
CORBA to WSDL/SOAP Interworking
Specification

November 2003
Version 1.0

formal/03-11-02

An Adopted Specification of the Object Management Group, Inc.

Copyright 2002, Cape Clear Software, Inc.
Copyright 2002, Fujitsu Ltd.
Copyright 2002, Hewlett-Packard Company
Copyright 2002, IONA Technologies, PLC.
Copyright 2002, Sankhya Technologies Pvt. Ltd.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
1. CORBA to WSDL/SOAP Interworking 1-1
1.1 Overview . 1-1

1.1.1 Conformance Requirements 1-1
1.2 IDL - WSDL Mapping . 1-2

1.2.1 Overall Goals . 1-2
1.2.2 Conventions . 1-3
1.2.3 Identifying the Source IDL 1-3
1.2.4 Modules . 1-4
1.2.5 Object References . 1-5
1.2.6 Primitive Types . 1-6
1.2.7 Constructed Types . 1-8
1.2.8 Interfaces . 1-19
1.2.9 SOAP Bindings . 1-26
1.2.10 Service Endpoints . 1-28
November 2003 CORBA-WSDL/SOAP Interworking Specification, v1.0 i

ii CORBA-WSDL/SOAP Interworking Specification, v1.0 November 2003

Preface
About the Object Management Group
The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

The Open Group
The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

• Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;
November 2003 CORBA-WSDL/SOAP Interworking Specification, v1.0 iii

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating
certification programs and has extensive experience developing and facilitating
industry adoption of test suites used to validate conformance to an open standard or
specification. The Open Group portfolio of test suites includes tests for CORBA, the
Single UNIX Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX
Realtime, Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are
essential for proper development and maintenance of standards-based products,
ensuring conformance of products to industry-standard APIs, applications portability,
and interoperability. In-depth testing identifies defects at the earliest possible point in
the development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

OMG Documents
The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications
Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications
Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

Obtaining OMG Documents
The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)
iv CORBA-WSDL/SOAP Interworking Specification, v1.0 November 2003

OMG formal documents are available from our web site in PostScript and PDF format.
Contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments
The following companies submitted and/or supported parts of this specification.

• Cape Clear Software, Inc.
• Fujitsu Ltd.
• Hewlett-Packard Company
• IONA Technologies, PLC.
• Sankhya Technologies Pvt. Ltd.
November 2003 CORBA-WSDL/SOAP Interworking Specification, v1.0 v

vi CORBA-WSDL/SOAP Interworking Specification, v1.0 November 2003

CORBA to WSDL/SOAP Interworking 1
Contents

This chapter contains the following sections.

1.1 Overview
This specification maps a valid set of OMG IDL constructs to WSDL. The mapping is
done based on SOAP 1.1 and WSDL 1.1 versions.

The following have been assumed:

• Standard preprocessing of IDL is performed by the mapping tool.

• While the mapping of WSDL portTypes and SOAP bindings may be standardized,
the generation of SOAP endpoints will require information above that found in the
input IDL, and so is beyond the scope of this mapping specification.

• All data types referred in WSDL are XML Schema data types.

1.1.1 Conformance Requirements
The mandatory conformance point for this standard requires that the specification is
implemented in its entirety except for the processing of valuetypes as noted in
Section 1.2.7.10, “ValueType,” on page 1-16. It should be noted that to be conformant
with the mandatory conformance point the implementation must generate the WSDL
for valuetypes.

Section Title Page

“Overview” 1-1

“IDL - WSDL Mapping” 1-2
November 2003 CORBA to WSDL/SOAP Interworking Specification, v1.0 1-1

1

Implementations may claim two optional conformance points comprising the
processing of valuetypes as noted inSection 1.2.7.10, “ValueType,” on page 1-16.

• Simple Value type Support - An implementation may claim run time support for
value type mapping, without supporting value type sharing.

• Value type Sharing Support - An implementation which claims Simple value type
support may also claim to support value type sharing.

• There are also two run-time conformance points corresponding to soap encoding
support:

• An implementation may claim support of RPC style soap bindings with soap
encoding, or

• An implementation may claim support of WS-I conformant soap bindings with use
literal, or

• An implementation may claim conformance to both forms of soap binding above.

1.2 IDL - WSDL Mapping

1.2.1 Overall Goals
The overall goal of this specification is to provide a natural mapping from IDL to
WSDL that is also suitable for a reverse mapping, from the mapped subset of WSDL
back to IDL.

It will also be important to closely track the JAX-RPC specification, and it is an agreed
goal of the submitters of this specification to follow its approach where possible, to
allow the interchange of JAX-RPC and CORBA-derived types.

The upcoming WS-I specifications have mandated use of soap bindings with style=rpc
and use=literal. The first two submissions supported soap bindings with style=rpc and
use=encoded. To allow compatibility with WS-I conformant systems, this revision of
the mapping requires generation to both rpc/encoded and rpc/literal soap bindings.
An implementation of this specification may claim run time conformance to either
rpc/encoded, or rpc/literal, or both.
1-2 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

1.2.2 Conventions

1.2.2.1 XML Namespaces
Table 1-1 lists the XML namespaces used throughout this document, together with the
namespace prefixes used for brevity.

1.2.3 Identifying the Source IDL
In some cases it will be necessary to identify the source IDL used in generating a
WSDL mapping. The generated WSDL will provide a hint, in the form of an XML
schema annotation giving both a reference to the source IDL and the version of the
mapping used. Hints may be provided that refer to the source IDL file, or to the
repository ID for a given generated construct (including any prefixes defined by a
#pragma prefix directives).

The following schema defines the basic form of this annotation for identifying a source
IDL file:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.omg.org/IDL-MAPPED"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xsd:element name="SourceIDL" minoccurs=0>
<xsd:annotation>

<xsd:documentation>IDL/WSDL Mapping Info</xsd:documentation>
</xsd:annotation>
<xsd:complexType>

<xsd:sequence>
<xsd:element name="source"

type="xsd:string"
minOccurs="1"
maxOccurs="1"/>

<xsd:element name="version"
type="xsd:string"
minOccurs="1"

Table 1-1 XML Namespaces

xsd http://www.w3.org/2001/XMLSchema/

wsdl http://schemas.xmlsoap.org/wsdl/

SOAP-ENC http://schemas.xmlsoap.org/soap/encoding/

CORBA http://www.omg.org/IDL-WSDL/1.0/

This namespace is used for standard CORBA entities (e.g.,
SystemException)

tns http://www.omg.org/IDL-Mapped/

This is the namespace used for generated WSDL code.
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-3

1

maxOccurs="1"/>
 </xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

The generated WSDL will then use this schema to indicate the mapping information as
shown in the following example:

<wsdl:documentation>
 <CORBA:SourceIDL>
 <CORBA:source>IDL Source</CORBA:source>
 <CORBA:version>1.0</CORBA:version>
 </CORBA:SourceIDL>
</wsdl:documentation>

The following schema defines the basic form of this annotation for providing the
repository ID for a mapped construct:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd=http://www.w3.org/2001/XMLSchema
targetNamespace=http://www.omg.org/IDL-MAPPED elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xsd:element name="SourceRepositoryID" minoccurs=0>
 <xsd:annotation>
 <xsd:documentation>IDL Mapped Repository ID </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="repositoryID" type="xsd:string"minOccurs="1" maxOccurs="1"/>
 <xsd:element name="version" type="xsd:string" minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The generated WSDL will then use this schema to indicate the mapping information as
shown in the following example:

<wsdl:documentation>
 <CORBA:SourceRepositoryID>
 <CORBA:repositoryID>repositoryIDtext </CORBA:repositoryID>
 <CORBA:version>1.0</CORBA:version>
 </CORBA:SourceRepositoryID>
</wsdl:documentation>

1.2.4 Modules
For every module name that does not collide with another module name, across the set
of IDL artifacts that are being mapped to a WSDL document, then the scoped name of
the module starting from the root module name using the "." character as separator
between names shall be the effective Id used in the corresponding WSDL.

If there is a module name collision, apply the following rules to the module name that
causes the collision:
1-4 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

a. If there are no pragma or typeid/typeprefix directives that apply to a module name,
then the scoped name of the module starting from the root module name using the
"." character as separator between names shall be the effective Id used in the
corresponding WSDL.

b. If there is a pragma prefix or a typeprefix directive that applies to the module name,
then the prefix specified in the directive/pragma shall be of the form:

<prefix string> "_" <effective Id from (1)>

If no such directives apply to the module name in question, then the effective Id
shall be the same as in (1).

c. If there is a pragma version that applies to the scopename, then the version string
shall be appended to the effective Id obtained in (2), that is the effective Id will be
of the form:

<effective Id from (2)> "_" <version string>

d. If a pragma id or a typeid directive applies to the module name in question then:
• "If the first four characters of the string specified in the directive/pragma is

"IDL:" then the string with the "IDL:" prefix removed and with the "/" characters
in the remaining string substituted by the "." character shall be the effective Id.

• "If the Repository Id type prefix in the directive/pragma is something other than
"IDL:" then the entire id string shall be used as the effective Id

• "If any characters which are not valid for XML element names are encountered in
the mapped module name, they shall be replaced with "_".

It would seem desirable to map the module construct to an XML namespace; however,
there are several problems with this approach. Having a separate namespace for each
imported module results in a large number of files for the WSDL processor to deal
with when constructing a gateway. The current mapping allows the user to refer to the
scoped name without having to import each namespace used by the schema.

1.2.5 Object References
Object references are mapped to a sequence of URIs. Each URI in the sequence
corresponds to one mechanism, which can be used to access the implementation of the
CORBA object referenced. This sequence can include one or more HTTP URL for
soap endpoint(s) corresponding to the object reference, and/or one or more of the
following types (which are defined in section 2.5 of the CORBA Naming Service 1.1
specification, and section 13.6.10 of the CORBA 3.0 specification:

• corbaloc:

• corbaname:

• ior:

The object reference sequence is defined in WSDL as follows (in the CORBA
namespace):
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-5

1

<xsd:complexType name="ObjectReference">
<xsd:sequence>

<xsd:element
name="url" type="xsd:url"
maxOccurs="1" minOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

1.2.6 Primitive Types
Each IDL primitive type maps onto a corresponding type from the XML schema
specification. (In the following table, these XML Schema types are shown in the
conventional “xsd” namespace, to distinguish them from the IDL types).

Table 1-2 Mapping of IDL primitive types

IDL WSDL

boolean xsd:boolean

char <xsd:simpleType name= “char”>
 <xsd:restricition base=”xsd:string”>
 <xsd:length
 value=”1”
 fixed=”true”/>
 </xsd:restricition>
</xsd:simpleType>

wchar <xsd:simpleType name= “wchar”>
 <xsd:restricition base=”xsd:string”/>
</xsd:simpleType>

double xsd:double

float xsd:float

octet xsd:unsignedByte

long xsd:int

long long xsd:long

short xsd:short
1-6 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

1.2.6.1 Constants
IDL constants are mapped by substituting their value directly in the generated WSDL.
Consider the following example:

// IDL
const short S = 5;
typedef sequence<string,S> strSeq;

which maps to:

<!--WSDL -->
<xsd:complexType name="strSeq">

<xsd:complexContent>
<xsd:restriction base="SOAP-ENC:Array">

<xsd:sequence>
<xsd:element name="item"

minOccurs="0" maxOccurs="5"

string xsd:string

Bounded strings are supported by use of an XML restriction
on the “length” attribute.

// IDL
typedef string<10> boundedString;

<!-- WSDL -->
<xsd:simpleType name=”boundedString”>
 <xsd:restriction base=”xsd:string”>
 <xsd:maxLength
 value=”10”
 fixed=”true”/>
 </xsd:restriction>
</xsd:simpleType>

wstring xsd:string

TypeCode Primitive TypeCode are not mapped. All type information is
represented by the appropriate XML Schema declaration.
The mapping for CORBA::TypeCode objects is discussed in
Section 1.2.7.7, “TypeCode,” on page 1-15.

unsigned short xsd:unsignedShort

unsigned long xsd:unsignedInt

unsigned long long xsd:unsignedLong

Table 1-2 Mapping of IDL primitive types

IDL WSDL
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-7

1

type="xsd:string"/>
</xsd:sequence>
<xsd:attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="xsd:string[]"/>
</xsd:restriction>

</xsd:complexContent>
</xsd.complexType>

1.2.7 Constructed Types

1.2.7.1 Enum
CORBA has enumerators that are not explicitly tagged with values. The constraint is
that any language mapping that permits two enumerators to be compared or defines
successor or predecessor functions on enumerators must conform to the ordering of the
enumerators as specified in the OMG IDL. Enum in IDL is mapped to ‘enumeration’
of XML Schema with restriction placed on ‘string’.

// OMG IDL
enum myEnum {A, B, C};

This maps to:

<!-- WSDL -->
<simpleType name=”myEnum”>

<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”A”/>
<xsd:enumeration value=”B”/>
<xsd:enumeration value=”C”/>

</xsd:restriction>
</simpleType>

1.2.7.2 Structures
IDL structures are mapped to XML Schema complexType definitions. The elements of
the IDL structure are encapsulated in an XML Schema sequence within the
complexType.

Consider the following IDL structure:

module Example {
struct myStruct {

char c;
string str;
octet o;
short s;
unsigned long long ull;
float f;
double d;

};
};
1-8 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

This structure maps onto the following XML schema:

<xsd:complexType name="Example.myStruct">
<xsd:sequence>

<xsd:element name="c" type="xsd:string"
maxOccurs="1" minOccurs="1"/>

<xsd:element name="str" type="xsd:string"
nillable="true"
maxOccurs="1" minOccurs="1"/>

<xsd:element name="o" type="xsd:byte"
maxOccurs="1" minOccurs="1"/>

<xsd:element name="s" type="xsd:short"
maxOccurs="1" minOccurs="1"/>

<xsd:element name="ull" type="xsd:unsignedLong"
maxOccurs="1" minOccurs="1"/>

<xsd:element name="f" type="xsd:float"
maxOccurs="1" minOccurs="1"/>

<xsd:element name="d" type="xsd:double"
maxOccurs="1" minOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

1.2.7.3 Typedefs
IDL type definitions are mapped to XML schema type restrictions. Consider the
following IDL fragment:

module Example {
typedef long Number;
typedef Number OtherNumber;

};

The corresponding XML schema definitions would be:

<xsd:simpleType name="Example.Number>
<xsd:restriction base="xsd:int" />

</xsd:simpleType>

<xsd:simpleType name="Example.OtherNumber>
<xsd:restriction base="Example.Number" />

</xsd:simpleType>

1.2.7.4 Unions
The XML Schema specification provides a “choice” element, which allows us to
represent IDL unions in a very straightforward manner. Unions are mapped onto a
“complexType,” containing a sequence of elements: the discriminator, and the union
cases, each mapped to a “choice” element.

Any valid value for the discriminant, other than those used in the union definition, may
be inserted in the XML generated, at run time, for the default case.

Consider the following example:
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-9

1

module Example {
union myUnion switch (long) {

case 0: long l;
case 1: string str;
case 2:
case 3: float f;
default: octet o;

};
};

This union maps onto the following XML schema definition:

<xsd:complexType name="Example.myUnion">
<xsd:sequence>

<xsd:element name="discriminator" type="xsd:int" />
<xsd:choice>

<!-- case 0 -->
<xsd:element name="l" type="xsd:int"

minOccurs="0" maxOccurs="1" />

<!-- case 1 -->
<xsd:element name="str" type="xsd:string"

nillable="true" minOccurs="0" maxOccurs="1" />

<!-- case 2, 3 -->
<xsd:element name="f" type="xsd:float"

minOccurs="0" maxOccurs="1" />

<!-- default case -->
<xsd:element name="o" type="xsd:byte"

minOccurs="0" maxOccurs="1" />
</xsd:choice>

</xsd:sequence>
</xsd:complexType>

1.2.7.5 Sequences
This specification supports two mappings for IDL Sequences and Arrays:

• SOAP Encoding - The SOAP specification provides an encoding for arrays. IDL
sequences are mapped onto these SOAP arrays. For each IDL sequence a
corresponding complex type is created as a restriction of SOAP-ENC:Array. The
name of the type is prefixed with “_SE_”.

• XML Schema for WS-I conformant RPC/Literal Soap Binding – an IDL sequence is
mapped onto a sequence complex type (the SOAP encoding SOAP-ENC:Array type
MUST NOT be used with WS-I conformant soap bindings).

If the IDL sequence is unbounded, then so is the corresponding schema definition.
Bounded sequences have their bounds represented accordingly.

Consider the following IDL:
1-10 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

module Example {
typedef sequence<long> longSeq;
typedef sequence<string,10> strSeq;

struct myStruct {
// ...

};

typedef sequence<myStruct> structSeq;
};

This is mapped onto the following WSDL (the first of each pair of mappings, with
name prefix “_SE_” is for Soap Encoding (rpc/encoded soap bindings), the second is
for WS-I conformant systems (rpc/literal soap bindings):

<xsd:complexType name="Example._SE_longSeq">
<xsd:complexContent>

<xsd:restriction base="SOAP-ENC:Array">
<xsd:sequence>

<xsd:element name="item"
minOccurs="0" maxOccurs="unbounded"
type="xsd:int"/>

</xsd:sequence>
<xsd:attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="xsd:int[]"/>
</xsd:restriction>

</xsd:complexContent>
</xsd.complexType>

<xsd:complexType name="Example.longSeq">
<xsd:complexContent>

<xsd:sequence>
<xsd:element name="item"

minOccurs="0" maxOccurs="unbounded"
type="xsd:int"/>

</xsd:sequence>
</xsd:complexContent>

</xsd.complexType>

<xsd:complexType name="Example._SE_strSeq">
<xsd:complexContent>

<xsd:restriction base="SOAP-ENC:Array">
<xsd:sequence>

<xsd:element name="item"
minOccurs="0" maxOccurs="10"
type="xsd:string"/>

</xsd:sequence>
<xsd:attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="xsd:string[]"/>
</xsd:restriction>

</xsd:complexContent>
</xsd.complexType>

<xsd:complexType name="Example.strSeq">
<xsd:complexContent>

<xsd:sequence>
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-11

1

<xsd:element name="item"
minOccurs="0" maxOccurs="10"
type="xsd:string"/>

</xsd:sequence>
</xsd:complexContent>

</xsd.complexType>

<xsd.complexType name="Example._SE_structSeq">
<xsd:complexContent>

<xsd:restriction base="SOAP-ENC:Array">
<xsd:sequence>

<xsd:element name="item"
minOccurs="0" maxOccurs="unbounded"
type="Example.myStruct"/>

</xsd:sequence>
<xsd:attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="Example.myStruct[]"/>
</xsd:restriction>

</xsd:complexContent>
</xsd.complexType>

<xsd.complexType name="Example.structSeq">
<xsd:complexContent>

<xsd:sequence>
<xsd:element name="item"

minOccurs="0" maxOccurs="unbounded"
type="Example.myStruct"/>

</xsd:sequence>
</xsd:complexContent>

</xsd.complexType>

1.2.7.6 Arrays
IDL arrays are mapped just like bounded sequences. There are two forms of arrays,
those declared implicitly as part of a field or parameter, and those declared using a
typedef declaration. Implicit declarations follow the same pattern as sequences.
However, implicit declarations in IDL will require an explicit declaration in XML.
This follows the same pattern as the explicit IDL case, but the name of the XML type
is constructed by concatenating the name of the enclosing type and the name of the
field, using an underscore ‘_’ as a separator.

The explicit IDL declaration

module Example {
typedef long arrayLong[10];

};

is mapped to the following: (one for soap encoding, the other for WS-I conformance):

<xsd:complexType name="Example._SE_arrayLong" >
<xsd:complexContent >

<xsd:restriction base="SOAP-ENC:Array" >
<xsd:sequence >

<xsd:element
name="item" type="xsd:int"
1-12 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

minOccurs="10" maxOccurs="10"/>
</xsd:sequence>
<xsd:attribute

ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:int[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="Example.arrayLong" >
<xsd:complexContent >

<xsd:sequence >
<xsd:element

name="item" type="xsd:int"
minOccurs="10" maxOccurs="10"/>

</xsd:sequence>
</xsd:complexContent>

</xsd:complexType>

The implicit IDL declaration

struct S {
long field[10];

};

This is mapped to the following in XML (one for Soap encoding, the other for WS-I
conformance):

<xsd:complexType name="_SE_S.field_ArrayOfint">
<xsd:complexContent >

<xsd:restriction base="SOAP-ENC:Array" >
<xsd:sequence >

<xsd:element
name="item" type="xsd:int"
minOccurs="10" maxOccurs="10"/>

</xsd:sequence>
<xsd:attribute

ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:int[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="_SE_S">
<xsd:sequence>

<xsd:element
name="field" type="S._SE_field_ArrayOfint"
nillable="true"
maxOccurs="1" minOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="S.field_ArrayOfint">
<xsd:complexContent >

<xsd:sequence >
<xsd:element
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-13

1

name="item" type="xsd:int"
minOccurs="10" maxOccurs="10"/>

</xsd:sequence>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="S">
<xsd:sequence>

<xsd:element
name="field" type="S.field_ArrayOfint"
nillable="true"
maxOccurs="1" minOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

Multi-dimensional arrays in IDL are mapped by generating intermediate types for each
of the sub-arrays. For example, a two-dimensional array of strings would map onto a
uni-dimensional “ArrayOfString”, and then an array of that type. For example,
consider the following IDL:

typedef long matrix[5][3];

This maps onto the following XML Schema code (one set for Soap encoding, the other
for WS-I conformance):

<xsd:complexType name="_SE_ArrayOfint" >
<xsd:complexContent >

<xsd:restriction base="SOAP-ENC:Array" >
<xsd:sequence >

<xsd:element
name="item" type="xsd:int"
minOccurs="5" maxOccurs="5"/>

</xsd:sequence>
<xsd:attribute

ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:int[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="_SE_matrix" >
<xsd:complexContent >

<xsd:restriction base="SOAP-ENC:Array" >
<xsd:sequence >

<xsd:element
name="item1" type="_SE_ArrayOfint"
minOccurs="3" maxOccurs="3"/>

</xsd:sequence>
<xsd:attribute

ref="SOAP-ENC:arrayType"
wsdl:arrayType="_SE_ArrayOfint"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
1-14 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

<xsd:complexType name="ArrayOfint" >
<xsd:complexContent >

<xsd:sequence >
<xsd:element

name="item" type="xsd:int"
minOccurs="5" maxOccurs="5"/>

</xsd:sequence>
</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="matrix" >
<xsd:complexContent >

<xsd:sequence >
<xsd:element

name="item1" type="ArrayOfint"
minOccurs="3" maxOccurs="3"/>

</xsd:sequence>
</xsd:complexContent>

</xsd:complexType>

1.2.7.7 TypeCode
A typecode is composed of two parts: a URL to the WSDL descriptive document and
the typename (fully scoped) within the “tns” target namespace of the WSDL document.
In the case of primitive types, these will just refer directly to the XML Schema
specification.

<xsd:complexType name="CORBA.TypeCode">
<xsd:sequence>

<xsd:element
name="definition" type="xsd:url"
maxOccurs="1" minOccurs="1"/>

<xsd:element
name="typename" type="xsd:string"
maxOccurs="1" minOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

1.2.7.8 Any
A CORBA::Any value is represented by a typecode, together with value represented as
an xsd:anyType. The user may interrogate the typecode in order to coerce/interpret the
value.

<xsd:complexType name="CORBA.Any">
<xsd:sequence>

<xsd:element
name="type" type="CORBA.TypeCode"
maxOccurs="1" minOccurs="1"/>

<xsd:element
name="value" type="xsd:anyType"
maxOccurs="1" minOccurs="1"/>

</xsd:sequence>
</xsd:complexType>
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-15

1

1.2.7.9 Fixed
CORBA fixed types are mapped to the XML Schema “integer” type, with appropriate
restrictions according to the original IDL (the “totalDigits” and “fractionDigits”
attributes will be set appropriately). For example:

// IDL
typedef fixed<10,2> MyFixed

this maps to:

<!-- WSDL -->
<xsd:simpleType name=”MyFixed”>

<xsd:restriction base=”xsd:integer”>
<xsd:totalDigits

value=”10”/>
<xsd:fractionDigits

 value=”2”
fixed=”true”/>

</xsd:restriction>
</xsd:simpleType>

1.2.7.10 ValueType
Value types in CORBA are mapped the same way as structures in WSDL. The value
type WSDL will always be generated, but it is up to individual implementations to
decide whether they will support the processing of these types. For example, DII/DSI
bridges will be unable to process value types. An implementation may reject a message
containing a value type parameter, raising a NO_IMPLEMENT exception with a
standard minor code, as follows:

The following examples show how each value type is mapped.

valuetype
Basic valuetypes are mapped to structs, as noted above. Both Public and Private fields
are mapped. For example, consider the following:

// IDL
valuetype sampleX {

public short a;
private long b;

}

Minor Code Description

9 Valuetypes not supported by CORBA-WSDL/SOAP
implementation.

10 Valuetype sharing not supported by CORBA-WSDL/SOAP
implementation.
1-16 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

This maps to:

<complexType name="sampleX">
<xsd:sequence>

<xsd:element name="a" type="xsd:short" maxOccurs="1" minOccurs="1"/>
<xsd:element name="b" type="xsd:int" maxOccurs="1" minOccurs="1"/>

</xsd:sequence>
<xsd:attribute> name=id” type=”xsd:ID” use=”optional” />
<!-- id must be present if value type instance is shared (i.e.,

referenced as a struct or value type member using xml IDREF)-->
</xsd:complexType>

If run time support for value type sharing is not claimed, then this attribute will not be
supported, and will never be present.

If run time support for value type sharing is claimed, then the id attribute:

• must be present in all mapped value type element instances, which are themselves
“referenced” as a member of another value type or instance.

• may be present in any mapped value type element.

valuebox
Valueboxes for primitive types are mapped to a struct with a single member (called
“value”), whose data type is mapped according to the primitive mapping table given in
Section 1.2.6, “Primitive Types,” on page 1-6.

Valueboxes for sequences, arrays, and structs are mapped similarly to a struct with a
single member (called “value”), whose data type will be the XML schema type defined
by the appropriate mapping for that sequence, array, or struct.

Mapping of value types as struct or value type members
IDL value types can have recursive definitions, allowing complex structures, such as
graphs, to be represented. This occurs whenever a value type has a state member that
is the same type as its containing value type. Such cycles in an instance graph can be
“chained” through a series of value types, which contain members of each other’s own
type.

Due to its complexity, support at run time for mapping shared value types is a separate,
optional, conformance point for this specification.

Whenever an IDL struct, sequence, or value type includes a member that is a value
type, the corresponding sequence element for the value type member must be mapped
to an xsd:choice element, containing either:

• an element that is a value of that valuetype or,

• an element that is a reference to a value type instance included in the same XML
document.

The reference element has its element name prefixed with “_REF_”, a type name of
“corba:_VALREF”, and includes an attribute called “ref” of type xsd:IDREF).
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-17

1

If value type sharing is not supported by the run-time implementation, then reference
elements of type _VALREF will not be present. The mapping of value type members to
the xsd:choice is always generated at translation time.

For use in references to value type instances, the following schema is defined in the
corba namespace:

<xsd:complexType name=”_VALREF”
<xsd:attribute name=”ref” type=”xsd:IDREF” use=”optional”>
<!-- empty attribute used for null semantics,

i.e., value graph end nodes -->
</xsd:complexType>

Given the following recursive example:

valuetype WeightedBinaryTree {

// state definition
public unsigned long weight;
public WeightedBinaryTree left;
public WeightedBinaryTree right;

// initializer
factory init(in unsigned long w);

// local operations
WeightSeq pre_order();
WeightSeq post_order();

};

The mapping would generate the following schema (assuming tns is prefix for target
namespace and corba is prefix for corba mapping constructs name space):

<xsd:complexType name=”WeightedBinaryTree” >
<xsd:sequence>

<xsd:element name=”weight” type=”xsd:integer” />
<xsd:choice>

<xsd:element name=”left” type=”tns.WeightedBinaryTree” />
<xsd:element name=”_REF_left” type=”corba:_VALREF” />

</xsd:choice>
<xsd:choice>

<xsd:element name=”right” type=”tns.WeightedBinaryTree” />
<xsd:element name=”_REF_right” type=”corba:_VALREF” />

</xsd:choice>
</xsd:sequence>
<xsd:attribute> name=id” type=”xsd:ID” use=”optional” />

<!-- id attribute must be present if referenced by another
node in graph -->

</xsd:complexType>
1-18 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

1.2.8 Interfaces
An IDL interface is actually three distinct constructs: a namespace for declaring types,
a grouping operator for binding operations, and a type.

1.2.8.1 Interface as Namespace
Structures, Unions, and Typedefs are allowed to be constructed within an interface
scope. As such, this use of the IDL interface is mapped in the same manner as the
module construct.

// IDL
interface SomeInterface {

typedef long Foo;
};

This IDL interface is mapped to the schema definition:

<xsd:simpleType name="SomeInterface.Foo">
<xsd:restriction base="xsd:int"/>

</xsd:simpleType>

1.2.8.2 Interface as Binding Operations
The IDL interface construct also creates a grouping of operations. This use of the
interface is mapped to the WSDL portType. The operations are mapped to the WSDL
message type.

Each operation maps to three messages: an invocation, a response, and a fault message
for potential system exceptions, except in the case of oneway operations, where there
is no response message. Message names must be fully scoped (including all module
names and the name of the enclosing interface). The invocation message consists of all
the “in” and “inout” arguments. The response message contains the return value if one
is present in the IDL (called “_return” to avoid name clashes), together with all the
“out” and “inout” arguments.

System exception messages always return a CORBA system exception, which is
defined as follows in WSDL:

<!-- WSDL -->
<simpleType name=”CORBA.completion_status”>

<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”COMPLETED_YES”/>
<xsd:enumeration value=”COMPLETED_NO”/>
<xsd:enumeration value=”COMPLETED_MAYBE”/>

</xsd:restriction>
</simpleType>

<xsd:complexType name="CORBA.SystemException">
<xsd:sequence>

<xsd:element
name="minor" type="xsd:unsignedInt"

maxOccurs="1" minOccurs="1"/>
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-19

1

<xsd:element
name="completion_status" type="CORBA.completion_status"
maxOccurs="1" minOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

A System Exception message is also defined in the “CORBA” namespace, for brevity:

<message name="CORBA.SystemExceptionMessage" >
<part name="_return" type="CORBA.SystemException"/>

</message>

If arrays are used in the signature of an IDL operation, then there has to be two WSDL
operations defined for that IDL operation: one as specified for the simple case in
“Simple form of Mapping Operations” and another tailored for use with Soap
Encoding.

For IDL operations that do not use IDL sequence or array in their signatures, the
simple mapping specified in “Simple form of Mapping Operations” suffices.

Simple form of Mapping Operations
By example:

// IDL
interface SomeInterface {

long bar(in float pi);
};

is mapped to the WSDL definition:

<?xml version="1.0"?>
<definitions name="anExample"

targetNamespace=" http://www.omg.org/IDL-Mapped/"
xmlns:tns="http://www.omg.org/IDL-Mapped/"
xmlns:CORBA=http://www.omg.org/IDL-WSDL/1.0/
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl" >

<import
namespace=" http://www.omg.org/IDL-WSDL/1.0/"/>

<!-- Messages related to port: SomeInterface -->
<message name="SomeInterface.bar" >

<part name="pi" type="xsd:float"/>
</message>
<message name="SomeInterface.barResponse" >

<part name="_return" type="xsd:int"/>
</message>

<!-- port for SomeInterface -->
<portType name="SomeInterface" >

<operation name="bar" >
<input message="tns:SomeInterface.bar"/>
<output message="tns:SomeInterface.barResponse"/>
<fault message=”tns:CORBA.SystemException”/>

</operation>
1-20 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

</portType>
</definitions>

Two message types are created. One message type is declared for the input parameters
and one type created for the output parameters. A portType is also declared, in this
case SomeInterface. The portType binds the input message and output message
together into the contract.

Attributes are mapped to get/set accessor operations. Read-only attributes generate a
single “get” operation, whereas read-write attributes generate both “get” and “set”
forms. “Set” operations have a single parameter, of the same type as the attribute, and
a void return type. “Get” operations have no parameters, and the return type is the
same as the attribute. The names of these accessor operations is generated by prefixing
either “_get_” or “_set_” to the name of the attribute, as appropriate.

For example:

// IDL
interface MyAttrs {

attribute string strAttr;
readonly attribute long longAttr;

};

is mapped to the WSDL definition:

<?xml version="1.0"?>
<definitions name="anExample"

targetNamespace=" http://www.omg.org/IDL-Mapped/"
xmlns:tns="http://www.omg.org/IDL-Mapped/"
xmlns:CORBA=http://www.omg.org/IDL-WSDL/1.0/
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl" >

<import
namespace=" http://www.omg.org/IDL-WSDL/1.0/"/>

<!-- Messages related to port: MyAttrs -->
<message name="MyAttrs._get_strAttrResponse" >

<part name="_return" type="xsd:string"/>
</message>
<message name="MyAttras._set_strAttr" />

<part name="value" type="xsd:string"/>
</message>
<message name="MyAttrs._get_longAttrResponse" >

<part name="_return" type="xsd:int"/>
</message>

<!-- port for MyAttrs -->
<portType name="MyAttrs" >

<operation name="_get_strAttr" >
<output message="tns:MyAttrs._get_strAttrResponse"/>
<fault message=”tns:CORBA.SystemException”/>

</operation>
<operation name="_set_strAttr" >

<input message="tns:MyAttrs._set_strAttr"/>
<fault message=”tns:CORBA.SystemException”/>
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-21

1

</operation>
<operation name="_get_longAttr" >

<output message="tns:MyAttrs._get_longAttrResponse"/>
<fault message=”tns:CORBA.SystemException”/>

</operation>
</portType>

</definitions>

Extra Productions for Operations having IDL sequence or array for
parameters or return values
For IDL operations that have IDL sequence or array types in their signature (at any
level of nesting depth in the type for an operation parameter or return value), there will
need to be additional definitions corresponding to a second port type for use with soap
bindings that support style=rpc and use=encoded.

For example, given the previous definition of longSeq

interface SomeInterface2 {
longSeq bar(in float pi);

};

is mapped to the WSDL definition:

<?xml version="1.0"?>
<definitions name="anExample"

targetNamespace=" http://www.omg.org/IDL-Mapped/"
xmlns:tns="http://www.omg.org/IDL-Mapped/"
xmlns:CORBA=http://www.omg.org/IDL-WSDL/1.0/
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl" >

<import
namespace=" http://www.omg.org/IDL-WSDL/1.0/"/>

<!-- Messages related to port: SomeInterface2 -->
<message name="SomeInterface2.bar" >

<part name="pi" type="xsd:float"/>
</message>
<message name="SomeInterface2.barResponse" >

<part name="_return" type="Example.longSeq"/>
</message>

<!-- Messages related to port: SomeInterface2 for soap encoding -->
<!—- message SomeInterface2.bar can be used for soap encoding -->

<message name="SomeInterface2._SE_barResponse" >
<part name="_return" type="Example._SE_longSeq"/>

</message>

<!-- port for SomeInterface2 -->
<portType name="SomeInterface2" >

<operation name="bar" >
<input message="tns:SomeInterface2.bar"/>
<output message="tns:SomeInterface2.barResponse"/>
<fault message=”tns:CORBA.SystemException”/>
1-22 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

</operation>
</portType>

<!-- port for SomeInterface2 with soap encoding -->
<portType name="_SE_SomeInterface2" >

<operation name="bar" >
<input message="tns:SomeInterface2.bar"/>
<output message="tns:SomeInterface2._SE_barResponse"/>
<fault message=”tns:CORBA.SystemException”/>

</operation>
</portType>

</definitions>

1.2.8.3 Interface as a Type
As a type, an interface reference is expanded identically to the mapping for
CORBA::Object.

1.2.8.4 Mapping of interface inheritance
In IDL, interfaces support multiple interface inheritance. WSDL does not have this
construct and therefore interface inheritance is mapped as repetition of the operations
declared in the parenting interfaces. Types declared within the parent interface scope
are not repeated as that type space is available to the derived interfaces.

Thus:

// IDL
interface BaseInterface {

typedef long Foo;
long bar(in Foo pi);

};

interface DerivedInterface : BaseInterface {
long baz(in Foo po);

};

is mapped to:

<?xml version="1.0"?>
<definitions

targetNamespace=" http://www.omg.org/IDL-Mapped/"
xmlns:tns="http://www.omg.org/IDL-Mapped/"
xmlns:CORBA=http://www.omg.org/IDL-WSDL/1.0/
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl" >

<import
namespace=" http://www.omg.org/IDL-WSDL/1.0/"/>

<!-- Messages related to port: BaseInterface -->
<message name="BaseInterface.bar" >

<part name="pi" type="BaseInterface.Foo"/>
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-23

1

</message>
<message name="BaseInterface.barResponse" >

<part name="_return" type="xsd:int"/>
</message>

<!-- port for BaseInterface -->
<portType name="BaseInterface" >

<operation name="bar" >
<input message="tns:BaseInterface.bar"/>
<output message="tns:BaseInterface.barResponse"/>
<fault message=”tns:CORBA.SystemException”/>

</operation>
</portType>

<!-- Messages related to port: DerivedInterface -->
<message name="DerivedInterface.baz" >

<part name="po" type="BaseInterface.Foo"/>
</message>
<message name="DerivedInterface.bazResponse" >

<part name="_return" type="xsd:int"/>
</message>

<!-- port for DerivedInterface -->
<portType name="DerivedInterface" >

<operation name="bar" >
<input message="tns:BaseInterface.bar"/>
<output message="tns:BaseInterface.barResponse"/>
<fault message=”tns:CORBA.SystemException”/>

</operation>
<operation name="DerivedInterface.baz" >

<input message="tns:DerivedInterface.baz"/>
<output message="tns:DerivedInterface.bazResponse"/>
<fault message=”tns:CORBA.SystemException”/>

</operation>
</portType>

</definitions>

1.2.8.5 Exceptions
IDL exceptions are mapped as constructed types, like structs. However, in IDL it can
only be used in a raises clause of an operation (i.e., you cannot pass an exception as a
parameter, or use it as a type elsewhere).

For each IDL operation with a “raises” clause, a corresponding fault message is
generated for each exception listed. These fault messages are named after the
exception (fully qualified, as any other message), and consist of a single element,
named “exception,” which is of the same type as the mapped complex type
corresponding to the exception definition.

For example, consider the following IDL:

// IDL
module Example {

exception UnknownError {};
exception BadRecord {
1-24 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

string why;
};
exception RottenApple {

long numberOfWorms;
};
interface SomeInterface {

long bar(in float pi) raises (BadRecord, UnknownError);
};

};

This is mapped to:

<?xml version="1.0"?>
<definitions name="anExample"

targetNamespace=" http://www.omg.org/IDL-Mapped/"
xmlns:tns="http://www.omg.org/IDL-Mapped/"
xmlns:CORBA=http://www.omg.org/IDL-WSDL/1.0/
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl" >

<import
namespace=" http://www.omg.org/IDL-WSDL/1.0/"/>

<!-- Exception definitions -->
<xsd:complexType name="Example.BadRecord">

<xsd:sequence>
<xsd:element name="why" type="xsd:string"

maxOccurs="1" minOccurs="1"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Example.RottenApple">
<xsd:sequence>

<xsd:element name="numberOfWorms" type="xsd:int"
maxOccurs="1" minOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Example.UnknownError">
<xsd:sequence>
</xsd:sequence>

</xsd:complexType>

<!-- Messages related to port: SomeInterface -->
<message name="Example.SomeInterface.bar" >

<part name="_target" type="CORBA:Reference"/>
<part name="pi" type="xsd:float"/>

</message>
<message name="Example.SomeInterface.barResponse" >

<part name="_return" type="xsd:int"/>
</message>
<message name="_exception.Example.BadRecord" >

<part name="exception" type="Example.BadRecord"/>
</message>
<message name="_exception.Example.UnknownError" >

<part name="exception" type="Example.UnknownError"/>
</message>
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-25

1

<!-- port for Example.SomeInterface -->
<portType name="Example.SomeInterface">

<operation name="bar" parameterOrder="_target pi">
<input message="tns:Example.SomeInterface.bar"/>
<output message="tns:Example.SomeInterface.barResponse"/>
<fault message="_exception.Example.BadRecord"/>
<fault message="_exception.Example.UnknownError"/>
<fault message=”tns:CORBA.SystemException”/>

</operation>
</portType>

</definitions>

1.2.9 SOAP Bindings
Having specified all the data types, messages, and ports used in a web serviced, it is
then necessary to specify the binding to SOAP. This mapping specification requires
generation of two forms of soap binding:

• SOAP RPC-style binding (style=rpc, use=encoded) to be used when WS-I
conformance is not required. The name of the binding will consist of the fully-
qualified name of the interface (as used in the portType), together with the prefix
“_SE_”.

• WS-I Basic profile conformant: (style=rpc, use=literal) to be used when WS-I
conformance is required.

While both forms of soap binding must be generated by the mapping, run-time
conformance to these separate binding styles form two separate conformance classes
for this specification.

For example, consider the following IDL:

interface foo {
void query(in string s);

};

This would have the following two WSDL bindings;

<binding name="_SE_fooBinding" type="foo">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="query">

<soap:operation soapAction="foo#query"/>
<input>

<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="foo" use="encoded"/>

</input>
<output>

<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="foo" use="encoded"/>

</output>
<fault message=”CORBA.SystemException”/>
1-26 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

1

</operation>
</binding>

<binding name="fooBinding" type="foo">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="query">

<soap:operation soapAction="foo#query"/>
<input>

<soap:body
namespace="foo" use="literal"/>

</input>
<output>

<soap:body
namespace="foo" use="literal"/>

</output>
<fault message=”CORBA.SystemException”/>

</operation>
</binding>

Another example, which has an operation with longSeq return value:

interface SomeInterface2 {
longSeq bar(in float pi);

};

This would have the following two WSDL bindings (note the port type for the soap
encoding binding in this example has prefix “_SE_”):

<binding name="_SE_SomeInterface2Binding" type="_SE_SomeInterface2">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="bar">

<soap:operation soapAction="SomeInterface2#bar"/>
<input>

<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="SomeInterface2" use="encoded"/>

</input>
<output>

<soap:body
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="SomeInterface2" use="encoded"/>

</output>
<fault message=”CORBA.SystemException”/>

</operation>
</binding>

<binding name="SomeInterface2Binding" type="SomeInterface2">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="query">

<soap:operation soapAction="SomeInterface2#bar"/>
<input>

<soap:body
namespace="SomeInterface2" use="literal"/>
November 2003 CORBA to WSDL/SOAP: IDL - WSDL Mapping 1-27

1

</input>
<output>

<soap:body
namespace="SomeInterface2" use="literal"/>

</output>
<fault message=”CORBA.SystemException”/>

</operation>
</binding>

1.2.10 Service Endpoints
The web service endpoints will vary from implementation to implementation, and will
not be discussed here.

This depends on the topology of the web service/CORBA bridge and the underlying
CORBA servers, which is not something that can be captured from the IDL.
Consequently, this is all outside of the scope of this specification.
1-28 CORBA to WSDL/SOAP Interworking Specification, v1.0 November 2003

Index
A
Any 1-15
Arrays 1-10, 1-12

B
Binding operations 1-19
Bindings 1-26
bindings 1-1

C
complexType 1-8
Conformance point 1-1
Conformance points, optional 1-2
Conformance points, run-time 1-2
Constants 1-7
Constructed types 1-8
CORBA

documentation set iv
CORBA namespace 1-5
corbaloc 1-5
corbaname 1-5

E
Endpoints 1-28
endpoints 1-1
Enumerators 1-8
Exceptions 1-24

F
Fixed types 1-16

G
Ge operationst 1-21
Goal 1-2

I
IDL arrays 1-12
IDL constants 1-7
IDL exceptions 1-24
IDL interface 1-19
IDL Sequences 1-10
IDL structures 1-8
IDL type definitions 1-9
IDL unions 1-9
Interface as Binding Operations 1-19
Interface as Namespace 1-19
Interface inheritance 1-23
Invocation message 1-19
ior 1-5

M
Mapped construct 1-4
Message names 1-19
Modules 1-4

N
Namespaces 1-3
nterfaces 1-19

O
Object Management Group iii

address of v
Object references 1-5

Operations 1-19

P
portType 1-21
portTypes 1-1
Primitive type 1-6

R
Response message 1-19
Reverse mapping 1-2

S
Sequences 1-10
Service endpoints 1-28
Set operations 1-21
Simple Value type Support 1-2
SOAP 1.1 1-1
SOAP bindings 1-26
Source IDL, identifying 1-3
Structures 1-8, 1-19
System exception messages 1-19

T
Type 1-23
TypeCode 1-15
Typedefs 1-9, 1-19
Typographical conventions v

U
Unions 1-9, 1-19
URI 1-5

V
Value type Sharing Support 1-2
Valuebox 1-17
ValueType 1-16
valuetypes 1-1

W
WSDL 1.1 1-1

X
XML namespace 1-5
XML Namespaces 1-3
XML Schema data types 1-1
XML Schema types 1-6
November 2003 CORBA-WSDL/SOAP Interworking Specification, v1.0 Index-1

Index
Index-2 CORBA-WSDL/SOAP Interworking Specification, v1.0 November 2003

	CORBA to WSDL/SOAP Interworking
	1.1 Overview
	1.1.1 Conformance Requirements

	1.2 IDL - WSDL Mapping
	1.2.1 Overall Goals
	1.2.2 Conventions
	1.2.3 Identifying the Source IDL
	1.2.4 Modules
	1.2.5 Object References
	1.2.6 Primitive Types
	1.2.7 Constructed Types
	1.2.8 Interfaces
	1.2.9 SOAP Bindings
	1.2.10 Service Endpoints

