
CAD Services Specification

March 2003
Version 1.1

formal/03-03-63

An Adopted Formal Specification of the Object Management Group, Inc.

Copyright 2001, IBM
Copyright 2001, NASA, Glenn Research Center
Copyright 2001, Open Cascade
Copyright 2001, Unigraphics Solutions

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE

MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
Preface . v

1. Overview . 1-1
1.1 Objective of this Specification . 1-1

1.2 Compliance Discussion . 1-2

1.3 Overall Interface Model . 1-3

2. CAD Modules and Interfaces . 2-1

2.1 CadConnection Module . 2-1
2.1.1 UML Diagram . 2-2
2.1.2 CadServer Interface . 2-2
2.1.3 CadSystem Interface . 2-5
2.1.4 CadUserInterface Interface 2-8

2.2 CadMain Module . 2-10
2.2.1 UML Diagram . 2-11
2.2.2 Model Interface . 2-11
2.2.3 ModelInstance Interface 2-18
2.2.4 EntityFactory Interface 2-19
2.2.5 ModelInstanceFactory Interface 2-22
2.2.6 Exceptions . 2-22
2.2.7 Data Structures . 2-24

2.3 CadFoundation Module . 2-24
2.3.1 UML Diagram . 2-25
2.3.2 Entity Interface . 2-25
2.3.3 Attributable Interface . 2-28
2.3.4 EntityGroup Interface 2-29
March 2003 CAD Services, v1.1 i

2.3.5 Layer Interface . 2-30
2.3.6 Exceptions and Data Structure 2-30

2.4 CadGeometry Module . 2-32
2.4.1 UML Diagram . 2-32
2.4.2 Tessellation Data Structures 2-33
2.4.3 Surface Interface . 2-37
2.4.4 Data Structures Supporting Surface 2-42
2.4.5 Curve Interface . 2-42

2.5 CadBrep Module . 2-46
2.5.1 UML Diagram . 2-46
2.5.2 BrepEntity Interface . 2-46
2.5.3 Body Interface . 2-47
2.5.4 Interface OrientedShell 2-48
2.5.5 Shell Interface . 2-49
2.5.6 Vertex Interface . 2-50
2.5.7 VertexLoop Interface . 2-51
2.5.8 EdgeLoop Interface . 2-51
2.5.9 OrientedEdgeLoop Interface 2-52
2.5.10 OrientedFace Interface 2-52
2.5.11 Face Interface . 2-53
2.5.12 OrientedEdge Interface 2-56
2.5.13 Edge Interface . 2-57
2.5.14 Structures and Exceptions 2-59

2.6 CadFeature Module . 2-60
2.6.1 UML Diagram . 2-61
2.6.2 DesignFeature Interface 2-61
2.6.3 Parameter Interface . 2-62

2.7 CadUtility Module . 2-63

2.8 CadGeometryExtens Module . 2-70
2.8.1 CadGeometryExtens::CadSurface Module . . . 2-70
2.8.2 CadGeometryExtens::CadCurve Module 2-73

3. Optional vs. Mandatory Interfaces 3-1
3.1 Summary of optional versus mandatory interfaces 3-1

3.2 Compatibility With PDM Enablers 3-1
3.2.1 Proposed IDL from the PDM Enablers

V2.0 proposal . 3-5
ii CAD Services, v1.1 March 2003

 Appendix A - Tessellation Indexing A-1

 Appendix B - Use Case Scenarios and Examples B-1

Index. Index-1

Reference Sheet . 1
March 2003 CAD Services Final Adopted Specification iii

iv CAD Services, v1.1 March 2003

Preface
About the Object Management Group

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.
March 2003 CAD Services, v1.1 v

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

• Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of
test suites used to validate conformance to an open standard or specification. The Open
Group portfolio of test suites includes tests for CORBA, the Single UNIX
Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime,
Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essential
for proper development and maintenance of standards-based products, ensuring
conformance of products to industry-standard APIs, applications portability, and
interoperability. In-depth testing identifies defects at the earliest possible point in the
development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

OMG Documents

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications

Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.
vi CAD Services, v1.1 March 2003

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.) OMG formal documents are available from our web site in
PostScript and PDF format. Contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Boeing Company

• CFD Research Corporation

• Dassault Systems

• Ford Motor Company

• Fraunhofer Institute - Production Systems and Design Technology

• GE

• IBM

• KAIST - Korean Advanced Institution of Science and Technology

• MSC.Software Corporation
March 2003 CAD Services: Acknowledgments vii

• NASA, Glenn Research Center

• NIST

• Open Cascade

• Structural Dynamics Research Corporation (SDRC)

• TranscenData, An ITI Business

• Unigraphics Solutions
viii CAD Services, v1.1 March 2003

Overview 1
Contents

This chapter contains the following sections.

1.1 Objective of this Specification

This specification is an interface standard for Mechanical Computer Aided Design
(CAD) systems that enable the interoperability of CAD, Computer Aided Manufacturing
(CAM) and Computer Aided Engineering (CAE) tools. The aim is to provide users of
design and engineering systems the ability to seamlessly integrate, best-in-class, software
across a wide variety of CAD/CAM and CAE applications through CORBA interfaces.
These standard interfaces enable a distributed product design environment that includes a
variety of CAD systems.

This specification focuses on establishing Mechanical CAD system interfaces that
provide Geometry and Topology data to Analysis and Manufacturing applications and
tools. The intent is to establish a series of high-level engineering interfaces that do not
require low-level data structures to answer mechanical engineering queries. To avoid
many of the problems associated with data translation, this specification provides
CORBA interfaces with consistent functionality across native CAD implementations. To
the maximum extent, all queries use native CAD system geometry kernels and associated
software as illustrated below.

Section Title Page

“Objective of this Specification” 1-1

“Compliance Discussion” 1-2

“Overall Interface Model” 1-3
March 2003 CAD Services, v1.1 1-1

1

Figure 1-1 Illustration of CAD Services V1.0 being used as a neutral interface to native CAD
geometry kernels.

1.2 Compliance Discussion

The compliance points are intended to help implementers and users of the standard
identify the level of functionality provided by a given implementation. We assume that
vendors will provide various levels of functionality depending on their business case and
other considerations.

This specification provides several levels of compliance, as listed below.

If the UserInterface compliance point is not supported, the CadUserInterface interface
becomes inaccessible (PdmSystem::get_gui throws GuiUnsupported) and its
implementation becomes moot. Similarly, if the Parametrics compliance point is not

Table 1-1 Table of Compliance Points.

Identifier Description

Base All interfaces in all modules except for
CadGeometryExtens and the CadUserInterface
interface in CadConnection Module.

GeometryExtensions Base, plus all interfaces in CadGeometryExtens.

PersistantIdentifiers Base, plus support for persistent identifiers as
described in Section 2.2.2.2, “Model Operations,”
on page 2-15 and Section 2.3.2.2, “Entity
Operations,” on page 2-27.

UserInterface Base, plus support for a user interface as described
in Section 2.1.3.1, “CadSystem Operations,” on
page 2-6.

Parametrics Base, plus support for parametric regeneration of
CAD entities as described in Section 2.6.2,
“DesignFeature Interface,” on page 2-61.

• SDRC
• Unigraphics
• Catia
• Others

Engineering Client
• Structures
• Aerodynamic
• Thermal

C
A

D
 Services V

 1.0
1-2 CAD Services, v1.1 March 2003

1

supported, the Parameter interface becomes inaccessible
(DesignFeature::get_parameter_set returns an empty sequence). Otherwise, all interfaces
called out by Base are mandatory.

Support for persistent identifiers, a user interface, or parametric regeneration of CAD
entities are indicated by declaring support for the respective compliance points.
Additionally, implementations may vary in their support for accuracy, presentation
properties, and session-level identification of CAD entities. However, these variations
are exposed through specified behaviors of the mandatory interfaces.

1.3 Overall Interface Model

CAD Services interfaces are divided into eight different modules with a significant inter-
dependency between modules (as illustrated in Figure 1-2 on page 1-4).

The first of these modules is the CadConnection module that provides standard
interfaces to connect with the CAD Services server. CadConnection interfaces provide
access to CadMain module interfaces. CadMain interfaces include Model interfaces
that provide support for assemblies. The CadFoundation module provides primary
interfaces that are inherited by geometric entities. It also provides a general Attributable
interface that can be used to “tag” geometric entities with application specific
information through the use of DynAny local data structures. Basic geometric
(tessellation) data structures and interfaces can be found in the CadGeometry module.
The CadGeometryExtens module provides additional geometric entities that are
subtypes of those in CadGeometry. Boundary representations (BREPs) can be found in
the CadBrep module. CadBrep contains interfaces for solid models that are
represented through Bodies, Faces, Edges, and others. These solid models expose
parametric features that allow shape regeneration through interfaces in the CadFeature
module. Finally, CadUtility provides a series of basic data structures used throughout
the standard. One of these structures is a CadError exception. This exception can be
raised by almost all of the CAD Services interfaces. This general exception is needed due
to the wide dissimilarity of CAD system implementations and the variability of native
CAD API support.
March 2003 CAD Services: Overall Interface Model 1-3

1

Figure 1-2 Module Interdependencies and Overall Module Structure

CadBrep
<<CORBAModule>>

CadConnection
<<CORBAModule>>

CadMain
<<CORBAModule>>

CadUtility
<CORBAModule>>

CadGeometry
<<CORBAModule>>

CadFoundation
<<CORBAModule>>

CadFeature
<<CORBAModule>>

CadGeometryExtens
<<CORBAModule>>
1-4 CAD Services, v1.1 March 2003

CAD Modules and Interfaces 2
Contents

This chapter contains the following sections.

2.1 CadConnection Module

This module provides high-level connectivity to the Model interface in the CadMain
module. The first interface used by any client is the CadServer interface. This is a
lightweight interface used primarily to connect with the CadSystem interface and
provides two readonly attributes that contain information on the native CAD system and
properties needed to activate the underlying native CAD system. Uniform connection
operations allow high-level consistency between dissimilar native CAD implementations.

Section Title Page

“CadConnection Module” 2-1

“CadMain Module” 2-10

“CadFoundation Module” 2-24

“CadGeometry Module” 2-33

“CadBrep Module” 2-46

“CadFeature Module” 2-60

“CadUtility Module” 2-63

“CadGeometryExtens Module” 2-70
March 2003 CAD Service, v1.1 2-1

2

2.1.1 UML Diagram

Figure 2-1 UML Diagram of the CadConnection Interfaces and Data Structures

2.1.2 CadServer Interface

CadServer is the factory object to any CAD Services implementation. Its sole intent is
to provide a client application with a mechanism to connect and launch the desired CAD
system’s implementation of CAD Services. This connectivity approach was designed
primarily to allow each CadServer to support only one native CAD system; however,
there is sufficient flexibility in the interfaces to allow connection to more that one native
CAD system. For example, one CadServer might provide access to multiple native
CAD systems by using information passed through the
CosPropertyService::Properties data sequence (see below for a description of the
CosProperties::Properties data sequence). How many and what types of native CAD
systems are supported by the CadServer depends on the implementation.

module CadConnection
{

//forward references

interface CadServer;

C a d S ys te m

o p e n_ m o d e l()
c re a te _ m o d e l()
g e t_ p ro p e rtie s ()
s e t_ p ro p e rtie s ()
a va i la b le _ m o d e ls ()
e xe c ute _ c a d _ c o m m a nd ()
g e t_ g ui()
d is c o nne c t()
o p e ne d _ m o d e ls ()

(f rom Ca dC on ne ct i on)

< < Inte rfa c e > >

C a dU s e rInte rfa c e

g et_ s elec te d _ e nti tie s ()
hig hlig ht_e nti tie s ()
s e t_e nti ty_ la b e l_ vis ib i li ty()
s e le c t_e nti tie s ()
p ro m p t_fo r_ s tring ()

(from C a dC onn ec t io n)

< < Inte rfa c e > >

C a d S e rve r

c o nne c t()
c o nne c t_ w i th_ p a s s w o rd ()

(f rom Ca dC on ne ct i on)

< < Inte rfa c e > >

P ro p e rtie s
(from C o s P rope rty S e rvic e)

< < C O R B A Typ e d e f> >

+ la unc h_ p ro p e rtie s

N a tive C a d A ttrib ute s S truc t

c a d _ s ys _ na m e : s tring
ve nd o r_ na m e : s tring
c a d _ ve rs io n : s tring

(from C a dC onn ec t io n)

< < C O R B A S truc t> >

+ na tive _ p ro p e rtie s

+ o the r_ p ro p e rtie s

O p tio ns S truc t

is _ inte rac tiv e : b oo le an
is _ p e rsis te nt_ id : bo olea n
is _ a c c ur ate : bo olea n
is _ p a ra m e tric : b oo le an
is _ e xte nd ed _g eo m e try : bo olea n

(from C a dC onn ec t io n)

< < C O R B A S truc t> >
+ o p tio na l_ p ro p e rtie s

S tring S e q
(from C a dU t il i ty)

< < C O R B A Typ e d e f> >
B ad P a ra m e ter s

(from C a dC onn ec t io n)

< <C O R B A E x c ep tion> >
+ re a s o ns

P ar am ete rS eq
(from C a dF ea tu re)

< < C O R B A Typ e d e f> >

+ fla w e d _ p a ra m s

U iM e s s a g e S truc t

c o de : uns ig ne d lo ng
no te : s tring

(from C a dC onn ec t io n)

< < C OR B A S tr uc t>>

M o d e lL is t
(from C a dC onn ec t io n)

< <C O R B A Ty pe de f>>
2-2 CAD Service, v1.1 March 2003

2

interface CadSystem;
interface CadUserInterface;

interface CadServer
{

readonly attribute NativeCadAttributesStruct native_properties;
// NativeCADSys contains CAD Vendor name, version, etc.

readonly attribute CosPropertyService::Properties
launch_properties;

// This attribute contains all needed information to launch
// the CAD system

CadSystem connect(in CosPropertyService::Properties props)
raises (CadConnectionFault);

// secure connection

 CadSystem connect_with_password(in string user,

in string password,
in CosPropertyService::Properties props)
raises (CadConnectionFault);

 // open wire (unsecure connection)
};

2.1.2.1 CadServer Attributes

The CadServer interface has two readonly attributes. The first attribute
native_properties is a data struct that identifies the native CAD system.

struct NativeCadAttr
{

string cad_sys_name;
string vendor_name;
string cad_version;
OptionsStruct optional_properties;
CosPropertyService::Properties other_properties;

};
struct Options

{
boolean is_interactive;
boolean is_persistent_id;
boolean is_accurate; // for some calculated properties
boolean is_parametric; // design feature support
boolean is_extended_geometry;

};

• The name (cad_sys_name), vendor (vendor_name) and native version number
(cad_version) are represented by strings. The OptionsStruct data structure
identifies support for compliance points. The final value is a reference
March 2003 CAD Service: CadConnection Module 2-3

2

(other_properties) to a CosPropertyService::Properties data structure. This
reference provides additional property information that is not specified in the
standard, but may be useful to implementers.

• The OptionsStruct data structure identifies support for optional features in this
CadServer:

• is_interactive – TRUE indicates support for the UserInterface compliance point
defined in Section 1.2.

• is_persistent_id – TRUE indicates support for the PersistentIdentifiers
compliance point defined in Section 1.2.

• is_accurate – TRUE indicates support for the accuracy parameter in many
calculated properties (for example, see the area operation of the CadBrep::Face
interface).

• is_parametric – TRUE indicates support for the Parametrics compliance point
defined in Section 1.2.

• is_extended_geometry - TRUE indicates support for the GeometryExtensions
compliance point defined in Section 1.2.

• The second attribute is a CosPropertyService::Properties
(launch_properties). This data type provides all information needed to activate
the underlying native CAD geometry kernel. Often a user logging in to a CAD
system must specify data like project, work group, CAD data repository (PDM), etc.
If the information in the Properties sequence is incomplete for the target system, an
exception (CadConnectionFault) is thrown. This exception is also provided with
more specific names such as: ValidationError, InvalidProperties, and
PermissionDenied.

typedef string PropertyName;
struct Property
{

PropertyName property_name;
any property_value;

};
sequence<Property>Properties;

The CosPropertyService::Properties data structure is shown above. It provides a
simple sequence of name – value pairs.

2.1.2.2 CadServer Operations

To work effectively with CORBA security services, two different login semantics are
available to the client – both of which can be controlled by the system administrator. If
CORBA security services are available, and the system administrator does not want user
names and passwords to be passed across the network, a client can use
CADServer::connect (in CosPropertyService::Properties props) and the
CADServer will use the userId and password from the security services as the CAD
user name and the CAD password. This assumes that the system administrator has set up
the correct logins in the CAD system and in the CORBA security service so these names
and passwords are synchronized. To prevent clients from using the
connect_with_password, implementers may wish to use a local interceptor.
2-4 CAD Service, v1.1 March 2003

2

In environments where the security service is unavailable the
connect_with_password operation may be used. It is identical to the connect
interface but requires a user name and password.

2.1.2.3 Exception

A CadConnectionFault exception shall be thrown to clearly identify connection
problems. Similar exceptions are also provided with more specific names such as:
ValidationError, InvalidProperties, and PermissionDenied. Each exception
provides an unsigned long and a string to convey information on the fault as noted in
Section 2.1.3.3, “Exceptions,” on page 2-7.

exception CadConnectionFault
{

unsigned long error_code;
string error_text;

};

2.1.3 CadSystem Interface

CadSystem is an implementation of a particular CAD system, geometry engine, or
kernel. It provides high-level functionality enabling a client to open and operate on a
CAD model. This interface also provides a mechanism to execute operations not defined
in this specification and a mechanism to list various CAD models that are available. The
standard does not specify directory information or any hierarchical approach to listing the
available models. It is expected that each CAD Server implementation may wish to use a
configuration file (or similar mechanism) to specify one or several directories where
appropriate models will be placed.

enum ActivationMode
{ ACTIVE_READONLY, ACTIVE_CHECKOUT, ACTIVE_DETAILED };

interface CadSystem
{

CadMain::Model open_model(in string model,
in ActivationMode access)
raises (InvalidModel, PermissionDenied);

// CAD model related operations

CadMain::Model create_model(in string new_name,
 in CadUtility::MassUnit m_unit,
 in CadUtility::LengthUnit l_unit,

in CosPropertyService::Properties model_params)
 raises (PermissionDenied, BadParameters, CadUtility::CadError);
 // Creates and opens a new model in native CAD system

CosPropertyService::Properties get_properties();
void set_properties(in CosPropertyService::Properties props);
// Allows reading and changing of CadSystem properties
March 2003 CAD Service: CadConnection Module 2-5

2

ModelList available_models();
// returns a list if model available to the active CAD System.
CadMain::ModelSeq opened_models();
// returns a sequence of active Models

void execute_cad_command(in string command_string ,

inout any comm_out) raises (BadCommand);
 // extensible Cad system command interface

CadUserInterface get_gui() raises(CadFoundation::GuiUnsupported);
// access to GUI interface

void disconnect()
raises (CadConnectionFault);

// disconnect from this CadSystem
};

2.1.3.1 CadSystem Operations

open_model Returns a CadMain::Model interface for a given input string (model)
and ActivationMode (access). The enumeration ActivationMode
identifies whether the client needs read-only access
(ACTIVE_READONLY) or full read-write access
(ACTIVE_CHECKOUT). ACTIVE_DETAILED can be used to assign
implementation-specific policies. These implementation specific policies
may use the authorization credentials enforced by the connect()
operation of the CadServer interface. For example, a user may have
authority to modify only one part in an assembly and this authorization
would be assigned during the connect operation as part the input
CosPropertyService::Properties sequence (props).

This operation loads the specified model into memory and can be
unloaded by invoking close_model() on the Model object reference.

create_model Returns a new CadMain::Model interface with the input string
new_model used as the name of the new model. This input string has
the same semantics as a string returned from ModelList, but may not
require directory information (a default directory may be concatenated).
The client must have full read-write access to the CadServer.
CadUtility::MassUnit m_unit and CadUtility::LengthUnit l_unit
must be specified for the new model. Model level parameters can be
specified through a CosPropertyService::Properties
model_params. Incorrect parameters shall result in an error,
BadParameters, that clearly identifies any faults.
2-6 CAD Service, v1.1 March 2003

2

2.1.3.2 ModelList

This sequence of strings conveys information that uniquely identifies the models
available to the CadSystem interface. Implementations shall provide any necessary
directory and name information in each string.

typedef sequence<string> ModelList;

2.1.3.3 Exceptions

These exceptions are thrown by CadSystem operations to identify specific errors and
faults. An unspecified error_code and error_text provide additional error
documenting properties.

// various exceptions

exception ValidationError
{
unsigned long error_code;

get_properties Returns a CosPropertyService::Properties sequence detailing
implementation defined properties similar to or the same as the
properties used in the CadServer:Connect operation.

set_properties Accepts a CosPropertyService::Properties sequence that sets
implementation defined properties similar-to or the-same-as the
properties used in the CadServer:Connect operation.

available_models Returns a ModelList (a sequence of strings). The strings capture
directory path information or any other unique identifying information
for each native CAD model.

opened_models Returns a sequence of Models (CadMain::ModelSeq) that are active
and are ready for client use. This is distinctly different from the
available_models operation, where a string must be used to open the
Model or load it into memory.

execute_cad_command Accepts a command string that will be executed in the native CAD
system. Additional input information and a response can be passed
through the comm_out parameter. This operation provides access to
some functionality that may be supported by the underlying native CAD
system, but is not provided for in this standard.

get_gui Returns a reference to the CadUserInterface. An implementation that
does not support the UserInterface compliance point shall throw
CadFoundation::GuiUnsupported when this operation is invoked.

disconnect() Disconnect from the CadServer and perform clean-up operations that
are implementation specific.
March 2003 CAD Service: CadConnection Module 2-7

2

string error_text;
};

exception InvalidProperties
{
unsigned long error_code;

 string error_text;
};

exception PermissionDenied
{

unsigned long error_code;
 string error_text;
 };

exception InvalidModel
{

unsigned long error_code;
 string error_text;
 };

exception BadCommand
{

 unsigned long error_code;
 string error_text;

};
exception BadParameters

 {
 CadFeature::ParameterSeq flawed_params;

CadUtility::StringSeq reasons;
 };

2.1.4 CadUserInterface Interface

This is an optional interface that supports interaction with the User Interface of the
underlying native CAD system. As with many CAD Services interfaces, a
CadUtility::CadError exception can be thrown from several operations.

struct UiMessageStruct
 {
 unsigned long code; //recommended
 string note;
 };

 interface CadUserInterface
 {

 CadFoundation::EntitySeq get_selected_entities()
 raises (CadUtility::CadError);

 // returns a sequence of entities selected in UI
2-8 CAD Service, v1.1 March 2003

2

 CadUtility::WarningStructSeq highlight_entities(
 in CadFoundation::EntitySeq marked);

 // highlight these entities in the UI. returns warning if all
 // entities cannot be highlighted

 void set_entity_label_visibility (
 in CadFoundation::EntitySeq entities,in boolean visibility)
 raises (CadUtility::CadError);
 // Sets the visibility of entity labels.

 CadFoundation::EntitySeq select_entities (in UiMessageStruct prompt,
 out UiMessageStruct error_message)
 raises (CadUtility::CadError);
 //prompt explains the selection request

 UiMessageStruct prompt_for_string (in UiMessageStruct prompt)
 raises (CadUtility::CadError);
 // Prompts the user to input a value (in UI) which is returned as
 // an unsigned long (recommended) string(optional).

void createWindow (in CadMain::Model model_gui)
raises (CadUtility::CadError);

 // create window for model and place in foreground

 void deleteWindow (in CadMain::Model model_gui)

raises (CadUtility::CadError);
 // delete window associated with the model

 void hideWindow (in CadMain::Model model_gui)

raises (CadUtility::CadError);
 // places window in background

 void foregroundWindow (in CadMain::Model model_gui)

raises (CadUtility::CadError);
 // place window in foreground
 };

};
March 2003 CAD Service: CadConnection Module 2-9

2

2.1.4.1 Operations

2.2 CadMain Module

CadMain interfaces include the Model interface that is a recursive interface supporting
parts and assemblies through operations that identify if this model contains other Models
(ModelInstances). For example, the CadSystem::available_models() operation
might return a sequence of strings that identifies an assembly file that contains various
parts within that assembly. A CadSystem::open_model operation on this assembly
file would also load the various parts contained within the Model and make them
available to the client through a Model::model_children() operation.

get_selected_entities Returns a sequence of the geometry entities selected in the native CAD user
interface. Returns an empty sequence if no CAD Services geometric entities
are selected within the native user interface.

highlight_entities Highlights, in the native CAD user interface, the input sequence of CAD
Services entities. The native CAD user interface shall refresh (or repaint)
after highlighting. The returned Boolean will be false, if all entities cannot
be highlighted.

set_entity_label_visibility Sets the visibility (TRUE = visible) of the input sequence of CAD Services
entities’ labels (native_label on CadFoundation::Entity). The native
CAD user interface is shall (or repaint) after changing the label visibility.

select_entities Returns a sequence of entities selected in the native CAD user interface after
a prompt (UiMessageStruct) is used to display information in this user
interface. The error_message data struct provides a mechanism to return
any native error messages. UiMessageStruct is a data structure that can
input or output an unsigned long as a message code (recommended) that can
also be supported by a string note. The unsigned long is recommended to
minimize international language constraints.

prompt_for_string Returns a UiMessageStruct data struct for a similar input struct. This
operation allows a client to display, in the native user interface, something
(for example, a dialog box) created from the UiMessageStruct prompt.
Information transfer using the unsigned long is recommended to minimize
international language constraints.

createWindow For a specified Model, this operation creates a window on the local client.

deleteWindow Deletes the window associated with the input Model (model_gui).

hideWindow Places the window associated with the input Model (model_gui) into the
background.

foregroundWindow Places the window associated with the input Model (model_gui) into the
foreground.
2-10 CAD Service, v1.1 March 2003

2

The CadMain module contains two interfaces that support the creation of geometric
entities and model instances. These interfaces are analogous to the Factory software
pattern. The Factory pattern provides a framework for the creation of new objects (ref.
“Design Patterns,” by Erich Gamma, R. Helm, R. Johnson and J. Vlissides, Addison-
Wesley, 1997).

2.2.1 UML Diagram

Figure 2-2 UML Diagram of CadMain Module Interfaces and Data Structures

2.2.2 Model Interface

The model interface is an aggregation of all CAD entities and high-level behaviors that
represent a single CAD model. This interface includes product structure, boundary
representations, geometric entities, features, text entities, and datums. It also supports
assemblies by containing ModelInstances that are models contained within the
Model. Much as a top-level Model might be an assembly that contains several parts that
are also models. All top-level entities within a CAD model are arc wise connected unless
related to each other through a ModelInstance.

M o d e l

b o u n d i n g _ b o x()
g e t_ p a ra m e te r _ s e t()
m o d e l _ c h i l d r e n ()
m o d e l _ p a r e n ts ()
to p _ le ve l_ e n ti t i e s ()
f i l e _ n a m e ()
i s _ e m b e d d e d ()
i s _ m o d i f i e d ()
i s _ re a d _ o n ly ()
i s _ u p d a te _ p e n d i n g ()
m o d e l _ l a y e r s ()
m o d e l _ e n t i ty_ g r o u p s ()
m o d i f i c a t i o n _ d a te ()
m o d e l _ n a m e ()
n e w _ p e rs i s te n t_ i d s ()
p e r s i s te n t_ i d s _ s ta tu s ()
p e r s i s te n t_ i d s _ to _ e n ti t i e s ()
r e g e n e ra te ()
r e tu r n _ to _ l a s t_ va li d _ s ta te ()
u n i q u e _ e n ti t i e s ()
u n i q u e _ e n ti t i e s _ c o u n t()
u n i q u e _ i d s _ to _ e n ti t i e s ()
s a ve _ m o d e l ()
s a ve _ m o d e l _ a s ()
c l o s e _ m o d e l ()
n e w _ e n t i ty _ fa c to r y()
n e w _ m o d e l_ i n s ta n c e _ fa c to r y()
a d d _ c h i l d ()
r e m o v e _ c h i ld ()
d e l e te _ u i d _ e n ti ty()
d e l e te _ e n t i ty()

< < C O R B A In te r fa c e > >
E n t i ty F a c to r y

c le a n u p ()
i n d e x_ n u r b s _ c u r v e s ()
i n d e x_ e d g e s ()
i n d e x_ ve r t i c e s ()
i n d e x_ fa c e s ()
i n d e x_ e d g e _ lo o p s ()
i n d e x_ s h e lls ()
i n d e x_ b o d i e s ()
i n d e x_ ve r te x_ lo o p s ()
i n d e x_ o r i e n te d _ e d g e s ()
i n d e x_ o r i e n te d _ fa c e s ()
i n d e x_ o r i e n te d _ e d g e lo o p s ()
i n d e x_ o r i e n te d _ s h e lls ()
i n d e x_ s u r fa c e s ()
c r e a te ()

< < C O R B A In te rfa c e > >

M o d e lIn s ta n c e F a c to ry

n e w _ m o d e l_ i n s ta n c e ()

< < C O R B A In te r fa c e > >

T r a n s i e n t Id s E n t i ty S tr u c tS e q
< < C O R B A T y p e d e f> >

T r a n s i e n t Id s S ta tu s S tr u c t
tr a n s i e n t_ i d : lo n g
s u c e s s : b o o le a n
w a r n i n g : s tr i n g

< < C O R B A S tru c t> >

T r a n s i e n t Id s S ta tu s S tr u c tS e q
< < C O R B A T y p e d e f> >

M o d e lIn s ta n c e S e q
< < C O R B A T y p e d e f> >

M o d e lIn s ta n c e

lo c a t i o n ()
c o m p o n e n t()

< < C O R B A In te r fa c e > >

E n t i ty
(fr o m C a d F o u n d a ti o n)

< < C O R B A In te rfa c e > >

T r a n s i e n t Id s E n t i ty S tr u c t
tr a n s i e n t_ i d : lo n g

< < C O R B A S tru c t> >

+ v a li d _ e n t i ty

A t tr i b u ta b le

g e t_ i n fo ()
s e t_ i n fo ()

(fr o m C a d F o u n d a ti o n)

< < C O R B A In te r fa c e > >
March 2003 CAD Service: CadMain Module 2-11

2

The Model interface has access operations to read the mass and length units. It also
provides several operations to retrieve references to the CAD geometry entities contained
in the Model. Several of the operations in this interface can throw
CadUtility::CadError exceptions.

module CadMain
{
// forward references

interface ModelInstance;
interface Model;
interface Model : CadFoundation:: Entity

{
// An aggregation of all entities and high-level behaviors that

 // represent a single CAD model. Includes product structure,
 // boundary representations, geometric entities, features, text
 // entities, and datums. All entities within a CAD model are
 // arcwise connected unless related through an instance.

readonly attribute CadUtility::MassUnit mass_unit;
readonly attribute CadUtility::LengthUnit length_unit;
// Defines units used in the Model.

CadUtility::BoundingBox bounding_box (
in CadUtility::TypeCodeSeq entity_types) raises
(UnboundedEntity, NotValidCadType,CadUtility::CadError);

// Returns an approximate BoundingBox around all entities of
// the specified type(s) in the model.

CadFeature::ParameterSeq get_parameter_set()
raises (CadUtility::CadError);

 // Returns a sequence of parameters for this model.

 ModelInstanceSeq model_children()
 raises (CadUtility::CadGeneralError);
 // Returns a sequence of any ModelInstances contained in this
 // model.

 ModelInstanceSeq model_parents()
 raises (CadUtility::CadGeneralError);
 // Returns a sequence of parent models.

 CadFoundation::EntitySeq top_level_entities (
 in CadUtility::TypeCodeSeq entity_types)
 raises (NotValidCadType, CadUtility::CadError);

 // Returns a sequence of the top level entities of the specified
 // type(s).

 string file_name () raises (CadUtility::CadError);
 // Returns the complete name, including absolute path (if
2-12 CAD Service, v1.1 March 2003

2

 // possible), of the physical file that stores this model.
 // Returns an empty string if the model is not defined in a file.

 boolean is_embedded();
 // indicates if Model is an embedded part (e.g. CATIA Dittos,
 // ACAD blocks, etc) or a non-embedded part (e.g. parts in a ProE
 // assembly).

 boolean is_modified () raises (CadUtility::CadError);
 // Queries if the model has been modified since last saved.

 boolean is_read_only () raises (CadUtility::CadError);
 // Queries whether the model can be modified.

 boolean is_update_pending () raises (CadUtility::CadError);
 // Queries if the model is being updated (regenerated).

 CadFoundation::LayerSeq model_layers ()
 raises (CadUtility::CadError);
 // Returns a sequence of the Layers defined in this model.

CadFoundation::EntityGroupSeq model_entity_groups (
out CadUtility::StringSeq group_names)

 raises (CadUtility::CadError);
 // Returns a sequence of the EntityGroups defined in this model.

 string modification_date () raises (CadUtility::CadError);
 // Returns the date and time the model was last modified.

 string model_name () raises (CadUtility::CadError);
 // Returns the user-interpretable name of this model.

 CadUtility::StringSeq new_persistent_ids (
 in CadUtility::StringSeq persistent_ids)
 raises (CadUtility::CadError);
 // Returns a sequence of new persistent ID's for any entities not
 // referenced in the specified sequence of persistent ID's
 // (e.g. new or modified IDs).

 PidStatusSeq persistent_ids_status (
 in CadUtility::StringSeq persistent_ids)
 raises (CadUtility::CadError);
 // Returns whether the entities a sequence of persistent Ids
 // reference are unmodified, modified, deleted. The returned
 // sequence of status enumerations are in
 // the same order as the input sequence of persistent IDs.

 CadFoundation::EntitySeq persistent_ids_to_entities (
 in CadUtility::StringSeq persistent_ids)
 raises (CadUtility::CadError);
 // Returns a sequence of entity objects corresponding to a sequence
March 2003 CAD Service: CadMain Module 2-13

2

 // of persistent IDs. The returned sequence of entity objects
 // is in the same order as the input sequence of persistent IDs.
 // A NULL item in this sequence means an entity was not available
 // for the corresponding persistent ID.

 void regenerate () raises
 (RegenerationException, CadUtility::CadError);
 // If any DesignFeatures exist and have been modified, forces a
 // regeneration of modified Entities in the model. Otherwise
 // this operation does nothing. Throws an exception
 // if the regeneration process is unsuccessful.

 void return_to_last_valid_state ()
 raises (ReturnToValidFail, CadUtility::CadError);
 // Returns the model and all entities it contains to their state
 // just after the last successful regeneration
 // Throws an exception if unable to return to a valid state.

 CadFoundation::EntitySeq unique_entities (
 in CadUtility::TypeCodeSeq entity_types)
 raises (NotValidCadType, CadUtility::CadError);

 // Returns a sequence of the unique entities of the
 // specified type in sequential order.

 unsigned long unique_entities_count (

 in CadUtility::TypeCodeSeq entity_types)
 raises (NotValidCadType, CadUtility::CadError);
 // Returns the count of unique entities of the specified
 // type(s) in this model.

 CadFoundation::EntitySeq unique_ids_to_entities (
 in CadUtility::LongSeq unique_ids)
 raises (NotValidCadType, CadUtility::CadError);
 // Returns (in sequential order) a sequence of entities
 // corresponding to an input sequence of unique IDs.

 void save_model() raises (SaveFault);
 void save_model_as(in string new_name) raises (SaveAsFault);
 void close_model() raises (CloseFault);
 // operations for saving and terminating an active session

 EntityFactory new_entity_factory ()
 raises (CadUtility::CadError);
 // Entity creation factory interface - called to create new CAD
 // entities in current model

ModelInstanceFactory new_model_instance_factory ()
raises (CadUtility::CadError);
 //Creates the ModelInstanceFactory, which is used to add ModelInstances
void add_child(in ModelInstance child_model) raises (CadUtility::CadError);
2-14 CAD Service, v1.1 March 2003

2

 void remove_child(in ModelInstance child_model) raises (CadUtility::CadError);

 void delete_uid_entity(in long uid)
raises (EntityOutOfModel, CadFoundation::UidUnsupported,

CadUtility::CadError);
 // Removes ModelInstance, BrepEntity, Curve or Surface from the model

 void delete_entity(in CadFoundation::Entity entity)
 raises (EntityOutOfModel, CadUtility::CadError);
 // Removes ModelInstance, BrepEntity, Curve or Surface from the model
 };

2.2.2.1 Model Attributes

• CadUtility::MassUnit mass_unit - This readonly attribute describes the mass
units used in the model.

• CadUtility::LengthUnit length_unit - This readonly attribute describes the
length units used by all entities in the model.

2.2.2.2 Model Operations

bounding_box For a given sequence of entity types entity_types, this operation returns
a bounding box that describes the spatial limits of all the entities of the
specified type. For example, a reference to a Body type would return a
bounding box for all geometric bodies within the model. entity_types is
a sequence of CORBA::TypeCode. This operation throws a
NotValidCadType exception if the type in the TypeCode is not a
valid geometric entity; that is, derived from CadFoundation::Entity.
Also throws an UnboundedEntity exception for unbounded geometric
entities. An empty entity_types sequence implies all types are to be
processed and a bounding box for all entities should be returned.

get_parameter_set Returns a sequence of parameters (Section 2.6.2, “DesignFeature
Interface,” on page 2-61) associated with this model.

model_children Returns a sequence of ModelInstances (Section 2.2.3, “ModelInstance
Interface,” on page 2-18) contained in this model (children). This
operation provides support for assemblies.

model_parents Returns a sequence of ModelInstances (Section 2.2.3, “ModelInstance
Interface,” on page 2-18) that contain this model (parents). This operation
provides support for assemblies.
March 2003 CAD Service: CadMain Module 2-15

2

top_level_entities Returns a sequence of the top level CAD entities of the specified type(s).
Type information is passed through a CadUtility::TypeCodeSeq that
provides a TCKind enumeration of CORBA types (only the types derived
from CadFoundation::Entity are valid geometric entities). The
returned top level entities should identify separate entities that can be
navigated to lower levels of the geometric hierarchy. These separate, top
level entities (for example, CadBrep::Body) are distinct from the
ModelInstances that support assemblies. They are provided as a
convenient handle to support visualization (through Tessellation) or to
navigate down the geometric hierarchy within the Model.

An empty CadUtility::TypeCodeSeq sequence implies all types are to
be processed.

file_name Returns the complete name, including absolute path (if possible), of the
physical file that stores this model. Returns an empty string if the model is
not defined in a file.

is_embedded Returns a Boolean that indicates if this Model is an embedded part (for
example, CATIA Dittos, ACAD blocks, etc.) or a non-embedded part (for
example, parts in a ProE assembly). If TRUE, save operations shall throw
an exception.

is_modified Returns a Boolean flag that is true if the model has been modified; that is,
the regeneration operation has been successfully called. False indicates
unmodified.

is_read_only Queries whether the model can be modified. True indicates that the model
can only be read. False indicates full read-write access.

is_update_pending Flag indicating if the model is currently being updated; that is, the model
has been modified, but not regenerated. TRUE indicates that there has
been a feature modification to the model (or part of the model) that
requires a regeneration operation request (see below).

model_layers Returns a sequence of the Layers defined in this model. Layers are
commonly used by CAD systems to group various CAD entities.

model_entity_groups Returns a sequence of the EntityGroups contained in this model. The out
parameter group_names is a sequence of names
(CadUtiltiy::StringSeq) in the same order as the EntityGroups in the
returned EntityGroupSeq.

modification_date Returns a string indicating the date of the latest modification for this
model. The ISO 8601 standard is mandatory, providing a format: YYYY-
MM-DD hh:mm:ssZ (for example, 2001-02-26 13:20:55Z). With Z
indicating “Zulu time” or Greenwich Mean Time (GMT).

model_name Returns a string providing a user-interpretable name of this model

new_persistent_ids Returns a sequence of new persistent IDs for any entities not referenced in
the specified sequence of persistent IDs, presumably new or modified IDs.
An implementation that does not support the PersistentIdentifiers
compliance point shall throw PidUnsupported when this operation is
invoked.
2-16 CAD Service, v1.1 March 2003

2

persistent_ids_status Returns a sequence of status enumerations (Section 2.2.7, “Data
Structures,” on page 2-24) that indicate if the input sequence of
persistent IDs are UNMODIFIED, MODIFIED, DELETED. The
returned sequence of status enumeration is in the same order as the
input sequence of persistent IDs. The “unmodified” status should be as
accurate and robust as possible; that is, any uncertainty should err
toward a “modified” status. If no determination can be made, an
UNDEFINED is returned for each reference. An implementation that
does not support the PersistentIdentifiers compliance point shall throw
PidUnsupported when this operation is invoked.

persistent_ids_to_entities Returns a sequence of entity object references
(CadFoundation::EntitySeq) corresponding to a sequence of
persistent Ids (CadUtility::StringSeq). The returned sequence of
entity objects is in the same order as the input sequence of persistent
IDs. A NULL item in this sequence means an entity was not available
for the corresponding persistent ID. An implementation that does not
support the PersistentIdentifiers compliance point shall throw
PidUnsupported when this operation is invoked.

regenerate If any of the entities contained in this model support
CadFeature::DesignFeatures and have been modified, this operation
forces a regeneration of modified entities in the model. Otherwise this
operation does nothing. Throws an exception
(RegenerationException) if the regeneration process is
unsuccessful.

return_to_last_valid_state Returns the model and all entities it contains to their state just after the
last successful regeneration. This does not provide an undo capability
due to the variability between native CAD systems. This operation
should be implemented completely above the native API (by saving /
stacking parameter values when they are modified). Throws an
exception (ReturnToValidFail) if unable to return to a valid state.

unique_entities Returns a sequence of the unique entities of the specified type in
sequential order. If the input type is not a valid geometric entity, throws an
exception (NotValidCadType) that indicates the incorrect types.

An empty input CadUtility::TypeCodeSeq shall result in all entities
being processed.

unique_entities_count Returns the count of unique entities of the specified type(s) in this model.
If the input type is not a valid geometric entity, throws an exception
(NotValidCadType) that indicates the incorrect types.

An empty input CadUtility::TypeCodeSeq shall result in all entities
being processed.

save_model Performs a save operation in the native CAD system to preserve any
changes in the model. Throws an exception (SaveFault), if the operation
fails.
March 2003 CAD Service: CadMain Module 2-17

2

2.2.3 ModelInstance Interface

This interface provides placement and component information to support assemblies.
Each ModelInstance is a Model and provides geometry services through the Model
that is returned from the ModelInstance::component() operation.

interface ModelInstance : CadFoundation:: Entity
{
CadUtility::TransformationStruct location()

raises (CadUtility::CadError);
// returns location information

Model component() raises (CadUtility::CadError);
// Returns the Model that defines this instance.
};

2.2.3.1 ModelInstance Operations

save_model_as Accepts a new string name to save the model in the native CAD system.
Throws an exception (SaveFault), if the operation fails.

close_model Operation that provides for any clean-up activities and closes the model in
the native CAD system. This operation does not save any changes.

new_entity_factory Operation that instances an EntityFactory (Section 2.2.4, “EntityFactory
Interface,” on page 2-19) to create new CAD entities in current model.

new_model_instance_factory Returns a ModelInstanceFactory (Section 2.2.5) that enables the
creation of new ModelInstances.

add_child Operation permits the insertion of a ModelInstance into the existing
Model. Typically used to support assemblies.

remove_child Operation permits the removal of a ModelInstance from the existing
Model. Typically used to support assemblies.

delete_uid_entity Operation deletes the geometric entity that is specified using a Unique ID.
Deletion of a high-level entity deletes all dependant, lower-level entities.

delete_entity Operation deletes the specified geometric entity
(CadFoundation::Entity, Section 2.3.2, “Entity Interface,” on
page 2-25). Deletion of a high-level entity deletes all dependant, lower-
level entities.

location Returns a CadUtility::TransformationStruct (Section 2.4.2, “Tessellation
Data Structures,” on page 2-33) that provides exact location information.

component Returns the model defining this instance.
2-18 CAD Service, v1.1 March 2003

2

2.2.4 EntityFactory Interface

The EntityFactory interface provides services to create multiple geometric entities.
These geometric entities are built upon NURBS defined structures (as described in
Section 2.4, “CadGeometry Module,” on page 2-32). Due to the differing underlying
CAD systems, the creation process is done in two steps. First, the various geometric
entities are indexed through a index_xxx operation. The returned indexes
(CORBA::long) can be used as input parameters to other index_xxx operations to
generate “interconnected” geometric entities. Second, create is called on the
EntityFactory to create the actual geometric entities in the native CAD system. This
interface provides CadUtility::CadError and IncorrectIndex exceptions for most
operations.

Vendors may implement this interface to allow the use of Unique IDs (that can be
accessed through the CadFoundation::Entity interface) in place of the index values
returned from a particular index_xxx operation. Support for this feature shall be clearly
identified in implementation notes from the vendor.

interface EntityFactory
 {

 void cleanup() raises (CadUtility::CadGeneralError);
 // clean-up any expensive book-keeping following multiple
 // index_xxxx(), create() cycles

 CadUtility::LongSeq index_nurbs_curves(
 in CadUtility::NurbsCurveStructSeq nurbs)
 raises (CadUtility::CadError);
 CadUtility::LongSeq index_edges (
 in CadUtility::LongSeq start_vertices,
 in CadUtility::LongSeq end_vertices,
 in CadUtility::LongSeq curve, in CadUtility::BooleanSeq sense)
 raises (IncorrectIndex, CadUtility::CadError);
 CadUtility::LongSeq index_vertices(
 in CadUtility::PointStructSeq pts)
 raises (CadUtility::CadError);

CadUtility::LongSeq index_faces(
 in CadUtility::LongSeqSeq oriented_eloops,
 in CadUtility::LongSeqSeq vertex_loops,
 in CadUtility::LongSeq surfaces)
 raises (IncorrectIndex, CadUtility::CadError);
 CadUtility::LongSeq index_edge_loops(
 in CadUtility::LongSeqSeq oriented_edges)
 raises (IncorrectIndex, CadUtility::CadError);
 CadUtility::LongSeq index_shells (
 in CadUtility::LongSeqSeq oriented_faces)
 raises (IncorrectIndex, CadUtility::CadError);

CadUtility::LongSeq index_bodies (
 in CadUtility::LongSeqSeq oriented_shells)
 raises (IncorrectIndex, CadUtility::CadError);
 CadUtility::LongSeq index_vertex_loops (
March 2003 CAD Service: CadMain Module 2-19

2

 in CadUtility::LongSeq vertices)
 raises (IncorrectIndex, CadUtility::CadError);
 CadUtility::LongSeq index_oriented_edges(
 in CadUtility::LongSeq edges)
 raises (IncorrectIndex, CadUtility::CadError);
 CadUtility::LongSeq index_oriented_faces(
 in CadUtility::LongSeq faces)
 raises (IncorrectIndex, CadUtility::CadError);
 CadUtility::LongSeq index_oriented_edgeloops(
 in CadUtility::LongSeq edgeloops, in CadUtility::BooleanSeq
sense)
 raises (IncorrectIndex, CadUtility::CadError);

CadUtility::LongSeq index_oriented_shells(
 in CadUtility::LongSeq shells,
 in CadUtility::in CadUtility::BooleanSeq sense)
 raises (IncorrectIndex, CadUtility::CadError);

 CadUtility::LongSeq index_surfaces(
 in CadUtility::NurbsSurfaceStructSeq nurbs)
 raises (CadUtility::CadError);

 void create (out TransientIdsStatusStructSeq status_flags,
 out TransientIdsEntityStructSeq final_entities)
 raises (CadUtility::CadError);
 // final creation step
 };
};

2.2.4.1 EntityFactory Operations

cleanup Operation cleans-up any indexing stored on the server between multiple
index and create cycles.

index_nurbs_curves Initial operation that generates transient Ids associated with the creation
of NURBS curves. Input parameter is a sequence of
NurbsCurveStruct and the associated transient Ids
(CadUtility::LongSeq) are returned.

index_edges Operation that generates transient Ids associated with the creation of
CadBrep::Edge objects. Input parameters require an Id sequence of
starting and ending Vertices (start_vertices and end_vertices) and
an Id sequence of curves (CadGeometry::Curve) with associated
senses (CadUtility::BooleanSeq). A sequence of associated transient
Ids for edges is returned.

index_vertices Operation that generates transient Ids associated with the creation of
CadBrep::Vertex objects. Input parameters require a sequence of
points (CadUtility::PointStructSeq). A sequence of associated
transient Ids for vertices is returned.
2-20 CAD Service, v1.1 March 2003

2

index_faces Operation that generates transient Ids associated with the creation of
CadBrep::Face objects. Input parameters require an Id sequence of
oriented edgeloops (CadBrep::OrientedEdgeLoop), an Id sequence
of vertex loop sequences (CadBrep::VertexLoop) and surfaces
(CadBrep::Surface). A sequence of associated transient Ids for faces
is returned.

index_edge_loops Operation that generates transient Ids associated with the creation of
CadBrep::EdgeLoop objects. Input parameters require an Id
sequence of oriented edges (CadBrep::OrientedEdgeSeq). A
sequence of associated transient Ids for edge loops is returned.

index_shells Operation that generates transient Ids associated with the creation of
CadGeometry::Shell objects. Input parameters require an Id
sequence of oriented faces (CadGeometry::OrientedFaceSeq). A
sequence of associated transient Ids for shells is returned.

index_bodies Operation that generates transient Ids associated with the creation of
CadBrep::Body objects. Input parameters require an Id sequence of
oriented shell sequences (CadBrep::OrientedShellSeq). A
sequence of associated transient Ids for bodies is returned.

index_oriented_edges Operation that generates transient Ids associated with the creation of
CadBrep::OrientedEdge objects. Input parameters require an Id
sequence of edges (CadBrep::EdgeSeq) and a sequence of booleans
(CadUtiltity::BooleanSeq) indicating the sense of each edge. A
sequence of associated transient Ids for oriented edges is returned.

index_oriented_faces Operation that generates transient Ids associated with the creation of
CadBrep::Face objects. Input parameters require an Id sequence of
faces(CadBrep::FaceSeq) and a sequence of booleans
(CadUtiltity::BooleanSeq) indicating the sense of each face. A
sequence of associated transient Ids for oriented faces is returned.

index_oriented_edgeloops Operation that generates transient Ids associated with the creation of
CadBrep::EdgeLoop objects. Input parameters require an Id
sequence of edges (CadBrep::EdgeSeq) and a sequence of booleans
(CadUtiltity::BooleanSeq) indicating the sense of each edgeloop. A
sequence of associated transient Ids for edge loops is returned.

index_oriented_shells Operation that generates transient Ids associated with the creation of
CadBrep::OrientedShell objects. Input parameters require an Id
sequence of shells (CadBrep::ShellSeq) and a sequence of booleans
(CadUtiltity::BooleanSeq) indicating the sense of each oriented
face. A sequence of associated transient Ids for oriented shells is
returned.
March 2003 CAD Service: CadMain Module 2-21

2

2.2.5 ModelInstanceFactory Interface

The ModelInstanceFactory interface provides the ability to create ModelInstances,
which are used to support assemblies. A ModelInstanceFactory is created from the
Model interface (Section 2.2.4, “EntityFactory Interface,” on page 2-19) and allows the
input of location information.

interface ModelInstanceFactory
{
CadMain::ModelInstance new_model_instance (

in CadUtility::TransformationStruct global_location) raises (CadUtility::CadError);
// Creates a new ModelInstance with initial transformation according the global
// coordinate system
};

2.2.6 Exceptions

The CadMain module supports a series of exceptions designed to be “self-describing”
including the widely used CadUtitltiy::CadError exception (Section 2.7, “CadUtility
Module,” on page 2-63).

exception RegenerationException
{

string reason;
any support;

};
exception ReturnToValidFail
{
string reason;

index_surfaces Operation that generates transient Ids associated with the creation of
CadGeometry::Surface objects. Input parameters require a
sequence of NURBS surfaces (CadUtility::
NurbsSurfaceStructSeq). A sequence of associated transient Ids
for surfaces is returned.

create This operation is invoked following the appropriate “indexing” of the
various CAD entities to be created. Two data structures are returned.
One sequence of status messages (TransientIdsStatusStructSeq
status_flags) details whether the creation of the desired entity was
successful. The second sequence provides a mapping of transient Ids
to successfully created CAD entities (TransientIdsEntityStructSeq
final_entities).

new_model_instance Returns a created ModelInstance using the input global_location
(CadUtility::TransformationStruct, Section 2.7, “CadUtility Module,” on
page 2-63).
2-22 CAD Service, v1.1 March 2003

2

};
exception UnboundedEntity {};

exception NotValidCadType
{

CadUtility::TypeCodeSeq bad_types;
};

exception SaveFault
{

 string error_text;
};

exception SaveAsFault{
 string error_text;

};

exception CloseFault{
 string error_text;

};

RegenerationException This exception is thrown whenever the native CAD system fails to
regenerate the Cad model. These exceptions are usually associated with
incorrect changes to the DesignFeatures of various CAD entities. The
reason string returns any native CAD system error message with the
support any data structure provided to identify the precise problem
area.

ReturnToValidFail The ReturnToValidFail exception returns a reason string that
contains any native CAD system error message.

UnboundedEntity Unbounded entities throw this exception for operations querying the
bounds (limits) of the entity.

NotValidCadType Identifies CORBA::TypeCode references that are not valid CAD
entities.

SaveFault Provides an error_text string to list any native CAD system error
messages.

SaveAsFault Provides an error_text string to list any native CAD system error
messages.

CloseFault Provides an error_text string to list any native CAD system error
messages.
March 2003 CAD Service: CadMain Module 2-23

2

2.2.7 Data Structures

enum PidStatus
{

UNMODIFIED,
MODIFIED,
DELETED,
UNDEFINED

};

struct TransientIdsStatusStruct
{

// data structures supporting EntityFactory create output mapping

long transient_id;
boolean success;
string warning;

};

struct TransientIdsEntityStruct
{

long transient_id;
CadFoundation::Entity valid_entity;

};

typedef sequence<TransientIdsStatusStruct>
TransientIdsStatusStructSeq;

typedef sequence<TransientIdsEntityStruct>
TransientIdsEntityStructSeq;

typedef sequence<PidStatus> PidStatusSeq;
typedef sequence<ModelInstance> ModelInstanceSeq;
typedef sequence<Model> ModelSeq;

2.3 CadFoundation Module

CadFoundation defines general elements and behavior that are shared by all CAD
geometry entities. It also provides interfaces that support grouping of CAD entities
through Layer (entities with shared color) or application specific groupings,
EntityGroup.

PidStatus Enumeration of possible states for CAD entities as indexed using a
persistent ID.

TransientIdsStatusStruct Data struct used by EntityFactory interface to identify successful create
operations and provide warning messages.

TransientIdsEntityStruct Data struct that provides references to the created Cad entities.
2-24 CAD Service, v1.1 March 2003

2

2.3.1 UML Diagram

Figure 2-3 UML Diagram of CadFoundation Module

2.3.2 Entity Interface

The Entity Interface is a base CAD object that provides common behavior and
properties that are inherited by specialized CAD objects. Most operations of this
interface provide a CadUtility::CadError exception.

module CadFoundation
{
// Encapsulates general elements and behavior that are shared by all model entities.

interface Entity : Attributable
{
// Provides CAD functionality + properties to be inherited by
// geometry objects

EntityPropsStruct get_entity_props() raises (CadUtility::CadError);
// operation providing grouped access to Entity properties

readonly attribute boolean is_top_level;
// Top level entity?

readonly attribute string native_label;

E nti ty
is _ to p _ le ve l : b o o le a n
na tive _ la b e l : s tr ing
na tive _ typ e : s tri ng

g e t_ e nti ty_ p ro p s ()
g e t_ p re s e nta tio n_ in fo ()
s e t_ c o lo r()
b o und ing _ b o x()
c a d _ m o d e l()
e uc lid e a n_ d im e ns io n()
is _ na tive _ va lid ()
is _ vis ib le ()
e n ti ty_ la ye rs ()
g e t_ uniq ue _ id ()
g e t_ p e rs is te nt_ id ()
re fe re nc e _ p o s i tio n()
g lo b a l_ lo c a tio n()
tra ns fo rm ()

< < C O R B A In te rfa c e > >

E nti tyG ro up
c o unt : lo ng
e n ti ty_ g ro up _ la b e l : s tr i ng

e n ti tie s ()
a d d _ e nti tie s ()
re m o ve _ e nti tie s ()

< <C O R B A In te rfa c e> >

A ttrib uta b le

g e t_ in fo ()
s e t_ in fo ()

< < C O R B A In te rfa c e > >

L a ye r
la ye r_ id e nti fi e r : s tr i ng

g e t_ c o lo r()
is _ vis ib le ()
s e t_ c o lo r()

< <C O R B A In te rfa c e> >

E nti tyP ro p s S truc t
is _ to p _ le ve l : b o o le a n
na tive _ la b e l : s tr ing
na tive _ typ e : s tri ng
is _ c o m m itte d : b o o le a n
d im e ns io n : lo ng
is _ na tive _ va lid : b o o le a n
is _ vis ib le : b o o le a n
un iq ue _ id : lo ng
p e rs is te n t_ id : s tr ing

< <C O R B A S tr uc t>>
March 2003 CAD Service: CadFoundation Module 2-25

2

// Provides a brief description of the entity using system-
// specific terminology. Not guaranteed to be unique within
// a model.

readonly attribute string native_type;
// The system-specific type name of this entity.

CadUtility::PresentationStruct get_presentation_info()
raises (CadUtility::CadError);

// Struct containing relevant presentation information.
void set_color(CadUtility::ColorStruct color) raises (CadUtility::CadError);
// set color of entity

CadUtility::BoundingBox bounding_box ()
raises (UnBoundedEntity, CadUtility::CadError);

// Returns an approximate BoundingBox around the entity.
// Returns an error if the entity is unbounded in one or more
// directions.

Object cad_model() raises (CadUtility::CadError);
// Returns the CadMain::Model object that contains this entity.
// Reference must be narrowed to CadMain::Model

long euclidean_dimension () raises (CadUtility::CadError);
// Returns the Euclidean dimension of the entity.

boolean is_native_valid () raises (CadUtility::CadError);
// Queries if the native entity is valid according to any internal
// checks provided by the CAD system.

boolean is_visible () raises (CadUtility::CadError);
// Queries whether the entity is visible or not (blanked, no-
// showed, hidden).

LayerSeq entity_layers () raises (CadUtility::CadError);
// Returns a sequence of the Layers that contain this entity

long get_unique_id() raises(UidUnsupported,CadUtility::CadError);
// Identifier that is guaranteed to be unique across all entities
// in a Model. This identifier is not persistent.

string get_persistent_id ()
raises (PidUnsupported, CadUtility::CadError);

// Returns an identifier intended to identify this entity between
// interface sessions.

CadUtility::PointStruct reference_position ()
raises (CadUtility::CadError);

// Returns a struct of the coordinates of a single, reference
// location on the entity that should be unique relative to
// neighboring entities.
2-26 CAD Service, v1.1 March 2003

2

CadUtility::TransformationStruct global_location()
raises (CadUtility::CadError);

 // Provides global coordinate location information

void transform (
in CadUtility::TransformationStruct transformation)

raises (NotIndependent, ReadOnlyEntity, CadUtility::CadError);
// Applies the specified transformation (rotations and
// translation) to the entity. Throws an exception if the entity
// cannot be transformed.

};

2.3.2.1 Entity Attributes

2.3.2.2 Entity Operations

is_top_level Boolean flag indicating whether this entity is a top level entity in the geometric
hierarchy. Convenient starting point for downward traversals.

native_label String that provides a brief description of the entity using system-specific
terminology that is not guaranteed to be unique within a model.

native_type String containing the native CAD system specific type name of this CAD entity.

get_entity_props Operation that returns a data struct encapsulating all Entity properties.
Minimizes the number of distributed calls needed to obtain basic Entity
properties. The returned EntityPropsStruct data struct is listed in
Section 2.3.6, “Exceptions and Data Structure,” on page 2-30.

get_presentation_info Returns a CadUtility::PresentationStruct containing all presentation
information on this Entity.

set_color Enables changes to geometric entity color.

bounding_box Returns a bounding box that describes the spatial limits of this entity. Should
throw an UnboundedEntity exception for unbounded geometric entities.

cad_model Returns a CORBA::Object object reference that contains a reference to the
Model associated with this entity. Clients will need to narrow this object
reference to the CadMain::Model scope.

euclidean_dimension Returns the Euclidean dimension of this entity. For example, returns a 2 for a
two-dimensional entity, and 3 for a three-dimensional entity.

is_native_valid Queries if the native CAD entity is valid according to any internal checks
provided by the CAD system. True = valid.

is_visible Queries whether the entity is visible or not. True = visible.

entity_layers Returns a sequence of the CadMain::Layers that contain this entity.
March 2003 CAD Service: CadFoundation Module 2-27

2

2.3.3 Attributable Interface

The Attributable interface provides functionality through inheritance to the Entity
(CadFoundation Module) interface. The purpose is to allow very flexible attribute
tagging for all geometric entities. The use of an “any” basic data structure is intended for
DynAny data transfer. This flexible data structure provides a mechanism for Engineering
Applications (as well as others) to “tag” or label the geometric entity with application
specific information (for example, cost, maximum load, other data).

interface Attributable
{
// General interface allowing geometry tagging
// The following operations should use DynAnys to extract
// attribute information

any get_info() raises (CadUtility::CadError);
 void set_info(in any dyn_value) raises (CadUtility::CadError);

};

get_unique_id Returns an identifier that is guaranteed to be unique across all entities in a
Model. This identifier is not persistent; that is, valid only during CadServer
Session. Throws a UidUnsupported exception if a unique identifier is not
supported.

get_persistent_id Returns an identifier that can be used to identify this entity between sessions.
An implementation that does not support the PersistentIdentifiers compliance
point shall throw PidUnsupported when this operation is invoked..

reference_position Returns a struct (CadUtility::PointStruct) of the coordinates of a single,
reference location on the entity that is unique relative to neighboring entities.

global_location Returns a struct (CadUtility::TransformationStruct) that provides global
coordinate location information.

transform Applies the specified transformation (rotations and translation) to the entity.
Transformation is specified in a CadUtility::TransformationStruct. Throws
an exception (NotIndependent or ReadOnlyEntity) if the entity cannot
be transformed.

get_info Returns an any that contains a DynAny. DynAny is a locality-based data
structure that enables run-time extensions (OMG document formal/01-02-45).
The DynAny is converted to a CORBA::any when passed between client and
server.

set_info Input any parameter sets the value for this interface.
2-28 CAD Service, v1.1 March 2003

2

2.3.4 EntityGroup Interface

This interface provides a mechanism to group entities within a model (not associated
with layering). Provides a mechanism for grouping whose semantics lie outside the
standard (for example, application-specific collections of geometry and text).

interface EntityGroup
{
// A generalized grouping of entities within a model that is not
// related to layering. Provides a mechanism for grouping whose
// semantics lie outside the standard, e.g. application-specific

readonly attribute long count;
// Number of entities in group.

readonly attribute string entity_group_label;
// a label for this entity group

CadFoundation::EntitySeq entities ()
raises (CadUtility::CadError);

// Returns a sequence of entities defined in this group.

void add_entities (in CadFoundation::EntitySeq entities)
raises (CadUtility::CadError);

// Adds the specified entities to this group.

void remove_entities (in CadFoundation::EntitySeq entities)
raises (CadUtility::CadError);

// Removes the specified entities from this group.
// Does not delete the entity objects.
};
March 2003 CAD Service: CadFoundation Module 2-29

2

2.3.4.1 EntityGroup Attributes

2.3.4.2 EntityGroup Operations

2.3.5 Layer Interface

Layers are used to organize and group various CAD entities. They share common
presentation properties.

interface Layer : EntityGroup
{
// An collection of entities that corresponds to the layers.

readonly attribute string layer_identifier;
// string identifier of layer.

CadUtility::ColorStruct get_color()
raises (CadUtility::CadError);

void set_color(in CadUtility::ColorStruct new_color)
raises (CadUtility::CadError);

// change the color of all entities in this layer

boolean is_visible() raises (CadUtility::CadError);
};

2.3.6 Exceptions and Data Structure

The following exceptions are defined within CadFoundation module:

count Readonly attribute that provides a count of the entities in this group.

entity_group_label Readonly attribute that provides a label for the entity group.

entities Returns a sequence of entities defined in this group.

add_entities Adds an input sequence of entities (CadFoundation::EntitySeq) to this
group.

remove_entities Removes the input sequence of entities (CadFoundation::EntitySeq) from
this group, but does not delete the entities.

layer_identifier A readonly attribute indicating the string identifier of the layer.

get_color Returns a struct (CadUtility::ColorStruct, Section 2.7, “CadUtility Module,”
on page 2-63) providing color information.

set_color Operation changes the color of all entities in the layer.

is_visible Boolean flag indicating visibility of this layer. TRUE = visible.
2-30 CAD Service, v1.1 March 2003

2

exception UidUnsupported {};

exception PidUnsupported {};

exception GuiUnsupported {};

exception UnBoundedEntity {
string unbounded_name;

};

exception NotIndependent {
string dependency;

};
exception ReadOnlyEntity{};

The following data struct (EntityPropsStruct) supports access to many of a CAD
entity’s properties through a single operation. The various data members correspond to
the access operations reviewed in Section 2.3.2, “Entity Interface,” on page 2-25.

struct EntityPropsStruct
{
// Properties of Entity in a struct

boolean is_top_level;
string native_label;

 string native_type;
 boolean is_committed;
 CadUtility::PresentationStruct presentation_info;
 long euclidean_dimension;
 boolean is_native_valid;
 boolean is_visible;
 long unique_id;
 string persistent_id;
 CadUtility::PointStruct position;

};

UidUnsupported Exception indicates that a unique identifier is not supported by this
implementation.

PidUnsupported Exception thrown when the client invokes an operation that requires the
PersistentIdentifiers compliance point on an implementation that does not
support it.

GuiUnsupported Exception thrown when the client invokes an operation that requires the
UserInterface compliance point on an implementation that does not support it.

UnBoundedEntity Exception indicates that the entity is unbounded in at least one dimension.

NotIndependent Exception indicates that this entity is dependent on other entities. Its
geometry characteristics must be derived from other entities. The string
dependency defines the dependency on other entities.

ReadOnlyEntity Exception indicates that this entity can not be modified.
March 2003 CAD Service: CadFoundation Module 2-31

2

2.4 CadGeometry Module

This module contains basic geometric data structures and interfaces that are used
throughout the CAD Services interfaces. The two primary interfaces in this module are
Surface and Curve. They inherit common functionality through the
CadFoundation::Entity interface. A common use for either of these interfaces is to
establish the exact three-dimensional location of the surface or curve through a point
query projection. These operations receive a sequence of three-dimensional point
locations and return a sequence of points closest to the particular curve or surface. Most
operations of this interface provide a CadUtility::CadError exception.

2.4.1 UML Diagram

Figure 2-4 UML Diagram of CadGeometry Interfaces and Data Structures

U v S tru c t

u : d o u b le
v : d o u b le

(fro m C a d U t i l i t y)

< < C O R B A S tru c t> >

E n ti ty
(fro m C a d F o u n d a t io n)

< < C O R B A In te r fa c e > >

C u rv e
i s _ b o u n d e d : b o o le a n
i s _ c lo s e d : b o o le a n

g e t_ c u rv e _ p ro p s ()
le n g th ()
ra n g e ()
e v a lu a te _ p o i n ts ()
e v a lu a te _ c u rva tu re s ()
e v a lu a te _ n o rm a ls ()
i n te rs e c t_ ra y ()
i s _ p la n a r()
n u rb s _ re p re s e n ta ti o n ()
p ro je c t_ p o i n ts _ to _ n e a re s t()
p ro je c t_ p o i n t_ to _ n e a re s t()
te s s e lla te ()

< < C O R B A In te r fa c e > >

u rfa c e
i s _ b o u n d e d _ u : b o o le a n
i s _ b o u n d e d _ v : b o o le a n

g e t_ s u r fa c e _ p ro p s ()
ra n g e _ u ()
ra n g e _ v ()
i s _ c lo s e d _ u ()
i s _ c lo s e d _ v()
a re a ()
e v a lu a te _ p o i n ts ()
e v a lu a te _ p o i n t()
e v a lu a te _ c u rva tu re s ()
e v a lu a te _ n o rm a ls ()
n u rb s _ re p re s e n ta ti o n ()
te s s e lla te ()
p ro je c t_ p o i n ts _ to _ n e a re s t()
p ro je c t_ p o i n t_ to _ n e a re s t()
i n te rs e c t_ ra y ()
i s _ p la n a r()

< < C O R B A In te r fa c e > >

C o n n e c te d F a c e T e s s e lla ti o n S tru c t
o b j_ re f : O b j e ct
m a x _ ve r te x _ n u m b e r : lo n g

< < C O R B A S tru c t> >

F a c e T e s s e lla t i o n S tru c tS e q
< < C O R B A Ty p e d e f> >

a l l_ fa c e s

E d g e T e s s e ll a t i o n S tru c tS e q
< < C O R B A T y p e d e f> >

F a c e T e s s e lla t i o n S tru c t
< < C O R B A S tru c t> >

+ e d g e s

T e s s P a ra m e te rs S tru c t
m a x _ c h o rd : d o u b le
m a x _ s i z e : d o u b le
a n g le : d o u b le

< < C O R B A S tru c t> >

T e s s T y p e
W IR E F R A M E
V IS U A L IZ A T IO N

< < C O R B A E n u m > >

n d e xS e q
< < C O R B A T y p e d e f> >

U v S tru c tS e q
(f rom C a d U t i l i t y)

< < C O R B A Ty p e d e f> >

V e c to rS tru c t

i : d o u b le
j : d o u b le
k : d o u b le

(fro m C a d U t i l i t y)

< < C O R B A S tru c t> >

V e c to rS tru c tS e q
(fro m C a d U t i l i t y)

< < C O R B A T y p e d e f> >

E d g e T e s s e lla t i o n S tr u c t
o b j_ r e f : O b j e ct

< < C O R B A S tru c t> >

e s s e ll a ti o n S tr u c t
b j_ r e f : O b j e c

< < C O R B A S tru c t> >

+ fa c e _ te s s e lla ti o n

+ t_ typ e

+ in d e x _ li s t

+ u v

n o r m a ls

P o in tS tru c tS e q
(f rom C a dU t i l i t y)

< < C O R B A T y p e d e f> >

+ e p ts+ xy z

In d e xS tru c t
i 1 : lo n g
i2 : lo n g
i3 : lo n g

< < C O R B A S tru c t> >
2-32 CAD Service, v1.1 March 2003

2

2.4.2 Tessellation Data Structures

Tessellation data structures are commonly used for visualization of the CAD geometry,
but these structures become significantly more useful if developed using specified
parameters that can tailor the data structure to the application. These data structures
capture some information about the underlying geometry and allow clients to easily
access common groupings of information.

Please see Appendix A for an example of the Tessellation indexing.

module CadGeometry
{

// Fundamental Geometry definitions

// forward references
interface Curve;
interface Surface;

typedef sequence<Curve> CurveSeq;
 typedef sequence<Surface> SurfaceSeq;

enum TessType
{

// an enumeration of possible types of tessellations

WIREFRAME,
VISUALIZATION

};

struct TessParametersStruct
{
// parameters used with the Tessellation creation

double max_chord;
// maximum deviation between triangle center and surface

double max_size;

double angle;
// deviation between normals of facets - in degrees
};

struct IndexStruct
{

// struct supporting triangle specification
// i1 connects to i2, i2 to i3, and i3 to i1

long i1;
long i2;
long i3;

};
March 2003 CAD Service: CadGeometry Module 2-33

2

 typedef sequence<indexStruct> IndexStructSeq;

 struct EdgeTessellationStruct
 {
 // edge tessellation

 Object obj_ref;
 // Object reference to underlying topology

 CadUtility::PointStructSeq epts;
 // sequence of pts defining edge tessellation (first struct is
 // the starting pt)

 CadUtility::LongSeq vertex_number;
 // index numbering for all points - relating to epts above

 CadUtility::DoubleSeq t_values;
 //sequence of doubles for t parameters
 };
 typedef sequence<EdgeTessellationStruct> EdgeTessellationStructSeq;

 struct TessellationStruct
 {
 // basic tessellation structure, please see Appendix A for indexing

 Object obj_ref;
 // Object reference to underlying topology

 TessType t_type;
 // Application specific type for this tessellation

 CadUtility::PointStructSeq xyz;
 // sequence of 3D pts defining triangles on the Face(length=npts)

 CadUtility::LongSeq face_pts;
 // index numbering for all points - relating to xyz above

 CadUtility::VectorStructSeq normals;
 // sequence of normals at vertices

 CadUtility::UvStructSeq uv;
 // uv parameters associated with the pts (length = npts)

 IndexStructSeq index_list;
 // Index list is a set of 3 values (i1,i2,i3) as pointers into the
 // points/normals/uv values to define a triangle. To allow pt
 // sharing across faces the vertex_number sequence is
 // consistent with face_pts. Please see Appendix A.

};
2-34 CAD Service, v1.1 March 2003

2

 struct FaceTessellationStruct
 {

 EdgeTessellationStructSeq edges;
 // sequence of edge tessellations

 TessellationStruct face_tessellation;
 // Face - specific tessellation data
 };

 typedef sequence<FaceTessellationStruct> FaceTessellationStructSeq;

 struct ConnectedFaceTessellationStruct
 {

 Object obj_ref;
 // Object reference to underlying topology

 long max_vertex_number;
 // total vertices used for tessellation (all faces)

 FaceTessellationStructSeq all_faces;
 // all face tessellations supporting this body
 };

TessType An enumeration of possible types of tessellations including
WIREFRAME and VISUALIZATION. The WIREFRAME option will
use a minimal number of triangles to represent the general shape of the
geometric entity. The VISUALIZATION option will use (usually) a
large number of triangles to closely conform to the surface of the
geometric entity.

TessParametersStruct A structure of parameters commonly used for the creation of the
tessellation especially for various applications.

• max_chord - is the maximum deviation between triangle center
and the surface.

• max-size - is the maximum allowable length of a segment of a
triangular facet for face tessellation and maximum allowable
length of a segment for curve and edge tessellation.

• angle - is the deviation between normals of facets. Angle units
are degrees.

IndexStruct A structure supporting the triangle specification (i1 connects to i2, i2 to
i3, and i3 to i1). See Appendix A.
March 2003 CAD Service: CadGeometry Module 2-35

2

EdgeTessellationStruct A tessellation of an edge containing:

• obj_ref is a CORBA::Object reference to the underlying edge.

• epts is the sequence of points defining the edge tessellation. First
PointStruct is the starting point. EdgeTessellationStruct
coordinate data within FaceTessellationStruct shall be
guaranteed to be exactly coincident with corresponding
face_tessellation coordinates.

• vertex_number is a sequence of longs that define the
numbering (indexing) for ept.

• t_values is a sequence of doubles providing access to underlying
edge t_parameters. These t_parameters (tessellated
parameters) are the representation of the curve in model space
(transformed from Cartesian coordinates). The sequence provides
starting and end locations for the model space edge curve.

TessellationStruct Basic tessellation data structure used with FaceTessellationStruct
and ConnectedFaceTessellationStruct, also supports tessellation
of Surface interfaces.

• obj_ref provides a CORBA::Object reference to underlying
geometry.

• t_type is an application specific tag indicating the end-use of the
tessellation.

• PointStructSeq xyz is a sequence of 3D pts defining triangles

• CadUtility::LongSeq face_pts provides index numbering for
all points - relating to xyz above.

• VectorStructSeq normals is a sequence of normals at vertices.

• CadUtility::UvStructSeq uv is a sequence of uv parameters
associated with the pts.

• IndexStructSeq index_list provides index numbering for each
triangle. Please see Appendix A, “Tessellation Indexing” for a
complete example of indexing.
2-36 CAD Service, v1.1 March 2003

2

2.4.3 Surface Interface

The Surface interface inherits functionality from the Entity interface (in the
CadFoundation module). Most “properties” of this interface can be accessed either
individually or through a single “get_surface_props” call that returns a
SurfacePropsStruct data structure.

struct SurfacePropsStruct{
 boolean is_bounded_u;
 boolean is_bounded_v;
 CadUtility::RangeStruct range_u;
 CadUtility::RangeStruct range_v;
 boolean is_closed_u;
 boolean is_closed_v;
};

struct SurfaceCurvatureStruct
{
 double min_curvature;
 double max_curvature;
 CadUtility::VectorStruct min_princ_direction;
 CadUtility::VectorStruct max_princ_direction;
};
typedef sequence<SurfaceCurvatureStruct> SurfaceCurvatureStructSeq;

interface Surface : CadFoundation::Entity
{
 SurfacePropsStruct get_surface_props()
 raises (CadUtility::CadError);

FaceTessellationStruct Tessellation data structure for Faces that encapsulates all
CadBrep::Face and CadBrep::Edge tessellation data.

• EdgeTessellationStructSeq edges provides a sequence of
edge tessellations.

• TessellationStruct face_tessellation provides Face specific
tessellation information.

ConnectedFaceTessellationStruct Tessellation data structure that encapsulates the series of Faces and
Edges that comprise the Body.
ConnectedFaceTessellationStructs shall be “water-tight” (that is,
joined across faces).

• Object obj_ref provides an object reference to the underlying
Body.

• long max_vertex_number provides a count of the total
vertices used for tessellation (all faces).

• FaceTessellationStructSeq all_faces provides all face
tessellations supporting this body.
March 2003 CAD Service: CadGeometry Module 2-37

2

 // recommended access operation for surface properties

 readonly attribute boolean is_bounded_u;
 readonly attribute boolean is_bounded_v;

 CadUtility::RangeStruct range_u() raises (CadUtility::CadError);
 CadUtility::RangeStruct range_v() raises (CadUtility::CadError);

 boolean is_closed_u() raises (CadUtility::CadError);
 boolean is_closed_v() raises (CadUtility::CadError);

 double area (inout double accuracy) raises (CadUtility::CadError);
 // Evaluates the area to a specified accuracy.

 CadUtility::PointStructSeq evaluate_points (
 in CadUtility::UvStructSeq uv_parameters,
 in boolean direction_sense_u,in boolean direction_sense_v,
 in long derivative_count,
 out CadUtility::VectorStructSeqSeqSeq derivatives)
 raises (CadUtility::CadError);
 // Evaluates a surface at the specified parameters.

 CadUtility::PointStruct evaluate_point (
 in CadUtility::UvStruct uv_point,
 in boolean direction_sense_u,in boolean direction_sense_v,
 in long derivative_count,
 out CadUtility::VectorStructSeqSeq derivatives)
 raises (CadUtility::CadError);
 // Single point operation (not recommended).

 SurfaceCurvatureStructSeq evaluate_curvatures (
 in CadUtility::UvStructSeq uv_parameters,

 in boolean direction_sense_u,in boolean direction_sense_v)
 raises (CadUtility::CadError);
 // Evaluates the curvature of a surface at the specified
 // parameters.

 CadUtility::VectorStructSeq evaluate_normals (
 in CadUtility::DoubleSeq u_parameters,
 in CadUtility::DoubleSeq v_parameters,
 in boolean direction_sense_u,in boolean direction_sense_v)
 raises (CadUtility::CadError);
 // Evaluates the normal of a surface at the specified parameters.

 CadUtility::NurbsSurfaceStruct nurbs_representation (
 inout double tolerance,
 in double low_bound_u, in double high_bound_u,
 in double low_bound_v,in double high_bound_v)
 raises (CadUtility::CadError);
 // Returns a NURBS surface that represents this surface.
2-38 CAD Service, v1.1 March 2003

2

 // If NURBS representation is exact, tolerance will be returned as
 // a negative (geometric=-1 and parametric=-2)

 CadGeometry::Tessellation tessellate (in TessType t_type,
 inout TessParametersStruct params, out boolean flag)
 raises (CadUtility::CadError);
 // Tessellates the surface to the specified TessParameters.
 // If Flag is true the TessParameters were changed (original
 // values could not be achieved)

 boolean project_points_to_nearest (
 in CadUtility::PointStructSeq points,
 out CadUtility::UvStructSeq params,
 out CadUtility::PointStructSeq projected_points,
 out CadUtility::WarningStructSeq warnings)
 raises (CadUtility::CadError);
 // Projects each specified point to the nearest point on the
 // surface.

 boolean project_point_to_nearest (
 in CadUtility::PointStruct point,
 out CadUtility::UvStruct param,
 out CadUtility::PointStruct projected_point,
 out string warning_string)
 raises (CadUtility::CadError);
 // Projects a single point - NOT recommended

 boolean intersect_ray (in CadUtility::RayStruct i_ray,
 in double tolerance,

 out CadUtility::PointStructSeq intersection_points,
 out CadUtility::UvStructSeq intersection_parameters)

raises (CadUtility::CadError);
// Evaluates the intersections between the specified ray and

 // the surface.

boolean is_planar (out CadUtility::RayStruct ray)
raises (CadUtility::CadError);

// Queries if the surface is planar.
 // If so, the returned ray defines a point and direction for

 // this plane.

};

2.4.3.1 Surface Attributes

is_bounded_u Boolean attribute indicating if the Surface is bounded in u parameter space.
True equals bounded.

is_bounded_v Boolean attribute indicating if the Surface is bounded in v parameter space.
True equals bounded.
March 2003 CAD Service: CadGeometry Module 2-39

2

2.4.3.2 Surface Operations

get_surface_props Returns a SurfacePropsStruct data structure providing range, closure and
bounding information in a single operation. This is the recommended approach
to obtain basic information about the Surface instance. Property errors will be
identified by throwing a CadUtility::CadError.

range_u Returns a CadUtility:: RangeStruct containing minimum and maximum
values in u parameter space.

range_v Returns a CadUtility:: RangeStruct containing minimum and maximum
values in v parameter space.

is_closed_u Returns a Boolean that indicates if the Surface is closed in u parameter space.

is_closed_v Returns a Boolean that indicates if the Surface is closed in v parameter space.

area Operation determining the area of the Surface to a specified accuracy.
Accuracy is an inout parameter that requests a specific level of accuracy. Many
CAD systems may not support this accuracy feature and shall return a negative
value to indicate no support for this accuracy request. If supported, the input
accuracy value indicates the requested accuracy and the output value indicates
the achieved level. The interpretation of the accuracy parameter is
implementation defined.

evaluate_points Operation that takes a sequence of u, v parameters (UvStructSeq) and returns
the three-dimensional coordinates through a sequence of PointStructs. Also
returned is a CadUtility::VectorStructSeqSeqSeq containing surface
partial derivatives. The derivative_count in parameter specifies the
maximum partial derivative desired for each UvStruct. For each parameter pair,
derivatives, Sij, are returned where i corresponds to the number of times with
respect to U and j corresponds to the number of times with respect to V. All
partial derivative combinations, Sij are returned for 0 <= (i + j) <= numDerivs.
If numDerivs = 0 (the default), no derivative information is returned.

evaluate_point Not recommended. This operation is a single point evaluation version of the
above operation. This operation is provided as a convenience to developers, but
should be used sparingly. For performance reasons, grouping requests through
evaluate_points is recommended.

evaluate_curvatures Evaluates the curvature of a surface at the specified u, v parameters and returns
the curvature information in a SurfaceCurvatureStructSeq This sequence
contains minimum and maximum curvature information as well as principle
directions. The direction_sense arguments indicate the direction this surface
should be evaluated from if a discontinuity exists at the specified parameter. If
TRUE, the evaluation is from the lower parametric side; if FALSE, from the
higher parametric side.

evaluate_normals Evaluates the normal of a surface at the specified parameters. The
direction_sense arguments indicate the direction this surface should be
evaluated from if a discontinuity exists at the specified parameter. If TRUE,
the evaluation is from the lower parametric side; if FALSE, from the higher
parametric side.
2-40 CAD Service, v1.1 March 2003

2

nurbs_representation Returns a NurbsSurfaceStruct that represents this surface within the
specified tolerance between the specified bounds. The parameterization of the
returned surface will likely be different than the original surface. If NURBS
representation is exact, tolerance will be returned as a negative (geometric=-1
and parametric=-2).

tessellate Tessellates the surface to the specified TessParametersStruct and
TessType input structure. If flag is true the TessParametersStruct were
changed (original values could not be achieved). Tessellation indexing is
covered in Appendix A.

project_points_to_nearest Projects a sequence of points (PointStruct) to the nearest point on the
surface. Returns a sequence of parameter values (UvStructSeq)
corresponding to the specified points. Also returns a sequence of the projected
points. The returned boolean indicates if any warnings have been thrown with
the warnings captured in the WarningSeq.

project_point_to_nearest A single point projection operation similar to project_points_to_nearest.
For performance reasons, this operation is not recommended for applications
where groups of points are evaluated.

intersect_ray Evaluates the intersections between the specified ray
(CadUtility::RayStruct) and the surface. The tolerance defines how close
the ray must come to the surface to be considered an intersection. Returns
TRUE if any intersections were found, FALSE if not. Any intersections are
returned in two sequences: one of 3D points (CadUtility::PointStructSeq)
and one of corresponding parameters on the surface
(CadUtiltiy::UvStructSeq).

is_planar Queries if the surface is planar. If so, the returned ray
(CadUtility::RayStruct) defines a point and direction for this plane.
March 2003 CAD Service: CadGeometry Module 2-41

2

2.4.4 Data Structures Supporting Surface

2.4.5 Curve Interface

This interface contains basic operations on Curves. Various data structures support this
interface and are described in this section.

struct CurvePropsStruct
 {
 // Properties of a Curve

 boolean is_bounded;
 boolean is_closed;
 CadUtility::RangeStruct range;
 };

 interface Curve : CadFoundation::Entity
 {
 CurvePropsStruct get_curve_props()
 raises (CadUtility::CadError);
 // recommended access operation for curve properties

 readonly attribute boolean is_bounded;
 readonly attribute boolean is_closed;

SurfacePropsStruct This structure provides all of the basic properties of a surface in a single data
structure:

• is_bounded_u = Boolean value indicates whether the surface is
bounded in u parameter space.

• is_bounded_v = Boolean value indicates whether the surface is
bounded in v parameter space.

• range_u = CadUtility::RangeStruct that indicates range of u values.

• range_v = CadUtility::RangeStruct that indicates range of v values.

• is_closed_u = Boolean value indicates whether the surface is closed in
u parameter space.

• is_closed_v = Boolean value indicates whether the surface is closed in
v parameter space.

SurfaceCurvatureStruct This structure provides surface curvature value and direction information:

• min_curvature = double indicates minimum curvature

• max_curvature = double indicates maximum curvature

• min_princ_direction = CadUtility::VectorStruct indicating
minimum principle direction of the surface curvature.

• max_princ_direction = CadUtility::VectorStruct indicating
maximum principle direction of the surface curvature.
2-42 CAD Service, v1.1 March 2003

2

 double length(inout double accuracy)
 raises (CadUtility::CadError);
 // Calculated length

 CadUtility::RangeStruct range() raises (CadUtility::CadError);

 CadUtility::PointStructSeq evaluate_points (
 in CadUtility::DoubleSeq parameters,
 in boolean direction_sense,
 in long derivative_count,
 out CadUtility::VectorStructSeqSeq derivatives)
 raises (CadUtility::CadError);
 // Evaluates a curve at the specified parameters.

 CadUtility::DoubleSeq evaluate_curvatures (
 in CadUtility::DoubleSeq parameters,
 in boolean direction_sense) raises (CadUtility::CadError);
 // Evaluates the curvature of a curve at the specified parameters.

 CadUtility::VectorStructSeq evaluate_normals (
 in CadUtility::DoubleSeq parameters,
 in boolean direction_sense) raises (CadUtility::CadError);
 // Evaluates the normal of a curve at the specified parameters.

 boolean intersect_ray (in CadUtility::RayStruct i_ray,
 in double tolerance,
 out CadUtility::PointStructSeq intersection_points,
 out CadUtility::DoubleSeq intersection_parameters)
 raises (CadUtility::CadError);
 // Evaluates the intersections between the specified ray and the
 // curve.

 boolean is_planar (out CadUtility::RayStruct ray)
 raises (CadUtility::CadError);
 // Queries if the curve is planar.
 // If so, the returned ray defines a point and direction for this
 // plane.

 CadUtility::NurbsCurveStruct nurbs_representation (
 inout double tolerance,
 in double t_min,in double t_max)
 raises (CadUtility::CadError);
 // Returns a NURBS curve that represents this curve within the
 // specified tolerance. If the representation is exact tolerance
 // will be returned as a negative value (geometric=-1 and parametric=-2)

 boolean project_points_to_nearest (
 in CadUtility::PointStructSeq points,
 out CadUtility::UvStructSeq params,
March 2003 CAD Service: CadGeometry Module 2-43

2

 out CadUtility::PointStructSeq projected_points,
 out CadUtility::WarningStructSeq warnings)
 raises (CadUtility::CadError);
 // Projects each specified point to the nearest point on the
 // curve.

 boolean project_point_to_nearest (
 in CadUtility::PointStruct point,
 out CadUtility::UvStruct param,
 out CadUtility::PointStruct projected_point,
 out string warning_string)
 raises (CadUtility::CadError);
 // Projects a single point (not recommended for points)

 CadGeometry::EdgeTessellationStruct tessellate (in double tolerance)
 raises (CadUtility::CadError);
 // Tessellates the curve to a specified chordal deviation
 // tolerance.
 };

2.4.5.1 Curve Attributes

2.4.5.2 Curve Operations

is_bounded Readonly boolean attribute that is TRUE if the Curve is bounded.

is_closed Readonly boolean attribute that is TRUE if the Curve is closed.

get_curve_props Operation supporting access to most common Curve properties in a single call.
Property errors will be identified by throwing a CadUtility::CadError.
Returns CurvePropsStruct that provides the following information:

• boolean is_bounded – indicates if the curve is bounded
(True = bounded)

• boolean is_closed – indicates if the curve is closed (True = closed)

• CadUtility::RangeStruct range provides coordinate limits for the
Curve.

range Operation returning a CadUtility::RangeStruct providing coordinate limits
for the Curve.

length Operation returning a calculated length of the Curve. Accuracy is an inout
parameter that requests a specific level of accuracy. Many CAD systems may
not support this accuracy feature and shall return a negative value to indicate
no support for this accuracy request. If supported, the input accuracy value
indicates the requested accuracy and the output value indicates the achieved
level. The interpretation of the accuracy parameter is implementation defined.
2-44 CAD Service, v1.1 March 2003

2

evaluate_points Operation that evaluates a curve at the specified parameters. Returns a
sequence of points at each corresponding parameter. The direction_sense
parameter indicates the direction this curve should be evaluated from if a
discontinuity exists at any of the corresponding parameters. If TRUE, the
evaluation is from the lower parametric side; if FALSE, from the higher
parametric side. If the derivative_count is greater than 0, the number of
requested derivatives will be returned for each parameter.

evaluate_curvatures Operation that evaluates the curvature of a curve at the specified parameters.
The direction_sense argument indicates the direction this curve should be
evaluated from if a discontinuity exists at the specified parameter. If TRUE,
the evaluation is from the lower parametric side; if FALSE, from the higher
parametric side.

evaluate_normals Operation that evaluates the normal of a curve at the specified parameters.
The direction_sense argument indicates the direction this curve should be
evaluated from if a discontinuity exists at the specified parameter. If TRUE,
the evaluation is from the lower parametric side; if FALSE, from the higher
parametric side.

intersect_ray Operation that evaluates the intersections between the specified ray and the
curve. The tolerance defines how close the ray must come to the curve to be
considered an intersection. Returns TRUE if any intersections were found,
FALSE if not. Any intersections are returned in two sequences: one of 3D
points (CadUtility::PointStructSeq) and one of corresponding parameters
on the curve (UvStructSeq).

is_planar Queries if the curve is planar. If so (return = TRUE) , the returned ray
(CadUtility::RayStruct) defines a point and direction for this plane. If the
curve is degenerate (a point) or linear, then a valid plane containing the entity is
returned even though there are an infinite number of planes that could contain
it.

nurbs_representation Returns a NURBS curve (CadUtility::NurbsCurveStruct) that represents
this curve within the specified tolerance between the specified bounds (t_min
and t_max). The parameterization of the returned curve will likely be different
than the original curve. If the representation is exact - tolerance will be returned
as a negative value.

project_points_to_nearest Projects each specified point in the points CadUtility::PointStructSeq to the
nearest point on the curve. Returns a sequence of parameter values
corresponding to the specified points. Also returns a sequence of the projected
points. Boolean indicates if any warnings have been thrown. Warnings are
captured in the warnings argument.

project_point_to_nearest Similar to the above operation, but for single point queries. For performance
reasons, this operation is not recommended for applications where groups of
points are projected.

tessellate Tessellates the curve to a specified chordal deviation tolerance. Returns an
EdgeTessellationStruct (Section 2.4.2, “Tessellation Data Structures,” on
page 2-33).
March 2003 CAD Service: CadGeometry Module 2-45

2

2.5 CadBrep Module

The module contains Boundary REPresentations (BREPs). BREPs are solid models such
as Bodies, Faces, Edges, and others. These solid models may expose parametric features
that allow shape regeneration through interfaces in the CadFeature module.

2.5.1 UML Diagram

Figure 2-5 UML Diagram of CadBrep Module Interfaces

2.5.2 BrepEntity Interface

This interface provides common, inherited behavior to the Boundary REPresentations in
this module. It contains the design features (or various parameters) that were used to
create or derived the solid module.

B re pE ntity

d e s ig n_ fe a ture s ()
is_ m a nifo ld ()

<<C O RB A Inte rfa ce >>E nti ty
(fro m C a d F o und a tio n)

<<C O RB A Inte rfa ce >>

B o d y

p ro p e rty_ info ()
o rie nte d _ she lls ()
uniq ue _ fa c e s()
uniq ue _ e d g e s()
uniq ue _ ve rtice s()
te sse lla te ()

<<C O RB A Inte rfa ce >>

S hell

a re a ()
is_ c lo s e d ()
o rie nte d _ fa ce s()
o rie nte d _ she lls ()
te sse lla te ()

<<C O RB A Inte rfa ce >>

V e rte x

g e t_ e d g e s()
lo ca tio n()
ve rte x_ lo o p s()

<<C O RB A Inte rfa ce >>

V e rte xL o o p

loo p_ ve rte x()
g et_ face ()

< <C O R BA Inte rfa ce >>

O rie nte d S he ll

g e t_ b o d y()
se nse ()
g e t_ she ll()

<<C O RB A Inte rfa ce >>

O rie nte d F a ce

g e t_ fa ce ()
se nse ()
g e t_ she ll()

<<C O RB A Inte rfa ce >>

F a ce

a re a ()
inte rse c t_ ra y()
is_ lo ca tio n_ ins id e ()
o rie nte d _ e d g e _ lo o p s()
o rie nte d _ fa ce s()
se nse ()
surfa ce ()
te sse lla te ()
ve rte x_ lo o p s()

<<C O RB A Inte rfa ce >>

E d g e L o o p

o rie nted _e dg e_ lo op s()
o rie nted _e dg es()

< <C O R BA Inte rfa ce> >
dg e

curve ()
e nd _ p a ra me ter ()
le ng th()
nurb s_ re pr ese ntatio n()
o rie nte d _e dg es()
se nse ()
s ta rt_ p a ra me ter ()
s ta rt_ ve rte x()
e nd _ ve rte x()
te sse lla te()
uni t_ ta ng ent()
uniq ue _ ve rtice s()

<<C O RB A Inte rfa ce >>

O r iente d E d g e

g e t_ e d g e ()
e d g e _ lo o p ()
s ta rt_ ve rte x()
e nd _ ve rte x()
o rie nte d _ fa ce ()
g e t_ fa ce ()
se nse ()

<<C O RB A Inte rfa ce >>

O r iente dE d g e L o o p

se nse ()
g e t_ fa ce ()
g e t_ e d g e _ lo o p ()

<<C O RB A Inte rfa ce >>
2-46 CAD Service, v1.1 March 2003

2

module CadBrep
{
interface BrepEntity : CadFoundation::Entity
 {

 CadFeature::DesignFeatureSeq design_features ()
 raises (CadUtility::CadError);
// Sequence of the design features directly involved with the
// creation of this entity.

boolean is_manifold() raises (CadUtility::CadError);
};
 typedef sequence<BrepEntity> BrepEntitySeq;

2.5.3 Body Interface

The Body interface represents a collection of CAD BREP entities defining a closed
volume or solid. It inherits design features from the BrepEntity interface (Section 2.5.2,
“BrepEntity Interface,” on page 2-46).

interface Body : BrepEntity
 {
 // A collection of Brep entities defining a closed volume

 PropertyStruct property_info(inout double accuracy)
 raises (CadUtility::CadError);
 // Returns a structure with property info

 OrientedShellSeq oriented_shells () raises (CadUtility::CadError);
 // Returns a sequence of the associated oriented shells. The first
 // oriented shell in the list defines the external or outside
 // boundary of the body.

 FaceSeq unique_faces() raises (CadUtility::CadError);
 // Returns a sequence of the unique faces composing this body

 EdgeSeq unique_edges() raises (CadUtility::CadError);
 // returns a sequence of the unique edges in this body

 VertexSeq unique_vertices() raises (CadUtility::CadError);

design_features Operation returns the sequence of design features
(CadFeature::DesignFeatureSeq) that define this BREP.
CadFeature::DesignFeatureSeq is described in Section 2.6.1, “UML
Diagram,” on page 2-61).

is_manifold Returns a boolean flag indicating if the BrepEntity is manifold. TRUE =
manifold. A Vertex always returns TRUE.
March 2003 CAD Service: CadBrep Module 2-47

2

 // returns a sequence of unique vertices in this body

 CadGeometry::ConnectedFaceTessellationStruct tessellate (
 in CadGeometry::TessType t_type,
 inout CadGeometry::TessParametersStruct params,
 out boolean flag)
 raises (CadUtility::CadError);
 // Tessellates the surface to the specified TessParameters
 // If Flag is true the TessParameters were changed
 };

2.5.4 Interface OrientedShell

An oriented shell must always be used by at least one body and therefore is never
independent. This interface inherits design features from the BrepEntity interface
(Section 2.5.2, “BrepEntity Interface,” on page 2-46).

interface OrientedShell : BrepEntity
 {
 // An oriented use of a shell.
 // An oriented shell must always be used by at least one body

 Body get_body () raises (CadUtility::CadError);
 // Returns the body that uses this oriented shell.

 boolean sense () raises (CadUtility::CadError);
 // Queries whether the direction of the oriented shell agrees with
 // the direction of the underlying shell.

 Shell get_shell () raises (CadUtility::CadError);

property_info For the input accuracy (units can be read from the CadMain::Model
interface for length, Section 2.2.2, “Model Interface,” on page 2-11),
this operation returns a PropertyStruct (described in Section 2.5.13, “Edge
Interface,” on page 2-57). Accuracy is an inout parameter that requests a
specific level of accuracy. Many CAD systems may not support this accuracy
feature and shall return a negative value to indicate no support for this
accuracy request. If supported, the input accuracy value indicates the
requested accuracy and the output value indicates the achieved level. The
interpretation of the accuracy parameter is implementation defined.

oriented_shells Returns a sequence of the associated oriented shells. The first oriented shell
in the sequence defines the external or outside boundary of the body.

tessellate Tessellates the body to the specified TessParametersStruct and TessType
input values. If flag is true, the TessParametersStruct were changed
(original values could not be achieved). Returns a
CadGeometry::ConnectedFaceTessellationStruct.
2-48 CAD Service, v1.1 March 2003

2

 // Returns the shell associated with this oriented entity.
 };

2.5.5 Shell Interface

A Shell interface is a collection of oriented faces. An independent, open Shell can
represent a skin or quilt. A closed Shell must always be used by a body. This interface
inherits design features from the BrepEntity interface (Section 2.5.2, “BrepEntity
Interface,” on page 2-46).

interface Shell : BrepEntity
 {
 // An collection of oriented faces.
 // An independent, open shell can represent a skin or quilt.

 double area(inout double accuracy)
 raises (CadUtility::CadError);
 // calculated shell area

 boolean is_closed() raises (CadUtility::CadError);

 OrientedFaceSeq oriented_faces () raises (CadUtility::CadError);
 // Returns a sequence of the oriented faces in this shell.
 // The ordering of the oriented faces in this sequence has no
 // significance.

 OrientedShellSeq oriented_shells () raises (CadUtility::CadError);
 // Returns a sequence of the oriented shells that use this shell.
 //Returns an empty sequence if this shell is independent.

 CadGeometry::FaceTessellationStructSeq tessellate (
 in CadGeometry::TessType t_type,
 inout CadGeometry::TessParametersStruct params,
 out boolean flag)
 raises (CadUtility::CadError);
 // Tessellates the surface to the specified TessParametersStruct
 // If Flag is true the TessParameters were changed
 };

get_body Returns the Body interface that uses this oriented shell.

sense Queries whether the direction of the oriented shell agrees with the
direction of the underlying shell.

get_shell Returns the Shell interface associated with this OrientedShell entity.
March 2003 CAD Service: CadBrep Module 2-49

2

2.5.6 Vertex Interface

An independent topological point that represents a point in three-dimensional space. This
interface inherits design features from the BrepEntity interface (Section 2.5.2,
“BrepEntity Interface,” on page 2-46).

interface Vertex : BrepEntity
 {
 // A topological point.

 EdgeSeq get_edges () raises (CadUtility::CadError);
 // Returns a sequence of the edges that use this vertex.
 // Returns an empty sequence if this vertex is independent.

 CadUtility::PointStruct location() raises (CadUtility::CadError);
 // Returns the 3D coordinates.

 VertexLoopSeq vertex_loops() raises (CadUtility::CadError);
 // Returns a sequence of the vertex loops that use this vertex.
 };

area For the input accuracy (units can be read from the CadMain::Model
interface for length, Section 2.2.2, “Model Interface,” on page 2-11),
this operation returns an area for the Shell (double). Accuracy is an inout
parameter that requests a specific level of accuracy. Many CAD systems may
not support this accuracy feature and shall return a negative value to indicate
no support for this accuracy request. If supported, the input accuracy value
indicates the requested accuracy and the output value indicates the achieved
level. The interpretation of the accuracy parameter is implementation
defined.

is_closed Returns a boolean flag indicating if the Shell is closed. TRUE = closed.

oriented_faces Returns a sequence of the OrientedFaces in this Shell. The ordering of the
OrientedFaces in this sequence has no significance.

oriented_shells Returns a sequence of the OrientedShell interfaces that use this Shell.
Returns an empty sequence if this Shell is independent.

tessellate Tessellates the shell to the specified TessParametersStruct and TessType
input values. If flag is true the TessParametersStruct were changed
(original values could not be achieved). Returns a sequence of
CadGeometry::FaceTessellationStruct.
2-50 CAD Service, v1.1 March 2003

2

2.5.7 VertexLoop Interface

A topological pole or point location used to define the boundary of a face. Examples
include the pole of a sphere or a cone. A vertex loop must always be used by a face and
therefore is never independent. This interface inherits design features from the
BrepEntity interface (Section 2.5.2, “BrepEntity Interface,” on page 2-46).

interface VertexLoop : BrepEntity
 {
 // A topological pole or point location used to define the
 // boundary of a face. Examples include the pole of a sphere or a
 // cone. A vertex loop must always be used by a face (never
 // independent).

 Vertex loop_vertex () raises (CadUtility::CadError);
 // Returns the vertex that defines the 3D location of this vertex
 // loop.

 Face get_face () raises (CadUtility::CadError);
 // Returns the face that uses this vertex loop.
 // Since vertex loops cannot be independent, this object must be
 // used to construct an edge loop before it is considered valid.
 };

2.5.8 EdgeLoop Interface

An interface to a region defined by a Edge Loop. This interface inherits design features
from the BrepEntity interface (Section 2.5.2, “BrepEntity Interface,” on page 2-46).

interface EdgeLoop : BrepEntity
 {
 OrientedEdgeLoopSeq oriented_edge_loops()
raises (CadUtility::CadError);
 // oriented edge loops that reference this edge loop

get_edges Returns a sequence of the edges that use this Vertex. Returns an empty
sequence if this Vertex is independent (for example, a 3D point).

location Returns the 3D coordinates of this Vertex.

vertex_loops Returns a sequence of the VertexLoops (Section 2.5.7, “VertexLoop
Interface,” on page 2-51) that use this Vertex.

loop_vertex Returns the Vertex that defines the 3D location of this VertexLoop.

get_face Returns the Face that uses this vertex loop. Since vertex loops cannot be
independent, this object must be used to construct an edge loop before it is
considered valid.
March 2003 CAD Service: CadBrep Module 2-51

2

 OrientedEdgeSeq oriented_edges() raises (CadUtility::CadError);
 // oriented edges that compose the edge loop
};

2.5.9 OrientedEdgeLoop Interface

An interface to an oriented region defined by a Edge Loop. This interface inherits design
features from the Entity interface (Section 2.5.2, “BrepEntity Interface,” on page 2-46).

interface OrientedEdgeLoop : BrepEntity
{

boolean sense() raises (CadUtility::CadError);
// true indicates agreement with the underlying edge loop

Face get_face() raises (CadUtility::CadError);
EdgeLoop get_edge_loop() raises (CadUtility::CadError);

};

2.5.10 OrientedFace Interface

An oriented use of a face. An oriented face must always be used by at least one shell and
therefore is never independent. This interface inherits design features from the
BrepEntity interface (Section 2.5.2, “BrepEntity Interface,” on page 2-46).

interface OrientedFace : BrepEntity
 {
 // An oriented use of a face.

 Face get_face () raises (CadUtility::CadError);
 // Returns the face associated with this oriented entity.

 boolean sense () raises (CadUtility::CadError);
 // Queries whether the direction of the oriented face agrees with
 // the direction of the underlying face.

oriented_edge_loops Returns the sequence of OrientedEdgeLoops that reference this edge loop.

oriented_edges Returns the sequence of OrientedEdges that reference this edge loop.

sense Boolean return that indicates agreement with the underlying edge loop.
TRUE = agreement.

get_face Returns the Face interface associated with this OrientedEdgeLoop.

get_edge_loop Returns the EdgeLoop interface associated with this OrientedEdgeLoop.
2-52 CAD Service, v1.1 March 2003

2

 Shell get_shell () raises (CadUtility::CadError);
 // Returns the shell that uses this oriented face.
 };

2.5.11 Face Interface

Interface to a region bounded by edges (triangular or quadrilateral). This interface
inherits design features from the Entity interface (Section 2.5.2, “BrepEntity Interface,”
on page 2-46).

interface Face : BrepEntity
 {
 readonly attribute CadUtility::RangeStruct range_u;
 readonly attribute CadUtility::RangeStruct range_v;
 // bounds of the active region of the face as defined by the inner
 // and outer loops.

 double area(inout double accuracy)
 raises (CadUtility::CadError);
 // Evaluates face area to a specified accuracy.

 boolean intersect_ray (in CadUtility::RayStruct ray,
 in double tolerance,
 out CadUtility::PointStructSeq intersection_points,
 out CadUtility::UvStructSeq intersection_parameters)
 raises (CadUtility::CadError);
 // Evaluates the intersections between the specified ray and the
 // face. The tolerance defines how close the ray must come to the
 // face to be considered an intersection. Returns TRUE if any
 // intersections were found, FALSE if not. Any intersections are
 // returned in two sequences: one of 3D points and one of
 // corresponding 2D parameter values on the face's surface.

 Location is_location_inside (in CadUtility::UvStruct location)
 raises (CadUtility::CadError);

 // Queries if a location (defined by uv parameter values) is in the
 //active region of the face as defined by the inner and outer
 // loops.

 OrientedEdgeLoopSeq oriented_edge_loops ()
 raises (CadUtility::CadError);

get_face Returns the face associated with this oriented entity.

sense Queries whether the direction of the oriented face agrees with the direction of
the underlying face.

get_shell Returns the shell that uses this oriented face.
March 2003 CAD Service: CadBrep Module 2-53

2

 // Returns a list of the associated OrientedEdgeLoop entities.
 // The first oriented edge loop in the list defines the outside
 // boundary of the face.

 OrientedFaceSeq oriented_faces () raises (CadUtility::CadError);
 // Returns a list of the associated OrientedFace entities.
 //Returns an empty list if this face is independent.

 boolean sense () raises (CadUtility::CadError);
 // Queries whether the direction of the face agrees with the
 // parametric (normal) direction of the underlying surface.

 CadGeometry::Surface surface () raises (CadUtility::CadError);
 // Returns the CadGeometry::Surface entity that defines the shape
 // of this face.

 CadGeometry::FaceTessellationStruct tessellate (
 in CadGeometry::TessType t_type,
 inout CadGeometry::TessParametersStruct params,
 out boolean flag)
 raises (CadUtility::CadError);
 // Tessellates the surface to the specified TessParameters
 // If Flag is true the TessParameters were changed

 VertexLoopSeq vertex_loops () raises (CadUtility::CadError);
 // Returns a sequence of any vertex loops defined on this face.
 };

2.5.11.1 Face Attributes

range_u Readonly attribute that returns a CadUtility::RangeStruct indicating
bounds of the active region of the face for the u parameters.

range_v Readonly attribute that returns a CadUtility::RangeStruct indicating
bounds of the active region of the face for the v parameters.
2-54 CAD Service, v1.1 March 2003

2

2.5.11.2 Face Operations

area For the input accuracy (units can be read from the CadMain::Model
interface for length, Section 2.2.2, “Model Interface,” on page 2-11), this
operation returns an area for the Face. Accuracy is an inout parameter that
requests a specific level of accuracy. Many CAD systems may not support this
accuracy feature and shall return a negative value to indicate no support for
this accuracy request. If supported, the input accuracy value indicates the
requested accuracy and the output value indicates the achieved level. The
interpretation of the accuracy parameter is implementation defined.

intersect_ray Evaluates the intersections between the specified ray and the face. The
tolerance defines how close the ray must come to the face to be considered an
intersection. Returns TRUE if any intersections were found, FALSE if not.
Any intersections are returned in two sequences: one of 3D points
(CadUtility::PointStructSeq intersection_points) and one of
corresponding 2D parameter values (CadUtility::UvStructSeq
intersection_parameters) on the face’s surface

is_location_inside Queries if a location (defined by uv parameter values-
CadUtility::UvStruct) is in the active region of the face as defined by the
inner and outer loops. The Location enumeration will indicate whether the
parameter values fall: INSIDE, ON_BOUNDARY, or OUTSIDE.

oriented_edge_loops Returns a list of the associated OrientedEdgeLoop entities. The first
oriented edge loop in the list defines the outside boundary of the face, if
applicable.

oriented_faces Returns a list of the associated CadBrep::OrientedFace entities. Returns
an empty list if this face is independent, for example, a trimmed surface.

sense Queries whether the direction of the face agrees with the parametric (normal)
direction of the underlying surface. Critical for determining the “outside” of a
face in a body, for example.

surface Returns the CadGeometry::Surface entity that defines the shape of this
face in model space.

vertex_loops Returns a sequence of any vertex loops defined on this face.

tessellate Tessellates the Face to the specified TessParametersStruct and TessType
input values. If flag is true, the TessParametersStruct were changed
(original values could not be achieved). Returns a
CadGeometry::FaceTessellationStruct.
March 2003 CAD Service: CadBrep Module 2-55

2

2.5.12 OrientedEdge Interface

Interface to an oriented use of an edge. An oriented edge must always be used by at least
one edge loop and therefore is never independent.

interface OrientedEdge : BrepEntity
{
 // An oriented use of an edge.

Edge get_edge () raises (CadUtility::CadError);
// Returns the edge associated with this oriented entity.

 EdgeLoop edge_loop () raises (CadUtility::CadError);
 // Returns the edge loop that uses this oriented edge.

Vertex start_vertex () raises (CadUtility::CadError);
// Returns the vertex that defines the start of this oriented edge.

Vertex end_vertex () raises (CadUtility::CadError);
// Returns the vertex that defines the end of this oriented edge.
// Takes into account any sense differences.

 OrientedFace oriented_face ()
 raises (MultipleFaces, CadUtility::CadError);

// Returns the oriented face that uses this oriented edge.
// Returns NULL if the oriented edge is in an independent edge
// loop or bounds an independent face. Raises an exception
// if more than one oriented face uses this oriented edge.

Face get_face() raises (MultipleFaces, CadUtility::CadError);

boolean sense () raises (CadUtility::CadError);
// Queries whether the direction of the oriented edge (from start
//to end vertices) agrees with the direction of the underlying
// edge.
};

get_edge Returns the edge associated with this oriented entity.

edge_loop Returns the edge loop that uses this oriented edge.

start_vertex Returns the vertex that defines the start of this oriented edge.

end_vertex Returns the vertex that defines the end of this oriented edge. Takes into
account any sense differences.

oriented_face Returns the oriented face that uses this oriented edge. Returns NULL if the
oriented edge is in an independent edge loop or bounds an independent face.
Raises an exception (MultipleFaces) if more than one oriented face uses
this oriented edge.
2-56 CAD Service, v1.1 March 2003

2

2.5.13 Edge Interface

An edge entity represents a trimmed portion of a curve. An edge that uses the same
vertex for both start and end vertices must be defined as a closed edge on a closed curve
starting and ending at this vertex. An independent edge can be used to represent a
trimmed curve.

interface Edge : BrepEntity
{

// A trimmed portion of a curve.An edge that uses the same vertex
// for both start and end vertices must be defined as a closed
// edge on a closed curve starting and ending at this vertex. An
// independent edge can be used to represent a trimmed curve.

CadGeometry::Curve curve() raises (CadUtility::CadError);
// Returns the curve that defines the shape of this edge in model
// space.

double length (inout double accuracy)
raises (CadUtility::CadError);

// Evaluates the length of the edge to a specified accuracy.

CadUtility::NurbsCurveStruct nurbs_representation (
inout double tolerance) raises (CadUtility::CadError);

// Returns a NURBS curve that approximates this edge within the
// specified tolerance.

OrientedEdgeSeq oriented_edges () raises (CadUtility::CadError);
// Returns a sequence of the oriented edges that use this edge
// Returns an empty sequence if this edge is independent.

boolean sense () raises (CadUtility::CadError);
// Queries whether the direction of the edge (from start to end
// vertices)agrees with the parametric direction of the underlying
// curve.

double start_parameter () raises (CadUtility::CadError);
// Returns the curve parameter corresponding to the start vertex.

double end_parameter () raises (CadUtility::CadError);
// Returns the curve parameter corresponding to the end vertex.

get_face Returns the associated face that uses this oriented edge. Returns NULL if the
oriented edge is in an independent edge loop or bounds an independent face.
Raises an exception (MultipleFaces) if more than one oriented face uses
this oriented edge.

sense Queries whether the direction of the oriented edge (from start to end vertices)
agrees with the direction of the underlying edge.
March 2003 CAD Service: CadBrep Module 2-57

2

Vertex start_vertex () raises (CadUtility::CadError);
// Returns the vertex that defines the start of this edge.

Vertex end_vertex () raises (CadUtility::CadError);
// Returns the vertex that defines the end of this edge.

CadGeometry::EdgeTessellationStruct tessellate (
in double tolerance)

raises (CadUtility::CadError);
// Tessellates the edge to a specified chordal deviation
// tolerance.

CadUtility::VectorStruct unit_tangent (in double parameter,

in boolean sense) raises (CadUtility::CadError);
// Evaluates the unit tangent vector of the edge at the specified
// parameter and sense. If the sense is TRUE, the tangent vector
// is oriented with the edge. If the sense is FALSE, the tangent
// vector is oriented in the opposite direction.

VertexSeq unique_vertices () raises (CadUtility::CadError);
// Returns a sequence of unique vertices used by this edge.

};

curve Returns the CadGeometry::Curve that defines the shape of this edge in
model space.

length Evaluates the length of the edge to a specified accuracy. Accuracy is an inout
parameter that requests a specific level of accuracy. Many CAD systems may
not support this accuracy feature and shall return a negative value to indicate
no support for this accuracy request. If supported, the input accuracy value
indicates the requested accuracy and the output value indicates the achieved
level. The interpretation of the accuracy parameter is implementation
defined.

nurbs_representation Returns a NURBS curve (CadUtility::NurbsCurveStruct) that
approximates this edge within the specified tolerance. The parameterization
of the returned curve will likely be different than the original edge. If the
representation is exact - tolerance will be returned as a negative value
(geometrically exact = -1 and parametrically exact = -2).

oriented_edges Returns a sequence of the oriented edges that use this edge. Returns an empty
sequence if this edge is independent.

sense Queries whether the direction of the edge (from start to end vertices) agrees
with the parametric direction of the underlying curve.

start_parameter Returns the curve parameter corresponding to the starting vertex. This is the
location of the starting vertex in model space (as transformed from the
Cartesian location).
2-58 CAD Service, v1.1 March 2003

2

2.5.14 Structures and Exceptions

2.5.14.1 PropertyStruct

A PropertyStruct is used to pass basic information on CAD system BREP entities.
Properties are clearly identifiable from the IDL naming with units set or determined at
the CadMain::Model interface. Error information from the native CAD system is
provided on derived properties.

struct PropertyStruct
 {
 double surface_area;
 double volume;
 double mass;

double solid_density;
 // Solid density is provide as a reference value

 CadUtility::VectorStruct centroid;
 CadUtility::VectorStruct intertial_moments;
 CadUtility::VectorStruct inertial_products;
 CadUtility::VectorStruct principle_x_axis;
 CadUtility::VectorStruct principle_y_axis;
 CadUtility::VectorStruct principle_z_axis;
 CadUtility::VectorStruct gyration_radii;
 // Items relative to the frame

CadUtility::VectorStruct inertial_moments_centroidal;
 CadUtility::VectorStruct inertial_products_centroidal;
 CadUtility::VectorStruct principle_moments_centroidal;
 CadUtility::VectorStruct gyration_radii_centroidal;
 // Items relative to the centroid

 double surface_area_error;
 double volume_error;

end_parameter Returns the curve parameter corresponding to the end vertex. This is the
location of the ending vertex in model space (as transformed from the
Cartesian location).

start_vertex Returns the vertex that defines the start of this edge.

end_vertex Returns the vertex that defines the end of this edge

tessellate Tessellates the edge to a specified chordal deviation tolerance. Returns an
CADGeometry::EdgeTessellationStruct.

unit_tangent Evaluates the unit tangent vector of the edge at the specified parameter and
sense. If the sense is TRUE, the tangent vector is oriented with the edge. If
the sense is FALSE, the tangent vector is oriented in the opposite direction.
Returns the unit tangent vector in a CadUtility::VectorStruct.

unique_vertices Returns a sequence of unique vertices used by this edge.
March 2003 CAD Service: CadBrep Module 2-59

2

 double mass_error;
// Error Values

};

2.5.14.2 MultipleFaces Exception

This exception supports the OrientedEdge interface by identifying instances
referencing more than one Face interface.

exception MultipleFaces
{
 FaceSeq multiples;
};

2.6 CadFeature Module

The CadFeature Module provides interfaces (through inheritance with
CadFoundation::Entity) that enable modification of native CAD entities. These
interfaces enable suppression of various design features and a parameter set of
expressions or values that define the geometry of the CAD entities. For example, a solid

surface_area Value indicates surface area of geometric body.

volume Volume of geometric body.

mass Mass of geometric body.

solid_density Solid density of body which is provided for reference.

centroid Centroid or center-of-mass for geometric body.

inertial_moments Moments of inertia relative to the frame.

inertial_products Inertial products relative to the frame.

principle_x_axis Principal x axis relative to the frame.

principle_y_axis Principal y axis relative to the frame

principle_z_axis Principal zaxis relative to the frame

gyration_radii Radius of gyration along each axis

inertial_moments_centroidal Moments of inertia relative to the centroid.

inertial_products_centroidal Inertial products relative to the centroid.

principle_moments_centroidal Moments of inertia along the principle axes through the center of gravity
of a geometric body.

gyration_radii_centroidal Radius of gyration through the centroid.

surface_area_error Error associated with surface area calculation.

volume_error Error associated with volume calculation.

mass_error Error associated with mass calculation.
2-60 CAD Service, v1.1 March 2003

2

model of a box might have an associated parameter set that uniquely defines the width,
length and height of the box. A client application might alter any of these parameters to
regenerate the geometry, but would be unable to specify new parameters.

2.6.1 UML Diagram

Figure 2-6 UML Diagram of CadFeature Module

2.6.2 DesignFeature Interface

A distinct step or node in the parametric definition of a model. It drives the creation of a
set of geometric entities in the fully evaluated form of the model.

module CadFeature
{

interface DesignFeature : CadFoundation::Entity
{

// A distinct step or node in the parametric definition of a model.
// It drives the creation of a set of Brep entities in the fully-
// evaluated form of the model.

boolean is_suppressed() raises (CadUtility::CadError);
void set_suppression() raises (CadUtility::CadError);
ParameterSeq get_parameter_set() raises (CadUtility::CadError);

};

is_suppressed Operation that indicates whether a design feature is suppressed. TRUE =
suppressed; FALSE = unsuppressed.

D e s ig n F e a tu r e

i s _ s u p p re s s e d ()
s e t_ s u p p r e s s io n ()
g e t_ p a ra m e te r _ s e t()

< <C O R B A In te rfa c e > >
P a ra m e te r

i s _ re a d _ o n ly : b o o le a n
is _ in d e p e n d e n t : b o o le a n
n a m e : s tr i n g

g e t_ e xp re s s i o n ()
s e t_ e xp re s s i o n ()
g e t_ va lu e ()
s e t_ va lu e ()

< < C O R B A In te r fa c e > >

P a ra m e te rS e q
< < C O R B A T yp e d e f> >

D e s i g n F e a tu re S e q
< < C O R B A T yp e d e f> >
March 2003 CAD Service: CadFeature Module 2-61

2

2.6.3 Parameter Interface

An interface to capture the parametric features of native CAD entities.

interface Parameter
 {
 // data structures that capture the (parametric) features

 readonly attribute boolean is_read_only;
 readonly attribute boolean is_independent;
 readonly attribute string name;

 string get_expression();
 void set_expression(in string e_value)
 raises (CadUtility::CadError);
 // operations to allow an expression that may drive geometry

 CadUtility::EntityAttrib get_value()
 raises (CadUtility::CadError);
 void set_value(in CadUtility::EntityAttrib value)
 raises (CadUtility::CadError);
 // operations providing access to parameter value
 };

2.6.3.1 Parameter Attributes

set_suppression Operation that toggles the suppression of a design feature. If the feature is
suppressed, this operation unsuppresses the feature.

get_parameter_set Returns a sequence of Parameter interfaces (Section 2.6.3, “Parameter
Interface,” on page 2-62) that define this design feature. If the implementation
does not support the Parametrics compliance point; that is, does not allow
parametric regeneration of CAD entities, get_parameter_set shall return a
zero-length sequence.

is_read_only Readonly attribute that indicates if the parameter is read only; that is, cannot
be modified. TRUE = Read Only.

is_independent Readonly attribute that indicates if this parameter depends on other
parameters. TRUE = independent.

name Readonly string providing a user-understandable name for this parameter.
This string is associated with the CadUtility::EntityAttrib value
(determined in the get_value or set_value operations, Section 2.6.3.2,
“Parameter Operations,” on page 2-63).
2-62 CAD Service, v1.1 March 2003

2

2.6.3.2 Parameter Operations

2.7 CadUtility Module

The CadUtilty module is a collection of general-purpose data definitions in the form of
typedef and struct used throughout the specification. No interface definitions are in this
module.

The CadUtility starts by defining some very basic geometric data structures:

module CadUtility
{
// basic geometric structures

 struct PointStruct
 {
 // three dimensional location

 double x;
 double y;
 double z;
 };

 typedef sequence<PointStruct> PointStructSeq;
 typedef sequence<PointStructSeq> PointStructSeqSeq;

 struct BoundingBox
 {
 PointStruct point_min;
 PointStruct point_max;
 };

 struct VectorStruct
 {
 // Direction in 3D

 double i;
 double j;
 double k;

get_expression Returns a string that provides an expression that defines the geometry of the
native CAD entity.

set_expression Takes as a string an input argument that provides a geometry modifiying
expression.

get_value Operation that returns a value (type defined by CadUtility::EntityAttrib).
The name attribute provides a string to define this value (“length,” “width,” or
“height” in the above example).

set_value Set the value (type defined by CadUtility::EntityAttrib) of this parameter.
March 2003 CAD Service: CadUtility Module 2-63

2

 };

 typedef sequence<VectorStruct> VectorStructSeq;
 typedef sequence<VectorStructSeq> VectorStructSeqSeq;
 typedef sequence<VectorStructSeqSeq> VectorStructSeqSeqSeq;

 struct TransformationStruct
 {
 PointStruct offset;
 VectorStruct i_ref_dir;
 VectorStruct k_dir;
 };

 struct RayStruct
 {
 PointStruct origin;
 VectorStruct direction;
 };
 typedef sequence<RayStruct> RayStructSeq;

 struct UvStruct
 {
 double u;
 double v;
 };

 typedef sequence<UvStruct> UvStructSeq;

PointStruct The PointStruct structure is used as the basic three-dimensional coordinate
data structure with locations along the three coordinate directions (x,y,z). The
units associated with these locations are defined in the CadUtility::
LengthUnit Enumeration.

BoundingBox The BoundingBox structure refers to the geometric size limits of a
particular entity (or group of entities). It is frequently used to graphically
limit the viewing window of a CAD system entity.
2-64 CAD Service, v1.1 March 2003

2

typedef sequence<boolean> BooleanSeq;
typedef sequence<long> LongSeq;
typedef sequence<double> DoubleSeq;
typedef sequence<string> StringSeq;
typedef sequence<DoubleSeq> DoubleSeqSeq;
typedef sequence<any> AnySeq;
typedef sequence<CORBA::TypeCode> TypeCodeSeq;

 enum MassUnit
 {

// mass unit options

 POUNDS,
 GRAMS,

KILOGRAMS,
UNKNOWN_MASS

 };

 enum LengthUnit
 {
 // length unit options

 INCH,
 FEET,
 M,
 CM,
 MM,
 UNKNOWN_LENGTH

 };

 // enum + union supporting parameters

 enum AttribTypes
 {

VectorStruct This structure describes a basic vector, from the origin to the specified
distances along each axis (in three-dimensions).

TransformationStruct TransformationStruct locates any entity by providing a three-dimensional
transformation. The unit vectors in the i, j, and k direction can be determined
from:

• i would be determined as unit vector corresponding to: i_ref_dir –
((i_ref_dir) · k_dir)) k_dir

• j would then be unit vector of: k_dir x i

• k would be unit vector of k_dir.

The resulting i, j, and k are unit vectors that are mutually perpendicular and
form a right hand coordinate system.
March 2003 CAD Service: CadUtility Module 2-65

2

 LONG_TYPE,
 DOUBLE_TYPE,

 STRING_TYPE,
 BOOLEAN_TYPE

 };

 union EntityAttrib switch(AttribTypes)
 {
 case LONG_TYPE: long l_value;
 case DOUBLE_TYPE: double d_value;
 case STRING_TYPE: string s_value;
 case BOOLEAN_TYPE: boolean b_value;

 };

 struct ColorStruct
 {

 // basic color information in RGB form
 // Valid values range from 0.0 to 1.0

 double red;
 double green;
 double blue;

 };
 typedef sequence<ColorStruct> ColorStructSeq;

 struct PresentationStruct
 {
 // CAD system presentation data
 // Unsupported features will return a negative value
 // Valid values range from 0.0 to 1.0

ColorStruct object_color;
ColorStruct specular_color; // light source color

 double diffuse_factor;
 double specular_factor;
 double ambient_factor;
 double roughness;

double transparency; // 0. is opaque and 1. is transparent
};

struct RangeStruct
{

// basic range information

double high;
double low;

};

 struct WarningStruct

{
// struct for warning messages
2-66 CAD Service, v1.1 March 2003

2

long index;
string message;

};
typedef sequence<WarningStruct>WarningStructSeq;

// NURBS data structures

struct NurbsCurveStruct
 {
 boolean is_rational;
 // rational or polynomial?

 CadUtility::DoubleSeq knots;
 // A sequence of knot values.

 CadUtility::DoubleSeq weights;
 // A sequence of weight values.

 CadUtility::PointStructSeq control_points;
 // A sequence of control points in 3D

 CadUtility::LongSeq multiplicity;
long degree;

};
typedef sequence<NurbsCurveStruct> NurbsCurveStructSeq;

struct NurbsSurfaceStruct
{
boolean is_rational;
// rational or polynomial?

CadUtility::DoubleSeq knots_u;
CadUtility::DoubleSeq knots_v;
// Sequence of knot values.

CadUtility::DoubleSeqSeq weights;
// A sequence of weight values.

CadUtility::PointStructSeqSeq control_points;
// A sequence of control points.
// Each point is a sequence of a sequence of 3D points.

CadUtility::LongSeq multiplicity_u;
CadUtility::LongSeq multiplicity_v;
long degree_u;
long degree_v;

};
typedef sequence<NurbsSurfaceStruct> NurbsSurfaceStructSeq;
March 2003 CAD Service: CadUtility Module 2-67

2

Sequences of Basic
Types

The CadUtility Module provides a series of sequences of basic CORBA
types: boolean, long, double, string, any, and CORBA::TypeCode.

Unit Types A series of data types used to establish mass and length units. These data
structures are used by the CadMain::Model interface (Section 2.2.2, “Model
Interface,” on page 2-11) to set or get unit properties.

• MassUnit – an enumeration of available mass units. The
UNKNOWN_MASS value can be used for normalized or non-
dimensional mass units.

• LengthUnit – an enumeration of available length units. The
UNKNOWN_LENGTH value can be used for normalized or non-
dimensional length units.

Enum AttribTypes and
Union EntityAttrib

Data structures used to establish permitted types for the
CadFeature::Parameter interface. Through the EntityAttrib switch the
following basic types are supported: long, double, string, and boolean.

ColorStruct Data struct capturing RGB values defining the color of CAD System entities.
Valid values range from 0.0 to 1.0. Negative values indicate no support for
color.

PresentationStruct CAD systems support a variety of presentation information that is captured in
a single data struct. Valid values range from 0.0 to 1.0 and unsupported
variables will return a negative value.

• object_color - The color of the CAD entity.

• specular_color - Determines the color of the highlight which is a key to
visualization parameter to differentiate between metals and plastics. For
plastic and painted materials the specular color is generally white or the
color of the light source. For metallic objects the highlight color is the
color of the material. This is a RGB color value in the range of 0.0 to 1.0.
(Light reflection in plastic is a surface function, but in metals the photon
is absorbed and then re-emitted which is why the incoming color changes
the material color.)

continued...
2-68 CAD Service, v1.1 March 2003

2

PresentationStruct • diffuse_factor - Diffuse light reflection from an object where direct
incoming light is generally scattered in multiple directions. This value
ranges from 0.0 to 1.0 where low values indicate smoother surfaces and
high values are very coarse surfaces (tennis ball).

• specular_factor - Determines the intensity of the highlight on the surface.
This value ranges from 0.0 to 1.0 and a rule of thumb would be
specular_factor = 1.0 - diffuse_factor, where smoother surfaces generally
have brighter highlights.

• ambient_factor - Determines a level of overall global lighting. Ambient
light uniformly increases the brightness of all objects in a scene. This
value is normally in the range of 0.1 to 0.2. Higher values cause the
rendering to look “washed out.”

• roughness - Determines how much the highlight spreads out Low values
in the 0.0 to 1.0 range yield very small and intense highlights. Higher
values cause the highlight to spread over more of the surface. Roughness
is used to model the “microfacet roughness” of the surface and diffuse
and specular values model more of the visual level of roughness.

• transparency – Light transmission of the body. A low value of 0 is
opaque and 1 is transparent.

RangeStruct Basic high / low range information, usually used to establish limits for
geometric bounds and / or parameters.

WarningStruct Data structure used to capture warning messages in “grouped” queries, for
example, the point projection operations on the CadGeometry::Surface
interface.
March 2003 CAD Service: CadUtility Module 2-69

2

2.8 CadGeometryExtens Module

Interfaces and data structures in CadGeometryExtens supplement the interfaces
within the CadGeometry Module. Two new modules are structured under
CadGeometryExtens. These new modules are: CadCurve and CadSurface. The
interfaces within each module inherit functionality through the either the
CadGeometry:Curve or CadGeometry:Surface interfaces.

These interfaces and data structures provide additional details on various types of
geometry entities. Most of the functionality is provided through inheritance, but each
interface has an operation (frequently xx_info()) that returns a data struct with the basic
defining information for the geometric entity. An example is the
CadGeometryExtens::CadCurve::Circle interface. This interface has one
operation: circle_info() that returns a CircleStruct containing a CORBA::double
indicating the radius and a CadUtility::TransformationStruct indicating location.
These two pieces of data clearly define the circle.

2.8.1 CadGeometryExtens::CadSurface Module

The interfaces within the CadGeometryExtens::CadSurface module inherit most of
their functionality from the CadGeometryExtens::Surface interface. They provide a
range of geometric entities that are different types of surfaces.

NURBS Data Structures Non-Uniform Rational B-Splines (NURBS) are commonly used to represent
(or approximate) curves and surfaces. In this standard, all NURBS data shall
be presented as being clamped; that is, knot vectors that have orderful
multiplicity at start and/or end knots. If native CAD data is not clamped, the
precise conversion to clamped form shall be performed. Periodic NURBS
data structures; that is, “unclamped” are not supported.

• NurbsCurveStruct – A NURBS curve defined by the following
properties:

•-boolean rational determines whether the NURBS is rational or polynomial.
TRUE = rational.

•-CadUtility::DoubleSeq knots provides a sequence of distinct NURBS knot
values.

•-CadUtility::DoubleSeq weights provides a sequence of weight values. When
rational is FALSE weights will be ignored.

•-PointStructSeq control_points provides a sequence of control points.

•-CadUtility::LongSeq multiplicity - the number of times each distinct knot is
repeated.

•-long degree specifies the degree of the NURBS representation.

• NurbsSurfaceStruct - A NURBS surface that provides a description
along the surface (e.g., in u and v). Similar to the NurbsCurveStruct,
but with data sequences in both u and v parameters.
2-70 CAD Service, v1.1 March 2003

2

2.8.1.1 UML Diagram

Figure 2-8 UML Diagram of CadGeometryExtens::CadSurface Interfaces

2.8.1.2 CadGeometryExtens::CadSurface Interfaces and Data Structures

module CadSurface{

 interface BoundedSurface;
 enum TransitionCode{

DISCONTINUOUS, CONTINUOUS, CONT_SAME_GRAD,
CONT_SAME_GRAD_SAME_CURVATURE};

 struct SurfacePatchStruct{
BoundedSurface parent_surface;
TransitionCode u_transition;
TransitionCode v_transition;
boolean u_sense;
boolean v_sense;

 };

S urface

is_bounded_ u : bo olea n
is_bounded_ v : b oo le an

ge t_surface_ prop s()
range_u()
range_v()
is_closed_u()
is_closed_v()
area()
evaluate_po ints()
evaluate_po int()
eva luate_curvatures()
evaluate_norma ls()
nurbs_approxima tion()
tessella te()
pro ject_points_ to_ nea re st()
pro ject_point_ to_ nea re st()
intersect_ray()
is_planar()

(from C adGeom etry)

<<C ORB A Inte rfa ce> >

B oundedS urface

bsurface_info()

<<C ORB A Interface>>

C onica lS urf

cs_ info ()

<<C ORB A Interface>>

C ylinde r

cylinde r_ info()

<<C ORB A Interface>>

NurbsS urface

nurbs_ info()

<<C ORB A Interface>>

OffsetS urface

basis_surface()
d is tance()
se lf_ intersect()

<<C ORB A Interface>>

la ne

location()

<<C OR BA Inte rfa ce> >

S phere

sphere_info ()

< <C OR BA Inte rfa ce> >

S urfa ceR ev

swept_curve ()
axis_ line ()

< <C ORB A Interface>>

S urfL inExtrusio n

swept_curve ()
extrusion_ axis()

< <C ORB A Interface>>

Toroid

toro id_ info()

< <C OR BA Interface>>
March 2003 CAD Service: CadGeometryExtens Module 2-71

2

 interface BoundedSurface : CadGeometry::Surface {
SurfacePatchStruct bsurface_info()

 raises (CadUtility::CadError);
};

 struct ConicalSurfStruct{
CadUtility::TransformationStruct location;
double radius;
double semi_angle;

 };

 interface ConicalSurf : CadGeometry::Surface{
ConicalSurfStruct cs_info()raises (CadUtility::CadError);

 };
 struct CylinderStruct{

CadUtility::TransformationStruct location;
double radius;

 };

 interface Cylinder: CadGeometry::Surface {
CylinderStruct cylinder_info()raises (CadUtility::CadError);

 };

 struct HyperbolaStruct{
CadUtility::TransformationStruct location;
double semi_axis;
double semi_imag_axis;

 };

 interface NurbsSurface : BoundedSurface{
CadUtility::NurbsSurfaceStruct nurbs_info()

 raises (CadUtility::CadError);
 };

 interface OffsetSurface : CadGeometry::Surface {
CadGeometry::Surface basis_surface()

 raises (CadUtility::CadError);
double distance()raises (CadUtility::CadError);
boolean self_intersect()raises (CadUtility::CadError);

 };

 interface SurfaceRev : CadGeometry::Surface {
CadGeometry::Curve swept_curve()raises (CadUtility::CadError);
CadUtility::RayStruct axis_line()

 raises (CadUtility::CadError);
 };

 struct SphereStruct{
double radius;
CadUtility::TransformationStruct location;

 };
2-72 CAD Service, v1.1 March 2003

2

 interface Sphere: CadGeometry:: Surface{
SphereStruct sphere_info()raises (CadUtility::CadError);

 };

 struct ToroidStruct{
CadUtility::TransformationStruct location;
double major_radius;
double minor_radius;

 };

 interface Toroid : CadGeometry::Surface{
ToroidStruct toroid_info()raises (CadUtility::CadError);

 };

 interface Plane : CadGeometry::Surface{
CadUtility::TransformationStruct location()

 raises (CadUtility::CadError);
 };

 interface SurfLinExtrusion : CadGeometry:: Surface{
CadGeometry::Curve swept_curve()raises (CadUtility::CadError);
CadUtility::VectorStruct extrusion_axis()

 raises (CadUtility::CadError);
 };
};

The various types of surfaces represented by these interfaces and data structures follow
the convention of providing one or two operations that define the surface type. An
enumeration (TransitionCode) supports different types of transitions between surfaces
for the BoundedSurface interface. These transitions include: DISCONTINUOUS,
CONTINUOUS, CONT_SAME_GRAD, CONT_SAME_GRAD_SAME_CURVATURE.

2.8.2 CadGeometryExtens::CadCurve Module

The interfaces within the CadGeometryExtens::CadCurve module inherit most of
their functionality from the CadGeometryExtens::Curve interface. They provide a
range of geometric entities that are different types of curves. The various types of curve
represented by these interfaces and data structures follow the convention of providing one
or two operations that define the curve type.
March 2003 CAD Service: CadGeometryExtens Module 2-73

2

2.8.2.1 UML Diagram

Figure 2-9 UML Diagram of CadGeometryExtens::CadCurve Interfaces

2.8.2.2 CadGeometryExtens::CadCurve Interfaces and Data Structures

module CadCurve{
struct CircleStruct{

 CadUtility::TransformationStruct location;
 double radius;

};

interface Circle : CadGeometry::Curve{
 CircleStruct circle_info()raises (CadUtility::CadError);

};

struct CompositeCurveStruct{
 long count;
 CadGeometry::CurveSeq segments;
 CadUtility::BooleanSeq senses;

};

interface CompositeCurve: CadGeometry::Curve{

C u rve

i s _ b o u n d e d : b o o le a n
i s _ c lo s e d : b o o le a n

g e t_ c u rv e _ p ro p s ()
le n g th ()
ra n g e ()
e v a lu a te _ p o i n ts ()
e v a lu a te _ c u rv a tu re s ()
e v a lu a te _ n o rm a ls ()
i n te rs e c t_ ra y ()
i s _ p la n a r()
n u rb s _ re p re s e n ta t i o n ()
p ro je c t_ p o i n ts _ to _ n e a re s t()
p ro je c t_ p o i n t_ to _ n e a re s t()
te s s e lla te ()

(fro m C a d G e o m e tr y)

< < C O R B A In te r fa c e > >

C i r c le

c i rc le _ i n fo ()

< < C O R B A In te r fa c e > >

C o m p o s i te C u rve

c o m p _ c u rve _ in fo ()

< < C O R B A In te r fa c e > >

E lli p s e

e lli p s e _ i n fo ()

< < C O R B A In te r fa c e > >

H yp e r b o la

h y p e rb o la _ i n fo ()

< < C O R B A In te r fa c e > >

L i n e

li n e _ i n fo ()

< < C O R B A In te r fa c e > >

O ffs e tC u rve

o ffs e t_ in fo ()

< < C O R B A In te rfa c e > >

P a ra b o la

p a r a b o la _ in fo ()

<C O R B A In te rfa c e > >

T r im m e d C u rv e

t_ c u rv e ()

<C O R B A In te rfa c e > >
2-74 CAD Service, v1.1 March 2003

2

 CompositeCurveStruct comp_curve_info()
raises (CadUtility::CadError);

};

struct ParabolaStruct{
 CadUtility::TransformationStruct location;
 double focal_distance;

};

interface Parabola : CadGeometry::Curve {
 ParabolaStruct parabola_info()raises (CadUtility::CadError);

};

interface Hyperbola : CadGeometry::Curve {
 CadGeometryExtens::CadSurface::HyperbolaStruct
hyperbola_info()

raises (CadUtility::CadError);
};

struct LineStruct{
 CadUtility::PointStruct the_point;
 CadUtility::VectorStruct direction;

};

interface Line : CadGeometry::Curve {
 LineStruct line_info()raises (CadUtility::CadError);

};

struct OffsetCurveStruct{
 double distance;
 CadUtility::VectorStruct ref_direction;
 boolean self_intersect;

};

interface OffsetCurve : CadGeometry::Curve{
 OffsetCurveStruct offset_info()raises (CadUtility::CadError);

};

struct EllipseStruct{
CadUtility::TransformationStruct location;
double semi_axis_1;
double semi_axis_2;

};

interface Ellipse : CadGeometry::Curve {
EllipseStruct ellipse_info()raises (CadUtility::CadError);

};

struct PolyLineStruct{
CadUtility::PointStructSeq the_points;

};
March 2003 CAD Service: CadGeometryExtens Module 2-75

2

struct TrimmedCurveStruct{
CadGeometryExtens::PointOnCurveStruct trim_1;
CadGeometryExtens::PointOnCurveStruct trim_2;
boolean sense_agreement;

};

interface TrimmedCurve : CadGeometry::Curve{
TrimmedCurveStruct t_curve()raises (CadUtility::CadError);

};

struct SurfaceCurveStruct{
CadGeometry::Curve curve_3d;
long basis_count;
CadGeometry::SurfaceSeq basis_surfaces;

};
};
2-76 CAD Service, v1.1 March 2003

Optional vs. Mandatory Interfaces 3
Contents

This chapter contains the following sections.

3.1 Summary of optional versus mandatory interfaces

Optional interfaces are identified for various compliance points as discussed in
Section 1.2, “Compliance Discussion,” on page 1-2.

Information on supported compliance points shall be provided by the OptionsStruct
struct that is contained in the NativeCadAttributeStruct struct (Section 2.1.2.1,
“CadServer Attributes,” on pag e2-3). All other interfaces, data structures, and operations
in this standard are mandatory.

3.2 Compatibility With PDM Enablers

A joint submission team is developing a response to the PDM Enablers V2.0 RFP (OMG
Document mfg/2000-01-02). The PDM Enablers V2.0 submission proposes an interface
that is compatible with this CAD Services specification. This section describes the
proposed approach toward integration. While the integration with PDM Enablers V2.0
involves no changes to the CAD Services IDL, significant implementation extensions
will be required. It should be noted that this section is provided as a convenience to the

Section Title Page

“Summary of optional versus mandatory interfaces” 3-1

“Compatibility With PDM Enablers” 3-1
March 2003 CAD Services, v1.1 3-1

3

implementers; however, this information may not be current. Implementers are
encouraged to review latest document available from the OMG web site
(http://www.omg.org).

The PDM Enablers V2.0 submission proposes an ActiveModel interface that permits
engineering applications to access the CAD native data stored in the PDM system. The
ActiveModel object represents the PDM system knowledge of a specific instantiation of
a product model in an engineering software system. It represents any persistent
constructs (files, directories, and other linkages) that the PDM system creates in order to
instantiate the product model. When the ActiveModel object is destroyed, the external
linkage constructs created by the PDM for that instantiation may be deleted. In many
cases, the implementation of such an object may be a private interface between the PDM
system and the engineering tool, or a parameterized script for the activation of the
engineering tool, etc.

An ActiveModel is created from an ActiveModelFactory interface and supports
various types of access through an ActivationMode enumeration. The various modes of
activation include: ACTIVE_READONLY, ACTIVE_CHECKOUT, and
ACTIVE_DETAILED. When the mode is ACTIVE_CHECKOUT, it is the intent of the
client to be able to invoke a subsequent checkin() operation on the ActiveModel after
modifying some elements of the representation. When the mode is
ACTIVE_READONLY, the client will not invoke checkin(). The value
ACTIVE_DETAILED means that other (implementation-defined) parameters affect the
interpretation of the mode parameter.

A CAD Services client would access native CAD system file(s) or open the
CadMain::Model interface through a two-step process. First, the client would log-in to
a PDM Enablers V2.0 server following the process for all PDM clients. It would then
instantiate (or connect to) an ActiveRepresentationFactory and create an
ActiveModel from either a create_from_files, create_from_context, or find
operation. Second, the ActiveRepresentation provides two possible mechanisms to
open the CAD model. The eng_sys_reference operation returns a string that can be
passed into the open_model operation of the CadConnection::CadSystem
interface. The second mechanism is to use the get_external_object operation that
returns an object reference that can be narrowed to a CadMain::Model interface.

Using two mechanisms to open the CadMain::Model interface is provided, due to the
expected delay in opening the CadMain::Model interface. A get_external_object
operation may involve a large computational load to open a complex CAD model. For
these uses, the eng_sys_reference is recommended. This operation should return a
string to the client in a reasonably short time-period. The CAD Services client can then
use this string to open the CAD model, without the complication of possible delays in
multiple systems.

CAD Services clients of the PDM Enablers V2.0 should invoke destroy on their
ActiveModel reference at the end of the session to allow the PDM system to clean-up
any supporting system resources.

An example of the use of PDM Enablers V 2.0 and CAD Services v 1.0 for an
ACTIVE_CHECKOUT mode is displayed in figure 3-1. This sequence diagram
illustrates a typical client interaction where requests are made to create an ActiveModel
3-2 CAD Services, v1.1 March 2003

3

from a context using relevant project descriptions. The ActiveModel is then accessed for
a string (“XYZ123”) that allows the CadSystem to open a Model. Certain modifications
of the Model are performed and this Model is then saved and checked-in to the
PdmSystem.

Figure 3-1 Sequence diagram illustrating ACTIVE_CHECKOUT operations between a Client
and both the PdmSystem and CadSystem.

An example of the use of PDM Enablers V 2.0 and CAD Services v 1.0 for an
ACTIVE_READONLY mode of interaction is displayed in Figure 3-2. This sequence
diagram illustrates a typical client interaction where requests are made to create an
ActiveModel from a file description. This Model is opened by the CadSystem for Read-
Only operations.

ClientPdmSystem CadSystem

ActiveModelFactory::create_from_context
(PartStructureIteration, "WunderCAD",
ACTIVE_CHECKOUT, #({"project", "RZW104"}),
PdmContext, #(), "")

CadSystem::open_model
("XYZ123", ACTIVE_CHECKOUT)

ActiveModel

ActiveModel::eng_sys_reference

"XYZ123"

Model

(... modifications of model ...)

Model::regenerate

Model::save_model

Model::close_model

ActiveModel::checkin (#())
March 2003 CAD Services: Compatibility With PDM Enablers 3-3

3

Figure 3-2 Sequence diagram illustrating CadSystem and PdmSystem interactions for Read-
Only operations.

An final example of the use of PDM Enablers V 2.0 and CAD Services V1.0 displays a
client accessing the Model using a find operation as shown in Figure 3-3. This sequence
diagram is similar to the process illustrated in Figur e3-1, but employs a find operation to
access the ActiveModel and the ActiveModel returns an object reference. The object
reference is a valid CadMain::Model reference, which provides complete CAD
Services functionality. (This object reference requires narrowing from a
CORBA::Object scope.)

ClientPdmSystem CadSystem

ActiveModelFactory::create_from_files
(DocumentIteration, "WunderCAD",
ACTIVE_READONLY,
#({"project", "RZW104"}),
#({"assembly master", SecuredFile},
{"component", SecuredFile}, {"component",
SecuredFile}))

ActiveModel

ActiveModel::eng_sys_reference

"XYZ123" CadSystem::open_model
("XYZ123", ACTIVE_READONLY)

CadMain::Model

(... read-only operations ...)
3-4 CAD Services, v1.1 March 2003

3

Figure 3-3 Sequence diagram illustrating CadSystem and PdmSystem interactions for a use
case where the PdmSystem provides a valid CadMain::Model object reference.

3.2.1 Proposed IDL from the PDM Enablers V2.0 proposal

interface ActiveModel : PdmFoundation::Manageable,
 PdmFramework::Navigable
{

readonly attribute string activation_type;
readonly attribute IdentifierSeq eng_sys_reference;
readonly attribute ActivationMode mode;
readonly attribute ItemIteration product_model;
readonly attribute ActiveFiles associated_files;

Object get_external_object()
 raises (UnsupportedInstance, PDM_EXCEPTIONS);

void checkin(in CosPropertyService::Properties args) raises
 (UnsupportedInstance, RELATIONSHIP_CREATE_EXCEPTIONS);

void destroy();
};

ClientPdmSystem CadSystem

ActiveModelFactory::find
(ItemIteration, "WunderCAD")

ActiveModel

ActiveModel::get_external_object

Model (as Object)

ActiveModel::checkin (#())

(... modifications of model ...)

Model::regenerate

Model::save_model

Model::close_model
March 2003 CAD Services: Compatibility With PDM Enablers 3-5

3

3.2.1.1 Attributes

3.2.1.2 Operations

activation_type Identifies the type of engineering system in which this
ActiveModel has been instantiated.

eng_sys_reference An external identifier that can be used by the client to
find the model in the engineering system using the
interfaces to the engineering system.

mode The mode in which this ActiveModel was created. If
the mode is ACTIVE_READONLY, the checkin
operation is not permitted.

product_model The ItemIteration from which the ActiveModel was
constructed.

associated_files The File objects that were used to construct the
ActiveModel, along with their associated Roles.

get_external_object Returns the Object that provides interface to the
activated model in the engineering software system.
This returned object should be narrowed to a
CadMain::Model interface.

• UnsupportedInstance is thrown if the PDM
system cannot perform the get_external_object()
operation on this ActiveModel object. For
example, because the PDM is unaware that the
engineering system in question provides such
object services, or because accessing them requires
capabilities or information that the PDM does not
have.

• PermissionDenied is thrown if the client does
not have the required permissions (and possibly
other properties) for the PDM to perform this
operation on its behalf. (This determination may
be made by the PDM system, or made by the
engineering system and reported as such to the
PDM.)

• PdmError is thrown if the PDM attempts the
activation of engineering object services and it fails
for some other reason.
3-6 CAD Services, v1.1 March 2003

3

checkin Causes the updated engineering model objects to
become the next Iteration of the corresponding objects
in the PDM system. This may entail creation of
ItemIteration and File objects and corresponding
relationships. The entire interpretation of this operation
is implementation-defined, and it may be restricted to a
small class of external models.
UnsupportedInstance is thrown if the PDM system
cannot perform the checkin() operation on this
ActiveModel object. Other exceptions are
implementation-defined, although they will be
generally as described for the item and relationship
creation exceptions for the related object factories.

destroy Causes this object to be destroyed, and causes the
structures created in the PDM system to manage this
instantiation of the product model to be destroyed and
related resources to be released. The effect on the
model in the engineering system itself is
implementation-defined.
March 2003 CAD Services: Compatibility With PDM Enablers 3-7

3

3-8 CAD Services, v1.1 March 2003

 Tessellation Indexing A
A.1 Tessellation Indexing

The numbering for various Edge, Face, and Body Tessellations is illustrated using this
unit cube. The body tessellation is comprised of a sequence of face tessellations that are
joined along shared edges. The FaceTessellation for Face 1 would contain the following
data:

Face No. 2 1 2

3 4

6 7

8
Face No. 1

5
March 2003 CAD Services, v1.1 A-1

A

EdgeTessellationSeq edges

A sequence of Edge Tessellations that contain:

1. Object obj_ref – An object reference to the underlying Edge.

2. PointStructSeq epts – A sequence of point structures (x, y, z) that identify the 3D
spatial location of the points along the edge. EdgeTessellation coordinate data
within FaceTessellation is guaranteed to be exactly coincident with corresponding
face_tessellation coordinates.

3. LongSeq vertex_number – A sequence of integers that index the PointStructSeq
(epts).

4. DoubleSeq t_values – A sequence of doubles that are the underlying parameters for
this edge.

Tessellation face_tessellation

Basic tessellation containing:

1. Object obj_ref - An object reference that permits remote CORBA operations on
Face 1 after narrowing the reference.

2. TessType t_type – An enumerated data structure indicating the use for this
tessellation (WIREFRAME, VISUALIZATION).

3. PointStructSeq xyz – A sequence of point structures (x, y, z) that lie on the face.

4. LongSeq face_pts– A sequence of integers that index the PointStructSeq (xyz).

5. VectorStructSeq normals – A sequence of normals at the location defined by xyz
above.

6. CadUtility::UvStructSeq uv – A sequence of uv values at the location defined by
xyz above.

7. IndexSeq index_list – A sequence of index values defining connectivity of triangles.
Index values use those defined in the LongSeq integers (both epts and face_pts).
Index values are global at the underlying geometric representation.

In the example above, Face No. 1 is comprised of:

Edge 1 –

PointStructSeq epts = [0,1,1] and [0,0,1]

LongSeq vertex_number = 1 and 3

Edge 2 –

PointStructSeq epts = [0,1,1] and [1,1,1]

LongSeq vertex_number = 1 and 2

Edge 3 –

PointStructSeq epts = [1,1,1] and [1,0,1]
A-2 CAD Services, v1.1 March 2003

A

LongSeq vertex_number = 2 and 4

Edge 4 –

PointStructSeq epts = [0,0,1] and [1,0,1]

LongSeq vertex_number = 3 and 4

Face 1 -

PointStructSeq xyz = [0,1,1],[1,1,1],[0,0,3],[1,0,1],[0.5,0.5,1]

LongSeq face_pts = 1,2,3,4,5

PointStructSeq normals = [0,0,1],[0,0,1],[0,0,1],[0,0,1],[0,0,1]

IndexSeq contains:

Triangle 1 – points 1, 2 and 5

Triangle 2 – points 2, 4 and 5

Triangle 3 – points 3, 4 and 5

Triangle 4 – points 1, 3 and 5

At the body level, Face No.1 would remain as shown above and Face No 2. would be
described by:

Edge 1 –

PointStructSeq epts = [0,1,1] and [0,1,0]

LongSeq vertex_number = 1 and 6

Edge 2 –

PointStructSeq epts = [0,1,1] and [1,1,1]

LongSeq vertex_number = 1 and 2

Edge 3 –

PointStructSeq epts = [1,1,1] and [1,1,0]

LongSeq vertex_number = 2 and 7

Edge 4 –

PointStructSeq epts = [0,1,0] and [1,1,0]

LongSeq vertex_number = 6 and 7

Face 2-

PointStructSeq xyz = [0,1,1],[1,1,1],[0,1,0],[1,1,0]

LongSeq face_pts = 1,2,6,7

PointStructSeq normals = [0,1,0],[0,1,0],[0,1,0],[0,1,0]

IndexSeq contains:

Triangle 1 – points 1, 2 and 6
March 2003 CAD Services: Tessellation Indexing A-3

A

Triangle 2 – points 2, 6 and 7
A-4 CAD Services, v1.1 March 2003

 Use Case Scenarios and Examples B
There are a number of different approaches for using the CAD Services. The scenarios
described below demonstrate how, for example, a CAE application will use the CAD
interfaces being proposed in this RFP. These scenarios intend to assist implementers and
users in understanding the motivation behind some of the requirements. This list
represents just a few of the many possible scenarios.

B.1 Stand Alone

In this scenario, the native CAD application is integrated with an application on a single
computer via CAD services interfaces and no external (distributed) requests are needed.
The integration process is eased and the developer is shielded from the complete CAD
API through the use of CAD Services interfaces. In addition, the use of CAD
independent (neutral) interfaces enables same application to be built against different
CAD system with very little changes to code or not at all.

B.2 CAD Services as Geometry Server (Non-Interactive Mode)

In this scenario, an application plays the role of a client and the CAD system plays the
role of a geometry server. The client and the server interact without visual presentation of
these requests and could run in a distributed and heterogeneous environment or on a
single host in a co-located mode.

For example, a CAE client application uses geometry and attributes from a part or
assembly to conduct analysis. The user interface is managed by the client application or
by some other visualization tool. It is also possible that the client application will store
some analysis result or modified attributes back to the CAD file.

It is important to note that the CAD system’s user interface was not available or not used.
In a case where the CAD system architecture couples the geometric modeler and GUI,
this scenario is still feasible if the CAD System runs on a host machine with a display
device.
March 2003 CAD Services, v1.1 B-1

B

B.3 Interactive Mode

Application plays the role of a client and the CAD system plays the role of a server,
however, the CAD system is part of the user interface component of the application..

Many applications use the CAD system as the primary display mechanism in addition to
just a source for part geometry. They need the ability to select geometry and to display
the modified geometry. While the scenario suggests a stand-alone mode (client
application and server reside on same host machine), many new applications are de-
coupled from the CAD system and require remote access to a CAD session.

B.4 Multi-CAD Interoperability

CORBA support for heterogeneous and distributed programming could also enable the
CAD Services as an environment for implementing client application that operates on
different CAD systems simultaneously. Since the client side binding is system
independent, client application does not need to be compiled with multiple vendors'
libraries. For example, consider a client application that uses vehicle platform data for
analysis, and uses the result to design or validate other vehicle components. If vehicle
platform and components are designed in different CAD Systems, CAD Services could
enable the interoperability without an intermediate step such as writing the data to a file
or data exchange of the complete data-set.
B-2 CAD Services: Interactive Mode March 2003

Index
A
Attributable Interface 2-28

B
Base 1-2
Body Interface 2-47
BrepEntity Interface 2-46

C
CAD Services as Geometry Server (Non-Interactive Mode)B-1
CadBrep Module 2-46
CadConnection Module 2-1
CadFeature Module 2-60
CadFoundation Module 2-24
CadGeometry Module 2-32
CadGeometryExtens

CadCurve Module 2-73
CadSurface Module 2-70

CadGeometryExtens Module 2-70
CadMain Module 2-10
CadServer Attributes 2-3
CadServer Interfa c e2-2
CadServer Operations 2-4
CadSystem Interface 2-5
CadSystem Operations 2-6
CadUserInterface Interface 2-8
CadUtility Module 2-63
Compliance points 1-2
Computer Aided Design (CAD) 1-1
Computer Aided Engineering (CAE) 1-1
Computer Aided Manufacturing (CAM) 1-1
CORBA

contributors 1-vii
documentation set 1-vi

Curve Attributes 2-44
Curve Interface 2-42
Curve Operations 2-44

D
Data Structures Supporting Surface 2-42
DesignFeature Interface 2-61

E
Edge Interface 2-57
EdgeLoop Interface 2-51
Entity Attributes 2-27
Entity Interface 2-25
Entity Operations 2-27
EntityFactory Interface 2-19
EntityFactory Operations 2-20
EntityGroup Attributes 2-30
EntityGroup Interface 2-29
EntityGroup Operations 2-30

F
Face Attributes 2-54
Face Interface 2-53
Face Operations 2-55

G
GeometryExtensions 1-2

I
Interactive Mode B-2
Interface Model 1-3
Interface OrientedShell 2-48

L
Layer Interfa c e2-30

M
Model Attributes 2-15
Model Interface 2-11
Model Operations 2-15
ModelInstance Interface 2-18
ModelInstance Operations 2-18
ModelInstanceFactory Interface 2-22
Multi-CAD Interoperability B-2

O
Object Management Group 1-v

address of 1-vii
OptionsStruct data structure 2-4
OrientedEdge Interface 2-56
OrientedEdgeLoop Interface 2-52
OrientedFace Interface 2-52

P
Parameter Attributes 2-62
Parameter Interface 2-62
Parameter Operations 2-63
Parametrics 1-2
PersistantIdentifiers 1-2
PropertyStruct 2-59

S
Security Service A-1, B-1
Shell Interface 2-49
Structures and Exceptions 2-59
Surface Attributes 2-39
Surface Interface 2-37
Surface Operations 2-40

T
Tessellation Data Structures 2-33
Tessellation Indexing A-1

U
UserInterface 1-2

V
Vertex Interface 2-50
VertexLoop Interface 2-51
March 2003 CAD Services, v1.1 Index-1

Index
Index-2 CAD Services, v1.1 March 2003

Computer Aided Design Service, v1.1
Reference Sheet

OMG documents used to create this version:

• RTF Report: dtc/03-01-02

• Available Specification: dtc/03-01-05

• IDL: dtc/03-02-03
March 18, 2003 1

2 March 18, 2003

	Preface
	1. Overview
	1.1 Objective of this Specification
	1.2 Compliance Discussion
	1.3 Overall Interface Model

	2. CAD Modules and Interfaces
	2.1 CadConnection Module
	2.1.1 UML Diagram
	2.1.2 CadServer Interface
	2.1.3 CadSystem Interface
	2.1.4 CadUserInterface Interface

	2.2 CadMain Module
	2.2.1 UML Diagram
	2.2.2 Model Interface
	2.2.3 ModelInstance Interface
	2.2.4 EntityFactory Interface
	2.2.5 ModelInstanceFactory Interface
	2.2.6 Exceptions
	2.2.7 Data Structures

	2.3 CadFoundation Module
	2.3.1 UML Diagram
	2.3.2 Entity Interface
	2.3.3 Attributable Interface
	2.3.4 EntityGroup Interface
	2.3.5 Layer Interface
	2.3.6 Exceptions and Data Structure

	2.4 CadGeometry Module
	2.4.1 UML Diagram
	2.4.2 Tessellation Data Structures
	2.4.3 Surface Interface
	2.4.4 Data Structures Supporting Surface
	2.4.5 Curve Interface

	2.5 CadBrep Module
	2.5.1 UML Diagram
	2.5.2 BrepEntity Interface
	2.5.3 Body Interface
	2.5.4 Interface OrientedShell
	2.5.5 Shell Interface
	2.5.6 Vertex Interface
	2.5.7 VertexLoop Interface
	2.5.8 EdgeLoop Interface
	2.5.9 OrientedEdgeLoop Interface
	2.5.10 OrientedFace Interface
	2.5.11 Face Interface
	2.5.12 OrientedEdge Interface
	2.5.13 Edge Interface
	2.5.14 Structures and Exceptions

	2.6 CadFeature Module
	2.6.1 UML Diagram
	2.6.2 DesignFeature Interface
	2.6.3 Parameter Interface

	2.7 CadUtility Module
	2.8 CadGeometryExtens Module
	2.8.1 CadGeometryExtens::CadSurface Module
	2.8.2 CadGeometryExtens::CadCurve Module

	3. Optional vs. Mandatory Interfaces
	3.1 Summary of optional versus mandatory interfaces
	3.2 Compatibility With PDM Enablers
	3.2.1 Proposed IDL from the PDM Enablers V2.0 proposal

	Appendix A - Tessellation Indexing
	Appendix B - Use Case Scenarios and Examples
	Index
	Reference Sheet

