
Bibliographic Query Service
Specification

Convenience Document - dtc/2001-12-03
December 2001

Copyright 2001, EMBL-EBI (European Bioinformatics Institute)

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT
The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE
The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
Preface . iii

1. Introduction . 1-1
1.1 Bibliographic Query Introduction 1-1

1.2 Naming Conventions . 1-2

1.3 Scope and Extensibility . 1-2

1.4 Module Dependencies . 1-2

2. Modules and Interfaces . 2-1
2.1 The DsLSRBibObjects Module . 2-1

2.1.1 Overview . 2-1
2.1.2 Dublin Core Metadata 2-1

2.1.3 Objects-by-value . 2-2
2.1.4 Illustrative UML Diagram 2-3

2.1.5 Dynamic Properties . 2-4
2.1.6 Data Structures . 2-4

2.2 The DsLSRBibQuery Module . 2-13

2.2.1 Overview . 2-13
2.2.2 Simple and Qualified Attribute Names 2-13

2.2.3 Query Constraint Language 2-15
2.2.4 Query Matching and Ordering Criteria 2-16

2.2.5 Lists of Stringified Attribute Names 2-17
2.2.6 Repository Introspection 2-18

2.2.7 Interfaces . 2-21
2.2.8 Querying . 2-23

2.2.9 Retrieving Citations . 2-26
December 2001 Bibliographic Query Service i

2.3 The DsLSRControlledVocabularies Module 2-28

Appendix A - References . A-1

Appendix B - OMG IDL . B-1
ii Bibliographic Query Service December 2001

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.
December 2001 dtc/2001-12-03: About the Object Management Group iii

OMG Documents

The OMG documentation is organized as follows.

OMG Modeling

• Unified Modeling Language (UML) Specification defines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed
object systems.

• Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels and
their corresponding models.

• OMG XML Metadata Interchange (XMI) Specification supports the interchange of
any kind of metadata that can be expressed using the MOF specification, including
both model and metamodel information.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and describes
the conceptual models upon which OMG standards are based. It defines the umbrella
architecture for the OMG standards. It also provides information about the policies and
procedures of OMG, such as how standards are proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and
Specification

Contains the architecture and specifications for the Object Request Broker.

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA
objects. The IDL definition is the contract between the implementor of an object and
the client. IDL is a strongly typed declarative language that is programming language-
independent. Language mappings enable objects to be implemented and sent requests
in the developer’s programming language of choice in a style that is natural to that
language. The OMG has an expanding set of language mappings, including Ada, C,
C++, COBOL, IDL to Java, Java to IDL, Lisp, and Smalltalk.

CORBAservices

Object Services are general purpose services that are either fundamental for developing
useful CORBA-based applications composed of distributed objects, or that provide a
universal-application domain-independent basis for application interoperability.
iv dtc/2001-12-03: OMG Documents December 2001

These services are the basic building blocks for distributed object applications.
Compliant objects can be combined in many different ways and put to many different
uses in applications. They can be used to construct higher level facilities and object
frameworks that can interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include
specifications such as Collection, Concurrency, Event, Externalization, Naming,
Licensing, Life Cycle, Notification, Persistent Object, Property, Query, Relationship,
Security, Time, Trader, and Transaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applicable
to most domains. Adopted OMG Common Facilities are collectively called
CORBAfacilities and include specifications such as Internationalization and Time, and
Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Object
Frameworks are complete higher level components that provide functionality of direct
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include
Domain Interfaces for application domains such as Finance, Healthcare,
Manufacturing, Telecoms, E-Commerce, and Transportation.

Currently, specifications are available in the following domains:

• CORBA Business: Comprised of specifications that relate to the OMG-compliant
interfaces for business systems.

• CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

• CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

• CORBA Life Science: Comprised of specifications that relate to the OMG-compliant
interfaces for the life science industry.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

• CORBA Transportation: Comprised of specifications that relate to the OMG-
compliant interfaces for transportation systems.
December 2001 dtc/2001-12-03: OMG Documents v

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• EMBL-EBI (European Bioinformatics Institute)
vi dtc/2001-12-03: Acknowledgments December 2001

Introduction 1
Contents

This chapter contains the following sections.

1.1 Bibliographic Query Introduction

Bibliographic search and citation are central to all scholarly and research activities.
Within the domain of life sciences research, bibliographic citation is of particular
importance for annotation of large bodies of experimentally developed and
computationally derived data and the rapidly increasing corpus of research literature
makes efficient and effective bibliographic searches increasingly critical.

The relevant “literature” may include traditional (hardcopy) research journal
publications, books, theses, reviews and the like. Recent developments require
researchers and scholars to use and cite a wider variety of sources, including database
records, electronically published journals, World Wide Web sites and multimedia works.
While several standards exist for the representation of bibliographic citations, some of
them are not readily adapted to newer forms of publication and there is no common set
of interfaces for distributed object implementations of bibliographic servers.

Examples of uses of a common set of CORBA-based bibliographic service interfaces
include, but are not limited to:

Section Title Page

“Bibliographic Query Introduction” 1-1

“Naming Conventions” 1-2

“Scope and Extensibility” 1-2

“Module Dependencies” 1-2
December 2001 dtc/2001-12-03: Bibliographic Query Introduction 1-1

1

• Enabling access to heterogeneous bibliographic databases and the development of
interoperable clients that make use of this access.

• Enabling the development of clients that can be easily extended to novel
bibliographic data sources.

This specification seeks solutions for the given situation.

1.2 Naming Conventions

The authors of this specification considered several possible names for the main object
described and used by this specification. Finally, the short name “Citation” was not used
in IDL definitions because of possible confusion with the meaning “quotation”
(especially in the scientific community). The main data type is called
“BibliographicReference,” which is in some constructs shortened to “BibRef.” However,
the text of the specification uses both names, “Citations” and “Bibliographic references,”
interchangeably.

Note that through this specification the name class is often used when talking about
valuetypes. We consider this name more appropriate when talking about overall design
strategies. It also allows grouping together valuetypes, structs and interfaces.

1.3 Scope and Extensibility

This specification can be used for both

• providing the ability to query a bibliographic repository for citations of a variety of
document types, and

• retrieving the citation matching the query criteria.

Having these abilities, the specification can be used as a part of other LSR specifications
for dealing with citations, which includes but is not limited to:

• biomolecular sequence objects,

• gene expression data objects,

• macromolecular structure objects, either directly, or by inheriting.

The specification defines a set of attributes that can be extended using “dynamic
properties” described in Section 2.1.5, “Dynamic Properties,” on page 2-3. This allows
extendibility without losing interoperability.

1.4 Module Dependencies

The specification is composed of two new modules, and uses several modules of existing
or emerging CORBA standards as shown in Figure 1-1 on page 1-3.
1-2 dtc/2001-12-03: Naming Conventions December 2001

1

Figure 1-1 Module Dependencies
December 2001 dtc/2001-12-03: Module Dependencies 1-3

1

1-4 dtc/2001-12-03: Module Dependencies December 2001

Modules and Interfaces 2
Contents

This chapter contains the following sections.

2.1 The DsLSRBibObjects Module

2.1.1 Overview

This module specifies the bibliographic domain data. It is independent of other modules
found in this specification, therefore it can be used everywhere where only the data
model is needed, without query capabilities.

The data model represents more than the minimum required by the RFP but is still quite
extendible by using dynamic properties. This allows the adding of additional attributes
without losing interoperability.

2.1.2 Dublin Core Metadata

The information model of bibliographic citations is based on the Dublin Core Metadata
for Resource Discovery [DC] that represents a set of descriptors that has emerged from
a workshop series started in 1995 in interdisciplinary and international consensus
building. The focus of the initiative was electronic resources. It was clear at the outset,

Section Title Page

“The DsLSRBibObjects Module” 2-1

“The DsLSRBibQuery Module” 2-13

“The DsLSRControlledVocabularies Module” 2-29
December 2001 dtc/2001-12-03: The DsLSRBibObjects Module 2-1

2

however, that the semantics of resource discovery should be independent of the medium
of the resource, and that there are obvious advantages for using the same semantics
model across media. Thus, considerable attention has been invested in making the Dublin
Core sufficiently flexible to represent resources (and relationships among resources) that
are both digital and exist in traditional formats as well.

One of the issues presented in the Bibliographic Query Service RFP was to consider both
traditional and new media types. The Dublin Core seems to be a perfect match for this
requirement. This specification, however, adds a few new attributes to the core set,
especially for purposes of easier queries and for better extendibility.

2.1.3 Objects-by-value

The CORBA 2.3a specification [CORBA2.3] provides the concept of a valuetype, an IDL
data type intermediate between struct and interface. It is a part of the so-called Objects
by Value (OBV) specification. In the context of this standard, the benefit of valuetypes
over interfaces is scalability (a single round trip transfers the whole state of the object).
The benefit of valuetypes over structs is their extendibility through inheritance. This
standard uses valuetypes essentially as extendible structs, by applying the following
constraints:

• all members (‘attributes’) are public,

• there are no methods,

• inheritance is only of other valuetypes (i.e., no “supports SomeInterface”),

• all inheritance uses truncatable (i.e., “casting” a sub-type to its super-type by
simply omitting the extra members is a semantically valid operation).
2-2 dtc/2001-12-03: The DsLSRBibObjects Module December 2001

2

2.1.4 Illustrative UML Diagram

Figure 2-1 Data Model

The UML in this specification is illustrative, not normative.

2.1.5 Dynamic Properties

For achieving extendibility without losing interoperability, several data classes use
attribute of type CosPropertyService::Properties.
December 2001 dtc/2001-12-03: The DsLSRBibObjects Module 2-3

2

Together with the repository introspection mechanism (see Section 2.2.6, “Repository
Introspection,” on page 2-18) it allows the inclusion of any property while still being able
to control the property names (which is necessary for queries) and, if needed, property
values.

2.1.6 Data Structures

2.1.6.1 BibliographicReference

The BibliographicReference class is the core of the data model. It is a super-class for all
specialized citation types, but it can also be instantiated and represent an additional type
not specifically defined in this specification.

public BibRefIdentifier identifier;

It is an unambiguous reference to the citation “within the world.” It is a string
conforming to an identification system described and rationalized below:

There is a requirement for a simple data type to store a bibliographic reference identity
across various bibliographic repositories. In most cases, this need is, or can be, addressed
by using a string type. The advantages are that it is simple, lightweight, and used
universally throughout the realm of computing (and indeed outside). However the risk of
using strings is that they can be too flexible, both in terms of syntax and semantics. This
easily results in the lack of interoperability. To allow strings, yet mitigate their potential
for abuse, this specification (and indeed some other LSR specifications [BSA], [MAPS])
uses the syntax convention of CosNaming::StringName as described in the
Interoperable Naming service [INS]. This convention is mainly a syntactical one; in no
way is the use of a naming service implementation required or implied (but it is not
precluded either).

A brief description of CosNaming::StringName is as follows. CosNaming::Name
is a list of struct NameComponents. For the purpose of illustration, a
NameComponent can be likened to a directory or filename, whereas
CosNaming::Name constitutes a full path-name. The struct NameComponent has
string members id and kind. To transform a CosNaming::Name into a string, all its
NameComponents are represented as strings “ id.kind”. If the kind-field is empty,
this becomes simply “ id”; if the id-field is empty, this becomes “.kind”; finally, the
Naming service also allows both the id- and kind-fields to be empty, which is
represented as “.”. The full stringified CosNaming::Name is then obtained by
concatenating all the NameComponents using “/” as a separator character. The
character “\” is designated as an escape character; if it precedes any of the special
characters “.”, “/” and “\”, these special characters are taken as literal characters. The
typedef string CosNaming::StringName is provided for strings used as object
names using this convention.

This specification adopts the same syntax convention for a bibliographic reference
identifier, but requests that the components of BibRefIdentifier data type adhere to
some additional semantic constraints. These rules do not follow from, nor are implied by,
2-4 dtc/2001-12-03: The DsLSRBibObjects Module December 2001

2

any semantics of the Naming Service. The additional constraints make this data type
sufficiently different from CosNaming::StringName to warrant the dedicated
typedef string BibRefIdentifier.

In the remainder of this description, ‘component’ means: the sub-string of a
BibRefIdentifier that corresponds to one CosNaming::NameComponent; likewise,
id-field and kind-field correspond to the equivalent fields of NameComponent.

The rules are as follows:

• The first component represents the bibliographic data source. Data sources can be
anything: transient collections, local databases, public repositories, etc. It is up to
the implementation to document the accepted names for the data source.

• The empty name (“.”) is valid for the first component, and represents the ‘local’ or
‘default’ collection. It is up to the implementation to document what the semantics
of ‘local’ or ‘default’ are.

• Names that refer to citations within collections (which is the usual case) consist of
two or more components. The second component of such names represents an
identifier that is unique in the context of the data source. No empty id-fields are
allowed in this or any further components.

• If two components are not enough to uniquely identify an entity, a
BibRefIdentifier can contain more than two components, but no more than
necessary to make the identification unique. That is, a BibRefIdentifier may not
be used to freely attach textual information.

• The only characters valid in a component are “a” through “z,” “0” through “9,” and
“-“ (hyphen), “_” (under_score), “$” and “.” (period). Use of the latter is
discouraged since it has a special meaning in the stringifying convention, and has
therefore to be escaped.

To comply with existing practice in the field of public data repositories, it is strongly
advised that implementations do string comparisons in a case-insensitive manner. The
CosNaming Service specification fails to mention whether type-case is, for string
comparison purposes, significant or not. Implementations that use a third-party
implementation of the Naming service may therefore wish to restrict BibRefIdentifiers
to only use one type-case. It is up to an implementation to state whether mixed type-case
is allowed, and whether type-case is significant in comparisons.

The id and kind parts of the string components of BibRefIdentifier are used as
follows:

• The id-field of a component contains the principal value that makes it unique in the
scope provided by the proceeding component. It may only be empty in the case of
the first component of a BibRefIdentifier (see above).

• The kind-field of a component is used to represent information indicating the
release (for a data source) or version (for a citation), and can be empty.

The examples of BibRefIdentifiers:

Medline/10881088
December 2001 dtc/2001-12-03: The DsLSRBibObjects Module 2-5

2

Embl-pub.56/123456

Note that BibRefIdentifier identifies a citation, not necessarily the cited resource (such
as a document) itself. Depending on the type of the cited resource, there can be other
identification systems used (such as ISBN number for books or ISSN number for
journals).

public string type;

It defines the nature or genre of the cited resource. Although a working draft of Dublin
Core Types [DCT1] recommends a type classification, the proposed types are mostly out
of scope of this specification. The majority of cited resources would fall in the same
category “text.” For the future, however, Dublin Core is considering the addition of
subtypes to the high level types, or other ways of making sub-categories.

Therefore, the recommended best practice is to select a value from a controlled
vocabulary RESOURCE_TYPES using methods of repository introspection (see
Section 2.2.6, “Repository Introspection,” on page 2-18).

Syntactically, and because of making query navigation easier, the value of this attribute
should be the same as the name of a sub-class that inherits from BibliographicReference
class and that describes the type. However, there may be bibliographic resources, which
are not described by specialized sub-classes (for example, “letters,” “practical guideline,”
or “archive”). For such cases the usage of a controlled vocabulary is needed.

In contrast to the Dublin Core recommendations, the resource type in this specification
cannot be repeated to include different categories of cited resources in one citation.

Note that for the description of the physical or digital manifestation of the cited resource
there is an attribute format described later.

public BibRefIdentifierList cross_references;

It is a list of identifiers, all of them pointing to the same cited source but usually stored
in different bibliographic repositories. Note that this attribute is not for referencing
citations to documents related to a document or citation.

public wstring title;

A title given to the cited resource (a name by which the resource is formally known).

public BibRefSubject subject;

It defines the topic of the content of the cited resource. It is expressed in one or more
ways using a construct BibRefSubject:

typedef wstring Keyword;
typedef sequence <Keyword> KeywordList;

typedef VocabularySstring SubjectHheading;
typedef sequence <SubjectHheading> SubjectHheadingList;
2-6 dtc/2001-12-03: The DsLSRBibObjects Module December 2001

2

typedef string ClassificationCode;
typedef sequence <ClassificationCode> ClassificationCodeList;

valuetype BibRefSubject {
public KeywordList keywords;
public SubjectHheadingList subject_headings;
public string subject_heading_collection;
public ClassificationCodeList codes;

}

The keywords are usually (but not limited to) one word long. They are not controlled by
any vocabulary.

The subject headings usually come from standard lists, such as Sears List of Subject
Headings [SEARS], or Library of Congress Subject Headings (LCSH) [LCSH]. This
specification does not specify what list to use but implementors are advised to provide a
controlled vocabulary for the list that is used, and to specify the source of subject
headings in subject_heading_collection field (using, for example, values “SEARS,”
“LCSH,” or “MeSH.”

Classification code (call number) is usually either Dewey decimal or Congress
classification. But this specification does not prescribe it. Note that the classification
codes are unique (unlike in contradiction to some subject headings). Therefore, they can
be even expressed as identifiers using the same notation as used for the citation
identifiers (repository/id).

public BibRefDescription description;

An account of the content of the cited resource. It is either an abstract, or table of
contents, or both. It can be written in a language different from the language of the cited
resource.

Both abstract and table of contents can contain more than just a plain text – typically they
may be expressed in a “markup” language. Their formats are defined according to the
specification Multipurpose Internet Mail Extensions (MIME) [MIME]. Precisely, the
values of attributes abstract_type and toc_type are equivalent to the “Content-Type
Header Field” of the MIME specification, with exclusion of the keyword “Content-
Type.” For example, an abstract_type can have value “text/html,” or, using additional
parameters “text/plain; charset=us-ascii.” If any of these attributes contains an empty
string, a default value “text/plain; charset=us-ascii” is assumed.

Often abstracts are also available from the same or separate repository as URLs. There
are several ways to provide this information in the here described data model. The
implementations may choose their own way and still remain compliant with this
specification. However, the first approach, described below, is recommended to achieve
interoperability between implementations.

• Use abstract_type “text/url,” and put the URL into the_abstract field.

• Use abstract_type “text/plain; url=xxxxx” where xxxxx is a URL of the abstract
(in this case the_abstract may still have a full or partial text of the abstract).
December 2001 dtc/2001-12-03: The DsLSRBibObjects Module 2-7

2

• Use “multi-part” (see [MIME]) in abstract_type. In such case the_abstract will
have both the full or partial abstract text, and a URL.

• Use a dynamic property of BibliographicReference class for the URL.

valuetype BibRefDescription {
public wstring the_abstract;
public string abstract_type;
public wstring table_of_contents;
public string toc_type;
public string language;

}

public BibRefScope coverage;

It defines an extent or scope of the content of the cited resource. It can include spatial
location (a place name or geographic co-ordinates), temporal period (a period label, date,
or date range), or both. Finally, it can have additional dynamic properties such as
jurisdiction).

valuetype BibRefScope {
public string spatial_location;
public string temporal_period;
public CosPropertyService::Properties properties;

}

This specification does not suggest any rules for representing geographical names but
implementations may consider “Getty Thesaurus of Geographic Names” [TGN], or
MARC lists of countries [MARC-COUNTRIES] and list of geographical areas [MARC-
AREAS].

public ProviderList authors;
public ProviderList contributors;
public Provider publisher;

These attributes define the active participants. They may be persons, organizations, or
even services. A publisher is responsible for making the resource available. The authors
and contributors are in ordered lists. The authors and contributors are responsible for
creating the contents of the cited resource. There is no formal definition of how this
responsibility is divided between them. However, the authors are usually primary creators
while contributors may be illustrators, translators, or other creative providers. Their role
may be specified in a separate attribute in dynamic properties.

public string rights;

Specifies information about rights over the cited resource. Typically, it contains a rights
management statement for the resource, or it refers to a service providing such
information. Rights information often encompasses Intellectual Property Rights [IPR],
Copyright, and various Property Rights.
2-8 dtc/2001-12-03: The DsLSRBibObjects Module December 2001

2

If the attribute is empty, no assumptions can be made about the status of these and other
rights with respect to the cited resource.

public StringDate date;

Defines a date associated with an event in the life cycle of the cited resource when this
resource became available. Usually, it is a date of publishing, however, for not yet
published resources, it can be a date of creation.

typedef string StringDate;

Using a typedef instead of a simple string indicates that there are some rules implied for
the attribute value. The suggested encoding is as defined in a W3C NOTE “Date and
Time Formats” [W3CNOTE]. This NOTE defines a profile of ISO8601 standard
[ISO8601]. ISO8601 describes a large number of date/time formats and the NOTE
reduces the scope and restricts the supported formats to a small number. The profile
offers a number of options from which this specification permits the following ones:

• Year

YYYY (e.g., 2000)

• Year and month

YYYY-MM (e.g., 2000-12)

• Complete date

YYYY-MM-DD (e.g., 2000-12-31)

• Complete date plus hours, minutes, and seconds

YYYY-MM-DDThh:mm:ssZ (e.g., 2000-12-31T23:59:59Z)

Exactly the components shown here must be present, with exactly this punctuation. Note
that the “T” appears literally in the string, to indicate the beginning of the time element,
as specified in ISO 8601.

Times are expressed in UTC (Coordinated Universal Time), with a special UTC
designator (“Z”), again as specified in ISO 8601.

For query purposes, the format with fewer details is considered as having all possible
values in place of missing details. Thus, YYYY-MM would mean all dates and times in
the given month.

YYYY four-digit year

MM two-digit month (01=January, etc.)

DD two-digit day of month (01 through 31)

hh two digits of hour (00 through 23)

mm two digits of minute (00 through 59)

ss two digits of second (00 through 59)
December 2001 dtc/2001-12-03: The DsLSRBibObjects Module 2-9

2

This specification expects that all attributes dealing with dates will use the same rules.

public string language;

Defines a language of the intellectual contents of the cited resource. The
recommendation is to use values as defined by RFC1766 [RFC1766] which includes a
two-letter Language Code (taken from the ISO639 standard, followed optionally by a
two-letter Country Code (taken from the ISO3166 standard). For example, “en” for
English, “fr” for French, or “en-uk” for English used in the United Kingdom. Another
possibility is to use MARC List of Languages [MARC-LANG].

public string format;

Describes the physical or digital manifestation of the cited resource. It can have very
different content depending on the citation type. Therefore, it is highly recommended to
use the mechanism of repository introspection to find possible values.

public EntryStatus status;

Defines information related to the citation itself rather than to the cited resource.

typedef VocabularyString RepositorySubset;

valuetype EntryStatus {
public StringDate last_modified_date;
public RepositorySubset subset;
public CosPropertyService::Properties properties;

};

Some bibliographic repositories consist of several, or even many, databases. The subset
helps to locate the citation.

The last_modified_date can be used to retrieve new or revised (since a specified date)
citations.

The dynamic properties may be used to add features related to the citation itself (for
example, a name of the citation annotator, or citation version).

2.1.6.2 Derived types from BibliographicReference

The BibliographicReference class is a parent class for derived classes representing
bibliographic references to specialized bibliographic resources. The names of the derived
classes can be used in constructing queries. The following classes are defined by this
standard:

• Book

• Article

• Book Article

• Journal Article

• Patent
2-10 dtc/2001-12-03: The DsLSRBibObjects Module December 2001

2

• Thesis

• Conference proceeding

• Technical Report

• Web Resource

The other resource types, those not mentioned here, can still be accessed and queried by
this standard using dynamic properties and attribute type of the class
BibliographicReference.

valuetype Book : truncatable BibliographicReference {
public string isbn;
public string volume;
public string edition;
public string series;
public Provider editor;

};
valuetype Article : truncatable BibliographicReference {

public string first_page;
public string last_page;

};
valuetype BookArticle : truncatable Article;

public Book from_book;
};
valuetype JournalArticle : truncatable Article {

public string volume;
public string issue;
public string issue_supplement;
public Journal from_journal;

};
valuetype Patent : truncatable BibliographicReference {

public string doc_number;
public string doc_office;
public string doc_type;
public StringList applicant;

};
valuetype WebResource : truncatable BibliographicReference {

public string url;
public unsigned long estimated_size;
public string cost;

};
valuetype Thesis : truncatable BibliographicReference {
};
valuetype Proceeding : truncatable BibliographicReference {
};
valuetype TechReport : truncatable BibliographicReference {
};
December 2001 dtc/2001-12-03: The DsLSRBibObjects Module 2-11

2

2.1.6.3 Provider

The class Provider and its sub-classes define active participants of the process of
creation and dissemination of the bibliographic resources. The most obvious examples
are authors, but it includes also publishers and other contributors.

valuetype Provider {
public CosPropertyService::Properties properties;

};
typedef sequence <Provider> ProviderList;

valuetype Person : Provider {
public wstring surname;
public wstring first_name;
public wstring mid_initials;
public string email;
public wstring postal_address;
public wstring affiliation;

};

valuetype Organization : Provider;
public wstring name;

};

valuetype Service : Provider {

public wstring name;

};

The participants can be people, organizations, or even software services (mainly used for
new digital resources). This specification does not provide any unique identifiers for
these providers (but does not preclude having such identifiers as dynamic properties).

Note that a person’s affiliation is not expressed as an instance of Organization because
it would be out of scope of this specification to define the personal domain. However, for
example, nothing precludes the implementation populating affiliations with stringified
identifiers of institutions.

2.1.6.4 Journal

valuetype Journal {
public wstring name;
public string issn;
public string abbreviation;
public CosPropertyService::Properties properties;

};

A class describing journals. The citations referring to the journal articles have a reference
to this class. There are only few explicit attributes defined, the rest are accessible using
dynamic properties.
2-12 dtc/2001-12-03: The DsLSRBibObjects Module December 2001

2

public string issn;

A standard number for journals. Be aware, however, that in the real world even this
attribute may change over time. Therefore, it is not suitable as a primary unique identifier
for journals.

public wstring name;

A journal title. The list of available titles can be provided using a controlled vocabulary
(taken, for example, from MEDLINE [MEDLINE-J1]).

public string abbreviation;

An abbreviation of the journal title. Note that some repositories use more abbreviation
systems. For such cases, use dynamic properties for additional abbreviations. (An
example for biological journals is in [BIO-ABBR].)

2.2 The DsLSRBibQuery Module

2.2.1 Overview

The module DsLSRBibQuery allows searching for and retrieving citations from a
bibliographic repository. It uses class and attribute names defined in the data model in
module DsLSRBibObjects.

The queries return collection of citations that are again query-able. When a client is
satisfied with the query results, the collection contents can be retrieved either as a list of
citations, or as an XML document.

Querying itself can be done using different approaches:

• Using direct methods, which are convenient for typical queries. This includes also
very vague queries of the type “give me everything about pathology.”

• Using aggregate methods for counting resulting citations.

• Using a query language (OMG Constraint language).

• Using SQL or OQL.

The module also allows introspection of the underlying repository. This capability, for
example, helps to build more sophisticated and user-friendly clients.

2.2.2 Simple and Qualified Attribute Names

There are several places where clients need to know exact attribute names:

• The citations are retrievable by specifying combinations of attribute names and
values.

• The query results are citation records but not necessarily fully populated – they may
be restricted only to a subset of attributes.
December 2001 dtc/2001-12-03: The DsLSRBibQuery Module 2-13

2

• The results may be ordered by one or more attributes.

Therefore, this standard defines some rules how to specify attribute names whenever they
have to be expressed as strings. The existence of these rules will make the
implementations interoperable even for attributes that are not directly named in the
specification (those hidden in dynamic properties).

The following rules define how to create stringified names for individual attributes.

1. The stringified names of attributes of class BibliographicReference are equal to
the member names of this class. For example, “identifier,” “type,” “title,” “authors.”

2. The stringified names of attributes of sub-classes derived from
BibliographicReference, and of attributes of other classes, are also equal to the
member names but additionally they must be qualified by the class name using two
underscores (“__”). For example, “book__isbn,” “journalarticle__from_journal,”
“journal__name.”

Note – The somewhat unusual “double underscore” is used here because underscore is
the only non-alphabetic character allowed for variables in the OMG Constraint
language. We prefer to use a slightly unusual syntax that remains fully compliant with
the language.

3. The qualification part of the stringified name (together with underscores) can be
omitted if there is no ambiguity. For example, if an implementation does not use
property name “isbn” anywhere else, the “book__isbn” can be replaced by “isbn.” It
can be omitted also when the usage specifically allows it. For example, a query (as
described in Section 2.2.8, “Querying,” on page 2-24) allows a client to ask for all
citations related to a given “location” regardless of the citation type – in this case a
stringified attribute would be “location” and not, for example, “book__location.”

Be aware, however, that dropping the qualifier may compromise extendibility
because a client that expects a unique attribute name may break if another citation
type is added with the same attribute name.

4. The stringified names of the attributes from dynamic properties are equal to their
property names, applying the rule about qualification as defined above. Thus, for
example, an attribute “registry_number” hidden in member “properties” of class
BibliographicReference will be stringified as “registry_number,” and an
attribute “location” hidden in member “properties” of sub-class Book will be
stringified as “book__location.”

5. The stringified names of the attributes from dynamic properties of the class
BibliographicReference for instances without their own sub-class must be
qualified (as described above) by their “type.” For example, a citation can be of
type “letter,” but there is no sub-class “Letter” defined in this specification.
Therefore an attribute “type” has value “letter.” This value is then used to create a
qualified stringified name “letter__subject.”
2-14 dtc/2001-12-03: The DsLSRBibQuery Module December 2001

2

6. The stringified names are considered case-insensitive. Thus, “book__location” is the
same as “Book__location,” and “journalarticle__issue” equals to
“JournalArticle__issue.”

2.2.3 Query Constraint Language

If the search cannot be accomplished by any direct method (see Section 2.2.1,
“Overview,” on page 2-13), then a query language has to be used. This specification
proposes to use the “OMG Constraint Language” as the main tool for searching by
combination of attributes.

OMG Constraint Language [OMG_CL], sometimes called “CORBA standard
constraint language” was designed for the Trading service but can also be used, without
any changes, for specifying queries. As a language it is similar to the WHERE clause of
the SELECT statement in SQL (however, here it is used independently of SQL).

This specification does not include the description of the language (see [OMG_CL] for
details) but defines some rules for property names used by the language, and shows a few
examples.

A “property name” is a basic element of the constraint language. In the queries used by
this specification, the property names are represented by “stringified attributes names,” as
defined in Section 2.2.2, “Simple and Qualified Attribute Names,” on page 2-13,
applying the following additional searching rules.

1. If a stringified attribute name represents an attribute of a basic type (string, short,
etc.), then the corresponding value in the query expression shall be of the same
type. For example:

JournalArticle__volume == “XX”(correct)

JournalArticle__volume == 32(incorrect, because volume is string)

date == “1999-12”(correct)

date == “1999” (correct)

date == 1999 (incorrect, because date is string)

2. If a stringified attribute name represents an attribute of a constructed type
(BibRefSubject, Person…), then the corresponding value in the query expression
shall be of type string. Additionally, the implementations are advised to search all
reasonable members of the constructed type for the given value. For example:

BibRefSubject == “pathology”

will be looked for in “keywords,” and “subject_headings,” and depending upon
what the implementation considers reasonable, also in “codes” of BibRefSubject.

3. If a stringified attribute name represents an attribute of a list type (ProviderList,
KeywordList, etc.), then the stringified name can be shortened by the plural “s” at
the end, and the search is done only for the first element of the list. This is primarily
used for finding the first author:
December 2001 dtc/2001-12-03: The DsLSRBibQuery Module 2-15

2

authors == “Linus” will search “Linus” in all authors,

author == “Linus” will search only in the first author.

4. If a stringified attribute name is ambiguous then the search should be done for all
reasonable representations of this attribute. For example:

book__location == “shelves” will look for all books on shelves,

location == “shelves” will look for citations of all types on
shelves

type == “book” AND location == “shed” will look for books in a shed.

2.2.4 Query Matching and Ordering Criteria

Several methods dealing with queries and sorting use a list of criteria. The criteria define
how the matching or ordering should be done.

The introspection capability gives access to all criteria provided by the underlying
repository.

enum CriterionType {
QUERY_CRITERION,
SORT_CRITERION

};

The criteria can be used for defining rules for matching (type QUERY_CRITERION),
or for ordering (type SORT_CRITERION).

valuetype Criterion {
public VocabularyString name;
public CriterionType type;
public VocabularyStringList mutually_exclusive_with;

};

typedef sequence<Criterion> CriterionList;

Each Criterion is identified by its name. A list of criteria names is used in methods for
querying and sorting. The implementations are advised to use descriptive names. For
example, the names for matching can be:

“match all words”

“match any word”

“case insensitive”

“case sensitive”

“partial word match”

“full word match”
2-16 dtc/2001-12-03: The DsLSRBibQuery Module December 2001

2

and the names for ordering can be:

“ascending”

“descending”

Another example of how to use Criteria is to allow regular expressions in queries. Not
every implementation is supposed to have the capability of matching by regular
expressions but those who have can specify (and document), for example, criterion with
name “regular expression.”

Each Criterion can also have a non-empty list of other criteria that it is mutually exclusive
with. For example, a sort criterion “ascending” will probably have “descending” in its
mutually_exclusive_with list.

The valuetype Criterion is used only in introspective methods in order to find a list of
supported criteria, their types, and their mutual relationships. In querying and sorting
methods, only the lightweight CriterionList VocabularyStringList is used.

The CriterionList VocabularyStringList is used always as an inout parameter. It
allows an implementation to return a list of criteria that were actually used. The returned
values can differ from the client’s wishes if an implementation does not support a
particular function (such as proximity search), or if some criteria were mutually
exclusive.

2.2.5 Lists of Stringified Attribute Names

On several occasions, the query methods require a list of attribute names. The lists
indicate that some action should be done only for or only with a given set of attributes.
The attributes are stringified as described in Section2.2.2, “ Simple and Qualified
Attribute Names,” on page 2-13.

2.2.5.1 excluded attributes

The query results are instances of the BibliographicReference class with all
attributes. But sometimes it may be better to avoid transferring long data if the client is
not interested in it. Typical examples are abstracts. To achieve this, a client can specify a
list of attributes that it is not interested in. Such attributes are then returned empty.

The "emptiness" means null wherever possible, or an empty string, or a number zero.

If a BibRefCollection was created in several steps (e.g., by navigational query) only
the last used “searched attributes” are remembered.

Another use for the “excluded attributes” is in retrieval methods. A query collection,
once created, can be asked to return more lightweight citations by specifying such list.
Note that the same query collection can be asked to retrieve again the same citations but
with a different set of the excluded attributes.
December 2001 dtc/2001-12-03: The DsLSRBibQuery Module 2-17

2

2.2.5.2 searched attributes

The method find() (described later) also uses a list of attributes to specify which
attributes should be searched. This list is also created from the stringified attribute names.

2.2.6 Repository Introspection

The capabilities for introspection of the underlying repository are present in order to
learn in advance what citation attributes (and other data) are provided. The methods of
introspection deal both with metadata and data. It means that in some cases they return
information on supported attribute names (and similar), and in some cases they return a
list of all possible values for the given attribute.

The introspection (with the exception of searching and sorting criteria) is based on using
controlled vocabularies. It allows getting back not only simple names of available
attributes but also their descriptions.

There are several categories of introspection, as follows.

2.2.6.1 Global introspection

Provides overall information about the repository. The returned data are not dependent on
any particular citation type or repository subset. The global introspection uses directly
the VocabularyFinder interface with the following pre-defined vocabulary names:

const string RESOURCE_TYPES = "resource_types";
const string REPOSITORY_SUBSETS = "repository_subsets";
const string SUBJECT_HEADINGS = "subject_headings";
const string LANGUAGES = "languages";
const string JOURNAL_TITLES = "journal_titles";
const string JOURNAL_ABBREV = "journal_abbreviations";
const string ENTRY_PROPERTIES = "entry_properties";

Vocabulary RESOURCE_TYPES contains stringified names of all citation types stored
in the repository. The names of types that are explicitly defined in this specification
should be equal to the constant strings for types (see below).

Some bibliographic repositories consist of several databases. Their list can be provided
by the vocabulary REPOSITORY_SUBSET.

Vocabulary ENTRY_PROPERTIES contains names of properties that characterize a
bibliographic reference as a repository entry. Such properties are not related to the cited
resource but to the reference itself (for example, a name of the annotator).

The rest of the global vocabularies contain all possible values for the corresponding
attributes. The implementations may provide additional global vocabularies.
2-18 dtc/2001-12-03: The DsLSRBibQuery Module December 2001

2

2.2.6.2 Class introspection

Provides metadata about a specified part of a repository, or about specified type of
citations. Here belong the introspective methods of the BibRefUtilities interface (see
Section 2.2.7, “Interfaces,” on page 2-21). They can answer questions such as “What
attributes are available for books in this repository?” or “What searching criteria are
supported by a particular sub-part of this repository?”

To specify a type of citation, use values returned back by the global vocabulary
RESOURCE_TYPES (see above). The predefined constants are provided for types
explicitly defined in this specification:

const string TYPE_BOOK = "Book";
const string TYPE_ARTICLE = "Article";
const string TYPE_BOOK_ARTICLE = "BookArticle";
const string TYPE_JOURNAL_ARTICLE = "JournalArticle";
const string TYPE_PATENT = "Patent";
const string TYPE_THESIS = "Thesis";
const string TYPE_PROCEEDING = "Proceeding";
const string TYPE_TECHREPORT = "TechReport";
const string TYPE_WEB_RESOURCE = "WebResource";

In order to specify an attribute name, all of whose possible values are asked for, use
predefined values of attribute names:

const string ATTR_PROPERTIES = "properties";
const string ATTR_FORMAT = "the_format";
const string ATTR_SCOPE = "coverage";

A special case is the attribute ATTR_PROPERTIES. It is described in Section 2.2.6.3,
“Dynamic introspection,” on page 2-20.

The properties of providers are obtained by a separate method using CORBA TypeCode
to define a provider type. The interface design is different from the strategy for citation
properties because here the number of provider types (classes) is considered final (in
contrast to citation types that can be dynamically added without extending this
specification).

The introspection mechanism allows to find what attributes are available in the
repository. The attributes, however, play two roles: they can be used in query methods
(query-able attributes) and/or they can be returned back in the retrieved citations (very
often the first role is a subset of the latter one). In order to achieve an interoperable way
how to find the attribute roles there are two predefined constants:

const string ROLE_ATTR_QUERYABLE= "queryable";
const string ROLE_ATTR_RETRIEVABLE= "retrievable";

The constants above are advised to be used anywhere in the description field of a
controlled vocabulary entry describing an attribute.
December 2001 dtc/2001-12-03: The DsLSRBibQuery Module 2-19

2

2.2.6.3 Dynamic introspection

Methods of the global introspection return lists of possible values; methods of the class
introspection return possible values for a given subset. However, some values returned by
those methods can again be vocabulary names and can be used to find another list of
values. Such chaining is called dynamic introspection. This strategy is particularly useful
for property names returned for attribute ATTR_PROPERTIES.

Theoretically, such chaining can be repeated more than once. But for practical reasons
this specification assumes a maximum of two levels (see an example below).

As with all recursive strategies, there must be a rule defining the end of recursion. In this
case, there must be a way to recognize whether a returned value is or is not a vocabulary
name. Two approaches can be used:

• Try to use it as a vocabulary name and if it is not a valid vocabulary, the
VocabularyFinder raises a NotFound exception.

• Try to find the value in a list provided by the VocabularyFinder method
get_all_vocabularies.

Another issue is a namespace for vocabulary names. It is usually easy for an
implementation to assure uniqueness of global and class vocabulary names. But with
dynamic introspection the namespace can be quite “polluted.” Therefore, in order to
achieve interoperability, this specification expects that vocabulary names for dynamic
introspection will be prefixed by related citation type, grouped together in the same
manner as citation identifier (see Section 2.1.6, “Data Structures,” on page 2-4). For
example, a vocabulary name for property “location” of citation type “Book” will be
“Book/location.”

Note that this convention is used only for vocabulary names, not for attribute names in
queries (for those see rules in Section 2.2.2, “Simple and Qualified Attribute Names,” on
page 2-13).

Here is an example of how to use dynamic introspection. A query builder needs to
introspect a citation type “Book” to create a graphical user interface with book properties
and possible values:

1. Use global introspection to be sure that the given repository has citations about
books.

list = VocabularyFinder::get_vocabulary_by_name (RESOURCE_TYPES);

Check if the returned list contains string TYPE_BOOK.

2. Find all dynamic properties for books (additionally to the explicit properties).
2-20 dtc/2001-12-03: The DsLSRBibQuery Module December 2001

2

vocabulary_name = BibRefUtilities::supported_citationbibref_properties
(TYPE_BOOK, ATTR_PROPERTIES);

vocabulary = VocabularyFinder::get_vocabulary_by_name
(vocabulary_name);

3. Use the vocabulary to retrieve all properties. Now the query builder has the names
of all book attributes that can be used in constructing queries.

4. Some properties obtained in the previous step have a controlled set of possible
values. Investigate, for example, a property “location.” Create a vocabulary name.

vocabulary_name = TYPE_BOOK + “/” + “location”;

5. Find whether the vocabulary name does represent an existing vocabulary (do it
either by checking list of “get_all_vocabularies” or by calling
“get_vocabulary_by_name”).

6. Use the vocabulary to retrieve all possible values for book locations.

2.2.7 Interfaces

2.2.7.1 BibRefCollection

The main entry point to the bibliographic query service is an interface
BibRefCollection.

interface BibRefCollection : CosQuery::QueryEvaluator,
CosLifeCycle::LifeCycleObject {

…
};

At the beginning, this interface represents citations of the whole bibliographic repository.
Later, various query methods return objects of the same type, but now representing only
a subset of the repository. This way, a client can make results finer and finer using the
navigational query.

The most important methods of this interface that provide searching and retrieval are
described below in separate sections. Here are the remaining methods:

BibRefCollection sort (in AttributeList ordered_by,
inout VocabularyStringListCriteria criterions)

raises (LimitExceeded);

It allows ordering citations in a collection. It returns an ordered collection. The order
direction and other sort criteria (such as case-insensitive or lexical sort) can be given in
“criterions” (see Section 2.2.4, “Query Matching and Ordering Criteria,” on page 2-16).
December 2001 dtc/2001-12-03: The DsLSRBibQuery Module 2-21

2

However, the implementation may refuse to sort excessively large collections by raising a
LimitExceeded exception. Imagine, for example, a request to sort the collection
representing the whole repository.

XMLstring export (
in DsLSRBibObjects::BibliographicReference the_citation);

This method converts a bibliographic reference into an XML representation using the
same rules as exporter methods in BibRefCollection representing a query collection
where the_citation comes from.

2.2.7.2 BibRefIterator

The data from any BibRefCollection can be returned to the caller directly as a list, or
through an iterator, or using a combination of both.

BibRefIterators (designed in the same way as in [MAPS]) are objects that ‘point to’
elements in a set, and which can be used to ‘step through’ the set. During this stepping
process, each element is visited once. If the underlying set is ordered, this ordering is
also preserved in the output of the iterator methods. If, during the iteration, the
underlying result set changes (e.g., by another process), an exception InvalidIterator is
thrown.

interface BibRefIterator {
boolean next (…) …
boolean next_n (…) …
void reset();
void destroy();

};

The most important methods for retrieving data are described in detail later. The
remaining methods are described here:

Calls to reset() re-position the iterator such that subsequent calls to next() or next_n()
start at the beginning of the result set. It raises CORBA::NO_IMPLEMENT exception if
the iterator cannot be reset (for example when the iterator provides access to streaming
data).

The destroy() method is used to indicate that the iterator is no longer needed, and
deletes the iterator object.

2.2.7.3 BibRefExporter

This interface has the same behavior as BibRefIterator – except for the fact that it
returns citations as an XML stream. The exporting methods are described later.

interface BibRefExporter {
boolean export_next (…) …
boolean export_next_n (…) …
void reset();
2-22 dtc/2001-12-03: The DsLSRBibQuery Module December 2001

2

void destroy();
};

2.2.7.4 BibRefUtilities

interface BibRefUtilities {
…

};

This interface provides methods for repository introspection, for managing several
citation collections, and other utility methods.

readonly attribute

DsLSRControlledVocabulariesy::VocabularyFinder voc_finder;

A VocabularyFinder is a provider of all controlled vocabularies used for finding
dynamic attribute names and their allowed values. Section 2.3, “The
DsLSRControlledVocabularies Module,” on page 2-29 describes how to use the finder,
and Section 2.2.6, “Repository Introspection,” on page 2-18 advises which vocabulary
names to use.

string supported_bibref_properties (in string bibref_type,
in string attribute_name)

raises (NotFound);

This method returns the name of a vocabulary containing all possible values of attribute
attribute_name for citation bibref_type. For attribute name ATTR_PROPERTIES,
it returns a list of property names. They represent dynamic properties for the given
citation type.

It raises a NotFound exception if no such vocabulary exists.

string supported_provider_properties (
in CORBA::TypeCode provider_kind)
raises (NotFound);

This method returns the name of a vocabulary containing dynamic property names for
the given provider type. provider_kind is supposed to be a TypeCode of class
Person, Organization, or Service.

It raises a NotFound exception if no such vocabulary exists.

CriterionList supported_criterions (
in DsLSRBibObjects::RepositorySubset repository_subset)
raises (NotFound);

This method returns a list of all supported searching and sorting criteria for the given
repository subset. The values of repository_subset may be obtained from a global
vocabulary REPOSITORY_SUBSETS.

BibRefCollection union_it (in BibRefCollectionList collections)
December 2001 dtc/2001-12-03: The DsLSRBibQuery Module 2-23

2

raises (LimitExceeded);

A method union_it() creates one collection from a list of collections. The resulting
collection should contain only unique citations. It can be used to remove repeated
citations from different repositories. However, this would be quite a difficult task, and
implementations are not required to do so. The implementation can also throw an
exception LimitExceeded when the collections are too big.

XMLstring export (
in DsLSRBibObjects::BibliographicReference the_citation);

This method converts a bibliographic reference into an XML representation using the
same rules as exporter methods in Section 2.2.7.1, “BibRefCollection,” on page 2-21.

2.2.8 Querying

2.2.8.1 Query by the direct methods

There are several convenient methods that can be used for querying without using any
query language.

DsLSRBibObjects::BibliographicReference find_by_id (in string id)
in string DsLSRBibObjects::BibRefIdentifier id,
in AttributeList excluded)
raises (CosQuery::QueryInvalid, NotFound);

It matches attribute BibRefIdentifier in the BibliographicReference class and
returns a corresponding citation (perhaps without attributes specified in the excluded
list). Remember that this identifier is meant to be unique even across various repositories
(see description of “BibRefIdentifier” in Section 2.1.6.1, “BibliographicReference,” on
page 2-4). The implementation may raise a QueryInvalid exception if the identifier is
not in the scope of the searched repository or it throws a NotFound exception if the
searched value is in the scope but cannot be found.

BibRefCollection find_by_author (
in DsLSRBibObjects::Provider author,
in AttributeList excluded,
inout VocabularyStringListCriteria criterions);

This is a convenient method for a common query. The search is done only for attributes
having non empty values in parameter “author.” For example, a search for citations
written by authors with surname “Doe” can be specified by sending an instance of
Person with surname “Doe” and with other attributes filled with empty strings.
Alternatively, a search for institution “EBI” can be specified by sending an instance of
Organization with name containing “EBI.”

The returned citations can have some attributes empty if parameter “excluded” is used
(see “excluded attributes” above). The search can be influenced also by parameter
“criterions” (see Section 2.2.4, “Query Matching and Ordering Criteria,” on page 2-16).
2-24 dtc/2001-12-03: The DsLSRBibQuery Module December 2001

2

When no matching authors are found, the implementation should return an empty
collection. However, it can still return changed criterions indicating why the query
failed.

BibRefCollection find (
in PhraseList phrases,
AttributeList searched,
AttributeList excluded,
inout VocabularyStringListCriteria criterions)

raises (CosQuery::QueryInvalid);

This is the most powerful direct method for querying a repository. It is modeled on
examples of web-based searches. A client can specify virtually anything in the list of
“phrases” and the implementation tries to search for these in as many attributes as are
possible and reasonable, applying logical “AND” between them. However, a client can
also specifically limit the search only to attributes specified in the “searched” list.

Again, parameters “excluded” and “criterions” can influence the returned results (as
described above).

An implementation can raise a QueryInvalid exception if the search demand cannot be
accepted (for example, because of repository size, or because of limited indexing
capabilities of the repository). Note that this is not the same as raising the
NOT_IMPLEMENTED exception, because the client can still use this method but
possibly with more restricted “searched” parameters.

2.2.8.2 Query by the aggregate methods

These are methods providing functionality similar to some SQL constructs, but without
using SQL.

unsigned long num_bibrefs();

It returns the number of citations in the current collection.

2.2.8.3 Query by the Constraint Language

When direct methods (as described above) are not sufficient, a constraint query language
is used. The usage of the language is described in Section 2.2.3, “ Query Constraint
Language,” on page 2-15. It is used by a method “evaluate” inherited from
QueryEvaluator interface from CosQuery module.

any evaluate (
in string query,
in QLType ql_type,
in ParameterList params)

raises (QueryTypeInvalid, QueryInvalid, QueryProcessingError);

The exceptions are defined in CosQuery module:
December 2001 dtc/2001-12-03: The DsLSRBibQuery Module 2-25

2

• The query language type specified must be supported, otherwise QueryTypeInvalid
exception is raised.

• If the query syntax or semantics is incorrect or if the input parameter list is
incorrect, the QueryInvalid exception is raised.

• If any error is encountered during query processing, the QueryProcessingError
exception is raised.

The following rules describe how to use this method. The rules are applied only if the
query language used is of type OMG_CLQuery defined as:

interface OMG_CLQuery : CosQuery::QueryLanguageType {};

1. It returns a BibRefCollection type.

2. The parameter query contains a query in OMG Constraint Language as defined in
[OMG_CL]. A QueryInvalid exception is raised if the query syntax or semantics is
incorrect.

3. The params can contain a property named “criteria” with an instance of
StringList DsLSRControlledVocabularies::VocabularyStringList containing
a list of criteria names, and a property named “excluded” with an instance of
AttributeList. The implementation uses these parameters in the same way as
described by the method find() above, except that the changed criteria are not
returned back.

2.2.8.4 Query by SQL and OQL

Some complex queries can be achieved neither by direct methods nor by the OMG
Constraint Language. For example, the results are always lists of
BibliographicReferences. One cannot ask questions like “What journals are cited in
this repository?”1.

Therefore, this specification allows the use of the evaluate() method from CosQuery
without the restrictions described above, but applying a different set of rules:

1. An implementation is still compliant if it supports only the OMG_CLQuery type.
It may raise an exception QueryTypeInvalid when a different type is used.

2. SQL and OQL queries will be interoperable only if query strings contain stringified
attributes names (as described in Section 2.2.2, “Simple and Qualified Attribute
Names,” on page 2-13) and table/class names equal to class names used in this
specification.

1. Theoretically, you can do it: Ask for all citations of type “JournalArticle,” then take only
values of an attribute “from_journal,” make it unique, and you have a list of available
journals. But, in practice, this sort of query probably raises an exception LimitExceeded.
2-26 dtc/2001-12-03: The DsLSRBibQuery Module December 2001

2

Note that this is quite a serious limitation. For example, it does not allow usage of
foreign keys, or joining tables associated with many-to-many-relationships.

Note that some implementations can still use this specification with the full SQL query
capabilities if they expose their data model (in documentation, for example). However,
such implementations will be rarely interoperable.

2.2.9 Retrieving Citations

A BibRefCollection represents the number of BibliographicReferences. There are
methods to retrieve them and get data to the client.

DsLSRBibObjects::BiblRefIdentifierList retrieve_all_ids()
raises (LimitExceeded);

It returns a list of identifiers of all bibliographic references from a given collection. An
implementation can raise a LimitExceeded exception if the number of returned
identifiers causes problems.

DsLSRBibObjects::BibliographicReferenceList retrieve_all_elements(
in AttributeList excluded)
raises (LimitExceeded);

It returns a list of valuetypes with bibliographic references. Some attributes may be
empty if the “excluded” parameter was used. An implementation can raise a
LimitExceeded exception if the number of returned citations causes problems.

typedef string XMLString;

XMLstring export_all_elements()
raises (LimitExceeded);

This method also returns all bibliographic references represented by the given collection
(also making excluded attributes empty), but as an XML string. It is suitable for
exporting data in an exchangeable format for further processing. Again a
LimitExceeded exception is raised when the size of data causes problems.

The returned XML string must correspond to a known XML DTD. The following rules
apply:

1. If the underlying repository provides its own, well-known DTD for its citations, the
method is advised to use it.

2. Otherwise, the DTD used should be compliant with XMI [XMI] rules applied to
class BibliographicReference.

Both retrieval methods can raise a LimitExceeded exception. This can be avoided by
getting data back in parts, using BibRefIterator or BibRefExporter. The first can be
obtained using:

BibRefIterator create_iterator (in AttributeList excluded);
December 2001 dtc/2001-12-03: The DsLSRBibQuery Module 2-27

2

The iterator has the following methods for getting data as BibliographicReferences:

boolean next (
out DsLSRBibObjects::BibliographicReference the_citation)
raises (IteratorInvalid);

boolean next_n (
in unsigned long how_many,
out DsLSRBibObjects::BibliographicReferenceList citations)

raises (IteratorInvalid, LimitExceeded);

Iteration using these methods can be done in steps using the next() method, which
returns a citation as the out parameter. Alternatively, when using the next_n() method,
a batch of at most how_many citations are returned in the out parameter. If the
retrieval was successful, the out parameter contains the next citations. TRUE is returned
if the call did not yet exhaust the iteration (i.e., if more elements are available for
subsequent calls to next() or next_n()). Conversely, a FALSE return value signifies that
no more elements are available from the iterator. If, in a call to next_n(), less than the
requested how_many elements can be returned, the out parameter contains as many
elements as were available, and the return-value is FALSE.

The next() and next_n() methods can fail (e.g., if the underlying set changed). In this
case, the IteratorInvalid exception is raised. Its reason member can be used to provide
human-readable information on details of the failure.

Empty result sets (such as from queries yielding no matches) are not represented by
NULL objects, but by real iterators that are ‘empty’ (i.e., invoking their next() or
next_n() methods only ever return FALSE).

The returned citations may have some attributes empty if the iterator was created with a
non-empty excluded attribute list.

In the same way as just described, a client can ask for data in XML format. It is done
using an instance of BibRefExporter:

BibRefExporter create_exporter();

The implementation must guarantee that each returned part is a valid (and, of course,
well-formed) independent XML document. The method export_next() is a twin to the
method next() and method export_next() to the method next_n():

boolean export_next (out XMLString the_citation)
raises (IteratorInvalid);

boolean export_next_n (
in unsigned long how_many,
out XMLString citations)

raises (IteratorInvalid, LimitExceeded);
2-28 dtc/2001-12-03: The DsLSRBibQuery Module December 2001

2

2.3 The DsLSRControlledVocabularies Module

When describing and representing domain-specific systems, there is frequently a need for
a string type that can only assume a limited set of allowed values; a set, however, that is
allowed to change over time (as values are added or removed) or space (different servers
accepting different sets of strings). Such strings are called controlled vocabulary strings
(“vocabulary strings” for brevity). A particular set of such strings, valid in some context,
is called a controlled vocabulary. Vocabulary strings typically denote domain-specific
concepts, usually as a short descriptive string or common abbreviation, rather than as a
code.

The IDL specification of such vocabularies is taken from the LSR Genomic Maps
Specification [MAPS] where there is also detailed explanation of how to use them. This
specification describes only those issues related to their usage in the bibliographic
context.

All clients can receive all vocabularies from one central vocabulary finder. The finder
can be a shared object. The clients get it from interface BibRefUtilities.
December 2001 dtc/2001-12-03: The DsLSRControlledVocabularies Module 2-29

2

2-30 dtc/2001-12-03: The DsLSRControlledVocabularies Module December 2001

 References A
A.1 List of References

1. [DC] Dublin Core Metadata Element Set, Version 1.1: Reference Description
http://purl.oclc.org/docs/core/documents/rec-dces-19990702.htm

3. [CORBA2.3] CORBA/IIOP 2.3.1 Specification, OMG document
formal/99-10-07
http://www.omg.org/corba/corbaiiop.html

4. [BSA] Draft adopted specification for Biomolecular Sequence Analysis
http://www.omg.org/cgi-bin/doc?lifesci/99-12-01

5. [MAPS] Genomic Map Draft Adopted Specification
http://www.omg.org/cgi-bin/doc?dtc/99-12-01

6. [INS] Interoperable Naming Joint Revised Submission
http://www.omg.org/cgi-bin/doc?orbos/98-10-11

7. [DCT1] List of Resource Types. Dublin Core Draft Working Group Report.
http://purl.org/dc/documents/wd-typelist.htm

8. [SEARS] Sears List of Subject Headings (16th Ed, July 1997),
Minnie Earl Sears, Joseph Miller, ISBN: 0824209206

9. [LCSH] Library of Congress Subject Headings, 22nd edition (1999)

10. [MIME] Multipurpose Internet Mail Extensions (MIME), Part One, Internet RFC
2045
http://www.ietf.org/rfc/rfc2045.txt

11. [TGN] Getty Thesaurus of Geographic Names
http://shiva.pub.getty.edu/tgn_browser/

[MARC-COUNTRIES] USMARC Code List for Countries
http://lcweb.loc.gov/marc/countries/
December 2001 dtc/2001-12-03: List of References A-1

A

[MARC-AREAS] USMARC Code List for Geographic Areas
http://lcweb.loc.gov/marc/geoareas/

12. [IPR] Basic information concerning intellectual property
http://www.itds.treas.gov/ITDS/ITTA/ipr.html

13. [W3CNOTE] Date and Time Formats
http://www.w3.org/TR/NOTE-datetime

14. [ISO8601] International Standard for representation of dates and times
http://www.iso.ch/markete/8601.pdf

15. [RFC1766] Tags for the Identification of Languages, Internet RFC 1766
http://www.ietf.org/rfc/rfc1766.txt

[MARC-LANG] USMARC Code List for Languages
http://lcweb.loc.gov/marc/languages/

16. [ISO639] Codes for representation of names of languages

17. [ISO3166] Codes for representation of names of countries

18. [MEDLINE-J1] MEDLINE Journals With Links to Publisher Web Sites
http://www.ncbi.nlm.nih.gov/PubMed/fulltext.html

19. [BIO_ABBR] Biological Journals and Abbreviations
http://arachne.prl.msu.edu/journams/

20. [OMG_CL] OMG Constraint Language, CORBA Services, Trading Object Services
Spec.
http://www.omg.org/cgi-bin/doc?formal/97-12-23

21. [XMI] XML Metadata Interchange (XMI)
http://www.omg.org/cgi-bin/doc?ad/99-10-02
A-2 dtc/2001-12-03: List of References December 2001

 OMG IDL B
Note – This appendix is a complete replacement of the original IDL. It has not been
marked as inserted text for the sake of readability.

B.1 DsLSRBibObjects.idl

//File: DsLSRBibObjects.idl
//

#ifndef _DS_LSR_BIB_OBJECTS_IDL_
#define _DS_LSR_BIB_OBJECTS_IDL_

#pragma prefix "omg.org"

#include <CosPropertyService.idl>

module DsLSRBibObjects {

 typedef sequence<string> StringList;

 typedef string StringDate;

 typedef string BibRefIdentifier;
 typedef sequence<BibRefIdentifier> BibRefIdentifierList;

 typedef wstring Keyword;
 typedef sequence<Keyword> KeywordList;

 typedef string SubjectHeading;
 typedef sequence<SubjectHeading> SubjectHeadingList;

 typedef string ClassificationCode;
 typedef sequence<ClassificationCode> ClassificationCodeList;
December 2001 dtc/2001-12-03: DsLSRBibObjects.idl B-1

B

 typedef string RepositorySubset;

 valuetype Provider {
 public CosPropertyService::Properties properties;
 };
 typedef sequence<Provider> ProviderList;

 valuetype Person : Provider {
public wstring surname;
public wstring first_name;
public wstring mid_initials;
public string email;
public wstring postal_address;

 public wstring affiliation;
 };

 valuetype Organization : Provider {
 public wstring name;
 };

 valuetype Service : Provider {
 public wstring name;
 };

 valuetype Journal {
 public wstring name;
 public string issn;
 public string abbreviation;
 public CosPropertyService::Properties properties;
 };

 valuetype BibRefSubject {
public KeywordList keywords;
public SubjectHeadingList subject_headings;

 public string subject_heading_collection;
public ClassificationCodeList codes;

 };

 valuetype BibRefDescription {
public wstring the_abstract;
public string abstract_type;
public wstring table_of_contents;
public string toc_type;
public string language;

 };

 valuetype BibRefScope {
public string spatial_location;
public string temporal_period;
public CosPropertyService::Properties properties;

 };

 valuetype EntryStatus {
public StringDate last_modified_date;
public RepositorySubset subset;
B-2 dtc/2001-12-03: DsLSRBibObjects.idl December 2001

B

public CosPropertyService::Properties properties;
 };

 valuetype BibliographicReference {
public BibRefIdentifier identifier;
public string type;

public BibRefIdentifierList cross_references;

public wstring title;
public BibRefSubject subject;
public BibRefDescription description;
public BibRefScope coverage;

public ProviderList authors;
public ProviderList contributors;
public Provider publisher;
public string rights;

public StringDate date;
public string language;
public string format;

public EntryStatus status;
public CosPropertyService::Properties properties;

 };
 typedef sequence<BibliographicReference> BibliographicReferenceList;

 valuetype Book : truncatable BibliographicReference {
 public string isbn;

public string volume;
public string edition;
public string series;
public Provider editor;

 };

 valuetype Article : truncatable BibliographicReference {

public string first_page;
public string last_page;

 };

 valuetype BookArticle : truncatable Article {

public Book from_book;
 };

 valuetype JournalArticle : truncatable Article {
public string volume;
public string issue;
public string issue_supplement;
public Journal from_journal;

 };

 valuetype Patent : truncatable BibliographicReference {
 public string doc_number;

public string doc_office;
public string doc_type;
December 2001 dtc/2001-12-03: DsLSRBibObjects.idl B-3

B

public StringList applicant;
 };

 valuetype WebResource : truncatable BibliographicReference {
 public string url;
 public unsigned long estimated_size;
 public string cost;
 };

 valuetype Thesis : truncatable BibliographicReference {
 };

 valuetype Proceeding : truncatable BibliographicReference {
 };

 valuetype TechReport : truncatable BibliographicReference {
 };

#pragma version Journal 1.1
#pragma version BibRefSubject 1.1

};

#endif // _DS_BIB_OBJECTS_IDL_

B.2 DsLSRBibQuery.idl

//File: DsLSRBibQuery.idl
//

#ifndef _DS_LSR_BIB_QUERY_IDL_
#define _DS_LSR_BIB_QUERY_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosQueryCollection.idl>
#include <CosQuery.idl>
#include <DsLSRBibObjects.idl>
#include <DsLSRControlledVocabularies.idl>

module DsLSRBibQuery {

 // shorthands for imported types for controlled vocabularies
 typedef DsLSRControlledVocabularies::VocabularyString VocabularyString;
 typedef DsLSRControlledVocabularies::VocabularyStringList VocabularyString-
List;

 typedef sequence<string> AttributeList;
 typedef sequence<wstring> PhraseList;
 typedef string XMLString;

 enum CriterionType {
 QUERY_CRITERION,
B-4 dtc/2001-12-03: DsLSRBibQuery.idl December 2001

B

 SORT_CRITERION
 };

 valuetype Criterion {
 public VocabularyString name;
 public CriterionType type;
 public VocabularyStringList mutually_exclusive_with;
 };
 typedef sequence<Criterion> CriterionList;

 exception NotFound { string reason; };
 exception IteratorInvalid { string reason; };
 exception LimitExceeded { string reason; };

 interface OMG_CLQuery : CosQuery::QueryLanguageType {};

 interface BibRefIterator {
 boolean next (out DsLSRBibObjects::BibliographicReference the_citation)
 raises (IteratorInvalid);
 boolean next_n (in unsigned long how_many, out DsLSRBibObjects::Biblio-
graphicReferenceList citations)
 raises (IteratorInvalid, LimitExceeded);
 void reset();
 void destroy();
 };

 interface BibRefExporter {
 boolean export_next (out XMLString the_citation)

 raises (IteratorInvalid);
 boolean export_next_n (in unsigned long how_many, out XMLString citations)
 raises (IteratorInvalid, LimitExceeded);
 void reset();
 void destroy();
 };

 interface BibRefCollection : CosQuery::QueryEvaluator, CosLifeCycle::LifeCycle-
Object {

 // direct methods (convenient methods)

 DsLSRBibObjects::BibliographicReference find_by_id (in DsLSRBibOb-
jects::BibRefIdentifier id,

 in AttributeList excluded)
 raises (CosQuery::QueryInvalid, NotFound);

 BibRefCollection find_by_author (in DsLSRBibObjects::Provider author,
 in AttributeList excluded,

 inout VocabularyStringList criterions);

 BibRefCollection find (in PhraseList phrases,
 in AttributeList searched,
 in AttributeList excluded,

 inout VocabularyStringList criterions)
 raises (CosQuery::QueryInvalid);
December 2001 dtc/2001-12-03: DsLSRBibQuery.idl B-5

B

 // aggregate methods

 unsigned long num_bibrefs();

// sort methods
 BibRefCollection sort (in AttributeList ordered_by,

 inout VocabularyStringList criterions)
 raises (LimitExceeded);

 // retrieval methods

 DsLSRBibObjects::BibliographicReferenceList retrieve_all_elements (in
AttributeList excluded)

 raises (LimitExceeded);

 DsLSRBibObjects::BibRefIdentifierList retrieve_all_ids()
 raises (LimitExceeded);

 XMLString export_all_elements()
 raises (LimitExceeded);

 BibRefIterator create_iterator (in AttributeList excluded);
 BibRefExporter create_exporter();

 XMLString export (in DsLSRBibObjects::BibliographicReference the_citation);

 };

 typedef sequence<BibRefCollection> BibRefCollectionList;

 interface BibRefUtilities {

 // constants for global vocabulary names

 const string RESOURCE_TYPES = "resource_types";
 const string REPOSITORY_SUBSETS = "repository_subsets";
 const string SUBJECT_HEADINGS = "subject_headings";
 const string LANGUAGES = "languages";
 const string JOURNAL_TITLES = "journal_titles";
 const string JOURNAL_ABBREV = "journal_abbreviations";
 const string ENTRY_PROPERTIES = "entry_properties";

 // constants for citation types

 const string TYPE_BOOK = "Book";
 const string TYPE_ARTICLE = "Article";
 const string TYPE_BOOK_ARTICLE = "BookArticle";
 const string TYPE_JOURNAL_ARTICLE = "JournalArticle";
 const string TYPE_PATENT = "Patent";
 const string TYPE_THESIS = "Thesis";
 const string TYPE_PROCEEDING = "Proceeding";
 const string TYPE_TECH_REPORT = "TechReport";
 const string TYPE_WEB_RESOURCE = "WebResource";

 // constants for attribute names
B-6 dtc/2001-12-03: DsLSRBibQuery.idl December 2001

B

 const string ATTR_PROPERTIES = "properties";
 const string ATTR_SCOPE = "scope";
 const string ATTR_FORMAT = "format";

 // constants for attributes roles

 const string ROLE_ATTR_QUERYABLE = "queryable";
 const string ROLE_ATTR_RETRIEVABLE = "retrievable";

// methods allowing repository introspection

 readonly attribute DsLSRControlledVocabularies::VocabularyFinder voc_finder;

 string supported_bibref_properties (in string bibref_type,
 in string attribute_name)

 raises (NotFound);

 string supported_provider_properties (in CORBA::TypeCode provider_kind)
 raises (NotFound);

 CriterionList supported_criterions (in DsLSRBibObjects::RepositorySubset
repository_subset)

 raises (NotFound);

 // other methods

 BibRefCollection union_it (in BibRefCollectionList collections)
 raises (LimitExceeded);

 };

#pragma version BibRefCollection 1.1
#pragma version BibRefUtilities 1.1

};

#endif // _DS_BIB_QUERY_IDL_
December 2001 dtc/2001-12-03: DsLSRBibQuery.idl B-7

B

B-8 dtc/2001-12-03: DsLSRBibQuery.idl December 2001

	Introduction
	1.1 Bibliographic Query Introduction
	1.2 Naming Conventions
	1.3 Scope and Extensibility
	1.4 Module Dependencies

	Modules and Interfaces
	2.1 The DsLSRBibObjects Module
	2.1.1 Overview
	2.1.2 Dublin Core Metadata
	2.1.3 Objects-by-value
	2.1.4 Illustrative UML Diagram
	2.1.5 Dynamic Properties
	2.1.6 Data Structures

	2.2 The DsLSRBibQuery Module
	2.2.1 Overview
	2.2.2 Simple and Qualified Attribute Names
	2.2.3 Query Constraint Language
	2.2.4 Query Matching and Ordering Criteria
	2.2.5 Lists of Stringified Attribute Names
	2.2.6 Repository Introspection
	2.2.7 Interfaces
	2.2.8 Querying
	2.2.9 Retrieving Citations

	2.3 The DsLSRControlledVocabularies Module

	References
	OMG IDL

