doesn’t track the start and completion of such a Task.
An example of this could be a paper based instruction for a telephone technician to install a telephone at a customer
location.

-

=] Activity | ResourceRole
(From Activities) (From Activities)
g, isForCompensation : Boolean 0.1 + resources | g name : String

[Eg startQuantity © Integer
=) completionQuantity ; Integer

| Task

(From Activities)

IManualTask | Performer
(From Process)
(From HumanInteraction)

Figure 10.21 — Manual Task class diagram

© ISO/IEC 2013 - All rights reserved 163

ISO/IEC 19510:2013(E)

The User Task inherits the attributes and model associations of Activity (see Table 10.3), but does not have any
additional attributes or model associations.

User Task

A User Task is atypical “workflow” Task where a human performer performs the Task with the assistance of a
software application. The lifecycle of the Task is managed by a software component (called task manager) and is
typically executed in the context of a Process.

= Activity * = ResourceRole
(from Activities) (From Activities)
[Eg isForCompensation : Boolean 0.1 + resources g name : String

[startQuantity : Integer
== completionQuantity : Integer

= Task | Performer
(From Activities)

= userTask * -
(From HumanInteraction) + usertask g Renderlng_
g implementation : String 01 + renderings (from Humanlnteraction)

Figure 10.22 — User Task class diagram

The User Task can be implemented using different technologies, specified by the implementation attribute. Besides
the Web service technology, any technology can be used. A User Task for instance can be implemented using WS-
HumanTask by setting the implementation attribute to “http://docs.oasis-open.org/ns/bpel 4peopl e/ws-humantask/protocol/
200803.”

The User Task inherits the attributes and model associations of Activity (see Table 10.3). Table 10.13 presents the
additional attributes and model associations of the User Task. If implementations extend these attributes (e.g., to
introduce subjects or descriptions with presentation parameters), they SHOULD use attributes defined by the OASIS WS-
HumanTask specification.

Table 10.13 — User Task attributes and model associations

Attribute Name Description/Usage
implementation: string = This attribute specifies the technology that will be used to implement the
##unspecified User Task. Valid values are "##unspecified" for leaving the implementation

technology open, "##WebService" for the Web service technology or a URI
identifying any other technology or coordination protocol. The default tech-
nology for this task is unspecified.

renderings: Rendering [0..”] This attributes acts as a hook which allows BPMN adopters to specify task
rendering attributes by using the BPMN Extension mechanism.

164 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

The User Task inherits the instance attributes of Activity (see Table 8.49). Table 10.14 presents the instance attributes
of the User Task element.

Table 10.14 — User Task instance attributes

Attribute Name Description/Usage

actualOwner: string Returns the “user” who picked/claimed the User task and became the actual
owner of it. The value is a literal representing the user’s id, email address
etc.

taskPriority: integer Returns the priority of the User Task.

Rendering of User Tasks

BPMN User Tasks need to be rendered on user interfaces like forms clients, portlets, etc. The Rendering element
provides an extensible mechanism for specifying Ul renderings for User Tasks (Task Ul). The element is optional. One
or more rendering methods can be provided in a Task definition. A User Task can be deployed on any compliant
implementation, irrespective of the fact whether the implementation supports specified rendering methods or not. The
Rendering element is the extension point for renderings. Things like language considerations are opaque for the
Rendering element because the rendering applications typicaly provide Multilanguage support. Where this is not the
case, providers of certain rendering types can decide to extend the rendering type in order to provide language
information for a given rendering. The content of the rendering element is not defined by this International Standard.

Human Performers

People can be assigned to Activities in various roles (called “generic human roles’ in WS-HumanTask). BPMN 1.2
traditionally only has the Performer role. In addition to supporting the Performer role, BPMN 2.0 defines a specific
HumanPerformer element allowing specifying more specific human roles as specialization of HumanPerformer, such as
Potential Owner.

| Documentation . 1 | BaseElement
(from Foundation) (From Foundation)

Eg text : Stnng 4 documentation |_q;|d 1 String

[Eg textFormat @ String
+ resources
=] Activity
(From Activities)

g isForCompensation : Boolean (0.1

| ResourceRole
" (From Activities)

=] Performer
(From Process)

= HumanPerformer
(From HumanInteraction)

= PotentialOwner
(From HumanInteraction)

Figure 10.23 — HumanPerformer class diagram

© ISO/IEC 2013 - All rights reserved 165

ISO/IEC 19510:2013(E)

The HumanPerformer element inherits the attributes and model associations of ResourceRole (see Table 10.5),
through its relationship to Performer, but does not have any additional attributes or model associations.

Potential Owners

Potential owners of a User Task are persons who can claim and work on it. A potential owner becomes the actual owner
of a Task, usually by explicitly claiming it.

XML Schema for Human Interactions

Table 10.15 — ManualTask XML schema

<xsd:element name="manualTask" type="tManualTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tManualTask">

<xsd:complexContent>

<xsd:extension base="tTask"/>

</xsd:complexContent>
</xsd:complexType>

166 © ISO/IEC 2013 - All rights reserved

Table 10.16 — UserTask XML schema

<xsd:element name="userTask" type="tUserTask" substitutionGroup="flowElement"/>

<xsd:complexType name="tUserTask">
<xsd:complexContent>
<xsd:extension base="tTask">
<xsd:sequence>

<xsd:element ref="rendering" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="implementation" type="timplementation"

default="##unspecified"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="rendering" type="tRendering"/>
<xsd:complexType name="tRendering">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="timplementation">
<xsd:union memberTypes="xsd:anyURI">

<xsd:simpleType>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="##unspecified" />
<xsd:enumeration value="##WebService" />
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

167

ISO/IEC 19510:2013(E)

Table 10.17 — HumanPerformer XML schema

<xsd:element name="humanPerformer" type="tHumanPerformer" substitutionGroup="performer"/>
<xsd:complexType name="tHumanPerformer">
<xsd:complexContent>
<xsd:extension base="tPerformer">
<xsd:sequence>
<xsd:element ref="peopleAssignment" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Table 10.18 — PotentialOwner XML schema

<xsd:element name="potentialOwner" type="tPotentialOwner" substitutionGroup="performer"/>
<xsd:complexType name="tPotentialOwner">
<xsd:complexContent>
<xsd:extension base="tHumanPerformer"/>
</xsd:complexContent>
</xsd:complexType>

Examples

Consider the following sample procurement Process from the Buyer perspective (see Figure 10.24).

Handle
Order

Review
Order

Handle Approve
Quotations Order

Buyer

Handle
Shipment

Figure 10.24 — Procurement Process Example

The Process comprises of two User Tasks

» Approve Order: After the quotation handling, the order needs to be approved by some regional manager to continue
with the order and shipment handling.

168 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

» Review Order: Once the order has been shipped to the Buyer, the order and shipment documents will be reviewed
again by someone.

The details of the Resource and resource assignments are not shown in the BPMN above. See below XML sample of
the “Buyer” Process for the Resource usage and resource assignments for potential owners.

Table 10.19 — XML serialization of Buyer process

<?xml version="1.0" encoding="UTF-8"?>
<definitions id="Definition"
targetNamespace="http://www.example.org/UserTaskExample"
typeLanguage="http://www.w3.0rg/2001/XMLSchema"
expressionLanguage="http://www.w3.0rg/1999/XPath"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmins:tns="http://www.example.org/UserTaskExample">
<resource id="regionalManager" name="Regional Manager">
<resourceParameter id="buyerName" isRequired="true" name="Buyer Name" type="xsd:string"/>
<resourceParameter id="region" isRequired="false" name="Region" type="xsd:string"/>
</resource>

<resource id="departmentalReviewer" name="Departmental Reviewer">
<resourceParameter id="buyerName" isRequired="true" name="Buyer Name" type="xsd:string"/>
</resource>

<collaboration id="BuyerCollaboration" name="Buyer Collaboration">

<participant id="BuyerParticipant" name="Buyer" processRef="BuyerProcess"/>
</collaboration>

<!-- Process definition -->
<process id="BuyerProcess" hame="Buyer Process">

<laneSet id="BuyerLaneSet">
<lane id="BuyerLane">
<flowNodeRef>StartProcess</flowNodeRef>
<flowNodeRef>QuotationHandling</flowNodeRef>
<flowNodeRef>ApproveOrder</flowNodeRef>
<flowNodeRef>OrderApprovedDecision</flowNodeRef>
<flowNodeRef>TerminateProcess</flowNodeRef>
<flowNodeRef>OrderAndShipment</flowNodeRef>
<flowNodeRef>OrderHandling</flowNodeRef>
<flowNodeRef>ShipmentHandling</flowNodeRef>
<flowNodeRef>OrderAndShipmentMerge</flowNodeRef>
<flowNodeRef>ReviewOrder</flowNodeRef>
<flowNodeRef>EndProcess</flowNodeRef>
</lane>
</laneSet>

<startEvent id="StartProcess"/>

© ISO/IEC 2013 - All rights reserved 169

ISO/IEC 19510:2013(E)

<sequenceFlow sourceRef="StartProcess" targetRef="QuotationHandling"/>
<task id="QuotationHandling" name="Quotation Handling"/>
<sequenceFlow sourceRef="QuotationHandling" targetRef="ApproveOrder"/>

<userTask id="ApproveOrder" name="ApproveOrder">
<potentialOwner>
<resourceRef>tns:regionalManager</resourceRef>
<resourceParameterBinding parameterRef="tns:buyerName">
<formalExpression>getDatalnput(‘order)/address/name</formalExpression>
</resourceParameterBinding>
<resourceParameterBinding parameterRef="tns:region">
<formalExpression>getDatalnput(‘order’)/address/country</formalExpression>
</resourceParameterBinding>
</potentialOwner>
</userTask>

<sequenceFlow sourceRef="ApproveOrder" targetRef="OrderApprovedDecision"/>

<exclusiveGateway id="OrderApprovedDecision" gatewayDirection="Diverging"/>
<sequenceFlow sourceRef="OrderApprovedDecision" targetRef="OrderAndShipment">

<conditionExpression>Was the Order Approved?</conditionExpression>
</sequenceFlow>

<sequenceFlow sourceRef="OrderApprovedDecision" targetRef="TerminateProcess">
<conditionExpression>Was the Order NOT Approved?</conditionExpression>
</sequenceFlow>

<endEvent id="TerminateProcess">
<terminateEventDefinition id="TerminateEvent"/>
</endEvent>

<parallelGateway id="OrderAndShipment" gatewayDirection="Diverging"/>[

<sequenceFlow sourceRef="OrderAndShipment" targetRef="OrderHandling"/>
<sequenceFlow sourceRef="OrderAndShipment" targetRef="ShipmentHandling"/>

<task id="OrderHandling" name="0Order Handling"/>
<task id="ShipmentHandling" name="Shipment Handling"/>

<sequenceFlow sourceRef="0rderHandling" targetRef="OrderAndShipmentMerge"/>
<sequenceFlow sourceRef="ShipmentHandling" targetRef="OrderAndShipmentMerge"/>

<parallelGateway id="OrderAndShipmentMerge" gatewayDirection="Converging"/>
<sequenceFlow sourceRef="0OrderAndShipmentMerge" targetRef="ReviewOrder"/>

<userTask id="ReviewOrder" name="Review Order">
<potentialOwner>
<resourceRef>tns:departmentalReviewer</resourceRef>

170 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

<resourceParameterBinding parameterRef="tns:buyerName">
<formalExpression>getDatalnput(‘order’)/address/name</formalExpression>
</resourceParameterBinding>
</potentialOwner>
</userTask>

<sequenceFlow sourceRef="ReviewOrder" targetRef="EndProcess"/>
<endEvent id="EndProcess"/>

</process>
</definitions>

10.3.5 Sub-Processes

A Sub-Process is an Activity whose internal details have been modeled using Activities, Gateways, Events, and
Sequence Flows. A Sub-Process is a graphical object within a Process, but it also can be “opened up” to show a
lower-level Process. Sub-Processes define a contextual scope that can be used for attribute visibility, transactional
scope, for the handling of exceptions (see page 274 for more details), of Events, or for compensation (see page 301 for
more details).

There are different types of Sub-Processes, which will be described in the next five sub clauses.

Embedded Sub-Process (Sub-Process)
A Sub-Process object shares the same shape as the Task object, which is a rounded rectangle.
€ A Sub-Process isarounded corner rectangle that MUST be drawn with asingle thin line.

€ Theuseof text, color, size, and linesfor a Sub-Process MUST follow the rules defined in “Use of Text,
Color, Size, and Linesin aDiagram” on page 39 with the exception that:

€ A boundary drawn with athick line SHALL be reserved for Call Activity (Sub-Processes)
(see page 182).
€ A boundary drawn with adotted line SHALL be reserved for Event Sub-Processes (see page 174).

€ A boundary drawn with adouble line SHALL be reserved for Transaction Sub-Processes
(see page 176).

The Sub-Process can be in a collapsed view that hides its details (see Figure 10.25) or a Sub-Process can bein an
expanded view that shows its details within the view of the Process in which it is contained (see Figure 10.26). In the
collapsed form, the Sub-Process object uses a marker to distinguish it as a Sub-Process, rather than a Task.

€ TheSub-Process marker MUST be asmall square with aplus sign (+) inside. The square MUST be
positioned at the bottom center of the shape.

Collapsed
Sub-

Process

Figure 10.25 — A Sub-Process object (collapsed)

© ISO/IEC 2013 - All rights reserved 171

ISO/IEC 19510:2013(E)

Sub-Process
(Expanded)

2=

Figure 10.26 — A Sub-Process object (expanded)

They are used to create a context for exception handling that applies to a group of Activities (see page 274 for more
details). Compensations can be handled similarly (see page 301 for more details).

Expanded Sub-Processes can be used as a mechanism for showing a group of parallel Activities in aless-cluttered,
more compact way. In Figure 10.27, Activities “C” and “D” are enclosed in an unlabeled expanded Sub-Process.
These two Activities will be performed in parallel. Notice that the expanded Sub-Process does not include a Start
Event or an End Event and the Sequence Flows to/from these Events. This usage of expanded Sub-Processes for
“parallel boxes’ is the motivation for having Start and End Events being optional objects.

R
—
C
E
—

D
A

Figure 10.27 — Expanded Sub-Process used as a “Parallel Box”

BPMN specifies five types of standard markers for Sub-Processes. The (Collapsed) Sub-Process marker, seen in
Figure 10.24, can be combined with four other markers: aloop marker or a multi-instance marker, a Compensation
marker, and an Ad-Hoc marker. A collapsed Sub-Process MAY have one to three of these other markers, in all
combinations except that loop and multi-instance cannot be shown at the same time (see Figure 10.28).

€ Themarker for aSub-Process that loops MUST be asmall line with an arrowhead that curls back upon itself.

€ Theloop marker MAY be used in combination with any of the other markers except the multi-instance marker.
€ Themarker for aSub-Process that has multiple instances MUST be a set of three vertical linesin parallel.

€ Themulti-instance marker MAY be used in combination with any of the other markers except the loop marker.
€ Themarker for an ad-hoc Sub-Process MUST bea*“tilde” symbol.

€ Thead-hoc marker MAY be used in combination with any of the other markers.

€ Themarker for aSub-Process that is used for compensation MUST be a pair of left facing triangles (like atape
player “rewind” button).
€ TheCompensation marker MAY be used in combination with any of the other markers.

172 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

¢ All the markers that are present MUST be grouped and the whole group centered at the bottom of the
Sub-Process.

Compensation

Loop Multi-lInstance Compensation Ad-Hoc and Ad-Hoc

O[F [<KI[Fl [+~ <KI[F~

Figure 10.28 — Collapsed Sub-Process Markers

The Sub-Process now corresponds to the Embedded Sub-Process of BPMN 1.2. The Reusable Sub-Process of BPMN 1.2
corresponds to the Call Activity (calling a Process - see page 182). Figure 10.29 shows the class diagram related to Sub-
Processes.

= Activity
(From Activities)
[Eg isForCompensation : Boolean
[startQuantity : Integer
mcompletionQuantity 1 Integer

] LaneSet
(From Process)
[Eg name : 5tring
+ laneSets/|. *

+ flowElementsContainer b, 1

| subProcess = FlowElementsContainer
(From Activities) (From Comman)

g triggeredByEvent ; Boolean

0.1
+ artifacts, |, *
=] AdHocSubProcess = Transaction] Artifact
(From Activities) (From Activities) (from Artifacts)
[Eg ordering : AdHocOrdering [protocol @ String
[Eg cancelRemainingInstances : Boolean [Eg method : String
0.1
wenumeration» 1 .|+ completionCondition
] AdHocOrdering 5
(from Activities) Q [LT
(From Common)
= Parallel
=l Sequential

Figure 10.29- The Sub-Process class diagram

The Sub-Process element inherits the attributes and model associations of Activity (see Table 10.3) and of
FlowElementContainer (See Table 8.45). Table 10.3 presents the additional attributes of the Sub-Process element.

© ISO/IEC 2013 - All rights reserved 173

ISO/IEC 19510:2013(E)

Table 10.20 — Sub-Process attributes

Attribute Name Description/Usage

triggeredByEvent: boolean =false | A flag that identifies whether this Sub-Process is an
Event Sub-Process.
- |f false, then this Sub-Process is a normal Sub-Process.

« If true, then this Sub-Process is an Event Sub-Process and is subject
to additional constraints (see page 174).

artifacts: Artifact [0..] This attribute provides the list of Artifacts that are contained within the Sub-
Process.

Reusable Sub-Process (Call Activity)

The reusable Sub-Process of BPMN 1.2 corresponds to the Call Activity that calls a predefined Process. See details
of a Call Activity on page 182.

Event Sub-Process

An Event Sub-Process is aspecialized Sub-Process that is used within a Process (or Sub-Process). A Sub-
Process is defined as an Event Sub-Process when its triggeredByEvent attribute is set to true.

An Event Sub-Process is not part of the normal flow of its parent Process—there are no incoming or outgoing
Sequence Flows.

€ AnEvent Sub-Process MUST NOT have any incoming or outgoing Sequence Flows.

An Event Sub-Process MAY or MAY NOT occur while the parent Process is active, but it is possible that it will
occur many times. Unlike a standard Sub-Process, which uses the flow of the parent Process as a trigger, an Event
Sub-Process has a Start Event with atrigger. Each time the Start Event is triggered while the parent Process is
active, then the Event Sub-Process will start.

€ The Start Event of an Event Sub-Process MUST have adefined trigger.

€ The Start Event trigger (EventDefinition) MUST be from the following types: Message, Error,
Escalation, Compensation, Conditional, Signal,and Multiple (see page 259 for more details).

€ AnEvent Sub-Process MUST have one and only one Start Event.

An Event Sub-Process object shares the same basic shape as the Sub-Process object, which is a rounded rectangle.

€ AnEvent Sub-Process isarounded corner rectangle that MUST be drawn with a single thin dotted line (see
Figure 10.30 and Figure 10.31).

€ Theuse of text, color, size, and lines for an Event Sub-Process MUST follow the rules defined in “ Use of
Text, Color, Size, and Linesin a Diagram” on page 39 with the exception that:

€ If theEvent Sub-Process is collapsed, thenits Start Event will be used as a marker in the upper left
corner of the shape (see Figure 10.30).

174 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Event Sub-
Process

Expanded Event Sub-Process

Figure 10.31 — An Event Sub-Process object (expanded)

There are two possible consequences to the parent Process when an Event Sub-Process is triggered: 1) the parent
Process can be interrupted, and 2) the parent Process can continue its work (not interrupted). Thisis determined by the
type of Start Event that is used. See page 241 for the list of interrupting and non-interrupting Event Sub-Process
Start Events.

Figure 10.32 provides an example of a Sub-Process that includes three Event Sub-Processes. Thefirst Event Sub-
Process is triggered by a Message, does not interrupt the Sub-Process, and can occur multiple times. The second
Event Sub-Process is used for compensation and will only occur after the Sub-Process has completed. The third
Event Sub-Process handles errors that occur while the Sub-Process is active and will stop (interrupt) the Sub-
Process if triggered.

© ISO/IEC 2013 - All rights reserved 175

ISO/IEC 19510:2013(E)

Notify
—p»| Customer O
Retry Limit | nyalid cc
Exceeded

Booking
Book Flight
Y @)
Get Credit ‘ @
Card 8 Charge O
arg. Credit Card
Information

: Update Credit Card Information :

—_ Update
{ |Z|/ Credit Card .
Info :

4

Handle Compensation

Update

@ @ @ Customer ()

Booking Flight Hotel Record

.......... NoT

@ Customer O
i Retry Limit Failed

Bookin e

Error 2g Exceeded __Booking

®

Booking Booking
Error 1 Error 2

\

Figure 10.32 — An example that includes Event Sub-Processes

Transaction

A Transaction is a specialized type of Sub-Process that will have a special behavior that is controlled through a
transaction protocol (such as WS-Transaction). The boundary of the Sub-Process will be double-lined to indicate that it

isa Transaction (see Figure 10.33).
€ A Transaction Sub-Process isarounded corner rectangle that MUST be drawn with a double thin line.

€ Theuse of text, color, size, and linesfor atransaction Sub-Process MUST follow the rules defined in
“Use of Text, Color, Size, and Linesin aDiagram” on page 39.

176 © ISO/IEC 2013 - All rights reserved

N\

Bookings

Book FlightJ

Cancel
Flight
<«

Book Hotel

Send Hotel
Cancellation

<
L ——
\r Failed

Successful
Bookings

Bookings

Handle
through
Exceptions Customer
(Hazards) Service

Figure 10.33 — A Transaction Sub-Process

Successful
Bookings

Bookings

Send
=LU navailability

Failed
Bookings

Notice

Handle

through
Exceptions Customer
(Hazards) Service

Figure 10.34 — A Collapsed Transaction Sub-Process

= Unavailability

ISO/IEC 19510:2013(E)

The Transaction Sub-Process element inherits the attributes and model associations of Activities (see Table 10.3)
through its relationship to Sub-Process. Table 10.21 presents the additional attributes and model associations of the

Transaction Sub-Process.

© ISO/IEC 2013 - All rights reserved

177

ISO/IEC 19510:2013(E)

Table 10.21 — Transaction Sub-Process attributes and model associations

Attribute Name Description/Usage

method: TransactionMethod The method is an attribute that defines the Transaction method used to

commit or cancel a Transaction. For executable Processes, it SHOULD be
set to a technology specific URI, e.g., http://schemas.xmlsoap.org/
ws/2004/10/wsat for WS-AtomicTransaction, or http://
docs.oasis-open.org/ws-tx/wsba/2006/06/AtomicOutcome for
WS-BusinessActivity. For compatibility with BPMN 1.1, it can also be set to

"##compensate,” "##store," or "##image."

There are three basic outcomes of a Transaction:

1

Successful completion: thiswill be shown asanorma Sequence Flow that leavesthe Transaction Sub-
Process.

Failed completion (Cancel): When a Transaction is canceled, the Activities inside the Transaction will be sub-
jected to the cancellation actions, which could include rolling back the Process and compensation (see page 301 for
more information on compensation) for specific Activities. Note that other mechanismsfor interrupting a Transac-
tion Sub-Process will not cause compensation (e.g., Error, Timer, and anything for anon-Transaction Activity).
A Cancel Intermediate Event, attached to the boundary of the Activity, will direct the flow after the Transac-
tion has been rolled back and all compensation has been completed. The Cancel Intermediate Event can only be
used when attached to the boundary of aTransaction Sub-Process. It cannot be used in any normal flow and can-
not be attached to anon-Transaction Sub-Process. There are two mechanisms that can signal the cancellation of
aTransaction:

* A Cancel End Event is reached within the transaction Sub-Process. A Cancel End Event can only
be used within a transaction Sub-Process.

« A cancel Message can be received via the transaction protocol that is supporting the execution of the
Transaction Sub-Process.

Hazard: This means that something went terribly wrong and that a normal success or cancel is not possible. Error
Intermediate Events are used to show Hazards. When a Hazard happens, the Activity isinterrupted (without
compensation) and the flow will continue from the Error Intermediate Event.

The behavior at the end of a successful Transaction Sub-Process is dlightly different than that of a normal Sub-
Process. When each path of the Transaction Sub-Process reaches a non-Cancel End Event(s), the flow does not
immediately move back up to the higher-level parent Process, as does a normal Sub-Process. First, the transaction
protocol needs to verify that all the Participants have successfully completed their end of the Transaction. Most of the
time this will be true and the flow will then move up to the higher-level Process. But it is possible that one of the
Participants can end up with a problem that causes a Cancel or a Hazard. In this case, the flow will then move to the
appropriate Intermediate Event, even though it had apparently finished successfully.

178

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Ad-Hoc Sub-Process

An Ad-Hoc Sub-Process is a specialized type of Sub-Process that is agroup of Activities that have no REQUIRED
sequence relationships. A set of Activities can be defined for the Process, but the sequence and number of
performances for the Activities is determined by the performers of the Activities.

A Sub-Process ismarked as being ad-hoc with a“tilde” symbol placed at the bottom center of the Sub-Process shape
(see Figure 10.35 and Figure 10.36).

€ Themarker for an Ad-Hoc Sub-Process MUST bea*“tilde” symbol.
¢ TheAd-Hoc Marker MAY be used in combination with any of the other markers.

[F]~

Figure 10.35 — A collapsed Ad-Hoc Sub-Process

)
— O

P~

Figure 10.36 — An expanded Ad-Hoc Sub-Process

The Ad-Hoc Sub-Process element inherits the attributes and model associations of Activities (see Table 10.3) through
its relationship to Sub-Process. Table 10.22 presents the additional model associations of the Ad-Hoc Sub-Process.

© ISO/IEC 2013 - All rights reserved 179

ISO/IEC 19510:2013(E)

Table 10.22 — Ad-hoc Sub-Process model associations

Attribute Name Description/Usage

(éomplet.ionCondition: This Expression defines the conditions when the Process will end. When
xpression the Expression is evaluated to true, the Process will be terminated.

grdelrlir;g: AdHocOrdering = This attribute defines if the Activities within the Process can be performed in
aralle

parallel or MUST be performed sequentially. The default setting is parallel
and the setting of sequential is a restriction on the performance that can be
needed due to shared resources. When the setting is sequential, then only
one Activity can be performed at a time. When the setting is parallel, then
zero (0) to all the Activities of the Sub-Process can be performed in parallel.

{ Parallel | Sequential }

Eanlce'Remai”ing"”Sta“CGS: This attribute is used only if ordering is parallel. It determines whether running
oolean = true instances are canceled when the completionCondition becomes true.

Activities within the Process are generally disconnected from each other. During execution of the Process, any one or
more of the Activities MAY be active and they MAY be performed multiple times. The performers determine when
Activities will start, what the next Activity will be, and so on.

Examples of the types of Processes that are Ad-Hoc include computer code development (at a low level), sales
support, and writing a book chapter. If we look at the details of writing a book chapter, we could see that the Activities
within this Process include: researching the topic, writing text, editing text, generating graphics, including graphics in
the text, organizing references, etc. (see Figure 10.37). There MAY be some dependencies between Tasks in this
Process, such as writing text before editing text, but there is not necessarily any correlation between an instance of
writing text to an instance of editing text. Editing can occur infrequently and based on the text of many instances of the
writing text Task.

180 © ISO/IEC 2013 - All rights reserved

Research
the Topic

Generate

Graphics
11

Organize
References

&

Write a Book Chapter

Write/Edit

Text

Write Text

Include
Graphics in
Text

1! Finalize

Chapter

|| =~

Figure 10.37 — An Ad-Hoc Sub-Process for writing a book chapter

ISO/IEC 19510:2013(E)

Although there is no explicit Process structure, some sequence and data dependencies can be added to the details of the
Process. For example, we can extend the book chapter Ad-Hoc Sub-Process shown above and add Data Objects,
Data Associations, and even Sequence Flows (Figure 10.38).

Ad-Hoc Sub-Processes restrict the use of BPMN elements that would normally be used in Sub-Processes.

€ Thelist of BPMN elements that MUST be used in an Ad-Hoc Sub-Process: Activity.

€ Thelist of BPMN elementsthat MAY be used in an Ad-Hoc Sub-Process: Data Object, Sequence Flow,
Association, Data Association, Group, Message Flow (as a source or target), Gateway, and

Intermediate Event.

€ Thelist of BPMN elementsthat MUST NOT be used in an Ad-Hoc Sub-Process: Start Event, End Event,
Conversations (graphically), Conversation Links (graphically), and Choreography Activities.

© ISO/IEC 2013 - All rights reserved

181

ISO/IEC 19510:2013(E)

Write a Book Chapter

Write/Edit
e S Mo pe
R h Research
esearc Notes: Write Text |... : ;
the Topic : : :
. Grap;ics i Chapter Tex
VA completed : : [draft]
Include :
Generate) .
: Graphics in
Graphics
Text . .
n I Finalize
: Chapter
Organize J D :
References References v
Chapter
||| e [completed]

|\

Figure 10.38 — An Ad-Hoc Sub-Process with data and sequence dependencies

The Data Objects as inputs into the Tasks act as an additional constraint for the performance of those Tasks. The
performers still determine when the Tasks will be performed, but they are now constrained in that they cannot start the
Task without the appropriate input. The addition of Sequence Flows between the Tasks (e.g., between “Generate
Graphics’ and “Include Graphicsin Text”) creates a dependency where the performance of the first Task MUST be
followed by a performance of the second Task. This does not mean that the second Task isto be performed immediately,
but there MUST be a performance of the second Task after the performance of the first Task.

It is a challenge for a BPM engine to monitor the status of Ad-Hoc Sub-Processes, usualy these kind of Processes
are handled through groupware applications (such as e-mail), but BPMN allows modeling of Processes that are not
necessarily executable, although there are some process engines that can follow an Ad-Hoc Sub-Process. Given this, at
some point the Ad-Hoc Sub-Process will have complete and this can be determined by evaluating a
completionCondition that evaluates Process attributes that will have been updated by an Activity in the
Process.

10.3.6 Call Activity

A Call Activity identifies a point in the Process where a global Process or a Global Task is used. The Call
Activity acts as a ‘wrapper’ for the invocation of a global Process or Global Task within the execution. The
activation of a call Activity results in the transfer of control to the called global Process or Global Task.

The BPMN 2.0 Call Activity corresponds to the Reusable Sub-Process of BPMN 1.2. A BPMN 2.0 Sub-Process
corresponds to the Embedded Sub-Process of BPMN 1.2 (see the previous sub clause).

A Call Activity object shares the same shape as the Task and Sub-Process, which is a rectangle that has rounded
corners. However, the target of what the Activity calls will determine the details of its shape.

& |If theCall Activity callsaGlobal Task, then the shape will be the same as a Task, but the boundary of the
shape will MUST have athick line (see Figure 10.39).

182 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

€ TheCall Activity MUST display the marker of the type of G1lobal Task (e.g., the Call Activity would
display the User Task marker if callingaGlobal User Task).

& |If theCall Activity callsaProcess, then there are two options:

€ Thedetails of the caled Process can be hidden and the shape of the Call Activity will be the sameasa
collapsed Sub-Process, but the boundary of the shape MUST have athick line (see Figure 10.40).

If the details of the called Process are available, then the shape of the Call Activity will be the same as a expanded
Sub-Process, but the boundary of the shape MUST have a thick line (see Figure 10.41).

Figure 10.39 — A Call Activity object calling a Global Task

Figure 10.40 — A Call Activity object calling a Process (Collapsed)

Figure 10.41 — A Call Activity object calling a Process (Expanded)

When a Process with a definitional Collaboration, calls a Process that also has a definitional Collaboration, the
Participants of the two Collaborations can be matched to each other using ParticipantAssociations of the
Collaboration of the calling Process.

© ISO/IEC 2013 - All rights reserved 183

ISO/IEC 19510:2013(E)

A Call Activity MUST fulfill the data requirements, as well as return the data produced by the CallableElement
being invoked (see Figure 10.41). This means that the elements contained in the Call Activity’s
InputOutputSpecification MUST exactly match the elements contained in the referenced CallableElement.
Thisincludes DataInputs, DataOutputs, InputSets, and OutputSets.

] Activity
(From Activities)

| DatalInput

(From Data) + datalnputs

[isFarCompensation Boolean 0.1 [Eg name: : String N
g startQuantity : Integer g isCollection : Boolean
|_q—;,c0mpletionQuantity : Integer * | + datalnputRefs
] callActivity 1.* | + finputSetRefs
From Activities
() & Inputset
(From Data)
[5g name: ; 5tring
+ inputSets | 1..*
* | + cdledElementRef
+ ioSpecification | 0..1 1
0.1 1
= callableElement = InputOutputSpecification
(from Common) + ioSpecification (from Data)
[E& name : String
= 0.1
0.1 1

1..*4% outputSets

E OutputSet
] RootElement (From Data)
(From Foundation) g name : String
1.*| + foutputSetRefs

* |+ dataOutputRefs

| DataOutput
(from Data) *
[Eg name : 5tring

[Eg isCollection ; Boolean + dataCutputs

Figure 10.42 —The Call Activity class diagram

A Call Activity can override properties and attributes of the element being called, potentially changing the behavior of
the called element based on the calling context. For example, when the Call Activity defines one or more
ResourceRole elements, the elements defined by the CallableElement are ignored and the elements defined in the
Call Activity are used instead. Also, Events that are propagated along the hierarchy (errors and escalations) are
propagated from the called element to the Call Activity (and can be handled on its boundary).

The Call Activity inherits the attributes and model associations of Activity (see Table 10.3). Table 10.23 presents the
additional model associations of the Call Activity.

184 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.23 — CallActivity model associations

Attribute Name Description/Usage
E:OallﬁdElement: CallableElement The element to be called, which will be either a Process or a

GlobalTask. Other callableElements, such as Choreography,
GlobalChoreographyTask, Conversation, and
GlobalCommunication MUST NOT be called by the Call Conversation
element.

Callable Element

CallableElement is the abstract super class of all Activities that have been defined outside of a Process or
Choreography but which can be caled (or reused), by a Call Activity, from within a Process or Choreography. It
MAY reference Interfaces that define the service operations that it provides. The BPMN elements that can be called
by Call Activities (i.e., are CallableElements) are: Process and GlobalTask (see Figure 10.43).
CallableElements are RootElements, which can be imported and used in other Definitions. When
CallableElements (e.g., Process) are defined, they are contained within Definitions.

HootEement
[From Foundation]

+ calecElemanifiel

| Callabiekiement
- 0.1 [Frem Comman)
CallActivity N : Sling
[From Acteories | + inSpecicanan InputDutputSpeclication
{Foom Diaka)
0.1 0.1
1
Process
[From Process) 1%+ nputtats 1. & outpuirSets
& mocemTiDe : FrocenTips Inguitset OutputSat
& BCkerand © Booknan (hrom Daks) [From Diatal
3§ EEvaiutabls © Bodkean e Shing rme | S
+ reutDatabef 1 1 s cutputDatastaf
bt sk
[From Process) w .
+ ki L InputDutputBinding
(Feom Dinka)
= calabdeElomenty 2.1 =
+ dndrg | =
+ suppor it Tacefots
+ Dperationiel
Interlace
[Prom Servica] + OpRations - Diparation

& Name 1 51 {hvem Seivice)

& rolermenbationPgl ; Elsrriant 1 1% | 5 name o Shing
& mplementabionfted © Elemant

Figure 10.43 — CallableElement class diagram

The callableElement inherits the attributes and model associations of BaseElement (See Table 8.5) through its
relationship to RootElement. Table 10.24 presents the additional attributes and model associations of the
CallableElement.

© ISO/IEC 2013 - All rights reserved 185

ISO/IEC 19510:2013(E)

Table 10.24 — CallableElement attributes and model associations

Attribute Name

Description/Usage

name: string [0..1]

The descriptive name of the element.

supportedinterfaceRefs:
Interface [0..*]

The Interfaces describing the external behavior provided by this element.

ioSpecification: Input
OutputSpecification [0..1]

The InputOutputSpecification defines the inputs and outputs and the
InputSets and OutputSets for the Activity.

ioBinding: InputOutput
Binding [0..*]

The InputOutputBinding defines a combination of one InputsSet and
one OutputsSet in order to bind this to an operation defined in an
interface.

When aCcallableElement isexposed as a Service, it has to define one or more InputOutputBinding
elements. An InputOutputBinding element binds one Input and one Output of the
InputOutputSpecification toan Operation of aService Interface. Table 10.25 presents the additional
model associations of the InputOutputBinding.

Table 10.25 — InputOutputBinding model associations

Attribute Name

Description/Usage

inputDataRef: Datalnput

A reference to one specific DataInput defined as part of the
InputOutputSpecification of the Activity.

outputDataRef: DataOutput

A reference to one specific DataOutput defined as part of the
InputOutputSpecification of the Activity.

operationRef: Operation

A reference to one specific Operation defined as part of the Interface of
the Activity.

10.3.7 Global Task

A Global Task is areusable, atomic Task definition that can be called from within any Process by a Call Activity.

186

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

allActivity ootElemen
CallActivit RootEl Lo
(from Activities) * (from Foundation)
0..1+ caledElementRef
| callableElement
(From Common) Q Interf_ace
g name : String }+ callableElements * (i om Sel vice)
[Eg name : 5tring
* + supportedinterfaceRefs = implernentationRef | Elernent
] GlobalTask
(from Process)
=] ResourceRole
" (From Activities)
Eg name : Strin
0.1 + resources e 9
] GlobalUserTask =] GlobalManualTask =] GlobalScriptTask =] GlobalBusinessRuleTask

(From Activities) (From Activities)
[Eg scriptlanguage : String || g implementation : String
[Eg script & Stiing

{from Humanlnteraction) (From HumanInteraction)

0.1

"

| Rendering
(From HumanInteraction)

+ renderings

Figure 10.44 — Global Tasks class diagram

The GlobalTask inherits the attributes and model associations of Callable Element (see Table 10.24). Table 10.26
presents the additional model associations of the GlobalTask.

Table 10.26 — Global Task model associations

Attribute Name Description/Usage

resources: ResourceRole [0.*] | Defines the resource that will perform or will be responsible for the

GlobalTask. In the case where the Call Activity that references this
GlobalTask defines its own resources, they will override the ones defined
here.

Types of Global Task

There are different types of Tasks identified within BPMN to separate the types of inherent behavior that Tasks might
represent. The types of Global Tasks are only a subset of standard Tasks types. Only GlobalUserTask,
GlobalManuaTask, GlobalScriptTask, and GlobalBusinessRuleTask are defined in BPMN. For the sake of
efficiency in this document, the list of Task types is presented once on page 154. The behavior, attributes, and model
associations defined in that sub clause also apply to the corresponding types of Global Tasks.

© ISO/IEC 2013 - All rights reserved 187

ISO/IEC 19510:2013(E)

10.3.8 Loop Characteristics

Activities MAY be repeated sequentially, essentially behaving like a loop. The presence of LoopCharacteristics
signifies that the Activity has looping behavior. LoopCharacteristics is an abstract class. Concrete subclasses
define specific kinds of looping behavior.

The LoopCharacteristics inherits the attributes and model associations of BaseElement (see Table 8.5). There
are no further attributes or model associations of the LoopCharacteristics.

However, each Loop Activity instance has attributes whose values MAY be referenced by Expressions. These values
are only available when the Loop Activity is being executed.

Figure 10.45 displays the class diagram for an Activity’s loop characteristics, including the details of both the standard
loop and a multi-instance.

=T AT Task CallActmaty Gl o
+ el s el Lavicer i Actheties [——
[Prom dctifien

T Aetivitetn

3 oo B Event | Bookan
Faorss

"]
Compkes
Shanlardl oof s e Lo Tt territics Actnary
o Attt LT na 0.1 i Bstrettise
tasiBatcre | Bockean G S LT | B
: [startCpaniiy | beges
' Charact @
O PR RIS | o oLy © it
0.k
G.i |+ loopMimrmumD,, 1|+ ieeetonditon « apecfeaton 0.1
Expanesscn Fudilmtancsl copCharacterivtics Dt algmit - . Bt O prst Spec i ation
[Frem Carmer) a1 a.a o Aoty & roustataliem Frowm Cuat ' - ¥ Dt
g Pl ook & e | SEg » datainputs
+ gt pdniey % bhanicr | Multilredarcebshano ol o 3 T ACokcton | Goakean
@l .1
+ tompletontondsion [ratalhutpuat
& oUtoUATIEA RO e Dt
g P | SETg e
FommalERpression .1 0.3 G RCokecton | Bogkean T SAEOUES
(oo v | 2.l
g © Shirg 1 . " 0.l
% oy | Bt
+ Condton
a.1 + oopDutiinputied 0.1 4+ it el o illal
& otk abavic Delribon
a1 = fa-.0.1 emfwarel lemment
+ PiFaEshan EvertRt + oraehanorcreriRal From Dt s
Wm- EvenitDefinition
(i it irtem Frary

.
+ evariDaintonfef

a1 + wwirtl

Borgabeiil Tharow wervt FhwawE weist
[— (s Bwsrma

Figure 10.45 — LoopCharacteristics class diagram

The LoopCharacteristics element inherits the attributes and model associations of BaseElement (see Table 8.5),
but does not have any further attributes or model associations. However, a Loop Activity does have additional instance
attributes as shown in Table 10.27.

188 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.27 — Loop Activity instance attributes

Attribute Name Description/Usage

loopCounter: integer The LoopCounter attribute is used at runtime to count the number of loops
and is automatically updated by the process engine.

Standard Loop Characteristics

The StandardLoopCharacteristics class defines looping behavior based on aboolean condition. The Activity
will loop as long as the boolean condition is true. The condition is evaluated for every loop iteration, and MAY be
evaluated at the beginning or at the end of the iteration. In addition, a numeric cap can be optionally specified. The
number of iterations MAY NOT exceed this cap.

€ Themarker for aTask or aSub-Process that isastandard loop MUST be asmall line with an arrowhead that curls
back upon itself (see Figure 10.46 and Figure 10.47).

€ Theloop Marker MAY be used in combination with the Compensation Marker.

Figure 10.46 — A Task object with a Standard Loop Marker

410

Figure 10.47 — A Sub-Process object with a Standard Loop Marker
The StandardLoopCharacteristics element inherits the attributes and model associations of BaseElement (see

Figure 8.5), through its relationship to LoopCharacteristics. Table 10.28 presents the additional attributes and
model associations for the StandardLoopCharacteristics element.

© ISO/IEC 2013 - All rights reserved 189

ISO/IEC 19510:2013(E)

Table 10.28 — StandardLoopCharacteristics attributes and model associations

Attribute Name Description/Usage

testBefore: boolean = false Flag that controls whether the loop condition is evaluated at the beginning
(testBefore =true) or at the end (testBefore = false) of the loop
iteration.

loopMaximum: integer [0..1] Serves as a cap on the number of iterations.

loopCondition: Expression [0..1] A boolean Expression that controls the loop. The Activity will only loop
as long as this condition is true. The looping behavior MAY be
underspecified, meaning that the modeler can simply document the
condition, in which case the loop cannot be formally executed.

Multi-Instance Characteristics

The MultiInstanceLoopCharacteristics class allows for creation of a desired number of Activity instances.
The instances MAY execute in parallel or MAY be sequential. Either an Expression is used to specify or calculate the
desired number of instances or a data driven setup can be used. In that case a data input can be specified, which is able to
handle a collection of data. The number of items in the collection determines the number of Activity instances. This data
input can be produced by an input Data Association. The modeler can also configure this loop to control the tokens
produced.

€ Themarker for aTask or Sub-Process that isamulti-instance MUST be a set of three vertical lines.

€ If the multi-instance instances are set to be performed in parallel rather than sequential (the isSequential
attribute set to false), then the lines of the marker will be vertical (see Figure 10.48).

€ If the multi-instance instances are set to be performed in sequence rather than parallel (the isSequential
attribute set to true), then the marker will be horizontal (see Figure 10.49).

€ The Multi-Instance marker MAY be used in combination with the Compensation marker.

L L

Figure 10.48 — Activity Multi-Instance marker for parallel instances

) L

Figure 10.49 — Activity Multi-Instance marker for sequential instances

190 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

The MultiInstanceLoopCharacteristics element inherits the attributes and model associations of
BaseElement (see Table 8.5), through its relationship to LoopCharacteristics. Table 10.29 presents the
additional attributes and model associations for the MultiInstanceLoopCharacteristics element.

Table 10.29 — MultilnstanceLoopCharacteristics attributes and model associations

Attribute Name

Description/Usage

isSequential: boolean = false

This attribute is a flag that controls whether the Activity instances will
execute sequentially or in parallel.

loopCardinality: Expression [0..1]

A numeric Expression that controls the number of Activity instances
that will be created. This Expression MUST evaluate to an integer.
This MAY be underspecified, meaning that the modeler MAY simply
document the condition. In such a case the loop cannot be formally
executed.

In order to initialize a valid multi-instance, either the 1oopCardinality
Expression or the loopDataInput MUST be specified.

loopDatalnputRef:
IltemAwareElement [0..1]

This ITtemAwareElement is used to determine the number of Activity
instances, one Activity instance per item in the collection of data stored
in that TtemAwareElement element.

For Tasks it is a reference to a Data Input which is part of the Activity’s
InputOutputSpecification.

For Sub-Processes it is a reference to a collection-valued Data Object
in the context that is visible to the Sub-Processes.

In order to initialize a valid multi-instance, either the 1oopCardinality
Expression or the loopDataInput MUST be specified.

loopDataOutputRef:
IltemAwareElement [0..1]

This ItemAwareElement specifies the collection of data, which will be
produced by the multi-instance.

For Tasks it is a reference to a Data Output which is part of the
Activity’s InputOutputSpecification.

For Sub-Processes it is a reference to a collection-valued Data Object
in the context that is visible to the Sub-Processes.

inputDataltem: Datalnput [0..1]

A Data Input, representing for every Activity instance the single item of
the collection stored in the 1oopDataInput. This Data Input can be
the source of DataInputAssociation to a data input of the Activity’s
InputOutputSpecification. The type of this Data Input MUST the
scalar of the type defined for the 1loopDatalInput.

outputDataltem: DataOutput [0..1]

A Data Output, representing for every Activity instance the single item
of the collection stored in the 1oopDataOutput. This Data Output can
be the target of DataOutputAssociation to a data output of the
Activity’s InputOutputSpecification. The type of this Data
Output MUST the scalar of the type defined for the 1oopDataOutput.

© ISO/IEC 2013 - All rights reserved

191

ISO/IEC 19510:2013(E)

Table 10.29 — MultilnstanceLoopCharacteristics attributes and model associations

behavior: MultiinstanceBehavior = all { | The attribute behavior acts as a shortcut for specifying when events
None | One | All | Complex } SHALL be thrown from an Activity instance that is about to complete. It
can assume values of None, One, 211, and Complex, resulting in the
following behavior:
* None: the EventDefinition which is associated through the
noneEvent association will be thrown for each instance completing.

e One: the EventDefinition referenced through the oneEvent
association will be thrown upon the first instance completing.

« A11: no Event is ever thrown; a token is produced after completion of all
instances.

Complex: the complexBehaviorDefinitions are consulted to
determine if and which Events to throw.

For the behaviors of none and one, a default SignalEventDefini -
tion will be thrown which automatically carries the current runtime
attributes of the MI Activity.

Any thrown Events can be caught by boundary Events on the Multi-
Instance Activity.

complexBehaviorDefinition: Controls when and which Events are thrown in case behavior is set to
ComplexBehaviorDefinition [0..*]

complex.
cOon11pIeti0nCondition: Expression This attribute defines a boolean Expression that when evaluated to
[0-1] true, cancels the remaining Activity instances and produces a token.
oneBehaviorEventRef: The EventDefinition which is thrown when behavior is set to one

EventDefinition [0..1] and the first internal Activity instance has completed.

noneBehaviorEventRef: The EventDefinition which is thrown when the behavior is set to
EventDefinition [0..1] . S
none and an internal Activity instance has completed.

Table 10.30 lists al instance attributes available at runtime. For each instance of the Multi-Instance Activity (outer
instance), there exists a number of generated (inner) instances of the Activity at runtime.

192 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.30 — Multi-instance Activity instance attributes

Attribute Name

Description/Usage

loopCounter: integer

This attribute is provided for each generated (inner) instance of the
Activity. It contains the sequence number of the generated
instance, i.e., if this value of some instance in n, the instance is the
n-th instance that was generated.

numberOfinstances: integer

This attribute is provided for the outer instance of the Multi-Instance
Activity only. This attribute contains the total number of inner
instances created for the Multi-Instance Activity.

numberOfActivelnstances: integer

This attribute is provided for the outer instance of the Multi-Instance
Activity only. This attribute contains the number of

currently active inner instances for the Multi-Instance Activity. In
case of a sequential Multi-Instance Activity, this value can’t be
greater than 1. For parallel Multi-Instance Activities, this value

can't be greater than the value contained in numberOf Instances.

numberOfCompletedinstances:
integer

This attribute is provided for the outer instance of the Multi-Instance
Activity only. This attribute contains the number of already com-
pleted inner instances for the Multi-Instance Activity.

numberOfTerminatedInstances:
integer

This attribute is provided for the outer instance of the
Multi-Instance Activity only. This attribute contains the number of
terminated inner instances for the Multi-Instance Activity. The sum
of numberOfTerminatedInstances,
numberOfCompletedInstances, and
numberOfActiveInstances always sums up to
numberOfInstances.

Complex Behavior Definition

This element controls when and which Events are thrown in case behavior of the Multi-Instance Activity is set to

complex.

The ComplexBehaviorDefinition element inherits the attributes and model associations of BaseElement (see
Table 8.5). Table 10.31 presents the additional attributes and model associations for the
ComplexBehaviorDefinition element.

© ISO/IEC 2013 - All rights reserved

193

ISO/IEC 19510:2013(E)

Table 10.31 — ComplexBehaviorDefinition attributes and model associations

Attribute Name Description/Usage

condition: Formal Expression This attribute defines a boolean Expression that when evaluated to true,
cancels the remaining Activity instances and produces a token.

event: ImplicitThrowEvent If the condition is true, this identifies the Event that will be thrown (to be
caught by a boundary Event on the Multi-Instance Activity).

10.3.9 XML Schema for Activities

Table 10.32 — Activity XML schema

<xsd:element name="activity" type="tActivity"/>
<xsd:complexType name="tActivity" abstract="true">
<xsd:complexContent>
<xsd:extension base="tFlowNode">
<xsd:sequence>

<xsd:element ref="ioSpecification" minOccurs="0" maxOccurs="1"/>

<xsd:element ref="property" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element ref="datalnputAssociation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataOutputAssociation” minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="resourceRole" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element ref="loopCharacteristics" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="isForCompensation" type="xsd:boolean" default="false"/>
<xsd:attribute name="startQuantity" type="xsd:integer" default="1"/>
<xsd:attribute name="completetionQuantity" type="xsd:integer" default="1"/>
<xsd:attribute name="default" type="xsd:IDREF" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

194 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.33 — AdHocSubProcess XML schema

<xsd:element name="adHocSubProcess" type="tAdHocSubProcess" substitutionGroup="flowElement"/>
<xsd:complexType name="tAdHocSubProcess">
<xsd:complexContent>
<xsd:extension base="tSubProcess">
<xsd:sequence>

<xsd:element name="completionCondition" type="tExpression" minOccurs="0"
maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="cancelRemaininglnstances" type="xsd:boolean" default="true"/>
<xsd:attribute name="ordering" type="tAdHocOrdering" default="Parallel"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tAdHocOrdering">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="Parallel"/>
<xsd:enumeration value="Sequential"/>
</xsd:restriction>
</xsd:simpleType>

Table 10.34 — BusinessRuleTask XML schema

<xsd:element name="businessRuleTask" type="tBusinessRuleTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tBusinessRuleTask">
<xsd:complexContent>
<xsd:extension base="tTask">
<xsd:attribute name="implementation" type="timplementation" default="##unspecified"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

© ISO/IEC 2013 - All rights reserved 195

ISO/IEC 19510:2013(E)

Table 10.35 — CallableElement XML schema

<xsd:element name="callableElement" type="tCallableElement"/>
<xsd:complexType name="tCallableElement">
<xsd:complexContent>
<xsd:extension base="tRootElement">
<xsd:sequence>
<xsd:element name="supportedinterfaceRef" type="xsd:QName" minOccurs="0" maxO-
ccurs="unbounded"/>
<xsd:element ref="ioSpecification" minOccurs="0" maxOccurs="1"/>
<xsd:element ref="ioBinding" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.36 — CallActivity XML schema

<xsd:element name="callActivity" type="tCallActivity" substitutionGroup="flowElement"/>
<xsd:complexType name="tCallActivity">
<xsd:complexContent>
<xsd:extension base="tActivity">
<xsd:attribute name="calledElement” type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.37 — GlobalBusinessRuleTask XML schema

<xsd:element name="globalBusinessRuleTask" type="tGlobalBusinessRuleTask" substitu-
tionGroup="rootElement"/>

<xsd:complexType name="tGlobalBusinessRuleTask">

<xsd:complexContent>
<xsd:extension base="tGlobalTask">

<xsd:attribute name="implementation" type="timplementation" default="##unspecified"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

196 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.38 — GlobalScriptTask XML schema

<xsd:element name="globalScriptTask" type="tGlobalScriptTask" substitutionGroup="rootElement"/>
<xsd:complexType name="tGlobalScriptTask">
<xsd:complexContent>
<xsd:extension base="tGlobalTask">
<xsd:sequence>
<xsd:element ref="script" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="scriptLanguage" type="xsd:anyURI"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.39 — GlobalTask XML schema

<xsd:element name="globalTask" type="tGlobalTask" substitutionGroup="rootElement"/>
<xsd:complexType name="tGlobalScriptTask">
<xsd:complexContent>
<xsd:extension base="tCallableElement">
<xsd:sequence>
<xsd:element ref="resourceRole" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.40 — LoopCharacteristics XML schema

<xsd:element name="loopCharacteristics" type="tLoopCharacteristics"/>
<xsd:complexType name="tLoopCharacteristics" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement"/>
</xsd:complexContent>
</xsd:complexType>

© ISO/IEC 2013 - All rights reserved 197

ISO/IEC 19510:2013(E)

Table 10.41 — MultilnstanceLoopCharacteristics XML schema

<xsd:element name="multiinstanceLoopCharacteristics" type="tMultilnstanceLoopCharacteristics"
substitutionGroup="loopCharacteristics"/>
<xsd:complexType name="tMultilnstanceLoopCharacteristics">
<xsd:complexContent>
<xsd:extension base="tLoopCharacteristics">
<xsd:sequence>

<xsd:element name="loopCardinality” type="tExpression” minOccurs="0"
maxOccurs="1"/>
<xsd:element name="loopDatalnputRef" type="xsd:QName" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="loopDataOutputRef" type="xsd:QName" minOccurs="0"
maxOccurs="1"/>
<xsd:element name="inputDataltem" type="tDatalnput" minOccurs="0" maxOccurs="1"/>
<xsd:element name="outputDataltem" type="tDataOutput" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="complexBehaviorDefinition" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="completionCondition" type="tExpression" minOccurs="0"
maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="isSequential" type="xsd:boolean" default="false"/>
<xsd:attribute name="behavior" type="tMultilnstanceFlowCondition" default="All"/>
<xsd:attribute name="oneBehaviorEventRef" type="xsd:QName" use="optional"/>
<xsd:attribute name="noneBehaviorEventRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tMultilnstanceFlowCondition">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="None"/>
<xsd:enumeration value="One"/>
<xsd:enumeration value="All"/>
<xsd:enumeration value="Complex"/>
</xsd:restriction>
</xsd:simpleType>

198 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.42 — ReceiveTask XML schema

<xsd:element name="receiveTask" type="tReceiveTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tReceiveTask">
<xsd:complexContent>
<xsd:extension base="tTask">
<xsd:attribute name="implementation" type="timplementation" default="##WebService"/>
<xsd:attribute name="instantiate" type="xsd:boolean" default="false"/>
<xsd:attribute name="messageRef" type="xsd:QName" use="optional"/>
<xsd:attribute name="operationRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.43 — ResourceRole XML schema

<xsd:element name="resourceRole" type="tResourceRole"/>

<xsd:complexType name="tResourceRole">
<xsd:complexContent>

<xsd:extension base="tBaseElement">
<xsd:choice>
<xsd:sequence>
<xsd:element name="resourceRef" type="xsd:QName" minOccurs="0"
maxOccurs="1"/>
<xsd:element ref="resourceParameterBinding" minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:element ref="resourceAssignmentExpression" minOccurs="0" maxOccurs="1"/>
</xsd:choice>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

© ISO/IEC 2013 - All rights reserved 199

ISO/IEC 19510:2013(E)

Table 10.44 — ScriptTask XML schema

<xsd:element name="scriptTask" type="tScriptTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tScriptTask">
<xsd:complexContent>
<xsd:extension base="tTask">
<xsd:sequence>
<xsd:element ref="script" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="scriptFormat" type="xsd:anyURI"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="script" type="tScript"/>
<xsd:complexType name="tScript" mixed="true">
<xsd:sequence>
<xsd:any namespace="##any" processContents="lax" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

Table 10.45 — SendTask XML schema

<xsd:element name="sendTask" type="tSendTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tSendTask">
<xsd:complexContent>
<xsd:extension base="tTask">
<xsd:attribute name="implementation" type="tImplementation" default="##WebService"/>
<xsd:attribute name="messageRef" type="xsd:QName" use="optional"/>
<xsd:attribute name="operationRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.46 — ServiceTask XML schema

<xsd:element name="serviceTask" type="tServiceTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tServiceTask">
<xsd:complexContent>
<xsd:extension base="tTask">
<xsd:attribute name="implementation" type="tImplementation" default="##WebService"/>
<xsd:attribute name="operationRef" type="xsd:QName" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

200 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.47— StandardLoopCharacteristics XML schema

<xsd:element name="standardLoopCharacteristics" type="tStandardLoopCharacteristics"/>
<xsd:complexType name="tStandardLoopCharacteristics">
<xsd:complexContent>
<xsd:extension base="tLoopCharacteristics">
<xsd:sequence>
<xsd:element name="loopCondition" type="tExpression” minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="testBefore" type="xsd:boolean" default="false"/>
<xsd:attribute name="loopMaximum" type="xsd:integer" use="optional"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.48 — SubProcess XML schema

<xsd:element name="subProcess" type="tSubProcess" substitutionGroup="flowElement"/>
<xsd:complexType name="tSubProcess">
<xsd:complexContent>
<xsd:extension base="tActivity">
<xsd:sequence>
<xsd:element ref="laneSet" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="flowElement" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="artifact" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="triggeredByEvent" type="xsd:boolean" default="false"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.49 — Task XML schema

<xsd:element name="task" type="tTask" substitutionGroup="flowElement"/>
<xsd:complexType name="tTask">
<xsd:complexContent>
<xsd:extension base="tActivity"/>
</xsd:complexContent>
</xsd:complexType>

© ISO/IEC 2013 - All rights reserved 201

ISO/IEC 19510:2013(E)

Table 10.50 — Transaction XML schema

<xsd:element name="transaction" type="tTransaction" substitutionGroup="flowElement"/>
<xsd:complexType name="tTransaction">
<xsd:complexContent>
<xsd:extension base="tSubProcess">
<xsd:attribute name="method" type="tTransactionMethod" default="Compensate"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name="tTransactionMethod">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Compensate"/>
<xsd:enumeration value="Image"/>
<xsd:enumeration value="Store"/>
</xsd:restriction>
</xsd:simpleType>

10.4 Items and Data

A traditional requirement of Process modeling is to be able to model the items (physical or information items) that are
created, manipulated, and used during the execution of a Process. An important aspect of this is the ability to capture
the structure of that data and to query or manipulate that structure.

BPMN does not itself provide a built-in model for describing structure of data or an Expression language for querying
that data. Instead it formalizes hooks that allow for externally defined data structures and Expression languages. In
addition, BPMN allows for the co-existence of multiple data structure and Expression languages within the same
model. The compatibility and verification of these languages is outside the scope of this International Standard and
becomes the responsibility of the tool vendor.

BPMN designates XML Schema and XPath as its default data structure and Expression languages respectively, but
vendors are free to substitute their own languages.

10.4.1 Data Modeling

A traditional requirement of Process modeling is to be able to model the items (physical or information items) that are
created, manipulated, and used during the execution of a Process.

This requirement is realized in BPMN through various constructs: Data Objects, ItemDefinition, Properties, Data
Inputs, Data Outputs, Messages, Input Sets, Output Sets, and Data Associations.

Item-Aware Elements

Severa elementsin BPMN are subject to store or convey items during process execution. These elements are referenced
generally as “item-aware elements.” This is similar to the variable construct common to many languages. As with
variables, these elements have an TtemDefinition.

202 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

The data structure these elements hold is specified using an associated TtemDefinition. An ItemAwareElement
MAY be underspecified, meaning that the st ructure attribute of its ITtemDefinition isoptiona if the modeler does
not wish to define the structure of the associated data.

The elements in the specification defined as item-aware elements are: Data Objects, Data Object References, Data
Stores, Properties, DataInputs and DataOutputs.

Q ItemDefinition «enumerations
(From Common) =] ItemKind
g iternkind @ Ttemkind (From Commen)
g structureRef : Element = Physical
g isCollection : Boolean = Information

0.1 4 itemSubjectRef

| BaseElement =] Datastate
(From Foundation) (from Data)
|_qjid 1 String [Eg name : 5tring

+ dataState|p,,1

| itemAwareElement

(From Data)
= Property] patalnput | pataOutput] DataStore =] DataStoreReference
(From Data) (from Data) (from Data) (from Data) (From Data)
[Eg name : 5tring [Eg name : 5tring [Eg name : 5tring [Eg name : 5tring
[Eg isCollection ; Boolean g isCollection ; Boolean [capacity : Integer
[isUnlimited : Boolean
w
0..1 '|+ dataStoreRef
| DataObject 1 * | E DataObjectReference
(from Data) (From Data)

g isCollection : Boolean + dataObjectRef

Figure 10.50 — IltemAware class diagram

The ItemAwareElement element inherits the attributes and model associations of BaseElement (see Table 8.5).
Table 10.51 presents the additional model associations of the ITtemAwareElement element.

Table 10.51 — ltemAwareElement model associations

Attribute Name Description/Usage

itemSubjectRef: ltemDefinition [0..1] | gpecification of the items that are stored or conveyed by the
ItemAwareElement.

dataState: DataState [0..1] A reference to the DataState, which defines certain states for the data
contained in the Item.

© ISO/IEC 2013 - All rights reserved 203

ISO/IEC 19510:2013(E)

Data Objects

The primary construct for modeling data within the Process flow is the DataObject element. A DataObject hasa
well-defined lifecycle, with resulting access constraints.

DataObject

The Data Object classis an item-aware element. Data Object elements MUST be contained within Process or Sub-
Process elements. Data Object elements are visually displayed on a Process diagram. Data Object References are
away to reuse Data Objects in the same diagram. They can specify different states of the same Data Object at
different points in a Process. Data Object Reference cannot specify item definitions, and Data Objects cannot
specify states. The names of Data Object References are derived by concatenating the name of the referenced Data
Data Object the state of the Data Object Reference in square brackets as follows. <Data Object Name> [<Data
Object Reference State> .

=] BaseElement] Documentation
(from Foundation) _ {from Foundation)
Egid : String + documentation | text : String
1 - [Eg textFormat : String
| itemDefinition «“enumeration:
| FlowElement {Fram Common) ItemKind
(from Common) 53 itemkind : Ttemkind (From Comman)
Egname : String 53 structureRef : Element = Physical
[£g isCollection : Boolean = Information
+ itemSubjectRef | 0..1
] DataObject
(From Data) *
5 isCallection : Boolean] rtemAwareElement datastat] DataState
(From Data) + datastate (From Data)
1 0.1 [Eg,name : 5tring
1 * =] DataObjectReference
(From Data)

+ dataObjectRef

Figure 10.51 — DataObject class diagram

The DataObject element inherits the attributes and model associations of FlowElement (see Table 8.44) and
ItemAwareElement (Table 10.52). Table 10.54 presents the additional attributes of the DataObject element.

204 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.52 — DataObject attributes

Attribute Name Description/Usage

isCollection: boolean = false Defines if the Data Object represents a collection of elements. It is needed
when no itemDefinition is referenced. If an itemDefinition is
referenced, then this attribute MUST have the same value as the
isCollection attribute of the referenced itembDefinition. The default
value for this attribute is false.

The Data Object Reference element inherits the attributes and model associations of TtemAwareElement (Table
10.52) and FlowElement (see Table 8.44). Table 10.53 presents the additiona attributes of the Data Object
Reference element.

Table 10.53 — DataObjectReference attributes and model associations

Attribute Name Description/Usage
dataObjectRef: DataObject The Data Object referenced by the Data Object Reference.
States

Data Object elements can optionally reference aDataState element, which is the state of the data contained in the
Data Object (see an example of DataStates used for Data Objects in Figure 7.8). The definition of these states, e.g.,
possible values and any specific semantic are out of scope of this International Standard. Therefore, BPMN adopters can
use the State element and the BPMN extensibility capabilities to define their states.

The DataState element inherits the attributes and model associations of BaseElement (See Table 8.5). Table 10.54
presents the additional attributes and model associations of the DataObject element.

Table 10.54 — DataState attributes and model associations

Attribute Name Description/Usage

name: string Defines the name of the DataState.

Data Objects representing a Collection of Data

A DataObject element that references an ItemDefinition marked as collection has to be visualized differently,
compared to single instance data structures. The notation looks as follows:

Single instance (see Figure 10.52)

© ISO/IEC 2013 - All rights reserved 205

ISO/IEC 19510:2013(E)

Figure 10.52 — A DataObject

Collection (see Figure 10.53)

Figure 10.53 — A DataObject that is a collection

Visual representations of Data Objects

Data Object can appear multiple timesin a Process diagram. Each of these appearances references the same Data
Object instance. Multiple occurrences of a Data Object in a diagram are allowed to simplify diagram connections.

Lifecycle and Accessibility

The lifecycle of a Data Object is tied to the lifecycle of its parent Process or Sub-Process. When a Process or
Sub-Process isinstantiated, all Data Objects contained within it are also instantiated. When a Process or Sub-

Process instance is disposed, all Data Object instances contained within it are also disposed. At this point the data
within these instances are no longer available.

The accessibility of a Data Object is driven by its lifecycle. The data within a Data Object can only be accessed when
there is guaranteed to be a live Data Object instance present. As aresult, a Data Object can only be accessed by its
immediate parent (Process or Sub-Process), or by its sibling Flow Elements and their children, including Data

Object References referencing the Data Object.

For example - Consider the follow structure:

206

Process A

Data object 1
Task A
Sub-process A
Data object 2
Task B
Sub-process B
Data object 3
Sub-process C
Data object 4
Task C
Task D

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

“Data object 1" can be accessed by “Process A,” “Task A,” “Sub-Process A,” “Task B,” “Sub-Process B,” “Sub-Process
C,” “Task C,” and “Task D.”

“Data object 2" can be accessed by: “Sub-Process A” and “Task B.”
“Data object 3" can be accessed by: “Sub-Process B,” “Sub-Process C,” “Task C,” and “Task D.”
“Data object 4" can be accessed by: “Sub-Process C” and “Task C.”

Data Stores

A DataStore provides a mechanism for Activities to retrieve or update stored information that will persist beyond the
scope of the Process. The same DataStore can be visualized, through a Data Store Reference, in one or more
places in the Process.

The Data Store Reference isan ItemAwareElement and can thus be used as the source or target for a Data
Association. When data flows into or out of a Data Store Reference, it is effectively flowing into or out of the
DataStore that is being referenced.

The notation looks as follows (see Figure 10.54):

=

Data
Store

Figure 10.54 — A Data Store

HaseElenmend Docementation
iz Frouralation) & dacumentation [from Foundation)
g s & Dt 1 String
% - & trutFormat @ String
FlawFlement e T
(fram Commean] U TeemikEnd

& Names SEng {Fram Comman)

= PTrscal

= bnformatcn
1 Mwimnfom arel lenaenk | ThamDBslinition
| DatastoreR eferencs {Freen Daka) [y £ y
= + IlernSubjectiel O, LTI
(from Data) e & itermbired : Tembired
- 0.1 gy shucthursaf | Blamant
& iCalaction | Baclean
Datastore
+ dataStorefal [Froam Caka)
- Footllensert
.l i nama : Sting {lrem Poursdaten)

s Capacity - Intoger
L ELinkmited : Boclean

Figure 10.55 — DataStore class diagram

© ISO/IEC 2013 - All rights reserved 207

ISO/IEC 19510:2013(E)

The DataStore element inherits the attributes and model associations of FlowElement (see Table 8.44) through its
relationship to RootElement, and ItemAwareElement (see Table 10.51). Table 10.55 presents the additional
attributes of the DataStore element.

Table 10.55 — Data Store attributes

Attribute Name Description/Usage
name: string A descriptive name for the element.
capacity: integer [0..1] Defines the capacity of the Data Store. This is not needed if the

isUnlimited attribute is set to true.

isUnlimited: boolean = false If isunlimited is set to true, then the capacity of a Data Store is set as
unlimited and will override any value of the capacity attribute.

The Data Store Reference element inherits the attributes and model associations of FlowElement (see Table 8.44)
and ItemAwareElement (See Table 10.51). Table 10.56 presents the additional model associations of the Data Store
Reference element.

Table 10.56 — Data Store attributes

Attribute Name Description/Usage
dataStoreRef: DataStore Provides the reference to a global DataStore.
Properties

Properties, like Data Objects, are item-aware elements. But, unlike Data Objects, they are not visually displayed on a
Process diagram. Certain flow elements MAY contain properties, in particular only Processes, Activities, and
Events MAY contain Properties.

The Property classisaDataElement element that acts as a container for data associated with flow elements.
Property elements MUST be contained within a FlowElement. Property elements are not visually displayed on a
Process diagram.

208 © ISO/IEC 2013 - All rights reserved

] ttemAwareElement

(From Data)
| Process = Property
(from Process) + properties (From Data)

[Eg processType : ProcessType
g isClosed ; Boolean 0.1 -
g isExecutable : Boclean

[Eg name : String

= Activity

(From Activities)
[Eg isForCompensation : Boolean
[Eg startQuantity : Integer 0.1 *
[Eg completionQuantity : Integer

+ properties

| Event + properties
(From Events)

0.1 *

Figure 10.56 — Property class diagram

ISO/IEC 19510:2013(E)

= ttemDefinition
{From Commaon)
g itemkind ; Ttemkind
- 0.1 EgstructureRef ; Element
g isCollection : Boolean

+ itemSubjectRef

«“enumeration»
[E] ItemKind
(fram Comman)
=l Physical
= Information

The Property element inherits the attributes and model associations of ItemAwareElement (Table 10.51). Table
10.54 presents the additional attributes of the Property element.

Table 10.57 — Property attributes

Attribute Name Description/Usage

name: string

Defines the name of the Property.

Lifecycle and Accessibility

The lifecycle of a Property istied to the lifecycle of its parent Flow Element. When a Flow Element is
instantiated, all Properties contained by it are also instantiated. When a Flow Element instance is disposed, al
Property instances contained by it are also disposed. At this point the data within these instances are no longer

available.

The accessibility of a Property is driven by its lifecycle. The data within a Property can only be accessed when there is
guaranteed to be alive Property instance present. As aresult, a Property can only be accessed by its parent Process,
Sub-Process, or Flow Element. In case the parent is a Process or Sub-Process, then a property can be accessed by
the immediate children (including children elements) of that Process or Sub-Process. For example, consider the

following structure:

Process A
Task A
Sub-Process A
Task B
Sub-Process B
Sub-Process C

© ISO/IEC 2013 - All rights reserved

209

ISO/IEC 19510:2013(E)

Task C
Task D

The Properties of “Process A” are accessible by: “Process A,” “Task A,” “Sub-Process A,” “Task B,” “Sub-Process
B,” “Sub-Process C,” “Task C,” and “Task D.”

The Properties of “Sub-Process A" are accessible by: “ Sub-Process A” and “Task B.”

The Properties of “Task C" are accessible by: “Task C.”

Data Inputs and Outputs

Activities and Processes often need data in order to execute. In addition they can produce data during or as a result of
execution. Data requirements are captured as Data Inputs and InputSets. Datathat is produced is captured using
Data Outputs and OutputSets. These elements are aggregated in a InputOutputSpecification class.

Certain Activities and CallableElements contain a InputOutputSpecification element to describe their
data requirements. Execution semantics are defined for the InputOutputSpecification and they apply the same
way to all elements that extend it. Not every Activity type defines inputs and outputs, only Tasks,
CallableElements (Global Tasks and Processes) MAY define their data requirements. Embedded Sub-
Processes MUST NOT define Data Inputs and Data Outputs directly, however they MAY define them indirectly via
MultiInstancelLoopCharacteristics.

210 © ISO/IEC 2013 - All rights reserved

] Documentation
(From Foundation)
[Eg text @ Stiing
[textFormat : String
+ documentation | *

1
& BaseElement
(From Foundation)
g id : String
1% + datalnputRefs + dataOutputRefs
] Inputset Dpatalnput] pataOutput .
(From Datfa) + finputSetRefs * (from Data) (From Data)
[Eg name : String _ [Eg name : 5tring g name : String
* + optionallnputRefs | = e qjection : Boolean g isCallection : Boolean
+|finputSetWithOptional *
+ whileExe
* + whileExecutingInputRefs
-
* . + fa
+ finputSetwithwhileExecuting + datalnputs | * + dataOutputs

+ inputSets [1..*

] itemAwareElement
(From Data)

1

Q InputOutputSpecification
(From Data)

+ inSpecification /9.1
0.1
] Activity
(from Activities)
[Eg isForCompensation Boolean
[Eg startQuantity : Integer
==Y completionQuantity : Integer

0.1 0.1

+ datalnputAssociations . " + dataOutputAssociations

] pataInputAssociation] pataOutputAssociation
(From Data) (From Data)

Figure 10.57 — InputOutputSpecification class diagram

The InputOutputSpecification element inherits the attributes and model associations of BaseElement (see

ISO/IEC 19510:2013(E)

1.* = outputsSet
+ foutputSetRefs (from Data)

+ optionalOutputRefs
+ JoutputsetwithOptional

cutingOutputRefs*

utputSetWithWhileExecuting

1..*+ outputSets

+ inSpecification’|0..1

0.1
] callableElement

(From Common)
[Eg name : Stiing

Table 8.5). Figure 10.54 presents the additional attributes and model associations of the

InputOutputSpecification element.

© ISO/IEC 2013 - All rights reserved

211

ISO/IEC 19510:2013(E)

Table 10.58 — InputOutputSpecification Attributes and Model Associations

Attribute Name Description/Usage

inputSets: InputSet [1..%] A reference to the InputSets defined by the
InputOutputSpecification. Every
InputOutputSpecification MUST define at least one InputsSet.

outputSets: OutputSet [1..] A reference to the outputSets defined by the
InputOutputSpecification. EveryData Interface MUST define
at least one OutputsSet.

datalnputs: Datalnput [0..%] An optional reference to the Data Inputs of the
InputOutputSpecification. If the InputOutputSpecification
defines no Data Input, it means no data is REQUIRED to start the
Activity. This is an ordered set.

dataOutputs: DataOutput [0..”] An optional reference to the Data Outputs of the
InputOutputSpecification. If the InputOutputSpecification
defines no Data Output, it means no data is REQUIRED to finish the
Activity. This is an ordered set.

Data Input

A Data Input is adeclaration that a particular kind of data will be used as input of the
InputOutputSpecification. There may be multiple Data Inputs associated with an
InputOutputSpecification.

The Data Input is an item-aware element. Data Inputs are visually displayed on aProcess diagram to show the inputs
to the top-level Process or to show the inputs of acalled Process (i.e., onethat isreferenced by a Call Activity, where
the Call Activity has been expanded to show the called Process within the context of a calling Process).

€ Visualized Data Inputs have the same notation as Data Objects, except that they MUST contain asmall,
unfilled block arrow (see Figure 10.58).

€ Data Inputs MAY have incoming Data Associations:

¢ If theData Input isdirectly contained by the top-level Process, it MUST not be the target of Data
Associations within the underlying model. Only Data Inputs that are contained by Activities or
Events MAY bethetarget of Data Associations inthe model.

& |If theProcess isbeing called from a Call Activity, the Data Associations that target the Data
Inputs of the Call Activity inthe underlying model MAY be visualized such that they connect to the
corresponding Data Inputs of the called Process, visually crossing the Call Activity boundary. But note
that thisisvisualization only. Inthe underlying model, the Data Associations target the Data Inputs of
the Call Activity and not the Data Inputs of the called Process.

212 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

)

Figure 10.58 — A Datalnput

The “optional” attribute defines if a Datalnput is valid even if the state is “unavailable.” The default value is false. If

the value of this attribute is true, then the execution of the Activity will not begin until a value is assigned to the
Datalnput element, through the corresponding Data Associations.

States

Datalnput elements can optionally reference a DataState element, which is the state of the data contained in the
Datalnput. The definition of these states, e.g., possible values, and any specific semantics are out of scope of this
International Standard. Therefore, BPMN adopters can use the DataState element and the BPMN extensibility
capabilities to define their states.

| DataState 0.1 1 £ ItemAwareElement
(From Data) (from Data)

Egname : SUiNg | datastate

+ itemSubjectRef | 0..1

Q(f[)atalnp;ut H 1temDefinition
rom Data (From Common)
Egname stnng [Eg itemkind : Ttemkind
g isCollection : Boolean g structureRef : Element

Eg isCollection : Boolean

+ datalnputRefs | « * 4+ whieExecutingInputRefs * + optionallnputRefs

«enumeration»
ItemKind
(From Common)
+ [inputSetRefs | « * | 4+ finputSetwithWhileExecuting*+ finputSetwithOptional = Physical
= Information
= InputSet
(From Data)

[Eg name : 5tring

Figure 10.59 — Data Input class diagram

The Datalnput element inherits the attributes and model associations of BaseElement (see Table 8.5) and
ItemAwareElement (Table 10.52). Table 10.59 presents the additional attributes and model associations of the
Datalnput element.

© ISO/IEC 2013 - All rights reserved

213

ISO/IEC 19510:2013(E)

Table 10.59 — Datalnput attributes and model associations

Attribute Name

Description/Usage

name: string [0..1]

A descriptive name for the element.

inputSetRefs: InputSet [1..*]

A DataInput is used in one or more InputSets. This attribute is
derived from the InputSets.

inputSetwithOptional: InputSet [0..*]

Each InputsSet that uses this DataInput can determine if the Activity
can start executing with this DataInput state in “unavailable.” This attri-
bute lists those InputSets.

inputSetWithWhileExecuting:
Inputset [0..*]

Each InputsSet that uses this DataInput can determine if the Activity
can evaluate this DataInput while executing. This attribute lists those
InputSets.

isCollection: boolean = false

Defines if the Datalnput represents a collection of elements. It is needed
when no itemDefinition is referenced. If an itemDefinition is
referenced, then this attribute MUST have the same value as the
isCollection attribute of the referenced itembDefinition. The
default value for this attribute is false.

Data Output

A Data Output is a declaration that a particular kind of data can be produced as output of the
InputOutputSpecification. There MAY be multiple Data Outputs associated with a

InputOutputSpecification.

The Data Output is an item-aware element. Data Output are visually displayed on a top-level Process diagram to
show the outputs of the Process (i.e., one that is referenced by a Call Activity, where the Call Activity has been
expanded to show the called Process within the context of a calling Process).

214

€ Visualized Data Outputs have the same notation as Data Objects, except that they MUST contain a small,

filled block arrow (see Figure 10.60).

L 4

¢ Data Outputs MAY have outgoing DataAssociations.

If the Data Output isdirectly contained by the top-level Process, it MUST not be the source of Data
Associations within the underlying model. Only Data Outputs that are contained by Activities or
Events MAY bethetarget of Data Associations inthe model.

If the Process isbeing called from a Call Activity, the Data Associations that target the Data
Outputs of the Call Activity in the underlying model MAY be visuaized such that they connect to the
corresponding Data Outputs of the called Process, visually crossing the Call Activity boundary. But
note that thisisvisualization only. Inthe underlying model, the Data Associations originate the Data
Outputs of the Call Activity and not the Data Outputs of the called Process.

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

>

Figure 10.60 — A Data Output

States

DataOutput elements can optionally reference a DataState element, which is the state of the data contained in the
DataOutput. The definition of these states, e.g., possible values, and any specific semantics are out of scope of this
International Standard. Therefore, BPMN adopters can use the DataState element and the BPMN extensibility
capabilities to define their states.

] Datastate 0.1 1 H itemAwareElement
(from Data) (From Data)
[Egname : String | + dataState -
+ itemSubjectRef | 0.1
L pataOutput | TtemDefinition
(From Data) (From Common)

[Eg itemkind © Ttemkind
g structureRef : Element
[Eg isCollection : Boolean

[Eg name : String
g isCollection : Boolean

- -

+ dataOutputRefs « + optionalOutputRefs + whileExecutingOutputRefs

«enumeration:»
ItemKind
(From Common)
= Physical
= Information

-

+ foutputSetRefs 1.™ + foutputSetWithOptional * + JoutputSetwithwhieExeruting

| outputSet
(From Data)
[E¢ hame : 5tring

Figure 10.61 — Data Output class diagram
The DataoOutput element inherits the attributes and model associations of BaseElement (see Table 8.5) and

ItemAwareElement (Table 10.52). Table 10.60 presents the additional attributes and model associations of the
DataInput element.

© ISO/IEC 2013 - All rights reserved 215

ISO/IEC 19510:2013(E)

Table 10.60 — DataOutput attributes and associations

Attribute Name Description/Usage
name: string [0..1] A descriptive name for the element.
outputSetRefs: OutputSet [1..”] A DataOutput is used in one or more outputSets. This attribute is

derived from the OutputSets.

OOUt*p”tsetWithOptiO“a': OutputSet Each outputsSet that uses this DataOutput can determine if the
[0-1 Activity can complete executing without producing this DataInput.
This attribute lists those OutputsSets.

OoUtPUtgeth“I‘Wh”eExeCU““g: Each outputSet that uses this DataInput can determine if the
tputSet [O.. o
utputSet [0.7] Activity can produce this DataOutput while executing. This attribute
lists those OutputSets.

isCollection: boolean = false Defines if the DataOutput represents a collection of elements. It is
needed when no itemDefinition is referenced. If an
itemDefinition is referenced, then this attribute MUST have the
same value as the isCollection attribute of the referenced
itemDefinition. The default value for this attribute is false.

The following describes the mapping of data inputs and outputs to the specific Activity and Event implementations.

Service Task Mapping

If the Service Task is associated with an Operation, there MUST be a Message Data Input on the Service Task
and it MUST have an itemDefinition equivalent to the one defined by the Message referred to by the
inMessageRef attribute of the operation. If the operation defines output Messages, there MUST be a single Data
Output and it MUST have an itemDefinition equivalent to the one defined by Message referred to by the
outMessageRef attribute of the Operation.

Send Task Mapping

If the Send Task is associated with a Message, there MUST be at most inputSet set and at most one Data Input on
the Send Task. If the Data Input is present, it MUST have an itemDefinition equivalent to the one defined by the
associated Message. If the Data Input is not present, the Message will not be populated with data at execution time.

Receive Task Mapping

If the Receive Task is associated with a Message, there MUST be at most outputSet set and at most one Data
Output on the Receive Task. If the Data Output is present, it MUST have an itemDefinition equivalent to the
one defined by the associated Message. If the Data Output is not present, the payload within the Message will not
flow out of the Receive Task and into the Process.

User Task Mapping

User Tasks have access to the Data Input, Data Output and the data aware elements available in the scope of the
User Task.

216 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Call Activity Mapping

The DataInputs and DataOutputs of the Call Activity are mapped to the corresponding elements in the
CallableElement without any explicit DataAssociation.

Script Task Mapping

Script Tasks have access to the Data Input, Data Output and the data aware elements available in the scope of the
Script Task.

Events

If any of the EventDefinitions for the Event is associated with an element that hasan ITtemDefinition (such as
aMessage, Escalation, Error, or Signal), the following constraints apply:

 If theEvent isassociated with multiple EventDefinitions, there MUST be one Data Input (in the case of throw
Events) or one Data Output (in the case of catch Event) for each EventDefinition. The order of the
EventDefinitions andthe order of the Data Inputs/Outputs determine which Data Input/Output
corresponds with which EventDefinition.

» Foreach EventDefinition and Data Input/Output pair, if the Data Input/Output is present, it MUST have an
ItemDefinition equivalent tothe one defined by the Message, Escalation, Error, or Signal onthe
associated EventDefinition. Inthecase of athrow Event, if the Data Input isnot present, theMessage,
Escalation, Error, or Signal will not be populated with data. In the case of acatch Event, if the Data Output
is not present, the payload within theMessage, Escalation, Error, or Signal will not flow out of the Event
and into the Process.

InputSet

An InputSet isacollection of DataInput elements that together define a valid set of data inputs for an
InputOutputSpecification. An InputOutputSpecification MUST have at least one InputSet element.
An InputSet MAY reference zero or more DataInput elements. A single DataInput MAY be associated with
multiple InputSet elements, but it MUST always be referenced by at least one InputsSet.

An“empty” InputSet, one that references no DataInput elements, signifiesthat the Activity requires no datato start
executing (this implies that either there are no data inputs or they are referenced by another input set).

InputSet elementsare contained by InputOutputSpecification elements; the order in which these elements are
included defines the order in which they will be evaluated.

© ISO/IEC 2013 - All rights reserved 217

ISO/IEC 19510:2013(E)

& Inputset
(From Data)

[Eg name : 5tring

1 W+ [inputSetRefs

* | + datalnputRefs

[Eg name : 5tring
[Eg isCollection : Boolean

Egid 1 String

+ finputSetwWithOptional .

+ optionallnputRefs | *

] Datalnput
(From Data)

| BaseElement

(From Foundation)

=] Documentation
(From Foundation)
[Eg text : String
[Eg, textFormat : String

+ documentation

1 -

- -

= outputSet
(From Data)

+ inputSetRefs - e
+ outputSetRefs| E& name : String

1,.*

+ inputSets

* 4+ finputSetWithWhieExecuting

* 4 whileExecutingInputRefs

Q InputOutputSpecification

* 1 (From Data)

+ datalnputs

Figure 10.62 — InputSet class diagram

The InputSet element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.61
presents the additional attributes and model associations of the InputSet element.

Table 10.61 — InputSet attributes and model associations

Attribute Name

Description/Usage

name: string [0..1]

A descriptive name for the input set.

datalnputRefs: Datalnput [0..*]

The DataInput elements that collectively make up this data requirement.

optionallnputRefs: Datalnput
[0..4]

The DataInput elements that are a part of the InputSet that can be in the
state of “unavailable” when the Activity starts executing. This association
MUST NOT reference a DataInput thatis not listed in the
dataInputRefs.

whileExecutingInputRefs:
Datalnput [0..*]

The DataInput elements that are a part of the InputSet that can be evalu-
ated while the Activity is executing. This association MUST NOT reference a
DataInput thatis not listed in the dataInputRefs.

outputSetRefs: OutputSet [0..*]

Specifies an Input/Output rule that defines which outputsSet is expected to
be created by the Activity when this InputSet became valid.

This attribute is paired with the input SetRefs attribute of OutputsSets.
This combination replaces the TORules attribute for Activities in BPMN 1.2.

OutputSet

An OutputSet isacollection of DataOutputs elements that together can be produced as output from an Activity or
Event. An InputOutputSpecification element MUST define at least OutputSet element. An OutputSet
MAY reference zero or more DataOutput elements. A single DataOutput MAY be associated with multiple
OutputSet elements, but it MUST aways be referenced by at least one OutputSet.

218

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

An “empty” OutputsSet, one that is associated with no DataOutput elements, signifies that the ACTIVITY produces
no data.

The implementation of the element where the OutputsSet is defined determines the outputSet that will be produced.
So it is up to the Activity implementation or the Event, to define which outputSet will be produced.

| BaseElement -
(From Foundation) Q{Pocume:t?“;m
Eg id : String . rom Foundation
© + documentation 5 text : String
1 " [Eg, textFormat @ String
£ OutputSet * * O InputSet
: (From Data) + outputSetRefs 1 inputSetRefs (From Data)
[Eg name : String 1,* [Eg name : String
+ outputSets
1.* + foutputSetRefs + foutputSetWithOptional | * *
+ foutputSetWithWhileExecuting
1
* |+ dataOutputRefs + optionalQutputRefs * * | + whileExecutingQutputRefs
E|Dataoutput . =] InputOutputSpecification
(from Data) 1

(From Data)
[Eg name : 5tring

) - + dataOutputs
[isCollection : Boolean

Figure 10.63 — OutputSet class diagram

The outputSet element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.62
presents the additional attributes and model associations of the OutputSet element.

© ISO/IEC 2013 - All rights reserved 219

ISO/IEC 19510:2013(E)

Table 10.62 — OutputSet attributes and model associations

Attribute Name

Description/Usage

name: string [0..1]

A descriptive name for the input set.

dataOutputRefs: DataOutput [0..*]

The DataOutput elements that MAY collectively be outputted.

optionalOutputRefs: DataOutput [0..*]

The DataOutput elements that are a part of the outputset that do not
have to be produced when the Activity completes executing. This asso-
ciation MUST NOT reference a DataOutput that is not listed in the
dataOutputRefs.

whileExecutingOutputRefs:
DataOutput [0..*]

The DataoOutput elements that are a part of the outputsSet that can
be produced while the Activity is executing. This association MUST
NOT reference a DataOutput that is not listed in the
dataOutputRefs.

inputSetRefs: InputSet [0..*]

Specifies an Input/Output rule that defines which InputSet has to
become valid to expect the creation of this outputsSet. This attribute is
paired with the outputSetRefs attribute of InputsSets. This combina-
tion replaces the TO0Rules attribute for Activities in BPMN 1.2.

Data Associations

Data Associations are used to move data between Data Objects, Properties, and inputs and outputs of
Activities, Processes, and GlobalTasks. Tokens do not flow along a Data Association, and as a result they have
no direct effect on the flow of the Process.

The purpose of retrieving data from Data Objects or Process Data Inputs isto fill the Activities inputs and later
push the output values from the execution of the Activity back into Data Objects or Process Data Outputs.

DataAssociation

The DataAssociation classis aBaseElement contained by an Activity or Event, used to model how datais
pushed into or pulled from item-aware elements. DataAssociation elements have one or more sources and a target;
the source of the association is copied into the target.

The ItemDefinition from the souceRef and targetRef MUST have the same ItemDefinition or the
DataAssociation MUST have a transformation Expression that transforms the source TtemDefinition into the

target TtemDefinition.

220

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

|| Basariamant Dacumantation
{Tiam Foarsdatmm) {liem Fownlation)
& Shing + cooumentation oo st | Shing
1 " & textFormat : Stng
= | lassigrumeny F SIRQRIMENT + hom | Exparmssion
i+ Datalesodation {from Datal {From Coemon)
{Fram Data) .1 1
1 4 asgnment + amsigrment +1o
0.1 1
0.1
. . + traraformation (0.1
I FamualExprassion
* o gourcefl 1 o LangetBol [Frem Cemmen)
| Batalnputassodation ItemAwareElenant § brmage ;| Siring
[From Ceatal {lvem Bata) g bedy | Flamant
% -
+ avaiatesToTypeRef| 1
+ ItemSubjactied | ItemDefinition

| DataDutputAssociation

{lrom Comman)
{¥ Ll v
et 0.1

&itemiind | [tembird
& Jtructurefief | Element
& EColu tion | Bookemn

Figure 10.64 — DataAssociation class diagram

Optionally, Data Associations can be visually represented in the diagram by using the Association connector style (see
Figure 10.65 and Figure 10.66).

.............................. >

Figure 10.65 — A Data Association

Research
Notes

Research Write Text

the Topic

Figure 10.66 — A Data Association used for an Outputs and Inputs into an Activities

The core concepts of a DataAssociation are that they have sources, a target, and an optional transformation.

When a data association is “executed,” data is copied to the target. What is copied depends if there is a transformation
defined or not.

If there is no transformation defined or referenced, then only one source MUST be defined, and the contents of this source
will be copied into the target.

© ISO/IEC 2013 - All rights reserved 221

ISO/IEC 19510:2013(E)

If there is a transformation defined or referenced, then this transformation Expression will be evaluated and the result
of the evaluation is copied into the target. There can be zero (0) to many sources defined in this case, but there is no
reguirement that these sources are used inside the Expression.

In any case, sources are used to define if the data association can be “executed,” if any of the sources isin the state of
“unavailable,” then the data association cannot be executed, and the Activity or Event where the data association is
defined MUST wait until this condition is met.

Data Associations are always contained within another element that defines when these data associations are going to
be executed. Activities define two sets of data associations, while Events define only one.

For Events, there is only one set, but they are used differently for catch or throw Events. For a catch Event, data
associations are used to push data from the Message received into Data Objects and properties. For a throw Event,
data associations are used to fill the Message that is being thrown.

As DataAssociations are used in different stages of the Process and Activity lifecycle, the possible sources and targets
vary according to that stage. This defines the scope of possible elements that can be referenced as source and target. For
example: when an Activity starts executing, the scope of valid targets include the Activity data inputs, while at the end
of the Activity execution, the scope of valid sources include Activity data outputs.

TheDataAssociation element inherits the attributes and model associations of BaseElement (see Table 8.5). Table
10.63 presents the additional model associations of the DataAssociation element.

Table 10.63 — DataAssociation model associations

Attribute Name Description/Usage

transformation: Expression [0..1] | gpecifies an optional transformation Expression. The actual scope of
accessible data for that Expression is defined by the source and target of
the specific Data Association types.

assignment: Assignment [0..”] Specifies one or more data elements Assignments. By using an
Assignment, Single data structure elements can be assigned from the
source structure to the target structure.

SOLirceReﬁ ltemAwareElement Identifies the source of the Data Association. The source MUST be an

0.7 ItemAwareElement.

targetRef: ltemAwareElement Identifies the target of the Data Association. The target MUST be an
ItemAwareElement.

Assignment

The Assignment classis used to specify a simple mapping of data elements using a specified Expression language.

The default Expression language for al Expressions is specified in the Definitions element, using the
expressionLanguage attribute. It can also be overridden on each individual Assignment using the same attribute.

The assignment element inherits the attributes and model associations of BaseElement (see Table 8.5). Table 10.64
presents the additional attributes of the Assignment element.

222 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.64 — Assignment attributes

Attribute Name Description/Usage

from: Expression The Expression that evaluates the source of the Assignment.

to: Expression The Expression that defines the actual Assignment operation and the target
data element.

DatalnputAssociation

The DataInputAssociation can be used to associate an ITtemAwareElement element with a DataInput
contained in an Activity. The source of such a DataAssociation can be every ItemAwareElement accessible in the
current scope, e.g., a Data Object, a Property, Or an Expression.

The DataInputAssociation element inherits the attributes and model associations of DataAssociation (see
Table 10.64), but does not contain any additional attributes or model associations.

DataOutputAssociation

The DataOutputAssociation can be used to associate a DataOutput contained within an ACTIVITY with any
ItemAwareElement accessible in the scope the association will be executed in. The target of such a
DataAssociation can be every TtemAwareElement accessible in the current scope, e.g., a Data Object, a
Property, OF an Expression.

The DataOutputAssociation element inherits the attributes and model associations of DataAssociation (see
Table 10.64), but does not contain any additional attributes or model associations.

Data Objects associated with a Sequence Flow

Figure 10.67 repeats Figure 10.66, above, and shows how Data Associations are used to represent inputs and outputs
of Activities.

Research
Notes

Research Write Text

the Topic

Figure 10.67 — A Data Object shown as an output and an inputs

Alternatively, Data Objects MAY be directly associated with a Sequence Flow connector (see Figure 10.68) to
represent the same input/output relationships. Thisis avisual short cut that normalizes two Data Associations (e.g., as
seen in Figure 10.67): one from an item-aware element (e.g., an Activity) contained by the source of the Sequence
Flow, connecting to the Data Object; and the other from the Data Object connecting to a item-aware element contained
by the target of the Sequence Flow.

© ISO/IEC 2013 - All rights reserved 223

ISO/IEC 19510:2013(E)

Resegarch
Notes

Research

the Topic Write Text

Figure 10.68 — A Data Object associated with a Sequence Flow
10.4.2 Execution Semantics for Data

When an element that defines an InputOutputSpecification isready to begin execution by means of Sequence
Flow or Event being caught, the inputs of the interface are filled with data coming from elements in the context, such as
Data Objects or Properties. The way to represent these assignments is the Data Association elements.

Each defined InputSet element will be evaluated in the order they are included in the InputOutputSpecification.
For each InputSet, the data inputs it references will be evaluated if it is valid.

All data associations that define as target the data input will be evaluated, and if any of the sources of the data association
is “unavailable,” then the InputSet is “unavailable’ and the next InputSet is evaluated.

Thefirst InputSet where all datainputs are “available” (by means of data associations) is used to start the execution of
the Activity. If no InputSet is “available,” then the execution will wait until this condition is met.

The time and frequency of when and how often this condition is evaluated is out of scope for this International Standard.
Implementations will wait for the sources of data associations to become available and then re-evaluate the InputSets.

In the case of throw and catch Events, given their nature, the execution semantics for data is different.

When a throw Event is activated, all DataInputAssociations of the event are executed, filling the Data Inputs of
the Event. Finally, DataInputs are then copied to the elements thrown by the Event (Messages, Signals, etc.).
Since there are no InputSets defined for Events, the execution will never wait.

When a catch Event is activated, Data Outputs of the event are filled with the element that triggered the Event. Then
al DataOutputAssociations of the Event are executed. There are no OutputSets defined for Events.

To allow invoking a Process from both a Call Activity and via Message Flow, the Start Event and End Event
support an additional case.

In the case of a Start Event, the Data Inputs of the enclosing process are available as targets to the
DataOutputAssociations of the Event. This way the Process Data Inputs can be filled using the elements that
triggered the Start Event.

In the case of an End Event, the Data Outputs of the enclosing process are available as sources to the
DataInputAssociations of the Event. Thisway the resulting elements of the End Event can use the Process
Data Outputs as sources.

224 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Once an InputSet becomes “available,” all Data Associations whose target is any of the Data Inputs of the
InputSet are executed. These executions fill the Activity Data Inputs and the execution of the Activity can begin.
When an Activity finishes execution, all Data Associations whose sources are any of the Data Outputs of the
OutputsSet are executed. These executions copy the values from the Data Outputs back to the container’s context
(Data Object, Properties, etc.).

Execution Semantics for DataAssociation

The execution of any Data Associations MUST follow these semantics:

- If theData Association specifiesa“transformation” Expression, this expression is evaluated and the result is copied
tothe targetRef. This operation replaces completely the previous value of the targetRef element.

 For each “assignment” element specified:

« Evaluate the Assignment’s “from” expression and obtain the * source value*.

« Evaluate the Assignment’s “to” expression and obtain the *target element*. The *target element* can be any
element in the context or a sub-element of it (e.g., a DataObject or a sub-element of it).

 Copy the * source value* to the *target element*.

 If no “transformation” Expression nor any “assignment” elements are defined in the Data Association:

« Copy the Data Association “sourceRef” valueinto the “targetRef.” Only one sourceRef element is alowed
in this case.

10.4.3 Usage of Data in XPath Expressions

BPMN extensibility mechanism enables the usage of various languages for Expressions and queries. This sub clause
describes how XPath is used in BPMN. It introduces a mechanism to access BPMN Data Objects, BPMN Properties,
and various instance attributes from XPath Expressions. The accessibility by the Expression language is defined
based on the entities accessibility by the Activity that contains the Expression. All elements accessible from the
enclosing element of an XPath Expression MUST be made available to the XPath processor.

BPMN Data Objects and BPMN Properties are defined using ItemDef inition. The XPath binding assumes that the
ItemDefinition iseither an XSD complex type or an XSD element. If XSD element is used, it MUST be manifested
as a node-set X Path variable with a single member node. If XSD complex type is used, it MUST be manifested as a node-
set XPath variable with one member node containing the anonymous document element that contains the actual value of
the BPMN Data Object or Property.

Access to BPMN Data Objects

Table 10.65 introduces an XPath function used to access BPMN Data Objects. Argument processName names
Process and is of type string. Argument dataObjectName names Data Object and is of type string. It MUST be a
literal string.

© ISO/IEC 2013 - All rights reserved 225

ISO/IEC 19510:2013(E)

Table 10.65 — XPath Extension Function for Data Objects

XPath Extension Function Description/Usage

Element getDataObject This extension function returns value of submitted Data Object. Argument
(processName, ‘dataObjectName’) processName is optional. If omitted, the process enclosing the Activity
that contains the Expression is assumed. In order to access Data
Objects defined in a parent process the processName MUST be used.
Otherwise it MUST be omitted.

Because XPath 1.0 functions do not support returning faults, an empty node set is returned in the event of an error.

Access to BPMN Data Input and Data Output

Table 10.66 introduces XPath functions used to access BPMN Data Inputs and BPMN Data Outputs. Argument
dataInputName names aData Input and is of type string. Argument dataOutput names a Data Output and is
of type string.

Table 10.66 — XPath Extension Function for Data Inputs and Data Outputs

XPath Extension Function Description/Usage
Element getDatalnput (‘datalnputName’) This extension function returns the value of the submitted Data
Input.

Element getDataOutput (‘dataOutputName’) | Thjs extension function returns the value of the submitted Data
Output.

Access to BPMN Properties
Table 10.67 introduces X Path functions used to access BPMN Properties.

Argument processName names Process and is of type string. Argument propertyName names property and is of
type string. Argument activityName names Activity and is of type string. Argument eventName names Event and
is of type string. These strings MUST be literal strings. The XPath extension functions return value of the submitted
property. Because XPath 1.0 functions do not support returning faults, an empty node set is returned in the event of an
error.

226 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.67 — XPath Extension Functions for Properties

XPath Extension Function Description/Usage

Element getProcessProperty This extension function returns value of submitted Process property.
(processName, ‘propertyName’) Argument processName is optional. If omitted, the Process enclosing the
Activity that contains the Expression is assumed. In order to access
Properties defined in a parent Process the processName MUST be
used. Otherwise it MUST be omitted.

Element getActivityProperty This extension function returns value of submitted Activity property.
(‘activityName’, ‘propertyName’)

Element getEventProperty This extension function returns value of submitted Event property.
‘eventName’, ‘propertyName’)

For BPMN Instance Attributes
Table 10.68 introduces X Path functions used to access BPMN instance Attributes.

Argument processName names Process and is of type string. Argument attributeName names instance
attribute and is of type string. Argument activityName names Activity and is of type string. These strings
MUST be literal strings.

These functions return value of the submitted instance Activity. Because XPath 1.0 functions do not support returning
faults, an empty node set is returned in the event of an error.

© ISO/IEC 2013 - All rights reserved 227

ISO/IEC 19510:2013(E)

Table 10.68 — XPath extension functions for instance attributes

XPath Extension Function Description/Usage
Element getProcessinstanceAttribute This extension function returns value of submitted Process
(‘processName’,‘attributeName’) instance attribute. Argument processName is optional. If omitted,

the Process enclosing the Activity that contains the
Expression is assumed. In order to access instance Attributes
of a parent Process the processName MUST be used.
Otherwise it MUST be omitted.

Element getChoreographylinstance- This extension function returns value of submitted Choreography

Attribute (‘attributeName’) instance attribute

Element getActivitylnstanceAttribute This extension function returns value of submitted Activity

(activityName', ‘attributeName’) instance attribute. User Task and loop are examples of
Activities.

10.4.4 XML Schema for Data

Table 10.69 — Assignment XML schema

<xsd:element name="assignment" type="tAssignment" />
<xsd:complexType name="tAssignment">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="from" type="tExpression” minOccurs="1" maxOccurs="1"/>
<xsd:element name="to" type="tExpression" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

228 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.70 — DataAssociation XML schema

<xsd:element name="dataAssociation" type="tDataAssociation" />
<xsd:complexType name="tDataAssociation" abstract="true">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="sourceRef" type="xsd:IDREF" minOccurs="0" maxOccurs="unbounded"/
>
<xsd:element name="targetRef" type="xsd:IDREF" minOccurs="1" maxOccurs="1"/>
<xsd:element name="transformation" type="tFormalExpression" minOccurs="0" maxOc-
curs="1"/>
<xsd:element ref="assignment" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.71 — Datalnput XML schema

<xsd:element name="datalnput" type="tDatalnput" />
<xsd:complexType name="tDatalnput">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string" use="optional" />
<xsd:attribute name="itemSubjectRef" type="xsd:QName" />
<xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>
<xsd:attribute name="dataState" type="xsd:IDREF"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.72 — DatalnputAssociation XML schema

<xsd:element name="datalnputAssociation" type="tDatalnputAssociation" />
<xsd:complexType name="tDatalnputAssociation">
<xsd:complexContent>
<xsd:extension base="tDataAssociation"/>
</xsd:complexContent>
</xsd:complexType>

© ISO/IEC 2013 - All rights reserved 229

ISO/IEC 19510:2013(E)

Table 10.73 — DataObject XML schema

<xsd:element name="dataObject" type="tDataObject" />
<xsd:complexType name="tDataObject">
<xsd:complexContent>
<xsd:extension base="tFlowElement">
<xsd:sequence>
<xsd:element ref="dataState" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="itemSubjectRef" type="xsd:QName"/>
<xsd:attribute name="isCollection" type="xsd:boolean"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.74 — DataState XML schema

<xsd:element name="dataState" type="tDataState" />
<xsd:complexType name="tDataState">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.75 — DataOutput XML schema

<xsd:element name="dataOutput" type="tDataOutput" />
<xsd:complexType name="tDataOutput">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="itemSubjectRef" type="xsd:QName"/>
<xsd:attribute name="isCollection" type="xsd:boolean" default="false"/>
<xsd:attribute name="dataState" type="xsd:IDREF"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.76 — DataOutputAssociation XML schema

<xsd:element name="dataOutputAssociation" type="tDataOutputAssociation" />
<xsd:complexType name="tDataOutputAssociation">
<xsd:complexContent>
<xsd:extension base="tDataAssociation"/>
</xsd:complexContent>
</xsd:complexType>

230 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.77 — InputOutputSpecification XML schema

<xsd:element name="ioSpecification" type="tiInputOutputSpecification" />
<xsd:complexType name="tInputOutputSpecification">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element ref="datalnput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="dataOutput" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="inputSet" minOccurs="1" maxOccurs="unbounded"/>
<xsd:element ref="outputSet" minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Table 10.78 — InputSet XML schema

<xsd:element name="inputSet" type="tInputSet" />
<xsd:complexType name="tInputSet">
<xsd:complexContent>
<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="datalnputRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="optionallnputRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="whileExecutinglnputRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="outputSetRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

© ISO/IEC 2013 - All rights reserved

231

ISO/IEC 19510:2013(E)

Table 10.79 — OutputSet XML schema

<xsd:element name="outputSet" type="tOutputSet" />
<xsd:complexType name="tOutputSet">
<xsd:complexContent>

<xsd:extension base="tBaseElement">
<xsd:sequence>
<xsd:element name="dataOutputRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="optionalOutputRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="whileExecutingOutputRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
<xsd:element name="inputSetRefs" type="xsd:IDREF" minOccurs="0" maxOc-
curs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Table 10.80 — Property XML schema

<xsd:element name="property" type="tProperty" />
<xsd:complexType name="tProperty">
<xsd:complexContent>

<xsd:extension base="tBaseElement">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="itemSubjectRef" type="xsd:QName"/>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

10.5

Events

An Event is something that “happens” during the course of a Process. These Events affect the flow of the Process
and usually have a cause or an impact and in general require or allow for areaction. The term “event” is general enough

to cover

many things in a Process. The start of an Activity, the end of an Activity, the change of state of a document,

aMessage that arrives, etc., al could be considered Events.

Events alow for the description of “event-driven” Processes. In these Processes, there are three main types of

Events:
1
2.
3.

232

Start Events (see page 237), which indicate where aProcess will start.
End Events (see page 245), which indicate where a path of aProcess will end.

Intermediate Events (see page 248), which indicate where something happens somewhere between the start and
end of aProcess.

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Within these three types, Events come in two flavors:
1. Events that catch atrigger. All Start Events and some Intermediate Events are catching Events.

2. Events that throw a Result. All End Events and some Intermediate Events are throwing Events that MAY
eventually be caught by another Event. Typically the trigger carries information out of the scope where the throw
Event occurred into the scope of the catching Events. The throwing of atrigger MAY be either implicit as defined
by this standard or an extension to it or explicit by athrow Event.

— Ravefiement Booument ation
; (Frem Foursdation] + documnantation ATvem Faundation)
LG 3ung & luxt : Bring
i . & WurlFormat & Shing
Flowlement
{Fames Cm
& Name | SIng
| HowNode | Property

Nl Crmemon| + proparbes [From Dk a}

L N 1 Bhing

=evert 0.1

: Evenit
(o Evenin]
DatalnpulAssociation -+ SitdlNoutAsocaton + Sataluinutissocation || pataOutput Assocation
[From st a (i em Ehat a)
- -
.1 0.1
ThrawEwvent b - 1 Catchfvent
(Trem Everts) + averiDafrtioniet [From Events)
y i + enntDefritordefs | * . : o dlebiltile © Bockean
0.1 | =5 noutsst | Inputhet @.1 .] TP e - o1 :ﬁlr."h-quﬂl |'-J|..'.r\||!‘5:n|: ..
* 4+ datainguits [from Evertal + datalutpuss |
b + et Dt # il Do firdiom
- Dt algut = Dt aDulpmit
(oo i) {frem Bata)
& reame Shing & N | SUTE)

5 BCosrtion « Booksan § BColection ¢ Booksan
Implicit ThrowCvent IntesmediateThrowDvent — EnclEvent | ShariCvent = IntermediateCalchbvent = BourlaryCvent
{Iviera Erenila) lvom Ewendin) (T Everada) [Fiem Everia) v Eweana] {lroem Evenila)

& ainterupting : Boolean & carcelic ity - Bockean

+ Bowrdarybeentials ®

+ atchedToRel

i lrwily
[rem Balivitien]

& nForCompesation | Bockean
& YA tCuantity @ Inbape
& compietonCuantty | Inteper

Figure 10.69 — The Event Class Diagram
10.5.1 Concepts

Depending on the type of the Event there are different strategies to forward the trigger to catching Events: publication,
direct resolution, propagation, cancellations, and compensations.

© ISO/IEC 2013 - All rights reserved 233

ISO/IEC 19510:2013(E)

With publication atrigger MAY be received by any catching Events in any scope of the system where the trigger is
published. Events for which publication is used are grouped to Conversations. Published Events MAY participate in
several Conversations. Messages are triggers, which are generated outside of the Pool they are published in. They
typically describe B2B communication between different Processes in different Pools. When Messages need to reach
a specific Process instance, correlation is used to identify the particular instance. Signals are triggers generated in the
Pool they are published. They are typically used for broadcast communication within and across Processes, across
Pools, and between Process diagrams.

Timer and Conditional triggers are implicitly thrown. When they are activated they wait for a time based or status
based condition respectively to trigger the catch Event.

A trigger that is propagated is forwarded from the location where the Event has been thrown to the innermost enclosing
scope instance (e.g., Process level) which has an attached Event being able to catch the trigger. Error triggers are
critical and suspend execution at the location of throwing. Escalations are non critical and execution continues at the
location of throwing. If no catching Event is found for an error or escalation trigger, this trigger is unresolved.
Termination, compensation, and cancellation are directed towards a Process or a specific Activity instance.
Termination indicates that all Activities in the Process or Activity should be immediately ended. This includes all
instances of multi-instances. It is ended without compensation or Event handling.

Compensation of a successfully completed Activity triggers its compensation handler. The compensation handler is
either user defined or implicit. The implicit compensation handler of a Sub Process calls al compensation handlers of
its enclosed Activities in the reverse order of Sequence Flow dependencies. If compensation is invoked for an
Activity that has not yet completed, or has not completed successfully, nothing happens (in particular, no error is raised).

Cancellation will terminate all running Activities and compensate all successfully completed Activities in the Sub-
Process it is applied to. If the Sub-Process is a Transaction, the Transaction is rolled back.

Data Modeling and Events

Some Events (like the Message, Escalation, Error, Signal, and Multiple Event) have the capability to carry data.
Data Association is used to push data from a Catch Event to a data element. For such Events, the following
constraints apply:

€ If the Event is associated with multiple EventDefinitions, there MUST be one Data Input (in the case of
throw Events) or one Data Output (in the case of catch Events) for each EventDefinition. The order of
theEventDefinitions and the order of the Data Inputs/Outputs determine which Data Input/Output
corresponds with which EventDefinition.

€ Foreach EventDefinition and Data Input/Qutput pair, if the Data Input/Output is present, it MUST have
an ItemDef inition equivaent to the one defined by the Message, Escalation, Error, or Signal on the
associated EventDefinition. Inthecase of athrow Event, if the Data Input is not present, the Message,
Escalation, Error, or Signal will not be populated with data. In the case of acatch Event, if the Data Output is
not present, the payload within the Message, Escalation, Error, or Signal will not flow out of the Event and
into the Process.

The execution behavior is then as follows:

€ For throw Events: When the Event is activated, the datain the Data Input is assigned automaticaly to the
Message, Escalation, Error, or Signal referenced by the corresponding EventDefinition.

€ For catch Events: When thetrigger of the Event occurs (for example, the Message is received), the datais
assigned automatically to the Data Output that correspondsto the EventDefinition that described that trigger.

234 © ISO/IEC 2013 - All rights reserved

Common Event attributes

ISO/IEC 19510:2013(E)

The Event element inherits the attributes and model associations of FlowElement (see Table 8.44). Table 10.81
presents the additional model associations of the Event element.

Table 10.81 — Event model associations

Attribute Name

Description/Usage

properties: Property [0..*]

Modeler-defined properties MAY be added to an Event. These
properties are contained within the Event.

Common Catch Event attributes

The catchEvent element inherits the attributes and model associations of Event element (see Table 10.81). Table
10.82 presents the additional attributes and model associations of the CatchEvent element.

Table 10.82 — CatchEvent attributes and model associations

Attribute Name

Description/Usage

eventDefinitionRefs: EventDefinition [0..*]

References the reusable EventDefinitions that are triggers
expected for a catch Event. Reusable EventDefinitions are
defined as top-level elements. These EventDefinitions can be
shared by different catch and throw Events.

« If there is no EventDefinition defined, then this is
considered a catch None Event and the Event will not have
an internal marker (see Figure 10.91).

« If there is more than one EventDefinition defined, this is
considered a Catch Multiple Event and the Event will have
the pentagon internal marker (see Figure 10.90).

This is an ordered set.

eventDefinitions: EventDefinition [0..*]

Defines the event EventDefinitions that are triggers expected
for a catch Event. These EventDefinitions are only valid inside
the current Event.

« If there is no EventDefinition defined, then this is
considered a catch None Event and the Event will not have an
internal marker (see Figure 10.91).

« If there is more than one EventDefinition defined, this is
considered a catch Multiple Event and the Event will have the
pentagon internal marker (see Figure 10.90).

This is an ordered set.

© ISO/IEC 2013 - All rights reserved

235

ISO/IEC 19510:2013(E)

Table 10.82 — CatchEvent attributes and model associations

dataOutputAssociations: Data The Data Associations of the catch Event.

OutputAssociation [0..1] The dataOutputAssociation of a catch Event is used to assign
data from the Event to a data element that is in the scope of the
Event.

For a catch Multiple Event, multiple Data Associations might be
REQUIRED, depending on the individual triggers of the Event.

dataOutputs: DataOutput [0..*] The Data Outputs for the catch Event. This is an ordered set.
outputSet: OutputSet [0..1] The outputsSet for the catch Event.
parallelMultiple: boolean = false This attribute is only relevant when the catch Event has more

than EventDefinition (Multiple).

If this value is true, then all of the types of triggers that are
listed in the catch Event MUST be triggered before the Process
is instantiated.

Common Throw Event Attributes

The ThrowEvent element inherits the attributes and model associations of Event element (see Table 10.81). Table
10.83 presents the additional attributes and model associations of the ThrowEvent element.

Table 10.83 — ThrowEvent attributes and model associations

Attribute Name Description/Usage

eventDefinitionRefs: EventDefinition [0.*] | References the reusable EventDefinitions that are results
expected for a throw Event. Reusable EventDefinitions are
defined as top-level elements. These EventDefinitions can be
shared by different catch and throw Events.

« If there is no EventDefinition defined, then this is considered a
throw None Event and the Event will not have an internal marker
(see Figure 10.91).

« If there is more than one EventDefinition defined, this is
considered a throw Multiple Event and the Event will have the
pentagon internal marker (see Figure 10.90).

This is an ordered set.

236 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.83 — ThrowEvent attributes and model associations

eventDefinitions: EventDefinition [0..*]

Defines the event EventDefinitions that are results expected for
a throw Event. These EventDefinitions are only valid inside the
current Event.

« |f there is no EventDefinition defined, this is considered a throw
None Event and the Event will not have an Internal marker (see
Figure 10.91).

* If there is more than one EventDefinition defined, this is
considered a throw Multiple Event and the Event will have the
pentagon internal marker (see Figure 10.90).

This is an ordered set.

datalnputAssociations: Datalnput
Association [0..*]

The Data Associations of the throw Event.

The dataInputAssociation Of a throw Event is responsible for the
assignment of a data element that is in scope of the Event to the
Event data.

For a throw Multiple Event, multiple Data Associations might be
REQUIRED, depending on the individual results of the Event.

datalnputs: Datalnput [0..*]

The Data Inputs for the throw Event. This is an ordered set.

inputSet: InputSet [0..1]

The Inputset for the throw Event.

Implicit Throw Event

A sub-type of throw Event isthe ImplicitThrowEvent. Thisis anon-graphica Event that is used for Multi-
Instance Activities (see page 190). The ImplicitThrowEvent element inherits the attributes and model
associations of ThrowEvent (see Table 10.84), but does not have any additional attributes or model associations.

10.5.2 Start Event

Asthe name implies, the Start Event indicates where a particular Process will start. In terms of Sequence Flows, the
Start Event starts the flow of the Process, and thus, will not have any incoming Sequence Flows—no Sequence

Flow can connect to a Start Event.

The Start Event shares the same basic shape of the Intermediate Event and End Event, acircle with an open center
so that markers can be placed within the circle to indicate variations of the Event.

€ A Start Event isacirclethat MUST be drawn with asingle thin line (see Figure 10.70).

€ Theuseof text, color, size, and linesfor a Start Event MUST follow the rules defined in “ Use of Text, Color,
Size, and Linesin aDiagram” on page 39 with the exception that:

€ Thethickness of the line MUST remain thin so that the Start Event can be distinguished from the
Intermediate and End Events.

© ISO/IEC 2013 - All rights reserved

237

ISO/IEC 19510:2013(E)

O

Figure 10.70 — Start Event

Throughout this document, we discuss how Sequence Flows are used within a Process. To facilitate this discussion,
we employ the concept of atoken that will traverse the Sequence Flows and pass through the elementsin the Process.
A token is a theoretical concept that is used as an aid to define the behavior of a Process that is being performed. The
behavior of Process elements can be defined by describing how they interact with a token as it “traverses’ the structure
of the Process.

NOTE: A token doesnot traverseaMessage Flow sinceitisaMessage that is passed down aMessage Flow (asthe name
implies).
Semantics of the Start Event include:
€ A Start Event isOPTIONAL: aProcess level—atop-level Process, aSub-Process (embedded), or a Global
Process (called Process)—MAY (isNOT REQUIRED to) have a Start Event.

NOTE: A Process MAY have morethan oneProcess level (i.e., it can include Expanded Sub-Processes or Call Activ-
ities that call other Processes). The use of Start and End Events isindependent for each level of the Diagram.

¢ |If aProcess iscomplex and/or the starting conditions are not obvious, then it is RECOMMENDED that a Start
Event be used.

& If aStart Event isnot used, then theimplicit Start Event for the Process SHALL NOT have atrigger.
If thereisan End Event, then there MUST be at |east one Start Event.

*

€ All Flow Objectsthat do not have an incoming Sequence Flow (i.e., are not atarget of aSequence Flow)
SHALL beinstantiated when the Process isinstantiated.

€ Exceptionsto thisare Activities that are defined as being Compensation Activities (it hasthe
Compensation marker). Compensation Activities are not considered a part of the normal flow and MUST
NOT beinstantiated when the Process isinstantiated. See page 301 for more information on Compensation
Activities.

€ Anexceptiontothisisacatching Link Intermediate Event, which is not allowed to have incoming
Sequence Flows. See page 266 for more information on Link Intermediate Events.

€ Anexception to thisisan Event Sub-Process, which is not allowed to have incoming Sequence Flows
and will only beinstantiated when its Start Event istriggered. See page 174 for more information on Event
Sub-Processes.

€ There MAY bemultiple Start Events for agiven Process level.

€ Each Start Event isan independent Event. That is, aProcess instance SHALL be generated when the Start
Event istriggered.

If the Process is used as a global Process (acallable Process that can be invoked from Call Activities of other
Processes) and there are multiple None Start Events, then when flow is transferred from the parent Process to the
global Process, only one of the global Process’s Start Events will be triggered. The targetRef attribute of a
Sequence Flow incoming to the Call Activity object can be extended to identify the appropriate Start Event.

238 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

NOTE: Thebehavior of Process can be harder to understand if there are multiple Start Events. It iSRECOMMENDED that
this feature be used sparingly and that the modeler be aware that other readers of the Diagram could have difficulty
understanding the intent of the Diagram.

When the trigger for a Start Event occurs, a new Process will be instantiated and a token will be generated for each
outgoing Sequence Flow from that Event.

Start Event Triggers
Start Events can be used for these types of Processes:
» Top-level Processes
» Sub-Processes (embedded)
» Global Process (called)
« Event Sub-Processes

The next three sub clauses describe the types of Start Events that can be used for each of these three types of
Processes.

Start Events for Top-level Processes

There are many ways that top-level Processes can be started (instantiated). The trigger for a Start Event is designed
to show the general mechanisms that will instantiate that particular Process. There are seven (7) types of Start Events
for top-level Processes in BPMN (see Table 10.84): None, Message, Timer, Conditional, Signal, Multiple, and
Parallel.

A top-level Process that has at least one None Start Event MAY be called by a Call Activity in another Process.
The None Start Event is used for invoking the Process from the Call Activity. All other types of Start Events are
only applicable when the Process is used as a top-level Process.

Table 10.84 — Top-Level Process Start Event Types

Trigger Description Marker

None The None Start Event does not have a defined trigger. There is no
specific EventDefinition subclass (see page 259) for None Start

Events. If the Start Event has no associated EventDefinition, then

the Event MUST be displayed without a marker (see the figure on the

right).

Message A Message arrives from a Participant and triggers the start of the
Process. See page 91 for more details on Messages.

If there is only one EventDefinition associated with the Start Event

and that EventDefinition is of the subclass

MessageEventDefinition, then the Event is a Message Start Event

and MUST be displayed with an envelope marker (see the figure to the

right).

The actual Participant from which the Message is received can be

identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process - see Table 10.1.

© ISO/IEC 2013 - All rights reserved 239

ISO/IEC 19510:2013(E)

Table 10.84 — Top-Level Process Start Event Types

Timer A specific time-date or a specific cycle (e.g., every Monday at 9am) can
be set that will trigger the start of the Process.

If there is only one EventDefinition associated with the Start Event

and that EventDefinition is of the subclass

TimerEventDefinition, then the Eventis a Timer Start Event and
MUST be displayed with a clock marker (see the figure to the right).

Conditional This type of event is triggered when a condition such as “S&P 500

changes by more than 10% since opening,” or “Temperature above 300C”
become true. The condition Expression for the Event MUST become IEI

false and then true before the Event can be triggered again.

The Condition Expression of a Conditional Start Event MUST NOT refer
to the data context or instance attribute of the Process (as the Process
instance has not yet been created). Instead, it MAY refer to static Process
attributes and states of entities in the environment. The specification of
mechanisms to access such states is out of scope of the standard.

If there is only one EventDefinition associated with the Start Event and that
EventDefinition is of the subclass ConditionalEventDefinition, then
the Event is a Conditional Start Event and MUST be displayed with a lined
paper marker (see the figure to the right).

Signal A Signal arrives that has been broadcast from another Process and
triggers the start of the Process. Note that the Signal is hot a Message,
which has a specific target for the Message. Multiple Processes can
have Start Events that are triggered from the same broadcasted Signal.
If there is only one EventDefinition associated with the Start Event
and that EventDefinition is of the subclass SignalEventDefini-
tion, then the Event is a Signal Start Event and MUST be

displayed with a triangle marker (see the figure to the right).

Multiple This means that there are multiple ways of triggering the Process. Only
one of them is REQUIRED. There is no specific EventDefinition
subclass for Multiple Start Events. If the Start Event has more than one
associated EventDefinition, then the Event MUST be displayed with
the Multiple Event marker (a pentagon—see the upper figure to the
right).

Parallel This means that there are multiple triggers REQUIRED before the
Multiple Process can be instantiated. All of the types of triggers that are listed in
the Start Event MUST be triggered before the Process is instantiated.
There is no specific EventDefinition subclass for Parallel

Multiple Start Events. If the Start Event has more than one associated
EventDefinition and the parallelMultiple attribute of the Start
Event is true, then the Event MUST be displayed with the Parallel Multi-
ple Event marker (an open plus sign—see the figure to the right).

240 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Start Events for Sub-Processes

There is only one type of Start Event for Sub-Processes in BPMN (see Figure 10.82): None.

Table 10.85 — Sub-Process Start Event Types

Trigger

Description

Marker

None

The None Start Event is used for all Sub-Processes, either embedded
or called (reusable). Other types of triggers are not used for a
Sub-Process, since the flow of the Process (a token) from the parent
Process is the trigger of the Sub-Process. If the Sub-Process is called
(reusable) and has multiple Start Events, some of the other Start Events
MAY have triggers, but these Start Events would not be used in the
context of a Sub-Process. When the other Start Events are triggered,
they would instantiate top-level Processes.

Start Events for Event Sub-Processes

A Start Event can also initiate an inline Event Sub-Process (see page 174). In that case, the same Event types as for
boundary Events are allowed (see Table 10.86), namely: Message, Timer, Escalation, Error, Compensation,
Conditional, Signal, Multiple, and Parallel.

€ AnEvent Sub-Process MUST have asingle Start Event.

Table 10.86 — Event Sub-Process Start Event Types

Trigger

Description

Marker

Message

If there is only one EventDefinition associated with the Start Event and
that EventDefinition is of the subclass MessageEventDefinition,
then the Event is a Message Start Event and uses an envelope marker (see
the

figures to the right).

» For a Message Event Sub-Process that interrupts its containing
Process, the boundary of the Event is solid (see the upper figure to the

Interrupting

&)

Non-
Interrupting

right). -
A Y
» For a Message Event Sub-Process that does not interrupt its ',E‘

containing \ ,’
Process, the boundary of the Event is dashed (see the lower figure on S-
the right).

The actual Participant from which the Message is received can be identified

by connecting the Event to a Participant using a Message Flow within the

definitional Collaboration of the Process — see Table 10.1.

© ISO/IEC 2013 - All rights reserved 241

ISO/IEC 19510:2013(E)

Table 10.86 — Event Sub-Process Start Event Types

Timer

If there is only one EventDefinition associated with the Start Event and
that EventDefinition is of the subclass TimerEventDefinition, then
the Event is a Timer Start Event and uses a clock marker (see the figures to
the right).
» For a Timer Event Sub-Process that interrupts its containing Process,
the boundary of the Event is solid (see the upper figure to the right).

» For a Timer Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on
the right).

Interrupting

&

Non-
Interrupting

Escalation

Escalation Event Sub-Processes implement measures to expedite the
completion of a business Activity, should it not satisfy a constraint specified
on its execution (such as a time-based deadline).

The Escalation Start Event is only allowed for triggering an in-line Event
Sub-Process.

If there is only one EventDefinition associated with the Start Event and
that EventDefinitionis of the subclass EscalationEventDefinition,
then the Event is an Escalation Start Event and uses an arrowhead marker
(see the figures to the right).

For an Escalation Event Sub-Process that interrupts its containing Process,
the boundary of the Event is solid (see the upper figure to the right).

For an Escalation Event Sub-Process that does not interrupt its containing
Process, the boundary of the Event is dashed (see the lower figure on the
right).

Interrupting

Non-
Interrupting

kN
A)
]

\N_~

-

Error

The Error Start Event is only allowed for triggering an in-line Event Sub-
Process.

If there is only one EventDefinition associated with the Start Event and
that EventDefinition is of the subclass ErrorEventDefinition, then
the Eventis an Error Start Event and uses a lightning marker (see the figures
to the right).

Given the nature of Errors, an Event Sub-Process with an Error trigger will
always interrupt its containing Process.

Interrupting

@)

Compensation

The Compensation Start Event is only allowed for triggering an in-line
Compensation Event Sub-Process (see “Compensation Handler” on page
302). This type of Event is triggered when compensation occurs.

If there is only one EventDefinition associated with the Start Event and
that EventDefinition is of the subclass
CompensationEventDefinition, then the Event is a Compensation
Start Event and uses a double triangle marker (see the figure to the right).
This Event does not interrupt the Process since the Process has to be
completed before this Event can be triggered.

®

242

© ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.86 — Event Sub-Process Start Event Types

Conditional If there is only one EventDefinition associated with the Start Event and | Interrupting
that EventDefinition is of the subclass ConditionalEventDefini-
tion, then the Event is a Conditional Start Event and uses an lined page E
marker (see the figures to the right).
For a Conditional Event Sub-Process that interrupts its containing Process,
then the boundary of the Event is solid (see the upper figure to the right). Non-
For a Conditional Event Sub-Process that does not interrupt its containing Interrupting
Process, the boundary of the Event is dashed (see the lower figure on the
right). Famh
! \
\ |§| !
~_7
Signal If there is only one EventDefinition associated with the Start Event and | Interrupting
that EventDefinition is of the subclass SignalEventDefinition, then
the Event is a Signal Start Event and uses an triangle marker (see the fig-
ures to the right).
For a Signal Event Sub-Process that interrupts its containing Process, then
the boundary of the Event is solid (see the upper figure to the right). Non-
For a Signal Event Sub-Process that does not interrupt its containing Interrupting
Process, the boundary of the Event is dashed (see the lower figure on the
right). '/ s a
\ !
<.’
Multiple A Multiple Event indicates that there are multiple ways of triggering the Interrupting
Event Sub-Process. Only one of them is REQUIRED to actually start the
Event Sub-Process. There is no specific EventDefinition subclass (see
page 259) for Multiple Start Events. If the Start Event has more than one
associated EventDefinition, then the Event MUST be displayed with the
Multiple Event marker (a pentagon—see the figures on the right). Non-
For a Multiple Event Sub-Process that interrupts its containing Process, the | Interrupting
boundary of the Event is solid (see the upper figure to the right). -
For a Multiple Event Sub-Process that does not interrupt its containing ,’ \\
Process, the boundary of the Event is dashed (see the lower figure on the \ O !
right). ~-7
© ISO/IEC 2013 - All rights reserved 243

ISO/IEC 19510:2013(E)

Table 10.86 — Event Sub-Process Start Event Types

Parallel

Multiol A Parallel Multiple Event indicates that there are multiple ways of triggering Interrupting
ultiple

the Event Sub-Process. All of them are REQUIRED to actually start the
Event Sub-Process. There is no specific EventDefinition subclass (see
page 259) for Parallel Multiple Start Events. If the Start Event has more
than one associated EventDefinition and the parallelMultiple

attribute of the Start Event is true, then the Event MUST be displayed with NO”‘_
the Parallel Multiple Event marker (an open plus sign—see the figures to the | 'nterrupting
right). PR
For a Parallel Multiple Event Sub-Process that interrupts its containing ! HJ:' \
Process, the boundary of the Event is solid (see the upper figure to the right). \]
For a Parallel Multiple Event Sub-Process that does not interrupt its S=?

containing Process, the boundary of the Event is dashed (see the lower figure
on the right).

Attributes for Start Events
For Start Events, the following additional attribute exists:

« The Start Event element inherits the attributes and model associations of CatchEvent (see Table 10.82). Table
10.87 presents the additional attributes of the Start Event element:

Table 10.87 — Start Event attributes

Attribute Name Description/Usage
isinterrupting: boolean = | This attribute only applies to Start Events of Event Sub-Processes; itis ignored for
true other Start Events. This attribute denotes whether the Sub-Process encompassing

the Event Sub-Process should be canceled or not, If the encompassing Sub-
Process is not canceled, multiple instances of the Event Sub-Process can run
concurrently. This attribute cannot be applied to Error Events (where it's always
true), or Compensation Events (where it doesn’t apply).

Sequence Flow Connections

See “ Sequence Flow Connections Rules’ on page 40 for the entire set of objects and how they MAY be a source or target
of aSequence Flow.

€ A Start Event MUST NOT be atarget for Sequence Flows; it MUST NOT haveincoming Sequence Flows.

€ Anexception to thisiswhen a Start Event isused in an Expanded Sub-Process and is attached to the
boundary of that Sub-Process. Inthiscase, aSequence Flow fromthe higher-level Process MAY connect
tothat Start Event in lieu of connecting to the actual boundary of the Sub-Process.

€ A Start Event MUST be asourcefor aSequence Flow.
€ Multiple Sequence Flows MAY originate from a Start Event. For each Sequence Flow that has the Start

Event asasource, anew parallel path SHALL be generated.
€ TheconditionExpression attributefor al outgoing Sequence Flows MUST be set to None.

244 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

€ WhenaStart Event isnot used, then all Flow Objectsthat do not have an incoming Sequence Flow SHALL
be the start of a separate parallel path.

€ Each path will have a separate unique token that will traverse the Sequence Flow.

Message Flow Connections

NOTE: All Message Flows MUST connect two separate Pools. They MAY connect to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

See “Message Flow Connection Rules’ on page 41 for the entire set of objects and how they MAY be a source or targets
of a Message Flow.

€ A Start Event MAY bethetarget for aMessage Flow; it can have zero (0) or more incoming Message
Flows. Each Message Flow targeting a Start Event represents an instantiation mechanism (atrigger) for the
Process. Only one of thetriggersis REQUIRED to start anew Process.

€ A Start Event MUST NOT be asource for aMessage Flow; it MUST NOT have outgoing Message
Flows.

10.5.3 End Event

As the name implies, the End Event indicates where a Process will end. In terms of Sequence Flows, the End
Event ends the flow of the Process, and thus, will not have any outgoing Sequence Flows—no Sequence Flow can
connect from an End Event.

The End Event shares the same basic shape of the Start Event and Intermediate Event, a circle with an open center
so that markers can be placed within the circle to indicate variations of the Event.
€ AnEnd Event isacirclethat MUST be drawn with a single thick line (see Figure 10.71).

€ Theuse of text, color, size, and linesfor an End Event MUST follow the rules defined in “Use of Text,
Color, Size, and Linesin a Diagram” on page 39 with the exception that:

€ Thethickness of the line MUST remain thick so that the End Event can be distinguished from the

Intermediate and Start Events.

Figure 10.71 — End Event

To continue discussing how flow proceeds throughout the Process, an End Event consumes a token that had been
generated from a Start Event within the same level of Process. If parallel Sequence Flows targets the End Event,
then the tokens will be consumed as they arrive. All the tokens that were generated within the Process MUST be
consumed by an End Event before the Process has been completed. In other circumstances, if the Process is a Sub-
Process, it can be stopped prior to normal completion through interrupting Intermediate Events (See 10.2.2,
“exception flow,” on page 274 for more details). In this situation the tokens will be consumed by an Intermediate Event
attached to the boundary of the Sub-Process.

Semantics of the End Event include:

€ There MAY be multiple End Events within asingle level of aProcess.

© ISO/IEC 2013 - All rights reserved 245

ISO/IEC 19510:2013(E)

€ AnEnd EventisOPTIONAL: agiven Process level—aProcess or an expanded Sub-Process—MAY
(isNOT REQUIRED to) have this shape:

¢ If an End Event isnot used, then theimplicit End Event for the Process SHALL NOT have a Resullt.
& |If thereisaStart Event, then there MUST be at least one End Event.

€ If theEnd Event isnot used, then all Flow Objectsthat do not have any outgoing Sequence Flow (i.e., are
not a source of a Sequence Flow) mark the end of a path in the Process. However, the Process MUST
NOT end until all parallel paths have completed.

NOTE: A Process MAY have morethan one Process leve (i.e,, it can include Expanded Sub-Processes or aCall
Activity that call other Processes). The use of Start and End Events isindependent for each level of the Diagram.

For Processes without an End Event, atoken entering a path-ending Flow Object will be consumed when the
processing performed by the object is completed (i.e., when the path has completed), as if the token had then gone on to
reach an End Event. When all tokens for a given instance of the Process are consumed, then the Process will reach
a state of being completed.

End Event Results

There are nine types of End Events in BPMN: None, Message, Escalation, Error, Cancel, Compensation,
Signal, Terminate, and Multiple. These types define the consequence of reaching an End Event. This will be referred
to as the End Event Result.

Table 10.88 — End Event Types

Trigger Description Marker
None The None End Event does not have a defined result.

There is no specific EventDefinition subclass (see page 259) for

None End Events. If the End Event has no associated

EventDefinition, then the Event will be displayed without a marker

(see the figure on the right).

Message This type of End indicates that a Message is sent to a Participant at the
conclusion of the Process. See page 91 for more details on Messages.
The actual Participant from which the Message is received can be
identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process — see Table 10.1.

Error This type of End indicates that a named Error should be generated. All
currently active threads in the particular Sub-Process are terminated as a
result. The Error will be caught by a Catch Error Intermediate Event with
the same errorCode or no errorCode which is on the boundary of the
nearest enclosing parent Activity (hierarchically). The behavior of the
Process is unspecified if no Activity in the hierarchy has such an Error
Intermediate Event. The system executing the process can define addi-
tional Error handling in this case, a common one being termination of the
Process instance.

246 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.88 — End Event Types

Escalation This type of End indicates that an Escalation should be triggered. Other
active threads are not affected by this and continue to be executed. The
Escalation will be caught by a Catch Escalation Intermediate Event with
the same escalationCode Or N0 escalationCode which is on the
boundary of the nearest enclosing parent Activity (hierarchically). The
behavior of the Process is unspecified if no Activity in the hierarchy has
such an Escalation Intermediate Event.

Cancel This type of End is used within a Transaction Sub-Process. It will indi-
cate that the Transaction should be canceled and will trigger a Cancel
Intermediate Event attached to the Sub-Process boundary. In addition,
it will indicate that a TransactionProtocol Cancel Message should
be sentto any Entities involved in the Transaction.

Compensation This type of End indicates that compensation is necessary. If an Activity
is identified, and it was successfully completed, then that Activity will be
compensated. The Activity MUST be visible from the Compensation
End Event, i.e., one of the following MUST be true:

* The Compensation End Event is contained in normal flow at the
same level of Sub-Process.

* The Compensation End Event is contained in a Compensation
Event Sub-Process that is contained in the Sub-Process
containing the Activity.

« If no Activity is identified, all successfully completed Activities
visible from the Compensation End Event are compensated, in
reverse order of their Sequence Flows. Visible means one of the
following:

« The Compensation End Event is contained in normal flow and at
the same level of Sub-Process as the Activities.

* The Compensation End Event is contained in a Compensation
Event Sub-Process that is contained in the Sub-Process
containing the Activities.

To be compensated, an Activity MUST have a boundary Compensation
Event or contain a Compensation Event Sub-Process.

Signal This type of End indicates that a Signal will be broadcasted when the
End has been reached. Note that the Signal, which is broadcast to any
Process that can receive the Signal, can be sent across Process levels
or Pools, but is not a Message (that has a specific source and target).
The attributes of a Signal can be found on page 272.

Terminate This type of End indicates that all Activities in the Process should be
immediately ended. This includes all instances of multi-instances. The
Process is ended without compensation or event handling.

© ISO/IEC 2013 - All rights reserved 247

ISO/IEC 19510:2013(E)

Table 10.88 — End Event Types

Multiple This means that there are multiple consequences of ending the Process.
All of them will occur (e.g., there might be multiple Messages sent).
There is no specific EventDefinition subclass (see page 259) for
Multiple End Events. If the End Event has more than one associated
EventDefinition, then the Event will be displayed with the Multiple
Event marker (a pentagon—see the figure on the right).

Sequence Flow Connections

See “ Sequence Flow Connections Rules’ on page 40 for the entire set of objects and how they MAY be a source or target
of aSequence Flow.

€ AnEnd Event MUST be atarget for aSequence Flow.
€ AnEnd Event MAY have multiple incoming Sequence Flows.

The Flow MAY come from either alternative or parallel paths. For modeling convenience, each path MAY connect to a
separate End Event object. The End Event is used as a Sink for all tokens that arrive at the Event. All tokens that are
generated at the Start Event for that Process MUST eventually arrive at an End Event. The Process will bein a
running state until all tokens are consumed.

€ AnEnd Event MUST NOT be a source for Sequence Flows; that is, there MUST NOT be outgoing
Sequence Flows.

€ Anexception to thisiswhen an End Event isused in an Expanded Sub-Process and is attached to the
boundary of that Sub-Process. Inthiscase, aSequence Flow from the higher-level Process MAY
connect from that End Event in lieu of connecting from the actual boundary of the Sub-Process.

Message Flow Connections
See “Message Flow Connection Rules’ on page 41 for the entire set of objects and how they MAY be a source or target
of a Message Flow.

NOTE: All Message Flows MUST connect two separate Pools. They MAY connect to the Pool boundary or to Flow
Objects within the Pool boundary. They MUST NOT connect two objects within the same Pool.

€ AnEnd Event MUST NOT bethe target of aMessage Flow; it can have no incoming Message Flows.

€ AnEnd Event MAY be the source of aMessage Flow; it can have zero (0) or more outgoing Message
Flows. Each Message Flow leaving the End Event will have aMessage sent when the Event is
triggered.

€ TheResult attribute of the End Event MUST be set to Message or Multiple if there are any outgoing
Message Flows.

€ TheResult attribute of the End Event MUST be set to Multiple if thereis more than one outgoing
Message Flows.

10.5.4 Intermediate Event

As the name implies, the Intermediate Event indicates where something happens (an Event) somewhere between the
start and end of a Process. It will affect the flow of the Process, but will not start or (directly) terminate the Process.
Intermediate Events can be used to:

248 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

» Show where Messages are expected or sent within the Process,
» Show delays are expected within the Process,
« Disrupt the normal flow through exception handling, or

Show the extra work needed for compensation.

The Intermediate Event shares the same basic shape of the Start Event and End Event, a circle with an open center
so that markers can be placed within the circle to indicate variations of the Event.

¢ Anlintermediate Event isacircle that MUST be drawn with a double thin line (see Figure 10.72).

€ Theuseof text, color, size, and linesfor an Intermediate Event MUST follow the rules defined in
“Use of Text, Color, Size, and Linesin a Diagram” on page 39 with the exception that the thickness of the line
MUST remain double so that the Intermediate Event can be distinguished from the Start and End
Events.

O

Figure 10.72 — Intermediate Event

One use of Intermediate Events isto represent exception or compensation handling. This will be shown by placing the
Intermediate Event on the boundary of a Task or Sub-Process (either collapsed or expanded). The Intermediate
Event can be attached to any location of the Activity boundary and the outgoing Sequence Flows can flow in any
direction. However, in the interest of clarity of the Diagram, we RECOMMEND that the modeler choose a consistent
location on the boundary. For example, if the Diagram orientation is horizontal, then the Intermediate Events can be
attached to the bottom of the Activity and the Sequence Flows directed down, then to the right. If the Diagram
orientation is vertical, then the Intermediate Events can be attached to the left or right side of the Activity and the
Sequence Flows directed to the left or right, then down.

Intermediate Event Triggers

There are twelve types of Intermediate Events in BPMN: None, Message, Timer, Escalation, Error, Cancel,
Compensation, Conditional, Link, Signal, Multiple, and Parallel Multiple. Each type of Intermediate Event will
have a different icon placed in the center of the Intermediate Event shape to distinguish one from another.

There are two ways that Intermediate Events are used in BPMN:

1. Anlintermediate Event that is placed within the normal flow of a Process can be used for one of two purposes.
The Event can respond to (“catch”) the Event trigger or the Event can be used to set off (“throw”) the Event
trigger.

2. AnIntermediate Event that is attached to the boundary of an Activity can only be used to “catch” the Event
trigger.

Intermediate Events in Normal Flow

When a token arrives at an Intermediate Event that is placed within the normal flow of a Process, one of two things
will happen.

© ISO/IEC 2013 - All rights reserved 249

ISO/IEC 19510:2013(E)

« If the Event isused to “throw” the Event trigger, then trigger of the Event will immediately occur (e.g., the
Message will be sent) and the token will move down the outgoing Sequence Flow.

- If theEvent isusedto “catch” the Event trigger, then the token will remain at the Event until thetrigger occurs (e.g.,
the Message is received). Then the token will move down the outgoing Sequence Flow.

Ten of the twelve Intermediate Events can be used in normal flow as shown in Table 10.89.

Table 10.89 — Intermediate Event Types in Normal Flow

Trigger Description Marker

None The None Intermediate Event is only valid in normal flow, i.e., it MAY Throw
NOT be used on the boundary of an Activity. Although there is no specific
trigger for this Event, it is defined as throw Event. It is used for modeling
methodologies that use Events to indicate some change of state in the

Process.

There is no specific EventDefinition subclass (see page 259) for
None Intermediate Events. If the (throw) Intermediate Event has no
associated EventDefinition, then the Event MUST be displayed
without a marker (see the figure on the right).

O

Message A Message Intermediate Event can be used to either send a Message Throw
or receive a Message.

When used to “throw” the Message, the Event marker MUST be filled
(see the upper figure on the right). When used to “catch” the Message,
then the Event marker MUST be unfilled (see the lower figure on the
right). This causes the Process to continue if it was waiting for the Catch
Message, or changes the flow for exception handling.

The actual Participant from which the Message is received can be
identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process — see Table 10.1.
See page 91 for more details on Messages.

Q)

®

Timer In normal flow the Timer Intermediate Event acts as a delay mechanism Catch
based on a specific time-date or a specific cycle (e.g., every Monday at
9am) can be set that will trigger the Event. This Event MUST be dis-
played with a clock marker (see the figure on the right).

@

250 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Trigger

Description

Marker

Escalation

In normal flow, the Escalation Intermediate Event raises an Escalation.
Since this is a Throw Event, the arrowhead marker will be filled (see the

figure to the right).

Throw

@

Compensation

In normal flow, this Intermediate Event indicates that compensation is
necessary. Thus, it is used to "throw" the Compensation Event, and the
Event marker MUST be filled (see figure on the right). If an Activity is
identified, and it was successfully completed, then that Activity will be
compensated. The Activity MUST be visible from the Compensation
Intermediate Event, i.e., one of the following MUST be true:

« The Compensation Intermediate Event is contained in normal
flow at the same level of Sub-Process.

* The Compensation Intermediate Event is contained in a
Compensation Event Sub-Process which is contained in the Sub-
Process containing the Activity.

If no Activity is identified, all successfully completed Activities visible
from the Compensation Intermediate Event are compensated, in
reverse order of their Sequence Flows. Visible means one of the
following:

« The Compensation Intermediate Event is contained in normal
flow and at the same level of Sub-Process as the Activities.

* The Compensation Intermediate Event is contained in a
Compensation Event Sub-Process which is contained in the Sub-
Process containing the Activities.

To be compensated, an Activity MUST have a boundary Compensation
Event, or contain a Compensation Event Sub-Process.

Throw

©

Conditional

This type of Event is triggered when a condition becomes true. A
condition is a type of Expression. The attributes of an Expression can
be found on page 82.

© ISO/IEC 2013 - All rights reserved

251

ISO/IEC 19510:2013(E)

Link The Link Intermediate Events are only valid in normal flow, i.e., they Throw
MAY NOT be used on the boundary of an Activity. A Link is a
mechanism for connecting two sections of a Process. Link Events can
be used to create looping situations or to avoid long Sequence Flow
lines. Link Event uses are limited to a single Process level (i.e., they
cannot link a parent Process with a Sub-Process). Paired Intermediate Catch
Events can also be used as “Off-Page Connectors” for printing a Process
across multiple pages. They can also be used as generic “Go To” objects
within the Process level. There can be multiple source Link Events, but

there can only be one target Link Event.

When used to “throw” to the target Link, the Event marker will be filled
(see the top figure on the right). When used to “catch” from the source
Link, the Event marker will be unfilled (see the bottom figure on the right).

QO'®

Signal This type of Event is used for sending or receiving Signals. A Signalis Throw
for general communication within and across Process levels, across
Pools, and between Business Process Diagrams. A BPMN Signal is
similar to a signal flare that shot into the sky for anyone who might be
interested to notice and then react. Thus, there is a source of the Signal,
but no specific intended target. This type of Intermediate Event can send
or receive a Signal if the Event is part of a normal flow. The Event can
only receive a Signal when attached to the boundary of an Activity. The
Signal Event differs from an Error Event in that the Signal defines a
more general, non-error condition for interrupting Activities (such as the
successful completion of another Activity) as well as having a larger
scope than Error Events. When used to “catch” the signal, the Event
marker will be unfilled (see the middle figure on the right). When used to
“throw” the Signal, the Event marker will be filled (see the top figure on
the right). The attributes of a Signal can be found on page 272.

®

Catch

>

Multiple This means that there are multiple triggers assigned to the Event. If used Throw
within normal flow, the Event can “catch” the trigger or “throw” the trig-
gers. When attached to the boundary of an Activity, the Event can only
“catch” the trigger. When used to “catch” the trigger, only one of the
assigned triggers is REQUIRED and the Event marker will be unfilled

@

(see the middle figure on the right). When used to “throw” the trigger (the Catch
same as a Multiple End Event), all the assigned triggers will be thrown

and the Event marker will be filled (see the top figure on the right).
There is no specific EventDef inition subclass (see page 259) for

Multiple Intermediate Events. If the Intermediate Event has more than
one associated EventDefinition, then the Event will be displayed with
the Multiple Event marker.

252 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Parallel Multiple

This means that there are multiple triggers assigned to the Event. If used
within normal flow, the Event can only “catch” the trigger. When attached
to the boundary of an Activity, the Event can only “catch” the trigger.
Unlike the normal Multiple Intermediate Event, all of the assigned
triggers are REQUIRED for the Event to be triggered.

The Event marker will be an unfilled plus sign (see the figure on the right).
There is no specific EventDefinition subclass (see page 259) for
Parallel Multiple Intermediate Events. If the Intermediate Event has
more than one associated EventDefinition and the
parallelMultiple attribute of the Intermediate Event is true, then the
Event will be displayed with the Parallel Multiple Event marker.

Catch

Intermediate Events Attached to an Activity Boundary

Table 10.90 describes the Intermediate Events that can be attached to the boundary of an Activity.

Table 10.90 — Intermediate Event Types Attached to an Activity Boundary

Trigger

Description

Marker

Message

A Message arrives from a participant and triggers the Event. If a
Message Event is attached to the boundary of an Activity, it will change
the normal flow into an exception flow upon being triggered.

For a Message Event that interrupts the Activity to which it is attached,
the boundary of the Event is solid (see upper figure on the right). Note
that if using this notation, the attribute cancelActivity of the Activity
to which the Event is attached is implicitly set to true.

For a Message Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to false.

The actual Participant from which the Message is received can be
identified by connecting the Event to a Participant using a Message Flow
within the definitional Collaboration of the Process — see Table 10.1.

Interrupting

Zam

N/

Non-
Interrupting

-
p = N
¢ T

;
/)

T o

‘t:‘

Timer

A specific time-date or a specific cycle (e.g., every Monday at 9am) can
be set that will trigger the Event. If a Timer Event is attached to the
boundary of an Activity, it will change the normal flow into an exception

flow upon being triggered.

For a Timer Event that interrupts the Activity to which it is attached, the
boundary of the Event is solid (see upper figure on the right). Note that if
using this notation, the attribute cancelActivity of the Activity to
which the Event is attached is implicitly set to true.

Interrupting

Non-
Interrupting

For a Timer Event that does not interrupt the Activity to which it is % = §\
attached, the boundary of the Event is dashed (see lower figure on the '\t I
right). Note that if using this notation, the attribute cancelActivity of S -_;9
the Activity to which the Event is attached is implicitly set to false.

© ISO/IEC 2013 - All rights reserved 253

ISO/IEC 19510:2013(E)

Table 10.90 — Intermediate Event Types Attached to an Activity Boundary

Escalation This type of Event is used for handling a named Escalation. If attached
to the boundary of an Activity, the Intermediate Event catches an
Escalation. In contrast to an Error, an Escalation by default is
assumed to not abort the Activity to which the boundary Event is
attached. However, a modeler can decide to override this setting by using
the notation described in the following:
» For an Escalation Event that interrupts the Activity to which it is
attached, the boundary of the Event is solid (see upper figure on the

right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to true.

- For an Escalation Event that does not interrupt the Activity to
which it is attached, the boundary of the Event is dashed (see lower
figure on the right). Note that if using this notation, the attribute
cancelActivity of the Activity to which the Event is attached is
implicitly set to false.

Interrupting

Non-
Interrupting

o N\
" AW
wWA

N

Error A catch Intermediate Error Event can only be attached to the boundary
of an Activity, i.e., it MAY NOT be used in normal flow. If used in this
context, it reacts to (catches) a named Error, or to any Error if a name

is not specified.

Note that an Error Event always interrupts the Activity to which it is
attached, i.e., there is not a non-interrupting version of this Event. The
boundary of the Event thus always solid (see figure on the right).

Interrupting

®

Cancel This type of Intermediate Event is used within a Transaction Sub-
Process. This type of Event MUST be attached to the boundary of a Sub-
Process. It SHALL be triggered if a Cancel End Event is reached within
the Transaction Sub-Process. It also SHALL be triggered if a
TransactionProtocol “Cancel” Message has been received while the

transaction is being performed.

Note that a Cancel Event always interrupts the Activity to which it is
attached, i.e., there is not a non-interrupting version of this Event. The
boundary of the Event thus always solid (see figure on the right).

Interrupting

Compensation When attached to the boundary of an Activity, this Event is used to
"catch" the Compensation Event, thus the Event marker MUST be
unfilled (see figure on the right). The Event will be triggered by a thrown
compensation targeting that Activity. When the Event is triggered, the
Compensation Activity that is associated to the Event will be performed
(see page 301).

Note that the interrupting a non-interrupting aspect of other Events does
not apply in the case of a Compensation Event. Compensations can
only be triggered after completion of the Activity to which they are
attached. Thus they cannot interrupt the Activity. The boundary of the
Event is always solid.

254 © ISO/IEC 2013 - All rights reserved

ISO/IEC 19510:2013(E)

Table 10.90 — Intermediate Event Types Attached to an Activity Boundary

Conditional

This type of Event is triggered when a condition becomes true. A
condition is a type of Expression. The attributes of an Expression can
be found page 82. If a Conditional Event is attached to the boundary of
an Activity, it will change the normal flow into an exception flow upon
being triggered.

For a Conditional Event that interrupts the Activity to which it is
attached, the boundary of the Event is solid (see upper figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to true.

For a Conditional Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-
Interrupting

=

P
N - /

S=

Signal

The Signal Event can receive a Signal when attached to the boundary
of an Activity. In this context, it will change the normal flow into an excep-
tion flow upon being triggered. The Signal Event differs from an Error
Event in that the signal defines a more general, non-error condition for
interrupting Activities (such as the successful completion of another
Activity) as well as having a larger scope than Error Events. When used
to “catch” the signal, the Event marker will be unfilled. The attributes of
a Signal can be found on page 272.

For a Signal Event that interrupts the Activity to which it is attached, the
boundary of the Event is solid (see upper figure on the right). Note that if
using this notation, the attribute cancelaActivity of the Activity to
which the Event is attached is implicitly set to true.

For a Signal Event that does not interrupt the Activity to which it is
attached, the boundary of the Event is dashed (see lower figure on the
right). Note that if using this notation, the attribute cancelActivity of
the Activity to which the Event is attached is implicitly set to false.

Interrupting

Non-
Interrupting

f"ﬁ§
=

-

-
-
-

T
\

© ISO/IEC 2013 - All rights reserved

255

ISO/IEC 19510:2013(E)

Table 10.90 — Intermediate Event Types Attached to an Activity Boundary

Multiple

A Multiple Event indicates that there are multiple triggers assigned to the
Event. When attached to the boundary of an Activity, the Event can only
“catch” the trigger. In this case, only one of the assigned triggers is
REQUIRED and the Event marker will be unfilled upon being triggered,
the Event that occurred will change the normal flow into an exception
flow.

There is no specific EventDefinition subclass (see page 259) for
Multiple Intermediate Events. If the Intermediate Event has more than
one associated EventDefinition, then the Event will be displayed

with the Multiple Event marker.

For a Multiple Event that interrupts the Activity to which it is attached,
the boundary of the Event is solid (see upper figure on the right). Note
that if using this notation, the attribute cancelActivity of the Activity
to which the Event is attached is implicitly set to true.

For a Multiple Event that does not interrupt the Activity to which it is
atta