

Date: June, 2013

UML Profile for BPMN 2 Processes

Version Beta 1

__
OMG Document Number: dtc/2013-04-01
Normative reference: http://www.omg.org/spec/BPMNProfile/1.0/
Machine readable file(s):
bmi/2012-10-03: http://www.omg.org/spec/BPMNProfile/20121112 / BPMNProfile.xmi
bmi/2012-10-04: http://www.omg.org/spec/BPMNProfile/20121112/ BPMNToUMLProfile.qvt
bmi/2012-10-05: http://www.omg.org/spec/BPMNProfile/20121112/ UMLProfileToBPMN.qvt
bmi/2012-10-06: http://www.omg.org/spec/BPMNProfile/20121112/ BPMNToUMLProfile.xslt
bmi/2012-10-07: http://www.omg.org/spec/BPMNProfile/20121112/ UMLProfileToBPMN.xslt

This OMG document replaces the submission (bmi/2012-10-02, Alpha). It is an OMG Adopted Beta specification
and is currently in the finalization phase. Comments on the content of this document are welcome, and should be
directed to issues@omg.org.

You may view pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues.

The FTF Recommendation and Report for this specification will be published on December 20, 2013. If you are
reading this after that date, please download the available specification from the OMG Specifications web page
http://www.omg.org/spec.

mailto:issues@omg.org
http://www.omg.org/issues
http://www.omg.org/spec

ii

Copyright © 2011-2012 MEGA International
Copyright © 2011-2012 Model Driven Solutions
Copyright © 2011-2012 NoMagic
Copyright © 2011-2012 Sparx Systems
Copyright © 2013, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this specification in
any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and to
use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice
identified above and this permission notice appear on any copies of this specification; (2) the use of the specifications is for
informational purposes and will not be copied or posted on any network computer or broadcast in any media and will not be
otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited
permission automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require
use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

iii

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, IIOP™ , IMM™ , OMG Interface Definition Language (IDL)™ , and OMG SysML™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only
if the software compliance is of a nature fully matching the applicable compliance points as stated in the specification.
Software developed only partially matching the applicable compliance points may claim only that the software was based on
this specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

iv

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents, Report a Bug/Issue (http://www.omg.org/report_issue.htm.)

v

Contents

Preface

UML Profile for BPMN 2 Processes ... i
1 Scope ... 1
2 Conformance .. 2
3 References .. 2

3.1. Normative ... 2
3.2. Non-normative ... 2

4 Terms and definitions .. 2
5 Symbols (and abbreviated terms) ... 2
6 Additional Information .. 3

6.1. Changes to Adopted OMG Specifications ... 3
6.2. Acknowledgements .. 3

7 Conventions ... 3
8 Other Material .. 4

8.1. Derived Properties .. 4
8.2. Transformations ... 4

9 Core Structure .. 5
9.1. Foundation and Infrastructure .. 5

9.1.1. Base Elements .. 5
9.1.2. Definitions ... 5
9.1.3. Extensions .. 6
9.1.4. External Relationships ... 6
9.1.5. Derived Properties and Constraints .. 6

9.2. Common Elements ... 8
9.2.1. Expressions .. 8
9.2.2. Item Definitions ... 9
9.2.3. Artifacts ... 9
9.2.4. Derived Properties and Constraints .. 10

10 Processes ... 12
10.1. Processes and Global Tasks ... 12

10.1.1. Flow Elements ... 12
10.1.2. Processes and Global Tasks ... 13
10.1.3. Derived Properties and Constraints ... 13

10.2. Activities .. 16
10.2.1. Derived Properties and Constraints ... 17

10.3. Sequence Flows .. 19
10.3.1. Derived Properties and Constraints ... 20

10.4. Events ... 20
10.4.1. Events and Event Definitions .. 20
10.4.2. Throw Events... 22
10.4.3. Catch Events .. 25
10.4.4. Derived Properties and Constraints ... 27

10.5. Gateways .. 29
10.5.1. Parallel and Exclusive Gateways ... 30
10.5.2. Event-based Gateways ... 30
10.5.3. Complex Gateways .. 30
10.5.4. Inclusive Gateways .. 30
10.5.5. Derived Properties and Constraints ... 31

10.6. Data .. 31
10.6.1. Item Aware Elements and Data Associations .. 31
10.6.2. Input Output Specifications and Data Objects ... 32
10.6.3. Input Sets and Output Sets ... 33

vi

10.6.4. Properties as Item Aware Elements ... 33
10.6.5. Data Stores .. 34
10.6.6. Derived Properties and Constraints ... 34

10.7. LoopCharacteristics .. 38
10.7.1. Derived Properties and Constraints ... 39

10.8. Lanes and Resources .. 40
10.8.1. Derived Properties and Constraints ... 41

11 Collaborations ... 44
11.1. Collaborations and Conversations .. 44

11.1.1. Collaborations .. 44
11.1.2. Participants .. 44
11.1.3. Message Flows .. 45
11.1.4. Conversations .. 46
11.1.5. Derived Properties and Constraints ... 47

11.2. Operations, Interfaces, and Related Tasks.. 50
11.2.1. Operations and Interfaces .. 50
11.2.2. Related Tasks ... 51
11.2.3. Derived Properties and Constraints ... 52

11.3. Correlation .. 53
11.3.1. Derived Properties and Constraints ... 54

vii

Figures
Figure 1: Equivalent Semantics ... 1
Figure 2: Base Elements .. 5
Figure 3: Definitions .. 5
Figure 4: BPMN Extensions .. 6
Figure 5: External Relationships .. 6
Figure 6: BPMN Expressions .. 8
Figure 7: Item Definitions .. 9
Figure 8: Artifacts .. 9
Figure 9: FlowElements ... 12
Figure 10: Processes and Global Tasks ... 13
Figure 11: Activities .. 16
Figure 12: Sequence Flow ... 19
Figure 13: Events and Event Definitions ... 20
Figure 14: Event Definitions with Item Definitions .. 21
Figure 15: Other Event Definitions extending Call Events without Item Definitions ... 21
Figure 16: Event Definitions extending Change Events .. 21
Figure 17: Throw Events ... 22
Figure 18: Catch Events ... 25
Figure 19: Gateways .. 29
Figure 20: Item Aware Elements and Data Associations ... 31
Figure 21: Input Output Specifications and Data Objects ... 32
Figure 22: Input Sets and Output Sets ... 33
Figure 23: Properties as Item Aware Elements .. 33
Figure 24: Data Stores ... 34
Figure 25: Loop Characteristics ... 38
Figure 26: Lanes and LaneSets .. 40
Figure 27: Resources and Resource Roles ... 41
Figure 28: Collaborations .. 44
Figure 29: Participants ... 44
Figure 30: Message Flows ... 45
Figure 31: Conversations ... 46
Figure 32: Participant Associations and Message Flow Associations ... 46
Figure 33: Operations and Interfaces ... 50
Figure 34: Related Tasks ... 51
Figure 35: Correlation .. 53

viii

Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and reusable
enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors,
end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and
industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications are
available from the OMG website at:
http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
• CORBA/IIOP
• Data Distribution Services
• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
• UML, MOF, CWM, XMI
• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
• CORBAServices
• CORBAFacilities

ix

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may
be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier/Courier New - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

1

1 Scope

This specification enables modelers to use BPMN 2 process and collaboration notation as a concrete syntax for UML activity
and collaboration models. It extends the UML metamodel with a UML profile, including extensions of UML semantics to
ensure equivalence to BPMN semantics. Equivalent semantics ensures businesses following BPMN process or collaboration
diagrams will function the same way whether the diagrams are captured using the BPMN metamodel or the profiled UML
metamodel, as illustrated in Figure 1. The scope of the profile includes elements and relationships in BPMN in the Process
Modeling and Process Execution conformance types, including the Descriptive, Analytic, and Common Executable
conformance sub-classes, see Clause 2. It does not address other conformance types. The specification does not change
BPMN notation, metamodel, or semantics.

BPMN 2
Notation

Instances of BPMN 2 metamodel /
Documents of BPMN 2 XSD

Instances of the UML metamodel
with profile applied.

UML semantics
extended / modified
for BPMN

BPMN
Semantics

Figure 1: Equivalent Semantics

The profile acts as a mapping between concepts in the BPMN and UML specifications, but BPMN and UML are only
described as needed to explain the mapping. Any differences between the descriptions of BPMN and UML in this
specification and the BPMN or UML specifications is unintentional, and should be taken as errors in this specification, rather
than changing BPMN or UML. Stereotypes give the syntactic portion of the mapping, which carries along the semantic
portion when UML and BPMN semantics are equivalent, and is only explained further as needed for clarity. When UML and
BPMN semantics are different, it is explained how applying the profile extends UML semantics to be equivalent to BPMN
semantics. Applying the profile does not change the semantics of BPMN or UML, only of elements in the particular UML
model to which the profile is applied. Any differences in semantics between profiled model elements and BPMN semantics
is unintentional, and should be taken as errors in this specification, rather than changing BPMN.

Some BPMN concepts have semantics in their application, for example, manual tasks and public processes. These constrain
how a modeler applies the concepts to their domain, which BPMN captures in the name of the concept and an informal
textual description. The profile includes these concepts with the same names as BPMN. The application semantics is
available in the BPMN specification, it is not restated here. The same applies to BPMN properties that have their semantics
in implementation. These constrain how the model is implemented, which BPMN captures sometimes with predefined
values and informal textual descriptions. The profile includes these properties with the same names as BPMN, and the same
predefined default values, if any. Other predefined values and implementation semantics are available in the BPMN
specification, they are not restated here.

The stereotypes in the profile carry the abstract syntax constraints of BPMN, which are not repeated here. For example,
BPMN constrains the number of sequence flows going out of event-based gateways, as well as the combined values of the
processType and isExecutable properties on processes, and the relationships between events and event definitions.

2

Constraints corresponding to those in BPMN apply to UML models when the profile is applied. Checking BPMN constraints
in profiled models is facilitated by derived stereotype properties corresponding to BPMN properties. The derived properties
also enable model queries using BPMN property names, and provide a portion of the mapping between BPMN and UML
properties. Properties with the same name and type in BPMN and UML are not included in derived properties.

2 Conformance

This profile has conformance points corresponding to the BPMN Process Modeling conformance type, including its
Descriptive, Analytic, and Common Executable sub-classes, and the BPMN Process Execution conformance type. The
profile’s conformance points are:

• Process Modeling and subpoints Descriptive, Analytic, and Common Executable require support for applying and
unapplying stereotypes corresponding to the BPMN elements required by the corresponding BPMN Process
Modeling conformance type and it Descriptive, Analytic, and Common Executable subclasses (see BPMN for
enumeration of these elements). This conformance point also requires import and export of profiled models that are
executed.

• Process Execution requires execution of profiled models according to the semantics specified for the stereotypes,

which is based on UML’s and equivalent to BPMN’s, see Clause 1. This conformance point also requires import of
profiled models that are executed.

The profile’s Process Modeling and Process Execution conformance points are independent. Each may be supported without
the other, or they may be supported together.

3 References

3.1. Normative
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply:

BPMN 2.0 Specification (http://www.omg.org/spec/BPMN/2.0/)
UML 2.4.1 Specification (http://www.omg.org/spec/UML/2.4.1/)
QVT 1.1 Specification (http://www.omg.org/spec/QVT/1.1/)
XML Schema 1.0 (http://www.w3.org/XML/Schema/)

3.2. Non-normative
There are no non-normative documents referenced in the specification.

4 Terms and definitions

There are no new terms defined in this specification.

5 Symbols (and abbreviated terms)

There are no symbols defined in this specification.

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/QVT/1.1/
http://www.w3.org/XML/Schema/

3

6 Additional Information

6.1. Changes to Adopted OMG Specifications

This specification does not change any other OMG specification.

6.2. Acknowledgements

The following companies submitted this specification:

META International
Model Driven Solutions
No Magic
Sparx Systems

The following companies supported this specification:

Atego
Axway
Computer Sciences Corporation
Oose Innovative Informatik GmbH
Softeam
The MITRE Corporation
U.S. Department of Defense
U.S. National Aeronautics and Space Administration
U.S. National Institute of Standards and Technology

7 Conventions

In models:

• Rectangles in the figures labeled «metaclass» notate elements from the UML metamodel, while those labeled with
«stereotype» and «enumeration» notate elements of the profile.

• Primitive types, such as Boolean and String, are used from UML without special labels.

• The prefix “BPMN” is used for stereotype names when there is a clash with UML names. Enumeration literal

names are uncapitalized, per UML convention, even when they are capitalized in BPMN.

In paragraph text:

• The term “BPMN” used as a noun in this specification refers to the BPMN specification. The term “BPMN” used as

an adjective, as in “BPMN Activity”, refers the concept in BPMN, rather than the stereotype in this profile.

• Metaclass names are capitalized when preceded by their language, as in “UML Activities”, otherwise they are not

capitalized (unless at the beginning of a sentrence) and spaces are inserted between words in the name, as in “catch
event”.

• Stereotype names are followed by “stereotype” or “applied”. They are capitalized, except when using the name of

an abstract stereotype to refer to its concrete specializations, in which case they are not capitalized (unless at the

4

beginning of a sentrence) and spaces are inserted between words in the pluralized name, as in “throw event
stereotypes”.

• Metaclass and stereotype names that are pluralized or preceded by “a(n)” or “the” refer to instances of the

metaclasses and stereotypes.

• Property names are spelled and capitalized as they appear in their metaclasses or stereotypes, as in “textFormat”, and

are always used as an adjective for “property”, as in “the value of the textFormat property”.

See Clause 10.4.1 about the convention for referring to events by their event definitions.

In natural language text in derived properties and constraints the above rules apply, except:

• Metaclass names are not preceded with “UML” and stereotype names are not followed by “stereotype”. Only UML
metaclass and stereotype names are used derived properties and constraints, not BPMN metaclass names.

• Metaclass and stereotype names are capitalized when they are singular and not preceded by “a(n)” or “the”, and

when they are at the beginning of a sentence, otherwise they are not capitalized and spaces are inserted between
words in the name.

• Property names are used as nouns to refer to their values.

8 Other Material

8.1. Derived Properties
The profile includes derived stereotype properties corresponding to BPMN properties that can be derived from UML
properties. They support model queries based on BPMN property names, enabling a profiled UML model to respond in the
same way as a BPMN model. Derived properties are specified in separate subclauses of each chapter. Stereotype figures do
not show derived BPMN properties, only properties that are added to UML to reduce clutter in the stereotype diagrams.
Derived properties are only defined when the corresponding BPMN and UML properties are different in some respect.

8.2. Transformations
This document provides mappings between BPMN models and UML models with the profile applied, expressed in
stereotypes, properties and associations between stereotypes, and natural language descriptions of these, see Clause 1. The
mappings are formalized as transformations in both directions defined in separate machine-readable artifacts using QVT
Relational and XML Schema (XSD). The transformations from BPMN to UML accept as input conforming instances of the
BPMN metamodel, or an XML document conforming to the BPMN XSD, and this profile, then create conforming instances
of the UML metamodel with stereotypes applied to them. The transformations from UML to BPMN accept as input
conforming instances of the UML metamodel with stereotypes applied to them, and this profile, then create conforming
instances of the BPMN metamodel, or an XML document conforming to the BPMN XSD. The source BPMN models must
be syntactically correct, and source UML elements with stereotypes applied must obey the corresponding abstract syntax
constraints of BPMN, see Clause 1. The BPMN metamodel, BPMN XSD, UML metamodel, and the profile are not modified
by these transformations.

5

9 Core Structure

9.1. Foundation and Infrastructure

9.1.1. Base Elements

Figure 2: Base Elements

BPMN BaseElement generalizes almost all other elements in BPMN, while UML Element generalizes all other elements in
UML. They both can have user-specified text, and Documentation includes specification of mime format using the
textFormat property. BPMN BaseElement is also used for extensibility, see 9.1.3.

9.1.2. Definitions

Figure 3: Definitions

BPMN Definitions contain models, but only to organize them, rather than to specify anything about how businesses function
based on those models. UML Packages have the same purpose. The targetNamespace and typeLanguage properties of
BPMN Definitions do not have meaning in UML, but are included in the profile to retain information from BPMN tools not
based on UML, and generating platform-specific languages from UML if applicable. The expressionLanguage property of
BPMN Definitions is used as the language for expressions, when no other is specified, see FormalExpression in Clause 9.2.1.
The exporter and exporterVersion properties of BPMN Definitions give information about the tool that generated the
definitions model. BPMN RootElement generalizes all elements that can be contained by definitions. UML
PackagedElement similarly generalizes all elements that can be contained by packages. BPMN Import uses strings to
identify external models to be brought into definitions. UML PackageImport has the same purpose. The importType,
location, and namespace properties of BPMN Import do not have meaning in UML, but are included in the profile to retain
information from BPMN tools not based on UML, and generating platform-specific languages from UML if applicable.

6

9.1.3. Extensions

Figure 4: BPMN Extensions

BPMN Extension and BPMN ExtensionDefinition enable modelers to define properties with BPMN
ExtensionAttributeDefinitions that can be given values for elements in their models. Extension definitions can be shared by
model elements. UML Stereotypes have the same purpose, and can be restricted to apply only to certain kinds of model
elements in the UML language. UML Stereotypes are classes instantiated when they are applied to elements in user models,
where the instances have values for the properties defined by the stereotype. UML does not capture instances of classes
directly, but can specify instances with instance specifications, which contain slots specifying values for the properties
defined in the classes. The BaseElement stereotypes has an extensionValues property for referring to
ExtensionAttributeValues stereotypes that are applied to slots. The slots are owned by an instance specification describing
instances of the stereotypes applied to the same user model element the BaseElement stereotype is applied to. The slots can
use UML ValueSpecification to specify values for properties, or the ExtensionAttributeValue stereotype applied to the slots
can specify values with the valueRef property by referring to elements in the user model or other models. The
ExtensionAttributeValue stereotype requires the instances of the applied stereotypes to conform to these instance
specifications, giving semantics equivalent to BPMN’s. The mustUnderstand property of BPMN Extension has
implementation semantics, see the BPMN specification.

9.1.4. External Relationships

Figure 5: External Relationships

BPMN Relationships link to BPMN model elements with elements from other models, including ones not defined with
BPMN. The profiles supports this with a BPMNRelationship stereotype extending UML Constraint to refer to the related
elements, and the type and direction properties to specify more about the relationship, giving semantics equivalent to
BPMN’s.

9.1.5. Derived Properties and Constraints

9.1.5.1. BaseElement

Derived properties
• /documentation : Documentation [*] = self.base_Element.ownedComment.extension_ Documentation
• /extensionDefinitions : ExtensionDefinition [*] = self.base_Element.extension_

anystereotype.extension_ExtensionDefinition

7

• /incoming : BPMNAssociation [*] = self.base_BaseElement.supplierDependency. extension_BPMNAssociation
• /outgoing : BPMNAssociation [*] = self.base_BaseElement.clientDependency. extension_BPMNAssociation

Constraints

[1] The extensionValues of a base element must be applied to slots that are owned by an instance specification with a
classifier that is one of the stereotypes with ExtensionDefinition applied that are the extensionDefinitions of the base
element.

9.1.5.2. BPMNExtension

Derived properties
• /definition : ExtensionDefinition = self.base_Stereotype.extension_ ExtensionDefinition

Constraints

[1] BPMNExtension may only be applied to elements with ExtensionDefinition applied, and vice versa.
[2] Stereotypes with BPMNExtension applied are based on Element.
[3] Stereotypes with BPMNExtension applied are owned by packages with Definitions applied.

9.1.5.3. BPMNRelationship

Derived properties
• /definition : Definition = self.base_Constraint.context.extension_Definitions

Constraints

[1] Constraints with BPMNRelationship applied must be owned by packages with Definitions applied.
[2] Constraints with BPMNRelationship applied must have constrainedElements that are the same as the union of the

sources and targets of the applied BPMNRelationship.

9.1.5.4. Definitions

Derived properties
• /extensions : Extension [*] = self.base_Package./ownedStereotype.extension_Extension
• /imports : Import [*] = self.base_Package.packageImport.extension_Import
• /relationships : BPMNRelationship [*] = self.base_ Package./ownedRule.extension_ BPMNRelationship
• /rootElements : RootElement [*] = self.base_Package.packagedElement.extension_ RootElement

Constraints
None.

9.1.5.5. Documentation

Derived properties
• /text : String = self.base_Comment.body

Constraints
None.

9.1.5.6. ExtensionAttributeDefinition

Derived properties
• /isReference : Boolean = (self.base_Property./isComposite = false)
• /type : String = self.base_Property.type./qualifiedName

8

Constraints
None.

9.1.5.7. ExtensionAttributeValue

Derived properties
• /extensionAttributeDefinition : ExtensionAttributeDefinition = self.base_Slot.owningInstance.

classifier.extension_ExtensionAttributeDefinition
• /value : Element [0..1] = self.base_Slot.value

Constraints

[1] Slots with ExtensionAttributeValue applied are owned by instance specifications that are owned by the package
containing the element having the applied ExtensionAttributeValue instance as its extensionValues.

9.1.5.8. ExtensionDefinition

Derived properties
• /extensionAttributeDefinitions : ExtensionAttributeDefinition [*] = self.base_Steterotype.

ownedAttribute.extension_ExtensionAttributeDefinition

Constraints
None.

9.1.5.9. Import

Derived properties
• /definition : Definitions = self.base_PackageImport.importingNamespace.extension_Definitions

Constraints

[1] PackageImports with Import applied must be owned by packages with Definitions applied.

9.1.5.10. RootElement

Derived properties
• /definition : Definitions [0..1] = self.base_PackageableElement.owningPackage. extension_Definitions

Constraints
None.

9.2. Common Elements

9.2.1. Expressions

Figure 6: BPMN Expressions

9

BPMN FormalExpression and UML OpaqueExpression and have properties of the same name, but the UML properties have
unlimited upper multiplicity, and the body property is limited to strings, rather than general elements as in BPMN. BPMN
Expression is intended for natural language expressions, but does not provide properties to capture this. The profile uses the
properties of UML OpaqueExpression for both the BPMNExpression and FormalExpression stereotypes.

9.2.2. Item Definitions

Figure 7: Item Definitions

BPMN ItemDefinition refers out of BPMN to specify structure, while UML Classes specify structure. The ItemDefinition
stereotype applies to UML Classes, rather than referring to them, providing an appropriate base for the stereotype, better
integration with the rest of UML, and a semantics equivalent to BPMN’s. The structureRef property is included in the profile
to retain information from BPMN tools not based on UML, and to generate platform-specific languages from UML if
applicable. The BPMN isCollection property tells whether the underlying data type is a collection, but the UML metamodel
does not have collection types, so classes with the ItemDefinition stereotype applied and a value of true for the isCollection
property represent collections of instances of the class. BPMN ItemDefinition has an import property identifying a BPMN
Import (see Clause 9.1.2) specifying where the item definition is imported from, if it is imported, and the profile extends
classes to support this.

9.2.3. Artifacts

Figure 8: Artifacts

10

BPMN Artifacts are miscellaneous elements that can be included in processes, subprocesses and collaborations (see the
/artifacts derived property on the corresponding stereotypes). BPMN gives additional syntax and semantics for the various
kinds of artifacts.

BPMN Associations are artifacts that link elements in BPMN models to provide semantics that varies with the kinds of
elements being connected. UML Dependencies indicate that some elements require others to be completely specified, which
is general enough to cover BPMN Associations. BPMN Associations can indicate whether they are unidirectional,
bidirectional, or have no direction. UML Dependencies are unidirectional from the elements that require others to those
others, which is how unidirectional BPMN Associations are used. UML Dependency direction can be ignored for
bidirectional and nondirectional BPMN Associations. The BPMNAssociation stereotype extends UML Dependencies with a
property for specifying BPMN AssociationDirection. BPMN TextAnnotations are modeler-provided comments on elements
identified by BPMN Associations to those elements, in a format specified by the textFormat property. UML Comments refer
directly to the elements they describe, and do not specify a format. The TextAnnotation stereotype extends UML Comments
with a property for text format.

BPMN Groups are artifacts that visually identify elements of processes for modeler-defined purposes. They are visually
similar to BPMN Lanes in this respect, see Clause 10.8, but in the underlying model identifies these elements by their
relationships to categories, rather than directly as lanes do. BPMN Categories have BPMN CategoryValues, which process
elements and groups can be related to. BPMN Groups visually identify the process elements that include the category values
of the groups. BPMN Groups can also include elements from multiple processes for participants in the same collaboration,
whereas BPMN Lanes can only include elements from one process, see Clause 11.1 about participants and collaborations.
UML ActivityPartitions identify activity elements for modeler-defined purposes, and the Group stereotype extends them to
identify UML EnumerationLiterals with the CategoryValue stereotype applied. These literals are specified in UML
Enumerations with the Category stereotype applied, providing equivalent abstract syntax as BPMN (the semantics in UML
and BPMN are both modeler-defined).

9.2.4. Derived Properties and Constraints

9.2.4.1. BPMNAssociation

Derived properties
• /sourceRef : BaseElement = self.base_Dependency.client.extension_BaseElement
• /targetRef : BaseElement = self.base_Dependency.supplier.extension_BaseElement

Constraints

[1] Dependencies with BPMNAssociation applied must be owned by the innermost package containing the suppliers
and clients of the dependencies.

9.2.4.2. BPMNExpression

Derived properties
• /assignment = inverse of Assignment::/to and Assignment::/from.

Constraints
None.

9.2.4.3. Category

Derived properties
• /categoryValue : CategoryValue [*] = base_Enumeration.ownedLiteral.extension_ CategoryValue

Constraints
None.

11

9.2.4.4. CategoryValue

Derived properties
• /categorizedFlowElements : FlowElement [*] = self.opposite(categoryValueRef).

base_ActivityPartition.node&edge.extension_FlowElement

Constraints
None.

9.2.4.5. FormalExpression

Derived properties
• /evaluatestoTypeRef : ItemDefinition = self.base_OpaqueExpression.type. extension_ItemDefinition (type defined

on TypedElement).

Constraints
None.

9.2.4.6. Group

Derived properties

Constraints

[1] Activity partitions with Group applied do not represent anything.
[2] Group may only be applied to activity partitions that have no subpartitions and that are direct partitions of activities

that have BPMNProcess applied.

9.2.4.7. ItemDefinition

Derived properties
None.

Constraints
None.

9.2.4.8. TextAnnotation

Derived properties
• /text : String = self.base_Comment.body

Constraints

[1] Comments with TextAnnotation applied are ownedComments of an element with BPMNProcess, SubProcess, or
BPMNCollaboration applied that has the text annotation included in its artifacts.

12

10 Processes

10.1. Processes and Global Tasks

10.1.1. Flow Elements

Figure 9: FlowElements

BPMN Processes have a single abstraction for all of things they contain, while UML does not. UML activity elements are
divided into nodes and edges. The abstract FlowElement stereotype applies to both nodes and edges, and types the
/flowElements derived property of the BPMNProcess stereotype. BPMN FlowElementsContainers are an abstraction
including contents of choreographies, which are not included in the profile. The FlowElementsContainer stereotype is
included to support derived properties.

BPMN Auditing and Monitoring are for examining process instances and other execution instances that have occurred
(auditing) or are occurring (monitoring). See Clause 10.1.2 about process instances and Clauses 10.2 and 10.4 about other
execution instances. The Auditing and Monitoring stereotypes extend UML Classes for modelers to specify operations and
properties for auditing and monitoring execution instances. The instances of auditing and monitoring classes can be related
to execution instances, or be the same as the execution instances, as determined by the modeler and implementation. For
example, auditing and monitoring classes might generalize UML Activities with the BPMNProcess stereotype applied,
providing operations and properties on each activity instance, or they might classify activity instances, which has the same
effect, or they might have instances separate from activity instances but related to them by modeler or implementation
defined links.

13

10.1.2. Processes and Global Tasks

Figure 10: Processes and Global Tasks

A BPMN process instance is a single occurrence of a process model being carried out, whether manually, semi-automatically,
or executed fully automatically. Valid process instances follow their process model, invalid ones do not. Similarly, UML
Activities are special kinds of classes, with instances being valid occurrences of activities as they are carried out, as BPMN
process instances are. BPMN Processes specify properties that hold items of specified kinds in process instances, see Clause
10.6.4. See Clauses 10.4.3.1and 11.2.2 about when process instances are started, and Clause 10.4.2.3 about when process
instances are terminated.

The BPMN isClosed property of BPMN Processes indicates whether valid process instances may carry out interactions, such
as receiving messages and events, that are not specified in their models. If the value of the isClosed property is true, then
process instances are limited to interactions specified in their models, otherwise they are not. The BPMNProcess stereotype
extends UML Activity semantics to use the isClosed property to determine whether valid activity instances may carry out
interactions, such as receiving operations and other events, that are not specified in their models, giving a semantics
equivalent to BPMN’s. The BPMN supports property between process models indicates when all occurrences of one process
model are intended to be valid for another. UML provides equivalent semantics with generalization between activities, as
expressed by the /supports derived property of the BPMNProcess stereotype. One UML Activity generalizing another means
occurrences (instances) of the specialized activity are occurrences of the general activity.

The BPMN processType property of BPMN Processes has application semantics, see the BPMN specification.

The BPMN isExecutable property of BPMN Processes indicates whether the modeler believes a private process is specified
completely enough to support BPMN execution semantics. The profile provides a UML-based execution semantics that is
equivalent to BPMN’s, see Clause 1.

See Clauses 10.4, 10.5, and 11 for more about the BPMNProcess and Subprocess stereotypes. BPMN GlobalManualTask,
GlobalScriptTask, GlobalUserTask, and GlobalBusinessRuleTask have application semantics, see the BPMN specification.
See Clause 10.1.2 for more about the GlobalUserTask stereotype.

10.1.3. Derived Properties and Constraints

10.1.3.1. CallableElement

Derived properties
• /ioSpecification : InputOutputSpecification [0..1] = self.extension_ InputOutputSpecification

14

• /supportedInterfaceRefs : BPMNInterface [*] = self.base_Behavior.interfaceRealization.contract.
extension_BPMNInterface (interfaceRealization defined on BehavioredClassifier)

Constraints
None.

10.1.3.2. FlowElement

Derived properties
• /categoryValueRef : CategoryValue [*] = inverse of CategoryValue:: /categorizedFlowElements
• /container : FlowElementsContainer = inverse of FlowElementsContainer:: /flowElements.

Constraints
None.

10.1.3.3. FlowElementsContainer

Derived properties
• /flowElements : FlowElement [*] = self.base_Activity.node&edge&group. extension_FlowElement when applied to

Activities, and self.base_StructuredActivityNode. node&edge_extension_FlowElement when applied to
StructuredActivityNodes.

• /laneSets : LaneSet [*] = self.base_Activity.partition.extension_LaneSet or self.base_
StructuredActivityNode.extension_SubProcess.hasLaneSets, whichever has a value.

Constraints
None.

10.1.3.4. GlobalBusinessRuleTask

Derived properties
• /implementation : String [*] {ordered, non-unique} = self.base_ OpaqueBehavior.body (defaults to "##unspecified" ,

see BPMN specification)

Constraints
None.

10.1.3.5. GlobalScriptTask

Derived properties
• /script : String [*] {ordered, non-unique} = self.base_OpaqueBehavior.body
• /scriptFormat : String [*] {ordered} = self.base_OpaqueBehavior.language

Constraints
None.

10.1.3.6. GlobalTask

Derived properties
• /resources : ResourceRole [*] = self.base_OpaqueBehavior.ownedAttribute.extension_ ResourceRole, for properties

that have ResourceRole applied (ownedAttribute defined on Class)

Constraints
None.

15

10.1.3.7. GlobalUserTask

Derived properties
• /implementation : String [*] {ordered, non-unique} = self.base_OpaqueBehavior. body (defaults to "##unspecified",

see BPMN specification)
• /renderings : Rendering [*] = self.icon.extension_Rendering. (icon defined on Stereotype)

Constraints
None.

10.1.3.8. BPMNProcess

Derived properties
• /artifact : Artifact [*] = union of self.base_Activity.node&edge.clientDependency&

supplierDependency.extension_BPMNAssociation, self.base_Activity.partition.extension_Group,
self.base_Activity.ownedComment.extension_TextAnnotation, self.base_Activity.
node&edge.ownedComment.extension_TextAnnotation

• /properties : BPMNProperty [*] = self.base_Activity.ownedAttribute.bpmnProperty (ownedAttribute defined on
Class).

• /resources : ResourceRole [*] = self.base_Behavior.ownedAttribute.extension_ResourceRole, for properties that
have ResourceRole applied (ownedAttribute defined on Class)

• /supports : BPMNProcess = self.base_Activity./general.extension_BPMNProcess (/general defined on Classifier)

Constraints

[1] Activities with BPMNProcess applied that have a definitionalCollaboration must be one of the /processRefs of the
definitionalCollaboration.

[2] The classifierBehaviors of activities with BPMNProcess applied are the activities themselves.

16

10.2. Activities

Figure 11: Activities

BPMN Activities typically require only one incoming token to start, as expressed in the default for the startQuantity property,
while UML Actions require all incoming control flows to offer a single token to start. For BPMN Activities with multiple
incoming sequence flows and a value 1 for the startQuantity property, the corresponding UML Actions with a specialization
of the BPMNActivity stereotype applied must have single incoming control flow with a merge node as source, where the
merge node has incoming control flows with the SequenceFlow stereotype applied. This provides a semantics equivalent to
BPMN’s by enabling the action to start with one incoming token. For BPMN Activities with multiple incoming sequence
flows and a value other than 1 for the startQuantity property, the corresponding UML Actions with a specialization of the
BPMNActivity stereotype applied must have single incoming control flow with a join node as source, where the join node
has incoming control flows with the SequenceFlow stereotype applied, and has an opaque expression as the value of the
joinSpec property, where the opaque expression body property has the value “StartQuantity” and the language property has
the value “BPMNProfile”. This provides a semantics equivalent to BPMN’s by enabling the action to start with the required
number of incoming tokens.

BPMN Activities typically emit one token to each outgoing sequence flow, as expressed in the default for the
completionQuantity property, as do UML Actions to their outgoing control flows. For values of the completionQuantity
property other than 1, the BPMNActivity stereotype extends UML Action semantics to offer an additional number of tokens

17

equal to one less than the value of the completionQuantity property to each outgoing control flow on completion, giving a
semantics equivalent to BPMN’s.

A BPMN activity instance is a single occurrence of an activity being carried out within a specific process instance (see
Clause 10.1.2 about process instances). BPMN Activities can define properties that hold items of specified kinds. The
BPMNActivity stereotype extends UML Actions with an activityClass property identifying a class that has a distinct instance
every time actions are carried out in an UML activity instance. UML Properties hold values of specified types in class
instances, including the classes with the BPMNActivity stereotype applied, providing a semantics equivalent to BPMN’s.
The Auditing and Monitoring stereotypes extend UML Classes for modelers to specify operations and properties for auditing
and monitoring activity instances, see 10.1.1.

BPMN event subprocesses are subprocesses with no incoming sequence flows with start events that begin the subprocess
under certain circumstances, as indicated by the triggeredByEvent property, optionally terminating the rest of the containing
process, as indicated by the isInterrupting property of start events, see Clauses 10.4.3 and 10.2. The SubProcess stereotype
with a value of true for the triggeredByEvent property extends UML Activity and StructuredActivityNode semantics to be
equivalent to BPMN’s by offering tokens to non-interrupting structured activity nodes after they start, and removing tokens
accepted by accept event actions that start interrupting structured activity nodes that are executing or have been executed
already in the containing activity execution. The Subprocess stereotype also extends the semantics of UML
AcceptEventActions starting an interrupting structured activity node to terminate the activities outside the containing
structured activity node when it accepts an event.

BPMN AdHocSubprocesses are subprocesses without complete sequencing and data flow between activities. The
completionCondition property of the AdHocSuprocess stereotype determines when the structured activity node will end, the
ordering property determines whether the actions in the structured activity node are carried out in parallel or sequentially, and
the cancelRemainingInstances property determines whether actions carried out at the time the value of the
completionCondition becomes true are terminated. This provides semantics equivalent to BPMN adhoc subprocesses.

BPMN Transactions are subprocesses that respond to cancel events by undoing any changes made during the transaction
before cancellation. The method property of transactions has implementation semantics, see the BPMN specification. See
Clause 10.4.2.4 for events used with transactions.

BPMN UserTasks and BPMN GlobalUserTasks support modeler-defined icons (renderings), as do UML stereotypes
(images). Modelers can specialize the UserTask and GlobalUserTask stereotypes to add images. BPMN CallActivities
calling global user tasks with renderings also display the rendering. The CallActivity stereotype extends the semantics of
UML Stereotypes to display images of specialized global user task stereotypes applied to called behaviors.

See the SequenceFlow stereotype in Clause 10.3 for other semantics of the BPMNActivity stereotype, and Clause 10.4.2.6
about the isForCompensation property. See Clause 11.2.2 about BPMN SendTasks, ReceiveTasks, and ServiceTasks.
BPMN ManualTask, ScriptTask, UserTask, and BusinessRuleTask have application semantics, see the BPMN specification.

BPMN Activities can be used in collaborations as interaction nodes, see Clause 11.1.3 about the InteractionNodes stereotype.

10.2.1. Derived Properties and Constraints

10.2.1.1. BPMNActivity

Derived properties
• /boundaryEventRefs : BoundaryEvent [*] = instances of BoundaryEvent applied to accept event actions in same

interruptible region as the action with BPMNActivity applied.
• /dataInputAssociations [*] : DataInputAssociation = self.base_Action./input.incoming

.extension_DataInputAssociations
• /dataOutputAssociations [*] : DataOutputAssociation = self.base_Action./output.

outgoing.extension_DataOutputAssociations
• /default : SequenceFlow [0..1] = self.base_BPMNActivity.outgoing.outgoing.

guard="else".extension_SequenceFlow

18

• /ioSpecification : InputOutputSpecification [0..1] = self.extension_InputOutputSpecification
• /loopCharacteristics : LoopCharacteristics [0..1] = self.base_Action.inStructuredNode.

extension_LoopCharacteristics
• /properties : BPMNProperty [*] = self.base_BPMNActivity.activityClass. ownedAttribute.bpmnProperty

(ownedAttribute defined on Class).
• /resources : ResourceRole [*] = self.activityClass.ownedAttribute.extension_ ResourceRole

Constraints

[1] Actions with specializations of BPMNActivity applied may have no more than one incoming control flow.
[2] completionQuantity must be greater than zero.
[3] startQuantity must be greater than zero.

10.2.1.2. BusinessRuleTask

Derived properties
• /implementation : String = self.base_OpaqueAction.body.first (defaults to "##unspecified" , see BPMN

specification)

Constraints
None.

10.2.1.3. CallActivity

Derived properties
• /calledElementRef : CallableElement = self.base_CallBehaviorAction.behavior. extension_CallableElement

Constraints
None.
10.2.1.4. FlowNode

Derived properties
• /incoming : SequenceFlow [*] = self.base_ActivityNode.incoming.extension_ SequenceFlow
• /outgoing : SequenceFlow [*] = self.base_ActivityNode.outgoing.extension_ SequenceFlow

Constraints
None.

10.2.1.5. ScriptTask

Derived properties
• /script : String [0..1] = self.base_OpaqueAction.body.first
• /scriptFormat : String [0..1] = self.base_OpaqueAction.language.first

Constraints
None.

10.2.1.6. SubProcess

Derived properties
• /artifact : Artifact [*] = union of (self.base_StructuredActivityNode.node&edge.

clientDependency&supplierDependency.extension_BPMNAssociation) and
self.base_StructuredActivityNode.ownedComment. extension_TextAnnotationcies with BPMNAssociation applied.

19

Constraints
[1] StructuredActivityNodes with SubProcess applied that have triggeredByEvent = true, and containing initial nodes

with StartEvent applied that have isInterrupting = false, have isLocallyReentrant = true.

10.2.1.7. Task

Derived properties
None.

Constraints

[1] body may not have any values.
[2] language may not have any values.
[3] Task may only be applied to OpaqueActions (this does not apply to specializations of Task).

10.2.1.8. UserTask

Derived properties
• /implementation : String = self.base_OpaqueAction.body.first (defaults to "##unspecified", see BPMN

specification)
• /renderings : Rendering [*] = self.icon.extension_Rendering (icon defined on Stereotype)

Constraints
None.

10.3. Sequence Flows

Figure 12: Sequence Flow

One of the BPMN Sequence Flows that go out of activities and exclusive, inclusive, and complex gateways can be indicated
as receiving a token if none of the other outgoing sequence flows from the same element do (the default sequence flow). For
exclusive gateways with default sequence flows, UML Decision Nodes provide an equivalent semantics with outgoing edges
that have an “else” guard, as expressed by the /default derived property of the ExclusiveGateway stereotype, see Clause
10.5.1. For BPMN Activities, inclusive gateways, and complex gateways with multiple outgoing sequence flows and a
default sequence flow, the corresponding actions and fork nodes with BPMNActivity, InclusiveGateway, or
ComplexGateway stereotypes applied must have a single outgoing control flow targeting a decision node that has two
outgoing control flows, one of which has an “else” guard and the other a fork node as target. The fork node must have
outgoing control flows with the SequenceFlow stereotype applied. This provides a semantics equivalent to BPMN’s by
offering a token along the “else” guard if none are accepted on the control flows going out of the fork.

The BPMN isImmediate property on sequence flows indicates whether activities not in a process model may occur between
elements connected by the sequence flow (see discussion of process instances in the BPMNProcess stereotype). The
SequenceFlow stereotype extends UML ControlFlow semantics to use the isImmediate property in determining whether
actions not in an activity model may occur between elements connected by a stereotyped control flow, giving a semantics
equivalent to BPMN’s.

20

10.3.1. Derived Properties and Constraints

10.3.1.1. SequenceFlow

Derived properties
• /conditionExpression [0..1] : BPMNExpression = self.base_ControFlow.guard. extension_BPMNExpression (guard

defined on ActivityEdge)
• /sourceRef : FlowNode = self.base_ControlFlow.source.extension_FlowNode (source defined on ActivityEdge)
• /targetRef : FlowNode = self.base_ControlFlow.target.extension_FlowNode (target defined on ActivityEdge)

Constraints
None.

10.4. Events

10.4.1. Events and Event Definitions

Figure 13: Events and Event Definitions

BPMN Events are part of process flow (flow elements), while BPMN EventDefinitions are owned or referenced by flow
elements. UML Actions are part of activity flow, while UML Events are packagable, and referenced indirectly by UML
AcceptEventActions. BPMN informally calls event definitions the “triggers” of an event, which are received or noticed by
BPMN CatchEvents, and sent or raised by BPMN ThrowEvents. UML Triggers are owned by UML AcceptEventActions to
refer to UML Events that the action can accept. By convention in this specification, BPMN Events are identified by their
event definitions, for example, a throw event with a message event definition is called a “message throw event”, or “message
event” if it is clear from context that it is a throw event. BPMN Events can be used in collaborations as interaction nodes, see
Clause 11.1.3 about the InteractionNodes stereotype.

A BPMN event instance is a single occurrence of an event within a specific process instance (see Clause 10.1.2 about process
instances). BPMN Events can define properties that hold items of specified kinds. The BPMNEvent stereotype an eventClass
property identifying a a class that has a distinct instance every time events occur in an UML activity instance. UML
Properties hold values of specified types in class instances, including the classes with the BPMNEvent stereotype applied,
providing a semantics equivalent to BPMN’s. The Auditing and Monitoring stereotypes extend UML Classes for modelers to
specify operations and properties for auditing and monitoring event instances, see Clause 10.1.1.

The specialized event definitions shown in Figure 14, Figure 15, and Figure 16 are explained the context of throwing and
catching events in Clauses 10.4.2 and 10.4.3, respectively.

21

Figure 14: Event Definitions with Item Definitions

Figure 15: Other Event Definitions extending Call Events without Item Definitions

Figure 16: Event Definitions extending Change Events

22

10.4.2. Throw Events

Figure 17: Throw Events

BPMN ThrowEvents vary in the effects they have before events are thrown, how specific they are about their targets, and in
the items that are thrown, if any. Items thrown are specified with EventDefinitions referring to BPMN Errors, Escalations,
BPMNMessages, and Signals, that in turn refer to specialized ItemDefinitions for the type of thing sent or received along
with the event. The profile reflects this in the event definition stereotypes in Figure 14, which refer to other stereotypes
specialized from ItemDefinition, to simplify the model while still being equivalent to BPMN. Throw event stereotypes in the
profile provide equivalent semantics to other aspects of BPMN by extending UML CallOperationActions with equivalent
effects, determining its target appropriately, and passing items as UML Parameter values, if any (see Clause 10.4.3 about
operations for catching events).

BPMN ThrowEvents do not wait for events to be received before completing, except for compensation events, see Clause
10.4.2.6. BPMN ThrowEvents with multiple event definitions throw all their events at once. In the multiple event definition
case, UML CallOperationActions with throw event stereotypes applied have outgoing control flows to the same join node,
providing semantics equivalent to BPMN’s by proceeding past the fork only when all events have arrived. If the throw event
is not an end event, the UML CallOperationActions have outgoing control flows to the same join node.

BPMN conditional and timer events are only caught, not thrown, see Clause 10.4.3.3. See Clause 10.7 about BPMN
ImplicitThrowEvents.

10.4.2.1. End Events without Event Definitions

BPMN EndEvents with no event definitions have no effect. They are not thrown anywhere in the sense of having
corresponding catch events. UML FlowFinalNodes have equivalent semantics, and the EndEvent stereotype is applied to
provide BPMN’s terminology.

10.4.2.2. Link Events

BPMN link events are thrown to a single matching link catch event in the same process. Matching link events can be
specified by the source / target association between BPMN LinkEventDefinitions when matching throw and catch events do
not refer to the same link event definition, or when there are multiple link catch events refer to the same event definition in
the same process. UML CallOperationActions with a throw event stereotype applied, and LinkEventDefinition applied to its
trigger, call an operation on the UML Activity or UML StructuredActivityNode instance that the call operation action is
occurring in to notify it of the link event.

10.4.2.3. Terminate Events

BPMN terminate events permanently stop the process instance or innermost subprocess instance they are thrown in, which
stops the activity instances under that process or subprocess instance recursively (see Clauses 10.1.2 and 10.2 about BPMN
process and activity instances). Terminate events are not thrown anywhere in the sense of having corresponding catch
events. UML CallOperations with a throw event stereotype applied, and the TerminateEventDefinition stereotype applied
to its trigger, call a termination operation on the UML activity instance or innermost UML structured activity node instance

23

they are occurring in, which terminates all the actions in the activity or structured node instance recursively (see Clauses
10.1.2 and 10.2 about UML activity and action instances).

BPMNProcess instances without terminate events are considered complete when all activities in the instance are finished, and
no catch events are waiting (see Clause 10.4.3 about catch events). UML Activities have the same semantics.

10.4.2.4. Cancel Events

BPMN cancel events have the same effect as terminate events on the innermost transaction subprocess instance they are
thrown from, then undo any changes made during that transaction instance, and finally are thrown to cancel boundary catch
events on that transaction, if any. UML CallOperationActions with a throw event stereotype applied, and the
CancelEventDefinition stereotype applied to its trigger, call a termination operation on the innermost instance of UML
StructuredActivityNode with the Transaction stereotype applied that the call operation action is occurring in, and undo any
changes made during the structured node instance, then call an operation on the UML activity or structured node instance the
transaction structured node instance was occurring in to notify them of the cancellation.

10.4.2.5. Error and Escalation Events

BPMN error and escalation events are thrown to matching error or escalation start events in event subprocesses at the same
level they are thrown, if any, otherwise they are thrown to the innermost matching error or escalation catch event they are
thrown from, including through call activities, which might be a boundary event or a start event of an event subprocess (see
10.4.3 about matching catch events). If the event definitions specify BPMN Errors or Escalations that refer to item
definitions, then items conforming to these definitions are thrown with the event. As error events are thrown, they have same
effect as terminate events in the process and subprocess instances up to where the event is caught (except they do not
terminate event subprocesses that catch them). If they are not caught, they have the effect of terminate events in process and
subprocess instances all the way to the top-level process instance.

UML CallOperationActions with a throw event stereotype applied, and the ErrorEventDefinition or
EscalationEventDefinition stereotype applied to its trigger, call an operation on the UML activity or UML structured activity
node instance that the call operation action is occurring in to notify it of the error or escalation. If ErrorEventDefinition or
EscalationEventDefinition stereotypes applied to triggers of call operation actions specify item definitions in the errorRef or
escalationRef properties, then instances of the classes with those item definitions applied are passed as arguments of the
operation. The classes have errorCode or escalationCode properties, typed by String, with multiplicity [0..1], read only, and
default values equal to the values of the errorCode or escalationCode property of the event definition stereotypes (read only
properties are given default values on instantiation that cannot be changed). If the activity or structured node instances do not
handle the notification (“catch the event”), as indicated by returning a true value, error or escalation notification operations
are called on activity or structured node the next level up with the same arguments, recursively, until an activity or structured
node instance handles the notification, or a top-level activity instance is reached. For error events, activity or structured node
instances that do not handle the notification operations are terminated before the next level is notified.

10.4.2.6. Compensation Events

BPMN compensation events attempt to reverse changes made during completed instances of activities identified by the event
ahead of time, if any. If the identified activity is a subprocess, then this is done with a compensation event subprocesses in
the activity, if any, otherwise reversal is done with activities identified by boundary compensation events on the activity,
using associations, if any (boundary compensation events do not actually catch events, the activity they are attached to is
finished by the time compensation occurs). If the throw compensation event does not identify an activity to be compensated,
the compensation events are thrown to start compensation catch events in event subprocesses at the same level they are
thrown from, if any. If there is no compensation event subprocess, throw compensation events attempt to reverse changes
made during completed activity instances at the same level of the activity instance the events are thrown from, in the reverse
order in which the activity instances occurred, unless the events are thrown from a compensation event subprocess,
whereupon the throw compensation events attempt to reverse changes due to completed activity instances at the same level as
the subprocess in the reverse order in which they occurred. Throw compensation events can wait for events to be received
wherever they are sent before completing if needed.

24

CallOperations with a throw event stereotype applied, and a compensation event definition, call compensation operations on
the completed instances of UML Action identified by the activityRef property, if any, which attempt to reverse changes made
during completed instances of actions. If the identified action is a structured activity node, then a token is offered to a
structured activity node with SubProcess applied in the action, and a true value for triggeredByEvent property, containing a
UML AcceptEventAction with StartEvent applied and triggered by a UML CallEvent with CompensationEventDefinition
applied, if any, otherwise reversal is done by offering tokens to actions that have BPMNActivity applied and a true value for
the isForCompensation property, that are suppliers of UML Dependencies that have as clients UML AcceptEventActions
with BoundaryEvent applied in the same UML InterruptibleRegion as the compensated action, if any. If the applied throw
event stereotype does not identify an action to compensate with the activityRef property, a token is offered to a structured
activity node with SubProcess applied at the same level as the call operation action, and a true value for triggeredByEvent
property, containing a UML AcceptEventAction with StartEvent applied and triggered by a UML CallEvent with
CompensationEventDefinition applied. If there is no such structured activity node, compensation operations are called on
completed action instances at the same level of UML activity or UML structured activity node instance the call operation
action is occurring in, unless it is occurring in an instance of UML StructuredActivityNode with Subprocess applied, and a
true value for triggeredByEvent property, containing a UML AcceptEventAction with StartEvent applied and triggered by a
UML CallEvent with CompensationEventDefinition applied, whereupon compensation operations are called on completed
action instances at the same level as the structured activity node in the reverse order in which they occurred. The
BPMNProcess and Subprocess stereotypes extend UML Activity and StructuredActivityNode semantics respectively to
remove tokens accepted by actions with BPMNActivity applied that have a true value for the isForCompensation property.
The call operation actions for compensation are asynchronous, except when the CompensateEventDefinition stereotype is
applied to their triggers with a true value for the waitForCompletion property, whereupon the call operation action is
synchronous.

10.4.2.7. Message Events

BPMN message events are thrown to particular external participants in collaborations, which involves sending items to those
participants as messages (see Clause 10.4.2 for more about throwing messages).

10.4.2.8. Signal Events

Signals are thrown to all process instances, including those in other participants (some implementations might throw signals
just to process instances subscribed to or accepting matching signals, the effect is the same, see 10.4.3 about matching catch
events). If the event definitions specify BPMN Signals that refer to item definitions, then items conforming to these
definitions are thrown with the event. UML CallOperationActions with a throw event stereotype applied, and a signal event
definition, have value pins as their target pins, where the value property of the pin is an opaque expression with body
“BPMNProcessInstance” and language “BPMNProfile”, indicating it returns all process instances that support the signal
operation, providing semantics equivalent to BPMN’s. If the signal event definition stereotypes applied to the triggers of call
operation actions specify item definitions in the signalRef properties, then instances of the classes with those item definitions
applied are passed as arguments of the operations.

25

10.4.3. Catch Events

Figure 18: Catch Events

BPMN catch events accept events thrown with the same or equivalent event definitions, including referenced item
definitions, except for link events below. Catch event stereotypes may only be applied to UML AcceptEventActions, except
for start events that have no event definitions, which may only be applied to UML InitialNodes. UML activity and action
instances support one operation for each concrete event definition stereotype, except for the LinkEventDefinition stereotype,
where they support a separate operation for each instance of the stereotype that defines an event in the activity or action
(action instances do not support signals, see 10.4.2 about invoking the operations when throwing events). The names of these
operations are defined by simulation, enactment, and execution engines supporting the profile, or standards these engines
choose to adopt, rather than the profile or modelers. UML AcceptEventActions with catch event stereotypes applied have
triggers referring to UML CallEvents that refer to those operations, which means the actions only accept calls to those
operations. Operations for errors, escalations, and signals have one argument, which is untyped, the other operations have
none. For operations that accept an argument, the catch event stereotypes extend UML AcceptEventAction semantics by
removing tokens accepted when the actual argument is not an instance of the class referred to by the event definition
stereotype applied to the trigger of the action, or one of its subclasses, and returning the event to the pool from which it was
drawn. This gives semantics equivalent to BPMN’s, and integrates it with UML’s for support specialization of UML Class,
which the ItemDefinition stereotype is based on. See Clause 11.2.2 about catching messages.

The BPMN parallelMultiple property on catch events indicates whether all of the event definitions of the event are required
to trigger the event, or only one of them. In the parallel-multiple case, multiple UML AcceptEventActions with catch event
stereotypes applied and one trigger per action have outgoing control flows to the same join node, providing semantics
equivalent to BPMN’s by proceeding past the join only when all events have arrived. For catch events that are not start
events, the corresponding UML AcceptEventActions have incoming control flows from the same fork node.

10.4.3.1. Start Events

BPMN StartEvents without event definitions indicate where to start new process instances, they do not actually catch events.

BPMN StartEvents with event definitions at the top level of a process instantiate processes when events of particular kinds
occur. The BPMNProcess stereotype extends UML Activity semantics to be equivalent to BPMN’s by instantiating activities
that directly contain accept event actions with StartEvent applied with event definitions when those events occur, and
removing tokens from accept event actions with StartEvent applied that are not for the event that instantiated the process
(these tokens are also removed for initial nodes with StartEvent applied, and any of them can be the one retaining a token).

BPMN StartEvents with error or escalation event definitions that specify errors or escalations with values for their errorCode
or escalationCode properties only catch error or escalation events with the same codes. If the start events do not specify
codes, they catch any error or escalation event. UML AcceptEventActions with StartEvents applied, and triggered by UML
CallEvents with ErrorEventDefinition or EscalationEventDefinition applied, extend UML AcceptEventAction semantics by
removing tokens accepted by accept event actions when the actual argument has a different value from the errorCode and

26

escalationCode property of the value of the errorRef or escalationRef property of the triggering UML Event, and returning
the event to the pool from which it was drawn, giving semantics equivalent to BPMN’s.

BPMN StartEvents with compensation event definitions in event subprocesses that are in subprocesses attempt to reverse
changes made during completed instances of the containing subprocess, and instantiate the event subprocess. The
Subprocess stereotype with a true value for the isForCompensation property, containing a UML AcceptEventAction with
StartEvent applied and triggered by a UML CallEvent with CompensationEventDefinition applied, extends UML Activity
and StructuredActivityNode semantics to be equivalent to BPMN’s by offering a token to the structured activity node in the
activity instance in which the containing structured activity instance occurred, giving semantics equivalent to BPMN’s.

The BPMN isInterrupting property on start events is for event subprocesses, see Clauses 10.4.3 and 10.2.

10.4.3.2. Intermediate Catch Events

BPMN IntermediateCatchEvents with incoming sequence flows only catch events that occur after the process flow reaches
them and before it leaves them, while UML AcceptEventActions with incoming control flows accept events that occur
anytime before the action ends, including before it starts. The BPMNProcess stereotype extends UML event pool semantics
by discarding events that no action can accept at the time they are put in the pool, giving semantics equivalent to BPMN’s.

BPMN link intermediate catch events with event definitions that are targets of links via the source / target association
between BPMN LinkEventDefinitions only catch events thrown from events with event definitions that are sources of the
same links, even if the catch and throw events refer to the same link event definitions. IntermediateCatchEvent stereotypes
with LinkEventDefinition stereotypes that are targets of links via the source / target association extend the semantics of UML
AcceptEventActions by removing tokens accepted by accept event actions for events that do not have LinkEventDefinitions
applied that are source of the same links, providing a semantics equivalent to BPMN’s.

The BoundaryEvent stereotype may only be applied to accept event actions in interruptible regions. If the if the value of the
cancelActivity property is true, the outgoing edges of the accept event actions are interrupting, otherwise they are non-
interrupting (this is termination of the action, rather than cancellation in the transactional sense, see Clauses 10.2 and
10.4.2.4). Exactly one action with a specialization of BPMNActivity applied must be in the interruptible region along with
the accept event actions, and have an outgoing interrupting edge to a target outside the region. This provides a semantics
equivalent to BPMN BoundaryEvents by waiting for the accept event actions in the interruptible region only while the action
with BPMNActivity applied is occurring, and terminating that action and the accept event actions when an event is accepted
by an action with an outgoing interruptible edge, or waiting for more events after an event is accepted by an action with a
non-interrupting outgoing edge. Error and escalation code matching apply to error and escalation boundary events in the
same way as start events in both BPMN and the profile, see Clause 10.4.3.1.

10.4.3.3. Conditional and Timer Catch Events

BPMN catch events with conditional event definitions and timer event definition are for noticing changes in conditions and
time. The ConditionalEventDefinition and TimerEventDefinition stereotypes are applied to UML ChangeEvents. This
provides equivalent semantics of BPMN’s for conditional events, as expressed in the /condition derived property of the
ConditionalEventDefinition stereotype. Change events with the TimerEventDefinition stereotype applied have opaque
expressions as the values of their changeExpression property, where the opaque expression body property has the value
“BPMNTimerEvent” and the language property has the value “BPMNProfile”. This extends UML ChangeEvent semantics
to detect the arrival of a particular time with the timeDate property, the passing of a particular amount of time with the
timeDuration property, and the arrival of a recurring time with the timeCycle property, whichever has a value, equivalent to
the semantics of BPMN’s for timer event definitions.

27

10.4.4. Derived Properties and Constraints

10.4.4.1. BPMNEvent

Derived properties
• /eventDefinitionRefs : EventDefinition [*] = instances of EventDefinition that are not eventDefinitions of the

stereotype and, if the stereotype is a throw event, are applied to call events for the same operation as the one
specified by the call operation action to which the stereotype is applied, or, if the stereotype is a CatchEvent, are
applied to events of the triggers of the accept event action to which the stereotype is applied.

• /properties : BPMNProperty [*] = self.base_BPMNEvent.eventClass. ownedAttribute. bpmnProperty
(ownedAttribute defined on Class)

Constraints

[1] The eventDefinitions of concrete specializations of BPMNEvent, if the specialization is a throw event, must be
applied to call events for the same operation as the one specified by the call operation action to which the
specialized BPMNEvent is applied, or, if the stereotype is a catch event, must be applied to events of the triggers of
the accept event action to which the specialized BPMNEvent is applied.

10.4.4.2. BPMNMessage

Derived properties
• /itemRef : ItemDefinition [0..1] = self.base_Class.extension_ItemDefinition

Constraints
None.

10.4.4.3. BPMNSignal

Derived properties

Constraints
None.

10.4.4.4. BoundaryEvent

Derived properties
• /attachedToRef : BPMNActivity = instance of BPMNActivity applied to action in same interruptible region as the

event.

Constraints
None.

10.4.4.5. CatchEvent

Derived properties
• /dataOutputAssociation [*] : DataOutputAssociation = self.base_Action./output.outgoing.

extension_DataOutputAssociations
• /dataOutputs [*] : DataOutput = self.base_Action./output. extension_DataOutput

Constraints

[1] AcceptEventActions with catch event stereotypes applied must have isUnmarshall = false.
[2] AcceptEventActions with catch event stereotypes applied must have triggers that have a specialization of

EventDefinition applied.

28

10.4.4.6. ConditionalEventDefinition

Derived properties
• /condition : BPMNExpression = self.base_ChangeEvent.changeExpression.extension_ BPMNExpression

Constraints
None.

10.4.4.7. Error

Derived properties
None.

Constraints
None.

10.4.4.8. Escalation

Derived properties
None.

Constraints
None.

10.4.4.9. ImplicitThrowEvent

Derived properties
None.

Constraints

[1] ImplicitThrowEvent may only be applied to call operation actions.

10.4.4.10. StartEvent

Derived properties
None.

Constraints

[1] Start events with no event definitions (eventDefinitions or /eventDefinitionsRefs) may only be applied to initial
nodes, otherwise, they may only be applied to accept event actions.

10.4.4.11. ThrowEvent

Derived properties
• /dataInputAssociation [*] : DataInputAssociation = self.base_Action./input.incoming.

extension_DataInputAssociations
• /dataInputs [*] : DataInput = self.base_Action./input.extension_DataInput

Constraints

[1] Call operation actions with throw event stereotypes applied must have isSynchronous = false, except when
CompensateEventDefinition is applied to their triggers with waitForCompletion = true, whereupon isSynchronous =
true.

[2] Call operation actions with throw event stereotypes applied, and a trigger with ErrorEventDefinition,
EscalationEventDefinition, or SignalEventDefinition applied that refer to classes with Error, Escalation, or

29

BPMNSignal applied, respectively, have a single argument input pin typed by those classes, and multiplicity 1,
otherwise the call operation actions have no input pins.

[3] Call operation actions with throw event stereotypes applied, and a trigger with SignalEventDefinition applied must
have no incoming edge to their target pins.

[4] Operations invoked by call operation actions with throw event stereotypes applied must have no methods.
[5] Operations invoked by call operation actions with throw event stereotypes applied that have event definitions

(eventDefinitions or /eventDefinitionsRefs) with ErrorEventDefinition, EscalationEventDefinition, or SignalEvent
Definition applied have one in parameter with no type, and multiplicity 1, otherwise the operations have no in
parameters.

[6] The operations invoked by call operation actions with throw event stereotypes applied must have no out or return
parameters, except if they have event definitions (eventDefinitions or /eventDefinitionsRefs) that are events with
ErrorEventDefinition or EscalationEventDefinition applied, whereupon the operations have no out parameters and
exactly one return parameter typed by Boolean, with multiplicity 1.

10.4.4.12. TimerEventDefinition

Derived properties

Constraints

[1] Change events with TimerEventDefinition applied have an opaque expression as the value of changeExpression,
where the the opaque expression body property has the value “BPMNTimerEvent” and the language property has
the value “BPMNProfile”.

10.5. Gateways

Figure 19: Gateways

The bases of the gateway stereotypes reflect differences in the models of BPMN Gateways and UML ControlNodes. BPMN
Gateways can be converging, diverging, both, or neither (except for event-based gateways, which are not converging), while
UML JoinNodes and MergeNodes have one exactly outgoing edge, ForkNodes and DecisionNodes have exactly one
incoming edge (decision nodes have an optional additional incoming edge not used in this profile). The profile does not
support gateways that are neither converging nor diverging. ForkNodes or JoinNodes can be created for these, then
reclassified or replacing them when the direction is determined. UML notation supports combining fork and join nodes into
one graphical symbol, as BPMN does, but UML models stores this as separate fork and join nodes, while BPMN stores it as a
single gateway that is both converging and diverging. See Clause 10.3 for other semantics of ExclusiveGateway,
ComplexGateway, and InclusiveGateway in addition to Clauses 10.5.1, 10.5.3, and 10.5.4.

30

10.5.1. Parallel and Exclusive Gateways

The semantics of BPMN ParallelGateways and UML ForkNodes are equivalent, as are the semantics of BPMN
ExclusiveGateways and UML DecisionNodes and MergeNodes.

10.5.2. Event-based Gateways

BPMN EventBased Gateways wait for one of the events immediately following them to occur, after which tokens flow past
that event. The BPMN instantiate property on event-based gateways indicates whether new process instances are created
when events immediately following the gateway occur (see Clause 10.1.2 about process instances). When the value of the
instantiate property is

• false, the corresponding EventBasedGateway stereotype is applied to UML Forks. These forks must have outgoing
control flows with the SequenceFlow stereotype applied and targeting accept event actions (see Clause 10.4.3) that
are contained in an interruptible region, and the outgoing edges from the actions must be interrupting and target
elements outside the region. This gives a semantics equivalent to BPMN’s by terminating the accept event actions
that are not the first to receive an event.

• true, the BPMN EventBased Gateway has no incoming sequence flows. The EventBasedGateway stereotype and

forks are not used in this case and the accept event actions have no incoming edges. The BPMN eventGatewayType
property is only relevant when instantiating processes. A value of Parallel requires all events immediately following
the gateway to occur before the process instance completes, while a value of Exclusive requires exactly one. For
parallel and instantiating event-based gateways, the corresponding accept event actions are in an structured node.
This gives a semantics equivalent to BPMN’s by requiring all accept event actions immediately following the fork to
receive an event before the activity instance completes. For exclusive and instantiating event-based gateways, the
corresponding accept event actions are contained in an interruptible region, and the outgoing edges from the actions
must be interrupting and target elements outside the region, providing a semantics equivalent to BPMN’s by
terminating the accept event actions that are not the first to receive an event.

10.5.3. Complex Gateways

The BPMN property activationCondition only applies to converging complex gateways, and is equivalent to the joinSpec
property of UML JoinNodes, as expressed by the /activationCondition derived property of the ComplexGateway stereotype.

10.5.4. Inclusive Gateways

Converging BPMN Inclusive Gateways consume a token from each of their incoming sequence flows that has one when at
least one incoming sequence flow has at least one token, and for every path of sequence flows to the gateway that

• starts with a sequence flow having a token,
• ends with a sequence flow that has no token,
• and does not include the gateway,

there is also a path of sequence flows to the gateway that
• starts with the same sequence flow as the first path,
• ends with a sequence flow coming into the gateway that has a token,
• and does not include the gateway.

The InclusiveGateway stereotype extends the semantics of UML JoinNodes to be equivalent to BPMN’s when the joinSpec
property has as a value an opaque expression with body “BPMNInclusive” and language “BPMNProfile”,, which is required
when the stereotype is applied to join nodes. In this case, join nodes accept all the tokens offered by incoming edges when at
least one incoming edge is offering at least one token, and for every path of control flows to the join node that

• starts with a control flow that is offered a token its own conditions can accept,
• ends with a control flow that is not offered a token, or is offered a token its own conditions cannot accept,
• and does not include the join node,

there is also a path of control flows to the join node that
• starts with the same control flow as the first path,

31

• ends with a control flow coming into the join node that is offered a token its own conditions can accept,
• does not include the join node.

10.5.5. Derived Properties and Constraints

10.5.5.1. ComplexGateway

Derived properties
• /activationCondition : BPMNExpression [0..1] = self.base_JoinNode.joinSpec.extension_ BPMNExpression
• /default : SequenceFlow [0..1] = instances of SequenceFlow applied to an outgoing control flow with guard = "else".

Constraints

[1] JoinNodes with ComplexGateway applied must have joinSpec = "BPMNInclusive".

10.5.5.2. ExclusiveGateway

Derived properties
• /default : SequenceFlow [0..1] = self.base_DecisionNode.outgoing. guard="else".extension_SequenceFlow

Constraints
None.

10.5.5.3. InclusiveGateway

Derived properties
• /default : SequenceFlow [0..1] = instances of SequenceFlow applied to an outgoing control flow with guard = "else".

Constraints
None.

10.6. Data

10.6.1. Item Aware Elements and Data Associations

Figure 20: Item Aware Elements and Data Associations

Data flow modeling in BPMN and UML use different terminology, but take similar approaches. Both are based on elements
that identify individual things when processes are carried out (BPMN ItemAwareElements and UML TypedElements,
specifically UML ObjectNodes in activities, including UML ActivityParameterNodes, InputPins, OutputPins, and
DataStoreNodes, see Clauses 10.6.2 and 10.6.5), and links between these elements to enable “flow” of identified items or
values (BPMN DataAssociations and UML ObjectFlows). BPMN ItemAwareElements and UML TypedElement can specify
the kinds of things they identify, in terms of BPMN ItemDefinitions (see Clause 9.2.2) and UML Types (including classes),
respectively. Items flowing into BPMN ItemAwareElements typically replace any that are there already, and items flow out
of them all at once and leave duplicates behind. Item aware element stereotypes extending UML ObjectNodes extend their
semantics to remove tokens from the node before accepting tokens, and retain duplicate tokens for any accepted offers they
make (this is already the semantics of data store nodes), providing semantics equivalent to BPMN’s. BPMN Assignments

32

give pairs of expressions for getting data out of the source end of associations and placing it in the target. UML
Dependencies with the Assignment stereotype applied have as client and supplier UML OpaqueExpressions with the
BPMNExpression stereotype applied.

All BPMN ItemAwareElements can specify a single state that data must be in, where the state is specified as a string. UML
has a state machine model supporting multiple states per object, and typed elements used in activities (UML ObjectNodes)
can specify which of these states their tokens must be in, while the ItemAwareElement stereotype extends UML
TypedElement to support specifying states for parameters with the DataInput or DataOutput stereotypes applied for opaque
behaviors with global task stereotypes applied (see Clause 10.6.2 about global tasks and Clause 10.6.2 about parameters).
The profile uses UML state machines to specify states rather than strings.

10.6.2. Input Output Specifications and Data Objects

Figure 21: Input Output Specifications and Data Objects

BPMN and UML both require matching input and output specifications when global elements (BPMN Processes and
GlobalTasks, and UML Behaviors, including UML Activities and OpaqueBehaviors, see Clause 10.1.2) are reused by
elements within a flow (BPMN Activities and UML Actions, see Clause 10.2). BPMN uses the same specification structure
for the matching specifications (BPMN InputOutputSpecification), while in UML they are different. This is reflected in
multiple bases for the DataInput and DataOutput stereotypes (UML Pins and ActivityParameterNodes, which are object
nodes on actions and activities, respectively, and UML Parameters, which are typed elements on behaviors, specifically
opaque behaviors). DataInput and DataOutput stereotypes are applied to UML Parameters only on opaque behaviors
extended by global task stereotypes. BPMN GlobalTasks cannot contain data associations between their data inputs and
outputs, and UML ObjectFlows cannot link parameters. BPMN does not notate data input and output on activities, while
UML has an optional notation for pins shown attached to actions. The isCollection properties of the DataInput, DataOutput,
and DataObject stereotypes (see below) have the same effect as the isCollection property of the ItemDefinition stereotype
applied to the type of the UML TypedElement those stereotypes are applied to.

BPMN always interposes another data element when items flow between data outputs of one activity and data inputs of
another (BPMN DataObjects and DataObjectReferences), while UML has the option for values to flow directly from output
pins of one action to input pins of another (this option is not used when the profile is applied). BPMN DataObjects and
DataObjectReferences are very similar, but data objects cannot specify states, data object references cannot specify item
definitions, and the items that data object references identify during execution must be the same as those identified by the
data object they refer to. The DataObjectReference stereotype requires data store nodes to have the same tokens as the data

33

store node they refer to, providing a semantics equivalent to BPMN’s. BPMN Activities own the data input associations and
data output associations linked to them, while UML Actions do not own the object flows linked to their pins. This does not
affect semantics. The InputOutputSpecification stereotype extends UML elements in flows (actions) and reusable global
elements (activities and opaque behaviors) to define derived properties from BPMN for inputs, outputs, and alternative input
and output sets.

10.6.3. Input Sets and Output Sets

Figure 22: Input Sets and Output Sets

BPMN and UML support grouping of inputs and outputs into alternative sets (BPMN InputSets and OutputSets, and UML
ParameterSets), where only one of the sets of inputs and one of the sets of outputs are used in each execution. BPMN
supports this on elements within a flow (activities) and reusable global elements (processes and global tasks), while UML
only supports it on reusable global elements (behaviors, including opaque behaviors), but not elements within a flow
(actions). Parameter sets of behaviors called by UML CallActions with the CallActivity stereotype applied provide
semantics equivalent to BPMN BPMN InputSets and OutputSets on call activities, because in BPMN these must match the
called element (see BPMN InputOutputSpecification above), and BPMN GlobalTasks with multiple input or output sets are
equivalent to UML CallActions calling opaque behaviors with a global task stereotype applied and parameter sets with the
InputSet and OutputSet stereotypes applied. The profile does not support BPMN InputSets and OutputSets on tasks that are
not global. BPMN InputSets and OutputSets specify which inputs and outputs are optional, and also specify which inputs
can be accepted during execution, rather than at the beginning of execution, and which outputs can be provided during
execution, rather than at the end of execution (whileExecuting inputs and outputs). These characteristics in UML are
specified on the inputs and outputs directly (parameter lower multiplicity and streaming), rather than the sets, so cannot be
different depending on the sets chosen during execution, as they can in BPMN. The profile does not support these
characteristics on alternative sets of inputs and outputs. See Clause 11.2.1 for more about input and output sets.

10.6.4. Properties as Item Aware Elements

Figure 23: Properties as Item Aware Elements

BPMN Properties as item aware elements can be used with data associations to provide or accept items from other item
aware elements. UML Properties hold values of specified types for classes, including UML Activities, and activity and event
classes of BPMNActivity and BPMNEvent stereotypes (see Clauses 10.2 and 10.4.1), but cannot be used with object flows.
The BPMNProperty stereotype extends UML DataStoreNodes to ensure the tokens they contain are for exactly the values of
the UML Property associated with the stereotype while the containing activity or structured activity node is carried out, and
as tokens in the data store node and values of the UML Property change. This means tokens are added or removed as values
of the UML Property change, and vice versa, providing a semantics equivalent to BPMN’s.

34

10.6.5. Data Stores

Figure 24: Data Stores

BPMN DataStores identify items that exist independently of processes, including when no processes are being carried out
that use the items. BPMN DataStores are item aware elements specifying the definition of items that are stored, but unlike
other item aware elements, they are root elements (contained in definitions, see Clauses 9.2.2 and 9.1.2 about item
definitions, definitions, and root elements). The ItemAwareElement stereotype extends UML TypedElements, which identify
values, but always in the context of elements other than UML Packages, which is extended by a root element stereotype. The
DataStore stereotype extends UML Classes, to enable data stores to be packaged and still specify a type. The extended
classes have one generalization with ItemDefinition applied that corresponds to the item definition of the BPMN DataStore,
see the /itemSubjectRef derived property of the DataStore stereotype. The instances of the specialized class (the one with
DataStore applied) are instances of the general class (the one with ItemDefinition applied) that are “in” the store. BPMN
does not specify what is measured by the capacity property of data stores, or its units, and does not specify the effect of a full
data store on flow of items in a process. The capacity property is only used is the values of the isUnlimited property is false.
The profile includes these properties with semantics equivalent to BPMN’s, as far as it is specified.

BPMN DataStoreReferences are process elements that are also item aware elements, enabling data associations to assign
items to data stores or find out the items in the data stores (see Clause 10.6.1 on the semantics of data associations). The
DataStoreReference stereotype extends UML DataStoreNodes to ensure the tokens they contain while the containing activity
or structured activity node is carried out are for exactly the instances of the class with the associated DataStore stereotype
applied, even as tokens in the data store node and instances of the class change. This means tokens are added or removed as
instances of the class change, and vice versa, providing a semantics equivalent to BPMN’s. In particular, objects removed as
instances of the data store class might remain classified by the class with ItemDefinition applied directly generalizing the data
store class. They still exist, but not in the data store.

10.6.6. Derived Properties and Constraints

10.6.6.1. Assignment

Derived properties
• /from : BPMNExpression = self.base_ Dependency.supplier.extension_BPMNExpression
• /to : BPMNExpression = self.base_Dependency.client.extension_BPMNExpression

Constraints

[1] Dependencies with Assignment applied must be owned by the innermost package containing the data association
referring to the instance of Assignment applied to the dependency.

[2] Dependencies with the Assignment applied must have exactly one client and one supplier, and both must have
FormalExpression applied.

[3] Opaque expressions with FormalExpression applied must not be clients or suppliers of more than one dependency
with Assignment applied

[4] Opaque expressions with FormalExpression applied that are clients or suppliers of dependencies with Assignment
applied are owned by the same package that owns the data association referring to the instance of Assignment
applied to the dependency.

35

10.6.6.2. BPMNProperty

Derived properties
None.

Constraints

[1] The value of umlProperty must be a property of the activity containing the data store node to which the stereotype is
applied, or of an activityClass of a BPMNActivity (or eventClass of a BPMNEvent) applied to an action contained
by that activity.

10.6.6.3. DataAssociation

Derived properties
• /sourceRef : ItemAwareElement = self.base_ObjectFlow.source.extension_ ItemAwareElement
• /targetRef : ItemAwareElement = self.base_ObjectFlow.target.extension_ ItemAwareElement
• /transformation : FormalExpression [0..1] = self.base_ObjectFlow.transformation. extension_FormalExpression

Constraints
None.

10.6.6.4. DataInput

Derived properties
• /inputSetRefs : InputSet [*] = self.(base_ActivityParameterNode. Parameter or base_

Parameter).parameterSet.extension_InputSet
• /inputSetWithOptional : InputSet [*] = self.(base_ ActivityParameterNode.parameter or base_Parameter, with

multiplicity lower = 0).parameterSet.extension_InputSet
• /inputSetWithWhileExecuting : InputSet [*] = self.(base_ActivityParameterNode.parameter or base_Parameter, with

isStreaming = true).parameterSet.extension_InputSet
• DataInputs and DataOutputs cannot be applied to the same elements at the same time.

Constraints

[1] Activity parameter nodes with DataInput applied must have parameters with direction = in.
[2] Data inputs can be applied to parameters only on opaque behaviors extended by global task stereotypes.
[3] Object nodes with DataInput applied have upper bound = 1 if isCollection = false, and upperbound = * otherwise.
[4] Parameters with DataInput applied must be on opaque behaviors with a specialization of GlobalTask applied, and

vice versa.

10.6.6.5. DataInputAssociation

Derived properties
None.

Constraints

[1] DataInputAssociation may only be applied to object flows that have a data store node as source, and an input pin as
target.

10.6.6.6. DataObject

Derived properties
None.

Constraints

[1] DataObject and DataStoreReference cannot be applied to the same element at the same time.

36

[2] Object nodes with DataObject applied have upperbound = 1 if isCollection = false, and upperbound = * otherwise.

10.6.6.7. DataObjectReference

Derived properties
None.

Constraints

[1] Data store nodes with DataObjectReference applied must have the same type, multiplicity, and ordering, and
uniqueness as the data store nodes with DataObject applied they refer to.

[2] Object nodes with DataObjectReference applied have upper bound = 1 if isCollection = false, and upperbound = *
otherwise.

10.6.6.8. DataOutput

Derived properties
• /outputSetRefs : OutputSet [*] = self.(base_ActivityParameterNode.parameter or base_

Parameter).parameterSet.extension_OutputSet
• /outputSetWithOptional : OuputSet [*] = self.(base_ ActivityParameterNode.parameter or base_Parameter, with

multiplicity lower = 0).parameterSet.extension_OutputSet
• /outputSetWithWhileExecuting : OutputSet [*] = self.(base_ActivityParameterNode. parameter or base_Parameter,

with isStreaming = true).parameterSet.extension_OutputSet

Constraints

[1] Activity parameter nodes with DataOutput applied must have parameters with direction = out or return.
[2] DataOutput and DataInput cannot be applied to the same element at the same time.
[3] DataOutput and DataInput can be applied to parameters only on opaque behaviors with a specialization of

GlobalTask applied.
[4] Object nodes with DataOutput applied have upper bound = 1 if isCollection = false, and upperbound = * otherwise.

10.6.6.9. DataOutputAssociation

Derived properties
None.

Constraints

[1] DataOutputAssociation may only be applied to object flows that have an output pin as source and a data store node
as target.

10.6.6.10. DataState

Derived properties
• /itemSubjectRef : ItemDefinition [0..1] = self.base_Class.generalization.extension_ ItemDefinition

Constraints

[1] States with DataState applied that are dataStates of item aware element stereotypes applied to object nodes must be
values of the inState property of the object nodes, and vice versa.

10.6.6.11. DataStoreReference

Derived properties
None.

37

Constraints
[1] DataObject and DataStoreReference cannot be applied to the same element at the same time.
[2] Data store nodes with DataStoreReference applied are typed by the class with ItemDefinition applied that directly

generalizes the class with DataStore applied that is the data store associated with the DataStoreReference (self.type
= self.extension_DataStoreReference.dataStore.base_ Class.generalization)

10.6.6.12. InputOutputSpecification

Derived properties
• /dataInputs : DataInput [*] = self.(base_Behavior.ownedParameter.(for parameters owned by Activities,

opposite(ActivityParameterNode::parameter.))extension_DataInput or self.base_Action./input.extension_DataInput
• /dataOutputs : DataOutput [*] = self.(base_Behavior.ownedParameter.(for parameters owned by Activities,

opposite(ActivityParameterNode::parameter.))extension_DataOutput or
self.base_Action./output.extension_DataOutput

• /inputSets : InputSet [1..*] = self.(base_Behavior.ownedParameterSet. extension_InputSet
• /outputSets : OutputSet [1..*] = self.base_Behavior.ownedParameterSet. extension_OutputSet

Constraints

[1] InputOutputSpecification may only be applied to elements that have a specialization of CallableElement or
BPMNActivity applied.

10.6.6.13. InputSet

Derived properties
• /dataInputRefs : DataInput [*] = inverse of DataInput::/inputSetRefs
• /optionalInputRefs : DataInput [*] = inverse of DataInput::/inputSetWithOptional
• /whileExecutingInputRefs : DataInput [*] = inverse ofDataInput::/ inputSetWithWhileExecuting

Constraints

[1] Parameters in parameter sets with InputSet applied must all have direction = in.

10.6.6.14. ItemAwareElement

Derived properties
• /itemSubjectRef : ItemDefinition [0..1] = self.base_TypedElement.type. extension_ItemDefinition

Constraints
None.

10.6.6.15. OutputSet

Derived properties
• /dataOutputRefs : DataOutput [*] = inverse of DataOutput::/outputSetRefs
• /optionalOutputRefs : DataOutput [*] = inverse of DataOutput::/outputSetWithOptional
• /whileExecutingOutputRefs : DataOutput [*] = inverse DataOutput::/ outputSetWithWhileExecuting

Constraints

[2] Parameters in parameter sets with OutputSet applied must all have direction = out or return.

38

10.7. LoopCharacteristics

Figure 25: Loop Characteristics

BPMN and UML support looping without depending on flows to create cycles, sometimes called “structured” loops. BPMN
and UML support these in two ways, the first for sequential execution (BPMN StandardLoopCharacteristics and UML
LoopNode), and the second for parallel execution (BPMN MultiInstanceLoopCharacteristics and UML ExpansionRegion).
The profile uses loop nodes and expansion regions containing actions corresponding to the standard or multi-instance looping
BPMN Activity. BPMN SequenceFlows linked to the BPMN Activity translate under the profile to control flows linked to
the loop node or expansion region.

BPMN StandardLoopCharacteristics adds to BPMN Activities a condition to test before or after each iteration indicating
whether to stop looping, and a maximum number of iterations allowed to occur, specified ahead of time as an integer. UML
LoopNodes are UML StructuredActions, enabling them to contain other actions to be iterated over, which in the profile is a
single one corresponding to the BPMN Activity with standard loop characteristics. Loop nodes supports a condition test
before or after each iteration, and the StandardLoopCharacteristics stereotype extends UML LoopNode semantics to remove
the loop node’s token when the number of completed iterations is equal to the value of the loopMaximum property, providing
a semantics equivalent to BPMN's.

BPMN MultiInstanceLoopCharacteristics adds to BPMN Activities an indication of whether the executions of the activity
happen sequentially, as they do in BPMN StandardLoopCharacteristics, or in parallel. UML ExpansionRegions support this
also. They are UML StructuredActions, enabling them to contain other actions to be iterated over, which in the profile is a
single action corresponding to the BPMN Activity with multi-instance loop characteristics. BPMN
MultiInstanceLoopCharacteristics supports a condition under which the loop will be interrupted, which might happen in the
middle of a loop, not just before or after each iteration as in BPMN StandardLoopCharacteristics. The
MultiInstanceLoopCharacteristics stereotype extends UML ExpansionRegions with the completionCondition property, and
extends UML ExpansionRegion semantics by removing the expansion region’s token when the condition becomes true,
providing a semantics equivalent to BPMN's.

BPMN MultiInstanceLoopCharacteristics also adds to BPMN Activities two ways to specify how many executions of the
activity will occur:

1. An expression that is evaluated just before the activity begins to determine how many times to execute it. When the
MultiInstanceLoopCharacteristics stereotype is applied with a value for the loopCardinality property, the UML
ExpansionRegion has one input ExpansionNode with no incoming or outgoing edges, and its semantics is extended
to evaluate the expressions in the loopCardinality property before it begins to determine the size of the collection
placed in the input. Expansion regions execute their contents once for every element of the collection, providing a
semantics equivalent to BPMN’s.

2. Specifying how many executions of the activity will occur is to accept a collection, and execute the activity once for
each element of the collection, providing that element as input to the activity. UML ExpansionRegion supports this
with ExpansionNodes used as inputs that accept collections through object flows from actions outside the region,
and provides individual elements of the collections through object flows to actions inside the region, executing those

39

actions once for every element of the collection. BPMN MultiInstanceLoopCharacteristics also provides a way for
each execution of a BPMN Activity to add an element to a collection that is output when looping is finished. UML
ExpansionRegion supports this with ExpansionNodes on ExpansionRegions used as outputs, accepting elements of
collections though object flows from actions inside the region, and providing the collections through object flows to
actions outside the region when the region is finished.

BPMN MultiInstanceLoopCharacteristics on BPMN Activities can also specify when to throw implicit throw events after
iterations are complete, depending on the value of the behavior property:

• all: After each execution of the activity. The profile supports this with a second action in the expansion region,
which has the ImplicitThrowEvent stereotype applied, and is executed after the action with BPMNActivity applied.

• one: Only after the first execution of the activity. The profile supports this with a second action in the expansion
region, which has the ImplicitThrowEvent stereotype applied. It is executed after the action with BPMNActivity
applied, but preceded by a decision node to ensure the second action only occurs on the first execution.

• complex: After executions of the activity only under certain conditions. The profile supports this with additional
actions in the expansion region, which have the ImplicitThrowEvent stereotype applied. They are executed in
parallel after the action with BPMN Activity applied, but each additional action is preceded by a decision node to
ensure it only occurs on under the specified conditions. Control flows in the expansion region have
ComplexBehaviorDefinition applied when they are going out of the decision node targeting actions with the
ImplicitThrowEvent stereotype applied.

• none: No implicit throw events are thrown. The expansion region contains no actions with the ImplicitThrowEvent
stereotype applied.

If the event definitions of the BPMN ImplicitThrowEvents are not specified by the modeler, they are BPMN Signals with the
properties specified by BPMN for multi-instance activity instances. UML CallOperationActions with an ImplicitThrowEvent
applied can have triggers with SignalEventDefinition applied that refers to a UML Signal with the properties specified by
BPMN, provided a semantics equivalent to BPMN.

10.7.1. Derived Properties and Constraints

10.7.1.1. ComplexBehaviorDefinition

Derived properties
• /condition : FormalExpression = self.base_ControlFlow.guard. extension_FormalExpression
• /event : ImplicitThrowEvent [0..1] = self.based_ControlFlow.target. extension_ImplicitThrowEvent

Constraints

[1] ComplexBehaviorDefinition may only be applied to control flows that are in expansion regions with
MultiInstanceLoopCharacteristics applied, and that have decision nodes as sources and actions with
ImplicitThrowEvent applied as targets.

10.7.1.2. MultiInstanceLoopCharacteristics

Derived properties
• /complexBehaviorDefinition : ComplexBehaviorDefinition [*] =

self.base_ExpansionRegion.edge.extension_ComplexBehaviorDefinition
• /inputDataItem : DataInput = self.base_ExpansionRegion.node. input.extension_DataInput for the node with

BPMNActivity applied.
• /isSequential : Boolean = (mode = iterative)
• /loopDataInputRef : ItemAwareElement [0..1] = self.base_ ExpansionRegion.inputElement.incoming.source
• /loopDataOutputRef : ItemAwareElement [0..1] = self.base_ ExpansionRegion.outputElement.outgoing.target
• /noneBehaviorEventRef : EventDefinition [0..1] = self.base_

ExpansionRegion.node.eventDefinitions.extension_EventDefinition for the node with ImplicitThrowEvent applied,
if any.

40

• /oneBehaviorEventRef : EventDefinition [0..1] = self.base_
ExpansionRegion.node.eventDefinitions.extension_EventDefinition for the node with ImplicitThrowEvent applied,
if any.

• /outputDataItem : DataOutput = self.base_ExpansionRegion.node. output.extension_DataOutput for the node with
BPMNActivitity applied.

Constraints

[1] Expansion regions with MultiInstanceLoopCharacteristics applied and an inputElement must contain an object flow
from the inputElement to the input pin of the action with BPMNActivity applied contained in the expansion region.

[2] Expansion regions with MultiInstanceLoopCharacteristics applied and an outputElement must contain an object
flow to the output element from the output pin of the action it contains with BPMNActivity applied.

[3] Expansion regions with MultiInstanceLoopCharacteristics applied have exactly one inputElement if loopCardinality
is empty, otherwise it has no inputElements.

[4] Expansion regions with MultiInstanceLoopCharacteristics applied have one outputElement if the action with
BPMNActivity applied it contains has an output, otherwise it has no outputElements.

[5] Expansion regions with MultiInstanceLoopCharacteristics applied must contain one action with BPMNActivity
applied, and any other actions must have ImplicitThrowEvent applied.

[6] Expansion regions with MultiInstanceLoopCharacteristics applied must have an iterative or parallel mode.
[7] MultiInstanceLoopCharacteristics may only be applied when Task or SubProcess is also applied.
[8] Opaque expressions must have FormalExpression applied when they are owned by control flows coming into call

operation actions with ImplicitThrowEvent applied in expansion regions with ComplexBehaviorDefinition applied.

10.7.1.3. StandardLoopCharacteristics

Derived properties
• /loopCondition : BPMNExpression= self.base_LoopNode.test.value.extension_BPMNExpression
• /testBefore : Boolean = self.base_LoopNode.isTestedFirst

Constraints

[1] StandardLoopCharacteristics may only be applied when Task or SubProcess is also applied.
[2] Loop nodes with StandardLoopCharacteristics applied have an empty setPart, one action in the bodyPart, which has

a specialization of BPMNActivity applied, and one value specification action as test, the result output pin of which
is the decider of the LoopNode.

10.8. Lanes and Resources

Figure 26: Lanes and LaneSets

BPMN Lanes group elements of processes or subprocesses to express modeler-defined relationships to other parts of the
model. BPMN LaneSets group lanes in modeler-defined ways. UML ActivityPartitions do the same for elements of
activities, and other activity partitions, except they are only available on activities, not structured activity nodes. The
SubProcess stereotype extends UML StructuredActivityNodes with the laneSets property, to provide partitions in structured
activity nodes, equivalent to BPMN Lanes in subprocesses. BPMN LaneSets directly under BPMN Subprocesses are owned
by the subprocesses, rather than lanes the subprocesses are in. LaneSet stereotypes referred to by SubProcess stereotypes are
applied to activity partitions owned by the activity, rather than activity partitions the structured activities are in. BPMN

41

Lanes contain at most one lane set to define sublanes. The LaneSet and Lane stereotypes are applied to the same activity
partition on sublanes, to simplify the model.

BPMN Lanes specify other parts of the model that process elements in the lane have a relationship to, which can be owned
by the lane or not. UML Activities can refer to other model elements in the same way, but not own them. The Lane
stereotype extends UML ActivityPartitions with the partitionElement property to refer to other elements of the model that
activity elements in the partition have a relationship to, which are required to be among those that it references in UML.

Figure 27: Resources and Resource Roles

The relationships between process elements in a lane and other parts of the model are up to modelers, but they are often
relationships to resources, which are expressed with BPMN ResourceRoles. BPMN Resources are the kinds of things that
play resource roles. BPMN Processes, GlobalTasks, and Activities can have resource roles. The ResourceRole stereotype
identifies UML Properties on activities, opaque behaviors, and activity classes of BPMNActivities (see Clauses 10.1.2, 10.2,
and 10.6.4), with the type of the property specifying the kinds of resources that can play the role, providing a semantics
equivalent to BPMN’s. The specializations of the ResourceRole stereotype have application semantics, see the BPMN
specification. BPMN ResourceParameters specify properties of resources, while BPMN ResourceParameterBindings specify
values for those properties when the resources play particular resource roles. The ResourceParameter stereotype identifies
resource parameter properties on UML Classes that have the Resource stereotype applied, providing a semantics equivalent
to BPMN’s. Resource parameter properties can have UML InstanceSpecifications as default values, where the instance
specifications have UML Slots with ResourceParameterBinding applied that specify a value for a resource parameter, as
expressed by the /parameterRef and /expression derived properties on the ResourceParameterBinding stereotype, providing a
semantics equivalent to BPMN’s. BPMN ResourceAssignmentExpression is an expression that deployment platforms can
use to identify an individual resource instances at runtime to play resource roles. BPMN does not define how the platform
uses this expression, and the profile does not either.

10.8.1. Derived Properties and Constraints

10.8.1.1. Lane

Derived properties
• /childLaneSet : LaneSet = self.base_ActivityPartition.extension_LaneSet
• /flowNodeRefs : FlowNode [*] = self.base_ActivityPartition.node.extension_FlowNode
• /laneSet : LaneSet = self.base_ActivityPartition.superPartition.extension_LaneSet
• /partitionElementRef : BaseElement [0..1] = self.base_ActivityPartition.represents.extension_ BaseElement that are

not included in Lane::partitionElement.

42

Constraints
[1] partitionElement must be included in ActivityPartition.represents.

10.8.1.2. LaneSet

Derived properties
• /flowElementsContainer : FlowElementsContainer [0..1] = inverse of FlowElementsContainer:: /laneSets
• /lanes : Lane [*] = self.base_ActivityPartition.subpartition.extension_Lane
• /parentLane : Lane [*] = self.base_ActivityPartition.extension_Lane

Constraints

[1] Activity partitions with LaneSet applied where the ActivityPartition is owned by an Activity must have
isDimension=true.

[2] On Activity partitions with LaneSet applied, if the subprocess property of the lane set has a value, then the
inActivity property must have a value.

10.8.1.3. Resource

Derived properties
• /resourceParameters : ResourceParameter [*] = self.base_Class.ownedAttribute.extension_ ResourceParameter, for

properties with ResourceParameter applied.

Constraints
None.

10.8.1.4. ResourceAssignmentExpression

Derived properties
• /expression : BPMNExpression = self

Constraints
None.
10.8.1.5. ResourceParameter

Derived properties
• /isRequired : Boolean = self.base_Property.lower > 0 (lower defined on MultiplicityElement)
• /type : ItemDefinition [0..1] = self.base_Property.type.extension_ItemDefinition (type defined on TypedElement)

Constraints

[1] Properties with ResourceParameter applied must be owned by classes with the Resource stereotype applied.

10.8.1.6. ResourceParameterBinding

Derived properties
• /expression : BPMNExpression = self.base_Slot.value.extension_ BPMNExpression
• /parameterRef : ResourceParameter = self.base_Slot.definingFeature. extension_ResourceParameter

Constraints

[1] Slots with ResourceParameterBinding applied must be owned by instance specifications that are the default values
of properties with ResourceRole applied, and that have the type of the property as classifier.

43

10.8.1.7. ResourceRole

Derived properties
• /process : BPMNProcess [0..1] = self.base_Property.class.extension_BPMNProcess
• /resourceParameterBindings : ResourceParameterBinding [*] = self.base_Property. defaultValue.slot
• /resourceRef : Resource [0..1] = self.base_Property.type.extension_Resource (type defined on TypedElement)

Constraints
None.

44

11 Collaborations

11.1. Collaborations and Conversations

11.1.1. Collaborations

Figure 28: Collaborations

BPMN Collaborations and UML Collaborations share the same name and purpose. They both help specify interactions
(message exchange) between processes or behaviors that can be carried out by entities or objects participating in the
collaboration. Neither BPMN nor UML Collaborations capture all interaction details, they focus on message flows between
participants (see Clauses 11.1.2 and 11.1.3), using grouping and reuse of flows for scaling to complicated interactions (see
Clause11.1.4). The time sequence of message flows and the conditions under which they occur is captured in other parts of
the languages (choreography in BPMN, and the behavior models in UML). However, BPMN Processes can be included in
collaborations, providing a way to specify time sequence and conditions for flows between participants by using time
sequence and conditions for process elements that send and receive messages.

As with processes, when BPMN Collaborations are carried out, it is expected they will follow their models, whereupon they
are valid, otherwise they are invalid. The BPMN isClosed property indicates whether message flows not specified in a
collaboration can validly occur when the collaboration is carried out. If the value of isClosed is true, then messages flows are
limited to those specified in the models, otherwise they are not. The BPMNCollaboration stereotype extends UML
Collaboration semantics to use the isClosed property to determine whether collaborations may be validly carried out with
message flows not specified in their models, giving a semantics equivalent to BPMN’s.

BPMN Processes use collaborations to specify how they interact with other processes or external entities. The same process
might appear in multiple collaborations, but no more than one is identified as being included in the definition of each process,
as expressed by the BPMN definitionalCollaborationRef property of processes. The BPMNProcess stereotype extends UML
Activities with a property of the same name to identify such collaborations.

11.1.2. Participants

Figure 29: Participants

45

BPMN Participants are roles in collaborations, rather than things or kinds of things that participate in collaborations, so each
BPMN Participant is in exactly one collaboration. UML Collaborations are classifiers that have properties to identify
participating things, and UML Properties are always in exactly one classifier. The Participant stereotype indicates which
properties of UML Collaborations identify participating things, providing semantics equivalent to BPMN’s. BPMN
PartnerEntities are individual things, such as WalMart or particular persons, while BPMN PartnerRoles are the kinds of
things that play roles, such as buyers or sellers, rather than roles in the collaboration. Partner entities and roles can refer to
participants (roles in collaborations), specifying individual things or kinds of things playing those roles in collaborations.
The PartnerEntity stereotype constrains UML InstanceSpecification semantics to specify exactly one instance, providing a
semantics equivalent to BPMN’s. UML Properties can have read-only default values specifying individual things that will be
values of the properties, using instance specifications with the PartnerEntity stereotype applied, and they can also have types
to specify the kinds of individuals, using classes with PartnerRole stereotype applied, providing semantics equivalent to
BPMN’s. BPMN PartnerEntities and PartnerRoles are optional for BPMN Participants, as are UML property defaults and
types for UML Properties.

BPMN Participants can refer to processes that exchange messages. BPMN Processes appear visually inside participants, but
can actually occur within or due to individual things specified by partner entities or partner roles of the participants. In this
case, UML Properties with the Participant stereotype applied have read-only default instance specifications with the
PartnerEntity stereotype applied and/or types with the PartnerRole stereotype applied, and classifiers of the default instance
specifications and/or types of participant properties have UML Activities with the BPMNProcess stereotype applied as their
classifier behaviors, providing a semantics equivalent to BPMN’s (UML classifier behaviors occur within or due to
individual things being classified). BPMN Participants can refer to processes without specifying partner entities or roles in
which the processes will occur. In this case, participant properties with the Participant stereotype applied are typed by UML
Activities with the BPMNProcess stereotype applied (see Clause 10.1.2 about activities as types). Combined with the
constraint that UML Activities with the BPMNProcess stereotype applied are their own classifier behaviors (see Clause
10.1.2), actions can accept operations messages directed to the containing activity, providing a semantics equivalent to
BPMN’s.

11.1.3. Message Flows

Figure 30: Message Flows

BPMN MessageFlows specify messages transmitted between participants, or elements of processes that send and receive
messages. BPMN Messages are the kinds of things that are transmitted along message flows. UML InformationFlows
specify the transmission of things between almost any kind of UML element. Contrary to the name, the things transmitted
can be anything classifiable, including physical things. The kind of thing transmitted by an information flow is specified
with the UML conveyed property. The BPMN Collaboration stereotype extends UML Collaborations to refer to message
flows with the messageFlows property. The BPMNMessage stereotype is a specialization of ItemDefinition (see Clause
10.4.1) and specifies the kinds of things that flow on information flows, as expressed by the /messageRef derived property,
providing semantics equivalent to BPMN’s. The InteractionNode stereotype generalizes elements that can be on the ends of
information flows with the MessageFlow stereotype applied (see Clauses 10.2, 10.4.1, and 11.1.2).

46

11.1.4. Conversations

Figure 31: Conversations

Figure 32: Participant Associations and Message Flow Associations

BPMN ConversationNodes group message flows analogously to BPMN CallActivities and Subprocesses grouping process
flow elements. They can be shown in an expanded view exposing their grouped message flows, or in a collapsed view with
BPMN ConversationLinks between the nodes and participants or process elements in participants. The ConversationNode
stereotype extends UML InformationFlows to refer to grouped message flows. The ConversationLink stereotype extends
UML Dependency with sources that are information flows that have the ConversationNode stereotype applied, targets that
are the sources and targets of the information flows, and one source and target per dependency.

The three kinds of conversation for grouping message flows in BPMN Collaborations are analogous to the kinds of activities
in processes for grouping other activities (BPMN CallActivities, Task, and Subprocesses):

• BPMN CallConversations reuse other collaborations, using BPMN ParticipantAssociations to link participants in the
“caller” with participants in the reused collaboration. UML Collaboration does the same with UML
CollaborationUse, linking participants by dependencies identified by the collaboration use as role bindings. BPMN
does not give a semantics to associating participants between collaborations, but it is typically read as requiring the
individuals acting as the associated participants to be the same when the calling collaboration is carried out. UML
collaboration role bindings have an equivalent semantics. BPMN MessageFlowAssociations link message flows in
collaborations to message flows in reused collaborations, indicating that the transfer of items along the associated
message flows will be the same when the calling collaboration is carried out. The BPMN Collaboration stereotype
extends UML Collaborations with a messageAssociations property to refer to message flow associations for this
purpose.

• The Conversation stereotype extends UML InformationFlows with a messageFlowRefs property to identify the

message flows of the containing collaboration, providing a grouping construct equivalent to BPMN’s.

47

• BPMN SubConversations group message flows as conversations do, as well as containing any of the three kinds of

conversation. The SubConversation stereotype extends UML InformationFlows as the Conversation stereotype
does, and also with a conversationNodes property to refer to any of the other three kinds of conversation, providing
a construct equivalent to BPMN’s.

BPMN Conversations and SubConversations group message flows owned by the containing collaboration, possibly sharing
message flows across conversations.

When a BPMN Process in a collaboration calls another process, the participants of the caller’s collaboration are associated
with participants in the definitional collaboration of the reused process. The BPMNCollaboration stereotype extends UML
Collaborations with a participantAssociations property to refer to participant associations for this purpose.

BPMN does not give a semantics to the three kinds of conversation, but they are typically read as specifying that the message
flows in them, or in collaborations they reuse, occur when the conversations do. The same message flow is in multiple
conversations is typically read as specifying a single transmission occurs even though there are two conversations. The
profile provides equivalent semantics, either through UML CollaborationUse, or by extension of UML InformationFlows.

11.1.5. Derived Properties and Constraints

11.1.5.1. CallConversation

Derived properties
• /calledCollaborationRef : BPMNCollaboration [0.1] = self.collaborationUse.type. extension_BPMNCollaboration
• /participantAssociations : ParticipantAssociations [*] = self.collaborationUse.

roleBinding.extension_ParticipantAssociation

Constraints

[1] Collaboration uses with CallConversation applied must be collaborationUses of the collaboration with
BPMNCollaboration applied that has the call conversation included in its conversations, and vice versa.

11.1.5.2. Collaboration

Derived properties
• /artifact : Artifact [*] = self.base_Collaboration.ownedComment.extension_ TextAnnotation
• /conversationLinks : ConversationLinks [*] = self.conversations.base_InformationFlow.

clientDependency.extension_ConversationLink
• /participants : Participant [*] = self.base_Collaboration.ownedAttribute.extension_ Participant (ownedAttribute

defined on Class)

Constraints
None.

11.1.5.3. ConversationLink

Derived properties
• /collaboration : Collaboration = inverse of Collaboration::/conversationLinks
• /sourceRef : InteractionNode = self.base_ Dependency.client.extension_ InteractionNode
• /targetRef : InteractionNode = self.base_Dependency.target.extension_ InteractionNode

48

Constraints
[1] Dependencies with ConversationLink applied must be owned by the innermost package containing the collaboration

with BPMNCollaboration applied that has a conversation node included in its conversations that is applied to the
client of the dependency.

[2] Dependencies with the ConversationLink applied must have exactly one client and one supplier, where the client
must have ConversationNode applied and the supplier must have a specialization of InteractionNode applied.

[3] The targetRefs of conversation links that have the same sourceRef must all be different and collectively be the same
set as the union of self.base_InformationFlow.informationSource. extension_InteractionNode and
self.base_InformationFlow.informationTarget. extension_InteractionNode.

11.1.5.4. ConversationNode

Derived properties
• /participantRefs : Participant [2..*] = self.base_InformationFlow. informationSource and

informationTarget.extension_Participant or extension_Participant of the collaboration role containing the
information source or target

Constraints

[1] Information flows with ConversationNode applied must be owned by the innermost package containing the
collaboration with BPMNCollaboration applied that has the conversation node included in its converations.

11.1.5.5. InteractionNode

Derived properties
• /incomingConversationLinks : ConversationLink [*] = inverse of ConversationLink:: targetRef
• /outgoingConversationLinks : ConversationLink [*] = inverse of ConversationLink:: /sourceRef

Constraints
None.

11.1.5.6. MessageFlow

Derived properties
• /messageRef : BPMNMessage [0..1] = self.base_InformationFlow.conveyed.extension_ BPMNMessage
• /sourceRef : InteractionNode = self.base_InformationFlow.informationSource. extension_InteractionNode
• /targetRef : InteractionNode = self.base_InformationFlow.informationTarget. extension_InteractionNode

Constraints
None.

11.1.5.7. MessageFlowAssociation

Derived properties
• /innerMessageFlowRef : MessageFlow = self.base_Dependency.supplier. extension_MessageFlow

Constraints

[1] Dependencies with MessageFlowAssociation applied must be owned by the innermost package containing the
collaboration with BPMNCollaboration applied that has the message flow association included in its
messageFlowRefs.

[2] Dependencies with MessageFlowAssociation applied must have exactly one client and one supplier, both of which
must have MessageFlow applied.

49

11.1.5.8. Participant

Derived properties
• /interfaceRefs : BPMNInterface [*] = self.base_Property.type.

interfaceRealization.contract.extension_BPMNInterface (interfaceRealization defined on BehavioredClassifier) if
there a type, otherwise, if there is a default value,
self.base_Property.defaultValue.classifier.interfaceRealization.contract. extension_BPMNInterface

• /participantMultiplicity : Participant [0..1] = self.base_Property.extension_ ParticipantMultiplicity
• /partnerEntityRef : PartnerEntity [*] = self.base_Property.defaultValue.instance. extension_PartnerEntity
• /partnerRoleRef : PartnerRole [*] = self.base_Property.type.extension_ PartnerRole
• /processRef : BPMNProcess [0..1] = self.base_Property.type.extension_BPMNProcess if type is an activity, or

self.base_Property.type.classifierBehavior.extension_BPMNProcess if type is a behaviored classifier that is not an
activity, or self.base_Property.defaultValue.classifier. classifierBehavior.extension_BPMNProcess if there is a
default value.

Constraints

[1] Properties with Participant applied are read-only when they have a default value that is an instance specification
with ParterEntity applied.

[2] Properties with Participant applied cannot be typed by an activity with BPMNProcess applied and have a default
value that is an instance specification with a classifier having a classifier behavior that is an activity with
BPMNProcess applied.

[3] Properties with Participant applied must be ownedAttributes of collaborations with BPMNCollaboration applied.
11.1.5.9. ParticipantAssociation

Derived properties
• /innerParticipantRef : Participant = self.base_Dependency.supplier.extension_ Participant
• /outerParticipantRef : Participant = self.base_Dependency.client.extension_ Participant

Constraints

[1] Dependencies with ParticipantAssociation applied must be owned by the innermost package containing the
collaboration with BPMNCollaboration applied that has the ParticipantAssociation instance applied to the
dependency included in its participantAssociations, or the innermost package containing the collaboration use
owning the roleBinding to which the ParticipantAssociation is applied.

[2] Dependencies with ParticipantAssociation applied must have exactly one client and one supplier, both of which
must have Participant applied.

11.1.5.10. ParticipantMultiplicity

Derived properties
• /maximum : Integer = self.base_MultiplicityElement.upper the value is an integer, empty otherwise.
• /minimum : Integer = self.base_MultiplicityElement.lower

Constraints

[1] ParticipantMultiplicity may only applied to elements that have Participant applied.

11.1.5.11. PartnerEntity

Derived properties
• /participantRef : Participant [*] = inverse of Participant::/partnerEntityRef

Constraints
None.

50

11.1.5.12. PartnerRole

Derived properties
• /participantRef : Participant [*] = inverse of Participant::/partnerRoleRef

Constraints
None.

11.2. Operations, Interfaces, and Related Tasks

11.2.1. Operations and Interfaces

Figure 33: Operations and Interfaces

BPMN and UML Collaborations are typically used in conjunction with operations and interfaces, which specify capabilities
that collaborators offer to each other. BPMN and UML Operations and Interfaces share the same names and purposes,
though they vary in how widely they can be applied in each language. Operations in both languages specify that something
can be done, without saying exactly how. BPMN and UML Interfaces group operations that are typically used together, and
then the operations are supported together by elements supporting interfaces.

BPMN and UML Operations can require certain kinds of things be available before the operation can start, and commit to
provide certain kinds of things when the operation is finished (BPMN Operations require something to be available before
starting, while UML is not restricted this way). BPMN Operations use messages to specify the things they need to start and
the things provided when finished, with exactly one message to start, and optionally one message provided on completion,
while UML Operations are not restricted this way. The BPMNOperation stereotype constrains parameters of UML
Operations to be typed by classes with the BPMNMessage stereotype applied, and to have exactly one input parameter and at
most one output, to match BPMN restrictions.

Typical operation implementation languages do not support input and output sets (see Clause 10.6.3 about input and output
sets). BPMN InputOutputBindings specify a separate operation to handle each combination of input and output set that
might occur for any particular call activity instance, for called elements that have operations and multiple input sets or output
sets (see Clauses 10.1.2 and 10.2 about callable elements, call activities, and activity instances, and below about specifying
operations for callable elements). UML Dependencies with InputOutputBinding applied have two clients, one with InputSet
applied and one with OutputSet applied, and one client, which has BPMNOperation applied. UML Operations with
BPMNOperation applied supported by UML Behaviors with a callable element stereotype applied can be invoked by
CallOperationActions with CallActivity applied targeting the behaviors (as classes), pins typed by a class with
BPMNMessage applied, and one argument pin and at most one result pin.

BPMN Operations are only specified within interfaces, while UML Operations can be specified in interfaces and classes.
BPMN Interfaces can be supported by processes, global tasks, and participants. BPMN Participants referring to (visually
containing) processes might have interfaces supported on the participants, processes, or both. BPMN PartnerEntities and
PartnerRoles do not support interfaces, but can refer to participants that do. UML Interfaces can be supported by behaviored

51

classifiers, including activities and opaque behaviors as extended by BPMNProcess and global task stereotypes, and by
classes, but not by properties, except indirectly through their default values and types (see Clause 11.1.2 about property
typing, default values, and classifiers in the following). UML Properties with the Participant stereotype applied:

• with no links to elements corresponding to processes, partner entities, or partner roles, can be typed by a single
interface, indicating the individual things playing that role in the collaboration support the interface, or can be typed
by a class with no features supporting multiple interfaces, indicating individual things playing that role in the
collaboration support those interfaces.

• with no links to elements corresponding to partner entities or partner roles can be typed by UML Activities with the
BPMNProcess stereotype applied and supporting interfaces with the BPMNInterface stereotype applied. Combined
with the constraint that UML Activities with the BPMNProcess stereotype applied are their own classifier
behaviors, actions can accept messages arriving via operations directed to the containing activity, providing
semantics equivalent to BPMN’s.

• with links corresponding to processes and partner roles, can be typed by classes with the PartnerRole stereotype
applied that support interfaces with the BPMNInterface stereotype applied and having UML Activities as classifier
behaviors.

• can have read-only default instance specifications with the PartnerEntity stereotype applied and/or types with the
PartnerRole stereotype applied, and classifiers of the default instance specifications and/or types of participant
properties supporting interfaces with the BPMNInterface stereotype applied.

The implementationRef property of the BPMN Interface and Operation identify elements modeled outside BPMN, but do not
constrain them. The BPMNInterface and BPMNOperation stereotypes extend their base classes with this property, with
implementation semantics, see the BPMN specification.

11.2.2. Related Tasks

Figure 34: Related Tasks

BPMN SendTasks, ServiceTasks, and ThrowEvents with message event definitions (see Clauses 10.2 and 10.4.2) can call
operations on things outside the containing process, typically other participants in collaborations. BPMN SendTasks and
throw message events can specify outgoing messages without specifying operations, or vice versa, while BPMN
ServiceTasks can only specify outgoing messages via operations. This is reflected in the profile by the messageRef
associations from the SendTask and MessageEventDefinition stereotypes, but not the ServiceTask stereotype. The
participants receiving operation calls are identified by message flows going out of the send task, service task, or throw event.
UML CallOperationActions with SendTask, ServiceTask, or throw event stereotypes applied that have message event
definitions require their targets to be values of properties with Participant applied, as determined by outgoing information
flows with MessageFlow stereotype, if any, their pins typed by a class with BPMNMessage applied, and one argument pin
and at most one result pin, providing semantics equivalent to BPMN’s. BPMN SendTasks and throw message events do not
wait for messages to be received wherever they are sent before completing (if they invoke operations with out messages,
those messages are received by catch events or receive tasks later in the process, in containing processes, or other processes
entirely). BPMN ServiceTasks will wait for a reply message to arrive before completing only if the operation they invoke
will provide a message when finished. UML CallOperationActions can wait for a reply or not, regardless of whether or not
the operation is supposed to send one. The SendTask and throw event stereotypes with message event definitions require call

52

operation actions to be asynchronous, and the ServiceTask stereotype does also, except when the invoked operation has a
return parameter, whereupon the call operation action is synchronous, providing semantics equivalent to BPMN’s.

BPMN ReceiveTasks and catch events with message event definitions (see Clauses 10.2 and 10.4.3) accept operations calls
from things outside the containing process, typically other participants in collaborations. The participants sending operation
calls are determined by message flows into the receive task or throw event. The ReceiveTask and catch event stereotypes
extend UML AcceptEventAction semantics by removing tokens accepted when the participants are not specified by the
incoming message flows , and returning the event to the pool from which it was drawn. BPMN ReceiveTasks with message
event definitions can specify incoming messages without specifying operations, and vice-versa, which is reflected in the
profile by the messageRef properties of the ReceiveTask and MessageEventDefinition stereotypes. The BPMN instantiate
property on receive tasks indicates whether new process instances are created when messages of particular kinds arrive (see
Clause 10.1.2 about process instances). BPMNProcess stereotypes with a value of true for the instantiate property extend
UML Activity semantics to be equivalent to BPMN’s by instantiating activities that directly contain accept event actions with
ReceiveTasks applied and no incoming edges when the messages arrive.

The implementation properties on BPMN SendTask, ReceiveTask, and ServiceTask identify implementation technologies
outside of BPMN. The SendTask, ReceiveTask, and ServiceTask stereotypes extend their base classes with this property,
with implementation semantics, see the BPMN specification.

11.2.3. Derived Properties and Constraints

11.2.3.1. BPMNInterface

Derived properties
• /callableElements : CallableElement [*] = self.base_Interface.interfaceRealization.

implementingClassifier.extension_CallableElement.
• /operations : BPMNOperation [*] = self.base_Interface.ownedOperation.extension_ BPMNOperation

Constraints
None.

11.2.3.2. BPMNOperation

Derived properties
• /errorRef : Error [*] = self.base_Operation.raisedException (raisedException defined on BehavioralFeature)
• /inMessageRef : BPMNMessage = instance of BPMNMessage applied to the type of the first parameter in

self.base_Operation.ownedParameter with direction=in.
• ioBinding [*] = inverse of InputOutputBinding::/operationRef.
• outMessageRef [0..1]: BPMNMessage = instance of BPMNMessage applied to the type of the first parameter in

self.base_Operation.ownedParameter with direction=return.

Constraints

[1] Operations with BPMNOperation applied must have either one or two parameters, and no parameters with
direction=inout or direction=out.

[2] Operations with BPMNOperation applied must have no more than one parameter with direction=return, and the
parameter must be typed by a class with BPMNMessage applied, and have multiplicity 1.

[3] Operations with BPMNOperation applied must have one parameter with direction=in, and the parameter must be
typed by a class with BPMNMessage applied, and must have multiplicity 1.

11.2.3.3. InputOutputBinding

Derived properties
• inputDataRef = self.base_InputOutputBinding.client.extension_InputSet
• operationRef = self.base_InputOutputBinding.supplier.extension_ BPMNOperation

53

• outputDataRef = self.base_InputOutputBinding.client.extension_OutputSet

Constraints

[1] Dependencies with InputOutputBinding applied must be owned by the innermost package containing the element
with a callable element applied that has the input output binding included in its ioBindings.

[2] Dependencies with the InputOutputBinding applied must have exactly two clients and one supplier, and one of the
clients must have InputSet applied, while the other has OutputSet applied, and the supplier must have
BPMNOperation applied.

11.2.3.4. ReceiveTask

Derived properties
• /operationRef : BPMNOperation [0..1] = self.base_AcceptEventAction.trigger.operation.

extension_BPMNOperation

Constraints

[1] AcceptEventActions with ReceiveTask applied must have call events as triggers.

11.2.3.5. SendTask

Derived properties
• /operationRef : BPMNOperation [0..1] = self.base_CallOperationAction.operation. extension_BPMNOperation
• /operationRef : BPMNOperation [0..1] = self.base_CallOperationAction.operation. extension_BPMNOperation

Constraints

[2] CallOperationActions with SendTask applied must have isSynchronous = false, except when ve a value for the
/outMessageRef property, whereupon isSynchronous = true.

11.2.3.6. ServiceTask

Derived properties
• /operationRef : BPMNOperation [0..1] = self.base_CallOperationAction.operation. extension_BPMNOperation

Constraints

[1] Call operation actions with ServiceTask applied must have isSynchronous = false, except when service tasks have a
value for the /outMessageRef property, whereupon isSynchronous = true.

11.3. Correlation

Figure 35: Correlation

54

Messages coming into participants have correlation information to determine which process instances they should be routed
to (see Clause 10.1.2 about process instances). BPMN Collaborations and the three kinds of conversation use BPMN
CorrelationKeys to specify which BPMN CorrelationProperties of incoming messages they match process instances against.
BPMN does not support message properties, so properties of correlation keys have BPMN
CorrelationPropertyRetreivalExpressions to specify how to extract property values from messages. The CorrelationKey and
BPMNMessage stereotypes can specify properties because they are based on UML Class, but properties can only be shared
between classes via generalization. Classes with CorrelationKey and BPMNMessage applied must form a taxonomy for
property sharing, or properties must be matched by name. Instances of UML Classes with the BPMNMessage stereotype
applied that are sent to values of properties with the Participant stereotype applied, are routed to instances of activities with
the BPMNProcess stereotype applied according to correlation semantics equivalent to BPMN's. Mapping from UML Classes
to message formats is usually part of a model-driven architecture for generating platform-specific technology, but
CorrelationProperty stereotypes applied to UML Properties can refer to CorrelationPropertyRetrievalExpression stereotypes
applied to UML Dependencies that have as clients OpaqueExpressions with the FormalExpression stereotype applied, and as
suppliers Classes with the BPMNMessage stereotype applied to provide syntax equivalent to BPMN's, and to guide platform-
specific generators.

Incoming messages supply initial values for correlation properties to match against messages arriving later for each process
instance, and processes can also specify values to match against incoming messages. BPMN processes can have BPMN
CorrelationSubscriptions with BPMN CorrelationPropertyBindings specifying expressions that determine property values for
matching against particular keys. The CorrelationSubscription stereotype is based on UML Class and these classes are
generalized by other classes with the CorrelationKey stereotype applied. Subscription classes redefine inherited correlation
key properties to apply CorrelationPropertyBinding stereotypes. These stereotype instances have dataPath properties
specifying expressions used to get information from activity instances to match against properties of incoming messages
(where the activity instances are of activities with the BPMNProcess stereotype applied that refers to instances of the
CorrelationSubscription stereotype). Incoming messages are routed to matching activity instances according to correlation
semantics equivalent to BPMN's.

11.3.1. Derived Properties and Constraints

11.3.1.1. CorrelationProperty

Derived properties
None.

Constraints

[1] Correlation properties with the same name that do not inherit from each other have copies of each others'
correlationPropertyRetrievalExpressions.

[2] Properties with CorrelationProperty applied must be ownedAttributes of classes with CorrelationKey applied.
[3] The types of properties with CorrelationProperty applied must have ItemDefinition applied.

11.3.1.2. CorrelationPropertyBinding

Derived properties
None.

Constraints

[1] Opaque expressions with FormalExpression applied that are dataPaths of correlation property bindings are owned by
the same package that owns the correlation property binding.

[2] Opaque expressions with FormalExpression applied must not be dataPaths of more than one correlation property
binding.

[3] Properties with CorrelationPropertyBinding applied must be ownedAttributes of classes with
CorrelationSubscription applied, and must redefine ownedAttributes of classes with CorrelationKey applied that are
generalizations of the class owning the property with CorrelationPropertyBinding applied.

55

11.3.1.3. CorrelationPropertyRetrievalExpression

Derived properties
None.

Constraints

[1] Dependencies with CorrelationPropertyRetrievalExpression applied must be owned by the innermost package
containing the property with CorrelationProperty applied that has the correlation property retrieval expression
included in its correlationPropertyRetrievalExpression.

[2] Dependencies with CorrelationPropertyRetrievalExpression applied must have exactly one client and one supplier,
where the client must have FormalExpression applied and the supplier must have BPMNMessage applied.

[3] Opaque expressions with FormalExpression applied must not be suppliers of more than one dependency with
CorrelationPropertyRetrievalExpression applied.

[4] Opaque expressions with FormalExpression applied that are suppliers of dependencies with
CorrelationPropertyRetrievalExpression applied are owned by the same package that owns the correlation property
retrieval expression.

11.3.1.4. CorrelationSubscription

Derived properties
None.

Constraints

[1] Classes with CorrelationSubscription applied must be direct specializations of classes with CorrelationKey applied.

	UML Profile for BPMN 2 Processes
	1 Scope
	2 Conformance
	3 References
	3.1. Normative
	3.2. Non-normative

	4 Terms and definitions
	5 Symbols (and abbreviated terms)
	6 Additional Information
	6.1. Changes to Adopted OMG Specifications
	6.2. Acknowledgements

	7 Conventions
	8 Other Material
	8.1. Derived Properties
	8.2. Transformations

	9 Core Structure
	9.1. Foundation and Infrastructure
	9.1.1. Base Elements
	9.1.2. Definitions
	9.1.3. Extensions
	9.1.4. External Relationships
	9.1.5. Derived Properties and Constraints
	9.1.5.1. BaseElement
	9.1.5.2. BPMNExtension
	9.1.5.3. BPMNRelationship
	9.1.5.4. Definitions
	9.1.5.5. Documentation
	9.1.5.6. ExtensionAttributeDefinition
	9.1.5.7. ExtensionAttributeValue
	9.1.5.8. ExtensionDefinition
	9.1.5.9. Import
	9.1.5.10. RootElement

	9.2. Common Elements
	9.2.1. Expressions
	9.2.2. Item Definitions
	9.2.3. Artifacts
	9.2.4. Derived Properties and Constraints
	9.2.4.1. BPMNAssociation
	9.2.4.2. BPMNExpression
	9.2.4.3. Category
	9.2.4.4. CategoryValue
	9.2.4.5. FormalExpression
	9.2.4.6. Group
	9.2.4.7. ItemDefinition
	9.2.4.8. TextAnnotation

	10 Processes
	10.1. Processes and Global Tasks
	10.1.1. Flow Elements
	10.1.2. Processes and Global Tasks
	10.1.3. Derived Properties and Constraints
	10.1.3.1. CallableElement
	10.1.3.2. FlowElement
	10.1.3.3. FlowElementsContainer
	10.1.3.4. GlobalBusinessRuleTask
	10.1.3.5. GlobalScriptTask
	10.1.3.6. GlobalTask
	10.1.3.7. GlobalUserTask
	10.1.3.8. BPMNProcess

	10.2. Activities
	10.2.1. Derived Properties and Constraints
	10.2.1.1. BPMNActivity
	10.2.1.2. BusinessRuleTask
	10.2.1.3. CallActivity
	10.2.1.4. FlowNode
	10.2.1.5. ScriptTask
	10.2.1.6. SubProcess
	10.2.1.7. Task
	10.2.1.8. UserTask

	10.3. Sequence Flows
	10.3.1. Derived Properties and Constraints
	10.3.1.1. SequenceFlow

	10.4. Events
	10.4.1. Events and Event Definitions
	10.4.2. Throw Events
	10.4.2.1. End Events without Event Definitions
	10.4.2.2. Link Events
	10.4.2.3. Terminate Events
	10.4.2.4. Cancel Events
	10.4.2.5. Error and Escalation Events
	10.4.2.6. Compensation Events
	10.4.2.7. Message Events
	10.4.2.8. Signal Events

	10.4.3. Catch Events
	10.4.3.1. Start Events
	10.4.3.2. Intermediate Catch Events
	10.4.3.3. Conditional and Timer Catch Events

	10.4.4. Derived Properties and Constraints
	10.4.4.1. BPMNEvent
	10.4.4.2. BPMNMessage
	10.4.4.3. BPMNSignal
	10.4.4.4. BoundaryEvent
	10.4.4.5. CatchEvent
	10.4.4.6. ConditionalEventDefinition
	10.4.4.7. Error
	10.4.4.8. Escalation
	10.4.4.9. ImplicitThrowEvent
	10.4.4.10. StartEvent
	10.4.4.11. ThrowEvent
	10.4.4.12. TimerEventDefinition

	10.5. Gateways
	10.5.1. Parallel and Exclusive Gateways
	10.5.2. Event-based Gateways
	10.5.3. Complex Gateways
	10.5.4. Inclusive Gateways
	10.5.5. Derived Properties and Constraints
	10.5.5.1. ComplexGateway
	10.5.5.2. ExclusiveGateway
	10.5.5.3. InclusiveGateway

	10.6. Data
	10.6.1. Item Aware Elements and Data Associations
	10.6.2. Input Output Specifications and Data Objects
	10.6.3. Input Sets and Output Sets
	10.6.4. Properties as Item Aware Elements
	10.6.5. Data Stores
	10.6.6. Derived Properties and Constraints
	10.6.6.1. Assignment
	10.6.6.2. BPMNProperty
	10.6.6.3. DataAssociation
	10.6.6.4. DataInput
	10.6.6.5. DataInputAssociation
	10.6.6.6. DataObject
	10.6.6.7. DataObjectReference
	10.6.6.8. DataOutput
	10.6.6.9. DataOutputAssociation
	10.6.6.10. DataState
	10.6.6.11. DataStoreReference
	10.6.6.12. InputOutputSpecification
	10.6.6.13. InputSet
	10.6.6.14. ItemAwareElement
	10.6.6.15. OutputSet

	10.7. LoopCharacteristics
	10.7.1. Derived Properties and Constraints
	10.7.1.1. ComplexBehaviorDefinition
	10.7.1.2. MultiInstanceLoopCharacteristics
	10.7.1.3. StandardLoopCharacteristics

	10.8. Lanes and Resources
	10.8.1. Derived Properties and Constraints
	10.8.1.1. Lane
	10.8.1.2. LaneSet
	10.8.1.3. Resource
	10.8.1.4. ResourceAssignmentExpression
	10.8.1.5. ResourceParameter
	10.8.1.6. ResourceParameterBinding
	10.8.1.7. ResourceRole

	11 Collaborations
	11.1. Collaborations and Conversations
	11.1.1. Collaborations
	11.1.2. Participants
	11.1.3. Message Flows
	11.1.4. Conversations
	11.1.5. Derived Properties and Constraints
	11.1.5.1. CallConversation
	11.1.5.2. Collaboration
	11.1.5.3. ConversationLink
	11.1.5.4. ConversationNode
	11.1.5.5. InteractionNode
	11.1.5.6. MessageFlow
	11.1.5.7. MessageFlowAssociation
	11.1.5.8. Participant
	11.1.5.9. ParticipantAssociation
	11.1.5.10. ParticipantMultiplicity
	11.1.5.11. PartnerEntity
	11.1.5.12. PartnerRole

	11.2. Operations, Interfaces, and Related Tasks
	11.2.1. Operations and Interfaces
	11.2.2. Related Tasks
	11.2.3. Derived Properties and Constraints
	11.2.3.1. BPMNInterface
	11.2.3.2. BPMNOperation
	11.2.3.3. InputOutputBinding
	11.2.3.4. ReceiveTask
	11.2.3.5. SendTask
	11.2.3.6. ServiceTask

	11.3. Correlation
	11.3.1. Derived Properties and Constraints
	11.3.1.1. CorrelationProperty
	11.3.1.2. CorrelationPropertyBinding
	11.3.1.3. CorrelationPropertyRetrievalExpression
	11.3.1.4. CorrelationSubscription

