
BibliographicQueryService
Specification

Version1.0
May,2002

Copyright 2001, EMBL-EBI (European Bioinformatics Institute)

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

PATENT
The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE
The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web pagehttp://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
iii

-1

-1

1-2

1-2

1-2

-1

-1
-1
-1
-2

3
-4

2-4

13
13
3

-15
6
7
18
-21
23
26
Preface .

1. Introduction . 1

1.1 Bibliographic Query Introduction 1

1.2 Naming Conventions .

1.3 Scope and Extensibility .

1.4 Module Dependencies .

2. Modules and Interfaces . 2

2.1 The DsLSRBibObjects Module 2
2.1.1 Overview . 2
2.1.2 Dublin Core Metadata 2
2.1.3 Objects-by-value . 2
2.1.4 Illustrative UML Diagram 2-
2.1.5 Dynamic Properties . 2
2.1.6 Data Structures .

2.2 The DsLSRBibQuery Module . 2-
2.2.1 Overview . 2-
2.2.2 Simple and Qualified Attribute Names 2-1
2.2.3 Query Constraint Language 2
2.2.4 Query Matching and Ordering Criteria 2-1
2.2.5 Lists of Stringified Attribute Names 2-1
2.2.6 Repository Introspection 2-
2.2.7 Interfaces . 2
2.2.8 Querying . 2-
2.2.9 Retrieving Citations . 2-
May 2002 Bibliographic Query Service, v1.0 i

28

-1

-1
2.3 The DsLSRControlledVocabularies Module 2-

Appendix A - References . A

Appendix B - OMG IDL . B
ii Bibliographic Query Service, v1.0 May 2002

Preface
rted
and
nted

de a
,
ous
p a

d.

ted,
y
ject
nd

ing
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 600 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provi
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where the
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Ob
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.
May 2002 Bibliographic Query Service, v1.0 iii

d

nd

ing

ibes
rella
and
ed.

nd
ge-
uests
t
C,

oping
a

OMG Documents

The OMG documentation is organized as follows.

OMG Modeling

• Unified Modeling Language (UML) Specificationdefines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distribute
object systems.

• Meta-Object Facility (MOF) Specificationdefines a set of CORBA IDL interfaces
that can be used to define and manipulate a set of interoperable metamodels a
their corresponding models.

• OMG XML Metadata Interchange (XMI) Specificationsupports the interchange of
any kind of metadata that can be expressed using the MOF specification, includ
both model and metamodel information.

Object Management Architecture Guide

This document defines the OMG’s technical objectives and terminology and descr
the conceptual models upon which OMG standards are based. It defines the umb
architecture for the OMG standards. It also provides information about the policies
procedures of OMG, such as how standards are proposed, evaluated, and accept

CORBA: Common Object Request Broker Architecture and
Specification

Contains the architecture and specifications for the Object Request Broker.

OMG Interface Definition Language (IDL) Mapping Specifications

These documents provide a standardized way to define the interfaces to CORBA
objects. The IDL definition is the contract between the implementor of an object a
the client. IDL is a strongly typed declarative language that is programming langua
independent. Language mappings enable objects to be implemented and sent req
in the developer’s programming language of choice in a style that is natural to tha
language. The OMG has an expanding set of language mappings, including Ada,
C++, COBOL, IDL to Java, Java to IDL, Lisp, and Smalltalk.

CORBAservices

Object Services are general purpose services that are either fundamental for devel
useful CORBA-based applications composed of distributed objects, or that provide
universal-application domain-independent basis for application interoperability.
iv Bibliographic Query Service, v1.0 May 2002

ent
ct

ble

t
ect

d

so

t

ces
These services are the basic building blocks for distributed object applications.
Compliant objects can be combined in many different ways and put to many differ
uses in applications. They can be used to construct higher level facilities and obje
frameworks that can interoperate across multiple platform environments.

Adopted OMG Object Services are collectively called CORBAservices and include
specifications such asCollection, Concurrency, Event, Externalization, Naming,
Licensing, Life Cycle, Notification, Persistent Object, Property, Query, Relationship,
Security, Time, Trader, andTransaction.

CORBAfacilities

Common Facilities are interfaces for horizontal end-user-oriented facilities applica
to most domains. Adopted OMG Common Facilities are collectively called
CORBAfacilities and include specifications such asInternationalization and Time, and
Mobile Agent Facility.

Object Frameworks and Domain Interfaces

Unlike the interfaces to individual parts of the OMA “plumbing” infrastructure, Objec
Frameworks are complete higher level components that provide functionality of dir
interest to end-users in particular application or technology domains.

Domain Task Forces concentrate on Object Framework specifications that include
Domain Interfaces for application domains such as Finance, Healthcare,
Manufacturing, Telecoms, E-Commerce, and Transportation.

Currently, specifications are available in the following domains:

• CORBA Business: Comprised of specifications that relate to the OMG-compliant
interfaces for business systems.

• CORBA Finance: Targets a vitally important vertical market: financial services an
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
forth.

• CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

• CORBA Life Science: Comprised of specifications that relate to the OMG-complian
interfaces for the life science industry.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfa
between related services and functions.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

• CORBA Transportation: Comprised of specifications that relate to the OMG-
compliant interfaces for transportation systems.
May 2002 Bibliographic Query Service: OMG Documents v

d,
dards
(The

at.
ns,

state-
ction

s.

me
Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF form
To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
ments from ordinary English. However, these conventions are not used in tables or se
headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax element

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear initalics are defined in the glossary. Italic text also represents the na
of a document, specification, or other publication.

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• EMBL-EBI (European Bioinformatics Institute)
vi Bibliographic Query Service, v1.0 May 2002

Introduction 1
ase
rks.
of
set

s

Contents

This chapter contains the following sections.

1.1 Bibliographic Query Introduction

Bibliographic search and citation are central to all scholarly and research activities.
Within the domain of life sciences research, bibliographic citation is of particular
importance for annotation of large bodies of experimentally developed and
computationally derived data and the rapidly increasing corpus of research literature
makes efficient and effective bibliographic searches increasingly critical.

The relevant “literature” may include traditional (hardcopy) research journal
publications, books, theses, reviews and the like. Recent developments require
researchers and scholars to use and cite a wider variety of sources, including datab
records, electronically published journals, World Wide Web sites, and multimedia wo
While several standards exist for the representation of bibliographic citations, some
them are not readily adapted to newer forms of publication and there is no common
of interfaces for distributed object implementations of bibliographic servers.

Examples of uses of a common set of CORBA-based bibliographic service interface
include, but are not limited to:

Section Title Page

“Bibliographic Query Introduction” 1-1

“Naming Conventions” 1-2

“Scope and Extensibility” 1-2

“Module Dependencies” 1-2
May 2002 Bibliographic Query Service, v1.0 1-1

1

nt of

ject
sed

er,
es,”

ign

f

tions

s

sting
• Enabling access to heterogeneous bibliographic databases and the developme
interoperable clients that make use of this access.

• Enabling the development of clients that can be easily extended to novel
bibliographic data sources.

This specification seeks solutions for the given situation.

1.2 Naming Conventions

The authors of this specification considered several possible names for the main ob
described and used by this specification. Finally, the short name “Citation” was not u
in IDL definitions because of possible confusion with the meaning “quotation”
(especially in the scientific community). The main data type is called
“BibliographicReference,” which is in some constructs shortened to “BibRef.” Howev
the text of the specification uses both names, “Citations” and “Bibliographic referenc
interchangeably.

Note that through this specification the nameclassis often used when talking about
valuetypes. We consider this name more appropriate when talking about overall des
strategies. It also allows grouping together valuetypes, structs, and interfaces.

1.3 Scope and Extensibility

This specification can be used for both

• providing the ability to query a bibliographic repository for citations of a variety o
document types, and

• retrieving the citation matching the query criteria.

Having these abilities, the specification can be used as a part of other LSR specifica
for dealing with citations, which includes but is not limited to:

• biomolecular sequence objects,

• gene expression data objects, and

• macromolecular structure objects, either directly, or by inheriting.

The specification defines a set of attributes that can be extended using “dynamic
properties” described in Section 2.1.5, “Dynamic Properties,” on page 2-3. This allow
extendibility without losing interoperability.

1.4 Module Dependencies

The specification is composed of two new modules, and uses several modules of exi
or emerging CORBA standards as shown in Figure 1-1 on page 1-3.
1-2 Bibliographic Query Service, v1.0 May 2002

1

Figure 1-1 Module Dependencies
May 2002 Bibliographic Query Service: Module Dependencies 1-3

1

1-4 Bibliographic Query Service, v1.0 May 2002

Modulesand Interfaces 2
ules

uite
es

om

et,
Contents

This chapter contains the following sections.

2.1 The DsLSRBibObjects Module

2.1.1 Overview

This module specifies the bibliographic domain data. It is independent of other mod
found in this specification, therefore it can be used everywhere where only the data
model is needed, without query capabilities.

The data model represents more than the minimum required by the RFP but is still q
extendible by using dynamic properties. This allows the adding of additional attribut
without losing interoperability.

2.1.2 Dublin Core Metadata

The information model of bibliographic citations is based on theDublin Core Metadata
for Resource Discovery[DC] that represents a set of descriptors that has emerged fr
a workshop series started in 1995 in interdisciplinary and international consensus
building. The focus of the initiative was electronic resources. It was clear at the outs

Section Title Page

“The DsLSRBibObjects Module” 2-1

“The DsLSRBibQuery Module” 2-13

“The DsLSRControlledVocabularies Module” 2-28
May 2002 Bibliographic Query Service, v1.0 2-1

2

dium
s
ublin
) that

both
his

DL
cts
s

ct).
however, that the semantics of resource discovery should be independent of the me
of the resource, and that there are obvious advantages for using the same semantic
model across media. Thus, considerable attention has been invested in making the D
Core sufficiently flexible to represent resources (and relationships among resources
are both digital and exist in traditional formats as well.

One of the issues presented in the Bibliographic Query Service RFP was to consider
traditional and new media types. The Dublin Core seems to be a perfect match for t
requirement. This specification, however, adds a few new attributes to the core set,
especially for purposes of easier queries and for better extendibility.

2.1.3 Objects-by-value

The CORBA 2.3a specification [CORBA2.3] provides the concept of a valuetype, an I
data type intermediate between struct and interface. It is a part of the so-called Obje
by Value (OBV) specification. In the context of this standard, the benefit of valuetype
over interfaces is scalability (a single round trip transfers the whole state of the obje
The benefit of valuetypes over structs is their extendibility through inheritance. This
standard uses valuetypes essentially as extendible structs, by applying the following
constraints:

• all members (‘attributes’) arepublic,

• there are no methods,

• inheritance is only of other valuetypes (i.e., no “supportsSomeInterface”),

• all inheritance usestruncatable(i.e., “casting” a sub-type to its super-type by
simply omitting the extra members is a semantically valid operation).
2-2 Bibliographic Query Service, v1.0 May 2002

2

2.1.4 Illustrative UML Diagram

Figure 2-1 Data Model

The UML in this specification is illustrative, not normative.

2.1.5 Dynamic Properties

For achieving extendibility without losing interoperability, several data classes use
attribute of typeCosPropertyService::Properties .
May 2002 Bibliographic Query Service: The DsLSRBibObjects Module 2-3

2

ry
le
rty

r all
type

tity
essed

k of
This
ial
S])

o

he

by,
Together with the repository introspection mechanism (see Section 2.2.6, “Reposito
Introspection,” on page 2-18) it allows the inclusion of any property while still being ab
to control the property names (which is necessary for queries) and, if needed, prope
values.

2.1.6 Data Structures

2.1.6.1 BibliographicReference

The BibliographicReference class is the core of the data model. It is a super-class fo
specialized citation types, but it can also be instantiated and represent an additional
not specifically defined in this specification.

public BibRefIdentifier identifier;

It is an unambiguous reference to the citation “within the world.” It is a string
conforming to an identification system described and rationalized below.

There is a requirement for a simple data type to store a bibliographic reference iden
across various bibliographic repositories. In most cases, this need is, or can be, addr
by using a string type. The advantages are that it is simple, lightweight, and used
universally throughout the realm of computing (and indeed outside). However the ris
using strings is that they can be too flexible, both in terms of syntax and semantics.
easily results in the lack of interoperability. To allow strings, yet mitigate their potent
for abuse, this specification (and indeed some other LSR specifications [BSA], [MAP
uses the syntax convention ofCosNaming::StringName as described in the
Interoperable Naming service [INS]. This convention is mainly a syntactical one; in n
way is the use of a naming service implementation required or implied (but it is not
precluded either).

A brief description ofCosNaming::StringName is as follows.CosNaming::Name
is a list ofstruct NameComponent s. For the purpose of illustration, a
NameComponent can be likened to a directory or filename, whereas
CosNaming::Name constitutes a full path-name. Thestruct NameComponent has
string membersid andkind . To transform aCosNaming::Name into a string, all its
NameComponent s are represented as strings “id.kind .” If the kind -field is empty,
this becomes simply “id ;” if the id -field is empty, this becomes “.kind ;” finally, the
Naming service also allows both theid - andkind -fields to be empty, which is
represented as “. ”. The full stringifiedCosNaming::Name is then obtained by
concatenating all theNameComponent s using “/ ” as a separator character. The
character “\ ” is designated as an escape character; if it precedes any of the special
characters “. ”, “ / ” and “\ ”, these special characters are taken as literal characters. T
typedef string CosNaming::StringName is provided for strings used as object
names using this convention.

This specification adopts the same syntax convention for a bibliographic reference
identifier, but requests that the components ofBibRefIdentifier data type adhere to
some additional semantic constraints. These rules do not follow from, nor are implied
2-4 Bibliographic Query Service, v1.0 May 2002

2

e

n be
to

or
ics

t of

d

he

case

he
of
any semantics of the Naming Service. The additional constraints make this data typ
sufficiently different fromCosNaming::StringName to warrant the dedicated
typedef string BibRefIdentifier .

In the remainder of this description, ‘component’ means: the sub-string of a
BibRefIdentifier that corresponds to oneCosNaming::NameComponent ; likewise,
id -field andkind -field correspond to the equivalent fields ofNameComponent .

The rules are as follows:

• The first component represents the bibliographic data source. Data sources ca
anything: transient collections, local databases, public repositories, etc. It is up
the implementation to document the accepted names for the data source.

• The empty name (“.”) is valid for the first component, and represents the ‘local’
‘default’ collection. It is up to the implementation to document what the semant
of ‘local’ or ‘default’ are.

• Names that refer to citations within collections (which is the usual case) consis
two or more components. The second component of such names represents an
identifier that is unique in the context of the data source. No emptyid -fields are
allowed in this or any further components.

• If two components are not enough to uniquely identify an entity, a
BibRefIdentifier can contain more than two components, but no more than
necessary to make the identification unique. That is, aBibRefIdentifier may not
be used to freely attach textual information.

• The only characters valid in a component are “a” through “z,” “0” through “9,” an
“-“ (hyphen), “_” (under_score), “$” and “.” (period). Use of the latter is
discouraged since it has a special meaning in thestringifying convention, and has
therefore to be escaped.

To comply with existing practice in the field of public data repositories, it is strongly
advised that implementations do string comparisons in a case-insensitive manner. T
CosNaming Service specification fails to mention whether type-case is, for string
comparison purposes, significant or not. Implementations that use a third-party
implementation of the Naming service may therefore wish to restrictBibRefIdentifier s
to only use one type-case. It is up to an implementation to state whether mixed type-
is allowed, and whether type-case is significant in comparisons.

The id andkind parts of the string components ofBibRefIdentifier are used as
follows:

• The id -field of a component contains the principal value that makes it unique in t
scope provided by the proceeding component. It may only be empty in the case
the first component of aBibRefIdentifier (see above).

• The kind -field of a component is used to represent information indicating the
release (for a data source) or version (for a citation), and can be empty.

The examples ofBibRefIdentifiers :

Medline/10881088
May 2002 Bibliographic Query Service: The DsLSRBibObjects Module 2-5

2

ch
er

lin
y out

ute
ence
hich

ine,”

ion

rce

.

re
Embl-pub.56/123456

Note thatBibRefIdentifier identifies a citation, not necessarily the cited resource (su
as a document) itself. Depending on the type of the cited resource, there can be oth
identification systems used (such as ISBN number for books or ISSN number for
journals).

public string type;

It defines the nature or genre of the cited resource. Although a working draft of Dub
Core Types [DCT1] recommends a type classification, the proposed types are mostl
of scope of this specification. The majority of cited resources would fall in the same
category “text.” For the future, however, Dublin Core is considering the addition of
subtypes to the high level types, or other ways of making sub-categories.

Therefore, the recommended best practice is to select a value from a controlled
vocabularyRESOURCE_TYPES using methods of repository introspection (see
Section 2.2.6, “Repository Introspection,” on page 2-18).

Syntactically, and because of making query navigation easier, the value of this attrib
should be the same as the name of a sub-class that inherits from BibliographicRefer
class and that describes the type. However, there may be bibliographic resources, w
are not described by specialized sub-classes (for example, “letters,” “practical guidel
or “archive”). For such cases the usage of a controlled vocabulary is needed.

In contrast to the Dublin Core recommendations, the resource type in this specificat
cannot be repeated to include different categories of cited resources in one citation.

Note that for the description of the physical or digital manifestation of the cited resou
there is an attributeformat described later.

public BibRefIdentifierList cross_references;

It is a list of identifiers, all of them pointingto the same cited sourcebut usually stored
in different bibliographic repositories. Note that this attributeis not for referencing
citations to documentsrelatedto a document or citation.

public wstring title;

A title given to the cited resource (a name by which the resource is formally known)

public BibRefSubject subject;

It defines the topic of the content of the cited resource. It is expressed in one or mo
ways using a constructBibRefSubject :

typedef wstring Keyword;
typedef sequence <Keyword> KeywordList;

typedef string SubjectHeading;
typedef sequence <SubjectHeading> SubjectHeadingList;
2-6 Bibliographic Query Service, v1.0 May 2002

2

by

de a

essed

ited

they
he

y

here

ieve
typedef string ClassificationCode;
typedef sequence <ClassificationCode> ClassificationCodeList;

valuetype BibRefSubject {
public KeywordList keywords;
public SubjectHeadingList subject_headings;
public string subject_heading_collection;
public ClassificationCodeList codes;

}

The keywords are usually (but not limited to) one word long. They are not controlled
any vocabulary.

The subject headings usually come from standard lists, such asSears List of Subject
Headings[SEARS], orLibrary of Congress Subject Headings (LCSH)[LCSH]. This
specification does not specify what list to use but implementors are advised to provi
controlled vocabulary for the list that is used, and to specify the source of subject
headings insubject_heading_collection field (using, for example, values “SEARS,”
“LCSH,” or “MeSH.”

Classification code (call number) is usually either Dewey decimal or Congress
classification. But this specification does not prescribe it. Note that the classification
codes are unique (unlike some subject headings). Therefore, they can be even expr
as identifiers using the same notation as used for the citation identifiers (repository/id).

public BibRefDescription description;

An account of the content of the cited resource. It is either an abstract, or table of
contents, or both. It can be written in a language different from the language of the c
resource.

Both abstract and table of contents can contain more than just a plain text – typically
may be expressed in a “markup” language. Their formats are defined according to t
specificationMultipurpose Internet Mail Extensions (MIME)[MIME]. Precisely, the
values of attributesabstract_type andtoc_type are equivalent to the “Content-Type
Header Field” of the MIME specification, with exclusion of the keyword “Content-
Type.” For example, anabstract_type can have value “text/html,” or, using additional
parameters “text/plain; charset=us-ascii.” If any of these attributes contains an empt
string, a default value “text/plain; charset=us-ascii” is assumed.

Often abstracts are also available from the same or separate repository as URLs. T
are several ways to provide this information in the here described data model. The
implementations may choose their own way and still remain compliant with this
specification. However, the first approach, described below, is recommended to ach
interoperability between implementations.

• Useabstract_type “text/url,” and put the URL intothe_abstract field.

• Useabstract_type “text/plain; url=xxxxx” where xxxxxis a URL of the abstract
(in this casethe_abstract may still have a full or partial text of the abstract).

• Use “multi-part” (see [MIME]) inabstract_type . In such casethe_abstract will
have both the full or partial abstract text, and a URL.
May 2002 Bibliographic Query Service: The DsLSRBibObjects Module 2-7

2

tial
date,

but

-

, or
thors

tors
ole

hts

],

other
• Use a dynamic property ofBibliographicReference class for the URL.

valuetype BibRefDescription {
public wstring the_abstract;
public string abstract_type;
public wstring table_of_contents;
public string toc_type;
public string language;

}

public BibRefScope coverage;

It defines an extent or scope of the content of the cited resource. It can include spa
location (a place name or geographic co-ordinates), temporal period (a period label,
or date range), or both. Finally, it can have additional dynamic properties such as
jurisdiction.

valuetype BibRefScope {
public string spatial_location;
public string temporal_period;
public CosPropertyService::Properties properties;

}

This specification does not suggest any rules for representing geographical names
implementations may consider “Getty Thesaurus of Geographic Names” [TGN], or
MARC lists of countries [MARC-COUNTRIES] and list of geographical areas [MARC
AREAS].

public ProviderList authors;
public ProviderList contributors;
public Provider publisher;

These attributes define the active participants. They may be persons, organizations
even services. A publisher is responsible for making the resource available. The au
and contributors are inorderedlists. The authors and contributors are responsible for
creating the contents of the cited resource. There is no formal definition of how this
responsibility is divided between them. However, the authors are usually primary crea
while contributors may be illustrators, translators, or other creative providers. Their r
may be specified in a separate attribute in dynamic properties.

public string rights;

Specifies information about rights over the cited resource. Typically, it contains a rig
management statement for the resource, or it refers to a service providing such
information. Rights information often encompasses Intellectual Property Rights [IPR
Copyright, and various Property Rights.

If the attribute is empty, no assumptions can be made about the status of these and
rights with respect to the cited resource.
2-8 Bibliographic Query Service, v1.0 May 2002

2

this

for
d

e

Note
nt,

le
in

s.
public StringDate date;

Defines a date associated with an event in the life cycle of the cited resource when
resource became available. Usually, it is a date of publishing, however, for not yet
published resources, it can be a date of creation.

typedef string StringDate;

Using atypedef instead of a simple string indicates that there are some rules implied
the attribute value. The suggested encoding is as defined in a W3C NOTE “Date an
Time Formats” [W3CNOTE]. This NOTE defines a profile of ISO8601 standard
[ISO8601]. ISO8601 describes a large number of date/time formats and the NOTE
reduces the scope and restricts the supported formats to a small number. The profil
offers a number of options from which this specification permits the following:

• Year

YYYY (e.g., 2000)

• Year and month

YYYY-MM (e.g., 2000-12)

• Complete date

YYYY-MM-DD (e.g., 2000-12-31)

• Complete date plus hours, minutes, and seconds

YYYY-MM-DDThh:mm:ssZ (e.g., 2000-12-31T23:59:59Z)

Exactly the components shown here must be present, with exactly this punctuation.
that the “T” appears literally in the string, to indicate the beginning of the time eleme
as specified in ISO 8601.

Times are expressed in UTC (Coordinated Universal Time), with a special UTC
designator (“Z”), again as specified in ISO 8601.

For query purposes, the format with fewer details is considered as having all possib
values in place of missing details. Thus, YYYY-MM would mean all dates and times
the given month.

This specification expects that all attributes dealing with dates will use the same rule

YYYY four-digit year

MM two-digit month (01=January, etc.)

DD two-digit day of month (01 through 31)

hh two digits of hour (00 through 23)

mm two digits of minute (00 through 59)

ss two digits of second (00 through 59)
May 2002 Bibliographic Query Service: The DsLSRBibObjects Module 2-9

2

s a
a

y
d to

te)

r

g
rived
is
public string language;

Defines a language of the intellectual contents of the cited resource. The
recommendation is to use values as defined by RFC1766 [RFC1766], which include
two-letter Language Code (taken from the ISO639 standard) followed optionally by
two-letter Country Code (taken from the ISO3166 standard). For example, “en” for
English, “fr” for French, or “en-uk” for English used in the United Kingdom. Another
possibility is to use MARC List of Languages [MARC-LANG].

public string format;

Describes the physical or digital manifestation of the cited resource. It can have ver
different content depending on the citation type. Therefore, it is highly recommende
use the mechanism of repository introspection to find possible values.

public EntryStatus status;

Defines information related to the citation itself rather than to the cited resource.
typedef VocabularyString RepositorySubset;

valuetype EntryStatus {
public StringDate last_modified_date;
public RepositorySubset subset;
public CosPropertyService::Properties properties;

};

Some bibliographic repositories consist of several, or even many, databases. Thesubset
helps to locate the citation.

The last_modified_date can be used to retrieve new or revised (since a specified da
citations.

The dynamic properties may be used to add features related to the citation itself (fo
example, a name of the citation annotator or citation version).

2.1.6.2 Derived types from BibliographicReference

TheBibliographicReference class is a parent class for derived classes representin
bibliographic references to specialized bibliographic resources. The names of the de
classes can be used in constructing queries. The following classes are defined by th
standard:

• Book

• Article

• Book Article

• Journal Article

• Patent

• Thesis
2-10 Bibliographic Query Service, v1.0 May 2002

2

ied by
• Conference proceeding

• Technical Report

• Web Resource

The other resource types, those not mentioned here, can still be accessed and quer
this standard using dynamic properties and attributetype of the class
BibliographicReference .

valuetype Book : truncatable BibliographicReference {
public string isbn;
public string volume;
public string edition;
public string series;
public Provider editor;

};
valuetype Article : truncatable BibliographicReference {

public string first_page;
public string last_page;

};
valuetype BookArticle : truncatable Article;

public Book from_book;
};
valuetype JournalArticle : truncatable Article {

public string volume;
public string issue;
public string issue_supplement;
public Journal from_journal;

};
valuetype Patent : truncatable BibliographicReference {

public string doc_number;
public string doc_office;
public string doc_type;
public StringList applicant;

};
valuetype WebResource : truncatable BibliographicReference {

public string url;
public unsigned long estimated_size;
public string cost;

};
valuetype Thesis : truncatable BibliographicReference {
};
valuetype Proceeding : truncatable BibliographicReference {
};
valuetype TechReport : truncatable BibliographicReference {
};
May 2002 Bibliographic Query Service: The DsLSRBibObjects Module 2-11

2

les

d for

s).

for

nce
sing
2.1.6.3 Provider

The classProvider and its sub-classes define active participants of the process of
creation and dissemination of the bibliographic resources. The most obvious examp
are authors, but it includes also publishers and other contributors.

valuetype Provider {
public CosPropertyService::Properties properties;

};
typedef sequence <Provider> ProviderList;

valuetype Person : Provider {
public wstring surname;
public wstring first_name;
public wstring mid_initials;
public string email;
public wstring postal_address;
public wstring affiliation;

};

valuetype Organization : Provider;
public wstring name;

};

valuetype Service : Provider {
public wstring name;

};

The participants can be people, organizations, or even software services (mainly use
new digital resources). This specification does not provide any unique identifiers for
these providers (but does not preclude having such identifiers as dynamic propertie

Note that a person’s affiliation is not expressed as an instance ofOrganization because
it would be out of scope of this specification to define the personal domain. However,
example, nothing precludes the implementation populating affiliations with stringified
identifiers of institutions.

2.1.6.4 Journal

valuetype Journal {
public wstring name;
public string issn;
public string abbreviation;
public CosPropertyService::Properties properties;

};

A class describing journals. The citations referring to the journal articles have a refere
to this class. There are only a few explicit attributes defined, the rest are accessible u
dynamic properties.
2-12 Bibliographic Query Service, v1.0 May 2002

2

ifier

ry

on

l in

st of

lso

r

ay
public string issn;

A standard number for journals. Be aware, however, that in the real world even this
attribute may change over time. Therefore, it is not suitable as a primary unique ident
for journals.

public wstring name;

A journal title. The list of available titles can be provided using a controlled vocabula
(taken, for example, from MEDLINE [MEDLINE-J1]).

public string abbreviation;

An abbreviation of the journal title. Note that some repositories use more abbreviati
systems. For such cases, use dynamic properties for additional abbreviations. (An
example for biological journals is in [BIO-ABBR].)

2.2 The DsLSRBibQuery Module

2.2.1 Overview

The moduleDsLSRBibQuery allows searching for and retrieving citations from a
bibliographic repository. It uses class and attribute names defined in the data mode
moduleDsLSRBibObjects .

The queries return collection of citations that are again query-able. When a client is
satisfied with the query results, the collection contents can be retrieved either as a li
citations, or as an XML document.

Querying itself can be done using different approaches:

• Using direct methods, which are convenient for typical queries. This includes a
very vague queries of the type “give me everything about pathology.”

• Using aggregate methods for counting resulting citations.

• Using a query language (OMG Constraint language).

• Using SQL or OQL.

The module also allows introspection of the underlying repository. This capability, fo
example, helps to build more sophisticated and user-friendly clients.

2.2.2 Simple and Qualified Attribute Names

There are several places where clients need to know exact attribute names:

• The citations are retrievable by specifying combinations of attribute names and
values.

• The query results are citation records but not necessarily fully populated – they m
be restricted only to a subset of attributes.
May 2002 Bibliographic Query Service: The DsLSRBibQuery Module 2-13

2

r they

.”

he

ore is

ith

” It
(as

all
e a

tion

ir
r

pe
an
• The results may be ordered by one or more attributes.

Therefore, this standard defines some rules how to specify attribute names wheneve
have to be expressed as strings. The existence of these rules will make the
implementations interoperable even for attributes that are not directly named in the
specification (those hidden in dynamic properties).

The following rules define how to create stringified names for individual attributes.

1. The stringified names of attributes of classBibliographicReference are equal to
the member names of this class. For example, “identifier,” “type,” “title,” “authors

2. The stringified names of attributes of sub-classes derived from
BibliographicReference , and of attributes of other classes, are also equal to t
member names but additionally they must bequalifiedby the class name using two
underscores (“__”). For example, “book__isbn,” “journalarticle__from_journal,”
“journal__name.”

Note –The somewhat unusual “double underscore” is used here because undersc
the only non-alphabetic character allowed for variables in the OMG Constraint
language. We prefer to use a slightly unusual syntax that remains fully compliant w
the language.

3. The qualification part of the stringified name (together with underscores) can be
omitted if there is no ambiguity. For example, if an implementation does not use
property name “isbn” anywhere else, the “book__isbn” can be replaced by “isbn.
can be omitted also when the usage specifically allows it. For example, a query
described in Section 2.2.8, “Querying,” on page 2-24) allows a client to ask for
citations related to a given “location” regardless of the citation type – in this cas
stringified attribute would be “location” and not, for example, “book__location.”

Be aware, however, that dropping the qualifier may compromise extendibility
because a client that expects a unique attribute name may break if another cita
type is added with the same attribute name.

4. The stringified names of the attributes from dynamic properties are equal to the
property names, applying the rule about qualification as defined above. Thus, fo
example, an attribute “registry_number” hidden in member “properties” of class
BibliographicReference will be stringified as “registry_number,” and an
attribute “location” hidden in member “properties” of sub-classBook will be
stringified as “book__location.”

5. The stringified names of the attributes from dynamic properties of the class
BibliographicReference for instances without their own sub-class must be
qualified (as described above) by their “type.” For example, a citation can be of ty
“letter,” but there is no sub-class “Letter” defined in this specification. Therefore
attribute “type” has value “letter.” This value is then used to create a qualified
stringified name “letter__subject.”
2-14 Bibliographic Query Service, v1.0 May 2002

2

the

thout
e of

for
a few

d by
s,” as

rt,
e

n
ll

at

at
rily
6. The stringified names are considered case-insensitive. Thus, “book__location” is
same as “Book__location,” and “journalarticle__issue” equals to
“JournalArticle__issue.”

2.2.3 Query Constraint Language

If the search cannot be accomplished by any direct method (see Section 2.2.1,
“Overview,” on page 2-13), then a query language has to be used. This specification
proposes to use the “OMG Constraint Language” as the main tool for searching by
combination of attributes.

OMG Constraint Language [OMG_CL], sometimes called “CORBA standard
constraint language” was designed for the Trading service but can also be used, wi
any changes, for specifying queries. As a language it is similar to the WHERE claus
the SELECT statement in SQL (however, here it is used independently of SQL).

This specification does not include the description of the language (see [OMG_CL]
details) but defines some rules for property names used by the language, and shows
examples.

A “property name” is a basic element of the constraint language. In the queries use
this specification, the property names are represented by “stringified attributes name
defined in Section 2.2.2, “Simple and Qualified Attribute Names,” on page 2-13,
applying the following additional searching rules.

1. If a stringified attribute name represents an attribute of a basic type (string, sho
etc.), then the corresponding value in the query expression shall be of the sam
type. For example:

JournalArticle__volume == “XX”(correct)

JournalArticle__volume == 32(incorrect, because volume is string)

date == “1999-12”(correct)

date == “1999”(correct)

date == 1999(incorrect, becausedateis string)

2. If a stringified attribute name represents an attribute of a constructed type
(BibRefSubject, Person…), then the corresponding value in the query expressio
shall be of typestring. Additionally, the implementations are advised to search a
reasonable members of the constructed type for the given value. For example:

BibRefSubject == “pathology”

will be looked for in “keywords,” and “subject_headings,” and depending upon wh
the implementation considers reasonable, also in “codes” ofBibRefSubject .

3. If a stringified attribute name represents an attribute of a list type (ProviderList,
KeywordList, etc.), then the stringified name can be shortened by the plural “s”
the end, and the search is done only for the first element of the list. This is prima
used for finding the first author:
May 2002 Bibliographic Query Service: The DsLSRBibQuery Module 2-15

2

all

fine

or
or
4. If a stringified attribute name is ambiguous, then the search should be done for
reasonable representations of this attribute. For example:

2.2.4 Query Matching and Ordering Criteria

Several methods dealing with queries and sorting use a list of criteria. The criteria de
how the matching or ordering should be done.

The introspection capability gives access to all criteria provided by the underlying
repository.

enum CriterionType {
QUERY_CRITERION,
SORT_CRITERION

};

The criteria can be used for defining rules for matching (typeQUERY_CRITERION),
or for ordering (typeSORT_CRITERION).

valuetype Criterion {
public VocabularyString name;
public CriterionType type;
public VocabularyStringList mutually_exclusive_with;

};

typedef sequence<Criterion> CriterionList;

EachCriterion is identified by its name. A list of criteria names is used in methods f
querying and sorting. The implementations are advised to use descriptive names. F
example, the names for matching can be:

“match all words”

“match any word”

“case insensitive”

“case sensitive”

“partial word match”

authors == “Linus” will search “Linus” in all authors,

author == “Linus” will search only in the first author.

book__location == “shelves” will look for all books on shelves

location == “shelves” will look for citations of all types on shelves

type == “book” AND
location == “shed”

will look for books in a shed
2-16 Bibliographic Query Service, v1.0 May 2002

2

ot

with

g

can
ion

es.

t is
ify a

o.

y

ist.
s but
“full word match”

and the names for ordering can be:

“ascending”

“descending”

Another example of how to use Criteria is to allow regular expressions in queries. N
every implementation is supposed to have the capability of matching by regular
expressions but those who have can specify (and document), for example, criterion
name “regular expression.”

Each Criterion can also have a non-empty list of other criteria that it ismutually exclusive
with. For example, a sort criterion “ascending” will probably have “descending” in its
mutually_exclusive_with list.

The valuetypeCriterion is used only in introspective methods in order to find a list of
supported criteria, their types, and their mutual relationships. In querying and sortin
methods, only the lightweightVocabularyStringList is used.

TheVocabularyStringList is used always as aninout parameter. It allows an
implementation to return a list of criteria that were actually used. The returned values
differ from the client’s wishes if an implementation does not support a particular funct
(such as proximity search), or if some criteria were mutually exclusive.

2.2.5 Lists of Stringified Attribute Names

On several occasions, the query methods require a list of attribute names. The lists
indicate that some action should be done only for or only with a given set of attribut
The attributes are stringified as described in Section 2.2.2, “Simple and Qualified
Attribute Names,” on page 2-13.

2.2.5.1 excluded attributes

The query results are instances of theBibliographicReference class with all
attributes. But sometimes it may be better to avoid transferring long data if the clien
not interested in it. Typical examples are abstracts. To achieve this, a client can spec
list of attributes that it is not interested in. Such attributes are then returned empty.

The “emptiness” means null wherever possible, or an empty string, or a number zer

If a BibRefCollection was created in several steps (e.g., by navigational query) onl
the last used “searched attributes” are remembered.

Another use for the “excluded attributes” is in retrieval methods. A query collection,
once created, can be asked to return more lightweight citations by specifying such l
Note that the same query collection can be asked to retrieve again the same citation
with a different set of the excluded attributes.
May 2002 Bibliographic Query Service: The DsLSRBibQuery Module 2-17

2

mes.

of
turn
rn a

sing

nt on
tly

d

ded

cited
2.2.5.2 searched attributes

The methodfind() (described later) also uses a list of attributes to specify which
attributes should be searched. This list is also created from the stringified attribute na

2.2.6 Repository Introspection

The capabilities for introspection of the underlying repository are present in order to
learn in advance what citation attributes (and other data) are provided. The methods
introspection deal both with metadata and data. It means that in some cases they re
information on supported attribute names (and similar), and in some cases they retu
list of all possible values for the given attribute.

The introspection (with the exception of searching and sorting criteria) is based on u
controlled vocabularies. It allows getting back not only simple names of available
attributes but also their descriptions.

There are several categories of introspection, as follows.

2.2.6.1 Global introspection

Provides overall information about the repository. The returned data are not depende
any particular citation type or repository subset. The global introspection uses direc
theVocabularyFinder interface with the following pre-defined vocabulary names:

const string RESOURCE_TYPES = "resource_types";
const string REPOSITORY_SUBSETS = "repository_subsets";
const string SUBJECT_HEADINGS = "subject_headings";
const string LANGUAGES = "languages";
const string JOURNAL_TITLES = "journal_titles";
const string JOURNAL_ABBREV = "journal_abbreviations";
const string ENTRY_PROPERTIES = "entry_properties";

VocabularyRESOURCE_TYPES contains stringified names of all citation types store
in the repository. The names of types that are explicitly defined in this specification
should be equal to the constant strings for types (see below).

Some bibliographic repositories consist of several databases. Their list can be provi
by the vocabularyREPOSITORY_SUBSET.

VocabularyENTRY_PROPERTIES contains names of properties that characterize a
bibliographic reference as a repository entry. Such properties are not related to the
resource but to the reference itself (for example, a name of the annotator).

The rest of the global vocabularies contain all possible values for the corresponding
attributes. The implementations may provide additional global vocabularies.
2-18 Bibliographic Query Service, v1.0 May 2002

2

t

e

gy
ered

his

ds
ry
way
2.2.6.2 Class introspection

Provides metadata about a specified part of a repository, or about specified type of
citations. Here belong the introspective methods of theBibRefUtilities interface (see
Section 2.2.7, “Interfaces,” on page 2-21). They can answer questions such as “Wha
attributes are available for books in this repository?” or “What searching criteria are
supported by a particular sub-part of this repository?”

To specify a type of citation, use values returned back by the global vocabulary
RESOURCE_TYPES (see above). The predefined constants are provided for types
explicitly defined in this specification:

const string TYPE_BOOK = "Book";
const string TYPE_ARTICLE = "Article";
const string TYPE_BOOK_ARTICLE = "BookArticle";
const string TYPE_JOURNAL_ARTICLE = "JournalArticle";
const string TYPE_PATENT = "Patent";
const string TYPE_THESIS = "Thesis";
const string TYPE_PROCEEDING = "Proceeding";
const string TYPE_TECHREPORT = "TechReport";
const string TYPE_WEB_RESOURCE = "WebResource";

In order to specify an attribute name, all of whose possible values are asked for, us
predefined values of attribute names:

const string ATTR_PROPERTIES = "properties";
const string ATTR_FORMAT = "the_format";
const string ATTR_SCOPE = "coverage";

A special case is the attributeATTR_PROPERTIES. It is described in Section 2.2.6.3,
“Dynamic introspection,” on page 2-20.

The properties of providers are obtained by a separate method using CORBA
TypeCode to define a provider type. The interface design is different from the strate
for citation properties because here the number of provider types (classes) is consid
final (in contrast to citation types that can be dynamically added without extending t
specification).

The introspection mechanism allows to find what attributes are available in the
repository. The attributes, however, play two roles: they can be used in query metho
(query-able attributes) and/or they can be returned back in the retrieved citations (ve
often the first role is a subset of the latter one). In order to achieve an interoperable
how to find the attribute roles there are two predefined constants:

const string ROLE_ATTR_QUERYABLE= "queryable";
const string ROLE_ATTR_RETRIEVABLE= "retrievable";

The constants above are advised to be used anywhere in the description field of a
controlled vocabulary entry describing an attribute.
May 2002 Bibliographic Query Service: The DsLSRBibQuery Module 2-19

2

ass
ed by
of

ons

this
ulary

th

ic

in
” on

ties

t

2.2.6.3 Dynamic introspection

Methods of the global introspection return lists of possible values; methods of the cl
introspection return possible values for a given subset. However, some values return
those methods can again be vocabulary names and can be used to find another list
values. Such chaining is calleddynamic introspection. This strategy is particularly useful
for property names returned for attributeATTR_PROPERTIES.

Theoretically, such chaining can be repeated more than once. But for practical reas
this specification assumes a maximum of two levels (see an example below).

As with all recursive strategies, there must be a rule defining the end of recursion. In
case, there must be a way to recognize whether a returned value is or is not a vocab
name. Two approaches can be used:

• Try to use it as a vocabulary name and if it is not a valid vocabulary, the
VocabularyFinder raises aNotFound exception.

• Try to find the value in a list provided by theVocabularyFinder method
get_all_vocabularies .

Another issue is a namespace for vocabulary names. It is usually easy for an
implementation to assure uniqueness of global and class vocabulary names. But wi
dynamic introspection the namespace can be quite “polluted.” Therefore, in order to
achieve interoperability, this specification expects that vocabulary names for dynam
introspection will be prefixed by related citation type, grouped together in the same
manner as citation identifier (see Section 2.1.6, “Data Structures,” on page 2-4). For
example, a vocabulary name for property “location” of citation type “Book” will be
“Book/location.”

Note that this convention is used only for vocabulary names, not for attribute names
queries (for those see rules in Section 2.2.2, “Simple and Qualified Attribute Names,
page 2-13).

Here is an example of how to use dynamic introspection. A query builder needs to
introspect a citation type “Book” to create a graphical user interface with book proper
and possible values:

1. Use global introspection to be sure that the given repository has citations abou
books.

list = VocabularyFinder::get_vocabulary_by_name (RESOURCE_TYPES);

Check if the returned list contains stringTYPE_BOOK .

2. Find all dynamic properties for books (additionally to the explicit properties).
2-20 Bibliographic Query Service, v1.0 May 2002

2

es

e.

t

ory.
only
he

e

n in
6).

ing
vocabulary_name = BibRefUtilities::supported_bibref_properties
(TYPE_BOOK, ATTR_PROPERTIES);

vocabulary = VocabularyFinder::get_vocabulary_by_name
(vocabulary_name);

3. Use the vocabulary to retrieve all properties. Now the query builder has the nam
of all book attributes that can be used in constructing queries.

4. Some properties obtained in the previous step have a controlled set of possible
values. Investigate, for example, a property “location.” Create a vocabulary nam

vocabulary_name = TYPE_BOOK + “/” + “location”;

5. Find whether the vocabulary name does represent an existing vocabulary (do i
either by checking list of “get_all_vocabularies ” or by calling
“get_vocabulary_by_name ”).

6. Use the vocabulary to retrieve all possible values for book locations.

2.2.7 Interfaces

2.2.7.1 BibRefCollection

The main entry point to the bibliographic query service is an interface
BibRefCollection .

interface BibRefCollection : CosQuery::QueryEvaluator,
CosLifeCycle::LifeCycleObject {

…
};

At the beginning, this interface represents citations of the whole bibliographic reposit
Later, various query methods return objects of the same type, but now representing
a subset of the repository. This way, a client can make results finer and finer using t
navigational query.

The most important methods of this interface that provide searching and retrieval ar
described below in separate sections. Here are the remaining methods:

BibRefCollection sort (in AttributeList ordered_by,
inout VocabularyStringList criterions)

raises (LimitExceeded);

It allows ordering citations in a collection. It returns an ordered collection. The order
direction and other sort criteria (such as case-insensitive or lexical sort) can be give
“criterions” (see Section 2.2.4, “Query Matching and Ordering Criteria,” on page 2-1

However, the implementation may refuse to sort excessively large collections by rais
a LimitExceeded exception. Imagine, for example, a request to sort the collection
representing the whole repository.
May 2002 Bibliographic Query Service: The DsLSRBibQuery Module 2-21

2

e

r

’
ing
is

ss to
XMLstring export (
in DsLSRBibObjects::BibliographicReference the_citation);

This method converts a bibliographic reference into an XML representation using th
same rules as exporter methods inBibRefCollectionrepresenting a query collection
wherethe_citation comes from.

2.2.7.2 BibRefIterator

The data from anyBibRefCollection can be returned to the caller directly as a list, o
through an iterator, or using a combination of both.

BibRefIterator s (designed in the same way as in [MAPS]) are objects that ‘point to
elements in a set, and which can be used to ‘step through’ the set. During this stepp
process, each element is visited once. If the underlying set is ordered, this ordering
also preserved in the output of the iterator methods. If, during the iteration, the
underlying result set changes (e.g., by another process), an exceptionInvalidIterator is
thrown.

interface BibRefIterator {
boolean next (…) …
boolean next_n (…) …
void reset();
void destroy();

};

The most important methods for retrieving data are described in detail later. The
remaining methods are described here:

Calls toreset() re-position the iterator such that subsequent calls tonext() or next_n()
start at the beginning of the result set. It raises theCORBA::NO_IMPLEMENT
exception if the iterator cannot be reset (for example when the iterator provides acce
streaming data).

Thedestroy() method is used to indicate that the iterator is no longer needed, and
deletes the iterator object.

2.2.7.3 BibRefExporter

This interface has the same behavior asBibRefIterator – except for the fact that it
returns citations as an XML stream. The exporting methods are described later.

interface BibRefExporter {
boolean export_next (…) …
boolean export_next_n (…) …
void reset();
void destroy();

};
2-22 Bibliographic Query Service, v1.0 May 2002

2

er,
ry

bute

for

n

2.2.7.4 BibRefUtilities

interface BibRefUtilities {
…

};

This interface provides methods for repository introspection, for managing several
citation collections, and other utility methods.

readonly attribute
DsLSRControlledVocabularies::VocabularyFinder voc_finder;

A VocabularyFinder is a provider of all controlled vocabularies used for finding
dynamic attribute names and their allowed values. Section 2.3, “The
DsLSRControlledVocabularies Module,” on page 2-28 describes how to use the find
and Section 2.2.6, “Repository Introspection,” on page 2-18 advises which vocabula
names to use.

string supported_bibref_properties (in string bibref_type,
in string attribute_name)

raises (NotFound);

This method returns the name of a vocabulary containing all possible values of attri
attribute_name for citationbibref_type . For attribute nameATTR_PROPERTIES,
it returns a list of property names. They represent dynamic properties for the given
citation type.

It raises aNotFound exception if no such vocabulary exists.

string supported_provider_properties (
in CORBA::TypeCode provider_kind)
raises (NotFound);

This method returns the name of a vocabulary containing dynamic property names
the given provider type.provider_kind is supposed to be aTypeCode of class
Person , Organization , or Service .

It raises aNotFound exception if no such vocabulary exists.

CriterionList supported_criterions (
in DsLSRBibObjects::RepositorySubset repository_subset)
raises (NotFound);

This method returns a list of all supported searching and sorting criteria for the give
repository subset. The values ofrepository_subset may be obtained from a global
vocabularyREPOSITORY_SUBSETS.

BibRefCollection union_it (in BibRefCollectionList collections)
raises (LimitExceeded);
May 2002 Bibliographic Query Service: The DsLSRBibQuery Module 2-23

2

ny

ories

utes

f

ed

6).
A methodunion_it() creates one collection from a list of collections. The resulting
collection should contain only unique citations. It can be used to remove repeated
citations from different repositories. However, this would be quite a difficult task, and
implementations are not required to do so. The implementation can also throw an
exceptionLimitExceeded when the collections are too big.

2.2.8 Querying

2.2.8.1 Query by the direct methods

There are several convenient methods that can be used for querying without using a
query language.

DsLSRBibObjects::BibliographicReference find_by_id (in string id)
in DsLSRBibObjects::BibRefIdentifier id,
in AttributeList excluded)
raises (CosQuery::QueryInvalid, NotFound);

It matches attributeBibRefIdentifier in theBibliographicReference class and
returns a corresponding citation (perhaps without attributes specified in theexcluded
list). Remember that this identifier is meant to be unique even across various reposit
(see description of “BibRefIdentifier” in Section 2.1.6.1, “BibliographicReference,” on
page 2-4). The implementation may raise aQueryInvalid exception if the identifier is
not in the scope of the searched repository, or it throws aNotFound exception if the
searched value is in the scope but cannot be found.

BibRefCollection find_by_author (
in DsLSRBibObjects::Provider author,
in AttributeList excluded,
inout VocabularyStringList criterions);

This is a convenient method for a common query. The search is done only for attrib
having nonemptyvalues in parameter “author.” For example, a search for citations
written by authors with surname “Doe” can be specified by sending an instance of
Person with surname “Doe” and with other attributes filled with empty strings.
Alternatively, a search for institution “EBI” can be specified by sending an instance o
Organization with name containing “EBI.”

The returned citations can have some attributes empty if parameter “excluded” is us
(see “excluded attributes” above). The search can be influenced also by parameter
“criterions” (see Section 2.2.4, “Query Matching and Ordering Criteria,” on page 2-1

When no matching authors are found, the implementation should return an empty
collection. However, it can still return changedcriterions indicating why the query
failed.

BibRefCollection find (
in PhraseList phrases,
2-24 Bibliographic Query Service, v1.0 May 2002

2

f
are
an

ut

uage
AttributeList searched,
AttributeList excluded,
inout VocabularyStringList criterions)

raises (CosQuery::QueryInvalid);

This is the most powerful direct method for querying a repository. It is modeled on
examples of web-based searches. A client can specify virtually anything in the list o
“phrases” and the implementation tries to search for these in as many attributes as
possible and reasonable, applying logical “AND” between them. However, a client c
also specifically limit the search only to attributes specified in the “searched” list.

Again, parameters “excluded” and “criterions” can influence the returned results (as
described above).

An implementation can raise aQueryInvalid exception if the search demand cannot be
accepted (for example, because of repository size, or because of limited indexing
capabilities of the repository). Note that this is not the same as raising the
NOT_IMPLEMENTED exception, because the client can still use this method but
possibly with more restricted “searched” parameters.

2.2.8.2 Query by the aggregate methods

These are methods providing functionality similar to some SQL constructs, but witho
using SQL.

unsigned long num_bibrefs();

It returns the number of citations in the current collection.

2.2.8.3 Query by the Constraint Language

When direct methods (as described above) are not sufficient, a constraint query lang
is used. The usage of the language is described in Section 2.2.3, “Query Constraint
Language,” on page 2-15. It is used by a method “evaluate” inherited from
QueryEvaluator interface fromCosQuery module.

any evaluate (
in string query,
in QLType ql_type,
in ParameterList params)

raises (QueryTypeInvalid, QueryInvalid, QueryProcessingError);

The exceptions are defined in theCosQuery module:

• The query language type specified must be supported, otherwiseQueryTypeInvalid
exception is raised.

• If the query syntax or semantics is incorrect or if the input parameter list is
incorrect, theQueryInvalid exception is raised.

• If any error is encountered during query processing, theQueryProcessingError
exception is raised.
May 2002 Bibliographic Query Service: The DsLSRBibQuery Module 2-25

2

e

in
is

e

in

ed

is

ry
er,
The following rules describe how to use this method. The rules are applied only if th
query language used is of typeOMG_CLQuery defined as:

interface OMG_CLQuery : CosQuery::QueryLanguageType {};

1. It returns aBibRefCollection type.

2. The parameterquery contains a query in OMG Constraint Language as defined
[OMG_CL]. A QueryInvalid exception is raised if the query syntax or semantics
incorrect.

3. Theparams can contain a property named “criteria” with an instance of
DsLSRControlledVocabularies::VocabularyStringList containing a list of
criteria names, and a property named “excluded” with an instance ofAttributeList .
The implementation uses these parameters in the same way as described by th
methodfind() above, except that the changed criteria are not returned back.

2.2.8.4 Query by SQL and OQL

Some complex queries can be achieved neither by direct methods nor by the OMG
Constraint Language. For example, the results are always lists of
BibliographicReference s. One cannot ask questions like “What journals are cited
this repository?”1.

Therefore, this specification allows the use of theevaluate() method fromCosQuery
without the restrictions described above, but applying a different set of rules:

1. An implementation is still compliant if it supports only theOMG_CLQuery type.
It may raise an exceptionQueryTypeInvalid when a different type is used.

2. SQL and OQL queries will be interoperable only if query strings contain stringifi
attributes names (as described in Section 2.2.2, “Simple and Qualified Attribute
Names,” on page 2-13) and table/class names equal to class names used in th
specification.

Note that this is quite a serious limitation. For example, it does not allow usage of
foreign keys, or joining tables associated with many-to-many-relationships.

Note that some implementations can still use this specification with the full SQL que
capabilities if they expose their data model (in documentation, for example). Howev
such implementations will be rarely interoperable.

1. Theoretically, you can do it: Ask forall citations of type “JournalArticle,” then take only
values of an attribute “from_journal,” make it unique, and you have a list of available
journals. But, in practice, this sort of query probably raises an exceptionLimitExceeded.
2-26 Bibliographic Query Service, v1.0 May 2002

2

n

tion

s

e

2.2.9 Retrieving Citations

A BibRefCollection represents the number ofBibliographicReference s. There are
methods to retrieve them and get data to the client.

DsLSRBibObjects::BiblRefIdentifierList retrieve_all_ids()
raises (LimitExceeded);

It returns a list of identifiers of all bibliographic references from a given collection. A
implementation can raise aLimitExceeded exception if the number of returned
identifiers causes problems.

DsLSRBibObjects::BibliographicReferenceList retrieve_all_elements(
in AttributeList excluded)
raises (LimitExceeded);

It returns a list of valuetypes with bibliographic references. Some attributes may be
empty if the “excluded” parameter was used. An implementation can raise a
LimitExceeded exception if the number of returned citations causes problems.

typedef string XMLString;

XMLstring export_all_elements()
raises (LimitExceeded);

This method also returns all bibliographic references represented by the given collec
(also making excluded attributes empty), but as an XML string. It is suitable for
exporting data in an exchangeable format for further processing. Again a
LimitExceeded exception is raised when the size of data causes problems.

The returned XML string must correspond to a known XML DTD. The following rule
apply:

1. If the underlying repository provides its own, well-known DTD for its citations, th
method is advised to use it.

2. Otherwise, the DTD used should be compliant with XMI [XMI] rules applied to
classBibliographicReference.

Both retrieval methods can raise aLimitExceeded exception. This can be avoided by
getting data back in parts, usingBibRefIterator or BibRefExporter . The first can be
obtained using:

BibRefIterator create_iterator (in AttributeList excluded);

The iterator has the following methods for getting data asBibliographicReference s:

boolean next (
out DsLSRBibObjects::BibliographicReference the_citation)
raises (IteratorInvalid);

boolean next_n (
May 2002 Bibliographic Query Service: The DsLSRBibQuery Module 2-27

2

d

t

s

y

ith a

e

e,

d for
at is
rvers

xt,

as a
in unsigned long how_many,
out DsLSRBibObjects::BibliographicReferenceList citations)

raises (IteratorInvalid, LimitExceeded);

Iteration using these methods can be done in steps using thenext() method, which
returns a citation as theout parameter. Alternatively, when using thenext_n() method,
a batch of at mosthow_many citations are returned in theout parameter. If the
retrieval was successful, theout parameter contains the next citations. TRUE is returne
if the call did not yet exhaust the iteration; that is, if more elements are available for
subsequent calls tonext() or next_n() . Conversely, a FALSE return value signifies tha
no more elements are available from the iterator. If, in a call tonext_n() , less than the
requestedhow_many elements can be returned, theout parameter contains as many
elements as were available, and the return-value is FALSE.

Thenext() andnext_n() methods can fail (e.g., if the underlying set changed). In thi
case, theIteratorInvalid exception is raised. Itsreason member can be used to provide
human-readable information on details of the failure.

Empty result sets (such as from queries yielding no matches) are not represented b
NULL objects, but by real iterators that are ‘empty’ (i.e., invoking theirnext() or
next_n() methods only ever return FALSE).

The returned citations may have some attributes empty if the iterator was created w
non-emptyexcluded attribute list.

In the same way as just described, a client can ask for data in XML format. It is don
using an instance ofBibRefExporter :

BibRefExporter create_exporter();

The implementation must guarantee that each returned part is a valid (and, of cours
well-formed) independent XML document. The methodexport_next() is a twin to the
methodnext() and methodexport_next() to the methodnext_n() :

boolean export_next (out XMLString the_citation)
raises (IteratorInvalid);

boolean export_next_n (
in unsigned long how_many,
out XMLString citations)

raises (IteratorInvalid, LimitExceeded);

2.3 The DsLSRControlledVocabularies Module

When describing and representing domain-specific systems, there is frequently a nee
a string type that can only assume a limited set of allowed values; a set, however, th
allowed to change over time (as values are added or removed) or space (different se
accepting different sets of strings). Such strings are calledcontrolled vocabularystrings
(“vocabulary strings” for brevity). A particular set of such strings, valid in some conte
is called a controlled vocabulary. Vocabulary strings typically denote domain-specific
concepts, usually as a short descriptive string or common abbreviation, rather than
code.
2-28 Bibliographic Query Service, v1.0 May 2002

2

his

can
The IDL specification of such vocabularies is taken from the LSR Genomic Maps
Specification [MAPS] where there is also detailed explanation of how to use them. T
specification describes only those issues related to their usage in the bibliographic
context.

All clients can receive all vocabularies from one central vocabulary finder. The finder
be a shared object. The clients get it from interfaceBibRefUtilities .
May 2002 Bibliographic Query Service: The DsLSRControlledVocabularies Module 2-29

2

2-30 Bibliographic Query Service, v1.0 May 2002

References A
A.1 List of References

1. [DC] Dublin Core Metadata Element Set, Version 1.1: Reference Description
http://purl.oclc.org/docs/core/documents/rec-dces-19990702.htm

3. [CORBA2.3] CORBA/IIOP 2.3.1 Specification, OMG document
formal/99-10-07
http://www.omg.org/corba/corbaiiop.html

4. [BSA] Draft adopted specification for Biomolecular Sequence Analysis
http://www.omg.org/cgi-bin/doc?lifesci/99-12-01

5. [MAPS] Genomic Map Draft Adopted Specification
http://www.omg.org/cgi-bin/doc?dtc/99-12-01

6. [INS] Interoperable Naming Joint Revised Submission
http://www.omg.org/cgi-bin/doc?orbos/98-10-11

7. [DCT1] List of Resource Types. Dublin Core Draft Working Group Report.
http://purl.org/dc/documents/wd-typelist.htm

8. [SEARS] Sears List of Subject Headings (16th Ed, July 1997),
Minnie Earl Sears, Joseph Miller, ISBN: 0824209206

9. [LCSH] Library of Congress Subject Headings, 22nd edition (1999)

10. [MIME] Multipurpose Internet Mail Extensions (MIME), Part One, Internet RFC
2045
http://www.ietf.org/rfc/rfc2045.txt

11. [TGN] Getty Thesaurus of Geographic Names
http://shiva.pub.getty.edu/tgn_browser/

[MARC-COUNTRIES] USMARC Code List for Countries
http://lcweb.loc.gov/marc/countries/
May 2002 Bibliographic Query Service, v1.0 A-1

A

es
[MARC-AREAS] USMARC Code List for Geographic Areas
http://lcweb.loc.gov/marc/geoareas/

12. [IPR] Basic information concerning intellectual property
http://www.itds.treas.gov/ITDS/ITTA/ipr.html

13. [W3CNOTE] Date and Time Formats
http://www.w3.org/TR/NOTE-datetime

14. [ISO8601] International Standard for representation of dates and times
http://www.iso.ch/markete/8601.pdf

15. [RFC1766] Tags for the Identification of Languages, Internet RFC 1766
http://www.ietf.org/rfc/rfc1766.txt

[MARC-LANG] USMARC Code List for Languages
http://lcweb.loc.gov/marc/languages/

16. [ISO639] Codes for representation of names of languages

17. [ISO3166] Codes for representation of names of countries

18. [MEDLINE-J1] MEDLINE Journals With Links to Publisher Web Sites
http://www.ncbi.nlm.nih.gov/PubMed/fulltext.html

19. [BIO_ABBR] Biological Journals and Abbreviations
http://arachne.prl.msu.edu/journams/

20. [OMG_CL] OMG Constraint Language, CORBA Services, Trading Object Servic
Spec.
http://www.omg.org/cgi-bin/doc?formal/97-12-23

21. [XMI] XML Metadata Interchange (XMI)
http://www.omg.org/cgi-bin/doc?ad/99-10-02
A-2 Bibliographic Query Service, v1.0 May 2002

OMGIDL B
B.1 DsLSRBibObjects.idl

//File: DsLSRBibObjects.idl
//

#ifndef _DS_LSR_BIB_OBJECTS_IDL_
#define _DS_LSR_BIB_OBJECTS_IDL_

#pragma prefix "omg.org"

#include <CosPropertyService.idl>

module DsLSRBibObjects {

 typedef sequence<string> StringList;

 typedef string StringDate;

 typedef string BibRefIdentifier;
 typedef sequence<BibRefIdentifier> BibRefIdentifierList;

 typedef wstring Keyword;
 typedef sequence<Keyword> KeywordList;

 typedef string SubjectHeading;
 typedef sequence<SubjectHeading> SubjectHeadingList;

 typedef string ClassificationCode;
 typedef sequence<ClassificationCode> ClassificationCodeList;

 typedef string RepositorySubset;

 valuetype Provider {
 public CosPropertyService::Properties properties;
 };
May 2002 Bibliographic Query Service, v1.0 B-1

B

 typedef sequence<Provider> ProviderList;

 valuetype Person : Provider {
public wstring surname;
public wstring first_name;
public wstring mid_initials;
public string email;
public wstring postal_address;

public wstring affiliation;
 };

 valuetype Organization : Provider {
 public wstring name;
 };

 valuetype Service : Provider {
 public wstring name;
 };

 valuetype Journal {
 public wstring name;
 public string issn;
 public string abbreviation;
 public CosPropertyService::Properties properties;
 };

 valuetype BibRefSubject {
public KeywordList keywords;
public SubjectHeadingList subject_headings;

public string subject_heading_collection;
public ClassificationCodeList codes;

 };

 valuetype BibRefDescription {
public wstring the_abstract;
public string abstract_type;
public wstring table_of_contents;
public string toc_type;
public string language;

 };

 valuetype BibRefScope {
public string spatial_location;
public string temporal_period;
public CosPropertyService::Properties properties;

 };

 valuetype EntryStatus {
public StringDate last_modified_date;
public RepositorySubset subset;
public CosPropertyService::Properties properties;

 };

 valuetype BibliographicReference {
public BibRefIdentifier identifier;
B-2 Bibliographic Query Service, v1.0 May 2002

B

public string type;
public BibRefIdentifierList cross_references;

public wstring title;
public BibRefSubject subject;
public BibRefDescription description;
public BibRefScope coverage;

public ProviderList authors;
public ProviderList contributors;
public Provider publisher;
public string rights;

public StringDate date;
public string language;
public string format;

public EntryStatus status;
public CosPropertyService::Properties properties;

 };
 typedef sequence<BibliographicReference> BibliographicReferenceList;

 valuetype Book : truncatable BibliographicReference {
 public string isbn;

public string volume;
public string edition;
public string series;
public Provider editor;

 };

 valuetype Article : truncatable BibliographicReference {
public string first_page;
public string last_page;

 };

 valuetype BookArticle : truncatable Article {
public Book from_book;

 };

 valuetype JournalArticle : truncatable Article {
public string volume;
public string issue;
public string issue_supplement;
public Journal from_journal;

 };

 valuetype Patent : truncatable BibliographicReference {
 public string doc_number;

public string doc_office;
public string doc_type;
public StringList applicant;

 };

 valuetype WebResource : truncatable BibliographicReference {
 public string url;
May 2002 Bibliographic Query Service, v1.0 B-3

B

 public unsigned long estimated_size;
 public string cost;
 };

 valuetype Thesis : truncatable BibliographicReference {
 };

 valuetype Proceeding : truncatable BibliographicReference {
 };

 valuetype TechReport : truncatable BibliographicReference {
 };

#pragma version Journal 1.1
#pragma version BibRefSubject 1.1

};

#endif // _DS_BIB_OBJECTS_IDL_

B.2 DsLSRBibQuery.idl

//File: DsLSRBibQuery.idl
//

#ifndef _DS_LSR_BIB_QUERY_IDL_
#define _DS_LSR_BIB_QUERY_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosQueryCollection.idl>
#include <CosQuery.idl>
#include <DsLSRBibObjects.idl>
#include <DsLSRControlledVocabularies.idl>

module DsLSRBibQuery {

 // shorthands for imported types for controlled vocabularies
 typedef DsLSRControlledVocabularies::VocabularyString VocabularyString;
 typedef DsLSRControlledVocabularies::VocabularyStringList VocabularyString-
List;

 typedef sequence<string> AttributeList;
 typedef sequence<wstring> PhraseList;
 typedef string XMLString;

 enum CriterionType {
 QUERY_CRITERION,
 SORT_CRITERION
 };

 valuetype Criterion {
 public VocabularyString name;
B-4 Bibliographic Query Service, v1.0 May 2002

B

 public CriterionType type;
 public VocabularyStringList mutually_exclusive_with;
 };
 typedef sequence<Criterion> CriterionList;

 exception NotFound { string reason; };
 exception IteratorInvalid { string reason; };
 exception LimitExceeded { string reason; };

 interface OMG_CLQuery : CosQuery::QueryLanguageType {};

 interface BibRefIterator {
 boolean next (out DsLSRBibObjects::BibliographicReference the_citation)
 raises (IteratorInvalid);
 boolean next_n (in unsigned long how_many, out DsLSRBibObjects::Biblio-
graphicReferenceList citations)
 raises (IteratorInvalid, LimitExceeded);
 void reset();
 void destroy();
 };

 interface BibRefExporter {
 boolean export_next (out XMLString the_citation)

 raises (IteratorInvalid);
 boolean export_next_n (in unsigned long how_many, out XMLString citations)

 raises (IteratorInvalid, LimitExceeded);
 void reset();
 void destroy();
 };

 interface BibRefCollection : CosQuery::QueryEvaluator, CosLifeCycle::LifeCycle-
Object {

 // direct methods (convenient methods)

 DsLSRBibObjects::BibliographicReference find_by_id (in DsLSRBibOb-
jects::BibRefIdentifier id,

 in AttributeList excluded)
 raises (CosQuery::QueryInvalid, NotFound);

 BibRefCollection find_by_author (in DsLSRBibObjects::Provider author,
 in AttributeList excluded,
 inout VocabularyStringList criterions);

 BibRefCollection find (in PhraseList phrases,
 in AttributeList searched,
 in AttributeList excluded,
 inout VocabularyStringList criterions)

 raises (CosQuery::QueryInvalid);

 // aggregate methods

 unsigned long num_bibrefs();

// sort methods
May 2002 Bibliographic Query Service, v1.0 B-5

B

 BibRefCollection sort (in AttributeList ordered_by,
 inout VocabularyStringList criterions)

 raises (LimitExceeded);

 // retrieval methods

 DsLSRBibObjects::BibliographicReferenceList retrieve_all_elements (in
AttributeList excluded)

 raises (LimitExceeded);

 DsLSRBibObjects::BibRefIdentifierList retrieve_all_ids()
 raises (LimitExceeded);

 XMLString export_all_elements()
 raises (LimitExceeded);

 BibRefIterator create_iterator (in AttributeList excluded);
 BibRefExporter create_exporter();

 XMLString export (in DsLSRBibObjects::BibliographicReference the_citation);

 };

 typedef sequence<BibRefCollection> BibRefCollectionList;

 interface BibRefUtilities {

 // constants for global vocabulary names

 const string RESOURCE_TYPES = "resource_types";
 const string REPOSITORY_SUBSETS = "repository_subsets";
 const string SUBJECT_HEADINGS = "subject_headings";
 const string LANGUAGES = "languages";
 const string JOURNAL_TITLES = "journal_titles";
 const string JOURNAL_ABBREV = "journal_abbreviations";
 const string ENTRY_PROPERTIES = "entry_properties";

 // constants for citation types

 const string TYPE_BOOK = "Book";
 const string TYPE_ARTICLE = "Article";
 const string TYPE_BOOK_ARTICLE = "BookArticle";
 const string TYPE_JOURNAL_ARTICLE = "JournalArticle";
 const string TYPE_PATENT = "Patent";
 const string TYPE_THESIS = "Thesis";
 const string TYPE_PROCEEDING = "Proceeding";
 const string TYPE_TECH_REPORT = "TechReport";
 const string TYPE_WEB_RESOURCE = "WebResource";

 // constants for attribute names

 const string ATTR_PROPERTIES = "properties";
 const string ATTR_SCOPE = "scope";
 const string ATTR_FORMAT = "format";
B-6 Bibliographic Query Service, v1.0 May 2002

B

 // constants for attributes roles

 const string ROLE_ATTR_QUERYABLE = "queryable";
 const string ROLE_ATTR_RETRIEVABLE = "retrievable";

// methods allowing repository introspection

 readonly attribute DsLSRControlledVocabularies::VocabularyFinder voc_finder;

 string supported_bibref_properties (in string bibref_type,
 in string attribute_name)

 raises (NotFound);

 string supported_provider_properties (in CORBA::TypeCode provider_kind)
 raises (NotFound);

 CriterionList supported_criterions (in DsLSRBibObjects::RepositorySubset
repository_subset)

 raises (NotFound);

 // other methods

 BibRefCollection union_it (in BibRefCollectionList collections)
 raises (LimitExceeded);

 };

#pragma version BibRefCollection 1.1
#pragma version BibRefUtilities 1.1

};

#endif // _DS_BIB_QUERY_IDL_
May 2002 Bibliographic Query Service, v1.0 B-7

B

B-8 Bibliographic Query Service, v1.0 May 2002

Index
A
Aggregate methods 2-25
Attribute Names 2-13

B
BibliographicReference 1-2
BibliographicReference class 2-4
BibRef 1-2
BibRefCollection. 2-21
BibRefExporter 2-22
BibRefIterator 2-22
BibRefUtilities 2-23

C
call number 2-7
Citations 1-2, 2-27
class 1-2
Class introspection 2-19
Classification code 2-7
Constraint Language 2-15, 2-25
constraints 2-2
CORBA

contributors vi
documentation set iv

D
Data Structures 2-4
date/time formats 2-9
Dependencies 1-2
derived classes 2-10
double underscore 2-14
DsLSRBibObjects Module 2-1
DsLSRBibQuery Module 2-13
DsLSRControlledVocabularies Module 2-28
Dublin Core Metadata 2-1
Dynamic introspection 2-20
Dynamic Properties 2-3

E
excluded attributes 2-17

G
geographical areas 2-8
Getty Thesaurus of Geographic Names 2-8
Global introspection 2-18

I
id-field 2-5

Interfaces 2-21
Introspection 2-18

J
journal 2-12

K
keywords 2-7
kind-field 2-5

M
MARC lists of countries 2-8
Module dependencies 1-2
Multipurpose Internet Mail Extensions (MIME) 2-7

N
Naming conventions 1-2

O
Object Management Group iii

address of vi
Objects-by-value 2-2
OQL 2-26

P
Provider 2-12

Q
Query by SQL and OQL 2-26
Query by the aggregate methods 2-25
Query by the Constraint Language 2-25
Querying 2-24

R
Retrieving Citations 2-27

S
searched attributes 2-18
Security Service A-1, B-1
SQL 2-26
stringified names 2-14
subject headings 2-7

U
UML Diagram 2-3

V
VocabularyFinder 2-23
May 2002 Bibliographic Query Service Index-1

Index
Index-2 Bibliographic Query Service May 2002

	Preface
	1. Introduction
	1.1 Bibliographic Query Introduction
	1.2 Naming Conventions
	1.3 Scope and Extensibility
	1.4 Module Dependencies

	2. Modules and Interfaces
	2.1 The DsLSRBibObjects Module
	2.1.1 Overview
	2.1.2 Dublin Core Metadata
	2.1.3 Objects-by-value
	2.1.4 Illustrative UML Diagram
	2.1.5 Dynamic Properties
	2.1.6 Data Structures

	2.2 The DsLSRBibQuery Module
	2.2.1 Overview
	2.2.2 Simple and Qualified Attribute Names
	2.2.3 Query Constraint Language
	2.2.4 Query Matching and Ordering Criteria
	2.2.5 Lists of Stringified Attribute Names
	2.2.6 Repository Introspection
	2.2.7 Interfaces
	2.2.8 Querying
	2.2.9 Retrieving Citations

	2.3 The DsLSRControlledVocabularies Module

	Appendix A - References
	Appendix B - OMG IDL
	Index

