C Language Mapping Specification

New Edition: June 1999

Copyright 1997, 1998, 1999 BEA Systems, Inc.

Copyright 1995, 1996 BNR Europe Ltd.

Copyright 1998, Borland International

Copyright 1991, 1992, 1995, 1996 Digital Equipment Corporation
Copyright 1995, 1996 Expersoft Corporation

Copyright 1996, 1997 FUJITSU LIMITED

Copyright 1996 Genesis Development Corporation

Copyright 1989, 1990, 1991, 1992, 1995, 1996 Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation

Copyright 1998 Inprise Corporation

Copyright 1996, 1997 International Business Machines Corporation
Copyright 1995, 1996 ICL, plc

Copyright 1995, 1996 IONA Technologies, Ltd.

Copyright 1996, 1997 Micro Focus Limited

Copyright 1991, 1992, 1995, 1996 NCR Corporation

Copyright 1995, 1996 Novell USG

Copyright 1991,1992, 1995, 1996 by Object Design, Inc.

Copyright 1991, 1992, 1995, 1996, 1999 Object Management Group, Inc.
Copyright 1996 Siemens Nixdorf Informationssysteme AG

Copyright 1991, 1992, 1995, 1996 Sun Microsystems, Inc.

Copyright 1995, 1996 SunSoft, Inc.

Copyright 1996 Sybase, Inc.

Copyright 1998 Telefénica Investigacion y Desarrollo S.A. Unipersonal
Copyright 1996 Visual Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid |
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyr
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require us
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document d
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY

WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF

FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, relisamce or ¢
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders liste
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks
other special designations to indicate compliance with these materials. This document contains information which is protect
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form c
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7038n@MG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface iii
0.1 About CORBA Language Mapping Specifications iii
0.1.1 Alignmentwith CORBA iii
0.2 Definition of CORBA Compliance. iv
0.3 Acknowledgements iv
0.4 References %
1. CLanguage Mappingoiui e 1-1
1.1 Requirements for a Language Mapping 1-2
1.1.1 BasicDataTypesc.cciv.... 1-3
1.1.2 ConstructedDataTypes 1-3
1.1.3 Constants 1-3
114 Objects........ . 1-3
1.1.5 Invocation of Operations 1-4
1.1.6 EXceptions 1-4
1.1.7 Attributes 1-5
1.1.8 ORBlnterfaces 1-5
1.2 ScopedNamesc it 1-5
1.3 Mapping forinterfaces 1-6
1.4 Inheritance and Operation Names 1-8
1.5 Mapping for Attributes 1-8
1.6 MappingforConstants. 1-9
1.7 Mapping for Basic DataTypes 1-10
1.8 Mapping Considerations for Constructed Types 1-11
1.9 Mapping for Structure Types 1-12
1.10 Mapping forUnion Types 1-12
1.11 Mapping for Sequence Types 1-13
1.12 MappingforStrings i 1-16
1.13 Mapping for Wide Stringso 1-17
1.14 MappingforFixed i 1-18
1.15 Mapping for Arrays 1-19
1.16 Mapping for Exception Types 1-20
1.17 Implicit Arguments to Operations 1-21
1.18 Interpretation of Functions with Empty Argument Lists .. 1-21
1.19 Argument Passing Considerations 1-21
1.20 Return Result Passing Considerations 1-22
1.21 Summary of Argument/Result Passing 1-23
1.22 Handling Exceptions 1-26

C Language Mapping

Contents

1.23 Method Routine Signatures 1-28
1.24 Include Files 1-29
1.25 Pseudo-objects 1-29
1.25.1 ORBOperations 1-30
1.26 Mapping for Object Implementations 1-30
1.26.1 Operation-specific Details 1-30
1.26.2 PortableServer Functions 1-31
1.26.3 Mapping for PortableServer::
ServantLocator::Cookie 1-31
1.26.4 ServantMappingc.iiii.... 1-32
1.26.5 Interface Skeletons 1-33
1.26.6 Servant Structure Initialization 1-35
1.26.7 Application Servants 1-37
1.26.8 Method Signatures 1-39
1.27 Mapping of the Dynamic Skeleton Interfaceto C 1-39
1.27.1 Mapping of ServerRequesttoC 1-40
1.27.2 Mapping of Dynamic Implementation
RoutinetoC 1-41
1.28 ORSB Initialization Operations 1-44

C Language Mapping

Preface

0.1 About CORBA Language Mapping Specifications

The CORBA Language Mapping specifications contain language mapping information
for the following languages:

» Ada

e C

e C++

« COBOL
IDL to Java
e Java to IDL
» Smalltalk

Each language is described in a separate stand-alone volume.

0.1.1 Alignment with CORBA

The following table lists each language mapping and the version of CORBA that this
language mapping is aligned with.

Language Mapping Aligned with CORBA version
Ada CORBA 2.0
C CORBA 2.1
C++ CORBA 2.3
COBOL CORBA 2.1

C Language Mapping June 1999 iii

Language Mapping Aligned with CORBA version

IDL to Java CORBA 2.3
Java to IDL CORBA 2.3
Smalltalk CORBA 2.0

0.2 Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to theORBAspecifications to be called CORBA-compliant. For instance,

if a vendor supports C++, their ORB must comply with the OMG IDL to C++ binding
specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to emmon Object Request
Broker: Architecture and Specificatipmterworking Architecturechapter.

As described in th©®MA Guide the OMG’s Core Object Model consists of a core and
components. Likewise, the body 6ORBAspecifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBAspecifications are divided into these volumes:

1. TheCommon Object Request Broker: Architecture and Specificatibith
includes the following chapters:

* CORBA Core, as specified in Chapters 1-11
« CORBA Interoperability , as specified in Chapters 12-16
« CORBA Interworking , as specified in Chapters 17-21

2. The Language Mapping Specifications, which are organized into the following
stand-alone volumes:

* Mapping of IDL to the Ada programming language

» Mapping of IDL to the C programming language

* Mapping of IDL to the C++ programming language

* Mapping of IDL to the COBOL programming language
* Mapping of IDL to the Java programming language

« Mapping of Java programming language to OMG/IDL

« Mapping of IDL to the Smalltalk programming language

0.3 Acknowledgements

The following companies submitted parts of the specifications that were approved by
the Object Management Group to beco@@RBA(including the Language Mapping
specifications):

C Language Mapping June 1999

* BEA Systems, Inc.

« BNR Europe Ltd.

» Defense Information Systems Agency

« Expersoft Corporation

¢ FUJITSU LIMITED

» Genesis Development Corporation

* Gensym Corporation

* IBM Corporation

 ICL plc

* Inprise Corporation

* IONA Technologies Ltd.

« Digital Equipment Corporation

» Hewlett-Packard Company

» HyperDesk Corporation

* Micro Focus Limited

* MITRE Corporation

* NCR Corporation

* Novell USG

« Object Design, Inc.

« Objective Interface Systems, Inc.

¢ OC Systems, Inc.

* Open Group - Open Software Foundation
» Siemens Nixdorf Informationssysteme AG
* Sun Microsystems Inc.

» SunSoft, Inc.

e Sybase, Inc.

 Telefénica Investigacion y Desarrollo S.A. Unipersonal
« Visual Edge Software, Ltd.

In addition to the preceding contributors, the OMG would like to acknowledge Mark
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping specification.

0.4 References

The following list of references applies to CORBA and/or the Language Mapping
specifications:

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.2,
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG TC
Document 95-3-31.

C Language Mapping References June 1999 %

\Y

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.
IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micro-
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version), S.
(Martin) O’Donnell, June 1994.

RPC Runtime Support For 118N Characters — Functional Specification, OSF DCE
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.

C Language Mapping June 1999

C Language Mapping 1

Note —The C Language Mapping specification is aligned with CORBA version 2.0.

CORBA is independent of the programming language used to construct clients and
implementations. In order to use the ORB, it is necessary for programmers to know
how to access ORB functionality from their programming languages. This chapter
defines the mapping of OMG IDL constructs to the C programming language.

Contents

This chapter contains the following sections.

Section Title Page
“Requirements for a Language Mapping” 1-2
“Scoped Names” 1-5
“Mapping for Interfaces” 1-6
“Inheritance and Operation Names” 1-8
“Mapping for Attributes” 1-8
“Mapping for Constants” 1-9
“Mapping for Basic Data Types” 1-10
“Mapping Considerations for Constructed Types” 1-11
“Mapping for Structure Types” 1-12
“Mapping for Union Types” 1-12
“Mapping for Sequence Types” 1-13

C Language Mapping August 1997 1-1

Section Title Page

“Mapping for Strings” 1-16
“Mapping for Wide Strings” 1-17
“Mapping for Fixed” 1-18
“Mapping for Arrays” 1-19
“Mapping for Exception Types” 1-20
“Implicit Arguments to Operations” 1-21

“Interpretation of Functions with Empty Argument Lists” 1-21

“Argument Passing Considerations” 1-21
“Return Result Passing Considerations” 1-22
“Summary of Argument/Result Passing” 1-23
“Handling Exceptions” 1-26
“Method Routine Signatures” 1-28
“Include Files” 1-29
“Pseudo-objects” 1-29
“Mapping for Object Implementations” 1-30
“Mapping of the DSI to C” 1-39
“ORB Initialization Operations” 1-44

1.1 Requirements for a Language Mapping

All language mappings have approximately the same structure. They must define the
means of expressing in the language:

« All OMG IDL basic data types

« All OMG IDL constructed data types

» References to constants defined in OMG IDL

» References to objects defined in OMG IDL

« Invocations of operations, including passing parameters and receiving results

» Exceptions, including what happens when an operation raises an exception and
how the exception parameters are accessed

» Access to attributes

« Signatures for the operations defined by the ORB, such as the dynamic invocation
interface, the object adapters, and so forth.

A complete language mapping will allow a programmer to have access to all ORB
functionality in a way that is convenient for the particular programming language. To
support source portability, all ORB implementations must support the same mapping
for a particular language.

C Language Mapping August 1997

1.1.1 Basic Data Types

A language mapping must define the means of expressing all of the data types defined
in version 2.3 ofThe Common Object Request Broker: Architecture and Specifications
OMG IDL Syntax and SemantichapterBasic Typesection. The ORB defines the

range of values supported, but the language mapping defines how a programmer sees
those values. For example, the C mapping might define TRUE as 1 and FALSE as 0,
whereas the LISP mapping might define TRUE as T and FALSE as NIL. The mapping
must specify the means to construct and operate on these data types in the
programming language.

1.1.2 Constructed Data Types

A language mapping must define the means of expressing the constructed data types
defined in version 2.3 ofhe Common Object Request Broker: Architecture and
SpecificationsOMG IDL Syntax and Semantichapter,Constructed Typesection.

The ORB defines aggregates of basic data types that are supported, but the language
mapping defines how a programmer sees those aggregates. For example, the C
mapping might define an OMG IDL struct as a C struct, whereas the LISP mapping
might define an OMG IDL struct as a list. The mapping must specify the means to
construct and operate on these data types in the programming language.

1.1.3 Constants

OMG IDL definitions may contain named constant values that are useful as parameters
for certain operations. The language mapping should provide the means to access thes:
constants by name.

1.1.4 Objects

There are two parts of defining the mapping of ORB objects to a particular language.
The first specifies how an object is represented in the program and passed as a
parameter to operations. The second is how an object is invoked. The representation of
an object reference in a particular language is generally opaque, that is, some
language-specific data type is used to represent the object reference, but the program
does not interpret the values of that type. The language-specific representation is
independent of the ORB representation of an object reference, so that programs are not
ORB-dependent. In an object-oriented programming language, it may be convenient to
represent an ORB object as a programming language object. Any correspondence
between the programming language object types and the OMG IDL types including
inheritance and operation names is up to the language mapping.

There are only three uses that a program can make of an object reference: it may

* specify it as a parameter to an operation (including receiving it as an output
parameter),

® invoke an operation on it, or

* perform an ORB operation (including object adapter operations) on it.

C Language Mapping Requirements for a Language Mapping Aug. 1997 1-3

1.1.5 Invocation of Operations

An operation invocation requires the specification of the object to be invoked, the
operation to be performed, and the parameters to be supplied. There are a variety of
possible mappings, depending to a large extent on the procedure mechanism in the
particular language. Some possible choices for language mapping of invocation
include: interface-specific stub routines, a single general-purpose routine, a set of calls
to construct a parameter list and initiate the operation, or mapping ORB operations to
operations on objects defined in an object-oriented programming language.

The mapping must define how parameters are associated with the call, and how the
operation name is specified. It is also necessary to specify the effect of the call on the
flow of control in the program, including when an operation completes normally and
when an exception is raised.

The most natural mapping would be to model a call on an ORB object as the
corresponding call in the particular language. However, this may not always be
possible for languages where the type system or call mechanism is not powerful
enough to handle ORB objects. In this case, multiple calls may be required. For
example, in C, it is necessary to have a separate interface for dynamic construction of
calls, since C does not permit discovery of new types at runtime. In LISP, however, it
may be possible to make a language mapping that is the same for objects whether or
not they were known at compile time.

In addition to defining how an operation is expressed, it is necessary to specify the
storage allocation policy for parameters, for example, what happens to storage of input
parameters, and how and where output parameters are allocated. It is also necessary ti
describe how a return value is handled, for operations that have one.

1.1.6 Exceptions

There are two aspects to the mapping of exceptions into a particular language. First is
the means for handling an exception when it occurs, including deciding which
exception occurred. If the programming language has a model of exceptions that can
accommodate ORB exceptions, that would likely be the most convenient choice; if it
does not, some other means must be used, for example, passing additional parameter:
to the operations that receive the exception status.

A common case is that the programmer associates specific code to handle each kind of
exception. It is desirable to make that association as convenient as possible.

Second, when an exception has been raised, it must be possible to access the
parameters of the exception. If the language exception mechanism allows for
parameters, that mechanism could be used. Otherwise, some other means of obtaining
the exception values must be provided.

C Language Mapping August 1997

1.1.7 Attributes

The ORB model attributes as a pair of operations, one to set and one to get the attribute
value. The language mapping defines the means of expressing these operations. One
reason for distinguishing attributes from pairs of operations is to allow the language
mapping to define the most natural way for accessing them. Some possible choices
include defining two operations for each attribute, defining two operations that can set
or get, respectively, any attribute, defining operations that can set or get groups of
attributes, and so forth.

1.1.8 ORB Interfaces

Most of a language mapping is concerned with how the programmer-defined objects
and data are accessed. Programmers who use the ORB must also access some
interfaces implemented directly by the ORB, for example, to convert an object
reference to a string. A language mapping must also specify how these interfaces
appear in the particular programming language.

Various approaches may be taken, including defining a set of library routines, allowing
additional ORB-related operations on objects, or defining interfaces that are similar to
the language mapping for ordinary objects.

The last approach is called defining pseudo-objects. A pseudo-object has an interface
that can (with a few exceptions) be defined in IDL, but is not necessarily implemented
as an ORB object. Using stubs, a client of a pseudo-object writes calls to it in the same
way as if it were an ordinary object. Pseudo-object operations cannot be invoked with
the Dynamic Invocation Interface. However, the ORB may recognize such calls as
special and handle them directly. One advantage of pseudo-objects is that the interface
can be expressed in IDL independent of the particular language mapping, and the
programmer can understand how to write calls by knowing the language mapping for
the invocations of ordinary objects.

It is not necessary for a language mapping to use the pseudo-object approach.
However, this document defines interfaces in subsequent chapters using OMG IDL
wherever possible. A language mapping must define how these interfaces are accessed
either by defining them as pseudo-objects and supporting a mapping similar to
ordinary objects, by defining language-specific interfaces for them, or in some other
way.

1.2 Scoped Names

The C programmer must always use the global name for a type, constant, exception, or
operation. The C global name corresponding to an OMG IDL global name is derived
by converting occurrences of:*to “_" (an underscore) and eliminating the leading
underscore.

C Language Mapping Scoped Names Aug. 1997 1-5

Consider the following example:

/I IDL
typedef string<256> filename_t;
interface exampleO {
enum color {red, green, blue},
union bar switch (enum foo {room, bell}) { ... };

I3

Code to use this interface would look as follows:

[*C*
#include "example0.h"

filename_t FN;
example0_color C = exampleO_red;
exampleO_bar myUnion;

switch (myUnion._d) {
case exampleO_bar_room: e
case exampleO_bar_bell: e

k

Note that the use of underscores to replace theséparators can lead to ambiguity if
the OMG IDL specification contains identifiers with underscores in them. Consider the
following example:

/I IDL

typedef long foo_bar;

interface foo {
typedef short bar; /* A legal OMG IDL statement,
but ambiguous in C */

h

Due to such ambiguities, it is advisable to avoid the indiscriminate use of underscores
in identifiers.

1.3 Mapping for Interfaces

All interfaces must be defined at global scope rfested interfaces). The mapping for
an interface declaration is as follows:

// IDL
interface examplel {

long opl(in long argl);
h

C Language Mapping August 1997

The preceding example generates the following C declarations

[*C*

typedef CORBA_Object examplel;

extern CORBA _long examplel_op1(
examplel o,
CORBA_long arg1,
CORBA_Environment *ev

);

All object references (typed interface references to an object) are of the well-known,
opague typ&€ORBA_Object. The representation GIORBA_Object is a pointer. To

permit the programmer to decorate a program with typed references, a type with the
name of the interface is defined to bE@QRBA_Object. The literal
CORBA_OBJECT_NIlis legal wherever ORBA_Object may be used; it is

guaranteed to pass ti& nil operation defined in version 2.3 ©he Common Object
Request Broker: Architecture and SpecificaticdB&B Interfacechapter,Nil Object
Referencesection. OMG IDL permits specifications in which arguments, return

results, or components of constructed types may be interface references. Consider the
following example:

/I IDL
#include "examplel.idl"

interface example2 {
examplel op2();

h
This is equivalent to the following C declaration:

[*C*
#include "examplel.h"

typedef CORBA_Object example2;
extern examplel example2_op2(example2 o, CORBA_Environment
*ev);

A C fragment for invoking such an operation is as follows:

[*C*

#include "example2.h"
examplel ex1;

example2 ex2;
CORBA_Environment ev;

* code for binding ex2 */

1. “Implicit Arguments to Operations” on page 1-21 describes the additional arguments added
to an operation in the C mapping.

C Language Mapping Mapping for Interfaces Aug. 1997 1-7

ex1l = example2_op2(ex2, &ev);

1.4 Inheritance and Operation Names

OMG IDL permits the specification of interfaces that inherit operations from other
interfaces. Consider the following example:

/I IDL
interface example3 : examplel {

void op3(in long arg3, out long arg4);
h

This is equivalent to the following C declarations:

[*C*

typedef CORBA_Object example3;

extern CORBA _long example3_op1(
example3 o,
CORBA _long arg1,
CORBA_Environment *ev

);

extern void example3_op3(
example3 o,
CORBA_long arg3,
CORBA_long *arg4,
CORBA_Environment *ev

);

As a result, an object written in C can acceg$ as if it was directly declared in
example3 . Of course, the programmer could also invekamplel_opl on an
Object of typeexample3 ; the virtual nature of operations in interface definitions
will cause invocations of either function to cause the same method to be invoked.

1.5 Mapping for Attributes

The mapping for attributes is best explained through example. Consider the following
specification:

/I IDL
interface foo {
struct position_t {
float x, y;

J3

attribute float radius;
readonly attribute position_t position;

I3

This is exactly equivalent to the following illegal OMG IDL specification:

C Language Mapping August 1997

/I IDL (illegal)
interface foo {
struct position_t {

float X, y;
h
float _get_radius();
void _set_radius(in float r);

position_t _get_position();

k

This latter specification is illegal, since OMG IDL identifiers are not permitted to start
with the underscore | character.

The language mapping for attributes then becomes the language mapping for these
equivalent operations. More specifically, the function signatures generated for the
above operations are as follows:

[*C*

typedef struct foo_position_t {
CORBA float X, y;

} foo_position_t;

extern CORBA float foo__get_radius(foo o, CORBA_Environment

*ev);
extern void foo__set_radius(
foo o,
CORBA float r,
CORBA_Environment *ev
);

extern foo_position_t foo_ get_position(foo o,
CORBA_Environment *ev);

Note that two underscore characters X separate the name of the interface from the
words ‘get ” or “set " in the names of the functions.

If the “set " accessor function fails to set the attribute value, the method should return
one of the standard exceptions defined in version 2ThefCommon Object Request
Broker: Architecture and Specificatior®MG IDL Syntax and Semantichapter,
Standard Exceptionsection.

1.6 Mapping for Constants

Constant identifiers can be referenced at any point in the user’'s code where a literal of
that type is legal. In C, these constants#atefine d.

The fact that constants a#define d may lead to ambiguities in code. All names
which are mandated by the mappings for any of the structured types below start with
an underscore.

C Language Mapping Mapping for Constants Aug. 1997 1-9

The mappings for wide character and wide string constants is identical to character and
string constants, except that IDL literals are preceded ioyC. For example, IDL
constant:

const wstring ws = “Hello World”;

would map to

#define ws L"Hello World”
in C.

1.7 Mapping for Basic Data Types

1-10

The basic data types have the mappings shown in Table 1-1. Implementations are
responsible for providing typedefs for CORBA_short, CORBA_long, and so forth,
consistent with OMG IDL requirements for the corresponding data types.

Table 1-1 Data Type Mappings

OMG IDL C

short CORBA_short
long CORBA _long

long long CORBA _long_long

unsigned short

CORBA_unsigned_short

unsigned long

CORBA _unsigned_long

unsigned long
long

CORBA _unsigned_long_long

float CORBA _float

double CORBA_double

long double CORBA _long_double

char CORBA_char

wchar CORBA_wchar

boolean CORBA_boolean

any typedef struct CORBA_any { CORBA_TypeCode _type; void

* value; }
CORBA_any;

The C mapping of the OMG IDhoolean types isunsigned char with only the
values 1 (TRUE) and 0 (FALSE) defined; other values produce undefined behavior.
CORBA_boolean is provided for symmetry with the other basic data type mappings.

The C mapping of OMG IDlenum types is an unsigned integer type capable of
representing & enumerations. Each enumerator inesum is #define d with an
appropriate unsigned integer value conforming to the ordering constraints.

C Language Mapping August 1997

TypeCodes are described in version 2.3bé Common Object Request Broker:
Architecture and Specificationkiterface Repositorghapter,TypeCodesection. The
_value member for arany is a pointer to the actual value of the datum. Note that

this holds true when the datum is itself implemented as a pointer (e.g., in the case of a
CORBA string, the value member would be a pointe€EQRBA_char**) to
stringCORBA_char*).

The any type supports the notion of ownership of itsmlue member. By setting a
release flag in thany when a value is installed, programmers can control ownership
of the memory pointed to byvalue . The location of this release flag is
implementation-dependent, so the following two ORB-supplied functions allow for the
setting and checking of theny release flag:

[*C*
void CORBA_any_set _release(CORBA_any*, CORBA_boolean);
CORBA_boolean CORBA_any_get_release(CORBA_any*);

CORBA _any_set release can be used to set the state of the release flag. If the
flag is set toTRUE theany effectively “owns” the storage pointed to byalue ; if
FALSE, the programmer is responsible for the storage. If, for examplanais
returned from an operation with its release flag s&AbSE, calling CORBA _free()

on the returne@ny* will not deallocate the memory pointed to byalue . Before
calling CORBA_free() on the value member of arany directly, the programmer
should check the release flag us®@RBA_any_get release . If it returnsFALSE
the programmer should not invokREORBA_free() on the value member; doing so
produces undefined behavior. Also, passing a null pointer to either
CORBA_any_set release or CORBA _any_get release produces undefined
behavior.

If CORBA_any_set release is never called for a given instanceamiy, the default
value of the release flag for that instanc&Ad.SE

1.8 Mapping Considerations for Constructed Types

The mapping for OMG IDL structured types (structs, unions, arrays, and sequences)
can vary slightly depending on whether the data structuireid-lengthor variable-
length A type isvariable-lengthif it is one of the following types:

The typeany

A bounded or unbounded string or wide string

A bounded or unbounded sequence

An object reference or reference to a transmissible pseudo-object

« A struct or union that contains a member whose type is variable-length
« An array with a variable-length element type

« A typedef to a variable-length type

The reason for treating fixed- and variable-length data structures differently is to allow
more flexibility in the allocation obut parameters and return values from an
operation. This flexibility allows a client-side stub for an operation that returns a
sequence of strings, for example, to allocate all the string storage in one area that is

C Language Mapping Mapping Considerations for Constructed Types Aug. 199711

deallocated in a single call. The mapping of a variable-length type @s grarameter
or operation return value is a pointer to the associated class or array, as shown in
Table 1-2 on page 1-23.

For types whose parameter passing modes require heap allocation, an ORB
implementation will provide allocation functions. These types include variable-length
struct , variable-lengttunion , sequence , any, string , wstring and array of a
variable-length type. The return value of these allocation functions must be freed using
CORBA_free() . For one of these listed types T, the ORB implementation will

provide the following type-specific allocation function:

[*C*

T*T__ alloc();

The functions are defined at global scope using the fully-scoped name of T converted
into a C language name (as described in “Scoped Names” on page 1-5) followed by the

suffix “__alloc” (note the double underscore). oy, string, andwstring , the
allocation functions are:

C

CORBA_any *CORBA_any_alloc();
char *CORBA _string_alloc();
CORBA_wchar* CORBA_wstring_alloc(CORBA_unsigned_long len);

respectively.

1.9 Mapping for Structure Types

OMG IDL structures map directly ontosEruct s. Note that all OMG IDL types that
map to Cstruct s may potentially include padding.

1.10 Mapping for Union Types

1-12

OMG IDL discriminated unions are mapped ontatflict s. Consider the following
OMG IDL declaration:

/I IDL

union Foo switch (long) {
case 1: long x;
case 2: float y;
default: char z;

h

This is equivalent to the followingtruct in C:
1*C*

typedef struct {

CORBA long _d;
union {

C Language Mapping August 1997

CORBA long x;
CORBA float y;
CORBA_char z;
oy
} Foo;

The discriminator in the struct is always referred to dsthe union in the struct is
always referred to asu.

Reference to union elements is as in normal C:

C
Foo *v;

/* make a call that returns a pointer to a Foo in v */

switch(v->_d) {
case 1: printf("x = %ld\n", v->_u.x); break;
case 2: printf("y = %f\n", v->_u.y); break;
default: printf("z = %c\n", v->_u.z); break;

}

An ORB implementation need not use ai@on to hold the OMG IDLunion
elements; a C struct may be used instead. In either case, the programmer accesses th
union elements via theu member.

1.11 Mapping for Sequence Types

The OMG IDL data typesequence permits passing of unbounded arrays between
objects. Consider the following OMG IDL declaration:

/I IDL
typedef sequence<long,10> veclO0;

In C, this is converted to:

[*C*

typedef struct {
CORBA_unsigned_long _maximum,;
CORBA_unsigned_long _length;
CORBA_long *_buffer;

} veclo;

An instance of this type is declared as follows:

[*C*
vecl0 x = {10L, OL, (CORBA_long *)NULL);
Prior to passingx as anin parameter, the programmer must set theffer

member to point to &ORBA_long array of 10 elements, and must set thength
member to the actual number of elements to transmit.

C Language Mapping Mapping for Sequence Types Aug. 1997 1-13

1-14

Prior to passing the address ofex10* as arout parameter (or receivingwecl0*

as the function return), the programmer does nothing. The client stub will allocate
storage for the returned sequence; for bounded sequences, it also allocates a buffer of
the specified size, while for unbounded sequences, it also allocates a buffer big enough
to hold what was returned by the object. Upon successful return from the invocation,
the _maximum member will contain the size of the allocated array,_thafer

member will point at allocated storage, and tkength member will contain the

number of values that were returned in theiffer member. The client is

responsible for freeing the allocated sequence USDBBA free() .

Prior to passingx as aninout parameter, the programmer must set _theffer

member to point to £ORBA_long array of 10 elements. Thdength member

must be set to the actual number of elements to transmit. Upon successful return from
the invocation, thelength member will contain the number of values that were
copied into the buffer pointed to by theuffer member. If more data must be

returned than the original buffer can hold, the callee can deallocate the original
_buffer member usingcORBA free() (honoring the release flag) and assign

_buffer to point to new storage.

For bounded sequences, it is an error to set ldregth or _maximum member to a
value larger than the specified bound.

Sequence types support the notion of ownership of theiffer =~ members. By

setting a release flag in the sequence when a buffer is installed, programmers can
control ownership of the memory pointed to_tiyuffer . The location of this release
flag is implementation-dependent, so the following two ORB-supplied functions allow
for the setting and checking of the sequence release flag:

[*C*
void CORBA_sequence_set_release(void*, CORBA_boolean);
CORBA_boolean CORBA_sequence_get_release(void*);

CORBA_sequence_set_release can be used to set the state of the release flag. If
the flag is set t&RUE the sequence effectively “owns” the storage pointed to by
_buffer ; if FALSE, the programmer is responsible for the storage. If, for example, a
sequence is returned from an operation with its release flag BALSE, calling
CORBA_free() on the returned sequence pointer will not deallocate the memory
pointed to by buffer . Before callingCORBA_free() on the_buffer member of

a sequence directly, the programmer should check the release flag using
CORBA_sequence_get_release . If it returnsFALSE the programmer should not
invoke CORBA_free() on the_buffer ~member; doing so produces undefined
behavior. Also, passing a null pointer or a pointer to something other than a sequence
type to eithetCORBA_sequence_set_release or

CORBA_sequence_get_release produces undefined behavior.

CORBA_sequence_set_release should only be used by the creator of a
sequence. If it is not called for a given sequence instance, then the default value of the
release flag for that instanceRA\LSE

Two sequence types are the same type if their sequence element type and size argumen
are identical. For example,

C Language Mapping August 1997

/I IDL
const long SIZE = 25;
typedef long seqtype;

typedef sequence<long, SIZE> s1;
typedef sequence<long, 25> s2;
typedef sequence<seqtype, SIZE> s3;
typedef sequence<seqtype, 25> s4;

declaressl, s2, s3, ands4 to be of the same type.

The OMG IDL type

// IDL
sequence<type,size>

maps to

[*C*
#ifndef _CORBA_sequence_type_defined
#define _CORBA _sequence_type defined
typedef struct {

CORBA_unsigned_long _maximum;

CORBA _unsigned_long _length;

type *_buffer;
} CORBA_sequence_type;
#endif /* CORBA_sequence_type defined */

Theifdef 's are needed to prevent duplicate definition where the same type is used
more than once. The type name used in the C mapping is the type name of the effective
type. For example, in

[*C*
typedef CORBA long FRED;
typedef sequence<FRED,10> FredSeq;

the sequence is mapped onto

struct { ... } CORBA_sequence_long;

If the type in

/l'IDL
sequence<type,size>

consists of more than one identifier (e.g, unsigned long), then the generated type name
consists of the string “CORBA_sequence_" concatenated to the string consisting of the
concatenation of each identifier separated by underscores (e.g, “unsigned_long”).

If the type is astring , the string “string” is used to generate the type name. If the
type is asequence , the string “sequence” is used to generate the type name,
recursively. For example

C Language Mapping Mapping for Sequence Types Aug. 1997 1-15

/I 1DL
sequence<segquence<long> >

generates a type of

[*C*

CORBA_sequence_sequence_long

These generated type hames may be used to declare instances of a sequence type.

In addition to providing a type-specific allocation function for each sequence, an ORB
implementation must provide a buffer allocation function for each sequence type.
These functions allocate vectors of type T deguence<T> . They are defined at

global scope and are named similarly to sequences:

[*C*
T *CORBA_sequence_T_allocbuf(CORBA_unsigned_long len);

Here, “T” refers to the type name. For the type

// 1DL
sequence<sequence<long> >

for example, the sequence buffer allocation function is hamed
[*C*
T *CORBA_sequence_sequence_long_allocbuf

(CORBA _unsigned_long len);

Buffers allocated using these allocation functions are freed GORBA_free() .

1.12 Mapping for Strings

1-16

OMG IDL strings are mapped to 0-byte terminated character arrays (i.e., the length of
the string is encoded in the character array itself through the placement of the 0-byte).
Note that the storage for C strings is one byte longer than the stated OMG IDL bound.
Consider the following OMG IDL declarations:

/I IDL
typedef string<10> sten;
typedef string sinf;

In C, this is converted to:

[*C*
typedef CORBA_char *sten;
typedef CORBA_char *sinf;

Instances of these types are declared as follows:

/*C*
sten s1 = NULL;

C Language Mapping August 1997

sinf s2 = NULL;

Two string types are the same type if their size arguments are identical. For example,

[*C*
const long SIZE = 25;

typedef string<SIZE> sx;
typedef string<25> sy;

declaressx andsy to be of the same type.

Prior to passingl ors2 as anin parameter, the programmer must assign the address
of a character buffer containing a 0-byte terminated string to the variable. The caller
cannot pass a null pointer as the string argument.

Prior to passingsl or &s2 as anout parameter (or receivingsien orsinf as the
return result), the programmer does nothing. The client stub will allocate storage for
the returned buffer; for bounded strings, it allocates a buffer of the specified size, while
for unbounded strings, it allocates a buffer big enough to hold the returned string.
Upon successful return from the invocation, the character pointer will contain the
address of the allocated buffer. The client is responsible for freeing the allocated
storage usingCORBA_free() .

Prior to passingsl or &s2 as aninout parameter, the programmer must assign the
address of a character buffer containing a 0-byte terminated array to the variable. If the
returned string is larger than the original buffer, the client stub will call

CORBA_free() on the original string and allocate a new buffer for the new string.
The client should therefore never passranut string parameter that was not allocated
usingCORBA_string_alloc . The client is responsible for freeing the allocated
storage usingcORBA_free() , regardless of whether or not a reallocation was
necessary.

Strings are dynamically allocated using the following ORB-supplied function:
C
CORBA_char *CORBA _string_alloc(CORBA _unsigned_long len);

This function allocateten+1 bytes, enough to hold the string and its terminating
NUL character.

Strings allocated in this manner are freed uSi@RBA_free() .

1.13 Mapping for Wide Strings

The mapping for wide strings is similar to that of strings, except that (1) wide strings are
mapped to null-terminated (note: a wide null) wide-character arrays instead of 0-byte
terminated character arrays; and (2) wide strings are dynamically allocated using the
ORB-supplied function:

C Language Mapping Mapping for Wide Strings Aug. 1997 1-17

CORBA_wchar* CORBA_wstring_alloc(CORBA_unsigned_long len);

instead of CORBA _string_alloc . The length argumemé¢n is the number of
CORBA::WChar units to be allocated, including one additional unit for the null
terminator.

1.14 Mapping for Fixed

1-18

If an implementation has a native fixed-point decimal type, matching the CORBA
specifications of théixed type, then the OMG IDIfixed type may be mapped to the
native type.

Otherwise, the mapping is as follows. Consider the following OMG IDL declarations:

fixed<15,5> dec1; /I IDL
typedef fixed<9,2> money;

In C, these become:

typedef struct {/* C */
CORBA _unsigned_short _digits;
CORBA_short _scale;
CORBA_char _value[(15+2)/2];
} CORBA fixed_15 5;

CORBA_fixed_15_5 decl = {15u, 5};

typedef struct {
CORBA _unsigned_short _digits;
CORBA_short _scale;
CORBA _char _value[(9+2)/2];
} CORBA_fixed_9_2;

typedef CORBA fixed_9 2 money;

An instance ofmoney is declared:

money bags = {9u, 2};

To permit application portability, the following minimal set of functions and operations
on thefixed type must be provided by the mapping. Since C does not support
parameterized types, tli@ed arguments are representedvag* pointers. The type
information is instead conveyed within the representation itself. Thudipi,s and
_scale of everyfixed operand must be set prior to invoking these functions. Indeed
only the_value field of the result, denoted bByp , may be left unset. Otherwise the
behavior of the functions is undefined.

C Language Mapping August 1997

/* Conversions: all signs are the same. */

CORBA_long CORBA fixed_integer_part(const void *fp);

CORBA_long CORBA fixed_fraction_part(const void *fp);

void CORBA _fixed_set(void *rp, const CORBA _long i,
const CORBA _long f);

[* Operations, of the form: r =f1 op 2 */

void CORBA _fixed_add(void *rp, const void *f1p,
const void *f2p);

void CORBA _fixed_sub(void *rp, const void *f1p,
const void *f2p);

void CORBA _fixed_mul(void *rp, const void *f1p,
const void *f2p);

void CORBA _fixed_div(void *rp, const void *f1p,
const void *f2p);

These operations must maintain proper fixed-point decimal semantics, following the
rules specified in version 2.3 @he Common Object Request Broker: Architecture and
SpecificationsOMG IDL Syntax and SemantichapterSemanticsection for the

precision and scale of the intermediate results prior to assignment to the result variable.
Truncation without rounding may occur if the result type cannot express the intermediate
result exactly.

Instances of théixed type are dynamically allocated using the ORB-supplied function:
CORBA fixed_d_s* CORBA fixed_alloc(CORBA_unsigned_short d);

1.15 Mapping for Arrays
OMG IDL arrays map directly to C arrays. All array indices run from Osiae< - 1>.

For each named array type in OMG IDL, the mapping provides a C typedef for pointer
to the array'slice A slice of an array is another array with all the dimensions of the
original except the first. For example, given the following OMG IDL definition:

/I IDL
typedef long LongArray[4][5];

The C mapping provides the following definitions:

[*C*
typedef CORBA_long LongArray[4][5];
typedef CORBA_long LongArray_slice[5];

The generated name of the slice typedef is created by appending “_slice” to the
original array name.

If the return result, or aaut parameter for an array holding a variable-length type, of
an operation is an array, the array storage is dynamically allocated by the stub; a
pointer to the array slice of the dynamically allocated array is returned as the value of
the client stub function. When the data is no longer needed, it is the programmer’s
responsibility to return the dynamically allocated storage by calli@@BA _free() .

C Language Mapping Mapping for Arrays Aug. 1997 1-19

An array T of a variable-length type is dynamically allocated using the following
ORB-supplied function:

[*C*
T _slice *T__ alloc();
This function is identical to the allocation functions described in Section 1.8,

“Mapping Considerations for Constructed Types,” on page 1-11, except that the return
type is pointer to array slice, not pointer to array.

1.16 Mapping for Exception Types

1-20

Each defined exception type is defined as a struct tag and a typedef with the C global
name for the exception. An identifier for the exception, in string literal form, is also
#define d, as is a type-specific allocation function. For example:

/I IDL
exception foo {
long dummy;

h

yields the following C declarations:

[*C*
typedef struct foo {

CORBA_long dummy;

/* ...may contain additional

* implementation-specific members...

*
} foo;
#define ex_foo <unique identifier for exception>
foo *foo__alloc();

The identifier for the exception uniquely identifies this exception type. For example, it
could be the Interface Repository identifier for the exception (see version 28 of
Common Object Request Broker: Architecture and Specificatiotesface Repository
chapter,ExceptionDefkection).

The allocation function dynamically allocates an instance of the exception and returns
a pointer to it. Each exception type has its own dynamic allocation function.
Exceptions allocated using a dynamic allocation function are freed using

CORBA free() .

Since IDL exceptions are allowed to have no members, but C structs must have at least
one member, IDL exceptions with no members map to C structs with one member.
This member is opaque to applications. Both the type and the name of the single
member are implementation-specific.

C Language Mapping August 1997

1.17 Implicit Arguments to Operations

From the point of view of the C programmer, all operations declared in an interface
have additional leading parameters preceding the operation-specific parameters:

1. The first parameter to each operation S@RBA_Object input parameter; this
parameter designates the object to process the request.

2. The last parameter to each operation @3GRBA_Environment* output
parameter; this parameter permits the return of exception information.

3. If an operation in an OMG IDL specification has a context specification, then a
CORBA_Context input parameter precedes t8®RBA_Environment*
parameter and follows any operation-specific arguments.

As described above, tHeORBA_Object type is an opaque type. The
CORBA_Environment type is partially opaque; Section 1.22, “Handling
Exceptions,” on page 1-26 provides a description of the non-opaque portion of the
exception structure and an example of how to handle exceptions in client code. The
CORBA_Context type is opaque; see the Dynamic Invocation Interface chapter for
more information on how to create and manipulate context objects.

1.18 Interpretation of Functions with Empty Argument Lists

A function declared with an empty argument list is defined to tekeperation-
specific arguments.

1.19 Argument Passing Considerations

For all OMG IDL types (except arrays), if the OMG IDL signature specifies that an
argument is aut orinout parameter, then the caller must always pass the address of
a variable of that type (or the value of a pointer to that type); the callee must
dereference the parameter to get to the type. For arrays, the caller must pass the
address of the first element of the array.

Forin parameters, the value of the parameter must be passed for all of the basic types,
enumeration types, and object references. For all arrays, the address of the first
element of the array must be passed. For all other structured types, the address of a
variable of that type must be passed, regardless of whether they are fixed- or variable-
length. For strings, ehar* andwchar* must be passed.

Forinout parameters, the address of a variable of the correct type must be passed for
all of the basic types, enumeration types, object references, and structured types. For
strings, the address ofchar* and the* of awchar must be passed. For all arrays,

the address of the first element of the array must be passed.

Consider the following OMG IDL specification:
//'1DL

interface foo {
typedef long Vector[25];

C Language Mapping Implicit Arguments to Operations Aug. 1997 1-21

void bar(out Vector x, out long y);

J3

Client code for invoking théar operation would look like:

[*C*

foo object;
foo_Vector_slice x;
CORBA _longy;
CORBA_Environment ev;

/* code to bind object to instance of foo */

foo_bar(object, &x, &y, &ev);

For out parameters of type variable-lengttiuct , variable-lengthunion , string ,

sequence , an array holding a variable-length type,any, the ORB will allocate

storage for the output value using the appropriate type-specific allocation function. The
client may use and retain that storage indefinitely, and must indicate when the value is
no longer needed by calling the procedG@RBA_free, whose signature is:

[*C*
extern void CORBA_free(void *storage);

The parameter t€ORBA_free() is the pointer used to return that parameter.
CORBA_free() releases the ORB-allocated storage occupied bypuhegarameter,
including storage indirectly referenced, such as in the case of a sequence of strings or
array of object reference. If a client does not CIRBA_free() before reusing the
pointers that reference tloait parameters, that storage might be wasted. Passing a null
pointer toCORBA free() is allowed;CORBA free() simply ignores it and returns
without error.

1.20 Return Result Passing Considerations

1-22

When an operation is defined to return a non-void return result, the following rules
hold:

1. If the return result is one of the typiésat, double , long, short , unsigned
long, unsigned short , char, wchar, fixed, boolean , octet, Object, or an
enumeration , then the value is returned as the operation result.

2. If the return result is one of the fixed-length tygésict or union, then the value
of the C struct representing that type is returned as the operation result. If the return
result is one of the variable-length typsuct , union , sequence , orany, then a
pointer to a C struct representing that type is returned as the operation result.

3. If the return result is of typstring or wstring , then a pointer to the first character
of the string is returned as the operation result.

4. If the return result is of typarray, then a pointer to the slice of the array is
returned as the operation result.

C Language Mapping August 1997

Consider the following interface:

/I IDL
interface X {
struct y {
long a;
float b;
¥

long opl();
y op2();

The following C declarations ensue from processing the specification:

[*C*

typedef CORBA_Object X;

typedef struct X_y {
CORBA_long a;
CORBA _float b;

PXLY;

extern CORBA_long X_op1(X object, CORBA_Environment *ev);
extern X_y X_op2(X object, CORBA_Environment *ev);

For operation results of type variable-lengthuct , variable-lengthtunion , wstring ,

string , sequence , array, or any, the ORB will allocate storage for the return value
using the appropriate type-specific allocation function. The client may use and retain
that storage indefinitely, and must indicate when the value is no longer needed by
calling the procedur€ORBA_free() described in Section 1.19, “Argument Passing
Considerations,” on page 1-21.

1.21 Summary of Argument/Result Passing

Table 1-2 summarizes what a client passes as an argument to a stub and receives as a
result. For brevity, th€ORBAprefix is omitted from type names in the tables.

Table 1-2 Basic Argument and Result Passing

Data Type In Inout Out Return
short short short* short* short

long long long* long* long

long long long_long long_long* long_long* long_long

unsigned short

unsigned_short

unsigned_short*

unsigned_short*

unsigned_shor

unsigned long

unsigned_long

unsigned_long*

unsigned_long*

unsigned_long

unsigned long long unsigned_long_long unsigned_long_lang* unsigned_long_Jong* unsigned_long long
float float float* float* float
double double double* double* double

C Language Mapping Summary of Argument/Result Passing Aug. 1997 1-23

Table 1-2 Basic Argument and Result Passii@pntinued)

Data Type In Inout Out Return

long double long_double long_double* long_double* long_double
fixed<d,s> fixed_d_s* fixed_d_s* fixed_d_s* fixed_d_s
boolean boolean boolean* boolean* boolean
char char char* char* char

wchar wchar wchar* wchar* wchar

octet octet octet* octet* octet

enum enum enum* enum* enum

object reference ptr objref_ptr objref_ptr* objref_ptr* objref_ptr
struct, fixed struct* struct* struct* struct

struct, variable struct* struct* struct** struct*

union, fixed union* union* union* union

union, variable union* union* union** union*

string char* char** char** char*

wstring wchar* wchar** wchar** wchar*
sequence sequence* sequence* sequence** sequence*
array, fixed array array array array sliée*
array, variable array array array slice**2 array slice*2
any any* any* any** any*

1. Including pseudo-object references.

2. Aslice is an array with all the dimensions of the original except the first one.

1-24

A client is responsible for providing storage for all arguments passadaaguments.

Table 1-3 Client Argument Storage Responsibilities

Type

Out
Param

Inout
Param

Return Result

short

long

unsigned short

unsigned long

float

double

boolean

char

octet

enum

object reference ptr

struct, fixed

R S e N S I I

R I e N e I I

N R N N N N I I

C Language Mapping

August 1997

Table 1-3 Client Argument Storage Responsibilitigontinued)

array, variable

Type Inout Out Return Result
Param Param

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

sequence 5 3 3

array, fixed 1 1 6
1 6 6
5 3 3

any

Table 1-4 Argument Passing Cases

Casé

Caller allocates all necessary storage, except that which may be encapsulated and managed with

in the

parameter itself. For inout parameters, the caller provides the initial value, and the callee may change that

value. For out parameters, the caller allocates the storage but need not initialize it, and the callee
value. Function returns are by value.

Caller allocates storage for the object reference. For inout parameters, the caller provides an initig

sets the

| value;

if the callee wants to reassign the inout parameter, it will first call CORBA_Object_release on the original

input value. To continue to use an object reference passed in as an inout, the caller must first dupl

cate the

reference. The client is responsible for the release of all out and return object references. Release of all

object references embedded in other out and return structures is performed automatically as a reg
calling CORBA _free.

For out parameters, the caller allocates a pointer and passes it by reference to the callee. The ca

ult of

llee sets

the pointer to point to a valid instance of the parameter’s type. For returns, the callee returns a similar

pointer. The callee is not allowed to return a null pointer in either case. In both cases, the caller is
responsible for releasing the returned storage. Following the completion of a request, the caller is
allowed to modify any values in the returned storage—to do so, the caller must first copy the retu
instance into a new instance, then modify the new instance.

not
ned

For inout strings, the caller provides storage for both the input string and the char* pointing to it. The

callee may deallocate the input string and reassign the char* to point to new storage to hold the g
value. The size of the out string is therefore not limited by the size of the in string. The caller is
responsible for freeing the storage for the out. The callee is not allowed to return a null pointer fo
inout, out, or return value.

For inout sequences and anys, assignment or modification of the sequence or any may cause ded
of owned storage before any reallocation occurs, depending upon the state of the boolean releasg
sequence or any.

For out parameters, the caller allocates a pointer to an array slice, which has all the same dimens
the original array except the first, and passes the pointer by reference to the callee. The callee se
pointer to point to a valid instance of the array. For returns, the callee returns a similar pointer. The
is not allowed to return a null pointer in either case. In both cases, the caller is responsible for rel
the returned storage. Following the completion of a request, the caller is not allowed to modify any
in the returned storage—to do so, the caller must first copy the returned array instance into a new
instance, then modify the new instance.

1. As listed in Table 1-3 on page 1-24

utput

an

allocation
2 in the

ions of

ts the

» callee

pasing
values
array

C Language Mapping Summary of Argument/Result Passing Aug. 1997 1-25

1

1.22 Handling Exceptions

1-26

Since the C language does not provide native exception handling support, applications
pass and receive exceptions via the sp&EHARBA_Environment parameter passed to
each IDL operation. ThREORBA_Environment type is partially opaque; the C declara-
tion contains at least the following:

[*C*
typedef struct CORBA_Environment {
CORBA_exception_type _major;

} CORBA_Environment;

Upon return from an invocation, thenajor field indicates whether the invocation termi-
nated successfully;major can have one of the valuE©ORBA NO_EXCEPTION
CORBA_USER_EXCEPTIQONr CORBA_SYSTEM_EXCEPTIQiNthe value is one of

the latter two, then any exception parameters signalled by the object can be accessed.

Five functions are defined onGORBA_Environment structure for accessing
exception information. Their signatures are:

[*C*
extern void CORBA_exception_set(
CORBA_Environment *ev,
CORBA_exception_type major,
CORBA_char *except_repos_id,
void *param
)i
extern CORBA_char *CORBA_exception_id(
CORBA_Environment *ev
)i
extern void *CORBA _exception_value(CORBA_Environment *ev);
extern void CORBA_exception_free(CORBA_Environment *ev);
extern CORBA_any* CORBA_exception_as_any(
CORBA_Environment *ev

);

CORBA_exception_set() allows a method implementation to raise an exception.
The ev parameter is the environment parameter passed into the method. The caller
must supply a value for the major parameter. The value of the major parameter
constrains the other parameters in the call as follows:

« If the major parameter has the val@ORBA_NO_EXCEPTIQMhis is a normal
outcome to the operation. In this case, bexbept _repos_id andparam
must be NULL. Note that it inot necessary to invoke
CORBA_exception_set() to indicate a normal outcome,; it is the default
behavior if the method simply returns.

« For any other value ahajor it specifies either a user-defined or system
exception. Theexcept_repos_id parameter is the repository ID representing
the exception type. If the exception is declared to have membensardo®
parameter must be the address of an instance of the exception struct containing
the parameters according to the C language mapping, coercedit¥ a. In this

C Language Mapping August 1997

case, the exception struct must be allocated using the approprisaoc()
function, and theCORBA_exception_set() function adopts the allocated
memory and frees it when it no longer needs it. Once the allocated exception
struct is passed tOORBA_exception_set() , the application is not allowed to
access it because it no longer owns it. If the exception takes no parameters,
param must be NULL.

If the CORBA_Environment argument ta€CORBA_exception_set() already has
an exception set in it, that exception is properly freed before the new exception
information is set.

CORBA_exception_id() returns a pointer to the character string identifying the
exception. The character string contains the repository ID for the exception. If invoked
on aCORBA_Environment which identifies a non-exception,
(_major==CORBA_NO_EXCEPTIONa null pointer is returned. Note that ownership

of the returned pointer does not transfer to the caller; instead, the pointer remains valid
until CORBA_exception_free() is called.

CORBA_exception_value() returns a pointer to the structure corresponding to

this exception. If invoked on @ORBA_Environment which identifies a non-

exception or an exception for which there is no associated information, a null pointer is
returned. Note that ownership of the returned pointer does not transfer to the caller;
instead, the pointer remains valid ul@iDRBA_exception_free() is called.

CORBA_exception_free() frees any storage which was allocated in the
construction of th&€ORBA_Environment or adopted by the
CORBA_Environment whenCORBA_exception_set() is called on it, and sets
the _major field to CORBA_NO_EXCEPTIONM is permissible to invoke
CORBA_exception_free() regardless of the value of thenajor field.

CORBA_exception_as_any() returns a pointer to @ORBA_anycontaining the
exception. This allows a C application to deal with exceptions for which it has no static
(compile-time) information. If invoked on@ORBA_Environment which identifies a
non-exception, a null pointer is returned. Note that ownership of the returned pointer
does not transfer to the caller; instead, the pointer remains valid until
CORBA_exception_free() is called.

Consider the following example:

// IDL
interface exampleX {
exception BadCall {
string<80> reason,;

k

void op() raises(BadCall);
This interface defines a single operation which returns no results and can raise a

BadCall exception. The following user code shows how to invoke the operation and
recover from an exception:

C Language Mapping Handling Exceptions Aug. 1997 1-27

[*C*
#include "exampleX.h"

CORBA_Environment ev;
exampleX obj;
exampleX_BadCall *bc;

/*
* some code to initialize obj to a reference to an object
* supporting the exampleX interface
*/

exampleX_op(obj, &ev);
switch(ev._major) {
case CORBA_NO_EXCEPTION:/* successful outcome*/
[* process out and inout arguments */
break;
case CORBA_USER_EXCEPTION:/* a user-defined exception */
if (stremp(ex_exampleX_BadCall,
CORBA_exception_id(&ev)) == 0) {
bc = (exampleX_BadCall*)CORBA_exception_value(&ev);
fprintf(stderr, "exampleX_op() failed - reason: %s\n",
bc->reason);

else{ /*should never get here ... */
fprintf(stderr,
"unknown user-defined exception -%s\n",
CORBA_exception_id(&evV));
}
break;
default: /* standard exception */
/*
* CORBA_exception_id() can be used to determine
* which particular standard exception was
* raised; the minor member of the struct
* associated with the exception (as yielded by
* CORBA_exception_value()) may provide additional
* system-specific information about the exception
*/
break;
}
[* free any storage associated with exception */
CORBA_exception_free(&ev);

1.23 Method Routine Signatures

The signatures of the methods used to implement an object depend not only on the
language binding, but also on the choice of object adapter. Different object adapters
may provide additional parameters to access object adapter-specific features.

1-28 C Language Mapping August 1997

1

Most object adapters are likely to provide method signatures that are similar in most
respects to those of the client stubs. In particular, the mapping for the operation
parameters expressed in OMG IDL should be the same as for the client side.

See Section 1.26, “Mapping for Object Implementations,” on page 1-30 for the
description of method signatures for implementations using the Portable Object
Adapter.

1.24 Include Files

Multiple interfaces may be defined in a single source file. By convention, each
interface is stored in a separate source file. Al OMG IDL compilers will, by default,
generate a header file namédo.h from Foo.idl . This file should befinclude d by
clients and implementations of the interfaces defineldoio.idl .

Inclusion ofFoo.h is sufficient to define all global names associated with the
interfaces inFoo.idl and any interfaces from which they are derived.

1.25 Pseudo-objects

In the C language mapping, there are several interfaces that are defined as pseudo-
objects; A client makes calls on a pseudo-object in the same way as an ordinary ORB
object. However, the ORB may implement the pseudo-object directly, and there are
restrictions on what a client may do with a pseudo-object.

The ORB itself is a pseudo-object with the following partial definition (see the ORB
Interface chapter for the complete definition):

// 1DL
interface ORB {
string object_to_string (in Object obj);
Object string_to_object (in string str);
h
This means that a C programmer may convert an object reference into its string form
by calling:
[*C*

CORBA_Environment ev;
CORBA_char *str = CORBA_ORB_object_to_string(
orbobj, obj, &ev
);

just as if the ORB were an ordinary object. The C library contains the routine
CORBA_ORB_object _to_string , and it does not do a real invocation. The

orbobj is an object reference that specifies which ORB is of interest, since it is
possible to choose which ORB should be used to convert an object reference to a string
(see the ORB Interface chapter for details on this specific operation).

C Language Mapping Include Files Aug. 1997 1-29

Although operations on pseudo-objects are invoked in the usual way defined by the C
language mapping, there are restrictions on them. In general, a pseudo-object cannot be
specified as a parameter to an operation on an ordinary object. Pseudo-objects are alst
not accessible using the dynamic invocation interface, and do not have definitions in
the interface repository.

Because the programmer uses pseudo-objects in the same way as ordinary objects,
some ORB implementations may choose to implement some pseudo-objects as
ordinary objects. For example, assuming it could be efficient enough, a context object
might be implemented as an ordinary object.

1.25.1 ORB Operations

The operations on the ORB defined in the ORB Interface chapter are used as if they
had the OMG IDL definitions described in the document, and then mapped in the usual
way with the C language mapping.

For example, thatring_to_object ORB operation has the following signature:
[*C*
CORBA_Object CORBA_ORB_string_to_object(

CORBA_Object orb,

CORBA_char *objectstring,

CORBA_Environment *ev
);
Although in this example, we are using an “object” that is special (an ORB), the
method name is generatediaterface_operation in the same way as ordinary

objects. Also, the signature contains@G@RBA_Environment parameter for error
indications.

Following the same procedure, the C language binding for the remainder of the ORB
and object reference operations may be determined.

1.26 Mapping for Object Implementations

1-30

This section describes the details of the OMG IDL-to-C language mapping that apply
specifically to the Portable Object Adapter, such as how the implementation methods
are connected to the skeleton.

1.26.1 Operation-specific Details

The C Language Mapping Chapter defines most of the details of binding methods to
skeletons, naming of parameter types, and parameter-passing conventions. Generally,
for those parameters that are operation-specific, the method implementing the
operation appears to receive the same values that would be passed to the stubs.

C Language Mapping August 1997

1.26.2 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableServer::POA::Objectld type, as object identifiers. However, because C
programmers will often want to use strings as object identifiers, the C mapping
provides several conversion functions that convert stringdbfectld and vice-
versa:

[*C*

extern CORBA_char* PortableServer_Objectld_to_string(
PortableServer_Objectld* id,
CORBA_Environment* env

);

extern CORBA_wchar_t* PortableServer_Objectld_to_wstring(
PortableServer_Objectld* id
CORBA_Environment* env

);

extern PortableServer_Objectld*
PortableServer_string_to_Objectld(
CORBA_char* str,
CORBA_Environment* env
);
extern PortableServer_Objectld*
PortableServer_wstring_to_Obijectld(
CORBA_wchar_t* str,
CORBA_Environment* env

);

These functions follow the normal C mapping rules for parameter passing and memory
management.

If conversion of arDbjectld to a string would result in illegal characters in the
string (such as a NUL), the first two functions raise @@RBA BAD_PARAM
exception.

1.26.3 Mapping for PortableServer::ServantLocator::Cookie

SincePortableServer::ServantLocator::Cookie is an IDL native type, its type
must be specified by each language mapping. I8ddkie maps tovoid* :

[*C*
typedef void* PortableServer_ServantLocator_Cookie;

For the C mapping of theortableServer::ServantLocator::preinvoke()
operation, theCookie parameter maps to@ookie* , while for thepostinvoke()
operation, it is passed aLLaokie :

C

extern PortableServer_ServantLocator_preinvoke(
PortableServer_Objectld* oid,

C Language Mapping Mapping for Object Implementations Aug. 1997 1-31

1-32

PortableServer_POA adapter,
CORBA_Identifier op_name,
PortableServer_ServantLocator_Cookie* cookie
)i

extern PortableServer_ServantLocator_postinvoke(
PortableServer_Objectld* oid,
PortableServer_POA adapter,
CORBA_Identifier op_name,
PortableServer_ServantLocator_Cookie cookie,
PortableServer_Servant servant

);

1.26.4 Servant Mapping

A servantis a language-specific entity that can incarnate a CORBA object. In C, a
servant is composed of a data structure that holds the state of the object along with a
collection ofmethod functionshat manipulate that state to implement the CORBA
object.

The PortableServer::Servant type maps into C as follows:

[*C*
typedef void* PortableServer_Servant;

Servant is mapped to &oid* rather than a pointer t8ervantBase so that all

servant types for derived interfaces can be passed to all the operations that take a
Servant parameter without requiring casting. However, it is expected that an instance
of PortableServer_Servant points to an instance of a
PortableServer_ServantBase or its equivalent for derived interfaces, as
described below.

A servant is associated with a table of pointers to method functions. This table is called
anentry point vectagror EPV. The EPV has the same name as the servant type with

“ __epv” appended (note the double underscore). The EPV for
PortableServer_Servant is defined as follows:

[*C*

typedef struct PortableServer_ServantBase _epv {
void* _private;
void (*finalize)(PortableServer_Servant,

CORBA_Environment*);
PortableServer_POA (*default_POA)(
PortableServer_Servant,
CORBA_Environment*);
} PortableServer_ServantBase__epv;

extern PortableServer POA
PortableServer_ServantBase _default POA(
PortableServer_Servant,
CORBA_Environment*

C Language Mapping August 1997

1

The PortableServer_ServantBase___epv “ private” member, which is opaque

to applications, is provided to allow ORB implementations to associate data with each
ServantBase EPV. Since it is expected that EPVs will be shared among multiple
servants, this member is not suitable for per-servant data. The second member is a
pointer to the finalization function for the servant, which is invoked when the servant is
etherealized. The other function pointers correspond to the 8enadnt operations.

The actuaPortableServer_ServantBase structure combines an EPV with per-
servant data, as shown below:

[*C*
typedef PortableServer_ServantBase _epv*
PortableServer_ServantBase _vepv;

typedef struct PortableServer_ServantBase {
void* _private;
PortableServer_ServantBase__vepv* vepv;
} PortableServer_ServantBase;

The first member is goid* that points to data specific to each ORB implementation.
This member, which allows ORB implementations to keep per-servant data, is opaque
to applications. The second member is a pointer to a pointer to a
PortableServer_ServantBase__epv . The reason for the double level of
indirection is that servants for derived classes contain multiple EPV pointers, one for
each base interface as well as one for the interface itself. (This is explained further in
the nextsection.) The name of the second member, “vepv,” is standardized to allow
portable access through it.

1.26.5 Interface Skeletons

All C skeletons for IDL interfaces have essentially the same structure as ServantBase,
with the exception that the second member has a type that allows access to all EPVs
for the servant, including those for base interfaces as well as for the most-derived
interface.

For example, consider the following IDL interface:

/I IDL
interface Counter {
long add(in long val);

k

The servant skeleton generated by the IDL compiler for this interface appears as
follows (the type of the second member is defined further below):

[*C*

typedef struct POA_Counter {
void* _private;
POA_Counter__vepv* vepv;

} POA_Counter;

C Language Mapping Mapping for Object Implementations Aug. 1997 1-33

As with PortableServer_ServantBase , the name of the second member is
standardized to “vepv” for portability.

The EPV generated for the skeleton is a bit more interesting. F&@otneter
interface defined above, it appears as follows:

[*C*
typedef struct POA_Counter__epv {
void* _private;
CORBA_Long (*add)(PortableServer_Servant servant,
CORBA_Long val,
CORBA_Environment* env);
} POA_Counter__epv;

Since all servants are effectively derived frBmrtableServer_ServantBase ,
the complete set of entry points has to include EPVs for both
PortableServer_ServantBase and forCounter itself:

[*C*

typedef struct POA_Counter__vepv {
PortableServer_ServantBase__epv* _base_epv;
POA_Counter__epv* Counter_epv;

} POA_Counter__ vepv;

The first member of theOA_Counter__vepv struct is a pointer to the
PortableServer_ServantBase EPV. To ensure portability of initialization and
access code, this member is always named “_base_epv.” It must always be the first
member. The second member is a pointer RD&_Counter__epv .

The pointers to EPVs in the VEPV structure are in the order that the IDL interfaces
appear in a top-to-bottom left-to-right traversal of the inheritance hierarchy of the
most-derived interface. The base of this hierarchy, as far as servants are concerned, is
alwaysPortableServer_ServantBase . For example, consider the following
complicated interface hierarchy:

/I IDL
interface A {};
interface B : A {};
interface C : B {};
interface D : B {};
interface E: C, D {};
interface F {};
interface G : E, F {
void foo();

3

The VEPV structure for interfad® shall be generated as follows:
[*C*/

typedef struct POA_G__epv {

void* _private;
void (*foo)(PortableServer_Servant, CORBA_Environment*);

1-34 C Language Mapping August 1997

3

typedef struct POA_G__ vepv {
PortableServer_ServantBase__epv* _base_epv;
POA_A__epv* A _epv;
POA_B__epv* B_epv;
POA_C__epv* C_epv,;
POA_D__epv* D_epv;
POA_E__epv* E_epv;
POA_F__epv* F_epv;
POA_G__epv* G_epv;

3

Note that each member other than the “_base_epv” member is named by appending
“_epv” to the interface name whose EPV the member points to. These names are
standardized to allow for portable access to these struct fields.

1.26.6 Servant Structure Initialization

Each servant requires initialization and etherealization, or finalization, functions. For
PortableServer_ServantBase , the ORB implementation shall provide the
following functions:

[*C*

void PortableServer_ServantBase__init(
PortableServer_Servant,
CORBA_Environment?*);

void PortableServer_ServantBase__fini(
PortableServer_Servant,
CORBA_Environment?*);

These functions are named by appending “__init” and “__fini” (note the double
underscores) to the name of the servant, respectively.

The first argument to the init function shall be a v&lmttableServer_Servant
whose “vepv” member has already been initialized to point to a VEPV structure. The
init function shall perform ORB-specific initialization of the

PortableServer_ServantBase , and shall initialize the “finalize” struct member
of the pointed-tdPortableServer_ServantBase___epv to point to the
PortableServer_ServantBase_fini() function if the “finalize” member is

NULL. If the “finalize” member is not NULL, it is presumed that it has already been
correctly initialized by the application, and is thus not modified. Similarly, if the the
default POA member of thd?ortableServer_ServantBase _epv structure

is NULL when the init function is called, its value is set to point to the
PortableServer_ServantBase__default POA() function, which returns an
object reference to the root POA.

If a servant pointed to by tHeortableServer_Servant passed to an init function
has a NULL “vepv’ member, or if thBortableServer_Servant argument itself
is NULL, no initialization of the servant is performed, and the

C Language Mapping Mapping for Object Implementations Aug. 1997 1-35

CORBA::BAD_PARAM standard exception is raised via tb®@RBA_Environment
parameter. This also applies to interface-specific init functions, which are described
below.

The fini function only cleans up ORB-specific private data. It is the default

finalization function for servants. It does not make any assumptions about where the
servant is allocated, such as assuming that the servant is heap-allocated and trying to
call CORBA free() on it. Applications are allowed to “override” the fini function for

a given servant by initializing theortableServer_ServantBase__epv

“finalize” pointer with a pointer to a finalization function made specifically for that
servant; however, any such overriding function must always ensure that the

PortableServer_ServantBase_fini() function is invoked for that servant as
part of its implementation. The results of a finalization function failing to invoke
PortableServer_ServantBase_fini() are implementation-specific, but may

include memory leaks or faults that could crash the application.

If a servant passed tofmi function has a NULL “epv” member, or if the
PortableServer_Servant argument itself is NULL, no finalization of the servant
is performed, and thEORBA::BAD_PARAM standard exception is raised via the
CORBA_Environment parameter. This also applies to interface-specific fini
functions, which are described below.

Normally, thePortableServer_ServantBase__init and
PortableServer_ServantBase__fini functions are not invoked directly by
applications, but rather by interface-specific initialization and finalization functions
generated by an IDL compiler. For example,itiie andfini functions generated
for theCounter skeleton are defined as follows:

[*C*/
void POA_Counter__init(POA_Counter* servant,
CORBA_Environment* env)
{
/*

* first call immediate base interface init functions

* in the left-to-right order of inheritance

*/

PortableServer_ServantBase__init(
(PortableServer_ServantBase*)servant,
env

)i

/* now perform POA_Counter initialization */

}

void POA_Counter__fini(POA_Counter* servant,
CORBA_Environment* env)

{
[* first perform POA_Counter cleanup */
)%'
* then call immediate base interface fini functions

1-36 C Language Mapping August 1997

* in the right-to-left order of inheritance
*/
PortableServer_ServantBase__fini(
(PortableServer_ServantBase*)servant,
env

}

The address of a servant shall be passed to the init function before the servant is
allowed to be activated or registered with the POA in any way. The results of failing to
properly initialize a servant via the appropriate init function before registering it or
allowing it to be activated are implementation-specific, but could include memory
access violations that could crash the application.

1.26.7 Application Servants

It is expected that applications will create their own servant structures so that they can
add their own servant-specific data members to store object state. Eouthier

example shown above, an application servant would probably have a data member usec
to store the counter value:

[*C*

typedef struct AppServant {
POA_Counter base;
CORBA_Long value;

} AppServant;

The application might contain the following implementation of @loeinter::add
operation:

[*C*

CORBA_Long

app_servant_add(PortableServer_Servant _servant,
CORBA_Long val,
CORBA_Environment* _env)

{

AppServant* self = (AppServant*)_servant;

self->value += val;

return self->value;
}
The application could initialize the servant statically as follows:
[*C*
PortableServer_ServantBase___epv base_epv = {

NULL, /* ignore ORB private data */

NULL, /* no servant-specific finalize

function needed */

NULL, /* use base default_POA function */

3

C Language Mapping Mapping for Object Implementations Aug. 1997 1-37

1-38

POA_Counter__epv counter_epv ={
NULL, /* ignore ORB private data */
app_servant_add /* point to our add function */

k

[* Vector of EPVs */
POA_Counter__vepv counter_vepv = {
&base_epv,
&counter_epv

k

3
AppServant my_servant = {
/* initialize POA_Counter */

{
NULL, /* ignore ORB private data */
&counter_vepv /* Counter vector of EPVs */

h

0 /* initialize counter value */

3

Before registering or activating this servant, the application shall call:

[*C*
CORBA_Environment env;
POA_Counter__init(&my_servant, &env);

If the application requires a special destruction functiomfgrservant , it shall set
the value of thé’ortableServer_ServantBase__epv “finalize” member either
before or after callindOA_Counter__init()

[*C*
my_servant.epv._base_epv.finalize = my_finalizer_func;

Note that if the application statically initialized the “finalize” member before calling
the servant initialization function, explicit assignment to the “finalize” member as
shown here is not necessary, sinceRbetableServer_ServantBase

__init() function will not modify it if it is non-NULL.

The example shown above illustrates static initialization of the EPV and VEPV
structures. While portable, this method of initialization depends on the ordering of the
VEPV struct members for base interfaces—if the top-to-bottom left-to-right ordering

of the interface inheritance hierarchy is changed, the order of these fields is also
changed. A less fragile way of initializing these fields is to perform the initialization at
runtime, relying on assignment to the named struct fields. Since the names of the fields
are used in this approach, it does not break if the order of base interfaces changes.
Performing field initialization within a servant initialization function also provides a
convenient place to invoke the servant initialization functions. In any case, both
approaches are portable, and it is ultimately up to the developer to choose the one that
is best for each application.

C Language Mapping August 1997

1.26.8 Method Signatures

With the POA, implementation methods have signatures that are identical to the stubs
except for the first argument. If the following interface is defined in OMG IDL:

/I IDL
interface example4 {

long op5(in long arg6);
h

a method function for thep5 operation must have the following function signature:

[*C*

CORBA _long example4_op5(
PortableServer_Servant _servant,
CORBA long arg6,
CORBA_Environment* _env

);

The_servant parameter is the pointer to the servant incarnating the CORBA object
on which the request was invoked. The method can obtain the object reference for the
target CORBA object by using tiROA_Current object. The env parameter is used

for raising exceptions. Note that the names of thervant and_env parameters

are standardized to allow the bodies of method functions to refer to them portably.

The method terminates successfully by executingt@n statement returning the
declared operation value. Prior to returning the result of a successful invocation, the
method code must assign legal values twall andinout parameters.

The method terminates with an error by executingGB¥RBA_exception_set

operation (described in Section 1.22, “Handling Exceptions,” on page 1-26) prior to
executing aeturn statement. When raising an exception, the method coolet is
required to assign legal values to anyt or inout parameters. Due to restrictions in
C, however, it must return a legal function value.

1.27 Mapping of the DSIto C

For general information about mapping of the Dynamic Skeleton Interface to
programming languages, refer to version 2.3loé Common Object Request Broker:
Architecture and SpecificationBynamic Skeleton Interfagghapter,DSI: Language
Mappingsection.

This section contains
* A mapping of the Dynamic Skeleton Interface’s ServerRequest to C

» A mapping of the Portable Object Adapter’s Dynamic Implementation Routine to
C.

C Language Mapping Mapping of the DSI to C Aug. 1997 1-39

1-40

1.27.1 Mapping of ServerRequest to C

In the C mapping, a ServerRequest is a pseudo object in the CORBA module that
supports the following operations:

[*C*
CORBA _Identifier CORBA_ServerRequest_operation(
CORBA_ServerRequest req,
CORBA_Environment *env

);

This function returns the name of the operation being performed, as shown in the
operation’s OMG IDL specification.

[*C*
CORBA_Context CORBA_ServerRequest_ctx (
CORBA_ServerRequest req,
CORBA_Environment *env

);

This function may be used to determine any context values passed as part of the
operation. Context will only be available to the extent defined in the operation’'s OMG
IDL definition; for example, attribute operations have none.

[*C*
void CORBA_ServerRequest_arguments(
CORBA_ServerRequest req,
CORBA_NVList* parameters,
CORBA_Environment *env

);

This function is used to retrieve parameters fromSbeserRequest , and to find
the addresses used to pass pointers to result values to the ORB. It must always be
called by each DIR, even when there are no parameters.

The caller passes ownership of fherameters NVList to the ORB. Before this
routine is called, that NVList should be initialized with the TypeCodes and direction
flags for each of the parameters to the operation being implemémtedt, andinout
parameters inclusive. When the call returns,gaemmeters NVList is still usable

by the DIR, and alin andinout parameters will have been unmarshalled. Pointers to
those parameter values will at that point also be accessible throughrtreeters
NVList.

The implementation routine will then process the call, producing any result values. If
the DIR does not need to report an exception, it will replace pointersubvalues in
parameters with the values to be returned, and assign pointaus\alues in that

NVList appropriately as well. When the DIR returns, all the parameter memory is
freed as appropriate, and the NVList itself is freed by the ORB.

C Language Mapping August 1997

[*C*
void CORBA_ServerRequest_set_result(
CORBA_ServerRequest req,
CORBA_any* value,
CORBA_Environment *env

);

This function is used to report any resudiue for an operation. If the operation has
no result, it must either be called with a tk_void TypeCode storgdlire , or not be
called at all.

[*C*

void CORBA_ServerRequest_set_exception(
CORBA_ServerRequest req,
CORBA_exception_type major,
CORBA_any* value,
CORBA_Environment *env

);

This function is used to report exceptions, both user and system, to the client who
made the original invocation.

Parameters
major - indicates whether the exception is a user exception or system exception

value - the value of the exception, including an exceptionTypeCode.

1.27.2 Mapping of Dynamic Implementation Routine to C

In C, a DIR is a function with this signature:

[*C*
typedef void (*PortableServer_DynamicimplRoutine)(
PortableServer_Servant servant,
CORBA_ServerRequest request
)i

Such a function will be invoked by the Portable Object Adapter when an invocation is
received on an object reference whose implementation has registered a dynamic
skeleton.

Parameters

servant - the C implementation object incarnating the CORBA object to which the
invocation is directed.

request - the ServerRequest used to access explicit parameters and report results (and
exceptions).

C Language Mapping Mapping of the DSIto C Aug. 1997 1-41

Unlike other C object implementations, the DIR does not receive a
CORBA_Environment* parameter, and so tiBORBA_exception_set APl is not

used. InsteadCORBA_ServerRequest_set_exception is used; this provides

the TypeCode for the exception to the ORB, so it does not need to consult the Interface
Repository (or rely on compiled stubs) to marshal the exception value.

To register a Dynamic Implementation Routine with a POA, the proper EPV structure
and servant must first be created. DSI servants are expected to supply EPVs for both

PortableServer_ServantBase and forPortableServer_Dynamiclmpl .
which is conceptually derived frofortableServer_ServantBase , as shown
below.

[*C*

typedef struct PortableServer_Dynamiclmpl__epv {
void* _private;
PortableServer_DynamiclmplRoutine invoke;
CORBA_Repositoryld (*primary_interface)(
PortableServer_Servant svt,
PortableServer_Obijectld id,
PortableServer_POA poa,
CORBA_Environment* env);
} PortableServer_Dynamiclmpl__epv;

typedef struct PortableServer_Dynamiclmpl__vepv {
PortableServer_ServantBase__epv* _base_epv;
PortableServer_Dynamiclmpl__epv*
PortableServer_Dynamiclmpl_epv;

} PortableServer_Dynamiclmpl__vepv;

typedef struct PortableServer_Dynamiclmpl {
void* _private;
PortableServer_Dynamiclmpl__vepv* vepv;
} PortableServer_Dynamicimpl;

As for other servants, initialization and finalization functions for
PortableServer_Dynamiclmpl are also provided, and must be invoked as
described in “Servant Structure Initialization” on page 1-35.

To properly initialize the EPVSs, the application must provide implementations of the
invoke and theprimary_interface functions required by the
PortableServer_Dynamiclmpl EPV. Theinvoke method, which is the DIR,
receives requests issued to any CORBA object it represents and performs the
processing necessary to execute the request.

The primary_interface method receives a@bjectld value and a POA as input
parameters and returns a valid Interface Repository Id representing the most-derived
interface for thabid .

It is expected that only the POA will invoke these methods, in the context of serving a
CORBA request. Invoking these methods in other circumstances may lead to
unpredictable results.

1-42 C Language Mapping August 1997

An example of a DSI-based servant is shown below:
[*C*
/* This function serves as the DIR */

void my_invoke(PortableServer_Servant servant,
CORBA_ServerRequest req)

{
}

/* details omitted */

CORBA_Repositoryld my_primary_intf(
PortableServer_Servant svt,
PortableServer_Objectld id,
PortableServer_POA poa,

CORBA_Environment* env)

{
}

/* details omitted */

[* Application-specific DSI servant type */
typedef struct MyDSIServant {
POA_Dynamiclmpl base;
/* other application-specific data members */
} MyDSIServant;

PortableServer_ServantBase__epv base_epv = {

NULL, /* ignore ORB private data */
NULL, /* no servant-specific finalize */
NULL, /* use base default_POA function */

I3

PortableServer_Dynamiclmpl__epv dynimpl_epv = {
NULL, /* ignore ORB private data */
my_invoke, * invoke() function */
my_primary_intf, /* primary_interface() function */

I3

PortableServer_Dynamiclmpl__vepv dynimpl_vepv ={
&base_epv, /* ServantBase EPV */
&dynimpl_epv, /* Dynamiclmpl EPV */

I3

MyDSIServant my_servant = {
[* initialize PortableServer_Dynamiclmpl */

{
NULL, /* ignore ORB private data */

&dynimpl_vepv /* Dynamiclmpl vector of EPVs */
I3
/* initialize application-specific data members */

3

C Language Mapping Mapping of the DSIto C Aug. 1997 1-43

Registration of theny servant data structure via the
PortableServer_POA_set servant() function on a suitably initialized POA
makes theny_invoke DIR function available to handle DSI requests.

1.28 ORSB Initialization Operations

ORSB Initialization

The following PIDL specifies initialization operations for an ORB; this PIDL is part of
the CORBA module (not the ORB interface) and is described in version Zigeof
Common Object Request Broker: Architecture and Specificati®R8 Interface
chapter, ORB Initializationsection.

// PIDL
module CORBA {
typedef string ORBId;
typedef sequence <string> arg_list;

ORB ORB_init (inout arg_list argv, in ORBId orb_identifier);
I3

The mapping of the preceding PIDL operations to C is as follows:

[*C*

typedef char* CORBA_ORBiId;

extern CORBA_ORB CORBA_ORB _init(int *argc,
char **argv,
CORBA_ORBiId orb_identifier,
CORBA_Environment *env);

The C mapping foORB_init deviates from the OMG IDL PIDL in its handling of the
arg_list parameter. This is intended to provide a meaningful PIDL definition of the
initialization interface, which has a natural C binding. To this endatie list
structure is replaced witargy andargc parameters.

Theargv parameter is defined as an unbound array of striclys **) and the
number of strings in the array is passed indlge (int*) parameter.

If an empty ORBId string is used then argc arguments can be used to determine which
ORB should be returned. This is achieved by searchingrthe parameters for one
taggedORBId e.g.,-ORBid "ORBid_example.'If an empty ORBid string is used and

no ORB is indicated by thargv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBid string is pasS&RBoinit ,
theargv arguments are examined to determine if any ORB parameters are given. If a
non-empty ORBId string is passed@®RB_init , all -ORBidparameters in thargv

are ignored. All otherORB<suffix>parameters may be of significance during the

ORSB initialization process.

1-44 C Language Mapping August 1997

For C, the order of consumption afgv parameters may be significant to an
application. In order to ensure that applications are not required to haggle
parameters they do not recognize that the ORB initialization function must be called
before the remainder of the parameters are consumed. Therefore, a&Bhmit

call theargv andargc parameters will have been modified to remove the ORB
understood arguments. It is important to note that the ORB_init call can only reorder or
remove references to parameters from the argv list; this restriction is made in order to
avoid potential memory management problems caused by trying to free parts of the
argv list or extending the argv list of parameters. This is afgy is passed as a

char** and not echar***

C Language Mapping ORB Initialization Operations Aug. 1997 1-45

1-46 C Language Mapping August 1997

Index

Symbols
_major 1-27

A
any type 1-11
Argument/Result Passing 1-23
Arguments 1-21
attribute

mapping to programming languages 1-5
attributes 1-5

B
BadCall exception 1-27
Basic Data Types 1-3
basic data types
mapped from OMG IDL to C 1-10
mapped to programming languages 1-3
basic object adapter
mapped to C 1-41
boolean types
mapped to C 1-10
C
C
_major field 1-27
and is_nil operation 1-7
any type 1-11
attribute mapping examples 1-8
BadCall exception 1-27
basic data type mapping 1-10
boolean types 1-10
global name 1-5
inheritance of operations 1-8
ORB initialization 1-44
signature of Dynamic Implementation Routine 1-41
underscore characters in mapping 1-9
C++
arglist 1-44
ORB_init operation 1-44, 1-45
compliance iv
Constants 1-3
constants
mapping to programming languages 1-3
Constructed Data Types 1-3
constructed data types
mapping to programming languages 1-3
CORBA
contributors iv
general language mapping requirements 1-2
core, compliance iv

D

Dynamic Implementation Routine
C signature 1-41
mapped to C 1-41

Dynamic Skeleton Interface 1-39

Dynamic Skeleton interface
mapping to C 1-40

E
Exceptions 1-26
exceptions 1-4

C Language Mapping

mapped to programming languages 1-4

F
fixed-length 1-11

G
global name 1-5

I
Inheritance 1-8
Initialization Operations 1-44
interoperability, compliance iv
interworking

compliance iv

M

Mapping Considerations for Constructed Types 1-11
Mapping for Arrays 1-19

Mapping for Attributes 1-8

Mapping for Basic Data Types 1-10

Mapping for Constants 1-9

Mapping for Exception Types 1-20

Mapping for Fixed 1-18

Mapping for Interfaces 1-6

Mapping for Object Implementations 1-30

Mapping for Sequence Types 1-13

Mapping for Strings 1-16

Mapping for Structure Types 1-12

Mapping for Union Types 1-12

Mapping for Wide Strings 1-17

Mapping of Dynamic Implementation Routine to C 1-41
Mapping of ServerRequest to C 1-40

Mapping of the DSI to C 1-39

o
object
mapping to programming languages 1-3
objects 1-3
Operation 1-8
operation
mapping to programming languages 1-4
operation invocation 1-4
ORB initialization
mapped to C 1-44
ORB interface
mapping to programming languages 1-5
ORSB Interfaces 1-5
ORB_init operation 1-45
mapped to C++ 1-44

R
Return Result 1-22

S
Scoped Names 1-5
scoping
and C language mapping 1-6
ServerRequest
mapped to C 1-40
ServerRequest pseudo interface
mapped to C 1-40
Signatures 1-28

Index-1

Index

T unbounded string 1-11
test 1-3

\Y
variable-length 1-11
unbounded sequence 1-11

Index-2 C Language Mappings

	0.1 About CORBA Language Mapping Specifications
	0.1.1 Alignment with CORBA

	0.2 Definition of CORBA Compliance
	0.3 Acknowledgements
	0.4 References
	C Language Mapping
	1.1 Requirements for a Language Mapping
	1.1.1 Basic Data Types
	1.1.2 Constructed Data Types
	1.1.3 Constants
	1.1.4 Objects
	1.1.5 Invocation of Operations
	1.1.6 Exceptions
	1.1.7 Attributes
	1.1.8 ORB Interfaces

	1.2 Scoped Names
	1.3 Mapping for Interfaces
	1.4 Inheritance and Operation Names
	1.5 Mapping for Attributes
	1.6 Mapping for Constants
	1.7 Mapping for Basic Data Types
	1.8 Mapping Considerations for Constructed Types
	1.9 Mapping for Structure Types
	1.10 Mapping for Union Types
	1.11 Mapping for Sequence Types
	1.12 Mapping for Strings
	1.13 Mapping for Wide Strings
	1.14 Mapping for Fixed
	1.15 Mapping for Arrays
	1.16 Mapping for Exception Types
	1.17 Implicit Arguments to Operations
	1.18 Interpretation of Functions with Empty Argument Lists
	1.19 Argument Passing Considerations
	1.20 Return Result Passing Considerations
	1.21 Summary of Argument/Result Passing
	1.22 Handling Exceptions
	1.23 Method Routine Signatures
	1.24 Include Files
	1.25 Pseudo-objects
	1.25.1 ORB Operations

	1.26 Mapping for Object Implementations
	1.26.1 Operation-specific Details
	1.26.2 PortableServer Functions
	1.26.3 Mapping for PortableServer::ServantLocator::Cookie
	1.26.4 Servant Mapping
	1.26.5 Interface Skeletons
	1.26.6 Servant Structure Initialization
	1.26.7 Application Servants
	1.26.8 Method Signatures

	1.27 Mapping of the DSI to C
	1.27.1 Mapping of ServerRequest to C
	1.27.2 Mapping of Dynamic Implementation Routine to C

	1.28 ORB Initialization Operations

