Biomolecular Sequence Analysis
Specification, V1.0

This OMG document replaces the draft adopted specification and the submission documents. It is
an OMG Final Adopted Specification, which has been approved by the OMG board and technical
plenaries, and is currently in the finalization phase. Comments on the content of this document are
welcomed, and should be directeddsues@omg.ory December 4, 2000.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issueshowever, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on January 8, 2001. If
you are reading this after that date, please download the available specification from the OMG for-

mal specifications web page.

OMG Adopted Specification
November, 2000

Biomolecular Sequence Analysis
Specification

Final Adopted Specification
November 2000

Copyright 1999, Concept Five Technologies, Inc.

Copyright 1999, EMBL-EBI (European Bioinformatics Institute)
Copyright 1999, Genome Informatics Corporation

Copyright 1999, Millennium Pharmaceuticals, Inc.

Copyright 1999, Neomorphic Software, Inc.

Copyright 1999, NetGenics, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid t
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyr
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require us
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document d
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT

MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY

WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF

FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, rediaaice or ¢
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listec
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be t}
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks
other special designations to indicate compliance with these materials. This document contains information which is protect
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form ¢
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (i) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7028m@MG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface 1
About the Object Management Group. 1
Whatis CORBA?. e 1
Associated OMG Documents 2
Acknowledgments. 2
L. OVeIVIEW . .o 1-1
1.1 Module DsISRBioObjects., 1-1
1.2 Module DsSLSRAnNalysis. 1-2
1.3 DomainModel......... 1-2
14 GeneralRemarks i 1-2
1.4.1 Objects-by-value........................ 1-2
1.4.2 Returning Multiple Results. 1-3
1.4.3 lIdentifier.......... 1-3
1.4.4 Composite Pattern. 1-3
1.4.5 BioObject Immutability 1-4
1.4.6 Rationale for Metadata Approach........... 1-4
2. BSA Modulesand Interfaces 2-1
2.1 Module DsISRBioObjects. 2-1
211 General........ 2-2
212 StrandType i 2-3
213 BasiS....... . 2-4
214 Interval......... e 2-5
215 SeqRegion i 2-6
216 Annotation i 2-10

Biomolecular Sequence Analysis Final Adopted Spec. November 2000 i

Contents

2.1.7 SegAnnotation 2-14
2.1.8 dentifier........ 2-18
2.1.9 BioSequence.c.iiiii 2-22
2.1.10 Sub-types of BioSequence 2-29
2111 CodeRule 2-34
2.1.12 GeneticCode.ciiiiin. 2-37
2.1.13 AlignmentElement 2-38
2.1.14 AlignmentElementdrator 2-41
2.1.15 Alignment. 2-42
2.1.16 Alignment Examples 2-51
2.1.17 Assembly 2-53
2118 SearchHit.......... 2-54
2.1.19 SimilaritySearchHit 2-57
2.1.20 BioSequenceldentifierResolver 2-59
2.1.21 SearchResult............ 2-60
2.1.22 AnnotationFactory (Optional). 2-64
2.1.23 BioSequence factories (Optional). 2-66
2.1.24 BioSequence iterators (Optional) 2-70
2.1.25 GeneticCodeFactory (Optional) 2-74
2.1.26 CharacterAlignmentEncoder (Optional). 2-76
2.1.27 SingleCharacterAlignmentEncoder (Optional). 2-81
2.1.28 AlignmentEncoder factories (Optional) 2-83
2.2 Module DsLSRAnNalysis. 2-85
221 General........ 2-86
2.2.2 AnalysisType i 2-87
2.2.3 InputPropertySpec 2-89
2.2.4 OutputPropertySpec. 2-91
225 AnalysisState 2-92
2.2.6 AnalysisEvent............. 2-93
2.2.7 Sub-types of AnalysisEvent 2-94
2.2.8 AnalysisService e 2-97
229 JobControl 2-100
2.2.10 Analysisinstance. 2-104
2.2.11 Sequence Diagrams 2-108
3. Domain Model. 3-1
3.1 Metadata. 3-1
311 Roleof XML 3-1
3.1.2 Roleof DTD........coiiiiiiin. 3-2
3.1.3 DomainMetadata....................... 3-3
3.2 Classificationof Analyses 3-6

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

Contents

3.21 Searching 3-6

3.2.2 Alignment........... 3-6

3.23 Utilities. 3-6
Appendix A-References. A-1
Appendix B-GeneticCodes.t B-1
Appendix C-Complete IDL. C-1
Appendix D - Domain Model DTDand XML D-1
Appendix E - Future Direction of Metamodel. E-1
GlosSsary. ... Glossary-1

Biomolecular Sequence Analysis Final Adopted Spec. November 2000 iii

Contents

Biomolecular Sequence Analysis Final Adopted Spec.

November 2000

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000 1

Associated OMG Documents

The CORBA documentation is organized as follows:

® Object Management Architecture Guidefines the OMG'’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

® CORBA: Common Object Request Broker Architecture and Specificaiitains
the architecture and specifications for the Object Request Broker.

® CORBAservices: Common Object Services Specificatimtains specifications for
OMG's Object Services.

The OMG collects information for each specification by issuing Requests for Information,
Requests for Proposals, and Requests for Comment and, with its membership, evaluating
the responses. Specifications are adopted as standards only when representatives of the
OMG membership accept them as such by vote. (The policies and procedures of the OMG
are described in detail in tii@bject Management Architecture Guifle

OMG formal documents are available from our web site in PostScript and PDF format. To
obtain print-on-demand books in the documentation set or other OMG publications, con-
tact the Object Management Group, Inc. at:

Acknowledgments

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

The following companies submitted and/or supported parts of this specification:

Concept Five Technologies, Inc.

EMBL-EBI (European Bioinformatics Institute)
Genome Informatics Corporation

Millennium Pharmaceuticals, Inc.
Neomorphic Software, Inc.

NetGenics, Inc.

Oxford Molecular Group

Sanger Centre

2 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

Overview 1

Contents

This chapter contains the following sections.

Section Title Page
“Module DsLSRBioObjects” 1-1
“Module DsLSRAnNalysis” 1-2
“Domain Model” 1-2
“General Remarks” 1-2

The domain of biomolecular sequence analysis comprises the sub-domains of biological
objects and analysis mechanisms. The modules that address these areas are described ir
the following sections.

1.1 Module DsLSRBIoObjects

Biological objects that are central to this specification incBid&equence , which is
specialized intdNucleotideSequence andAminoAcidSequence . An Annotation

object is provided, which is specialized irfBegAnnotation for usage witlBioSe-

guences . SeqAnnotations can apply to specific parts of a sequence, and the mecha-
nism to refer to these regions is providedd®gRegion andinterval .
CompositeSeqRegion provides the ability to ne§eqRegions . GeneticCode ,
associated with an organism, is an auxiliary object needed when translating sequences.
The interfaceAlignment and ancillary types are used for representing comparisons
between sequences or sequence families. It is also used in des8iibitegitySearch-

Hits (i.e., matches found in sequence databaseAasemblies). SearchHit and
SearchResult are used primarily for representing the results of similarity searches (e.qg.,
BLAST).

Biomolecular Sequence Analysis Final Adopted Spec. November 2000 1-1

The Annotation factory, theBioSequence iterators and factorie§eqAnnotation
iterator,GeneticCode factory, andAlignmentEncoders and factories are optional
interfaces.

TheAnnotation factory, theBioSequence iterators and factorie§eneticCode fac-
tory, andAlignmentEncoders and factories are optional interfaces.

1.2 Module DsLSRAnNalysis

TheDsLSRAnalysis module defines the components for supporting sequence analysis
through a generic analysis design. The module provides the means to interrogate analyse:
inputs, output, and functionality. An analysis can be executed asynchronously as well as
synchronously based on the client invocation. Executing analyses can be monitored by
subscribing to an event channel or polling for state.

1.3 Domain Model

The domain model is expressed in XML. The domain model includes a simple classifica-
tion of analyses. This is in response to the mandatory requirement of the RFP, and serves
to organize the analyses into groups in a way that matches closely with how researchers
and bioinformaticists think about and utilize such analyses.

This classification of analyses consists of three broad categories.
® Searching - including similarity searching (e.g., BLAST)
® Alignment - including contig assembly

® Utilities - including molecular weight and GC content

1.4 General Remarks

This document contains a proposal for a standard that addresses the representation of a
number of biological objects, as well as mechanisms for analyzing them. A few design
principles and patterns that we have used are outlined first.

1.4.1 Objects-by-value

This document makes extensive use of objects-by-value (OBV, OMG Document
orbos/98-01-18). This is a new OMG standard for the so-cedllettype , which is an

entity that is halfway between an |Diterface and an IDLstruct . They are not yet

widely supported by all ORBs, but we think they are a very useful construct, as they prom-
ise to provide:

® choice: the client can choose to make the object ‘local’ or leave it remote,
® better scalability: only a single round trip transfers the whole state of the object,
® extendibility through inheritance,

®* null value semantics.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

1

We have used OBValuetypesessentially as if they were extendible structs, using the fol-
lowing constraints:

®* no methods
® all members / attributes apablic

® inheritance only of/aluetypes(no “supports Somelnterfacé).

Note —Factory methods were not used in the valuetypes. See the appropriate language
mapping specifications for details on using ValueFactories.

1.4.2 Returning Multiple Results

If a method has to return a multi-valued result to the caller, there is a design choice of
returning these elements directly as a list, or through an iterator, or using a combination of
both. We have adopted the latter, hybrid approach to allow the client to choose between
the convenience of directly returned lists and the scalability of iterators. The methods hav-
ing a multi-valued result use have:

® alist return type,
® a parametein unsigned long how_many

® a parameteout Anlterator the_rest

The client specifies that it wishes to receive a list of no moretthan manyelements as

the direct result. The remaining elements, if any, can be retrieved through the iterator
returned in th@ut parameter. The iterators allow the retrieval of one element at a time, or
several at once. This pattern was in fact taken directly fror@tis®ropertyService

and provides maximum flexibility to client programs.

A multi-valued result, either returned directly or through an iterator, is guaranteed not to
contain duplicates. If a multi-valued result type is ordered and iterators are involved, the
ordering is the same as that achieved by not having used any iterators.

1.4.3 Identifier

Many entities in molecular biology require ID strings, usually to uniquely identify it in a
certain context. The current document also uses strings for ID attributes, but constrains
their syntax and semantics to improve interoperability. To make the intended use of these
strings clearer,

typedef string Identifier;

is provided and used in this specification.
1.4.4 Composite Pattern

The CompositeSegRegion valuetype implements the Composite design pattern
[Gamma et al., 1995]. This pattern composes entities into tree structures to represent hier

BSA Final Adopted Spec. General Remarks Nov. 2000 1-3

archies. The Composite pattern treats individual objects and composites uniformly.

A biological example using the Composite pattern is a gene being composed of coding
regions from a set of exons.

1.4.5 BioObject Immutability

All BioObjects in this specification, with the single exceptioBafSequence , are

immutable. Modifying other BioObjects is considered out of scope for sequence analysis,
as defined by the RFP. Since it is clear that the results of many sequence analyses produc
information that is frequently attached to sequences as annotations, we do provide the
add_annotation() method inBioSequence .

Implementors are free to choose to support mutable BioObjects, taking responsibility for
the associated life cycle issues.

1.4.6 Rationale for Metadata Approach

A number of the initial submissions to the RFP for sequence analysis explored the use of
metadata to describe the various types of sequence analyses that might be available to a
client. In response to the RFP requirement for the specification of a domain model for
sequence analysis, the metadata approaches varied from string descriptors, structs, and
arrays of structs to well defined IDL interfaces.

In the process of preparing this RFP response the submitters considered a number of via-
ble approaches to metadata for sequence analyses. There was a strong desire to leverag
existing solutions if possible. A predecessor to this specification described the metadata
model using valuetype based extensible structs. This approach is carried into the current
specification. In recognition of the increasing use of XML to provide data descriptions for
application metadata, the specification was enhanced to also support retrieval of XML
based metadata. An XML DTD defining the metadata model has been introduced as well.
Additionally the mechanism used to fetch metadata descriptions for analyses has been
enhanced to support the introduction of new XML based metadata by supplying a tag that
identifies the type of metadata described. It is expected that this tag-based retrieval
approach could be used to provide access to OCL, XMI, or other formatted metadata in the
future. In particular the submitters would have liked to leverage XMl for metadata
description but, in the absence of clear examples of its use, chose to adopt a model basec
on our previous joint submission and to provide for extension in the future.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

BSA Modules and Interfaces 2

Contents

This chapter contains the following sections.

Section Title Page
“Module DsLSRBioObjects” 2-1
“Module DsLSRAnNalysis” 2-85

2.1 Module DsLSRBioObjects

The analysis of biomolecular sequence information takes place within the broader
domain of computational biology. This domain presents a very heterogeneous, rapidly
evolving environment that has proven difficult to standardize. To offer a design that is
both complete and practical for the field of sequence analysis, this specification includes
an IDL specification forAnnotations and so-calledGegAnnotations , which can be
likened to Features in the DDBJ/EMBL/GenBank flat file format. These two data
components serve to incorporate and organize additional information relevant to the
sequence data. Examples include organism source information, biological descriptors,
cross-references, molecular characterizations, known sites and variations within the
sequence, bibliographic references, and relations to known diséasesgations and
SegAnnotations can also be attached to a sequence to carry new information that is
computationally inferred, or experimentally determined. We believe that it is necessary
to offer users an easy, extensible interface to organize and link this resulting information
to biomolecular sequences either as whole-sequ&nnetations or region-specific
SegAnnotations (Features).

Some of the entities described below use generic types séety asr name-value pairs.
It is deemed outside the scope of this document to standardize the types of values that
can be contained in these generic types.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000 2-1

Existing standards that can be represented with the current proposal and to some extent
have shaped it are: the NCBI datamodels; the DDBJ/EMBL/GenBank Feature Table
Document; various sequence file formats (Fasta, EMBL/GenBank, GCG), and various
sequence analysis tools (BLAST, FastA, Smith-Waterman, ClustalW, Wise2, Grail, the
GCG suite).

The alignment portion of the response is aimed to effectively model all types of
BioSequence andBioSequence related alignment problems in biomolecular

sequence analysis. This ranges from the relatively simple cases of a pairwise alignment
of two DNA sequences, to the complex case of a profile-HMM compared to genomic
DNA.

2.1.1 General

/IFile: DsLSRBioObjects.id|

#ifndef _DS_LSR_BIOOBJECTS_IDL_
#define_DS_LSR_BIOOBJECTS_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosPropertyService.idl>

module DsSLSRBioObjects
{

b

...

#endif // _DS_LSR_BIOOBJECTS_IDL_

#pragma prefix "omg.org"

To prevent name space pollution and name clashing of IDL types, this module (and all
modules defined in this specification) uses the pragma prefix that is the OMG's DNS
name.

#include <CosLifeCycle.idl>

NucleotideSequence , AminoAcidSequence , Annotation , GeneticCode ,
Alignment , andSearchResul t all inherit fromLifeCycleObject .

#include <CosPropertyService.idl>

Properties are used Bnnotation , SearchHit , andSearchResult .

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

StringList

typedef sequence<string> StringList;

Description: Used to pass and return a settohgs .

2.1.2 StrandType

There is an intrinsic directionality of biological sequence data, which proceeds 5' to 3' for
nucleic acids and N-terminal to C-terminal for proteins. RocleotideSequences
StrandType provides an indication of whether tBegRegion refers to the original
plus-strand, the complementary minus-strand, or both strands of a double-stranded
molecule. TheStrandType values are used iBegRegion .

The following table contains the valtrandType for each type oBioSequence .

Table 2-1 Valid StrandTypes

BioSequence Type Valid StrandTypes
BioSequence STRAND_NOT_KNOWN
NucleotideSequence STRAND_NOT_KNOWN,

STRAND_PLUS,
STRAND_MINUS,
STRAND_BOTH

AminoAcidSequence STRAND_NOT_APPLICABLE

The following table contains the matchiBgyandTypes for each type otrandType.

Table 2-2 Matching StrandTypes

StrandType Matching StrandTypes

STRAND_NOT_KNOWN STRAND_NOT_KNOWN,
STRAND_PLUS,
STRAND_MINUS,
STRAND_BOTH

STRAND_NOT_APPLICABLE |STRAND_NOT_APPLICABLE

STRAND_PLUS STRAND_NOT_KNOWN,
STRAND_PLUS,
STRAND_BOTH

STRAND_MINUS STRAND_NOT_KNOWN,
STRAND_MINUS,
STRAND_BOTH

STRAND_BOTH STRAND_NOT_KNOWN,
STRAND_PLUS,
STRAND_MINUS,
STRAND_BOTH

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-3

<<enum>>
StrandType

STRAND_NOT_KNOWN
STRAND_NOT_APPLICABLE
STRAND_PLUS
STRAND_MINUS
STRAND_BOTH

Figure 2-1 The StrandType Enumeration.

enum StrandType {STRAND_NOT_KNOWN, STRAND_NOT_APPLICABLE,
STRAND_PLUS, STRAND_MINUS, STRAND_BOTH}

STRAND_NOT_KNOWN STRAND_NOT_KNOWN should be used in all case
not indicated below.

2]

STRAND_NOT_APPLICABLE STRAND_NOT_APPLICABLE should be used for
regions ofAminoAcidSequences .

STRAND_PLUS STRAND_PLUS should be used to indicate the
original plus-strand of &lucleotideSequence .

STRAND_MINUS STRAND_MINUS should be used to indicate the
reverse complement of the plus-strand of a
NucleotideSequence .

STRAND_BOTH STRAND_BOTH should be used to indicate both

strands of a double-strand®tlicleotideSequence .

2.1.3 Basis

The Basis enumeration values are used to specify whetheékrarotation originated
from an experimental result or a computational analysis, such as from the application of
a sequence analysis program.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

<<enum>>
Basis

&BASIS_NOT_KNOWN
«BASIS_NOT_APPLICABLE
«BASIS_EXPERIMENTAL
«BASIS_COMPUTATIONAL
«BASIS_BOTH

Figure 2-2 The Basis Enumeration

enum Basis {BASIS_NOT_KNOWN, BASIS_NOT_APPLICABLE,
BASIS_EXPERIMENTAL, BASIS_COMPUTATIONAL, BASIS_BOTH}:;

BASIS_NOT_KNOWN BASIS_NOT_KNOWN should be used in all cases npt
indicated below.

BASIS_NOT_APPLICABLE BASIS_NOT_APPLICABLE should be used to
indicate thaBasis doesn't apply.

BASIS_EXPERIMENTAL BASIS_EXPERIMENTAL should be used to indicate
an experimental result.

BASIS_COMPUTATIONAL BASIS_COMPUTATIONAL is used to indicate a

computational analysis, such as from the application of
a sequence analysis program.

BASIS_BOTH Any result determined both experimentally and
computationally should udBASIS_BOTH .

2.1.4 Interval

A contiguous sub-string within a larger string is specified usindritezval valuetype.

An Interval consists of a start and length, defining the starting position of the sub-string
and the size of the sub-string (humber of unBsd.Sequences are numbered starting

at start 1, in keeping with the existing practice in the field of molecular biology. An
Interval on aBioSequence of start=5, length=10 would start at the fifth position and
include up to the 14th position of a sequence.

The use of atart andlength instead of start and end provides a powerful mechanism
for defining intervals along biological sequences that works well for both linear and
circular molecules.

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-5

2-6

<<valuetype>>
Interval
start : unsigned long
length : unsigned long

Figure 2-3 The Interval valuetype

valuetype Interval

{

public unsigned long start;
public unsigned long length;

I3

public unsigned long start;

Description: start is an unsigned long integer that defines the starting
position of the sub-strindBioSequences are numbered
starting at 1.

Return value: Returns amsigned long .

public unsigned long length;

Description: length is an unsigned long integer that defines the size of
sub-string (number of units).

Return value: Returns amsigned long .

2.1.5 SegRegion

A SeqRegion is a specialization dhterval and specifies a location on a
BioSequence . A further specializationCompositeSeqRegion , may contain zero
more sub-regions. In this specificatiddeqRegion is used primarily to specify the
location along &ioSequence to which aSeqgAnnotation pertains.

The SegRegion model is not intended to address all types of sequence region

the

or

specification found in the GenBank/EMBL/DDBJ feature table. Supported are intervals
with non-fuzzy end points and composites of such intervals. Examples of these include a
PROSITE pattern located at 74 and ending at 80, or a gene made of 5 spliced exons.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

2

We believe the definition dbeqRegion is broad enough to handle many kinds of
commonly occurring sequence-based regions and addresses the needs of most molecula
biologists. Due to their complexity and rarity of usage in sequence analysis software,
fuzzy sequence regions are not explicitly supported at the present time. It is not currently
possible with the present IDL to associate a siggigRegion with a set of

BioSequences .

<<valuetype>>
Interval

start : unsigned long
length : unsigned long

\
i

<<valuetype>> <<enum>>
yp StrandType
SeqRegion
-N id - Identifier 1 |STRAND_NOT_KNOWN
) . STRAND_NOT_APPLICABLE
strand_type : StrandType
start_relative_to_seq_end : boolean & IRND, LS
- —to_seq_end - STRAND_MINUS
STRAND_BOTH
%
<<valuetype>> <<enum>>
CompositeSegRegion SegRegionOperator
——</sub_regions : SeqRegionList NONE
region_operator : SeqRegionOperator 1|JOIN
ORDER

Figure 2-4 The SeqRegion and CompositeSeqRegion Valuetypes

SeqRegion

A SeqgRegion extenddnterval and contains thstrand_type and
start_relative_to_seq_end members that specialize it for use with biological
sequencesSeqRegion also contains aid indicating theBioSequence to which the
SeqRegion refers.

valuetype SegRegion : Interval

{

public Identifier id;

public StrandType strand_type;

public boolean start_relative_to_seq_end;
8

BSA Final Adopted Spec. Module DsLSRBIioObjects Nov. 2000 2-7

2-8

public Identifier id;

Description:

id indicates theBioSequences to which theSeqRegion
refers.

Return value:

Returns ddentifier .

public StrandType strand_type;

Description:

FomMucleotideSequences , strand_type provides an
indication of whether th&eqRegion refers to the original
plus-strand, the complementary minus-strand, or both
strands of a double-stranded molec8&8RAND_MINUS
should be used to indicate a region on the reverse
complement of &NucleotideSequence . For these
regions,start andlength (inherited frominterval) refer to
positions within the coordinate system of the original, giv
strand.strand_type should be
STRAND_NOT_APPLICABLE for regions of
AminoAcidSequences

Return value:

Returns &trandType .

public boolean start_relative_to_seq_end;

Description:

Thestart_relative_to_seq_end member can modify the
semantics of the start member: if
start_relative_to_seq_end is TRUE,start is to be taken
from the end of the sequence, rather than the beginning.
reverse-complement is implied. That is, if sequence has
length 100, and SegRegion hgtart =20 length =10, and
start_relative_to_seq_end =TRUE, the region runs from
position 81 up to and including 90.

Return value:

Returns laoolean .

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

No
a

SeqRegionList

typedef sequence<SegRegion> SeqRegionList;

Description: Used to pass a set3dgRegions .

CompositeSegRegion

CompositeSeqRegion , a specialization ofegRegion , may contain zero or more
sub-regions. ACompositeSegRegion 's sub-regions may overlap. The nested or
hierarchical behavior is useful in describing complex featuredBio8equences . There
is no limit to nesting. AliCompositeSeqRegions are expected to be translated in a
depth-first traversal, along each node of the tree represented by the
CompositeSegRegions . This includes those nodes that hasgion_operator

equal toJOIN or ORDER.

A CompositeSeqRegion with sub-regions will itself not hav&tart, length ,

strand_type , or start_relative_to_seq_end data defined. The whole
CompositeSeqRegion tree will be passed as an object graph by the objects by value
(OBV) functionality.

valuetype CompositeSeqRegion : SeqRegion

{
enum SegRegionOperator
{
NONE, /I Region has no sub regions or the sub regions
/I don't need special treatment.
JOIN, /I Sub regions should be joined end-to-end to
// form a contiguous region.
ORDER // Sub region order is important.
h
public SeqRegionList sub_regions;
public SeqRegionOperator region_operator;
h

enum SegRegionOperator {NONE, JOIN, ORDER};

NONE NONE should be used whelOIN andORDER are not
applicable.
JOIN JOIN should be used when the sub-regions are to be

concatenated into a single region.

ORDER ORDER should be used when the sub-regions are to be taken
as an ordered set of sub-regions. Typically, it is used to
represent a discontinuous region to which a descriptive
annotation pertains.

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-9

2-10

public SegRegionList sub_regions;

Description: sub_regions contains the constituedeqRegions . If there
are no sub-regions, thedeqRegion should be used instead
of CompositeSegqRegion

Return value: Returns &egRegionList .

public SeqRegionOperator region_operator;

Description: Theregion_operator takes on a value of the
SeqRegionOperator enumeration. It specifies how the sub-
regions are to be treated. The sub-regions could be
concatenated into a single regialO(N) or taken as an
ordered set of sub-region® RDER). In the latter case,
unknown segments of sequence may intervene. All

CompositeSeqRegions are expected to be translated in ja
depth-first traversal, along each node of the tree represented
by theCompositeSeqRegions . This includes those nodes
that haveregion_operator equal toJOIN or ORDER.

Return value: Returns 8egqRegionOperator .

2.1.6 Annotation

The Annotation interface defines an annotation that could, in principle, be associated
with any bio-object that requires description using name-value pairs.

All attributes inAnnotations are readonly, in keeping with our immutability policy for
this specification.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

Annotation inherits fromCosLifeCycle::LifeCycleObject

<<lInterface>>
LifeCycleObject

<<Interface>>
Annotation

name : string

value : any

the basis : Basis

qualifiers : CosPropertyService::Properties

Figure 2-5 The Annotation Interface

interface Annotation : CosLifeCycle::LifeCycleObject

{
readonly attribute string name; /Il type of annotation
readonly attribute any value; /l the annotation
readonly attribute Basis the_basis; // basis for annotation
readonly attribute CosPropertyService::Properties qualifiers;
h

readonly attribute string name;

Description: Thename attribute specifies the general type of the
annotation that is contained in the value attribute that contains
the annotation itself. The value is of typey and therefore
could contain anything from a block of free text to a
specialized datatype.

Return value: Returns string . name shall not be empty.

readonly attribute any value;

Description: Thevalue attribute contains the annotation itself.

Return value: The value is of tymy and therefore could contain anything
from a block of free text to a specialized datatype.

BSA Final Adopted Spec. Module DsLSRBIioObjects Nov. 2000 2-11

readonly attribute Basis the_basis;

Description: Annotation has abasis attribute, which specifies whether
the annotation originated from an experimental result
(BASIS_EXPERIMENTAL) or a computational analysis
(BASIS_COMPUTATIONAL), such as from the application
of a sequence analysis program. Basis provides for a coarse-
grained classification of an Annotation.

Return value: The value is of tyBASIS.

readonly attribute CosPropertyService::Properties qualifiers;

Description: Annotation contains additional information in the form of
so-called qualifiers, represented by the
CosPropertyService::Property struct, which enables
them to support many kinds of keyword controlled attributes.
These properties are essential for covering the full spectium
of current annotation and feature information.

Return value: Theyualifiers attribute is of type
CosPropertyService::Properties and so provides a plac
for arbitrary name-value pairs.

D

AnnotationList

typedef sequence<Annotation> AnnotationList;

Description: Used to pass a setAninotations .

Iteratorinvalid

exception Iteratorinvalid
{
string reason;

h

Description: Theteratorlnvalid exception is raised for cases where the
iterator is no longer valid (e.g., new elements have been added
to the underlying collection).

Return value: Returns string containing the reason that the iterator is
invalid.

Annotationlterator

Annotationlterator provides a strongly typed iterator fAnnotations .

2-12 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

<<Interface>>
Annotationlterator

next()
next_n()
reset()
destroy()

Figure 2-6 The Annotationlterator Interface

interface Annotationlterator

{
boolean next(out Annotation the_annotation)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out AnnotationList annotations)
raises(Iteratorinvalid);
void reset();
void destroy();
h

boolean next(out Annotation the_annotation)
raises(Iteratorinvalid);

Description:

Thenext() operation gets the neAnnotation in its out
parametethe_annotation and returns a boolean value.
the iterator is at the end of the set, it returns FALSE and
the outputthe_annotation parameter to null.

f
sets

Return value:

Returns FALSE if the iterator is at the end of the set ar
TRUE otherwise.

nd

Exceptions:

Raisekeratorinvalid if the iterator is no longer valid (e.g
the underlying collection has changed).

BSA Final Adopted Spec.

Module DsLSRBIioObjects Nov. 2000 2-1

3

2-14

boolean next_n(in unsigned long how_many,
out AnnotationList annotations)
raises(Iteratorinvalid);

Description: next_n() returnsAnnotations in the AnnotationList out
parametemnnotations , containing at most the number
specified in the first parameteingw_many) and returns a
boolean value directly. When it is at the end of the set it
returns FALSE and thannotations parameter will have
length zero. In all cases the lengthavfnotations will be
the minimum ofhow_many and the number of elements
remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: RaiseReratorlnvalid if the iterator is no longer valid (e.g/,

the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raise€EORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator provides
access to streaming data).

void destroy();

Description: destroy() frees the iterator object.

2.1.7 SegAnnotation

For biomolecular sequenceSnnotations are specialized t8egAnnotations to

include sequence position information in the form of $®gRegion attribute (see

above). Essentially, this attribute indicates to which part of the sequence the annotation
pertains, and is analogous to features in the DDBJ/EMBL/GenBank formats. Typical
examples include gene, promoter region, and exons.

SegAnnotation is used to describe an annotation that applies only to a specified region.
Annotation should be used for an annotation that applies to the associated
BioSequence as a whole. AlthougbeqgAnnotations with null regions are also
interpreted to apply to thBioSequence as a whole, this should be avoided.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

2

SegAnnotation can associate a BioSequence with analytical results or descriptive
information such as biological function. A sequence analysis run could generate
SegAnnotation objects as output. In additioBjoSequence factories can be used to
attachSegAnnotations to theBioSequences .

It is not currently possible to navigate fronsagAnnotation to aBioSequence

using the interfaces defined in this specification. One can, however, obtain a set of
SeqgAnnotations given aBioSequence . This is sufficient from the point of view of a
sequence analysis application, which could produce annotated sequences. The submitter:
of this specification feel that there are richer models for annotations on sequences (e.qg.,
complex hierarchies or graphs of relationships between annotations and sequences as
well as the annotations themselves). Sequence annotations are expected to be addresse
in a future RFP.

To illustrate the uses and coverageédohotations andSeqgAnnotations with regard
to the results of Sequence Analyses, a few more examples are listed below:

®* A motif analysis returns a labeled pattern (e.g., KRINGLE) matching a given region
of the protein sequence.

® A restriction map analysis returns a list of sites, for the given enzymes, that can
then be used to annotate the DNA sequence.

®* The result of homology analysis suggests that the sequence belongs to a particular
gene family, which can be annotated onto kheleotideSequence including
information regarding degree of certainty.

®* ORF and gene-finding analyses identify coding regions that are later added as
oriented gene features on the sequence.

®* Homologous regions found by using an alignment analysis can be annotated as
SegAnnotations on the query sequence.

®* An EMBL-curated phosphorylation site on a protein stored (imported) as a
SeqgAnnotation on theAminoAcidSequence

® |dentified mutations from multiple DNA sequences can be merged into
SegAnnotations on a consensus sequence.

ExtendingSegAnnotation provides a mechanism for creating strongly typed sequence
features. This may be appropriate for certain stereotypical sequence features such as
genes, exons, and transcriptional regulatory sites that have complex but reasonably well
defined semantics. These speciali&stjAnnotations could define the necessary data
types and sub-feature containment relationships as appropriate for the specific feature.

The issue of annotatirgioSequences as well as other bio-objects is complex and we
are not proposing a definitive solution in the present specification. The proposed IDL is
workable for biomolecular sequence analysis and there is sufficient room for elaboration
by a future LSR Annotation RFP.

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-15

<<lInterface>>
Annotation

<<valuetype>>
<<Interface>> yp

SegAnnotation S gl
region - SeaRedion strand_type : StrandType
2] are9 1 1 |start_relative_to_seq_end : boolean

Figure 2-7 The SegAnnotation Interface

2.1.7.1 SegAnnotation Interface

For biomolecular sequenceSnnotations are specialized t8egAnnotations to
include sequence position information in the form of $®gRegion attribute (see
above). Ifregion is null, the annotation applies to the associ&iebequence (s) as a
whole. Otherwise, the annotation applies only to the specified refyiorotations
should be used instead 8&gAnnotations with null SeqRegions .

interface SegAnnotation : Annotation

{
h

readonly attribute SeqRegion seq_region;

readonly attribute SeqRegion seq_region;

Description: Contains the sequence position information.

Return value: Returns &egRegion .

SeqgAnnotationList

typedef sequence<SegAnnotation> SegAnnotationList;

Description: Used to pass a setSdggAnnotations .

SeqgAnnotationlterator

SegAnnotationlterator provides a strongly typed iterator fBegAnnotations .
SegAnnotationlterator is not used directly in this specification, but is provided as a
convenience for vendor-specific IDL extensions and future OMG specifications where a
collection of Annotations contains onlySegAnnotations .

SegAnnotationlterator is an optional interface.

2-16 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

<<Interface>>
SegAnnotationlterator

next()
next_n()
reset()
destroy/()

Figure 2-8 The SegAnnotationlterator Interface

interface SeqAnnotationliterator

{
boolean next(out SegAnnotation seq_annotation)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out SeqAnnotationList seq_annotations)
raises(Iteratorinvalid);
void reset();
void destroy();
h

boolean next(out SegAnnotation seq_annotation)
raises(Iteratorinvalid);

Description: Thenext() operation gets the negegAnnotation in its out
parameteseq_annotation and returns a boolean value. If
the iterator is at the end of the set, it returns FALSE and sets
the outputseq_annotation parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: RaiseReratorlnvalid if the iterator is no longer valid (e.g.}
the underlying collection has changed).

BSA Final Adopted Spec. Module DsLSRBIioObjects Nov. 2000 2-17

2-18

boolean next_n(in unsigned long how_many,
out SegAnnotationList seq_annotations)
raises(Iteratorinvalid);

Description: next_n() returnsSeqAnnotations in the
SegAnnotationList out parameteseq_annotations ,
containing at most the number specified in the first parameter
(how_many) and returns a boolean value directly. When it is
at the end of the set it returns FALSE and the
seq_annotations parameter will have length zero. In all
cases the length @feq_annotations will be the minimum
of how_many and the number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: RaiseReratorlnvalid if the iterator is no longer valid (e.g.}

the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raise€ORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator
provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.

2.1.8 Identifier

There is a need for a data type to indicate an entity's identity in very many situations. In
most cases, this need is, or can be addressed by using a string type. The advantages ar
that it is simple, lightweight, and used universally throughout the realm of computing
(and indeed outside). However, the risk of using strings is that they can be too flexible,
both in terms of syntax and semantics. This easily results in the lack of interoperability.
To allow strings, yet mitigate their potential for abuse, this standard uses the syntax
convention ofCosNaming::StringName as described in the Interoperable Naming
service. This convention is mainly a syntactical one; in no way is the use of a naming
service implementation required or implied (but it is not precluded either).

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

2.1.8.1 lIdentifier Description

A brief description is as followsCosNaming::Name is a list of struct
NameComponents . (For the purpose of illustrationNemeComponent can likened
to a directory or filename, where@®sNaming::Name constitutes a full path-name).
The structNameComponent has string members id and kind. To transform a
CosNaming::Name into a string, all ittNameComponents are represented as
strings ‘id.kind”

® |f the kind-field is empty, this becomes simplg;”
® if the id-field is empty, this becomeskind;”

® finally, the Naming service allows both id and kind to be empty, which is

represented as ".".

The full stringifiedCosNaming::Name is obtained by concatenating all the
NameComponents using "/" as a separator character. The character "\" is designated
as an escape character; if it precedes any of the special characters ".", "/" and "\", they are
taken as literal characters. The typedef st@uogNaming::StringName is provided

for strings used as object names using this convention.

This specification adopts this syntax convention, but requests that the components of the
Identifier data type adhere to some additional semantic constraints. These rules do not
follow from, nor are implied by any semantics of the Naming Service. The additional
constraints make this data type sufficiently different fl@osNaming::StringName

to warrant the dedicated typedef stridgntifier .

typedef string Identifier;

Description: In this description, ‘component' means: the sub-string of @an
Identifier that corresponds to one
CosNaming::NameComponent ; likewise, id-field and
kind-field correspond to the equivalent fields of
NameComponent .

The rules are as follows:

®* Names can refer to collections of entities (such as databases), or to entities within
such collections. Names referring to collections consist of exactly one component;
names referring to entities within collections consist of at least two components.

® The first component represents the data source. Data sources can be anything:
transient collections, local databases, public repositories. It is up to the
implementation to document the accepted names for the data source.

®* The empty name (".") is valid for the first component, and represents the 'local' or
‘default’ collection. It is up to the implementation to document what the semantics
of 'local' or 'default' is.

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-19

®* Names that refer to entities within collections consist of two or more components.
The second component of such names represents an identifier that is unique in the
context of the data source. No empty id-fields are allowed in this or any further
components.

® |f two components are not enough to uniquely identify an entity, an ldentifier can
contain more than two components, but no more than necessary to make the
identification unique. That is, an Identifier may not be used to freely attach textual
information.

® The only characters valid in a component are "a" through "z", "0" through "9", and

"-" (hyphen), " " (underscore), "$" and "." (period). Use of the latter is discouraged
since it has a special meaning in the stringifying convention, and has therefore to be
escaped.

®* To comply with existing practice in the field of public data repositories, it is
strongly advised that implementations do string comparisons in a case-insensitive
manner. The Naming Service standard fails to mention whether type-case is, for
identification purposes, significant or not. Implementations that use a third-party
implementation of the Naming Service may therefore wish to restrict Identifiers to
only use one type-case. It is up to an implementation to state whether mixed type-
case is allowed, and whether type-case is significant in comparisons.

Theid andkind parts of the string componentsideéntifier are used as follows:

® The id-field of a component contains the principal value that makes it unique in the
scope provided by the preceding component. It may only be empty in the case of the
first component of an Identifier.

® The kind-field of a component is used to represent information indicating the
release (for a data source) or version (for an entry) of an entity, and can be empty.
If kind is empty and entities with non-empty kind-fields exist, an empty kind field
becomes synonymous with the latest release or version. It is up to the
implementation to document the syntax and semantics of the version information.

The adoption of this convention has the following advantages:
® jtis simple and lightweight,

® it has a well-defined and re-used syntax,

® it is compatible with existing practice,

® it is sufficiently flexible to allow for sub-ids if necessary.

2-20 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

IdentifierList

typedef sequence<ldentifier> IdentifierList;

Description:

Used to pass a setldéntifiers .

IdentifierNotFound

exception IdentifierNotFound

{
Identifier id;
h
Description: ThddentifierNotFound exception is raised for cases where

the database and the identifier within the database can be
resolved but the Identifier is not present.

Return value:

Returns tHdentifier that could not be found.

IdentifierNotResolvable

exception IdentifierNotResolvable

{
Identifier id;
string reason;
h
Description: TheldentifierNotResolvable exception is raised for cases

where database and the identifier within the database cannot
be resolved such that theentifier cannot even be searched
for.

Return value:

Returns thdentifier that could not be resolved and a string
containing the reason resolution was not possible.

IdentifierNotUnique

exception IdentifierNotUnique

{
Identifier id;
IdentifierList ids;
h
Description: ThddentifierNotUnique exception is raised for cases when

the Identifier specification is ambiguous and returns more
than one obiject.

Return value:

Returns the non-unigaentifier and anldentifierList
containingldentifiers for all objects that id identifies.

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-21

2.1.9 BioSeguence

A BioSequence is an abstraction of a biological sequence, such as the ordered
nucleotides of a DNA chain or the ordered amino acid residues of a protein molecule. A
BioSequence can be of any length and significance; there is no implication that it
corresponds to, for example, a gene. Bi@Sequence interface provides essential
characteristics of biological sequencearfe, id, description , length) and operations

for obtaining the sequence string itself or a sub-sequence as an ASCII string of IUPAC-
IUBMB Joint Commission on Biochemical Nomenclature (JCBN) upper case single
letter codesgeq(), seq_interval()).

Additional operations withiBioSequence provide access to any annotations
associated with thBioSequence (get_annotations()) or the number of annotations
(num_annotations()).

Annotations can be attached ®BioSequences directly using the

add_annotation() method oBioSequence or by using th&BioSequence factories.
Thus,BioSequences are mutable at the level of their associated annotations. This
minimal mutability model permits new annotations to be attache®Bio%equence

and prevents situations where multiflmmSequences might exist on a server with
different sets of annotations but representing the same sequeridetUpdateable
exception can be used to indicate thatAamotation cannot be added to this
BioSequence .

Standard container behavior applies here. If a client destrBysSequence , it is also
up to the client to manage the contents, namehAtiheotations .

<<Interface>>
LifeCycleObject

7

<<Interface>>
BioSequence
name : string
<<enum>> id - Identifier <<Interface>>
Basis description : string Annotation
BASIS_NOT_KNOWN 1 seq : string name : string
BASIS_NOT_APPLICABLE length : unsigned long value : any
BASIS_EXPERIMENTAL the_basis : Basis 1 0..n|the_basis : Basis
BASIS_COMPUTATIONAL qualifiers : CosPropertySenice::Properties
BASIS_BOTH seq_interval()
get_annotations() 1
num_annotations()
add_annotation()

<<Interface>>
1 | Annotationlterator

next()
next_n()
reset()
destroy()

Figure 2-9 The BioSequence Interface

2-22 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

IntervalOutOfBounds

exception IntervalOutOfBounds

{
Interval invalid,;
Interval valid;
h
Description: ThdntervalOutOfBounds exception is raised if an

Interval'sstart is less than 1 or if itstart +length -1 is
greater than thé&ength of theBioSequence . If a

BioSequence represents circular DNA, then this exception

should be raised if thmterval's start is less than 1 or
greater than thkength of theBioSequence , or if itslength
is greater than that of tH®ioSequence .

Return value:

Returns the invalidterval and the validnterval . The valid
Interval hasstart equal to 1 andength equal to the length
of the BioSequence , the largest allowethterval .

SeqRegionOutOfBounds

exception SeqRegionOutOfBounds

{
SeqRegion invalid;
Interval valid;
h
Description: TheSeqRegionOutOfBounds exception is raised if a

SeqRegion 's start is less than 1 or if its start+length-1 is
greater than th&ength of theBioSequence . The exception
is also raised if a nested sub-region of a
CompositeSegRegion is invalid. If aBioSequence
represents circular DNA, then this exception should be rai
if the Interval's start is less than 1 or greater than the
length of theBioSequence , or if its length is greater than
that of theBioSequence .

Return value:

Returns the inval®eqRegion and the validnterval . The
valid Interval hasstart equal to 1 andength equal to the

length of theBioSequence , the largest allowethterval .

sed

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-23

SeqRegionlnvalid

exception SeqRegioninvalid
{
string reason;
h
Description: TheSegRegionlnvalid exception is raised if 8eqRegion
or CompositeSeqRegion is invalid in a given context.
Examples include th&trandType beingSTRAND_BOTH
when trying to translate a nucleotide sequence, or a wrong
SeqgRegionOperator , overlaps, or circularity in a
CompositeSeqRegion passed as an parameter.
Return value: Returns a string containing the reasorS#uRegion is
invalid.
NotUpdateable
exception NotUpdateable
{
string reason;
h
Description: TheNotUpdateable exception is raised if the
BioSequence is immutable.
Return value: Returns a string containing the reasoBih8equence
cannot be updated.

BioSequence

A BioSequence is an abstraction of a biological sequence, such as the ordered
nucleotides of a DNA chain or the ordered amino acid residues of a protein molecule.
The BioSequence interface provides essential characteristics of biological sequences
(name, id, description , length) and operations for obtaining the sequence string itself
or a sub-sequence as an ASCII string of IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) upper case single letter cadegs) (

seq_interval()).

BioSequence inherits fromCosLifeCycle::LifeCycleObject

interface BioSequence : CosLifeCycle::LifeCycleObject

{
readonly attribute string name;
readonly attribute Identifier id;
readonly attribute string description;
readonly attribute string seq;
readonly attribute unsigned long length;
readonly attribute Basis the_basis;
string seq_interval(in Interval the_interval)

2-24 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

AnnotationList

unsigned long

void

raises(IntervalOutOfBounds, SegRegioninvalid);
get_annotations(
in unsigned long how_many,
in SegRegion seq_region,
out Annotationlterator the_rest)
raises(SeqRegionOutOfBounds, SeqRegioninvalid);
num_annotations(in SeqRegion seq_region)
raises(SeqRegionOutOfBounds, SeqRegioninvalid);
add_annotation(
in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds,
SeqRegionlnvalid);

readonly attribute string name;

Description:

Thename attribute represents a human-readable common
name for theBioSequence (such as a gene name).

Return value:

Returns string .

readonly attribute Identifier id;

Description:

Thed attribute represents an ID for tBéoSequence .
Typically a database name and key will be encoded in the
Identifier .

Return value:

Returns ddentifier . id shall not be empty

readonly attribute string description;

Description:

Thedescription attribute, a concise description of the
BioSequence , typically includes functional information,
e.g., the contents of the description line from a FASTA file.

Return value:

Returns string .

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-25

2-26

readonly attribute string seq;

Description:

Theseq attribute contains the actual sequence data. The
entire sequence is returned. Usa_interval() to access
sub-sequences.

Return value:

Returns an ASCII string of IUPAC-IUBMB Joint Commiss
on Biochemical Nomenclature (JCBN) upper case single le
codes representing the entire sequence. The string will n
contain any termination characters (e.g., ‘*') or gap charac

(e.g.,).

on
tter
ot
ters

readonly attribute unsigned long length;

Description:

Thdength attribute is the length of thRioSequence . The
BioSequence is numbered from 1 tength .

Return value:

Returns amsigned long .

readonly attribute Basis the_basis;

Description:

TheBioSequence basis attribute can be any of the values

of theBasis enumeration and specifies whether the seque
has been experimentally determined
(BASIS_EXPERIMENTAL), computationally determined
(BASIS_COMPUTATIONAL), or both BASIS BOTH), or

if this information is not knownBASIS_NOT_KNOWN).

nce

An example of a computational sequence would be a protein

sequence that was determined by in silico translation of 4
experimentally determined DNA sequence.

Return value:

Returns Basis value.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

string seq_interval(in Interval the_interval)
raises(IntervalOutOfBounds, SegRegioninvalid);

Description:

Provides access to sub-sequences did®equence . The
Interval argument indicates which sub-sequence should be retur
The entire sequence may also be obtained usingetfpettribute. If
the_interval is aSeqgRegion and theStrandType is

complemented.

Return value:

Returns an ASCII string of IUPAC-IUBMB Joint Commission or

representing the appropriate sub-sequence.

Exceptions:

RaisekitervalOutOfBounds if the Interval's start is less than 1
or if its start+length -1 is greater than the length of the

this exception should be raised if thgerval's start is less than 1
or greater than thkength of theBioSequence , or if its length is
greater than that of thRioSequence .

RaisesSegRegionlinvalid if the_interval is a invalid
SeqRegion . Examples include an incorreStrandType , or an
invalid CompositeSegRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities).

AnnotationList get_annotations(
in unsigned long how_many,
in SeqRegion seq_region,
out Annotationlterator the_rest)
raises(SeqRegionOutOfBounds, SeqRegioninvalid);

Description:

that overlapseq_region and have compatibl8trandTypes will be

Uses the list/iterator hybrid to provide access tdthmtations . A

list of no more thamow_many elements is returned as the direct
result. The remaining elements, if any, are available through the
iterator returned in theut parameter. Only th8egAnnotations

returned. Ifseq_region is null, onlyAnnotations are returned.

...continued

STRAND_MINUS, the string returned should be taken as reverse-

Biochemical Nomenclature (JCBN) upper case single letter codes

BioSequence . If theBioSequence represents circular DNA, then

ned.

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-27

2-28

Return value:

Returns alinnotationList containing no more thamow_many
elements. Thénnotationlterator provides access to any remainin
elements.

Exceptions:

for this BioSequence .

RaiseSeqRegionOutOfBounds if seq_region is out of bounds

RaisesSegRegionlinvalid if the SeqgRegion is invalid. Examples
include an incorrec8trandType , or an invalid
CompositeSeqRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities).

unsigned long num_annotations(in SeqRegion seq_region)
raises(SeqRegionOutOfBounds, SeqRegioninvalid);

Description:

Provides access to the numbefmfiotations associated with thig
BioSequence . Only theSeqgAnnotations that overlap
seq_region and have compatibl®trandTypes will be counted. If
seq_region is null, onlyAnnotations are counted.

Return value:

Returns amsigned long .

Exceptions:

RaiseSeqRegionOutOfBounds if seq_region is out of
bounds for thiBioSequence .

RaisesSeqRegionInvalid if the SeqRegion is invalid. Examples
include an incorrec8trandType , or an invalid
CompositeSeqRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities).

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

void add_annotation(in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds,
SeqRegioninvalid);

Description: Annotations can be attached BioSequences directly
using theadd_annotation() method ofBioSequence .

Exceptions: RaiseblotUpdateable if the BioSequence is immutable.

RaisesSegRegionOutOfBounds if the Annotation is a
SegAnnotation and the correspondirgeqRegion is out of
bounds for thiBioSequence .

RaisesSegRegionlinvalid if the Annotation is a
SeqgAnnotation that has é&eqRegion that is deemed
invalid. Examples include an incorreéstrandType , or an
invalid CompositeSegRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities),

BioSequencelist

typedef sequence<BioSequence> BioSequencelList;

Description: ‘ Used to pass a setBibSequences .

2.1.10 Sub-types of BioSequence

The data typdioSequence is an interface representing biological sequences. All
instances of actual biological sequences are expected to derive from one of the
BioSequence sub-typesNucleotideSequence or AminoAcidSequence (or
specialized sub-types thereof).

Sequence information input toBioSequence or used for querying purposes is case-
insensitive. Sequence information output froliaSequence is returned using upper-
case ASCII strings of IUPAC-IUBMB Joint Commission on Biochemical Nomenclature
(JCBN) single-letter character codes.

AminoAcidSequence represents a protein sequence and does not contain any
operations. A reverse translation operation that produces a nucleic acid sequence from
the amino acid sequence is a complex operation that is not straightforward to standardize
at this time.

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-29

<<Interface>>
BioSequence

<<Interface>> <<Interface>>
NucleotideSequence AminoAcidSequence

circular : boolean

reverse_complement()
reverse_complement_interval()
translate_seq()
translate_seq_region()

Figure 2-10 The NucleotideSequence and AminoAcidSequence Interfaces

UnsignedLongList

typedef sequence<unsigned long> UnsignedLongList;

Description: Used to pass a setwfsigned longs .

ReadingFramelnvalid

exception ReadingFramelnvalid
{
short invalid;
h
Description: TheReadingFramelnvalid exception is raised if the reading
frame is not between -3 and +3, excluding zero
Return value: Returns ghort containing the invalid reading frame.

NucleotideSequence

NucleotideSequence extendsBioSequence and represents a DNA or RNA
sequence and provides a number of operations for manipulating the sequence data.
There is an intrinsic directionality of nucleotide sequence data, from 5' to 3.

interface NucleotideSequence : BioSequence

{

readonly attribute boolean circular;

2-30 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

string
string

string

string

reverse_complement();
reverse_complement_interval(in Interval the_interval)
raises(IntervalOutOfBounds, SegRegioninvalid);
translate_seq(
in short reading_frame,
out UnsignedLongList stop_locations)
raises(ReadingFramelnvalid);
translate_seq_region(
in SeqRegion seq_region,
out UnsignedLongList stop_locations)
raises(SeqRegionOutOfBounds, SegRegioninvalid);

readonly attribute boolean circular;

Description: Thecircular attribute provides a mechanism to indicate
whether aNucleotideSequence is circular, as is the case
for plasmids or certain microbial chromosomes.

Return value: Returns a TRUE if tiNucleotideSequence is circular and
FALSE otherwise.

string reverse_complement();

Description: reverse_complement() returns an upper-case ASCII string
consisting of the reverse complement of the given
NucleotideSequence .

Return value: Returns an upper-case ASsiling .

string reverse_complement_interval(in Interval the_interval)
raises(IntervalOutOfBounds);

Description:

reverse_complement_interval() permits the retrieval of a
reverse complement string for a sub-sequence of the given
sequence defined by theterval argument. Ithe_interval is
a SegRegion and theStrandType is STRAND_MINUS, the
string returned should be taken as reverse-complemented. | This
will result in a no-op (i.e., thetrand_type leads to reverse-
complementing), which is then reverse-complementing due {to
the semantics of the method, resulting in the same string that
would be returned fromseq_interval ().

...continued

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-31

2-32

Return value:

Returns an upper-case ASsting .

Exceptions:

RaiseltervalOutOfBounds if the Interval's start is less
than 1 or itsstart+length-1 is greater than thiength of the
NucleotideSequence . If the NucleotideSequence

represents circular DNA, then this exception should be raised if

thelnterval's start is less than 1 or greater than thagth of
the NucleotideSequence , or if itslength is greater than tha
of the NucleotideSequence .

RaisesSegRegioninvalid if the_interval is an invalid

SeqRegion . Examples include an incorreStrandType , or
an invalid CompositeSegRegion (e.g., one that has a wrong
SeqgRegionOperator or contains overlaps or circularities).

string translate_seq(
in short reading_frame,
out UnsignedLongList stop_locations)
raises(ReadingFramelnvalid);

Description:

translate_seq() returns a string representing the conceptual
amino acid translation of the nucleic acid sequence.
translate_seq() requires the reading frame in which the
translation is to be performed. Theading_frame should be a
signed integerghort) between -3 and +3, excluding zero. If
reading_frame is positive, (reading_frame - 1) nucleotides at
the beginning (5' end) of the sequence are ignored. If
reading_frame is negative, its absolute value should be
applied to the 5' end of the complementary (minus) strand.

Return value:

The returnestring consists of upper-case single-letter IUPAC-
IUBMB Joint Commission on Biochemical Nomenclature
(JCBN) character codes for the translated amino acids. Any
internal stop codons are represented by *'. The
UnsignedLongList out parametestop_locations contains
the locations of any internal stops (terminators) in the prote
translation.

Exceptions:

RaiseReadingFramelnvalid if reading_frame is not
between -3 and +3, excluding zero.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

string translate_seq_region(
in SeqRegion seq_region,
out UnsignedLongList stop_locations)
raises(SeqRegionOutOfBounds, SeqRegioninvalid);

Description: translate_seq_region() performs a translation of a defined regic
of aNucleotideSequence specified by th&SeqRegion argument.
No reading frame is necessary becauseShgRegion defines the
frame. ASegRegion is required here instead of an interval
because non-contiguous segments dfugleotideSequence may
need to be specified, as in the case of a DNA sequence contain
introns. If a region submitted for translation contains sub-regions
sub-regions are concatenated in depth-first order prior to translat
If seq-region’s StrandType is STRAND_MINUS, the string
returned should be taken as reverse-complemented before bein
translated.

Return value: The returnestring consists of upper-case single-letter IUPAC-
IUBMB Joint Commission on Biochemical Nomenclature (JCBN
character codes for the translated amino acids. Any internal st
codons are represented by *'. TlesignedLongList out
parameteistop_locations contains the locations of any internal
stops (terminators) in the protein translation.

Exceptions: RaiseSeqRegionOutOfBounds if any containednterval's
start is less than 1 or itstart+length-1 is greater than the length
of the NucleotideSequence . If the NucleotideSequence
represents circular DNA, then this exception should be raised if
SeqRegion’s start is less than 1 or greater than tkagth of the
NucleotideSequence , or if itslength is greater than that of the
NucleotideSequence .

RaisesSegRegionlinvalid if seq_region is invalid. Examples
include an incorrec8trandType , or an invalid
CompositeSeqRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities).

n

ning
, all
ion.

op

the

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-33

NucleotideSequencelList

typedef sequence<NucleotideSequence> NucleotideSequencelList;

Description: Used to pass a setMiicleotideSequences .

AminoAcidSequence

AminoAcidSequence extendsBioSequence and represents a protein sequence and
does not contain any operations. A reverse translation operation that produces a nucleic
acid sequence from the amino acid sequence is a complex operation that is not
straightforward to standardize at this time. There is an intrinsic directionality of protein
sequence data, from N-terminal to C-terminal.

interface AminoAcidSequence : BioSequence
{
h

AminoAcidSequencelist

typedef sequence<AminoAcidSequence> AminoAcidSequencelList;

Description: Used to pass a setAvhinoAcidSequences

2.1.11 CodeRule

CodeRule is a valuetype that defines the correspondence betw€enlen and a
Residue type. TheResidue member (residue) is a single ASCII character representing
an amino acid in the IUPAC-IUBMB Joint Commission on Biochemical Nomenclature
(JCBN) standard. ThEodon member (codon) is an array of thiBases, which are
characters representing unambiguous nucleotides using the IUPAC-IUBMB Joint
Commission on Biochemical Nomenclature (JCBN) symbols for nucleotide
nomenclature (see References).

Residue

typedef char Residue;

Description: TheResidue member (residue) is a single ASCII character
representing an amino acid using the IUPAC-IUBMB Joint
Commission on Biochemical Nomenclature (JCBN) symbg
for amino acid nomenclature (see References).

S

2-34 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

Base

typedef char Base;

Description: ABase is a character representing an unambiguous

nucleotide using the IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) symbols for nucleotide
nomenclature (see References).

Codon

typedef Base Codon[3];

Description: ACodon is an array of threBases.

CodeRule

CodeRule is a valuetype that defines the correspondence betw€erda@n and a
Residue type.

<<valuetype>>
CodeRule
the _codon : Codon
the_residue : Residue

Figure 2-11 The CodeRule valuetype
valuetype CodeRule
public Codon the_codon;

public Residuethe_residue;

I3

public Codon the_codon;

Description: TheCodon member (codon) is an array of thrBases,
which are characters representing unambiguous nucleotides
using the IUPAC-IUBMB Joint Commission on Biochemica

Nomenclature (JCBN) symbols for nucleotide nomenclature
(see References).

Return value: Returns @odon .

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-35

public Residue the_residue;

Description: TheResidue member (residue) is a single ASCII characte
representing an amino acid using the IUPAC-IUBMB Joint
Commission on Biochemical Nomenclature (JCBN) symbg
for amino acid nomenclature (see References).

=

S

Return value: Returns Residue .

Coding

typedef CodeRule Coding[64];

Description: ACoding is an array of sixty-fou€odeRules . Sixty-four is
the number of combinations of the foBases (A, G, C, U)
taken three at a time.

GeneticCodeName

typedef string GeneticCodeName;

Description: AGeneticCodeName is astring that contains the name of
a currently known genetic code.

GeneticCodeNamelList

typedef sequence<GeneticCodeName> GeneticCodeNamelList;

Description: Used to pass a set@éneticCodeNames .

InvalidResidue

exception InvalidResidue
{
Residue the_residue;
unsigned long offset;
h
Description: ThelnvalidResidue exception is raised if thResidue is
inconsistent with the IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) single letter codes. Note
that residue may be interpreted to mean base (see Glossary).
Return value: Returns the invaliResidue and its offset within the
BioSequence .

2-36 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

2.1.12 GeneticCode

The GeneticCodeFactory interface defines a set obnst GeneticCodeName

strings that list the set of currently known genetic codeGeAeticCode object should

be created with its name member set to one of tBeseticCodeNames . The
GeneticCode object is used for translating a string of nucleic acid bases into a string of
amino acid residues. ThgeneticCodeName defines the particular Coding that is used
to convertCodons into Residues so one need only specify tleneticCodeName

when creating &eneticCode object from one of the known types. Codings for the
GeneticCodeNames listed below inGeneticCodeFactory can be found in

Appendix B “Genetic Codes”.

<<Interface>>
GeneticCode
the_coding : Coding
name : GeneticCodeName

<<valuetype>>

1 64 CodeRule
the_codon : Codon
the_residue : Residue

translate_codon()

Figure 2-12 The GeneticCode interface

interface GeneticCode : CosLifeCycle::LifeCycleObject

{
readonly attribute Coding the_coding;
readonly attribute GeneticCodeName name;
Residue translate_codon(in Codon the_codon)
raises(InvalidResidue);
h

readonly attribute Coding the_coding;

Description: Thecoding attribute consists of an array of &bdeRules ,
which allows theGeneticCode object to be used for

translating a string of nucleic acid bases into a string of amino
acid residuesCodings for the GeneticCodeNames listed
below inGeneticCodeFactory can be found in Appendix B.

Return value: Returns @oding .

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-37

readonly attribute GeneticCodeName name;

Description: Thename attribute should be one of the known

GeneticCodeNames listed inGeneticCodeFactory . If
the desired genetic code is not represented, an appropriate
name should be used.

Return value: Returns @eneticCodeName .

Residue translate_codon(in Codon the_codon)
raises(InvalidResidue);

Description: translate_codon () usescoding's array of sixty-four
CodeRules to translate a string of nucleic acid bases intg a
string of amino acid residues.

Return value: Returns Residue .

Exceptions: RaiselvalidResidue if the codon is inconsistent with the
IUPAC-IUBMB Joint Commission on Biochemical
Nomenclature (JCBN) single letter codes. Note that residue is
interpreted to mean base here (see Glossary).

2.1.13 AlignmentElement

An AlignmentElement corresponds to one ‘row’ in a traditional alignment. However
to make it general, it is represented by a wrapper that allow®hjeget to be used in an
Alignment . This approach allows the occurrence of one and the &bjeet in

different ‘rows’ (using thekey), and also avoids the combinatorial problem of having
every type oBioSequence duplicated just so it can be used inAdignment . This
approach allows other objects, not yet defined in this standard (e.g., hidden Markov
models, to be used in the alignment). Most commonly, how&lignmentElement

will contain anelement of type BioSequence .

Thekey provides a unique reference to eadignmentElement to be maintained
between the client and the server of &lignment . Notice that there may be more than
one copy of a particula®bject in theAlignment . There is no proscribed semantics to
how thekey is structured. The following provides exampleke§s that could be used
if the Objects areBioSequences .

Table 2-3 Key Examples

Unique BioSequence ldentifiers

Identifiers Example Key Set 1 Example Key Set 2
emb/X04427 emb/X04427 0

emb/XX1111 emb/XX1111 1

2-38 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

Table 2-3 Key Examples

emb/X75541 emb/X75541 2
emb/Y10276 emb/Y10276 3
emb/X95248 emb/X95248 4

Non-unique BioSequence

Identifiererepeated sequence)

Identifiers Example Key Set 1 Example Key Set 2
emb/X04427 emb/X04427 0
emb/XX1111 emb/XX1111 1
emb/X75541 emb/X75541 2
emb/Y10276 emb/Y10276 3
emb/X95248 emb/X95248/0 4
emb/X95248 emb/X95248/1 5
<<valuetype>>
AlignmentElement

seq_region : S
key : string

element : Object

egRegion

Figure 2-13 The AlignmentEl

AlignmentElement

ement valuetype.

valuetype AlignmentElement

{
public Object element;
public SeqRegion seq_region;
public string key;

h

BSA Final Adopted Spec.

Module DsLSRBioObjects Nov. 2000

2-39

public Object element;

Description:

The analysis that constructs #lignment is responsible for
determining if theDbject is appropriate in the given context.
Most commonlyAlignmentElement will simply contain an
element of typeBioSequence .

Return value:

Returns afbject .

public SeqRegion seq_region;

Description:

Theseq_region represents the coordinates of a particular
segment of thelement (typically aBioSequence) that is
aligned in the currenAlignment , and that is considered on
‘row’ in the Alignment . The coordinates are those of the
original Object, not those of thélignment . Notice that a
particularObject might be represented more than once in t
Alignment , andseq_region will provide the information as
to the region of th@bject that is used. The only valid
SeqgRegionOperator is JOIN.

Return value:

Returns SeqRegion .

public string key;

Description:

The key provides a unique reference to each
AlignmentElement to be maintained between the client and
the server of thélignment . Notice that there may be more
than one copy of a particul@bject in the Alignment .
There is no proscribed semantics to howkég is structured.
It is used in thgyet_seq_region() method inAlignment to
provide a unique key for thialignmentElement .

Return value:

Returns string .

2-40 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

AlignmentElementList

typedef sequence<AlignmentElement> AlignmentElementList;

Description: Used to pass a setAlfgnmentElements

2.1.14 AlignmentElementlterator

AlignmentElementiterator provides a strongly typed iterator for
AlignmentElements

<<Interface>>
AlignmentElementlterator

next()
next_n()
reset()
destroy()

Figure 2-14 The AlignmentElementliterator Interface.

interface AlignmentElementlterator

{
boolean next(out AlignmentElement element)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out AlignmentElementList elements)
raises(Iteratorinvalid);
void reset();
void destroy();
h

boolean next(out AlignmentElement element)
raises(Iteratorinvalid);

Description: Thenext() operation gets the neAlignmentElement in its
out parameteelement and returns a boolean value. If the
iterator is at the end of the set, it returns FALSE and sets|the
outputelement parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raiselteratorinvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

BSA Final Adopted Spec. Module DsLSRBIioObjects Nov. 2000 2-41

2-42

boolean next_n(in unsigned long how_many,
out AlignmentElementList elements)
raises(Iteratorinvalid);

Description: next_n() returnsAlignmentElements in the
AlignmentElementList out parameteelements,
containing at most the number specified in the first parameter
(how_many) and returns a boolean value directly. When it is
at the end of the set it returns FALSE and ¢kements
parameter will have length zero. In all cases the length of
elements will be the minimum ohow_many and the
number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raiselteratorinvalid if the iterator is no longer valid (e.g|,

the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raise€EORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator
provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.

2.1.15 Alignment

An Alignment is built from a set of correspondences of regions of sequences. In many
cases the sequence region is only a single residue (a single base or a single amino acid)
long, but this need not be. For example, a region of three DNA base pairs, representing a
single amino acid, is a common region size. Each correspondence, which is called a
‘column’ due to the common visual interpretation of an alignment, indicates that a
particular region of one sequence is in some manner equivalent to set of particular
regions on other sequences. The exact nature of this equivalence differs between different
alignment methods, the most common being that these regions shared a common
evolutionary ancestor. An alternative is that these regions were read from the same region
of physical DNA, as in a DNA assembly.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

2

Alignment representation in sequence analysis has been dominated by text based
representation of the correspondences as columns, with sequences running horizontally
and each correspondence being represented by a column. Padding characters (often '-')
are placed in sequences to align the residues with the correct correspondences in other
sequences.

Table 2-4 Multiple Alignment of AminoAcidSequences

seql |10 RSDGFAFVEF 19
seq2 |15 RT-GFAYVEM 23
seq3 |20 RTHGFAFVEM 29

Correspondence 1: (Seql, position 10, Seq2, position 15, Seq3 position 20)

Correspondence 2: (Seql, position 11, Seqg2, position 16, Seq3 position 21)

Correspondence 3: (Seql, position 12, Seg2, none, Seq3 position 22)

Correspondence 10: (Seql, position 19, Seq2, position 23, Seq3 position 29)

This provides a compact representation of the alignment, but relies heavily on single
characters being the basis of the correspondence, which makes representing more
complex but still common types of alignment challenging. Examples include alignments
of DNA and protein sequences and alignments of profile Hidden Markov Models and
protein sequences. In addition, text based representation cannot convey any additional
information about the nature of the correspondence, which is an issue for more complex
alignments. A final drawback to this method of representing an alignment is that it is
generally hard to examine only part of the alignment, as the entire text must be processed
before the correspondences between positions can be represented explicitly in computer
terms.

An IDL definition of an alignment can provide a much richer description of an
alignment, but it must be kept in mind that the most common use of an alignment will be
to view it, probably in a form very close to Table 2-4. Generating a similar text
representation must be simple operation for a client oAtlggnment interface.

For complex alignments it is convenient to associate with each correspondence the
assumption on which the correspondence is made. For example, when aligning a protein
sequence to a DNA sequence, it is important to be able to distinguish insertions in the
DNA sequence which are due to sequencing errors in the determination of the DNA
sequence and insertions due to the evolutionary insertion of bases in the DNA sequence.
This implies that each correspondence needs an indication of the assumptions made for
the grouping of regions on sequences. Such assumptions are generally made during the
alignment process. As such, they are not a fixed property of one particular sequence in
the alignment, but they rather belong to the alignment as a whole. Therefore, it is better
to associate the assumption(s) with the correspondences, rather than with the sequences

Although many of the alignments involBioSequences , there are a humber which
also involve other objects, such as regular expressions and hidden Markov models.
These objects are not part of this specification, and, in any case, it is unlikely that any

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-43

2-44

specification could cover all possible objects that will be designed in this field. The
proposed specification can handle any CORBA object througAlipementElement
wrapper.

The proposed\ignment interface can model simple and complex alignments in a
complete way. The object provides accessors to retrieve all the correspondences and the
individual regions inside a correspondence. There is no explimiéspondence or

column object, as it seems of little value. Users will generally be using a set of
correspondences (i.e., an alignment).

We recognize that there are many uses of an alignment where the client does not want to
process the actual alignment information itself, but simply wants to display it to a user or
pass it onto programs which are based around old text based alignment formats. The
optionalCharacterAlignmentEncoder interface provides a way for a client to get a
more traditional view of allignment . In addition, this interface lets the server take
responsibility for the representation of Alignment . This way, servers can offer clients

a complete solution, including representation. For complex alignments that are non-trivial
to render, this is an important mechanism. We cannot stress too highly that the
representation of aAlignment , especially that of gaps, is the job of the
CharacterAlignmentEncoder and not that of the correspondiAignment .

AlignmentObijectinvalid

exception AlignmentObjectinvalid
{
Object element;
string reason;
h
Description: TheAlignmentObjectlinvalid exception is raised if the
Object is not valid for thisAlignment . This exception will
be raised by analyses that constrélignments .
Return value: Returns the inval@bject and astring containing the reason
the element is invalid.

ElementNotInAlignment

exception ElementNotinAlignment

{
3

Description: TheElementNotInAlignment exception is raised if the

AlignmentElement is not associated with thislignment ..

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

IndexOutOfBounds
exception IndexOutOfBounds
{
unsigned long invalid;
Interval valid;
h
Description: ThelndexOutOfBounds exception is raised if an index is
out of bounds.
Return value: Returns the invalichsigned long and the validnterval .
The validinterval contains the largest allowedterval for
the index.
Alignment
<<Interface>>
LifeCycleObject
/\
// \\
<<Interface>>
Alignment
PROTEIN : AlignType = "PROTEIN"
NON_PROTEIN : AlignType = "NON_PROTEIN" <<valuetype>>
SEQUENCE_ERROR : AlignType = "SEQUENCE_ERROR" AlignmentElement

UNKNOWN : AlignType = "UNKNOWN element : Object

seq_region : SegRegion

get_alignment_elements() 1 1.n key : string

num_rows()

num_columns()
get_seq_region()

get_gaps()
get_align_type_by_column()

Figure 2-15 The Alignment Interface

interface Alignment : CosLifeCycle::LifeCycleObject
{

typedef string AlignType;

typedef sequence<AlignType> AlignTypeList;

const AlignType PROTEIN

const AlignType NON_PROTEIN
const AlignType SEQUENCE_ERROR
const AlignType UNKNOWN

"PROTEIN";
"NON_PROTEIN";
"SEQUENCE_ERROR";
"UNKNOWN?";

AlignmentElementList get_alignment_elements(

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-45

in unsigned long start,

in unsigned long how_many,

out AlignmentElementlterator the_rest)
raises(IndexOutOfBounds);

unsigned long num_rows();
unsigned long num_columns();

SegRegion get_seq_region(
in string key,
in Interval the_interval)
raises(ElementNotIinAlignment, IntervalOutOfBounds,
SeqRegionlnvalid);

CompositeSeqRegion get_seq_region(
in string key,
in Interval the_interval)
raises(ElementNotIinAlignment, IntervalOutOfBounds,
SeqRegionlnvalid);

AlignType get_align_type_by_column(in unsigned long col)
raises(IndexOutOfBounds);

typedef string AlignType;

Description: AnAlignType is astring that contains the type of the
assumption made for this grouping of regions on sequences.
Several kinds oAlignTypes are given below.

typedef sequence<AlignType> AlignTypelList;

Description: Used to pass a setAdfgnTypes .

2-46 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

const AlignType PROTEIN

const AlignType NON_PROTEIN
const AlignType SEQUENCE_ERROR
const AlignType UNKNOWN

"PROTEIN";
"NON_PROTEIN";
"SEQUENCE_ERROR";
"UNKNOWN";

Description:

Common alignment assumptions are provided as simple strings
constant types as a starting point for a list of assumptions.
UNKNOWN indicates that no additional information is provided

, with

with the alignment, as would be the case for (e.g., Smith-Waterman
alignments) PROTEIN indicates that this column does encode (part

of) a protein. This can be either because it contains one or mor
amino acid residues, or more importantly, because the column
consists of triplet(s) of DNA bases that encode amino acid(s). A
common region size is 1 for amino acids, and 3 for nucleotide

triplets. However, more complex regions, e.g., a transmembrane

protein sequence segment, are entirely possible.

very

SEQUENCE_ERROR indicates that the column contains bases that

are considered to be erroneous.

For example, in aligning a protein to a DNA sequence it possibl
distinguish insertions due to evolutionary procesS8QTEIN)
from insertions due to sequencing errfSEQUENCE_ERROR).
More involved alignment methods, for example hidden Markov
models, could use th&lignType string to provide a sensible
decoding of the alignment, and in these casesAligaType maybe
more informative than th8eqRegion provided by theAlignment .

BSA Final Adopted Spec. Module DsLSRBIioObjects Nov. 2000 2-47

2-48

AlignmentElementList get_alignment_elements(
in unsigned long start,
in unsigned long how_many,
out AlignmentElementiterator the_rest)
raises(IndexOutOfBounds);

Description:

This method allows the retrieval AfgnmentElements . They
correspond to the rows in a traditional textually represented
alignment; typically, theAlignmentElements are sequences. Useg
the list/iterator hybrid to provide access to the
AlignmentElements . A list of no more thatmow_many elements
starting atstart is returned as the direct result. The remaining
elements, if any, are available through the iterator returned in th
out parameter. This is particularly useful fassemblies , where
for a particular region, only a few sequences from thousands af
relevant.

Return value:

Returns ailignmentElementList containing no more than
how_many elements starting atart. The
AlignmentElementliterator provides access to any remaining
elements to the right of those AignmentElementList

Exceptions:

RaiseB1idexOutOfBounds if start is less than 1 or more than th
number of aligned elements. This upper limit is returned by
num_rows ().

unsigned long num_rows();

Description:

TheAlignment interface provides access to the
AlignmentElements that make up the alignment. They data
member uniquely identifies afdignmentElement within the
Alignment . The total number oflignmentElements is given by
num_rows ().

Return value:

Returns amsigned long .

unsigned long num_columns();

Description:

TheAlignment interface provides access to therrespondences

that make the alignment. The correspondences are numbered 1
length inclusive, and can be considered the equivalent of alignn
columns in a traditional text view of an alignment. The total num
of correspondences is given hym_columns ()

Return value:

Returns amsigned long .

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

to
nent
ber

SeqgRegion get_seq_region(
in string key,
in Interval the_interval)
raises(ElementNotInAlignment, IntervalOutOfBounds,
SeqRegioninvalid);

Description:

The input parametkey unambiguously identifies an
AlignmentElement within the Alignment . For each
correspondence, eadlignmentElement will have a particular
SeqRegion , returned byget_seq_region() . A null SeqRegion
indicates that there is no region for this correspondence (i.e., a g
Multiple gaps are represented by multifleqRegions . To find the
"length" of a gap, it is necessary to check other correspondence
the column. A nullSegRegion contains no length information.

The input parametahe_interval represents an interval in the
coordinates of thélignment , not that of the underlyin@bject . If
the interval includes a gap at the start, middle or end, the return
SeqRegion does not show it, because #tart andend of it are in
the coordinate system of the underlyi@ject which is unaware of
any gaps. Instead, the corresponding segment of the underlying
Object is indicated. It is assumed that the numbering of the

ap).

s in

ed

correspondences is relevant, i.e., that the second correspondence
comes after the first, with all the intervals abutting. This allows |an

Interval of correspondences to be a valid concept.

Return value:

Returns &egRegion .

Exceptions:

RaiseklementNotIinAlignment if the AlignmentElement is not
associated with thiglignment .

RaiseslntervalOutOfBounds if the Interval's start is less than 1
or if its start+length-1 is greater than the total number of
correspondences given loym_columns ().

RaisesSegRegioninvalid if the_interval is an invalid
SeqRegion . Examples include an incorreStrandType , or an
invalid CompositeSeqRegion (e.g., one that has a wrong
SegRegionOperator or contains overlaps or circularities).

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-49

2-50

CompositeSeqRegion get_gaps(
in string key,
in Interval the_interval)
raises(ElementNotInAlignment, IntervalOutOfBounds,
SeqRegioninvalid);

Description:

The input parametkey unambiguously identifies an
AlignmentElement within theAlignment . For each
correspondence, eadlignmentElement will have gaps returned
by get_gaps() . A null CompositeSeqRegion indicates that there
are no gaps.

The input parametdhe_interval represents an interval in the
coordinates of thélignment , not that of the underlyin®bject .
It is assumed that the numbering of the correspondences is rele
(i.e., that the second correspondence comes after the first, with
the intervals abutting). This allows &mterval of correspondences
to be a valid concept.

vant
all

Return value:

Returns @ompositeSegRegion . Thestart andlength of each
constituentSeqRegion indicates the location, in the coordinate
system of the underlyin@bject, and number of gaps at that
location. Gaps of length 0 are not allowed. A start equal to 0 wg
be before the first base. A start equal to N is a gap between ba
and N+1. So start equal to tlbject’s length would be after the
last base.

uld
ses N

Exceptions:

RaiseElementNotInAlignment if the AlignmentElement is not
associated with thiglignment .

RaiseslntervalOutOfBounds if the Interval's start is less than 1
or if its start+length-1 is greater than the total number of
correspondences given bym_columns ().

RaisesSegRegionlnvalid if the_interval is an invalid
SeqRegion . Examples include an incorreStrandType , or an
invalid CompositeSeqRegion (e.g., one that has a wrong
SegRegionOperator or contains overlaps or circularities).

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

AlignType get_align_type_by_column(in unsigned long col)
raises(IndexOutOfBounds);

Description: get_align_type by column () provides a mechanism to
retrieve the assumptions used for this correspondence from the
Alignment . There is not additional machinery in an
Alignment itself to help interpret thestlignTypes . For
specific instances of aalignment constructor, a client that
uses the constructor should read the documentation as to| how
to interpret theAlignType , as it will be part of definition of
what theAlignment constructor actually provides. For clients
that do not want to interpret thAdignment but would like a
sensible representation of it to pass onto other programs or
visually to a user, thalignmentEncoders
CharacterAlignmentEncoder and
SingleCharacterAlignmentEncoder will provide an entire
server-side solution for the client.

Return value: Returns ailignType .

Exceptions: RaiseindexOutOfBounds if col is less than 1 or greater
than the total number of correspondences given by
num_columns ().

AlignmentList

typedef sequence<Alignment> AlignmentList;

Description: Used to pass a setAlfgnments .

2.1.16 Alignment Examples

The precise interpretation of this specification for alignments is illustrated with a number
of examples. Firstly a standard protein multiple alignment is provided, and secondly a
more complicated, protein to EST sequence tag alignment is presented.

Protein Multiple Alignment

This alignment is a fragment of an alignment from the Pfam database. A text
representation of this alignment is given below.

CAJ1_YEAST/6-24 EYYDILGIKP------- EATPTEIKK
YIS4_YEAST/6-24 EYYDLLGVST------- TASSIEIKK
YNW7_YEAST/4-22 CYYELLGVET------- HASDLELKK
YGM8_YEAST/79-104 NLYDVLELPTPLDVHTIYDDLPQIKR

The Alignment object which represented this would return AdignmentElement
objects from theget_alignment_elements () method. The first object would have the
AminoAcidSequence Object that presented the sequence CAJ1_YEAST in the

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-51

2-52

element attribute and tfg#egRegion would have thestart attribute of 6 and &ngth
attribute of 19. Calling thget_seq_region () method with thisAlignmentElement

and aninterval of start 1,length 1 would provide &eqRegion with start 6,

length 1, being the sixth residue in CAJ1_YEAST, a Glutamate 'E'. The following table
shows the results of this call tet_seq_region () and several other similar calls, each
with different inputintervals . All calls are for the sequence CAJ1_YEAST.

Table 2-5 Call Results

input Interval outputSeqRegion string
start length start length
1 1 6 1 a Glutamate 'E’
2 1 7 1 a Tyrosine 'Y’
2 3 7 3 the peptide "YYD"
11 1 null agap -
12 1 null agap -
12 10 16 4 the peptide "EATP"

Theget_align_type_by _column() method would return eithé&yNKNOWN or

PROTEIN depending on the implementor. Potentially, if the alignment had been made
with a more involved method, for example, a hidden Markov model with a notion of
structural state, the structural state that was used in each column could be returned.

Of course, for clients whose main purpose is display, the laborious business of querying
each position for the region and then looking into the sequence object for the residue at
that position is a convoluted route for retrieving the information. If the implementor
provided aCharacterAlignmentEncoder for this Alignment , then a text

representation of thalignment could be quickly retrieved and displayed, potentially
using the large-scale transport methods provided in

SingleCharacterAlignmentEncoder as this alignment has a single character per
correspondence. Once displayed, a client could quickly interpret a query on a particular
character in the alignment, as it would simply have togetll seq_region() with the
column position to retrieve the position in the sequence.

Protein vs. EST alignment

This example is of a drosophila protein compared to an EST sequence with a frame-shift
error occurring, as one would find in GCG's FrameSearch, FASTX, and Wise2. A
fragment of the alignments is shown in the following table.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

Table 2-6 Protein vs. EST Alignment

column 20 21 22 23
EST 111-113 114-116 117 118-120
(codon) (codon) (codon)
protein 55 56 57
AlignType PROTEIN PROTEIN SEQUENCE_ ERROR PROTEIN

The Alignment would have twélignmentElements , one with the EST and one with
the protein. Querying the Alignment with thhet_seq_region() method would reveal

the sequence regions listed above for each of the sequences. More importantly, the
get_align_type_by_column() method for Column 22 would return a type
SEQUENCE_ERROR, whereas for the other columns it would return a type
PROTEIN. This way a program can confidently interpret the alignment. To indicate how
important this information is, imagine if in Column 22 three bases were aligned. It
would be ambiguous as to whether this indicated a protein insertion of a codon or a
sequence error. ThelignType here provides this additional information.

The ability to associate @haracterAlignmentEncoder with a more complex

Alignment as this example is provides a way for clients to retrieve botAlifpement

and a desired interpretation of tAignment from the server, which facilitates writing
alignment clients separately from actual alignment constructors. The

AlignmentEncoder s provide a route for at least a character-based representation of the
Alignment to be provided by the server, however complex the alignment method is. In
this case, one might have ocAégnmentEncoder , which provided the amino acids

from the protein as three letter codes lined up with three bases from the EST. A different
encoder might use one letter amino acid codes throughout, and not show the DNA
sequence at all, choosing to encode the sequencing error with a special character.

2.1.17 Assembly

Assembly extendsAlignment . Assembly contains no additional functionality. The
technical domain is evolving rapidly and it's not clear what additional functionality will

be necessary. However, the submitters believe it is important to establish the relationship
betweenAssembly andAlignment .

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-53

<<|nterface>>
Alignment

/
/

Lﬁ
<<|nterface>>
Assembly

Figure 2-16 The Assembly Interface

interface Assembly : Alignment

{
h

2.1.18 SearchHit

The SearchHit valuetype provides a generic mechanism to return the results of some
type of query against a collection BfoSequence objects. TheSearchHit provides
information about a particular sequence that was found and associated information for
this hit relevant to this particular search, for an example, a score.

The SearchHit valuetype is used as a base class foiSihglaritySearchHit , which
provides a specialization of ttf@&earchHit for similarity searches

<<valuetype>>
SearchHit

id : Identifier
hit_info : CosPropertySenvice::Properties

Figure 2-17 The SearchHit valuetype

SearchHit
valuetype SearchHit
{
public Identifier id;
public CosPropertyService::Properties hit_info;
h

2-54 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

public Identifier id;

Description:

Theldentifier string identifies a sequence. It can be used
with aBioSequenceldentifierResolver to access the actual
sequence.

Return value:

Returns ddentifier string. id shall not be empty.

public CosPropertyService::Properties hit_info;

Description:

Thehit_info provides additional information that is not
contained in théioSequence but is relevant from the

perspective of the search. Common information would be|the

score in a similarity comparison, the statistical probability|of

the hit or the relevance of the hit in a text search. Content|and

type of information returned will vary with analysis type.

Return value:

Returns @osPropertyService::Properties

The following BLAST example illustrates the type of information that would be placed

in hit_info . The example is taken from NCBI's BLAST help page. The associated
alignment information is discussed below in the descriptio8iwiilaritySearchHit

Smallest
Sum
High Probability

Sequences producing High-scoring Segment Pairs: Score P(N) N

sp|P05120|PAI2_HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2, P... 176 1.8e-65 4

[information deleted - ed.]

>sp|P05120|PAI2_HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2, PLACENTAL (PAI-2)

(MONOCYTE ARG- SERPIN).
Length =415

Score =176 (80.2 bits), Expect = 1.8e-65, Sum P(4) = 1.8e-65
Identities = 38/89 (42%), Positives = 50/89 (56%)

SearchHitList

typedef sequence<SearchHit> SearchHitList;

Description:

Used to pass a setSdarchHits .

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-55

SearchHitlterator

<<|nterface>>
SearchHitlterator

next()
next_n()
reset()
destroy()

Figure 2-18 The SearchHitlterator Interface

interface SearchHitlterator

{
boolean next(out SearchHit hit)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out SearchHitList hit_list)
raises(Iteratorinvalid);
void reset();
void destroy();
h

boolean next(out SearchHit hit)
raises(Iteratorinvalid);

Description: Thenext() operation gets the negeachHit in its out
parametehit and returns a boolean value. If the iterator is at
the end of the set, it returns FALSE and sets the otniput
parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raiseleratorinvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

2-56 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

boolean next_n(in unsigned long how_many,
out SearchHitList hit_list)
raises(Iteratorinvalid);

Description: next_n() returnsSearchHits in the SearchHitList out
parametehit_list , containing at most the number specified|in
the first parameterhpw_many) and returns a boolean value
directly. When it is at the end of the set it returns FALSE and
the hit_list parameter will have length zero. In all cases the
length ofhit_list will be the minimum ofhow_many and
the number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raiseleratorinvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raise€ORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator provides
access to streaming data).

void destroy();

Description: destroy() frees the iterator object.

2.1.19 SimilaritySearchHit

The SimilaritySearchHit valuetype provides a specialization of tBearchHit
valuetype for searches BioSequence collections that are on the basis of similarity,
such as BLAST, Fasta, or Smith-Waterman searches.

The membenrlignment_list is added to th&earchHit valuetype. This

AlignmentList contains the details of a similarity search hit in the form of an
Alignment . This list will frequently be of length one, but can be used to group all
“local” hits pertaining to a single found sequence into imailaritySearchHit . That

is, oneSimilaritySearchHit may contain one “local match” or several “local

matches” on one sequence. What is most appropriate depends on the analysis that wa:
run to obtain the hits, and/or on the objective of a service; an implementation must
document these semantics.

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-57

2-58

<<valuetype>>
SearchHit

/\

<<valuety pe>>
Similarity SearchHit

0..* |<<Interface>>

alignment_list : AlignmentList

Alignment

Figure 2-19 The Simila

ritySearchHit valuetype

valuetype SimilaritySearchHit : SearchHit

{

public AlignmentList alignment_list;

h

public AlignmentList

alignment_list;

Description:

This attribute provides a list Afignments that are
associated with this hit. Not all hits may have alignments.
the Alignments , the sequence or object that was used as
query is the firstAlignmentElement and the other objects
(in most cases, just one) follow.

If the alignment_list contains more than ordignment ,
eachAlignment shall involve the same two objects, i.e., on
two Identifiers are used within on8imilaritySearchHit
one for the initialquery_sequence (seeSearchHit) and
one for the current target sequence.

Since eaclAlignment in a SimilaritySearchHit is a
pairwise alignment, the result of tiidignment’s
num_rows () method shall be 2.

Return value:

Returns a list éignments .

The following BLAST

example illustrates the alignment information that may be

associated with &imilaritySearchHit . The example is taken from NCBI's BLAST

help page.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

=3

ly

>sp|P05120|PAI2_HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2, PLACENTAL (PAI-2)
(MONOCYTE ARG- SERPIN).
Length =415

Score =176 (80.2 bits), Expect = 1.8e-65, Sum P(4) = 1.8e-65
Identities = 38/89 (42%), Positives = 50/89 (56%)

Query: 1 QIKDLLVSSSTDLDTTLVLVNAIYFKGMWKTAFNAEDTREMPFHVTKQESKPVQMMCMNN 60
+l +LL S D DT +VLVNA+YFKG WKTF + PFV + PVQMM +
Sbjct: 180 KIPNLLPEGSVDGDTRMVLVNAVYFKGKWKTPFEKKLNGLYPFRVNSAQRTPVQMMYLRE 239

Query: 61 SFNVATLPAEKMKILELPFASGDLSMLVL 89
N+ + K+ILELP+A L+L
Sbjct: 240 KLNIGYIEDLKAQILELPYAGDVSMFLLL 268

SimilaritySearchHitList

typedef sequence<SimilaritySearchHit> SimilaritySearchHitList;

Description: Used to pass a setSifnilaritySearchHits

This AlignmentList contains the details of a similarity search hit in the form of an
Alignment . This list will frequently be of length one, but can be used to group all

“local” hits pertaining to a single found sequence into SmeilaritySearchHit . That

is, oneSimilaritySearchHit may contain one “local match” or several “local matches”

on one sequence. What is most appropriate depends on the analysis that was run to obtai
the hits, and/or on the objective of a service; an implementation must document these
semantics.

2.1.20 BioSequenceldentifierResolver

The BioSequenceldentifierResolver provides a mechanism to retrieve the actual
BioSequence object from a collection search, using tdentifier string.

Implementors may want to consider multiply inheriting from
BioSequenceldentifierResolver interface with the option@ioSequence factories
to provide sequence creation for laentifier .

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-59

2-60

<<Interface>>
BioSequenceldentifierResolver

resolve()

Figure 2-20 The BioSequenceldentifierResolver interface

interface BioSequenceldentifierResolver

{
BioSequence resolve(in Identifier id)
raises (IdentifierNotFound, IdentifierNotResolvable,
IdentifierNotUnique);
h

BioSequence resolve(in Identifier id)
raises (IdentifierNotFound, IdentifierNotResolvable,
IdentifierNotUnique);

Description: Theresolve() method provides thBioSequence for the
particularldentifier .

Return value: Returns BioSequence .

Exceptions: RaisekdentifierNotFound if the database and the identifier
within the database can be resolved butltentifier is not
present.

RaisesldentifierNotResolvable if the database and the
identifier within the database cannot be resolved such that the
Identifier cannot even be searched for.

RaisesldentifierNotUnique if the Identifier specification
is ambiguous and returns more than one object.

2.1.21 SearchResult

The SearchResult interface provides the complete results of a single search against a
collection ofBioSequences , including the individual hits and their associated scores

and information about the search as whole. This interface is designed to represent results
from both similarity queries on a database (such as BLAST, Fasta or Smith-Waterman)
and text based searches on a databaBéo&fequences .

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

<<Interface>>
BioS equenceldentifierResolver

<<Interface>>
LifeCycleObject

<<Interface>>
BioSequence

<<lInterface>> 0.* <<valuetype>>
SearchResult " SearchHit
query_sequence : BioSequence -
collection_info : CosPropertyService:: Properties
get_property_names ())
num_hits() | <<Interface>>
get_hits() 1 | searchHitlterator

Figure 2-21 The SearchResult Interface

SearchResult

The SearchResult interface inherits from thBioSequenceldentifierResolver to
allow the retrieval of the actuBioSequences from the collection. It also inherits from
CosLifeCycle::LifeCycleObject to allow management of its resources.

interface SearchResult :
BioSequenceldentifierResolver,
CosLifeCycle::LifeCycleObject

readonly attribute BioSequence query_sequence;
readonly attribute CosPropertyService::Properties collection_info;
StringList get_property_names();

unsigned long num_hits();

SearchHitList get_hits(
in unsigned long start,
in unsigned long how_many,
out SearchHitlterator the_rest)
raises (IndexOutOfBounds);

readonly attribute BioSequence query_sequence;

This attribute provides the query sequence that was used in
this SearchResult . It may be null in the case of non
similarity based searches.

Description:

Return value: Returns BioSequence .

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-61

readonly attribute CosPropertyService::Properties collection_info;

Description: Thecollection_info provides additional information that is
not contained in th&earchHits but is relevant from the
perspective of the search. Common information would be|the

database ldentifier, the number of sequences in the database,
and some statistical information about the search.

Return value: Returns @osPropertyService::Properties

The following BLAST example illustrates the type of information that could be placed in
collection_info . The example is taken from NCBI's BLAST help page.

BLASTP 1.4.6MP [13-Jun-94] [Build 13:58:36 Sep 22 1994]

Reference: Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers,
and David J. Lipman (1990). Basic local alignment search tool. J. Mol. Biol.
215:403-10.

Query = pir|A01243|DXCH 232 Gene X protein - Chicken (fragment)
(232 letters)

Database: SWISS-PROT Release 29.0

38,303 sequences; 13,464,008 total letters.
Searching......cccocveveiiiiiiiie e done

Observed Numbers of Database Sequences Satisfying
Various EXPECTation Thresholds (E parameter values)

Histogram units: =31 Sequences : less than 31 sequences

EXPECTation Threshold
(E parameter)

V Observed Counts-->

10000 4863 1861 |
6310 3002 782 |
3980 2220 812 |
2510 1408

1580 1105

1000 712

631 533

398 372 80 |==

251 292 73 |==
158 219 50 |=
100 169 32 =
63.1 137 18 |:
39.8 119 9|
25.1 110 6|
15.8 104 9|

2-62 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

>S>>>>>>>>>>>>>>>>>>>> Expect = 10.0, Observed = 95 <<<<<<<<<L<LLLLLLL

10.0 95 ay:
6.31 91 3:
3.98 88 1]:
2.51 87 3:
1.58 84 0]
1.00 84 21:

[SearchHit information deleted — ed.]

WARNING: HSPs involving 86 database sequences were not reported due to the
limiting value of parameter B = 9.

Parameters:
V=15
B=9
H=1

-ctxfactor=1.00

E=10

Query e As Used ----- - Computed ----

Frame MatlD Matrix name Lambda K H Lambda K
+0 0 BLOSUM62 0.316 0.132 0.370 same same
Query

Frame MatiID Length EffLength E S W T X E2 S2

+0 0 232 232 10. 573 1122 0.2233

Statistics:

Query Expected Observed HSPs HSPs

Frame MatID High Score High Score Reportable Reported

+0 0 62 (28.2 bits) 1191 (542.5 bits) 330 24

Query Neighborhd Word Excluded Failed Successful Overlaps
Frame MatlD Words Hits Hits Extensions Extensions Excluded
+0 0 4988 5661199 1146395 4504598 10187 13

Database: SWISS-PROT Release 29.0

Release date: June 1994

Posted date: 1:29 PM EDT Jul 28, 1994

of letters in database: 13,464,008

of sequences in database: 38,303

of database sequences satisfying E: 95

No. of states in DFA: 561 (55 KB)

Total size of DFA: 110 KB (128 KB)

Time to generate neighborhood: 0.03u 0.01s 0.04t Real: 00:00:00
No. of processors used: 8

Time to search database: 32.27u 0.78s 33.05t Real: 00:00:04
Total cpu time: 32.33u 0.91s 33.24t Real: 00:00:05

WARNINGS ISSUED: 2

H
same

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-63

StringList get_property _names();

Description:

The names of thet_info properties inSearchHit are
available here so that clients have access to them before
processing the list dbearchHits .

Return value:

Returns @tringList .

unsigned long num_hits();

Description:

Provides the number of hits in tBisarchResult .

Return value:

Returns amsigned long .

SearchHitList get_hits(
in unsigned long start,
in unsigned long how_many,
out SearchHitlterator the_rest)
raises (IndexOutOfBounds);

Description:

Uses the list/iterator hybrid to provide access to the actu
SearchHits , which could beSimilaritySearchHits . A list
of no more tharhow_many hits starting astart is returned
as the direct result. The remaining elements, if any, are
available through the iterator returned in theé parameter.

Al

Return value:

Returns SearchHitList .

Exceptions:

RaisethdexOutOfBounds if the index is less than 1 or
greater than the number of hits in tBearchResult . This
upper limit is returned byum_hits() .

The methodyet_hits () returns a list oSearchHits . If this concerns
SimilaritySearchHits , then these elements will in turn contain a lisAbinments .
The latter can be used to group all “local” hits pertaining to a single found sequence into

oneSimilaritySearchHit . That is, oneSimilaritySearchHit
match” or several “local matche

may contain one “local
on one sequence. What is most appropriate depends on

the analysis that was run to obtain the hits, and/or on the objective of a service. An
implementation must document these semantics.

2.1.22 AnnotationFactory (Optional)

AnnotationFactory provides a means of creating néwnotation and
SegAnnotation objects. This permits a clean separation of factory issues from the
Annotation objects themselve&nnotations are created via the factory method

2-64 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

create_annotation() , which accepts all of the components. Similarly,
SegAnnotations are created via the factory methogate_seq_annotation() ,
which accepts all of the components.

AnnotationFactory is an optional compliance point of this specification.

<<Interface>>
AnnotationFactory

create_annotation()
create_seq_annotation()

Figure 2-22 The AnnotationFactory Interface

interface AnnotationFactory
{
Annotation create_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers);

SegAnnotation create_seq_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers,
in SegRegion seq_region)
raises(SeqRegionlnvalid);

Annotation create_annotation(
in string name,
in any value,
in Basis the basis,
in CosPropertyService::Properties qualifiers);

Description: Thecreate_annotation() operation creates ahnnotation
and populates it with the supplied attributes. No error
checking is performed.

Return value: Returns alinnotation with the appropriate content.

BSA Final Adopted Spec. Module DsLSRBIioObjects Nov. 2000

2-66

SegAnnotation create_seq_annotation(
in string name,
in any value,
in Basis the basis,
in CosPropertyService::Properties qualifiers,
in SeqRegion seq_region)
raises(SeqRegionlinvalid);

Description: Thecreate_seq_annotation() operation creates a
SegAnnotation and populates it with the supplied attributes.
No error checking is performed.

Return value: Returns SegAnnotation with the appropriate content.

Exceptions: RaiseSeqRegioninvalid if the seq_region parameter is
deemed invalid. Examples include an incor@eandType ,
or an invalidCompositeSegRegion (e.g., one that has a
wrong SeqRegionOperator or contains overlaps or
circularities).

2.1.23 BioSequence factories (Optional)

Sequence factories permit a clean separation of object vendin@foa8equence data
model issuesBioSequence factories are an optional compliance point of this
submission.

BioSequence factories provide a means of creating méucleotideSequence and
AminoAcidSequence objects. Sequences are created via the factory method
create_sequence() , which accepts all of the components.

Implementors may want to consider mixing in BieSequenceldentifierResolver
interface to provide sequence creation foldantifier .

<<Interface>> <<Interface>>
NucleotideSequenceFactory AminoAcidSequenceFactory
create_sequence() create_sequence()

Figure 2-23 The BioSequence Factories

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

SegAnnotationOutOfBounds

exception SegAnnotationOutOfBounds

{

SeqgAnnotation invalid;

Interval valid;
h
Description: TheSeqgAnnotationOutOfBounds exception is raised if g
SegAnnotation 's SeqRegion has astart less than 1 or if
its start+length-1 is greater than the length of the
BioSequence . The exception is also raised if a nested sub-
region of aCompositeSeqRegion is invalid. If a
BioSequence represents circular DNA, then this exception
should be raised if thmterval 's start is less than 1 or
greater than thkength of theBioSequence , or if itslength
is greater than that of ti&ioSequence .

Return value: Returns the invalSsegAnnotation and the validnterval .
The validinterval hasstart equal to 1 andength equal to
the length of théBioSequence , the largest allowethterval .

NucleotideSequenceFactory

NucleotideSequenceFactory provides a means of creating new
NucleotideSequences . NucleotideSequenceFactory is an optional compliance
point of this specification.

interface NucleotideSequenceFactory
{
NucleotideSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in boolean circular,
in AnnotationList annotations)
raises (InvalidResidue, SegAnnotationOutOfBounds, SeqRegioninvalid);

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-67

NucleotideSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in boolean circular,
in AnnotationList annotations)
raises (InvalidResidue, SegAnnotationOutOfBounds,
SeqRegioninvalid);

Description: Thecreate_sequence() operation creates a
NucleotideSequence and populates it with the supplied
attributes. No error checking is performed except on the
residues, which must be valid IUPAC-IUBMB Joint
Commission on Biochemical Nomenclature (JCBN) single
letter codes. The residues need not be upper-case.
BioSequenceldentifierResolver can be mixed in to
provide lookup based on sequence ID.

Return value: Returns MucleotideSequence with the appropriate
content.
Exceptions: RaiselvalidResidue if the string of residues is

inconsistent with the IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) single letter codes. Nate
that residue is interpreted to mean base here (see Glossary).

RaisesSegAnnotationOutOfBounds if annotations
contains a&SegAnnotation whoseseq_region is out of
bounds for thiBioSequence .

RaisesSegRegionlinvalid if the annotations parameter
containsSegAnnotation having aseq_region attribute that
is deemed invalid. Examples include an incorrect
StrandType , or an invalidCompositeSegRegion (e.g.,
one that has a wrongegRegionOperator or contains
overlaps or circularities).

AminoAcidSequenceFactory

AminoAcidSequenceFactory provides a means of creating new
AminoAcidSequences . AminoAcidSequenceFactory is an optional compliance
point of this specification.

interface AminoAcidSequenceFactory

{

AminoAcidSequence create_sequence(

2-68 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in AnnotationList annotations)
raises (InvalidResidue, SeqgAnnotationOutOfBounds, SeqRegioninvalid);

AminoAcidSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_ basis,
in AnnotationList annotations)
raises (InvalidResidue, SegAnnotationOutOfBounds,
SeqRegioninvalid);

Description:

Thecreate_sequence() operation creates an
AminoAcidSequence and populates it with the supplied
attributes. No error checking is performed except on the
residues, which must be valid IUPAC-IUBMB Joint
Commission on Biochemical Nomenclature (JCBN) single
letter codes. The residues need not be upper-case.
BioSequenceldentifierResolver can be mixed in to
provide lookup based on sequence ID.

Return value:

Returns AminoAcidSequence with the appropriate
content.

Exceptions:

RaisetnvalidResidue if the string of residues is
inconsistent with the IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) single letter codes.

RaisesSeqgAnnotationOutOfBounds if annotations
contains a&SegAnnotation whoseseq_region is out of
bounds for thiBioSequence .

RaisesSegRegionlnvalid if the annotations parameter
containsSegAnnotation having aseq_region attribute that
is deemed invalid. Examples include an incorrect
StrandType , or an invalidCompositeSegRegion (e.g., one
that has a wron@egRegionOperator or contains overlaps
or circularities).

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-69

2.1.24 BioSequence iterators (Optional)

Iterator specifications are defined for iterating over a s&io$equence ,

NucleotideSequence , orAminoAcidSequence objectsNucleicAcidlterator
AminoAcidlterator

and

are specialized versions BfoSequencelterator having the

same operations but with signatures specialized for the correspd@ididgquence

sub-typesBioSequencelterator

andBioSequencelList may contain both

NucleotideSequences andAminoAcidSequences . Homogeneity in the sequence
types of iterators and lists can be achieved using the specialized versions.

<<lInterface>>
BioS equencelterator

NucleotideSequencelterator

<<lInterface>>
AminoAcidSequencelterator

<<Interface>>

next()
next_n()
reset()
destroy ()

next() next()
next_n() next_n()
reset() reset()
destroy() destroy ()

2-70

Figure 2-24 The BioSequence lterators

BioSequencelterator

BioSequencelterator

provides a strongly typed iterator fBioSequences .

interface BioSequencelterator

{
boolean
boolean
void
void

j#

next(out BioSequence seq)
raises(Iteratorinvalid);
next_n(in unsigned long how_many,
out BioSequencelList seqs)
raises(Iteratorinvalid);
reset();
destroy();

boolean next(out BioSequence seq)
raises(Iteratorinvalid);

Description:

Thenext() operation gets the neBioSequence in its out
parameteseq and returns a boolean value. If the iterator is
the end of the set, it returns FALSE and sets the oyt
parameter to null.

at

Return value:

Returns FALSE if the iterator is at the end of the set and TRUE
otherwise.

Exceptions:

Raiselteratorinvalid if the iterator is no longer valid (e.g.
the underlying collection has changed).

Biomolecular Sequence Analysis Final Adopted Spec.

November 2000

boolean next_n(in unsigned long how_many,

raises(Iteratorinvalid);

out BioSequencelist seqs)

Description:

next_n() returnsBioSequences in theBioSequenceList
out parameteseqs, containing at most the number specified
in the first parametetpw_many) and returns a boolean
value directly. When it is at the end of the sequence set it
returns FALSE and theeqs parameter will have length zero|
In all cases the length skqgs will be the minimum of
how_many and the number of sequences remaining.

Return value:

Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions:

Raiseleratorinvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description:

reset() sets the iterator to the start of the set.

Exceptions:

Raise€ORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator
provides access to streaming data).

void destroy();

Description:

destroy() frees the iterator object.

NucleotideSequencelterator

NucleotideSequencelterator provides a strongly typed iterator for
NucleotideSequences .

interface NucleotideSequencelterator

{
boolean
boolean
void
void

k%

next(out NucleotideSequence seq)
raises(Iteratorinvalid);
next_n(in unsigned long how_many,
out NucleotideSequencelList seqs)
raises(Iteratorinvalid);
reset();
destroy();

BSA Final Adopted Spec. Module DsLSRBIioObjects Nov. 2000 2-71

boolean next(out NucleotideSequence seq)
raises(Iteratorinvalid);

Description:

Thenext() operation gets the neklucleotideSequence in
its out parameteseq and returns a boolean value. If the
iterator is at the end of the set, it returns FALSE and sets
outputseq parameter to null.

Return value:

Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions:

Raiselteratorinvalid if the iterator is no longer valid (e.qg.
the underlying collection has changed).

boolean next_n(in unsigned long how_many,
out NucleotideSequencelList seqs)
raises(Iteratorinvalid);

Description:

next_n() returnsNucleotideSequences in the
NucleotideSequenceList out parameteseqs, containing
at most the number specified in the first parameter
(how_many) and returns a boolean value directly. When it
at the end of the sequence set it returns FALSE andeifye
parameter will have length zero. In all cases the length of
segs will be the minimum othow_many and the number of
sequences remaining.

Return value:

Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions:

Raiselteratorinvalid if the iterator is no longer valid (e.g.
the underlying collection has changed).

void reset();

Description:

reset() sets the iterator to the start of the set.

Exceptions:

Raise€EORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator prov
access to streaming data).

the

S

ides

void destroy();

Description:

destroy() frees the iterator object.

2-72 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

AminoAcidSequencelterator

AminoAcidSequencelterator provides a strongly typed iterator for
AminoAcidSequences

interface AminoAcidSequencelterator

{
boolean
boolean
void
void

k%

next(out AminoAcidSequence seq)
raises(Iteratorinvalid);
next_n(in unsigned long how_many,
out AminoAcidSequencelList seqs)
raises(Iteratorinvalid);
reset();
destroy();

boolean next(out AminoAcidSequence seq)
raises(Iteratorinvalid);

Description:

Thenext() operation gets the neAminoAcidSequence in its out
parameteseq and returns a boolean value. If the iterator is at th
end of the set, it returns FALSE and sets the owpgtparameter to
null.

D

Return value:

Returns FALSE if the iterator is at the end of the set and TRUE
otherwise.

Exceptions:

Raiselteratorinvalid if the iterator is no longer valid (e.g., the
underlying collection has changed).

boolean next_n(in unsigned long how_many,
out AminoAcidSequencelist seqs)
raises(Iteratorinvalid);

Description:

next_n() returnsAminoAcidSequences in the
AminoAcidSequenceList out parameteseqs, containing at most
the number specified in the first parametesw_many) and returns a
boolean value directly. When it is at the end of the sequence set it
returns FALSE and theeqs parameter will have length zero. In all
cases the length @eqgs will be the minimum ohow_many and the
number of sequences remaining.

Return value:

Returns FALSE if the iterator is at the end of the set and TRUE
otherwise.

Exceptions:

Raiselteratorinvalid if the iterator is no longer valid (e.g., the
underlying collection has changed).

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-73

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raise€EORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator
provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.

2.1.25 GeneticCodeFactory (Optional)

GeneticCodeFactory provides a means of creating n&@eneticCodes .
GeneticCodeFactory is an optional compliance point of this specification.

InvalidGeneticCodeName

exception InvalidGeneticCodeName
{
string invalid_name;

h

Description: ThenvalidGeneticCodeName exception is raised when a
invalid GeneticCodeName is passed to
GeneticCodeFactory’s create_genetic_code()

Return value: Returns string containing the invalid name.

GeneticCodeFactory

The GeneticCodeFactory interface defines a set obnst GeneticCodeName
strings that list the set of currently known genetic codes.gémetic_code_names
attribute provides access to the suppofdesheticCodeNames .
create_genetic_code() creates the appropria@eneticCode . Codings for the
GeneticCodeNames listed below can be found in Appendix B.

2-74 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

GeneticCodeFactory

STANDARD : GeneticCodeName = "standard"

BACTERIAL : GeneticCodeName = "bacterial"

YEAST_MITOCHONDRIAL : GeneticCodeName = "yeast mitochondrial"
VERTEBRATE_MITOCHO NDRIAL : GeneticCodeType = "vertebrate mitochondrial"
MOLD_MITOCHONDRIAL : GeneticCodeName = "mold mitochondrial"
INVERTEBRATE _MITOCHONDRIAL : GeneticCodeName = "inwertebrate mitochondrial”
ECHINODERM_MITOCHONDRIAL : GeneticCodeName = "echinoderm mitochondrial"
ASCIDIAN_MITOCHONDRIAL : GeneticCodeName = "ascidian mitochondrial"

FLATW ORM_MITOCHONDRIAL : GeneticCodeNam e = "flatworm mitochondrial"
CILIATE_NUCLE AR : GeneticCodeNam e = "ciliate nuclear"

EUPLOTID_NUCLE AR : GeneticCodeName = "euplotid nuclear"
ALT_YEAST_NUCLEAR : GeneticCodeName = "alternative yeast nuclear”
BLEPHARISMA_MACRONUCLEAR : GeneticCodeName = "blepharisma macronuclear"
genetic_code_names : GeneticCodeNam elList

create_genetic_code()

Figure 2-25 The GeneticCodeFactory Interface

interface GeneticCodeFactory

{
const GeneticCodeName STANDARD = "standard";
const GeneticCodeName BACTERIAL = "bacterial";
const GeneticCodeName YEAST_MITOCHONDRIAL = "yeast mitochondrial”;
const GeneticCodeName VERTEBRATE_MITOCHONDRIAL = "vertebrate mitochondrial";
const GeneticCodeName MOLD_MITOCHONDRIAL ="mold mitochondrial";
const GeneticCodeName INVERTEBRATE_MITOCHONDRIAL = "invertebrate mitochondrial";
const GeneticCodeName ECHINODERM_MITOCHONDRIAL = "echinoderm mitochondrial";
const GeneticCodeName ASCIDIAN_MITOCHONDRIAL = "ascidian mitochondrial";
const GeneticCodeName FLATWORM_MITOCHONDRIAL = "flatworm mitochondrial";
const GeneticCodeName CILIATE_NUCLEAR = "ciliate nuclear";
const GeneticCodeName EUPLOTID_NUCLEAR = "euplotid nuclear";
const GeneticCodeName ALT_YEAST_NUCLEAR = "alternative yeast nuclear";
const GeneticCodeName BLEPHARISMA_MACRONUCLEAR = "blepharisma macronuclear";
readonly attribute GeneticCodeNameList genetic_code_names;
GeneticCode create_genetic_code(in GeneticCodeName name)

raises(InvalidGeneticCodeName);
k%

BSA Final Adopted Spec. Module DsLSRBIioObjects Nov. 2000

2-75

const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName
const GeneticCodeName

STANDARD

BACTERIAL
YEAST_MITOCHONDRIAL
VERTEBRATE_MITOCHONDRIAL
MOLD_MITOCHONDRIAL
INVERTEBRATE_MITOCHONDRIA
ECHINODERM_MITOCHONDRIAL
ASCIDIAN_MITOCHONDRIAL
FLATWORM_MITOCHONDRIAL
CILIATE_NUCLEAR
EUPLOTID_NUCLEAR
ALT_YEAST_NUCLEAR
BLEPHARISMA_MACRONUCLEAR

"standard"”;

"bacterial”;

"yeast mitochondrial”;
"vertebrate mitochondrial”;
"mold mitochondrial™;
"invertebrate mitochondrial”;
"echinoderm mitochondrial;
"ascidian mitochondrial;
"flatworm mitochondrial”;
"ciliate nuclear”;

"euplotid nuclear";
"alternative yeast nuclear";
"blepharisma macronuclear";

TheGeneticCodeFactory interface defines a set obnst GeneticCodeName
strings that list the set of currently known genetic codes.QédmeticCodeName
defines the particula€oding that is used to conve@odons into Residues so one
need only specify th&eneticCodeName when creating &eneticCode object from
one of the known type<odings for the GeneticCodeNames listed above can be
found in Appendix B.

Description:

readonly attribute GeneticCodeNamelList genetic_code_names;

Thegenetic_code_names attribute provides access to the supported
GeneticCodeNames .

Description:

Return value: Returns @eneticCodeNamelList .

GeneticCode create_genetic_code(in GeneticCodeName name)
raises(InvalidGeneticCodeName);

create_genetic_code() creates the appropria@eneticCode corresponding
to theGeneticCodeName . Codings for the GeneticCodeNames listed
above can be found in Appendix B.

Description:

Return value: Returns GeneticCode .

RaiselvalidGeneticCodeName if the GeneticCodeName is not
supported (i.e., returned by tlgenetic_code_names attribute).

Exceptions:

2.1.26 CharacterAlignmentEncoder (Optional)

The CharacterAlignmentEncoder and its specialization
SingleCharacterAlignmentEncoder are optional parts of the specification that
facilitate the representation of tidignment for thin clients. It is important that these

2-76 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

2

interfaces have a proposed standard, as it will allow clients that do not want to investigate
Alignments directly to get useful information for passing on to a user or to another, text
format based application.

A CharacterAlignmentEncoder s role is to produce string text similar to that in

Table 2-4 on page 2-43, with columns of text indicating the correspondences and the row
indicating each sequence. The exact format isn't specified or standardized. The factory
that makes the encoder will govern the precise nature of the encoding, such as what pad
character is used. ThéharacterAlignmentEncoder might have more than one

character per column, allowing the transmission of three-letter amino acid code or more
than one base of DNA sequence in a single column. To allow the client to format the
resulting datamax_column_width() returns the maximum length of characters in a
column. Rows and columns are numbered starting at 1.

The Alignment and theCharacterAlignmentEncoder interfaces work well for both
view-based clients and programmatic clients. The interfaces provide viewing clients with
an easy, low cost route of gathering the alignment data and displaying it to the user. The
coordinate system of the string encoded alignment maps to the underlying alignment,
allowing the client to retrieve specific regions of the alignment of interest. Since the
Interval valuetype can be used to retrieve only portions oBilo&equences , these

very complex objects can remain on the server, with the clients displaying only portions
of interest to the user. For programmatic clients wanting to use the alignment as the
basis of further analysis, tidignment interface provides a mapping system of moving
from one sequence to another sequence via the alignment.

CharacterAlignmentEncoder is an optional compliance point of this specification.

<<Interface>>
CharacterAlignmentEncoder

the_alignment : Alignment

num_rows()
num_columns() 1 0. * |<<Interface>>
get_name() Alignment
get_all_names()
get_cell_contents()
is_cell_a_gap()
get_cell_width()
max_column_width()
max_width()

Figure 2-26 The CharacterAlignmentEncoder Interface

interface CharacterAlignmentEncoder

{

readonly attribute Alignment the_alignment;

BSA Final Adopted Spec. Module DsLSRBIioObjects Nov. 2000 2-77

2-78

unsigned long num_rows(); /I number of aligned

unsigned long num_columns();

Il objects. Delegate
/I Delegate to Alignment

string get_name(in unsigned long row) /I first object is in row

raises(IndexOutOfBounds); // one etc...

StringList get_all_names(); /I all the Names

string get_cell_contents(in unsigned long row, in unsigned long col)

raises(IndexOutOfBounds);

boolean is_cell_a_gap(in unsigned long row, in unsigned long col)

raises(IndexOutOfBounds);

unsigned long get_cell_width(in unsigned long row, in unsigned long col)

raises(IndexOutOfBounds);

unsigned long max_column_width(in unsigned long col)

raises(IndexOutOfBounds);

unsigned long max_width();

readonly attribute Alignment the_alignment;

Description:

Provides access to the underlyMignment .

Return value:

Returns ahklignment .

unsigned long num_rows();

Description:

Provides access to the number of rows
(AlignmentElements) in this Alignment . The return value
of num_rows() is the same as that of tiAdignment s
num_rows() .

Return value:

Returns amsigned long .

unsigned long num_columns();

Description:

Provides access to the total number of correspondences
Alignment . The return value ofium_columns() is the
same as that of theélignment 's num_columns() .

Return value:

Returns amsigned long .

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

n this

string get_name(in unsigned long row)
raises(IndexOutOfBounds);

Description:

Provides access to the name associated with the
AlignmentElement referenced byow.

Return value:

Returns string .

Exceptions:

RaiseindexOutOfBounds if row is less than 1 or greater

than the number of rows. This upper limit is returned by
num_rows() .

StringList get_all_names();

Description:

Provides access to the names associated with each of the

AlignmentElements

Return value:

Returns &tringList , onestring perAlignmentElement .

string get_cell_contents(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

Description:

Provides access to the string associated with a single cell.

The cell corresponds to the correspondecalein the
AlignmentElement referenced byow.

Return value:

Returns string .

Exceptions:

RaiseindexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows() .

Also raisedndexOutOfBounds if col is less than 1 or
greater than the number of columns. This upper limit is
returned bynum_columns() .

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-79

2-80

boolean is_cell_a_gap(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

Description:

Indicates if a single cell represents a gap in the alignment. The cell

corresponds to the correspondeicog in the AlignmentElement
referenced byow.

Return value:

Returns laoolean .

Exceptions:

RaisemndexOutOfBounds if row is less than 1 or greater than
the number of rows. This upper limit is returnedrimm_rows() .

Also raisesindexOutOfBounds if col is less than 1 or greater
than the number of columns. This upper limit is returned by
num_columns() .

unsigned long get_cell_width
(in unsigned long row,
in unsigned long col)
raises(IndexOutOfBounds);

Description:

To allow the client to format the resulting daet, cell_width()
returns the width of a single cell. The cell corresponds to the
correspondenceol in the AlignmentElement referenced byow.

Return value:

Returns amsigned long .

Exceptions:

RaisemndexOutOfBounds if row is less than 1 or greater than
the number of rows. This upper limit is returnedriym_rows() .

Also raisesindexOutOfBounds if col is less than 1 or greater
than the number of columns. This upper limit is returned by
num_columns() .

unsigned long max_column_width(in unsigned long col)
raises(IndexOutOfBounds);

Description:

To allow the client to format the resulting data,
max_column_width() returns the maximum length of characters
a column defined bgol.

in

Return value:

Returns amsigned long .

Exceptions:

RaisebdexOutOfBounds if col is less than 1 or greater than tf
number of columns. This upper limit is returned by
num_columns() .

ne

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

unsigned long max_width();

Description: To allow the client to format the resulting datax_width()
returns the maximum length of characters in the widest
column.

Return value: Returns amsigned long .

2.1.27 SingleCharacterAlignmentEncoder (Optional)

A SingleCharacterAlignmentEncoder is one in which each correspondence is
guaranteed to have only a single character foAl@inmentElements . Therefore,
more bulk transport mechanisms can be employed, using strings to get rows of the
Alignment or the entireAlignment as a block of text.

SingleCharacterAlignmentEncoder is an optional compliance point of this
specification.

<<Interface>>
CharacterAlignmentEncoder

<<Interface>>
SingleCharacterAlignmentEncoder

get_row()
get_row_interval()
get_row_colum n_interval()
get_entire_alignm ent()

Figure 2-27 The SingleCharacterAlignmentEncoder Interface

interface SingleCharacterAlignmentEncoder : CharacterAlignmentEncoder

{
string get_row(in unsigned long row)
raises(IndexOutOfBounds);
string get_row_interval(in unsigned long row, in Interval cols)
raises(IndexOutOfBounds, IntervalOutOfBounds,
SeqRegionlnvalid);
StringList get_row_column_interval(in Interval rows, in Interval cols)
raises(IntervalOutOfBounds, SegRegioninvalid);
StringList get_entire_alignment(); // probably the most common!
h

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-81

string get_row(in unsigned long row)
raises(IndexOutOfBounds);

Description:

Provides the text for all of a singlégnmentElement as a
string . row identifies theAlignmentElement . There is one
character per cell.

Return value:

Returns string .

Exceptions:

RaiseindexOutOfBounds if row is less than 1 or greater

than the number of rows. This upper limit is returned by
num_rows() , inherited from
CharacterAlignmentEncoder

string get_row_interval(in unsigned long row, in Interval cols)
raises(IndexOutOfBounds, IntervalOutOfBounds, SeqRegioninvalid);

Description:

Provides the text for part of a singlgnmentElement as a
string . row identifies theAlignmentElement . cols allows
a subset of the correspondences to be referenced. There i
character per cell.

S one

Return value:

Returns string .

Exceptions:

RaisethdexOutOfBounds if row is less than 1 or greate
than the number of rows. This upper limit is returned by
num_rows (), inherited from
CharacterAlignmentEncoder

RaisesintervalOutOfBounds if cols’ start is less than 1 or

start+length-1 is greater than the number of columns. This

upper limit is returned bpum_cols (), inherited from
CharacterAlignmentEncoder

RaisesSegRegioninvalid if the interval is an invalid
SeqRegion . Examples include an incorreStrandType , or
an invalidCompositeSeqRegion (e.g., one that has a wron
SeqRegionOperator or contains overlaps or circularities).

r

D

2-82 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

StringList get_row_column_interval(in Interval rows, in Interval cols)
raises(IntervalOutOfBounds, SeqgRegionlnvalid);

Description: Provides the sub-block of text for the portion of the
Alignment defined byrows andcols Intervals as an array
of strings . rows allows a subset of the
AlignmentElements to be referencedcols allows a subset
of the correspondences to be referenced. There is one
character per cell.

Return value: Returns &tringList , onestring per row.

Exceptions: RaisefntervalOutOfBounds if rows’ start is less than 1
or start+length-1 is greater than the number of rows. Thi
upper limit is returned bypum_rows() , inherited from
CharacterAlignmentEncoder

Uy

Also raisesintervalOutOfBounds if cols’ start is less
than 1 orstart+length-1 is greater than the number of
columns. This upper limit is returned bym_cols() ,
inherited fromCharacterAlignmentEncoder

RaisesSegRegioninvalid if the interval is an invalid
SeqRegion . Examples include an incorre8trandType , or
an invalidCompositeSeqRegion (e.g., one that has a
wrong SeqRegionOperator or contains overlaps or
circularities).

StringList get_entire_alignment();

Description: Provides the block of text for the entii@nment as an
array ofstrings . There is one character per cell.

Return value: Returns &tringList , onestring per row.

2.1.28 AlignmentEncoder factories (Optional)

AlignmentEncoder factories provide a means of creating new
CharacterAlignmentEncoder andSingleCharacterAlignmentEncoder objects.
This permits a clean separation of factory issues fronAtigpmentEncoder objects
themselves.

AlignmentEncoder factories are an optional compliance point of this specification.

BSA Final Adopted Spec. Module DsLSRBioObjects Nov. 2000 2-83

2-84

CharacterAlignmentEncoderFactory

<<lInterface>>

create()

<<Interface>>
SingleCharacterAlignmentEncoderFactory

create()

Figure 2-28 The AlignmentEncoder factories

CannotEncodeAlignment

exception CannotEncodeAlignment

{
string reason;
h
Description: TheCannotEncodeAlignment exception is raised if an

AlignmentEncoder can not be created for thidignment .

Return value:

Returns string containing the reason the
AlignmentEncoder could not be created for this
Alignment .

CharacterAlignmentEncoderFactory

CharacterAlignmentEncoderFactory provides a means of creating new
CharacterAlignmentEncoders for anAlignment .
CharacterAlignmentEncoderFactory is an optional compliance point of this

specification.

interface CharacterAlignmentEncoderFactory

{

CharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

CharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

Description:

Thecreate() operation creates a
CharacterAlignmentEncoder for the givenAlignment .

Return value:

Returns @haracterAlignmentEncoder

Exceptions:

Raise€annotEncodeAlignment if a
CharacterAlignmentEncoder cannot be created for this
Alignment .

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

SingleCharacterAlignmentEncoderFactory

SingleCharacterAlignmentEncoderFactory provides a means of creating new
SingleCharacterAlignmentEncoders for anAlignment .
SingleCharacterAlignmentEncoderFactory is an optional compliance point of this
specification.

interface SingleCharacterAlignmentEncoderFactory
{
SingleCharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

SingleCharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

Description: Thecreate () operation creates a
SingleCharacterAlignmentEncoder for the given
Alignment .

Return value: Returns &ingleCharacterAlignmentEncoder

Exceptions: Raise€annotEncodeAlignment if a
SingleCharacterAlignmentEncoder cannot be created for
this Alignment .

2.2 Module DsLSRAnNalysis

TheDsLSRAnalysis module defines the component interfaces for supporting sequence
analysis through a generic analysis design. The module encapsulates the required
elements for analysis. It provides the means to interrogate analyses inputs, output and
functionality. An analysis can be executed asynchronously as well as synchronously
based on the client invocation. Executing analyses can be monitored by subscribing to an
event channel or polling for state.

The Client is responsible for:

® determining which Biomolecular Sequence Analysis (BSA) analysis tool (e.g.,
BLAST, Smith-Waterman, etc.) it wants to employ;
locating anAnalysisService that represent the BSA analysis tool;
retrieving a handle to afAnalysisinstance object that implements the BSA
analysis tool,
providing theAnalysisinstance with complete input information;

® invoking theAnalysisinstance to perform its function (via a synchronous or
asynchronous mechanism);

® retrieving results generated by the BSA analysis tool execution; and

® when it no longer requires amnalysisinstance (and its related input and output
objects), invoking their removal from the system.

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-85

2-86

A Client can learn about processing events that occur during the execution of an
Analysisinstance either by asking thénalysisinstance for its most recent
processing event or listening to an event channel on whicArthlysisinstance
publishes its events. A Client can also ask foAaalysisinstance ’s execution status.

2.2.1 General
/IFile: DsLSRAnNalysis

#ifndef DS_LSR_ANALYSIS_IDL_
#define _DS_LSR_ANALYSIS_IDL_

#pragma prefix "omg.org"

#include <orb.idl>

#include <CosPropertyService.idl>
#include <CosEventChannelAdmin.idl>
#include <CosLifeCycle.idl>

#include <TimeBase.idl>

module DsLSRAnNalysis
{

h

#endif // _DS_LSR_ANALYSIS_IDL_

...

#pragma prefix "omg.org"

To prevent name pollution and name clashing of IDL types, this module (and all modules
defined in this specification) uses the pragma prefix that is the OMG’s DNS name.

#include <orb.idl>

CORBA::TypeCode is used innputPropertySpec andOutputPropertySpec .

#include <CosPropertyService.idl>
Properties are used irAnalysisService andAnalysisinstance .

#include <CosEventChannelAdmin.idl>

EventChannel is used inAnalysisinstance .

#include <CosLifeCycle.idl>

Analysisinstance inherits fromLifeCycleObject .

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

#include <TimeBase.idl>

TimeT is used inTimeProgressEvent andJobControl . UtcT is used in
JobControl .

StringList

typedef sequence<string> StringList;

Description: Used to pass and return a settohgs .

2.2.2 AnalysisType

An AnalysisType provides information for a client to determine the types of BSA
analyses available in the system. It can also be used to distinguish the type of analysis
offered by anAnalysisService . An AnalysisType provides information sufficient to
determine whether twlnalysisServices create identical BSAnalysisinstances .

Such information may be of use to a computation management subsystem such as a loac
balancing or queuing system. To provide enough information to distinguish analysis
types, there are several attributes offaalysisType .

It is important to note that theénalysisType is defined as &aluetype that can be
extended by a vendor requiring additional attributes.

<<valuetype>>

AnalysisType
type : string
name : string
supplier : string
version : string
installation : string
description : string

Figure 2-29 The AnalysisType valuetype

valuetype AnalysisType

{
public string type;
public string name;
public string supplier;
public string version;
public string installation;
public string description;

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-87

2-88

public string type;

Description:

Thetype attribute is used to specify both the correct
classification of the analysis as well as a qualifier to spec
category and additionally, provides information about the
inputs to the analysis. The classification of the analysis cq
come from the BSA specified classification hierarchy as w
as it could come from a hierarchy defined by a certain
installation. A /" is used to delimit the qualifier and a ‘.’ is
used to delimit the general input kind. An example of a
specifiedtype attribute would be
alignment.collection/assembly

Return value:

Returns string .

ify

uld
ell

public string name;

Description:

Thename attribute is used to further identify the analysis
the system.

in

Return value:

Returns string .

public string supplier;

Description:

Thesupplier attribute is used to identify the supplier or
vendor of a custom analysis implementation.

Return value:

Returns string .

public string version;

Description:

Theversion attribute specifies the particular form or
variation of the analysis.

Return value:

Returns string .

public string installation;

Description:

Theinstallation attribute is used to differentiate similar
analysis implementations at a particular installation.

Return value:

Returns string .

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

public string description;

Description: Thedescription attribute is used to provide useful
descriptive information about thenalysisinstances
created by thénalysisService .

Return value: Returns string .

2.2.3 InputPropertySpec

An InputPropertySpec is used to provide metadata that describes required and
optional input parameters used to perform an analysisiifhgPropertySpec

provides an input name af@DRBA::TypeCode to allow the client to interrogate the
interface repository for more information about the analysis parameter. Additionally,
there are some useful attributes that help the client determine if a parameter is optional or
required, the default value of an input parameter if one exists, and finally some possible
values useful for validation or user-interface presentation.

<<valuetype>>
InputPropertySpec
name : string
type : CORBA:: TypeCode
mandatory : boolean
default_\alue : any
possible_values : any

Figure 2-30 The InputPropertySpec valuetype

InputPropertySpec

valuetype InputPropertySpec

public string name;

public CORBA::TypeCode type;

public boolean mandatory;
public any default_value;
public any possible_values;

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-89

public string name;

Description:

This is the name of the parameter that can be submitted
initialize the analysis.

Return value:

Returns string .

public CORBA::TypeCode type;

Description:

This is ORBA::TypeCode allowing the client to find

more detailed information in the interface repository about

the data type.

Return value:

Returns @ORBA::TypeCode .

public boolean mandatory;

Description:

—

(0]

Themandatory attribute specifies if the analysis requires the

parameter with TRUE and if the parameter is optional with

FALSE.

Return value:

Returns laoolean .

public any default_value;

Description:

This attribute specifies the default value if one is applicab

If no default value is applicable, return a null in togy.

Return value:

Returns a CORB#y.

public any possible_values;

Description:

This attribute specifies suggested allowed values that are
applicable. If no possible values are applicable, return a n
in theany.

Return value:

Returns a CORBa#ny.

2-90 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

e.

ull

InputPropertySpecList

typedef sequence<InputPropertySpec> InputPropertySpecList;

Description: Used to pass a setlnputPropertySpecs .

2.2.4 OutputPropertySpec

An OutputPropertySpec is used to provide metadata that describes each output value
generated by an analysis. TBetputPropertySpec provides an output argument

name andCORBA:: TypeCode to allow the client to interrogate the interface
repository for more information about the output value.

<<valuetype>>
OutputPropertySpec
name : string
type : CORBA:: TypeCode

Figure 2-31 The OutputPropertySpec valuetype

OutputPropertySpec

valuetype OutputPropertySpec
{

public string name;
public CORBA::TypeCode type;

public string name;

(7]

Description: This is the name of the identifier that contains an analys
output value.

Return value: Returns string .

public CORBA::TypeCode type;

Description: This is ORBA::TypeCode allowing the client to find
more detailed information in the interface repository about|the
data type.

Return value: Returns @ORBA::TypeCode .

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-91

2-92

OutputPropertySpecList

typedef sequence<OQutputPropertySpec> OutputPropertySpecList;

Description: Used to pass a set@fitputPropertySpecs

2.2.5 AnalysisState

There are five defined analysis states:
CREATED - created but not yet invoked.
RUNNING - invoked.

COMPLETED - execution ended normally.

TERMINATED_BY_REQUEST - execution was terminated by a user request.

o > 0w bd e

TERMINATED_BY_ERROR - execution terminated abnormally.

When anAnalysisinstance is first created it will be in th€REATED state. When
the Analysisinstance is successfullyun () it will move into theRunning state. In
due course, thédnalysisinstance will then entereitherthe COMPLETED,
TERMINATED_BY_REQUEST or TERMINATED_BY_ERROR state.

Note that amnalysisinstance in the TERMINATED_BY_REQUEST or
TERMINATED_BY_ERROR states may still have (partial, incomplete) results that can

be retrieved by the client. There is no obligation that an implementation provides results
in these two cases. Further, the results for an analysis that is in one of these two states i
likely to be different than for an analysis that ran to normal completion. It is
recommended that client software convey this information to the end-user.

<<enum>>
Analysis State
CREATED
RUNNING
COMPLETED
TERMINATED_BY_ REQUEST
TERMINATED_BY ERROR

Figure 2-32 The AnalysisState enumeration

enum AnalysisState

{
CREATED, /I Instance has been created but not yet executed.
RUNNING, /l The analysis instance is running.
COMPLETED, I/l The instance has completed execution.
TERMINATED_BY_REQUEST,// The instance was terminated by user request.
TERMINATED_BY_ERROR // The instance terminated due to an error.

h

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

CREATED CREATED should be used when the
Analysisinstance has been created but not yet
invoked.

RUNNING RUNNING should be used when the

Analysisinstance has been invoked.

COMPLETED COMPLETED should be used to indicate that the
execution of theAnalysisinstance ended normally.

TERMINATED_BY_REQUEST | TERMINATED_BY_REQUEST should be used to
indicate that the execution of tenalysisinstance
was terminated by a user request.

TERMINATED_BY_ERROR TERMINATED_BY_ERROR should be to indicate
that the execution of th&nalysisinstance was
terminated abnormally.

2.2.6 AnalysisEvent

There are five defined types of analysis events. They all inherit from the base valuetype,
which has a single message string. For all events the string should give some free-form
text description of the current progress.

StateChangedEvent
HeartbeatProgressEvent
PercentProgressEvent
StepProgressEvent
TimeProgressEvent

<<valuetype>>
Analysis Event

message : string

Figure 2-33 The AnalysisEvent valuetype

valuetype AnalysisEvent

{
J

public string message;

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-93

2-94

public string message;

Description:

For all eventmessage should give some free-form text
description of the current progress.

Return value:

Returns string .

2.2.7 Sub-types of AnalysisEvent

If an analysis has a non-null event channel then it must publeteChangedEvents
onto that channel whenever the analysis enters a new state (apart frcREAEED)

state.

The frequency of publication of other events onto the event channel is considered a
quality of implementation issue. There is no restriction on the ordering of the events

published onto the event channel.

An analysis may also publish other events (not necessarily derived from
AnalysisEvent) onto the event channel. Clients, therefore, must be capable of dealing

with unknown events (e.g. by discarding them).

<<valuetype>>
HeartbeatProgressEvent

<<valuetype>>
StateChangedEvent

new_state :

previous_state :
AnalysisState

Analysis State

2

1\ ~=|message:

<<valuetype>>
AnalysisEvent

string

<<valuetype>>
P ercentProgressEvent

percentage : float

<<valuetype>>
StepProgressE vent

total_steps : unsigned long
steps_completed : unsigned long

<<enum>>
AnalysisState

<<valuetype>>

TimeProgressEvent

CREATED
RUNNIN G
COMPLETED

TERMINATED _BY _REQUEST
TERMINATED _BY _ERROR

time_remaining : TimeBase::TimeT

Figure 2-34 The Sub-types of AnalysisEvent

Biomolecular Sequence Analysis Final Adopted Spec.

November 2000

StateChangedEvent

StateChangedEvent indicates that a\nalysisinstance has changed from one of
the five definedAnalysisStates to anotherStateChangedEvent is truncatable to
AnalysisEvent .

If an analysis has a non-null event channel then it must publatkeChangedEvents
onto that channel whenever the analysis enters a new state (apart frcREAEED)
state.

valuetype StateChangedEvent : truncatable AnalysisEvent

{

public AnalysisState previous_state;
public AnalysisState new_state;

public AnalysisState previous_state;

Description: Provides the previous state of Aralysisinstance .

Return value: Returns afinalysisState .

public AnalysisState new_state;

Description: Provides the new state of thealysisinstance .

Return value: Returns afinalysisState .

HeartbeatProgressEvent

HeartbeatProgressEvent indicates that arnalysisinstance is still alive and
running.HeartbeatProgressEvent is truncatable ténalysisEvent .

valuetype HeartbeatProgressEvent : truncatable AnalysisEvent

{
h
PercentProgressEvent

PercentProgressEvent provides information regarding the relative amount of work
completed by ar\nalysisinstance in terms of percentage complete. The percentage
parameter must be greater or equal to 0 and less than or equal to 100.
PercentProgressEvent is truncatable ténalysisEvent .

valuetype PercentProgressEvent : truncatable AnalysisEvent

public float percentage;

h

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-95

public float percentage;

Description: percentage must be greater or equal to 0 and less than or
equal to 100.
Return value: Returns fioat .

TimeProgressEvent

TimeProgressEvent indicates the estimated completion time relative to the current
time. There is no requirement that the estimated completion time decreases!
TimeProgressEvent is truncatable té\nalysisEvent .

valuetype TimeProgressEvent : truncatable AnalysisEvent

{
h

public TimeBase::TimeT time_remaining;

public TimeBase:: TimeT time_remaining;

Description: Indicates the estimated completion time relative to the current
time.

Return value: Returns @imeBase:: TimeT .

StepProgressEvent

StepProgressEvent indicates the total number of steps to be executed by an
Analysisinstance and the number of steps completed so far. Multiple
StepProgressEvents with the same progress string must have the same total number
of steps. Thesteps_completed parameter must be less than or equal to the
total_steps parameterStepProgressEvent is truncatable té\nalysisEvent .

valuetype StepProgressEvent : truncatable AnalysisEvent

{

public unsigned long total_steps;
public unsigned long steps_completed;

J3

public unsigned long total_steps;

Description: Indicates the total number of steps to be executed by the
Analysisinstance . Thesteps_completed parameter must
be less than or equal to ttetal_steps parameter.

Return value: Returns amsigned long .

2-96 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

public unsigned long steps_completed;

Description: Indicates the number of steps completed so far. The
steps_completed parameter must be less than or equal to
the total_steps parameter.

Return value: Returns amsigned long .

2.2.8 AnalysisService

An AnalysisService is a logical representation of a particular type of a BSA analysis
tool available within a system. AnalysisService provides enough information to
distinguish the service it provides from those offered by oMmalysisServices .

An AnalysisService provides metadata that describes input téitalysisinstances

and the output generated by Aralysisinstances . Metadata describing input and
output parameters is available to the client in either IDL valuetypes or both IDL
valuetypes and XML strings. If both are used, the information available in the IDL
structures and XML strings must not be contradictory. Obviously there is some
information, such as constraints expressed in OCL (Object Constraint Language), that
will only be available in the XML strings. Metadata is required for a compliant
implementation.

An AnalysisService creates and returns referenced\talysisinstance objects that
implement the BSA analysis tool it represents. Arguments to create an
Analysisinstance are in the form oCosPropertyService::Properties . Before
returning anAnalysisinstance , the input arguments must be checked for correctness
(according to the criteria represented in the metadata describidgéhesisService's

input parameters).

The client that receives the returned reference tAralysisinstance is responsible
for the lifecycle management of that instance along with the objects populating the
Analysisinstance’s input parameters and output parameters.

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-97

<<Interface>>
AnalysisService

AnalysisTypeTag : string = "TAG_ANALYSIS_TYPE"
InputPropertiesTag : string = "TAG_INPUT_PROPERTIES"
OutputPropertiesTag : string = "TAG_OUTPUT_PROPERTIES"
metadata_tags : StringList

type : AnalysisType

input_metadata : InputPropertySpecList

output_metadata : OutputPropertySpeclList

create_analysis()
describe()

Figure 2-35 The AnalysisService interface

MetaData

typedef string MetaData;

Description: Used to pass and returstang containing XML metadata.

DoesNotEXxistException

exception DoesNotExistException { };

Description: TheDoesNotEXxistException exception is raised if the
tagname used indescribe () does not exist in the metadata.

AnalysisService

interface AnalysisService

{
"TAG_ANALYSIS_TYPE";

"TAG_INPUT_PROPERTIES";
"TAG_OUTPUT_PROPERTIES";

const string AnalysisTypeTag
const string InputPropertiesTag
const string OutputPropertiesTag

readonly attribute StringList metadata_tags;
MetaData describe(in string tagname)
raises (DoesNotExistException);

readonly attribute AnalysisType type;
readonly attribute InputPropertySpecList input_metadata;
readonly attribute OutputPropertySpecList output_metadata;

Analysisinstance create_analysis (in CosPropertyService::Properties input)
raises (CosPropertyService::MultipleExceptions);

2-98 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

const string AnalysisTypeTag = "TAG_ANALYSIS_TYPE";
const string InputPropertiesTag = "TAG_INPUT_PROPERTIES";
const string OutputPropertiesTag = "TAG_OUTPUT_PROPERTIES";

Description:

TheAnalysisService interface defines a set abnst
strings that indicates the types of required metadata. Th
strings correspond to the three attributes described below.

11%

readonly attribute StringList metadata_tags;

Description:

Provides the set of metadata tags for this analysis. The |ist
must include the threeonst strings listed above.

Return value:

Returns &tringList .

MetaData describe(in string tagname)
raises (DoesNotExistException);

Description:

describe() returns an XML string containing the metadata
corresponding to the tagname parameter. If metadata is
available as XML describe() must support all tagnames
returned by the metadata_tags attribute.

Return value:

Returns letaData string containing XML.

Exceptions:

Raise®oesNotEXxistException if the tagname parameter
is not one of the list returned by the metadata_tags attribute.

RaisesCORBA::NO_IMPLEMENT with standard minor
code 6 if metadata is not available as XML.

readonly attribute AnalysisType type;

Description:

type() returns theAnalysisType structure. This structure
must be populated.

Return value:

Returns afnalysisType .

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-99

2-100

readonly attribute InputPropertySpecList input_metadata;

Description: input_metadata() returns information about input
parameters in IDL structure form. This structure must be
populated.

Return value: Returns an array loputPropertySpecs

readonly attribute OutputPropertySpecList output_metadata;

Description: output_metadata() returns information about output
parameters in IDL structure form. This structure must be
populated.

Return value: Returns an array ©fitputPropertySpecs

Analysisinstance create_analysis (in CosPropertyService::Properties input)
raises (CosPropertyService::MultipleExceptions);

Description: Arguments to create Amalysisinstance are in the form of
CosPropertyService::Properties . Before returning an
Analysisinstance , the input arguments must be checked for
correctness (according to the criteria represented in the metadata
describing théAnalysisService 'sinput parameters).

Return value: Returns afinalysisinstance .

Exceptions: Raise€osPropertyService::MultipleExceptions if the
input parameters are incorrect for this analysis. The metadata
should be consulted for information about the input parameters
needed by this analysis.

2.2.9 JobControl

Along with its basic interface, afinalysisinstance implements aobControl
interface. Via thelobControl , clients invoke and terminatenalysisinstance
execution and retrieve execution information (e.g., execution duration, creation time).

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

<<Interface>>
JobControl

created : TimeBase::UtcT
elapsed : TimeBase:: TimeT
started : TimeBase::UtcT
ended : TimeBase::UtcT

run()
terminate()
wait()

Figure 2-36 The JobControl interface

NotRunnable

exception NotRunnable { };

Description: TheNotRunnable exception is raised if the analysis cannot
be run (e.g., the service is currently unavailable). Raised by
run().

This exception should not be used to indicate incorrect inputs.
CosPropertyService::MultipleExceptions should be used
instead.

NotRunning

exception NotRunning { };

Description: TheNotRunning exception is raised if the analysis is not
running. Raised byerminate() .

NotTerminated

exception NotTerminated
{
string reason;

h

Description: TheNotTerminated exception is raised if the analysis is not
terminated. Raised berminate() .

Return value: Returns string containing the reason the analysis could not
be terminated.

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-101

JobControl

interface JobControl

{
readonly attribute TimeBase::UtcT created;
readonly attribute TimeBase::TimeT elapsed;
readonly attribute TimeBase::UtcT started,;
readonly attribute TimeBase::UtcT ended,;

void run()

raises (NotRunnable, CosPropertyService::MultipleExceptions);
void terminate()

raises (NotRunning, NotRunnable, NotTerminated);
void wait()

raises (NotRunning, NotRunnable);

readonly attribute TimeBase::UtcT created;

Description: Indicates the time thalysisinstance was created.

Return value: Returns BimeBase::UtcT .

readonly attribute TimeBase::TimeT elapsed;

Description: Indicates the elapsed time since the analysis was started using
run().
Return value: Returns BimeBase::TimeT .

readonly attribute TimeBase::UtcT started;

Description: Indicates the time the analysis was started.

Return value: Returns BimeBase::UtcT .

readonly attribute TimeBase::UtcT ended;

Description: Indicates the time the analysis ended.

Return value: Returns BimeBase::UtcT .

2-102 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

void run()
raises (NotRunnable, CosPropertyService::MultipleExceptions);

Description: Theun() method invokes th@nalysisinstance to run
asynchronously

Exceptions: RaiseblotRunnable if the analysis cannot be run (e.g., the
service is currently unavailable).

RaisesCosPropertyService::MultipleExceptions if the
il’lpUtS are not correct.

void terminate()
raises (NotRunning, NotRunnable, NotTerminated);

Description: terminate() ends a currently running analysis.

Exceptions: RaiseBlotRunning if the analysis is not running.

RaisesNotRunnable if the analysis cannot be run (e.g., the
has already completed or terminated).

RaisesNotTerminated if the analysis was not terminated.

void wait()
raises (NotRunning, NotRunnable);
Description: Thewait() method blocks the client until service execution
completes.
Exceptions: RaiseBlotRunning if the analysis is not running.

RaisesNotRunnable if the analysis cannot be run (e.g., th
has been terminated).

11%

The following table summarizes the behavior of the three methods for each possible state
of the Analysisinstance .

Table 2-7 JobControlSate Transition Table

State of Analysisinstance run () wait () terminate ()

CREATED start it and change raiseNotRunning raiseNotRunning
status toRUNNING

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-103

Table 2-7 JobControlSate Transition Table

State of Analysisinstance

run ()

wait ()

terminate ()

RUNNING

raiseNotRunnable

block until finished

kill it and change
status to
TERMINATED BY_
REQUEST or raise
NotTerminated

COMPLETED

raiseNotRunnable

do nothing

raistNotRunnable

TERMINATED_BY_REQUEST

raiseNotRunnable

raiseNotRunnable

raiseNotRunnable

TERMINATED_BY_ERROR

raiseNotRunnable

raiseNotRunnable

raiseNotRunnable

2.2.10 Analysisinstance

An Analysisinstance object is responsible for invoking an underlying BSA analysis
tool.

An Analysisinstance can be used in either a synchronous or an asynchronous mode to
support clients with various needs. Tho@() method invokes thAnalysisinstance to

run asynchronously. If the client wants to be blocked waiting for the underlying BSA
analysis tool to run to completion, it will invoke then() method, followed immediately

by thewait() method, which will block the client until service execution completes.

An Analysisinstance must ensure it can be executed only once, ensuring a unique
coupling of inputs and results. If a client wants to employAnalysisinstance

identical to one it has already invoked, the client must create &nalysisinstance
via anAnalysisService , and invoke it as a separate instance.

An Analysisinstance makes available two kinds of execution information: execution
status and analysis events.

® An Analysisinstance object must offer:
» the AnalysisService that created this\nalysisinstance ;
« its execution status (one of the enumeratedlysisState values);
e the EventChannel , which may be null, to which it publishes its analysis events;
« the last event that occurred;
« theJobControl that clients use to control the execution;
« the inputProperties used in creation of thi&nalysisinstance ;

e an outputProperties containing the results generated by the execution of the
underlying BSA analysis.

An Analysisinstance is responsible for ensuring that the results of the BSA analysis
tool it represents are populated properly irrdésults .

2-104 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

2

To retrieve the results generated byfaralysisinstance , clients use thget_result()
method. It takes a list of strings (the strings representing named members of the
OutputPropertySpecList) as an argument. If the BSA analysis tool underlying the

Analysisinstance

terminated before it completed, either due to a client request or an

execution failure, some “partial” results may be available to the client irethsts .

As in all CORBA systems, an implementation of this system may choose to enforce a

policy regarding automatically removing CORBA objects, sucAredysisinstances
that appear to have been abandoned by clients.

<<Interface>>
LifeCycleObject
(from CosLifeCycle)

<<Interface>>
Analysisinstance

service : AnalysisService

status : AnalysisState

event_channel : CosEventChannelAdmin::EventChannel
last_event : AnalysisEvent

job_control : JobControl

inputs : CosPropertyService::Properties

results : CosPropertyService::Properties

Figure 2-37 The Analysisinstance interface

interface Analysisinstance : CosLifeCycle::LifeCycleObject

{

readonly attribute AnalysisService service;
readonly attribute AnalysisState status;
readonly attribute CosEventChannelAdmin::EventChannel event_channel;

readonly attribute AnalysisEvent last_event;
readonly attribute JobControl job_contraol;
readonly attribute CosPropertyService::Properties inputs;

readonly attribute CosPropertyService::Properties results;
CosPropertyService::Properties get_result(in StringList name_list);

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000

2-105

2-106

readonly attribute AnalysisService service;

Description:

Refers to th&nalysisService that created this
Analysisinstance .

Return value:

Returns afnalysisService .

Exceptions:

Raise€ORBA::OBJECT_NOT_EXIST with standard minor
code 3 if theAnalysisService is no longer available.

readonly attribute AnalysisState status;

Description:

Provides the current status of the analysis.

Return value:

Returns one of the enumeratadlysisState values. The values
areCREATED, RUNNING, COMPLETED,
TERMINATED_BY_REQUEST, and
TERMINATED_BY_ERROR .

readonly attribute CosEventChannelAdmin::EventChannel event_channel;

Description:

Provides thEventChannel to which theAnalysisinstance

publishes its analysis events.

Return value:

Returns @osEventChannelAdmin::EventChannel

readonly attribute AnalysisEvent last_event;

Description:

Provides the last event that occurred during execution. If the
Analysisinstance is still in theCREATED state, thdast_event
should be a plaid\nalysisEvent .

Return value:

Returns afnalysisEvent .

readonly attribute JobControl job_control;

Description:

Provides the management interface that clients can use to cq
the execution of the analysis.

Return value:

Returns JobControl .

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

ntrol

readonly attribute CosPropertyService::Properties inputs;

Description:

Provides the inpBtroperties that were used in this
Analysisinstance 's execution.

Return value:

Returns @osPropertyService::Properties

readonly attribute CosPropertyService::Properties results;

Description:

Provides the outpRroperties containing the results
generated by the execution of the underlying BSA analysi

Note 1: AnAnalysisinstance in theRUNNING or
TERMINATED_BY_REQUEST or
TERMINATED_BY_ERROR states may still have (partial,

2

incomplete) results that can be retrieved by the client. There

is no obligation that an implementation provides results in
these three cases. Further, the results for an analysis tha

one of these three states is likely to be different than for an
analysis that ran to normal completion. It is recommended
that client software convey this information to the end-user.

Note 2: AnAnalysisinstance in theCREATED state
returns an empty list of results.

Return value:

Returns @osPropertyService::Properties

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-107

is in

CosPropertyService::Properties get_result(in StringList name_list);

Description: Theget_result() method takes a list of strings (the strings
representing named members of the

OutputPropertySpecList) as an argument and returns the
associated results.

Note 1: AnAnalysisinstance in theRUNNING or
TERMINATED_BY_REQUEST or
TERMINATED_BY_ERROR states may still have (partial,
incomplete) results that can be retrieved by the client. There is
no obligation that an implementation provides results in these
three cases. Further, the results for an analysis that is in one
of these three states is likely to be different than for an
analysis that ran to normal completion. It is recommended
that client software convey this information to the end-user.

Note 2: AnAnalysisinstance in theCREATED state
returns an empty list of results.

Return value: Returns @osPropertyService::Properties

2.2.11 Sequence Diagrams

The following sequence diagrams show how the analysis machinery is used. The
diagrams are examples of the steps necessary for both synchronous and asynchronous
invocation of an analysis service and retrieving its results.

Synchronous invocation can be achieved without usingeayntChannel interface.
The client is blocked imvait() method until the analysis is finished.

Asynchronous invocation, using &ventChannel , can follow a "callback" pattern
where the server regularly pushes events back to an object prepared by the client, or the
client can repeatedly poll the server.

2-108 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

X

Client Analysis Analysis Job
- Service Instance Control

find analysis service |
_ |
|
\

Tcreate_analysis()

create new
create new

|
|
)
]

T ‘ run()
\
n \ wait () \
|]
L resul‘ts()
\
\
\
\

|
|
T |
|
|

Figure 2-38 Synchronous invocation without using an EventChannel

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-109

2-110

A 2

dient ‘ Analysis ‘ ‘ Analysis ‘ ‘ Job ‘ ‘ Event ‘ ‘ Consumer ‘ ‘ ProxyPush ‘ ‘ Push ‘
- Senice Instance Control Server Channel Admin Supplier Consumer
find analysis senice ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
< | | | | | | | |
create_analysis()
‘ create new ‘ ‘ ‘ ‘ ‘ ‘ ‘
create new
Dcreate new ‘ ‘ ‘ ‘ ‘
| Tl | | |
| | | \ | |
] ‘ for —_consumers() ‘ | | create new ‘ ‘
| | | | Lﬂ | |
L ‘ ‘ obtain J)ush_syppller() ‘ ‘ ‘ create new ‘ ‘
>
| | | | | L 0 |
i | | | create new | | |
| | | | | | | U
7 ‘ ‘ connectJ)ush_(‘:onsumer(PushC‘onsumer) ‘ ‘ ‘ ‘
] o | | o | } |
| | U ‘ ‘ * push(AnalysisEvent) ‘ ‘
) st | | u | | | gl
| | | | |
. | | | | | |
| | | | | |
| | | | | |

Figure 2-39 Asynchronous invocation, using an EventChannel and callbacks

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

Client Analysis Analysis Job Event Consumer ProxyPull
Senvice Instance Control Channel Admin Supplier

find analysis senice ‘

< |

create_analysis() ‘

4‘

create new

|
|
|
‘ create new

|

create new

for_consumers()

=

|
|
|
|
|
|
|
|
|
|
|
| create new HJ

\
\
T | | create new ‘
\ \ \
‘ obtz‘ain pull supplier()‘
T | —— | | | createnew
\ \ \ \ L
\ | | _ | \
- ‘ ‘ connect_pulI_cc‘)nsumer(nn) ‘ ‘ ‘
\ \ \ \ \ u
T | mn() \ \ \ \ \
| | 1 | | |
o \ | \ \ \
\ | | | \
\ \ \
| \ \ LH
L results() ‘ ‘
\ \
\ \
\ \
\ \

\

*‘tryJ)ull() returning AnalysisEvent
\ \
\ \
: \
E |
\ \
\ \
\ \

Figure 2-40 Asynchronous invocation, using an EventChannel and polling

BSA Final Adopted Spec. Module DsLSRAnNalysis Nov. 2000 2-111

2-112 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

Domain Model 3

Contents

This chapter contains the following sections.

Section Title Page
“XML Metadata” 3-1
“Classification of Analyses” 3-6

The domain model is expressed in XML. A simple classification of analyses follows the
explanation of XML metadata. The DTD and the entire XML file can be found in
Appendix D.

3.1 XML Metadata

Metadata is used in thenalysisService for analysis type, input and output objects to
represent object implementation detail that has been abstracted out of the interface in favor
of using the standard, common BSA analysis interface. This can provide semantic infor-
mation beyond that provided by the IDL syntax, although information provided through
XML must not be contradictory with information available through IDL structures. XML

has been chosen as the language with which to represent the object metadata. This sectio
discusses the strategy for using the XML based metadata representation.

3.1.1 Role of XML

“Standard Generalized Markup Language (SGML), which became an ISO 8879 standard
in 1986, was the result of a decade’s long effort to produce a language for writing human
consumable text that at the same time is machine processable. Hypertext Markup Lan-

guage (HTML), a limited subset of SGML, is one of the driving forces behind the success

Biomolecular Sequence Analysis Final Adopted Spec. November 2000 3-1

3-2

3.1.2 Role

of the internet. HTML is non-extensible and primarily designed to support rendering in a
browser and a limited amount of user interaction. Extensible Markup Language (XML) is
a larger subset of SGML which overcomes the non-extensible nature of HTML and rein-
troduces support for the machine processing of text via the definition of user specified tag
sets. Since its inception, XML has offered the prospect of overcoming the limitations of
HTML without unduly burdening development of processing software as has been the
case with SGML based systems. Unlike HTML, XML does not rely on a fixed set of tags.
Arbitrary tag sets can be defined via use of a DTD. However, XML eliminates several fea-
tures of SGML which make it difficult to parse and therefore difficult to process SGML
documents. In particular, begin and end tags are both required and serve to reduce ambi-
guity in the processing of the hierarchical structure of XML documents, relative to SGML
documents. In short, XML provides a standardized, non-proprietary capability to repre-
sent arbitrary structural information in a way that supports development of parsers and
other types of processing of that structural information. Thus, XML opens up the possibil-
ity of automated processing and interchange of information stored in the form of XML
documents.

With respect to metadata, it opens up the possibility of accessing metadata at runtime and
using the structural information provided by the XML based tags to process and transform
that metadata. For example, the metadata for two separate processes could be used at rul
ime to connect the output of one process to the input of another process via conversion of
the output format of the first process into the input format of the second process.”

[Concept Five Technologies, Indrident Next Generation Metadata Design and
Generation Manual version 1.0pages 3-4, Copyright © 1998, 1999 by Hitachi,
Ltd. and Concept Five Technologies, Inc.]

of DTD

As the XML proposal most succinctly puts, “The XML document type declaration con-
tains or points to markup declarations that provide a grammar for a class of documents.
This grammar is known as a document type definition, or DTD.”

The markup grammar is a generic set of keywords, naming syntax, occurrence and con-
nector terms prescribed in the XML standard that the document structure designer wishes
to use to express literally any real world semantic notion. The basic markup keywords are
ELEMENT, ENTITY and ATTRIBUTE although there are dozens of others to round out
the language. Any set of key words could have been chosen. Microsoft Word has its set of
formatting keywords and arguments that allow a .doc file to carry a formidable amount of
information around for future processing. WordPerfect used to allow a document writer to
make these codes visible and directly editable at the click of a menu item. And of course,
there is post script.

There are many other document code sets, all of which are proprietary. Document pro-
cessing code that operates on these proprietarily marked up documents must necessarily
also be proprietary. Enter the DTD, or Document Type Definition. 1SO 8879 makes stan-
dard these markup codes so non-proprietary document software can be developed.

Hypertext Markup Language (HTML) is an example of a markup language. Although
HTML is not based on a DTD it does adhere to a standard and stems from SGML. HTML
was designed so that processing code could be developed for rendering HTML based doc:

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

3

uments in a browser. The HTML standard (currently 4.0) specifies the structure of valid
HTML documents. Changing one of the tags in this standard from <H3> to <J3> has the
potential to break all the processing code that relies on the use of the standard, which is
why changes to HTML are only made infrequently. Recently, DTD’s have been developed
for HTML, but these DTD’s do not adhere strictly to the standard, and are not widely used.

In general, DTD’s make it possible to specify the grammars of various domains so that
companies creating XML documents in these domains can interact with each other. For
example, there is a DTD for the representation of chemical formulas in XML. Companies
complying with the grammar for this domain can expect to be able to exchange XML doc-
uments describing chemical formulas and be able to use any processing code designed to
operate in this domain. For example, processing code that accepts XML based descrip-
tions of chemical formulas and creates graphical representations of the formulas should be
able to handle any documents complying with the DTD.

At the present time, DTD'’s are being generated for many different domains. The Dublin
Core is a DTD which provides a tag set designed for use in the description of Internet
information resources and which is patterned after the information in a card catalog. The
UML DTD which is derived from the XMI specification covers the domain of object mod-
eling and is based on the UML semantics document. This DTD is likely to become the
standard for the description of object models in XML. Companies which produce docu-
ments which comply with standardized DTD’s will be able to exploit any processing
developed for use with those standardized DTD’s.”

[Concept Five Technologies, Indrident Next Generation Metadata Design and
Generation Manual version 1.0pages 3-4, Copyright © 1998, 1999 by Hitachi,
Ltd. and Concept Five Technologies, Inc.]

3.1.3 Domain Metadata

Interoperability requires convergence on data semantics description capabilities. The
metadata in a BSA environment includes a description of the CORBA interfaces supported
as well as the meta semantics related to specification of the analysis and input and output
types supported by a particular analysis interface. The BSA metadata for the analysis
type, inputs and outputs allows for the support of well understood multiple execution paths
supported through the same simple interface.

The metadata provided by the valuetypes and XML is required to facilitate interoperability
for analyses, inputs and outputs. Interoperability is achieved by providing run-time infor-
mation about parameters required to perform an analysis. The client can dynamically
interrogate the analysis service, learn about the input parameters, populate the input prop-
erty set and perform the analysis. When the analysis is finished, the client can dynami-
cally check the analysis service to learn about the output properties. The client can use
this knowledge to dissect the outputs into information of interest.

The elements in the DsLSRAnNalysBTD correspond to the attributes in the previously
definedAnalysisType , InputPropertySpec , andOutputPropertySpec value-

types. In addition to the required valuetypes, the XML metadata may be available for the
implementation to provide data about the analyses.

The attributes “type” used in the elements “input” and “output” contain a string represen-

BSA Final Adopted Spec. XML Metadata Nov. 2000 3-3

3-4

tation of theCORBA::TypeCode . These representations conform to the following rules.

1. Basic IDL types are represented by a string containing the name of the type. The
type is derived from th€ ORBA TypeCode's TCKind by deleting the leading
"tk_". This rule follows the convention used in section 5.3.10.2 (CorbaTypeName)
of the XMI 1.0 specification (formal/00-06-01).

Example: the string representation of the tigneg is “ong;” that ofunsigned
long long is “ulonglong.”

2. Sequences of basic IDL types are represented by a string containing the type-
specifier in IDL syntax without any spaces. That is, a sequengXXx$ is coded as
“sequence<XXX>" where XXX is the name of the string found using rule 1.

Example: A sequence ¢dngs is represented by "“equence<long>.”

3. For other data types, the repository ID is used.

Example: theBioSequence is represented by
“IDL:omg.org/DsLSRBioObjects/BioSequence:1.1.”

The elements have the same definition as the valuetype attributes previously specified. It
is important to highlight the analysis type format. Again tyipeelement is used to spec-

ify both the correct classification of the analysis as well as a qualifier to specify category
and additionally, provides information about the inputs to the analysis. The classification
of the analysis could come from the BSA specified classification hierarchy as well as it
could come from a hierarchy defined by a certain installation. A ‘/’ is used to delimit the
qualifier and a ‘.’ is used to delimit the general input kind. An example of a spagified
element would balignment.collection/assembly

The DTD has three places where vendor extension is available. The analysis, input and
output elements specify an extension element that can be any valid content.

The following text presents the DTD for Biomolecular Sequence Analysis.
<IELEMENT DsLSRAnalysis (analysis)+>
<IELEMENT analysis (description?, input*, output*, analysis_extension?)>

<IATTLIST analysis

type CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
supplier CDATA #IMPLIED

installation CDATA #IMPLIED>

<IELEMENT description ANY>
<IELEMENT extension ANY>

<IELEMENT input (default?, allowed*, input_extension?)>

<IATTLIST input

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

type CDATA #REQUIRED
name CDATA #REQUIRED
mandatory (truelfalse) "false">

<IELEMENT default (#PCDATA)>
<IELEMENT allowed (#PCDATA)>

<IELEMENT output (output_extension?)>

<IATTLIST output
type CDATA #REQUIRED
name CDATA #REQUIRED>

<IENTITY % vendor_analysis_tags "<!I[ELEMENT analysis_extension
EMPTY>">

<IENTITY % vendor_input_tags "<!ELEMENT input_extension EMPTY>">
<IENTITY % vendor_output_tags "<!ELEMENT output_extension
EMPTY>">

%vendor_analysis_tags;
%vendor_input_tags;
%vendor_output_tags;

The following text provides example XML that would be used with respect to the
DsLSRAnalysis DTD.

<?xml version="1.0" ?>
<IDOCTYPE DsLSRAnalysis SYSTEM "DsLSRAnalysis.dtd" >

<DsLSRAnalysis>
<ANALYSIS TYPE = "search.list">
<INPUT
NAME = "query_sequence"
TYPE = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
MANDATORY = "true">
</INPUT>
<INPUT
NAME = "sequence_list"
TYPE = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
MANDATORY = "true">
</INPUT>
<OUTPUT
NAME = "search_result"
TYPE = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</OUTPUT>
</ANALYSIS>
</DsLSRAnalysis>

BSA Final Adopted Spec. XML Metadata Nov. 2000 3-5

3.2 Classification of Analyses

This classification of analyses consists of three broad categories: searching, alignment,
and utilities. Commonly used analyses are nicely partitioned into these categories.

3.2.1 Searching

Searching includes the broad category of similarity searching analyses. BLAST, FastA,
and Smith-Waterman fall into this group. Searching can include querying
BioSequences to identifyAnnotations that meet specified criteria. Searching also
includes finding patterns and motifsBioSequences . The results of these searches are
SeqRegions . Examples include analyses such as PROSITE, BLOCKS, PRINTS, as
well as most gene and ORF finding algorithms (e.g., GRAIL, GeneScan, GeneFind, and
GLIMMER). It also includes identifying potential restriction enzyme and proteolytic
cleavage sites.

The result of a search isSearchResult . A SearchResult contains an array of
SearchHits , which may be the specializ&imilaritySearchHits

The searching hierarchy is:

® search (against a list, collection, or database)
® search/annotation

® search/region

® search/similarity (against a list, collection, or database)

3.2.2 Alignment

The alignment category includes both pairwise and multiple alignments. No distinction is
made. The result of either is atignment .

A sequence assembly contains both aligned sequences and unaligned sequences (frag-
ments). The aligned sequences are representedAligament . If one considers a phy-
logeny as an alignment of alignments, it too falls in this category.

The alignment hierarchy is:
® alignment (of a list or collection)
® alignment/assembly (of a list or collection)

® alignment/phylogeny

3.2.3 Utilities

There are several simple analyses that could either be viewed as analyses or simply pro-
vided as methods on an appropriately tyBaSequence . We decided to view them as
simple analysis. This allowed us to keepBh@Sequencenterface simple. For example,
simple sequence translation, using the standard genetic code, is provided by
NucleotideSequence’s methodgranslate_seq() andtranslate_seq_region() . A

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

3

more sophisticated sequence translation, allowing a user spéaéiegticCode , is pro-
vided here.

The utilities category provides:

utility/molecular_weight
utility/residue_composition
utility/ambiguous_residues
utility/gc_content

utility/isoelectric_point
utility/translate_seq (uses GeneticCode)

utility/translate_seq.seq_region (uses GeneticCode)

BSA Final Adopted Spec. Classification of Analyses

Nov. 2000

3-7

3-8

Biomolecular Sequence Analysis Final Adopted Spec.

November 2000

References A

A.1 List of References

Object Management Group. 1998. Biomolecular Sequence Analysis RFP. OMG
Document lifesci/98-03-05.

Object Management Group. 1998. The Common Object Request Broker: Architecture
and Specification, v2.2. OMG Document formal/98-07-01.

Object Management Group. 1998. CORBAservices: Common Object Services
Specification. OMG Document formal/98-12-09.

Object Management Group. 1998. CORBAservices: Common Object Services IDL.
OMG Document formal/98-10-53.

Object Management Group. 1998. CORBA v2.3a - Core final revision. OMG PC
Document ptc/98-12-04.

Object Management Group. 1998. Interoperable Naming Service. OMG Document
orbos/98-10-11.

Object Management Group. 1998. Joint Revised Objects by Value Submission - with
Errata. OMG TC Document orbos/98-01-18.

Object Management Group. 1998. OMG IDL Style Guide. OMG Document ab/98-
06-03.

Object Management Group. 2000. OMG XML Metadata Interchange (XMI)
Specification. OMG Document formal/00-06-01.

Bairoch, Amos, et al. 1997. The Swiss-Prot Protein Sequence Data Bank User
Manual. Release 35; November 1997.

Baldi, Pierre and Sgren Brunak. 1998. Bioinformatics: The Machine Learning
Approach. The MIT Press. ISBN: 0-262-02442-X.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000 A-1

A-2

Baxevanis, Andreas D. and B.F. Francis Ouellette, eds. 1998. Bioinformatics: A
Practical Guide to the Analysis of Genes and Proteins. Wiley-Interscience. ISBN: O-
471-19196-5.

Elzanowski, Andrzej (Anjay) and Jim Ostell, compilers. 1996. The Genetic Codes.
National Center for Biotechnology Information (NCBI).
http://www.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wprintgc?mode=t.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. ISBN: 0-
201-63361-2.

Gusfield, Dan. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge Univ Pr (Short). ISBN: 0-521-58519-8.

IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN) symbols for
amino acids. http://www.chem.gmw.ac.uk/iupac/AminoAcid/.

IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN) symbols for
nucleic acids. http://www.chem.gmw.ac.uk/iubmb/misc/naseq.html.

IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN)
biostandards. http://www.chem.gmw.ac.uk/iubmb/nomenclature/.

Lander, Eric S., and Michael S. Waterman, eds. 1995. Calculating the Secrets of Life:
Applications of the Mathematical Sciences in Molecular Biology. National Academy
Press. ISBN: 0-309-04886-9.

National Center for Biotechnology Information, et al. 1997. The
DDJB/EMBL/GenBank Feature Table: Definitions. Version 2.0. December 15, 1997.

Waterman, Michael S. 1995. Introduction to Computational Biology: Maps,
Sequences, and Genomes. Chapman & Hall. ISBN: 0-412-99391-0.

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

Genetic Codes B

The genetic codes listed below were compiled by Andrzej (Anjay) Elzanowski and Jim
Ostell (National Center for Biotechnology Information). See
http://www.nchbi.nlm.nih.gov/htbin-post/Taxonomy/wprintgc?mode=t. “i” indicates initia-
tion and alternative initiation codons.

B.1 Standard

TTT FPhe TCT SSer TAT YTyr TGT CCys
TTC FPhe TCC SSer TAC YTyr TGC CCys
TTA LLeu TCA SSer TAA *Ter TGA *Ter

TTG LLeui TCG SSer TAG *Ter TGG W Trp

CTT LLeu CCT PPro CAT HHis CGT R Arg

CTC LLeu CCC PPro CAC HHis CGC RArg
CTA LLeu CCA PPro CAA QGIn CGA RArg
CTG LLeui CCG PPro CAG QGIn CGG R Arg

ATT llle ACT TThr AAT NAsn AGT S Ser
ATC Ille ACC TThr AAC NAsn AGC S Ser
ATA Ille ACA TThr AAA KLys AGA R Arg
ATG MMeti ACG TThr AAG KLys AGG RArg

GTT VVal GCT AAla GAT DAsp GGT G Gly
GTC VVval GCC AAla GAC DAsp GGC G Gly

GTA VVal GCA AAla GAA EGIlu GGA GGly
GTG VVal GCG AAla GAG EGIu GGG GGly

B.2 Bacterial

TTT FPhe TCT SSer TAT YTyr TGT CCys
TTC FPhe TCC SSer TAC YTyr TGC CCys

Biomolecular Sequence Analysis Final Adopted Spec. November 2000 B-1

B-2

TTA L Leu TCA S Ser
TTG LLeui TCG S Ser
CTT L Leu CCT P Pro
CTC L Leu CCC PPro
CTA L Leu CCA P Pro
CTG LLeui CCG PPro
ATT Illei ACT TThr
ATC lllei ACC TThr
ATA lllei ACA TThr
ATG M Meti ACG TThr
GTT V Val GCT A Ala
GTC V val GCC A Ala
GTA V Vval GCA A Ala
GTG VVali GCG AAla
B.3 Yeast Mitochondrial
TTT F Phe TCT S Ser
TTC F Phe TCC S Ser
TTA L Leu TCA S Ser
TTG L Leu TCG S Ser
CTT T Thr CCT P Pro
CTC T Thr CCC P Pro
CTA T Thr CCA P Pro
CTG T Thr CCG P Pro
ATT Ille ACT T Thr
ATC llle ACC T Thr
ATA M Meti ACA TThr
ATG M Meti ACG TThr
GTT V Val GCT A Ala
GTC V val GCC A Ala
GTA V Val GCA A Ala
GTG V val GCG A Ala
B.4 \ertebrate Mitochondrial
TTT F Phe TCT S Ser
TTC F Phe TCC S Ser
TTA L Leu TCA S Ser
TTG L Leu TCG S Ser
CTT L Leu CCT P Pro
CTC L Leu CCC PPro

Biomolecular Sequence Analysis Final Adopted Spec.

TAA *Ter TGA *Ter
TAG *Ter TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC R Arg
CAA QGIn CGA R Arg
CAG QGIn CGG R Arg
AAT N Asn AGT S Ser
AAC N Asn AGC S Ser
AAA KLys AGA RArg
AAG KLys AGG RArg
GAT DAsp GGT GGly
GAC DAsp GGC GGly
GAA EGIlu GGA GGly
GAG EGIlu GGG GGly
TAT YTyr TGT CCys
TAC YTyr TGC C Cys
TAA *Ter TGA W Trp
TAG *Ter TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC R Arg
CAA QGIn CGA RArg
CAG QGIn CGG RArg
AAT NAsn AGT S Ser
AAC NAsn AGC S Ser
AAA KLys AGA RArg
AAG KLys AGG RArg
GAT DAsp GGT GGly
GAC DAsp GGC GGly
GAA EGIlu GGA GGly
GAG EGlu GGG GGly
TAT YTyr TGT CCys
TAC YTyr TGC C Cys
TAA *Ter TGA W Trp
TAG *Ter TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC R Arg

November 2000

CTA LLeu CCA PPro CAA QGIn CGA RArg
CTG LLeu CCG PPro CAG QGIn CGG RArg
ATT lllei ACT TThr AAT NAsn AGT S Ser
ATC Illei ACC TThr AAC NAsn AGC S Ser
ATA M Meti ACA TThr AAA KLys AGA *Ter
ATG MMeti ACG TThr AAG KLys AGG *Ter
GTT VVal GCT AAla GAT DAsp GGT GGly
GTC VVal GCC AAla GAC DAsp GGC GGly
GTA VVal GCA AAla GAA EGIu GGA GGly
GTG VVali GCG AAla GAG EGIu GGG G Gly
B.5 Mold Mitochondrial
TTT FPhe TCT SSer TAT YTyr TGT CCys
TTC FPhe TCC SSer TAC YTyr TGC CCys
TTA LLeui TCA SSer TAA *Ter TGA W Trp
TTG LLeui TCG SSer TAG *Ter TGG W Trp
CTT LLeu CCT PPro CAT HHis CGT R Arg
CTC LLeu CCC PPro CAC HHis CGC R Arg
CTA LLeu CCA PPro CAA QGIn CGA RArg
CTG LLeui CCG PPro CAG QGIn CGG R Arg
ATT lllei ACT TThr AAT NAsn AGT S Ser
ATC lllei ACC TThr AAC NAsn AGC S Ser
ATA Illei ACA TThr AAA KLys AGA RArg
ATG MMeti ACG TThr AAG KLys AGG R Arg
GTT VVal GCT AAla GAT DAsp GGT GGly
GTC VVal GCC AAla GAC DAsp GGC GGly
GTA VVal GCA AAla GAA EGIu GGA GGly
GTG VVali GCG AAla GAG EGIu GGG G Gly
B.6 Invertebrate Mitochondrial

TTT FPhe TCT SSer TAT YTyr TGT CCys
TTC FPhe TCC SSer TAC YTyr TGC CCys
TTA LLeu TCA SSer TAA *Ter TGA W Trp
TTG LLeui TCG SSer TAG *Ter TGG W Trp
CTT LLeu CCT PPro CAT HHis CGT R Arg
CTC LLeu CCC PPro CAC HHis CGC R Arg
CTA LLeu CCA PPro CAA QGIn CGA RArg
CTG LLeu CCG PPro CAG QGIn CGG RArg
ATT lllei ACT TThr AAT NAsn AGT S Ser
ATC lllei ACC TThr AAC NAsn AGC S Ser

Biomolecular Sequence Analysis Final Adopted Spec.

Nov. 2000 B-3

B-4

ATA M Meti
ATG M Met i

GTT V Vval
GTC V Vval
GTA V Val
GTG V Vvali

ACA T Thr
ACG T Thr

GCT AAla
GCC AAla
GCA AAla
GCG AAla

B.7 Echinoderm Mitochondrial

TTT F Phe TCT S Ser
TTC F Phe TCC S Ser
TTA L Leu TCA S Ser
TTG L Leu TCG S Ser
CTT L Leu CCT P Pro
CTC L Leu CCC PPro
CTA L Leu CCA P Pro
CTG L Leu CCG P Pro
ATT Ille ACT T Thr

ATC llle ACC T Thr

ATA 1lle ACA T Thr

ATG M Meti ACG TThr
GTT V Val GCT A Ala
GTC V Val GCC AAla
GTA V Val GCA A Ala
GTG V val GCG A Ala

B.8 Ascidian Mitochondrial

TTT F Phe TCT S Ser
TTC F Phe TCC S Ser
TTA L Leu TCA S Ser
TTG L Leu TCG S Ser
CTT L Leu CCT P Pro
CTC L Leu CCC PPro
CTA L Leu CCA P Pro
CTG L Leu CCG P Pro
ATT Ille ACT T Thr

ATC llle ACC T Thr

ATA MMet ACA TThr
ATG M Meti ACG TThr
GTT V Val GCT A Ala
GTC V Val GCC AAla

Biomolecular Sequence Analysis Final Adopted Spec.

AAA KLys AGA S Ser
AAG KLys AGG S Ser
GAT DAsp GGT G Gly
GAC DAsp GGC GGly
GAA EGIlu GGA GGly
GAG EGIlu GGG GGly
TAT YTyr TGT CCys
TAC YTyr TGC C Cys
TAA *Ter TGA W Trp
TAG *Ter TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC R Arg
CAA QGIn CGA R Arg
CAG QGIn CGG RArg
AAT NAsn AGT S Ser
AAC NAsn AGC S Ser
AAA N Asn AGA S Ser
AAG KLys AGG S Ser
GAT DAsp GGT GGly
GAC DAsp GGC GGly
GAA EGIlu GGA GGly
GAG EGlu GGG GGly
TAT YTyr TGT CCys
TAC YTyr TGC C Cys
TAA *Ter TGA W Trp
TAG *Ter TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC R Arg
CAA QGIn CGA R Arg
CAG QGIn CGG RArg
AAT NAsn AGT S Ser
AAC NAsn AGC S Ser
AAA KLys AGA GGly
AAG KLys AGG GGly
GAT DAsp GGT GGly
GAC DAsp GGC GGly

November 2000

GTA V Val
GTG V Val

B.9 Flatworm Mitochondrial

TTT
TTC
TTA
TTG

F Phe
F Phe
L Leu
L Leu

CTT
CTC
CTA
CTG

L Leu
L Leu
L Leu
L Leu

ATT
ATC
ATA
ATG

I lle
I lle
I 'lle
M Met

GTT
GTC
GTA
GTG

V Val
V Val
V Val
V Val

B.10 Ciliate Nuclear

TTT
TTC
TTA
TTG

F Phe
F Phe
L Leu
L Leu

CTT
CTC
CTA
CTG

L Leu
L Leu
L Leu
L Leu

ATT
ATC
ATA
ATG

I lle
Ille
Ille

GTT V Vval
GTC V Vval
GTA V Val

GTG V Val

Biomolecular Sequence Analysis Final Adopted Spec.

M Met i

GCA AAla
GCG AAla

TCT S Ser
TCC S Ser
TCA S Ser
TCG S Ser

CCT P Pro
CCC P Pro
CCA P Pro
CCG P Pro

ACT T Thr
ACC T Thr
ACA T Thr
i ACG TThr

GCT AAla
GCC AAla
GCA AAla
GCG AAla

TCT S Ser
TCC S Ser
TCA S Ser
TCG S Ser

CCT P Pro
CCC P Pro
CCA P Pro
CCG P Pro

ACT T Thr

ACC T Thr

ACA T Thr
ACG T Thr

GCT AAla
GCC AAla
GCA AAla
GCG AAla

GAA EGIu GGA GGly
GAG EGIlu GGG GGly
TAT YTyr TGT CCys
TAC YTyr TGC C Cys
TAA Y Tyr TGA W Trp
TAG *Ter TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC R Arg
CAA QGIn CGA R Arg
CAG QGIn CGG RArg
AAT NAsn AGT S Ser
AAC NAsn AGC S Ser
AAA N Asn AGA S Ser
AAG KLys AGG S Ser
GAT DAsp GGT GGly
GAC DAsp GGC GGly
GAA EGIlu GGA GGly
GAG EGIlu GGG GGly
TAT YTyr TGT CCys
TAC YTyr TGC C Cys
TAA QGIn TGA *Ter
TAG QGIn TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC R Arg
CAA QGIn CGA R Arg
CAG QGIn CGG RArg
AAT NAsn AGT S Ser
AAC NAsn AGC S Ser
AAA KLys AGA R Arg
AAG KLys AGG RArg
GAT DAsp GGT GGly
GAC DAsp GGC GGly
GAA EGIlu GGA GGly
GAG EGlu GGG GGly

Nov. 2000

B-5

B

B.11 Euplotid Nuclear

TTT FPhe TCT S Ser
TTC F Phe TCC S Ser
TTA LLeu TCA S Ser
TTG L Leu TCG S Ser
CTT L Leu CCT P Pro
CTC L Leu CCC P Pro
CTA L Leu CCA P Pro
CTG L Leu CCG P Pro
ATT Ille ACT TThr

ATC Ille ACC TThr

ATA Ille ACA TThr

ATG M Meti ACG TThr
GTT V Val GCT AAla
GTC V Vval GCC A Ala
GTA V val GCA A Ala
GTG V Vval GCG A Ala

B.12 Alternative Yeast Nuclear

TTT FPhe TCT S Ser
TTC FPhe TCC S Ser
TTA LLeu TCA S Ser
TTG L Leu TCG S Ser
CTT L Leu CCT P Pro
CTC L Leu CCC P Pro
CTA L Leu CCA P Pro
CTG SSeri CCG PPro
ATT Ille ACT TThr

ATC Ille ACC TThr

ATA Ille ACA TThr

ATG M Meti ACG TThr
GTT V Val GCT AAla
GTC V Vval GCC A Ala
GTA V val GCA A Ala
GTG V Vval GCG A Ala

B.13 Blepharisma Macronuclear

TTT F Phe
TTC F Phe

TCT S Ser
TCC S Ser

B-6

Biomolecular Sequence Analysis Final Adopted Spec.

TAT YTyr TGT CCys
TAC YTyr TGC C Cys
TAA *Ter TGA CCys
TAG *Ter TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC R Arg
CAA QGIn CGA R Arg
CAG QGIn CGG RArg
AAT NAsn AGT S Ser
AAC NAsn AGC S Ser
AAA KLys AGA R Arg
AAG KLys AGG RArg
GAT DAsp GGT GGly
GAC DAsp GGC GGly
GAA EGIlu GGA GGly
GAG EGIlu GGG GGly
TAT YTyr TGT CCys
TAC YTyr TGC C Cys
TAA *Ter TGA *Ter
TAG *Ter TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC R Arg
CAA QGIn CGA R Arg
CAG QGIn CGG R Arg
AAT NAsn AGT S Ser
AAC NAsn AGC S Ser
AAA KLys AGA R Arg
AAG KLys AGG RArg
GAT DAsp GGT GGly
GAC DAsp GGC GGly
GAA EGIlu GGA GGly
GAG EGIlu GGG GGly
TAT YTyr TGT CCys
TAC YTyr TGC C Cys

November 2000

TTA LLeu TCA S Ser
TTG L Leu TCG S Ser
CTT L Leu CCT P Pro
CTC L Leu CCC P Pro
CTA L Leu CCA P Pro
CTG L Leu CCG P Pro
ATT Ille ACT TThr

ATC llle ACC TThr

ATA Ille ACA TThr

ATG M Meti ACG TThr
GTT V Val GCT AAla
GTC V Vval GCC A Ala
GTA V val GCA A Ala
GTG V Vval GCG A Ala

Biomolecular Sequence Analysis Final Adopted Spec.

TAA *Ter TGA *Ter
TAG QGIn TGG W Trp
CAT HHis CGT R Arg
CAC HHis CGC R Arg
CAA QGIn CGA R Arg
CAG QGIn CGG RArg
AAT NAsn AGT S Ser
AAC NAsn AGC S Ser
AAA KLys AGA R Arg
AAG KLys AGG RArg
GAT DAsp GGT GGly
GAC DAsp GGC GGly
GAA EGIlu GGA GGly
GAG EGlu GGG GGly

Nov. 2000

B-7

Biomolecular Sequence Analysis Final Adopted Spec.

November 2000

Complete IDL C

C.1 File: DsLSRBioObjects.idl

/[File: DsLSRBioObjects.idl
/I version: 29 October 2000.

#ifndef _DS_LSR_BIOOBJECTS_IDL_
#define _DS_LSR_BIOOBJECTS_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosPropertyService.idl>

module DsLSRBIioObjects

{
typedef sequence<string> StringList;
typedef string Identifier;
typedef sequence<Ildentifier> IdentifierList;

enum StrandType {STRAND_NOT_KNOWN, STRAND_NOT_APPLICABLE,
STRAND_PLUS, STRAND_MINUS, STRAND_BOTH};

enum Basis {BASIS_NOT_KNOWN, BASIS_NOT_APPLICABLE,
BASIS_EXPERIMENTAL, BASIS_COMPUTATIONAL, BASIS_BOTH};

#pragma version Basis 1.1

valuetype Interval

{

public unsigned long start;
public unsigned long length;

h

Biomolecular Sequence Analysis Final Adopted Spec. November 2000 C-1

valuetype SegRegion : Interval

{

#pragma version SeqRegion 1.1

public Identifier id;
public StrandType strand_type;
public boolean start_relative_to_seq_end;

h
typedef sequence<SeqRegion> SeqRegionList;

valuetype CompositeSeqRegion : SeqRegion

{
enum SeqRegionOperator
{
NONE, /I Region has no sub regions or the sub regions
/I don't need special treatment.
JOIN, /I Sub regions should be joined end-to-end to
// form a contiguous region.
ORDER /I Sub region order is important.
h
public SeqRegionList sub_regions;
public SeqRegionOperator region_operator;
h
interface Annotation : CosLifeCycle::LifeCycleObject
{
readonly attribute string name; // type of annotation
readonly attribute any value; // the annotation
readonly attribute Basis the_basis; // basis for annotation
readonly attribute CosPropertyService::Properties qualifiers;
h

typedef sequence<Annotation> AnnotationList;

exception Iteratorinvalid

{
string reason,;
h
interface Annotationlterator
{
boolean next(out Annotation the_annotation)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out AnnotationList annotations)
raises(Iteratorinvalid);
void reset();
void destroy();
h

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

interface SegAnnotation : Annotation

{
h

readonly attribute SeqRegion seq_region;

typedef sequence<SegAnnotation> SeqAnnotationList;

interface SeqAnnotationliterator

{
boolean next(out SegAnnotation seq_annotation)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out SegAnnotationList seq_annotations)
raises(Iteratorinvalid);
void reset();
void destroy();
h
exception ldentifierNotFound
{
Identifier id;
h
exception IdentifierNotResolvable
{
Identifier id;
string reason,;
h
exception IdentifierNotUnique
{
Identifier id;
IdentifierList ids;
h
exception IntervalOutOfBounds
{
Interval invalid;
Interval valid;
h
exception SeqgRegionOutOfBounds
{
SeqRegion invalid;
Interval valid;
h

exception SegRegionInvalid

{

string reason,;

Biomolecular Sequence Analysis Final Adopted Spec.

Nov. 2000

C-3

C-4

h

exception NotUpdateable

{
string reason,;

h

interface BioSequence : CosLifeCycle::LifeCycleObject

{

#pragma version BioSequence 1.1

readonly attribute string name;
readonly attribute Identifier id;
readonly attribute string description;
readonly attribute string seq;
readonly attribute unsigned long length;
readonly attribute Basis the_basis;
string seq_interval(in Interval the_interval)

raises(IntervalOutOfBounds, SeqRegioninvalid);
AnnotationList get_annotations(
in unsigned long how_many,
in SeqRegion seq_region,
out Annotationliterator the_rest)
raises(SeqRegionOutOfBounds, SeqRegioninvalid);
unsigned long num_annotations(in SegRegion seq_region)
raises(SeqRegionOutOfBounds, SeqRegioninvalid);
void add_annotation(
in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds,
SeqRegioninvalid);
h

typedef sequence<BioSequence> BioSequencelList;
typedef sequence<unsigned long> UnsignedLongList;

exception ReadingFramelnvalid

{
short invalid;
h
interface NucleotideSequence : BioSequence
{
#pragma version NucleotideSequence 1.1
readonly attribute boolean circular;
string reverse_complement();
string reverse_complement_interval(in Interval the_interval)

raises(IntervalOutOfBounds, SeqRegioninvalid);

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

string translate_seq(
in short reading_frame,
out UnsignedLongList stop_locations)
raises(ReadingFramelnvalid);
string translate_seq_region(
in SeqRegion seq_region,
out UnsignedLongList stop_locations)
raises(SeqRegionOutOfBounds, SeqRegioninvalid);

h
typedef sequence<NucleotideSequence> NucleotideSequencelList;

interface AminoAcidSequence : BioSequence

{

#pragma version AminoAcidSequence 1.1
h
typedef sequence<AminoAcidSequence> AminoAcidSequencelist;
typedef char Residue;
typedef char Base;
typedef Base Codon][3];

valuetype CodeRule

{
public Codon the_codon;
public Residue the_residue;
h
typedef CodeRule Coding[64];
typedef string GeneticCodeName;

typedef sequence<GeneticCodeName> GeneticCodeNamelList;

exception InvalidResidue

{

Residue the_residue;
unsigned long offset;

h

interface GeneticCode

{

#pragma version GeneticCode 1.1

readonly attribute Coding the_coding;
readonly attribute GeneticCodeName name;

Residue translate_codon(in Codon the_codon)
raises(InvalidResidue);

I3

valuetype AlignmentElement

Biomolecular Sequence Analysis Final Adopted Spec. Nov. 2000

C-6

{
public Object element;
public SeqRegion seq_region;
public string key;

h

typedef sequence<AlignmentElement> AlignmentElementList;

interface AlignmentElementlterator

{
boolean next(out AlignmentElement element)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out AlignmentElementList elements)
raises(Iteratorinvalid);
void reset();
void destroy();
h
exception AlignmentObjectinvalid
{
Object element;
string reason,;
h
exception ElementNotInAlignment
{
h
exception IndexOutOfBounds
{
unsigned long invalid;
Interval valid;
h

interface Alignment : CosLifeCycle::LifeCycleObject
{

#pragma version Alignment 1.1

typedef string AlignType;
typedef sequence<AlignType> AlignTypelList;

const AlignType PROTEIN

const AlignType NON_PROTEIN
const AlignType SEQUENCE_ERROR
const AlignType UNKNOWN

"PROTEIN";
"NON_PROTEIN";
"SEQUENCE_ERROR"
"UNKNOWN";

AlignmentElementList get_alignment_elements(
in unsigned long start,
in unsigned long how_many,
out AlignmentElementliterator the_rest)

Biomolecular Sequence Analysis Final Adopted Spec.

November 2000

raises(IndexOutOfBounds);

unsigned long num_rows();
unsigned long num_columns();

SegRegion get_seq_region(
in string key,
in Interval the_interval)
raises(ElementNotinAlignment, IntervalOutOfBounds, SeqRegioninvalid);

CompositeSeqRegion get_gaps(
in string key,
in Interval the_interval)
raises(ElementNotinAlignment, IntervalOutOfBounds, SeqRegioninvalid);

AlignType get_align_type by column(in unsigned long col)
raises(IndexOutOfBounds);
h

typedef sequence<Alignment> AlignmentList;

interface Assembly : Alignment

{
h
valuetype SearchHit
{
public Identifier id;
public CosPropertyService::Properties hit_info;
h

typedef sequence<SearchHit> SearchHitList;

interface SearchHitlterator

{
boolean next(out SearchHit hit)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out SearchHitList hit_list)
raises(Iteratorinvalid);
void reset();
void destroy();
h
valuetype SimilaritySearchHit : SearchHit
{
public AlignmentList alignment_list;
h

typedef sequence<SimilaritySearchHit> SimilaritySearchHitList;

Biomolecular Sequence Analysis Final Adopted Spec. Nov. 2000

C-7

interface BioSequenceldentifierResolver

{
BioSequence resolve(in Identifier id)
raises (IdentifierNotFound, IdentifierNotResolvable,
IdentifierNotUnique);
h

interface SearchResult :
BioSequenceldentifierResolver,
CosLifeCycle::LifeCycleObject

readonly attribute BioSequence query_sequence;

readonly attribute CosPropertyService::Properties collection_info;

StringList get_property _names();
unsigned long num_hits();

SearchHitList get_hits(
in unsigned long start,
in unsigned long how_many,
out SearchHitlterator the_rest)
raises (IndexOutOfBounds);

h
/I optional interfaces

interface AnnotationFactory

{

#pragma version AnnotationFactory 1.1

Annotation create_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers);

SegAnnotation create_seq_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers,
in SegRegion seq_region)
raises (SeqRegionlnvalid);

h
exception SegAnnotationOutOfBounds
{
SeqgAnnotation invalid,;
Interval valid;
h

C-8 Biomolecular Sequence Analysis Final Adopted Spec.

November 2000

interface NucleotideSequenceFactory

{

#pragma version NucleotideSequenceFactory 1.1

NucleotideSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in boolean circular,
in AnnotationList annotations)

raises (InvalidResidue, SegAnnotationOutOfBounds, SegRegioninvalid);

J3

interface AminoAcidSequenceFactory

{

#pragma version AminoAcidSequenceFactory 1.1

AminoAcidSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in AnnotationList annotations)
raises (InvalidResidue, SegAnnotationOutOfBounds, SegRegioninvalid);

h
interface BioSequencelterator
{
boolean next(out BioSequence seq)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out BioSequencelList seqs)
raises(Iteratorinvalid);
void reset();
void destroy();
h
interface NucleotideSequencelterator
{
boolean next(out NucleotideSequence seq)
raises(lteratorinvalid);
boolean next_n(in unsigned long how_many,
out NucleotideSequenceList seqs)
raises(Iteratorinvalid);
void reset();
void destroy();
h

Biomolecular Sequence Analysis Final Adopted Spec. Nov. 2000

C-10

interface AminoAcidSequencelterator

{
boolean next(out AminoAcidSequence seq)
raises(Iteratorinvalid);
boolean next_n(in unsigned long how_many,
out AminoAcidSequencelist seqs)
raises(Iteratorinvalid);
void reset();
void destroy();
h
exception InvalidGeneticCodeName
{
string invalid_name;
h
interface GeneticCodeFactory
{
const GeneticCodeName STANDARD = "standard";
const GeneticCodeName BACTERIAL = "bacterial”;
const GeneticCodeName YEAST_MITOCHONDRIAL = "yeast
mitochondrial”;
const GeneticCodeName VERTEBRATE_MITOCHONDRIAL = "vertebrate
mitochondrial”;
const GeneticCodeName MOLD_MITOCHONDRIAL ="mold
mitochondrial”;
const GeneticCodeName INVERTEBRATE_MITOCHONDRIAL= "invertebrate
mitochondrial”;
const GeneticCodeName ECHINODERM_MITOCHONDRIAL= "echinoderm
mitochondrial”;
const GeneticCodeName ASCIDIAN_MITOCHONDRIAL = "ascidian
mitochondrial”;
const GeneticCodeName FLATWORM_MITOCHONDRIAL= "flatworm
mitochondrial”;
const GeneticCodeName CILIATE_NUCLEAR = "ciliate nuclear";
const GeneticCodeName EUPLOTID_NUCLEAR = "euplotid nuclear";
const GeneticCodeName ALT_YEAST NUCLEAR = "alternative yeast
nuclear";
const GeneticCodeName BLEPHARISMA_MACRONUCLEAR = "blepharisma
macronuclear";
readonly attribute GeneticCodeNamelList genetic_code_names;
GeneticCode create_genetic_code(in GeneticCodeName name)
raises(InvalidGeneticCodeName);
h

interface CharacterAlignmentEncoder
{

readonly attribute Alignment the_alignment;

unsigned long num_rows(); /I number of aligned

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

/I objects. Delegate
unsigned long num_columns(); /I Delegate to Alignment

string get_name(in unsigned long row) /I first object is in row
raises(IndexOutOfBounds); /l one etc...
StringList get_all_names(); /I all the Names

string get_cell_contents(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

boolean is_cell_a_gap(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

unsigned long get_cell_width(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

unsigned long max_column_width(in unsigned long col)
raises(IndexOutOfBounds);

unsigned long max_width();

J3

interface SingleCharacterAlignmentEncoder : CharacterAlignmentEncoder

{

#pragma version SingleCharacterAlignmentEncoder 1.1

I3

string get_row(in unsigned long row)
raises(IndexOutOfBounds);
string get_row_interval(in unsigned long row, in Interval cols)

raises(IndexOutOfBounds, IntervalOutOfBounds,
SeqRegioninvalid);
StringList get_row_column_interval(in Interval rows, in Interval cols)
raises(IntervalOutOfBounds, SeqRegioninvalid);

StringList get_entire_alignment(); /I probably the most common!
h
exception CannotEncodeAlignment
{
string reason,;
h
interface CharacterAlignmentEncoderFactory
{
CharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);
h
interface SingleCharacterAlignmentEncoderFactory
{
SingleCharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);
h

#endif //_DS_LSR_BIOOBJECTS_IDL_

Biomolecular Sequence Analysis Final Adopted Spec. Nov. 2000 C-11

C

C.2 File: DsLSRAnalysis.idl

/IFile: DsLSRAnalysis.idl
/I version: 29 October 2000.

#ifndef DS_LSR_ANALYSIS_IDL_
#define _DS_LSR_ANALYSIS_IDL_

#pragma prefix "omg.org"

#include <orb.idl>

#include <CosPropertyService.idl>
#include <CosEventChannelAdmin.idl>
#include <CosLifeCycle.idl>

#include <TimeBase.idl>

module DsLSRAnNalysis
{

typedef sequence<string> StringList;

valuetype AnalysisType

{
public string type;
public string name;
public string supplier;
public string version;
public string installation;
public string description;

h

valuetype InputPropertySpec

{
public string name;
public CORBA::TypeCode type;
public boolean mandatory;
public any default_value;
public any possible_values;

h

typedef sequence<InputPropertySpec> InputPropertySpecList;
valuetype OutputPropertySpec
{

public string name;
public CORBA::TypeCode type;
h

typedef sequence<OutputPropertySpec> OutputPropertySpecList;

enum AnalysisState

C-12 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

{
CREATED, /I Instance has been created but not yet executed.
RUNNING, // The analysis instance is running.
COMPLETED, /I The instance has completed execution.
TERMINATED_BY_REQUEST, // The instance was terminated by user request.
TERMINATED_BY_ERROR // The instance terminated due to an error.
h
valuetype AnalysisEvent
{
public string message;
h

valuetype StateChangedEvent : truncatable AnalysisEvent

{

#pragma version StateChangedEvent 1.1

public AnalysisState previous_state;
public AnalysisState new_state;

J3

valuetype HeartbeatProgressEvent : truncatable AnalysisEvent

{

#pragma version HeartbeatProgressEvent 1.1

h

valuetype PercentProgressEvent : truncatable AnalysisEvent

{

#pragma version PercentProgressEvent 1.1

public float percentage;

h

valuetype TimeProgressEvent : truncatable AnalysisEvent

{

#pragma version TimeProgressEvent 1.1

public TimeBase::TimeT time_remaining;
h
valuetype StepProgressEvent : truncatable AnalysisEvent
{

#pragma version StepProgressEvent 1.1

public unsigned long total_steps;
public unsigned long steps_completed;
h

interface Analysisinstance;

typedef string MetaData;

Biomolecular Sequence Analysis Final Adopted Spec. Nov. 2000 C-13

C-14

exception DoesNotExistException { };

interface AnalysisService

{

h

const string AnalysisTypeTag ="TAG_ANALYSIS_TYPE";
const string InputPropertiesTag = "TAG_INPUT_PROPERTIES";
const string OutputPropertiesTag = "TAG_OUTPUT_PROPERTIES";

readonly attribute StringList metadata_tags;
MetaData describe(in string tagname)
raises (DoesNotExistException);

readonly attribute AnalysisType type;
readonly attribute InputPropertySpecList input_metadata;
readonly attribute OutputPropertySpecList output_metadata;

Analysisinstance create_analysis (in CosPropertyService::Properties input)
raises (CosPropertyService::MultipleExceptions);

exception NotRunnable { };
exception NotRunning { };
exception NotTerminated

{
h

string reason,;

interface JobControl

{

#pragma version JobControl 1.1

h

readonly attribute TimeBase::UtcT created,;
readonly attribute TimeBase::TimeT elapsed;
readonly attribute TimeBase::UtcT started;
readonly attribute TimeBase::UtcT ended,;

void run()

raises (NotRunnable, CosPropertyService::MultipleExceptions);
void terminate()

raises (NotRunning, NotRunnable, NotTerminated);
void wait()

raises (NotRunning, NotRunnable);

interface Analysisinstance : CosLifeCycle::LifeCycleObject

{

readonly attribute AnalysisService service;

readonly attribute AnalysisState status;
readonly attribute CosEventChannelAdmin::EventChannel event_channel;
readonly attribute AnalysisEvent last_event;

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

readonly attribute JobControl job_control;
readonly attribute CosPropertyService::Properties inputs;
readonly attribute CosPropertyService::Properties results;
CosPropertyService::Properties get_result(in StringList name_list);
h
h

#endif // _DS_LSR_ANALYSIS_IDL_

Biomolecular Sequence Analysis Final Adopted Spec. Nov. 2000 C-15

C-16 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

Domain Model DTD and XML

D

D.1 File: DsLSRAnalysis.dtd

<IELEMENT DsLSRAnalysis (analysis)+>
<IELEMENT analysis (description?, input*, output*, analysis_extension?)>

<IATTLIST analysis

type CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
supplier CDATA #IMPLIED
installation CDATA #IMPLIED>

<IELEMENT description ANY>
<IELEMENT input (default?, allowed*, input_extension?)>

<IATTLIST input

type CDATA #REQUIRED
name CDATA #REQUIRED
mandatory (true|false) "false">

<IELEMENT default (#PCDATA)>
<IELEMENT allowed (#PCDATA)>

<IELEMENT output (output_extension?)>
<IATTLIST output
type CDATA #REQUIRED
name CDATA #REQUIRED>
<IENTITY % vendor_analysis_tags "<!IELEMENT analysis_extension EMPTY>">

<IENTITY % vendor_input_tags "<!ELEMENT input_extension EMPTY>">
<IENTITY % vendor_output_tags "<!ELEMENT output_extension EMPTY>">

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

D-1

%vendor_analysis_tags;
%vendor_input_tags;
%vendor_output_tags;

D.2 DsLSRBioAnalysis.xml

<?xml version = "1.0"?>
<IDOCTYPE DsLSRAnalysis SYSTEM "DsLSRAnalysis.dtd">

<DsLSRAnalysis>

<analysis type = "search.list">
<input
name = "query_sequence"”
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
</input>
<input
name = "sequence_list"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">
</input>
<output
name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</output>
</analysis>

<analysis type = "search.collection">
<input
name = "query_sequence"”
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
</input>
<input
name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequencelterator:1.0"
mandatory = "true">
</input>
<output
name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</output>
</analysis>

<analysis type = "search.database">

<input
name = "query_sequence"”
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>

<input
name = "database_id"
type = "IDL:omg.org/DsLSRBioObjects/Identifier:1.0"

D-2 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

mandatory = "true">
</input>
<output
name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</output>
</analysis>

<analysis type = "search/annotation">
<input
name = "sequence”
type ="IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
</input>
<output
name = "sequence_annotation”
type = "IDL:omg.org/DsLSRBioObjects/SegAnnotationList:1.0">
</output>
</analysis>

<analysis type = "search/region">
<input
name = "sequence”
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
</input>
<output
name = "sequence_region"
type = "IDL:omg.org/DsLSRBioObjects/SeqRegionList:1.0">
</output>
</analysis>

<analysis type = "search.list/similarity">
<input
name = "query_sequence"
type ="IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
</input>
<input
name = "sequence_list"
type = "IDL:omg.org/DsLSRBioObjects/BioSequencelList:1.0"
mandatory = "true">
</input>
<output
name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</output>
</analysis>

<analysis type = "search.collection/similarity">
<input
name = "query_sequence"
type ="IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
</input>

Biomolecular Sequence Analysis Final Adopted Spec. Nov. 2000

<input
name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequencelterator:1.0"
mandatory = "true">
</input>
<output
name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</output>
</analysis>

<analysis type = "search.database/similarity">
<input
name = "query_sequence"”
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
</input>
<input
name = "database_id"
type = "IDL:omg.org/DsLSRBioObjects/Identifier:1.0"
mandatory = "true">
</input>
<output
name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">
</output>
</analysis>

<analysis type = "alignment.list">
<input
name = "sequence_list"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">
</input>
<output
name = "alignment"
type = "IDL:omg.org/DsLSRBioObjects/Alignment:1.0">
</output>
</analysis>

<analysis type = "alignment.collection">
<input
name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequencelterator:1.0"
mandatory = "true">
</input>
<output
name = "alignment"
type = "IDL:omg.org/DsLSRBioObjects/Alignment:1.0">
</output>
</analysis>

<analysis type = "alignment.list/assembly">

<input
name = "sequence_list"

D-4 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

type = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">
</input>
<output
name = "assembly"
type = "IDL:omg.org/DsLSRBioObjects/Assembly:1.0">
</output>
</analysis>

<analysis type = "alignment.collection/assembly">
<input
name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequencelterator:1.0"
mandatory = "true">
</input>
<output
name = "assembly"
type = "IDL:omg.org/DsLSRBioObjects/Assembly:1.0">
</output>
</analysis>

<analysis type = "alignment/phylogeny">
<input
name = "alignment_list"
type = "IDL:omg.org/DsLSRBioObjects/AlignmenList:1.0"
mandatory = "true">
</input>
<output
name = "alignment"
type = "IDL:omg.org/DsLSRBioObjects/Alignment:1.0">
</output>
</analysis>

<analysis type = "utility/molecular_weight">
<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
</input>
<output
name = "molecular_weight"
type = "unsigned long">
</output>
</analysis>

<analysis type = "utility/residue_composition">

<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>

<input
name = "residue"
type = "IDL:omg.org/DsLSRBioObjects/Residue:1.0"
mandatory = "true">

Biomolecular Sequence Analysis Final Adopted Spec. Nov. 2000 D-5

</input>
<output
name = "residue_composition"
type = "double">
</output>
</analysis>

<analysis type = "utility/ambiguous_residues">
<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">
</input>
<input
name = "genetic_code"
type = "IDL:omg.org/DsLSRBioObjects/GeneticCode:1.0"
mandatory = "true">
</input>
<output
name = "ambiguous_residues"
type = "boolean">
</output>
</analysis>

<analysis type = "utility/gc_content">
<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/NucleicAcidSequence:1.0"
mandatory = "true">
</input>
<output
name = "gc_content"
type = "double">
</output>
</analysis>

<analysis type = "utility/isoelectric_point">
<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/AminoAcidSequence:1.0"
mandatory = "true">
</input>
<output
name = "isoelectric_point"
type = "double">
</output>
</analysis>

<analysis type = "utility/translate_seq">
<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/NucleicAcidSequence:1.0"
mandatory = "true">
</input>
<input

D-6 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

name = "reading_frame"
type = "short">
<default>-3</default>
<allowed>-2</allowed>
<allowed>-1</allowed>
<allowed>1</allowed>
<allowed>2</allowed>
<allowed>3</allowed>
</input>
<input
name = "genetic_code"
type = "IDL:omg.org/DsLSRBioObjects/GeneticCode:1.0"
mandatory = "true">
</input>
<output
name = "translated_seq"
type = "string">
</output>
</analysis>

<analysis type = "utility/translate_seq.seq_region">

<input
name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/NucleicAcidSequence:1.0"
mandatory = "true">

</input>

<input
name = "sequence_region"
type = "IDL:omg.org/DsLSRBioObjects/SeqRegion:1.0"
mandatory = "true">

</input>

<input
name = "genetic_code"
type = "IDL:omg.org/DsLSRBioObjects/GeneticCode:1.0"
mandatory = "true">

</input>

<output
name = "translated_seq"
type = "string">

</output>

</analysis>

</DsLSRAnalysis>

Biomolecular Sequence Analysis Final Adopted Spec. Nov. 2000 D-7

Biomolecular Sequence Analysis Final Adopted Spec.

November 2000

Future Direction of Metamodel E

This specification uses metadata to describe analyses and inputs and outputs to
analyses. Included in the specification is a DTD and example XML that shows the
future direction of metadata within BSA. When more complex, more descriptive
metadata is needed, the BSA metadata could be described using the mechanisms
specified in the XMI. The sample better illustrates this idea.

E.1 File: DsLSRAnalysis - future.dtd

<l--LSR BSADTD -->

<IENTITY % UmlIMetaData SYSTEM "ad98-10-16.dtd">
%UmlMetaData;

<IENTITY % DsLSRAnalysisXMI SYSTEM "DsLSRAnalysisXMl.dtd">
%DsLSRANalysisXMI;

E.2 File: DsLSRAnalysisXMI - future.dtd

<l-- LSR BSA Analysis Machinery DTD -->

<IELEMENT DsLSRAnalysisXMI (analysis)+>
<IATTLIST DsLSRAnNalysisXMI
%XMl.element.att;
%XML.link.att;

<IELEMENT analysis (description?, input*, output*, XMl.extension*)>

<IATTLIST analysis
analysisType CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED

Biomolecular Sequence Analysis Final Adopted Spec. November 2000 E-1

supplier CDATA #IMPLIED
installation CDATA #IMPLIED>
<IELEMENT description (XMl.extension*)>
<IELEMENT input (parameter*, XMl.extension*)>
<IATTLIST input
name CDATA #REQUIRED
mandatory (true|false) "false">
<IELEMENT output (parameter*, XMI.extension*)>
<IATTLIST output
name CDATA #REQUIRED>
<IELEMENT parameter ((Foundation.Core.Parameter | logicalType), constraint*)>
<IELEMENT logicalType (Foundation.Core.DataType | XMIl.CorbaTypeCode | XMl.extension+)>
<IELEMENT constraint (default?, allowed*, Foundation.Core.Constraint*, XMl.extension*)>

<IELEMENT default (#PCDATA)>

<IELEMENT allowed (#PCDATA)>

E.3 File: DsLSRBioAnalysis - future (sample).xml

E-2

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE XMI SYSTEM 'DsLSRAnalysis-future.dtd">

<XMI>
<XMl.header>
<XMIl.model xmi.name="'sample' xmi.version="1.0"/>
<XMIl.metamodel xmi.name="'uml’ xmi.version="1.1'/>
</XMl.header>
<XMIl.content/>
<XMl.extensions xmi.extender='omg.org/DsLSRAnalysis'>
<DsLSRAnalysisXMI>
<analysis analysisType="similarity_analysis/database">
<input name="query_sequence" mandatory="true">
<parameter>
<Foundation.Core.Parameter>
<Foundation.Core.ModelElement.name>input</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value="public'/>

<Foundation.Core.Parameter.defaultValue>
<Foundation.Data_Types.Expression/>

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

</Foundation.Core.Parameter.defaultValue>

<Foundation.Core.Parameter.kind xmi.value='in'/>

<Foundation.Core.Parameter.type>

<Foundation.Core.Interface>

<Foundation.Core.ModelElement.name>BioSequence</Foundation.Core.Model
Element.name>

<Foundation.Core.ModelElement.visibility xmi.value="public'/>

<Foundation.Core.GeneralizableElement.isRoot xmi.value="false’/>

<Foundation.Core.GeneralizableElement.isLeaf xmi.value="false'/>

<Foundation.Core.GeneralizableElement.isAbstract xmi.value='false'/>

</Foundation.Core.Interface>

</Foundation.Core.Parameter.type>

</Foundation.Core.Parameter>

</parameter>

</input>

<input name="database_id" mandatory="true">
<parameter>

<Foundation.Core.Parameter>

<Foundation.Core.ModelElement.name>input</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.visibility xmi.value="public'/>

<Foundation.Core.Parameter.defaultValue>

<Foundation.Data_Types.Expression/>

</Foundation.Core.Parameter.defaultValue>

<Foundation.Core.Parameter.kind xmi.value='in'/>

<Foundation.Core.Parameter.type>

<Foundation.Core.Interface>

<Foundation.Core.ModelElement.name>Dbld</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.visibility xmi.value="public'/>

<Foundation.Core.GeneralizableElement.isRoot xmi.value="false'/>

<Foundation.Core.GeneralizableElement.isLeaf xmi.value='false'/>

<Foundation.Core.GeneralizableElement.isAbstract xmi.value="false'/></
Foundation.Core.Interface>

</Foundation.Core.Parameter.type>

</Foundation.Core.Parameter>

<constraint>
<allowed> databasel </allowed>
<allowed> database2 </allowed>
<allowed> database3 </allowed>
<allowed> database4 </allowed>
</constraint>

</parameter>

</input>

Biomolecular Sequence Analysis Final Adopted Spec. Nov. 2000 E-3

E-4

<output name="hits">

<parameter>

<Foundation.Core.Parameter>
<Foundation.Core.ModelElement.name>input</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value="public'/>
<Foundation.Core.Parameter.defaultValue>

<Foundation.Data_Types.Expression/>

</Foundation.Core.Parameter.defaultValue>

<Foundation.Core.Parameter.kind xmi.value='out'/>
<Foundation.Core.Parameter.type>

<Foundation.Core.Interface>
<Foundation.Core.ModelElement.name>Hits</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value="public'/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value="false'/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value="false'/>
</Foundation.Core.Interface>

</Foundation.Core.Parameter.type>

</Foundation.Core.Parameter>

</parameter>

</output>

</analysis>

</DsLSRAnalysisXMI>

</XMl.extensions>

</XMI>

Biomolecular Sequence Analysis Final Adopted Spec. November 2000

Glossary

Glossary entries are organized alphabetically.

Glossary Terms

Alignment
Ambiguity Code

Amino Acid

Assembly
Base

Complementary Base

Complement
Cladogram

Coding Sequence

Codon

SeeSequence Alignment
Single character representation of an ambiguous nucleotide or residue.

Any of a class of 20 small molecule building blocks that are combined
to form proteins in living things (21 amino acids if selenocysteine is
included). The sequence of amino acids in a protein and hence protein
function are determined by the nucleotide sequence of its gene and the
genetic code. The terms residue and amino acid are often used
interchangeably.

SeeSequence Assembly
SeeNucleotide

The nucleotide that chemically pairs up (hybridizes) with another
nucleotide (called its complement) on the other strand, within a
double-stranded sequence. G pairs with C in both DNA and RNA. A
pairs with T in DNA. A pairs with U in RNA.

The sequence consisting of Complementary Bases.
SeePhylogenetic Tree

A DNA sequence that contains appropriate start and stop codons,
indicating the amino acid sequence translated from it could form a
functional protein.

A set of three nucleotide bases in a DNA or RNA sequence, which
together code for a unique amino acid. For example, the set AUG
(adenine, uracil, guanine) codes for the amino acid methionine.

Biomolecular Sequence Analysis Final Adopted Spec. November ZX66sary - 1

Contig or Contig Map

DNA (deoxyrib onucleic
acid)

Expression

Exon

Gap

Gene

Genetic Code

Genome
Genomic

Hidden Markov Model
(HMM)

Intron

Non-Coding

Biomolecular Sequence Analysis Final Adopted Spec.

As used here, a graphical or data representation depicting the relative
order of a linked library of small overlapping clones representing a
complete chromosomal segment. Segjuence Assembly

The molecule that encodes genetic information. DNA is a double-
stranded polymer of nucleotides. The two strands are held together by
hydrogen bonds between base pairs of nucleotides. The four
nucleotides in DNA contain the bases: adenine (A), guanine (G),
cytosine (C), and thymine (T). In nature, base pairs form only between
A and T and between G and C; thus the base sequence of each single
strand can be deduced from that of its partner.

The conversion of the genetic instructions present in a DNA sequence
into a unit of biological function in a living cell. Typically involves the
process of transcription of a DNA sequence into an RNA sequence
followed by translation of the RNA into protein. The RNA may be
spliced before translation to remove introns.

Segment of a (genomic) sequence that is translated into a segment of a
protein. See alsmtron.

The opening and addition of one or more spaces to individual
sequences in an alignment, in order to increase the consensus of the
overall mapping. A gap represents a failure to establish equivalence
between nucleotides in a particular region of a sequence when
aligning it with one or more other sequences.

A length of DNA which codes for a particular protein, or in certain
cases a functional or structural RNA molecule. Genes may be inferred
from the DNA sequence by way of a coding sequence.

The full set of codons in DNA or mRNA. Each codon is made up of
three nucleotides which call for a unique amino acid. For example, the
set AUG (adenine, uracil, guanine) calls for the amino acid methionine
in the standard genetic code. The sequence of codons along an mRNA
molecule specifies the sequence of amino acids in a particular protein.

The complete set of genetic information for a particular organism.
Pertaining to or contained within a genome; also: chromosomal.

A stochastic generative model for a series defined by a finite set of
states, a discrete alphabet of symbols, a probability transition matrix,
and a probability emission matrix.

Segment of the (genomic) sequence that is removed (spliced) from the
RNA molecule prior to translation. Introns are therefore not translated
to protein in a living cell.

A class of genomic sequence that is not translated into a protein
sequence. Non-coding sequence consists of introns and intergenic
regions that may contain "junk" DNA such as repeat sequences.

November 2000

Nucleic Acid

Nucleotide

Phylogenetic Tree

Phylogeny
(phylogenesis,
phylogenetic,
phylogenic)

Profile

Protein

RNA (ribonucleic acid)

Reading Frame

Residue

Reverse Complement

Sequence

Sequence Alignment

Biomolecular Sequence Analysis Final Adopted Spec.

A polymer of nucleotides. DNA and RNA are different classes of
nucleic acids. May be double- or single-stranded.

A subunit of DNA or RNA consisting of a nitrogenous base (adenine,
guanine, thymine, or cytosine in DNA; adenine, guanine, uracil, or
cytosine in RNA), a phosphate molecule, and a sugar molecule
(deoxyribose in DNA and ribose in RNA).

A map, dendrogram, cladogram, or other data or graphical
representation of a Phylogeny.

The evolutionary history of a particular taxonomic group, usually a
species.

A table that lists the frequencies of finding each of the 20 amino acids
at each position in conserved sequence pattern; used in sensitive
sequence searches.

A biological molecule that consists of many amino acids chained
together by peptide bonds. The sequence of amino acids in a protein is
determined by the sequence of nucleotides in a DNA molecule.
Proteins perform most of the enzymatic and structural roles within
living cells.

A class of nucleic acids that consist of nucleotides containing the
bases: adenine (A), guanine (G), cytosine (C), and uracil (U). An RNA
molecule is typically single-stranded and can pair with DNA (where U
pairs with A) or with another RNA molecule. RNA nucleotides are
chemically distinct from DNA nucleotides and enable RNA molecules
to have more complex structural and functional roles within a living
cell.

The ‘phase’ of the starting point of a translation. As each codon
consists of three bases, a translation of a nucleotide sequence will
yield entirely different protein sequences depending on this. Negative
values are often used to denote translation of the reverse strand.

Amino acid; sometimes: nucleotide.

The sequence obtained by reading the opposite (complementary)
strand of a nucleic acid sequence in the reverse direction.

The order of nucleotides in a DNA or RNA molecule, or the order of
amino acids in a protein.

The explicit mapping between the residues of two or more sequences.
A sequence alignment may have gaps. Alignments are used to
establish similarities between sequences and/or sequence families.

Nov. 2000 Glossary - 3

Sequence Assembly A series of linked sequence alignment analysis steps that is used for
constructing a contig.

Splicing The removal of introns from an RNA sequence leaving only the exons
which are then translated into a protein.

Translation The conversion of a nucleic acid sequence into an amino acid
sequence according to the rules of a genetic code.

Glossary -4 Biomolecular Sequence Analysis Final Adopted Spec. November 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Overview
	1.1 Module DsLSRBioObjects
	1.2 Module DsLSRAnalysis
	1.3 Domain Model
	1.4 General Remarks
	1.4.1 Objects-by-value
	1.4.2 Returning Multiple Results
	1.4.3 Identifier
	1.4.4 Composite Pattern
	1.4.5 BioObject Immutability
	1.4.6 Rationale for Metadata Approach

	2. BSA Modules and Interfaces
	2.1 Module DsLSRBioObjects
	2.1.1 General
	2.1.2 StrandType
	2.1.3 Basis
	2.1.4 Interval
	2.1.5 SeqRegion
	2.1.6 Annotation
	2.1.7 SeqAnnotation
	2.1.8 Identifier
	2.1.9 BioSequence
	2.1.10 Sub-types of BioSequence
	2.1.11 CodeRule
	2.1.12 GeneticCode
	2.1.13 AlignmentElement
	2.1.14 AlignmentElementIterator
	2.1.15 Alignment
	2.1.16 Alignment Examples
	2.1.17 Assembly
	2.1.18 SearchHit
	2.1.19 SimilaritySearchHit
	2.1.20 BioSequenceIdentifierResolver
	2.1.21 SearchResult
	2.1.22 AnnotationFactory (Optional)
	2.1.23 BioSequence factories (Optional)
	2.1.24 BioSequence iterators (Optional)
	2.1.25 GeneticCodeFactory (Optional)
	2.1.26 CharacterAlignmentEncoder (Optional)
	2.1.27 SingleCharacterAlignmentEncoder (Optional)
	2.1.28 AlignmentEncoder factories (Optional)

	2.2 Module DsLSRAnalysis
	2.2.1 General
	2.2.2 AnalysisType
	2.2.3 InputPropertySpec
	2.2.4 OutputPropertySpec
	2.2.5 AnalysisState
	2.2.6 AnalysisEvent
	2.2.7 Sub-types of AnalysisEvent
	2.2.8 AnalysisService
	2.2.9 JobControl
	2.2.10 AnalysisInstance
	2.2.11 Sequence Diagrams

	3. Domain Model
	3.1 XML Metadata
	3.1.1 Role of XML
	3.1.2 Role of DTD
	3.1.3 Domain Metadata

	3.2 Classification of Analyses
	3.2.1 Searching
	3.2.2 Alignment
	3.2.3 Utilities

	Appendix A - References
	Appendix B - Genetic Codes
	Appendix C - Complete IDL
	Appendix D - Domain Model DTD and XML
	Appendix E - Future Direction of Metamodel
	Glossary

