
Biomolecular Sequence Analysis
Specification

Version 1.0
June 2001

Copyright 1999, Concept Five Technologies, Inc.
Copyright 1999, EMBL-EBI (European Bioinformatics Institute)
Copyright 1999, Genome Informatics Corporation
Copyright 1999, Millennium Pharmaceuticals, Inc.
Copyright 1999, Neomorphic Software, Inc.
Copyright 1999, NetGenics, Inc.
Copyright 2001, Object Management Group

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
Preface . v

1. Overview . 1-1
1.1 Module DsLSRBioObjects . 1-1

1.2 Module DsLSRAnalysis . 1-2

1.3 Domain Model . 1-2

1.4 General Remarks . 1-2
1.4.1 Objects-by-value. 1-2

1.4.2 Returning Multiple Results 1-3
1.4.3 Identifier . 1-3

1.4.4 Composite Pattern. 1-3
1.4.5 BioObject Immutability 1-4

1.4.6 Rationale for Metadata Approach 1-4

2. Modules and Interfaces . 2-1
2.1 Module DsLSRBioObjects . 2-1

2.1.1 General . 2-2
2.1.2 StrandType . 2-3

2.1.3 Basis . 2-4
2.1.4 Interval . 2-5

2.1.5 SeqRegion . 2-6
2.1.6 Annotation . 2-10

2.1.7 SeqAnnotation . 2-14
2.1.8 SeqAnnotation Interface 2-16

2.1.9 Identifier . 2-18
2.1.10 BioSequence . 2-22
June 2001 Biomolecular Sequence Analysis, v1.0 i

Contents
2.1.11 Sub-types of BioSequence 2-29
2.1.12 CodeRule . 2-34

2.1.13 GeneticCode . 2-37
2.1.14 AlignmentElement . 2-38

2.1.15 AlignmentElementIterator 2-41
2.1.16 Alignment. 2-42

2.1.17 Alignment Examples . 2-51
2.1.18 Assembly . 2-53

2.1.19 SearchHit . 2-54
2.1.20 SimilaritySearchHit . 2-57

2.1.21 BioSequenceIdentifierResolver 2-59
2.1.22 SearchResult . 2-60

2.1.23 AnnotationFactory (Optional). 2-64
2.1.24 BioSequence factories (Optional) 2-66

2.1.25 BioSequence iterators (Optional) 2-69
2.1.26 GeneticCodeFactory (Optional) 2-74

2.1.27 CharacterAlignmentEncoder (Optional) 2-76
2.1.28 SingleCharacterAlignmentEncoder (Optional) . 2-81

2.1.29 AlignmentEncoder factories (Optional) 2-83

2.2 Module DsLSRAnalysis. 2-85
2.2.1 General . 2-86

2.2.2 AnalysisType . 2-87
2.2.3 InputPropertySpec . 2-89

2.2.4 OutputPropertySpec . 2-91
2.2.5 AnalysisState . 2-92

2.2.6 AnalysisEvent. 2-93
2.2.7 Sub-types of AnalysisEvent 2-94

2.2.8 AnalysisService . 2-97
2.2.9 JobControl . 2-100

2.2.10 AnalysisInstance. 2-104
2.2.11 Sequence Diagrams . 2-108

3. Domain Model . 3-1
3.1 XML Metadata . 3-1

3.1.1 Role of XML . 3-1

3.1.2 Role of DTD. 3-2
3.1.3 Domain Metadata . 3-3

3.2 Classification of Analyses . 3-6

3.2.1 Searching . 3-6
3.2.2 Alignment. 3-6

3.2.3 Utilities . 3-6
ii Biomolecular Sequence Analysis, v1.0 June 2001

Contents
Appendix A - References. A-1

Appendix B - Genetic Codes . B-1

Appendix C - Complete IDL . C-1

Appendix D - Domain Model DTD and XML D-1

Appendix E - Future Direction of Metamodel. E-1

Glossary . Glossary-1
June 2001 Biomolecular Sequence Analysis, v1.0 iii

Contents
iv Biomolecular Sequence Analysis, v1.0 June 2001

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
several hundred members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the establishment
of industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.
June 2001 Biomolecular Sequence Analysis, v1.0 v

Associated OMG Documents

In addition to the CORBA Transportation specifications, the CORBA documentation
set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBAservices: Common Object Services Specification, a collection of OMG’s
Object Services specifications.

• CORBAfacilities: Common Facilities Specification, a collection of OMG’s Common
Facility specifications.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

• CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

vi Biomolecular Sequence Analysis, v1.0 June 2001

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Concept Five Technologies, Inc.

• EMBL-EBI (European Bioinformatics Institute)

• Genome Informatics Corporation

• Millennium Pharmaceuticals, Inc.

• Neomorphic Software, Inc.

• NetGenics, Inc.

• Oxford Molecular Group

• Sanger Centre
June 2001 Biomolecular Sequence Analysis: Acknowledgments vii

viii Biomolecular Sequence Analysis, v1.0 June 2001

Overview 1
Contents

This chapter contains the following sections.

The domain of biomolecular sequence analysis comprises the sub-domains of biological
objects and analysis mechanisms. The modules that address these areas are described in
the following sections.

1.1 Module DsLSRBioObjects

Biological objects that are central to this specification include BioSequence, which is
specialized into NucleotideSequence and AminoAcidSequence. An Annotation
object is provided, which is specialized into SeqAnnotation for usage with BioSe-
quences. SeqAnnotations can apply to specific parts of a sequence, and the mecha-
nism to refer to these regions is provided by SeqRegion and Interval.
CompositeSeqRegion provides the ability to nest SeqRegions. GeneticCode,
associated with an organism, is an auxiliary object needed when translating sequences.
The interface Alignment and ancillary types are used for representing comparisons
between sequences or sequence families. It is also used in describing SimilaritySearch-
Hits (i.e., matches found in sequence database, and Assemblies). SearchHit and
SearchResult are used primarily for representing the results of similarity searches (e.g.,
BLAST).

Section Title Page

“Module DsLSRBioObjects” 1-1

“Module DsLSRAnalysis” 1-2

“Domain Model” 1-2

“General Remarks” 1-2
June 2001 Biomolecular Sequence Analysis, v1.0 1-1

1

The Annotation factory, the BioSequence iterators and factories, SeqAnnotation
iterator, GeneticCode factory, and AlignmentEncoders and factories are optional
interfaces.

The Annotation factory, the BioSequence iterators and factories, GeneticCode fac-
tory, and AlignmentEncoders and factories are optional interfaces.

1.2 Module DsLSRAnalysis

The DsLSRAnalysis module defines the components for supporting sequence analysis
through a generic analysis design. The module provides the means to interrogate analyses
inputs, output, and functionality. An analysis can be executed asynchronously as well as
synchronously based on the client invocation. Executing analyses can be monitored by
subscribing to an event channel or polling for state.

1.3 Domain Model

The domain model is expressed in XML. The domain model includes a simple classifica-
tion of analyses. This is in response to the mandatory requirement of the RFP, and serves
to organize the analyses into groups in a way that matches closely with how researchers
and bioinformaticists think about and utilize such analyses.

This classification of analyses consists of three broad categories.

• Searching - including similarity searching (e.g., BLAST)

• Alignment - including contig assembly

• Utilities - including molecular weight and GC content

1.4 General Remarks

This document addresses the representation of a number of biological objects, as well as
mechanisms for analyzing them. A few design principles and patterns that were used are
outlined first.

1.4.1 Objects-by-value

This document makes extensive use of objects-by-value (OMG Document
orbos/98-01-18, which was incorporated into the CORBA Core, version 2.3 document). A
valuetype is an entity that is halfway between an IDL interface and an IDL struct.
They are not yet widely supported by all ORBs, but we think they are a very useful con-
struct, as they promise to provide:

• choice: the client can choose to make the object ‘local’ or leave it remote,

• better scalability: only a single round trip transfers the whole state of the object,

• extendibility through inheritance,

• null value semantics.
1-2 Biomolecular Sequence Analysis, v1.0 June 2001

1

We have used OBV valuetypes essentially as if they were extendible structs, using the
following constraints:

• no methods

• all members / attributes are public

• inheritance only of valuetypes (no “supports SomeInterface”).

Note – Factory methods were not used in the valuetypes. See the appropriate
language mapping specifications for details on using ValueFactories.

1.4.2 Returning Multiple Results

If a method has to return a multi-valued result to the caller, there is a design choice of
returning these elements directly as a list, or through an iterator, or using a combination of
both. We have adopted the latter, hybrid approach to allow the client to choose between
the convenience of directly returned lists and the scalability of iterators. The methods hav-
ing a multi-valued result use have:

• a list return type,

• a parameter in unsigned long how_many,

• a parameter out AnIterator the_rest.

The client specifies that it wishes to receive a list of no more than how_many elements as
the direct result. The remaining elements, if any, can be retrieved through the iterator
returned in the out parameter. The iterators allow the retrieval of one element at a time, or
several at once. This pattern was in fact taken directly from the CosPropertyService,
and provides maximum flexibility to client programs.

A multi-valued result, either returned directly or through an iterator, is guaranteed not to
contain duplicates. If a multi-valued result type is ordered and iterators are involved, the
ordering is the same as that achieved by not having used any iterators.

1.4.3 Identifier

Many entities in molecular biology require ID strings, usually to uniquely identify it in a
certain context. The current document also uses strings for ID attributes, but constrains
their syntax and semantics to improve interoperability. To make the intended use of these
strings clearer,

typedef string Identifier;

is provided and used in this specification.

1.4.4 Composite Pattern

The CompositeSeqRegion valuetype implements the Composite design pattern
[Gamma et al., 1995]. This pattern composes entities into tree structures to represent hier-
June 2001 Biomolecular Sequence Analysis: General Remarks 1-3

1

archies. The Composite pattern treats individual objects and composites uniformly.

A biological example using the Composite pattern is a gene being composed of coding
regions from a set of exons.

1.4.5 BioObject Immutability

All BioObjects in this specification, with the single exception of BioSequence, are
immutable. Modifying other BioObjects is considered out of scope for sequence analysis,
as defined by the RFP. Since it is clear that the results of many sequence analyses produce
information that is frequently attached to sequences as annotations, we do provide the
add_annotation() method in BioSequence.

Implementors are free to choose to support mutable BioObjects, taking responsibility for
the associated life cycle issues.

1.4.6 Rationale for Metadata Approach

A number of viable approaches to metadata for sequence analyses were explored. There
was a strong desire to leverage existing solutions if possible. A predecessor to this specifi-
cation described the metadata model using valuetype based extensible structs. This
approach is carried into the current specification. In recognition of the increasing use of
XML to provide data descriptions for application metadata, the specification was
enhanced to also support retrieval of XML based metadata. An XML DTD defining the
metadata model has been introduced as well. Additionally the mechanism used to fetch
metadata descriptions for analyses has been enhanced to support the introduction of new
XML based metadata by supplying a tag that identifies the type of metadata described. It
is expected that this tag-based retrieval approach could be used to provide access to OCL,
XMI, or other formatted metadata in the future.
1-4 Biomolecular Sequence Analysis, v1.0 June 2001

Modules and Interfaces 2
Contents

This chapter contains the following sections.

2.1 Module DsLSRBioObjects

The analysis of biomolecular sequence information takes place within the broader
domain of computational biology. This domain presents a very heterogeneous, rapidly
evolving environment that has proven difficult to standardize. To offer a design that is
both complete and practical for the field of sequence analysis, this specification includes
an IDL specification for Annotations and so-called SeqAnnotations, which can be
likened to Features in the DDBJ/EMBL/GenBank flat file format. These two data
components serve to incorporate and organize additional information relevant to the
sequence data. Examples include organism source information, biological descriptors,
cross-references, molecular characterizations, known sites and variations within the
sequence, bibliographic references, and relations to known diseases. Annotations and
SeqAnnotations can also be attached to a sequence to carry new information that is
computationally inferred, or experimentally determined. We believe that it is necessary
to offer users an easy, extensible interface to organize and link this resulting information
to biomolecular sequences either as whole-sequence Annotations or region-specific
SeqAnnotations (Features).

Some of the entities described below use generic types such as Any or name-value pairs.
It is deemed outside the scope of this document to standardize the types of values that
can be contained in these generic types.

Section Title Page

“Module DsLSRBioObjects” 2-1

“Module DsLSRAnalysis” 2-85
June 2001 Biomolecular Sequence Analysis, v1.0 2-1

2

Existing standards that can be represented with the current proposal and to some extent
have shaped it are: the NCBI datamodels; the DDBJ/EMBL/GenBank Feature Table
Document; various sequence file formats (Fasta, EMBL/GenBank, GCG), and various
sequence analysis tools (BLAST, FastA, Smith-Waterman, ClustalW, Wise2, Grail, the
GCG suite).

The alignment portion of the response is aimed to effectively model all types of
BioSequence and BioSequence related alignment problems in biomolecular
sequence analysis. This ranges from the relatively simple cases of a pairwise alignment
of two DNA sequences, to the complex case of a profile-HMM compared to genomic
DNA.

2.1.1 General

//File: DsLSRBioObjects.idl

#ifndef _DS_LSR_BIOOBJECTS_IDL_
#define _DS_LSR_BIOOBJECTS_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosPropertyService.idl>

module DsLSRBioObjects
{

// ...
};

#endif // _DS_LSR_BIOOBJECTS_IDL_

#pragma prefix "omg.org"

To prevent name space pollution and name clashing of IDL types, this module (and all
modules defined in this specification) uses the pragma prefix that is the OMG’s DNS
name.

#include <CosLifeCycle.idl>

NucleotideSequence, AminoAcidSequence, Annotation, GeneticCode,
Alignment, and SearchResult all inherit from LifeCycleObject.

#include <CosPropertyService.idl>

Properties are used in Annotation, SearchHit, and SearchResult.
2-2 Biomolecular Sequence Analysis, v1.0 June 2001

2

StringList

2.1.2 StrandType

There is an intrinsic directionality of biological sequence data, which proceeds 5' to 3' for
nucleic acids and N-terminal to C-terminal for proteins. For NucleotideSequences,
StrandType provides an indication of whether the SeqRegion refers to the original
plus-strand, the complementary minus-strand, or both strands of a double-stranded
molecule. The StrandType values are used in SeqRegion.

Table 2-1 contains the valid StrandType for each type of BioSequence.

Table 2-2 contains the matching StrandTypes for each type of StrandType.

typedef sequence<string> StringList;

Description: Used to pass and return a set of strings.

Table 2-1 Valid StrandTypes

BioSequence Type Valid StrandTypes

BioSequence STRAND_NOT_KNOWN

NucleotideSequence STRAND_NOT_KNOWN, STRAND_PLUS,
STRAND_MINUS, STRAND_BOTH

AminoAcidSequence STRAND_NOT_APPLICABLE

Table 2-2 Matching StrandTypes

StrandType Matching StrandTypes

STRAND_NOT_KNOWN STRAND_NOT_KNOWN, STRAND_PLUS,
STRAND_MINUS, STRAND_BOTH

STRAND_NOT_APPLICABLE STRAND_NOT_APPLICABLE

STRAND_PLUS STRAND_NOT_KNOWN, STRAND_PLUS,
STRAND_BOTH

STRAND_MINUS STRAND_NOT_KNOWN,
STRAND_MINUS, STRAND_BOTH

STRAND_BOTH STRAND_NOT_KNOWN, STRAND_PLUS,
STRAND_MINUS, STRAND_BOTH
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-3

2

Figure 2-1 The StrandType Enumeration

enum StrandType {STRAND_NOT_KNOWN, STRAND_NOT_APPLICABLE,
STRAND_PLUS, STRAND_MINUS, STRAND_BOTH};

2.1.3 Basis

The Basis enumeration values are used to specify whether an Annotation originated
from an experimental result or a computational analysis, such as from the application of
a sequence analysis program.

Figure 2-2 The Basis Enumeration

STRAND_NOT_KNOWN STRAND_NOT_KNOWN should be used in all cases
not indicated below.

STRAND_NOT_APPLICABLE STRAND_NOT_APPLICABLE should be used for
regions of AminoAcidSequences.

STRAND_PLUS STRAND_PLUS should be used to indicate the original
plus-strand of a NucleotideSequence.

STRAND_MINUS STRAND_MINUS should be used to indicate the reverse
complement of the plus-strand of a
NucleotideSequence.

STRAND_BOTH STRAND_BOTH should be used to indicate both strands
of a double-stranded NucleotideSequence.

StrandType

STRAND_NOT_KNOWN
STRAND_NOT_APPLICABLE
STRAND_PLUS
STRAND_MINUS
STRAND_BOTH

<<enum>>

Basis

BASIS_NOT_KNOWN
BASIS_EXPERIMENTAL
BASIS_COMPUTATIONAL
BASIS_BOTH

<<enum>>
2-4 Biomolecular Sequence Analysis, v1.0 June 2001

2

enum Basis {BASIS_NOT_KNOWN, BASIS_NOT_APPLICABLE,
BASIS_EXPERIMENTAL, BASIS_COMPUTATIONAL, BASIS_BOTH};

2.1.4 Interval

A contiguous sub-string within a larger string is specified using the Interval valuetype.
An Interval consists of a start and length, defining the starting position of the sub-string
and the size of the sub-string (number of units). BioSequences are numbered starting
at start 1, in keeping with the existing practice in the field of molecular biology. An
Interval on a BioSequence of start=5, length=10 would start at the fifth position and
include up to the 14th position of a sequence.

The use of a start and length instead of start and end provides a powerful mechanism
for defining intervals along biological sequences that works well for both linear and
circular molecules.

Figure 2-3 The Interval valuetype

valuetype Interval
{

public unsigned long start;
public unsigned long length;

};

BASIS_NOT_KNOWN BASIS_NOT_KNOWN should be used in all cases
not indicated below.

BASIS_NOT_APPLICABLE BASIS_NOT_APPLICABLE should be used to
indicate that Basis doesn’t apply.

BASIS_EXPERIMENTAL BASIS_EXPERIMENTAL should be used to
indicate an experimental result.

BASIS_COMPUTATIONAL BASIS_COMPUTATIONAL is used to indicate a
computational analysis, such as from the application of
a sequence analysis program.

BASIS_BOTH Any result determined both experimentally and
computationally should use BASIS_BOTH.

Interval

start : unsigned long
length : unsigned long

<<valuetype>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-5

2

2.1.5 SeqRegion

A SeqRegion is a specialization of Interval and specifies a location on a
BioSequence. A further specialization, CompositeSeqRegion, may contain zero or
more sub-regions. In this specification, SeqRegion is used primarily to specify the
location along a BioSequence to which a SeqAnnotation pertains.

The SeqRegion model is not intended to address all types of sequence region
specification found in the GenBank/EMBL/DDBJ feature table. Supported are intervals
with non-fuzzy end points and composites of such intervals. Examples of these include a
PROSITE pattern located at 74 and ending at 80, or a gene made of 5 spliced exons.

We believe the definition of SeqRegion is broad enough to handle many kinds of
commonly occurring sequence-based regions and addresses the needs of most molecular
biologists. Due to their complexity and rarity of usage in sequence analysis software,
fuzzy sequence regions are not explicitly supported at the present time. It is not currently
possible with the present IDL to associate a single SeqRegion with a set of
BioSequences.

public unsigned long start;

Description: start is an unsigned long integer that defines the starting
position of the sub-string. BioSequences are numbered
starting at 1.

Return value: Returns an unsigned long.

public unsigned long length;

Description: length is an unsigned long integer that defines the size of the
sub-string (number of units).

Return value: Returns an unsigned long.
2-6 Biomolecular Sequence Analysis, v1.0 June 2001

2

Figure 2-4 The SeqRegion and CompositeSeqRegion Valuetypes

SeqRegion

A SeqRegion extends Interval and contains the strand_type and
start_relative_to_seq_end members that specialize it for use with biological
sequences. SeqRegion also contains an id indicating the BioSequence to which the
SeqRegion refers.

valuetype SeqRegion : Interval
{

public Identifier id;
public StrandType strand_type;
public boolean start_relative_to_seq_end;

};

public Identifier id;

Description: id indicates the BioSequences to which the SeqRegion
refers.

Return value: Returns an Identifier.

Interval
start : unsigned long
length : unsigned long

<<valuetype>>

SeqRegionOperator

NONE
JOIN
ORDER

<<enum>>

StrandType

STRAND_NOT_KNOWN
STRAND_NOT_APPLICABLE
STRAND_PLUS
STRAND_MINUS
STRAND_BOTH

<<enum>>

SeqRegion

strand_type : StrandType
start_relative_to_seq_end : boolean

<<valuetype>>

CompositeSeqRegion

sub_regions : SeqRegionList
region_operator : SeqRegionOperator

<<valuetype>>

1

110..*

1

0..*
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-7

2

SeqRegionList

CompositeSeqRegion

CompositeSeqRegion, a specialization of SeqRegion, may contain zero or more
sub-regions. A CompositeSeqRegion’s sub-regions may overlap. The nested or
hierarchical behavior is useful in describing complex features on BioSequences. There
is no limit to nesting. All CompositeSeqRegions are expected to be translated in a
depth-first traversal, along each node of the tree represented by the
CompositeSeqRegions. This includes those nodes that have region_operator
equal to JOIN or ORDER.

public StrandType strand_type;

Description: For NucleotideSequences, strand_type provides an
indication of whether the SeqRegion refers to the original
plus-strand, the complementary minus-strand, or both
strands of a double-stranded molecule. STRAND_MINUS
should be used to indicate a region on the reverse
complement of a NucleotideSequence. For these
regions, start and length (inherited from Interval) refer to
positions within the coordinate system of the original, given
strand. strand_type should be
STRAND_NOT_APPLICABLE for regions of
AminoAcidSequences.

Return value: Returns a StrandType.

public boolean start_relative_to_seq_end;

Description: The start_relative_to_seq_end member can modify the
semantics of the start member: if
start_relative_to_seq_end is TRUE, start is to be taken
from the end of the sequence, rather than the beginning. No
reverse-complement is implied. That is, if sequence has a
length 100, and SeqRegion has start=20 length=10, and
start_relative_to_seq_end =TRUE, the region runs from
position 81 up to and including 90.

Return value: Returns a boolean.

typedef sequence<SeqRegion> SeqRegionList;

Description: Used to pass a set of SeqRegions.
2-8 Biomolecular Sequence Analysis, v1.0 June 2001

2

A CompositeSeqRegion with sub-regions will itself not have start, length,
strand_type, or start_relative_to_seq_end data defined. The whole
CompositeSeqRegion tree will be passed as an object graph by the objects by value
(OBV) functionality.

valuetype CompositeSeqRegion : SeqRegion
{

enum SeqRegionOperator
{

NONE, // Region has no sub regions or the sub regions
// don't need special treatment.

JOIN, // Sub regions should be joined end-to-end to
// form a contiguous region.

ORDER // Sub region order is important.
};

public SeqRegionList sub_regions;
public SeqRegionOperator region_operator;

};

enum SeqRegionOperator {NONE, JOIN, ORDER};

NONE NONE should be used when JOIN and ORDER are not
applicable.

JOIN JOIN should be used when the sub-regions are to be
concatenated into a single region.

ORDER ORDER should be used when the sub-regions are to be taken
as an ordered set of sub-regions. Typically, it is used to
represent a discontinuous region to which a descriptive
annotation pertains.

public SeqRegionList sub_regions;

Description: sub_regions contains the constituent SeqRegions. If there
are no sub-regions, then SeqRegion should be used instead
of CompositeSeqRegion.

Return value: Returns a SeqRegionList.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-9

2

2.1.6 Annotation

The Annotation interface defines an annotation that could, in principle, be associated
with any bio-object that requires description using name-value pairs.

All attributes in Annotations are readonly, in keeping with our immutability policy for
this specification.

Annotation inherits from CosLifeCycle::LifeCycleObject.

Figure 2-5 The Annotation Interface

interface Annotation : CosLifeCycle::LifeCycleObject
{

readonly attribute string name; // type of annotation
readonly attribute any value; // the annotation

public SeqRegionOperator region_operator;

Description: The region_operator takes on a value of the
SeqRegionOperator enumeration. It specifies how the sub-
regions are to be treated. The sub-regions could be
concatenated into a single region (JOIN) or taken as an
ordered set of sub-regions (ORDER). In the latter case,
unknown segments of sequence may intervene. All
CompositeSeqRegions are expected to be translated in a
depth-first traversal, along each node of the tree represented
by the CompositeSeqRegions. This includes those nodes
that have region_operator equal to JOIN or ORDER.

Return value: Returns a SeqRegionOperator.

LifeCycleObject
<<Interface>>

Annotation

name : string
value : any
the_basis : Basis
qualifiers : CosPropertyService::Properties

<<Interface>>
2-10 Biomolecular Sequence Analysis, v1.0 June 2001

2

readonly attribute Basis the_basis; // basis for annotation
readonly attribute CosPropertyService::Properties qualifiers;

};

readonly attribute string name;

Description: The name attribute specifies the general type of the
annotation that is contained in the value attribute that contains
the annotation itself. The value is of type any and therefore
could contain anything from a block of free text to a
specialized datatype.

Return value: Returns a string. name shall not be empty.

readonly attribute any value;

Description: The value attribute contains the annotation itself.

Return value: The value is of type any and therefore could contain anything
from a block of free text to a specialized datatype.

readonly attribute Basis the_basis;

Description: Annotation has a basis attribute, which specifies whether
the annotation originated from an experimental result
(BASIS_EXPERIMENTAL) or a computational analysis
(BASIS_COMPUTATIONAL), such as from the application
of a sequence analysis program. Basis provides for a coarse-
grained classification of an Annotation.

Return value: The value is of type BASIS.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-11

2

AnnotationList

IteratorInvalid

AnnotationIterator

AnnotationIterator provides a strongly typed iterator for Annotations.

readonly attribute CosPropertyService::Properties qualifiers;

Description: Annotation contains additional information in the form of
so-called qualifiers, represented by the
CosPropertyService::Property struct, which enables
them to support many kinds of keyword controlled attributes.
These properties are essential for covering the full spectrum
of current annotation and feature information.

Return value: The qualifiers attribute is of type
CosPropertyService::Properties and so provides a place
for arbitrary name-value pairs.

typedef sequence<Annotation> AnnotationList;

Description: Used to pass a set of Annotations.

exception IteratorInvalid
{

string reason;
};

Description: The IteratorInvalid exception is raised for cases where the
iterator is no longer valid (e.g., new elements have been added
to the underlying collection).

Return value: Returns a string containing the reason that the iterator is
invalid.
2-12 Biomolecular Sequence Analysis, v1.0 June 2001

2

Figure 2-6 The AnnotationIterator Interface

interface AnnotationIterator
{

boolean next(out Annotation the_annotation)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out AnnotationList annotations)

raises(IteratorInvalid);
void reset();
void destroy();

};

boolean next(out Annotation the_annotation)
raises(IteratorInvalid);

Description: The next() operation gets the next Annotation in its out
parameter the_annotation and returns a boolean value. If
the iterator is at the end of the set, it returns FALSE and sets
the output the_annotation parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

AnnotationIterator

next()
next_n()
reset()
destroy()

<<Interface>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-13

2

2.1.7 SeqAnnotation

For biomolecular sequences, Annotations are specialized to SeqAnnotations to
include sequence position information in the form of the SeqRegion attribute (see
above). Essentially, this attribute indicates to which part of the sequence the annotation
pertains, and is analogous to features in the DDBJ/EMBL/GenBank formats. Typical
examples include gene, promoter region, and exons.

SeqAnnotation is used to describe an annotation that applies only to a specified region.
Annotation should be used for an annotation that applies to the associated
BioSequence as a whole. Although SeqAnnotations with null regions are also
interpreted to apply to the BioSequence as a whole, this should be avoided.

boolean next_n(in unsigned long how_many,
 out AnnotationList annotations)

raises(IteratorInvalid);

Description: next_n() returns Annotations in the AnnotationList out
parameter annotations, containing at most the number
specified in the first parameter (how_many) and returns a
boolean value directly. When it is at the end of the set it
returns FALSE and the annotations parameter will have
length zero. In all cases the length of annotations will be
the minimum of how_many and the number of elements
remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator provides
access to streaming data).

void destroy();

Description: destroy() frees the iterator object.
2-14 Biomolecular Sequence Analysis, v1.0 June 2001

2

SeqAnnotation can associate a BioSequence with analytical results or descriptive
information such as biological function. A sequence analysis run could generate
SeqAnnotation objects as output. In addition, BioSequence factories can be used to
attach SeqAnnotations to the BioSequences.

It is not currently possible to navigate from a SeqAnnotation to a BioSequence
using the interfaces defined in this specification. One can, however, obtain a set of
SeqAnnotations given a BioSequence. This is sufficient from the point of view of a
sequence analysis application, which could produce annotated sequences. The submitters
of this specification feel that there are richer models for annotations on sequences (e.g.,
complex hierarchies or graphs of relationships between annotations and sequences as
well as the annotations themselves). Sequence annotations are expected to be addressed
in a future RFP.

To illustrate the uses and coverage of Annotations and SeqAnnotations with regard
to the results of Sequence Analyses, a few more examples are listed below:

• A motif analysis returns a labeled pattern (e.g., KRINGLE) matching a given region
of the protein sequence.

• A restriction map analysis returns a list of sites, for the given enzymes, that can
then be used to annotate the DNA sequence.

• The result of homology analysis suggests that the sequence belongs to a particular
gene family, which can be annotated onto the NucleotideSequence including
information regarding degree of certainty.

• ORF and gene-finding analyses identify coding regions that are later added as
oriented gene features on the sequence.

• Homologous regions found by using an alignment analysis can be annotated as
SeqAnnotations on the query sequence.

• An EMBL-curated phosphorylation site on a protein stored (imported) as a
SeqAnnotation on the AminoAcidSequence.

• Identified mutations from multiple DNA sequences can be merged into
SeqAnnotations on a consensus sequence.

Extending SeqAnnotation provides a mechanism for creating strongly typed sequence
features. This may be appropriate for certain stereotypical sequence features such as
genes, exons, and transcriptional regulatory sites that have complex but reasonably well
defined semantics. These specialized SeqAnnotations could define the necessary data
types and sub-feature containment relationships as appropriate for the specific feature.

The issue of annotating BioSequences as well as other bio-objects is complex and we
are not proposing a definitive solution in the present specification. The IDL is workable
for biomolecular sequence analysis and there is sufficient room for elaboration by a
future LSR Annotation RFP.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-15

2

Figure 2-7 The SeqAnnotation Interface

2.1.8 SeqAnnotation Interface

For biomolecular sequences, Annotations are specialized to SeqAnnotations to
include sequence position information in the form of the SeqRegion attribute (see
above). If region is null, the annotation applies to the associated BioSequence(s) as a
whole. Otherwise, the annotation applies only to the specified region. Annotations
should be used instead of SeqAnnotations with null SeqRegions.

interface SeqAnnotation : Annotation
{

readonly attribute SeqRegion seq_region;
};

SeqAnnotationList

SeqAnnotationIterator

SeqAnnotationIterator provides a strongly typed iterator for SeqAnnotations.
SeqAnnotationIterator is not used directly in this specification, but is provided as a
convenience for vendor-specific IDL extensions and future OMG specifications where a
collection of Annotations contains only SeqAnnotations.

readonly attribute SeqRegion seq_region;

Description: Contains the sequence position information.

Return value: Returns a SeqRegion.

typedef sequence<SeqAnnotation> SeqAnnotationList;

Description: Used to pass a set of SeqAnnotations.

Annotation
<<Interface>>

SeqAnnotation

region : SeqRegion

<<Interface>>
SeqRegion

strand_type : StrandType
start_relative_to_seq_end : boolean

<<valuetype>>

1 111
2-16 Biomolecular Sequence Analysis, v1.0 June 2001

2

SeqAnnotationIterator is an optional interface.

Figure 2-8 The SeqAnnotationIterator Interface

interface SeqAnnotationIterator
{

boolean next(out SeqAnnotation seq_annotation)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out SeqAnnotationList seq_annotations)

raises(IteratorInvalid);
void reset();
void destroy();

};

boolean next(out SeqAnnotation seq_annotation)
raises(IteratorInvalid);

Description: The next() operation gets the next SeqAnnotation in its out
parameter seq_annotation and returns a boolean value. If
the iterator is at the end of the set, it returns FALSE and sets
the output seq_annotation parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

SeqAnnotationIterator

next()
next_n()
reset ()
destroy()

<<Interface>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-17

2

2.1.9 Identifier

There is a need for a data type to indicate an entity’s identity in very many situations. In
most cases, this need is, or can be addressed by using a string type. The advantages are
that it is simple, lightweight, and used universally throughout the realm of computing
(and indeed outside). However, the risk of using strings is that they can be too flexible,
both in terms of syntax and semantics. This easily results in the lack of interoperability.
To allow strings, yet mitigate their potential for abuse, this standard uses the syntax
convention of CosNaming::StringName as described in the Interoperable Naming
service. This convention is mainly a syntactical one; in no way is the use of a naming
service implementation required or implied (but it is not precluded either).

boolean next_n(in unsigned long how_many,
 out SeqAnnotationList seq_annotations)

raises(IteratorInvalid);

Description: next_n() returns SeqAnnotations in the
SeqAnnotationList out parameter seq_annotations,
containing at most the number specified in the first parameter
(how_many) and returns a boolean value directly. When it is
at the end of the set it returns FALSE and the
seq_annotations parameter will have length zero. In all
cases the length of seq_annotations will be the minimum
of how_many and the number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator
provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.
2-18 Biomolecular Sequence Analysis, v1.0 June 2001

2

2.1.9.1 Identifier Description

A brief description is as follows: CosNaming::Name is a list of struct
NameComponents. (For the purpose of illustration, a NameComponent can be
likened to a directory or filename, whereas CosNaming::Name constitutes a full path-
name). The struct NameComponent has string members id and kind. To transform a
CosNaming::Name into a string, all its NameComponents are represented as
strings “id.kind.”

• If the kind-field is empty, this becomes simply “id;”

• if the id-field is empty, this becomes “.kind;”

• finally, the Naming service allows both id and kind to be empty, which is
represented as ".".

The full stringified CosNaming::Name is obtained by concatenating all the
NameComponents using “/”as a separator character. The character “\” is designated as
an escape character; if it precedes any of the special characters “.”, “/” and “\”, they are
taken as literal characters. The typedef string CosNaming::StringName is provided
for strings used as object names using this convention.

This specification adopts this syntax convention, but requests that the components of the
Identifier data type adhere to some additional semantic constraints. These rules do not
follow from, nor are implied by any semantics of the Naming Service. The additional
constraints make this data type sufficiently different from CosNaming::StringName
to warrant the dedicated typedef string Identifier.

The rules are as follows:

• Names can refer to collections of entities (such as databases), or to entities within
such collections. Names referring to collections consist of exactly one component;
names referring to entities within collections consist of at least two components.

• The first component represents the data source. Data sources can be anything:
transient collections, local databases, public repositories. It is up to the
implementation to document the accepted names for the data source.

• The empty name (“.”) is valid for the first component, and represents the ‘local’ or
‘default’ collection. It is up to the implementation to document what the semantics
of ‘local’ or ‘default’ is.

typedef string Identifier;

Description: In this description, ‘component’ means: the sub-string of an
Identifier that corresponds to one
CosNaming::NameComponent; likewise, id-field and
kind-field correspond to the equivalent fields of
NameComponent.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-19

2

• Names that refer to entities within collections consist of two or more components.
The second component of such names represents an identifier that is unique in the
context of the data source. No empty id-fields are allowed in this or any further
components.

• If two components are not enough to uniquely identify an entity, an Identifier can
contain more than two components, but no more than necessary to make the
identification unique. That is, an Identifier may not be used to freely attach textual
information.

• The only characters valid in a component are “a” through “z”, “0” through “9”, and
“-” (hyphen), “_” (underscore), “$” and “.” (period). Use of the latter is discouraged
since it has a special meaning in the stringifying convention, and has therefore to be
escaped.

• To comply with existing practice in the field of public data repositories, it is
strongly advised that implementations do string comparisons in a case-insensitive
manner. The Naming Service standard fails to mention whether type-case is, for
identification purposes, significant or not. Implementations that use a third-party
implementation of the Naming Service may therefore wish to restrict Identifiers to
only use one type-case. It is up to an implementation to state whether mixed type-
case is allowed, and whether type-case is significant in comparisons.

The id and kind parts of the string components of Identifier are used as follows:

• The id-field of a component contains the principal value that makes it unique in the
scope provided by the preceding component. It may only be empty in the case of the
first component of an Identifier.

• The kind-field of a component is used to represent information indicating the
release (for a data source) or version (for an entry) of an entity, and can be empty.
If kind is empty and entities with non-empty kind-fields exist, an empty kind field
becomes synonymous with the latest release or version. It is up to the
implementation to document the syntax and semantics of the version information.

The adoption of this convention has the following advantages:

• it is simple and lightweight,

• it has a well-defined and re-used syntax,

• it is compatible with existing practice,

• it is sufficiently flexible to allow for sub-ids if necessary.
2-20 Biomolecular Sequence Analysis, v1.0 June 2001

2

IdentifierList

IdentifierNotFound

IdentifierNotResolvable

IdentifierNotUnique

typedef sequence<Identifier> IdentifierList;

Description: Used to pass a set of Identifiers.

exception IdentifierNotFound
{

Identifier id;
};

Description: The IdentifierNotFound exception is raised for cases where
the database and the identifier within the database can be
resolved but the Identifier is not present.

Return value: Returns the Identifier that could not be found.

exception IdentifierNotResolvable
{

Identifier id;
string reason;

};

Description: The IdentifierNotResolvable exception is raised for cases
where database and the identifier within the database cannot
be resolved such that the Identifier cannot even be searched
for.

Return value: Returns the Identifier that could not be resolved and a string
containing the reason resolution was not possible.

exception IdentifierNotUnique
{

Identifier id;
IdentifierList ids;

};

Description: The IdentifierNotUnique exception is raised for cases when
the Identifier specification is ambiguous and returns more
than one object.

Return value: Returns the non-unique Identifier and an IdentifierList
containing Identifiers for all objects that id identifies.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-21

2

2.1.10 BioSequence

A BioSequence is an abstraction of a biological sequence, such as the ordered
nucleotides of a DNA chain or the ordered amino acid residues of a protein molecule. A
BioSequence can be of any length and significance; there is no implication that it
corresponds to, for example, a gene. The BioSequence interface provides essential
characteristics of biological sequences (name, id, description, length) and operations
for obtaining the sequence string itself or a sub-sequence as an ASCII string of IUPAC-
IUBMB Joint Commission on Biochemical Nomenclature (JCBN) upper case single
letter codes (seq(), seq_interval()).

Additional operations within BioSequence provide access to any annotations
associated with the BioSequence (get_annotations()) or the number of annotations
(num_annotations()).

Annotations can be attached to BioSequences directly using the
add_annotation() method of BioSequence or by using the BioSequence factories.
Thus, BioSequences are mutable at the level of their associated annotations. This
minimal mutability model permits new annotations to be attached to a BioSequence
and prevents situations where multiple BioSequences might exist on a server with
different sets of annotations but representing the same sequence. A NotUpdateable
exception can be used to indicate that an Annotation cannot be added to this
BioSequence.

Standard container behavior applies here. If a client destroys a BioSequence, it is also
up to the client to manage the contents, namely the Annotations.

Figure 2-9 The BioSequence Interface

Basis

BASIS_NOT_KNOWN
BASIS_EXPERIMENTAL
BASIS_COMPUTATIONAL
BASIS_BOTH

<<enum>>

AnnotationIterator
<<Interface>>

BioSequence

name : string
id : Identifier
description : string
seq : string
length : unsigned long
the_basis : Basis

seq_interval()
get_annotations()
num_annotations()
add_annotation()

<<Interface>>

Annotation

name : string
value : any
the_basis : Basis
qualifiers : CosPropertyService::Properties

<<Interface>>

1 11 11 1

1

0..*0..*

1

2-22 Biomolecular Sequence Analysis, v1.0 June 2001

2

IntervalOutOfBounds

SeqRegionOutOfBounds

exception IntervalOutOfBounds
{

Interval invalid;
Interval valid;

};

Description: The IntervalOutOfBounds exception is raised if an
Interval's start is less than 1 or if its start+length-1 is
greater than the length of the BioSequence. If a
BioSequence represents circular DNA, then this exception
should be raised if the Interval’s start is less than 1 or
greater than the length of the BioSequence, or if its length
is greater than that of the BioSequence.

Return value: Returns the invalid Interval and the valid Interval. The valid
Interval has start equal to 1 and length equal to the length
of the BioSequence, the largest allowed Interval.

exception SeqRegionOutOfBounds
{

SeqRegion invalid;
Interval valid;

};

Description: The SeqRegionOutOfBounds exception is raised if a
SeqRegion’s start is less than 1 or if its start+length-1 is
greater than the length of the BioSequence. The exception
is also raised if a nested sub-region of a
CompositeSeqRegion is invalid. If a BioSequence
represents circular DNA, then this exception should be raised
if the Interval’s start is less than 1 or greater than the length
of the BioSequence, or if its length is greater than that of
the BioSequence.

Return value: Returns the invalid SeqRegion and the valid Interval. The
valid Interval has start equal to 1 and length equal to the
length of the BioSequence, the largest allowed Interval.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-23

2

SeqRegionInvalid

NotUpdateable

BioSequence

A BioSequence is an abstraction of a biological sequence, such as the ordered
nucleotides of a DNA chain or the ordered amino acid residues of a protein molecule.
The BioSequence interface provides essential characteristics of biological sequences
(name, id, description, length) and operations for obtaining the sequence string itself
or a sub-sequence as an ASCII string of IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) upper case single letter codes (seq(),
seq_interval()).

BioSequence inherits from CosLifeCycle::LifeCycleObject.

interface BioSequence : CosLifeCycle::LifeCycleObject
{

readonly attribute string name;
readonly attribute Identifier id;
readonly attribute string description;
readonly attribute string seq;
readonly attribute unsigned long length;
readonly attribute Basis the_basis;

string seq_interval(in Interval the_interval)

exception SeqRegionInvalid
{

string reason;
};

Description: The SeqRegionInvalid exception is raised if a SeqRegion
or CompositeSeqRegion is invalid in a given context.
Examples include the StrandType being STRAND_BOTH
when trying to translate a nucleotide sequence, or a wrong
SeqRegionOperator, overlaps, or circularity in a
CompositeSeqRegion passed as an in parameter.

Return value: Returns a string containing the reason the SeqRegion is
invalid.

exception NotUpdateable
{

string reason;
};

Description: The NotUpdateable exception is raised if the
BioSequence is immutable.

Return value: Returns a string containing the reason the BioSequence
cannot be updated.
2-24 Biomolecular Sequence Analysis, v1.0 June 2001

2

raises(IntervalOutOfBounds, SeqRegionInvalid);
AnnotationList get_annotations(

in unsigned long how_many,
in SeqRegion seq_region,
out AnnotationIterator the_rest)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);
unsigned long num_annotations(in SeqRegion seq_region)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);
void add_annotation(

in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds,

SeqRegionInvalid);
};

readonly attribute string name;

Description: The name attribute represents a human-readable common
name for the BioSequence (such as a gene name).

Return value: Returns a string.

readonly attribute Identifier id;

Description: The id attribute represents an ID for the BioSequence.
Typically a database name and key will be encoded in the
Identifier.

Return value: Returns an Identifier. id shall not be empty

readonly attribute string description;

Description: The description attribute, a concise description of the
BioSequence, typically includes functional information
(e.g., the contents of the description line from a FASTA file).

Return value: Returns a string.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-25

2

readonly attribute string seq;

Description: The seq attribute contains the actual sequence data. The
entire sequence is returned. Use seq_interval() to access
sub-sequences.

Return value: Returns an ASCII string of IUPAC-IUBMB Joint Commission
on Biochemical Nomenclature (JCBN) upper case single letter
codes representing the entire sequence. The string will not
contain any termination characters (e.g., ‘*’) or gap characters
(e.g., ‘-’).

readonly attribute unsigned long length;

Description: The length attribute is the length of the BioSequence. The
BioSequence is numbered from 1 to length.

Return value: Returns an unsigned long.

readonly attribute Basis the_basis;

Description: The BioSequence basis attribute can be any of the values
of the Basis enumeration and specifies whether the sequence
has been experimentally determined
(BASIS_EXPERIMENTAL), computationally determined
(BASIS_COMPUTATIONAL), or both (BASIS_BOTH), or
if this information is not known (BASIS_NOT_KNOWN).
An example of a computational sequence would be a protein
sequence that was determined by in silico translation of an
experimentally determined DNA sequence.

Return value: Returns a Basis value.
2-26 Biomolecular Sequence Analysis, v1.0 June 2001

2

 ...continued

string seq_interval(in Interval the_interval)
raises(IntervalOutOfBounds, SeqRegionInvalid);

Description: Provides access to sub-sequences of the BioSequence. The
Interval argument indicates which sub-sequence should be returned.
The entire sequence may also be obtained using the seq attribute. If
the_interval is a SeqRegion and the StrandType is
STRAND_MINUS, the string returned should be taken as reverse-
complemented.

Return value: Returns an ASCII string of IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) upper case single letter codes
representing the appropriate sub-sequence.

Exceptions: Raises IntervalOutOfBounds if the Interval's start is less than 1
or if its start+length-1 is greater than the length of the
BioSequence. If the BioSequence represents circular DNA, then
this exception should be raised if the Interval’s start is less than 1
or greater than the length of the BioSequence, or if its length is
greater than that of the BioSequence.

Raises SeqRegionInvalid if the_interval is an invalid
SeqRegion. Examples include an incorrect StrandType, or an
invalid CompositeSeqRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities).

AnnotationList get_annotations(
in unsigned long how_many,
in SeqRegion seq_region,
out AnnotationIterator the_rest)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);

Description: Uses the list/iterator hybrid to provide access to the Annotations. A
list of no more than how_many elements is returned as the direct
result. The remaining elements, if any, are available through the
iterator returned in the out parameter. Only the SeqAnnotations
that overlap seq_region and have compatible StrandTypes will be
returned. If seq_region is null, only Annotations are returned.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-27

2

Return value: Returns an AnnotationList containing no more than how_many elements.
The AnnotationIterator provides access to any remaining elements.

Exceptions: Raises SeqRegionOutOfBounds if seq_region is out of bounds for this
BioSequence.

Raises SeqRegionInvalid if the SeqRegion is invalid. Examples include an
incorrect StrandType, or an invalid CompositeSeqRegion (e.g., one that
has a wrong SeqRegionOperator or contains overlaps or circularities).

unsigned long num_annotations(in SeqRegion seq_region)
raises(SeqRegionOutOfBounds, SeqRegionInvalid);

Description: Provides access to the number of Annotations associated with this
BioSequence. Only the SeqAnnotations that overlap seq_region and
have compatible StrandTypes will be counted. If seq_region is null,
only Annotations are counted.

Return value: Returns an unsigned long.

Exceptions: Raises SeqRegionOutOfBounds if seq_region is out of bounds for
this BioSequence.

Raises SeqRegionInvalid if the SeqRegion is invalid. Examples
include an incorrect StrandType, or an invalid CompositeSeqRegion
(e.g., one that has a wrong SeqRegionOperator or contains overlaps or
circularities).

void add_annotation(in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds,

SeqRegionInvalid);

Description: Annotations can be attached to BioSequences directly using the
add_annotation() method of BioSequence.

Exceptions: • Raises NotUpdateable if the BioSequence is immutable.
• Raises SeqRegionOutOfBounds if the Annotation is a

SeqAnnotation and the corresponding SeqRegion is out of bounds
for this BioSequence.

• Raises SeqRegionInvalid if the Annotation is a SeqAnnotation
that has a SeqRegion that is deemed invalid. Examples include an
incorrect StrandType, or an invalid CompositeSeqRegion (e.g., one
that has a wrong SeqRegionOperator or contains overlaps or
circularities).
2-28 Biomolecular Sequence Analysis, v1.0 June 2001

2

BioSequenceList

2.1.11 Sub-types of BioSequence

The data type BioSequence is an interface representing biological sequences. All
instances of actual biological sequences are expected to derive from one of the
BioSequence sub-types, NucleotideSequence or AminoAcidSequence (or
specialized sub-types thereof).

Sequence information input to a BioSequence or used for querying purposes is case-
insensitive. Sequence information output from a BioSequence is returned using upper-
case ASCII strings of IUPAC-IUBMB Joint Commission on Biochemical Nomenclature
(JCBN) single-letter character codes.

AminoAcidSequence represents a protein sequence and does not contain any
operations. A reverse translation operation that produces a nucleic acid sequence from
the amino acid sequence is a complex operation that is not straightforward to standardize
at this time.

Figure 2-10 The NucleotideSequence and AminoAcidSequence Interfaces

UnsignedLongList

typedef sequence<BioSequence> BioSequenceList;

Description: Used to pass a set of BioSequences.

typedef sequence<unsigned long> UnsignedLongList;

Description: Used to pass a set of unsigned longs.

NucleotideSequence

circular : boolean

reverse_complement()
reverse_complement_interval()
translate_seq()
translate_seq_region()

<<Interface>>
AminoAcidSequence

<<Interface>>

LifeCycleObject
<<Interface>>

BioSequence
<<Interface>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-29

2

ReadingFrameInvalid

NucleotideSequence

NucleotideSequence extends BioSequence and represents a DNA or RNA
sequence and provides a number of operations for manipulating the sequence data.
There is an intrinsic directionality of nucleotide sequence data, from 5' to 3' .

interface NucleotideSequence : BioSequence
{

readonly attribute boolean circular;

string reverse_complement();
string reverse_complement_interval(in Interval the_interval)

raises(IntervalOutOfBounds, SeqRegionInvalid);
string translate_seq(

in short reading_frame,
out UnsignedLongList stop_locations)

raises(ReadingFrameInvalid);
string translate_seq_region(

in SeqRegion seq_region,
out UnsignedLongList stop_locations)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);
};

exception ReadingFrameInvalid
{

short invalid;
};

Description: The ReadingFrameInvalid exception is raised if the reading
frame is not between -3 and +3, excluding zero.

Return value: Returns a short containing the invalid reading frame.

readonly attribute boolean circular;

Description: The circular attribute provides a mechanism to indicate
whether a NucleotideSequence is circular, as is the case
for plasmids or certain microbial chromosomes.

Return value: Returns a TRUE if the NucleotideSequence is circular and
FALSE otherwise.
2-30 Biomolecular Sequence Analysis, v1.0 June 2001

2

string reverse_complement();

Description: reverse_complement() returns an upper-case ASCII string
consisting of the reverse complement of the given
NucleotideSequence.

Return value: Returns an upper-case ASCII string.

string reverse_complement_interval(in Interval the_interval)
raises(IntervalOutOfBounds);

Description: reverse_complement_interval() permits the retrieval of a
reverse complement string for a sub-sequence of the given
sequence defined by the Interval argument. If the_interval is
a SeqRegion and the StrandType is STRAND_MINUS, the
string returned should be taken as reverse-complemented. This
will result in a no-op (i.e., the strand_type leads to reverse-
complementing), which is then reverse-complementing due to
the semantics of the method, resulting in the same string that
would be returned from seq_interval().

Return value: Returns an upper-case ASCII string.

Exceptions: Raises IntervalOutOfBounds if the Interval's start is less
than 1 or its start+length-1 is greater than the length of the
NucleotideSequence. If the NucleotideSequence
represents circular DNA, then this exception should be raised if
the Interval’s start is less than 1 or greater than the length of
the NucleotideSequence, or if its length is greater than that
of the NucleotideSequence.

Raises SeqRegionInvalid if the_interval is an invalid
SeqRegion. Examples include an incorrect StrandType, or
an invalid CompositeSeqRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities).
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-31

2

string translate_seq(
in short reading_frame,
out UnsignedLongList stop_locations)

raises(ReadingFrameInvalid);

Description: translate_seq() returns a string representing the conceptual
amino acid translation of the nucleic acid sequence.
translate_seq() requires the reading frame in which the
translation is to be performed. The reading_frame should be
a signed integer (short) between -3 and +3, excluding zero. If
reading_frame is positive, (reading_frame - 1) nucleotides
at the beginning (5' end) of the sequence are ignored. If
reading_frame is negative, its absolute value should be
applied to the 5' end of the complementary (minus) strand.

Return value: The returned string consists of upper-case single-letter
IUPAC-IUBMB Joint Commission on Biochemical
Nomenclature (JCBN) character codes for the translated
amino acids. Any internal stop codons are represented by '*'.
The UnsignedLongList out parameter stop_locations
contains the locations of any internal stops (terminators) in
the protein translation.

Exceptions: Raises ReadingFrameInvalid if reading_frame is not
between -3 and +3, excluding zero.
2-32 Biomolecular Sequence Analysis, v1.0 June 2001

2

string translate_seq_region(
in SeqRegion seq_region,
out UnsignedLongList stop_locations)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);

Description: translate_seq_region() performs a translation of a defined region
of a NucleotideSequence specified by the SeqRegion argument.
No reading frame is necessary because the SeqRegion defines the
frame. A SeqRegion is required here instead of an interval
because non-contiguous segments of a NucleotideSequence may
need to be specified, as in the case of a DNA sequence containing
introns. If a region submitted for translation contains sub-regions, all
sub-regions are concatenated in depth-first order prior to translation.
If seq-region’s StrandType is STRAND_MINUS, the string
returned should be taken as reverse-complemented before being
translated.

Return value: The returned string consists of upper-case single-letter IUPAC-
IUBMB Joint Commission on Biochemical Nomenclature (JCBN)
character codes for the translated amino acids. Any internal stop
codons are represented by ‘*’. The UnsignedLongList out
parameter stop_locations contains the locations of any internal
stops (terminators) in the protein translation.

Exceptions: • Raises SeqRegionOutOfBounds if any contained Interval's
start is less than 1 or its start+length-1 is greater than the
length of the NucleotideSequence. If the
NucleotideSequence represents circular DNA, then this
exception should be raised if the SeqRegion’s start is less than
1 or greater than the length of the NucleotideSequence, or if
its length is greater than that of the NucleotideSequence.

• Raises SeqRegionInvalid if seq_region is invalid. Examples
include an incorrect StrandType, or an invalid
CompositeSeqRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities).
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-33

2

NucleotideSequenceList

AminoAcidSequence

AminoAcidSequence extends BioSequence and represents a protein sequence and
does not contain any operations. A reverse translation operation that produces a nucleic
acid sequence from the amino acid sequence is a complex operation that is not
straightforward to standardize at this time. There is an intrinsic directionality of protein
sequence data, from N-terminal to C-terminal.

interface AminoAcidSequence : BioSequence
{
};

AminoAcidSequenceList

2.1.12 CodeRule

CodeRule is a valuetype that defines the correspondence between a Codon and a
Residue type. The Residue member (residue) is a single ASCII character representing
an amino acid in the IUPAC-IUBMB Joint Commission on Biochemical Nomenclature
(JCBN) standard. The Codon member (codon) is an array of three Bases, which are
characters representing unambiguous nucleotides using the IUPAC-IUBMB Joint
Commission on Biochemical Nomenclature (JCBN) symbols for nucleotide
nomenclature (see Appendix A - References).

Residue

typedef sequence<NucleotideSequence> NucleotideSequenceList;

Description: Used to pass a set of NucleotideSequences.

typedef sequence<AminoAcidSequence> AminoAcidSequenceList;

Description: Used to pass a set of AminoAcidSequences.

typedef char Residue;

Description: The Residue member (residue) is a single ASCII character
representing an amino acid using the IUPAC-IUBMB Joint
Commission on Biochemical Nomenclature (JCBN) symbols
for amino acid nomenclature (see Appendix A - References).
2-34 Biomolecular Sequence Analysis, v1.0 June 2001

2

Base

Codon

CodeRule

CodeRule is a valuetype that defines the correspondence between a Codon and a
Residue type.

Figure 2-11 The CodeRule valuetype

valuetype CodeRule
{

public Codon the_codon;
public Residue the_residue;

};

typedef char Base;

Description: A Base is a character representing an unambiguous
nucleotide using the IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) symbols for nucleotide
nomenclature (see Appendix A - References).

typedef Base Codon[3];

Description: A Codon is an array of three Bases.

public Codon the_codon;

Description: The Codon member (codon) is an array of three Bases,
which are characters representing unambiguous nucleotides
using the IUPAC-IUBMB Joint Commission on Biochemical
Nomenclature (JCBN) symbols for nucleotide nomenclature
(see Appendix A - References).

Return value: Returns a Codon.

CodeRule

the_codon : Codon
the_residue : Residue

<<valuetype>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-35

2

Coding

GeneticCodeName

GeneticCodeNameList

InvalidResidue

public Residue the_residue;

Description: The Residue member (residue) is a single ASCII character
representing an amino acid using the IUPAC-IUBMB Joint
Commission on Biochemical Nomenclature (JCBN) symbols
for amino acid nomenclature (see Appendix A - References).

Return value: Returns a Residue.

typedef CodeRule Coding[64];

Description: A Coding is an array of sixty-four CodeRules. Sixty-four is
the number of combinations of the four Bases (A, G, C, U)
taken three at a time.

typedef string GeneticCodeName;

Description: A GeneticCodeName is a string that contains the name of
a currently known genetic code.

typedef sequence<GeneticCodeName> GeneticCodeNameList;

Description: Used to pass a set of GeneticCodeNames.

exception InvalidResidue
{

Residue the_residue;
unsigned long offset;

};

Description: The InvalidResidue exception is raised if the Residue is
inconsistent with the IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) single letter codes. Note
that residue may be interpreted to mean base (see Glossary).

Return value: Returns the invalid Residue and its offset within the
BioSequence.
2-36 Biomolecular Sequence Analysis, v1.0 June 2001

2

2.1.13 GeneticCode

The GeneticCodeFactory interface defines a set of const GeneticCodeName
strings that list the set of currently known genetic codes. A GeneticCode object should
be created with its name member set to one of these GeneticCodeNames. The
GeneticCode object is used for translating a string of nucleic acid bases into a string of
amino acid residues. The GeneticCodeName defines the particular Coding that is used
to convert Codons into Residues so one need only specify the GeneticCodeName
when creating a GeneticCode object from one of the known types. Codings for the
GeneticCodeNames listed below in GeneticCodeFactory can be found in
Appendix B “Genetic Codes”.

Figure 2-12 The GeneticCode interface

interface GeneticCode : CosLifeCycle::LifeCycleObject
{

readonly attribute Coding the_coding;
readonly attribute GeneticCodeName name;

Residue translate_codon(in Codon the_codon)
raises(InvalidResidue);

};

readonly attribute Coding the_coding;

Description: The coding attribute consists of an array of 64 CodeRules,
which allows the GeneticCode object to be used for
translating a string of nucleic acid bases into a string of amino
acid residues. Codings for the GeneticCodeNames listed
below in GeneticCodeFactory can be found in Appendix B.

Return value: Returns a Coding.

GeneticCode

the_coding : Coding
name : GeneticCodeName

translate_codon()

<<Interface>>

CodeRule

the_codon : Codon
the_residue : Residue

<<valuetype>>

641 641
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-37

2

2.1.14 AlignmentElement

An AlignmentElement corresponds to one ‘row’ in a traditional alignment. However
to make it general, it is represented by a wrapper that allows any Object to be used in an
Alignment. This approach allows the occurrence of one and the same Object in
different ‘rows’ (using the key), and also avoids the combinatorial problem of having
every type of BioSequence duplicated just so it can be used in an Alignment. This
approach allows other objects, not yet defined in this standard (e.g., hidden Markov
models, to be used in the alignment). Most commonly, however, AlignmentElement
will contain an element of type BioSequence.

The key provides a unique reference to each AlignmentElement to be maintained
between the client and the server of the Alignment. Notice that there may be more than
one copy of a particular Object in the Alignment. There is no proscribed semantics to
how the key is structured. The following provides examples of keys that could be used
if the Objects are BioSequences.

readonly attribute GeneticCodeName name;

Description: The name attribute should be one of the known
GeneticCodeNames listed in GeneticCodeFactory. If
the desired genetic code is not represented, an appropriate
name should be used.

Return value: Returns a GeneticCodeName.

Residue translate_codon(in Codon the_codon)
raises(InvalidResidue);

Description: translate_codon() uses coding's array of sixty-four
CodeRules to translate a string of nucleic acid bases into a
string of amino acid residues.

Return value: Returns a Residue.

Exceptions: Raises InvalidResidue if the codon is inconsistent with the
IUPAC-IUBMB Joint Commission on Biochemical
Nomenclature (JCBN) single letter codes. Note that residue is
interpreted to mean base here (see Glossary).
2-38 Biomolecular Sequence Analysis, v1.0 June 2001

2

Figure 2-13 The AlignmentElement valuetype

AlignmentElement

valuetype AlignmentElement
{

public Object element;
public SeqRegion seq_region;
public string key;

};

Table 2-3 Key Examples

Unique BioSequence Identifiers

Identifiers Example Key Set 1 Example Key Set 2

emb/X04427 emb/X04427 0

emb/XX1111 emb/XX1111 1

emb/X75541 emb/X75541 2

emb/Y10276 emb/Y10276 3

emb/X95248 emb/X95248 4

Non-unique BioSequence Identifiers (repeated sequence)

Identifiers Example Key Set 1 Example Key Set 2

emb/X04427 emb/X04427 0

emb/XX1111 emb/XX1111 1

emb/X75541 emb/X75541 2

emb/Y10276 emb/Y10276 3

emb/X95248 emb/X95248/0 4

emb/X95248 emb/X95248/1 5

AlignmentElement

element : Object
seq_region : SeqRegion
key : string

<<valuetype>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-39

2

AlignmentElementList

public Object element;

Description: The analysis that constructs the Alignment is responsible for
determining if the Object is appropriate in the given context.
Most commonly, AlignmentElement will simply contain an
element of type BioSequence.

Return value: Returns an Object.

public SeqRegion seq_region;

Description: The seq_region represents the coordinates of a particular
segment of the element (typically a BioSequence) that is
aligned in the current Alignment, and that is considered one
‘row’ in the Alignment. The coordinates are those of the
original Object, not those of the Alignment. Notice that a
particular Object might be represented more than once in the
Alignment, and seq_region will provide the information as
to the region of the Object that is used. The only valid
SeqRegionOperator is JOIN.

Return value: Returns a SeqRegion.

public string key;

Description: The key provides a unique reference to each
AlignmentElement to be maintained between the client and
the server of the Alignment. Notice that there may be more
than one copy of a particular Object in the Alignment.
There is no proscribed semantics to how the key is structured.
It is used in the get_seq_region() method in Alignment to
provide a unique key for this AlignmentElement.

Return value: Returns a string.

typedef sequence<AlignmentElement> AlignmentElementList;

Description: Used to pass a set of AlignmentElements.
2-40 Biomolecular Sequence Analysis, v1.0 June 2001

2

2.1.15 AlignmentElementIterator

AlignmentElementIterator provides a strongly typed iterator for
AlignmentElements.

Figure 2-14 AlignmentElementIterator Interface

interface AlignmentElementIterator
{

boolean next(out AlignmentElement element)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out AlignmentElementList elements)

raises(IteratorInvalid);
void reset();
void destroy();

};

boolean next(out AlignmentElement element)
raises(IteratorInvalid);

Description: The next() operation gets the next AlignmentElement in its
out parameter element and returns a boolean value. If the
iterator is at the end of the set, it returns FALSE and sets the
output element parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

AlignmentElementIterator

next()
next_n()
reset()
destroy()

<<Interface>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-41

2

2.1.16 Alignment

An Alignment is built from a set of correspondences of regions of sequences. In many
cases the sequence region is only a single residue (a single base or a single amino acid)
long, but this need not be. For example, a region of three DNA base pairs, representing a
single amino acid, is a common region size. Each correspondence, which is called a
‘column’ due to the common visual interpretation of an alignment, indicates that a
particular region of one sequence is in some manner equivalent to set of particular
regions on other sequences. The exact nature of this equivalence differs between different
alignment methods, the most common being that these regions shared a common
evolutionary ancestor. An alternative is that these regions were read from the same region
of physical DNA, as in a DNA assembly.

boolean next_n(in unsigned long how_many,
out AlignmentElementList elements)

raises(IteratorInvalid);

Description: next_n() returns AlignmentElements in the
AlignmentElementList out parameter elements,
containing at most the number specified in the first parameter
(how_many) and returns a boolean value directly. When it is
at the end of the set it returns FALSE and the elements
parameter will have length zero. In all cases the length of
elements will be the minimum of how_many and the
number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator
provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.
2-42 Biomolecular Sequence Analysis, v1.0 June 2001

2

Alignment representation in sequence analysis has been dominated by text based
representation of the correspondences as columns, with sequences running horizontally
and each correspondence being represented by a column. Padding characters (often ‘-’)
are placed in sequences to align the residues with the correct correspondences in other
sequences.

This provides a compact representation of the alignment, but relies heavily on single
characters being the basis of the correspondence, which makes representing more
complex but still common types of alignment challenging. Examples include alignments
of DNA and protein sequences and alignments of profile Hidden Markov Models and
protein sequences. In addition, text based representation cannot convey any additional
information about the nature of the correspondence, which is an issue for more complex
alignments. A final drawback to this method of representing an alignment is that it is
generally hard to examine only part of the alignment, as the entire text must be processed
before the correspondences between positions can be represented explicitly in computer
terms.

An IDL definition of an alignment can provide a much richer description of an
alignment, but it must be kept in mind that the most common use of an alignment will be
to view it, probably in a form very close to Table 2-4. Generating a similar text
representation must be simple operation for a client of the Alignment interface.

For complex alignments it is convenient to associate with each correspondence the
assumption on which the correspondence is made. For example, when aligning a protein
sequence to a DNA sequence, it is important to be able to distinguish insertions in the
DNA sequence which are due to sequencing errors in the determination of the DNA
sequence and insertions due to the evolutionary insertion of bases in the DNA sequence.
This implies that each correspondence needs an indication of the assumptions made for
the grouping of regions on sequences. Such assumptions are generally made during the
alignment process. As such, they are not a fixed property of one particular sequence in
the alignment, but they rather belong to the alignment as a whole. Therefore, it is better
to associate the assumption(s) with the correspondences, rather than with the sequences.

Although many of the alignments involve BioSequences, there are a number which
also involve other objects, such as regular expressions and hidden Markov models.
These objects are not part of this specification, and, in any case, it is unlikely that any

Table 2-4 Multiple Alignment of AminoAcidSequences

seq1 10 RSDGFAFVEF 19

seq2 15 RT-GFAYVEM 23

seq3 20 RTHGFAFVEM 29

Correspondence 1: (Seq1, position 10, Seq2, position 15, Seq3 position 20)

Correspondence 2: (Seq1, position 11, Seq2, position 16, Seq3 position 21)

Correspondence 3: (Seq1, position 12, Seq2, none, Seq3 position 22)

...

Correspondence 10: (Seq1, position 19, Seq2, position 23, Seq3 position 29)
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-43

2

specification could cover all possible objects that will be designed in this field. The
proposed specification can handle any CORBA object through the AlignmentElement
wrapper.

The proposed Alignment interface can model simple and complex alignments in a
complete way. The object provides accessors to retrieve all the correspondences and the
individual regions inside a correspondence. There is no explicit correspondence or
column object, as it seems of little value. Users will generally be using a set of
correspondences (i.e., an alignment).

We recognize that there are many uses of an alignment where the client does not want to
process the actual alignment information itself, but simply wants to display it to a user or
pass it onto programs which are based around old text based alignment formats. The
optional CharacterAlignmentEncoder interface provides a way for a client to get a
more traditional view of an Alignment. In addition, this interface lets the server take
responsibility for the representation of an Alignment. This way, servers can offer clients
a complete solution, including representation. For complex alignments that are non-trivial
to render, this is an important mechanism. We cannot stress too highly that the
representation of an Alignment, especially that of gaps, is the job of the
CharacterAlignmentEncoder and not that of the corresponding Alignment.

AlignmentObjectInvalid

ElementNotInAlignment

exception AlignmentObjectInvalid
{

Object element;
string reason;

};

Description: The AlignmentObjectInvalid exception is raised if the
Object is not valid for this Alignment. This exception will
be raised by analyses that construct Alignments.

Return value: Returns the invalid Object and a string containing the reason
the element is invalid.

exception ElementNotInAlignment
{
};

Description: The ElementNotInAlignment exception is raised if the
AlignmentElement is not associated with this Alignment.
2-44 Biomolecular Sequence Analysis, v1.0 June 2001

2

IndexOutOfBounds

Alignment

Figure 2-15 The Alignment Interface

interface Alignment : CosLifeCycle::LifeCycleObject
{

typedef string AlignType;
typedef sequence<AlignType> AlignTypeList;

const AlignType PROTEIN = "PROTEIN";
const AlignType NON_PROTEIN = "NON_PROTEIN";
const AlignType SEQUENCE_ERROR = "SEQUENCE_ERROR";
const AlignType UNKNOWN = "UNKNOWN";

exception IndexOutOfBounds
{

unsigned long invalid;
Interval valid;

};

Description: The IndexOutOfBounds exception is raised if an index is
out of bounds.

Return value: Returns the invalid unsigned long and the valid Interval.
The valid Interval contains the largest allowed Interval for
the index.

AlignmentElement

element : Object
seq_region : SeqRegion
key : string

<<valuetype>>

Alignment

PROTEIN : AlignType = "PROTEIN"
NON_PROTEIN : AlignType = "NON_PROTEIN"
SEQUENCE_ERROR : AlignType = "SEQUENCE_ERROR"
UNKNOWN : AlignType = "UNKNOWN"

get_alignment_elements()
num_rows()
num_columns()
get_seq_region()
get_align_type_by_column()

<<Interface>>

1..*1 1..*1

LifeCycleObject
<<Interface>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-45

2

AlignmentElementList get_alignment_elements(
in unsigned long start,
in unsigned long how_many,
out AlignmentElementIterator the_rest)

raises(IndexOutOfBounds);

unsigned long num_rows();
unsigned long num_columns();

SeqRegion get_seq_region(
in string key,
in Interval the_interval)

raises(ElementNotInAlignment, IntervalOutOfBounds,
SeqRegionInvalid);

CompositeSeqRegion get_seq_region(
in string key,
in Interval the_interval)

raises(ElementNotInAlignment, IntervalOutOfBounds,
SeqRegionInvalid);

AlignType get_align_type_by_column(in unsigned long col)
raises(IndexOutOfBounds);

};

typedef string AlignType;

Description: An AlignType is a string that contains the type of the
assumption made for this grouping of regions on sequences.
Several kinds of AlignTypes are given below.

typedef sequence<AlignType> AlignTypeList;

Description: Used to pass a set of AlignTypes.
2-46 Biomolecular Sequence Analysis, v1.0 June 2001

2

const AlignType PROTEIN = "PROTEIN";
const AlignType NON_PROTEIN = "NON_PROTEIN";
const AlignType SEQUENCE_ERROR = "SEQUENCE_ERROR";
const AlignType UNKNOWN = "UNKNOWN";

Description: Common alignment assumptions are provided as simple strings, with
constant types as a starting point for a list of assumptions.
UNKNOWN indicates that no additional information is provided
with the alignment, as would be the case for (e.g., Smith-Waterman
alignments). PROTEIN indicates that this column does encode (part
of) a protein. This can be either because it contains one or more
amino acid residues, or more importantly, because the column
consists of triplet(s) of DNA bases that encode amino acid(s). A very
common region size is 1 for amino acids, and 3 for nucleotide
triplets. However, more complex regions (e.g., a transmembrane
protein sequence segment) are entirely possible.
SEQUENCE_ERROR indicates that the column contains bases that
are considered to be erroneous.

For example, in aligning a protein to a DNA sequence it is possible
to distinguish insertions due to evolutionary processes (PROTEIN)
from insertions due to sequencing error (SEQUENCE_ERROR).
More involved alignment methods, for example hidden Markov
models, could use the AlignType string to provide a sensible
decoding of the alignment, and in these cases, the AlignType may
be more informative than the SeqRegion provided by the
Alignment.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-47

2

AlignmentElementList get_alignment_elements(
in unsigned long start,
in unsigned long how_many,
out AlignmentElementIterator the_rest)

raises(IndexOutOfBounds);

Description: This method allows the retrieval of AlignmentElements. They
correspond to the rows in a traditional textually represented
alignment; typically, the AlignmentElements are sequences. Uses
the list/iterator hybrid to provide access to the
AlignmentElements. A list of no more than how_many elements
starting at start is returned as the direct result. The remaining
elements, if any, are available through the iterator returned in the
out parameter. This is particularly useful for Assemblies, where
for a particular region, only a few sequences from thousands are
relevant.

Return value: Returns an AlignmentElementList containing no more than
how_many elements starting at start. The
AlignmentElementIterator provides access to any remaining
elements to the right of those in AlignmentElementList.

Exceptions: Raises IndexOutOfBounds if start is less than 1 or more than the
number of aligned elements. This upper limit is returned by
num_rows().

unsigned long num_rows();

Description: The Alignment interface provides access to the
AlignmentElements that make up the alignment. The key data
member uniquely identifies an AlignmentElement within the
Alignment. The total number of AlignmentElements is given by
num_rows().

Return value: Returns an unsigned long.

unsigned long num_columns();

Description: The Alignment interface provides access to the correspondences
that make the alignment. The correspondences are numbered 1 to
length inclusive, and can be considered the equivalent of alignment
columns in a traditional text view of an alignment. The total number
of correspondences is given by num_columns()

Return value: Returns an unsigned long.
2-48 Biomolecular Sequence Analysis, v1.0 June 2001

2

SeqRegion get_seq_region(
in string key,
in Interval the_interval)

raises(ElementNotInAlignment, IntervalOutOfBounds,
SeqRegionInvalid);

Description: The input parameter key unambiguously identifies an
AlignmentElement within the Alignment. For each
correspondence, each AlignmentElement will have a particular
SeqRegion, returned by get_seq_region(). A null SeqRegion
indicates that there is no region for this correspondence (i.e., a gap).
Multiple gaps are represented by multiple SeqRegions. To find the
“length” of a gap, it is necessary to check other correspondences in
the column. A null SeqRegion contains no length information.

The input parameter the_interval represents an interval in the
coordinates of the Alignment, not that of the underlying Object. If
the interval includes a gap at the start, middle or end, the returned
SeqRegion does not show it, because the start and end of it are in
the coordinate system of the underlying Object which is unaware of
any gaps. Instead, the corresponding segment of the underlying
Object is indicated. It is assumed that the numbering of the
correspondences is relevant, i.e., that the second correspondence
comes after the first, with all the intervals abutting. This allows an
Interval of correspondences to be a valid concept.

Return value: Returns a SeqRegion.

Exceptions: • Raises ElementNotInAlignment if the AlignmentElement is
not associated with this Alignment.

• Raises IntervalOutOfBounds if the Interval’s start is less than
1 or if its start+length-1 is greater than the total number of
correspondences given by num_columns().

• Raises SeqRegionInvalid if the_interval is an invalid
SeqRegion. Examples include an incorrect StrandType, or an
invalid CompositeSeqRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities).
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-49

2

CompositeSeqRegion get_gaps(
in string key,
in Interval the_interval)

raises(ElementNotInAlignment, IntervalOutOfBounds,
SeqRegionInvalid);

Description: The input parameter key unambiguously identifies an
AlignmentElement within the Alignment. For each
correspondence, each AlignmentElement will have gaps returned
by get_gaps(). A null CompositeSeqRegion indicates that there
are no gaps.

The input parameter the_interval represents an interval in the
coordinates of the Alignment, not that of the underlying Object.
It is assumed that the numbering of the correspondences is relevant
(i.e., that the second correspondence comes after the first, with all
the intervals abutting). This allows an Interval of correspondences
to be a valid concept.

Return value: Returns a CompositeSeqRegion. The start and length of each
constituent SeqRegion indicates the location, in the coordinate
system of the underlying Object, and number of gaps at that
location. Gaps of length 0 are not allowed. A start equal to 0 would
be before the first base. A start equal to N is a gap between bases N
and N+1. So start equal to the Object’s length would be after the
last base.

Exceptions: • Raises ElementNotInAlignment if the AlignmentElement is
not associated with this Alignment.

• Raises IntervalOutOfBounds if the Interval's start is less than
1 or if its start+length-1 is greater than the total number of
correspondences given by num_columns().

• Raises SeqRegionInvalid if the_interval is an invalid
SeqRegion. Examples include an incorrect StrandType, or an
invalid CompositeSeqRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities).
2-50 Biomolecular Sequence Analysis, v1.0 June 2001

2

AlignmentList

2.1.17 Alignment Examples

The precise interpretation of this specification for alignments is illustrated with a number
of examples. Firstly a standard protein multiple alignment is provided, and secondly a
more complicated, protein to EST sequence tag alignment is presented.

Protein Multiple Alignment

This alignment is a fragment of an alignment from the Pfam database. A text
representation of this alignment is given below.

The Alignment object which represented this would return four AlignmentElement
objects from the get_alignment_elements() method. The first object would have the
AminoAcidSequence Object that presented the sequence CAJ1_YEAST in the

AlignType get_align_type_by_column(in unsigned long col)
raises(IndexOutOfBounds);

Description: get_align_type_by_column() provides a mechanism to
retrieve the assumptions used for this correspondence from the
Alignment. There is not additional machinery in an
Alignment itself to help interpret these AlignTypes. For
specific instances of an Alignment constructor, a client that
uses the constructor should read the documentation as to how
to interpret the AlignType, as it will be part of definition of
what the Alignment constructor actually provides. For clients
that do not want to interpret the Alignment but would like a
sensible representation of it to pass onto other programs or
visually to a user, the AlignmentEncoders,
CharacterAlignmentEncoder, and
SingleCharacterAlignmentEncoder will provide an entire
server-side solution for the client.

Return value: Returns an AlignType.

Exceptions: Raises IndexOutOfBounds if col is less than 1 or greater
than the total number of correspondences given by
num_columns().

typedef sequence<Alignment> AlignmentList;

Description: Used to pass a set of Alignments.

CAJ1_YEAST/6-24 EYYDILGIKP-------EATPTEIKK
YIS4_YEAST/6-24 EYYDLLGVST-------TASSIEIKK
YNW7_YEAST/4-22 CYYELLGVET-------HASDLELKK
YGM8_YEAST/79-104 NLYDVLELPTPLDVHTIYDDLPQIKR
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-51

2

element attribute and the SeqRegion would have the start attribute of 6 and a length
attribute of 19. Calling the get_seq_region() method with this AlignmentElement
and an Interval of start 1, length 1 would provide a SeqRegion with start 6,
length 1, being the sixth residue in CAJ1_YEAST, a Glutamate ‘E’. Table 2-5 shows the
results of this call to get_seq_region() and several other similar calls, each with
different input Intervals. All calls are for the sequence CAJ1_YEAST.

The get_align_type_by_column() method would return either UNKNOWN or
PROTEIN depending on the implementer. Potentially, if the alignment had been made
with a more involved method, for example, a hidden Markov model with a notion of
structural state, the structural state that was used in each column could be returned.

Of course, for clients whose main purpose is display, the laborious business of querying
each position for the region and then looking into the sequence object for the residue at
that position is a convoluted route for retrieving the information. If the implementer
provided a CharacterAlignmentEncoder for this Alignment, then a text
representation of the Alignment could be quickly retrieved and displayed, potentially
using the large-scale transport methods provided in
SingleCharacterAlignmentEncoder as this alignment has a single character per
correspondence. Once displayed, a client could quickly interpret a query on a particular
character in the alignment, as it would simply have to call get_seq_region() with the
column position to retrieve the position in the sequence.

Protein vs. EST alignment

This example is of a drosophila protein compared to an EST sequence with a frame-shift
error occurring, as one would find in GCG's FrameSearch, FASTX, and Wise2. A
fragment of the alignments is shown in Table 2-6.

Table 2-5 Call Results

input Interval output SeqRegion string

start length start length

1 1 6 1 a Glutamate 'E’

2 1 7 1 a Tyrosine 'Y’

2 3 7 3 the peptide "YYD"

11 1 null a gap '-'

12 1 null a gap '-'

12 10 16 4 the peptide "EATP"
2-52 Biomolecular Sequence Analysis, v1.0 June 2001

2

The Alignment would have two AlignmentElements, one with the EST and one with
the protein. Querying the Alignment with the get_seq_region() method would reveal
the sequence regions listed above for each of the sequences. More importantly, the
get_align_type_by_column() method for Column 22 would return a type
SEQUENCE_ERROR, whereas for the other columns it would return a type
PROTEIN. This way a program can confidently interpret the alignment. To indicate how
important this information is, imagine if in Column 22 three bases were aligned. It
would be ambiguous as to whether this indicated a protein insertion of a codon or a
sequence error. The AlignType here provides this additional information.

The ability to associate a CharacterAlignmentEncoder with a more complex
Alignment as this example is provides a way for clients to retrieve both the Alignment
and a desired interpretation of the Alignment from the server, which facilitates writing
alignment clients separately from actual alignment constructors. The
AlignmentEncoders provide a route for at least a character-based representation of the
Alignment to be provided by the server, however complex the alignment method is. In
this case, one might have one AlignmentEncoder, which provided the amino acids
from the protein as three letter codes lined up with three bases from the EST. A different
encoder might use one letter amino acid codes throughout, and not show the DNA
sequence at all, choosing to encode the sequencing error with a special character.

2.1.18 Assembly

Assembly extends Alignment. Assembly contains no additional functionality. The
technical domain is evolving rapidly and it’s not clear what additional functionality will
be necessary. However, the submitters believe it is important to establish the relationship
between Assembly and Alignment.

Table 2-6 Protein vs. EST Alignment

column 20 21 22 23

EST 111-113
(codon)

114-116
(codon)

117 118-120
(codon)

protein 55 56 57

AlignType PROTEIN PROTEIN SEQUENCE_ ERROR PROTEIN
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-53

2

Figure 2-16 The Assembly Interface

interface Assembly : Alignment
{
};

2.1.19 SearchHit

The SearchHit valuetype provides a generic mechanism to return the results of some
type of query against a collection of BioSequence objects. The SearchHit provides
information about a particular sequence that was found and associated information for
this hit relevant to this particular search, for an example, a score.

The SearchHit valuetype is used as a base class for the SimilaritySearchHit, which
provides a specialization of the SearchHit for similarity searches.

Figure 2-17 The SearchHit valuetype

SearchHit

valuetype SearchHit
{

public Identifier id;
public CosPropertyService::Properties hit_info;

};

Alignment
<<Interface>>

Assembly
<<Interface>>

SearchHit

id : Identifier
hit_info : CosPropertyService::Properties

<<valuetype>>
2-54 Biomolecular Sequence Analysis, v1.0 June 2001

2

The following BLAST example illustrates the type of information that would be placed
in hit_info. The example is taken from NCBI’s BLAST help page. The associated
alignment information is discussed in Section 2.1.20, “SimilaritySearchHit,” on
page 2-57.

SearchHitList

public Identifier id;

Description: The Identifier string identifies a sequence. It can be used
with a BioSequenceIdentifierResolver to access the actual
sequence.

Return value: Returns an Identifier string. id shall not be empty.

public CosPropertyService::Properties hit_info;

Description: The hit_info provides additional information that is not
contained in the BioSequence but is relevant from the
perspective of the search. Common information would be the
score in a similarity comparison, the statistical probability of
the hit or the relevance of the hit in a text search. Content and
type of information returned will vary with analysis type.

Return value: Returns a CosPropertyService::Properties.

 Smallest
 Sum
 High Probability

Sequences producing High-scoring Segment Pairs: Score P(N) N

sp|P05120|PAI2_HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2, P... 176 1.8e-65 4

[information deleted - ed.]

>sp|P05120|PAI2_HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2, PLACENTAL (PAI-2)
 (MONOCYTE ARG- SERPIN).
 Length = 415

 Score = 176 (80.2 bits), Expect = 1.8e-65, Sum P(4) = 1.8e-65
 Identities = 38/89 (42%), Positives = 50/89 (56%)

typedef sequence<SearchHit> SearchHitList;

Description: Used to pass a set of SearchHits.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-55

2

SearchHitIterator

Figure 2-18 The SearchHitIterator Interface

interface SearchHitIterator
{

boolean next(out SearchHit hit)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out SearchHitList hit_list)

raises(IteratorInvalid);
void reset();
void destroy();

};

boolean next(out SearchHit hit)
raises(IteratorInvalid);

Description: The next() operation gets the next SeachHit in its out
parameter hit and returns a boolean value. If the iterator is at
the end of the set, it returns FALSE and sets the output hit
parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

SearchHitIterator

next()
next_n()
reset()
destroy()

<<Interface>>
2-56 Biomolecular Sequence Analysis, v1.0 June 2001

2

2.1.20 SimilaritySearchHit

The SimilaritySearchHit valuetype provides a specialization of the SearchHit
valuetype for searches of BioSequence collections that are on the basis of similarity,
such as BLAST, Fasta, or Smith-Waterman searches.

The member alignment_list is added to the SearchHit valuetype. This
AlignmentList contains the details of a similarity search hit in the form of an
Alignment. This list will frequently be of length one, but can be used to group all
“local” hits pertaining to a single found sequence into one SimilaritySearchHit. That
is, one SimilaritySearchHit may contain one “local match” or several “local
matches” on one sequence. What is most appropriate depends on the analysis that was
run to obtain the hits, and/or on the objective of a service; an implementation must
document these semantics.

boolean next_n(in unsigned long how_many,
out SearchHitList hit_list)

raises(IteratorInvalid);

Description: next_n() returns SearchHits in the SearchHitList out
parameter hit_list, containing at most the number specified in
the first parameter (how_many) and returns a boolean value
directly. When it is at the end of the set it returns FALSE and
the hit_list parameter will have length zero. In all cases the
length of hit_list will be the minimum of how_many and
the number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator provides
access to streaming data).

void destroy();

Description: destroy() frees the iterator object.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-57

2

Figure 2-19 The SimilaritySearchHit valuetype

valuetype SimilaritySearchHit : SearchHit
{

public AlignmentList alignment_list;
};

The following BLAST example illustrates the alignment information that may be
associated with a SimilaritySearchHit. The example is taken from NCBI’s BLAST
help page.

public AlignmentList alignment_list;

Description: This attribute provides a list of Alignments that are
associated with this hit. Not all hits may have alignments. In
the Alignments, the sequence or object that was used as a
query is the first AlignmentElement and the other objects
(in most cases, just one) follow.

If the alignment_list contains more than one Alignment,
each Alignment shall involve the same two objects, i.e., only
two Identifiers are used within one SimilaritySearchHit,
one for the initial query_sequence (see SearchHit) and
one for the current target sequence.

Since each Alignment in a SimilaritySearchHit is a
pairwise alignment, the result of the Alignment’s
num_rows() method shall be 2.

Return value: Returns a list of Alignments.

SearchHit
<<valuetype>>

Alignment
<<Interface>>SimilaritySearchHit

alignment_list : AlignmentList

<<valuetype>>
0..*0..*
2-58 Biomolecular Sequence Analysis, v1.0 June 2001

2

SimilaritySearchHitList

This AlignmentList contains the details of a similarity search hit in the form of an
Alignment. This list will frequently be of length one, but can be used to group all
“local” hits pertaining to a single found sequence into one SimilaritySearchHit. That
is, one SimilaritySearchHit may contain one “local match” or several “local matches”
on one sequence. What is most appropriate depends on the analysis that was run to obtain
the hits, and/or on the objective of a service; an implementation must document these
semantics.

2.1.21 BioSequenceIdentifierResolver

The BioSequenceIdentifierResolver provides a mechanism to retrieve the actual
BioSequence object from a collection search, using the Identifier string.

Implementers may want to consider multiply inheriting from
BioSequenceIdentifierResolver interface with the optional BioSequence factories
to provide sequence creation for an Identifier.

>sp|P05120|PAI2_HUMAN PLASMINOGEN ACTIVATOR INHIBITOR-2, PLACENTAL (PAI-2)
 (MONOCYTE ARG- SERPIN).
 Length = 415

 Score = 176 (80.2 bits), Expect = 1.8e-65, Sum P(4) = 1.8e-65
 Identities = 38/89 (42%), Positives = 50/89 (56%)

Query: 1 QIKDLLVSSSTDLDTTLVLVNAIYFKGMWKTAFNAEDTREMPFHVTKQESKPVQMMCMNN 60
 +I +LL S D DT +VLVNA+YFKG WKT F + PF V + PVQMM +
Sbjct: 180 KIPNLLPEGSVDGDTRMVLVNAVYFKGKWKTPFEKKLNGLYPFRVNSAQRTPVQMMYLRE 239

Query: 61 SFNVATLPAEKMKILELPFASGDLSMLVL 89
 N+ + K +ILELP+A L+L
Sbjct: 240 KLNIGYIEDLKAQILELPYAGDVSMFLLL 268

typedef sequence<SimilaritySearchHit> SimilaritySearchHitList;

Description: Used to pass a set of SimilaritySearchHits.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-59

2

Figure 2-20 BioSequenceIdentifierResolver Interface

interface BioSequenceIdentifierResolver
{

BioSequence resolve(in Identifier id)
raises (IdentifierNotFound, IdentifierNotResolvable,

IdentifierNotUnique);
};

2.1.22 SearchResult

The SearchResult interface provides the complete results of a single search against a
collection of BioSequences, including the individual hits and their associated scores
and information about the search as whole. This interface is designed to represent results
from both similarity queries on a database (such as BLAST, Fasta or Smith-Waterman)
and text based searches on a database of BioSequences.

BioSequence resolve(in Identifier id)
raises (IdentifierNotFound, IdentifierNotResolvable,

IdentifierNotUnique);

Description: The resolve() method provides the BioSequence for the
particular Identifier.

Return value: Returns a BioSequence.

Exceptions: • Raises IdentifierNotFound if the database and the
identifier within the database can be resolved but the
Identifier is not present.

• Raises IdentifierNotResolvable if the database and the
identifier within the database cannot be resolved such that
the Identifier cannot even be searched for.

• Raises IdentifierNotUnique if the Identifier specification
is ambiguous and returns more than one object.

BioSequenceIdentifierResolver

resolve()

<<Interface>>
2-60 Biomolecular Sequence Analysis, v1.0 June 2001

2

Figure 2-21 SearchResult Interface

SearchResult

The SearchResult interface inherits from the BioSequenceIdentifierResolver to
allow the retrieval of the actual BioSequences from the collection. It also inherits from
CosLifeCycle::LifeCycleObject to allow management of its resources.

interface SearchResult :
BioSequenceIdentifierResolver,
CosLifeCycle::LifeCycleObject

{
readonly attribute BioSequence query_sequence;
readonly attribute CosPropertyService::Properties collection_info;
StringList get_property_names();

unsigned long num_hits();

SearchHitList get_hits(
in unsigned long start,
in unsigned long how_many,
out SearchHitIterator the_rest)

raises (IndexOutOfBounds);
};

readonly attribute BioSequence query_sequence;

Description: This attribute provides the query sequence that was used in
this SearchResult. It may be null in the case of non
similarity based searches.

Return value: Returns a BioSequence.

BioSequenceIdentifierResolver
<<Interface>>

LifeCycleObject
<<Interface>>

BioSequence
<<Interface>>

SearchHit
<<valuetype>>

SearchHitIterator
<<Interface>>

SearchResult
query_sequence : BioSequence
collect ion_info : CosPropertyService::Properties

get_property_names()
num_hits()
get_hits()

<<Interface>>

11

0..*0..*

11
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-61

2

The following BLAST example illustrates the type of information that could be placed in
collection_info. The example is taken from NCBI’s BLAST help page.

readonly attribute CosPropertyService::Properties collection_info;

Description: The collection_info provides additional information that is
not contained in the SearchHits but is relevant from the
perspective of the search. Common information would be the
database Identifier, the number of sequences in the database,
and some statistical information about the search.

Return value: Returns a CosPropertyService::Properties.

BLASTP 1.4.6MP [13-Jun-94] [Build 13:58:36 Sep 22 1994]

Reference: Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers,
and David J. Lipman (1990). Basic local alignment search tool. J. Mol. Biol.
215:403-10.

Query = pir|A01243|DXCH 232 Gene X protein - Chicken (fragment)
 (232 letters)

Database: SWISS-PROT Release 29.0
38,303 sequences; 13,464,008 total letters.

Searching..done

 Observed Numbers of Database Sequences Satisfying
 Various EXPECTation Thresholds (E parameter values)

 Histogram units: = 31 Sequences : less than 31 sequences

EXPECTation Threshold
(E parameter)
 |
 V Observed Counts-->
 10000 4863 1861 |===
 6310 3002 782 |=========================
 3980 2220 812 |==========================
 2510 1408 303 |=========
 1580 1105 393 |============
 1000 712 179 |=====
 631 533 161 |=====

 398 372 80 |==
 251 292 73 |==
 158 219 50 |=
 100 169 32 |=
 63.1 137 18 |:
 39.8 119 9 |:
 25.1 110 6 |:
 15.8 104 9 |:
2-62 Biomolecular Sequence Analysis, v1.0 June 2001

2

 >>>>>>>>>>>>>>>>>>>>> Expect = 10.0, Observed = 95 <<<<<<<<<<<<<<<<<
 10.0 95 4 |:
 6.31 91 3 |:
 3.98 88 1 |:
 2.51 87 3 |:
 1.58 84 0 |
 1.00 84 2 |:

[SearchHit information deleted – ed.]

WARNING: HSPs involving 86 database sequences were not reported due to the
 limiting value of parameter B = 9.

Parameters:
 V=15
 B=9
 H=1

 -ctxfactor=1.00
 E=10

 Query ----- As Used ----- ----- Computed ----
 Frame MatID Matrix name Lambda K H Lambda K H
 +0 0 BLOSUM62 0.316 0.132 0.370 same same same

 Query
 Frame MatID Length Eff.Length E S W T X E2 S2
 +0 0 232 232 10. 57 3 11 22 0.22 33

Statistics:
 Query Expected Observed HSPs HSPs
 Frame MatID High Score High Score Reportable Reported
 +0 0 62 (28.2 bits) 1191 (542.5 bits) 330 24

 Query Neighborhd Word Excluded Failed Successful Overlaps
 Frame MatID Words Hits Hits Extensions Extensions Excluded
 +0 0 4988 5661199 1146395 4504598 10187 13

 Database: SWISS-PROT Release 29.0
 Release date: June 1994
 Posted date: 1:29 PM EDT Jul 28, 1994
 # of letters in database: 13,464,008
 # of sequences in database: 38,303
 # of database sequences satisfying E: 95
 No. of states in DFA: 561 (55 KB)
 Total size of DFA: 110 KB (128 KB)
 Time to generate neighborhood: 0.03u 0.01s 0.04t Real: 00:00:00
 No. of processors used: 8
 Time to search database: 32.27u 0.78s 33.05t Real: 00:00:04
 Total cpu time: 32.33u 0.91s 33.24t Real: 00:00:05

WARNINGS ISSUED: 2
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-63

2

The method get_hits() returns a list of SearchHits. If this concerns
SimilaritySearchHits, then these elements will in turn contain a list of Alignments.
The latter can be used to group all “local” hits pertaining to a single found sequence into
one SimilaritySearchHit. That is, one SimilaritySearchHit may contain one “local
match” or several “local matche”' on one sequence. What is most appropriate depends on
the analysis that was run to obtain the hits, and/or on the objective of a service. An
implementation must document these semantics.

2.1.23 AnnotationFactory (Optional)

AnnotationFactory provides a means of creating new Annotation and
SeqAnnotation objects. This permits a clean separation of factory issues from the
Annotation objects themselves. Annotations are created via the factory method

StringList get_property_names();

Description: The names of the hit_info properties in SearchHit are
available here so that clients have access to them before
processing the list of SearchHits.

Return value: Returns a StringList.

unsigned long num_hits();

Description: Provides the number of hits in this SearchResult.

Return value: Returns an unsigned long.

SearchHitList get_hits(
in unsigned long start,
in unsigned long how_many,
out SearchHitIterator the_rest)

raises (IndexOutOfBounds);

Description: Uses the list/iterator hybrid to provide access to the actual
SearchHits, which could be SimilaritySearchHits. A list
of no more than how_many hits starting at start is returned
as the direct result. The remaining elements, if any, are
available through the iterator returned in the out parameter.

Return value: Returns a SearchHitList.

Exceptions: Raises IndexOutOfBounds if the index is less than 1 or
greater than the number of hits in the SearchResult. This
upper limit is returned by num_hits().
2-64 Biomolecular Sequence Analysis, v1.0 June 2001

2

create_annotation(), which accepts all of the components. Similarly,
SeqAnnotations are created via the factory method create_seq_annotation(),
which accepts all of the components.

AnnotationFactory is an optional compliance point of this specification.

Figure 2-22 AnnotationFactory Interface

interface AnnotationFactory
{

Annotation create_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers);

SeqAnnotation create_seq_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers,
in SeqRegion seq_region)

raises(SeqRegionInvalid);
};

Annotation create_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers);

Description: The create_annotation() operation creates an Annotation
and populates it with the supplied attributes. No error
checking is performed.

Return value: Returns an Annotation with the appropriate content.

Annotat ionFactory

create_annotation()
create_seq_annotation()

<<Interface>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-65

2

2.1.24 BioSequence factories (Optional)

Sequence factories permit a clean separation of object vending from BioSequence data
model issues. BioSequence factories are an optional compliance point of this
specification.

BioSequence factories provide a means of creating new NucleotideSequence and
AminoAcidSequence objects. Sequences are created via the factory method
create_sequence(), which accepts all of the components.

Implementers may want to consider mixing in the BioSequenceIdentifierResolver
interface to provide sequence creation for an Identifier.

Figure 2-23 BioSequence Factories

SeqAnnotation create_seq_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers,
in SeqRegion seq_region)

raises(SeqRegionInvalid);

Description: The create_seq_annotation() operation creates a
SeqAnnotation and populates it with the supplied attributes.
No error checking is performed.

Return value: Returns a SeqAnnotation with the appropriate content.

Exceptions: Raises SeqRegionInvalid if the seq_region parameter is
deemed invalid. Examples include an incorrect StrandType,
or an invalid CompositeSeqRegion (e.g., one that has a
wrong SeqRegionOperator or contains overlaps or
circularities).

NucleotideSequenceFactory

create_sequence()

<<Interface>>
AminoAcidSequenceFactory

create_sequence()

<<Interface>>
2-66 Biomolecular Sequence Analysis, v1.0 June 2001

2

SeqAnnotationOutOfBounds

NucleotideSequenceFactory

NucleotideSequenceFactory provides a means of creating new
NucleotideSequences. NucleotideSequenceFactory is an optional compliance
point of this specification.

interface NucleotideSequenceFactory
{

NucleotideSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in boolean circular,
in AnnotationList annotations)

raises (InvalidResidue, SeqAnnotationOutOfBounds, SeqRegionInvalid);
};

exception SeqAnnotationOutOfBounds
{

SeqAnnotation invalid;
Interval valid;

};

Description: The SeqAnnotationOutOfBounds exception is raised if a
SeqAnnotation's SeqRegion has a start less than 1 or if
its start+length-1 is greater than the length of the
BioSequence. The exception is also raised if a nested sub-
region of a CompositeSeqRegion is invalid. If a
BioSequence represents circular DNA, then this exception
should be raised if the Interval’s start is less than 1 or
greater than the length of the BioSequence, or if its length
is greater than that of the BioSequence.

Return value: Returns the invalid SeqAnnotation and the valid Interval.
The valid Interval has start equal to 1 and length equal to
the length of the BioSequence, the largest allowed Interval.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-67

2

AminoAcidSequenceFactory

AminoAcidSequenceFactory provides a means of creating new
AminoAcidSequences. AminoAcidSequenceFactory is an optional compliance
point of this specification.

interface AminoAcidSequenceFactory
{

AminoAcidSequence create_sequence(
in string name,
in Identifier id,
in string description,

NucleotideSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in boolean circular,
in AnnotationList annotations)

raises (InvalidResidue, SeqAnnotationOutOfBounds,
SeqRegionInvalid);

Description: The create_sequence() operation creates a
NucleotideSequence and populates it with the supplied
attributes. No error checking is performed except on the
residues, which must be valid IUPAC-IUBMB Joint
Commission on Biochemical Nomenclature (JCBN) single
letter codes. The residues need not be upper-case.
BioSequenceIdentifierResolver can be mixed in to
provide lookup based on sequence ID.

Return value: Returns a NucleotideSequence with the appropriate
content.

Exceptions: • Raises InvalidResidue if the string of residues is
inconsistent with the IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) single letter codes.
Note that residue is interpreted to mean base here (see
Glossary).

• Raises SeqAnnotationOutOfBounds if annotations
contains a SeqAnnotation whose seq_region is out of
bounds for this BioSequence.

• Raises SeqRegionInvalid if the annotations parameter
contains SeqAnnotation having a seq_region attribute
that is deemed invalid. Examples include an incorrect
StrandType, or an invalid CompositeSeqRegion (e.g.,
one that has a wrong SeqRegionOperator or contains
overlaps or circularities).
2-68 Biomolecular Sequence Analysis, v1.0 June 2001

2

in string residues,
in Basis the_basis,
in AnnotationList annotations)

raises (InvalidResidue, SeqAnnotationOutOfBounds, SeqRegionInvalid);
};

2.1.25 BioSequence iterators (Optional)

Iterator specifications are defined for iterating over a set of BioSequence,
NucleotideSequence, or AminoAcidSequence objects. NucleicAcidIterator and
AminoAcidIterator are specialized versions of BioSequenceIterator having the
same operations but with signatures specialized for the corresponding BioSequence

AminoAcidSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in AnnotationList annotations)

raises (InvalidResidue, SeqAnnotationOutOfBounds,
SeqRegionInvalid);

Description: The create_sequence() operation creates an
AminoAcidSequence and populates it with the supplied
attributes. No error checking is performed except on the
residues, which must be valid IUPAC-IUBMB Joint
Commission on Biochemical Nomenclature (JCBN) single
letter codes. The residues need not be upper-case.
BioSequenceIdentifierResolver can be mixed in to
provide lookup based on sequence ID.

Return value: Returns a AminoAcidSequence with the appropriate
content.

Exceptions: • Raises InvalidResidue if the string of residues is
inconsistent with the IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) single letter codes.

• Raises SeqAnnotationOutOfBounds if annotations
contains a SeqAnnotation whose seq_region is out of
bounds for this BioSequence.

• Raises SeqRegionInvalid if the annotations parameter
contains SeqAnnotation having a seq_region attribute
that is deemed invalid. Examples include an incorrect
StrandType, or an invalid CompositeSeqRegion (e.g.,
one that has a wrong SeqRegionOperator or contains
overlaps or circularities).
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-69

2

sub-types. BioSequenceIterator and BioSequenceList may contain both
NucleotideSequences and AminoAcidSequences. Homogeneity in the sequence
types of iterators and lists can be achieved using the specialized versions.

Figure 2-24 BioSequence Iterators

BioSequenceIterator

BioSequenceIterator provides a strongly typed iterator for BioSequences.

interface BioSequenceIterator
{

boolean next(out BioSequence seq)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
 out BioSequenceList seqs)
raises(IteratorInvalid);

void reset();
void destroy();

};

boolean next(out BioSequence seq)
raises(IteratorInvalid);

Description: The next() operation gets the next BioSequence in its out
parameter seq and returns a boolean value. If the iterator is at
the end of the set, it returns FALSE and sets the output seq
parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and TRUE
otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

BioSequenceIterator

next()
next_n()
reset()
destroy()

<<Interface>>
NucleotideSequenceIterator

next()
next_n()
reset ()
destroy()

<<Interface>>
AminoAcidSequenceIterator

next()
next_n()
reset()
destroy()

<<Interface>>
2-70 Biomolecular Sequence Analysis, v1.0 June 2001

2

NucleotideSequenceIterator

NucleotideSequenceIterator provides a strongly typed iterator for
NucleotideSequences.

interface NucleotideSequenceIterator
{

boolean next(out NucleotideSequence seq)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out NucleotideSequenceList seqs)

raises(IteratorInvalid);
void reset();
void destroy();

};

boolean next_n(in unsigned long how_many,
out BioSequenceList seqs)

raises(IteratorInvalid);

Description: next_n() returns BioSequences in the BioSequenceList
out parameter seqs, containing at most the number specified
in the first parameter (how_many) and returns a boolean
value directly. When it is at the end of the sequence set it
returns FALSE and the seqs parameter will have length zero.
In all cases the length of seqs will be the minimum of
how_many and the number of sequences remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator
provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-71

2

boolean next(out NucleotideSequence seq)
raises(IteratorInvalid);

Description: The next() operation gets the next NucleotideSequence in
its out parameter seq and returns a boolean value. If the
iterator is at the end of the set, it returns FALSE and sets the
output seq parameter to null.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

boolean next_n(in unsigned long how_many,
out NucleotideSequenceList seqs)

raises(IteratorInvalid);

Description: next_n() returns NucleotideSequences in the
NucleotideSequenceList out parameter seqs, containing
at most the number specified in the first parameter
(how_many) and returns a boolean value directly. When it is
at the end of the sequence set it returns FALSE and the seqs
parameter will have length zero. In all cases the length of
seqs will be the minimum of how_many and the number of
sequences remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator provides
access to streaming data).

void destroy();

Description: destroy() frees the iterator object.
2-72 Biomolecular Sequence Analysis, v1.0 June 2001

2

AminoAcidSequenceIterator

AminoAcidSequenceIterator provides a strongly typed iterator for
AminoAcidSequences.

interface AminoAcidSequenceIterator
{

boolean next(out AminoAcidSequence seq)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out AminoAcidSequenceList seqs)

raises(IteratorInvalid);
void reset();
void destroy();

};

boolean next(out AminoAcidSequence seq)
raises(IteratorInvalid);

Description: The next() operation gets the next AminoAcidSequence in its out
parameter seq and returns a boolean value. If the iterator is at the
end of the set, it returns FALSE and sets the output seq parameter to
null.

Return value: Returns FALSE if the iterator is at the end of the set and TRUE
otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g., the
underlying collection has changed).

boolean next_n(in unsigned long how_many,
out AminoAcidSequenceList seqs)

raises(IteratorInvalid);

Description: next_n() returns AminoAcidSequences in the
AminoAcidSequenceList out parameter seqs, containing at most
the number specified in the first parameter (how_many) and returns a
boolean value directly. When it is at the end of the sequence set it
returns FALSE and the seqs parameter will have length zero. In all
cases the length of seqs will be the minimum of how_many and the
number of sequences remaining.

Return value: Returns FALSE if the iterator is at the end of the set and TRUE
otherwise.

Exceptions: Raises IteratorInvalid if the iterator is no longer valid (e.g., the
underlying collection has changed).
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-73

2

2.1.26 GeneticCodeFactory (Optional)

GeneticCodeFactory provides a means of creating new GeneticCodes.
GeneticCodeFactory is an optional compliance point of this specification.

InvalidGeneticCodeName

GeneticCodeFactory

The GeneticCodeFactory interface defines a set of const GeneticCodeName
strings that list the set of currently known genetic codes. The genetic_code_names
attribute provides access to the supported GeneticCodeNames.
create_genetic_code() creates the appropriate GeneticCode. Codings for the
GeneticCodeNames listed below can be found in Appendix B.

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator
provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.

exception InvalidGeneticCodeName
{

string invalid_name;
};

Description: The InvalidGeneticCodeName exception is raised when an
invalid GeneticCodeName is passed to
GeneticCodeFactory’s create_genetic_code().

Return value: Returns a string containing the invalid name.
2-74 Biomolecular Sequence Analysis, v1.0 June 2001

2

Figure 2-25 GeneticCodeFactory Interface

interface GeneticCodeFactory
{

const GeneticCodeName STANDARD = "standard";
const GeneticCodeName BACTERIAL = "bacterial";
const GeneticCodeName YEAST_MITOCHONDRIAL = "yeast mitochondrial";
const GeneticCodeName VERTEBRATE_MITOCHONDRIAL = "vertebrate mitochondrial";
const GeneticCodeName MOLD_MITOCHONDRIAL = "mold mitochondrial";
const GeneticCodeName INVERTEBRATE_MITOCHONDRIAL = "invertebrate mitochondrial";
const GeneticCodeName ECHINODERM_MITOCHONDRIAL = "echinoderm mitochondrial";
const GeneticCodeName ASCIDIAN_MITOCHONDRIAL = "ascidian mitochondrial";
const GeneticCodeName FLATWORM_MITOCHONDRIAL = "flatworm mitochondrial";
const GeneticCodeName CILIATE_NUCLEAR = "ciliate nuclear";
const GeneticCodeName EUPLOTID_NUCLEAR = "euplotid nuclear";
const GeneticCodeName ALT_YEAST_NUCLEAR = "alternative yeast nuclear";
const GeneticCodeName BLEPHARISMA_MACRONUCLEAR = "blepharisma macronuclear";

readonly attribute GeneticCodeNameList genetic_code_names;
GeneticCode create_genetic_code(in GeneticCodeName name)

raises(InvalidGeneticCodeName);
};

GeneticCodeFactory

STANDARD : GeneticCodeName = "standard"
BACTERIAL : GeneticCodeName = "bacterial"
YEAST_MITOCHONDRIAL : GeneticCodeName = "yeast mitochondrial"
VERTEBRATE_MITOCHONDRIAL : Genet icCodeType = "vertebrate mitochondrial"
MOLD_MITOCHONDRIAL : GeneticCodeName = "mold mitochondrial"
INVERTEBRATE_MITOCHONDRIAL : GeneticCodeName = "invertebrate mitochondrial"
ECHINODERM_MITOCHONDRIAL : GeneticCodeName = "echinoderm mitochondrial"
ASCIDIAN_MITOCHONDRIAL : GeneticCodeName = "ascidian mitochondrial"
FLATWORM_MITOCHONDRIAL : GeneticCodeName = "flatworm mitochondrial"
CILIATE_NUCLEAR : GeneticCodeName = "ciliate nuclear"
EUPLOTID_NUCLEAR : GeneticCodeName = "euplotid nuclear"
ALT_YEAST_NUCLEAR : GeneticCodeName = "alternative yeast nuclear"
BLEPHARISMA_MACRONUCLEAR : GeneticCodeName = "blepharisma macronuclear"
genetic_code_names : GeneticCodeNameList

create_genetic_code()
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-75

2

2.1.27 CharacterAlignmentEncoder (Optional)

The CharacterAlignmentEncoder and its specialization
SingleCharacterAlignmentEncoder are optional parts of the specification that
facilitate the representation of the Alignment for thin clients. It is important that these

const GeneticCodeName STANDARD = "standard";
const GeneticCodeName BACTERIAL = "bacterial";
const GeneticCodeName YEAST_MITOCHONDRIAL = "yeast mitochondrial";
const GeneticCodeName VERTEBRATE_MITOCHONDRIAL = "vertebrate mitochondrial";
const GeneticCodeName MOLD_MITOCHONDRIAL = "mold mitochondrial";
const GeneticCodeName INVERTEBRATE_MITOCHONDRIA = "invertebrate mitochondrial";
const GeneticCodeName ECHINODERM_MITOCHONDRIAL = "echinoderm mitochondrial";
const GeneticCodeName ASCIDIAN_MITOCHONDRIAL = "ascidian mitochondrial";
const GeneticCodeName FLATWORM_MITOCHONDRIAL = "flatworm mitochondrial";
const GeneticCodeName CILIATE_NUCLEAR = "ciliate nuclear";
const GeneticCodeName EUPLOTID_NUCLEAR = "euplotid nuclear";
const GeneticCodeName ALT_YEAST_NUCLEAR = "alternative yeast nuclear";
const GeneticCodeName BLEPHARISMA_MACRONUCLEAR = "blepharisma macronuclear";

Description: The GeneticCodeFactory interface defines a set of const GeneticCodeName
strings that list the set of currently known genetic codes. The GeneticCodeName
defines the particular Coding that is used to convert Codons into Residues so one
need only specify the GeneticCodeName when creating a GeneticCode object from
one of the known types. Codings for the GeneticCodeNames listed above can be
found in Appendix B.

readonly attribute GeneticCodeNameList genetic_code_names;

Description: The genetic_code_names attribute provides access to the
supported GeneticCodeNames.

Return value: Returns a GeneticCodeNameList.

GeneticCode create_genetic_code(in GeneticCodeName name)
raises(InvalidGeneticCodeName);

Description: create_genetic_code() creates the appropriate GeneticCode
corresponding to the GeneticCodeName. Codings for the
GeneticCodeNames listed above can be found in Appendix B.

Return value: Returns a GeneticCode.

Exceptions: Raises InvalidGeneticCodeName if the GeneticCodeName is
not supported (i.e., returned by the genetic_code_names
attribute).
2-76 Biomolecular Sequence Analysis, v1.0 June 2001

2

interfaces have a proposed standard, as it will allow clients that do not want to investigate
Alignments directly to get useful information for passing on to a user or to another, text
format based application.

A CharacterAlignmentEncoder’s role is to produce string text similar to that in
Table 2-4 on pa ge2-43, with columns of text indicating the correspondences and the row
indicating each sequence. The exact format isn’t specified or standardized. The factory
that makes the encoder will govern the precise nature of the encoding, such as what pad
character is used. The CharacterAlignmentEncoder might have more than one
character per column, allowing the transmission of three-letter amino acid code or more
than one base of DNA sequence in a single column. To allow the client to format the
resulting data, max_column_width() returns the maximum length of characters in a
column. Rows and columns are numbered starting at 1.

The Alignment and the CharacterAlignmentEncoder interfaces work well for both
view-based clients and programmatic clients. The interfaces provide viewing clients with
an easy, low cost route of gathering the alignment data and displaying it to the user. The
coordinate system of the string encoded alignment maps to the underlying alignment,
allowing the client to retrieve specific regions of the alignment of interest. Since the
Interval valuetype can be used to retrieve only portions of the BioSequences, these
very complex objects can remain on the server, with the clients displaying only portions
of interest to the user. For programmatic clients wanting to use the alignment as the
basis of further analysis, the Alignment interface provides a mapping system of moving
from one sequence to another sequence via the alignment.

CharacterAlignmentEncoder is an optional compliance point of this specification.

Figure 2-26 CharacterAlignmentEncoder Interface

interface CharacterAlignmentEncoder
{

readonly attribute Alignment the_alignment;

unsigned long num_rows(); // number of aligned

CharacterAlignmentEncoder
the_alignment : Alignment

num_rows()
num_columns()
get_name()
get_all_names()
get_cell_contents()
is_cell_a_gap()
get_cell_width()
max_column_width()
max_width()

<<Interface>>

Alignment
<<Interface>>1 0..*1 0..*
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-77

2

// objects. Delegate
unsigned long num_columns(); // Delegate to Alignment

string get_name(in unsigned long row) // first object is in row
raises(IndexOutOfBounds); // one etc...

StringList get_all_names(); // all the Names

string get_cell_contents(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

boolean is_cell_a_gap(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

unsigned long get_cell_width(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

unsigned long max_column_width(in unsigned long col)
raises(IndexOutOfBounds);

unsigned long max_width();
};

readonly attribute Alignment the_alignment;

Description: Provides access to the underlying Alignment.

Return value: Returns an Alignment.

unsigned long num_rows();

Description: Provides access to the number of rows
(AlignmentElements) in this Alignment. The return value
of num_rows() is the same as that of the Alignment’s
num_rows().

Return value: Returns an unsigned long.

unsigned long num_columns();

Description: Provides access to the total number of correspondences in this
Alignment. The return value of num_columns() is the
same as that of the Alignment’s num_columns().

Return value: Returns an unsigned long.
2-78 Biomolecular Sequence Analysis, v1.0 June 2001

2

string get_name(in unsigned long row)
raises(IndexOutOfBounds);

Description: Provides access to the name associated with the
AlignmentElement referenced by row.

Return value: Returns a string.

Exceptions: Raises IndexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows().

StringList get_all_names();

Description: Provides access to the names associated with each of the
AlignmentElements.

Return value: Returns a StringList, one string per AlignmentElement.

string get_cell_contents(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

Description: Provides access to the string associated with a single cell.
The cell corresponds to the correspondence col in the
AlignmentElement referenced by row.

Return value: Returns a string.

Exceptions: Raises IndexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows().

Also raises IndexOutOfBounds if col is less than 1 or
greater than the number of columns. This upper limit is
returned by num_columns().
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-79

2

boolean is_cell_a_gap(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

Description: Indicates if a single cell represents a gap in the alignment. The cell
corresponds to the correspondence col in the AlignmentElement
referenced by row.

Return value: Returns a boolean.

Exceptions: Raises IndexOutOfBounds if row is less than 1 or greater than the
number of rows. This upper limit is returned by num_rows().

Also raises IndexOutOfBounds if col is less than 1 or greater than
the number of columns. This upper limit is returned by
num_columns().

unsigned long get_cell_width
(in unsigned long row,
in unsigned long col)

raises(IndexOutOfBounds);

Description: To allow the client to format the resulting data, get_cell_width()
returns the width of a single cell. The cell corresponds to the
correspondence col in the AlignmentElement referenced by row.

Return value: Returns an unsigned long.

Exceptions: Raises IndexOutOfBounds if row is less than 1 or greater than the
number of rows. This upper limit is returned by num_rows().

Also raises IndexOutOfBounds if col is less than 1 or greater than
the number of columns. This upper limit is returned by
num_columns().

unsigned long max_column_width(in unsigned long col)
raises(IndexOutOfBounds);

Description: To allow the client to format the resulting data,
max_column_width() returns the maximum length of characters in
a column defined by col.

Return value: Returns an unsigned long.

Exceptions: Raises IndexOutOfBounds if col is less than 1 or greater than the
number of columns. This upper limit is returned by
num_columns().
2-80 Biomolecular Sequence Analysis, v1.0 June 2001

2

2.1.28 SingleCharacterAlignmentEncoder (Optional)

A SingleCharacterAlignmentEncoder is one in which each correspondence is
guaranteed to have only a single character for all AlignmentElements. Therefore,
more bulk transport mechanisms can be employed, using strings to get rows of the
Alignment or the entire Alignment as a block of text.

SingleCharacterAlignmentEncoder is an optional compliance point of this
specification.

Figure 2-27 SingleCharacterAlignmentEncoder Interface

interface SingleCharacterAlignmentEncoder : CharacterAlignmentEncoder
{

string get_row(in unsigned long row)
raises(IndexOutOfBounds);

string get_row_interval(in unsigned long row, in Interval cols)
raises(IndexOutOfBounds, IntervalOutOfBounds,

SeqRegionInvalid);
StringList get_row_column_interval(in Interval rows, in Interval cols)

raises(IntervalOutOfBounds, SeqRegionInvalid);
StringList get_entire_alignment(); // probably the most common!

};

unsigned long max_width();

Description: To allow the client to format the resulting data, max_width()
returns the maximum length of characters in the widest
column.

Return value: Returns an unsigned long.

CharacterAlignmentEncoder
<<Interface>>

SingleCharacterAl ignmentEncoder

get_row()
get_row_interval()
get_row_column_interval()
get_entire_alignment()

<<Interface>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-81

2

string get_row(in unsigned long row)
raises(IndexOutOfBounds);

Description: Provides the text for all of a single AlignmentElement as a
string. row identifies the AlignmentElement. There is one
character per cell.

Return value: Returns a string.

Exceptions: Raises IndexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows(), inherited from
CharacterAlignmentEncoder.

string get_row_interval(in unsigned long row, in Interval cols)
raises(IndexOutOfBounds, IntervalOutOfBounds, SeqRegionInvalid);

Description: Provides the text for part of a single AlignmentElement as a
string. row identifies the AlignmentElement. cols allows
a subset of the correspondences to be referenced. There is one
character per cell.

Return value: Returns a string.

Exceptions: • Raises IndexOutOfBounds if row is less than 1 or greater
than the number of rows. This upper limit is returned by
num_rows(), inherited from
CharacterAlignmentEncoder.

• Raises IntervalOutOfBounds if cols’ start is less than 1 or
start+length-1 is greater than the number of columns. This
upper limit is returned by num_cols(), inherited from
CharacterAlignmentEncoder.

• Raises SeqRegionInvalid if the interval is an invalid
SeqRegion. Examples include an incorrect StrandType, or
an invalid CompositeSeqRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities).
2-82 Biomolecular Sequence Analysis, v1.0 June 2001

2

2.1.29 AlignmentEncoder factories (Optional)

AlignmentEncoder factories provide a means of creating new
CharacterAlignmentEncoder and SingleCharacterAlignmentEncoder objects.
This permits a clean separation of factory issues from the AlignmentEncoder objects
themselves.

AlignmentEncoder factories are an optional compliance point of this specification.

StringList get_row_column_interval(in Interval rows, in Interval cols)
raises(IntervalOutOfBounds, SeqRegionInvalid);

Description: Provides the sub-block of text for the portion of the
Alignment defined by rows and cols Intervals as an array
of strings. rows allows a subset of the
AlignmentElements to be referenced. cols allows a subset
of the correspondences to be referenced. There is one
character per cell.

Return value: Returns a StringList, one string per row.

Exceptions: • Raises IntervalOutOfBounds if rows’ start is less than 1
or start+length-1 is greater than the number of rows. This
upper limit is returned by num_rows(), inherited from
CharacterAlignmentEncoder.

• Also raises IntervalOutOfBounds if cols’ start is less than
1 or start+length-1 is greater than the number of columns.
This upper limit is returned by num_cols(), inherited from
CharacterAlignmentEncoder.

• Raises SeqRegionInvalid if the interval is an invalid
SeqRegion. Examples include an incorrect StrandType, or
an invalid CompositeSeqRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities).

StringList get_entire_alignment();

Description: Provides the block of text for the entire Alignment as an
array of strings. There is one character per cell.

Return value: Returns a StringList, one string per row.
June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-83

2

Figure 2-28 AlignmentEncoder Factories

CannotEncodeAlignment

CharacterAlignmentEncoderFactory

CharacterAlignmentEncoderFactory provides a means of creating new
CharacterAlignmentEncoders for an Alignment.
CharacterAlignmentEncoderFactory is an optional compliance point of this
specification.

interface CharacterAlignmentEncoderFactory
{

CharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

};

exception CannotEncodeAlignment
{

string reason;
};

Description: The CannotEncodeAlignment exception is raised if an
AlignmentEncoder can not be created for this Alignment.

Return value: Returns a string containing the reason the
AlignmentEncoder could not be created for this
Alignment.

CharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

Description: The create() operation creates a
CharacterAlignmentEncoder for the given Alignment.

Return value: Returns a CharacterAlignmentEncoder.

Exceptions: Raises CannotEncodeAlignment if a
CharacterAlignmentEncoder cannot be created for this
Alignment.

Charac terA lignm entEncoderFac tory

c reat e()

<< Interface>>
S i ngle Ch arac terA li gnm e ntEncode rFactory

c re ate()

<< Interface>>
2-84 Biomolecular Sequence Analysis, v1.0 June 2001

2

SingleCharacterAlignmentEncoderFactory

SingleCharacterAlignmentEncoderFactory provides a means of creating new
SingleCharacterAlignmentEncoders for an Alignment.
SingleCharacterAlignmentEncoderFactory is an optional compliance point of this
specification.

interface SingleCharacterAlignmentEncoderFactory
{

SingleCharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

};

2.2 Module DsLSRAnalysis

The DsLSRAnalysis module defines the component interfaces for supporting sequence
analysis through a generic analysis design. The module encapsulates the required
elements for analysis. It provides the means to interrogate analyses inputs, output, and
functionality. An analysis can be executed asynchronously as well as synchronously
based on the client invocation. Executing analyses can be monitored by subscribing to an
event channel or polling for state.

The Client is responsible for:

• determining which Biomolecular Sequence Analysis (BSA) analysis tool (e.g.,
BLAST, Smith-Waterman, etc.) it wants to employ;

• locating an AnalysisService that represents the BSA analysis tool;
• retrieving a handle to an AnalysisInstance object that implements the BSA

analysis tool;
• providing the AnalysisInstance with complete input information;
• invoking the AnalysisInstance to perform its function (via a synchronous or

asynchronous mechanism);
• retrieving results generated by the BSA analysis tool execution; and
• when it no longer requires an AnalysisInstance (and its related input and output

objects), invoking their removal from the system.

SingleCharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

Description: The create() operation creates a
SingleCharacterAlignmentEncoder for the given
Alignment.

Return value: Returns a SingleCharacterAlignmentEncoder.

Exceptions: Raises CannotEncodeAlignment if a
SingleCharacterAlignmentEncoder cannot be created for
this Alignment.
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-85

2

A Client can learn about processing events that occur during the execution of an
AnalysisInstance either by asking the AnalysisInstance for its most recent
processing event or listening to an event channel on which the AnalysisInstance
publishes its events. A Client can also ask for an AnalysisInstance’s execution status.

2.2.1 General

//File: DsLSRAnalysis

#ifndef _DS_LSR_ANALYSIS_IDL_
#define _DS_LSR_ANALYSIS_IDL_

#pragma prefix "omg.org"

#include <orb.idl>
#include <CosPropertyService.idl>
#include <CosEventChannelAdmin.idl>
#include <CosLifeCycle.idl>
#include <TimeBase.idl>

module DsLSRAnalysis
{

// …
};

#endif // _DS_LSR_ANALYSIS_IDL_

#pragma prefix "omg.org"

To prevent name pollution and name clashing of IDL types, this module (and all modules
defined in this specification) uses the pragma prefix that is the OMG’s DNS name.

#include <orb.idl>

CORBA::TypeCode is used in InputPropertySpec and OutputPropertySpec.

#include <CosPropertyService.idl>

Properties are used in AnalysisService and AnalysisInstance.

#include <CosEventChannelAdmin.idl>

EventChannel is used in AnalysisInstance.

#include <CosLifeCycle.idl>

AnalysisInstance inherits from LifeCycleObject.
2-86 Biomolecular Sequence Analysis, v1.0 June 2001

2

#include <TimeBase.idl>

TimeT is used in TimeProgressEvent and JobControl. UtcT is used in
JobControl.

StringList

2.2.2 AnalysisType

An AnalysisType provides information for a client to determine the types of BSA
analyses available in the system. It can also be used to distinguish the type of analysis
offered by an AnalysisService. An AnalysisType provides information sufficient to
determine whether two AnalysisServices create identical BSA AnalysisInstances.
Such information may be of use to a computation management subsystem such as a load
balancing or queuing system. To provide enough information to distinguish analysis
types, there are several attributes of an AnalysisType.

It is important to note that the AnalysisType is defined as a valuetype that can be
extended by a vendor requiring additional attributes.

Figure 2-29 AnalysisType Valuetype

valuetype AnalysisType
{

public string type;
public string name;
public string supplier;
public string version;
public string installation;
public string description;

};

typedef sequence<string> StringList;

Description: Used to pass and return a set of strings.

AnalysisType

type : string
name : string
supplier : string
version : string
installation : string
description : string

<<valuetype>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-87

2

public string type;

Description: The type attribute is used to specify both the correct
classification of the analysis as well as a qualifier to specify
category and additionally, provides information about the
inputs to the analysis. The classification of the analysis could
come from the BSA specified classification hierarchy as well
as it could come from a hierarchy defined by a certain
installation. A ‘/’ is used to delimit the qualifier and a ‘.’ is
used to delimit the general input kind. An example of a
specified type attribute would be
alignment.collection/assembly.

Return value: Returns a string.

public string name;

Description: The name attribute is used to further identify the analysis in
the system.

Return value: Returns a string.

public string supplier;

Description: The supplier attribute is used to identify the supplier or
vendor of a custom analysis implementation.

Return value: Returns a string.

public string version;

Description: The version attribute specifies the particular form or
variation of the analysis.

Return value: Returns a string.

public string installation;

Description: The installation attribute is used to differentiate similar
analysis implementations at a particular installation.

Return value: Returns a string.
2-88 Biomolecular Sequence Analysis, v1.0 June 2001

2

2.2.3 InputPropertySpec

An InputPropertySpec is used to provide metadata that describes required and
optional input parameters used to perform an analysis. The InputPropertySpec
provides an input name and CORBA::TypeCode to allow the client to interrogate the
interface repository for more information about the analysis parameter. Additionally,
there are some useful attributes that help the client determine if a parameter is optional or
required, the default value of an input parameter if one exists, and finally some possible
values useful for validation or user-interface presentation.

Figure 2-30 InputPropertySpec Valuetype

InputPropertySpec

valuetype InputPropertySpec
{

public string name;
public CORBA::TypeCode type;
public boolean mandatory;
public any default_value;
public any possible_values;

};

public string description;

Description: The description attribute is used to provide useful
descriptive information about the AnalysisInstances
created by the AnalysisService.

Return value: Returns a string.

InputPropertySpec

name : string
type : CORBA::TypeCode
mandatory : boolean
default_value : any
possible_values : any

<<valuetype>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-89

2

public string name;

Description: This is the name of the parameter that can be submitted to
initialize the analysis.

Return value: Returns a string.

public CORBA::TypeCode type;

Description: This is a CORBA::TypeCode allowing the client to find
more detailed information in the interface repository about
the data type.

Return value: Returns a CORBA::TypeCode.

public boolean mandatory;

Description: The mandatory attribute specifies if the analysis requires the
parameter with TRUE and if the parameter is optional with
FALSE.

Return value: Returns a boolean.

public any default_value;

Description: This attribute specifies the default value if one is applicable.
If no default value is applicable, return a null in the any.

Return value: Returns a CORBA any.

public any possible_values;

Description: This attribute specifies suggested allowed values that are
applicable. If no possible values are applicable, return a null
in the any.

Return value: Returns a CORBA any.
2-90 Biomolecular Sequence Analysis, v1.0 June 2001

2

InputPropertySpecList

2.2.4 OutputPropertySpec

An OutputPropertySpec is used to provide metadata that describes each output value
generated by an analysis. The OutputPropertySpec provides an output argument
name and CORBA::TypeCode to allow the client to interrogate the interface
repository for more information about the output value.

Figure 2-31 OutputPropertySpec Valuetype

OutputPropertySpec

valuetype OutputPropertySpec
{

public string name;
public CORBA::TypeCode type;

};

typedef sequence<InputPropertySpec> InputPropertySpecList;

Description: Used to pass a set of InputPropertySpecs.

public string name;

Description: This is the name of the identifier that contains an analysis
output value.

Return value: Returns a string.

public CORBA::TypeCode type;

Description: This is a CORBA::TypeCode allowing the client to find
more detailed information in the interface repository about the
data type.

Return value: Returns a CORBA::TypeCode.

OutputPropertySpec

name : string
type : CORBA::TypeCode

<<valuetype>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-91

2

OutputPropertySpecList

2.2.5 AnalysisState

There are five defined analysis states:

1. CREATED - created but not yet invoked.

2. RUNNING – invoked.

3. COMPLETED – execution ended normally.

4. TERMINATED_BY_REQUEST – execution was terminated by a user request.

5. TERMINATED_BY_ERROR – execution terminated abnormally.

When an AnalysisInstance is first created it will be in the CREATED state. When
the AnalysisInstance is successfully run() it will move into the Running state. In
due course, the AnalysisInstance will then enter either the COMPLETED,
TERMINATED_BY_REQUEST or TERMINATED_BY_ERROR state.

Note that an AnalysisInstance in the TERMINATED_BY_REQUEST or
TERMINATED_BY_ERROR states may still have (partial, incomplete) results that can
be retrieved by the client. There is no obligation that an implementation provides results
in these two cases. Further, the results for an analysis that is in one of these two states is
likely to be different than for an analysis that ran to normal completion. It is
recommended that client software convey this information to the end-user.

Figure 2-32 AnalysisState Enumeration

enum AnalysisState
{

CREATED, // Instance has been created but not yet executed.
RUNNING, // The analysis instance is running.
COMPLETED, // The instance has completed execution.
TERMINATED_BY_REQUEST,// The instance was terminated by user request.
TERMINATED_BY_ERROR // The instance terminated due to an error.

};

typedef sequence<OutputPropertySpec> OutputPropertySpecList;

Description: Used to pass a set of OutputPropertySpecs.

AnalysisState

CREATED
RUNNING
COMPLETED
TERMINATED_BY_REQUEST
TERMINATED_BY_ERROR

<<enum>>
2-92 Biomolecular Sequence Analysis, v1.0 June 2001

2

2.2.6 AnalysisEvent

There are five defined types of analysis events. They all inherit from the base valuetype,
which has a single message string. For all events the string should give some free-form
text description of the current progress.

• StateChangedEvent
• HeartbeatProgressEvent
• PercentProgressEvent
• StepProgressEvent
• TimeProgressEvent

Figure 2-33 AnalysisEvent Valuetype

valuetype AnalysisEvent
{

public string message;
};

CREATED CREATED should be used when the
AnalysisInstance has been created but not yet
invoked.

RUNNING RUNNING should be used when the
AnalysisInstance has been invoked.

COMPLETED COMPLETED should be used to indicate that the
execution of the AnalysisInstance ended normally.

TERMINATED_BY_REQUEST TERMINATED_BY_REQUEST should be used to
indicate that the execution of the AnalysisInstance
was terminated by a user request.

TERMINATED_BY_ERROR TERMINATED_BY_ERROR should be to indicate
that the execution of the AnalysisInstance was
terminated abnormally.

AnalysisEvent

message : string

<<valuetype>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-93

2

2.2.7 Sub-types of AnalysisEvent

If an analysis has a non-null event channel, then it must publish StateChangedEvents
onto that channel whenever the analysis enters a new state (apart from the CREATED)
state.

The frequency of publication of other events onto the event channel is considered a
quality of implementation issue. There is no restriction on the ordering of the events
published onto the event channel.

An analysis may also publish other events (not necessarily derived from
AnalysisEvent) onto the event channel. Clients, therefore, must be capable of dealing
with unknown events (e.g., by discarding them).

Figure 2-34 Sub-types of AnalysisEvent

public string message;

Description: For all events message should give some free-form text
description of the current progress.

Return value: Returns a string.

St ateChang edEvent

previou s_s tat e : An alys is S ta te
new_s tat e : Ana ly s is S ta te

< <va luety p e> >

He artbea tP rogres s E vent
<<value type >>

P ercent Progress E vent

pe rcen tag e : float

<<va lue type >>

St ep Progres sE vent

to ta l_step s : unsigned long
s teps _c om ple ted : uns igned lon g

< <va luety p e> >

An a ly sisE vent

m es sag e : st ring

< <va lue typ e> >

An a ly sisS t ate

CRE ATE D
RUN NIN G
CO M PL ETE D
TE RM IN A TED _BY _R EQ UE ST
TE RM IN A TED _BY _E RROR

< <enum >>
2

Tim eProgres sE vent

t im e_rem aining : Tim e Base ::Tim eT

< <va lue typ e> >
2-94 Biomolecular Sequence Analysis, v1.0 June 2001

2

StateChangedEvent

StateChangedEvent indicates that an AnalysisInstance has changed from one of
the five defined AnalysisStates to another. StateChangedEvent is truncatable to
AnalysisEvent.

If an analysis has a non-null event channel, then it must publish StateChangedEvents
onto that channel whenever the analysis enters a new state (apart from the CREATED)
state.

valuetype StateChangedEvent : truncatable AnalysisEvent
{

public AnalysisState previous_state;
public AnalysisState new_state;

};

HeartbeatProgressEvent

HeartbeatProgressEvent indicates that an AnalysisInstance is still alive and
running. HeartbeatProgressEvent is truncatable to AnalysisEvent.

valuetype HeartbeatProgressEvent : truncatable AnalysisEvent
{
};

PercentProgressEvent

PercentProgressEvent provides information regarding the relative amount of work
completed by an AnalysisInstance in terms of percentage complete. The percentage
parameter must be greater or equal to 0 and less than or equal to 100.
PercentProgressEvent is truncatable to AnalysisEvent.

valuetype PercentProgressEvent : truncatable AnalysisEvent
{

public float percentage;
};

public AnalysisState previous_state;

Description: Provides the previous state of the AnalysisInstance.

Return value: Returns an AnalysisState.

public AnalysisState new_state;

Description: Provides the new state of the AnalysisInstance.

Return value: Returns an AnalysisState.
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-95

2

TimeProgressEvent

TimeProgressEvent indicates the estimated completion time relative to the current
time. There is no requirement that the estimated completion time decreases!
TimeProgressEvent is truncatable to AnalysisEvent.

valuetype TimeProgressEvent : truncatable AnalysisEvent
{

public TimeBase::TimeT time_remaining;
};

StepProgressEvent

StepProgressEvent indicates the total number of steps to be executed by an
AnalysisInstance and the number of steps completed so far. Multiple
StepProgressEvents with the same progress string must have the same total number
of steps. The steps_completed parameter must be less than or equal to the
total_steps parameter. StepProgressEvent is truncatable to AnalysisEvent.

valuetype StepProgressEvent : truncatable AnalysisEvent
{

public unsigned long total_steps;
public unsigned long steps_completed;

};

public float percentage;

Description: percentage must be greater or equal to 0 and less than or
equal to 100.

Return value: Returns a float.

public TimeBase::TimeT time_remaining;

Description: Indicates the estimated completion time relative to the current
time.

Return value: Returns a TimeBase::TimeT.

public unsigned long total_steps;

Description: Indicates the total number of steps to be executed by the
AnalysisInstance. The steps_completed parameter must
be less than or equal to the total_steps parameter.

Return value: Returns an unsigned long.
2-96 Biomolecular Sequence Analysis, v1.0 June 2001

2

2.2.8 AnalysisService

An AnalysisService is a logical representation of a particular type of a BSA analysis
tool available within a system. An AnalysisService provides enough information to
distinguish the service it provides from those offered by other AnalysisServices.

An AnalysisService provides metadata that describes input to its AnalysisInstances
and the output generated by its AnalysisInstances. Metadata describing input and
output parameters is available to the client in either IDL valuetypes or both IDL
valuetypes and XML strings. If both are used, the information available in the IDL
structures and XML strings must not be contradictory. Obviously there is some
information, such as constraints expressed in OCL (Object Constraint Language), that
will only be available in the XML strings. Metadata is required for a compliant
implementation.

An AnalysisService creates and returns references to AnalysisInstance objects that
implement the BSA analysis tool it represents. Arguments to create an
AnalysisInstance are in the form of CosPropertyService::Properties. Before
returning an AnalysisInstance, the input arguments must be checked for correctness
(according to the criteria represented in the metadata describing the AnalysisService's
input parameters).

The client that receives the returned reference to an AnalysisInstance is responsible
for the lifecycle management of that instance along with the objects populating the
AnalysisInstance’s input parameters and output parameters.

public unsigned long steps_completed;

Description: Indicates the number of steps completed so far. The
steps_completed parameter must be less than or equal to
the total_steps parameter.

Return value: Returns an unsigned long.
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-97

2

Figure 2-35 AnalysisService Interface

MetaData

DoesNotExistException

AnalysisService

interface AnalysisService
{

const string AnalysisTypeTag = "TAG_ANALYSIS_TYPE";
const string InputPropertiesTag = "TAG_INPUT_PROPERTIES";
const string OutputPropertiesTag = "TAG_OUTPUT_PROPERTIES";

readonly attribute StringList metadata_tags;
MetaData describe(in string tagname)

raises (DoesNotExistException);

readonly attribute AnalysisType type;
readonly attribute InputPropertySpecList input_metadata;
readonly attribute OutputPropertySpecList output_metadata;

AnalysisInstance create_analysis (in CosPropertyService::Properties input)
raises (CosPropertyService::MultipleExceptions);

};

typedef string MetaData;

Description: Used to pass and return a string containing XML metadata.

exception DoesNotExistException { };

Description: The DoesNotExistException exception is raised if the
tagname used in describe() does not exist in the metadata.

AnalysisService

AnalysisTypeTag : string = "TAG_ANALYSIS_TYPE"
InputPropertiesTag : string = "TAG_INPUT_PROPERTIES"
OutputPropertiesTag : string = "TAG_OUTPUT_PROPERTIES"
metadata_tags : StringList
type : AnalysisType
input_metadata : InputPropertySpecList
output_metadata : OutputPropertySpecList

create_analysis()
describe()

<<Interface>>
2-98 Biomolecular Sequence Analysis, v1.0 June 2001

2

const string AnalysisTypeTag = "TAG_ANALYSIS_TYPE";
const string InputPropertiesTag = "TAG_INPUT_PROPERTIES";
const string OutputPropertiesTag = "TAG_OUTPUT_PROPERTIES";

Description: The AnalysisService interface defines a set of const
strings that indicates the types of required metadata. The
strings correspond to the three attributes described below.

readonly attribute StringList metadata_tags;

Description: Provides the set of metadata tags for this analysis. The list
must include the three const strings listed above.

Return value: Returns a StringList.

MetaData describe(in string tagname)
raises (DoesNotExistException);

Description: describe() returns an XML string containing the metadata
corresponding to the tagname parameter. If metadata is
available as XML, describe() must support all tagnames
returned by the metadata_tags attribute.

Return value: Returns a MetaData string containing XML.

Exceptions: • Raises DoesNotExistException if the tagname
parameter is not one of the list returned by the
metadata_tags attribute.

• Raises CORBA::NO_IMPLEMENT with standard minor
code 6 if metadata is not available as XML.

readonly attribute AnalysisType type;

Description: type() returns the AnalysisType structure. This structure
must be populated.

Return value: Returns an AnalysisType.
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-99

2

2.2.9 JobControl

Along with its basic interface, an AnalysisInstance implements a JobControl
interface. Via the JobControl, clients invoke and terminate AnalysisInstance
execution and retrieve execution information (e.g., execution duration, creation time).

readonly attribute InputPropertySpecList input_metadata;

Description: input_metadata() returns information about input
parameters in IDL structure form. This structure must be
populated.

Return value: Returns an array of InputPropertySpecs.

readonly attribute OutputPropertySpecList output_metadata;

Description: output_metadata() returns information about output
parameters in IDL structure form. This structure must be
populated.

Return value: Returns an array of OutputPropertySpecs.

AnalysisInstance create_analysis (in CosPropertyService::Properties input)
raises (CosPropertyService::MultipleExceptions);

Description: Arguments to create an AnalysisInstance are in the form of
CosPropertyService::Properties. Before returning an
AnalysisInstance, the input arguments must be checked for
correctness (according to the criteria represented in the metadata
describing the AnalysisService's input parameters).

Return value: Returns an AnalysisInstance.

Exceptions: Raises CosPropertyService::MultipleExceptions if the input
parameters are incorrect for this analysis. The metadata should be
consulted for information about the input parameters needed by
this analysis.
2-100 Biomolecular Sequence Analysis, v1.0 June 2001

2

Figure 2-36 JobControl Interface

NotRunnable

NotRunning

NotTerminated

exception NotRunnable { };

Description: The NotRunnable exception is raised if the analysis cannot
be run (e.g., the service is currently unavailable). Raised by
run().

This exception should not be used to indicate incorrect inputs.
CosPropertyService::MultipleExceptions should be used
instead.

exception NotRunning { };

Description: The NotRunning exception is raised if the analysis is not
running. Raised by terminate().

exception NotTerminated
{

string reason;
};

Description: The NotTerminated exception is raised if the analysis is not
terminated. Raised by terminate().

Return value: Returns a string containing the reason the analysis could not
be terminated.

JobControl

created : TimeBase::UtcT
elapsed : TimeBase::TimeT
started : TimeBase::UtcT
ended : TimeBase::UtcT

run()
terminate()
wait()

<<Interface>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-101

2

JobControl

interface JobControl
{

readonly attribute TimeBase::UtcT created;
readonly attribute TimeBase::TimeT elapsed;
readonly attribute TimeBase::UtcT started;
readonly attribute TimeBase::UtcT ended;

void run()
raises (NotRunnable, CosPropertyService::MultipleExceptions);

void terminate()
raises (NotRunning, NotRunnable, NotTerminated);

void wait()
raises (NotRunning, NotRunnable);

};

readonly attribute TimeBase::UtcT created;

Description: Indicates the time the AnalysisInstance was created.

Return value: Returns a TimeBase::UtcT.

readonly attribute TimeBase::TimeT elapsed;

Description: Indicates the elapsed time since the analysis was started using
run().

Return value: Returns a TimeBase::TimeT.

readonly attribute TimeBase::UtcT started;

Description: Indicates the time the analysis was started.

Return value: Returns a TimeBase::UtcT.

readonly attribute TimeBase::UtcT ended;

Description: Indicates the time the analysis ended.

Return value: Returns a TimeBase::UtcT.
2-102 Biomolecular Sequence Analysis, v1.0 June 2001

2

Table 2-7 summarizes the behavior of the three methods for each possible state of the
AnalysisInstance.

void run()
raises (NotRunnable, CosPropertyService::MultipleExceptions);

Description: The run() method invokes the AnalysisInstance to run
asynchronously

Exceptions: • Raises NotRunnable if the analysis cannot be run (e.g., the
service is currently unavailable).

• Raises CosPropertyService::MultipleExceptions if the
inputs are not correct.

void terminate()
raises (NotRunning, NotRunnable, NotTerminated);

Description: terminate() ends a currently running analysis.

Exceptions: • Raises NotRunning if the analysis is not running.
• Raises NotRunnable if the analysis cannot be run (e.g., the has

already completed or terminated).
• Raises NotTerminated if the analysis was not terminated.

void wait()
raises (NotRunning, NotRunnable);

Description: The wait() method blocks the client until service execution
completes.

Exceptions: • Raises NotRunning if the analysis is not running.
• Raises NotRunnable if the analysis cannot be run (e.g., the has

been terminated).

Table 2-7 JobControl State Transition Table

State of AnalysisInstance run() wait() terminate()

CREATED start it and change status
to RUNNING

raise NotRunning raise NotRunning

RUNNING raise NotRunnable block until finished kill it and change status to
TERMINATED_BY_REQUES
T or raise NotTerminated

COMPLETED raise NotRunnable do nothing raise NotRunnable

TERMINATED_BY_REQUEST raise NotRunnable raise NotRunnable raise NotRunnable
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-103

2

2.2.10 AnalysisInstance

An AnalysisInstance object is responsible for invoking an underlying BSA analysis
tool.

An AnalysisInstance can be used in either a synchronous or an asynchronous mode to
support clients with various needs. The run() method invokes the AnalysisInstance to
run asynchronously. If the client wants to be blocked waiting for the underlying BSA
analysis tool to run to completion, it will invoke the run() method, followed immediately
by the wait() method, which will block the client until service execution completes.

An AnalysisInstance must ensure it can be executed only once, ensuring a unique
coupling of inputs and results. If a client wants to employ an AnalysisInstance
identical to one it has already invoked, the client must create a new AnalysisInstance,
via an AnalysisService, and invoke it as a separate instance.

An AnalysisInstance makes available two kinds of execution information: execution
status and analysis events.

• An AnalysisInstance object must offer:

• the AnalysisService that created this AnalysisInstance;

• its execution status (one of the enumerated AnalysisState values);

• the EventChannel, which may be null, to which it publishes its analysis events;

• the last event that occurred;

• the JobControl that clients use to control the execution;

• the input Properties used in creation of this AnalysisInstance;

• an output Properties containing the results generated by the execution of the
underlying BSA analysis.

An AnalysisInstance is responsible for ensuring that the results of the BSA analysis
tool it represents are populated properly in its results.

To retrieve the results generated by an AnalysisInstance, clients use the get_result()
method. It takes a list of strings (the strings representing named members of the
OutputPropertySpecList) as an argument. If the BSA analysis tool underlying the
AnalysisInstance terminated before it completed, either due to a client request or an
execution failure, some “partial” results may be available to the client in the results.

As in all CORBA systems, an implementation of this system may choose to enforce a
policy regarding automatically removing CORBA objects, such as AnalysisInstances
that appear to have been abandoned by clients.

TERMINATED_BY_ERROR raise NotRunnable raise NotRunnable raise NotRunnable

Table 2-7 JobControl State Transition Table

State of AnalysisInstance run() wait() terminate()
2-104 Biomolecular Sequence Analysis, v1.0 June 2001

2

Figure 2-37 The AnalysisInstance interface

interface AnalysisInstance : CosLifeCycle::LifeCycleObject
{

readonly attribute AnalysisService service;
readonly attribute AnalysisState status;
readonly attribute CosEventChannelAdmin::EventChannel event_channel;
readonly attribute AnalysisEvent last_event;
readonly attribute JobControl job_control;
readonly attribute CosPropertyService::Properties inputs;
readonly attribute CosPropertyService::Properties results;
CosPropertyService::Properties get_result(in StringList name_list);

};

readonly attribute AnalysisService service;

Description: Refers to the AnalysisService that created this
AnalysisInstance.

Return value: Returns an AnalysisService.

Exceptions: Raises CORBA::OBJECT_NOT_EXIST with standard minor
code 3 if the AnalysisService is no longer available.

AnalysisInstance

service : AnalysisService
status : AnalysisState
event_channel : CosEventChannelAdmin::EventChannel
last_event : AnalysisEvent
job_control : JobControl
inputs : CosPropertyService::Properties
results : CosPropertyService::Properties

<<Interface>>

LifeCycleObject
(from CosL ifeCycle)

<<Interface>>
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-105

2

readonly attribute AnalysisState status;

Description: Provides the current status of the analysis.

Return value: Returns one of the enumerated AnalysisState values. The values
are CREATED, RUNNING, COMPLETED,
TERMINATED_BY_REQUEST, and
TERMINATED_BY_ERROR.

readonly attribute CosEventChannelAdmin::EventChannel event_channel;

Description: Provides the EventChannel to which the AnalysisInstance
publishes its analysis events.

Return value: Returns a CosEventChannelAdmin::EventChannel.

readonly attribute AnalysisEvent last_event;

Description: Provides the last event that occurred during execution. If the
AnalysisInstance is still in the CREATED state, the last_event
should be a plain AnalysisEvent.

Return value: Returns an AnalysisEvent.

readonly attribute JobControl job_control;

Description: Provides the management interface that clients can use to control
the execution of the analysis.

Return value: Returns a JobControl.

readonly attribute CosPropertyService::Properties inputs;

Description: Provides the input Properties that were used in this
AnalysisInstance’s execution.

Return value: Returns a CosPropertyService::Properties.
2-106 Biomolecular Sequence Analysis, v1.0 June 2001

2

readonly attribute CosPropertyService::Properties results;

Description: Provides the output Properties containing the results generated by
the execution of the underlying BSA analysis.

Note 1: An AnalysisInstance in the RUNNING or
TERMINATED_BY_REQUEST or TERMINATED_BY_ERROR
states may still have (partial, incomplete) results that can be
retrieved by the client. There is no obligation that an
implementation provides results in these three cases. Further, the
results for an analysis that is in one of these three states is likely to
be different than for an analysis that ran to normal completion. It
is recommended that client software convey this information to the
end-user.

Note 2: An AnalysisInstance in the CREATED state returns an
empty list of results.

Return value: Returns a CosPropertyService::Properties.

CosPropertyService::Properties get_result(in StringList name_list);

Description: The get_result() method takes a list of strings (the strings
representing named members of the OutputPropertySpecList)
as an argument and returns the associated results.

Note 1: An AnalysisInstance in the RUNNING or
TERMINATED_BY_REQUEST or TERMINATED_BY_ERROR
states may still have (partial, incomplete) results that can be
retrieved by the client. There is no obligation that an
implementation provides results in these three cases. Further, the
results for an analysis that is in one of these three states is likely to
be different than for an analysis that ran to normal completion. It is
recommended that client software convey this information to the
end-user.

Note 2: An AnalysisInstance in the CREATED state returns an
empty list of results.

Return value: Returns a CosPropertyService::Properties.
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-107

2

2.2.11 Sequence Diagrams

The following sequence diagrams show how the analysis machinery is used. The
diagrams are examples of the steps necessary for both synchronous and asynchronous
invocation of an analysis service and retrieving its results.

Synchronous invocation can be achieved without using any EventChannel interface.
The client is blocked in wait() method until the analysis is finished.

Asynchronous invocation, using an EventChannel, can follow a “callback” pattern
where the server regularly pushes events back to an object prepared by the client, or the
client can repeatedly poll the server.

Figure 2-38 Synchronous invocation without using an EventChannel

Analysis
Service

Analysis
Instance

Job
Control

Client

find analysis service

create_analysis()

run()

create new
create new

results()

wait ()
2-108 Biomolecular Sequence Analysis, v1.0 June 2001

2

Figure 2-39 Asynchronous invocation, using an EventChannel and callbacks

Analysis
Service

Analysis
Instance

Event
Channel

Consumer
Admin

ProxyPush
Supplier

Push
Consumer

Job
Control Server

Client

find analysis service

create_analysis()

for_consumers()

obtain_push_supplier()

connect_push_consumer(PushConsumer)

run()

* push(AnalysisEvent)

create new
create new

create new

create new

create new

create new

results()
June 2001 Biomolecular Sequence Analysis: Module DsLSRAnalysis 2-109

2

Figure 2-40 Asynchronous invocation, using an EventChannel and polling

Analysis
Service

Analysis
Instance

Event
Channel

Consumer
Admin

ProxyPull
Supplier

Job
Control

Client

find analysis service

create_analysis()

for_consumers()

obtain_pull_supplier()

connect_pull_consumer(nil)

run()

create new
create new

create new

create new

create new

results()

* try_pull() returning AnalysisEvent
2-110 Biomolecular Sequence Analysis, v1.0 June 2001

Domain Model 3
Contents

This chapter contains the following sections.

The domain model is expressed in XML. A simple classification of analyses follows the
explanation of XML metadata. The DTD and the entire XML file can be found in
Appendix D.

3.1 XML Metadata

Metadata is used in the AnalysisService for analysis type, input and output objects to
represent object implementation detail that has been abstracted out of the interface in favor
of using the standard, common BSA analysis interface. This can provide semantic
information beyond that provided by the IDL syntax, although information provided
through XML must not be contradictory with information available through IDL
structures. XML has been chosen as the language with which to represent the object
metadata. This section discusses the strategy for using the XML based metadata
representation.

3.1.1 Role of XML

“Standard Generalized Markup Language (SGML), which became an ISO 8879 standard
in 1986, was the result of a decade’s long effort to produce a language for writing human
consumable text that at the same time is machine processable. Hypertext Markup

Section Title Page

“XML Metadata” 3-1

“Classification of Analyses” 3-6
June 2001 Biomolecular Sequence Analysis, v1.0 3-1

3

Language (HTML), a limited subset of SGML, is one of the driving forces behind the
success of the internet. HTML is non-extensible and primarily designed to support
rendering in a browser and a limited amount of user interaction. Extensible Markup
Language (XML) is a larger subset of SGML which overcomes the non-extensible nature
of HTML and reintroduces support for the machine processing of text via the definition of
user specified tag sets. Since its inception, XML has offered the prospect of overcoming
the limitations of HTML without unduly burdening development of processing software as
has been the case with SGML based systems. Unlike HTML, XML does not rely on a
fixed set of tags. Arbitrary tag sets can be defined via use of a DTD. However, XML
eliminates several features of SGML which make it difficult to parse and therefore
difficult to process SGML documents. In particular, begin and end tags are both required
and serve to reduce ambiguity in the processing of the hierarchical structure of XML
documents, relative to SGML documents. In short, XML provides a standardized, non-
proprietary capability to represent arbitrary structural information in a way that supports
development of parsers and other types of processing of that structural information. Thus,
XML opens up the possibility of automated processing and interchange of information
stored in the form of XML documents.

With respect to metadata, it opens up the possibility of accessing metadata at runtime and
using the structural information provided by the XML based tags to process and transform
that metadata. For example, the metadata for two separate processes could be used at
runtime to connect the output of one process to the input of another process via conversion
of the output format of the first process into the input format of the second process.”

[Concept Five Technologies, Inc., Trident Next Generation Metadata Design and
Generation Manual version 1.01, pages 3-4, Copyright © 1998, 1999 by Hitachi,
Ltd. and Concept Five Technologies, Inc.]

3.1.2 Role of DTD

As the XML specification most succinctly puts, “The XML document type declaration
contains or points to markup declarations that provide a grammar for a class of documents.
This grammar is known as a document type definition, or DTD.”

The markup grammar is a generic set of keywords, naming syntax, occurrence and
connector terms prescribed in the XML standard that the document structure designer
wishes to use to express literally any real world semantic notion. The basic markup
keywords are ELEMENT, ENTITY, and ATTRIBUTE although there are dozens of others
to round out the language. Any set of key words could have been chosen. Microsoft Word
has its set of formatting keywords and arguments that allow a .doc file to carry a
formidable amount of information around for future processing. WordPerfect used to
allow a document writer to make these codes visible and directly editable at the click of a
menu item. And of course, there is post script.

There are many other document code sets, all of which are proprietary. Document
processing code that operates on these proprietarily marked up documents must
necessarily also be proprietary. Enter the DTD, or Document Type Definition. ISO 8879
makes standard these markup codes so non-proprietary document software can be
developed.

Hypertext Markup Language (HTML) is an example of a markup language. Although
3-2 Biomolecular Sequence Analysis, v1.0 June 2001

3

HTML is not based on a DTD it does adhere to a standard and stems from SGML. HTML
was designed so that processing code could be developed for rendering HTML based
documents in a browser. The HTML standard (currently 4.0) specifies the structure of
valid HTML documents. Changing one of the tags in this standard from <H3> to <J3>
has the potential to break all the processing code that relies on the use of the standard,
which is why changes to HTML are only made infrequently. Recently, DTD’s have been
developed for HTML, but these DTD’s do not adhere strictly to the standard, and are not
widely used.

In general, DTD’s make it possible to specify the grammars of various domains so that
companies creating XML documents in these domains can interact with each other. For
example, there is a DTD for the representation of chemical formulas in XML. Companies
complying with the grammar for this domain can expect to be able to exchange XML
documents describing chemical formulas and be able to use any processing code designed
to operate in this domain. For example, processing code that accepts XML based
descriptions of chemical formulas and creates graphical representations of the formulas
should be able to handle any documents complying with the DTD.

At the present time, DTD’s are being generated for many different domains. The Dublin
Core is a DTD which provides a tag set designed for use in the description of Internet
information resources and which is patterned after the information in a card catalog. The
UML DTD which is derived from the XMI specification covers the domain of object
modeling and is based on the UML semantics document. This DTD is likely to become
the standard for the description of object models in XML. Companies which produce
documents which comply with standardized DTD’s will be able to exploit any processing
developed for use with those standardized DTD’s.”

[Concept Five Technologies, Inc., Trident Next Generation Metadata Design and
Generation Manual version 1.01, pages 3-4, Copyright © 1998, 1999 by Hitachi,
Ltd. and Concept Five Technologies, Inc.]

3.1.3 Domain Metadata

Interoperability requires convergence on data semantics description capabilities. The
metadata in a BSA environment includes a description of the CORBA interfaces supported
as well as the meta semantics related to specification of the analysis and input and output
types supported by a particular analysis interface. The BSA metadata for the analysis
type, inputs and outputs allows for the support of well understood multiple execution paths
supported through the same simple interface.

The metadata provided by the valuetypes and XML is required to facilitate interoperability
for analyses, inputs and outputs. Interoperability is achieved by providing run-time
information about parameters required to perform an analysis. The client can dynamically
interrogate the analysis service, learn about the input parameters, populate the input
property set and perform the analysis. When the analysis is finished, the client can
dynamically check the analysis service to learn about the output properties. The client can
use this knowledge to dissect the outputs into information of interest.

The elements in the DsLSRAnalysis DTD correspond to the attributes in the previously
defined AnalysisType, InputPropertySpec, and OutputPropertySpec valuetypes.
In addition to the required valuetypes, the XML metadata may be available for the
June 2001 Biomolecular Sequence Analysis: XML Metadata 3-3

3

implementation to provide data about the analyses.

The attributes “type” used in the elements “input” and “output” contain a string
representation of the CORBA::TypeCode. These representations conform to the
following rules.

1. Basic IDL types are represented by a string containing the name of the type. The
type is derived from the CORBA TypeCode’s TCKind by deleting the leading
"tk_". This rule follows the convention used in section 5.3.10.2 (CorbaTypeName)
of the XMI 1.0 specification (formal/00-06-01).

Example: the string representation of the type long is “long;” that of unsigned
long long is “ulonglong.”

2. Sequences of basic IDL types are represented by a string containing the type-
specifier in IDL syntax without any spaces. That is, a sequence of XXXs is coded as
“sequence<XXX>” where XXX is the name of the string found using rule 1.

Example: A sequence of longs is represented by “sequence<long>.”

3. For other data types, the repository ID is used.

Example: the BioSequence is represented by
“IDL:omg.org/DsLSRBioObjects/BioSequence:1.1.”

The elements have the same definition as the valuetype attributes previously specified. It
is important to highlight the analysis type format. Again, the type element is used to
specify both the correct classification of the analysis as well as a qualifier to specify
category and additionally, provides information about the inputs to the analysis. The
classification of the analysis could come from the BSA specified classification hierarchy
as well as it could come from a hierarchy defined by a certain installation. A ‘/’ is used to
delimit the qualifier and a ‘.’ is used to delimit the general input kind. An example of a
specified type element would be alignment.collection/assembly.

The DTD has three places where vendor extension is available. The analysis, input, and
output elements specify an extension element that can be any valid content.

The following text presents the DTD for Biomolecular Sequence Analysis.

<!ELEMENT DsLSRAnalysis (analysis)+>

<!ELEMENT analysis (description?, input*, output*, analysis_extension?)>

<!ATTLIST analysis
type CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
supplier CDATA #IMPLIED
installation CDATA #IMPLIED>

<!ELEMENT description ANY>
<!ELEMENT extension ANY>
3-4 Biomolecular Sequence Analysis, v1.0 June 2001

3

<!ELEMENT input (default?, allowed*, input_extension?)>

<!ATTLIST input
type CDATA #REQUIRED
name CDATA #REQUIRED
mandatory (true|false) "false">

<!ELEMENT default (#PCDATA)>
<!ELEMENT allowed (#PCDATA)>

<!ELEMENT output (output_extension?)>

<!ATTLIST output
type CDATA #REQUIRED
name CDATA #REQUIRED>

<!ENTITY % vendor_analysis_tags "<!ELEMENT analysis_extension
EMPTY>">
<!ENTITY % vendor_input_tags "<!ELEMENT input_extension EMPTY>">
<!ENTITY % vendor_output_tags "<!ELEMENT output_extension
EMPTY>">

%vendor_analysis_tags;
%vendor_input_tags;
%vendor_output_tags;

The following text provides example XML that would be used with respect to the
DsLSRAnalysis DTD.

<?xml version="1.0" ?>
<!DOCTYPE DsLSRAnalysis SYSTEM "DsLSRAnalysis.dtd" >

<DsLSRAnalysis>
<ANALYSIS TYPE = "search.list">

<INPUT
NAME = "query_sequence"
TYPE = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
MANDATORY = "true">

</INPUT>
<INPUT

NAME = "sequence_list"
TYPE = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
MANDATORY = "true">

</INPUT>
<OUTPUT

NAME = "search_result"
TYPE = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</OUTPUT>
</ANALYSIS>

</DsLSRAnalysis>
June 2001 Biomolecular Sequence Analysis: XML Metadata 3-5

3

3.2 Classification of Analyses

This classification of analyses consists of three broad categories: searching, alignment,
and utilities. Commonly used analyses are nicely partitioned into these categories.

3.2.1 Searching

Searching includes the broad category of similarity searching analyses. BLAST, FastA,
and Smith-Waterman fall into this group. Searching can include querying
BioSequences to identify Annotations that meet specified criteria. Searching also
includes finding patterns and motifs in BioSequences. The results of these searches are
SeqRegions. Examples include analyses such as PROSITE, BLOCKS, PRINTS, as
well as most gene and ORF finding algorithms (e.g., GRAIL, GeneScan, GeneFind, and
GLIMMER). It also includes identifying potential restriction enzyme and proteolytic
cleavage sites.

The result of a search is a SearchResult. A SearchResult contains an array of
SearchHits, which may be the specialized SimilaritySearchHits.

The searching hierarchy is:

• search (against a list, collection, or database)

• search/annotation

• search/region

• search/similarity (against a list, collection, or database)

3.2.2 Alignment

The alignment category includes both pairwise and multiple alignments. No distinction is
made. The result of either is an Alignment.

A sequence assembly contains both aligned sequences and unaligned sequences
(fragments). The aligned sequences are represented by an Alignment. If one considers a
phylogeny as an alignment of alignments, it too falls in this category.

The alignment hierarchy is:

• alignment (of a list or collection)

• alignment/assembly (of a list or collection)

• alignment/phylogeny

3.2.3 Utilities

There are several simple analyses that could either be viewed as analyses or simply
provided as methods on an appropriately typed BioSequence. We decided to view them
as simple analysis. This allowed us to keep the BioSequence interface simple. For
example, simple sequence translation, using the standard genetic code, is provided by
NucleotideSequence’s methods translate_seq() and translate_seq_region(). A
3-6 Biomolecular Sequence Analysis, v1.0 June 2001

3

more sophisticated sequence translation, allowing a user specified GeneticCode, is
provided here.

The utilities category provides:

• utility/molecular_weight

• utility/residue_composition

• utility/ambiguous_residues

• utility/gc_content

• utility/isoelectric_point

• utility/translate_seq (uses GeneticCode)

• utility/translate_seq.seq_region (uses GeneticCode)
June 2001 Biomolecular Sequence Analysis: Classification of Analyses 3-7

3

3-8 Biomolecular Sequence Analysis, v1.0 June 2001

References A
A.1 List of References

Object Management Group. 1998. Biomolecular Sequence Analysis RFP. OMG
Document lifesci/98-03-05.

Object Management Group. 1998. The Common Object Request Broker: Architecture
and Specification, v2.2. OMG Document formal/98-07-01.

Object Management Group. 1998. CORBAservices: Common Object Services
Specification. OMG Document formal/98-12-09.

Object Management Group. 1998. CORBAservices: Common Object Services IDL.
OMG Document formal/98-10-53.

Object Management Group. 1998. CORBA v2.3a - Core final revision. OMG PC
Document ptc/98-12-04.

Object Management Group. 1998. Interoperable Naming Service. OMG Document
orbos/98-10-11.

Object Management Group. 1998. Joint Revised Objects by Value Submission - with
Errata. OMG TC Document orbos/98-01-18.

Object Management Group. 1998. OMG IDL Style Guide. OMG Document ab/98-
06-03.

Object Management Group. 2000. OMG XML Metadata Interchange (XMI)
Specification. OMG Document formal/00-06-01.

Bairoch, Amos, et al. 1997. The Swiss-Prot Protein Sequence Data Bank User
Manual. Release 35; November 1997.

Baldi, Pierre and Søren Brunak. 1998. Bioinformatics: The Machine Learning
Approach. The MIT Press. ISBN: 0-262-02442-X.
June 2001 Biomolecular Sequence Analysis, v1.0 A-1

A

Baxevanis, Andreas D. and B.F. Francis Ouellette, eds. 1998. Bioinformatics: A
Practical Guide to the Analysis of Genes and Proteins. Wiley-Interscience. ISBN: 0-
471-19196-5.

Elzanowski, Andrzej (Anjay) and Jim Ostell, compilers. 1996. The Genetic Codes.
National Center for Biotechnology Information (NCBI).
http://www.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wprintgc?mode=t.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley. ISBN: 0-
201-63361-2.

Gusfield, Dan. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge Univ Pr (Short). ISBN: 0-521-58519-8.

IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN) symbols for
amino acids. http://www.chem.qmw.ac.uk/iupac/AminoAcid/.

IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN) symbols for
nucleic acids. http://www.chem.qmw.ac.uk/iubmb/misc/naseq.html.

IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN)
biostandards. http://www.chem.qmw.ac.uk/iubmb/nomenclature/.

Lander, Eric S., and Michael S. Waterman, eds. 1995. Calculating the Secrets of Life:
Applications of the Mathematical Sciences in Molecular Biology. National Academy
Press. ISBN: 0-309-04886-9.

National Center for Biotechnology Information, et al. 1997. The
DDJB/EMBL/GenBank Feature Table: Definitions. Version 2.0. December 15, 1997.

Waterman, Michael S. 1995. Introduction to Computational Biology: Maps,
Sequences, and Genomes. Chapman & Hall. ISBN: 0-412-99391-0.
A-2 Biomolecular Sequence Analysis, v1.0 June 2001

Genetic Codes B
The genetic codes listed below were compiled by Andrzej (Anjay) Elzanowski and Jim
Ostell (National Center for Biotechnology Information). See
http://www.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wprintgc?mode=t. “i” indicates initia-
tion and alternative initiation codons.

B.1 Standard

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA * Ter
TTG L Leu i TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu i CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.2 Bacterial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
June 2001 Biomolecular Sequence Analysis, v1.0 B-1

B

TTA L Leu TCA S Ser TAA * Ter TGA * Ter
TTG L Leu i TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu i CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile i ACT T Thr AAT N Asn AGT S Ser
ATC I Ile i ACC T Thr AAC N Asn AGC S Ser
ATA I Ile i ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val i GCG A Ala GAG E Glu GGG G Gly

B.3 Yeast Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA W Trp
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT T Thr CCT P Pro CAT H His CGT R Arg
CTC T Thr CCC P Pro CAC H His CGC R Arg
CTA T Thr CCA P Pro CAA Q Gln CGA R Arg
CTG T Thr CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA M Met i ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.4 Vertebrate Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA W Trp
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
B-2 Biomolecular Sequence Analysis, v1.0 June 2001

B

CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile i ACT T Thr AAT N Asn AGT S Ser
ATC I Ile i ACC T Thr AAC N Asn AGC S Ser
ATA M Met i ACA T Thr AAA K Lys AGA * Ter
ATG M Met i ACG T Thr AAG K Lys AGG * Ter

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val i GCG A Ala GAG E Glu GGG G Gly

B.5 Mold Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu i TCA S Ser TAA * Ter TGA W Trp
TTG L Leu i TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu i CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile i ACT T Thr AAT N Asn AGT S Ser
ATC I Ile i ACC T Thr AAC N Asn AGC S Ser
ATA I Ile i ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val i GCG A Ala GAG E Glu GGG G Gly

B.6 Invertebrate Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA W Trp
TTG L Leu i TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile i ACT T Thr AAT N Asn AGT S Ser
ATC I Ile i ACC T Thr AAC N Asn AGC S Ser
June 2001 Biomolecular Sequence Analysis: Mold Mitochondrial B-3

B

ATA M Met i ACA T Thr AAA K Lys AGA S Ser
ATG M Met i ACG T Thr AAG K Lys AGG S Ser

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val i GCG A Ala GAG E Glu GGG G Gly

B.7 Echinoderm Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA W Trp
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA N Asn AGA S Ser
ATG M Met i ACG T Thr AAG K Lys AGG S Ser

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.8 Ascidian Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA W Trp
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA M Met ACA T Thr AAA K Lys AGA G Gly
ATG M Met i ACG T Thr AAG K Lys AGG G Gly

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
B-4 Biomolecular Sequence Analysis, v1.0 June 2001

B

GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.9 Flatworm Mitochondrial

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA Y Tyr TGA W Trp
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA N Asn AGA S Ser
ATG M Met i ACG T Thr AAG K Lys AGG S Ser

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.10 Ciliate Nuclear

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA Q Gln TGA * Ter
TTG L Leu TCG S Ser TAG Q Gln TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly
June 2001 Biomolecular Sequence Analysis: Flatworm Mitochondrial B-5

B

B.11 Euplotid Nuclear

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA C Cys
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.12 Alternative Yeast Nuclear

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA * Ter
TTG L Leu TCG S Ser TAG * Ter TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG S Ser i CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

B.13 Blepharisma Macronuclear

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
B-6 Biomolecular Sequence Analysis, v1.0 June 2001

B

TTA L Leu TCA S Ser TAA * Ter TGA * Ter
TTG L Leu TCG S Ser TAG Q Gln TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met i ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly
June 2001 Biomolecular Sequence Analysis: Blepharisma Macronuclear B-7

B

B-8 Biomolecular Sequence Analysis, v1.0 June 2001

Complete IDL C
C.1 File: DsLSRBioObjects.idl

//File: DsLSRBioObjects.idl
// version: 29 October 2000.

#ifndef _DS_LSR_BIOOBJECTS_IDL_
#define _DS_LSR_BIOOBJECTS_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosPropertyService.idl>

module DsLSRBioObjects
{

typedef sequence<string> StringList;
typedef string Identifier;
typedef sequence<Identifier> IdentifierList;

enum StrandType {STRAND_NOT_KNOWN, STRAND_NOT_APPLICABLE,
STRAND_PLUS, STRAND_MINUS, STRAND_BOTH};

enum Basis {BASIS_NOT_KNOWN, BASIS_NOT_APPLICABLE,
BASIS_EXPERIMENTAL, BASIS_COMPUTATIONAL, BASIS_BOTH};

#pragma version Basis 1.1

valuetype Interval
{

public unsigned long start;
public unsigned long length;

};
June 2001 Biomolecular Sequence Analysis, v1.0 C-1

C

valuetype SeqRegion : Interval
{

#pragma version SeqRegion 1.1

public Identifier id;
public StrandType strand_type;
public boolean start_relative_to_seq_end;

};

typedef sequence<SeqRegion> SeqRegionList;

valuetype CompositeSeqRegion : SeqRegion
{

enum SeqRegionOperator
{

NONE, // Region has no sub regions or the sub regions
// don't need special treatment.

JOIN, // Sub regions should be joined end-to-end to
// form a contiguous region.

ORDER // Sub region order is important.
};

public SeqRegionList sub_regions;
public SeqRegionOperator region_operator;

};

interface Annotation : CosLifeCycle::LifeCycleObject
{

readonly attribute string name; // type of annotation
readonly attribute any value; // the annotation
readonly attribute Basis the_basis; // basis for annotation
readonly attribute CosPropertyService::Properties qualifiers;

};

typedef sequence<Annotation> AnnotationList;

exception IteratorInvalid
{

string reason;
};

interface AnnotationIterator
{

boolean next(out Annotation the_annotation)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
 out AnnotationList annotations)
raises(IteratorInvalid);

void reset();
void destroy();

};
C-2 Biomolecular Sequence Analysis, v1.0 June 2001

C

interface SeqAnnotation : Annotation
{

readonly attribute SeqRegion seq_region;
};

typedef sequence<SeqAnnotation> SeqAnnotationList;

interface SeqAnnotationIterator
{

boolean next(out SeqAnnotation seq_annotation)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out SeqAnnotationList seq_annotations)

raises(IteratorInvalid);
void reset();
void destroy();

};

exception IdentifierNotFound
{

Identifier id;
};

exception IdentifierNotResolvable
{

Identifier id;
string reason;

};

exception IdentifierNotUnique
{

Identifier id;
IdentifierList ids;

};

exception IntervalOutOfBounds
{

Interval invalid;
Interval valid;

};

exception SeqRegionOutOfBounds
{

SeqRegion invalid;
Interval valid;

};

exception SeqRegionInvalid
{

string reason;
June 2001 Biomolecular Sequence Analysis: File: DsLSRBioObjects.idl C-3

C

};

exception NotUpdateable
{

string reason;
};

interface BioSequence : CosLifeCycle::LifeCycleObject
{

#pragma version BioSequence 1.1

readonly attribute string name;
readonly attribute Identifier id;
readonly attribute string description;
readonly attribute string seq;
readonly attribute unsigned long length;
readonly attribute Basis the_basis;

string seq_interval(in Interval the_interval)
raises(IntervalOutOfBounds, SeqRegionInvalid);

AnnotationList get_annotations(
in unsigned long how_many,
in SeqRegion seq_region,
out AnnotationIterator the_rest)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);
unsigned long num_annotations(in SeqRegion seq_region)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);
void add_annotation(

in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds,

SeqRegionInvalid);
};

typedef sequence<BioSequence> BioSequenceList;

typedef sequence<unsigned long> UnsignedLongList;

exception ReadingFrameInvalid
{

short invalid;
};

interface NucleotideSequence : BioSequence
{

#pragma version NucleotideSequence 1.1

readonly attribute boolean circular;

string reverse_complement();
string reverse_complement_interval(in Interval the_interval)

raises(IntervalOutOfBounds, SeqRegionInvalid);
C-4 Biomolecular Sequence Analysis, v1.0 June 2001

C

string translate_seq(
in short reading_frame,
out UnsignedLongList stop_locations)

raises(ReadingFrameInvalid);
string translate_seq_region(

in SeqRegion seq_region,
out UnsignedLongList stop_locations)

raises(SeqRegionOutOfBounds, SeqRegionInvalid);
};

typedef sequence<NucleotideSequence> NucleotideSequenceList;

interface AminoAcidSequence : BioSequence
{

#pragma version AminoAcidSequence 1.1
};

typedef sequence<AminoAcidSequence> AminoAcidSequenceList;

typedef char Residue;
typedef char Base;
typedef Base Codon[3];

valuetype CodeRule
{

public Codon the_codon;
public Residue the_residue;

};

typedef CodeRule Coding[64];
typedef string GeneticCodeName;
typedef sequence<GeneticCodeName> GeneticCodeNameList;

exception InvalidResidue
{

Residue the_residue;
unsigned long offset;

};

interface GeneticCode
{

#pragma version GeneticCode 1.1

readonly attribute Coding the_coding;
readonly attribute GeneticCodeName name;

Residue translate_codon(in Codon the_codon)
raises(InvalidResidue);

};

valuetype AlignmentElement
June 2001 Biomolecular Sequence Analysis: File: DsLSRBioObjects.idl C-5

C

{
public Object element;
public SeqRegion seq_region;
public string key;

};

typedef sequence<AlignmentElement> AlignmentElementList;

interface AlignmentElementIterator
{

boolean next(out AlignmentElement element)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out AlignmentElementList elements)

raises(IteratorInvalid);
void reset();
void destroy();

};

exception AlignmentObjectInvalid
{

Object element;
string reason;

};

exception ElementNotInAlignment
{
};

exception IndexOutOfBounds
{

unsigned long invalid;
Interval valid;

};

interface Alignment : CosLifeCycle::LifeCycleObject
{

#pragma version Alignment 1.1

typedef string AlignType;
typedef sequence<AlignType> AlignTypeList;

const AlignType PROTEIN = "PROTEIN";
const AlignType NON_PROTEIN = "NON_PROTEIN";
const AlignType SEQUENCE_ERROR = "SEQUENCE_ERROR";
const AlignType UNKNOWN = "UNKNOWN";

AlignmentElementList get_alignment_elements(
in unsigned long start,
in unsigned long how_many,
out AlignmentElementIterator the_rest)
C-6 Biomolecular Sequence Analysis, v1.0 June 2001

C

raises(IndexOutOfBounds);

unsigned long num_rows();
unsigned long num_columns();

SeqRegion get_seq_region(
in string key,
in Interval the_interval)

raises(ElementNotInAlignment, IntervalOutOfBounds, SeqRegionInvalid);

CompositeSeqRegion get_gaps(
in string key,
in Interval the_interval)

raises(ElementNotInAlignment, IntervalOutOfBounds, SeqRegionInvalid);

AlignType get_align_type_by_column(in unsigned long col)
raises(IndexOutOfBounds);

};

typedef sequence<Alignment> AlignmentList;

interface Assembly : Alignment
{
};

valuetype SearchHit
{

public Identifier id;
public CosPropertyService::Properties hit_info;

};

typedef sequence<SearchHit> SearchHitList;

interface SearchHitIterator
{

boolean next(out SearchHit hit)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out SearchHitList hit_list)

raises(IteratorInvalid);
void reset();
void destroy();

};

valuetype SimilaritySearchHit : SearchHit
{

public AlignmentList alignment_list;
};

typedef sequence<SimilaritySearchHit> SimilaritySearchHitList;
June 2001 Biomolecular Sequence Analysis: File: DsLSRBioObjects.idl C-7

C

interface BioSequenceIdentifierResolver
{

BioSequence resolve(in Identifier id)
raises (IdentifierNotFound, IdentifierNotResolvable,

IdentifierNotUnique);
};

interface SearchResult :
BioSequenceIdentifierResolver,
CosLifeCycle::LifeCycleObject

{
readonly attribute BioSequence query_sequence;
readonly attribute CosPropertyService::Properties collection_info;
StringList get_property_names();

unsigned long num_hits();

SearchHitList get_hits(
in unsigned long start,
in unsigned long how_many,
out SearchHitIterator the_rest)

raises (IndexOutOfBounds);
};

// optional interfaces

interface AnnotationFactory
{

#pragma version AnnotationFactory 1.1

Annotation create_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers);

SeqAnnotation create_seq_annotation(
in string name,
in any value,
in Basis the_basis,
in CosPropertyService::Properties qualifiers,
in SeqRegion seq_region)

raises (SeqRegionInvalid);
};

exception SeqAnnotationOutOfBounds
{

SeqAnnotation invalid;
Interval valid;

};
C-8 Biomolecular Sequence Analysis, v1.0 June 2001

C

interface NucleotideSequenceFactory
{

#pragma version NucleotideSequenceFactory 1.1

NucleotideSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in boolean circular,
in AnnotationList annotations)

raises (InvalidResidue, SeqAnnotationOutOfBounds, SeqRegionInvalid);
};

interface AminoAcidSequenceFactory
{

#pragma version AminoAcidSequenceFactory 1.1

AminoAcidSequence create_sequence(
in string name,
in Identifier id,
in string description,
in string residues,
in Basis the_basis,
in AnnotationList annotations)

raises (InvalidResidue, SeqAnnotationOutOfBounds, SeqRegionInvalid);
};

interface BioSequenceIterator
{

boolean next(out BioSequence seq)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out BioSequenceList seqs)

raises(IteratorInvalid);
void reset();
void destroy();

};

interface NucleotideSequenceIterator
{

boolean next(out NucleotideSequence seq)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out NucleotideSequenceList seqs)

raises(IteratorInvalid);
void reset();
void destroy();

};
June 2001 Biomolecular Sequence Analysis: File: DsLSRBioObjects.idl C-9

C

interface AminoAcidSequenceIterator
{

boolean next(out AminoAcidSequence seq)
raises(IteratorInvalid);

boolean next_n(in unsigned long how_many,
out AminoAcidSequenceList seqs)

raises(IteratorInvalid);
void reset();
void destroy();

};

exception InvalidGeneticCodeName
{

string invalid_name;
};

interface GeneticCodeFactory
{

const GeneticCodeName STANDARD = "standard";
const GeneticCodeName BACTERIAL = "bacterial";
const GeneticCodeName YEAST_MITOCHONDRIAL = "yeast

mitochondrial";
const GeneticCodeName VERTEBRATE_MITOCHONDRIAL = "vertebrate

mitochondrial";
const GeneticCodeName MOLD_MITOCHONDRIAL = "mold

mitochondrial";
const GeneticCodeName INVERTEBRATE_MITOCHONDRIAL= "invertebrate

mitochondrial";
const GeneticCodeName ECHINODERM_MITOCHONDRIAL= "echinoderm

mitochondrial";
const GeneticCodeName ASCIDIAN_MITOCHONDRIAL = "ascidian

mitochondrial";
const GeneticCodeName FLATWORM_MITOCHONDRIAL= "flatworm

mitochondrial";
const GeneticCodeName CILIATE_NUCLEAR = "ciliate nuclear";
const GeneticCodeName EUPLOTID_NUCLEAR = "euplotid nuclear";
const GeneticCodeName ALT_YEAST_NUCLEAR = "alternative yeast

nuclear";
const GeneticCodeName BLEPHARISMA_MACRONUCLEAR = "blepharisma

macronuclear";

readonly attribute GeneticCodeNameList genetic_code_names;
GeneticCode create_genetic_code(in GeneticCodeName name)

raises(InvalidGeneticCodeName);
};

interface CharacterAlignmentEncoder
{

readonly attribute Alignment the_alignment;

unsigned long num_rows(); // number of aligned
C-10 Biomolecular Sequence Analysis, v1.0 June 2001

C

// objects. Delegate
unsigned long num_columns(); // Delegate to Alignment

string get_name(in unsigned long row) // first object is in row
raises(IndexOutOfBounds); // one etc...

StringList get_all_names(); // all the Names

string get_cell_contents(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

boolean is_cell_a_gap(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

unsigned long get_cell_width(in unsigned long row, in unsigned long col)
raises(IndexOutOfBounds);

unsigned long max_column_width(in unsigned long col)
raises(IndexOutOfBounds);

unsigned long max_width();
};

interface SingleCharacterAlignmentEncoder : CharacterAlignmentEncoder
{

#pragma version SingleCharacterAlignmentEncoder 1.1

string get_row(in unsigned long row)
raises(IndexOutOfBounds);

string get_row_interval(in unsigned long row, in Interval cols)
raises(IndexOutOfBounds, IntervalOutOfBounds,

 SeqRegionInvalid);
StringList get_row_column_interval(in Interval rows, in Interval cols)

raises(IntervalOutOfBounds, SeqRegionInvalid);
StringList get_entire_alignment(); // probably the most common!

};

exception CannotEncodeAlignment
{

string reason;
};

interface CharacterAlignmentEncoderFactory
{

CharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

};

interface SingleCharacterAlignmentEncoderFactory
{

SingleCharacterAlignmentEncoder create(in Alignment the_alignment)
raises(CannotEncodeAlignment);

};
};

#endif // _DS_LSR_BIOOBJECTS_IDL_
June 2001 Biomolecular Sequence Analysis: File: DsLSRBioObjects.idl C-11

C

C.2 File: DsLSRAnalysis.idl

//File: DsLSRAnalysis.idl
// version: 29 October 2000.

#ifndef _DS_LSR_ANALYSIS_IDL_
#define _DS_LSR_ANALYSIS_IDL_

#pragma prefix "omg.org"

#include <orb.idl>
#include <CosPropertyService.idl>
#include <CosEventChannelAdmin.idl>
#include <CosLifeCycle.idl>
#include <TimeBase.idl>

module DsLSRAnalysis
{

typedef sequence<string> StringList;

valuetype AnalysisType
{

public string type;
public string name;
public string supplier;
public string version;
public string installation;
public string description;

};

valuetype InputPropertySpec
{

public string name;
public CORBA::TypeCode type;
public boolean mandatory;
public any default_value;
public any possible_values;

};

typedef sequence<InputPropertySpec> InputPropertySpecList;

valuetype OutputPropertySpec
{

public string name;
public CORBA::TypeCode type;

};

typedef sequence<OutputPropertySpec> OutputPropertySpecList;

enum AnalysisState
C-12 Biomolecular Sequence Analysis, v1.0 June 2001

C

{
CREATED, // Instance has been created but not yet executed.
RUNNING, // The analysis instance is running.
COMPLETED, // The instance has completed execution.
TERMINATED_BY_REQUEST, // The instance was terminated by user request.
TERMINATED_BY_ERROR // The instance terminated due to an error.

};

valuetype AnalysisEvent
{

public string message;
};

valuetype StateChangedEvent : truncatable AnalysisEvent
{

#pragma version StateChangedEvent 1.1

public AnalysisState previous_state;
public AnalysisState new_state;

};

valuetype HeartbeatProgressEvent : truncatable AnalysisEvent
{

#pragma version HeartbeatProgressEvent 1.1
};

valuetype PercentProgressEvent : truncatable AnalysisEvent
{

#pragma version PercentProgressEvent 1.1

public float percentage;
};

valuetype TimeProgressEvent : truncatable AnalysisEvent
{

#pragma version TimeProgressEvent 1.1

public TimeBase::TimeT time_remaining;
};

valuetype StepProgressEvent : truncatable AnalysisEvent
{

#pragma version StepProgressEvent 1.1

public unsigned long total_steps;
public unsigned long steps_completed;

};

interface AnalysisInstance;

typedef string MetaData;
June 2001 Biomolecular Sequence Analysis: File: DsLSRAnalysis.idl C-13

C

exception DoesNotExistException { };

interface AnalysisService
{

const string AnalysisTypeTag = "TAG_ANALYSIS_TYPE";
const string InputPropertiesTag = "TAG_INPUT_PROPERTIES";
const string OutputPropertiesTag = "TAG_OUTPUT_PROPERTIES";

readonly attribute StringList metadata_tags;
MetaData describe(in string tagname)

raises (DoesNotExistException);

readonly attribute AnalysisType type;
readonly attribute InputPropertySpecList input_metadata;
readonly attribute OutputPropertySpecList output_metadata;

AnalysisInstance create_analysis (in CosPropertyService::Properties input)
raises (CosPropertyService::MultipleExceptions);

};

exception NotRunnable { };
exception NotRunning { };
exception NotTerminated
{

string reason;
};

interface JobControl
{

#pragma version JobControl 1.1

readonly attribute TimeBase::UtcT created;
readonly attribute TimeBase::TimeT elapsed;
readonly attribute TimeBase::UtcT started;
readonly attribute TimeBase::UtcT ended;

void run()
raises (NotRunnable, CosPropertyService::MultipleExceptions);

void terminate()
raises (NotRunning, NotRunnable, NotTerminated);

void wait()
raises (NotRunning, NotRunnable);

};

interface AnalysisInstance : CosLifeCycle::LifeCycleObject
{

readonly attribute AnalysisService service;
readonly attribute AnalysisState status;
readonly attribute CosEventChannelAdmin::EventChannel event_channel;
readonly attribute AnalysisEvent last_event;
C-14 Biomolecular Sequence Analysis, v1.0 June 2001

C

readonly attribute JobControl job_control;
readonly attribute CosPropertyService::Properties inputs;
readonly attribute CosPropertyService::Properties results;
CosPropertyService::Properties get_result(in StringList name_list);

};
};

#endif // _DS_LSR_ANALYSIS_IDL_
June 2001 Biomolecular Sequence Analysis: File: DsLSRAnalysis.idl C-15

C

C-16 Biomolecular Sequence Analysis, v1.0 June 2001

Domain Model DTD and XML D
D.1 File: DsLSRAnalysis.dtd

<!ELEMENT DsLSRAnalysis (analysis)+>

<!ELEMENT analysis (description?, input*, output*, analysis_extension?)>

<!ATTLIST analysis
type CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
supplier CDATA #IMPLIED
installation CDATA #IMPLIED>

<!ELEMENT description ANY>

<!ELEMENT input (default?, allowed*, input_extension?)>

<!ATTLIST input
type CDATA #REQUIRED
name CDATA #REQUIRED
mandatory (true|false) "false">

<!ELEMENT default (#PCDATA)>
<!ELEMENT allowed (#PCDATA)>

<!ELEMENT output (output_extension?)>

<!ATTLIST output
type CDATA #REQUIRED
name CDATA #REQUIRED>

<!ENTITY % vendor_analysis_tags "<!ELEMENT analysis_extension EMPTY>">
<!ENTITY % vendor_input_tags "<!ELEMENT input_extension EMPTY>">
<!ENTITY % vendor_output_tags "<!ELEMENT output_extension EMPTY>">
June 2001 Biomolecular Sequence Analysis, v1.0 D-1

D

%vendor_analysis_tags;
%vendor_input_tags;
%vendor_output_tags;

D.2 DsLSRBioAnalysis.xml

<?xml version = "1.0"?>
<!DOCTYPE DsLSRAnalysis SYSTEM "DsLSRAnalysis.dtd">

<DsLSRAnalysis>

<analysis type = "search.list">
<input

name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "sequence_list"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">

</input>
<output

name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</output>
</analysis>

<analysis type = "search.collection">
<input

name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceIterator:1.0"
mandatory = "true">

</input>
<output

name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</output>
</analysis>

<analysis type = "search.database">
<input

name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "database_id"
type = "IDL:omg.org/DsLSRBioObjects/Identifier:1.0"
D-2 Biomolecular Sequence Analysis, v1.0 June 2001

D

mandatory = "true">
</input>
<output

name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</output>
</analysis>

<analysis type = "search/annotation">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<output

name = "sequence_annotation"
type = "IDL:omg.org/DsLSRBioObjects/SeqAnnotationList:1.0">

</output>
</analysis>

<analysis type = "search/region">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<output

name = "sequence_region"
type = "IDL:omg.org/DsLSRBioObjects/SeqRegionList:1.0">

</output>
</analysis>

<analysis type = "search.list/similarity">
<input

name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "sequence_list"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">

</input>
<output

name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</output>
</analysis>

<analysis type = "search.collection/similarity">
<input

name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
June 2001 Biomolecular Sequence Analysis: DsLSRBioAnalysis.xml D-3

D

<input
name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceIterator:1.0"
mandatory = "true">

</input>
<output

name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</output>
</analysis>

<analysis type = "search.database/similarity">
<input

name = "query_sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "database_id"
type = "IDL:omg.org/DsLSRBioObjects/Identifier:1.0"
mandatory = "true">

</input>
<output

name = "search_result"
type = "IDL:omg.org/DsLSRBioObjects/SearchResult:1.0">

</output>
</analysis>

<analysis type = "alignment.list">
<input

name = "sequence_list"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">

</input>
<output

name = "alignment"
type = "IDL:omg.org/DsLSRBioObjects/Alignment:1.0">

</output>
</analysis>

<analysis type = "alignment.collection">
<input

name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceIterator:1.0"
mandatory = "true">

</input>
<output

name = "alignment"
type = "IDL:omg.org/DsLSRBioObjects/Alignment:1.0">

</output>
</analysis>

<analysis type = "alignment.list/assembly">
<input

name = "sequence_list"
D-4 Biomolecular Sequence Analysis, v1.0 June 2001

D

type = "IDL:omg.org/DsLSRBioObjects/BioSequenceList:1.0"
mandatory = "true">

</input>
<output

name = "assembly"
type = "IDL:omg.org/DsLSRBioObjects/Assembly:1.0">

</output>
</analysis>

<analysis type = "alignment.collection/assembly">
<input

name = "sequence_iterator"
type = "IDL:omg.org/DsLSRBioObjects/BioSequenceIterator:1.0"
mandatory = "true">

</input>
<output

name = "assembly"
type = "IDL:omg.org/DsLSRBioObjects/Assembly:1.0">

</output>
</analysis>

<analysis type = "alignment/phylogeny">
<input

name = "alignment_list"
type = "IDL:omg.org/DsLSRBioObjects/AlignmenList:1.0"
mandatory = "true">

</input>
<output

name = "alignment"
type = "IDL:omg.org/DsLSRBioObjects/Alignment:1.0">

</output>
</analysis>

<analysis type = "utility/molecular_weight">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<output

name = "molecular_weight"
type = "unsigned long">

</output>
</analysis>

<analysis type = "utility/residue_composition">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "residue"
type = "IDL:omg.org/DsLSRBioObjects/Residue:1.0"
mandatory = "true">
June 2001 Biomolecular Sequence Analysis: DsLSRBioAnalysis.xml D-5

D

</input>
<output

name = "residue_composition"
type = "double">

</output>
</analysis>

<analysis type = "utility/ambiguous_residues">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/BioSequence:1.0"
mandatory = "true">

</input>
<input

name = "genetic_code"
type = "IDL:omg.org/DsLSRBioObjects/GeneticCode:1.0"
mandatory = "true">

</input>
<output

name = "ambiguous_residues"
type = "boolean">

</output>
</analysis>

<analysis type = "utility/gc_content">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/NucleicAcidSequence:1.0"
mandatory = "true">

</input>
<output

name = "gc_content"
type = "double">

</output>
</analysis>

<analysis type = "utility/isoelectric_point">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/AminoAcidSequence:1.0"
mandatory = "true">

</input>
<output

name = "isoelectric_point"
type = "double">

</output>
</analysis>

<analysis type = "utility/translate_seq">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/NucleicAcidSequence:1.0"
mandatory = "true">

</input>
<input
D-6 Biomolecular Sequence Analysis, v1.0 June 2001

D

name = "reading_frame"
type = "short">

<default>-3</default>
<allowed>-2</allowed>
<allowed>-1</allowed>
<allowed>1</allowed>
<allowed>2</allowed>
<allowed>3</allowed>

</input>
<input

name = "genetic_code"
type = "IDL:omg.org/DsLSRBioObjects/GeneticCode:1.0"
mandatory = "true">

</input>
<output

name = "translated_seq"
type = "string">

</output>
</analysis>

<analysis type = "utility/translate_seq.seq_region">
<input

name = "sequence"
type = "IDL:omg.org/DsLSRBioObjects/NucleicAcidSequence:1.0"
mandatory = "true">

</input>
<input

name = "sequence_region"
type = "IDL:omg.org/DsLSRBioObjects/SeqRegion:1.0"
mandatory = "true">

</input>
<input

name = "genetic_code"
type = "IDL:omg.org/DsLSRBioObjects/GeneticCode:1.0"
mandatory = "true">

</input>
<output

name = "translated_seq"
type = "string">

</output>
</analysis>

</DsLSRAnalysis>
June 2001 Biomolecular Sequence Analysis: DsLSRBioAnalysis.xml D-7

D

D-8 Biomolecular Sequence Analysis, v1.0 June 2001

Future Direction of Metamodel E
This specification uses metadata to describe analyses and inputs and outputs to
analyses. Included in the specification is a DTD and example XML that shows the
future direction of metadata within BSA. When more complex, more descriptive
metadata is needed, the BSA metadata could be described using the mechanisms
specified in the XMI. The sample better illustrates this idea.

E.1 File: DsLSRAnalysis - future.dtd

<!-- LSR BSA DTD -->

<!ENTITY % UmlMetaData SYSTEM "ad98-10-16.dtd">
%UmlMetaData;

<!ENTITY % DsLSRAnalysisXMI SYSTEM "DsLSRAnalysisXMI.dtd">
%DsLSRAnalysisXMI;

E.2 File: DsLSRAnalysisXMI - future.dtd

<!-- LSR BSA Analysis Machinery DTD -->

<!ELEMENT DsLSRAnalysisXMI (analysis)+>
<!ATTLIST DsLSRAnalysisXMI

%XMI.element.att;
%XMI.link.att;

>

<!ELEMENT analysis (description?, input*, output*, XMI.extension*)>

<!ATTLIST analysis
analysisType CDATA #REQUIRED
name CDATA #IMPLIED
version CDATA #IMPLIED
June 2001 Biomolecular Sequence Analysis, v1.0 E-1

E

supplier CDATA #IMPLIED
installation CDATA #IMPLIED>

<!ELEMENT description (XMI.extension*)>

<!ELEMENT input (parameter*, XMI.extension*)>
<!ATTLIST input

name CDATA #REQUIRED
mandatory (true|false) "false">

<!ELEMENT output (parameter*, XMI.extension*)>
<!ATTLIST output

name CDATA #REQUIRED>

<!ELEMENT parameter ((Foundation.Core.Parameter | logicalType), constraint*)>

<!ELEMENT logicalType (Foundation.Core.DataType | XMI.CorbaTypeCode | XMI.extension+)>

<!ELEMENT constraint (default?, allowed*, Foundation.Core.Constraint*, XMI.extension*)>

<!ELEMENT default (#PCDATA)>

<!ELEMENT allowed (#PCDATA)>

E.3 File: DsLSRBioAnalysis - future (sample).xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE XMI SYSTEM 'DsLSRAnalysis-future.dtd'>

<XMI>

 <XMI.header>
<XMI.model xmi.name='sample' xmi.version='1.0'/>
<XMI.metamodel xmi.name='uml' xmi.version='1.1'/>
 </XMI.header>

 <XMI.content/>

 <XMI.extensions xmi.extender='omg.org/DsLSRAnalysis'>

<DsLSRAnalysisXMI>

<analysis analysisType="similarity_analysis/database">

<input name="query_sequence" mandatory="true">

 <parameter>

<Foundation.Core.Parameter>
<Foundation.Core.ModelElement.name>input</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value='public'/>
<Foundation.Core.Parameter.defaultValue>
<Foundation.Data_Types.Expression/>
E-2 Biomolecular Sequence Analysis, v1.0 June 2001

E

</Foundation.Core.Parameter.defaultValue>
<Foundation.Core.Parameter.kind xmi.value='in'/>
<Foundation.Core.Parameter.type>
<Foundation.Core.Interface>
<Foundation.Core.ModelElement.name>BioSequence</Foundation.Core.Model

Element.name>
<Foundation.Core.ModelElement.visibility xmi.value='public'/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value='false'/>
</Foundation.Core.Interface>
</Foundation.Core.Parameter.type>
</Foundation.Core.Parameter>

 </parameter>

</input>

<input name="database_id" mandatory="true">

 <parameter>

<Foundation.Core.Parameter>
<Foundation.Core.ModelElement.name>input</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value='public'/>
<Foundation.Core.Parameter.defaultValue>
<Foundation.Data_Types.Expression/>
</Foundation.Core.Parameter.defaultValue>
<Foundation.Core.Parameter.kind xmi.value='in'/>
<Foundation.Core.Parameter.type>
<Foundation.Core.Interface>
<Foundation.Core.ModelElement.name>DbId</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value='public'/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value='false'/></

Foundation.Core.Interface>
</Foundation.Core.Parameter.type>
</Foundation.Core.Parameter>

<constraint>
<allowed> database1 </allowed>
<allowed> database2 </allowed>
<allowed> database3 </allowed>
<allowed> database4 </allowed>

</constraint>

 </parameter>

</input>
June 2001 Biomolecular Sequence Analysis: File: DsLSRBioAnalysis - future (sample).xml E-3

E

<output name="hits">

 <parameter>

<Foundation.Core.Parameter>
<Foundation.Core.ModelElement.name>input</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value='public'/>
<Foundation.Core.Parameter.defaultValue>
<Foundation.Data_Types.Expression/>
</Foundation.Core.Parameter.defaultValue>
<Foundation.Core.Parameter.kind xmi.value='out'/>
<Foundation.Core.Parameter.type>
<Foundation.Core.Interface>
<Foundation.Core.ModelElement.name>Hits</Foundation.Core.ModelElement.name>
<Foundation.Core.ModelElement.visibility xmi.value='public'/>
<Foundation.Core.GeneralizableElement.isRoot xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isLeaf xmi.value='false'/>
<Foundation.Core.GeneralizableElement.isAbstract xmi.value='false'/>
</Foundation.Core.Interface>
</Foundation.Core.Parameter.type>
</Foundation.Core.Parameter>

 </parameter>

</output>

</analysis>

</DsLSRAnalysisXMI>

 </XMI.extensions>
</XMI>
E-4 Biomolecular Sequence Analysis, v1.0 June 2001

Glossary
Glossary Terms

Alignment See Sequence Alignment

Ambiguity Code Single character representation of an ambiguous nucleotide or residue.

Amino Acid Any of a class of 20 small molecule building blocks that are combined
to form proteins in living things (21 amino acids if selenocysteine is
included). The sequence of amino acids in a protein and hence protein
function are determined by the nucleotide sequence of its gene and the
genetic code. The terms residue and amino acid are often used
interchangeably.

Assembly See Sequence Assembly

Base See Nucleotide

Complementary Base The nucleotide that chemically pairs up (hybridizes) with another
nucleotide (called its complement) on the other strand, within a
double-stranded sequence. G pairs with C in both DNA and RNA. A
pairs with T in DNA. A pairs with U in RNA.

Complement The sequence consisting of Complementary Bases.

Cladogram See Phylogenetic Tree

Coding Sequence A DNA sequence that contains appropriate start and stop codons,
indicating the amino acid sequence translated from it could form a
functional protein.

Codon A set of three nucleotide bases in a DNA or RNA sequence, which
together code for a unique amino acid. For example, the set AUG
(adenine, uracil, guanine) codes for the amino acid methionine.
June 2001 Biomolecular Sequence Analysis, v1.0 Glossary - 1

Contig or Contig Map As used here, a graphical or data representation depicting the relative
order of a linked library of small overlapping clones representing a
complete chromosomal segment. See Sequence Assembly.

DNA (deoxyribonucleic
acid)

The molecule that encodes genetic information. DNA is a double-
stranded polymer of nucleotides. The two strands are held together by
hydrogen bonds between base pairs of nucleotides. The four
nucleotides in DNA contain the bases: adenine (A), guanine (G),
cytosine (C), and thymine (T). In nature, base pairs form only between
A and T and between G and C; thus the base sequence of each single
strand can be deduced from that of its partner.

Expression The conversion of the genetic instructions present in a DNA sequence
into a unit of biological function in a living cell. Typically involves the
process of transcription of a DNA sequence into an RNA sequence
followed by translation of the RNA into protein. The RNA may be
spliced before translation to remove introns.

Exon Segment of a (genomic) sequence that is translated into a segment of a
protein. See also Intron.

Gap The opening and addition of one or more spaces to individual
sequences in an alignment, in order to increase the consensus of the
overall mapping. A gap represents a failure to establish equivalence
between nucleotides in a particular region of a sequence when
aligning it with one or more other sequences.

Gene A length of DNA which codes for a particular protein, or in certain
cases a functional or structural RNA molecule. Genes may be inferred
from the DNA sequence by way of a coding sequence.

Genetic Code The full set of codons in DNA or mRNA. Each codon is made up of
three nucleotides which call for a unique amino acid. For example, the
set AUG (adenine, uracil, guanine) calls for the amino acid methionine
in the standard genetic code. The sequence of codons along an mRNA
molecule specifies the sequence of amino acids in a particular protein.

Genome The complete set of genetic information for a particular organism.

Genomic Pertaining to or contained within a genome; also: chromosomal.

Hidden Markov Model
(HMM)

A stochastic generative model for a series defined by a finite set of
states, a discrete alphabet of symbols, a probability transition matrix,
and a probability emission matrix.

Intron Segment of the (genomic) sequence that is removed (spliced) from the
RNA molecule prior to translation. Introns are therefore not translated
to protein in a living cell.

Non-Coding A class of genomic sequence that is not translated into a protein
sequence. Non-coding sequence consists of introns and intergenic
regions that may contain "junk" DNA such as repeat sequences.
Glossary - 2 Biomolecular Sequence Analysis, v1.0 June 2001

Nucleic Acid A polymer of nucleotides. DNA and RNA are different classes of
nucleic acids. May be double- or single-stranded.

Nucleotide A subunit of DNA or RNA consisting of a nitrogenous base (adenine,
guanine, thymine, or cytosine in DNA; adenine, guanine, uracil, or
cytosine in RNA), a phosphate molecule, and a sugar molecule
(deoxyribose in DNA and ribose in RNA).

Phylogenetic Tree A map, dendrogram, cladogram, or other data or graphical
representation of a Phylogeny.

Phylogeny
(phylogenesis,
phylogenetic,
phylogenic)

The evolutionary history of a particular taxonomic group, usually a
species.

Profile A table that lists the frequencies of finding each of the 20 amino acids
at each position in conserved sequence pattern; used in sensitive
sequence searches.

Protein A biological molecule that consists of many amino acids chained
together by peptide bonds. The sequence of amino acids in a protein is
determined by the sequence of nucleotides in a DNA molecule.
Proteins perform most of the enzymatic and structural roles within
living cells.

RNA (ribonucleic acid) A class of nucleic acids that consist of nucleotides containing the
bases: adenine (A), guanine (G), cytosine (C), and uracil (U). An RNA
molecule is typically single-stranded and can pair with DNA (where U
pairs with A) or with another RNA molecule. RNA nucleotides are
chemically distinct from DNA nucleotides and enable RNA molecules
to have more complex structural and functional roles within a living
cell.

Reading Frame The ‘phase’ of the starting point of a translation. As each codon
consists of three bases, a translation of a nucleotide sequence will
yield entirely different protein sequences depending on this. Negative
values are often used to denote translation of the reverse strand.

Residue Amino acid; sometimes: nucleotide.

Reverse Complement The sequence obtained by reading the opposite (complementary)
strand of a nucleic acid sequence in the reverse direction.

Sequence The order of nucleotides in a DNA or RNA molecule, or the order of
amino acids in a protein.

Sequence Alignment The explicit mapping between the residues of two or more sequences.
A sequence alignment may have gaps. Alignments are used to
establish similarities between sequences and/or sequence families.
June 2001 Biomolecular Sequence Analysis: Glossary Terms Glossary - 3

Sequence Assembly A series of linked sequence alignment analysis steps that is used for
constructing a contig.

Splicing The removal of introns from an RNA sequence leaving only the exons
which are then translated into a protein.

Translation The conversion of a nucleic acid sequence into an amino acid
sequence according to the rules of a genetic code.
Glossary - 4 Biomolecular Sequence Analysis, v1.0 June 2001

Index
A
Alignment 2-42, 3-6
Alignment Examples 2-51
AlignmentElement 2-38
AlignmentElementIterator 2-41
AlignmentEncoder factories 2-83
AnalysisEvent 2-93
AnalysisEvent sub types 2-94
AnalysisInstance 2-104
AnalysisService 2-97
AnalysisState 2-92
AnalysisType 2-87
Annotation 2-10
AnnotationFactory (Optional) 2-64
Assembly 2-53

B
Basis 2-4
BioObject immutability 1-4
BioSequence 2-22
BioSequence factories 2-66
BioSequence iterators 2-69
BioSequenceIdentifierResolver 2-59

C
CharacterAlignmentEncoder 2-76
Classification of Analyses 3-6
CodeRule 2-34
Composite pattern 1-3
CORBA

contributors iii
documentation set ii

D
Domain Metadata 3-3
Domain model 1-2, 3-1
DsLSRAnalysis 1-2, 2-85
DsLSRBioObjects 2-1
DTD 3-2

G
Genetic codes B-1
GeneticCode 2-37
GeneticCodeFactory 2-74

I
Identifier 1-3, 2-18
IDL interface 1-2
IDL struct 1-2
Iimmutable 1-4
InputPropertySpec 2-89
Interval 2-5

J
JobControl 2-100

M
Module DsLSRAnalysis 1-2, 2-85
Module DsLSRBioObjects 2-1
Multi-valued result 1-3

O
Object Management Group i

address of ii
Objects-by-value 1-2
OutputPropertySpec 2-91

S
SearchHit 2-54
Searching 3-6
SearchResult 2-60
SeqAnnotation Interface 2-16
SeqRegion 2-6
Sequence Diagrams 2-108
SimilaritySearchHit 2-57
SingleCharacterAlignmentEncoder 2-81
StrandType 2-3
Sub-types of AnalysisEvent 2-94
Sub-types of BioSequence 2-29

U
Utilities 3-6

V
valuetype 1-2

X
XML Metadata 3-1
June 2001 Biomolecular Sequence Analysis, v1.0 Index-1

Index
Index-2 Biomolecular Sequence Analysis, v1.0 June 2001

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Overview
	1.1 Module DsLSRBioObjects
	1.2 Module DsLSRAnalysis
	1.3 Domain Model
	1.4 General Remarks
	1.4.1 Objects-by-value
	1.4.2 Returning Multiple Results
	1.4.3 Identifier
	1.4.4 Composite Pattern
	1.4.5 BioObject Immutability
	1.4.6 Rationale for Metadata Approach

	2. Modules and Interfaces
	2.1 Module DsLSRBioObjects
	2.1.1 General
	2.1.2 StrandType
	2.1.3 Basis
	2.1.4 Interval
	2.1.5 SeqRegion
	2.1.6 Annotation
	2.1.7 SeqAnnotation
	2.1.8 SeqAnnotation Interface
	2.1.9 Identifier
	2.1.10 BioSequence
	2.1.11 Sub-types of BioSequence
	2.1.12 CodeRule
	2.1.13 GeneticCode
	2.1.14 AlignmentElement
	2.1.15 AlignmentElementIterator
	2.1.16 Alignment
	2.1.17 Alignment Examples
	2.1.18 Assembly
	2.1.19 SearchHit
	2.1.20 SimilaritySearchHit
	2.1.21 BioSequenceIdentifierResolver
	2.1.22 SearchResult
	2.1.23 AnnotationFactory (Optional)
	2.1.24 BioSequence factories (Optional)
	2.1.25 BioSequence iterators (Optional)
	2.1.26 GeneticCodeFactory (Optional)
	2.1.27 CharacterAlignmentEncoder (Optional)
	2.1.28 SingleCharacterAlignmentEncoder (Optional)
	2.1.29 AlignmentEncoder factories (Optional)

	2.2 Module DsLSRAnalysis
	2.2.1 General
	2.2.2 AnalysisType
	2.2.3 InputPropertySpec
	2.2.4 OutputPropertySpec
	2.2.5 AnalysisState
	2.2.6 AnalysisEvent
	2.2.7 Sub-types of AnalysisEvent
	2.2.8 AnalysisService
	2.2.9 JobControl
	2.2.10 AnalysisInstance
	2.2.11 Sequence Diagrams

	3. Domain Model
	3.1 XML Metadata
	3.1.1 Role of XML
	3.1.2 Role of DTD
	3.1.3 Domain Metadata

	3.2 Classification of Analyses
	3.2.1 Searching
	3.2.2 Alignment
	3.2.3 Utilities

	Appendix A - References
	Appendix B - Genetic Codes
	Appendix C - Complete IDL
	Appendix D - Domain Model DTD and XML
	Appendix E - Future Direction of Metamodel
	Glossary
	Index

