Biomolecular Sequence Analysis
Specification

OMG document: lifesci/99-12-01
Draft Adopted Specification: December 1999

Copyright 1999, Concept Five Technologies, Inc.

Copyright 1999, EMBL-EBI (European Bioinformatics Institute)
Copyright 1999, Genome Informatics Corporation

Copyright 1999, Millennium Pharmaceuticals, Inc.

Copyright 1999, Neomorphic Software, Inc.

Copyright 1999, NetGenics, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid |
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyr
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require us
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document d
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT

MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY

WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF

FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, relance or ¢
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders liste
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be t
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks
other special designations to indicate compliance with these materials. This document contains information which is protect
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form c
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7048n0MG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface e

About the Object Management Group.covvu ...
Whatis CORBA?. 1
Associated OMG Documentso i, 2
Acknowledgments. e 2

1. Biomolecular Sequence Analysis

OVEIVIEW . . o 1-1
1.1 Module DSLSRBioObjects. 1-1
1.2 Module DsLSRAnalysis. 1-1
1.3 DomainModel........... 1-2
1.4 GeneralRemarks i 1-2
1.4.1 Objects-by-value........................ 1-2
1.4.2 Returning multipleresults 1-3
143 lIdentifier... 1-3
1.44 Compositepattern. 1-3
1.4.5 BioObjectimmutability 1-3
1.4.6 Rationale for metadata approach 1-4
2. BSA Modules and Interfaces 2-1
2.1 Module DsLSRBioObjects. 2-1
211 General......... ... 2-2
212 StrandType......... 2-2
213 BaSiS. ... 2-3
214 Interval...... 2-4
215 SeqgRegion e 2-5
21.6 Annotation 2-9
2.1.7 SegAnnotation 2-13
2.1.8 Identifier. 2-16
2.1.9 BioSequencCe.u i 2-20
2.1.10 Sub-types of BioSequence 2-26
2.1.11 CodeRule 2-31
2.1.12 GeneticCode. 2-33
2.1.13 AlignmentElement 2-35
2.1.14 AlignmentElementlterator 2-37
2.1.15 Alignment............. 2-39
2.1.16 Alignment Examples 2-47
2.1.17 Assembly L. 2-49
2.1.18 SearchHit........... 2-50
2.1.19 SimilaritySearchHit 2-53
2.1.20 BioSequenceldentifierResolver 2-55

Biomolecular Sequence Analysis V1.0 December 1999 i

Contents

2.1.21 SearchResult........................... 2-56
2.1.22 AnnotationFactory (Optional). 2-60
2.1.23 BioSequence factories (Optional). 2-62
2.1.24 BioSequence iterators (Optional) 2-65
2.1.25 GeneticCodeFactory (Optional) 2-70
2.1.26 CharacterAlignmentEncoder (Optional). 2-72
2.1.27 SingleCharacterAlignmentEncoder (Optional). 2-76
2.1.28 AlignmentEncoder factories (Optional) 2-79
2.2 Module DsLSRANalysis. o 2-80
221 General.......... e 2-81
2.2.2 AnalysisType i 2-82
2.2.3 InputPropertySpec 2-84
2.2.4 OutputPropertySpec. 2-86
2.25 AnalysisState 2-87
2.2.6 AnalysisEvent................ 2-89
2.2.7 Sub-types of AnalysisEvent 2-90
2.2.8 AnalysisService i 2-92
229 JobControl 2-96
2.2.10 Analysisinstance........................ 2-98
2.2.11 SequenceDiagrams 2-102
3. Domain Model. 3-1
31 Metadata. 3-1
3.1.1 Roleof XML 3-1
3.1.2 Roleof DTD...... ... 3-2
3.1.3 DomainMetadata....................... 3-3
3.2 Classificationof Analyses 3-5
321 Searching 3-5
3.22 Alignment........... 3-5
3.23 Utilities. 3-6
Appendix A-References. e A-1
Appendix B-GeneticCodes. B-1
Appendix C-Complete IDL. i C-1
Appendix D - Domain Model DTDand XML D-1
Appendix E - Future Direction of Metamodel. E-1
Glossary. ... e Glossary-1

Biomolecular Sequence Analysis V1.0 December 1999

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

Biomolecular Sequence Analysis V1.0 December 1999 1

Associated OMG Documents

The CORBA documentation is organized as follows:

®* Object Management Architecture Guidefines the OMG's technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

® CORBA: Common Object Request Broker Architecture and Specificaimdains
the architecture and specifications for the Object Request Broker.

®* CORBAservices: Common Object Services Specificabatains specifications for
OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for Information,
Requests for Proposals, and Requests for Comment and, with its membership, evaluating
the responses. Specifications are adopted as standards only when representatives of the
OMG membership accept them as such by vote. (The policies and procedures of the OMG
are described in detail in ti@bject Management Architecture Guife

OMG formal documents are available from our web site in PostScript and PDF format. To
obtain print-on-demand books in the documentation set or other OMG publications, con-
tact the Object Management Group, Inc. at:

Acknowledgments

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701
USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303
pubs@omg.org
http://www.omg.org

The following companies submitted and/or supported parts of this specification:

Concept Five Technologies, Inc.

EMBL-EBI (European Bioinformatics Institute)
Genome Informatics Corporation

Millennium Pharmaceuticals, Inc.
Neomorphic Software, Inc.

NetGenics, Inc.

Oxford Molecular Group

Sanger Centre

2 Biomolecular Sequence Analysis V1.0 December 1999

Biomolecular Sequence Analysis
Overview 1

The domain of biomolecular sequence analysis comprises the sub-domains of biological
objects and analysis mechanisms. The modules that address these areas are described i
this order.

1.1 Module DsLSRBIioObjects

Biological objects that are central to this specification incBid&equence , which is
specialized intdNucleotideSequence andAminoAcidSequence . AnAnnotation

object is provided, which is specialized il8egAnnotation for usage wittBioSe-

quences . SegAnnotations can apply to specific parts of a sequence, and the mecha-
nism to refer to these regions is providedS3ggRegion andinterval.

CompositeSegRegion provides the ability to ne§eqRegions . GeneticCode ,
associated with an organism, is an auxiliary object needed when translating sequences.
The interfacelignment and ancillary types are used for representing comparisons
between sequences or sequence families. Itis also used in desShibillagitySearch-

Hits (i.e., matches found in sequence databaseAasemblies . SearchHit and
SearchResult are used primarily for representing the results of similarity searches (e.g.,
BLAST).

TheAnnotation factory, theBioSequence iterators and factorie§eneticCode fac-
tory, andAlignmentEncoders and factories are optional interfaces.

1.2 Module DsLSRAnNalysis

TheDsLSRAnalysis module defines the components for supporting sequence analysis
through a generic analysis design. The module provides the means to interrogate analyse
inputs, output, and functionality. An analysis can be executed asynchronously as well as
synchronously based on the client invocation. Executing analyses can be monitored by
subscribing to an event channel or polling for state.

Biomolecular Sequence Analysis V1.0 December 1999 1-1

1-2

1.3 Domain Model

The domain model is expressed in XML. The domain model includes a simple classifica-
tion of analyses. This is in response to the mandatory requirement of the RFP, and serve:s
to organize the analyses into groups in a way that matches closely with how researchers
and bioinformaticists think about and utilize such analyses.

This classification of analyses consists of three broad categories.
® Searching - including similarity searching (e.g., BLAST)
¢ Alignment - including contig assembly

® Utilities - including molecular weight and GC content

1.4 General Remarks

This document contains a proposal for a standard that addresses the representation of a
number of biological objects, as well as mechanisms for analyzing them.

A few design principles and patterns that we have used are outlined first.

1.4.1 Objects-by-value

This document makes extensive use of objects-by-value (OBV, OMG Document
orbos/98-01-18). This is a new OMG standard for the so-caedlkebtype which is an

entity that is halfway between an IDhterface and an IDLstruct. They are not yet

widely supported by all ORBs, but we think they are a very useful construct, as they prom-
ise to provide:

® choice: the client can choose to make the object ‘local’ or leave it remote
® better scalability: only a single round trip transfers the whole state of the object
® extendibility through inheritance

* null value semantics.

We have used OBValuetypesessentially as if they were extendible structs, using the fol-
lowing constraints:

® no methods
® all members / attributes apablic
® inheritance only of/aluetypes(no “supports Somelnterfacé)

® inheritance usingruncatable (i.e., truncation of sub-types to super-type is
allowed).

Note that we have not used factory methods in our valuetypes. See the appropriate lan-
guage mapping specifications for details on using ValueFactories.

Biomolecular Sequence Analysis V1.0 December 1999

1.4.2 Returning multiple results

If a method has to return a multi-valued result to the caller, there is a design choice of
returning these elements directly as a list, or through an iterator, or using a combination of
both. We have adopted the latter, hybrid approach, to allow the client to choose between
the convenience of directly returned lists and the scalability of iterators. The methods hav-
ing a multi-valued result use have:

® a list return type
® a parametein unsigned long how_many

® a parameteout Anlterator the_rest

The client specifies that it wishes to receive a list of no morehitsanmany elements as

the direct result. The remaining elements, if any, can be retrieved through the iterator
returned in th@ut parameter. The iterators allow the retrieval of one element at a time, or
several at once. This pattern was in fact taken directly from the CosPropertyService, and
provides maximum flexibility to client programs.

A multi-valued result, either returned directly or through an iterator, is guaranteed not to
contain duplicates. If a multi-valued result type is ordered and iterators are involved, the
ordering is the same as that achieved by not having used any iterators.

1.4.3 Identifier

Many entities in molecular biology require ID strings, usually to uniquely identify it in a
certain context. The current document also uses strings for ID attributes, but constrains
their syntax and semantics to improve interoperability. To make the intended use of these
strings clearer,

typedef string Identifier;

is provided and used in this proposal.

1.4.4 Composite pattern

The CompositeSeqRegion valuetype implements the Composite design pattern
[Gamma et al., 1995]. This pattern composes entities into tree structures to represent hier
archies. The Composite pattern treats individual objects and composites uniformly.

A biological example using the Composite pattern is a gene being composed of coding
regions from a set of exons.

1.4.5 BioObject immutability

All BioObjects in this specification, with the single exceptioBufSequence , are

immutable. Modifying other BioObjects is considered out of scope for sequence analysis,
as defined by the RFP. Since it is clear that the results of many sequence analyses produc
information that is frequently attached to sequences as annotations, we do provide the
add_annotation() method inBioSequence .

BSA V1.0 General Remarks December 1999 1-3

1-4

Implementers are free to choose to support mutable BioObjects, taking responsibility for
the associated life cycle issues.

1.4.6 Rationale for metadata approach

A number of the initial submissions to the RFP for sequence analysis explored the use of
metadata to describe the various types of sequence analyses that might be available to a
client. In response to the RFP requirement for the specification of a domain model for
sequence analysis, the metadata approaches varied from string descriptors, structs and
arrays of structs to well defined IDL interfaces.

In the process of preparing this RFP response the submitters considered a number of via-
ble approaches to metadata for sequence analyses. There was a strong desire to leverag
existing solutions if possible. A predecessor to this submission described the metadata
model using valuetype based extensible structs. This approach is carried into the current
submission. In recognition of the increasing use of XML to provide data descriptions for
application metadata, the submission was enhanced to also support retrieval of XML
based metadata. An XML DTD defining the metadata model has been introduced as well.
Additionally the mechanism used to fetch metadata descriptions for analyses has been
enhanced to support the introduction of new XML based metadata by supplying a tag that
identifies the type of metadata described. It is expected that this tag-based retrieval
approach could be used to provide access to OCL, XMI, or other formatted metadata in the
future. In particular the submitters would have liked to leverage XMl for metadata
description but, in the absence of clear examples of its use, chose to adopt a model basec
on our previous joint submission and to provide for extension in the future.

Biomolecular Sequence Analysis V1.0 December 1999

BSA Modules and Interfaces 2

2.1 Module DsLSRBioObijects

The analysis of biomolecular sequence information takes place within the broader
domain of computational biology. This domain presents a very heterogeneous, rapidly
evolving environment that has proven difficult to standardize. To offer a design that is
both complete and practical for the field of sequence analysis, this specification
includes an IDL specification foknnotations and so-calledGegAnnotations

which can be likened to Features in the DDBJ/EMBL/GenBank flat file format. These
two data components serve to incorporate and organize additional information relevant
to the sequence data. Examples include organism source information, biological
descriptors, cross-references, molecular characterizations, known sites and variations
within the sequence, bibliographic references, and relations to known diseases.
Annotations andSegAnnotations can also be attached to a sequence to carry new
information that is computationally inferred, or experimentally determined. We believe
that it is necessary to offer users an easy, extensible interface to organize and link this
resulting information to biomolecular sequences either as whole-sequence
Annotations or region-specificSeqAnnotations (Features).

Existing standards that can be represented with the current proposal and to some exten
have shaped it are: the NCBI datamodels; the DDBJ/EMBL/GenBank Feature Table
Document; various sequence file formats (Fasta, EMBL/GenBank, GCG), and various
sequence analysis tools (BLAST, FastA, Smith-Waterman, ClustalW, Wise2, Grail, the
GCG suite).

The alignment portion of the response is aimed to effectively model all types of
BioSequence andBioSequence related alignment problems in biomolecular
sequence analysis. This ranges from the relatively simple cases of a pairwise alignment
of two DNA sequences, to the complex case of a profile-HMM compared to genomic
DNA.

Biomolecular Sequence Analysis V1.0 December 1999 2-1

2.1.1 General

/IFile: DSLSRBioObjects

#ifndef _DS_LSR_BIOOBJECTS_IDL_
#define _DS_LSR_BIOOBJECTS_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosPropertyService.idl>

module DsLSRBioObjects
{

h

#endif // _DS_LSR_BIOOBJECTS_IDL_

...

#pragma prefix "omg.org"

To prevent name space pollution and name clashing of IDL types, this module (and all
modules defined in this specification) uses the pragma prefix that is the OMG's DNS
name.

#include <CosLifeCycle.idl>

NucleotideSequence , AminoAcidSequence , Annotation , GeneticCode ,
Alignment , andSearchResul t all inherit fromLifeCycleObject .

#include <CosPropertyService.idl>

Properties are used Annotation , SearchHit , andSearchResult .

StringList

typedef sequence<string> StringList;

Description: Used to pass and return a sedtiofigs .

2.1.2 StrandType

There is an intrinsic directionality of biological sequence data, which proceeds 5' to 3'
for nucleic acids and N-terminal to C-terminal for proteins. For

NucleotideSequences , StrandType provides an indication of whether the
SegRegion refers to the original plus-strand, the complementary minus-strand, or
both strands of a double-stranded molecule. SthendType values are used in
SegRegion .

Biomolecular Sequence Analysis V1.0 December 1999

<<enum>>
StrandType

STRAND_PLUS
STRAND_MINUS
STRAND_BOTH

STRAND_NOT_KNOWN
STRAND_NOT_APPLICABLE

Figure 2-1

The StrandType enumeration.

enum StrandType {STRAND_NOT_KNOWN, STRAND_NOT_APPLICABLE,
STRAND_PLUS, STRAND_MINUS, STRAND_BOTH}

STRAND_NOT_KNOWN

STRAND_NOT_KNOWN should be used in all case
not indicated below.

STRAND_NOT_APPLICABLE

STRAND_NOT_APPLICABLE should be used for
regions ofAminoAcidSequences .

STRAND_PLUS

STRAND_PLUS should be used to indicate the
original plus-strand of &lucleotideSequence .

STRAND_MINUS

STRAND_MINUS should be used to indicate the
reverse complement of the plus-strand of a
NucleotideSequence .

STRAND_BOTH

STRAND_BOTH should be used to indicate both
strands of a double-stranddldicleotideSequence .

2.1.3 Basis

n

The Basis enumeration values are used to specify whethéremotation originated
from an experimental result or a computational analysis, such as from the application
of a sequence analysis program.

BSA V1.0

Module DsLSRBioObjects

Dec. 1999

2-3

<<enum>>
Basis

BASIS_NOT_KNOWN
BASIS_EXPERIMENTAL
BASIS_COMPUTATIONAL
BASIS_BOTH

Figure 2-2 The Basis enumeration

enum Basis {BASIS_NOT_KNOWN, BASIS_EXPERIMENTAL,
BASIS_COMPUTATIONAL, BASIS_BOTH}

BASIS_NOT_KNOWN BASIS_NOT_KNOWN should be used in all cases
not indicated below.

BASIS_EXPERIMENTAL BASIS_EXPERIMENTAL should be used to indicate
an experimental result.

BASIS_COMPUTATIONAL BASIS_COMPUTATIONAL is used to indicate a

computational analysis, such as from the application
of a sequence analysis program.

BASIS_BOTH Any result determined both experimentally and
computationally should udBASIS_BOTH .

2.1.4 Interval

A contiguous sub-string within a larger string is specified usindrtieeval valuetype.

An Interval consists of a start and length, defining the starting position of the sub-
string and the size of the sub-string (number of unBg)Sequences are numbered
starting at start 1, in keeping with the existing practice in the field of molecular
biology. Aninterval on aBioSequence of start=5, length=10 would start at the fifth
position and include up to the 14th position of a sequence.

The use of atart andlength instead of start and end provides a powerful mechanism
for defining intervals along biological sequence that works well for both linear and
circular molecules.

Biomolecular Sequence Analysis V1.0 December 1999

<<valuetype>>
Interval
start : unsigned long
length : unsigned long

Figure 2-3 The Interval valuetype

valuetype Interval

{
public unsigned long start;
public unsigned long length;

public unsigned long start;

Description: start is an unsigned long integer that defines the starting
position of the sub-stringBioSequences are numbered
starting at 1.

Return value: Returns amsigned long .

public unsigned long length;

Description: length is an unsigned long integer that defines the size ofithe
sub-string (number of units).

Return value: Returns amsigned long .

2.1.5 SegRegion

A SeqRegion is a specialization of Interval and specifies a location on a
BioSequence . A further specializationCompositeSeqRegion , may contain zero
or more sub-regions. In this specificati®@gqRegion is used primarily to specify the
location along &8ioSequence to which aSegAnnotation pertains.

The SeqRegion model is not intended to address all types of sequence region
specification found in the GenBank/EMBL/DDBJ feature table. Supported are intervals
with non-fuzzy end points and composites of such intervals. Examples of these include
a PROSITE pattern located at 74 and ending at 80, or a gene made of 5 spliced exons

We believe the definition dbeqRegion is broad enough to handle many kinds of
commonly occurring sequence-based regions and addresses the needs of most
molecular biologists. Due to their complexity and rarity of usage in sequence analysis

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-5

software, fuzzy sequence regions are not explicitly supported at the present time. It is
not currently possible with the present IDL to associate a sBefg@egion with a set
of BioSequences .

<<valuetype>>
Interval

start : unsigned long
length : unsigned long

<<enum>>

<<valuetype>> Strand Ty pe
SegRegion 1/STRAND_NOT_KNOWN
strand_type : StrandType STRAND_NOT_APPLICABLE
start_relative_to_seq_end : boolean STRAND_PLUS
STRAND_MINUS

% STRAND_BOTH

<<valuetype>> <<enum>>
CompositeSeqRegion SeqRegionOperator
sub_regions : SeqRegionList NONE
region_operator : SeqRegionOperator 1 [JOIN
ORDER

Figure 2-4 The SegRegion and CompositeSeqRegion valuetypes

SegRegion

A SeqRegion extends Interval and contains thteand_type and
start_relative_to_seq_end members that specialize it for use with biological
sequences.

valuetype SegRegion : Interval

{
public StrandType strand_type;

public boolean start_relative_to_seq_end;

Biomolecular Sequence Analysis V1.0 December 1999

public StrandType strand_type;

Description: FomMucleotideSequences , strand_type provides an
indication of whether th&eqRegion refers to the original
plus-strand, the complementary minus-strand, or both
strands of a double-stranded molecu&TRAND_MINUS
should be used to indicate a region on the reverse
complement of a&NucleotideSequence . For these
regions,start andlength (inherited frominterval) refer to
positions within the coordinate system of the original, given
strand. strand_type should be
STRAND_NOT_APPLICABLE for regions of
AminoAcidSequences

Return value: Returns &trandType .

public boolean start_relative_to_seq_end;

Description: Thestart_relative_to_seq_end member can modify the
semantics of the start member: if
start_relative_to_seq_end is TRUE,start is to be taken
from the end of the sequence, rather than the beginning| No
reverse-complement is implied. That is, if sequence has a
length 100, and SeqRegion hstart =20 length =10, and
start_relative_to_seq_end =TRUE, the region runs from
position 81 up to and including 90.

Return value: Returns laoolean .

SegRegionList

typedef sequence<SegRegion> SeqRegionList;

Description: Used to pass a set3#qRegions .

CompositeSegRegion

CompositeSeqRegion , a specialization ocfeqRegion , may contain zero or more
sub-regions. ACompositeSeqRegion 's sub-regions may overlap. The nested or
hierarchical behavior is useful in describing complex featureBioBequences .
There is no limit to nesting.

A CompositeSegRegion with sub-regions will itself not hav&art andlength data
defined. The whol€ompositeSeqRegion tree will be passed as an object graph by
the objects by value (OBV) functionality.

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-7

2-8

valuetype CompositeSeqRegion : SeqRegion

enum SeqRegionOperator

// Region has no sub regions or the sub regions
/I don't need special treatment.

/I Sub regions should be joined end-to-end to

/I form a contiguous region.

/I Sub region order is important.

public SeqRegionList sub_regions;
public SeqRegionOperator region_operator;

{
{
NONE,
JOIN,
ORDER
k
k

enum SegRegionOperator {NONE, JOIN, ORDERY};

NONE NONE should be used whelOIN andORDER are no
applicable.

JOIN JOIN should be used when the sub-regions are to be
concatenated into a single region.

ORDER ORDER should be used when the sub-regions are to be taken

as an ordered set of sub-regions.

public SegRegionList sub_regions;

Description:

sub_regions contains the constitue®egRegions . If there
are no sub-regions, the&@egRegion should be used insteag
of CompositeSegRegion .

Return value:

Returns BeqRegionList .

public SegRegionOperator region_operator;

Description:

Theregion_operator takes on a value of the
SegRegionOperator enumeration. It specifies how the su
regions are to be treated. The sub-regions could be
concatenated into a single regiatO(N) or taken as an
ordered set of sub-region®RDER). In the latter case,
unknown segments of sequence may intervene.

Return value:

Returns $egRegionOperator .

Biomolecular Sequence Analysis V1.0 December 1999

2.1.6 Annotation

The Annotation interface defines an annotation that could, in principle, be associated
with any bio-object that requires description using name-value pairs.

All attributes inAnnotations are readonly, in keeping with our immutability policy
for this specification.

Annotation inherits fromCosLifeCycle::LifeCycleObject

<<Interface>>
LifeCycleObject

L

<<Interface>>
Annotation

name : string

value : any

the_basis : Basis

gualifiers : CosPropertyService::Properties

Figure 2-5 The Annotation interface

interface Annotation : CosLifeCycle::LifeCycleObject

{
readonly attribute string name; /I type of annotation
readonly attribute any value; // the annotation
readonly attribute Basis the_basis; // basis for annotation
readonly attribute CosPropertyService::Properties qualifiers;

h

readonly attribute string name;

Description: Thename attribute specifies the general type of the
annotation that is contained in the value attribute that contgins
the annotation itself. The value is of typey and therefore
could contain anything from a block of free text to a
specialized datatype.

Return value: Returns string .

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-9

2-10

readonly attribute any value;

Description:

Thevalue attribute contains the annotation itself.

Return value:

The value is of typay and therefore could contain anythin
from a block of free text to a specialized datatype.

readonly attribute Basis the_basis;

Description:

Annotation has abasis attribute, which specifies whether
the annotation originated from an experimental result
(BASIS_EXPERIMENTAL) or a computational analysis
(BASIS_COMPUTATIONAL), such as from the application
of a sequence analysis program. Basis provides for a co
grained classification of an Annotation.

Return value:

The value is of tyBASIS.

readonly attribute CosPropertyService::Properties qualifiers;

Description:

Annotation contains additional information in the form of
so-called qualifiers, represented by the
CosPropertyService::Property struct, which enables

N
arse-

them to support many kinds of keyword controlled attributes.

These properties are essential for covering the full spectn
of current annotation and feature information.

Return value:

Theualifiers attribute is of type
CosPropertyService::Properties and so provides a plac
for arbitrary name-value pairs.

AnnotationList

11

typedef sequence<Annotation> AnnotationList;

Description:

Used to pass a set/fnotations .

Biomolecular Sequence Analysis V1.0 December 1999

Iteratorinvalid

exception Iteratorinvalid
{
string reason;

h

Description: Thdteratorlnvalid exception is raised for cases where the
iterator is no longer valid (e.g., new elements have been added
to the underlying collection).

Return value: Returns string containing the reason that the iterator is
invalid.

Annotationlterator
Annotationlterator provides a strongly typed iterator fAnnotations .

<<Interface>>
Annotationlterator

next()
next_n()
reset()
destroy()

Figure 2-6 The Annotationlterator interface

interface Annotationlterator

{
boolean next(out Annotation the_annotation)
raises(lteratorinvalid);
boolean next_n(in unsigned long how_many,
out AnnotationList annotations)
raises(Iteratorinvalid);
void reset();
void destroy();
h

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-11

boolean next(out Annotation the_annotation)
raises(lteratorinvalid);

Description: Thenext() operation gets the neRnnotation in its out
parametethe_annotation and returns a boolean value. If
the iterator is at the end of the set, it returns FALSE and |sets
the outputthe_annotation parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raiselderatorinvalid if the iterator is no longer valid (e.g
the underlying collection has changed).

boolean next_n(in unsigned long how_many,
out AnnotationList annotations)
raises(lteratorinvalid);

Description: next_n() returnsAnnotations in the AnnotationList out
parametemlnnotations , containing at most the number
specified in the first parametengw_many) and returns a
boolean value directly. When it is at the end of the set it
returns FALSE and thannotations parameter will have
length zero. In all cases the lengthaminotations will be
the minimum ofhow_many and the number of elements
remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: RaiseBeratorinvalid if the iterator is no longer valid (e.g/,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raise€EORBA::NO_IMPLEMENT if the iterator cannot be
reset (e.g., the iterator provides access to streaming datal)).

void destroy();

Description: destroy() frees the iterator object.

2-12 Biomolecular Sequence Analysis V1.0 December 1999

2.1.7 SegAnnotation

For biomolecular sequencesnnotations are specialized t8egAnnotations to
include sequence position information in the form of $lsgRegion attribute (see
above). Essentially, this attribute indicates to which part of the sequence the
annotation pertains, and is analogous to features in the DDBJ/EMBL/GenBank
formats. Typical examples include gene, promotor region, and exons.

SegAnnotation is used to describe an annotation that applies only to a specified
region. Annotation should be used for an annotation that applies to the associated
BioSequence as a whole. AlthougBegAnnotations with null regions are also
interpreted to apply to thRioSequence as a whole, this should be avoided.

SegAnnotation can associate a BioSequence with analytical results or descriptive
information such as biological function. A sequence analysis run could generate
SegAnnotation objects as output. In additioBjoSequence factories can be used
to attachSegAnnotations to theBioSequences .

It is not currently possible to navigate fronEagAnnotation to aBioSequence

using the interfaces defined in this specification. One can, however, obtain a set of
SegAnnotations given aBioSequence . This is sufficient from the point of view of

a sequence analysis application, which could produce annotated sequences. The
submitters of this proposal feel that there are richer models for annotations on
sequences (e.g., complex hierarchies or graphs of relationships between annotations
and sequences as well as the annotations themselves). Sequence annotations are
expected to be addressed in a future RFP.

To illustrate the uses and coverageAohotations andSegAnnotations with
regard to the results of Sequence Analyses, a few more examples are listed below:

* A motif analysis returns a labeled pattern (e.g., KRINGLE) matching a given region
of the protein sequence.

® A restriction map analysis returns a list of sites, for the given enzymes, that can
then be used to annotate the DNA sequence.

®* The result of homology analysis suggests that the sequence belongs to a particular
gene family, which can be annotated onto kheleotideSequence including
information regarding degree of certainty.

®* ORF and gene-finding analyses identify coding regions that are later added as
oriented gene features on the sequence.

®* Homologous regions found by using an alignment analysis can be annotated as
SegAnnotations on the query sequence.

* An EMBL-curated phosphorylation site on a protein stored (imported) as a
SegAnnotation on theAminoAcidSequence .

* |dentified mutations from multiple DNA sequences can be merged into
SegAnnotations on a consensus sequence.

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-13

ExtendingSeqAnnotation provides a mechanism for creating strongly typed

sequence features. This may be appropriate for certain stereotypical sequence feature:
such as genes, exons, and transcriptional regulatory sites that have complex but
reasonably well defined semantics. These specialbsephnnotations could define

the necessary data types and sub-feature containment relationships as appropriate for
the specific feature.

The issue of annotatingioSequences as well as other bio-objects is complex and
we are not proposing a definitive solution in the present specification. The proposed
IDL is workable for biomolecular sequence analysis and there is sufficient room for
elaboration by a future LSR Annotation RFP.

<<lInterface>>
Annotation

<< >>
<<lInterface>> gslu;éy?sn
SegAnnotation aReg
region : SeaRedion strand_type : StrandType
9) areg 1 1 |start_relative_to_seq_end : boolean

Figure 2-7 The SegAnnotation interface

2.1.7.1 SegAnnotation Interface

For biomolecular sequencesnnotations are specialized t&egAnnotations to
include sequence position information in the form of $lsgRegion attribute (see
above). Ifregion is null, the annotation applies to the associ®@®$equence (s) as
a whole. Otherwise, the annotation applies only to the specified regiootations
should be used instead &gAnnotations with null SeqRegions .

interface SegAnnotation : Annotation

{
k

readonly attribute SeqRegion seq_region;

readonly attribute SeqRegion seq_region;

Description: Contains the sequence position information.

Exceptions: Returns SegRegion .

2-14 Biomolecular Sequence Analysis V1.0 December 1999

SegAnnotationList

typedef sequence<SegAnnotation> SeqAnnotationList;

Description: Used to pass a setS#gAnnotations .

SegAnnotationlterator
SegAnnotationlterator provides a strongly typed iterator fSeqAnnotations .

<<Interface>>
SegAnnotationlterator

next()
next_n()
reset()
destroy()

Figure 2-1 The SegAnnotationlterator interface

interface SegAnnotationlterator

{
boolean next(out SeqgAnnotation seq_annotation)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out SegAnnotationList seq_annotations)
raises(lteratorinvalid);
void reset();
void destroy();
h

boolean next(out SegAnnotation seq_annotation)
raises(lteratorinvalid);

Description: Thenext() operation gets the neSegAnnotation in its out
parameter &g_annotation and returns a boolean value. If
the iterator is at the end of the set, it returns FALSE and sets
the outputseq_annotation parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.
Exceptions: RaiseReratorlnvalid if the iterator is no longer valid (e.g.

the underlying collection has changed).

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-15

2-16

boolean next_n(in unsigned long how_many,
out SegAnnotationList seq_annotations)
raises(lteratorinvalid);

Description: next_n() returnsSegAnnotations in the
SegAnnotationList out parameteseq_annotations ,
containing at most the number specified in the first paramgter
(how_many) and returns a boolean value directly. When it is
at the end of the set it returns FALSE and the
seq_annotations parameter will have length zero. In all
cases the length afeq_annotations will be the minimum
of how_many and the number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: RaiseReratorinvalid if the iterator is no longer valid (e.g.

the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raise€ORBA::NO_IMPLEMENT if the iterator cannot be
reset (e.g., the iterator provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.

2.1.8 ldentifier

There is a need for a data type to indicate an entity's identity in very many situations.
In most cases, this need is, or can be addressed by using a string type. The advantage
are that it is simple, lightweight, and used universally throughout the realm of
computing (and indeed outside). However, the risk of using strings is that they can be
too flexible, both in terms of syntax and semantics. This easily results in the lack of
interoperability. To allow strings, yet mitigate their potential for abuse, this standard
uses the syntax convention @bsNaming::StringName as described in the
Interoperable Naming service. This convention is mainly a syntactical one; in no way
is the use of a naming service implementation required or implied (but it is not
precluded either).

Biomolecular Sequence Analysis V1.0 December 1999

2.1.8.1 Identifier Description

A brief description is as followsLosNaming::Name is a list of struct
NameComponents . (For the purpose of illustration,dameComponent can
likened to a directory or filename, whergassNaming::Name constitutes a full
path-name). The struttameComponent has string members id and kind. To
transform aCosNaming::Name into a string, all itdfNameComponents are
represented as stringgl.kind".

* |f the kind-field is empty, this becomes simpig";
¢ if the id-field is empty, this becomeskind;

¢ finally, the Naming service allows both id and kind to be empty, which is

represented as ".".

The full stringifiedCosNaming::Name is obtained by concatenating all the
NameComponents using "/" as a separator character. The character "\" is designated
as an escape character; if it precedes any of the special characters ".", "/" and "\", they
are taken as literal characters. The typedef sttiogNaming::StringName is

provided for strings used as object names using this convention.

This specification adopts this syntax convention, but requests that the components of
theldentifier data type adhere to some additional semantic constraints. These rules do
not follow from, nor are implied by any semantics of the Naming Service. The
additional constraints make this data type sufficiently different from
CosNaming::StringName to warrant the dedicated typedef stridentifier .

typedef string Identifier;

Description: In this description, ‘component’ means: the sub-string of @n
Identifier that corresponds to one
CosNaming::NameComponent ; likewise, id-field and
kind-field correspond to the equivalent fields of
NameComponent .

The rules are as follows:

®* Names can refer to collections of entities (such as databases), or to entities within
such collections. Names referring to collections consist of exactly one component;
names referring to entities within collections consist of at least two components.

® The first component represents the data source. Data sources can be anything:
transient collections, local databases, public repositories. It is up to the
implementation to document the accepted names for the data source.

®* The empty name (".") is valid for the first component, and represents the 'local' or
‘default’ collection. It is up to the implementation to document what the semantics
of 'local' or 'default’ is.

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-17

®* Names that refer to entities within collections consist of two or more components.
The second component of such names represents an identifier that is unique in the
context of the data source. No empty id-fields are allowed in this or any further
components.

* |f two components are not enough to uniquely identify an entity, an Identifier can
contain more than two components, but no more than necessary to make the
identification unique. That is, an Identifier may not be used to freely attach textual
information.

®* The only characters valid in a component are "a" through "z", "0" through "9", and
"-" (hyphen), "_" (under_score), "$" and "." (period). Use of the latter is
discouraged since it has a special meaning in the stringifying convention, and has
therefore to be escaped.

®* To comply with existing practice in the field of public data repositories, it is
strongly advised that implementations do string comparisons in a case-insensitive
manner. The Naming Service standard fails to mention whether type-case is, for
identification purposes, significant or not. Implementations that use a third-party
implementation of the Naming Service may therefore wish to restrict Identifiers to
only use one type-case. It is up to an implementation to state whether mixed type-
case is allowed, and whether type-case is significant in comparisons.

Theid andkind parts of the string components Identifier are used as follows:

®* The id-field of a component contains the principal value that makes it unique in the
scope provided by the preceding component. It may only be empty in the case of the
first component of an Identifier.

®* The kind-field of a component is used to represent information indicating the
release (for a data source) or version (for an entry) of an entity, and can be empty.
If kind is empty and entities with non-empty kind-fields exist, an empty kind field
becomes synonymous with 'the latest release or version'. It is up to the
implementation to document the syntax and semantics of the version information.

The adoption of this convention has the following advantages:
® it is simple and lightweight,

® jt has a well-defined and 're-used' syntax,

® it is compatible with existing practice,

® it is sufficiently flexible to allow for sub-ids if necessary.

2-18 Biomolecular Sequence Analysis V1.0 December 1999

IdentifierList

typedef sequence<ldentifier> IdentifierList;

Description:

Used to pass a setldéntifiers .

IdentifierNotFound

exception ldentifierNotFound

{
Identifier id,;
h
Description: ThddentifierNotFound exception is raised for cases where

the database and the identifier within the database can be
resolved but the Identifier is not present.

Return value:

Returns tHdentifier that could not be found.

IdentifierNotResolvable

exception IdentifierNotResolvable

{
Identifier id;
string reason;
h
Description: ThedentifierNotResolvable exception is raised for cases

where database and the identifier within the database cannot
be resolved such that the Identifier cannot even be searched
for.

Return value:

Returns thdentifier that could not be resolved and a string
containing the reason resolution was not possible.

IdentifierNotUnique

exception IdentifierNotUnique

{
Identifier id;
IdentifierList ids;
h
Description: ThedentifierNotUnique exception is raised for cases when

the Identifier specification is ambiguous and returns more
than one object.

Return value:

Returns the non-uniglaentifier and anldentifierList
containingldentifiers for all objects that id identifies.

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-19

2-20

2.1.9 BioSequence

A BioSequence is an abstraction of a biological sequence, such as the ordered
nucleotides of a DNA chain or the ordered amino acid residues of a protein molecule.
A BioSequence can be of any length and significance; there is no implication that it
corresponds to (e.g., a gene). BieSequence interface provides essential
characteristics of biological sequencearfe, id, description , length) and

operations for obtaining the sequence string itself or a sub-sequence as an ASCII string
of IUPAC-IUB upper case single letter codegd(), seq_interval()).

Additional operations withiBioSequence provide access to any annotations
associated with thBioSequence (get_annotations()) or the number of annotations
(num_annotations()).

Annotations can be attached ®ioSequences directly using the

add_annotation() method ofBioSequence or by using théBioSequence

factories. ThusBioSequences are mutable at the level of their associated
annotations. This minimal mutability model permits new annotations to be attached to
aBioSequence and prevents situations where multiB®Sequences might exist

on a server with different sets of annotations but representing the same sequence. A
NotUpdateable exception can be used to indicate thatAanotation cannot be

added to thiBioSequence .

Standard container behavior applies here. If a client destrBysS®equence , it is
also up to the client to manage the contents, namelgirihetations .

<<Interface>>
BioSequence

name : string

<<enum>>
Basis

BASIS_NOT_KNOWN

BASIS_EXPERIMENTAL
BASIS_COMPUTATIONAL

BASIS_BOTH

id : Identifier
description : string

1 seq : string 1 1 <<Interface>>
length : unsigned long Annotationlterator
the_basis : Basis 1

seq_interval() 0..*

get_annotations()

num_annotations() <<Interface>>
add_annotation() Annotation

name : string

value : any

the_basis : Basis

gualifiers : CosPropertyService::Properties

Figure 2-9 The BioSequence interface

Biomolecular Sequence Analysis V1.0 December 1999

IntervalOutOfBounds

exception IntervalOutOfBounds

{
Interval invalid,;
Interval valid;
¥
Description: ThentervalOutOfBounds exception is raised if an

Interval's start is less than 1 or if gg&rt +length -1 is greater
than thelength of theBioSequence . If a BioSequence
represents circular DNA, then this exception should not b
raised.

[1°

Return value:

Returns the invalidterval and the validnterval . The valid
Interval hasstart equal to 1 andength equal to the length
of the BioSequence , the largest allowethterval .

SegRegionOutOfBounds

exception SeqRegionOutOfBounds

{
SegRegion invalid;
Interval valid;
h
Description: TheSeqgRegionOutOfBounds exception is raised if a

SegRegion 's start is less than 1 or if its start+length-1 is
greater than thiength of theBioSequence . The exception
is also raised if a nested sub-region of a
CompositeSeqRegion is invalid. If aBioSequence
represents circular DNA, then this exception should not be
raised.

v

Return value:

Returns the invalgeqgRegion and the validnterval . The
valid Interval hasstart equal to 1 andength equal to the
length of theBioSequence , the largest allowethterval.

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-21

SegRegioninvalid

exception SegRegionlnvalid
{
string reason;

h

Description: TheSegRegioninvalid exception is raised if 8eqRegion
is invalid for sequence translation (e.8trandType is
STRAND_BOTH).

Return value: Returns a string containing the reasorsduyRRegion is
invalid.

NotUpdateable

exception NotUpdateable
{
string reason;

¥

Description: TheNotUpdateable exception is raised if the
BioSequence is immutable.

Return value: Returns a string containing the reasoBib®equence
cannot be updated.

BioSequence

A BioSequence is an abstraction of a biological sequence, such as the ordered
nucleotides of a DNA chain or the ordered amino acid residues of a protein molecule.
The BioSequence interface provides essential characteristics of biological sequences
(name, id, description , length) and operations for obtaining the sequence string
itself or a sub-sequence as an ASCII string of IUPAC-IUB upper case single letter
codes $eq(), seq_interval()).

interface BioSequence

{
readonly attribute string name;
readonly attribute Identifier id;
readonly attribute string description;
readonly attribute string seq;
readonly attribute unsigned long length;
readonly attribute Basis the_basis;
string seq_interval(in Interval the_interval)
raises(IntervalOutOfBounds);
AnnotationList get_annotations(

in unsigned long how_many,
in SegRegion seq_region,
out Annotationlterator the_rest)
raises(SegRegionOutOfBounds, SegRegioninvalid);
unsigned long num_annotations(in SeqRegion seq_region)

2-22 Biomolecular Sequence Analysis V1.0 December 1999

void

raises(SegRegionOutOfBounds, SegRegioninvalid);
add_annotation(
in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds);

readonly attribute string name;

Description:

Thename attribute represents a human-readable common
name for theBioSequence (such as a gene name).

Return value:

Returns string .

readonly attribute Identifier id;

Description:

Thed attribute represents an ID for tB&Sequence .
Typically a database name and key will be encoded in the
Identifier .

Return value:

Returns ddentifier .

readonly attribute string description;

Description:

Thedescription attribute is a concise description of the
sequence typically would include functional information (e.g.,
the contents of the description line from a Fasta file).

Return value:

Returns string .

readonly attribute string seq;

Description:

Theseq attribute contains the actual sequence data. The
entire sequence is returned. Uss_interval() to access
sub-sequences.

Return value:

Returns an ASCII string of IUPAC-IUB upper case single
letter codes representing the entire sequence.

BSA V1.0

Module DsLSRBioObjects Dec. 1999 2-23

2-24

readonly attribute unsigned long length;

Description:

Thdength attribute is the length of tH@ioSequence . The
BioSequence is numbered from 1 tength .

Return value:

Returns amsigned long .

readonly attribute Basis the_basis;

Description:

TheBioSequence basis attribute can be any of the value
of theBasis enumeration and specifies whether the seque
has been experimentally determined
(BASIS_EXPERIMENTAL), computationally determined
(BASIS_COMPUTATIONAL), or both BASIS_BOTH), or
if this information is not knownBASIS_NOT_KNOWN).

n

nce

An example of a computational sequence would be a protein

sequence that was determined by in silico translation of g
experimentally determined DNA sequence.

Return value:

Returns Basis value.

string seq_interval(in Interval the_interval)
raises(IntervalOutOfBounds);

Description:

Provides access to sub-sequences @itgequence . The
Interval argument indicates which sub-sequence should |
returned. The entire sequence may also be obtained usin
seq attribute.

Return value:

Returns an ASCII string of IUPAC-IUB upper case single
letter codes representing the appropriate sub-sequence.

Exceptions:

RaisemtervalOutOfBounds if the Interval's start is less
than 1 or if itsstart+length-1 is greater than the length of
the BioSequence . If a BioSequence represents circular
DNA, then this exception should not be raised.

Biomolecular Sequence Analysis V1.0 December 1999

n

De
g the

AnnotationList get_annotations(
in unsigned long how_many;,
in SeqRegion seq_region,
out Annotationlterator the_rest)
raises(SegRegionOutOfBounds, SeqRegioninvalid);

Description:

Uses the list/iterator hybrid to provide access to the
Annotations . A list of no more thamow_many elements
is returned as the direct result. The remaining elements,
any, are available through the iterator returned inotlte
parameter. Only th8&egAnnotations that overlap
seq_region will be returned. Ifseq_region is null, only
Annotations are returned.

—

Return value:

Returns alnnotationList containing no more than
how_many elements. Thédnnotationlterator provides
access to any remaining elements.

Exceptions:

RaiseSeqRegionOutOfBounds if seq_region is out of
bounds for thiBioSequence .

RaisesSegRegioninvalid if seq_region has an incorrect
StrandType .

unsigned long num_annotations(in SeqRegion seq_region)
raises(SeqRegionOutOfBounds, SeqRegioninvalid);

Description:

Provides access to the numbeAmfiotations associated
with this BioSequence . Only theSegAnnotations that
overlapseq_region will be counted. Ifseq_region is null,
only Annotations are counted.

Return value:

Returns amsigned long .

Exceptions:

RaiseSeqRegionOutOfBounds if seq_region is out of
bounds for thiBioSequence .

RaisesSeqRegioninvalid if seq_region has an incorrect
StrandType .

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-25

2-26

void add_annotation(in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds);

Description: Annotations can be attached ®BioSequences directly
using theadd_annotation() method ofBioSequence .

Return value: RaiselotUpdateable if the BioSequence is immutable.

RaisesSeqRegionOutOfBounds if the Annotation is a
SegAnnotation and the correspondir§eqRegion is out of
bounds for thiBBioSequence .

BioSequencelList

typedef sequence<BioSequence> BioSequencelist;

Description: Used to pass a setBibSequences .

2.1.10 Sub-types of BioSequence

The data typd&ioSequence is an interface representing biological sequences. All
instances of actual biological sequences are expected to derive from one of the
BioSequence sub-types, NucleotideSequence or AminoAcidSequence (or specialized
sub-types thereof).

Sequence information input toBdloSequence or used for querying purposes is case-
insensitive. Sequence information output froBiaSequence is returned using
upper-case ASCII strings of IUPAC-IUB single-letter character codes.

AminoAcidSequence represents a protein sequence and does not contain any
operations. A reverse translation operation that produces a nucleic acid sequence from
the amino acid sequence is a complex operation that is not straightforward to
standardize at this time.

Biomolecular Sequence Analysis V1.0 December 1999

<<lInterface>> <<lInterface>>
BioSequence LifeCycleObject
< 7 —
<<lInterface>> <<lInterface>>
NucleotideSequence AminoAcidSequence
circular : boolean

reverse_complement()
reverse_complement_interval()
translate_seq()
translate_seq_region()

Figure 2-10 The NucleotideSequence and AminoAcidSequence interfaces

UnsignedLongList

typedef sequence<unsigned long> UnsignedLongList;

Description: Used to pass a setwfsigned longs .

ReadingFramelnvalid

exception ReadingFramelnvalid
{
short invalid;
h
Description: TheReadingFramelnvalid exception is raised if the reading
frame is not between -3 and +3, excluding zero
Return value: Returns short containing the invalid reading frame.

NucleotideSequence

NucleotideSequence extendsBioSequence and represents a DNA or RNA
sequence and provides a number of operations for manipulating the sequence data.
There is an intrinsic directionality of nucleotide sequence data, from 5' to 3'.

NucleotideSequence also inherits fronTCosLifeCycle::LifeCycleObject

interface NucleotideSequence : BioSequence, CosLifeCycle::LifeCycleObject

{

readonly attribute boolean circular;
string reverse_complement();
string reverse_complement_interval(in Interval the_interval)

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-27

2-28

string

string

raises(IntervalOutOfBounds);

translate_seq(

in short reading_frame,
out UnsignedLongList stop_locations)
raises(ReadingFramelnvalid);

translate_seq_region(

in SegRegion seq_region,
out UnsignedLongList stop_locations)
raises(SegRegionOutOfBounds, SegRegioninvalid);

readonly attribute boolean circular;

Description:

Thecircular attribute provides a mechanism to indicate
whether aNucleotideSequence is circular, as is the case
for plasmids or certain microbial chromosomes.

Return value:

Returns a TRUE if ticleotideSequence is circular and

FALSE otherwise.

string reverse_complement();

Description:

reverse_complement() returns an upper-case ASCII strin
consisting of the reverse complement of the given
NucleotideSequence .

Return value:

Returns an upper-case ASSiing.

string reverse_complement_interval(in Interval the_interval)
raises(IntervalOutOfBounds);

Description:

reverse_complement_interval() permits the retrieval of a
reverse complement string for a sub-sequence of the give
sequence defined by theterval argument.

>

Return value:

Returns an upper-case ASSiiing .

Exceptions:

RaisekitervalOutOfBounds if the Interval's start is less
than 1 or itsstart+length-1 is greater than thiength of the
NucleotideSequence . If the NucleotideSequence
represents circular DNA, then this exception should not b
raised.

11

Biomolecular Sequence Analysis V1.0 December 1999

string translate_seq(
in short reading_frame,
out UnsignedLongList stop_locations)
raises(ReadingFramelnvalid);

Description:

translate_seq() returns a string representing the conceptual
amino acid translation of the nucleic acid sequence.
translate_seq() requires the reading frame in which the
translation is to be performed. Theading_frame should be
a signed integershort) between -3 and +3, excluding zero. |If
reading_frame is positive, (reading_frame - 1) nucleotides
at the beginning (5' end) of the sequence are ignored. If
reading_frame is negative, its absolute value should be
applied to the 5' end of the complementary (minus) strand.

Return value:

The returnestring consists of upper-case single-letter
IUPAC/IUB character codes for the translated amino acids.
Any internal stop codons are represented by "*'. The
UnsignedLongList out parametestop_locations
contains the locations of any internal stops (terminators) in
protein translation.

Exceptions:

RaiseReadingFramelnvalid if reading_frame is not
between -3 and +3, excluding zero.

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-29

2-30

string translate_seq_region(
in SeqRegion seq_region,
out UnsignedLongList stop_locations)
raises(SegRegionOutOfBounds, SeqRegioninvalid);

Description:

translate_seq_region() performs a translation of a define
region of aNucleotideSequence specified by the
SegRegion argument. No reading frame is necessary beca
the SeqRegion defines the frame. ASeqRegion is
required here instead of an interval because non-contigud
segments of &lucleotideSequence may need to be
specified, as in the case of a DNA sequence containing
introns. If a region submitted for translation contains sub-
regions, all sub-regions are concatenated in depth-first or
prior to translation.

use

us

der

Return value:

The returnestring consists of upper-case single-letter

IUPAC/IUB character codes for the translated amino acids.

Any internal stop codons are represented by *'. The
UnsignedLongList out parametesstop_locations
contains the locations of any internal stops (terminators) in
protein translation.

the

Exceptions:

RaiseSegRegionOutOfBounds if any contained
Interval's start is less than 1 or itstart+length-1 is greater
than the length of thilucleotideSequence . If the
NucleotideSequence represents circular DNA, then this
exception should not be raised.

RaisesSeqRegionlnvalid if seq_region has an incorrect
StrandType .

NucleotideSequencelList

typedef sequence<NucleotideSequence> NucleotideSequencelList;

Description:

Used to pass a setNdicleotideSequences .

AminoAcidSequence

AminoAcidSequence extendsBioSequence and represents a protein sequence and

does not contain any operations. A reverse translation operation that produces a nucleic

acid sequence from the amino acid sequence is a complex operation that is not
straightforward to standardize at this time. There is an intrinsic directionality of protein
sequence data, from N-terminal to C-terminal.

AminoAcidSequence also inherits fromCosLifeCycle::LifeCycleObject

Biomolecular Sequence Analysis V1.0 December 1999

interface AminoAcidSequence : BioSequence, CosLifeCycle::LifeCycleObject

{
k

AminoAcidSequencelList

typedef sequence<AminoAcidSequence> AminoAcidSequencelList;

Description:

Used to pass a setArhinoAcidSequences

2.1.11 CodeRule

CodeRule is a valuetype that defines the correspondence betw€ad@n and a

Residue type.

TheResidue member (residue) is a single ASCII character

representing an amino acid in the [IUPAC/IUB standard. Cbéon member (codon)
is an array of threBases, which are characters representing unambiguous nucleotides
using the IUPAC/IUB symbols for nucleotide homenclature (see References).

Residue

typedef char

Residue;

Description:

TheResidue member (residue) is a single ASCII characte
representing an amino acid using the IUPAC/IUB symbols

amino acid nomenclature (see References).

Base

typedef char

Base;

Description:

ABase is a character representing an unambiguous
nucleotide using the IUPAC/IUB symbols for nucleotide
nomenclature (see References).

Codon

typedef Base

Codon|[3];

Description:

ACodon is an array of threBases.

CodeRule

CodeRule is a valuetype that defines the correspondence betw€ae@n and a

Residue type.

BSA V1.0

for

Module DsLSRBioObjects Dec. 1999 2-31

<<valuetype>>
CodeRule

the_codon : Codon
the_residue : Residue

Figure 2-11 The CodeRule valuetype

valuetype CodeRule

{

public Codon

the_codon;

public Residue the_residue;

public Codon the_codon;

Description:

TheCodon member (codon) is an array of thrBases,
which are characters representing unambiguous nucleotid

using the IUPAC/IUB symbols for nucleotide nomenclature

(see References).

D

Return value:

Returns @odon .

public Residue the_residue;

Description:

TheResidue member (residue) is a single ASCII characte
representing an amino acid using the IUPAC/IUB symbols
amino acid nomenclature (see References).

=

for

Return value:

Returns Residue .

Coding

typedef CodeRule Coding[64];

Description:

ACoding is an array of sixty-fou€odeRules . Sixty-four is
the number of combinations of the foBases (A, G, C, U)
taken three at a time.

2-32 Biomolecular Sequence Analysis V1.0 December 1999

GeneticCodeName

typedef string GeneticCodeName;

Description: AGeneticCodeName is astring that contains the name qf
a currently known genetic code.

GeneticCodeNamelList

typedef sequence<GeneticCodeName> GeneticCodeNamelList;

Description: Used to pass a set@éneticCodeNames .

InvalidResidue

exception InvalidResidue
{
Residue the_residue;
unsigned long offset;
h
Description: ThelnvalidResidue exception is raised if thResidue is
inconsistent with the IUPAC-IUB single letter codes. Note
that residue may be interpreted to mean base (see Glossary).
Return value: Returns the invalid Residue and its offset within the
BioSequence .

2.1.12 GeneticCode

The GeneticCodeFactory interface defines a set obnst GeneticCodeName

strings that list the set of currently known genetic code&efeticCode object

should be created with its name member set to one of GeseticCodeNames .

The GeneticCode object is used for translating a string of nucleic acid bases into a
string of amino acid residues. TkeneticCodeName defines the particular Coding
that is used to conve@odons into Residues so one need only specify the
GeneticCodeName when creating &eneticCode object from one of the known
types. Codings for th&eneticCodeNames listed below inGeneticCodeFactory

can be found in Appendix B “Genetic Codes”.

GeneticCode inherits fromCosLifeCycle::LifeCycleObject

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-33

2-34

<<Interface>>
GeneticCode

<<valuetype>>

the_coding : Coding

name : GeneticCodeName

1 64 CodeRule

the_codon : Codon
the_residue : Residue

translate_codon()

Figure 2-12 The GeneticCode interface

interface GeneticCode : CosLifeCycle::LifeCycleObject

{

readonly attribute Coding the_coding;
readonly attribute GeneticCodeName name;

Residue translate_codon(in Codon the_codon)
raises(InvalidResidue);

readonly attribute Coding the_coding;

Description:

Thecoding attribute consists of an array of &deRules ,
which allows the GeneticCode object to be used for transla
a string of nucleic acid bases into a string of amino acid
residuesCodings for the GeneticCodeNames listed

below inGeneticCodeFactory can be found in Appendix B.

Return value:

Returns @oding .

ting

readonly attribute GeneticCodeName name;

Description:

Thename attribute should be one of the known
GeneticCodeNames listed inGeneticCodeFactory . If
the desired genetic code is not represented, an appropria
name should be used.

le

Return value:

Returns @eneticCodeName .

Biomolecular Sequence Analysis V1.0 December 1999

Residue translate_codon(in Codon the_codon)
raises(InvalidResidue);

Description: translate_codon () usescoding's array of sixty-four
CodeRules to translate a string of nucleic acid bases intg a
string of amino acid residues.

Return value: Returns Residue .

Exceptions: RaisebwalidResidue if the codon is inconsistent with the
IUPAC-IUB single letter codes. Note that residue is
interpreted to mean base here (see Glossary).

2.1.13 AlignmentElement

An AlignmentElement corresponds to one 'row' in a traditional alignment. However
to make it general, it is represented by a wrapper that allow®hjegt to be used in

an Alignment . This approach allows the occurrence of one and the &hjeet in
different 'rows' (using th&ey), and also avoids the combinatorial problem of having
every type ofBioSequence duplicated just so it can be used inAignment . This
approach allows other objects, not yet defined in this standard (e.g., hidden Markov
models, to be used in the alignment). Most commonly, how&lignmentElement

will contain anelement of type BioSequence .

The key provides a unigue reference to eadlgnmentElement to be maintained
between the client and the server of Algnhment . Notice that there may be more
than one copy of a particul@bject in theAlignment . There is no proscribed
semantics to how thieey is structured. The following provides exampleke§s that
could be used if th®bjects areBioSequences .

Table 2-1 Key Examples

Unique BioSequence ldentifiers

Identifiers Example Key Set 1 Example Key Set 2
emb/X04427 emb/X04427 0
emb/XX1111 emb/XX1111 1
emb/X75541 emb/X75541 2
emb/Y10276 emb/Y10276 3
emb/X95248 emb/X95248 4

Non-unique BioSequence ldentifierdepeated sequence)

Identifiers Example Key Set 1 Example Key Set 2
emb/X04427 emb/X04427 0
emb/XX1111 emb/XX1111 1

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-35

emb/X75541 emb/X75541
emb/Y10276 emb/Y10276
emb/X95248 emb/X95248/0
emb/X95248 emb/X95248/1

a | bW N

<<valuetype>>
AlignmentElement
element : Object
seq_region : SegRegion
key : string

Figure 2-13 The AlignmentElement valuetype.

AlignmentElement

valuetype AlignmentElement

public Object element;
public SeqRegion seq_region;
public string key;

public Object element;

Description: The analysis that constructs #lignment is responsible for
determining if theDbject is appropriate in the given context.
Most commonlyAlignmentElement will simply contain an
element of typeBioSequence .

Return value: Returns aBbject .

2-36 Biomolecular Sequence Analysis V1.0 December 1999

public SegRegion seq_region;

Description: Theseq_region represents the coordinates of a particularn
segment of thelement (typically aBioSequence) that is
aligned in the curremlignment , and that is considered ong
‘row' in theAlignment . The coordinates are those of the
original Object, not those of thélignment . Notice that a
particularObject might be represented more than once in the
Alignment , andseq_region will provide the information as
to the region of th@bject that is used. The only valid
SegRegionOperator is JOIN.

Return value: Returns SeqRegion .

public string key;

Description: The key provides a unique reference to each
AlignmentElement to be maintained between the client and
the server of thé\lignment . Notice that there may be more
than one copy of a particul@bject in theAlignment .
There is no proscribed semantics to howkég is structured.
It is used in thget_seq_region() method inAlignment to
provide a unique key for thidlignmentElement .

Return value: Returns string .

AlignmentElementList

typedef sequence<AlignmentElement> AlignmentElementList;

Description: Used to pass a setAdfgnmentElements .

2.1.14 AlignmentElementlterator

AlignmentElementlterator provides a strongly typed iterator for
AlignmentElements .

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-37

2-38

<<Interface>>
AlignmentElementlterator

next()

next_n()
reset()
destroy()

Figure 2-14 The AlignmentElementliterator interface.

interface AlignmentElementliterator

{
boolean
boolean
void
void

I8

next(out AlignmentElement element)
raises(lteratorinvalid);
next_n(in unsigned long how_many,
out AlignmentElementList elements)
raises(Iteratorinvalid);
reset();
destroy();

boolean next(out AlignmentElement element)
raises(lteratorinvalid);

Description:

Thenext() operation gets the neAignmentElement in its

out parameteelement and returns a boolean value. If the

iterator is at the end of the set, it returns FALSE and sets
outputelement parameter to null.

Return value:

Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions:

RaiseReratorinvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

Biomolecular Sequence Analysis V1.0 December 1999

the

boolean next_n(in unsigned long how_many,
out AlignmentElementList elements)
raises(lteratorinvalid);

Description: next_n() returnsAlignmentElements in the
AlignmentElementList out parameteelements ,
containing at most the number specified in the first paramgter
(how_many) and returns a boolean value directly. When it is
at the end of the set it returns FALSE and ¢lements
parameter will have length zero. In all cases the length of
elements will be the minimum othow_many and the
number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: RaiseReratorinvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raise€ORBA::NO_IMPLEMENT if the iterator cannot be
reset (e.g., the iterator provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.

2.1.15 Alignment

An Alignment is built from a set of correspondences of regions of sequences. In many
cases the sequence region is only a single residue (a single base or a single amino acicd
long, but this need not be. For example, a region of three DNA base pairs, representing
a single amino acid, is a common region size. Each correspondence, which is called a
‘column’ due to the common visual interpretation of an alignment, indicates that a
particular region of one sequence is in some manner equivalent to set of particular
regions on other sequences. The exact nature of this equivalence differs between
different alignment methods, the most common being that these regions shared a
common evolutionary ancestor. An alternative is that these regions were read from the
same region of physical DNA, as in a DNA assembly.

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-39

2-40

Alignment representation in sequence analysis has been dominated by text based
representation of the correspondences as columns, with sequences running horizontally
and each correspondence being represented by a column. Padding characters (often '-'
are placed in sequences to align the residues with the correct correspondences in othe
sequences.

Table 2-2 Multiple Alignment of AminoAcidSequences

seql 10 RSDGFAFVEF 19
seq2 15 RT-GFAYVEM 23
seq3 20 RTHGFAFVEM 29

Correspondence 1: (Seql, position 10, Seq2, position 15, Seq3 position 20)
Correspondence 2: (Seql, position 11, Seq2, position 16, Seq3 position 21)
Correspondence 3: (Seql, position 12, Seq2, none, Seq3 position 22)

Correspondence 10: (Seql, position 19, Seq2, position 23, Seq3 position 29)

This provides a compact representation of the alignment, but relies heavily on single
characters being the basis of the correspondence, which makes representing more
complex but still common types of alignment challenging. Examples include
alignments of DNA and protein sequences and alignments of profile Hidden Markov
Models and protein sequences. In addition, text based representation cannot convey
any additional information about the nature of the correspondence, which is an issue
for more complex alignments. A final drawback to this method of representing an
alignment is that it is generally hard to examine only part of the alignment, as the
entire text must be processed before the correspondences between positions can be
represented explicitly in computer terms.

An IDL definition of an alignment can provide a much richer description of an
alignment, but it must be kept in mind that the most common use of an alignment will
be to view it, probably in a form very close to Table 2-2 on page 2-40. Generating a
similar text representation must be simple operation for a client okltgpement

interface.

For complex alignments it is convenient to associate with each correspondence the
assumption on which the correspondence is made. For example, when aligning a
protein sequence to a DNA sequence, it is important to be able to distinguish insertions
in the DNA sequence which are due to sequencing errors in the determination of the
DNA sequence and insertions due to the evolutionary insertion of bases in the DNA
sequence. This implies that each correspondence needs an indication of the
assumptions made for the grouping of regions on sequences. Such assumptions are
generally made during the alignment process. As such, they are not a fixed property of
one particular sequence in the alignment, but they rather belong to the alignment as a
whole. Therefore, it is better to associate the assumption(s) with the correspondences,
rather than with the sequences.

Biomolecular Sequence Analysis V1.0 December 1999

2

Although many of the alignments invol\&oSequences , there are a humber which

also involve other objects, such as regular expressions and hidden Markov models.
These objects are not part of the current submission, and, in any case, it is unlikely that
any submission could cover all possible objects that will be designed in this field. The
proposed specification can handle any CORBA object through the

AlignmentElement wrapper.

The proposedlignment interface can model simple and complex alignments in a
complete way. The object provides accessors to retrieve all the correspondences and
the individual regions inside a correspondence. There is no exgrc#ispondence

or column object, as it seems of little value. Users will generally be using a set of
correspondences (i.e., an alignment).

We recognize that there are many uses of an alignment where the client does not want
to process the actual alignment information itself, but simply wants to display it to a
user or pass it onto programs which are based around old text based alignment formats.
The optionalCharacterAlignmentEncoder interface provides a way for a client to

get a more traditional view of alignment . In addition, this interface lets the server
take responsibility for the representation ofAdignment . This way, servers can offer
clients a complete solution, including representation. For complex alignments that are
non-trivial to render, this is an important mechanism. We cannot stress too highly that
the representation of aldignment , especially that of gaps, is the job of the
CharacterAlignmentEncoder and not that of the correspondiAignment .

AlignmentObjectinvalid

exception AlignmentObjectinvalid
{
Object element;
string reason;
3
Description: TheAlignmentObjectinvalid exception is raised if the
Object is not valid for thisAlignment . This exception will
be raised by analyses that constragnments .
Return value: Returns the inval@@bject and astring containing the reason
the element is invalid.

ElementNotInAlignment

exception ElementNotInAlignment

{
h

Description: TheElementNotIinAlignment exception is raised if the
AlignmentElement is not associated with thislignment ..

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-41

IndexOutOfBounds

exception IndexOutOfBounds

{
unsigned long invalid;
Interval valid;

h

Description:

ThelndexOutOfBounds exception is raised if an index is
out of bounds.

Return value:

Returns the invalichsigned long and the validnterval .
The validInterval contains the largest allowénterval for
the index.

Alignment

<<Interface>>
LifeCycleObject

<<Interface>>
Alignment

PROTEIN : AlignType = "PROTEIN"

UNKNOWN : AlignType = "UNKNOW N"

NON_PROTEIN : AlignType = "NON_PROTEIN"
SEQUENCE_ERROR : AlignType = "SEQUENCE_ERROR"

<<valuetype>>
AlignmentElement

element : Object

get_alignment_elements()
num _rows()

num _columns()
get_seq_region()
get_align_type_by_column()

seq_region : SegRegion
key : string

Figure 2-15 The Alignment interface

interface Alignment : Co

{

sLifeCycle::LifeCycleObject

typedef string AlignType;
typedef sequence<AlignType> AlignTypelList;

const AlignType PROTEIN
const AlignType NON_PROTEIN

const AlignType SE

const AlignType UNKNOWN

AlignmentElementL
inuns
inuns
out Al

2-42 Biomolecular Sequence

"PROTEIN";
= "NON_PROTEIN";
QUENCE_ERROR = "SEQUENCE_ERROR";
"UNKNOWN?";

ist get_alignment_elements(
igned long start,

igned long how_many,
ignmentElementlterator the_rest)

Analysis V1.0 December 1999

raises(IndexOutOfBounds);

unsigned long num_rows();
unsigned long num_columns();

SeqRegion get_seq_region(
in AlignmentElement element,
in Interval the_interval)
raises(ElementNotinAlignment, IntervalOutOfBounds);

AlignType get_align_type_by_column(in unsigned long col)
raises(IndexOutOfBounds);

typedef string AlignType;

Description: AnAlignType is astring that contains the type of the
assumption made for this grouping of regions on sequences.
Several kinds oflignTypes are given below.

typedef sequence<AlignType> AlignTypelList;

Description: Used to pass a setAlignTypes .

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-43

2-44

const AlignType PROTEIN
const AlignType NON_PROTEIN "NON_PROTEIN";
const AlignType SEQUENCE_ERROR = "SEQUENCE_ERROR";
const AlignType UNKNOWN = "UNKNOWN";

"PROTEIN";

Description: Common alignment assumptions are provided as simple
strings, with constant types as a starting point for a list of
assumptionsUNKNOWN indicates that no additional
information is provided with the alignment, as would be th
case for (e.g., Smith-Waterman alignmenBROTEIN
indicates that this column does encode (part of) a protein,
This can be either because it contains one or more amino
residues, or more importantly, because the column consis
triplet(s) of DNA bases that encode amino acid(s). A very

triplets. However, more complex regions (e.g., a
transmembrane spanning protein sequence segment, are
entirely possible)SEQUENCE_ERROR indicates that the

For example, in aligning a protein to a DNA sequence it
possible to distinguish insertions due to evolutionary proce
(PROTEIN) from insertions due to sequencing error

for example hidden Markov models, could use AltignType
string to provide a sensible decoding of the alignment, an
these cases, th&lignType maybe more informative than th
SegRegion provided by theAlignment

(SEQUENCE_ERROR). More involved alignment methods,

acid
ts of

common region size is 1 for amino acids, and 3 for nucleotide

column contains bases that are considered to be erroneous.

5SES

d in

a)

Biomolecular Sequence Analysis V1.0 December 1999

AlignmentElementList get_alignment_elements(

in unsigned long start,

in unsigned long how_many,
out AlignmentElementlterator the_rest)
raises(IndexOutOfBounds);

Description:

This method allows the retrieval AlignmentElements
They correspond to the rows in a traditional textually
represented alignment; typically, tiidignmentElements
are sequences. Uses the list/iterator hybrid to provide acg
to the AlignmentElements . A list of no more than
how_many elements starting &tart is returned as the direg
result. The remaining elements, if any, are available throt
the iterator returned in theut parameter. This is particularly
useful forAssemblies , where for a particular region, only
few sequences from thousands are relevant.

Return value:

Returns aklignmentElementList containing no more than
how_many elements starting atart. The
AlignmentElementlterator provides access to any
remaining elements to the right of those in
AlignmentElementList

Exceptions:

RaisekdexOutOfBounds if start is less than 1 or more
than the number of aligned elements. This upper limit is

eSS

t
igh

returned bynum_rows ().

unsigned long num_rows();

Description:

TheAlignment interface provides access to the
AlignmentElements that make up the alignment. Tkey
data member uniquely identifies &tignmentElement
within the Alignment . The total number of
AlignmentElements is given bynum_rows ().

Return value:

Returns amsigned long .

BSA V1.0

Module DsLSRBioObjects Dec. 1999 2-45

unsigned long num_columns();

Description:

TheAlignment interface provides access to the
correspondences that make the alignment. The
correspondences are numbered letgth inclusive, and can
be considered the equivalent of alignment columns in a
traditional text view of an alignment. The total number of
correspondences is given hym_columns ()

Return value:

Returns amsigned long .

SegRegion get_seq_region(
in AlignmentElement element,
in Interval the_interval)
raises(ElementNotinAlignment, IntervalOutOfBounds);

Description:

For each correspondence, ed@dnmentElement will have
a particularSeqRegion , returned byget _seq_region() . A
null SegRegion indicates that there is no region for this
correspondence (i.e., a gap). Multiple gaps are representg
multiple SeqRegions . To find the "length" of a gap, it is
necessary to check other correspondences in the column
null SegRegion contains no length information.

The input parametdhe_interval represents an interval in
the coordinates of thalignment , not that of the underlying
Object . If the interval includes a gap at the start, middle ¢
end, the returne@egRegion does not show it, because th
start andend of it are in the coordinate system of the

>d by

=

underlyingObject which is unaware of any gaps. Instead, the

corresponding segment of the underly@pject is indicated.
It is assumed that the numbering of the correspondences
relevant, i.e., that the second correspondence comes afte
first, with all the intervals abutting. This allows hmerval

of correspondences to be a valid concept.

is
r the

Return value:

Returns 8eqRegion .

Exceptions:

RaiseBlementNotinAlignment if the AlignmentElement
is not associated with thislignment .

RaiseslntervalOutOfBounds if the Interval's start is less
than 1 or if itsstart+length-1 is greater than the total
number of correspondences givenrym_columns ().

2-46 Biomolecular Sequence Analysis V1.0 December 1999

AlignType get_align_type_by column(in unsigned long col)
raises(IndexOutOfBounds);

Description:

get_align_type_by column () provides a mechanism to
retrieve the assumptions used for this correspondence fron
Alignment . There is not additional machinery in an
Alignment itself to help interpret thesklignTypes . For
specific instances of afdlignment constructor, a client that
use the constructor should read the documentation as to
to interpret theAlignType , as it will be part of definition of
what theAlignment constructor actually provides. For clien
that do not want to interpret tidignment but would like a
sensible representation of it to pass onto other programs
visually to a user, thalignmentEncoders
CharacterAlignmentEncoder and
SingleCharacterAlignmentEncoder will provide an entire
server-side solution for the client.

n the

how

[s

Return value:

Returns akllignType .

Exceptions:

RaisebidexOutOfBounds if col is less than 1 or greater
than the total number of correspondences given by

num_columns ().

AlignmentList

typedef sequence<Alignment> AlignmentList;

Description:

Used to pass a setAdfgnments .

2.1.16 Alignment Examples

The precise interpretation of this specification for alignments is illustrated with a
number of examples. Firstly a standard protein multiple alignment is provided, and
secondly a more complicated, protein to EST sequence tag alignment is presented.

Protein Multiple Alignment

This alignment is a fragment of an alignment from the Pfam database. A text
representation of this alignment is given below.

Table 2-3 Protein Multiple Alignment

CAJ1_YEAST/6-24 EYYDILGIKP------- EATPTEIKK
YIS4_YEAST/6-24 EYYDLLGVST------- TASSIEIKK
YNW7_YEAST/4-22 CYYELLGVET------- HASDLELKK
YGM8_YEAST/79-104 NLYDVLELPTPLDVHTIYDDLPQIKR

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-47

2-48

The Alignment object which represented this would return AdignmentElement
objects from theyet_alignment_elements () method. The first object would have the
AminoAcidSequence Object that presented the sequence CAJ1_YEAST in the
element attribute and tif&eqRegion would have thestart attribute of 6 and Eength
attribute of 19. Calling thget_seq_region () method with thisAlignmentElement

and aninterval of start 1, length 1 would provide é&eqRegion with start 6,

length 1, being the sixth residue in CAJ1_YEAST, a Glutamate 'E'. The following
table shows the results of this callget_seq_region () and several other similar
calls, each with different inpuntervals . All calls are for the sequence
CAJ1_YEAST.

Table 2-4 Call Results

input Interval outputSeqRegion string
start length start length
1 1 6 1 a Glutamate 'E
2 1 7 1 a Tyrosine 'Y
2 3 7 3 the peptide "YYD"
11 1 null agap -
12 1 null agap -
12 10 16 4 the peptide "EATP"

The get_align_type_by column() method would return eithédNKNOWN or

PROTEIN depending on the implementer. Potentially, if the alignment had been made
with a more involved method, for example, a hidden Markov model with a notion of
structural state, the structural state that was used in each column could be returned.

Of course, for clients whose main purpose is display, the laborious business of
querying each position for the region and then looking into the sequence object for the
residue at that position is a convoluted route for retrieving the information. If the
implementer provided &€haracterAlignmentEncoder for this Alignment , then a

text representation of th&lignment could be quickly retrieved and displayed,
potentially using the large-scale transport methods provided in
SingleCharacterAlignmentEncoder as this alignment has a single character per
correspondence. Once displayed, a client could quickly interpret a query on a
particular character in the alignment, as it would simply have to call

get_seq_region() with the column position to retrieve the position in the sequence.

Protein vs. EST alignment

This example is of a drosophila protein compared to an EST sequence with a frame-
shift error occurring, as one would find in GCG's FrameSearch, FASTX, and Wise2. A
fragment of the alignments is shown in the following table.

Biomolecular Sequence Analysis V1.0 December 1999

Table 2-5 Protein vs. EST Alignment

column 20 21 22 23
EST 111-113 114-116 117 118-120
(codon) (codon) (codon)
protein 55 56 57
AlignType PROTEIN PROTEIN SEQUENCE_ ERROR PROTEIN

The Alignment would have twAlignmentElements , one with the EST and one with

the protein. Querying the Alignment with tget_seq_region() method would reveal

the sequence regions listed above for each of the sequences. More importantly, the
get_align_type by column() method for Column 22 would return a type
SEQUENCE_ERROR, whereas for the other columns it would return a type
PROTEIN. This way a program can confidently interpret the alignment. To indicate
how important this information is, imagine if in Column 22 three bases were aligned.
It would be ambiguous as to whether this indicated a protein insertion of a codon or a
sequence error. ThlignType here provides this additional information.

The ability to associate @haracterAlignmentEncoder with a more complex

Alignment as this example is provides a way for clients to retrieve both the

Alignment and a desired interpretation of tAignment from the server, which

facilitates writing alignment clients separately from actual alignment constructors. The
AlignmentEncoder s provide a route for at least a character-based representation of
the Alignment to be provided by the server, however complex the alignment method
is. In this case, one might have oAlgnmentEncoder which provided the amino

acids from the protein as three letter codes lined up with three bases from the EST. A
different encoder might use one letter amino acid codes throughout, and not show the
DNA sequence at all, choosing to encode the sequencing error with a special character

2.1.17 Assembly

Assembly extendsAlignment . Assembly contains no additional functionality. The
technical domain is evolving rapidly and it's not clear what additional functionality will
be necessary. However, the submitters believe it is important to establish the
relationship betweeAssembly andAlignment .

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-49

<<Interface>>
Alignment

]

<<Interface>>
Assembly

Figure 2-16 The Assembly interface

interface Assembly : Alignment

{
k

2.1.18 SearchHit

The SearchHit valuetype provides a generic mechanism to return the results of some
type of query against a collection BioSequence objects. TheSearchHit provides
information about a particular sequence that was found and associated information for
this hit relevant to this particular search, for an example, a score.

The SearchHit valuetype is used as a base class foiSih@laritySearchHit , which
provides a specialisation of tigearchHit for similarity searches

<<valuetype>>
SearchHit

id : ldentifier
hit_info : CosPropertySenvice::Properties

Figure 2-17 The SearchHit valuetype

SearchHit

valuetype SearchHit

public Identifier id;
public CosPropertyService::Properties hit_info;

2-50 Biomolecular Sequence Analysis V1.0 December 1999

public Identifier id;

Description:

Theldentifier string identifies a sequence. It can be used
with aBioSequenceldentifierResolver to access the actug
sequence.

Return value:

Returns ddentifier string.

public CosPropertyService::Properties hit_info;

Description:

Thehit_info provides additional information that is not
contained in théioSequence but is relevant from the
perspective of the search. Common information would be
score in a similarity comparison, the statistical probability
the hit or the relevance of the hit in a text search. Content
type of information returned will vary with analysis type.

Return value:

Returns @osPropertyService::Properties

the
of
and

The following BLAST example illustrates the type of information that would be placed
in hit_info . The example is taken from NCBI's BLAST help page. The associated
alignment information is discussed below in the descriptioBimilaritySearchHit

Smallest
Sum
High Probability

Sequences producing High-scoring Segment Pairs: Score P(N) N

sp|P05120|PAI2_HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2, P... 176 1.8e-65 4

[information deleted - ed.]

>sp|P05120|PAI2_HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2, PLACENTAL (PAI-2)

(MONOCYTE ARG- SERPIN).
Length = 415

Score =176 (80.2 bits), Expect = 1.8e-65, Sum P(4) = 1.8e-65
Identities = 38/89 (42%), Positives = 50/89 (56%)

SearchHitList

typedef sequence<SearchHit> SearchHitList;

Description:

Used to pass a setSdarchHits .

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-51

SearchHitlterator

<<Interface>>
SearchHitlterator

next()
next_n()
reset()
destroy()

Figure 2-18 The SearchHitlterator interface

interface SearchHitlterator

{
boolean next(out SearchHit hit)
raises(lteratorinvalid);
boolean next_n(in unsigned long how_many,
out SearchHitList hit_list)
raises(lteratorinvalid);
void reset();
void destroy();
h

boolean next(out SearchHit hit)
raises(lteratorinvalid);

Description: Thenext() operation gets the neSeachHit in its out
parametehit and returns a boolean value. If the iterator ig at
the end of the set, it returns FALSE and sets the ohfput
parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: RaiseHleratorinvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

2-52 Biomolecular Sequence Analysis V1.0 December 1999

boolean next_n(in unsigned long how_many,
out SearchHitList hit_list)
raises(lteratorinvalid);

Description: next_n() returnsSearchHits in the SearchHitList out
parametehit_list , containing at most the number specified|in
the first parameterhpw_many) and returns a boolean value
directly. When it is at the end of the set it returns FALSE and
the hit_list parameter will have length zero. In all cases the
length ofhit_list will be the minimum othow_many and
the number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: RaiseHleratorinvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raise€ORBA::NO_IMPLEMENT if the iterator cannot be
reset (e.g., the iterator provides access to streaming data)).

void destroy();

Description: destroy() frees the iterator object.

2.1.19 SimilaritySearchHit

The SimilaritySearchHit valuetype provides a specialisation of BearchHit
valuetype for searches BfoSequence collections that are on the basis of similarity,
such as BLAST, Fasta, or Smith-Waterman searches.

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-53

<<valuetype>>
SearchHit

<<valuety pe>>
SimilaritySearchHit

alignment_list : AlignmentList

0..* |<<Interface>>
Alignment

Figure 2-19 The SimilaritySearchHit valuetype

valuetype SimilaritySearchHit : SearchHit
{

}

public AlignmentList alignment_list;

public AlignmentList alignment_list;

Description: This attribute provides a list Afignments that are
associated with this hit. Not all hits may have alignments.|In
the Alignments , the sequence or object that was used as|a
query is the firstAlignmentElement and the other objects
(in most cases, just one) follow.

Return value: Returns a list éfignments .

The following BLAST example illustrates the alignment information that may be
associated with 8imilaritySearchHit . The example is taken from NCBI's BLAST

help page.

2-54 Biomolecular Sequence Analysis V1.0 December 1999

>sp|P05120|PAI2_HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2, PLACENTAL (PAI-2)
(MONOCYTE ARG- SERPIN).
Length = 415

Score = 176 (80.2 bits), Expect = 1.8e-65, Sum P(4) = 1.8e-65
Identities = 38/89 (42%), Positives = 50/89 (56%)

Query: 1 QIKDLLVSSSTDLDTTLVLVNAIYFKGMWKTAFNAEDTREMPFHVTKQESKPVQMMCMNN 60
+l +LL S DDT +VLVNA+YFKG WKT F + PFV + PVOQMM +
Shjct: 180 KIPNLLPEGSVDGDTRMVLVNAVYFKGKWKTPFEKKLNGLYPFRVNSAQRTPVQMMYLRE 239

Query: 61 SFNVATLPAEKMKILELPFASGDLSMLVL 89
N+ + K+ILELP+A L+L
Shjct: 240 KLNIGYIEDLKAQILELPYAGDVSMFLLL 268

SimilaritySearchHitList

typedef sequence<SimilaritySearchHit> SimilaritySearchHitList;

Description: Used to pass a setSifmilaritySearchHits

2.1.20 BioSequenceldentifierResolver

The BioSequenceldentifierResolver provides a mechanism to retrieve the actual
BioSequence object from a collection search, using thentifier string.

Implementers may want to consider multiply inheriting from
BioSequenceldentifierResolver interface with the option@ioSequence
factories to provide sequence creation foldantifier .

<<Interface>>
BioSequenceldentifierResolver

resolve()

Figure 2-20 The BioSequenceldentifierResolver interface

interface BioSequenceldentifierResolver

{
BioSequence resolve(in Identifier id)
raises (IdentifierNotFound, IdentifierNotResolvable,
IdentifierNotUnique);
k

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-55

2-56

BioSequence resolve(in Identifier id)
raises (IdentifierNotFound, IdentifierNotResolvable,
IdentifierNotUnique);

Description: Theresolve() method provides thBioSequence for the
particularldentifier .

Return value: Returns BioSequence .

Exceptions: RaisekrlentifierNotFound if the database and the identifier
within the database can be resolved butltentifier is not
present.

RaisesldentifierNotResolvable if the database and the
identifier within the database cannot be resolved such that the
Identifier cannot even be searched for.

RaiseddentifierNotUnique if the Identifier specification is
ambiguous and returns more than one object.

2.1.21 SearchResult

The SearchResult interface provides the complete results of a single search against a
collection ofBioSequences , including the individual hits and their associated scores
and information about the search as whole. This interface is designed to represent
results from both similarity queries on a database (such as BLAST, Fasta or Smith-
Waterman) and text based searches on a datab&eSgquences .

Biomolecular Sequence Analysis V1.0 December 1999

<<Interface>>
BioS equenceldentifierResolver

<<Interface>>
LifeCycleObject

<<Interface>>
BioSequence

<<Interface>>

SearchResult 0.
guery_sequence : BioSequence L
collection_info : CosPropertyService::Properties
get_property_names ()
num_hits()
get_hits() 1

Figure 2-21 The SearchResult interface

SearchResult

The SearchResult interface inherits from th8ioSequenceldentifierResolver

<<valuetype>>
SearchHit

<<Interface>>
SearchHitlterator

to

allow the retrieval of the actu@lioSequences from the collection. It also inherits

from CosLifeCycle::LifeCycleObject

interface SearchResult :
BioSequenceldentifierResolver,
CosLifeCycle::LifeCycleObject

readonly attribute BioSequence query_sequence;
readonly attribute CosPropertyService::Properties collection_info;
StringList get_property_names();

unsigned long num_hits();

SearchHitList get_hits(
in unsigned long start,
in unsigned long how_many,
out SearchHitlterator the_rest)

raises (

IndexOutOfBounds);

to allow management of its resources.

readonly attribute BioSequence query_sequence;

Description:

similarity based searches.

This attribute provides the query sequence that was used in
this SearchResult . It may be null in the case of non

Return value:

Returns BioSequence .

BSA V1.0

Module DsLSRBioObjects Dec. 1999

2-57

readonly attribute CosPropertyService::Properties collection_info;

Description: Thecollection_info provides additional information that is
not contained in th&earchHits but is relevant from the
perspective of the search. Common information would be|the

database ldentifier, the number of sequences in the database,
and some statistical information about the search.

Return value: Returns @osPropertyService::Properties

The following BLAST example illustrates the type of information that could be placed in
collection_info . The example is taken from NCBI's BLAST help page.

BLASTP 1.4.6MP [13-Jun-94] [Build 13:58:36 Sep 22 1994]

Reference: Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers,
and David J. Lipman (1990). Basic local alignment search tool. J. Mol. Biol.
215:403-10.

Query = pirJA01243|DXCH 232 Gene X protein - Chicken (fragment)
(232 letters)

Database: SWISS-PROT Release 29.0
38,303 sequences; 13,464,008 total letters.
Searching.........occoeeeerieiniicieeneeee e done

Observed Numbers of Database Sequences Satisfying
Various EXPECTation Thresholds (E parameter values)

Histogram units: = 31 Sequences : less than 31 sequences

EXPECTation Threshold
(E parameter)

V Observed Counts-->

10000 4863 1861 |
6310 3002
3980 2220
2510 1408
1580 1105
1000 712
631 533
398 372 80 |==
251 292 73 |==
158 219 50 |=
100 169 32=
63.1 137 18:
39.8 119 9|:
25.1 110 6]:
15.8 104 9:

2-58 Biomolecular Sequence Analysis V1.0 December 1999

>>>>>>>>>>>>>>>>>>>>> Expect = 10.0, Observed = 95 <<<<<<<<<<LLLLLLL

10.0 95 4l
6.31 91 3:
3.98 88 1]:
2.51 87 3
1.58 84 0|
1.00 84 2]:

[SearchHit information deleted — ed.]

WARNING: HSPs involving 86 database sequences were not reported due to the
limiting value of parameter B = 9.

Parameters:
V=15
B=9
H=1

-ctxfactor=1.00

E=10
Query e As Used ----- - Computed ----
Frame MatID Matrix name Lambda K H Lambda K H
+0 0 BLOSUM62 0.316 0.132 0.370 same same same
Query
Frame MatlID Length EffLength E S W T X E2 S2
+0 0 232 232 10. 573 1122 0.2233
Statistics:
Query Expected Observed HSPs HSPs
Frame MatID High Score High Score Reportable Reported
+0 0 62 (28.2 bits) 1191 (542.5 bits) 330
Query Neighborhd Word Excluded Failed Successful Overlaps
Frame MatID Words Hits Hits Extensions Extensions Excluded
+0 0 4988 5661199 1146395 4504598 10187 13
Database: SWISS-PROT Release 29.0
Release date: June 1994
Posted date: 1:29 PM EDT Jul 28, 1994
of letters in database: 13,464,008
of sequences in database: 38,303
of database sequences satisfying E: 95
No. of states in DFA: 561 (55 KB)
Total size of DFA: 110 KB (128 KB)
Time to generate neighborhood: 0.03u 0.01s 0.04t Real: 00:00:00
No. of processors used: 8
Time to search database: 32.27u 0.78s 33.05t Real: 00:00:04
Total cpu time: 32.33u 0.91s 33.24t Real: 00:00:05
WARNINGS ISSUED: 2
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-59

StringList get_property_names();

Description: The names of thet_info properties inSearchHit are
available here so that clients have access to them before
processing the list dbearchHits .

Return value: Returns &tringList .

unsigned long num_hits();

Description: Provides the number of hits in tBisarchResult .

Return value: Returns amsigned long .

SearchHitList get_hits(
in unsigned long start,
in unsigned long how_many,
out SearchHitlterator the_rest)
raises (IndexOutOfBounds);

Description: Uses the list/iterator hybrid to provide access to the actua
SearchHits , which could beSimilaritySearchHits . A list
of no more tharhow_many hits starting astart is returned
as the direct result. The remaining elements, if any, are
available through the iterator returned in the parameter.

Return value: Returns &earchHitList .

Exceptions: RaisemdexOutOfBounds if the index is less than 1 or
greater than the number of hits in tBearchResult . This
upper limit is returned byum_hits() .

2.1.22 AnnotationFactory (Optional)

AnnotationFactory provides a means of creating néwnotation and

SegAnnotation objects. This permits a clean separation of factory issues from the
Annotation objects themselve#&nnotations are created via the factory method
create_annotation() , which accepts all of the components. Similarly,
SegAnnotations are created via the factory methogate _seq_annotation() ,

which accepts all of the components.

AnnotationFactory is an optional compliance point of this specification.

2-60 Biomolecular Sequence Analysis V1.0 December 1999

<<Interface>>
AnnotationFactory

create_annotation()
create_seq_annotation()

Figure 2-22 The AnnotationFactory interface

interface AnnotationFactory
{
Annotation create_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers);

SegAnnotation create_seq_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers,
in SeqRegion seq_region);

Annotation create_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers);

Description: Thecreate_annotation() operation creates afnnotation
and populates it with the supplied attributes. No error
checking is performed.

Return value: Returns alnnotation with the appropriate content.

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-61

SegAnnotation create_seq_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers,
in SeqRegion seq_region);

Description: Thecreate_seq_annotation() operation creates a
SegAnnotation and populates it with the supplied attribute
No error checking is performed.

2

Return value: Returns &SegAnnotation with the appropriate content.

2.1.23 BioSequence factories (Optional)

Sequence factories permit a clean separation of object vendingBfoSequence
data model issuesBioSequence factories are an optional compliance point of this
submission.

BioSequence factories provide a means of creating méucleotideSequence and
AminoAcidSequence objects. Sequences are created via the factory method
create_sequence() , which accepts all of the components.

Implementers may want to consider mixing in BieSequenceldentifierResolver
interface to provide sequence creation foldentifier .

<<Interface>> <<Interface>>
NucleotideSequenceFactory AminoAcidSequenceFactory
create_sequence() create_sequence()

Figure 2-23 The BioSequence factories

2-62 Biomolecular Sequence Analysis V1.0 December 1999

SegAnnotationOutOfBounds

exception SegAnnotationOutOfBounds
{

SegAnnotation invalid,;

Interval valid;

%

Description: TheSegAnnotationOutOfBounds exception is raised if a
SegAnnotation's SeqRegion has astart less than 1 or if
its start+length-1 is greater than the length of the
BioSequence . The exception is also raised if a nested sub-
region of aCompositeSegRegion is invalid. If a
BioSequence represents circular DNA, then this exception
should not be raised.

Return value: Returns the invalgeqgAnnotation and the validnterval .
The validInterval hasstart equal to 1 andength equal to
the length of théioSequence , the largest allowethterval .

NucleotideSequenceFactory

NucleotideSequenceFactory provides a means of creating new
NucleotideSequences . NucleotideSequenceFactory is an optional compliance
point of this specification.

interface NucleotideSequenceFactory
{
NucleotideSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in boolean circular,
in AnnotationList annotations)
raises (InvalidResidue, SegAnnotationOutOfBounds);

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-63

2-64

NucleotideSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in boolean circular,
in AnnotationList annotations)

raises (InvalidResidue, SegAnnotationOutOfBounds);

Description: Thecreate_sequence() operation creates a
NucleotideSequence and populates it with the supplied
attributes. No error checking is performed except on the
residues, which must be valid IUPAC-IUB single letter codes.
The residues need not be upper-case.
BioSequenceldentifierResolver can be mixed in to
provide lookup based on sequence ID.

Return value: Returns HucleotideSequence with the appropriate
content.
Exceptions: RaisebBwalidResidue if the string of residues is

inconsistent with the IUPAC-IUB single letter codes. Note
that residue is interpreted to mean base here (see Glossary).

RaisesSegAnnotationOutOfBounds if annotations
contains &SegAnnotation whoseseq_region is out of
bounds for thiBioSequence .

AminoAcidSequenceFactory

AminoAcidSequenceFactory provides a means of creating new
AminoAcidSequences . AminoAcidSequenceFactory is an optional compliance
point of this specification.

interface AminoAcidSequenceFactory
{
AminoAcidSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in AnnotationList annotations)
raises (InvalidResidue, SeqAnnotationOutOfBounds);

Biomolecular Sequence Analysis V1.0 December 1999

AminoAcidSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in AnnotationList annotations)
raises (InvalidResidue, SegAnnotationOutOfBounds);

Description: Thecreate_sequence() operation creates an
AminoAcidSequence and populates it with the supplied
attributes. No error checking is performed except on the
residues, which must be valid IUPAC-IUB single letter codes.
The residues need not be upper-case.
BioSequenceldentifierResolver can be mixed in to

provide lookup based on sequence ID.

Return value: Returns AminoAcidSequence with the appropriate

content.

RaisewwvalidResidue if the string of residues is inconsistent
with the IUPAC-IUB single letter codes.

Exceptions:

RaisesSegAnnotationOutOfBounds if annotations
contains &SegAnnotation whoseseq_region is out of
bounds for thiBioSequence .

2.1.24 BioSequence iterators (Optional)

Iterator specifications are defined for iterating over a s&ioSequence ,
NucleotideSequence , or AminoAcidSequence objects.NucleicAcidlterator

and AminoAcidlterator are specialized versions BfoSequencelterator having

the same operations but with signatures specialized for the corresponding
BioSequence sub-typesBioSequencelterator andBioSequenceList may

contain bothNucleotideSequences andAminoAcidSequences . Homogeneity in

the sequence types of iterators and lists can be achieved using the specialized version:

<<Interface>>
BioS equencelterator

<<lInterface>>
NucleotideSequencelterator

<<Interface>>
AminoAcidSequencelterator

next() next() next()
next_n() next_n() next_n()
reset() reset() reset()
destroy() destroy() destroy()
Figure 2-24 The BioSequence iterators
BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-65

2-66

BioSequencelterator

BioSequencelterator

provides a strongly typed iterator fBioSequences .

interface BioSequencelterator

{
boolean next(out BioSequence seq)
raises(lteratorinvalid);
boolean next_n(in unsigned long how_many,
out BioSequencelList seqs)
raises(lteratorinvalid);
void reset();
void destroy();
h

boolean next(out BioSequence seq)
raises(lteratorinvalid);

Description:

Thenext() operation gets the neBioSequence in its out
parameteseq and returns a boolean value. If the iterator ig
the end of the set, it returns FALSE and sets the osgaut
parameter to null.

Return value:

Returns FALSE if the iterator is at the end of the set and TR
otherwise.

Exceptions:

RaiseReratorinvalid if the iterator is no longer valid (e.g.
the underlying collection has changed).

boolean next_n(in unsigned long how_many,
out BioSequencelList seqs)
raises(lteratorinvalid);

Description:

next_n() returnsBioSequences in theBioSequenceList

out parameteseqs, containing at most the number specified

in the first parametethpw_many) and returns a boolean
value directly. When it is at the end of the sequence set

returns FALSE and theeqs parameter will have length zero|

In all cases the length skqgs will be the minimum of
how_many and the number of sequences remaining.

Return value:

Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions:

RaiseRBeratorinvalid if the iterator is no longer valid (e.qg.
the underlying collection has changed).

Biomolecular Sequence Analysis V1.0 December 1999

at

UE

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raise€EORBA::NO_IMPLEMENT if the iterator cannot be
reset (e.g., the iterator provides access to streaming datal).

void destroy();

Description: destroy() frees the iterator object.

NucleotideSequencelterator

NucleotideSequencelterator provides a strongly typed iterator for
NucleotideSequences .

interface NucleotideSequencelterator

{
boolean next(out NucleotideSequence seq)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out NucleotideSequencelList seqs)
raises(lteratorinvalid);
void reset();
void destroy();
h

boolean next(out NucleotideSequence seq)
raises(lteratorinvalid);

Description: Thenext() operation gets the nekiucleotideSequence in
its out parameteseq and returns a boolean value. If the
iterator is at the end of the set, it returns FALSE and sets|the
outputseq parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: RaiseReratorinvalid if the iterator is no longer valid (e.g.
the underlying collection has changed).

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-67

2-68

boolean next_n(in unsigned long how_many,
out NucleotideSequencelList seqs)
raises(lteratorinvalid);

Description:

next_n() returnsNucleotideSequences in the
NucleotideSequenceList out parameteseqs, containing
at most the number specified in the first parameter
(how_many) and returns a boolean value directly. When i
at the end of the sequence set it returns FALSE andettpe
parameter will have length zero. In all cases the length o
seqs will be the minimum ohow_many and the number of
sequences remaining.

Return value:

Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions:

RaiseReratorinvalid if the iterator is no longer valid (e.g.

the underlying collection has changed).

void reset();

Description:

reset() sets the iterator to the start of the set.

Exceptions:

Raise€ORBA::NO_IMPLEMENT if the iterator cannot be

reset (e.g., the iterator provides access to streaming data)).

void destroy();

Description:

destroy() frees the iterator object.

AminoAcidSequencelterator

AminoAcidSequencelterator provides a strongly typed iterator for
AminoAcidSequences

interface AminoAcidSequencelterator

{
boolean
boolean
void
void

I8

next(out AminoAcidSequence seq)

raises(lteratorinvalid);

next_n(in unsigned long how_many,

out AminoAcidSequencelist seqs)
raises(lteratorinvalid);

reset();
destroy();

Biomolecular Sequence Analysis V1.0 December 1999

S

boolean next(out AminoAcidSequence seq)
raises(lteratorinvalid);

Description:

Thenext() operation gets the neRiminoAcidSequence in
its out parameteseq and returns a boolean value. If the

iterator is at the end of the set, it returns FALSE and sets| the

outputseq parameter to null.

Return value:

Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions:

RaiseReratorinvalid if the iterator is no longer valid (e.g.
the underlying collection has changed).

boolean next_n(in unsigned long how_many,
out AminoAcidSequencelist seqs)
raises(lteratorinvalid);

Description:

next_n() returnsAminoAcidSequences in the
AminoAcidSequencelist out parameteseqs, containing
at most the number specified in the first parameter
(how_many) and returns a boolean value directly. When i
at the end of the sequence set it returns FALSE anddate
parameter will have length zero. In all cases the length o
segs will be the minimum ohow_many and the number of
sequences remaining.

=)

Return value:

Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions:

RaiseReratorinvalid if the iterator is no longer valid (e.g.
the underlying collection has changed).

void reset();

Description:

reset() sets the iterator to the start of the set.

Exceptions:

Raise€EORBA::NO_IMPLEMENT if the iterator cannot be

reset (e.g., the iterator provides access to streaming data).

void destroy();

Description:

destroy() frees the iterator object.

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-69

S

2.1.25 GeneticCodeFactory (Optional)

GeneticCodeFactory provides a means of creating n&eneticCodes .
GeneticCodeFactory is an optional compliance point of this specification.

InvalidGeneticCodeName

exception InvalidGeneticCodeName
{
string invalid_name;

h

Description: ThdnvalidGeneticCodeName exception is raised when an
invalid GeneticCodeName is passed to
GeneticCodeFactory’s create_genetic_code()

Return value: Returns string containing the invalid name.

GeneticCodeFactory

The GeneticCodeFactory interface defines a set obnst GeneticCodeName
strings that list the set of currently known genetic codes.gBmetic_code_names
attribute provides access to the suppofdeteticCodeNames .
create_genetic_code() creates the appropriatgeneticCode . Codings for the
GeneticCodeNames listed below can be found in Appendix B.

GeneticCodeFactory

STANDARD : GeneticCodeName = "standard"

BACTERIAL : GeneticCodeName = "bacterial"

YEAST_MITOCHONDRIAL : GeneticCodeName = "yeast mitochondrial
VERTEBRATE_MITOCHO NDRIAL : GeneticCodeType = "vertebrate mitochondrial"
MOLD_MITOCHONDRIAL : GeneticCodeName = "mold mitochondrial"
INVERTEBRATE _MITOCHONDRIAL : GeneticCodeName = "invertebrate mitochondrial®
ECHINODERM_MITOCHO NDRIAL : GeneticCodeName = "echinoderm mitochondrial"
ASCIDIAN_MITOCHONDRIAL : GeneticCodeName = "ascidian mitochondrial"

FLATW ORM _MITOCHONDRIAL : GeneticCodeNam e = "flatworm mitochondrial
CILIATE_NUCLEAR : GeneticCodeName = "ciliate nuclear"

EUPLOTID_NUCLEAR : GeneticCodeName = "euplotid nuclear"
ALT_YEAST_NUCLEAR : GeneticCodeName = "alternative yeast nuclear"
BLEPHARISMA_MACRONUCLEAR : GeneticCodeName = "blepharisma macronuclear"
genetic_code_names : GeneticCodeNam elList

create_genetic_code()

Figure 2-25 The GeneticCodeFactory interface

interface GeneticCodeFactory

{
const GeneticCodeName STANDARD = "standard";

const GeneticCodeName BACTERIAL = "bacterial";

2-70 Biomolecular Sequence Analysis V1.0 December 1999

const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName

YEAST_MITOCHONDRIAL = "yeast mitochondrial”;
VERTEBRATE_MITOCHONDRIAL "vertebrate mitochondrial";
MOLD_MITOCHONDRIAL "mold mitochondrial”;
INVERTEBRATE_MITOCHONDRIAL = "invertebrate mitochondrial;
ECHINODERM_MITOCHONDRIAL "echinoderm mitochondrial;
ASCIDIAN_MITOCHONDRIAL "ascidian mitochondrial;
FLATWORM_MITOCHONDRIAL "flatworm mitochondrial”;
CILIATE_NUCLEAR = "ciliate nuclear";
EUPLOTID_NUCLEAR = "euplotid nuclear";
ALT_YEAST_NUCLEAR = "alternative yeast nuclear";
BLEPHARISMA_MACRONUCLEAR = "blepharisma macronuclear";

readonly attribute GeneticCodeNamelList genetic_code_names;
GeneticCode create_genetic_code(in GeneticCodeName name)
raises(InvalidGeneticCodeName);

const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName

STANDARD

BACTERIAL
YEAST_MITOCHONDRIAL
VERTEBRATE_MITOCHONDRIAL
MOLD_MITOCHONDRIAL
INVERTEBRATE_MITOCHONDRIA
ECHINODERM_MITOCHONDRIAL
ASCIDIAN_MITOCHONDRIAL
FLATWORM_MITOCHONDRIAL
CILIATE_NUCLEAR
EUPLOTID_NUCLEAR
ALT_YEAST_NUCLEAR =
BLEPHARISMA_MACRONUCLEAR

"standard";

"bacterial";

"yeast mitochondrial;
"vertebrate mitochondrial";
"mold mitochondrial”;
"invertebrate mitochondrial”;
"echinoderm mitochondrial";
"ascidian mitochondrial;
"flatworm mitochondrial";
"ciliate nuclear";

"euplotid nuclear";
"alternative yeast nuclear";

= "blepharisma macronuclear";

Description:

TheGeneticCodeFactory
strings that list the set of currently known genetic codes.GéreeticCodeName
defines the particula€oding that is used to conve@odons into Residues so one
need only specify th&eneticCodeName when creating &eneticCode object from
one of the known type€odings for the GeneticCodeNames listed above can be
found in Appendix B.

interface defines

a set obnst GeneticCodeName

readonly attribute GeneticCodeNamelList genetic_code_names;

Description:

GeneticCodeNames .

Thegenetic_code_names attribute provides access to the supported

Return value:

Returns @eneticCodeName .

BSA V1.0 Module DsLSRBioObjects

Dec. 1999

2-71

2-72

GeneticCode create_genetic_code(in GeneticCodeName name)
raises(InvalidGeneticCodeName);

Description: create_genetic_code() creates the appropriate
GeneticCode corresponding to th&eneticCodeName .
Codings for the GeneticCodeNames listed above can be
found in Appendix B.

Return value: Returns GeneticCode .

Exceptions: RaiseBwalidGeneticCodeName if the
GeneticCodeName is not supported (i.e., returned by the
genetic_code_names attribute).

2.1.26 CharacterAlignmentEncoder (Optional)

The CharacterAlignmentEncoder and its specialization
SingleCharacterAlignmentEncoder are optional parts of the specification that
facilitate the representation of tAdignment for thin clients. It is important that these
interfaces have a proposed standard, as it will allow clients which do not want to
investigateAlignments directly to get useful information for passing on to a user or
to another, text format based application.

A CharacterAlignmentEncoder ’s role is to produce string text similar to that in

Table 2-2 on page 2-40, with columns of text indicating the correspondences and the
row indicating each sequence. The exact format isn't specified or standardized. The
factory that makes the encoder will govern the precise nature of the encoding, such as
what pad character is used. T@baracterAlignmentEncoder might have more

than one character per column, allowing the transmission of three-letter amino acid
code or more than one base of DNA sequence in a single column. To allow the client
to format the resulting datapax_column_width() returns the maximum length of
characters in a column. Rows and columns are numbered starting at 1.

The Alignment and theCharacterAlignmentEncoder interfaces work well for

both view-based clients and programmatic clients. The interfaces provide viewing
clients with an easy, low cost route of gathering the alignment data and displaying it to
the user. The coordinate system of the string encoded alignment maps to the
underlying alignment, allowing the client to retrieve specific regions of the alignment
of interest. Since thimterval valuetype can be used to retrieve only portions of the
BioSequences , these very complex objects can remain on the server, with the clients
displaying only portions of interest to the user. For programmatic clients, that want to
use the alignment as the basis of further analysisjligament interface provides a
mapping system of moving from one sequence to another sequence via the alignment.

CharacterAlignmentEncoder is an optional compliance point of this submission.

Biomolecular Sequence Analysis V1.0 December 1999

<<Interface>>
CharacterAlignmentEncoder

the_alignment : Alignment

num_rows()
num_columns() 1 0.+ <<Interface>>
get_name() Alignment
get_all names()
get_cell_contents()
is_cell_a_gap()
get_cell_width()
max_column_width()
max_width()

Figure 2-26 The CharacterAlignmentEncoder interface

interface CharacterAlignmentEncoder

{
readonly attribute Alignment the_alignment;
unsigned long num_rows(); /I number of aligned
/I objects. Delegate
unsigned long num_columns(); I/l Delegate to Alignment
string get_name(in unsigned long row) /l first object is in row
raises(IndexOutOfBounds); // one etc...
StringList get_all_names(); /l all the Names
string get_cell_contents(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);
boolean is_cell_a_gap(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);
unsigned long get_cell_width(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);
unsigned long max_column_width(in unsigned long col)
raises(IndexOutOfBounds);
unsigned long max_width();
h

readonly attribute Alignment the_alignment;

Description: Provides access to the underlyiignment .

Return value: Returns arAlignment .

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-73

2-74

unsigned long num_rows();

Description:

Provides access to the number of rows
(AlignmentElements) in this Alignment . The return value
of num_rows() is the same as that of tiidignment’s
num_rows() .

Return value:

Returns arunsigned long .

unsigned long num_columns();

Description:

Provides access to the total number of correspondences
Alignment . The return value ofium_columns() is the
same as that of th&lignment's num_columns()

Return value:

Returns amsigned long .

string get_name(in unsigned long row)
raises(IndexOutOfBounds);

Description:

Provides access to the name associated with the
AlignmentElement referenced byow.

Return value:

Returns string .

Exceptions:

RaisebidexOutOfBounds if row is less than 1 or greate
than the number of rows. This upper limit is returned by
num_rows() .

StringList get_all_names();

Description:

Provides access to the names associated with each of th
AlignmentElements

Return value:

Returns &tringList , onestring perAlignmentElement .

Biomolecular Sequence Analysis V1.0 December 1999

n this

string get_cell_contents(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

Description:

Provides access to the string associated with a single cel
The cell corresponds to the correspondesulein the
AlignmentElement referenced byow.

Return value:

Returns string .

Exceptions:

RaisesindexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows() .

Also raisedndexOutOfBounds if col is less than 1 or
greater than the number of columns. This upper limit is
returned bynum_columns() .

boolean is_cell_a_gap(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

Description:

Indicates if a single cell represents a gap in the alignment.

The cell corresponds to the correspondecalein the
AlignmentElement referenced byow.

Return value:

Returns laoolean .

Exceptions:

RaisebdexOutOfBounds if row is less than 1 or greatef
than the number of rows. This upper limit is returned by
num_rows() .

Also raisesindexOutOfBounds if col is less than 1 or
greater than the number of columns. This upper limit is
returned bynum_columns() .

unsigned long get_cell_width
(in unsigned long row,
in unsigned long col)
raises(IndexOutOfBounds);

BSA V1.0

Module DsLSRBioObjects Dec. 1999 2-75

—

2-76

Description:

To allow the client to format the resulting data,
get_cell_width() returns the width of a single cell. The ce
corresponds to the correspondesoe in the
AlignmentElement referenced byow.

Return value:

Returns amsigned long .

Exceptions:

RaiseBdexOutOfBounds if row is less than 1 or greate
than the number of rows. This upper limit is returned by
num_rows() .

Also raisedndexOutOfBounds if col is less than 1 or
greater than the number of columns. This upper limit is
returned bynum_columns() .

—

unsigned long max_column_width(in unsigned long col)
raises(IndexOutOfBounds);

Description:

To allow the client to format the resulting data,
max_column_width() returns the maximum length of
characters in a column defined byl .

Return value:

Returns amsigned long .

Exceptions:

RaisemdexOutOfBounds if col is less than 1 or greater
than the number of columns. This upper limit is returned
num_columns() .

Py

unsigned long max_width();

Description:

To allow the client to format the resulting datax_width()
returns the maximum length of characters in the widest
column.

Return value:

Returns amsigned long .

2.1.27 SingleCharacterAlignmentEncoder (Optional)

A SingleCharacterAlignmentEncoder

guaranteed to have only a single character foAlddhmentElements . Therefore,
more bulk transport mechanisms can be employed, using strings to get rows of the
Alignment or the entireAlignment as a block of text.

SingleCharacterAlignmentEncoder is an optional compliance point of this

specification.

Biomolecular Sequence Analysis V1.0 December 1999

is one in which each correspondence is

<<lInterface>>
CharacterAlignmentEncoder

7

<<lInterface>>
SingleCharacterAlignmentEncoder

get_row()
get_row_interval()
get_row_colum n_interval()
get_entire_alignm ent()

Figure 2-27 The SingleCharacterAlignmentEncoder interface

interface SingleCharacterAlignmentEncoder : CharacterAlignmentEncoder

{

string get_row(in unsigned long row)
raises(IndexOutOfBounds);
string get_row_interval(in unsigned long row, in Interval cols)

raises(IndexOutOfBounds, IntervalOutOfBounds);
StringList get_row_column_interval(in Interval rows, in Interval cols)
raises(IntervalOutOfBounds);
StringList get_entire_alignment(); // probably the most common!

string get_row(in unsigned long row)
raises(IndexOutOfBounds);

Description: Provides the text for part of a singlegnmentElement as a
string . row identifies theAlignmentElement . There is one
character per cell.

Return value: Returns string .

Exceptions: RaisekdexOutOfBounds if row is less than 1 or greate
than the number of rows. This upper limit is returned by
num_rows() , inherited from

CharacterAlignmentEncoder

BSA V1.0 Module DsLSRBioObjects Dec. 1999 2-77

string get_row_interval(in unsigned long row, in Interval cols)
raises(IndexOutOfBounds, IntervalOutOfBounds);

Description: Provides the text for part of a singlegnmentElement as a
string . row identifies theAlignmentElement . cols allows
a subset of the correspondences to be referenced. There |s one
character per cell.

Return value: Returns string .

Exceptions: RaisemdexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows (), inherited from
CharacterAlignmentEncoder

RaisedntervalOutOfBounds if cols’ start is less than 1 on
start+length-1 is greater than the number of columns. This
upper limit is returned bpum_cols (), inherited from
CharacterAlignmentEncoder

StringList get_row_column_interval(in Interval rows, in Interval cols)
raises(IntervalOutOfBounds);

Description: Provides the sub-block of text for the portion of the
Alignment defined byrows andcols Intervals as an array
of strings . rows allows a subset of the
AlignmentElements to be referencedcols allows a subset
of the correspondences to be referenced. There is one
character per cell.

Return value: Returns &tringList , onestring per row.

Exceptions: RaisemtervalOutOfBounds if rows’ start is less than 1
or start+length-1 is greater than the number of rows. Thi
upper limit is returned byum_rows() , inherited from
CharacterAlignmentEncoder

U7

Also raisedntervalOutOfBounds if cols’ start is less than
1 or start+length-1 is greater than the number of columns.
This upper limit is returned byum_cols() , inherited from
CharacterAlignmentEncoder

2-78 Biomolecular Sequence Analysis V1.0 December 1999

StringList get_entire_alignment();

Description:

Provides the block of text for the entM@gnment as an
array ofstrings . There is one character per cell.

Return value:

Returns &tringList , onestring per row.

2.1.28 AlignmentEncoder factories (Optional)

AlignmentEncoder

themselves.

AlignmentEncoder

CharacterAlignmentEncoderFactory

<<Interface>>

create()

factories provide a means of creating new
CharacterAlignmentEncoder andSingleCharacterAlignmentEncoder objects.
This permits a clean separation of factory issues fromligamentEncoder

factories are an optional compliance point of this specification.

<<Interface>>
SingleCharacterAlignmentEncoderFactory

create()

Figure 2-28 The AlignmentEncoder factories

CannotEncodeAlignment

exception CannotEncodeAlignment

{
string reason;
3
Description: TheCannotEncodeAlignment exception is raised if an

AlignmentEncoder can not be created for thidignment .

Return value:

Returns string containing the reason the
AlignmentEncoder could not be created for this
Alignment .

CharacterAlignmentEncoderFactory

CharacterAlignmentEncoderFactory provides a means of creating new
CharacterAlignmentEncoders for anAlignment .

CharacterAlignmentEncoderFactory

specification.

is an optional compliance point of this

interface CharacterAlignmentEncoderFactory

{

CharacterAlignmentEncoder create(in Alignment the_alignment)

BSA V1.0

Module DsLSRBioObjects Dec. 1999 2-79

objects

raises(CannotEncodeAlignment);

CharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

Description: Thecreate() operation creates a
CharacterAlignmentEncoder for the givenAlignment .

Return value: Returns @haracterAlignmentEncoder

Exceptions: Raise€annotEncodeAlignment if a
CharacterAlignmentEncoder cannot be created for this
Alignment .

SingleCharacterAlignmentEncoderFactory

SingleCharacterAlignmentEncoderFactory provides a means of creating new
SingleCharacterAlignmentEncoders for anAlignment .
SingleCharacterAlignmentEncoderFactory is an optional compliance point of this
specification.

interface SingleCharacterAlignmentEncoderFactory

{

SingleCharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

SingleCharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

Description: Thecreate () operation creates a
SingleCharacterAlignmentEncoder for the given
Alignment .

Return value: Returns @ingleCharacterAlignmentEncoder

Exceptions: Raise€annotEncodeAlignment if a
SingleCharacterAlignmentEncoder can not be created
for this Alignment .

2.2 Module DsLSRAnNalysis

The DsLSRAnalysis module defines the component interfaces for supporting sequence
analysis through a generic analysis design. The module encapsulates the required
elements for analysis. It provides the means to interrogate analyses inputs, output and

2-80 Biomolecular Sequence Analysis V1.0 December 1999

2

functionality. An analysis can be executed asynchronously as well as synchronously
based on the client invocation. Executing analyses can be monitored by subscribing to
an event channel or polling for state.

The Client is responsible for:

¢ determining which Biomolecular Sequence Analysis (BSA) analysis tool (e.g.,
BLAST, Smith-Waterman, etc.) it wants to employ;
locating anAnalysisService that represent the BSA analysis tool;
retrieving a handle to afinalysisinstance object that implements the BSA
analysis tool;
providing theAnalysisinstance with complete input information;

* invoking theAnalysisinstance to perform its function (via a synchronous or
asynchronous mechanism);

® retrieving results generated by the BSA analysis tool execution; and

® when it no longer requires amalysisinstance (and its related input and output
objects), invoking their removal from the system.

A Client can learn about processing events that occur during the execution of an
Analysisinstance either by asking thénalysisinstance for its most recent
processing event or listening to an event channel on whicAnhlysisinstance
publishes its events. A Client can also ask foAaalysisinstance’s execution
status.

2.2.1 General

/[File: DSLSRAnNalysis

#ifndef _DS_LSR_ANALYSIS_IDL_
#define_DS_LSR_ANALYSIS_IDL_

#pragma prefix "omg.org"

#include <CosPropertyService.idl>
#include <CosEventChannelAdmin.idl>
#include <CosLifeCycle.idl>

#include <TimeBase.idl>

module DsLSRAnalysis
{

h

#endif / _DS_LSR_ANALYSIS_IDL_

...

#pragma prefix "omg.org"

To prevent name pollution and name clashing of IDL types, this module (and all
modules defined in this specification) uses the pragma prefix that is the OMG’s DNS
name.

BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-81

2-82

#include <CosPropertyService.idl>

Properties are used irAnalysisService andAnalysisinstance .

#include <CosEventChannelAdmin.idl>

EventChannel is used inAnalysisinstance .

#include <CosLifeCycle.idl>

Analysisinstance inherits fromLifeCycleObject .

#include <TimeBase.idl>

TimeT is used inTimeProgressEvent andJobControl . UtcT is used in
JobControl .

StringList

typedef sequence<string> StringList;

Description: Used to pass and return a sedtiofigs .

2.2.2 AnalysisType

An AnalysisType provides information for a client to determine the types of BSA
analyses available in the system. It can also be used to distinguish the type of analysis
offered by amnalysisService . An AnalysisType provides information sufficient to
determine whether twAnalysisServices create identical BSAnalysisinstances .

Such information may be of use to a computation management subsystem such as a
load balancing or queuing system. In order to provide enough information to
distinguish analysis types, there are several attributes AhalysisType .

It is important to note that th&nalysisType is defined as &aluetype that can be
extended by a vendor requiring additional attributes.

Biomolecular Sequence Analysis V1.0 December 1999

<<valuetype>>

AnalysisType
type : string
name : string
supplier : string
version : string
installation : string
description : string

Figure 2-29 The AnalysisType valuetype

valuetype AnalysisType

{
public string type;
public string name;
public string supplier;
public string version;
public string installation;
public string description;

public string type;

Description: Thetype attribute is used to specify both the correct
classification of the analysis as well as a qualifier to speci
category and additionally, provides information about the
inputs to the analysis. The classification of the analysis could
come from the BSA specified classification hierarchy as well
as it could come from a hierarchy defined by a certain
installation. A ‘/" is used to delimit the qualifier and a ‘.’ is
used to delimit the general input kind. An example of a
specifiedtype attribute would be
alignment.collection/assembly

=

Yy

Return value: Returns string .

public string name;

Description: Thename attribute is used to further identify the analysis |in
the system.
Return value: Returns string .

BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-83

public string supplier;

Description: Thesupplier attribute is used to identify the supplier or
vendor of a custom analysis implementation.

Return value: Returns string .

public string version;

Description: Theversion attribute specifies the particular form or
variation of the analysis.

Return value: Returns string .

public string installation;

Description: Theinstallation attribute is used to differentiate similar
analysis implementations at a particular installation.

Return value: Returns string .

public string description;

Description: Thedescription attribute is used to provide useful
descriptive information about th&nalysisinstances
created by thé\nalysisService .

Return value: Returns string .

2.2.3 InputPropertySpec

An InputPropertySpec is used to provide metadata that describes required and
optional input parameters used to perform an analysisInfutPropertySpec

provides an input name a@DRBA::TypeCode to allow the client to interrogate the
interface repository for more information about the analysis parameter. Additionally,
there are some useful attributes that help the client determine if a parameter is optional or
required, the default value of an input parameter if one exists, and finally some possible
values useful for validation or user-interface presentation.

2-84 Biomolecular Sequence Analysis V1.0 December 1999

<<valuetype>>
InputPropertySpec

name : string

type : CORBA:: TypeCode
mandatory : boolean
default_\alue : any
possible_values : any

Figure 2-30 The InputPropertySpec valuetype

InputPropertySpec

valuetype InputPropertySpec

{
public string

name;

public CORBA::TypeCode type;

public boolean
public any
public any

mandatory;
default_value;
possible_values;

public string name;

Description:

This is the name of the parameter that can be submitted to
initialize the analysis.

Return value:

Returns string .

public CORBA::TypeCode type;

Description:

This is £ORBA::TypeCode allowing the client to find
more detailed information in the interface repository about
the data type.

Return value:

Returns @ORBA::TypeCode .

BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-85

public boolean mandatory;

Description: Themandatory attribute specifies if the analysis requires the
parameter with TRUE and if the parameter is optional with
FALSE.

Return value: Returns laoolean .

public any default_value;

Description: This attribute specifies the default value if one is applicable.
If no default value is applicable, return a null in trey.

Return value: Returns a CORB#y.

public any possible_values;

Description: This attribute specifies suggested allowed values that are
applicable. If no possible values are applicable, return a pull
in theany.

Return value: Returns a CORBa#ny.

InputPropertySpecList

typedef sequence<InputPropertySpec> InputPropertySpecList;

Description: Used to pass a setloputPropertySpecs .

2.2.4 OutputPropertySpec

An OutputPropertySpec is used to provide metadata that describes each output value
generated by an analysis. TBeatputPropertySpec provides an output argument

name andCORBA::TypeCode to allow the client to interrogate the interface
repository for more information about the output value.

2-86 Biomolecular Sequence Analysis V1.0 December 1999

<<valuetype>>
OutputPropertySpec
name : string
type : CORBA:: TypeCode

Figure 2-31 The OutputPropertySpec valuetype

OutputPropertySpec

valuetype OutputPropertySpec
{

public string name;
public CORBA:: TypeCode type;

public string name;

Description: This is the name of the identifier that contains an analysis
output value.

Return value: Returns string .

public CORBA::TypeCode type;

Description: This is £ORBA::TypeCode allowing the client to find
more detailed information in the interface repository about|the
data type.

Return value: Returns @ORBA::TypeCode .

OutputPropertySpeclList

typedef sequence<OutputPropertySpec> OutputPropertySpecList;

Description: Used to pass a set@dtputPropertySpecs .

2.2.5 AnalysisState

There are five defined analysis states:
1. CREATED - created but not yet invoked.
2. RUNNING - invoked.

BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-87

3. COMPLETED - execution ended normally.
4. TERMINATED_BY_REQUEST - execution was terminated by a user request.
5. TERMINATED_BY_ERROR - execution terminated abnormally.

When anAnalysisinstance s first created it will be in th€REATED state. When
the Analysisinstance is successfullyun () it will move into theRunning state. In
due course, th@nalysisinstance will then entereitherthe COMPLETED,
TERMINATED_BY_REQUEST or TERMINATED_BY_ERROR state.

Note that armAnalysisinstance in the TERMINATED_BY_REQUEST or
TERMINATED_BY_ ERROR states may still have (partial, incomplete) results that

can be retrieved by the client. There is no obligation that an implementation provides
results in these two cases. Further, the results for an analysis that is in one of these
two states is likely to be different than for an analysis that ran to normal completion. It
is recommended that client software convey this information to the end-user.

<<enum>>
Analysis State
CREATED
RUNNING
COMPLETED
TERMINATED_BY _REQUEST
TERMINATED_BY_ERROR

Figure 2-32 The AnalysisState enumeration

enum AnalysisState

{
CREATED, /I Instance has been created but not yet executed.
RUNNING, /I The analysis instance is running.
COMPLETED, /I The instance has completed execution.
TERMINATED_BY_REQUEST,// The instance was terminated by user request.
TERMINATED_BY_ERROR /I The instance terminated due to an error.
h
CREATED CREATED should be used when the
Analysisinstance has been created but not
yet invoked.
RUNNING RUNNING should be used when the
Analysisinstance has been invoked.

2-88 Biomolecular Sequence Analysis V1.0 December 1999

COMPLETED COMPLETED should be used to indicate
that the execution of th&nalysisinstance
ended normally.

TERMINATED_BY REQUEST | TERMINATED_BY_REQUEST should be
used to indicate that the execution of the
Analysisinstance was terminated by a use
request.

TERMINATED_BY_ERROR TERMINATED_BY_ERROR should be to
indicate that the execution of the
Analysisinstance was terminated
abnormally.

-

2.2.6 AnalysisEvent

There are five defined types of analysis events. They all inherit from the base
valuetype, which has a single message string. For all events the string should give
some free-form text description of the current progress.

StateChangedEvent
HeartbeatProgressEvent
PercentProgressEvent
StepProgressEvent
TimeProgressEvent

<<valuetype>>
Analysis Event

message : string

Figure 2-33 The AnalysisEvent valuetype

valuetype AnalysisEvent

{
k

public string message;

public string message;

Description: For all eventmessage should give some free-form text
description of the current progress.

Return value: Returns string .

BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-89

2-90

2.2.7 sub-types of AnalysisEvent

If an analysis has a non-null event channel then it must publish

StateChangedEvents onto that channel whenever the analysis enters a new state

(apart from theCREATED) state.

The frequency of publication of other events onto the event channel is considered a
quality of implementation issue. There is no restriction on the ordering of the events

published onto the event channel.

An analysis may also publish other events (not necessarily derived from

AnalysisEvent) onto the event channel. Clients, therefore, must be capable of dealing

with unknown events (e.g. by discarding them).

<<valuetype>>
HeartbeatProgressEvent

<<valuetype>>
StateChangedEvent

previous_state : AnalysisState
new_state : AnalysisState

2

<<valuetype>>
AnalysisEvent

1\ ~=|message: string

<<valuetype>>
P ercentProgressEvent

percentage : float

<<valuetype>>
StepProgressE vent
total_steps : unsigned long
steps_completed : unsigned long

<<enum>>
AnalysisState

CREATED

RUNNIN G

COMPLETED

TERMINATED _BY_REQUEST
TERMINATED _BY _ERROR

<<valuetype>>
TimeProgressEvent
time_remaining : TimeBase::TimeT

Figure 2-34 The sub-types of AnalysisEvent

StateChangedEvent

StateChangedEvent indicates that adnalysisinstance has changed from one of

the five definedAnalysisStates to another.

If an analysis has a non-null event channel then it must publish

StateChangedEvents onto that channel whenever the analysis enters a new state

(apart from theCREATED) state.

valuetype StateChangedEvent : AnalysisEvent

{

public AnalysisState previous_state;
public AnalysisState new_state;

Biomolecular Sequence Analysis V1.0 December 1999

public AnalysisState previous_state;

Description: Provides the previous state of Aralysisinstance .

Return value: Returns afnalysisState .

public AnalysisState new_state;

Description: Provides the new state of #healysisinstance .

Return value: Returns afnalysisState .

HeartbeatProgressEvent
HeartbeatProgressEvent indicates that arnalysisinstance is still alive and
running.

valuetype HeartbeatProgressEvent : AnalysisEvent

{
h
PercentProgressEvent

PercentProgressEvent provides information regarding the relative amount of work
completed by arnalysisinstance in terms of percentage complete. The percentage
parameter must be greater or equal to 0 and less than or equal to 100.

valuetype PercentProgressEvent : AnalysisEvent

{
k

public float percentage;

public float percentage;

Description: percentage must be greater or equal to 0 and less than or
equal to 100.
Return value: Returns fioat .

TimeProgressEvent

TimeProgressEvent indicates the estimated completion time relative to the current
time. There is no requirement that the estimated completion time decreases!

valuetype TimeProgressEvent : AnalysisEvent

{
k

public TimeBase::TimeT time_remaining;

BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-91

2-92

public TimeBase::TimeT time_remaining;

Description: Indicates the estimated completion time relative to the current
time.

Return value: Returns @imeBase:: TimeT .

StepProgressEvent

StepProgressEvent indicates the total number of steps to be executed by an
Analysisinstance and the number of steps completed so far. Multiple
StepProgressEvents with the same progress string must have the same total number
of steps. Thesteps_completed parameter must be less than or equal to the
total_steps parameter.

valuetype StepProgressEvent : AnalysisEvent
{

public unsigned long total_steps;

public unsigned long steps_completed;

public unsigned long total_steps;

Description: Indicates the total number of steps to be executed by the
Analysisinstance . Thesteps_completed parameter must
be less than or equal to th&tal_steps parameter.

Return value: Returns amsigned long .

public unsigned long total_steps;

Description: Indicates the number of steps completed so far. The
steps_completed parameter must be less than or equal o
thetotal_steps parameter.

Return value: Returns amsigned long .

2.2.8 AnalysisService

An AnalysisService is a logical representation of a particular type of a BSA analysis
tool available within a system. AfnalysisService provides enough information to
distinguish the service it provides from those offered by odmalysisServices .

An AnalysisService provides metadata that describes input to its
Analysisinstances and the output generated by Ksalysisinstances . Metadata
describing input and output parameters is available to the client in either IDL

Biomolecular Sequence Analysis V1.0 December 1999

2

valuetypes or both IDL valuetypes and XML strings. If both are used, the information
available in the IDL structures and XML strings must not be contradictory. Obviously
there is some information, such as constraints expressed in OCL (Object Constraint
Language), that will only be available in the XML strings. Metadata is required for a

compliant implementation.

An AnalysisService creates and returns referenced\tmlysisinstance objects
that implement the BSA analysis tool it represents. Arguments to create an
Analysisinstance are in the form ofCosPropertyService::Properties . Before

returning anAnalysisinstance , the input arguments must be checked for correctness

(according to the criteria represented in the metadata describing the
AnalysisService's input parameters).

The client that receives the returned reference taAratysisinstance is responsible

for the lifecycle management of that instance along with the objects populating the

Analysisinstance’s input parameters and output parameters.

<<Interface>>
AnalysisService

AnalysisTypeTag : string = "TAG_ANALYSIS_TYPE"
InputPropertiesTag : string = "TAG_INPUT_PROPERTIES"
OutputPropertiesTag : string = "TAG_OUTPUT_PROPERTIES"
metadata_tags : StringList

type : AnalysisType

input_metadata : InputPropertySpecList

output_metadata : OutputPropertySpeclList

create_analysis()
describe()

Figure 2-35 The AnalysisService interface

MetaData

typedef string MetaData;

Description: Used to pass and returstdng containing XML metadata.

DoesNotExistException

exception DoesNotExistException { };

Description: TheDoesNotExistException exception is raised if the
tagname used indescribe () does not exist in the metadata.

AnalysisService

interface AnalysisService

BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-93

2-94

const string AnalysisTypeTag
const string InputPropertiesTag
const string OutputPropertiesTag

"TAG_ANALYSIS_TYPE";
"TAG_INPUT_PROPERTIES",
"TAG_OUTPUT_PROPERTIES",

readonly attribute StringList metadata_tags;
MetaData describe(in string tagname)
raises (DoesNotExistException);

readonly attribute AnalysisType type;
readonly attribute InputPropertySpecList input_metadata;
readonly attribute OutputPropertySpecList output_metadata;

AnalysisInstance create_analysis (in CosPropertyService::Properties input)
raises (CosPropertyService::MultipleExceptions);

const string AnalysisTypeTag
const string InputPropertiesTag = "TAG_INPUT_PROPERTIES";
const string OutputPropertiesTag = "TAG_OUTPUT_PROPERTIES";

"TAG_ANALYSIS_TYPE";

Description:

TheAnalysisService interface defines a set obnst
strings that indicates the types of required metadata. Th

strings correspond to the three attributes described below.

readonly attribute StringList metadata_tags;

Description:

Provides the set of metadata tags for this analysis. The
must include the threeonst strings listed above.

Return value:

Returns @tringList .

MetaData describe(in string tagname)
raises (DoesNotExistException);

Description:

describe() returns an XML string containing the metadata
corresponding to the tagname parameter. If metadata is
available as XML describe() must support all tagnames
returned by the metadata_tags attribute.

Return value:

Returns ldetaData string containing XML.

Exceptions:

RaiseBoesNotExistException if the tagname parameter
is not one of the list returned by the metadata_tags attrib

RaisesCORBA::NO_IMPLEMENT if metadata is not
available as XML.

Biomolecular Sequence Analysis V1.0 December 1999

11

ist

1

ute.

readonly attribute AnalysisType type;

Description: type() returns theAnalysisType structure. This structure
must be populated.

Return value: Returns alnalysisType .

readonly attribute InputPropertySpecList input_metadata;

Description: input_metadata() returns information about input
parameters in IDL structure form. This structure must be
populated.

Return value: Returns an array laputPropertySpecs

readonly attribute OutputPropertySpecList output_metadata;

Description: output_metadata() returns information about output
parameters in IDL structure form. This structure must be
populated.

Return value: Returns an array ©ttputPropertySpecs

Analysisinstance create_analysis (in CosPropertyService::Properties input)
raises (CosPropertyService::MultipleExceptions);

Description: Arguments to create Amalysisinstance are in the form of
CosPropertyService::Properties . Before returning an
Analysisinstance , the input arguments must be checked for
correctness (according to the criteria represented in the metadata
describing théAnalysisService's input parameters).

Return value: Returns alnalysisinstance .

Exceptions: RaiseSosPropertyService::MultipleExceptions if the input
parameters are incorrect for this analysis. The metadata should be
consulted for information about the input parameters needed by

this analysis.

BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-95

2-96

2.2.9 JobControl

Along with its basic interface, afinalysisinstance implements aobControl
interface. Via theJobControl , clients invoke and terminafenalysisinstance
execution and retrieve execution performance information (e.g., execution duration,
creation time, etc.).

<<Interface>>
JobControl

created : TimeBase::UtcT
elapsed : TimeBase::TimeT
started : TimeBase::UtcT
ended : TimeBase::UtcT

run()

wait()

terminate()

Figure 2-36 The JobControl interface

NotRunnable

exception NotRunnable { };

Description:

TheNotRunnable exception is raised if the analysis cann
be run (e.g., the service is currently unavailable). Raised
run() .

This exception should not be used to indicate incorrect inp
CosPropertyService::MultipleExceptions ~ should be used
instead.

by

uts.

NotRunning

exception NotRunning { };

Description:

The NotRunning exception is raised if the analysis is not
running. Raised bterminate() .

Biomolecular Sequence Analysis V1.0 December 1999

NotTerminated

exception NotTerminated

{
3

Description: The NotTerminated exception is raised if the analysis is not
terminated. Raised bgrminate() .

string reason;

Return value: Returns astring containing the reason the analysis could not
be terminated.

JobControl

interface JobControl

{
readonly attribute TimeBase::UtcT created;
readonly attribute TimeBase::TimeT elapsed;
readonly attribute TimeBase::UtcT started,;
readonly attribute TimeBase::UtcT ended;

void run()

raises (NotRunnable, CosPropertyService::MultipleExceptions);
void terminate()

raises (NotRunning, NotTerminated);
void wait();

readonly attribute TimeBase::UtcT created,;

Description: Indicates the time thAnalysisinstance was created.

Return value: Returns alimeBase::UtcT .

readonly attribute TimeBase::TimeT elapsed;

Description: Indicates the elapsed time since the analysis was started using
run() .
Return value: Returns alimeBase::TimeT .

readonly attribute TimeBase::UtcT started;

Description: Indicates the time the analysis was started.

Return value: Returns alimeBase::UtcT .

BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-97

2-98

readonly attribute TimeBase::UtcT ended;

Description:

Indicates the time the analysis ended.

Return value:

Returns alimeBase::UtcT .

void run()

raises (NotRunnable, CosPropertyService::MultipleExceptions);

Description:

Therun() method invokes thAnalysisinstance to run
asynchronously

Exceptions:

RaisesNotRunnable if the analysis cannot be run (e.g., the
service is currently unavailable).

RaisesCosPropertyService::MultipleExceptions if the
inputs are not correct.

void terminate()

raises (NotRunning, NotTerminated);

Description:

terminate() ends a currently running analysis.

Exceptions:

RaisesNotRunning if the analysis is not running.

RaisesNotTerminated if the analysis was not terminated.

void wait();

Description:

Thewait() method blocks the client until service execution
completes.

2.2.10 Analysisinstance

An Analysisinstance obiject is responsible for invoking an underlying BSA analysis

tool.

An Analysisinstance can be used in either a synchronous or an asynchronous mode

to support clients with various needs. Thea() method invokes the

Analysisinstance

to run asynchronously. If the client wants to be blocked waiting

for the underlying BSA analysis tool to run to completion, it can invokevHi)
method which will block the client until service execution completes.

Biomolecular Sequence Analysis V1.0 December 1999

2

An Analysisinstance must ensure it can be executed only once, ensuring a unique
coupling of inputs and results. If a client wants to employAaalysisinstance

identical to one it has already invoked, the client must create a new
Analysisinstance , via anAnalysisService , and invoke it as a separate instance.

An Analysisinstance makes available two kinds of execution information: execution
status and analysis events.

®* An Analysisinstance object must offer:
 the AnalysisService that created thignalysisinstance ;
« its execution status (one of the enumeratadlysisState values);

» the EventChannel to which it publishes its analysis events and the last event
that occurred during execution (representedm@aysisEvents);

« theJobControl that clients can use to control the execution of the analysis;
- the inputProperties that were used in its execution;
» anAnalysisType specifying the service it provides/provided,;

» an outputProperties containing the results generated by the execution of the
underlying BSA analysis.

An Analysisinstance is responsible for ensuring that the results of the BSA analysis
tool it represents are populated properly inrésults .

To retrieve the results generated byAaralysisinstance , clients use the

get_result() method. It takes a list of strings (the strings representing named members
of the OutputPropertySpecList) as an argument. If the BSA analysis tool

underlying theAnalysisinstance terminated before it completed, either due to a

client request or an execution failure, some “partial” results may be available to the
client in theresults .

As in all CORBA systems, an implementation of this system may choose to enforce a
policy regarding automatically removing CORBA objects, sucAradysisinstances
that appear to have been abandoned by clients.

BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-99

<<lInterface>>
LifeCycleObject
(from CosL ifeCycle)

<<Interface>>
Analysisinstance

results

service : AnalysisService
status :
event_channel : CosEventChannelAdmin::EventChannel
last_event : AnalysisEvent
job_control : JobControl

inputs :

AnalysisState

CosPropertyService::Properties

: CosPropertyService::Properties

Figure 2-37 The Analysisinstance interface

interface Analysisinstance : CosLifeCycle::LifeCycleObject

{

readonly attribute AnalysisService service;
readonly attribute AnalysisState status;
readonly attribute CosEventChannelAdmin::EventChannel event_channel;
readonly attribute AnalysisEvent
readonly attribute JobControl
readonly attribute CosPropertyService::Properties inputs;
readonly attribute CosPropertyService::Properties results;
CosPropertyService::Properties get_result(in StringList name_list);

last_event;
job_control;

readonly attribute AnalysisService service;

Description:

Analysisinstance

Refers to theAnalysisService that created this

Return value:

Returns arAnalysisService .

2-100 Biomolecular Sequence Analysis V1.0

December 1999

readonly attribute AnalysisState status;

Description:

Provides the current status of the analysis.

Return value:

Returns one of the enumeratgdalysisState values. The
values arecCREATED, RUNNING, COMPLETED,
TERMINATED_BY_REQUEST, and
TERMINATED_BY_ERROR .

readonly attribute

CosEventChannelAdmin::EventChannel event_channel;

Description:

Provides thé&eventChannel to which theAnalysisinstance
publishes its analysis events.

Return value:

Returns &CosEventChannelAdmin::EventChannel

readonly attribute AnalysisEvent last_event;

Description:

Provides the last event that occurred during execution.

Return value:

Returns arAnalysisEvent .

readonly attribute JobControl job_control;

Description:

Provides the management interface that clients can use to
control the execution of the analysis.

Return value:

Returns alobControl .

readonly attribute CosPropertyService::Properties inputs;

Description:

Provides the inpuProperties that were used in this
Analysisinstance ’s execution.

Return value:

Returns aCosPropertyService::Properties

BSA V1.0

Module DsLSRAnalysis Dec. 1999 2-101

readonly attribute CosPropertyService::Properties results;

Description: Provides the outpBroperties containing the results
generated by the execution of the underlying BSA analysi

2

Note: AnAnalysisinstance in the

TERMINATED_BY_REQUEST or

TERMINATED_BY_ERROR states may still have (partial,
incomplete) results that can be retrieved by the client. There
is no obligation that an implementation provides results in
these two cases. Further, the results for an analysis that|is in
one of these two states is likely to be different than for an
analysis that ran to normal completion. It is recommende
that client software convey this information to the end-use

- Q

Return value: Returns aCosPropertyService::Properties

CosPropertyService::Properties get_result(in StringList name_list);

Description: Theget _result() method takes a list of strings (the strings
representing named members of the
OutputPropertySpecList) as an argument and returns the
associated results.

Note: AnAnalysisinstance in the

TERMINATED_BY_REQUEST or

TERMINATED_BY_ERROR states may still have (partial,
incomplete) results that can be retrieved by the client. There
is no obligation that an implementation provides results in
these two cases. Further, the results for an analysis that|is in
one of these two states is likely to be different than for an
analysis that ran to normal completion. It is recommended
that client software convey this information to the end-use

-

Return value: Returns aCosPropertyService::Properties

2.2.11 Sequence Diagrams

The following sequence diagrams show how the analysis machinery is used. The
diagrams are examples of the steps necessary for both synchronous and asynchronou
invocation of an analysis service and retrieving its results.

Synchronous invocation can be achieved without usingeaeyntChannel interface.
The client is blocked invait() method until the analysis is finished.

2-102 Biomolecular Sequence Analysis V1.0 December 1999

2

Asynchronous invocation, using &ventChannel , can follow a "callback" pattern
where the server regularly pushes events back to an object prepared by the client, or
the client can repeatedly poll the server.

X

Client Analysis Analysis Job
rvi Instance Control

find analysis service |
Q ‘
|
\

Tc reate_analysis()

create new
create new

|
|
|
|
u

|

i
|
|
|
|
\

b results()

|
:

Figure 2-38 Synchronous invocation without using an EventChannel

BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-103

2-104

X X

Client Analysis Analysis Job Event Consumer ProxyPush Push
Senice Instance Control Sener Channel Admin Supplier Consumer

find analysis senice ‘

| create_analysis() |

create new

| | | |

| | | |

create new ‘ ‘ ‘ ‘

Dcreate new \ \ \

L | | | |

| | | | | | |

L 1 for} _consumers() 1 1 | create new ‘ \
| | | | L | |

] \ | obtain_push_supplier() \ \ | createnew | |
| | | | | | g |

L | | | create new | | | |
| | | | | | | 1

L | | connect_push_ (‘:onsumer(Pushc‘onsumer) | | | ‘
i o | | | | 9 |
\ \ U ‘ ‘ * push(AnalysisEvem) ‘ ‘

T results() | | u | | | gl
| gl | | | | |

Y | | | | | | |
| | | | | | |

Figure 2-39 Asynchronous invocation, using an EventChannel and callbacks

Biomolecular Sequence Analysis V1.0 December 1999

Client Analysis Analysis Job Event Consumer ProxyPull
Senice Instance Control Channel Admin Supplier

find analysis senice |

< |

create_analysis() ‘

4‘

create new

create new

create new

for_consumers()

I
|
| |
L ‘ | | Create new
T T T
| | | L ﬁ]
| bthin oull sungfier(|
Ll ‘ o t?mJJu |_supplier()‘ ‘ | create new
\ \ \ \
| | | | L [h
| | | _ | |
= ‘ ‘ connect_pulI_c?nsumer(nll) ‘ ‘ ‘
I I I I I
| | | | | u
\ | w0 | | | | |
| |) | | |
| |
T ‘ * try_pull(') returning AnalysisEvent ‘ ‘ ‘
‘ i i i \
‘ | |
= results()
L
|
|
|
|
I

|
i 7] \

Figure 2-40 Asynchronous invocation, using an EventChannel and polling

BSA V1.0 Module DsLSRAnalysis Dec. 1999 2-105

2-106 Biomolecular Sequence Analysis V1.0 December 1999

Domain Model 3

The domain model is expressed in XML. A simple classification of analyses follows the
explanation of XML metadata. The DTD and the entire XML file can be found in
Appendix D.

3.1 XML Metadata

Metadata is used in thnalysisService for analysis type, input and output objects to
represent object implementation detail that has been abstracted out of the interface in favor
of using the standard, common BSA analysis interface. This can provide semantic infor-
mation beyond that provided by the IDL syntax, although information provided through
XML must not be contradictory with information available through IDL structures. XML
has been chosen as the language with which to represent the object metadata. This sectio
discusses the strategy for using the XML based metadata representation.

3.1.1 Role of XML

“Standard Generalized Markup Language (SGML), which became an ISO 8879 standard
in 1986, was the result of a decade’s long effort to produce a language for writing human
consumable text that at the same time is machine processable. Hypertext Markup Lan-
guage (HTML), a limited subset of SGML, is one of the driving forces behind the success
of the internet. HTML is non-extensible and primarily designed to support rendering in a
browser and a limited amount of user interaction. Extensible Markup Language (XML) is
a larger subset of SGML which overcomes the non-extensible nature of HTML and rein-
troduces support for the machine processing of text via the definition of user specified tag
sets. Since its inception, XML has offered the prospect of overcoming the limitations of
HTML without unduly burdening development of processing software as has been the
case with SGML based systems. Unlike HTML, XML does not rely on a fixed set of tags.
Arbitrary tag sets can be defined via use of a DTD. However, XML eliminates several fea-
tures of SGML which make it difficult to parse and therefore difficult to process SGML
documents. In particular, begin and end tags are both required and serve to reduce ambi-
guity in the processing of the hierarchical structure of XML documents, relative to SGML

Biomolecular Sequence Analysis V1.0 December 1999 3-1

documents. In short, XML provides a standardized, non-proprietary capability to repre-
sent arbitrary structural information in a way that supports development of parsers and
other types of processing of that structural information. Thus, XML opens up the possibil-
ity of automated processing and interchange of information stored in the form of XML
documents.

With respect to metadata, it opens up the possibility of accessing metadata at runtime and
using the structural information provided by the XML based tags to process and transform

that metadata. For example, the metadata for two separate processes could be used at ru
ime to connect the output of one process to the input of another process via conversion of
the output format of the first process into the input format of the second process.”

[Concept Five Technologies, Indtident Next Generation Metadata Design and
Generation Manual version 1.0pages 3-4, Copyright © 1998, 1999 by Hitachi,
Ltd. and Concept Five Technologies, Inc.]

3.1.2 Role of DTD

“As the XML proposal most succinctly puts, "The XML document type declaration con-
tains or points to markup declarations that provide a grammar for a class of documents.
This grammar is known as a document type definition, or DTD.

The markup grammar is a generic set of keywords, naming syntax, occurrence and con-
nector terms prescribed in the XML standard that the document structure designer wishes
to use to express literally any real world semantic notion. The basic markup keywords are
ELEMENT, ENTITY and ATTRIBUTE although there are dozens of others to round out
the language. Any set of key words could have been chosen. Microsoft Word has its set of
formatting keywords and arguments that allow a .doc file to carry a formidable amount of
information around for future processing. WordPerfect used to allow a document writer to
make these codes visible and directly editable at the click of a menu item. And of course,
there is post script.

There are many other document code sets, all of which are proprietary. Document pro-
cessing code that operates on these proprietarily marked up documents must necessarily
also be proprietary. Enter the DTD, or Document Type Definition. ISO 8879 makes stan-
dard these markup codes so non-proprietary document software can be developed.

Hypertext Markup Language (HTML) is an example of a markup language. Although
HTML is not based on a DTD it does adhere to a standard and stems from SGML. HTML
was designed so that processing code could be developed for rendering HTML based doc
uments in a browser. The HTML standard (currently 4.0) specifies the structure of valid
HTML documents. Changing one of the tags in this standard from <H3> to <J3> has the
potential to break all the processing code that relies on the use of the standard, which is
why changes to HTML are only made infrequently. Recently, DTD’s have been developed
for HTML, but these DTD’s do not adhere strictly to the standard, and are not widely used.

In general, DTD’s make it possible to specify the grammars of various domains so that
companies creating XML documents in these domains can interact with each other. For
example, there is a DTD for the representation of chemical formulas in XML. Companies
complying with the grammar for this domain can expect to be able to exchange XML doc-
uments describing chemical formulas and be able to use any processing code designed tc

Biomolecular Sequence Analysis V1.0 December 1999

3

operate in this domain. For example, processing code that accepts XML based descrip-
tions of chemical formulas and creates graphical representations of the formulas should be
able to handle any documents complying with the DTD.

At the present time, DTD'’s are being generated for many different domains. The Dublin
Core is a DTD which provides a tag set designed for use in the description of Internet
information resources and which is patterned after the information in a card catalog. The
UML DTD which is derived from the XMI specification covers the domain of object mod-
eling and is based on the UML semantics document. This DTD is likely to become the
standard for the description of object models in XML. Companies which produce docu-
ments which comply with standardized DTD'’s will be able to exploit any processing
developed for use with those standardized DTD’s.”

[Concept Five Technologies, Indtident Next Generation Metadata Design and
Generation Manual version 1.0pages 3-4, Copyright © 1998, 1999 by Hitachi,
Ltd. and Concept Five Technologies, Inc.]

3.1.3 Domain Metadata

Interoperability requires convergence on data semantics description capabilities. The
metadata in a BSA environment includes a description of the CORBA interfaces supported
as well as the meta semantics related to specification of the analysis and input and output
types supported by a particular analysis interface. The BSA metadata for the analysis
type, inputs and outputs allows for the support of well understood multiple execution paths
supported through the same simple interface.

The metadata provided by the valuetypes and XML is required to facilitate interoperability
for analyses, inputs and outputs. Interoperability is achieved by providing run-time infor-
mation about parameters required to perform an analysis. The client can dynamically
interrogate the analysis service, learn about the input parameters, populate the input prop
erty set and perform the analysis. When the analysis is finished, the client can dynami-
cally check the analysis service to learn about the output properties. The client can use
this knowledge to dissect the outputs into information of interest.

The elements in the DsLSRAnalysBTD correspond to the attributes in the previously
definedAnalysisType , InputPropertySpec , andOutputPropertySpec value-

types. In addition to the required valuetypes, the XML metadata may be available for the
implementation to provide data about the analyses.

The elements have the same definition as the valuetype attributes previously specified. It
is important to highlight the analysis type format. Again tyipeelement is used to spec-

ify both the correct classification of the analysis as well as a qualifier to specify category
and additionally, provides information about the inputs to the analysis. The classification
of the analysis could come from the BSA specified classification hierarchy as well as it
could come from a hierarchy defined by a certain installation. A /" is used to delimit the
qualifier and a ‘.’ is used to delimit the general input kind. An example of a speagfiied
element would balignment.collection/assembly

The DTD has three places where vendor extension is available. The analysis, input and
output elements specify an extension element that can be any valid content.

BSA V1.0 XML Metadata Dec. 1999 3-3

The following text presents the DTD for Biomolecular Sequence Analysis.
<IELEMENT DsLSRAnalysis (analysis)+>
<IELEMENT analysis (description?, input*, output*, extension?)>

<IATTLIST analysis

type CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
supplier CDATA #IMPLIED

installation CDATA #IMPLIED>

<IELEMENT description ANY>
<IELEMENT extension ANY>

<IELEMENT input (default?, allowed*, extension?)>

<IATTLIST input
type CDATA #REQUIRED
name CDATA #REQUIRED
mandatory (true|false) "false">

<IELEMENT default (#PCDATA)>
<IELEMENT allowed (#PCDATA)>

<IELEMENT output (extension?)>

<IATTLIST output
type CDATA #REQUIRED
name CDATA #REQUIRED>

The following text provides example XML that would be used with respect to the
DsLSRAnalysis DTD.

<?xml version="1.0" ?>
<IDOCTYPE DsLSRAnalysis SYSTEM "DsLSRAnalysis.dtd" >

<DsLSRAnalysis>
<ANALYSIS TYPE = "search.list">

<INPUT
NAME = "query_sequence"
TYPE = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
MANDATORY = "true">

</INPUT>

<INPUT
NAME = "sequence_list"
TYPE = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
MANDATORY = "true">

</INPUT>

<OUTPUT

Biomolecular Sequence Analysis V1.0 December 1999

NAME = "search_result"
TYPE ="IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</OUTPUT>
</ANALYSIS>
</DsLSRAnalysis>

3.2 Classification of Analyses

This classification of analyses consists of three broad categories: searching, alignment,
and utilities. Commonly used analyses are nicely partitioned into these categories.

3.2.1 Searching

Searching includes the broad category of similarity searching analyses. BLAST, FastA,
and Smith-Waterman fall into this group. Searching can include querying
BioSequences to identifyAnnotations that meet specified criteria. Searching also
includes finding patterns and motifsBinSequences . The results of these searches are
SegRegions . Examples include analyses such as PROSITE, BLOCKS, PRINTS, as
well as most gene and ORF finding algorithms (e.g., GRAIL, GeneScan, GeneFind, and
GLIMMER). It also includes identifying potential restriction enzyme and proteolytic
cleavage sites.

The result of a search isSearchResult . A SearchResult contains an array of
SearchHits , which may be the specializ&imilaritySearchHits

The searching hierarchy is:

® search (against a list, collection, or database)
® search/annotation

® search/region

® search/similarity (against a list, collection, or database)

3.2.2 Alignment

The alignment category includes both pairwise and multiple alignments. No distinction is
made. The result of either is Atignment .

A sequence assembly contains both aligned sequences and unaligned sequences (frag-
ments). The aligned sequences are representedAligament . If one considers a phy-
logeny as an alignment of alignments, it too falls in this category.

The alignment hierarchy is:
® alignment (of a list or collection)
® alignment/assembly (of a list or collection)

¢ alignment/phylogeny

BSA V1.0 Classification of Analyses Dec. 1999 3-5

3-6

3.2.3 Utilities

There are several simple analyses that could either be viewed as analyses or simply pro-
vided as methods on an appropriately tyBaSequence . We decided to view them as
simple analysis. This allowed us to keepBih@Sequencéanterface simple. For example,
simple sequence translation, using the standard genetic code, is provided by
NucleotideSequence’s methoddranslate_seq() andtranslate_seq_region() . A

more sophisticated sequence translation, allowing a user sp&ifresticCode , is pro-

vided here.

The utilities category provides:

¢ utility/molecular_weight

® utility/residue_composition

® utility/ambiguous_residues

® utility/gc_content

* utility/isoelectric_point

® utility/translate_seq (uses GeneticCode)

* utility/translate_seq.seq_region (uses GeneticCode)

Biomolecular Sequence Analysis V1.0 December 1999

References A

A.1 List of References

Object Management Group. 1998. Biomolecular Sequence Analysis RFP. OMG
Document lifesci/98-03-05.

Object Management Group. 1998. The Common Object Request Broker: Architecture
and Specification, v2.2. OMG Document formal/98-07-01.

Object Management Group. 1998. CORBAservices: Common Object Services
Specification. OMG Document formal/98-12-09.

Object Management Group. 1998. CORBAservices: Common Object Services IDL.
OMG Document formal/98-10-53.

Object Management Group. 1998. CORBA v2.3a - Core final revision. OMG PC
Document ptc/98-12-04.

Object Management Group. 1998. Interoperable Naming Service. OMG Document
orbos/98-10-11.

Object Management Group. 1998. Joint Revised Objects by Value Submission - with
Errata. OMG TC Document orbos/98-01-18.

Object Management Group. 1998. OMG IDL Style Guide. OMG Document ab/98-
06-03.

Bairoch, Amos, et al. 1997. The Swiss-Prot Protein Sequence Data Bank User
Manual. Release 35; November 1997.

Baldi, Pierre and S ren Brunak. 1998. Bioinformatics: The Machine Learning
Approach. The MIT Press. ISBN: 0-262-02442-X.

Baxevanis, Andreas D. and B.F. Francis Ouellette, eds. 1998. Bioinformatics: A
Practical Guide to the Analysis of Genes and Proteins. Wiley-Interscience. ISBN: 0-
471-19196-5.

Biomolecular Sequence Analysis V1.0 December 1999 A-1

A-2

Elzanowski, Andrzej (Anjay) and Jim Ostell, compilers. 1996. The Genetic Codes.
National Center for Biotechnology Information (NCBI).
http://www.ncbi.nIm.nih.gov/htbin-post/Taxonomy/wprintgc?mode=t.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. ISBN: 0-
201-63361-2.

Gusfield, Dan. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge Univ Pr (Short). ISBN: 0-521-58519-8.

IUPAC-IUB symbols for nucleotide nomenclature. Cornish-Bowden (1985) Nucl.
Acids Res. 13: 3021-3030.

IUPAC-IUB symbols for amino acid nomenclature Biochem J. 1984 Apr 15; 219(2):
345-373.

IUPAC-IUB symbols for amino acid nomenclature Eur J Biochem. 1993 Apr 1;
213(1): 2.

Lander, Eric S., and Michael S. Waterman, eds. 1995. Calculating the Secrets of Life:
Applications of the Mathematical Sciences in Molecular Biology. National Academy
Press. ISBN: 0-309-04886-9.

National Center for Biotechnology Information, et al. 1997. The
DDJB/EMBL/GenBank Feature Table: Definitions. Version 2.0. December 15, 1997.

Waterman, Michael S. 1995. Introduction to Computational Biology: Maps,
Sequences, and Genomes. Chapman & Hall. ISBN: 0-412-99391-0.

Biomolecular Sequence Analysis V1.0 December 1999

Genetic Codes B

The genetic codes listed below were compiled by Andrzej (Anjay) Elzanowski and Jim
Ostell (National Center for Biotechnology Information). See
http://www.ncbi.nim.nih.gov/htbin-post/Taxonomy/wprintgc?mode=t. “i” indicates initia-
tion and alternative initiation codons.

B.1 Standard

TTT FPhe TCT SSer TAT YTyr TGT CCys
TTC F Phe TCC SSer TAC YTyr TGC CCys
TTA L Leu TCA S Ser TAA * Ter TGA *Ter
TTG LLeui TCG SSer TAG *Ter TGG W Trp
CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA QGIn CGA R Arg
CTG LlLeui CCG PPro CAG QGlIn CGG R Arg
ATT Ille ACT TThr AAT NAsn AGT S Ser
ATC Ille ACC TThr AAC NAsn AGC S Ser
ATA Ille ACA TThr AAA KLys AGA R Arg
ATG MMeti ACG TThr AAG KLys AGG RArg
GTT V val GCT AAla GAT D Asp GGT G Gly
GTC V Vval GCC AAla GAC DAsp GGC G Gly
GTA V Vval GCA AAla GAA EGlu GGA G Gly
GTG V val GCG AAla GAG EGlu GGG G Gly
B.2 Bacterial
TTT FPhe TCT SSer TAT YTyr TGT CCys
TTC F Phe TCC SSer TAC YTyr TGC CCys

Biomolecular Sequence Analysis V1.0

December 1999 B-1

B-2

TTA L Leu TCA S Ser
TTG LLeui TCG S Ser
CTT L Leu CCT P Pro
CTC L Leu CCC P Pro
CTA L Leu CCA P Pro
CTG LLeui CCG P Pro
ATT Illei ACT T Thr
ATC lllei ACC T Thr
ATA lllei ACA TThr
ATG M Meti ACG T Thr
GTT V Val GCT A Ala
GTC V Val GCC A Ala
GTA V Vval GCA A Ala
GTG VVvali GCG AAla
B.3 Yeast Mitochondrial
TTT FPhe TCT S Ser
TTC FPhe TCC S Ser
TTA L Leu TCA S Ser
TTG L Leu TCG S Ser
CTT TThr CCT P Pro
CTC TThr CCC P Pro
CTA TThr CCA P Pro
CTG TThr CCG P Pro
ATT Ille ACT T Thr
ATC Ille ACC T Thr
ATA M Meti ACA T Thr
ATG M Meti ACG T Thr
GTT V Vval GCT A Ala
GTC V Vval GCC A Ala
GTA V Vval GCA A Ala
GTG V val GCG A Ala
B.4 Vertebrate Mitochondrial
TTT FPhe TCT S Ser
TTC FPhe TCC S Ser
TTA L Leu TCA S Ser
TTG L Leu TCG S Ser
CTT L Leu CCT P Pro
CTC L Leu CCC P Pro

Biomolecular Sequence Analysis V1.0

TAA *Ter TGA *Ter
TAG *Ter TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC RArg
CAA QGIn CGA RArg
CAG QGIn CGG RArg
AAT NAsn AGT S Ser
AAC N Asn AGC S Ser
AAA KLys AGA RArg
AAG KLys AGG RArg
GAT DAsp GGT GGly
GAC DAsp GGC GGly
GAA EGIu GGA GGly
GAG EGIlu GGG GGly
TAT YTyr TGT CCys
TAC YTyr TGC CCys
TAA *Ter TGA W Trp
TAG *Ter TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC R Arg
CAA QGIn CGA RArg
CAG QGIn CGG R Arg
AAT NAsn AGT S Ser
AAC N Asn AGC S Ser
AAA KLys AGA RArg
AAG KLys AGG RArg
GAT DAsp GGT GGly
GAC DAsp GGC GGly
GAA EGIlu GGA GGly
GAG EGIlu GGG G Gly
TAT YTyr TGT CCys
TAC YTyr TGC CCys
TAA *Ter TGA W Trp
TAG *Ter TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC RArg
December 1999

CTA LLeu CCA PPro CAA QGIn CGA RArg
CTG LLeu CCG PPro CAG QGIn CGG RArg
ATT lllei ACT TThr AAT NAsn AGT S Ser
ATC lllei ACC TThr AAC NAsn AGC S Ser
ATA MMeti ACA TThr AAA KLys AGA *Ter
ATG MMeti ACG TThr AAG KLys AGG *Ter
GTT VVval GCT AAla GAT DAsp GGT GGly
GTC VVal GCC AAla GAC DAsp GGC GGly
GTA VVal GCA AAla GAA EGIu GGA GGly
GTG VVali GCG AAla GAG EGIu GGG GGly
B.5 Mold Mitochondrial
TTT FPhe TCT SSer TAT YTyr TGT CCys
TTC FPhe TCC SSer TAC YTyr TGC CCys
TTA LLeui TCA SSer TAA *Ter TGA WTrp
TTG LLeui TCG SSer TAG *Ter TGG W Trp
CTT LLeu CCT PPro CAT HHis CGT R Arg
CTC LLeu CCC PPro CAC HHis CGC R Arg
CTA LLeu CCA PPro CAA QGIn CGA RArg
CTG LLeui CCG PPro CAG QGIn CGG RArg
ATT Illei ACT TThr AAT NAsn AGT S Ser
ATC Illei ACC TThr AAC NAsn AGC S Ser
ATA lllei ACA TThr AAA KLys AGA RArg
ATG MMeti ACG TThr AAG KLys AGG RArg
GTT VVval GCT AAla GAT DAsp GGT GGly
GTC VVal GCC AAla GAC DAsp GGC GGly
GTA VVal GCA AAla GAA EGIlu GGA GGly
GTG VVali GCG AAla GAG EGIu GGG GGly
B.6 Invertebrate Mitochondrial
TTT FPhe TCT SSer TAT YTyr TGT CCys
TTC FPhe TCC SSer TAC YTyr TGC CCys
TTA LLeu TCA SSer TAA *Ter TGA W Trp
TTG LLeui TCG SSer TAG *Ter TGG W Trp
CTT LLeu CCT PPro CAT HHis CGT R Arg
CTC LLeu CCC PPro CAC HHis CGC R Arg
CTA LLeu CCA PPro CAA QGIn CGA RArg
CTG LLeu CCG PPro CAG QGIn CGG RArg
ATT Illei ACT TThr AAT NAsn AGT S Ser
ATC Illei ACC TThr AAC NAsn AGC S Ser
Biomolecular Sequence Analysis V1.0 December 1999 B-3

B-4

ATA MMeti ACA TThr AAA KLys AGA S Ser
ATG MMeti ACG TThr AAG KLys AGG S Ser
GTT VVval GCT AAla GAT DAsp GGT GGly
GTC VVal GCC AAla GAC DAsp GGC GGly
GTA VVal GCA AAla GAA EGIu GGA GGly
GTG VVvali GCG AAla GAG EGIu GGG GGly
B.7 Echinoderm Mitochondrial
TTT FPhe TCT SSer TAT YTyr TGT CCys
TTC FPhe TCC SSer TAC YTyr TGC CCys
TTA LLeu TCA SSer TAA *Ter TGA W Trp
TTG LLeu TCG SSer TAG *Ter TGG W Trp
CTT LLeu CCT PPro CAT HHis CGT RArg
CTC LLeu CCC PPro CAC HHis CGC RArg
CTA LLeu CCA PPro CAA QGIn CGA RArg
CTG LLeu CCG PPro CAG QGIn CGG RArg
ATT llle ACT TThr AAT NAsn AGT S Ser
ATC llle ACC TThr AAC NAsn AGC S Ser
ATA Ille ACA TThr AAA NAsn AGA S Ser
ATG MMeti ACG TThr AAG KLys AGG S Ser
GTT VVvVal GCT AAla GAT DAsp GGT GGly
GTC VVal GCC AAla GAC DAsp GGC GGly
GTA VVal GCA AAla GAA EGIu GGA GGly
GTG VVval GCG AAla GAG EGIu GGG GGly
B.8 Ascidian Mitochondrial
TTT FPhe TCT SSer TAT YTyr TGT CCys
TTC FPhe TCC SSer TAC YTyr TGC CCys
TTA LLeu TCA SSer TAA *Ter TGA W Trp
TTG LLeu TCG SSer TAG *Ter TGG W Trp
CTT LLeu CCT PPro CAT HHis CGT RArg
CTC LLeu CCC PPro CAC HHis CGC RArg
CTA LLeu CCA PPro CAA QGIn CGA RArg
CTG LLeu CCG PPro CAG QGIn CGG RArg
ATT llle ACT TThr AAT NAsn AGT S Ser
ATC llle ACC TThr AAC NAsn AGC S Ser
ATA MMet ACA TThr AAA KLys AGA GGly
ATG MMeti ACG TThr AAG KLys AGG GGly
GTT VVval GCT AAla GAT DAsp GGT GGly
GTC VVal GCC AAla GAC DAsp GGC GGly

Biomolecular Sequence Analysis V1.0

December 1999

GTA V Vval GCA A Ala
GTG V Vval GCG A Ala
B.9 Flatworm Mitochondrial
TTT F Phe TCT S Ser
TTC F Phe TCC S Ser
TTA L Leu TCA S Ser
TTG L Leu TCG S Ser
CTT L Leu CCT P Pro
CTC L Leu CCC P Pro
CTA L Leu CCA P Pro
CTG L Leu CCG PPro
ATT Ille ACT T Thr
ATC Ille ACC T Thr
ATA | lle ACA T Thr
ATG MMeti ACG T Thr
GTT V Vval GCT A Ala
GTC V Vval GCC A Ala
GTA V Vval GCA A Ala
GTG V val GCG A Ala
B.10 Ciliate Nuclear

TTT F Phe TCT S Ser
TTC F Phe TCC S Ser
TTA L Leu TCA S Ser
TTG L Leu TCG S Ser
CTT L Leu CCT P Pro
CTC L Leu CCC P Pro
CTA L Leu CCA P Pro
CTG L Leu CCG PPro
ATT Ille ACT T Thr
ATC Ille ACC T Thr
ATA | lle ACA T Thr
ATG MMeti ACG T Thr
GTT V Vval GCT A Ala
GTC V Vval GCC A Ala
GTA V Vval GCA A Ala
GTG V val GCG A Ala

Biomolecular Sequence Analysis V1.0

GAA EGlu GGA GGly
GAG EGIlu GGG GGly
TAT YTyr TGT CCys
TAC YTyr TGC CCys
TAA YTyr TGA WTrp
TAG *Ter TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC RArg
CAA QGIn CGA RArg
CAG QGIn CGG RArg
AAT NAsn AGT S Ser
AAC NAsn AGC S Ser
AAA NAsn AGA S Ser
AAG KLys AGG S Ser
GAT DAsp GGT GGly
GAC DAsp GGC GGly
GAA EGIlu GGA GGly
GAG EGlu GGG GGly
TAT YTyr TGT CCys
TAC YTyr TGC CCys
TAA QGIn TGA *Ter
TAG QGIn TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC RArg
CAA QGIn CGA RArg
CAG QGIn CGG RArg
AAT NAsn AGT S Ser
AAC NAsn AGC S Ser
AAA KLys AGA RArg
AAG KLys AGG RArg
GAT DAsp GGT GGly
GAC DAsp GGC GGly
GAA EGIlu GGA GGly
GAG EGlu GGG GGly

December 1999 B-5

B

B.11 Euplotid Nuclear

TTT
TTC
TTA
TG

F Phe
F Phe
L Leu
L Leu

CTT
CTC
CTA
CTG

L Leu
L Leu
L Leu
L Leu

ATT
ATC
ATA
ATG

I lle
Ille
I lle

GTT V Val
GTC V Vval
GTA V val

GTG V Vval

M Met i

B.12 Alternative Yeast Nuclear

TTT
TTC
TTA
TG

F Phe
F Phe
L Leu
L Leu

CTT
CTC
CTA
CTG

L Leu
L Leu
L Leu
S Seri

ATT
ATC
ATA
ATG

I lle
Ille
I lle

GTT V Val
GTC V Vval
GTA V val

GTG V Vval

M Met i

B.13 Blepharisma Macronuclear

TTT F Phe
TTC F Phe

B-6

Biomolecular Sequence Analysis V1.0

TCT SSer TAT YTyr TGT CCys
TCC SSer TAC YTyr TGC CCys
TCA SSer TAA *Ter TGA CCys
TCG SSer TAG *Ter TGG W Trp
CCT PPro CAT HHis CGT RArg
CCC PPro CAC HHis CGC RArg
CCA PPro CAA QGIn CGA RArg
CCG PPro CAG QGIn CGG RArg
ACT TThr AAT NAsn AGT S Ser
ACC TThr AAC NAsn AGC S Ser
ACA TThr AAA KLys AGA RArg
ACG TThr AAG KLys AGG RArg
GCT AAla GAT DAsp GGT GGly
GCC AAla GAC DAsp GGC GGly
GCA AAla GAA EGIu GGA GGly
GCG AAla GAG EGIu GGG GGly
TCT SSer TAT YTyr TGT CCys
TCC SSer TAC YTyr TGC CCys
TCA SSer TAA *Ter TGA *Ter
TCG SSer TAG *Ter TGG W Trp
CCT PPro CAT HHis CGT RArg
CCC PPro CAC HHis CGC RArg
CCA PPro CAA QGIn CGA RArg
CCG PPro CAG QGIn CGG RArg
ACT TThr AAT NAsn AGT S Ser
ACC TThr AAC NAsn AGC S Ser
ACA TThr AAA KLys AGA RArg
ACG TThr AAG KLys AGG RArg
GCT AAla GAT DAsp GGT GGly
GCC AAla GAC DAsp GGC GGly
GCA AAla GAA EGIu GGA GGly
GCG AAla GAG EGIu GGG GGly
TCT SSer TAT YTyr TGT CCys
TCC SSer TAC YTyr TGC CCys

December 1999

TTA L Leu
TTG L Leu

CTT L Leu
CTC L Leu
CTA L Leu
CTG L Leu

ATT Ille
ATC Ille
ATA llle

GTT V Vval
GTC V Vval
GTA V Val
GTG V Vval

Biomolecular Sequence Analysis V1.0

TCA S Ser
TCG S Ser

CCT P Pro
CCC P Pro
CCA P Pro
CCG P Pro

ACT T Thr
ACC T Thr
ACA T Thr
ATG M Meti

ACG T Thr

GCT A Ala
GCC A Ala
GCA A Ala
GCG A Ala

GAA E Glu

TAA * Ter TGA * Ter
TAG QGIn TGG W Trp

CAT HHis CGT R Arg

CAC HHis CGC R Arg
CAA QGIn CGA R Arg
CAG QGIn CGG R Arg

AAT N Asn AGT S Ser
AAC N Asn AGC S Ser
AAA KLys AGA RArg

AAG KLys AGG R Arg

GAT DAsp GGT G Gly

GAC DAsp GGC G Gly
GGA G Gly

GAG EGIlu GGG GGly

December 1999

B-7

Biomolecular Sequence Analysis V1.0

December 1999

Complete IDL C

C.1 File: DsLSRBIioObjects.idl

/[File: DsLSRBIioObjects
/I version: 20 October 1999.

#ifndef _DS_LSR_BIOOBJECTS_IDL_
#define_DS_LSR_BIOOBJECTS_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosPropertyService.idl>

module DsLSRBioObjects
{

typedef sequence<string> StringList;

enum StrandType {STRAND_NOT_KNOWN, STRAND_NOT_APPLICABLE,
STRAND_PLUS, STRAND_MINUS, STRAND_BOTH};
enum Basis {BASIS_NOT_KNOWN, BASIS_EXPERIMENTAL, BASIS_COMPUTATIONAL,

BASIS_BOTH};
valuetype Interval
{
public unsigned long start;
public unsigned long length;
3

valuetype SegRegion : Interval

{
public StrandType strand_type;

public boolean start_relative_to_seq_end;

Biomolecular Sequence Analysis V1.0 December 1999

C-1

C-2

¥
typedef sequence<SeqRegion> SeqRegionList;

valuetype CompositeSeqRegion : SeqgRegion

{
enum SeqRegionOperator
{
NONE, // Region has no sub regions or the sub regions
/l don't need special treatment.
JOIN, I/l Sub regions should be joined end-to-end to
// form a contiguous region.
ORDER I/l Sub region order is important.
h

public SeqRegionList sub_regions;
public SeqRegionOperator region_operator;

h

interface Annotation : CosLifeCycle::LifeCycleObject

{
readonly attribute string name; // type of annotation
readonly attribute any value; // the annotation
readonly attribute Basis the_basis; // basis for annotation
readonly attribute CosPropertyService::Properties qualifiers;

h

typedef sequence<Annotation> AnnotationList;

exception Iteratorinvalid

{
string reason;
h
interface Annotationlterator
{
boolean next(out Annotation the_annotation)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out AnnotationList annotations)
raises(Iteratorinvalid);
void reset();
void destroy();
h
interface SeqAnnotation : Annotation
{
readonly attribute SeqRegion seq_region;
h

typedef sequence<SegAnnotation> SegAnnotationList;

Biomolecular Sequence Analysis V1.0 December 1999

interface SeqAnnotationlterator

{
boolean next(out SegAnnotation seq_annotation)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out SegAnnotationList seq_annotations)
raises(Iteratorinvalid);
void reset();
void destroy();
h

typedef string Identifier;
typedef sequence<Identifier> IdentifierList;

exception IdentifierNotFound

{
Identifier id;
h
exception IdentifierNotResolvable
{
Identifier id;
string reason;
h
exception IdentifierNotUnique
{
Identifier id;
IdentifierList ids;
h
exception IntervalOutOfBounds
{
Interval invalid;
Interval valid;
h
exception SeqgRegionOutOfBounds
{
SeqRegion invalid;
Interval valid;
h
exception SeqgRegionlnvalid
{
string reason;
h
exception NotUpdateable
{

Biomolecular Sequence Analysis V1.0

December 1999

C-3

C-4

J3

string reason;

interface BioSequence

{

h

readonly attribute string name;
readonly attribute Identifier id;
readonly attribute string description;
readonly attribute string seq;
readonly attribute unsigned long length;
readonly attribute Basis the_basis;
string seq_interval(in Interval the_interval)

raises(IntervalOutOfBounds);
AnnotationList get_annotations(
in unsigned long how_many,
in SeqRegion seq_region,
out Annotationlterator the_rest)
raises(SegRegionOutOfBounds, SeqRegioninvalid);
unsigned long num_annotations(in SeqRegion seq_region)
raises(SeqgRegionOutOfBounds, SeqRegioninvalid);
void add_annotation(
in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds);

typedef sequence<BioSequence> BioSequencelList;

typedef sequence<unsigned long> UnsignedLongList;

exception ReadingFramelnvalid

{
8

short invalid;

interface NucleotideSequence : BioSequence, CosLifeCycle::LifeCycleObject

{

readonly attribute boolean circular;

string reverse_complement();

string reverse_complement_interval(in Interval the_interval)
raises(IntervalOutOfBounds);

string translate_seq(

in short reading_frame,
out UnsignedLongList stop_locations)
raises(ReadingFramelnvalid);
string translate_seq_region(
in SeqRegion seq_region,
out UnsignedLongList stop_locations)
raises(SeqRegionOutOfBounds, SegRegioninvalid);

Biomolecular Sequence Analysis V1.0 December 1999

typedef sequence<NucleotideSequence> NucleotideSequencelList;

interface AminoAcidSequence : BioSequence, CosLifeCycle::LifeCycleObject

{
k

typedef sequence<AminoAcidSequence> AminoAcidSequencelList;
typedef char Residue;

typedef char Base;

typedef Base Codon[3];

valuetype CodeRule

public Codon the_codon;

public Residue the_residue;
h
typedef CodeRule Coding[64];
typedef string GeneticCodeName;

typedef sequence<GeneticCodeName> GeneticCodeNameList;

exception InvalidResidue

{
Residue the_residue;
unsigned long offset;
3
interface GeneticCode : CosLifeCycle::LifeCycleObject
{
readonly attribute Coding the_coding;
readonly attribute GeneticCodeName name;
Residue translate_codon(in Codon the_codon)
raises(InvalidResidue);
I3
valuetype AlignmentElement
{
public Object element;
public SeqRegion seq_region;
public string key;
h

typedef sequence<AlignmentElement> AlignmentElementList;

interface AlignmentElementlterator

{

boolean next(out AlignmentElement element)
raises(Iteratorinvalid);

Biomolecular Sequence Analysis V1.0 December 1999

C-5

C-6

boolean next_n(in unsigned long how_many,
out AlignmentElementList elements)
raises(Iteratorinvalid);
void reset();
void destroy();

J3

exception AlignmentObjectinvalid
{

Object element;

string reason;

h

exception ElementNotInAlignment

{
h

exception IndexOutOfBounds
{
unsigned long invalid;
Interval valid;

k

interface Alignment : CosLifeCycle::LifeCycleObject
{

typedef string AlignType;

typedef sequence<AlignType> AlignTypeList;

const AlignType PROTEIN ="PROTEIN";

const AlignType NON_PROTEIN ="NON_PROTEIN";
const AlignType SEQUENCE_ERROR ="SEQUENCE_ERROR";
const AlignType UNKNOWN = "UNKNOWN",

AlignmentElementList get_alignment_elements(
in unsigned long start,
in unsigned long how_many,
out AlignmentElementliterator the_rest)
raises(IndexOutOfBounds);

unsigned long num_rows();
unsigned long num_columns();

SegRegion get_seq_region(
in AlignmentElement element,
in Interval the_interval)
raises(ElementNotinAlignment, IntervalOutOfBounds);

AlignType get_align_type_by_column(in unsigned long col)
raises(IndexOutOfBounds);

Biomolecular Sequence Analysis V1.0 December 1999

typedef sequence<Alignment> AlignmentList;

interface Assembly : Alignment

{
3
valuetype SearchHit
{
public Identifier id;
public CosPropertyService::Properties hit_info;
h

typedef sequence<SearchHit> SearchHitList;

interface SearchHitlterator

{
boolean next(out SearchHit hit)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out SearchHitList hit_list)
raises(lteratorinvalid);
void reset();
void destroy();
h
valuetype SimilaritySearchHit : SearchHit
{
public AlignmentList alignment_list;
h

typedef sequence<SimilaritySearchHit> SimilaritySearchHitList;

interface BioSequenceldentifierResolver

{
BioSequence resolve(in Identifier id)
raises (IdentifierNotFound, IdentifierNotResolvable,
IdentifierNotUnique);
I3

interface SearchResult :
BioSequenceldentifierResolver,
CosLifeCycle::LifeCycleObject

readonly attribute BioSequence query_sequence;
readonly attribute CosPropertyService::Properties collection_info;
StringList get_property_names();

unsigned long num_hits();

SearchHitList get_hits(
in unsigned long start,

Biomolecular Sequence Analysis V1.0 December 1999

C-7

C-8

in unsigned long how_many,
out SearchHitlterator the_rest)
raises (IndexOutOfBounds);

I3
/I optional interfaces

interface AnnotationFactory
{
Annotation create_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers);

SegAnnotation create_seq_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers,
in SeqRegion seq_region);

k

exception SegAnnotationOutOfBounds
{

SegAnnotation invalid;

Interval valid;

k

interface NucleotideSequenceFactory
{
NucleotideSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in boolean circular,
in AnnotationList annotations)
raises (InvalidResidue, SegAnnotationOutOfBounds);

k

interface AminoAcidSequenceFactory
{
AminoAcidSequence create_sequence(

in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in AnnotationList annotations)

Biomolecular Sequence Analysis V1.0 December 1999

raises (InvalidResidue, SegAnnotationOutOfBounds);

h
interface BioSequencelterator
{
boolean next(out BioSequence seq)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out BioSequencelList seqs)
raises(Iteratorinvalid);
void reset();
void destroy();
h
interface NucleotideSequencelterator
{
boolean next(out NucleotideSequence seq)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out NucleotideSequencelList seqs)
raises(lteratorinvalid);
void reset();
void destroy();
h
interface AminoAcidSequencelterator
{
boolean next(out AminoAcidSequence seq)
raises(lteratorinvalid);
boolean next_n(in unsigned long how_many,
out AminoAcidSequencelList seqs)
raises(lteratorinvalid);
void reset();
void destroy();
h
exception InvalidGeneticCodeName
{
string invalid_name;
h
interface GeneticCodeFactory
{
const GeneticCodeName STANDARD = "standard";
const GeneticCodeName BACTERIAL = "bacterial";
const GeneticCodeName YEAST_MITOCHONDRIAL = "yeast mitochondrial";
const GeneticCodeName VERTEBRATE_MITOCHONDRIAL = "vertebrate

mitochondrial”;
const GeneticCodeName MOLD_MITOCHONDRIAL = "mold mitochondrial";
const GeneticCodeName INVERTEBRATE_MITOCHONDRIAL= "invertebrate

mitochondrial”;

Biomolecular Sequence Analysis V1.0 December 1999 C-9

C-10

h

const GeneticCodeName ECHINODERM_MITOCHONDRIAL= "echinoderm
mitochondrial";

const GeneticCodeName ASCIDIAN_MITOCHONDRIAL = "ascidian mitochondrial";

const GeneticCodeName FLATWORM_MITOCHONDRIAL= "flatworm mitochondrial";

const GeneticCodeName CILIATE_NUCLEAR = "ciliate nuclear";

const GeneticCodeName EUPLOTID_NUCLEAR = "euplotid nuclear";

const GeneticCodeName ALT_YEAST_NUCLEAR = "alternative yeast nuclear";

const GeneticCodeName BLEPHARISMA_MACRONUCLEAR = "blepharisma
macronuclear";

readonly attribute GeneticCodeNamelList genetic_code_names;
GeneticCode create_genetic_code(in GeneticCodeName name)
raises(InvalidGeneticCodeName);

interface CharacterAlignmentEncoder

{

k

readonly attribute Alignment the_alignment;

unsigned long num_rows(); /I number of aligned
/I objects. Delegate
unsigned long num_columns(); I/l Delegate to Alignment

string get_name(in unsigned long row) /I first object is in row
raises(IndexOutOfBounds); // one etc...
StringList get_all_names(); /I all the Names

string get_cell_contents(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

boolean is_cell_a_gap(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

unsigned long get_cell_width(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

unsigned long max_column_width(in unsigned long col)
raises(IndexOutOfBounds);

unsigned long max_width();

interface SingleCharacterAlignmentEncoder : CharacterAlignmentEncoder

{

k

string get_row(in unsigned long row)
raises(IndexOutOfBounds);
string get_row_interval(in unsigned long row, in Interval cols)

raises(IndexOutOfBounds, IntervalOutOfBounds);
StringList get_row_column_interval(in Interval rows, in Interval cols)
raises(IntervalOutOfBounds);
StringList get_entire_alignment(); I/ probably the most common!

exception CannotEncodeAlignment

{

Biomolecular Sequence Analysis V1.0 December 1999

string reason;

h
interface CharacterAlignmentEncoderFactory
{
CharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);
h
interface SingleCharacterAlignmentEncoderFactory
{
SingleCharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);
h
h

#endif // _DS_LSR_BIOOBJECTS_IDL_

C.2 File: DsLSRAnNalysis.idl

/[File: DSLSRAnNalysis
/I version: 5 October 1999.

#ifndef _DS_LSR_ANALYSIS_IDL_
#define_DS_LSR_ANALYSIS_IDL_

#pragma prefix "omg.org"

#include <CosPropertyService.idl>
#include <CosEventChannelAdmin.idl>
#include <CosLifeCycle.idl>

#include <TimeBase.idl>

module DsLSRAnalysis
{

typedef sequence<string> StringList;

valuetype AnalysisType

{
public string type;
public string name;
public string supplier;
public string version;
public string installation;
public string description;

h
valuetype InputPropertySpec
{

public string name;

Biomolecular Sequence Analysis V1.0 December 1999 C-11

C-12

public CORBA::TypeCode type;
public boolean mandatory;
public any default_value;
public any possible_values;

¥
typedef sequence<InputPropertySpec> InputPropertySpecList;

valuetype OutputPropertySpec
{

public string name;
public CORBA::TypeCode type;

h
typedef sequence<OutputPropertySpec> OutputPropertySpeclList;

enum AnalysisState

{
CREATED, /I Instance has been created but not yet executed.
RUNNING, // The analysis instance is running.
COMPLETED, /I The instance has completed execution.
TERMINATED_BY_REQUEST, // The instance was terminated by user request.
TERMINATED_BY_ERROR // The instance terminated due to an error.
h
valuetype AnalysisEvent
{
public string message;
h
valuetype StateChangedEvent : AnalysisEvent
{
public AnalysisState previous_state;
public AnalysisState new_state;
h
valuetype HeartbeatProgressEvent : AnalysisEvent
{
h

valuetype PercentProgressEvent : AnalysisEvent

public float percentage;

h
valuetype TimeProgressEvent : AnalysisEvent
{

public TimeBase::TimeT time_remaining;
h

valuetype StepProgressEvent : AnalysisEvent

Biomolecular Sequence Analysis V1.0 December 1999

k

public unsigned long total_steps;
public unsigned long steps_completed;

interface Analysisinstance;

typedef string MetaData;

exception DoesNotExistException { };

interface AnalysisService

{

k

const string AnalysisTypeTag = "TAG_ANALYSIS TYPE";
const string InputPropertiesTag = "TAG_INPUT_PROPERTIES";
const string OutputPropertiesTag = "TAG_OUTPUT_PROPERTIES";

readonly attribute StringList metadata_tags;
MetaData describe(in string tagname)
raises (DoesNotExistException);

readonly attribute AnalysisType type;
readonly attribute InputPropertySpecList input_metadata,;
readonly attribute OutputPropertySpecList output_metadata;

Analysisinstance create_analysis (in CosPropertyService::Properties input)
raises (CosPropertyService::MultipleExceptions);

exception NotRunnable {};
exception NotRunning { };
exception NotTerminated

{
k

string reason;

interface JobControl

{

I3

readonly attribute TimeBase::UtcT created;
readonly attribute TimeBase::TimeT elapsed,;
readonly attribute TimeBase::UtcT started;
readonly attribute TimeBase::UtcT ended;

void run()

raises (NotRunnable, CosPropertyService::MultipleExceptions);
void terminate()

raises (NotRunning, NotTerminated);
void wait();

interface Analysisinstance : CosLifeCycle::LifeCycleObject

Biomolecular Sequence Analysis V1.0 December 1999 C-13

{
readonly attribute AnalysisService service;
readonly attribute AnalysisState status;
readonly attribute CosEventChannelAdmin::EventChannel event_channel;
readonly attribute AnalysisEvent last_event;
readonly attribute JobControl job_control;
readonly attribute CosPropertyService::Properties inputs;
readonly attribute CosPropertyService::Properties results;
CosPropertyService::Properties get_result(in StringList name_list);
¥
¥

#endif // _DS_LSR_ANALYSIS_IDL_

C-14 Biomolecular Sequence Analysis V1.0 December 1999

Domain Model DTD and XML

D

D.1 File: DsLSRAnalysis.dtd

<IELEMENT DsLSRAnalysis (analysis)+>
<IELEMENT analysis (description?, input*, output*, extension?)>

<IATTLIST analysis

type CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
supplier CDATA #IMPLIED
installation CDATA #IMPLIED>

<IELEMENT description ANY>
<IELEMENT extension ANY>

<IELEMENT input (default?, allowed*, extension?)>

<IATTLIST input

type CDATA #REQUIRED
name CDATA #REQUIRED
mandatory (true|false) "false">

<IELEMENT default (#PCDATA)>
<IELEMENT allowed (#PCDATA)>

<IELEMENT output (extension?)>
<IATTLIST output

type CDATA #REQUIRED
name CDATA #REQUIRED>

Biomolecular Sequence Analysis V1.0 December 1999

D

D.2 DsLSRBioAnalysis.xml

<?xml version = "1.0"?>
<IDOCTYPE DsLSRAnalysis SYSTEM "DsLSRAnalysis.dtd">

<DsLSRAnalysis>

<analysis type = "search.list">
<input
name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
</input>
<input
name = "sequence_list"
type ="IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">
</input>
<output
name = "search_result"
type ="IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</output>
</analysis>

<analysis type = "search.collection">
<input
name = "query_sequence"
type ="IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
</input>
<input
name = "sequence_iterator"
type ="IDL:omg.org/DsLSRBioObjects/BioSequencelterator:1.0"
mandatory = "true">
<finput>
<output
name = "search_result"
type ="IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</output>
</analysis>

<analysis type = "search.database">

<input
name = "query_sequence"
type ="IDL:omg.org/DsLSRBIioObjects/BioSequence:1.0"
mandatory = "true">

<finput>

<input
name = "database_id"
type = "IDL:omg.org/DsLSRBioObjects/Identifier:1.0"
mandatory = "true">

</input>

<output
name = "search_result"

type ="IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

D-2 Biomolecular Sequence Analysis V1.0 December 1999

</output>
</analysis>

<analysis type = "search/annotation">
<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
<finput>
<output
name = "sequence_annotation"
type = "IDL:omg.org/DsLSRBioObjects/SegAnnotationList:1.0">
</output>
</analysis>

<analysis type = "search/region">
<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
<finput>
<output
name = "sequence_region"
type = "IDL:omg.org/DsLSRBioObjects/SeqRegionList:1.0">
</output>
</analysis>

<analysis type = "search.list/similarity">
<input
name = "query_sequence"
type ="IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
<finput>
<input
name = "sequence_list"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">
<finput>
<output
name = "search_result"
type ="IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</output>
</analysis>

<analysis type = "search.collection/similarity">

<input
name = "query_sequence"
type ="IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

<finput>

<input
name = "sequence_iterator"
type ="IDL:omg.org/DsLSRBIioObjects/BioSequencelterator:1.0"
mandatory = "true">

<finput>

Biomolecular Sequence Analysis V1.0 December 1999 D-3

<output
name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</output>
</analysis>

<analysis type = "search.database/similarity">
<input
name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
<finput>
<input
name = "database_id"
type = "IDL:omg.org/DsLSRBioObjects/Identifier:1.0"
mandatory = "true">
</input>
<output
name = "search_result"
type ="IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</output>
</analysis>

<analysis type = "alignment.list">
<input
name = "sequence_list"
type ="IDL:omg.org/DsLSRBioObjects/BioSequencelList:1.0"
mandatory = "true">
<finput>
<output
name = "alignment"
type = "IDL:omg.org/DsLSRBioObjects/Alignment:1.0">
</output>
</analysis>

<analysis type = "alignment.collection">
<input
name = "sequence_iterator"
type ="IDL:omg.org/DsLSRBioObjects/BioSequencelterator:1.0"
mandatory = "true">
<f/input>
<output
name = "alignment"
type = "IDL:omg.org/DsLSRBioObjects/Alignment:1.0">
</output>
</analysis>

<analysis type = "alignment.list/assembly">

<input
name = "sequence_list"
type ="IDL:omg.org/DsLSRBioObjects/BioSequencelList:1.0"
mandatory = "true">

</input>

<output
name = "assembly"

D-4 Biomolecular Sequence Analysis V1.0 December 1999

type = "IDL:omg.org/DsLSRBioObjects/Assembly:1.0">
</output>
</analysis>

<analysis type = "alignment.collection/assembly">
<input
name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequencelterator:1.0"
mandatory = "true">
<finput>
<output
name = "assembly"
type = "IDL:omg.org/DsLSRBioObjects/Assembly:1.0">
</output>
</analysis>

<analysis type = "alignment/phylogeny">
<input
name = "alignment_list"
type = "IDL:omg.org/DsLSRBioObjects/AlignmenList:1.0"
mandatory = "true">
<finput>
<output
name = "alignment"
type = "IDL:omg.org/DsLSRBioObjects/Alignment:1.0">
</output>
</analysis>

<analysis type = "utility/molecular_weight">
<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
<finput>
<output
name = "molecular_weight"
type = "unsigned long">
</output>
</analysis>

<analysis type = "utility/residue_composition">

<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

<finput>

<input
name = "residue"
type = "IDL:omg.org/DsLSRBioObjects/Residue:1.0"
mandatory = "true">

</input>

<output
name = "residue_composition"
type = "double">

</output>

Biomolecular Sequence Analysis V1.0 December 1999 D-5

D-6

</analysis>

<analysis type = "utility/ambiguous_residues">
<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
<finput>
<input
name = "genetic_code"
type = "IDL:omg.org/DsLSRBioObjects/GeneticCode:1.0"
mandatory = "true">
</input>
<output
name = "ambiguous_residues"
type ="boolean">
</output>
</analysis>

<analysis type = "utility/gc_content">
<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/NucleicAcidSequence:1.0"
mandatory = "true">
<finput>
<output
name = "gc_content"
type = "double">
</output>
</analysis>

<analysis type = "utility/isoelectric_point">
<input
name = "sequence"
type ="IDL:omg.org/DsLSRBioObjects/AminoAcidSequence:1.0"
mandatory = "true">
</input>
<output
name = "isoelectric_point"
type = "double">
</output>
</analysis>

<analysis type = "utility/translate_seq">
<input
name = "sequence"
type ="IDL:omg.org/DsLSRBioObjects/NucleicAcidSequence:1.0"
mandatory = "true">
<finput>
<input
name = "reading_frame"
type = "short">
<default>-3</default>
<allowed>-2</allowed>
<allowed>-1</allowed>

Biomolecular Sequence Analysis V1.0 December 1999

<allowed>1</allowed>
<allowed>2</allowed>
<allowed>3</allowed>
<f/input>
<input
name = "genetic_code"
type = "IDL:omg.org/DsLSRBioObjects/GeneticCode:1.0"
mandatory = "true">
<finput>
<output
name = "translated_seq"
type = "string">
</output>
</analysis>

<analysis type = "utility/translate_seq.seq_region">

<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/NucleicAcidSequence:1.0"
mandatory = "true">

<finput>

<input
name = "sequence_region"
type = "IDL:omg.org/DsLSRBioObjects/SegRegion:1.0"
mandatory = "true">

<finput>

<input
name = "genetic_code"
type ="IDL:omg.org/DsLSRBioObjects/GeneticCode:1.0"
mandatory = "true">

<finput>

<output
name = "translated_seq"
type = "string">

</output>

</analysis>

</DsLSRAnalysis>

Biomolecular Sequence Analysis V1.0 December 1999 D-7

Biomolecular Sequence Analysis V1.0

December 1999

Future Direction of Metamodel E

This specification uses metadata to describe analyses and inputs and outputs to
analyses. Included in the specification is a DTD and example XML that shows the
future direction of metadata within BSA. When more complex, more descriptive
metadata is needed, the BSA metadata could be described using the mechanisms
specified in the XMI. The sample better illustrates this idea.

E.1 File: DsLSRAnalysis - future.dtd

<!--LSR BSA DTD -->

<IENTITY % UmlIMetaData SYSTEM "ad98-10-16.dtd">
%UmlMetaData;

<IENTITY % DsLSRAnalysisXMI SYSTEM "DsLSRAnalysisXMI.dtd">
%DsLSRANalysisXMI,

E.2 File: DsLSRAnNalysisXMI - future.dtd

<l-- LSR BSA Analysis Machinery DTD -->

<IELEMENT DsLSRAnalysisXMI (analysis)+>
<IATTLIST DsLSRAnalysisXMI
%XMl.element.att;
%XMl.link.att;

<IELEMENT analysis (description?, input*, output*, XMl.extension*)>

<IATTLIST analysis
analysisType CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED

Biomolecular Sequence Analysis V1.0 December 1999 E-1

supplier CDATA #IMPLIED
installation CDATA #IMPLIED>
<IELEMENT description (XMl.extension*)>
<IELEMENT input (parameter*, XMl.extension*)>
<IATTLIST input
name CDATA #REQUIRED
mandatory (true|false) "false">
<IELEMENT output (parameter*, XMl.extension*)>
<IATTLIST output
name CDATA #REQUIRED>
<I[ELEMENT parameter ((Foundation.Core.Parameter | logicalType), constraint*)>
<IELEMENT logicalType (Foundation.Core.DataType | XMIl.CorbaTypeCode | XMl.extension+)>
<IELEMENT constraint (default?, allowed*, Foundation.Core.Constraint*, XMl.extension*)>

<IELEMENT default (#PCDATA)>

<IELEMENT allowed (#PCDATA)>

E.3 File: DsLSRBIioAnalysis - future (sample).xml

E-2

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE XMI SYSTEM 'DsLSRAnalysis-future.dtd">

<XMI>
<XMl.header>
<XMl.model xmi.name="sample' xmi.version="1.0'/>
<XMl.metamodel xmi.name="uml' xmi.version="1.1'/>
</XMl.header>
<XMl.content/>
<XMl.extensions xmi.extender="omg.org/DsSLSRAnNalysis">
<DsLSRAnalysisXMI>
<analysis analysisType="similarity_analysis/database">
<input name="query_sequence" mandatory="true">
<parameter>
<Foundation.Core.Parameter>
<Foundation.Core.ModelElement.name>input</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value="public'/>

<Foundation.Core.Parameter.defaultValue>
<Foundation.Data_Types.Expression/>

Biomolecular Sequence Analysis V1.0 December 1999

</Foundation.Core.Parameter.defaultValue>

<Foundation.Core.Parameter.kind xmi.value='in'/>

<Foundation.Core.Parameter.type>

<Foundation.Core.Interface>

<Foundation.Core.ModelElement.name>BioSequence</Foundation.Core.Model
Element.name>

<Foundation.Core.ModelElement.visibility xmi.value="public'/>

<Foundation.Core.GeneralizableElement.isRoot xmi.value='false'/>

<Foundation.Core.GeneralizableElement.isLeaf xmi.value='false'/>

<Foundation.Core.GeneralizableElement.isAbstract xmi.value='false'/>

</Foundation.Core.Interface>

</Foundation.Core.Parameter.type>

</Foundation.Core.Parameter>

</parameter>

<finput>

<input name="database_id" mandatory="true">
<parameter>

<Foundation.Core.Parameter>

<Foundation.Core.ModelElement.name>input</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.visibility xmi.value="public'/>

<Foundation.Core.Parameter.defaultValue>

<Foundation.Data_Types.Expression/>

</Foundation.Core.Parameter.defaultValue>

<Foundation.Core.Parameter.kind xmi.value='in'/>

<Foundation.Core.Parameter.type>

<Foundation.Core.Interface>

<Foundation.Core.ModelElement.name>Dbld</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.visibility xmi.value="public'/>

<Foundation.Core.GeneralizableElement.isRoot xmi.value='false'/>

<Foundation.Core.GeneralizableElement.isLeaf xmi.value='false'/>

<Foundation.Core.GeneralizableElement.isAbstract xmi.value='false'/></
Foundation.Core.Interface>

</Foundation.Core.Parameter.type>

</Foundation.Core.Parameter>

<constraint>
<allowed> databasel </allowed>
<allowed> database2 </allowed>
<allowed> database3 </allowed>
<allowed> database4 </allowed>
</constraint>

</parameter>

</input>

Biomolecular Sequence Analysis V1.0 December 1999 E-3

<output name="hits">

<parameter>

<Foundation.Core.Parameter>
<Foundation.Core.ModelElement.name>input</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value="public'/>
<Foundation.Core.Parameter.defaultValue>

<Foundation.Data_Types.Expression/>

</Foundation.Core.Parameter.defaultValue>

<Foundation.Core.Parameter.kind xmi.value='out'/>
<Foundation.Core.Parameter.type>

<Foundation.Core.Interface>
<Foundation.Core.ModelElement.name>Hits</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value="public'/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value='false'/>
</Foundation.Core.Interface>

</Foundation.Core.Parameter.type>

</Foundation.Core.Parameter>

</parameter>

</output>

</analysis>

</DsLSRAnalysisXMI>

</XMl.extensions>

</XMI>

Biomolecular Sequence Analysis V1.0 December 1999

Glossary

Glossary entries are organized alphabetically.

Glossary Terms

Alignment

Ambiguity Code

Amino Acid

Assembly
Base

Complementary Base

Complement

Cladogram

See Sequence Alignment

Single character representation of an ambiguous
nucleotide or residue.

Any of a class of 20 small molecule building blocks
that are combined to form proteins in living things (21
amino acids if selenocysteine is included). The
sequence of amino acids in a protein and hence
protein function are determined by the nucleotide
sequence of its gene and the genetic code. The terms
residue and amino acid are often used
interchangeably.

See Sequence Assembly
See Nucleotide

The nucleotide that chemically pairs up (hybridizes)
with another nucleotide (called its complement) on
the other strand, within a double-stranded sequence.
G pairs with C in both DNA and RNA. A pairs with T
in DNA. A pairs with U in RNA.

The sequence consisting of Complementary Bases.

See Phylogenetic Tree

Biomolecular Sequence Analysis V1.0 December 1999 Glossary -1

Coding Sequence

Codon

Contig or Contig Map

DNA (deoxyribonucleic
acid)

Expression

Exon

Gap

Gene

Glossary -2

Biomolecular Sequence Analysis V1.0

A DNA sequence that contains appropriate start and
stop codons, indicating the amino acid sequence
translated from it could form a functional protein.

A set of three nucleotide bases in a DNA or RNA
sequence, which together code for a unique amino
acid. For example, the set AUG (adenine, uracil,
guanine) codes for the amino acid methionine.

As used here, a graphical or data representation
depicting the relative order of a linked library of small
overlapping clones representing a complete
chromosomal segment. See Sequence Assembly.

The molecule that encodes genetic information. DNA
is a double-stranded polymer of nucleotides. The two
strands are held together by hydrogen bonds between
base pairs of nucleotides. The four nucleotides in
DNA contain the bases: adenine (A), guanine (G),
cytosine (C), and thymine (T). In nature, base pairs
form only between A and T and between G and C;
thus the base sequence of each single strand can be
deduced from that of its partner.

The conversion of the genetic instructions present in a
DNA sequence into a unit of biological function in a
living cell. Typically involves the process of
transcription of a DNA sequence into an RNA
sequence followed by translation of the RNA into
protein. The RNA may be spliced before translation to
remove introns.

Segment of a (genomic) sequence that is translated
into a segment of a protein. See also Intron.

The opening and addition of one or more spaces to
individual sequences in an alignment, in order to
increase the consensus of the overall mapping. A gap
represents a failure to establish equivalence between
nucleotides in a particular region of a sequence when
aligning it with one or more other sequences.

A length of DNA which codes for a particular protein,
or in certain cases a functional or structural RNA
molecule. Genes may be inferred from the DNA
sequence by way of a coding sequence.

December 1999

Genetic Code The full set of codons in DNA or mRNA. Each codon
is made up of three nucleotides which call for a
unigue amino acid. For example, the set AUG
(adenine, uracil, guanine) calls for the amino acid
methionine in the standard genetic code. The
sequence of codons along an mRNA molecule
specifies the sequence of amino acids in a particular

protein.

Genome The complete set of genetic information for a
particular organism.

Genomic Pertaining to or contained within a genome; also:
chromosomal.

Hidden Markov Model A stochastic generative model for a series defined by

(HMM) a finite set of states, a discrete alphabet of symbols, a

probability transition matrix, and a probability
emission matrix.

Intron Segment of the (genomic) sequence that is removed
(spliced) from the RNA molecule prior to translation.
Introns are therefore not translated to protein in a
living cell.

Non-Coding A class of genomic sequence that is not translated into
a protein sequence. Non-coding sequence consists of
introns and intergenic regions that may contain "junk”
DNA such as repeat sequences.

Nucleic Acid A polymer of nucleotides. DNA and RNA are
different classes of nucleic acids. May be double- or
single-stranded.

Nucleotide A subunit of DNA or RNA consisting of a
nitrogenous base (adenine, guanine, thymine, or
cytosine in DNA; adenine, guanine, uracil, or cytosine
in RNA), a phosphate molecule, and a sugar molecule
(deoxyribose in DNA and ribose in RNA).

Phylogenetic Tree A map, dendrogram, cladogram, or other data or
graphical representation of a Phylogeny.

Phylogeny (phylogenesis, The evolutionary history of a particular taxonomic
phylogenetic, phylogenic) group, usually a species.

Profile A table that lists the frequencies of finding each of the
20 amino acids at each position in conserved
sequence pattern; used in sensitive sequence searches.

Biomolecular Sequence Analysis V1.0 December 1999 Glossary - 3

Protein

RNA (ribonucleic acid)

Reading Frame

Residue

Reverse Complement

Sequence

Sequence Alignment

Sequence Assembly

Splicing

Translation

Glossary - 4

Biomolecular Sequence Analysis V1.0

A biological molecule which consists of many amino
acids chained together by peptide bonds. The
sequence of amino acids in a protein is determined by
the sequence of nucleotides in a DNA molecule.
Proteins perform most of the enzymatic and structural
roles within living cells.

A class of nucleic acids that consist of nucleotides
containing the bases: adenine (A), guanine (G),
cytosine (C), and uracil (U). An RNA molecule is
typically single-stranded and can pair with DNA
(where U pairs with A) or with another RNA
molecule. RNA nucleotides are chemically distinct
from DNA nucleotides and enable RNA molecules to
have more complex structural and functional roles
within a living cell.

The 'phase’ of the starting point of a translation. As
each codon consists of three bases, a translation of a
nucleotide sequence will yield entirely different
protein sequences depending on this. Negative values
are often used to denote translation of the reverse
strand.

Amino acid; sometimes: nucleotide.

The sequence obtained by reading the opposite
(complementary) strand of a nucleic acid sequence in
the reverse direction.

The order of nucleotides in a DNA or RNA molecule,
or the order of amino acids in a protein.

The explicit mapping between the residues of two or
more sequences. A sequence alignment may have
gaps. Alignments are used to establish similarities
between sequences and/or sequence families.

A series of linked sequence alignment analysis steps
that is used for constructing a contig.

The removal of introns from an RNA sequence
leaving only the exons which are then translated into
a protein.

The conversion of a nucleic acid sequence into an
amino acid sequence according to the rules of a
genetic code.

December 1999

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Biomolecular Sequence Analysis Overview
	1.1 Module DsLSRBioObjects
	1.2 Module DsLSRAnalysis
	1.3 Domain Model
	1.4 General Remarks
	1.4.1 Objects-by-value
	1.4.2 Returning multiple results
	1.4.3 Identifier
	1.4.4 Composite pattern
	1.4.5 BioObject immutability
	1.4.6 Rationale for metadata approach

	2. BSA Modules and Interfaces
	2.1 Module DsLSRBioObjects
	2.1.1 General
	2.1.2 StrandType
	2.1.3 Basis
	2.1.4 Interval
	2.1.5 SeqRegion
	2.1.6 Annotation
	2.1.7 SeqAnnotation
	2.1.8 Identifier
	2.1.9 BioSequence
	2.1.10 Sub-types of BioSequence
	2.1.11 CodeRule
	2.1.12 GeneticCode
	2.1.13 AlignmentElement
	2.1.14 AlignmentElementIterator
	2.1.15 Alignment
	2.1.16 Alignment Examples
	2.1.17 Assembly
	2.1.18 SearchHit
	2.1.19 SimilaritySearchHit
	2.1.20 BioSequenceIdentifierResolver
	2.1.21 SearchResult
	2.1.22 AnnotationFactory (Optional)
	2.1.23 BioSequence factories (Optional)
	2.1.24 BioSequence iterators (Optional)
	2.1.25 GeneticCodeFactory (Optional)
	2.1.26 CharacterAlignmentEncoder (Optional)
	2.1.27 SingleCharacterAlignmentEncoder (Optional)
	2.1.28 AlignmentEncoder factories (Optional)

	2.2 Module DsLSRAnalysis
	2.2.1 General
	2.2.2 AnalysisType
	2.2.3 InputPropertySpec
	2.2.4 OutputPropertySpec
	2.2.5 AnalysisState
	2.2.6 AnalysisEvent
	2.2.7 sub-types of AnalysisEvent
	2.2.8 AnalysisService
	2.2.9 JobControl
	2.2.10 AnalysisInstance
	2.2.11 Sequence Diagrams

	3. Domain Model
	3.1 XML Metadata
	3.1.1 Role of XML
	3.1.2 Role of DTD
	3.1.3 Domain Metadata

	3.2 Classification of Analyses
	3.2.1 Searching
	3.2.2 Alignment
	3.2.3 Utilities

	A - References
	B - Genetic Codes
	C - Complete IDL
	D - Domain Model DTD and XML
	E - Future Direction of Metamodel
	Glossary

