Biomolecular SequenceAnalysis
Specification

Version1.0
June2001

Copyright 1999, Concept Five Technologies, Inc.

Copyright 1999, EMBL-EBI (European Bioinformatics Institute)
Copyright 1999, Genome Informatics Corporation

Copyright 1999, Millennium Pharmaceuticals, Inc.

Copyright 1999, Neomorphic Software, Inc.

Copyright 1999, NetGenics, Inc.

Copyright 2001, Object Management Group

The companies listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adoptersisdirected to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patentsfor which alicense may be
required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patentsthat are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on thispage. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION ISBELIEVED TO BEACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holderslisted
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other specid designations to indicate compliance with these materials. This document containsinformation which is protected
by copyright. All Rights Reserved. No part of thiswork covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Rightin Technical Data and Computer Software Clause at DFARS 252.227.7013 OM G®and
Object Management are registered trademarks of the Object M anagement Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and I1OP are trademarks of the Object Management Group, Inc.
X/Open isatrademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readersto
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface %
L OVEIVIBW . 1-1
1.1 Module DSLSRBIioObjects.o 1-1
1.2 ModuleDSLSRANalYSIS. . ..o 1-2
1.3 DomanModel 1-2
14 Gengral Remarks, 1-2
141 Objects-by-value. 1-2

142 Returning MultipleResults. 1-3

143 ldentifier......... i 1-3

144 CompositePattern. 1-3

145 BioObject Immutability 1-4

1.4.6 Rationalefor Metadata Approach. 1-4

2. Modulesand Interfaces. 2-1
21 Module DSLSRBIOObjECtS. oo 2-1
211 General........ . 2-2

212 StrandType.o 2-3

213 BaSIS. ... 2-4

214 Interval 2-5

215 SegRegioniiiii 2-6

216 Annotation, 2-10

217 SegAnnotation 2-14

2.1.8 SegAnnotation Interface. 2-16

219 Identifier. 2-18

21.10 BioSequence.oviiiiiiin., 2-22

June 2001

Biomolecular Sequence Analysis, v1.0 i

Contents

2.1.11 Sub-typesof BioSequence 2-29

2112 CodeRule......... 2-34

2113 GeneticCode.c.coviiiiiin... 2-37

2.1.14 AlignmentElement 2-38

2.1.15 AlignmentElementlterator 2-41

2116 Alignment.......... i 2-42

2.1.17 AlignmentExamples 2-51

2118 Assembly ... 2-53

2119 SearchHit......... i 2-54

2.1.20 SimilaritySearchHit 2-57

2.1.21 BioSequenceldentifierResolver 2-59

2122 SearchResult................, 2-60

2.1.23 AnnotationFactory (Optional). 2-64

2.1.24 BioSequencefactories (Optional)........... 2-66

2.1.25 BioSequenceiterators (Optional) 2-69

2.1.26 GeneticCodeFactory (Optional) 2-74

2.1.27 CharacterAlignmentEncoder (Optional). 2-76

2.1.28 SingleCharacterAlignmentEncoder (Optional). 2-81

2.1.29 AlignmentEncoder factories (Optional) 2-83

22 Module DSLSRANaAlYSIS. oo 2-85
221 General......... . 2-86

222 AnaysiSTypet 2-87

2.2.3 InputPropertySpec 2-89

2.24 OutputPropertySpec 2-91

225 AnaysisState 2-92

226 AnaysisEvent.............. 2-93

2.2.7 Sub-typesof AnalysisEvent............... 2-94

228 AnaysisSavice i 2-97

229 JobControl 2-100

2.2.10 Anaysisinstance. 2-104

2.2.11 SequenceDiagrams 2-108

3. DomainModel 3-1
31 XML Metadata.cooiiiiii 3-1
311 Roleof XMLo i 3-1

312 Roleof DTD. ..., 3-2

3.1.3 DomainMetadata....................... 3-3

3.2 Classificationof Analyses 3-6
321 Searchingooviiiiiiiiiiinen... 3-6

322 Alignment.......... i 3-6

323 Utilities. 3-6

i Biomolecular Sequence Analysis, v1.0 June 2001

Contents

Appendix A - References. A-1
Appendix B-GeneticCodes., B-1
Appendix C-CompleteIDL C-1
Appendix D - Domain Model DTD and XML D-1
Appendix E - Future Direction of Metamoddl. E-1
GlOSSAY . . v Glossary-1

June 2001 Biomolecular Sequence Analysis, v1.0 iii

Contents

Biomolecular Sequence Analysis, v1.0

June 2001

Preface

About the Object Management Group

June 2001

The Object Management Group, Inc. (OMG) isan international organization supported by
several hundred members, including information system vendors, software devel opers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software devel opment. The organization's charter includes the establishment
of industry guidelines and object management specifications to provide a common frame-
work for application devel opment. Primary goal sare the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to devel op a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA providesthe
conceptual infrastructure upon which al OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), isthe Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software productsavailable today. Simply stated, CORBA allows applica-
tionsto communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

Biomolecular Sequence Analysis, v1.0 v

Associated OMG Documents

In addition to the CORBA Transportation specifications, the CORBA documentation
set includes the following:

Vi

Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are

based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

CORBAservices: Common Object Services Specification, a collection of OMG’s
Object Services specifications.

CORBAfacilities: Common Facilities Specification, a collection of OMG’s Common
Facility specifications.

CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

Biomolecular Sequence Analysis, v1.0 June 2001

Acknowl edgments

June 2001

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

The following companies submitted and/or supported parts of this specification:
» Concept Five Technologies, Inc.
* EMBL-EBI (European Bioinformatics Institute)
* Genome Informatics Corporation
e Millennium Pharmaceuticals, Inc.
* Neomorphic Software, Inc.
¢ NetGenics, Inc.
« Oxford Molecular Group
» Sanger Centre

Biomolecular Sequence Analysis: Acknowledgments

vii

viii Biomolecular Sequence Analysis, v1.0 June 2001

Overview 1

Contents

This chapter contains the following sections.

Section Title Page
“Module DsL SRBioObjects’ 1-1
“Module DsLSRAnNalysis” 1-2
“Domain Model” 1-2
“General Remarks” 1-2

The domain of biomolecular sequence analysis comprises the sub-domains of biological
objects and analysis mechanisms. The modul es that address these areas are described in
the following sections.

1.1 Module DsLSRBioObjects

June 2001

Biological objectsthat are central to this specification includeBioSequence, whichis
specialized into NucleotideSequence and AminoAcidSequence. An Annotation
object is provided, which is specialized into SeqAnnotation for usage with BioSe-
guences. SeqAnnotations can apply to specific parts of a sequence, and the mecha-
nism to refer to these regionsis provided by SeqRegion and Interval.
CompositeSeqRegion providesthe ability to nest SeqRegions. GeneticCode,
associated with an organism, is an auxiliary object needed when translating sequences.
Theinterface Alignment and ancillary types are used for representing comparisons
between sequences or sequence families. It is aso used in describing Similarity Search-
Hits (i.e., matches found in sequence database, and Assemblies). SearchHit and
SearchResult are used primarily for representing theresultsof similarity searches (e.g.,
BLAST).

Biomolecular Sequence Analysis, v1.0 1-1

1-2

The Annotation factory, the BioSequence iterators and factories, SeqAnnotation
iterator, GeneticCode factory, and AlignmentEncoders and factories are optional
interfaces.

The Annotation factory, the BioSequence iterators and factories, GeneticCode fac-
tory, and AlignmentEncoders and factories are optional interfaces.

1.2 Module DsLSRAnalysis

1.3 Domain Modd

The DsLSRAnNalysis module defines the componentsfor supporting sequence analysis
through a generic analysis design. The module provides the means to interrogate analyses
inputs, output, and functionality. An analysis can be executed asynchronously aswell as
synchronously based on the client invocation. Executing analyses can be monitored by
subscribing to an event channel or polling for state.

The domain model is expressed in XML. The domain model includes asimple classifica-
tion of analyses. Thisisin response to the mandatory requirement of the RFP, and serves
to organize the analyses into groupsin a way that matches closely with how researchers
and bioinformaticists think about and utilize such analyses.

This classification of analyses consists of three broad categories.
® Searching - including similarity searching (e.g., BLAST)
¢ Alignment - including contig assembly

® Utilities - including molecular weight and GC content

1.4 General Remarks

This document addresses the representation of a number of biological objects, aswell as
mechanisms for analyzing them. A few design principles and patterns that were used are
outlined first.

1.4.1 Objects-by-value

This document makes extensive use of objects-by-value (OMG Document
orbos/98-01-18, which was incorporated into the CORBA Core, version 2.3 document). A
valuetype isan entity that is halfway between an IDL interface and an IDL struct.
They are not yet widely supported by all ORBs, but we think they are avery useful con-
struct, as they promise to provide:

® choice: the client can choose to make the object ‘local’ or leave it remote,
® better scalability: only a single round trip transfers the whole state of the object,
® extendibility through inheritance,

® null value semantics.

Biomolecular Sequence Analysis, v1.0 June 2001

1

We have used OBV valuetypesessentidly asif they were extendible structs, using the
following constraints:

® no methods
® all members/ attributes are public

® inheritance only of valuetypes (no “supports Somel nterface’).

Note — Factory methods were not used in the valuetypes. See the appropriate
language mapping specifications for details on using ValueFactories.

1.4.2 Returning Multiple Results

If amethod has to return a multi-valued result to the caller, thereis adesign choice of
returning these elements directly as alist, or through an iterator, or using a combination of
both. We have adopted the latter, hybrid approach to allow the client to choose between
the convenience of directly returned lists and the scalability of iterators. The methods hav-
ing amulti-valued result use have:

® alist return type,
® aparameter in unsigned long how_many,

® aparameter out Anlterator the rest.

The client specifiesthat it wishesto receive alist of no morethanhow_many elements as
the direct result. The remaining elements, if any, can be retrieved through the iterator
returned in the out parameter. The iterators alow theretrieval of one element at atime, or
several at once. This pattern was in fact taken directly from the CosPropertyService,
and provides maximum flexibility to client programs.

A multi-valued result, either returned directly or through an iterator, isguaranteed not to
contain duplicates. If amulti-valued result typeis ordered and iterators areinvolved, the
ordering is the same asthat achieved by not having used any iterators.

1.4.3 ldentifier

Many entities in molecular biology require ID strings, usually to uniquely identify it in a
certain context. The current document also uses stringsfor ID attributes, but constrains
their syntax and semantics to improve interoperability. To make the intended use of these
strings clearer,

typedef string Identifier;

is provided and used in this specification.

1.4.4 Composite Pattern

The CompositeSeqRegion vauetype implements the Composite design pattern
[Gammaet al., 1995]. Thispattern composes entitiesinto tree structures to represent hier-

June 2001 Biomolecular Sequence Analysis: General Remarks 1-3

archies. The Composite pattern treats individual objects and composites uniformly.

A biological example using the Composite pattern is a gene being composed of coding
regions from a set of exons.

1.4.5 BioObject Immutability

All BioObjects in this specification, with the single exception of BioSequence, are
immutable. Modifying other BioObjects is considered out of scope for sequence analysis,
as defined by the RFP. Sinceit isclear that the results of many sequence anayses produce
information that is frequently attached to sequences as annotations, we do provide the
add_annotation() method in BioSequence.

Implementors are free to choose to support mutable BioObjects, taking responsibility for
the associated life cycle issues.

1.4.6 Rationale for Metadata Approach

A number of viable approaches to metadata for sequence analyses were explored. There
was astrong desireto leverage existing solutionsif possible. A predecessor to this specifi-
cation described the metadatamodel using valuetype based extensible structs. This
approach is carried into the current specification. In recognition of the increasing use of
XML to provide data descriptions for application metadata, the specification was
enhanced to also support retrieval of XML based metadata. An XML DTD defining the
metadata model has been introduced aswell. Additionally the mechanism used to fetch
metadata descriptions for analyses has been enhanced to support the introduction of new
XML based metadata by supplying atag that identifies the type of metadata described. It
is expected that this tag-based retrieval approach could be used to provide access to OCL,
XML, or other formatted metadatain the future.

Biomolecular Sequence Analysis, v1.0 June 2001

Modulesand I nterfaces 2

Contents

This chapter contains the following sections.

Section Title Page
“Module DsL SRBioObjects’ 2-1
“Module DsLSRAnNalysis” 2-85

2.1 Module DsLSRBioObjects

June 2001

The analysis of biomolecular sequence information takes place within the broader
domain of computational biology. This domain presents a very heterogeneous, rapidly
evolving environment that has proven difficult to standardize. To offer a design that is
both complete and practical for the field of sequence analysis, this specification includes
an IDL specification for Annotations and so-called SegAnnotations, which can be
likened to Features in the DDBJEMBL/GenBank flat file format. These two data
components serve to incorporate and organize additional information relevant to the
sequence data. Examples include organism source information, biological descriptors,
cross-references, molecular characterizations, known sites and variations within the
sequence, bibliographic references, and relations to known diseases. Annotations and
SegAnnotations can also be attached to a sequence to carry new information that is
computationally inferred, or experimentally determined. We believe that it is necessary
to offer users an easy, extensible interface to organize and link this resulting information
to biomolecular sequences either as whole-sequence Annotations or region-specific
SegAnnotations (Features).

Some of the entities described below use generic types such as Any or name-value pairs.
It is deemed outside the scope of this document to standardize the types of values that
can be contained in these generic types.

Biomolecular Sequence Analysis, v1.0 2-1

2-2

Existing standards that can be represented with the current proposal and to some extent
have shaped it are: the NCBI datamodels; the DDBJEMBL/GenBank Feature Table
Document; various sequence file formats (Fasta, EMBL/GenBank, GCG), and various
sequence analysis tools (BLAST, FastA, Smith-Waterman, Clustal W, Wise2, Grail, the
GCG suite).

The alignment portion of the response is aimed to effectively model al types of
BioSequence and BioSequence related aignment problems in biomolecular
sequence analysis. This ranges from the relatively simple cases of a pairwise alignment
of two DNA sequences, to the complex case of a profileeHMM compared to genomic
DNA.

2.1.1 General

/IFile: DsLSRBioObjects.idl

#ifndef DS_LSR_BIOOBJECTS_IDL_
#define_DS_LSR_BIOOBJECTS_IDL_

#pragma prefix "omg.org"

#include <CosLifeCycle.idl>
#include <CosPropertyService.idl>

module DsLSRBioObjects
{

b

#endif //_DS_LSR_BIOOBJECTS_IDL_

...

#pragma prefix "omg.org"

To prevent name space pollution and name clashing of IDL types, this module (and all
modules defined in this specification) uses the pragma prefix that is the OMG’s DNS
name.

#include <CosLifeCycle.idl>

NucleotideSequence, AminoAcidSequence, Annotation, GeneticCode,
Alignment, and SearchResult al inherit from LifeCycleObject.

#include <CosPropertyService.idl>

Properties are used in Annotation, SearchHit, and SearchResult.

Biomolecular Sequence Analysis, v1.0 June 2001

StringList

typedef sequence<string> StringList;

Description: Used to pass and return a set of strings.

2.1.2 StrandType

Thereisan intrinsic directionality of biological sequence data, which proceeds5' to 3' for
nucleic acids and N-terminal to C-terminal for proteins. For NucleotideSequences,
StrandType provides an indication of whether the SeqRegion refers to the original
plus-strand, the complementary minus-strand, or both strands of a double-stranded
molecule. The StrandType values are used in SeqRegion.

Table 2-1 contains the valid Strand Type for each type of BioSequence.

Table 2-1 Valid StrandTypes

BioSequence Type

Valid StrandTypes

BioSequence

STRAND_NOT_KNOWN

NucleotideSequence

STRAND_NOT_KNOWN, STRAND_PLUS,
STRAND_MINUS, STRAND_BOTH

AminoAcidSequence

STRAND_NOT_APPLICABLE

Table 2-2 contains the matching StrandTypes for each type of StrandType.

Table 2-2 Matching StrandTypes

StrandType

M atching StrandTypes

STRAND_NOT_KNOWN

STRAND_NOT_KNOWN, STRAND_PLUS,
STRAND_MINUS, STRAND_BOTH

STRAND_NOT_APPLICABLE | STRAND_NOT_APPLICABLE

STRAND_PLUS

STRAND_NOT_KNOWN, STRAND_PLUS,
STRAND_BOTH

STRAND_MINUS

STRAND_NOT_KNOWN,
STRAND_MINUS, STRAND_BOTH

STRAND_BOTH

STRAND_NOT_KNOWN, STRAND_PLUS,
STRAND_MINUS, STRAND_BOTH

June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-3

<<enum>>
StrandType

STRAND_NOT_KNOWN
STRAND_NOT_APPLICABLE
STRAND_PLUS
STRAND_MINUS
STRAND_BOTH

Figure2-1 The StrandType Enumeration

enum StrandType {STRAND_NOT_KNOWN, STRAND_NOT_APPLICABLE,
STRAND_PLUS, STRAND_MINUS, STRAND_BOTH};

STRAND_NOT_KNOWN STRAND_NOT_KNOWN should be used in all cases
not indicated below.

STRAND_NOT_APPLICABLE STRAND_NOT_APPLICABLE should be used for
regions of AminoAcidSequences.

STRAND_PLUS STRAND_PLUS should be used to indicate the original
plus-strand of a NucleotideSequence.
STRAND_MINUS STRAND_MINUS should be used to indicate the reverse

complement of the plus-strand of a
NucleotideSequence.

STRAND_BOTH STRAND_BOTH should be used to indicate both strands
of adouble-stranded NucleotideSequence.

2.1.3 Basis

The Basis enumeration values are used to specify whether an Annotation originated
from an experimental result or a computational analysis, such as from the application of
a sequence analysis program.

<<enum>>
Basis

BASIS_NOT_KNOWN
BASIS_EXPERIMENTAL
BASIS_COMPUTATIONAL
BASIS_BOTH

Figure2-2 The Basis Enumeration

2-4 Biomolecular Sequence Analysis, v1.0 June 2001

June 2001

enum Basis {BASIS_NOT_KNOWN, BASIS_NOT_APPLICABLE,
BASIS_EXPERIMENTAL, BASIS_COMPUTATIONAL, BASIS_BOTH};

BASIS NOT_KNOWN BASIS NOT_KNOWN should be used in all cases
not indicated below.

BASIS NOT_APPLICABLE BASIS NOT_APPLICABLE should be used to
indicate that Basis doesn’t apply.

BASIS_EXPERIMENTAL BASIS_EXPERIMENTAL should be used to
indicate an experimental result.

BASIS _COMPUTATIONAL BASIS_COMPUTATIONAL is used to indicate a
computational analysis, such as from the application of
a sequence analysis program.

BASIS BOTH Any result determined both experimentally and
computationally should use BASIS BOTH.

2.1.4 Interval

A contiguous sub-string within a larger string is specified using the Interval valuetype.
An Interval consists of a start and length, defining the starting position of the sub-string
and the size of the sub-string (number of units). BioSequences are numbered starting
at start 1, in keeping with the existing practice in the field of molecular biology. An
Interval on aBioSequence of start=5, length=10 would start at the fifth position and
include up to the 14th position of a sequence.

The use of a start and length instead of start and end provides a powerful mechanism
for defining intervals along biologica sequences that works well for both linear and
circular molecules.

<<valuetype>>
Interval
start : unsigned long
length : unsigned long

Figure2-3 The Interval valuetype

valuetype Interval

{

public unsigned long start;
public unsigned long length;

b

Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-5

public unsigned long start;

Description: start is an unsigned long integer that defines the starting
position of the sub-string. BioSequences are numbered
starting at 1.

Return value: Returns an unsigned long.

public unsigned long length;

Description: length isan unsigned long integer that defines the size of the
sub-string (number of units).
Return value: Returns an unsigned long.
2.1.5 SegRegion

A SeqRegion is a specialization of Interval and specifies a location on a
BioSequence. A further specialization, CompositeSeqRegion, may contain zero or
more sub-regions. In this specification, SeqRegion is used primarily to specify the
location along a BioSequence to which a SeqAnnotation pertains.

The SeqRegion model is not intended to address all types of sequence region
specification found in the GenBank/EMBL/DDBJ feature table. Supported are intervals
with non-fuzzy end points and composites of such intervals. Examples of these include a
PROSITE pattern located at 74 and ending at 80, or a gene made of 5 spliced exons.

We believe the definition of SeqRegion is broad enough to handle many kinds of
commonly occurring sequence-based regions and addresses the needs of most molecular
biologists. Due to their complexity and rarity of usage in sequence analysis software,
fuzzy sequence regions are not explicitly supported at the present time. It is not currently
possible with the present IDL to associate asingle SeqRegion with a set of
BioSequences.

Biomolecular Sequence Analysis, v1.0 June 2001

<<valuetype>>
Interval

start : unsigned long
length : unsigned long

Z} <<enum>>

<<valuetype>> Strand Type
0.* SeqgRegion 1/STRAND_NOT_KNOWN
strand_type : StrandType STRAND_NOT_APPLICABLE
start_relative_to_seq_end : boolean STRAND_PLUS
STRAND_MINUS

STRAND_BOTH

A\
A\
/\
/\
/\
L\

<<valuetype>> <<enum>>
CompositeSegRegion SegRegionOperator
—> sub_regions : SegRegionList NONE
region_operator : SeqRegionOperator 1 |JOIN
ORDER

Figure2-4 The SeqRegion and CompositeSeqRegion Valuetypes

SegRegion

A SeqRegion extends Interval and contains the strand_type and
start_relative_to_seq_end members that specialize it for use with biological
sequences. SeqRegion also contains an id indicating the BioSequence to which the
SeqRegion refers.

valuetype SeqRegion : Interval

{

public Identifier id;

public StrandType strand_type;

public boolean start_relative_to_seq_end;
b

public Identifier id;

Description: id indicates the BioSequences to which the SeqRegion
refers.
Return value: Returns an Identifier.

June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-7

2-8

public StrandType strand_type;

Description: For NucleotideSequences, strand_type provides an
indication of whether the SeqRegion refers to the original
plus-strand, the complementary minus-strand, or both
strands of a double-stranded molecule. STRAND_MINUS
should be used to indicate a region on the reverse
complement of a NucleotideSequence. For these
regions, start and length (inherited from Interval) refer to
positions within the coordinate system of the original, given
strand. strand_type should be
STRAND_NOT_APPLICABLE for regions of
AminoAcidSequences.

Return value: Returns a StrandType.

public boolean start_relative_to_seq_end,;

Description: The start_relative_to_seq_end member can modify the
semantics of the start member: if
start_relative_to_seq_end is TRUE, start isto be taken
from the end of the sequence, rather than the beginning. No
reverse-complement is implied. That is, if sequence has a
length 100, and SeqRegion has start=20 length=10, and
start_relative_to_seq_end =TRUE, the region runs from
position 81 up to and including 90.

Return value: Returns aboolean.

SegRegionList

typedef sequence<SeqRegion> SeqRegionList;

Description: Used to pass a set of SeqRegions.

CompositeSegRegion

CompositeSeqgRegion, aspecidization of SeqRegion, may contain zero or more
sub-regions. A CompositeSeqRegion’s sub-regions may overlap. The nested or
hierarchical behavior is useful in describing complex features onBioSequences. There
is no limit to nesting. All CompositeSeqRegions are expected to be trandated in a
depth-first traversal, dong each node of the tree represented by the
CompositeSeqRegions. This includes those nodes that have region_operator
equa to JOIN or ORDER.

Biomolecular Sequence Analysis, v1.0 June 2001

June 2001

A CompositeSegqRegion with sub-regions will itself not have start, length,
strand_type, or start_relative_to_seq_end data defined. The whole
CompositeSeqgRegion tree will be passed as an object graph by the objects by value

(OBV) functionality.

valuetype CompositeSeqRegion : SeqRegion

enum SegRegionOperator

/ Region has no sub regions or the sub regions
/l don't need special treatment.

/I Sub regions should be joined end-to-end to

// form a contiguous region.

// Sub region order is important.

public SeqRegionList sub_regions;
public SeqRegionOperator region_operator;

{
{
NONE,
JOIN,
ORDER
b
b

enum SegRegionOperator {NONE, JOIN, ORDER};

NONE NONE should be used when JOIN and ORDER are not
applicable.

JOIN JOIN should be used when the sub-regions are to be
concatenated into a single region.

ORDER ORDER should be used when the sub-regions are to be taken

as an ordered set of sub-regions. Typically, it is used to
represent a discontinuous region to which a descriptive
annotation pertains.

public SeqRegionList sub_regions;

Description: sub_regions contains the constituent SeqRegions. If there
are no sub-regions, then SeqRegion should be used instead
of CompositeSegRegion.

Return value: Returns a SeqRegionList.

Biomolecular Sequence Analysis: Module DsLSRBioObjects

2-9

2-10

public SeqRegionOperator region_operator;

Description: Theregion_operator takes on a value of the

SeqgRegionOperator enumeration. It specifies how the sub-
regions are to be treated. The sub-regions could be
concatenated into a single region (JOIN) or taken as an
ordered set of sub-regions (ORDER). In the latter case,
unknown segments of sequence may intervene. All
CompositeSeqRegions are expected to be translated in a
depth-first traversal, along each node of the tree represented
by the CompositeSeqRegions. This includes those nodes
that have region_operator equal to JOIN or ORDER.

Return value: Returns a SeqRegionOperator.

2.1.6 Annotation

The Annotation interface defines an annotation that could, in principle, be associated

with any bio-object that requires description using name-value pairs.

All attributes in Annotations are readonly, in keeping with our immutability policy for

this specification.

Annotation inherits from CosLifeCycle::LifeCycleObject.

<<Interface>>
LifeCycleObject

\
\

<<Interface>>
Annotation

name : string

value : any

the_basis : Basis

qualifiers : CosPropertySenice::Properties

Figure2-5 The Annotation Interface

interface Annotation : CosLifeCycle::LifeCycleObject

{

readonly attribute string name; /I type of annotation
readonly attribute any value; /l the annotation

Biomolecular Sequence Analysis, v1.0

June 2001

readonly attribute Basis the_basis; // basis for annotation
readonly attribute CosPropertyService::Properties qualifiers;

b

readonly attribute string name;

Description: The name attribute specifies the general type of the
annotation that is contained in the value attribute that contains
the annotation itself. The value is of type any and therefore
could contain anything from a block of free text to a
specialized datatype.

Return value: Returns a string. name shall not be empty.

readonly attribute any value;

Description: The value attribute contains the annotation itself.

Return value: Thevalueis of type any and therefore could contai n anything
from a block of free text to a specialized datatype.

readonly attribute Basis the_basis;

Description: Annotation has a basis attribute, which specifies whether
the annotation originated from an experimental result
(BASIS_EXPERIMENTAL) or a computational analysis
(BASIS_COMPUTATIONAL), such as from the application
of a sequence analysis program. Basis provides for a coarse-
grained classification of an Annotation.

Return value: The value is of type BASIS.

June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-11

readonly attribute CosPropertyService::Properties qualifiers;

Description: Annotation contains additional information in the form of
so-called qualifiers, represented by the
CosPropertyService::Property struct, which enables
them to support many kinds of keyword controlled attributes.
These properties are essential for covering the full spectrum
of current annotation and feature information.

Return value: The qualifiers attribute is of type
CosPropertyService::Properties and so provides a place
for arbitrary nhame-value pairs.

AnnotationList

typedef sequence<Annotation> AnnotationList;

Description: Used to pass a set of Annotations.

| terator| nvalid

exception lIteratorinvalid
{
string reason;

3

Description: The lteratorinvalid exception is raised for cases where the
iterator is no longer valid (e.g., new elements have been added
to the underlying collection).

Return value: Returns a string containing the reason that the iterator is
invalid.

Annotationl ter ator

Annotationlterator provides a strongly typed iterator for Annotations.

2-12 Biomolecular Sequence Analysis, v1.0 June 2001

June 2001

<<Interface>>
Annotationlterator

next()
next_n()
reset()
destroy()

Figure2-6 The Annotationlterator Interface

interface Annotationlterator

{
boolean
boolean
void
void

b

next(out Annotation the_annotation)
raises(lteratorinvalid);
next_n(in unsigned long how_many,
out AnnotationList annotations)
raises(lteratorinvalid);
reset();
destroy();

boolean next(out Annotation the_annotation)
raises(lteratorinvalid);

Description:

The next() operation gets the next Annotation in its out
parameter the_annotation and returns a boolean value. If
the iterator is at the end of the set, it returns FAL SE and sets
the output the_annotation parameter to null.

Return vaue:

Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions:

Raises Iteratorinvalid if theiterator isno longer valid (e.g.,
the underlying collection has changed).

Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-13

boolean next_n(in unsigned long how_many,
out AnnotationList annotations)
raises(lteratorinvalid);

Description: next_n() returns Annotations in the AnnotationList out
parameter annotations, containing at most the number
specified in the first parameter (how_many) and returns a
boolean value directly. When it is at the end of the set it
returns FAL SE and the annotations parameter will have
length zero. In all cases the length of annotations will be
the minimum of how_many and the number of elements
remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises Iteratorinvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator provides
access to streaming data).

void destroy();

Description: destroy() frees the iterator object.

2.1.7 SegAnnotation

For biomolecular sequences, Annotations are specidized to SeqAnnotations to
include sequence position information in the form of the SeqRegion attribute (see
above). Essentially, this attribute indicates to which part of the sequence the annotation
pertains, and is analogous to features in the DDBJEMBL/GenBank formats. Typical
examples include gene, promoter region, and exons.

SeqAnnotation is used to describe an annotation that applies only to a specified region.
Annotation should be used for an annotation that applies to the associated
BioSequence as awhole. Although SeqAnnotations with null regions are aso
interpreted to apply to the BioSequence as awhole, this should be avoided.

2-14 Biomolecular Sequence Analysis, v1.0 June 2001

2

SegAnnotation can associate a BioSequence with analytical results or descriptive
information such as biological function. A sequence analysis run could generate
SegAnnotation objects as output. In addition, BioSequence factories can be used to
attach SeqAnnotations to the BioSequences.

It is not currently possible to navigate from a SeqAnnotation to a BioSequence
using the interfaces defined in this specification. One can, however, obtain a set of
SegAnnotations given aBioSequence. Thisis sufficient from the point of view of a
sequence analysis application, which could produce annotated sequences. The submitters
of this specification feel that there are richer models for annotations on sequences (e.g.,
complex hierarchies or graphs of relationships between annotations and seguences as
well as the annotations themselves). Sequence annotations are expected to be addressed
in a future RFP.

To illustrate the uses and coverage of Annotations and SeqAnnotations with regard
to the results of Sequence Analyses, afew more examples are listed below:

* A motif analysis returns alabeled pattern (e.g., KRINGLE) matching a given region
of the protein sequence.

® A restriction map analysis returns a list of sites, for the given enzymes, that can
then be used to annotate the DNA sequence.

® The result of homology analysis suggests that the sequence belongs to a particular
gene family, which can be annotated onto the NucleotideSequence including
information regarding degree of certainty.

® ORF and gene-finding analyses identify coding regions that are later added as
oriented gene features on the sequence.

® Homologous regions found by using an alignment analysis can be annotated as
SegAnnotations on the query sequence.

® An EMBL-curated phosphorylation site on a protein stored (imported) as a
SeqgAnnotation on the AminoAcidSequence.

® |dentified mutations from multiple DNA sequences can be merged into
SegAnnotations on a consensus sequence.

Extending SeqAnnotation provides a mechanism for creating strongly typed sequence
features. This may be appropriate for certain stereotypical sequence features such as
genes, exons, and transcriptional regulatory sites that have complex but reasonably well
defined semantics. These specialized SeqAnnotations could define the necessary data
types and sub-feature containment relationships as appropriate for the specific feature.

The issue of annotating BioSequences as well as other bio-objects is complex and we
are not proposing a definitive solution in the present specification. The IDL is workable
for biomolecular sequence analysis and there is sufficient room for elaboration by a
future LSR Annotation RFP.

June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-15

2-16

<<Interface>>

Annotation

<<lInterface>> <<S\/§Iuséy?§:>
SegAnnotation areg

reqion - SeaRedion strand_type : StrandType
glon - >eqreg 1 1 |start_relative_to_seq_end : boolean

Figure2-7 The SegAnnotation Interface

2.1.8 SegAnnotation Interface

For biomolecular sequences, Annotations are specidized to SeqAnnotations to
include sequence position information in the form of the SeqRegion attribute (see
above). If region isnull, the annotation applies to the associated BioSequence(s) as a
whole. Otherwise, the annotation applies only to the specified region. Annotations
should be used instead of SeqAnnotations with null SeqRegions.

interface SeqAnnotation : Annotation

{
b

readonly attribute SeqRegion seq_region;

readonly attribute SeqRegion seq_region;

Description: Contains the sequence position information.

Return value: Returns a SeqRegion.

SegAnnotationList

typedef sequence<SegAnnotation> SeqAnnotationList;

Description: Used to pass a set of SeqAnnotations.

SegAnnotationl terator

SegAnnotationlterator provides a strongly typed iterator for SeqAnnotations.
SegAnnotationlterator is not used directly in this specification, but is provided as a
convenience for vendor-specific IDL extensions and future OMG specifications where a
collection of Annotations contains only SeqAnnotations.

Biomolecular Sequence Analysis, v1.0 June 2001

June 2001

SegAnnotationlterator is an optional interface.

<<Interface>>
SegAnnotationlterator

next()
next _n()
reset()
destroy/()

Figure 2-8 The SegAnnotationlterator Interface

interface SeqAnnotationlterator

{
boolean next(out SeqAnnotation seq_annotation)
raises(lteratorinvalid);
boolean next_n(in unsigned long how_many,
out SegAnnotationList seq_annotations)
raises(lteratorinvalid);
void reset();
void destroy();
3

boolean next(out SeqAnnotation seq_annotation)
raises(lteratorinvalid);

Description: The next() operation gets the next SeqAnnotation in its out
parameter seq_annotation and returns a boolean value. If
the iterator is at the end of the set, it returns FALSE and sets
the output seq_annotation parameter to null.

Return vaue: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises Iteratorinvalid if the iterator is no longer valid (e.g.,

the underlying collection has changed).

Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-17

2-18

boolean next_n(in unsigned long how_many,
out SegAnnotationList seq_annotations)
raises(lteratorinvalid);

Description: next_n() returns SeqAnnotationsin the
SegAnnotationList out parameter seq_annotations,
containing at most the number specified in the first parameter
(how_many) and returns a boolean value directly. When it is
at the end of the set it returns FALSE and the
seq_annotations parameter will have length zero. In all
cases the length of seq_annotations will be the minimum
of how_many and the number of elements remaining.

Return value: Returns FALSE if the iterator is at the end of the set and
TRUE otherwise.

Exceptions: Raises Iteratorinvalid if the iterator is no longer valid (e.g.,
the underlying collection has changed).

void reset();

Description: reset() sets the iterator to the start of the set.

Exceptions: Raises CORBA::NO_IMPLEMENT with standard minor
code 5 if the iterator cannot be reset (e.g., the iterator
provides access to streaming data).

void destroy();

Description: destroy() frees the iterator object.

2.1.9 |dentifier

There isa need for a data type to indicate an entity’ s identity in very many situations. In
most cases, this need is, or can be addressed by using a string type. The advantages are
that it is simple, lightweight, and used universally throughout the realm of computing
(and indeed outside). However, the risk of using strings is that they can be too flexible,
both in terms of syntax and semantics. This easily results in the lack of interoperability.
To dlow strings, yet mitigate their potential for abuse, this standard uses the syntax
convention of CosNaming::StringName as described in the Interoperable Naming
service. This convention is mainly a syntactica one; in no way is the use of a naming
service implementation required or implied (but it is not precluded either).

Biomolecular Sequence Analysis, v1.0 June 2001

June 2001

2.1.9.1 Identifier Description

A brief description is as follows: CosNaming::Name is alist of struct
NameComponents. (For the purpose of illustration, a NameComponent can be
likened to a directory or filename, whereas CosNaming::Name constitutes a full path-
name). The struct NameComponent has string members id and kind. To transform a
CosNaming::Name into astring, al its NameComponents are represented as
strings “id.kind.”

® |f the kind-field is empty, this becomes simply “id;”
® if the id-field is empty, this becomes “ .kind;”

* finally, the Naming service allows both id and kind to be empty, which is

represented as ".".

The full stringified CosNaming::Name is obtained by concatenating all the
NameComponents using “/”as a separator character. The character “\” is designated as
an escape character; if it precedes any of the special characters “.”, “/” and “\”, they are
taken as literal characters. The typedef string CosNaming::StringName is provided
for strings used as object hames using this convention.

This specification adopts this syntax convention, but requests that the components of the
Identifier datatype adhere to some additional semantic constraints. These rules do not
follow from, nor are implied by any semantics of the Naming Service. The additional
constraints make this data type sufficiently different from CosNaming::StringName
to warrant the dedicated typedef string Identifier.

typedef string Identifier;

Description: In this description, ‘component’ means: the sub-string of an
Identifier that corresponds to one
CosNaming::NameComponent; likewise, id-field and
kind-field correspond to the equivalent fields of
NameComponent.

The rules are as follows:

® Names can refer to collections of entities (such as databases), or to entities within
such collections. Names referring to collections consist of exactly one component;
names referring to entities within collections consist of at least two components.

® The first component represents the data source. Data sources can be anything:
transient collections, local databases, public repositories. It is up to the
implementation to document the accepted names for the data source.

® The empty name (“."”) is valid for the first component, and represents the ‘local’ or
‘default’ collection. It is up to the implementation to document what the semantics
of ‘local’ or ‘default’ is.

Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-19

® Names that refer to entities within collections consist of two or more components.
The second component of such names represents an identifier that is unique in the
context of the data source. No empty id-fields are allowed in this or any further
components.

® |f two components are not enough to uniquely identify an entity, an Identifier can
contain more than two components, but no more than necessary to make the
identification unique. That is, an Identifier may not be used to freely attach textual
information.

® Theonly charactersvalid in a component are “a’ through “z”, “0” through “9”, and
“-" (hyphen), “_" (underscore), “$” and “.” (period). Use of the latter is discouraged
since it has a special meaning in the stringifying convention, and has therefore to be
escaped.

® To comply with existing practice in the field of public data repositories, it is
strongly advised that implementations do string comparisons in a case-insensitive
manner. The Naming Service standard fails to mention whether type-case is, for
identification purposes, significant or not. Implementations that use a third-party
implementation of the Naming Service may therefore wish to restrict Identifiers to
only use one type-case. It is up to an implementation to state whether mixed type-
case is allowed, and whether type-case is significant in comparisons.

The id and kind parts of the string components of Identifier are used as follows:

®* Theid-field of acomponent contains the principal value that makes it unique in the
scope provided by the preceding component. It may only be empty in the case of the
first component of an Identifier.

® The kind-field of a component is used to represent information indicating the
release (for a data source) or version (for an entry) of an entity, and can be empty.
If kind is empty and entities with non-empty kind-fields exist, an empty kind field
becomes synonymous with the latest release or version. It is up to the
implementation to document the syntax and semantics of the version information.

The adoption of this convention has the following advantages:
® itissimple and lightweight,

® it has a well-defined and re-used syntax,

® it is compatible with existing practice,

® it issufficiently flexible to alow for sub-ids if necessary.

2-20 Biomolecular Sequence Analysis, v1.0 June 2001

June 2001

| dentifierList

typedef sequence<ldentifier> IdentifierList;

Description: Used to pass a set of Identifiers.

| dentifierNotFound

exception IdentifierNotFound
{
Identifier id;

b

Description: The IdentifierNotFound exception is raised for cases where
the database and the identifier within the database can be
resolved but the Identifier is not present.

Return value: Returns the Identifier that could not be found.

| dentifier NotResolvabl e

exception IdentifierNotResolvable
{
Identifier id;
string reason;
b
Description: The IdentifierNotResolvable exception is raised for cases
where database and the identifier within the database cannot
be resolved such that the Identifier cannot even be searched
for.
Return value: Returns the Identifier that could not be resolved and a string
containing the reason resolution was not possible.

IdentifierNotUnique

exception IdentifierNotUnique
{
Identifier id;
IdentifierList ids;
3
Description: The IdentifierNotUnique exception is raised for cases when
the Identifier specification is ambiguous and returns more
than one object.
Return value: Returns the non-unique Identifier and an IdentifierList
containing Identifiers for all objects that id identifies.

Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-21

2-22

2.1.10 BioSequence

<<enum>>
Basis

BASIS_NOT_KNOWN
BASIS_EXPERIMENTAL

BASIS_COMPUTATIONAL

BASIS_BOTH

A BioSequence is an abstraction of a biologica sequence, such as the ordered
nucleotides of aDNA chain or the ordered amino acid residues of a protein molecule. A
BioSequence can be of any length and significance; there is no implication that it
corresponds to, for example, agene. The BioSequence interface provides essential
characteristics of biological sequences (hame, id, description, length) and operations
for obtaining the sequence string itself or a sub-sequence as an ASCII string of TUPAC-
IUBMB Joint Commission on Biochemical Nomenclature (JCBN) upper case single
letter codes (seq(), seq_interval()).

Additiona operations within BioSequence provide access to any annotations
associated with the BioSequence (get_annotations()) or the number of annotations
(num_annotations()).

Annotations can be attached to BioSequences directly using the
add_annotation() method of BioSequence or by using the BioSequence factories.
Thus, BioSequences are mutable at the level of their associated annotations. This
minimal mutability model permits new annotations to be attached to a BioSequence
and prevents situations where multiple BioSequences might exist on a server with
different sets of annotations but representing the same sequence. A NotUpdateable
exception can be used to indicate that an Annotation cannot be added to this
BioSequence.

Standard container behavior applies here. If aclient destroys a BioSequence, it is also
up to the client to manage the contents, namely the Annotations.

<<Interface>>
BioSequence
name : string
id : Identifier
description : string
1 seq : string 1 1

<<Interface>>

length : unsigned long Annotationlterator

the_basis : Basis

seq_interval() 0. *
get_annotations()
num_annotations()
add_annotation()

<<Interface>>
Annotation
name : string
value : any
the_basis : Basis
qualifiers : CosPropertySenvice::Properties

Figure 2-9 The BioSequence Interface

Biomolecular Sequence Analysis, v1.0 June 2001

June 2001

I nterval OutOfBounds

exception IntervalOutOfBounds
{
Interval invalid;
Interval valid;
3
Description: The IntervalOutOfBounds exception is raised if an
Interval's start is less than 1 or if its start+length-1is
greater than the length of the BioSequence. If a
BioSequence represents circular DNA, then this exception
should be raised if the Interval’s start is less than 1 or
greater than the length of theBioSequence, or if itslength
is greater than that of the BioSequence.
Return value: Returns the invalid Interval and the valid Interval. The valid
Interval has start equal to 1 and length equal to the length
of the BioSequence, the largest allowed Interval.

SeqRegionOutOfBounds

exception SeqRegionOutOfBounds
{
SeqRegion invalid;
Interval valid;
3
Description: The SeqRegionOutOfBounds exception is raised if a
SeqRegion’s start islessthan 1 or if its start+length-1 is
greater than the length of the BioSequence. The exception
is also raised if a nested sub-region of a
CompositeSegRegion isinvalid. If aBioSequence
represents circular DNA, then this exception should be raised
if the Interval’sstart isless than 1 or greater than thelength
of the BioSequence, or if itslength is greater than that of
the BioSequence.

Return value: Returns the invalid SegRegion and the valid Interval. The
valid Interval has start equal to 1 and length equal to the

length of the BioSequence, the largest allowed Interval.

Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-23

2-24

SegRegionl nvalid

exception SeqRegioninvalid
{
string reason;

¥

Description: The SeqRegioninvalid exception israised if a SeqRegion
or CompositeSegRegion isinvalid in a given context.
Examples include the Strand Type being STRAND_BOTH
when trying to translate a nucleotide sequence, or a wrong
SeqRegionOperator, overlaps, or circularity in a
CompositeSeqRegion passed as an in parameter.

Return value: Returns a string containing the reason the SeqRegion is
invalid.

NotUpdateable
exception NotUpdateable
{
string reason;

3

Description: The NotUpdateable exception israised if the
BioSequence is immutable.

Return value: Returns a string containing the reason the BioSequence
cannot be updated.

BioSequence

A BioSequence is an abstraction of a biologica sequence, such as the ordered
nucleotides of a DNA chain or the ordered amino acid residues of a protein molecule.
The BioSequence interface provides essential characteristics of biologica sequences
(name, id, description, length) and operations for obtaining the sequence string itself
or a sub-sequence as an ASCII string of IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) upper case single letter codes (seq(),
seq_interval()).

BioSequence inherits from CosLifeCycle::LifeCycleObject.

interface BioSequence : CosLifeCycle::LifeCycleObject

{
readonly attribute string name;
readonly attribute Identifier id;
readonly attribute string description;
readonly attribute string seq;
readonly attribute unsigned long length;
readonly attribute Basis the_basis;
string seq_interval(in Interval the_interval)

Biomolecular Sequence Analysis, v1.0 June 2001

raises(IntervalOutOfBounds, SeqRegioninvalid);
AnnotationList get_annotations(
in unsigned long how_many,
in SeqRegion seq_region,
out Annotationlterator the_rest)
raises(SeqRegionOutOfBounds, SeqRegionlinvalid);

unsigned long num_annotations(in SeqRegion seq_region)
raises(SegRegionOutOfBounds, SegRegioninvalid);
void add_annotation(

in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds,
SegRegionlinvalid);

readonly attribute string name;

Description: The name attribute represents a human-readable common
name for the BioSequence (such as a gene name).

Return value: Returns a string.

readonly attribute Identifier id;

Description: The id attribute represents an ID for the BioSequence.
Typically a database name and key will be encoded in the
Identifier.

Return value: Returns an Identifier. id shall not be empty

readonly attribute string description;

Description: The description attribute, a concise description of the
BioSequence, typically includes functional information
(e.g., the contents of the description line from a FASTA file).

Return value: Returns a string.

June 2001 Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-25

readonly attribute string seq;

Description: The seq attribute contains the actual sequence data. The
entire sequence is returned. Use seq_interval() to access
sub-sequences.

Return value: Returns an ASCI| string of IUPAC-IUBMB Joint Commission
on Biochemical Nomenclature (JCBN) upper case single letter
codes representing the entire sequence. The string will not

contain any termination characters (e.g., ‘*’) or gap characters

(eg., *-").

readonly attribute unsigned long length;

Description: The length attribute is the length of the BioSequence. The
BioSequence is numbered from 1 to length.

Return value: Returns an unsigned long.

readonly attribute Basis the_basis;

Description: The BioSequence basis attribute can be any of the values
of the Basis enumeration and specifies whether the sequence
has been experimentally determined
(BASIS_EXPERIMENTAL), computationally determined
(BASIS_COMPUTATIONAL), or both (BASIS_BOTH), or
if this information is not known (BASIS_NOT_KNOWN).
An example of a computational sequence would be a protein
sequence that was determined by in silico translation of an
experimentally determined DNA sequence.

Return value: Returns a Basis value.

2-26 Biomolecular Sequence Analysis, v1.0 June 2001

June 2001

string seq_interval(in Interval the_interval)
raises(IntervalOutOfBounds, SeqRegioninvalid);

Description:

Provides access to sub-sequences of the BioSequence. The
Interval argument indicates which sub-sequence should be returned.
The entire sequence may also be obtained using the seq attribute. If
the_interval isa SeqRegion and the StrandType is
STRAND_MINUS, the string returned should be taken as reverse-
complemented.

Return vaue:

Returns an ASCII string of IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) upper case single letter codes
representing the appropriate sub-sequence.

Exceptions:

Raises IntervalOutOfBounds if the Interval's start islessthan 1
or if its start+length-1 is greater than the length of the
BioSequence. If the BioSequence represents circular DNA, then
this exception should be raised if the Interval’s start isless than 1
or greater than the length of the BioSequence, or if itslength is
greater than that of the BioSequence.

Raises SeqRegionlinvalid if the_interval isan invalid
SeqRegion. Examples include an incorrect StrandType, or an
invalid CompositeSeqRegion (e.g., one that has a wrong
SeqRegionOperator or contains overlaps or circularities).

AnnotationList get_annotations(
in unsigned long how_many,
in SeqRegion seq_region,
out Annotationlterator the_rest)
raises(SeqRegionOutOfBounds, SeqRegionlnvalid);

Description:

Uses the list/iterator hybrid to provide access to the Annotations. A
list of no more than how_many elements is returned as the direct
result. The remaining elements, if any, are available through the
iterator returned in the out parameter. Only the SeqAnnotations
that overlap seq_region and have compatible StrandTypes will be
returned. If seq_region is null, only Annotations are returned.

...continued

Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-27

Return value: Returns an AnnotationList containing no more than how_many elements.
The Annotationlterator provides access to any remaining elements.

Exceptions: Raises SeqRegionOutOfBounds if seq_region is out of bounds for this
BioSequence.

Raises SegRegionlinvalid if the SeqRegion isinvalid. Examples includean
incorrect StrandType, or an invalid CompositeSeqRegion (e.g., one that
has a wrong SeqRegionOperator or contains overlaps or circularities).

unsigned long num_annotations(in SeqRegion seq_region)
raises(SeqRegionOutOfBounds, SeqRegionlnvalid);

Description: Provides access to the number of Annotations associated with this
BioSequence. Only the SeqAnnotations that overlap seq_region and
have compatible StrandTypes will be counted. If seq_region is null,
only Annotations are counted.

Return value: Returns an unsigned long.

Exceptions: Raises SeqRegionOutOfBounds if seq_region is out of bounds for
this BioSequence.

Raises SeqRegionlnvalid if the SeqRegion isinvalid. Examples
include an incorrect StrandType, or an invalid CompositeSeqRegion
(e.g., one that has awrong SeqRegionOperator or contains overlaps or
circularities).

void add_annotation(in Annotation the_annotation)
raises(NotUpdateable, SeqRegionOutOfBounds,
SeqRegionlnvalid);

Description: Annotations can be attached to BioSequences directly using the
add_annotation() method of BioSequence.

Exceptions: « Raises NotUpdateable if the BioSequence isimmutable.

¢ Raises SeqRegionOutOfBounds if the Annotation isa
SegAnnotation and the corresponding SeqRegion is out of bounds
for this BioSequence.

« Raises SeqRegionlinvalid if the Annotation isa SeqgAnnotation
that has a SeqRegion that is deemed invalid. Examples include an
incorrect StrandType, or an invalid CompositeSeqRegion (e.g., one
that has a wrong SeqRegionOperator or contains overlaps or
circularities).

2-28 Biomolecular Sequence Analysis, v1.0 June 2001

June 2001

BioSequencelL.ist

typedef sequence<BioSequence> BioSequencelList;

Description: Used to pass a set of BioSequences.

2.1.11 Sub-types of BioSequence

The data type BioSequence is an interface representing biological sequences. All
instances of actua biological sequences are expected to derive from one of the
BioSequence sub-types, NucleotideSequence or AminoAcidSequence (or
specialized sub-types thereof).

Sequence information input to a BioSequence or used for querying purposes is case-
insensitive. Sequence information output from aBioSequence is returned using upper-
case ASCII strings of IUPAC-IUBMB Joint Commission on Biochemical Nomenclature
(JCBN) single-letter character codes.

AminoAcidSequence represents a protein sequence and does not contain any
operations. A reverse translation operation that produces a nucleic acid sequence from
the amino acid sequenceis acomplex operation that is not straightforward to standardize

at thistime.

<<Interface>> <<Interface>>
BioSequence LifeCycleOhject

\ N7 —7 \

\ \
<<Interface>> <<Interface>>

NucleotideSequence AminoAcidSeguence
circular : boolean

reverse_complement()
rewerse_complement_intenal()
translate_seq()

translate_seq region()

Figure2-10 The NucleotideSequence and AminoAcidSequence Interfaces

UnsignedLongList

typedef sequence<unsigned long> UnsignedLongList;

Description: Used to pass a set of unsigned longs.

Biomolecular Sequence Analysis: Module DsLSRBioObjects 2-29

2-30

ReadingFramel nvalid

exception ReadingFramelnvalid

{
short invalid;
5
Description: The ReadingFramelnvalid exception israised if the reading
frame is not between -3 and +3, excluding zero.
Return value: Returns a short containing the invalid reading frame.

NucleotideSequence

Nucleoti