UML Profile for CORBAand
CORBA Components

This OMG document replaces the draft adopted specification (ptc/2006-10-12) and the final
adopted specification (ptc/06-10-13). It is an OMG Final Adopted Specification and is currently in
the finalization phase. Comments on the content of this document are welcomed, and should be
directed to issues@omg.org by March 5, 2007.

You may view the pending issues for this specification from the OMG revision issues web page
http://cgi.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on July 6, 2007. If
you are reading this after that date, please download the available specification from the OMG
formal specifications web page.

OMG Final Adopted Specification
ptc/2007-03-11

Date: March 2007

UML Profile for CORBA and CORBA Components
OMG Final Adopted Specification

ptc/2007-03-11

=1 T %%@)
% %—'/

OBJECT MANAGEMENT GROUP

Copyright © 2006, Object Management Group
Copyright © 2006, Fraunhofer Institute FOKUS
Copyright © 2006, Thales

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnNet™, Integrate 2002™, Middleware That's Everywhere™, UML™ Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Table of Contents

O Ol WON -

Yoo] 01PN 1
(@] g1 {011 3 F=1 o = TRURPPRR 1
Normative RefErenCeSccouoiiiiiiiiii e 1
Terms and DefinitionScoiiiiiiii i 2
SYMDOIS oo 3
Additional INformationcoviiiiiii 3
6.1 Changes to Adopted OMG SPEeCIfiCatIONScccuviiiriieieiiiiiiiieeee e 3

6.2 How to Read this SPeCIfiCatiONccccuiiiiiiiiiiiiiiiiie e 3

6.3 ACKNOWIEAQEMENLS ..ot 3
CCM Metamodeleiiiiiiii e 5
7.1 OVEIVIBW ..ttt ettt e e e e e ettt e e e e e e e s bbb ettt e e e e e e e nsnbbeeeeaeas 5

7.2 BaseIDL MetamOdelcooiiiiiiiiiiiie it 6

% R Y/ o1 oo PP PT TP UPPTTPR 7

7.2.2 CONTAINIMENT .ottt e e e e e e e e s e bbb b e e et e e ea e e e e e aaaaaanbbebeeeeaaaaaaeaeas 7

7. 2.3 MOUUIES ettt et e e e e e e e bbbttt e e e e e e e e e s e nnbbeareeeaaaaens 8

7. 2.4 INTEITACES ettt ettt e e e e e e e e e e e e n b aeeeae s 8

7.2.5 OPEIALIONS ...oiiiiiiii ittt e ettt e e e e e e e e e e e aab bbbttt e e e e ee e e e e e s aaaanbbnbbeeeaaeaaas 9

T.2.6 AUITDULES ..ottt e e e e e e e e e e e e e e e s e e s e bbb e eeeeeaaaaeas 9

T.2.7 VAIUBS ...ttt et e e e e e e e e bbbttt et e e e e e e e e e s e e anb bbb e e eaaaa s 9

7. 2.8 EXCEPLIONS ..ottt ettt e ettt e e e e e e e e e e eeaaaa s 10

7. 2.9 PArBIMETEIS ...ttt ettt a e e e e e e e e e e e eeeeeeeeeeseesbnsbnbanaaan s 10

7.2.10 BASEIDL CONSIIAINTSeviiiiiiieeeiiiiiiiiti ettt e e e et e e e e e e e e s e e abab e aeeeaaaaaeas 10

7.3 ComponentlDL and Streams Metamodelscoooviiiiiiiiiiecce e, 11

7.3.1 ComPONENt MOAEI ... 12

7.3.2 COMPONENE HOMES ...ouiiiiiiiiiieiieeiiesi ettt e e e s e reeeeee e 12

RS TS T] 1 (== 0 L PP 13

R I o] 1 =1] 0 1=] o | PRI 14

7.3.5 COMPONENTFEALUIEuiiiiiiiieiiieiiieti et e e eae e e e 14

7.3.6 CompoNeNntIDL CONSIIAINTScccoiiiiiiieeiiiiieee ettt e e e eeeeaaes 15

7.4 CIFMetamodel ... 18

7.4.1 COMPOSIION oeiiiitiiieeiittit ettt e et e e et e e e e s bbbt e e e s tb e e e e e e sbbe e e e e s abbneeeesanbneeeeenae 19

7.4.2 Component and HOME EXECULOIScoiiuiiieeiiiiiie ettt 20

T.4.3 SEOMENTS ..oeieeiiiiiee ettt e e e e e e s e e e e e e et e e e e e e s s s e e e eeeas 20

A O O | @0 151 1 -]] PR 21

7.5 Deployment and Configuration Metamodelccoooiiiiiiiiiiiiiieee 21

AT A 10T o] (=T g T=T) = o) P 23

7.5.2 ASSEMDBIY PACKAGEovviiiiiiiieeii it 25

ST TN o] = 4 11T P 27

A T 1= PP OPPPRPP PPN 27

7.5.5 CONLAINMENT ..ottt e e et e e e s st e e e e s sabe e e e e e sabbbeeeessbaneeeenan 28

7.5.6 Deployment CONSITAINEScccoiiiiiiciiiiiiieee e e e e e e s s e e e e e e e s e e s s e e e e e aeeeeeeas 28

7.6 CCMQOS Metamodeloooooiiiiiii e 28

UML Profile for CORBA and CORBA Components Adopted Specification i

8 UML Profile for CORBA and CORBA Componentsc........ 31

8.1 BASEIDL PrOfil©ceeeiiiiiiiiiiiiieiieeeeeeeeeeeeee ettt 32
8.1.1 CORBA Module, Interface, Value, Constant Stereotypesccccceevvvvveeeerninnennn. 33
8.1.2 Other stereotypes: CORBA TYPESoviiiiiiiiiiieiiiieeee ettt 37
8.1.3 Tabular repreSENtAtiONcceeiiiiiiiiiiii e 46
S0 I o T)1 = 11 1 £ PR 47

8.2 ComponentIDL Profile ..o 50
S T R (=T =0 1Y/ 1L 50
8.2.2 Tabular repreSENtationcceeeeiiiiiicieer e 53
S TN e T o] o] = S 56

S TG T O | o = o) 11 = PP 57
SR Tt A (=T 1= 0] 1Y/ 011 57
8.3.2 Tabular repreSENtationcceeeiiiiiiiiiieer e 58
S e J @0 1511 = 1 | £ PP PP 59
SR - T o] o] - P 60

8.4 Deployment Profilec..eeiiiiiiiiii e 60
S R O Y (=] (=101 =S PSP PPPPTR PN 61
8.4.2 Tabular repreSENtationcccooieiiiiiii e e —————— 62
8.4.3 CONSIIAINTSeeiiiiiiieee ittt et e e e e e e e e s s e bbb e e et e e e e e e e e e s e saneenenees 63
S b e T 4 o] = 63

8.5 CCMQOS PrOfile ..uiiiiieiieeeeee et 65
8.5.1 Tabular repreSENtatioN ... 66
8.5.2 CONSIIAINTSeeteeeiieiee ettt et e e e e e e e e s e e bbbt e e e e e aa e e e e e s e annnbeeeees 66
B.5.3 EXAMIPIE ...ttt a e e e e e e e 67

8.6 UML Profile for Lightweight CCMuiiiiiieiiiecc e 67

9 Profile HUSLrationccouiiiiiii e 71

9.1 Example Scenario DeSCIPLiONcccevvviiiiiiiieeeee e, 71

S I Y/ o 1= TN B 1Y 1 1o o P 71
LS I A | T g o] = 11T o PP PUPTPPTR PN 71
S I O 15] I g To] = 11 (o] o TP PUPUPPTPRRN 73

9.3 UML Example diagramsooooiiiiieiiiieee e 74

A REFEIENCES ..o e 79

UML Profile for CORBA and CORBA Components Adopted Specification

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
. XMl

. CWM

. Profile specifications.

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
e Specialized CORBA specifications
e CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
. CORBAservices

UML Profile for CORBA and CORBA Components Adopted Specification

. CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as 1SO standards. Please consult http://www.iso0.0rg

Intended Audience

This specification is intended primarily for DDS vendors and DDS tools developers. End-users may find the specification
useful to monitor network traffic in DDS based applications.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

Readers are encouraged to report any technical or editing issues/problems with this specification by completing the Issue
Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
http://www.omg.org/technology/agreement.htm.

iv UML Profile for CORBA and CORBA Components Adopted Specification

1 Scope

The Common Object Request Broker Architecture (CORBA), is the Object Management Group's standard architecture for
distributed object systems. CORBA allows applications to communicate with one another no matter where they are
located or who has designed them. CORBA 1.1 was introduced in 1991 by Object Management Group (OMG) and
defined the Interface Definition Language (IDL) and the Application Programming Interfaces (API) that enable client/
server object interaction within a specific implementation of an Object Request Broker (ORB).

CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying how ORBs from different vendors
can interoperate.

The CORBA Component Model (CCM) is a comprehensive component standard based on the reliable and well-proven
CORBA architecture. It contains concepts that allow multi-interface components, event based communication, port based
configuration and flexible implementation structures. These concepts are specified in the CCM metamodel defined in the
OMG CORBA Components Specification, formal/06-04-01 and the existing UML Profile for CORBA Components
specifies how to represent these concepts using UML 1.5. The new version of UML (UML2.0) has brought new powerful
concepts like Structured Classifiers "Port" or "Part", and improved the existing concepts like "Component” and
"Interface".

This specification provides a UML2 profile that facilitates representation of concepts needed to represent a pure CORBA
or CORBA Components PSM. In conjunction with existing OMG specifications, namely UML2, CORBA, CORBA
Components and the MOF2, this will result in significant benefits to the CORBA and CORBA Components user
community and the users of MDA in general.

2 Conformance

This specification defines three mandatory conformance points. All CCM Profile implementations must support these
conformance points:

 Implementation of the UML Profile for CORBA defined in section 3.3.2.
« Implementation of the ComponentIDL Profile defined in section 3.3.3.
« Implementation of the CIF Profile defined in section 3.3.4.

An implementation of the Deployment Profile defined in section 3.3.5 and CCMQoS Profile defined in section 3.3.6 is
optional. Nevertheless, it is recommended to provide deployment and QoS support for CCM Profile implementation.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

- CORBA Component Model Specification, Version 4.0
« MOF 2.0 Core Specification

« UML 2.1 Infrastructure Specification

UML Profile for CORBA and CORBA Components Adopted Specification 1

« UML 2.1 Superstructure Specification

« UML 2.0 OCL Specification

« CORBA Component Model Specification, Version 4.0

« Streams for CCM Specification

 Deployment and Configuration of Component-based Distributed Applications Specification

» QoS for CCM final adopted specification

4 Terms and Definitions

For the purposes of this specification, the terms and definitions given in the normative references and the following apply.

artifact
An element which descibes abstractions from programming language constructs like classes.

component
A basic metatype in CORBA which is a specialization and extension of an interface definition.

component type
A specific, named collection of features that can be described by an IDL component definition or a corresponding structure in
an Interface Repository.

facet
A distinct named interface provided by the component for client interaction.

factory

A home operation which supports creation semantics.

finder

A home operation which supports search semantics.

home

A metatype that acts as a manager for instances of a specified component type.

port
A surface feature through which clients and other elements of an application environment may interact with a component.

receptacle
A named connection point that describes the component’s ability to use a reference supplied by some external agent.

segment
An element which describes a segmented implementation structure for a component implementation.

2 UML Profile for CORBA and CORBA Components Adopted Specification

5 Symbols

CCM CORBA Component Model

CIF Component Implementation Framework
D&C Deployment and Configuration

IDL Interface Definition Language

MDA Model Driven Architecture

PIM Platform Independent Model

PSM Platform Specific Model

UML Unified Modeling Language

6 Additional Information

6.1 Changes to Adopted OMG Specifications

This document shall replace the UML Profile for CORBA (formal/02-04-01) and the UML Profile for CORBA
Components (formal/05-07-06).

6.2 How to Read this Specification

The rest of this document contains the technical content of this specification. As background for this specification, readers
are encouraged to first read the CORBA Component Model (CCM) Specification (formal/06-04-01). This document is
fully based on the concepts defined in the CCM Specification, these concepts are specified in form of MOF compliant
CCM metamodel in chapter 7. The chapter 8 provides the normative definition of the UML Profile for CORBA and
CORBA Components. The chapter 9 provides the "ATM Simulation" example expressed in terms of the defined in
chapter 8 profile.

Although the chapters are organized in a logical manner and can be read sequentially, this is a reference specification is
intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

6.3 Acknowledgements
The following companies submitted and/or supported parts of this specification:
 Fraunhofer Institute FOKUS

« Thales

NOTE: The technology proposed by this specification is based on the work of the Modelware project (http://
www.modelware-ist.org) and the AD4 project (http://www.ad4-project.com) of the European Commission. The authors
would like to thank the participants of these projects for their contributions and review activities.

UML Profile for CORBA and CORBA Components Adopted Specification 3

UML Profile for CORBA and CORBA Components Adopted Specification

7 CCM Metamodel

The CCM metamodel defines the abstract language of a modeling language that supports modeling general CCM
concepts. This metamodel defines a set of modeling elements represented as metaclasses. A concrete syntax must define
the specific notation rules for the graphical representation of this modeling language. In our case the modeling language
is UML2 and the concrete syntax for modeling CCM applications with UML2 does not exist yet. The UML profile that
will be introduced in the next section supports the representations of CCM concepts in term of UML2 models.

7.1 Overview

: = : ol = T
BasslDL | ComponentolL | |EIF
le P SR—
i
CosFramework SoMbss ‘Deployment |

Figure 7.1- CCM Metamodel package structure

As shown in Figure 7.1 the complete CCM concept space consists of further packages: BaselDL, ComponentIDL, CIF
(Component Implementation Framework), Deployment, Streams and CCMQoS. The QoSFramework package provides
metamodel for the description of QoS properties and is defined in the "UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms™ specification.

The BaselDL package is a MOF-compliant description of the pre-existing CORBA Interface Repository. This metamodel
has been standardized in formal/06-04-01.

The ComponentIDL package expresses the CORBA Component Model and based on the concepts already specified in the
BaselDL Package. This metamodel has been standardized in formal/06-04-01.

The CIF package contains metaclasses and associations for definition the programming model for constructing component
implementations, and is based on the reference ComponentIDL metamodel. This metamodel has been standardized in
formal/06-04-01.

The Deployment package is a MOF-compliant extended description of the Deployment and Configuration concepts for
CCM. This metamodel describes concepts like assembly or component instance, and can be used for generation of XML
deployment description.

The Streams package extends the CCM metamodel by providing additional means for modeling of communications of
continuous data streams between CORBA components.

UML Profile for CORBA and CORBA Components Adopted Specificition 5

The CCMQoS package based on the standardized QoSFramework package mentioned above and extends the scope of the
CCM metamodel to QoS property definition for CORBA components.

7.2 BaselDL Metamodel

The first goal of the CCM metamodel is to express the extensions to CORBA IDL defined by the CORBA Component
Model Standard. Since these extensions are based on the previously-existing IDL, it is not possible to define a MOF-
compliant metamodel for the extensions without defining a MOF-compliant metamodel for the IDL base. Thus, the CCM
Standard defined the first MOF Package, entitled BaselDL. BaselDL is a MOF-compliant metamodel of the pre-existing
CORBA Interface Repository (IR) and contains all CORBA types. As shown by Figure 7.1, all further packages are
dependent upon the BaselDL Package.

. . f—— & Contained
Blodulslel | Contsine | - -
| p——— 1 [P 2 sl srfea 0.1 e o
E al
OipersmarDel
i3 ; e | g o [T TR M EanalDL FaramaterTwl [0 "] fordoesd]
it - _ ol iy
InterfaceDied e ——_ o aluslal :‘ ..: i - - —
| it I o i ! .--.--! T Bockean [y 14 | —
calidm Truncaintie: Boolsan| sbatracDerneed 0 " A
Primitivaliet -
T BasedllL T ,: ' usF setaryDal
: o b r | - L] el
(| SequenceDel VaksaMambesDed — i1
T 3 i | o = 1 ExcaptionDed
A Barssln g
Kol
. . Fiabd
WttingDed ArrayDiet | e
nd Coalnsinedep ARt ong r) stimsanF s e B E
UnidonFleld
!‘ . | AT
& - A i -
StringOat e Rt e L Atrituta Dl
WLof o] WLTipe e —] Timea [+ -y
— = - . -
T = ’ | Anasmver
FlveaDul | | Tmedeet = :
it tarShor r 1
e CortaShon . F | CormtaniDel
[valueonDe | Fa—— S Eae
UnianDied | BremDel |
[r——— Dialiniont Ind

SaructDel

Figure 7.2 - BaselDL Metamodel

6 UML Profile for CORBA and CORBA Components Adopted Specification

BaselDL definitions focus on interfaces, the operations supported by those interfaces, and exceptions that may be raised
by operations. This requires quite a bit more: a large part of BaselDL is concerned with the definition of data types. This
is because data can be exchanged between client and server only if their types are defined in BaselDL. Figure 7.2 shows
all of the metaclasses and relationships defined in the BaselDL Package.

7.2.1 Typing

In the existing CORBA IR, elements, that are "typed," such as constants, attributes, operations, etc., contain an attribute
of type IDLType. However, the same IDLType can be the type for many elements, so an attribute (with its composition
semantics) is not appropriate. Instead, the abstract Typed metaclass and an association between Typed and the IDLType
metaclasses were specified and eliminate the need for repeating the type attribute.

The abstract metaclass IDLType represents OMG IDL types such as Interface, Array or IDL primitive types such as long
or string.

IDL provides a number of built-in basic types, and they are shown in Figure 7.2 by the metaclass PrimitiveDef. This
metaclass has an attribute "kind" from type PrimitiveKind. The PrimitiveKind metaclass provides all inherent CORBA
types like short, long or string.

In addition to providing the built-in basic types, IDL permits you to define complex types: enumerations (EnumDef),
structures (StructDef), unions (UnionDef), sequences (SequenceDef), and arrays (ArrayDef). You can also use typedef
(TypedefDef) to explicitly name a type.

BaselDL permits the definition of constants by the metaclass ConstantDef. This metaclass has an attribute constValue for
fixed value of the constant.

For more information about CORBA types please refer to the CORBA Standard (formal/04-03-01).
7.2.2 Containment

Many elements in the metamodel descend from Container or Contained metaclasses.

The abstract metaclass Contained is inherited by all elements that are contained by other BaselDL elements. All elements
within the BaselDL, except definitions of anonymous (ArrayDef, StringDef, WstringDef, FixedDef and SequenceDef),
and primitive types are contained by other elements. All metaclasses derived from the Contained metaclass hold an
identifier (attribute "identifier"), repositoryID (attribute "repositorylD™) and version (attribute "version").

The abstract metaclass Container is used to describe a containment hierarchy in the BaselDL metamodel. A Container
can contain any number of elements derived from the Contained metaclass. All metaclasses derived from Container are
also derived from Contained.

UML Profile for CORBA and CORBA Components Adopted Specificition 7

UnionDef ‘

I.j|:|-_-||.‘.-1-_-.'|'L--_-"_ CCM BaselDL. UnicnFiekd [0 "] {ordenid]
- AttributeDrel
IsRaadonly Boolkan
AliazDief Fxcaplion[la1
. ValueMemberDref
~ —)
 EEEE—) .\.HI L
ValusBoxDaf ol T {Dief £ n
{ ripasitondd String
A0 Varsion Sting e
T | = [CperationDet
- . p —— P‘
| Eeonbants 10 - 3
EnumDeal ..
—_——— || ConstantDef T
members: String [0, |
|
|
| . —_—
Lontans ValusFactoryDef

StructDef
M BaselDL: Fiald [0.7] {ordered)

members ©

Sifirwrliv “

ModuleDef —1 Container |(ValusDel

1
L

InterfaceDal

Figure 7.3 - BaselDL Containment hierarchy

7.2.3 Modules

The metaclass ModuleDef defines an IDL module. IDL uses the module construct to create namespaces, therefore the
ModuleDef metaclass is also a Container: modules combine related definitions into a logical group and prevent pollution
of the global namespace. Modules can contain any definition that can appear at global scope (type, constant, exception,
and interface definitions). In addition, modules can contain other modules, so nested hierarchies are also possible.

7.2.4 Interfaces

The most important metaclass in the BaselDL is the InterfaceDef which describes an IDL Interface defined as a set of
operations that an instance of that interface must support. InterfaceDef forms a namespace and is a Container. You can

nest the following contained elements inside an interface definition:

« ConstDef (Constant definitions)
TypedefDef (all named non-object.type definitions like structure, union or enumeration)

- ExceptionDef (Exception definitions)
« AttributeDef (Attribute definitions)

« OperationDef (Operation definitions)

UML Profile for CORBA and CORBA Components Adopted Specification

InterfaceDef does not have a private, or protected part. By definition, everything in an InterfaceDef is public. Interfaces
can inherit from one or more other Interfaces (association InterfaceDerivedFrom).

Interfaces may be abstract (attribute "isAbstract™) or local (attribute "isLocal").
7.2.5 Operations

An IDL operation is defined using the metaclass OperationDef and consists of:

» The type of the operation's return result (OperationDef inherits from Typed metaclass); the type may be any type that
can be defined in BaselDL. Operations that do not return a result specify the void type.

« A parameter list (attribute "parameters") that specifies zero or more parameter declarations for the operation.

» An optional raises expression (metaclass "ExceptionDef") that indicates which exceptions may be raised as a result of
an invocation of this operation.

« An optional context expression (attribute "context") that indicates which elements of the request context may be
consulted by the method that implements the operation.

The attribute "isOneway" specifies which invocation semantics the communication service must provide for invocations
of a particular operation.

7.2.6 Attributes

The metaclass AttributeDef describes an IDL attribute. An attribute definition is logically equivalent to declaring a pair of
accessory functions; one to retrieve the value of the attribute ("get"-function) and one to set the value of the attribute
("set"-function).

The attribute "isReadonly" indicates that only a "get"-function (the retrieve value function) is allowed.
7.2.7 Values

The metaclass ValueDef describes a CORBA value type. Value types share many of the characteristics of InterfaceDef and
StructDef metaclasses:

» They support description of complex state (i.e., arbitrary graphs, with recursion and cycles)

» Their instances are always local to the context in which they are used (because they are always copied when passed as
a parameter to a remote call)

« They support both public and private (to the implementation) data members.

« They support single inheritance (of valuetype: association "ValueDerivedFrom™) and can support a single non-abstract
interface (association "supportss").

» They may be also abstract (attribute "isAbstract"), custom (attribute "isCustom") or truncated (attribute
"isTruncatable").

UML Profile for CORBA and CORBA Components Adopted Specificition 9

7.2.8 Exceptions

The metaclass ExceptionDef permits the declaration of data type like structures, which may be returned to indicate that an
exceptional condition has occurred during the performance of a request. Each IDL exception is characterized by the type
of the associated return value (as specified by the attribute "members" in its declaration).

7.2.9 Parameters

The metaclass ParameterDef defines an IDL parameter contained in the IDL operation. A parameter declaration has a
directional attribute "direction” that informs the communication service in both the client and the server of the direction
in which the parameter is to be passed.

7.2.10 BaselDL Constraints

[1] A ConstantDef must be defined in a Container
[1] context ConstantDef inv:
self. definedIn.notEmpty

[2] A TypedefDef must be defined in a Container
[2] context TypedefDef inv:
self.definedIn.notEmpty

[3] An AttributeDef can be defined within an InterfaceDef or within a ValueDef
[3] context AttributeDef inv:
self.definedIn.oclisKindOf (InterfaceDef) or self.definedIn.ocllsKindOf (ValueDef)

[4] An OperationDef must be defined within an InterfaceDef or within a ValueDef
[4] context OperationDef inv:
self. definedIn.oclIsKindOf (InterfaceDef) or self.definedIn.oclisKindOf (ValueDef)

[5] A ValueMemberDef must be defined within a ValueDef
[5] context ValueMemberDef inv:
self.definedIn.oclisTypeof (ValueDef)

[6] An ExceptionDef must be defined in a Container
[6] context ExceptionDef inv:
self.definedIn.notEmpty

[7] If ModuleDef is defined in a Container, this Container must be another ModuleDef
[7] context ModuleDef inv:

definedIn.notEmpty implies (definedIn.ocllsKindOf (ModuleDef) and

self.definedIn <> self)

[8] An InterfaceDef must be defined within a ModuleDef
[8] context InterfaceDef inv:
self.definedIn.oclisKindOf (ModuleDef)
[9] A ValueDef must be defined within a ModuleDef
[9] context ValueDef inv:
self. definedIn.oclIsKindOf (ModuleDef)
[10] Abstract ValueDefs may only derive from other abstract ValueDefs
[10]context ValueDef inv:
self.isAbstract implies base->isEmpty
[11] base element (if any) refers to a concrete ValueDef

[11] context ValueDef inv:
self.base->notEmpty implies not self.base.isAbstract

10 UML Profile for CORBA and CORBA Components Adopted Specification

[12] AbstractBase refers only to abstract ValueDef metaclass instances
[12] context ValueDef inv:
self.abstractBase->forAll(self.isAbstract)

[13] Abstract InterfaceDefs may only derive from other abstract InterfaceDef metaclass instances
[13] context InterfaceDef inv:
self.isAbstract implies base->forAll (isAbstract)

[14] Contained elements have unique names within their Container
[14] contextContained inv:
contents->forAll (c0, c1 | c0 <> c1 implies c0.identifier <> cl.identifier)

7.3 ComponentIDL and Streams Metamodels

The following UML class diagram describes a metamodel representing the extensions to CORBA IDL defined by the
CORBA Component Model. These extensions are dependent on the types defined in the CORBA Core and called

ComponentIDL, so the metamodel ComponentIDL is dependent on the metamodel BaselDL representing the base IDL

and introduced in the previous section.

All ComponentIDL concepts depicted in the ComponentIDL metamodel are detailed described in the CORBA

Components Specification, thus, for more details please refer to the document formal/06-04-01.

Figure 7.4 shows the extended metaclasses from the BaselDL metamodel InterfaceDef, ValueDef and OperationDef

indicated with grey color.

InterfaceDenivedFrom
OperationDef i 0 * H, dered 0" providesa
I
InterfaceDal 1

<7 5]

SisAbsiract Bockan o—
isLocal Boohken St

ry
- ,
b supportsit 1 0 * supponst 4o0 " 0 q s _typed by
P11
.
tsctonies 110" _Uses daf ,.I]
1
|

finders 77 0.7
Y,

,

UsesDef proviches_byped by
| :/ COrTgandnl_Suppon rrlliphy Bockaan
hesr_tociony pome finder

| y NOMme_SUppons receptack-" 0.
| r V
I:--|r|---:|--'|| B 1/ / COMmponant_racapiach
1 hommd
4 p
Ol oe E T prosdes_ded [0 "
HomeDef herriided L 1
ProvidesDef
o { CompaonentDef comp tacst
0.* horwEnd component_home COMponeniEnd, i component_facet g
h COETY B — =
hemeEnd | 0.7 - o W T
____.-" comp FRIrE .
- - y , e
by Pl - - Fa U T " LENPONENT_SOUrces
compenert_smits _~S0mponant e . r{-‘"'""'\'l SNk ~
primany_kéy| o 1 - _-____.r- z___- r \ "‘-‘__H
- COMPOnant_consumes \ .
-~ ~ 4 ™, e
L o Uf. sinkss,, 0.7 SOUNCESS, o
emmitss (.*+ publishess .*" CONSUMASS |/ 3 . —
SinkCref fukeidets
EmitaDaf | F'ubiam:l:hrr| |Cmumnmr 1
. -\\' | // \\I I|
e 1 r ")
. e e Tl " |
. |
: -4 ones 0, r-l groupidTypes 0.1 N [
"
EvantDief _Tc,]'.u:- weenl_por| EveniPortDef [StreamTypaDaf e I
avant_port_tpad by g '] bind SareamTypeDiind E —— StreamPortDo
| 1 strsam_pod_typed_by 0

Figure 7.4 - ComponentIDL Metamodel

UML Profile for CORBA and CORBA Components Adopted Specificition

11

7.3.1 Component Model

The central metaclass in the ComponentIDL metamodel (Figure 7.4) is the ComponentDef metaclass that represents a
CORBA Component type. A component definition in the CORBA Components Specification implicitly defines an
interface (InterfaceDef) that supports (see the association "component_supports” between ComponentDef and
InterfaceDef metaclasses) the features defined in the component definition body. ComponentDef metaclass extends the
concept of an interface definition (inherits from InterfaceDef metaclass) to support features that are not supported in
interfaces. Component definitions also differ from interface definitions in that they support only single inheritance from
other component types but they can inherit from more than one interface (the association "component_supports™).

Components support a variety of surface features through which they can interact with each other. These surface features
are called ports. The ComponentDef metaclass supports four kinds of ports (facets, receptacles, event sink and event
source) defined in the CCM Standard and two additional kinds of ports - stream sink and stream source defined in the
Streams for CCM Specification (ptc/05-07-01):

1. The metaclass ProvidesDef represents facets, which are interfaces (InterfaceDef) provided by the component. It is a
synchronous operational communication mechanism between components.

2. The metaclass UsesDef represents receptacles, which are named ports that define the component's ability to use a
reference supplied by other components. There are two receptacle kinds: simplex receptacles can only use a single
reference, multiplex receptacles can use several references. The boolean attribute "multipleltf* represents the kind of
receptacles. It is a synchronous operational communication mechanism between components.

3. The metaclass ConsumesDef represents event sinks, which are named ports into which events of a specified type may
be pushed. It is an asynchronous communication mechanism between components.

4. The metaclasses EmitsDef and PublishesDef represent event sources, which are named ports that emit events of a
specified type to one (EmitsDef) or more (PublishesDef) interested event consumers. It is an asynchronous
communication mechanism between components.

5. The metaclass SinkDef represents stream sinks, which are named ports into which continuous data called streams of a
specified type may be pushed. It is an asynchronous communication mechanism between components.

6. The metaclass SourceDef represent stream sources, which are named ports that emit continuous data of a specified
type to the stream consumer. It is an asynchronous communication mechanism between components.

As described above CORBA component model supports a publish/subscribe event model and contains event type
declaration (metaclass EventDef), which is a restricted form of CORBA value type (inherits from the BaselDL metaclass
ValueDef). The metaclass EventPortDef is an abstract class for all event ports.

7.3.2 Component Homes

CORBA Components are managed by homes (metaclass HomeDef, see Figure 7.4), which are CORBA Interfaces (inherit
from InterfaceDef) providing operations to manage component life cycles, and optionally, to manage associations between
component instances and primary key values (association key_home). Components are independent of their homes;
however, a home must specify exactly one component that it manages (see the multiplicities of the association
component_home). Multiple different home types can manage the same component type, though they cannot manage the
same set of component instances.

A home may include zero or more operation declarations, where the operation may be a factory operation (FactoryDef),
a finder operation (FinderDef), or a normal operation or attribute.

12 UML Profile for CORBA and CORBA Components Adopted Specification

7.3.3 Streams

As mentioned above, the CORBA Component Model supports two different kinds of communication: synchronous
operational communication and asynchronous event communication. The OMG Final Adopted Specification "Streams for
CCM Specification” (ptc/05-07-01) extends the CORBA Component Model with an optional conformance point: native
support for the communication of continuous data streams between CORBA components. It extends the BaselDL and
ComponentIDL metamodels standardized in CORBA Components Specification with constructs to model stream-specific
ports on a component shown in Figure 7.4. Furthermore, it defines a stream type to be used for the classification of data
streams:

T
sbased_ppe | 91 &

IDLType
SourceDel SinkDef

strwam_type

+from_idl_ppe 1 ". '
. | ! +SIrSam_Bps i el

S +SITEam_por —
StreamTypeDef I straam poet tmed by 07 StreamPortDel
+ hind Stream TypaDifiand -7 -

QIOLES
SRUTIrALior \ r,
StreamTypeDefilind el i
+ BASIC_STREAM |
+ CONSTRUCTED _STREAM Contxined
¢ VALUE_STREAM + identifier. String
+ RAW _STREAM

Figure 7.5 - CCM Stream Metamodel

Figure 7.5 introduces an additional kind of port for the communication of stream data, called a stream port (abstract
metaclass StreamPortDef). A stream port can be a source port or a sink port (see Figure 7.4). A source port produces
stream data of a stream type. A sink port consumes stream data of a stream type. The metaclass StreamTypeDef represents
a stream type. The stream type may be of kind (attribute "kind" of the metaclass StreamTypeDef) basic, constructed, value
or raw defined by StreamTypeDefKind enumeration (from ptc/2005-07-01):

« Basic stream types are defined as concrete data formats for the information content of streams, which are not
necessarily defined using IDL, but are encoded some other way. Basic streams are used to transport streams of encoded
data, typically audio or video data. The data is consumed and produced by component implementation logic as octet
sequences, unless the basic stream type.

« Value stream types, are a subtype of basic streams, which transport consecutive marshaled instances of data types
specified in a subset of IDL. If the IDL data type of a value stream is octet, it is indistinguishable from a basic stream
that does not have a specified IDL data type, and is not considered a value stream type.

» Constructed stream types are a hierarchical grouping of multiple basic stream types or other constructed types,
indicating the ability to produce or consume any of the basic or value types.

« Raw streams are not typed, and intended for applications where the format of the stream does not influence the
functionality of a component. Examples for the applicability of this type are a component that encrypts or compresses
a data stream or a component that reads from or writes to a file.*

UML Profile for CORBA and CORBA Components Adopted Specificition 13

7.3.4 Containment

The following UML class diagram describes the derivation of the metamodel elements from the BaselDL Container and
Contained elements:

. +nn Contair b, '-'.'-I;.! Contained
Container »
0.1 0.7+ idertifier. String
T+ repositongd Siring
_pA+ vSIONn Sinng

Y = —

[PravidesDef | - ra |

-~ ;) .
- / | ", .

i ,
IntarfaceDel WalueDef .-—"'... ' | ..'\ -I:ru amTYPuDuI"
-~ s | M 1
| W, [4 b)
|I AW Y

— EventPortDef | |
EvantDef |

ConsumesDal e StroamPortDef ==

)

rd |I 1
i I I |
Fublighaala | Fy | I|
f F 1 {

II'.‘urnqmnenrDefl HomsOaf

=]

[Emitspet| L
.—l SinkDef | |s.:um|:uu FinderDief r:‘m“'n’1
— | —

Figure 7.6 - ComponentIDL Containment hierarchy

Since the ComponentDef and HomeDef metaclasses inherits from InterfaceDef they forms also naming scopes.

7.3.5 ComponentFeature

An instance of ComponentDef describes a CORBA Component in an abstract manner. The definition contains a
description of all features of a component that are visible from the outside. In detail, the features supported by a CORBA
Component are:

« The component equivalent interface, containing all implicit operations, operations and attributes that are inherited by a
component (also from supported interfaces), and attributes defined inside the component.

» The facets of a component; that is, all interfaces that are provided by the component to the outside.
« The receptacles of a component; that is, all interfaces that are used by a component.

« The events, which a component can emit, publish, or consume.

» The streams, which a component can produce or consume.

If a component is going to be implemented, all these features must be handled by the component implementation. To
provide a common basis for defining the related implementation definitions (as part of CIF) the abstract metaclass
ComponentFeature is defined. The metaclasses ComponentDef, ProvidesDef, UsesDef, and EventPortDef are defined as
subclasses of the abstract metaclass ComponentFeature (see Figure 7.7):

14 UML Profile for CORBA and CORBA Components Adopted Specification

ComponentFeature Metaclass

ComponentFeaturng L.
e
- 1 — P K™
ProvidesDef | __.--""' f = =
B - I}
I = { o | ComponentDef
-y .'. .
| UsesDef I =
’ EvernPorDaf StroamPortioef

LT)
N]
I b SinkDref |

FublishesDef| i L i
| , | SourceDef |
|Erni:l=-De‘I'|
CansumasaDef

Figure 7.7 - ComponentFeature abstract metaclass
7.3.6 ComponentIDL Constraints

[15] A ProvidesDef can be defined only within a ComponentDef
[15] context ProvidesDef inv:
self.definedIn.oclType = ComponentDef

[16] A UsesDef can be defined only within a ComponentDef
[16] context UsesDef inv:
self.definedIn.oclType = ComponentDef

[17] An EventPortDef can be defined only within a ComponentDef
[17] context EventPortDef inv:
self.definedIn.oclType = ComponentDef

[18] A FactoryDef can be defined only within a HomeDef
[18] context FactoryDef inv:
self.definedIn.oclType = HomeDef

[19] A FinderDef can be defined only within a HomeDef
[19] contextFinderDef inv:
self.definedIn.oclType = HomeDef

[20] A PrimaryKeyDef can be defined only within a HomeDef
[20] context PrimaryKeyDef inv:
self.definedIn.oclType = HomeDef

[21] All of the ProvidesDef metaobjects that populate the Association component_facet also populate the ComponentDef's
inherited Contains Association
[21] context ProvidesDef inv:
component.contents->includesAll (facet)

[22] All of the UsesDef metaobjects that populate the Association component_receptacle also populate the
ComponentDef's inherited Contains Association
[22] context UsesDef inv:
component.contents->includesAll (receptacle)
[23] All of the EmitsDef metaobjects that populate the Association component_emits also populate the ComponentDef's

inherited Contains Association
[23] context EmitsDef inv:

UML Profile for CORBA and CORBA Components Adopted Specificition 15

component.contents->includesAll (emitss)

[24] All of the PublishesDef metaobjects that populate the Association component_publishes also populate the
ComponentDef's inherited Contains Association
[24] contextPublishesDef inv:

component.contents->includesAll (publishess)

[25] All of the ConsumesDef metaobjects that populate the Association component_consumes also populate the
ComponentDef's inherited Contains Association
[25] context ConsumesDe inv:
component.contents->includesAll (consumess)

[26] All of the SinkDef metaobjects that populate the Association component_sinks also populate the ComponentDef's
inherited Contains Association
[26] context SinkDef inv:
component.contents->includesAll (sinkss)

[27] All of the SourceDef metaobjects that populate the Association component_sources also populate the
ComponentDef's inherited Contains Association
[27] context SourceDef inv:
component.contents->includesAll (sourcess)

[28] All of the FactoryDef metaobjects that populate the Association home_factory also populate the HomeDef's inherited
Contains Association
[28] contextFactoryDef inv:
home.contents->includesAll (factories)

[29] All of the FinderDef metaobjects that populate the Association home_finder also populate the HomeDef's inherited
Contains Association
[29] context FinderDef inv:
home.contents->includesAll (finders)

[30] The ValueDef specified as the event type must descend directly or indirectly from Components::EventBase
[30] contextValueDef inv:
type.descendsFrom (**Components::EventBase")

descendsFrom (absoluteName : string) : Boolean
{ descendsFrom (absoluteName) =
if self.absoluteName = absoluteName then

true
else
if base->isEmpty then
false
else
if base.descendsFrom(absoluteName) then
true
else
false
endif
endif
endif

}

[31] The return type of FactoryDef must be the same as the type of the component that the FactoryDef's home manages.
[31] context FactoryDef inv:
self.type = home.manages.type

[32] The return type of FinderDef must be the same as the type of the component that the FinderDef's home manages.
[32] context FinderDef inv:

16 UML Profile for CORBA and CORBA Components Adopted Specification

self.type = home.manages.type

[33] A ComponentDef C may be derived from at most one base.
[33] contextComponentDef inv:
self.base->size <=1

[34] Furthermore, that one base must be a ComponentDef
[34] context ComponentDef inv:
self.base->notEmpty implies (base->forAll (ocIType = ComponentDef)

[35] A ComponentDef may not define operations
[35] context ComponentDef inv:
self.contents->forAll (oclType <> OperationDef)

[36] A supported InterfaceDef of ComponentDef must not be one of the derived forms of InterfaceDef
(i.e., ComponentDef or a HomeDef).
[36] context ComponentDef inv:
self.supports->forAll (ocllsTypeOf (InterfaceDef))

[37] A HomeDef may be derived from at most one base.
[37] context HomeDef inv:
base.size() <=1

[38] Furthermore, that one base must be a HomeDef
[38] context HomeDef inv:
base-> notEmpty implies (base->forAll (ocIType = HomeDef)

[39] The valuetype of a primary key must not have private state members
[40] The valuetype of a primary key must not have members that are interfaces
[41] The valuetype of a primary key must have at least one state member

[42] Contraints [39], [40], and [41] apply recursively to valuetype members that are valuetypes
[39, 40, 41, 42] isAcceptableKeyType (type)
isAcceptableKeyType (valueType : ValueDef) : Boolean
{ valueType.contents.forAll
(c | c.ocllsTypeOf(ValuefMemberDef) implies c.OclAsType (ValueMemberDef).isPublicMember)
and valueType.contents.forAll (not ocllsKindOf (InterfaceDef))
and valueType.contents.exists (ocllsTypeOf(ValueMemberDef))
and valueType.contents.forAll (c | c.ocllsKindOf (ValueDef) implies isAcceptableKeyType (c))

[43] Given a home definition H that manages a component type T, and given a home definition H' that manages a
component type T, such that H' is derived from H, then T' must be identical to T or derived (directly or indirectly)
from T.

[44] If H or one of its ancestors defines a primary key K and H' defines a primary key K', then K' must be identical to or
derived (directly or indirectly) from K.
[43,44]
NOTE: Previously-defined additional OCL operation "descendsFrom" and new additional OCL operation "primaryKey" are used:
context HomeDef inv:
self.base->forAll (haseHome | self. manages.descendsFrom (baseHome.manages) and
primaryKey (self)->notEmpty implies
primaryKey (self).type.descendsFrom(primaryKey(baseHome).type))

primaryKey (home : HomeDef) : PrimaryKeyDef
{ if home.key->isEmpty then
if home.base->isEmpty then
result = home.key

UML Profile for CORBA and CORBA Components Adopted Specificition 17

else
primaryKey (home.base)
endif
else
result = home.key
endi f }
[45] Basic ComponentDef objects shall not have ports and do not inherit from other components.
[45] context ComponentDef inv:
self.isBasic implies
facets->isEmpty and receptacles->isEmpty and
emitss->isEmpty and publishess->isEmpty and consumess->isEmpty and
sinkss->isEmpty and sourcess->isEmpty and
base->isEmpty
[46] HomeDef objects of basic ComponentDef have only factories and finders, do not inherit from other homes, and
manage only basic components.
[46] context HomeDef inv:
manages->isBasic implies (key->isEmpty and base->isEmpty and manages.isBasic)
[47] If StreamTypeDef object is a constructed stream then its multiplicity must be more than one, in any other case the
multiplicity is null.
[47] context StreamTypeDef inv:
if self.kind = CONSTRUCTED_STREAM
then
groupedTypes.size() > 0
else
groupedTypes.size() = 0
endif
[48] None of the StreamTypeDesf of kind RAW_STREAM can be grouped
[48] context StreamTypeDef inv:
if groupedTypes.size() > 0
then
self.alllnstances () -> forAll (s | s.kind <> RAW_STREAM)
else
groupedTypes.size() = 0
endif

7.4 CIF Metamodel

A CORBA Component encapsulates its internal representation and implementation. The Component Implementation
Framework (CIF) metamodel defines the programming model for constructing component implementations described in
Component Implementation Definition Language (CIDL). CIDL is a declarative language for describing the structure and
state of component implementations (for more information please refer to the document formal/06-04-01). Component-
enabled ORB products generate implementation skeletons from CIDL definitions. Component builders extend these
skeletons to create complete implementations.

CIF metamodel package obviously depends on the ComponentIDL package (see Figure 7.1) since its main purpose is to
enable the modeling of implementations for components specified using the ComponentIDL definitions. The extended
metaclasses ComponentDef, HomeDef and ComponentFeature from the ComponentIDL package are indicated with gray
color in Figure 7.8.

18 UML Profile for CORBA and CORBA Components Adopted Specification

The CIF metamodel represented in Figure 7.8 updates the metamodel defined in the CORBA Component Specification
(formal/06-04-01). The updated CIF metamodel contains a new metaclass CompositionDef. This metaclass provides
means for modeling component implementation as a composition of artifacts and will be explained in the next section.

To avoid unneeded complexity and misunderstanding metaclasses ArtifactDef and Policy have been deleted from the
original CIF metamodel. To conform to composition definition in formal/06-04-01 (section 8.2.5) metaclasses
HomelmplDef and ComponentimplDef have been renamed as HomeExecutorDef and ComponentExecutorDef.

= Condained

Container I =
| 1 +defingdn +conbants| * HenDf
- = —ul + FEDOSI
b, 1 Conkains 0%+ varsice
FL 0 =
s . [S EMUTETE0N
| CompositionDef ComponentCategory
|- catpgory. COMCIF, ComponertC aegany +

+COmp0Si0 _r|'|":| 1 +

COMporSmon_nomsemac

& i ECLEON o
OiTe_exat Ll V

HumuEx::LlulDul'r-"\T' +h'mr~:—n__'. HomeDef
0.* hatrse_impheirnes i

.
shome_impl T+0.* +homeEnd 0.7
Manages COMponen_home
+eprmponrt_imply1 sComponentEnd 1
ComponentExecuterDef J509% CCOTROSEnOT et
(i COmponsnt_imphameants E l—
+oomponerEmplEnd 11
Sairmeanls
ssagmant 1. " Y
SegmentDet +FSEOMEN prondded by +fealunés | ComponentFeature
- 1"

+ isSenshied Bookean|'

Figure 7.8 - Component Implementation Framework Metamodel

The term executor is used to indicate the programming artifact that supplies the behavior of a component or a component
home. In general, the terms executor or component executor refer to the artifact that implements the component type, and
the term home executor refers to the artifact that implements the component home.

CIF metamodel comprises a set of artifacts that must exhibit specific relationships and behaviors in order to provide a
proper implementation. An overview on these is to be seen in Figure 7.8 and their meaning is explained in the following.

7.4.1 Composition

The description of a component implementation is a description of aggregate entity, of which the component itself may be
a relatively small part. To denote the set of artifacts that constitute the unit of component implementation, the metaclass
CompositionDef is defined. CompositionDef inherits from the ContainerDef metaclass and specifies the following
metaclasses: HomeExecutorDef, ComponentExecutorDef and HomeDef (from ComponentIDL metamodel). The name of
the CompositionDef identifies the name of a scope within the contents of the composition (HomeExecutorDef,

UML Profile for CORBA and CORBA Components Adopted Specificition 19

ComponentExecutorDef and HomeDef) are contained. The attribute "category"” of the CompositionDef identifies the life
cycle category of the component implementation ComponentExecutorDef supported by the composition. The attribute has
a type ComponentCategory defined as an enumeration type contained five possible component categories: service,
session, process, entity and extension. The component categories service, session, process and entity are defined and
specified in formal/06-04-01, the extension category is added to the CIF metamodel for indication of vendor specific
extensions done for a component implementation. For example, implementing the QoS extension can be done in a
proprietary way by modifying the container. The QoSforCCM Submission defines concepts for developing and integrating
such extension for CCM in a standard way. The extended components differ from plain application components and
should be deployed into containers of a particular type (container category). This type is the extension container type as
defined in section 5.9 of the QoSforCCM Submission.

The most important properties of the component categories are briefly described in the following:
« Service: no state, no identity, behavior
- Session: transient state, identity (which is not persistent), behavior
 Process: persistent state, persistent identity, behavior, which may be transactional

« Entity: persistent state, identity, which is architecturally visible to its clients through a primary key declaration,
behavior, which may be transactional

 Extension: vendor specific
7.4.2 Component and Home Executors

The metaclass ComponentExecutorDef is used to model an implementation for a given component type. It specifies an
association to ComponentDef to allow instances to point exactly to the component the instance is going to implement. A
ComponentExecutorDef always has exactly one ComponentDef associated while each ComponentDef might be
implemented by different ComponentExecutorDef metaclass instances. ComponentExecutorDef is specified as being a
Container, by doing so, instances are able to contain other definitions.

The ComponentExecutorDef definition optionally specifies executor segments (SegmentDef metaclass), which are
physical partitions of the component executor, encapsulating independent state and capable of being independently
activated. Segments are described in the next section. The only definitions that are allowed to be contained by a
ComponentExecutorDef are instances of SegmentDef.

The metaclass HomeExecutorDef is used to model home executors (implementations). The name of the home executor is
used as the name of the programming artifact (e.g., the class) generated by the CIF as the skeleton for the home executor.
The contents of the HomeExecutorDef describe the relationships between the HomeExecutorDef and other elements of the
composition, determining the characteristics of the generated home executor skeleton. Each instance of HomeExecutorDef
in a model implements exactly one instance of HomeDef. This relation is modeled by the association implements between
both metaclasses. HomeExecutorDef inherits from the abstract metaclass Container and manages exactly one
ComponentExecutorDef, this relation is modeled by the association "manages".

7.4.3 Segments
A component implementation may be monolithic or segmented. A monolithic component implementation is a single

artifact. A segmented component implementation is a set of physically distinct artifacts. Each segment may have a
separate abstract state declaration. Each segment must provide at least one facet defined on the component definition. The

20 UML Profile for CORBA and CORBA Components Adopted Specification

life cycle category of the composition must be entity or process if the component implementation specifies segmentation.
The primary purpose for defining segmented component implementations is to allow requests on a subset of the
component's facets to be serviced without requiring the entire component to be activated.

The metaclass SegmentDef is used to model a segmented implementation structure for a component implementation. This
means that the behavior for each facet (ComponentFeature abstract metaclass) can be provided by a separate segment of
the component implementation (most likely a separate programming language class in the code generated by the CIF
tools) if necessary. Instances of SegmentDef are always contained in instances of ComponentExecutorDef and therefore
are derived from Contained. SegmentDef has an association to ComponentFeature so that instances must point to facets of
a component which the segment is going to provide. The attribute isSerialized is used to indicate that the access to
segment is required to be serialized or not.

The new CCM specification, version 4.0 obsoletes the original idea of component segmentation defined in preexisting
version and allows composition and decomposition on any level, and therefore the ability to add another level of
decomposition on the lowest level. This specification is based on the latest CCM specification and considers any level of
component decomposition; this concept is defined in the Deployment and Configuration metamodel described in the next
section.

7.4.4 CIF Constraints

There are no further additions or constraints on the CIF metamodel.

7.5 Deployment and Configuration Metamodel

Component implementations may be packaged and deployed. A Component package maintains one or more deployable
implementations of a component. It may be installed on a computer or grouped together with other components to form
an assembly. A component assembly is a group of interconnected components represented by an assembly package.
Component and assembly packages are provided as input to a deployment tool. Based on deployment descriptors and user
input, a deployment tool installs and activates component and home instances; it configures component instance
properties and connects them together via interface, event or stream ports.

The original CCM 3.0 Specification (formal/02-06-65) standardized deployment and configuration process for CCM
applications in the section "Packaging and Deployment": deployment process steps, architecture and also deployment
descriptors. Deployment descriptors are XML descriptions of component and assembly packages contents and other
deployment information used by a deployment tool. One way for reducing the complexity of the deployment and
configuration process of CCM components in the distributed environment is to have an expressive and robust metamodel
and specific notation for modeling of deployment and configuration information, which can enable the automation of the
entire deployment process of CCM applications (e.g., by generation of deployment descriptions automatically).

However, the original CCM specification defines neither a conceptual base for describing deployment and configuration
requirements of components, nor a high level notation for the presentation of resulting models. The Deployment and
Configuration of Component-based Distributed Applications (D&C) specification (formal/06-04-02) defines metadata and
interfaces to facilitate the deployment and configuration of component-based applications into heterogeneous distributed
target systems in general, in platform-independed manner. The original CCM 3.0 Specification (formal/02-06-65) has
since been superceded by the new CCM 4.0 specification (formal/06-04-01), which describes mappings and extensions of
the platform-independent model for Deployment and Configuration defined in formal/06-04-02 to CCM, but these
mappings and extensions are not based on the defined in CCM 4 standard MOF metamodel. The reason was that at time
of mapping definition some important concepts like component instance or implementation needed as conceptual base for
deployment and configuration data definition were missing in the CCM metamodel. Thus, additional concepts for
modeling of deployment and configuration data for CCM applications were defined and will be introduced in this section

UML Profile for CORBA and CORBA Components Adopted Specificition 21

as a deployment metamodel. In that connection we tried to consider deployment information and concepts defined in both
existing standards: D&C and CCM 4.0 and combine them together to provide a support for new deployment tools for

CCM applications.

sl | O* +mon_impl 0.1

w1 im0
-

i foem
¥

Ay

':‘.-1

ApsamblyPkgDef

LU Lot e

]
+a% plags | O

el osl
La—""

§

st i

Conre oS

/
¢ a1] T v
shome_seetutoe 4y 141 *hipe I ! @
o [a becomp_inut e =% ecomi’
‘HomaExwcutorDel scomp_mts | 1 B
) Jf] Ppee et ey
wfurm gl o connected_adl_irslance
N T) COMTy_Te0I S BDon *and_inad 11 1 Commchied s
eDal
PO comg_instarce_ol_hoe Extsrnallnstanc
-idu'rpnrml_nplj,l
T — -
i

Figure 7.9 - Deployment metamodel: main diagram

22

e
Actionking Fidarieritaking Findariervice
[FisoL) oot e (]
& ASHERT + ECAMETFROES # regname Shng
& MSTALL P T o oy COM Cepimytrent FinderSeeacmong
+ TRADNG
+ UNDEFBED
= SN
carnactionEndkmid ;lr-l'r-nrnm-
(- =40 T
= pook beaty
s COMIORERTRTERFALE —
= COMPOMENTELPSORTEDNTERFACE » .y
& - EVENTCHARME POGT * SECUENCE TYPE
= EVENTROST + SMPLE TYOE
= HOMEWTERFATE « BTRUCT_TvPE
s SR PHTTERFACT = Wi TR TyRE
= STREAMPORT

UML Profile for CORBA and CORBA Components Adopted Specification

The Deployment and Configuration metamodel defines a set of modeling elements represented as metaclasses and extends
the existing CCM metamodel by these new metaclasses. In order to be able to model deployable CCM applications a
concrete syntax must define the specific notation rules for the graphical representation of defined modeling language
(metamodel). In our case we use UML 2: the UML Profile for Deployment and Configuration of CCM applications that
will be introduced in the next section supports the representations of CCM deployment and configuration concepts in
UML 2 models.

Deployment metamodel package depends on the CIF package (see Figure 7.1) since its main purpose is to enable the
modeling of component packages and assemblies, which contain deployable implementation artifacts and instances of
component and home implementations specified in CIF. Figure 7.9 shows all of the metaclasses and relationships defined
in the Deployment metamodel package. The extended CIF metaclasses ComponentFeature, CompositionDef,
ComponentExecutorDef and HomeExecutorDef are identified with gray color.

7.5.1 Implementations

A component package of a CCM application represented by the metaclass ComponentPkgDef may contain a set of
alternative implementations for one component (see association "realized" between ComponentPkgDef and
ComponentDef metaclasses), for example, implementations for different operating systems, compilers, or ORBs, or
different programming language implementations like JAVA or C++. These implementations, which contain descriptive
information about a particular implementation of the software, are physical units of deployment process and represented
by the metaclass ImplementationDef.

*pkg_C reaiizes sreabzed_c
ComponentPEgDef| redlizes | ComponentDef
| g« 1
f scompanentEnd
+phg | i y 1
| ‘
contains_impis Component_homs

+impls .1 - | HomeDef
Englith I
ImplermentationDel all Componertimplemantafon must implement the same CompaneniDel metaobject the |
1 ComporandPaciage is for b x
oL shormsaEnd T 1
* conlaxt CompaninlPackgs
simpl | 1 vy irypds->4008d (il Lmien_imipl compos. hoema_sasculoe homeEnd comporeniBed = realized_c)
eron,_form home_implements
II
\
smmion_impl, 0.1

*SEgs il

MonalithiclmplementationCref HomeExecutorDef

implements_comp

g

z 1 =~ sComposition
CompositionDef

Figure 7.10 - Component package and Implementations

+COMPED

The D&C specification defines two types of component implementations: monolithic or assembly based implementations.
A monolithic implementation is contained in an artifact (e.g., an executable file or library as a result), an assembly based
implementation is a set of interconnected sub-component implementations. The monolithic implementation is represented
by the metaclass MonolithiclmplementationDef, assembly based implementation is represented by the metaclass
AssemblyPkgDef.

UML Profile for CORBA and CORBA Components Adopted Specificition 23

The metaclass CompositionDef (see ComponentIDL metamodel) describes internal implementation structure of a
MonolithicimplementationDef: for each monolithic component implementation one composition description must be
defined.

The ImplementationDef metaclass is described by further ContainedFile and DependentFile, metaclasses, which are
introduced below.

| CenfigurstionDel | ComposiionDel
K
)
L S I " Heag
AasamblyPRgDel o MarsaiEhicimphamantatianDal
]
T
Hle 1 . 1 r ,
ComponantPhgDel| .pg sirephi b hlf".T.".T.'."?ﬂD". {
+iwq)0 *
RagquiremansDel
“rRakTed € s 0®
ComponentDef IDLFils

Figure 7.11 - ImplementationDef description

The ImplementationDef has the attribute "uuid™ that uniquely identifies each instance of the ImplementationDef metaclass
in a model. The ImplementationDef may have properties (e.g. configuration properties) or non-functional properties (e.g.
QoS-properties), this feature the metaclass inherits from the metaclass PropOwnerDef (see Figure 7.13).

The ComponentPkgDef metaclass can point to the IDL file (metaclass IDLFile) containing an IDL definition of the
component's (or home's) interface definition. A component package can be described by properties like author, titel or
license information. These properties are defined using the abstract metaclass PropOwnerDef (see Figure 7.13).

The RequirementDef metaclass is used to specify features requested by component implementations (ImplementationDef)
like compiler type, programming language, in which the ImplementationDef is realized; or type of operational system (0s)
that the ImplementationDef will work with. This features are described as properties, which the RequirementDef
metaclass inherits from the abstract metaclass PropOwnerDef (see Figure 7.13).

The ContainedFile metaclass points to a file that implements the component, for example, a DLL or a .class file. The
"codetype" attribute (Figure 7.14) specifies the type of code, the "entrypoint™ attribute is used to specify an entry point to
the code and the attribute “entrypointusage”is used to describe how to use (i.e. invoke) the code.

The DependentFile metaclass is used to specify environmental or other file dependencies of the ImplementationDef.
When the attribute "action" is set to "assert" (see the enumeration ActionKind Figure 7.9), the installation process must
verify that the dependency exists in the environment. If the attribute is set to "install", the installation process must install
the dependency file if it does not already exist.

24 UML Profile for CORBA and CORBA Components Adopted Specification

The IDLFile metaclass points to an IDL file. The IDL file is optional: some tools that deploy and execute CCM
applications might need the IDL description to interact with the ports of the application's component interface.

The ContainedFile, IDLFile and DependentFile metaclasses are derived from the abstract metaclass File that defines
general information about files like file name, file location, etc (see Figure 7.14).

7.5.2 Assembly Package

An assembly package as a main top object for deployment process. Assembly package may contain component packages
and one description of the initial configuration of a CCM application. An initial configuration is a set of interconnected
component implementation instances often called as an assembly; it is a template for instantiating a set of component

implementations make up the application and connecting them to each other at run time. This template or description is
used by deployment tools as a main input.

ExtemnallnstancaDaf
AzssmblyPigDel
findbeyr FinderSeraceled [0 1] S o
otpscired String [01) e g
e _eest T 0.1 ass |1

Nt Confchons
Connachad_ed_erslanca

i 1 ad intarconn 0 1
SOUFCH_ conn —
. el !-L " " ConnectionDef | comn cont ConfigurationDef
hoame._and CiC C Ei CONNBCRN_and 1 .
knd CCM:Diaphoyient ConnectonEndkind B e - -
0. 1arget_end conn | 0 cormections 1
1 connacion_snd2 1 L]
comp_end | 0.° [[lj L colig” conig 4.
oonr i _Paaturs Vy x'._
! \
/" p
Fefeatura L0 1 y '\‘
c Foaturey thitoatune comg_inst RegisterinstanceDef herst_eollocs pr_celoct
S — ! \
1 repsened_teals f *|findtey FinderSaraceled Vy
= - _/. \‘“
regigraton 0.* I i
-~ ;
connaciad_instance COMp,_regisTaton .zz _\
comp_insd 1~ v
- host 0 * coloeg0.®
ComponentinstanceDal T]
" = cormp_insts [HestC ellacationDel hait processios | ProcessCeollocstionDel
IRL_COMmp Pl carcinality. CorbaliersigndLiong = T —— .
0.1 0." cpcutbloplacements dos Snng 1 MO ESSCOBOCONS. 0
*y -
COTE) or i -
conngcied_homs_arslancg ' \\ z",
B - Creana_oonn i -
__/"
mhorn | \Q _.\.-"'
st_bce_ifst smainstencaOef oM _insts cobac Codocananbef

o cardinaity Corbalingigrsdlong
0.9 regpstermity FinderSenacelet [0 1)

homaplacemants L

candinality CorbalinsignedLong

spTUTEralions
ConnectionEndHind
COMPOMENTMTERFACE
COMPOMNENT SUFFORTEDINTERF ACE
EVENTFORT
HOMEMTERFACE
STREAMPORT

= ENTIS A =
FinderServicelind
HANING
TRADRG
HOMEFHNDER
UNDEFHED

Figure 7.12 - Assembly package description

FinderservicaDaf

girvice COM Deploymant FindierSanicatind
TEgnaETe Sy

UML Profile for CORBA and CORBA Components Adopted Specificition

25

Figure 7.12 represents the assembly package description: the metaclass AssemblyPkgDef that uniquely identified by the
attribute "uuid" lists the component packages (ComponentPackageDef) that may be included in the assembly package and
contain information regarding a component and home implementation. AssemblyPkgDef descibes a possible initial
configuration description of sub component implementation instances at the runtime (metaclass ConfigurationDef). The
ConfigurationDef metaclass describes a template for instantiating of an assembly.

The ConfigurationDef metaclass specifies further metaclasses: ProcessCollocationDef, HostCollocationDef,
ComponentPackageFile and Connection.

Implementation instances of an application can be deployed either to one single host (host collocation) or different hosts;
they may be executed in one single process (process collocation) or in different processes, which can be run on one or
several hosts. The metaclasses ProcessCollocationDef and HostCollocationDef define these two different locality kinds.
The abstract metaclass CollocationDef is a parent class for both metaclasses, its attribute "cardinality” specifies how
many instances of the process or host collocation may be deployed. If the cardinality is greater than 1, and there are
connections to components and homes within the collocation, then connections will be made to corresponding
components or component homes within each instance of the collocation.

The ProcessCollocationDef metaclass specifies a group of home (HomelnstanceDef metaclass) and associated component
(ComponentinstanceDef metaclass) instantiations that are to be deployed together to a single process.

A HostCollocationDef metaclass specifies a group of component instances that are to be deployed together to a single
host.

The ConnectionDef metaclass describes how instances of deployed component and home implementations have to be
initially connected to each other at the run time. The ConnectionDef is specified by two connection ends
(connection_end1 and connection_end2 associations): one target and one source end. Both are described by the metaclass
ConnectionEndDef and its attribute "kind", which indicates the kind of a connection end (ConnectionEndKind). There are
several kinds of connection ends:

« COMPONENTINTERFACE is used to specify a connection between component uses and provides ports

« COMPONENTSUPPORTEDINTERFACE is used to specify a connection between component with a supports inter-
face and a uses port

« HOMEINTERFACE is used to specify a connection between a home with an interface and a uses port.
- EVENPORT is used to connect a component consumes port to event producer
« STREAMPORT is used to connect a component consumes port to stream producer

The ConnectionEndDef is associated (association "connected_feature™) with the abstract metaclass ComponentFeature
defined in the ComponentIDL metamodel (see Figure 7.7) and generalized real component and component ports.

Each Connection connects two component instances via ports (ComponentFeature metaclass). The
ComponentinstanceDef metaclass is used to describe the connected component instance created by its home instance
(HomelnstanceDef metaclass). The attribute “cardinality” is used to specify how many instantiations of a component or
home may be deployed. The attribute "registerwith" of the HomelnstanceDef instructs the installation process how to
register the home and has the type of metaclass FinderServiceDef, which describe such register information.

The RegisterinstanceDef metaclass is used to specify that a component instance has to be registered after it is created. The
attribute "findby" points to the registration kind (e.g. naming service or trader), its type FinderServiceDef is introduced
below. The component type of the registered instance, provided interfaces or published events are described by the
metaclass ComponentFeature.

26 UML Profile for CORBA and CORBA Components Adopted Specification

The FinderServiceDef metaclass is used to resolve a connection between two instances. Its attribute “service" tells how to
locate a party, usually a component, interface, or home involved in the connection. In our case (see Figure 7.11), it could
be located in a naming service (NAMING), in a trader (TRADING), by a home finder (HOMEFINDER) or by an
undefined service (UNDEFINED).

7.5.3 Properties

The PropertyDef metaclass (Figure 7.13) specifies attribute settings of elements. Properties can be used at deployment
time to configure home or component instances. Implementations may also have properties. The abstract metaclass
PropOwnerDef specifies following property owners: ComponentinstanceDef, HomelnstanceDef, AssemblyPkgDef,
ComponentPkgDef, ImplementationDef, MonolithicimplementationDef and RequirementDef.

fon_func_prop._cvmir | ImelementationDet I.ﬂ.::amh},rPngdl
—_— -

1 |+ wad String | r-'lono!lﬂllcknpltmtmahonual|

aEMUTEraions ""--.,__ o
Froperty Type ey -
+ ANY_TvPE Ry -
T -:.EI.UIl:: -'_'_;___ "y v i RequirementDef
+ FrapOwrrChaf . |
. | .
e - = v
ren_func_props - 4 .*. .
CompensntPigDef y *owner | 1 e
e
] ey h.‘.""\-\.
-~ . h "\-\._\.
rl T
HomelnatancaDaf | CompoenentinstanceCel
+ cardinakly Corbalrsgngdlong « cargnality Corbalinsignesl ong
+ rigistenmitht FinderSendceled [0..1]
— property_owner +RION_UNE_DRop,_owniar "1 cont_prop_ovnir 11
+Comp_default_prop_owner
\
\ non_fune_peops
defaull_prop_for_comp_inslances
Y
,
b sprop g " [0 " non_fune_prog
+0Mp_defaul_prap,| PropartyDel
o L
: - |* property_hpe FroperyType
+non_fng_prog ¥[+ bype String
_func_preg 0 &« walss Stnng sconf_prog conf_props
it

Figure 7.13 - Properties description

Each property has a property type defined as an any (ANY_TYPE), simple (SIMPLE_TYPE), sequence
(SEQUENCE_TYPE), struct (STRUCT_TYPE) or valuetype (VALUE_TYPE) (see attribute "property_type" and the
metaclass PropertyType). The simple property describes a single primitive BaselDL type. The sequence property
corresponds to a BaselDL sequence, the struct corresponds to a BaselDL struct, and the valuetype property corresponds
to a BaselDL valuetype.

7.5.4 Files

A Component or Assembly packages may contain descriptors and a set of files. The descriptors describe the
characteristics of packages and point to their various files. Figure 7.14 represents different file metaclasses:
ComponentPackageFile points to component files, which are component packages, included in one assembly, IDLFile

UML Profile for CORBA and CORBA Components Adopted Specificition 27

describes file that contain IDL description, DependentFile specifies environmental or other file dependencies of an
ImplementationDef metaclass and ContainedFile (see also Section 7.5.1) specifies a file which contains the component
implementation (e.g. DLL-File). All file metaclasses inherits from the abstract metaclass File, which has two attributes:
"filename” and "location".

ContainedFile

+ Coddhpd Strng I S e "

+ erErypoint Sing A+ filename: Sming [

+ RrEYDOIrRUSApY Slrng + lacation S “'.II
i T

ComponsntPackageFils

M

DependentFile IDLFils
« achon COM Deployment Actionkind

Figure 7.14 - File description

7.5.5 Containment

The following UML class diagram describes the derivation of the Deployment and Configuration metamodel elements
from the BaselDL Container and Contained elements:

[]
CollasananDef ConfiguraticnDef IF!EgI:MrIn:I!an:eD#: ConnectionEndDef
o %
", o LY ;
\ \
ki % / k \ ra
" I . g &
S 1 &= waafinadn Contans scontents [. , . .
P - : ontined
ConnectionDel n Container [BE— o " PropertyDer |
S
PropDwnerDed Fite

Figure 7.15 - Deployment and Configuration containment
7.5.6 Deployment Constraints

[49] A ComponentPkgDef may contain different Implementation objects that realize the same ComponentDef

[49] context ComponentPkgDef inv:
impls->forAll (i| i.mon_impl.compos.home_executor.nomeEnd.componentEnd = realized_c)

7.6 CCMQoS Metamodel

The modeling of non-functional properties such as QoS properties is defined in a platform independent way in the
specification "UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms"
(ptc/05-05-02). Chapter 8 of that specification defines a comprehensive metamodel for the description of QoS properties.
The modeling of QoS properties for CORBA Components requires the definition of a link between QoS metamodel and
CCM metamodel. This link is defined in the metamodel package CCMQoS. The QoS metamodel consists of three

28 UML Profile for CORBA and CORBA Components Adopted Specification

packages: the QoSCharacteristics (defines the model elements for the description of QoS Characteristics); the QoS
Constraints package (defines the modeling elements for the description of QoS contracts and constraints) and the QoS
Levels package (includes the modeling elements for the specification of QoS modes and transitions.

CCMGos Deployment |
GosFramewerk
GesCharacteristies | GesContraints | OoSLavels

I

Figure 7.16 - CCMQoS package dependencies

The QoSCharacteristics metamodel defines a metaclass QoSContext that allows describing the context of quality
expression (for more information please refer to ptc/05-05-02). We use this metaclass to describe QoS properties for
CORBA Component and link it to the CCM metamodel (the Deployment metamodel is extended) by defining an
additional metaclass Binding. The Binding metaclass has two attributes: "name" (the name of the Binding) and "CCMQoS
metamodel: Bindingmandatory" (if “true™ then the QoS property is bound in any case).

s gt .
MesmainstanceDaf ¢ R T

Componentinatancelief| oo a:ndr!-.]

CormectionEndDsl

Figure 7.17 - CCMQoS metamodel: Binding

Due to the fact that definition of QoS properties for CORBA Components may have different scopes different links for
QoS properties need to be defined. So, the metaclass Binding (see Figure 7.17) correlates a QoSContext with a component
feature definition (ComponentFeature), or a ComponentinstanceDef, or a HomelnstanceDef or a ConnectionEndDef.

UML Profile for CORBA and CORBA Components Adopted Specificition 29

Binding the QoSContext to the ComponentFeature makes QoS property applicable for the component type. This means
that also all instances of this component type are related to the QosContext. The binding of the QoSContext to the
ComponentlnstanceDef makes QoS properties relevant to only a specific component instance but for the component
instance in general. The binding the QoSContext to the HomelnstanceDef makes QoS properties relevant to a group of
component instances that are managed by a specific home instance. The binding of the QoSContext to a
ConnectionEndDef make QoS properties only relevant to a specific port of a component instance.

30 UML Profile for CORBA and CORBA Components Adopted Specification

8 UML Profile for CORBA and CORBA Components

The UML Profile for CORBA and CORBA Components (CCM profile) defines limited extensions to the reference UML2
metamodel with the purpose of adapting the UML metamodel to the CORBA Components. The extension done by this
profile does not change the UML2 metamodel, and keeps its semantics.

In UMLZ2, profiles are packages that structure UML extensions. The principal extension mechanism in UML2 is the
concept of stereotype. Stereotypes are specific metaclasses, having restrictions and the specific extension mechanism.

Additional semantics can be specified using Stereotype properties (“attributes” in UML2, "tagged values" in UML1.x) and
constraints in the context of a profile.

A UML profile extends parts of the UML metamodel in a constrained way. All new modeling concepts must be supported
by UML modeling elements. The new attributes must respect the semantic of UML modeling elements. All associations
are binary associations. We are not able to redefine features, but we can add new features (meta attributes of stereotypes).
UML metaclasses are extended by stereotypes, using a mechanism called extension.

For the Profile specification we use both graphical and tabular notations. To be able to interchange CCM Profile between
tools, together with models to which they have been applied, the Profile is defined as an interchangeable UML model (by
using the UML XMI interchange mechanisms):

» The metaclass extensions are expressed via UML class diagrams.
» AProfile is a kind of UML Package that extends the UML metamodel.

» A stereotype is a limited kind of metaclass that cannot be used by itself, but must always be used in conjunction with
one of the metaclasses it extends. Each stereotype is expressed via a stereotyped with <<stereotype>> Classifier box.
All classes, which define stereotypes and extend the UML metamodel, are indicated with yellow color; all original
metaclasses from the UML metamodel are indicated with white color on represented following class diagrams.

« When a stereotype is applied to a model element, the values of the properties may be referred to as tagged values.
» Like a class, a stereotype may have properties, which may be referred to tag definitions.

» Each stereotype is a client in a UML Extension with the UML metaclass that it extends. This Extension (UML
Association) is stereotyped with <<extends>>.

« Generalization Relationships among stereotypes are expressed in the standard UML manner.

An alternative and usually more compact way of specifying stereotypes and tags is using tables. The columns of the
stereotype specification table are defined as follows:

« Stereotype: the name of the stereotype and in parenthesis "()" the name of the metaclass or association between two
metaclasses from the CCM metamodel (Profile to Metamodel mapping), which instances are represented by this
stereotype in UML models.

» Base Class: the UML metamodel element that serves as the base for the stereotype.
» Parent: the direct parent of the stereotype being defined (NB: if one exists, otherwise the symbol "NA" is used).
« Tags: a list of all tags of the tagged values that may be associated with this stereotype (or NA if none are defined).

« Constraints: a list of constraint numbers applied to the stereotype.

UML Profile for CORBA and CORBA Components Adopted Specification 31

Constraints represent semantic information attached to an element. A list of constraints associated with a stereotype is
expressed in English and OCL separately from the stereotypes and tags specification. The following OCL convenience
operations are used in the CCM Profile specification; they were defined in the UML1.3 Profile for CORBA and adopted
for this specification in order to produce more compact and readable OCL.:

For Element:

[1] The operation allStereotypes results in a Set containing the Element's Stereotype and all Stereotypes inherited by
that Stereotype (as opposed to all Stereotypes inherited by the Element).

context Element_inv:
allStereotypes : Set?Stereot pe); . L
allStereotypes = self.stereotypeé->union (self.stereotype.generalization.parent.allStereotypes)

[2] The operation isStereotyped determines whether the ModelElement has a Stereotype whose name is equal to the
input name.

context Element inv: .
1sStereotyped : (stereoty?eName : String) : Boolean;
self.stereotype.name = stereotypeName

[3] The operation isStereokinded determines whether the ModelElement has a Stereotype whose name is equal to the
input name or if it has a Stereotype one of whose ancestors' name is equal to the input name.

context Element inv: .
1sStereokinded : (stereotypeName : String) : Boolean;
self.allStereotypes->exists (stereotype | stereotype.name = stereotypeName)

Some abstract Stereotypes are defined and, in keeping with UML notation, abstractness is denoted by italicizing the
Stereotype's name; they cannot be instantiated. The abstract Stereotypes are useful for avoiding repetition in multiple
Stereotypes that logically have common properties.

Profile Structure

The general structure of the CCM profile model is the same as the general structure of the CCM metamodel and is shown
in Figure 8.1:

profiis

=]

el] R —
EazsiDL ComponentioL CIF
. e l

aprofiles aprikEs profics
QosFramewsrk) cCMOes Deployment

Figure 8.1 - CCM Profile package structure

8.1 BaselDL Profile

This chapter is the normative definition of the CORBA plain (BaselDL) Profile of UML. It consists of a UML model,
showing extensions to UML (stereotypes) using the notation described in the previous chapter. This is followed by a
tabular description of the Profile and defined constraints.

32 UML Profile for CORBA and CORBA Components Adopted Specification

8.1.1 CORBA Module, Interface, Value, Constant Stereotypes

An IDL module is represented by a UML package (from Kernel) stereotyped as <<CORBAModule>>. IDL module
containment (nesting) is modeled by Namespace containment of one <<CORBAModule>>-stereotyped UML package
within another.

<<stereotype>> <<stereotype>>
CORBAConstant CORBAModule
<<extends>> <<extends>>
<<metaclass>> | , ol Q%:] <<metaclass>> |« 0./1<<metaclass>>
Property - Classiler cjassifier Package
(from Kernel) +lattribute (from Kernel) (from Kernel)
*“fownedAttribute +s eg'mc *package
| 0.1 +generalization
+clas << >>
<<metaclass>> Tﬁf#;ﬁs +ownedOperation| <<metaclass>
<<metaclass>> Generalization Operation
P!
Class (from Interfaces)
(from Kernel) .1 * | (from Kernel)
(from Kernel) ——1
<<extgnds>>
<< >>
<<extends>> extepds <<exterids>> <<oltends>>
<<stereotype>> <<stereotype>>
CORBAConstants <<stereotype>> SEECETPEE i
CORBASupports CORBAInterface CORBAVvalue C;;;t:\r/e?tw;e»
BisLocal : Boolean BsCustom : Boolean alueFactory
SsTruncatable : Boolean

Figure 8.2 - BaselDL Profile: Extended UML classes (I)

CORBA interfaces are represented using a UML Interface (from Interfaces) stereotyped as <<CORBAInterface>>. Local
interfaces are represented using the tagged value "isLocal" = TRUE.

CORBA value types are represented by a UML Interface stereotyped as <<CORBAValue>>. CORBA custom value types
are represented by the tag "isCustom™ and truncatable value types are represented by the tag "isTruncatable".

CORBA interfaces and value types may have attributes and operations.

Attributes are represented as UML Properties (Attributes) - as usual in UML, each IDL operation is represented as a UML
Operation. A value type factory operation , which is some kind of constructor, is represented using a UML Operation that
is stereotyped <<CORBAValueFactory>>.

Values may be derived from other values and can support an interface. The support by a value type of an IDL interface
type is represented by a Generalization relationship, which is stereotyped <<CORBASupports>>.

An IDL constant is modeled as a stereotyped with <<CORBAConstant>> UML Property, with the constant value
expression represented by the Property's attribute "default” (default: String [0..1]).

For constants defined within a CORBA module scope a new stereotype <<CORBAConstants>> for UML Class is
introduced. The name of the Class must be "Constants."”

The UML notation of a CORBA module for the following IDL example is shown in Figure 8.3.

UML Profile for CORBA and CORBA Components Adopted Specification 33

module Parent

{
module Childl {};
module Child2
{
module Grandchild {};
}:
}i
[e CORB AR
Parent l
aCORBAMOIUIES [eCORBamotue
childi Chilaz
sCORBAMOtUIE:
Grandehild
I

Figure 8.3 - CORBA Module notation

The UML notation of an interface for the following IDL example is shown in Figure 8.4:

interface TestInterface

{
struct TestStruct
{
string Memberl;
}:
attribute string MyStringAttr;
attribute TestStruct MyStructAttr;
void MyOpl(in string str, inout TestStruct t);
boolean MyOp2(inout TestStruct t);
}i

ol CIR BAnlEr T
Tessinterface

My SiringALr, sining
mrySlruckAllr. TestSinuct

MyOR(38r Sing, 1 TestSnet] | void
WYDRIT TestSinact) - boolean
aC ORBAST =
Testntertace::
TasrStruct

Memberi: siing

Figure 8.4 - Example Interface containing a Struct

The UML notation for a CORBA value type for the following IDL example is shown in Figure 8.5:

34 UML Profile for CORBA and CORBA Components Adopted Specification

interface PrettyPrint

{
string print();
}:
valuetype Time
{
public short hour;
public short minute;
}:
valuetype Date
{
public short day:;
public short month;

public short year;

}:

valuetype DateAndTime : Time supports PrettyPrint

{

private Date the date;
factory init(in short hr, in short min);

Date get date();

}:
aCORELA S aCORBAbETacEs
Time PretPring
BrnG) : String
L
G ra
1 S ORBASICE
\ Date
Y |
\ o ORBASUpEOITY e]
\ morE shor
1 f wEar shor

1Y !

aCDREAN AL
DatednaTime

me_oate: Date
get_aste() . Date
< CIORBAY 3eF acton>

nit]short, short)

Figure 8.5 - Valuetype example

The UML notation for CORBA constants for the following IDL example is shown in Figure 8.6:

UML Profile for CORBA and CORBA Components Adopted Specification

35

module Y

constant short S = 3;
interface X
constant long L = S + 20;
};
}i
CORBAMORIIES
¥
=CORBANberfaces «CORBAConslanks:
x Cansrants
<<CORRACONSEANE> <<CORBACONStant:>
L long = 5+20 5 short=2

Figure 8.6 - Constant example

36 UML Profile for CORBA and CORBA Components Adopted Specification

8.1.2

<<stereotype>>

CORBAUnionField |

Other stereotypes: CORBA Types

<<stereotype>>

CORBADefault
<<stereotype>>
CORBASwitch

m\

<<extends>>

<<stereotype>>
CORBAAnonymousArray

| <<extends>> >

<<metaclass>>

Property

*

<<stereotype>> +/membgr
Namespace NamedElement
CORBACase (from Kernel) | +/namespace +lowned\JETber rom Kernel)
“abel : String T {uni
{subsets member}
*
+/inheritedember
+classifier «gﬁa[:;‘;:r»

(from Kernel)

Jattribute

index : String

ym/

<<stereotype>>

CORBAAnonymousSequence

<

>

0.1] (from Kemel)

<<stereotype>>
CORBAPrimitive

;w«e{s»

<
Multiplicity Element

isOrdered : Boolean = true
isUnique : Boolean = true
lower : Integer = 1

upper : UnlimitedNatural = 1

CORBABounded

<sextends>>

<<stereotype>>
CORBAENnUm

TypedElement <<metaclass>>
(from Basic) DataType
<
cextendsss (from Kernel)
<<stereotype>>

- S +literal <<metaclass>>
N EnumerationLiteral
Enumeration - (from Kernel)
(from Kernel) D.. {ordered,
subs...

bound : Integer

<<stereotype>>
CORBAString

<<stereotype>>
CORBATemplate

<<ene¢£ <LA

el

<<extenus>\
ds>>

1
{subsets namespace}
>

<<stereotype>>

yp
CORBAWString

“index : String
“type : TypedElement

‘T

<<stereotype>>
CORBAArray

<<stereotype>>
CORBASequence

<<stereotype>>
CORBAConstructed

<<stereotype>>

CORBAEXxception

<<stereotype>>

CORBAUnion

Figure 8.7 - BaselDL Profile: Extended UML classes (Il)

<<stereotype>>
CORBABoxedValue|

<<stereotype>>
CORBAStruct

<<stereotype>>
RBAW 4
g LR CORBATypeDef
 ——

<<enumeration>>
PrimitiveKind

“CORBAVoid
“CORBAShort
ECORBALong
“CorbaUnsignedShort
“CorbaUnsignedLong
“CorbaFloat
“CorbaDouble
“CorbaBoolean
“CorbaChar
“CorbaOctet
“CorbaAny
“CorbalongDouble
“CorbaW Char
“CorbaUnsignedLongLong
“CorbaObjectRef
“Corbal.ongLong

An UML DataType (from Kernel) is a type whose instances are identified only by their value. A DataType is a special

kind of classifier, similar to a class and may contain attributes to support the modeling of structured data types.

CORBAPrimitive

The CORBA basic and other types are represented by the UML DataType with the <<CORBAPrimitive>> stereotype in
the "CORBA" package. This package also contains the base types for CORBA interfaces and value types.

The following <<CORBAPrimitive>>-stereotyped UML DataTypes are introduced in the package "CORBA.", their

semantics is defined in Chapter 3, "OMG IDL Syntax and Semantics," of the CORBA/IIOP Specification.

 short

« long

« longLong
 double

» longDouble

UML Profile for CORBA and CORBA Components Adopted Specification

37

« unsignedShort
 unsignedLong
« unsignedLonglLong
« any
 boolean

- octet

« void

+ char

« wchar
 float

 string

« wstring

. [<CORBAMOocUEs |
= CORBAMOOUE = !
COREA COREA
B arry wiDOERARMvEs | | «CORBAPTIMENE» ol CIR AP TR = o DR BAPTImEnEs A ORELART R
= b an waid any Baolean ehar double
char . .
B oot
|8 noat
M long — - P P P aCOREAFTETRE
8 long dguble «CORBARImtvEs | |«CORBAPIMIENVE | |<CORBAPHMEREs| |oCORBAPIMINES - .
& long long long flaat long double lomg long object
I obgect
i octet
M short
i sting CORBAPTIMENEs| [«CORBAPrmties| |«CORBAPrImitves| |«CORBAPrmties| |«CORBAPTIMITES
B tynecone shart aemet string Typecode unsigned lang
B ursigned long
[urigned ierg g
B unsigned short
M void . . "
B =nar =CORBAPTIMENE=| [«CORBAFTmlvE=| [«CORBAPTmlivE=| |«CORBAFTImIhES
W =tring unsigned long unsigned shert wehar witring
(Troem LOQAcar Mockal feng

Figure 8.8 - CORBA package

The extended UML metamodel contains an abstract stereotype <<CORBAConstructed>>, which is a generalization of
<<CORBAStruct>>, <<CORBAUnion>> and<<CORBAEXxception>> stereotypes. Each of them shares the characteristics
of having ordered named elements of some CORBA type. Each member of a constructed type that is either of a CORBA
basic type or user defined type is represented as a UML Property (Attribute) by the Data Type. The order of members is
represented by the attribute "isOrdered"” of the UML Property class, which inherits this attribute from the metaclass
MultiplicityElement (see Figure 8.7). This attribute specifies whether the values in an instantiation of this element are
sequentially ordered. Default value is true. The integer value N of the member's order is the position of this member
inside the <<CORBAConstructed>> class declaration. How to obtain the integer value N is depended on the UML tool
that realizes the Profile.

38 UML Profile for CORBA and CORBA Components Adopted Specification

CORBAENnumeration

IDL enumerations consist of ordered lists of identifiers and are represented by UML Enumeration stereotyped as
<<CORBAEnum>> whose values are enumerated in the model as enumeration literals. An example of
<<CORBAEnum>> contents is represented in Figure 8.9.

The type and initial numeric values of the UML Attributes representing enumeration elements may be omitted in the
notation, as the type is always short, and the initialValue can be deduced from the ordering of the Attributes.

CORBAUnion
IDL union definitions are represented by a UML DataType stereotyped as <<CORBAUnion>>,

Each member of the IDL union is represented by the abstract class CORBAUnionField that extends a UML Property. The
astract stereotype <<CORBAUnionField>> is specialized to the concrete stereotypes <<CORBADefault>> and
<<CORBACase>>.

The discriminator type is represented as an additional Property of the <<CORBAUnion>>, which is stereotyped as a
<<CORBASwitch>>. This Property has always the name "discriminator”. Case labels are referred to the defined type of
the discriminator. Each member of an IDL union is represented as a UML Property (Attribute) and stereotyped either
<<CORBADefault>> or <<CORBACase>>. <<CORBACase>>-member has a Tag "label” attached with its label name
value being the case label for this member in the union declaration. For union declarations in which there is a default
case, the <<CORBADefault>>-member is used.

enum Contents

{
INTEGER CL;
FLOAT CL;
DOUBLE CL;
COMPLEX CL;
STRUCTURED_ CL;
}:
union Reading switch (Contents)
{
case INTEGER CL: long a_ long;
case FLOAT CL:
case DOUBLE CL: double a double;
default: any an any;
}:
union ValOpt switch (boolean)
{
case TRUE: PropertyValue pv;
}i

UML Profile for CORBA and CORBA Components Adopted Specification 39

«CORBAENUM:» «CORBALUNIOn:

Contents Reading
i «CORBASWItChy discriminator: Contents
DOLELE CL: «CORBACase» a_long: long {lable=INTEGER_CL}
COMPLEX_CL «CORBACase» a_double: double {lable=FLOAT_CL, DOUBLE_CL}
STRUCTURED_CL: «CORBACase» an_any. any {lahle=default)

Figure 8.9 - Union example (a)

«CORBAURion:
Reading

wCORDASwilche discrimingtor. Canbents

*CORBACa e a_long. long [lable=MTEGER_CL}

«CORBACase» a_double: double [lable=FLOAT_CL, DOUBLE_CL)
wCORBADETINT: an_army. army

Figure 8.10 - Union example (b)

CORBAStruct

IDL struct definitions are represented by a UML DataType stereotyped as <<CORBAStruct>>. Each member of the IDL
struct can be represented as a UML Property (Attribute) or as an Association (for user-defined typed members) as shown
in Figure 8.11 and Figure 8.12.

struct Fraction

double numeric;
string alphabetic;
}:
struct Problem
string expression;
Fraction result;
Boolean correctness;
}i
w ORDAStructs - OREASructs
Fraﬂic;n Frablem

Expression; #nng
result Fraction
cormectness bodlean

numeric. double
alphabetic: string

Figure 8.11 - Struct example

A CORBA struct can act as the namespace (see Figure 8.7 metaclass Namespace) for following CORBA types: structs,
unions, and enums. Only these three types can be defined within struct's scope. Nesting of elements limits the visibility of
the element to within the scope of the namespace of the containing struct and is used for reasons of information hiding.

The following example demonstrates alternative UML representations of the nested struct B:

40 UML Profile for CORBA and CORBA Components Adopted Specification

struct A

{
struct B
{
short k;
long j;
} p:
string q;
}:
«CORBAStrUCt:
A «CORBASEructs «CORBAStrUCT»
p B A ALB
0 string
«CORBAStructs» p B o lang
AzB 0. string ko short
jZ |Dﬂg
k. shart
«CORBASHLCE: «CORBASTLCT:
a P A:B
- -
0: string 1 0.1 ngﬂgn

Figure 8.12 - Alternative Struct representations with nested elements

CORBAEXxception

IDL exception definitions are represented by UML DataType stereotyped as <<CORBAEXxception>>. Each member of the

IDL Exception is represented as a UML Property. exceptions, like structures, create a namespace, so the exception
member names need be unique only within their enclosing exception. Exceptions are types but cannot be used as data
members of user-defined types.

The following IDL can be represented in UML as in Figure 8.13:

UML Profile for CORBA and CORBA Components Adopted Specification

41

exception Failed {};

exception RangeError

{
unsigned long supplied val;
unsigned long min permitted_val;
unsigned long max permitted val;

}:

interface Unreliable

{
void can fail() raises (Failed);
can also fail (in long 1) raises (Failed, RangeError);

i

«CORDAEception: (R BAERE phon

RangeErrer Failed

supplied_val unsigned long
min_permitted_val unsigned ong

max_permitted_val: wnsigned long

rCORBAINIETACE:
Urreliable

can_tai) ol

can_also_fail[long) . woid

Figure 8.13 - Exception example

The extended UML metamodel contains an abstract stereotype <<CORBATemplate>>, which is a generalization of
<<CORBAString>>, <<CORBAWString>> and <<CORBASequence>> stereotypes. All <<CORBATemplate>> elements
have a tag "bound" that indicates the maximum size of the element.

CORBAString and CORBAWString

IDL string is similar to a sequence of char and represented by a UML DataType stereotyped as <<CORBAString>>. IDL
wstring is like a sequence of wchar and represented by a UML DataType stereotyped as <<CORBAWString>>. The type
wstring is similar to string, except that its element type is wchar instead of char. If a positive integer maximum size is
specified, the string (or wstring) is termed a bounded string (or wstring); if no maximum size is specified, the string (or
wstring) is termed an unbounded string (or wstring). The package "CORBA" (see Figure 8.8) contains unbounded string
and wstring elements (no maximum size is specified) as stereotyped <<CORBAPrimitive>> UML DataTypes. Bounded
IDL strings and wstrings are represented by a UML DataType stereotyped as <<CORBAString>> or
<<CORBAWString>>.

CORBASequence

A CORBA Sequence is a one-dimensional array with two characteristics: a maximum size (which is fixed at compile
time) and a length (which is determined at run time).

42 UML Profile for CORBA and CORBA Components Adopted Specification

CORBA Sequences are IDL template types that take a CORBA type as their element parameter, and optionally an integer
as an upper bound specification. Sequences are anonymous, and can either be named by a typedef, or by the member
name of a constructed type. Sequences are represented in the Profile by two means:

- Named by a typedef declaration sequences are represented by the UML DataType with the stereotype
<<CORBASequence>>. The upper bound of the sequence is modeled as a tag "index"of the DataType, and can be
either a number (upper bound of the sequence) or an interval (lower and upper bound of the sequence). Named by a
typedef CORBASequences have a tag "type", which represents the element type of the sequence.

» Named by the member name of a constructed type sequences are represented by the UML Property (attribute) with the
stereotype <<CORBAAnonymousSequence>>. In this case, the upper bound of the sequence is represented by the
attribute "upper" of the UML metaclass MultiplicityElement (see Figure 8.7), and the element type of the sequence is
represented by the type of the UML Property.

Sequences that are declared as the type-declarator of a typedef are given the name of that typedef and the stereotype
<<CORBASequence>>. The following IDL example is represented in Figure 8.14:

typedef sequence<short, 4> foo;

typedef sequence<long> foo_lg;

«CORBASEQUENCE® «COREASequences
foo foo_lg
tags _ tags

indlex = 4 index ="

type = shart type = long

Figure 8.14 - CORBASequence example

Sequences that are anonymous (declared in some context where they don't have a type name, such as a struct member
type) are given the stereotype <<CORBAAnonymousSequence>>. The following IDL example has the sequence
declaration as a struct member. The UML notation for this example is represented in Figure 8.15.

struct bar

long val;
sequence <short, 6> my shorts;
}:
«CORBAStruct:
bar
val long
«CORBAARArTyTowSs Sequente: mry_shorts. short [0.5]

Figure 8.15 - CORBAAnonymousSequence example

The following IDL is featuring an anonymous sequence as the type of another sequence is represented below:

typedef sequence <sequence <string,4>> foo_1;

fo

wCORBAAnOMMOUSSaquancas anomynous. stnng [0, 3]

«CORBASaquancea
o_1

Figure 8.16 - Nested CORBAAnonymousSequence example

UML Profile for CORBA and CORBA Components Adopted Specification 43

In this case, the UML Property obtains the name "anonymous" that is a dedicated name for this Profile.

CORBAArray

OMG IDL defines multidimensional, fixed-size arrays. CORBA Arrays are IDL indexed types that take a CORBA type as
their element type, and have at least one integer as the size of the array. Additional array dimensions are specified by
additional integers. Arrays are anonymous, and can either be named by a typedef, or by the member name of a
constructed type. Similar to sequences arrays are represented in the Profile by two means:

« Named by a typedef declaration arrays are represented by the UML DataType with the stereotype <<CORBAArray>>.
The upper bound of the array is modeled as a tag "index"of the DataType, and can be either a number (upper bound of
the one dimentional array) or a list of integers separated by comma where each integer represents the size of each
multidimensional array dimensions. Named by a typedef CORBAArrays have a tag "type", which represents the
element type of the array.

- Named by the member name of a constructed type arrays are represented by the UML Property (attribute) with the
stereotype <<CORBAAnNonymousArray>>. This stereotype has also the tag "index" representing the index of the array
and described above.

Arrays that are declared as the type-declarator of a typedef are given the name of that typedef and the stereotype
<<CORBAArray>>. The following IDL example shows such representation:

typedef short short arr([4];
typedef my struct my struct arr[5] [10];

DR DAy
short_arr sCORBASIUCS
Wy SEruct
tags
Index = 4
type = short
=R BEAAT Zys
my_struct_arr
tags
index = 3,10
bypie = mry_struct

Figure 8.17 - Array example declared as typedef

An IDL array that is declared in any other context is represented by an Attribute stereotyped as
<<CORBAAnonymousArray>>.

The following IDL is represented in Figure 35.

struct boom

string zooml[4];
my struct loom[2] [2] [2];
Y:
wZORBASIUCte
boom
wCORBAARGMyTmaus Arrays 2oam. sinng {indsx=d)}
¢ CORBAAROMyMOoUsSAmays loom: my_struct {index=2 2 2}

Figure 8.18 - Anonymous Array representation

44 UML Profile for CORBA and CORBA Components Adopted Specification

There are two declarations in IDL that provide existing named types with another identifier: typedefs - give a name to an
existing type (or to a new template type), and boxed value declarations - give a new name to an existing type, and allow
the new type to be passed as a null parameter. Such declarations are called "wrapper" declarations and represented by the
abstract stereotype <<CORBAWTrapper>>. There are two concrete specializations of <<CORBAWTrapper>>:
<<CORBATypedef>> and <<CORBABoxedValue>>,

CORBATypeDef

Typedefs in IDL serve two purposes. First purpose is to rename types that already have names to provide an alias for an
existing type. These typedefs are represented by UML DataTypes stereotyped as <<CORBATypeDef>>. For example, the
IDL below provides an alias "Alias_Interface" for the interface "Initial_Interface":

interface Initial Interface;

typedef Initial Interface Alias Interface;

«CORBAINeACE
Initial_Interface

w«CORBATypeDe =
Allas_interface

Figure 8.19 - TypeDef example

Second purpose is to provide a type name for anonymous template types, such as sequences or arrays. These typedefs are
modeled by DataTypes that are stereotyped as <<CORBASequence>> and <<CORBAArray>> (see above).

CORBABoxedValue

Boxed values are similar to typedefs: they provide a new name for an existing type, and change the parameter passing
semantics to allow instances of the new type to be null. When boxing an existing type declaration, the boxed value
specializes the existing DataTypes (using a UML Generalization relationship) with a new DataType being the
specialization, giving the type a new name, and possible null value semantics, but no new features. So, a boxed value type
is represented by a UML DataType stereotyped as <<CORBABoxedValue>>.

The IDL below is represented in Figure 8.20:

valuetype OptionalNameSeq sequence<string>;

valuetype OptionalStruct my struct;

CORBADmedY alugx
QptionalHame5eq

C0RBEAANDMYMOUSSEOURNCES AN0MTMALS 3iring

=CORBASIUC L = CORBABE MY alue =

my_struct L OptionalStruct

Figure 8.20 - BoxedValue example

UML Profile for CORBA and CORBA Components Adopted Specification 45

8.1.3 Tabular representation

Table 8.1. BaselDL Profile

Stereotype Base Class Parent Tags Constraints
CORBAInterface (InterfaceDef) Interface N/A isLocal: [4]
<<CORBAInterface>> Boolean
CORBAValue (ValueDef) Interface N/A isCustom: [51, [6]. [7]
<<CORBAValue>> Boolean

isTruncatable:

Boolean
CORBACo nstant (ConstantDef) Property N/A [14]
<<CORBAConstant>>
CORBAConstants Class N/A [12], [13]
<<CORBAConstants>>
CORBASupports (supportss) Generalization N/A [8]
<<CORBASupports>>.
CORBAValueFactory Operation N/A [9], [10]
(ValueFactoryDef)
<<CORBAValueFactory>>
CORBAModule (ModuleDef) Package N/A [15]
<< CORBAModule>>
CORBAPrimitive (PrimitiveDef) DataType N/A [16]
<< CORBAPrimitive>>
CORBAConstructed DataType N/A [17], [18]
<<CORBAConstructed>>
CORBAUnion (UnionDef) DataType CORBACoOnstructed
<<CORBAUnion>>
CORBASwitch Property
<<CORBASwitch>>
CORBAUnionField (UnionFieldDef) Property
<<CORBAUnionField>>
CORBADefault Property CORBAUnionField
<<CORBADefault>>
CORBACase Property CORBAUnionField lable: String
<<CORBACase>>
CORBAStruct (StructDef) DataType CORBAConstructed [19]
<<CORBAStruct>>

46 UML Profile for CORBA and CORBA Components Adopted Specification

Table 8.1. BaselDL Profile

CORBAEXxception (ExceptionDef) DataType CORBACoOnstructed [20]
<<CORBAEXxception>>

CORBAEnum (EnumbDef) Enumeration

<<CORBAEnum>>

CORBATemplate DataType bound: Integer
<<CORBATemplate>>

CORBAString (StringDef) DataType CORBATemplate

<<CORBAString>>

CORBAWSstring (WstringDef) DataType CORBATemplate

<<CORBAWSstring>>

CORBASequence (SequenceDef) DataType CORBATemplate [21], [22]
<<CORBASequence>>

CORBAAnonymousSequence Property CORBASequence [23]
(SequenceDef)

<<CORBAAnonymousSequence>>

CORBAArray (ArrayDef) DataType [24]
<<CORBAArray>>

CORBAAnonymousArray Property CORBAArray index:String [25]
(ArrayDef)

<<CORBAAnonymousArray>>

CORBAWTrapper DataType [26] - [30]
<<CORBAWTrapper>>

CORBATYypedef (TypedefDef) DataType CORBAWT apper [31]
<<CORBATYypedef>>

CORBABoxedValue (ValueBoxDef) DataType CORBAWTrapper

<<CORBABoxedValue>>

8.1.4 Constraints

[4] A <<CORBAInterface>>-stereotyped Interface tagged "isLocal" can only participate in Generalizations with
other <<CORBAInterface>>-stereotyped Interfaces tagged "isLocal."
context CORBAInterface inv:
(self.generalization->forAll(parent.isStereotyped(**CORBAInterface') and
parent.stereotype.taggedValue->select(name = ""isLocal'")->size = 1)) and
(self.generalization->forAll(child.isStereotyped(**CORBAInterface™) and
child.stereotype.taggedValue->select(name = "'isLocal")->size = 1))

[5] A concrete <<CORBAValue>>-stereotyped Interface may only specialize a single other concrete
<<CORBAValue>>-stereotyped Interface.
context CORBAValue inv:

not self.isAbstract implies self.i;eneralization->select(parent.isStereokinded("CORBAVaIue") and
not parent.isAbstract)->size =

UML Profile for CORBA and CORBA Components Adopted Specification 47

[6] A <<CORBAValue>>-stereotyped Interface may only specialize a single <<CORBAIInterface>>-stereotyped
Interface, and it must do so using a <<CORBAValueSupports>>-stereotyped Generalization.
context CORBAValue inv:
let supportedinterface = self.generalization->select(parent.isStereotyped (**"CORBAInterface™)) and
let supportsGeneralization = supportedinterface.generalization-> intersection(self.generalization) in
supportedInterface->size = 1 and supportsGeneralization.isStereotyped(**CORBAValueSupports™)

[7] A <<CORBAValue>>-stereotyped Class may only contain a single Operation stereotyped as
<<CORBAValueFactory>>.
context CORBAValue inv:
self.allOperations->collect(isStereotyped(**"CORBAValueFactory'))->size <= 1

[8] A <<CORBASupports>>-stereotyped Generalization must have a <<CORBAInterface>>-stereotyped Interface as
its parent and a <<CORBAValue>>-stereotyped Interface as its child.

context CORBASupports inv:
self.parent.isStereotyped(**CORBAInterface') and self.child.isStereotyped(""CORBAValue'")

[9] A <<CORBAValueFactory>>-stereotyped Operation can have only in parameters and has no return type.
context CORBAValueFactory inv:
self.parameter->forAll(kind = #in)

[10] A <<CORBAValueFactory>>-stereotypedOperation must be owned by a <<CORBAValue>>-stereotyped or
<<CORBACustomValue>>-stereotyped Class.

context CORBAValueFactory inv:
self.owner.isStereokinded(**CORBAValue')

[11] A <<CORBAConstants>>-stereotyped Class must be directly contained by a <<CORBAModule>>-stereotyped
package.
context CORBAConstant inv:
self.namespace.isStereotyped(*"CORBAModule™)

[12] All the features of a <<CORBAConstants>>-stereotyped Class must be <<CORBAConstant>>-stereotyped
Attributes.

context CORBAConstant inv:
self.feature->forAll(feature | feature.ocllsTypeOf (Property) and feature.isStereotyped (""CORBAConstant'))

[13] A <<CORBAConstants>>-stereotyped Class cannot participate in any Associations.
context CORBAConstant inv:
self.associations->isEmpty

[14] The owner of a <<CORBAConstant>>-stereotyped Property must be stereotyped <<CORBAConstants>>,
<<CORBAInterface>> or<<CORBAValue>>.
context CORBAConstant inv:
self.owner.isStereotyped(**CORBAConstants™) or
self.owner.isStereokinded(**CORBAInterface™) or
self.owner.isStereokinded(**CORBAValue™)

[15] A <<CORBAModule>>-stereotyped package may directly contain at most one Class stereotyped as
<<CORBAConstants>>.

context CORBAModule inv:
self.ownedElement->collect(el | el.isStereotyped(*'CORBAConstants'))->size <= 1

[16] All basic types (<<CORBAPrimitive>>-stereotyped UML DataTypes) are included in the package "CORBA.".
The CORBA package also contains an Interface "Object," stereotyped as <<CORBAInterface>>, and an Interface
"ValueBase," stereotyped as <<CORBAValue>>.

[17] All features of a <<CORBAConstructed>>-stereotyped Classifier must be Attributes with visibility "public.”
context CORBAConstructed inv:
self.feature->forAll(feature | feature.ocllsTypeOf(Attribute) and feature.visibility = #public)

48 UML Profile for CORBA and CORBA Components Adopted Specification

[18] A <<CORBAConstructed>>-stereotyped Classifier cannot participate in any Generalization relationships.
context CORBAConstructed inv:
self.generalization->isEmpty and self.specialization->isEmpty

[19] All the Attributes of a <<CORBAStruct>>-stereotyped Classifier must have multiplicity 1..1.
context CORBAStruct inv:
self.allAttributes->forAll(multiplicity.range.lower = 1 and multiplicity.range.upper = 1)

[20] A <<CORBAEXxception>>-stereotyped Exception cannot be the type of a navigable AssociationEnd.
context CORBAExeption inv:
self.allEnds->forAll(end | end.type = self implies not end.isNavigable)

[21] The single navigable opposite AssociationEnd of a <<CORBASequence>>- stereotyped Classifier must have
multiplicity 1..1 if it cannot be a null in CORBA; that is, unless it is an object type or a boxed value type.

[22] The single navigable opposite AssociationEnd of a <<CORBASequence>>-stereotyped Classifier must have
multiplicity 0..1 if it is a boxed value type or object type.

[23] A <<CORBAAnonymousSequence>>-stereotyped Class must have exactly one navigable opposite
AssociationEnd whose multiplicity is 1..1.

context CORBAAnonymousSequence inv:
navigableOppositeEnds->size = 1 and navigableOppositeEnds ->forAll
(end | end.multiplicity.range.lower = 1 and end.multiplicity.range.upper = 1)

[24] The single navigable opposite AssociationEnd of a <<CORBAArray>>- stereotyped Class must have multiplicity
1.1.

context CORBAArray inv:
navigableOppositeEnds->forAll
(end | end.multiplicity.range.lower = 1 and end.multiplicity.range.upper = 1)

[25] A <<CORBAAnonymousArray>>-stereotyped Class must have exactly one navigable opposite AssociationEnd
whose multiplicity is 1..1.

context CORBAAnonymousArray inv:
navigableOppositeEnds->size = 1 and navigableOppositeEnds->forAll
(end | end.multiplicity.range.lower = 1 and end.multiplicity.range.upper = 1)

[26] A <<CORBAWrapper>>-stereotyped Classifier must participate as the child in exactly one Generalization
relationship.
context CORBAWrapper inv:
self.generalization->select(gen | gen.child = self)->size = 1

[27] The Generalization relationship in which a <<CORBAWTrapper>>-stereotyped Classifier participates has the
empty string as its discriminator and no powertypes.
context CORBAWrapper inv:
self.generalization->forAll(gen | gen.discriminator =
gen.powertype->isEmpty)
[28] A <<CORBAWTrapper>>-stereotyped Classifier may not have any non-inherited features.
context CORBAWrapper inv:
self.feature->isEmpty

[29] A <<CORBAWTrapper>>-stereotyped Classifier may not participate in any Associations with navigable opposite
AssociationEnds.

context CORBAWrapper inv:
self.navigableOppositeEnds->isEmpty

[30] A <<CORBAWrapper>> can only extend a DataType or a Interface.
context CORBAWrapper inv:
self.oclIsTypeOf(DataType) or self.oclisTypeOf(Interface)

UML Profile for CORBA and CORBA Components Adopted Specification 49

[31] The parent of a <<CORBATypedef>>-stereotyped Classifier must not be stereotyped as
<<CORBAAnonymousSequence>> or <<CORBAAnNonymousArray>>.

context CORBATYypedef inv:
self.generalization->forAll (gen |not gen.parent.isStereotyped(**CORBAAnonymousSequence') and
not gen.parent.isStereotyped(**CORBAAnonymousArray"'))

8.2 ComponentIDL Profile

8.2.1 Stereotypes

A CORBA Component is defined using a UML <<CORBAComponent>> stereotyped Class. A <<CORBAComponent>>
can inherit from another one (single inheritance) using the UML generalization. It can also inherit from a set of CORBA
interfaces. These relationships are represented by the <<CORBASupports>> stereotyped generalization defined in
BaselDL Profile.

<<metaclass>> 0.1 - <<me|t3ac|?ss>>
EncapsulatedClassifier < or
(from Ports) +ownedPort (from Ports)
<<metaclass>> <<stereotype>>
Class <<extends>> CORBAComponent

(from StructuredClasses)

Figure 8.21 - ComponentIDL Profile: Extended UML classes (1)

A component type defines attributes and ports. The attributes are used to configure the component. By using ports,
components can use or provide a set of services (typed with a CORBA interface). There are different kinds of ports:
facets, receptacles, event ports and stream ports.

50 UML Profile for CORBA and CORBA Components Adopted Specification

<<stereotype>> <<stereotype>>
<<stereotype>> CORBAConsumes CORBAP\tﬁishes

CORBAEmMits

<<stereotype>>
CORBAEventPort

<<stereotype>>
CORBAUses <<extends>>
multiple : PrimitiveKind X
+required
<= 22 <<metaclass>> * . <<metaclass>>
Port Interface
+provided
<<extends>> * *
<<extep...
<<stereotype>>
CORBAProvides
<<stereotype>>
CORBAStreamPort
<<stereotype>> <<stereotype>>
CORBASiInk CORBASource

Figure 8.22 ComponentIDL Profile: Extended UML classes (Il)
The facet definitions are represented by a UML Port stereotyped as <<CORBAProvides>>.

The receptacle definitions are represented by a UML Port stereotyped as <<CORBAUses>>. The tag "multiple" by the
<<CORBAUSses>> indicates whether the multiple connections to the receptacle may exist simultaneously or not.

The component has event ports. There are two kinds of event ports: event source and event sink. An event source can be
either an emitter (only one consumer) or a publisher (several consumers). Event sources are used to send events; event
sinks are used to receive events. The extended UML metamodel contains an abstract stereotype <<CORBAEventPort>>,
which extends a UML Port and generalizes <<CORBAConsumes>> stereotype representing port where events are
consumed, <<CORBAEmMmits>> stereotype where events are published only to one consumer, and <<CORBAPublishes>>
stereotype where events are published to several consumers.

For the stream communication components have stream ports. The abstract stereotype <<CORBAStreamPort>>
represents stream ports and generalizes stereotypes <<CORBASource>> for a source ports and <<CORBASink>> for
sink ports. A stream type is represented by a UML Interface stereotyped as <<CORBAStream>>. The tag "kind" identifies
the kind of the <<CORBAStream>>.

UML Profile for CORBA and CORBA Components Adopted Specification 51

<<metaclass>> X 0.1 <<metaclass>> . <<metaclass>>
Property +ownedAtiribute Interface Operation
(from Kernel) * 0.1 +ownedOperation
<<extgnds>>
<<extepds>> <<extends>>

<<extends>> <<extehds>> <<extends>>

<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>

CORBAPrimaryKey CORBAHome CORBAStream CORBAValue CORBAFinder CORBAFactory
“kind : StreamTypeKind (fom BaseiDL)

<<metaclass>>
Association
(from Constructs)

<<enumeration>>
StreamTypeKind
BASIC_STREAM
CONSTRUCTED_STREAM
VALUE_STREAM
RAW_STREAM

<<stereotype>>
CORBAEvent

<<extends>>

<<stereotype>>
CORBAManages

Figure 8.23 - ComponentIDL Profile: Extended UML classes (lIl)

A Component home is represented by a UML Interface stereotyped as <<CORBAHome. A component home must be
associated to a component type. This relationship is made explicit using a <<CORBAManages>> stereotyped UML
Association between a <<CORBAHome>> and a <<CORBAComponent>>, <<CORBAHome>> can inherit from another
<<CORBAHome>> (single inheritance) using a UML Generalization. <<CORBAHome>> can support several
<<CORBAInterface>>, this relationship is represented by the stereotyped as <<CORBASupports>> Generalization.

A <<CORBAHome>> can be associated with a primary key (necessary for persistent components). There is exactly one
key instance for each (persistent component, home) instance couple. To enforce this constraint, the primary key is
represented using a <<CORBAValue>> stereotyped UML Interface, the relationship between home and its primary key is
represented by an Association stereotyped as <<CORBAPrimaryKey>>.

<<CORBAHome>> can own attributes and operations. A UML Operation stereotyped as <<CORBAFactory>> is used to
represent component factory operations, and as <<CORBAFinder>> is used to represent components finder operations.

Event types are represented by a UML Interface stereotyped as <<CORBAEvent>>. The <<CORBAEvent>> stereotype is
a specialization of the <<CORBAValue>> stereotype. It inherits from all <<CORBAValue>> constraints.

52 UML Profile for CORBA and CORBA Components Adopted Specification

8.2.2 Tabular representation

Table 8.2. ComponentIDL Profile

Stereotype Base Class Parent Tags Constraints
CORBAComponent (ComponentDef) = Class [32] - [35]
<<CORBAComponent>>

CORBAProvides (ProvidesDef) Port

<<CORBAProvides>>

CORBAUSses (UsesDef) Port isMultiple:
<<CORBAUsgs>> Boolean

CORBAEventPort (EventPortDef) Port

<<CORBAEventPort>>

CORBAEvent (EventDef) Interface

<<CORBAEvent>>

CORBAEmMits (EmitsDef) Port CORBAEventPort

<<CORBAEmits>>

CORBAPublishes (PublishesDef) Port CORBAEventPort

<<CORBAPublishes>>

CORBAConsumes (ConsumesDef) Port CORBAEventPort

<<CORBAConsumes>>

CORBAStream (StreamTypeDef) Interface kind:

<<CORBAStream>> StreamKind
CORBAStreamPort (StreamPortDef) | Port

<<CORBAStreamPort>>

CORBASource (SourceDef) Port CORBAStreamPort

<<CORBASource>>

CORBASInk (SinkDef) Port CORBAStreamPort

<<CORBASink>>

CORBAHome (HomeDef) Interface [39] - [42]
<< CORBAHome >>

CORBAFactory (FactoryDef) Operation [44], [45]
<< CORBAFactory >>

CORBAFinder (FinderDef) Operation [46], [47]

<< CORBAFinder >>

UML Profile for CORBA and CORBA Components Adopted Specification

53

Table 8.2. ComponentIDL Profile

CORBAManages Association [36] - [38]
<< CORBAManages >>

CORBAPrimaryKey Association

<< CORBAPrimaryKey>>

CORBAValue (ValueDef) Interface [43]
<<CORBAValue>>

Constraints

[32] A "CORBAComponent" cannot own operations.
context CORBAComponent inv:
self.feature forAll(not ocllsKindOf (behavioralFeature))

[33] A "CORBAComponent" can only inherit from a "CORBAComponent" or a "CORBAInterface"
context CORBAComponent inv:
self.generalization -> forAll (g : Generalization | g.parent.isStereotyped (**CORBAComponent') or
g.parent.isStereotyped(**CORBAInterface™))

[34] Only single inheritance is possible between "CORBAComponent".
context CORBAComponent inv:
self.generalization -> select(parent.isStereotyped(**CORBAComponent')) ?size <=1

[35] Each "CORBAComponent" inheritance from a "CORBAInterface” must be stereotyped "CORBASupports"
context CORBAComponent inv:
selfstienerallzatlon -> forAll (g : Generalization | g.parent.isStereotyped(*"CORBAInterface™) implies
g.isStereotyped(""CORBASupports™))
[36] There is exactly one "CORBAManages" association for each Home.
context CORBAManages inv:
self.connection ?select(isStereotyped(**CORBAManages')) ->size = 1

[37] The "CORBAHome" side cardinality must be 1..1
context CORBAHome inv:
self.connection ?exists(participant.isStereotyped(**CORBAHome")) and multiplicity.min=1 and multiplicity.max=1)

[38] The "CORBAComponent" side cardinality must be "0..n".
context CORBAComponent inv:
self.connection ?exists(participant.isStereotyped(**CORBAComponent™)) and multiplicity.min=0 and multiplicity.max=n)

[39] A "CORBAHome" can inherit from one "CORBAHome" at most.
context CORBAHome inv:
self.generalization ?select(parent.isStereotyped(**CORBAHome")) ?size=1

[40] If "CORBAHome h1 inherits from "CORBAHome" h2 and h2 manages "CORBAComponent" C2 then h1l must
manage C2 or any other component C1 that inherits from C2.
context CORBAHome inv:
let hl=self and let h2=self.generalization ->
select(parent.isStereotyped(*"CORBAHome")) and h2 ->notEmpty implies
let C2=h2.connection ->select(participant.isStereotyped(**CORBAComponent')) and
let C1=h1l.connection ->select(participant.isStereotyped(**CORBAComponent™)) and
(C1 = C2 or Cl.allParents ->includes(C2))

[41] If * CORBAHome " hl inherits from h2, and " CORBAHome " h2 is associated with primary key k2 then hl
must be associated with k2 or with a primary key k1 that inherits from k2.

context CORBAHome inv:
let hl=self and let h2=self.generalization ->

54 UML Profile for CORBA and CORBA Components Adopted Specification

select(parent.isStereotyped(**CORBAHome"™)) and h2 ->notEmpty implies

let k2=h2.connection-> select(isStereotyped (**CORBAManages™)).LinkToClass.ClassPart and let
k1=self.connection>select(isStereotyped(*'*CORBAManages')).LinkToClass.ClassPart and

k1 = k2 or kl.allParents->includes(k2))

[42] Each "CORBAHome" inheritance from a "CORBAInterface” must be stereotyped.
context CORBAHome inv:
self.generalization ->forAll g,Generalization | g.parent.isStereotyped (""CORBAInterface')
implies g.isStereotyped(""CORBASupports™))

[43] The valuetype of a primary key:

[43-1] must not have private state members

[43-2] must not have members that are interfaces

[43-3] must have at least one state member

[43-5] must descend directly or indirectly from Components::PrimaryKeyBase

[43-4] Contraints [43-1], [43-2], and [43-3] apply recursively to valuetype members that are valuetypes

[43-1, 43-2, 43-3, 43-4] isAcceptableKeyType(type)

isAcceptableKeyType (valueType : ValueDef) : boolean

{ valueType.contents.forAll (c | c.ocllsTypeOf(ValuefMemberDef) implies
c.OclAsType(ValueMemberDef).isPublicMember) and

valueType.contents.forAll (not ocllsKindOf (InterfaceDef)) and
valueType.contents.exists (oclIsTypeOf(ValueMemberDef)) and
valueType.contents.forAll (c | c.oclisKindOf (ValueDef) implies isAcceptableKeyType (c))
}

[43-5] type.descendsFrom(**Components::PrimaryKeyBase"")
descendsFrom(absoluteName : string) : boolean

{ descendsFrom(absoluteName) =

if self.absoluteName = absoluteName

then true
else
if base->isEmpty
then false
else
if base.descendsFrom(absoluteName)
then true
else
false
endif
endif
endif }

[44] A "CORBAHomeFactory" operation has only input parameters.
context CORBAHomeFactory inv:
self. parameter ?forAll(kind=#in)

[45] A "CORBAHomeFactory" can only be defined in a "CORBAHome".
context CORBAHomeFactory inv:

self.owner.isStereotyped(**CORBAHome"")
[46] A "CORBAHomeFinder" operation has only input parameters.

context CORBAHomeFinder inv:
self. parameter ?forAll(kind=#in)

UML Profile for CORBA and CORBA Components Adopted Specification

55

[47] A "CORBAHomeFinder" can only be defined in a "CORBAHome".
context CORBAHomeFinder inv:
self.owner.isStereotyped(""CORBAHome")

8.2.3 Example

Following IDL describes the Philosophers example:
typedef enum PhilosopherState

{

EATING,
THINKING,
HUNGRY,
STARVING,
DEAD};

eventtype StatusInfo {

public string name;

public PhilosopherState state;
public long secondesSinceLastMeal;
public boolean hasLeftFork;

public boolean hasRightFork;};

exception InUse {};
// Interfaces

interface Registration ({
string register();};

interface Fork

{

void get() raises (InUse);
void release();};

//Components and Homes
component Philosopher {

uses Fork left;

uses Fork right;

uses Registration registration;
publishes StatusInfo info;};

home PhilosopherHome manages Philosopher {};

component Fork {
provides Fork the fork;};

home ForkHome manages Fork {};

component Registrator supports Registration {};

home RegistratorHome manages Registrator {};

56 UML Profile for CORBA and CORBA Components Adopted Specification

component Observer {
consumes StatusInfo info;};

home ObserverHome manages Observer {};

The UML model of components described in IDL above is shown in the figure below:

«CORBAEMM: wl ORBAEvENLs wCTIREAINEEFT AR

Fhilesepherstate Statisinfe Fork A ORBAEwceptiorts
EATING nameE_stng Inlse
THINKING state: PFhilsopherstate L) - o
HUNGRY secondesSincel asiMeal lang i)
STARVING hasL el orkbedlean nelesse() | vakf
DEaD haRightFork boolean

aCOREAHOME= =C0RBAHOmE=

aCORBAIRMETa 8 < ORBAHGMES FaorkHoms ObserverHome
| Registration PhilesepherHome

register() | sinng

' Ay

«CORBASUppONs=

«C0ORBAManages:

W

aCOREAManagess

]

#*CORBAComponents

«CORMLAManapes

Cregtertor «LOREALOMEONENE® | < CORBAFLDISTES Fork vCORBALCOMGanent:
R Fhilesopher Lintn tBACampo
S0 ORBALISES> -
i Statusindo
Reqistrazin | eglsiraion 5 - -
u . J._-.Lc-?F‘a-RFrcrmes:-: I'If-ffﬁRnAanlp_-.;-
Ehe fowk
CORMALsEs: ! % I J)lrr--:-
| = — _ O
«CORBAMBnages | CCCORBALSES s Fork e e
right
. s
Fark Fark
=CORBAHDMES
Raglstratartoms

Figure 8.24 - ComponentIDL Profile example

8.3 CIF Profile

8.3.1 Stereotypes

The CIF Profile defines how CORBA components have to be implemented. An implementation of a component comprises
a potentially complex set of artifacts (e.g., component or home executors) that must exhibit specific relationships and
behaviors in order to provide a proper implementation. A composition is a unit of component implementation and
contains such artifacts. A composition is represented using a UML Component (from the package
"PackagingComponents™) with the stereotype <<CORBAComposition>>.

A component implementation is represented using a UML Class with the stereotype <<CORBAComponentExecutor>>.
The <<CORBAComponentExecutor>> is always defined within a <<CORBAComposition>> element.

A home implementation is represented using a UML Class with the stereotype <<CORBAHomeExecutor>>. The
<<CORBAHomeExecutor>> is always defined within a <<CORBAComposition>> element.

UML Profile for CORBA and CORBA Components Adopted Specification 57

The relationships between components and component executors and between homes and home executors are represented
by an Association stereotyped as <<CORBAImplements>>.

A segment is represented using a UML Part (Property) with the stereotype <<CORBASegment>>. Segments are physical
partitions of a <<CORBAComponentExecutor>> element and always represented in the internal structure of a
<<CORBAComponentExecutor>> element (as UML parts, see example in Figure 8.26).

<<stereotype>>
CORBAHomeEXxecutor
<<extends>>
<<metaclass>> tacl
mr—aa;szss - <<g:);%%§:§:> +abstrac... realization <<§§ﬁ;§isn» +realizingClassifier <<r2?tac!fss»
(from StructuredClasses) (from BasicComponents) 0.1 *| (from BasicComponents) 1 (from Kernel)
A A
<<extgnds>>
<<extepds>>
<<metaclass>>
StructuredClassifier
<<stereotype>> <<g:)?]2?)((:)|::st>> (from InternalStructures)
CORBAComponentExecutor (rom PackagingComponents) CS;;‘:E‘R’;::Z;S -
<<enumeration>>
ComponentCategory t/part
“session *
“entity <<stereotype>> ;S;tgfts)te:/gpriz:l <<extends>> <<mPoart()ac‘;§ss>>
2:;::5 CORBAComposition isSerialized : Boolean (frommtem‘:lszr{cxures)
By tension Lcategory : ComponentCategory
Figure 8.25 - CIF Profile: Extended UML classes
8.3.2 Tabular representation
Table 8.3. CIF Profile
Stereotype Base Class Parent Tags Constraints
CORBAComponentExecutor Class [49]
(ComponentExecutorDef)
<<CORBAComponentExecutor>>
CORBAHomeExecutor Class [53]
(HomeExecutorDef)
<<CORBAHomeExecutor>>
CORBAImplements Realization [48], [50]
<<CORBAImplements>> (Association)

58 UML Profile for CORBA and CORBA Components Adopted Specification

Table 8.3. CIF Profile

CORBAManages Association [51], [52]
<< CORBAManages>>
(from ComponentIDL Profile)

CORBAComposition Component category: [54]
(CompositionDef) ComponentCategory
<<CORBAComposition>>

CORBASegment (SegmentDef) Property (Part) isSerialized: [55]
<<CORBASegment>> Boolean

8.3.3 Constraints

[48] There is an association between <<CORBAComponentExecutor>> and <<CORBAComponent>>.
context CORBAImplements inv:

self.connection ? exists(participant.isStereotyped(**CORBAComponentExecutor')) and

self.connection ?exists(participant.isStereotyped(*"CORBAComponent™'))

[49] A <<CORBAComponentExecutor>> always has exactly one <<CORBAComponent>> associated while each
<<CORBAComponent>> might be implemented by different types of <<CORBAComponentExecutor>>.
context CORBAComponentExecutor inv:
self.connection ? exists(participant.isStereotyped(**CORBAComponentExecutor™) and multiplicity.min=1 and max=%*)
self.connection ?exists(participant.isStereotyped(**CORBAComponent™) and multiplicity.min=1 and max=1)

[50] Each << CORBAHomeExecutor >> in a model implements exactly one <<CORBAHome>>.

context CORBAHomeEXxecutor inv:
self.connection ?exists(participant.isStereotyped(**CORBAHomeExecutor**) and multiplicity.min=1 and max=1)
self.connection ?exists(participant.isStereotyped(**CORBAHome") and multiplicity.min=1 and max=1)

[51] It's an association between a "CORBAHomeExecutor" and a "CORBAComponentExecutor".
context CORBAManages inv:

self.connection ?exists(participant.isStereotyped(**CORBAHomeExecutor'*)) and

self.connection ? exists(participant.isStereotyped(**CORBAComponentExecutor))

[52] Each << CORBAHomeExecutor >> manages exactly one <<CORBAComponentExecutor>>, this relation is
modeled by the association <<CORBAManages>>.

context CORBAHomeExecutor inv:
self.connection ? exists(participant.isStereotyped(**CORBAComponentExecutor') and multiplicity.min=1 and max=1)

[53] For each instance x of <<CORBAHomeExecutor>> the instance of <<CORBAComponent>>, which is
associated to the instance of <<CORBAHome>> associated to x, is the same instance as the instance of
<<CORBAComponent>> associated to the instance of <<CORBAComponentExecutor>>, which is associated to
X.

context CORBAHomeExecutor inv:
self.home.component = self.component_impl.component

[54] The life cycle category of the <<CORBAComposition>> must be "entity" or "process" if the contained
component implementation is segmented.

context CORBAComposition inv:
self.component_impl.segments>1 implies (self.category=ENTITY or self.category=PROCESS)

[55] <<CORBASegment>> classes are always contained in <<CORBAComponentExecutor>>.

context CORBASegment inv:
self.definedIn.ocllsTypeOf(ComponentExecutorDef)

UML Profile for CORBA and CORBA Components Adopted Specification 59

8.3.4 Example

The following IDL for the component Fork from the Philosophers example is represented in Figure 8.26:

composition entity ForkImpl

{

home executor ForkHomeExecutor {
implements ForkHome;

manages ForkExecutor {

segment Seg { provides the fork; }}};

gl

aCDORBACOMpOS N
Forkimpl

tags
category = entity

[CORBAHOmER
FarkHome

=DRBACOMponent= ———
Fork) «CORDAManagese

<« CORBAProvidEs»»
I:|]lr'~_'_fl.uk
i)

CORBAIMplemEnt: :
: :p . «CORBAMplernents:

CORBACompanentExgcutors .
Forkimpk:ForkExecuter eCORBAManagess | #CORBAHomEEReCUtor »
= Farkimpl:

s
wCOREASBments thie_fofk FarkHameEx#cutar

sSeg

ey

Figure 8.26 - CIF Profile example

8.4 Deployment Profile

The Component Implementation Framework (CIF) Profile defines how to model constructing component
implementations. How to model components and component homes is defined in the ComponentIDL Profile (see previous
sections). The CIF Profile uses ComponentIDL Profile descriptions to model CCM applications and then generate
programming skeletons that automate many of the basic behaviors of components, including navigation, identity inquiries,
activation, state management, lifecycle management, and so on. Generated CCM components are units of deployment
process, which includes installation, configuration, planning, preparation, and launch of such CCM applications. In order
to deploy a component-based application like CCM applications instances of each component must first be created, then
interconnected and configured. The Deployment Profile defines how to model deployment and configuration information
of CCM applications. The Deployment Profile uses the CIF Profile (e.g., for modeling of component and home executors)
and introduces possibilities for modeling of an initial configuration: a set of interconnected component instances
(assembly) of a CCM application at run time and other deployment information.

60 UML Profile for CORBA and CORBA Components Adopted Specification

8.4.1 Stereotypes

A CORBA Assembly package is represented using a UML Package with the stereotype <<CORBAAssemblyPkg>>. The
<<CORBAAssemblyPkg>> element may contain one or more component packages represented using a UML Package
with the stereotype <<CORBAAComponentPkg>>.

<<stereatype>>
y <retaclass>> +olass +oanedAttribute Property <<stereotype>>

<<extends>>
mlrmt Qass 0.1 N CORBAAssemblyPkg
“type : String (fromkeme))
Delue : String —! Hattripte
<<extends>>
+classi
<etaclass>> <aetacless>> 0f1 PackagesbleElement <qretadass>> [<<extends>> <<stereoype>>
StrwctwredQassifier |0 ¢ dassifier | 000000 (fromKemel) 1| Peakage CORBAComponentPkg
(fromInternal Structures) (fromKernel) (fromKernel)
/ +utizecHlemer] L
<aretaciass> *
Component <eteclass>>
(fromBasicConporents) <<eteclass>> <<retecless>>
Collaboration Aifact +merifestation | Menflestation Abstraction
(fromQoliaboratiors) fleName: Sting | 1 %] (fromaviifects) (fromDependencies)
< f > <<$Kerds>> <<extends>>
<<stereotype>>
<<stereotype>> locati
CORBACorfigration wﬁ?‘fﬁmaﬂm
—_— 18I g <<sterectype>> et g Dependency
<<extends>> CORBARequires ends | (fromDependencies)
<<stereotype>>
CORBAMondlithicimplementation
<<enuneration>>
Actionkind
<steredtype>> <sEredype> SINSTALL
OORBAHbstColocation (CORBAProcessCollacation <stereatype> ~EEE
destination : String QORBAFile
location : String
<<steredype>>
m@arejﬁle <Stereolype>> = <stereatype>> <<stereolype>
codetype : Stiing _ s CORBAIDLFile CORBAComponentFile
entrypaint : String action: Actionkind
entrypaintusage : String

Figure 8.27 Deployment Profile: Extended UML classes

A component package <<CORBAAComponentPkg>> is a set of metadata (e.g., IDL description) and compiled code
modules that contain implementations of a component. The implementations in <<CORBAAComponentPkg>> can be
monolithic and and represented as a UML Component with the stereotype <<CORBAMonolithicimplementation>> or in
form of an assembly and represented as a UML Package with the stereotype <<CORBAAssemblyPkg>>.
<<CORBAMonolithiclmplementation>> elements can be described by platform dependencies, code filename, entry
points, and other deployment characteristics. These characteristics or implementation requirements can be represented by
the stereotyped UML class <<CORBARequirement>>. The possible requirements of an implementation are listed below:

UML Profile for CORBA and CORBA Components Adopted Specification 61

« licensekey: point to the key of a usage license

- licensetextref: point to the text of a usage license

 uuid: unique identifier of an implementation

« compiler: specifies the compiler used to create an implementation

- programminglanguage: specifies the type of the component implementation

« description: string description for any additional information

« humanlanguage: specifies a spoken language

- 0s: specifies a particular operating system that the implementation will work with
» processor: indicates the type of processor that the implementation must run on

The name of the <<CORBARequirement>> class instace can be one of the names listed above (or other), the tag "type"
of the <<CORBARequirement>> class represents a concrete type of the requirement and the tag "value" of the class helps
to define a concrete version of the regirement's type. For example, the UML class "Processor" with the stereotype
<<CORBARequirement>> can have tagged values "type=Intel" and "value=Core™2 Duo ".

The initial configuration of a CCM application is represented as a UML Collaboration with the stereotype
<<CORBAConfiguration>> and contains instances of component and home implementations. These instances can be
collocated in the same process or run on the same node (host). For these two kinds of collocation representation
<<CORBAProcessCollocation>> and <<CORBAHostCollocation>> stereotypes are defined. They both inherit from the
abstract stereotype class <<CORBACollocation>>, which have "cardinality" tag.. The "cardinality" tag represents how
many instances of collocation may be deployed.

The assembly and component packages may contain different deployment artifacts: specifications of a physical piece of
information that is used or produced by a software development process, or by deployment and operation of a system.
Examples of such artifacts are all defined in the Deployment metamodel files: component, IDL, contained and dependent
files described in the section 3.2.4. All these files are represented using a UML Artifact with stereotypes
<<CORBAAComponentFile>>, <<CORBAAIDLFile>>, <<CORBAAContainedFile>> and
<<CORBAADependentFile>>. These files are usually required from implementations. The relationship between a
<<CORBAImplementation>> element and required artifacts is represented using the UML Dependency with a stereotype
<<CORBARequires>>.

8.4.2 Tabular representation

Table 8.4. Deployment Profile

Stereotype Base Class Parent Tags Const-
raints

CORBARequirement Class type: String

(RequirementDef) value: String

<<CORBARequirement>>

CORBAFile (File) Artifact

<<CORBAFile>>

62 UML Profile for CORBA and CORBA Components Adopted Specification

Table 8.4. Deployment Profile

CORBAMonolithicimplementation
(MonolithiclmplementationDef)
<<CORBAImplementation>>

Component

CORBAContainedFile
(ContainedFile)
<<CORBAContainedFile>>

Artifact

CORBAFile

codetype: String,
entrypoint: String,
entrypointusage: String

CORBADependentFile
(DependentFile)
<<CORBADependentFile>>

Artifact

CORBAFile

action: ActionKind

CORBAComponentFile
(ComponentFile)
<<CORBAComponentFile>>

Artifact

CORBAFile

CORBAIDLFile (IDLFile)
<<CORBAIDLFile>>

Artifact

CORBAFile

CORBARequires
<<CORBARequires>>

Dependency

CORBAAssemblyPkg
(AssemblyPkgDef)
<<CORBAAssembly>>

Package

CORBAComponentPkg
(ComponentPkgDef)
<<CORBAComponentPkg>>

Package

CORBAProcessCollocation
(ProcessCollocationDef)
<<CORBAProcessCollocation>>

Collaboration

CORBACOllocation

CORBAHostCollocation
(HostCollocationDef)
<<CORBAHostCollocation>>

Collaboration

CORBACO llocation

destination:String

CORBACO llocation (CollocationDef)

<<CORBACollocation>>

Collaboration

cardinality:String

CORBAConfiguration
(ConfigurationDef)
<<CORBAConfiguration>>

Collaboration

8.4.3 Constraints

There are no specific constraints for this profile.

8.4.4 Example

There is no IDL notation for deployment information: as input to a deployment tool component and assembly packages
are provided. These packages contain one or more XML descriptors and a set of files. The XML descriptors contain all

needed deployment and configuration data used by a deployment tool.

UML Profile for CORBA and CORBA Components Adopted Specification

|
aCORBACompasiions
Farkimpl

=y

~F..
«CORBAReaEze

wCORBARaquirament »
#CORBARe

WCORBAAssamblyFkgs
FPhilosophers

s CORBAComponentFkg »
ForkPkg

qun

B

aCOREAMonolithicImplameantat on
ForklmplWin

resn

wCORBAIDLFile s
Philosophers idl

wCOREAIDLFile»
Philosophers cidl

o3 .,
tags §,-'uCORB.ﬂ-anglr-:|5u
type = Windows - o CORBACoManadFies
vahe = XF Professional 2005 «CORBARSqUires s Farkimphiin, gl
o tags
codetype = "DLL"
Fod antrypodnt = "create_FaorkHomeE'
wCORBARaquiraments BNIYROINUSAE = SxEoulorn
compiler
tags
by = Ve
valye = Microsoft et 7

Figure 8.28 - Deployment Profile example: package structure of an application

The figure below represents one possible initial configuration of the Philosophers application:

64

UML Profile for CORBA and CORBA Components Adopted Specification

wCORBACofigursficn.
PrlstiophariContig

CORBAHONEE LD
A Ra g meriameE e caner

i PRisiopharHomeaasuter

| T e——

CORBAC omponentEscdnns .
ragattrator ; PR -
Regittratorfeecator | 'm « COREAL pmponentExeoulon e
Bab FhilosepherEceoamor
' el | rgre
[-
. iy S ORIAL GmponsntE s uiors
CoRmAMTeseGooEsee ‘ s e
o —————— CORBACImponentExcutn|
Pesfiil FaahEneianor farkd FarkExecuter

| hy_ters

I L AL e E A of)

CORBAHOTEENETURr
il F ek Hem s B 8 oumor
RO E e
B ObierverHomels scutor

1 nght

) e tE w1t
T ate PRt opharEecanor

e [Pt gy e
hd ;PhilatopharHomeExscutar

Figure 8.29 - Deployment Profile example: initial configuration of an application

8.5 CCMQoS Profile

The UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms™ (ptc/05-05-02)

defines a comprehensive UML 2.0 profile for the description of QoS properties. The modeling of QoS properties for

CORBA Components requires the definition of a link between QoS profile and CCM profile. This link is defined in the

profile package CCMQoS and is a small extension done by the stereotype QoSBinding (see Figure 8.30). The
QoSBinding class extends the UML metaclass Comment and can be attached to any UML element instance.

UML Profile for CORBA and CORBA Components Adopted Specification

65

annotatedElement
<<metaclass>>

* Element
(from Ownerships)

&

<<metaclass>>
Element

4o

<<metaclass>> ownedComment
Comment

body : String *

<<extends>>

<<stereotype>>
QoSBinding
name : string
mandatory : boolean

Figure 8.30 - CCMQoS Profile: extended UML classes

The example shown below describes a simple video service: stream-based communication between two CORBA
components StreamClient and StreamServer. The stereotyped with <<QoS Characteristics>> VideoQoS class represents
quantifiable characteristics (dimensions for the quantification) of the video services. For more information about QoS
please refer to the OMG document ptc/05-05-02.

The Binding metaclass is represented using a UML Comment with stereotype <<QoSBinding >> and can be attached
either to a component or its port or its instances. The <<QoSBinding >> element has two tags: "name™ and "mandatory.”

8.5.1 Tabular representation

Table 8.5. CCMQoS Profile

Stereotype Base Class | Parent | Tags Constraints
QoSBinding (Binding) Comment name: string
<<QoSBinding >> mandatory: boolean

8.5.2 Constraints

There are no specific constraints for this profile.

66 UML Profile for CORBA and CORBA Components Adopted Specification

8.5.3 Example

«CORBAINtErface: «CORBAStream:
Streaminfo Raw
+ wideo name: string
+ media B strin tags
+ media size; long kind = BASIC_STREAM
<<CORBASOUCE=>
«CORBACOmponents «CORBACOmMponent» | oo™t
StreamcClient <<CORBAUSES=> StreamServer -
info_sink i R awy
<<CORBAProvides=> | °
Streaminfo info_source
<<CORBASINK=> {1
stream_in
Raw Streaminfo
<<Q0SBinding=»
tags
" name=videoGoSBinding
«QoSCharacteristics randatory=yes

VideoQos

+ «0osDimension: rate; short {unit (bit'sec), direction (increasing)}
«QoSDimension» vdeo_height: short
+ «Cos0himension: video_width: short

+

Figure 8.31 - CCMQoS Profile: video example

8.6 UML Profile for Lightweight CCM

This profile provides modeling concepts of the basic level of CORBA Components defined as Lightweight CCM Profile
and specified in the CCM specification (formal/06-04-01).

The Lightweight CCM profile provides an enriched environment for low-footprint, embedded, and real-time CORBA
solutions. It considers only specific parts of CCM specification that are impacted and the normative specific subsetting of
CCM. General CCM capabilities and support, like for example, Persistence, CIDL, Home finders or Configuration are not
included in Lightweight CCM (see formal/06-04-01, section 13).

The UML Profile for Lightweight CCM is defined as a subset of the CCM Profile descried in previous sections. There are
no new stereotypes or tags for this profile added. Following changes made in Lightweight CCM don't have a bearing on
the UML Profile for Lightweight CCM:

» Changes associated with excluding support for introspection, navigation and type-specific operations redundant with
generic operations.

» Changes associated with excluding support for transactions.
« Changes associated with excluding support for security.
» Changes associated with excluding support for configurators.

- Changes associated with excluding support for proxy homes.

UML Profile for CORBA and CORBA Components Adopted Specification 67

Changes associated with excluding support for persistence, segmentation and home finders impact CCM Metamodel and

Profile. Following normative exclusions described in the Lightweight CCM profile have been taken into account:

Table 8.6. Lightweight CCM

Normative
Exclusion

Metamodel impacts

Profile impacts

Exclude support for
primary keys.

Exclude support for
CIDL.

Exclude composition

Restrict CIF
metamodel to a single
segment per
implementation

The association “key_home” between
metaclasses HomeDef and ValueDef has been
removed.

The Stereotype
<<CORBAPrimaryKey>> has been removed.

Excluding CIDL is a result of excluding support for both persistence and segmentation (see

Exclusions below).

The metaclass CompositionDef has been
removed.

The attributes of the enumeration
ComponentCategory “process”, *
“extension” have been removed.
The attribute “category” has been added to the
metaclass ComponentExcecutorDef.

entity” and

The multiplicity of the association between
ComponentExcecutorDef and SegmentDef has
been changed to 1:1.

The Stereotype <<CORBAComposition>>
has been removed.

The tag “category” has been moved from the
stereotype <<CORBAComposition>> to the
<<CORBAComponentExecutor>>

Following Constraint has been added:

con]text CORBAComponentExecutor inv:
self.connection ? exists

(partlupant isStereoty, {)ed ("CORBASegment")
and multiplicity.min=1 and max=1

Remove segmentation
support

(see previous Exclusion)

(see previous Exclusion)

Exclude support for
home finders and
finder operations

The FinderDef metaclass has been removed.

The Stereotype <<CORBAFinder>> has been
removed

The following figures represent changed metamodels (ComponentIiDL and CIF) for Lightweight CCM:

68

UML Profile for CORBA and CORBA Components Adopted Specification

InterfacaDemvedrram
+base 0. Hﬂdﬂl'i'wﬁ nr sprovidasid

hame_supports ssupponstf InterfaceDef _;]
0|+ isAbstract Boolean
+ isLocal Boolean
+oupportstf p.* L A susesil
uses_typed_by
+usas_def 0"
provides_typed_Ery
UsesDef
COMPOnent_supports e
+ multiple: Boolaan
-5
sraceplacle™ 0.
!
COMponent_receptack
shomedal 0" +Componants . o« ‘Frwm_deh 0r
HemelDef 10 +COMp rovidesDef
fleaft | +homeEnd +cormponentEnd ﬂumpnnunﬂ:r{u}:m 7 1comp acet rov '{:aaF}
0.* component_home 1 T component_tacet 0

shomedef 3 +eomp +u:-:|rnp'.¢u|m|:r 1
home_factony COMpOneni_smits companant_publishes
Component_consumes
e e
slactones)0, * +amitsgy0. spublishess)0,*
FactaryD EmitsDef
{leaf}
| .
OperationDef EventDef |+hype sevent_porr| EventPortlaf
{lea} 5™ evert_por_typed by p -

Figure 8.32 - ComponentIDL metamodel for the Lightweight CCM

UML Profile for CORBA and CORBA Components Adopted Specification

Container B
 defingdn contants idantifier String
E Coontairs 0. [varsion: Siring
/ :
HomeExee e Pem=Erd] HomeDsf
———jo.* homi_impiléments
hucsrrve_ierigl 0" hormaEnd 140"
manages corponant_homs
Companans_imgl J 1 . -
omponentExecutorDef Components
= < e CompenentDet
category. ComponeniCateqony|0. " COMpOrsni_imgplemens 1
cornponentimpEnd %‘1
wEnumEations SHQMENts
CempenentCategory
SESSION
SERVICE Segment 1
SegmentDef i&gmm provided by ft‘lE'ﬂ.I.l’Erf A
+| ComponentFeature
isSensized Booken || -

Figure 8.33 - CIF metamodel for the Lightweight CCM

70

UML Profile for CORBA and CORBA Components Adopted Specification

9 Profile lllustration

9.1 Example Scenario Description

The "Simulation" example contains a set of components for simulating an Air Traffic Management (ATM) scenario in a
very simplified way. The main purpose is to demonstrate the general usage of a graphical interface framework inside of
the components while using a real world example context (simulation of ATM).

In the "Simulation™ scenario there could be a number of planes, which are tracked by radar station whenever the plains are
in their area of observation. Since the radar stations have only a limited area of observation and are located at different

geographical positions it is important to combine the information that is provided by each of the radar station into one
single picture.

The example contains following CORBA component types:

 Plane: This component represents a plane in the air that can be tracked by a radar station. It has a graphical user inter-
face to receive commands regarding the speed and the heading of the plane. A plane component has a receptacle of

type Planelnput that is used to provide the current position of the plane to the simulation server. This demonstrates the
usages of a synchronous communication.

- SimulationServer: This component should be instantiated once in a simulation scenario. It retrieves the position of all
planes in a synchronous manner. Radar station can get information about the planes that are in their area of observa-
tion. The simulation server computes this based on the location position provided by the radar stations. This compo-
nent does not expose a graphical user interface.

» Radar: This component simulates a radar station. The component acquires the information about the planes that are
currently in its area of observation by sending a synchronous request to the simulation server. In this request the radar
station provide its own location. The information about the planes is then presented to the user in a graphical form.
Furthermore, the radar station provides the information about the planes in the area of observation to the TAPDisplay
component in a asynchronous manner.

- TAPDisplay: This component obtains information from all radar station about the position of the radar station and the

planes in the area of observation. The TAPDisplay presents the information gathered from all radar stations to the user
in a single view.

9.2 Type Definition

The example use the following IDL3 basic types and exceptions:
9.2.1 IDL notation

module Simulation

{

/* Position e.g. of an airplane */
struct Position{

double longitude;

double latitude;

double altitude;};

/* Position of a radar Contact */

UML Profile for CORBA and CORBA Components Adopted Specification 71

72

struct PolarPosition{
double angle;
double distance;};

struct RadarObject({
string identifier;
Position position;};

/* Transponder information */
struct TransponderObject{

string identifier;

double altitude;};

/* a sequence of radar contacts */
typedef sequence<RadarObject> RadarData;

/* List of radar contacts submitted to base stations */
eventtype RadarEvent {

public string radar identifier;

public Position radar position;

public RadarData radardata;

public double radius;};

/* dynamic information about airplane position */

/* possibly from FlightGear */
interface PlaneInput {
void set position(in string identifier, in Position current position);};

/* plane */

/* only needed if FlightGear is not available */
component Plane {

attribute
attribute
attribute
attribute
attribute
attribute

string
double
double
double
double
double

identifier;
initial longitude;
initial latitude;
initial_altitude;
initial course;
speed;

uses PlaneInput sim_server;};
home PlaneHome manages Plane {};

interface RetrieveRadarData {

/* callculates the List of radar contacts visible for a given position of a Radar */
RadarData get data(in Position radar position, in double radius);};

component SimulationServer{
provides PlaneInput the input;
provides RetrieveRadarData radar output;};
home SimulationServerHome manages SimulationServer {};

component Radar {
attribute string radar identifier;
attribute double longitude;

UML Profile for CORBA and CORBA Components Adopted Specification

attribute double latitude;
attribute double radius;
attribute double pixel radius;
uses RetrieveRadarData sim server;
publishes RadarEvent to_ tac_display;};
home RadarHome manages Radar {};

component TAPDisplay {
attribute string identifier;
attribute double longitude;
attribute double latitude;
attribute double horizontal range;
attribute double vertical range
attribute double horizontal pixels;
attribute double vertical pixels;
consumes RadarEvent from radar;};

home TAPDisplayHome manages TAPDisplay {};

9.2.2 CIDL notation

module Simulation
composition session PlaneImpl {
home executor PlaneHomeImpl {
implements PlaneHome;
manages PlaneSessionImpl;};};

composition session SimulationServerImpl {
home executor SimulationServerHomeImpl {
implements SimulationServerHome;

manages SimulationServerSessionimpl;};};

composition session RadarImpl {
home executor RadarHomeImpl {
implements RadarHome;
manages RadarSessionImpl;};};

composition session TAPDisplayImpl {
home executor TAPDisplayHomeImpl {
implements TAPDisplayHome;
manages TAPDisplaySessionImpl;};};

-
~

UML Profile for CORBA and CORBA Components Adopted Specification

73

9.3

UML Example diagrams

«CORBAMDOUIE»
CORBA
«CORBAPrimitive» | |«CORBAPTimIitive:s «CORBAPTImitive:s «CORBAPTimitives «CORBAPTImMitive:s
void any boolean char double
«CORBAPrimitive» | |«CORBAPrmitves| |«CORBAPTmitives | |«CORBAPrimitives| |«CORBAPTIMItves
long float long double long long object
«CORBAPrimitive»| |«CORBAPrimitive»| |«CORBAPrimitives| |«CORBARrmitves| |«CORBAPrimitive»
short octet string typecode unsigned long
«CORBAPTIMItive» | [«CORBAPTimitives «CORBAPTIMItvE:s «CORBAPTIMItives
unsigned long unsigned short wchar wstring
leng
Figure 9.1 - CORBA Package
«CORBAINterfaces «CORBANtErtaces «CORBAEvent»
RetrieveRadarData Planelnput RadarEveni
get_datarPosition, doubie) | RadarData set_position(string, Position) : void radar_identifier. string

radar position: Position
radardata: RadarData
radius. double

«CORBAStrUCt: «CORBAStrUCt:

PolarPosition Position «CORBASEqUENCE

angle: double longituce: double RadarData «CORBASIrUCE
distance: double latitude: double seq: RadarOhbject [1..n] {ordered} RadarObject

altitude: double

identifier: string
position: Position

«CORBACOmponent»

SimulationServer | '203r_oUtpLt

«CORBACOmponents

the_input
Plane

RetrieveRadarData

identifier. string
initial_latitude: double
initial_longitude: double

Initial_altitude: double Planelnput
nitial_course: double
speed. double
sim_server
«CORBACOMponents
TAPDisplay
Planelinput
identifier. string
«CORBACOMPOnENts lanigiiugz - @ouldle
B harizontal_range: dauble
sim server |atitude: double
Iongitude: dousle - vertical_range: double
raciar_identifier: string harizontal_pixels: double
Jatitude: dauble [vertical_pixels: double
racius: double RetrieveRadarData —
pixel_radius. double Ifrumjadar
T to_tac_display RadarEvent

RadarEvent

Figure 9.2 - User-defined data types, interfaces and components

74 UML Profile for CORBA and CORBA Components Adopted Specification

«CORBACOmpositions
Planelmpl

tags
category = session

«ZORBACOmpositions
Radarimpl

tags

category = session feey

Figure 9.3 - Compositions

«CORBACOmMposition:
SimulationServerimpl

tags

category = session

«CORBACOmpositions
TAPDisplaylmpl

tags

category = session

«CORBACOmMposition:
Planelmpl

category = Session

«CORBAComponent»
Plane

- identifier: string
- initial_latitude: double

tags

«CORBAHDME:
PlaneHome

- initial_longitude: double |1
- initial_altitude: double
- initial_course: double
- speed: double

«CORBAIMplemMEents:

«CORBAComponentExecutors

«CORBAManages»

«CORBAIMplements»

Planelmpl::
PlaneSessionimpl

«CORBAMaNnages:

«CORBAHOMEEXECULOrs
Planelmpl::
PlaneHomelmpl

Figure 9.4 - Composition description for Plane component

UML Profile for CORBA and CORBA Components Adopted Specification

75

«CORBAASSEMDIYPRY»
SimulationApplication
«CORBAC omponentPkg»
PlanePkg

«CORBACOMponentPkgs
SimulationServerPkyg

«CORBAC DmponentPkg»
RadarPkg

«CORBACOMponentPki»
TAPDisplayPkg «CORBAIDLFile» =

‘ ‘ simdemo cidl

«CORBAComponentPkgs
PlanePkg

gl
«CORBAMonoliticimplementations»
Plane_L

&l
«CORBAMonoliticimplementations
Plane_W

Figure 9.5 Assembly package and component package content for the Plane component

gll S —
«CORBAMonoliticimplementations « CORBAReqUiIres»™ ~pm s b iemant,

«CORBACoNainedFiles E'lnpp ARequiress Plane_W os_w
Flanelmpl.dl [
- ! tags
tags ; type = Windows
codetype = DLL i s value = 2000 Professional
entrypoint = create_PlaneHomel «CORBARequires»
entrypointusags = executor "

«CORBARealize» :
- «CORBAReqUires»

«CORBARealize »

«CORBAContainedrile» B

entrypoint = create_PlaneHome
entrypointusage = executor

A

«CORBA}L—éequwes»

« COREAMonaliticimplementations
Plane_L

Figure 9.6 - Component Implementation description

76

UML Profile for CORBA and CORBA Components Adopted Specification

Planelmpl.co «CORBARequires» os_|
CORBARequires:
tags | T m@] e -7 tags
codetype =DLL ~ [Feveeeeenl) oo @l

«CORBARequirements
«CORBACompositions compiler
Planelmpl W :
tags «CORBADependentFile» &) pe = Gt ags
category = seggmn Planelmpl.ccd value; Microsoft Visual C++ 6
tags
action = INSTALL

«CORBAPequ\res»

«CORBARequirement»

type = Linux
value = openSUSE 10.3

" [«CORBAHOmeEecutors
homes5 :
TAPDisplayHomelmp

to_tac_display

«CORBAC onfiguration» el

InitialConfiguration

«CORBAComponentExecutors
tapdisplay :
TAPDisplaySessionimp

—fram_radar

«CORBAHomEExecutors

to_tac_display

«CORBACOmpofEntExecUtors
radar1 :RadarSessionimpl

[

SImn_server

home2 :RadarHomelmpl

«CORBACOMponentExecutors
radar2 :RadarSessianimpl

sim_server

‘,,-"(EEORBAProcessColloca

Process2

L CORBAHOMEEXECULOr |

home3 :

PlaneHomelmpl

«CORBACOMETNENtEXECUtar
plane2 :PlaneSessionimpl

Figure 9.7 - Initial Configuration Description

radar_outpu

«CORBAHOmeEXeCUtors
home4 :

«CORBACOMpONENtEXecutars
sim_server:
SimulationServerSessionimpl

the_input

frd_;_f—— SimulationServerHomelmpl

UML Profile for CORBA and CORBA Components Adopted Specification

Figure 9.8
Figure 9.9

/,f"c'(EORBAProcessCollocatio-rif:"-\.‘
Processi)

«CORBAHOMeExecutors |
home1 :PlaneHomelmpl

«CORBAC ompurientExecutors)
plane1 :PlaneSessionimpl

77

78

UML Profile for CORBA and CORBA Components Adopted Specification

Annex A References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]

Meta Object Facility (MOF) Specification, Version 1.4, OMG document ptc/2001-10-04
MOF 2.0 to OMG IDL Mapping RFP, OMG document ad/2001-11-07

MOF 2.0 Core RFP, OMG document: ad/2001-11-05

CORBA Components Specification, OMG TC Document formal/02-06-65

www.puml.org/mml

Unified Modeling Language (UML) Specification, Version 1.5, OMG TC Document formal/03-03-01
The UML Profile for CORBA, OMG TC Document formal/02-04-01

Virtual metamodel for the UML Profile for CCM (DTD), OMG document: ptc/2005-01-01

Virtual metamodel for the UML Profile for CCM (MDL), OMG document: ptc/2005-01-02

[10] Virtual metamodel for the UML Profile for CCM (XML), OMG document: ptc/2005-01-03

UML Profile for CORBA and CORBA Components Adopted Specification

79

80

UML Profile for CORBA and CORBA Components Adopted Specification

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 How to Read this Specification
	6.3 Acknowledgements

	7 CCM Metamodel
	7.1 Overview
	7.2 BaseIDL Metamodel
	7.2.1 Typing
	7.2.2 Containment
	7.2.3 Modules
	7.2.4 Interfaces
	7.2.5 Operations
	7.2.6 Attributes
	7.2.7 Values
	7.2.8 Exceptions
	7.2.9 Parameters
	7.2.10 BaseIDL Constraints

	7.3 ComponentIDL and Streams Metamodels
	7.3.1 Component Model
	7.3.2 Component Homes
	7.3.3 Streams
	7.3.4 Containment
	7.3.5 ComponentFeature
	7.3.6 ComponentIDL Constraints

	7.4 CIF Metamodel
	7.4.1 Composition
	7.4.2 Component and Home Executors
	7.4.3 Segments
	7.4.4 CIF Constraints

	7.5 Deployment and Configuration Metamodel
	7.5.1 Implementations
	7.5.2 Assembly Package
	7.5.3 Properties
	7.5.4 Files
	7.5.5 Containment
	7.5.6 Deployment Constraints

	7.6 CCMQoS Metamodel

	8 UML Profile for CORBA and CORBA Components
	8.1 BaseIDL Profile
	8.1.1 CORBA Module, Interface, Value, Constant Stereotypes
	8.1.2 Other stereotypes: CORBA Types
	8.1.3 Tabular representation
	8.1.4 Constraints

	8.2 ComponentIDL Profile
	8.2.1 Stereotypes
	8.2.2 Tabular representation
	8.2.3 Example

	8.3 CIF Profile
	8.3.1 Stereotypes
	8.3.2 Tabular representation
	8.3.3 Constraints
	8.3.4 Example

	8.4 Deployment Profile
	8.4.1 Stereotypes
	8.4.2 Tabular representation
	8.4.3 Constraints
	8.4.4 Example

	8.5 CCMQoS Profile
	8.5.1 Tabular representation
	8.5.2 Constraints
	8.5.3 Example

	8.6 UML Profile for Lightweight CCM

	9 Profile Illustration
	9.1 Example Scenario Description
	9.2 Type Definition
	9.2.1 IDL notation
	9.2.2 CIDL notation

	9.3 UML Example diagrams

	Annex A References

