
UML Profile for CORBA and
CORBA Components

This OMG document replaces the final adopted specification (ptc/2007-03-11). It is an OMG Final
Adopted Specification and is currently in the finalization phase. Comments on the content of this
document are welcomed, and should be directed to issues@omg.org by March 5, 2007.

You may view the pending issues for this specification from the OMG revision issues web page
http://cgi.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on July 6, 2007. If
you are reading this after that date, please download the available specification from the OMG
formal specifications web page.

OMG Final Adopted Specification
ptc/2007-05-02

Date: May 2007

UML Profile for CORBA and CORBA Components
OMG Final Adopted Specification

ptc/2007-05-02
conv. with change bars

Copyright © 2006, Object Management Group
Copyright © 2006, Fraunhofer Institute FOKUS
Copyright © 2006, Thales

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered

by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to report
any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the main web
page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Table of Contents

1 Scope ... 1
2 Conformance .. 1
3 Normative References .. 1
4 Terms and Definitions ... 2
5 Symbols .. 3
6 Additional Information ... 3

6.1 Changes to Adopted OMG Specifications ... 3
6.2 How to Read this Specification ... 3
6.3 Acknowledgements ... 3

7 CCM Metamodel ... 5
7.1 Overview ... 5
7.2 BaseIDL Metamodel .. 6

 7.2.1 Typing ... 7
 7.2.2 Containment .. 7
 7.2.3 Modules .. 8
 7.2.4 Interfaces .. 8
 7.2.5 Operations .. 9
 7.2.6 Attributes ... 9
 7.2.7 Values ... 9
 7.2.8 Exceptions .. 10
 7.2.9 Parameters .. 10
 7.2.10 BaseIDL Constraints ... 10

7.3 ComponentIDL and Streams Metamodels .. 10
 7.3.1 Component Model ... 11
 7.3.2 Component Homes ... 12
 7.3.3 Streams ... 12
 7.3.4 Containment .. 13
 7.3.5 ComponentFeature ... 14
 7.3.6 ComponentIDL Constraints... 15

7.4 CIF Metamodel... 18
 7.4.1 Composition .. 19
 7.4.2 Component and Home Executors ... 20
 7.4.3 Segments .. 20
 7.4.4 CIF Constraints ... 21

7.5 Deployment and Configuration Metamodel ... 21
 7.5.1 Implementations .. 23
 7.5.2 Assembly Package .. 25
 7.5.3 Properties .. 27
 7.5.4 Files .. 27
 7.5.5 Containment.. 28
 7.5.6 Deployment Constraints.. 28
UML Profile for CORBA and CORBA Components Adopted Specification i

7.6 CCMQoS Metamodel .. 28
8 UML Profile for CORBA and CORBA Components..................... 31

8.1 BaseIDL Profile ... 32
 8.1.1 CORBA Module, Interface, Value, Constant Stereotypes..................................... 33
 8.1.2 Other stereotypes: CORBA Types .. 37
 8.1.3 Tabular representation .. 47
 8.1.4 Constraints .. 49

8.2 ComponentIDL Profile ... 51
 8.2.1 Stereotypes ... 51
 8.2.2 Tabular representation .. 54
 8.2.3 Example .. 57

8.3 CIF Profile .. 58
 8.3.1 Stereotypes ... 58
 8.3.2 Tabular representation .. 59
 8.3.3 Constraints .. 60
 8.3.4 Example .. 61

8.4 Deployment Profile .. 61
 8.4.1 Stereotypes ... 62
 8.4.2 Tabular representation .. 63
 8.4.3 Constraints .. 64
 8.4.4 Example .. 64

8.5 CCMQoS Profile.. 66
 8.5.1 Tabular representation .. 67
 8.5.2 Constraints .. 67
 8.5.3 Example .. 68

8.6 UML Profile for Lightweight CCM .. 68
8.7 Differences and migrations between CORBA based Profiles 71

9 Profile Illustration .. 77
9.1 Example Scenario Description .. 77
9.2 Type Definition .. 77

 9.2.1 IDL notation... 77
 9.2.2 CIDL notation .. 79

9.3 UML Example diagrams ... 80
10 References ... 85
ii UML Profile for CORBA and CORBA Components Adopted Specification

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
• CORBAserviceCORBAfacilities
UML Profile for CORBA and CORBA Components Adopted Specification iii

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Intended Audience
This specification is intended primarily for CORBA and CORBA Component Model (CCM) vendors and CORBA/CCM
tools developers. End-users may find the specification useful to design CORBA and/or CCM based applications.

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues
Readers are encouraged to report any technical or editing issues/problems with this specification by completing the Issue
Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
http://www.omg.org/technology/agreement.htm.
iv UML Profile for CORBA and CORBA Components Adopted Specification

1 Scope

The Common Object Request Broker Architecture (CORBA), is the Object Management Group's standard architecture for
distributed object systems. CORBA allows applications to communicate with one another no matter where they are
located or who has designed them. CORBA 1.1 was introduced in 1991 by Object Management Group (OMG) and
defined the Interface Definition Language (IDL) and the Application Programming Interfaces (API) that enable client/
server object interaction within a specific implementation of an Object Request Broker (ORB).

CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying how ORBs from different vendors
can interoperate.

The CORBA Component Model (CCM) is a comprehensive component standard based on the reliable and well-proven
CORBA architecture. It contains concepts that allow multi-interface components, event based communication, port based
configuration and flexible implementation structures. These concepts are specified in the CCM metamodel defined in the
OMG CORBA Components Specification, formal/06-04-01 and the existing UML Profile for CORBA Components
specifies how to represent these concepts using UML 1.5. The new version of UML (UML2.1) has brought new powerful
concepts like Structured Classifiers "Port" or "Part", and improved the existing concepts like "Component" and
"Interface".

This specification provides a UML2 profile that facilitates representation of concepts needed to represent a pure CORBA
or CORBA Components PSM. In conjunction with existing OMG specifications, namely UML2, CORBA, CORBA
Components and the MOF2, this will result in significant benefits to the CORBA and CORBA Components user
community and the users of MDA in general.

2 Conformance

This specification defines three mandatory conformance points. All CCM Profile implementations must support these
conformance points:

• Implementation of the UML Profile for CORBA defined in section 8.1.

• Implementation of the ComponentIDL Profile defined in section 8.2.

• Implementation of the CIF Profile defined in section 8.3.

An implementation of the Deployment Profile defined in section 8.4 and CCMQoS Profile defined in section 8.5 is
optional. Nevertheless, it is recommended to provide deployment and QoS support for CCM Profile implementation.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

Issue 10981 - add reference to the CORBA/IIOP Specification
UML Profile for CORBA and CORBA Components Adopted Specification 1

• CORBA/IIOP Specification, Version 3.0.3

• MOF 2.0 Core Specification

• UML 2.1 Infrastructure Specification

• UML 2.1 Superstructure Specification

• UML 2.0 OCL Specification

• CORBA Component Model Specification, Version 4.0

• Streams for CCM Specification

• Deployment and Configuration of Component-based Distributed Applications Specification

• QoS for CCM final adopted specification

4 Terms and Definitions

For the purposes of this specification, the terms and definitions given in the normative references and the following apply.

artifact

An element which descibes abstractions from programming language constructs like classes.

component

A basic metatype in CORBA which is a specialization and extension of an interface definition.

component type
A specific, named collection of features that can be described by an IDL component definition or a corresponding structure in
an Interface Repository.

facet
A distinct named interface provided by the component for client interaction.

factory

A home operation which supports creation semantics.

finder

A home operation which supports search semantics.

home

A metatype that acts as a manager for instances of a specified component type.

port
A surface feature through which clients and other elements of an application environment may interact with a component.

receptacle
A named connection point that describes the component’s ability to use a reference supplied by some external agent.
2 UML Profile for CORBA and CORBA Components Adopted Specification

segment
An element which describes a segmented implementation structure for a component implementation.

5 Symbols

CCM CORBA Component Model

CIF Component Implementation Framework

D&C Deployment and Configuration

IDL Interface Definition Language

MDA Model Driven Architecture

PIM Platform Independent Model

PSM Platform Specific Model

UML Unified Modeling Language

6 Additional Information

6.1 Changes to Adopted OMG Specifications
This document shall replace the UML Profile for CORBA (formal/02-04-01) and the UML Profile for CORBA
Components (formal/05-07-06).

6.2 How to Read this Specification
The rest of this document contains the technical content of this specification. As background for this specification, readers
are encouraged to first read the CORBA Component Model (CCM) Specification (formal/06-04-01). This document is
fully based on the concepts defined in the CCM Specification, these concepts are specified in form of MOF compliant
CCM metamodel in chapter 7. The chapter 8 provides the normative definition of the UML Profile for CORBA and
CORBA Components. The chapter 9 provides the "ATM Simulation" example expressed in terms of the defined in
chapter 8 profile.

Although the chapters are organized in a logical manner and can be read sequentially, this is a reference specification is
intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

6.3 Acknowledgements
The following companies submitted and/or supported parts of this specification:

• Fraunhofer Institute FOKUS

• Thales
UML Profile for CORBA and CORBA Components Adopted Specification 3

NOTE: The technology proposed by this specification is based on the work of the Modelware project (http://
www.modelware-ist.org) and the AD4 project (http://www.ad4-project.com) of the European Commission. The authors
would like to thank the participants of these projects for their contributions and review activities.
4 UML Profile for CORBA and CORBA Components Adopted Specification

7 CCM Metamodel
The CCM metamodel defines the abstract language of a modeling language that supports modeling general CCM
concepts. This metamodel defines a set of modeling elements represented as metaclasses. A concrete syntax must define
the specific notation rules for the graphical representation of this modeling language. In our case the modeling language
is UML2 and the concrete syntax for modeling CCM applications with UML2 does not exist yet. The UML profile that
will be introduced in the next section supports the representations of CCM concepts in term of UML2 models.

7.1 Overview

Figure 7.1- CCM Metamodel package structure

As shown in Figure 7.1 the complete CCM concept space consists of further packages: BaseIDL, ComponentIDL, CIF
(Component Implementation Framework), Deployment, Streams and CCMQoS. The QoSFramework package provides
metamodel for the description of QoS properties and is defined in the "UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms" specification.

The BaseIDL package is a MOF-compliant description of the pre-existing CORBA Interface Repository. This metamodel
has been standardized in formal/06-04-01.

The ComponentIDL package expresses the CORBA Component Model and based on the concepts already specified in the
BaseIDL Package. This metamodel has been standardized in formal/06-04-01.

The CIF package contains metaclasses and associations for definition the programming model for constructing component
implementations, and is based on the reference ComponentIDL metamodel. This metamodel has been standardized in
formal/06-04-01.

The Deployment package is a MOF-compliant extended description of the Deployment and Configuration concepts for
CCM. This metamodel describes concepts like assembly or component instance, and can be used for generation of XML
deployment description.

The Streams package extends the CCM metamodel by providing additional means for modeling of communications of
continuous data streams between CORBA components.
UML Profile for CORBA and CORBA Components Adopted Specificition 5

The CCMQoS package based on the standardized QoSFramework package mentioned above and extends the scope of the
CCM metamodel to QoS property definition for CORBA components.

7.2 BaseIDL Metamodel
The first goal of the CCM metamodel is to express the extensions to CORBA IDL defined by the CORBA Component
Model Standard. Since these extensions are based on the previously-existing IDL, it is not possible to define a MOF-
compliant metamodel for the extensions without defining a MOF-compliant metamodel for the IDL base. Thus, the CCM
Standard defined the first MOF Package, entitled BaseIDL. BaseIDL is a MOF-compliant metamodel of the pre-existing
CORBA Interface Repository (IR) and contains all CORBA types. As shown by Figure 7.1, all further packages are
dependent upon the BaseIDL Package.

Figure 7.2 - BaseIDL Metamodel
6 UML Profile for CORBA and CORBA Components Adopted Specification

BaseIDL definitions focus on interfaces, the operations supported by those interfaces, and exceptions that may be raised
by operations. This requires quite a bit more: a large part of BaseIDL is concerned with the definition of data types. This
is because data can be exchanged between client and server only if their types are defined in BaseIDL. Figure 7.2 shows
all of the metaclasses and relationships defined in the BaseIDL Package.

7.2.1 Typing

In the existing CORBA IR, elements, that are "typed," such as constants, attributes, operations, etc., contain an attribute
of type IDLType. However, the same IDLType can be the type for many elements, so an attribute (with its composition
semantics) is not appropriate. Instead, the abstract Typed metaclass and an association between Typed and the IDLType
metaclasses were specified and eliminate the need for repeating the type attribute.

The abstract metaclass IDLType represents OMG IDL types such as Interface, Array or IDL primitive types such as long
or string.

IDL provides a number of built-in basic types, and they are shown in Figure 7.2 by the metaclass PrimitiveDef. This
metaclass has an attribute "kind" from type PrimitiveKind. The PrimitiveKind metaclass provides all inherent CORBA
types like short, long or string.

In addition to providing the built-in basic types, IDL permits you to define complex types: enumerations (EnumDef),
structures (StructDef), unions (UnionDef), sequences (SequenceDef), and arrays (ArrayDef). You can also use typedef
(TypedefDef) to explicitly name a type.

BaseIDL permits the definition of constants by the metaclass ConstantDef. This metaclass has an attribute constValue for
fixed value of the constant.

For more information about CORBA types please refer to the CORBA Standard (formal/04-03-01).

7.2.2 Containment

Many elements in the metamodel descend from Container or Contained metaclasses.

The abstract metaclass Contained is inherited by all elements that are contained by other BaseIDL elements. All elements
within the BaseIDL, except definitions of anonymous (ArrayDef, StringDef, WstringDef, FixedDef and SequenceDef),
and primitive types are contained by other elements. All metaclasses derived from the Contained metaclass hold an
identifier (attribute "identifier"), repositoryID (attribute "repositoryID") and version (attribute "version").

The abstract metaclass Container is used to describe a containment hierarchy in the BaseIDL metamodel. A Container
can contain any number of elements derived from the Contained metaclass. All metaclasses derived from Container are
also derived from Contained.
UML Profile for CORBA and CORBA Components Adopted Specificition 7

Figure 7.3 - BaseIDL Containment hierarchy

7.2.3 Modules

The metaclass ModuleDef defines an IDL module. IDL uses the module construct to create namespaces, therefore the
ModuleDef metaclass is also a Container: modules combine related definitions into a logical group and prevent pollution
of the global namespace. Modules can contain any definition that can appear at global scope (type, constant, exception,
and interface definitions). In addition, modules can contain other modules, so nested hierarchies are also possible.

7.2.4 Interfaces

The most important metaclass in the BaseIDL is the InterfaceDef which describes an IDL Interface defined as a set of
operations that an instance of that interface must support. InterfaceDef forms a namespace and is a Container. You can
nest the following contained elements inside an interface definition:

• ConstDef (Constant definitions)

• TypedefDef (all named non-object.type definitions like structure, union or enumeration)

• ExceptionDef (Exception definitions)

• AttributeDef (Attribute definitions)

• OperationDef (Operation definitions)
8 UML Profile for CORBA and CORBA Components Adopted Specification

InterfaceDef does not have a private, or protected part. By definition, everything in an InterfaceDef is public. Interfaces
can inherit from one or more other Interfaces (association InterfaceDerivedFrom).

Interfaces may be abstract (attribute "isAbstract") or local (attribute "isLocal").

7.2.5 Operations

An IDL operation is defined using the metaclass OperationDef and consists of:

• The type of the operation's return result (OperationDef inherits from Typed metaclass); the type may be any type that
can be defined in BaseIDL. Operations that do not return a result specify the void type.

• A parameter list (attribute "parameters") that specifies zero or more parameter declarations for the operation.

• An optional raises expression (metaclass "ExceptionDef") that indicates which exceptions may be raised as a result of
an invocation of this operation.

• An optional context expression (attribute "context") that indicates which elements of the request context may be
consulted by the method that implements the operation.

The attribute "isOneway" specifies which invocation semantics the communication service must provide for invocations
of a particular operation.

7.2.6 Attributes

The metaclass AttributeDef describes an IDL attribute. An attribute definition is logically equivalent to declaring a pair of
accessory functions; one to retrieve the value of the attribute ("get"-function) and one to set the value of the attribute
("set"-function).

The attribute "isReadonly" indicates that only a "get"-function (the retrieve value function) is allowed.

7.2.7 Values

The metaclass ValueDef describes a CORBA value type. Value types share many of the characteristics of InterfaceDef and
StructDef metaclasses:

• They support description of complex state (i.e., arbitrary graphs, with recursion and cycles)

• Their instances are always local to the context in which they are used (because they are always copied when passed as
a parameter to a remote call)

• They support both public and private (to the implementation) data members.

• They support single inheritance (of valuetype: association "ValueDerivedFrom") and can support a single non-abstract
interface (association "supportss").

• They may be also abstract (attribute "isAbstract"), custom (attribute "isCustom") or truncated (attribute
"isTruncatable").
UML Profile for CORBA and CORBA Components Adopted Specificition 9

7.2.8 Exceptions

The metaclass ExceptionDef permits the declaration of data type like structures, which may be returned to indicate that an
exceptional condition has occurred during the performance of a request. Each IDL exception is characterized by the type
of the associated return value (as specified by the attribute "members" in its declaration).

7.2.9 Parameters

The metaclass ParameterDef defines an IDL parameter contained in the IDL operation. A parameter declaration has a
directional attribute "direction" that informs the communication service in both the client and the server of the direction
in which the parameter is to be passed.

7.2.10 BaseIDL Constraints

[1] An AttributeDef can be defined within an InterfaceDef or within a ValueDef
[1] context AttributeDef inv:

self.definedIn.oclIsKindOf (InterfaceDef) or self.definedIn.oclIsKindOf (ValueDef)

[2] An OperationDef must be defined within an InterfaceDef or within a ValueDef
[2] context OperationDef inv:

self. definedIn.oclIsKindOf (InterfaceDef) or self.definedIn.oclIsKindOf (ValueDef)

[3] A ValueMemberDef must be defined within a ValueDef
[3] context ValueMemberDef inv:

self.definedIn.oclIsTypeof (ValueDef)

[4] Abstract ValueDefs may only derive from other abstract ValueDefs
[4]context ValueDef inv:

self.isAbstract implies base->isEmpty

[5] base element (if any) refers to a concrete ValueDef
[5] context ValueDef inv:

self.base->notEmpty implies not self.base.isAbstract

[6] AbstractBase refers only to abstract ValueDef metaclass instances
[6] context ValueDef inv:

self.abstractBase->forAll(self.isAbstract)

[7] Abstract InterfaceDefs may only derive from other abstract InterfaceDef metaclass instances
[7] context InterfaceDef inv:

self.isAbstract implies base->forAll (isAbstract)

[8] Contained elements have unique names within their Container
[8] contextContained inv:

contents->forAll (c0, c1 | c0 <> c1 implies c0.identifier <> c1.identifier)

7.3 ComponentIDL and Streams Metamodels
The following UML class diagram describes a metamodel representing the extensions to CORBA IDL defined by the
CORBA Component Model. These extensions are dependent on the types defined in the CORBA Core and called
ComponentIDL, so the metamodel ComponentIDL is dependent on the metamodel BaseIDL representing the base IDL
and introduced in the previous section.

Issue 10982 - delete constraints 1,2, 6, 7, 8 and 9
10 UML Profile for CORBA and CORBA Components Adopted Specification

All ComponentIDL concepts depicted in the ComponentIDL metamodel are detailed described in the CORBA
Components Specification, thus, for more details please refer to the document formal/06-04-01.

Figure 7.4 shows the extended metaclasses from the BaseIDL metamodel InterfaceDef, ValueDef and OperationDef
indicated with grey color.

Figure 7.4 - ComponentIDL Metamodel

7.3.1 Component Model

The central metaclass in the ComponentIDL metamodel (Figure 7.4) is the ComponentDef metaclass that represents a
CORBA Component type. A component definition in the CORBA Components Specification implicitly defines an
interface (InterfaceDef) that supports (see the association "component_supports" between ComponentDef and
InterfaceDef metaclasses) the features defined in the component definition body. ComponentDef metaclass extends the
concept of an interface definition (inherits from InterfaceDef metaclass) to support features that are not supported in
interfaces. Component definitions also differ from interface definitions in that they support only single inheritance from
other component types but they can inherit from more than one interface (the association "component_supports").

Components support a variety of surface features through which they can interact with each other. These surface features
are called ports. The ComponentDef metaclass supports four kinds of ports (facets, receptacles, event sink and event
source) defined in the CCM Standard and two additional kinds of ports - stream sink and stream source defined in the
Streams for CCM Specification (ptc/05-07-01):

1. The metaclass ProvidesDef represents facets, which are interfaces (InterfaceDef) provided by the component. It is a
UML Profile for CORBA and CORBA Components Adopted Specificition 11

synchronous operational communication mechanism between components.

2. The metaclass UsesDef represents receptacles, which are named ports that define the component's ability to use a
reference supplied by other components. There are two receptacle kinds: simplex receptacles can only use a single
reference, multiplex receptacles can use several references. The boolean attribute "multipleItf" represents the kind of
receptacles. It is a synchronous operational communication mechanism between components.

3. The metaclass ConsumesDef represents event sinks, which are named ports into which events of a specified type may
be pushed. It is an asynchronous communication mechanism between components.

4. The metaclasses EmitsDef and PublishesDef represent event sources, which are named ports that emit events of a
specified type to one (EmitsDef) or more (PublishesDef) interested event consumers. It is an asynchronous
communication mechanism between components.

5. The metaclass SinkDef represents stream sinks, which are named ports into which continuous data called streams of a
specified type may be pushed. It is an asynchronous communication mechanism between components.

6. The metaclass SourceDef represent stream sources, which are named ports that emit continuous data of a specified
type to the stream consumer. It is an asynchronous communication mechanism between components.

As described above CORBA component model supports a publish/subscribe event model and contains event type
declaration (metaclass EventDef), which is a restricted form of CORBA value type (inherits from the BaseIDL metaclass
ValueDef). The metaclass EventPortDef is an abstract class for all event ports.

7.3.2 Component Homes

CORBA Components are managed by homes (metaclass HomeDef, see Figure 7.4), which are CORBA Interfaces (inherit
from InterfaceDef) providing operations to manage component life cycles, and optionally, to manage associations between
component instances and primary key values (association key_home). Components are independent of their homes;
however, a home must specify exactly one component that it manages (see the multiplicities of the association
component_home). Multiple different home types can manage the same component type, though they cannot manage the
same set of component instances.

A home may include zero or more operation declarations, where the operation may be a factory operation (FactoryDef),
a finder operation (FinderDef), or a normal operation or attribute.

7.3.3 Streams

As mentioned above, the CORBA Component Model supports two different kinds of communication: synchronous
operational communication and asynchronous event communication. The OMG Final Adopted Specification "Streams for
CCM Specification" (ptc/05-07-01) extends the CORBA Component Model with an optional conformance point: native
support for the communication of continuous data streams between CORBA components. It extends the BaseIDL and
ComponentIDL metamodels standardized in CORBA Components Specification with constructs to model stream-specific
ports on a component shown in Figure 7.4. Furthermore, it defines a stream type to be used for the classification of data
streams:
12 UML Profile for CORBA and CORBA Components Adopted Specification

Figure 7.5 - CCM Stream Metamodel

Figure 7.5 introduces an additional kind of port for the communication of stream data, called a stream port (abstract
metaclass StreamPortDef). A stream port can be a source port or a sink port (see Figure 7.4). A source port produces
stream data of a stream type. A sink port consumes stream data of a stream type. The metaclass StreamTypeDef represents
a stream type. The stream type may be of kind (attribute "kind" of the metaclass StreamTypeDef) basic, constructed, value
or raw defined by StreamTypeDefKind enumeration (from ptc/2005-07-01):

• Basic stream types are defined as concrete data formats for the information content of streams, which are not
necessarily defined using IDL, but are encoded some other way. Basic streams are used to transport streams of encoded
data, typically audio or video data. The data is consumed and produced by component implementation logic as octet
sequences.

• Value stream types, are a subtype of basic streams, which transport consecutive marshaled instances of data types
specified in a subset of IDL. If the IDL data type of a value stream is octet, it is indistinguishable from a basic stream
that does not have a specified IDL data type, and is not considered a value stream type.

• Constructed stream types are a hierarchical grouping of multiple basic stream types or other constructed types,
indicating the ability to produce or consume any of the basic or value types.

• Raw streams are not typed, and intended for applications where the format of the stream does not influence the
functionality of a component. Examples for the applicability of this type are a component that encrypts or compresses
a data stream or a component that reads from or writes to a file.“

7.3.4 Containment

The following UML class diagram describes the derivation of the metamodel elements from the BaseIDL Container and
Contained elements:

Issue 10983 - delete last clause of the last sentence
UML Profile for CORBA and CORBA Components Adopted Specificition 13

Figure 7.6 - ComponentIDL Containment hierarchy

Since the ComponentDef and HomeDef metaclasses inherits from InterfaceDef they forms also naming scopes.

7.3.5 ComponentFeature

An instance of ComponentDef describes a CORBA Component in an abstract manner. The definition contains a
description of all features of a component that are visible from the outside. In detail, the features supported by a CORBA
Component are:

• The component equivalent interface, containing all implicit operations, operations and attributes that are inherited by a
component (also from supported interfaces), and attributes defined inside the component.

• The facets of a component; that is, all interfaces that are provided by the component to the outside.

• The receptacles of a component; that is, all interfaces that are used by a component.

• The events, which a component can emit, publish, or consume.

• The streams, which a component can produce or consume.

If a component is going to be implemented, all these features must be handled by the component implementation. To
provide a common basis for defining the related implementation definitions (as part of CIF) the abstract metaclass
ComponentFeature is defined. The metaclasses ComponentDef, ProvidesDef, UsesDef, and EventPortDef are defined as
subclasses of the abstract metaclass ComponentFeature (see Figure 7.7):
14 UML Profile for CORBA and CORBA Components Adopted Specification

Figure 7.7 - ComponentFeature abstract metaclass

7.3.6 ComponentIDL Constraints

[9] A ProvidesDef can be defined only within a ComponentDef
[9] context ProvidesDef inv:

self.definedIn.oclType = ComponentDef

[10] A UsesDef can be defined only within a ComponentDef
[10] context UsesDef inv:

self.definedIn.oclType = ComponentDef

[11] An EventPortDef can be defined only within a ComponentDef
[11] context EventPortDef inv:

self.definedIn.oclType = ComponentDef

[12] A FactoryDef can be defined only within a HomeDef
[12] context FactoryDef inv:

self.definedIn.oclType = HomeDef

[13] A FinderDef can be defined only within a HomeDef
[13] contextFinderDef inv:

self.definedIn.oclType = HomeDef

[14] A PrimaryKeyDef can be defined only within a HomeDef
[14] context PrimaryKeyDef inv:

self.definedIn.oclType = HomeDef

[15] All of the ProvidesDef metaobjects that populate the Association component_facet also populate the ComponentDef's
 inherited Contains Association
[15] context ProvidesDef inv:

component.contents->includesAll (facet)

[16] All of the UsesDef metaobjects that populate the Association component_receptacle also populate the
 ComponentDef's inherited Contains Association
[16] context UsesDef inv:

component.contents->includesAll (receptacle)

[17] All of the EmitsDef metaobjects that populate the Association component_emits also populate the ComponentDef's
 inherited Contains Association
[17] context EmitsDef inv:
UML Profile for CORBA and CORBA Components Adopted Specificition 15

component.contents->includesAll (emitss)

[18] All of the PublishesDef metaobjects that populate the Association component_publishes also populate the
ComponentDef's inherited Contains Association
[18] contextPublishesDef inv:

component.contents->includesAll (publishess)

[19] All of the ConsumesDef metaobjects that populate the Association component_consumes also populate the
 ComponentDef's inherited Contains Association
[19] context ConsumesDe inv:

component.contents->includesAll (consumess)

[20] All of the SinkDef metaobjects that populate the Association component_sinks also populate the ComponentDef's
 inherited Contains Association
[20] context SinkDef inv:

component.contents->includesAll (sinkss)

[21] All of the SourceDef metaobjects that populate the Association component_sources also populate the
 ComponentDef's inherited Contains Association
[21] context SourceDef inv:

component.contents->includesAll (sourcess)

[22] All of the FactoryDef metaobjects that populate the Association home_factory also populate the HomeDef's inherited
 Contains Association
[22] contextFactoryDef inv:

home.contents->includesAll (factories)

[23] All of the FinderDef metaobjects that populate the Association home_finder also populate the HomeDef's inherited
 Contains Association
[23] context FinderDef inv:

home.contents->includesAll (finders)

[24] The ValueDef specified as the event type must descend directly or indirectly from Components::EventBase
[24] contextValueDef inv:

type.descendsFrom ("Components::EventBase")

descendsFrom (absoluteName : string) : Boolean
{ descendsFrom (absoluteName) =

if self.absoluteName = absoluteName then
true

else
if base->isEmpty then

false
else

if base.descendsFrom(absoluteName) then
true

else
false

endif
endif

endif
}

[25] The return type of FactoryDef must be the same as the type of the component that the FactoryDef's home manages.
[25] context FactoryDef inv:

self.type = home.manages.type

[26] The return type of FinderDef must be the same as the type of the component that the FinderDef's home manages.
[26] context FinderDef inv:
16 UML Profile for CORBA and CORBA Components Adopted Specification

self.type = home.manages.type

[27] A ComponentDef C may be derived from at most one base.
[27] contextComponentDef inv:

self.base->size <= 1

[28] Furthermore, that one base must be a ComponentDef
[28] context ComponentDef inv:

self.base->notEmpty implies (base->forAll (oclType = ComponentDef)

[29] A ComponentDef may not define operations
[29] context ComponentDef inv:

self.contents->forAll (oclType <> OperationDef)

[30] A supported InterfaceDef of ComponentDef must not be one of the derived forms of InterfaceDef
 (i.e., ComponentDef or a HomeDef).
[30] context ComponentDef inv:

self.supports->forAll (oclIsTypeOf (InterfaceDef))

[31] A HomeDef may be derived from at most one base.
[31] context HomeDef inv:

base.size() <= 1

[32] Furthermore, that one base must be a HomeDef
[32] context HomeDef inv:

base-> notEmpty implies (base->forAll (oclType = HomeDef)

[33] The valuetype of a primary key must not have private state members

[34] The valuetype of a primary key must not have members that are interfaces

[35] The valuetype of a primary key must have at least one state member

[36] Contraints [33], [34], and [35] apply recursively to valuetype members that are valuetypes
[33, 34, 35, 36] isAcceptableKeyType (type)
isAcceptableKeyType (valueType : ValueDef) : Boolean
{ valueType.contents.forAll
 (c | c.oclIsTypeOf(ValuefMemberDef) implies c.OclAsType (ValueMemberDef).isPublicMember)
 and valueType.contents.forAll (not oclIsKindOf (InterfaceDef))
 and valueType.contents.exists (oclIsTypeOf(ValueMemberDef))
 and valueType.contents.forAll (c | c.oclIsKindOf (ValueDef) implies isAcceptableKeyType (c))

[37] Given a home definition H that manages a component type T, and given a home definition H' that manages a
 component type T', such that H' is derived from H, then T' must be identical to T or derived (directly or indirectly)
 from T.

[38] If H or one of its ancestors defines a primary key K and H' defines a primary key K', then K' must be identical to or
 derived (directly or indirectly) from K.
[37,38]
NOTE: Previously-defined additional OCL operation "descendsFrom" and new additional OCL operation "primaryKey" are used:
context HomeDef inv:

self.base->forAll (baseHome | self.manages.descendsFrom (baseHome.manages) and
primaryKey (self)->notEmpty implies
primaryKey (self).type.descendsFrom(primaryKey(baseHome).type))

primaryKey (home : HomeDef) : PrimaryKeyDef
{ if home.key->isEmpty then

if home.base->isEmpty then
result = home.key
UML Profile for CORBA and CORBA Components Adopted Specificition 17

else
primaryKey (home.base)

endif
 else

result = home.key
 endi f }

[39] Basic ComponentDef objects shall not have ports and do not inherit from other components.
[39] context ComponentDef inv:

self.isBasic implies
facets->isEmpty and receptacles->isEmpty and
emitss->isEmpty and publishess->isEmpty and consumess->isEmpty and
sinkss->isEmpty and sourcess->isEmpty and
base->isEmpty

[40] HomeDef objects of basic ComponentDef have only factories and finders, do not inherit from other homes, and
 manage only basic components.
[40] context HomeDef inv:
manages->isBasic implies (key->isEmpty and base->isEmpty and manages.isBasic)

[41] If StreamTypeDef object is a constructed stream then its multiplicity must be more than one, in any other case the
 multiplicity is null.
[41] context StreamTypeDef inv:
if self.kind = CONSTRUCTED_STREAM

 then
groupedTypes.size() > 0

else
groupedTypes.size() = 0

endif

[42] None of the StreamTypeDesf of kind RAW_STREAM can be grouped
[42] context StreamTypeDef inv:
if groupedTypes.size() > 0

then
self.allInstances () -> forAll (s | s.kind <> RAW_STREAM)

else
groupedTypes.size() = 0

endif

7.4 CIF Metamodel
A CORBA Component encapsulates its internal representation and implementation. The Component Implementation
Framework (CIF) metamodel defines the programming model for constructing component implementations described in
Component Implementation Definition Language (CIDL). CIDL is a declarative language for describing the structure and
state of component implementations (for more information please refer to the document formal/06-04-01). Component-
enabled ORB products generate implementation skeletons from CIDL definitions. Component builders extend these
skeletons to create complete implementations.

CIF metamodel package obviously depends on the ComponentIDL package (see Figure 7.1) since its main purpose is to
enable the modeling of implementations for components specified using the ComponentIDL definitions. The extended
metaclasses ComponentDef, HomeDef and ComponentFeature from the ComponentIDL package are indicated with gray
color in Figure 7.8.
18 UML Profile for CORBA and CORBA Components Adopted Specification

The CIF metamodel represented in Figure 7.8 updates the metamodel defined in the CORBA Component Specification
(formal/06-04-01). The updated CIF metamodel contains a new metaclass CompositionDef. This metaclass provides
means for modeling component implementation as a composition of artifacts and will be explained in the next section.

To avoid unneeded complexity and misunderstanding metaclasses ArtifactDef and Policy have been deleted from the
original CIF metamodel. To conform to composition definition in formal/06-04-01 (section 8.2.5) metaclasses
HomeImplDef and ComponentImplDef have been renamed as HomeExecutorDef and ComponentExecutorDef.

Figure 7.8 - Component Implementation Framework Metamodel

The term executor is used to indicate the programming artifact that supplies the behavior of a component or a component
home. In general, the terms executor or component executor refer to the artifact that implements the component type, and
the term home executor refers to the artifact that implements the component home.

CIF metamodel comprises a set of artifacts that must exhibit specific relationships and behaviors in order to provide a
proper implementation. An overview on these is to be seen in Figure 7.8 and their meaning is explained in the following.

7.4.1 Composition

The description of a component implementation is a description of aggregate entity, of which the component itself may be
a relatively small part. To denote the set of artifacts that constitute the unit of component implementation, the metaclass
CompositionDef is defined. CompositionDef inherits from the ContainerDef metaclass and specifies the following
metaclasses: HomeExecutorDef, ComponentExecutorDef and HomeDef (from ComponentIDL metamodel). The name of
the CompositionDef identifies the name of a scope within the contents of the composition (HomeExecutorDef,
UML Profile for CORBA and CORBA Components Adopted Specificition 19

ComponentExecutorDef and HomeDef) are contained. The attribute "category" of the CompositionDef identifies the life
cycle category of the component implementation ComponentExecutorDef supported by the composition. The attribute has
a type ComponentCategory defined as an enumeration type contained five possible component categories: service,
session, process, entity and extension. The component categories service, session, process and entity are defined and
specified in formal/06-04-01, the extension category is added to the CIF metamodel for indication of vendor specific
extensions done for a component implementation. For example, implementing the QoS extension can be done in a
proprietary way by modifying the container. The QoSforCCM Submission defines concepts for developing and integrating
such extension for CCM in a standard way. The extended components differ from plain application components and
should be deployed into containers of a particular type (container category). This type is the extension container type as
defined in section 5.9 of the QoSforCCM Submission.

The most important properties of the component categories are briefly described in the following:

• Service: no state, no identity, behavior

• Session: transient state, identity (which is not persistent), behavior

• Process: persistent state, persistent identity, behavior, which may be transactional

• Entity: persistent state, identity, which is architecturally visible to its clients through a primary key declaration,
behavior, which may be transactional

• Extension: vendor specific

7.4.2 Component and Home Executors

The metaclass ComponentExecutorDef is used to model an implementation for a given component type. It specifies an
association to ComponentDef to allow instances to point exactly to the component the instance is going to implement. A
ComponentExecutorDef always has exactly one ComponentDef associated while each ComponentDef might be
implemented by different ComponentExecutorDef metaclass instances. ComponentExecutorDef is specified as being a
Container, by doing so, instances are able to contain other definitions.

The ComponentExecutorDef definition optionally specifies executor segments (SegmentDef metaclass), which are
physical partitions of the component executor, encapsulating independent state and capable of being independently
activated. Segments are described in the next section. The only definitions that are allowed to be contained by a
ComponentExecutorDef are instances of SegmentDef.

The metaclass HomeExecutorDef is used to model home executors (implementations). The name of the home executor is
used as the name of the programming artifact (e.g., the class) generated by the CIF as the skeleton for the home executor.
The contents of the HomeExecutorDef describe the relationships between the HomeExecutorDef and other elements of the
composition, determining the characteristics of the generated home executor skeleton. Each instance of HomeExecutorDef
in a model implements exactly one instance of HomeDef. This relation is modeled by the association implements between
both metaclasses. HomeExecutorDef inherits from the abstract metaclass Container and manages exactly one
ComponentExecutorDef, this relation is modeled by the association "manages".

7.4.3 Segments

A component implementation may be monolithic or segmented. A monolithic component implementation is a single
artifact. A segmented component implementation is a set of physically distinct artifacts. Each segment may have a
separate abstract state declaration. Each segment must provide at least one facet defined on the component definition. The
20 UML Profile for CORBA and CORBA Components Adopted Specification

life cycle category of the composition must be entity or process if the component implementation specifies segmentation.
The primary purpose for defining segmented component implementations is to allow requests on a subset of the
component's facets to be serviced without requiring the entire component to be activated.

The metaclass SegmentDef is used to model a segmented implementation structure for a component implementation. This
means that the behavior for each facet (ComponentFeature abstract metaclass) can be provided by a separate segment of
the component implementation (most likely a separate programming language class in the code generated by the CIF
tools) if necessary. Instances of SegmentDef are always contained in instances of ComponentExecutorDef and therefore
are derived from Contained. SegmentDef has an association to ComponentFeature so that instances must point to facets of
a component which the segment is going to provide. The attribute isSerialized is used to indicate that the access to
segment is required to be serialized or not.

The new CCM specification, version 4.0 obsoletes the original idea of component segmentation defined in preexisting
version and allows composition and decomposition on any level, and therefore the ability to add another level of
decomposition on the lowest level. This specification is based on the latest CCM specification and considers any level of
component decomposition; this concept is defined in the Deployment and Configuration metamodel described in the next
section.

7.4.4 CIF Constraints

There are no further additions or constraints on the CIF metamodel.

7.5 Deployment and Configuration Metamodel
Component implementations may be packaged and deployed. A Component package maintains one or more deployable
implementations of a component. It may be installed on a computer or grouped together with other components to form
an assembly. A component assembly is a group of interconnected components represented by an assembly package.
Component and assembly packages are provided as input to a deployment tool. Based on deployment descriptors and user
input, a deployment tool installs and activates component and home instances; it configures component instance
properties and connects them together via interface, event or stream ports.

The original CCM 3.0 Specification (formal/02-06-65) standardized deployment and configuration process for CCM
applications in the section "Packaging and Deployment": deployment process steps, architecture and also deployment
descriptors. Deployment descriptors are XML descriptions of component and assembly packages contents and other
deployment information used by a deployment tool. One way for reducing the complexity of the deployment and
configuration process of CCM components in the distributed environment is to have an expressive and robust metamodel
and specific notation for modeling of deployment and configuration information, which can enable the automation of the
entire deployment process of CCM applications (e.g., by generation of deployment descriptions automatically).

However, the original CCM specification defines neither a conceptual base for describing deployment and configuration
requirements of components, nor a high level notation for the presentation of resulting models. The Deployment and
Configuration of Component-based Distributed Applications (D&C) specification (formal/06-04-02) defines metadata and
interfaces to facilitate the deployment and configuration of component-based applications into heterogeneous distributed
target systems in general, in platform-independed manner. The original CCM 3.0 Specification (formal/02-06-65) has
since been superceded by the new CCM 4.0 specification (formal/06-04-01), which describes mappings and extensions of
the platform-independent model for Deployment and Configuration defined in formal/06-04-02 to CCM, but these
mappings and extensions are not based on the defined in CCM 4 standard MOF metamodel. The reason was that at time
of mapping definition some important concepts like component instance or implementation needed as conceptual base for
deployment and configuration data definition were missing in the CCM metamodel. Thus, additional concepts for
modeling of deployment and configuration data for CCM applications were defined and will be introduced in this section
UML Profile for CORBA and CORBA Components Adopted Specificition 21

as a deployment metamodel. In that connection we tried to consider deployment information and concepts defined in both
existing standards: D&C and CCM 4.0 and combine them together to provide a support for new deployment tools for
CCM applications.

Figure 7.9 - Deployment metamodel: main diagram
22 UML Profile for CORBA and CORBA Components Adopted Specification

The Deployment and Configuration metamodel defines a set of modeling elements represented as metaclasses and extends
the existing CCM metamodel by these new metaclasses. In order to be able to model deployable CCM applications a
concrete syntax must define the specific notation rules for the graphical representation of defined modeling language
(metamodel). In our case we use UML 2: the UML Profile for Deployment and Configuration of CCM applications that
will be introduced in the next section supports the representations of CCM deployment and configuration concepts in
UML 2 models.

Deployment metamodel package depends on the CIF package (see Figure 7.1) since its main purpose is to enable the
modeling of component packages and assemblies, which contain deployable implementation artifacts and instances of
component and home implementations specified in CIF. Figure 7.9 shows all of the metaclasses and relationships defined
in the Deployment metamodel package. The extended CIF metaclasses ComponentFeature, CompositionDef,
ComponentExecutorDef and HomeExecutorDef are identified with gray color.

7.5.1 Implementations

A component package of a CCM application represented by the metaclass ComponentPkgDef may contain a set of
alternative implementations for one component (see association "realized" between ComponentPkgDef and
ComponentDef metaclasses), for example, implementations for different operating systems, compilers, or ORBs, or
different programming language implementations like JAVA or C++. These implementations, which contain descriptive
information about a particular implementation of the software, are physical units of deployment process and represented
by the metaclass ImplementationDef.

Figure 7.10 - Component package and Implementations

The D&C specification defines two types of component implementations: monolithic or assembly based implementations.
A monolithic implementation is contained in an artifact (e.g., an executable file or library as a result), an assembly based
implementation is a set of interconnected sub-component implementations. The monolithic implementation is represented
by the metaclass MonolithicImplementationDef, assembly based implementation is represented by the metaclass
AssemblyPkgDef.
UML Profile for CORBA and CORBA Components Adopted Specificition 23

The metaclass CompositionDef (see ComponentIDL metamodel) describes internal implementation structure of a
MonolithicImplementationDef: for each monolithic component implementation one composition description must be
defined.

The ImplementationDef metaclass is described by further ContainedFile and DependentFile, metaclasses, which are
introduced below.

Figure 7.11 - ImplementationDef description

The ImplementationDef has the attribute "uuid" that uniquely identifies each instance of the ImplementationDef metaclass
in a model. The ImplementationDef may have properties (e.g. configuration properties) or non-functional properties (e.g.
QoS-properties), this feature the metaclass inherits from the metaclass PropOwnerDef (see Figure 7.13).

The ComponentPkgDef metaclass can point to the IDL file (metaclass IDLFile) containing an IDL definition of the
component's (or home's) interface definition. A component package can be described by properties like author, titel or
license information. These properties are defined using the abstract metaclass PropOwnerDef (see Figure 7.13).

The RequirementDef metaclass is used to specify features requested by component implementations (ImplementationDef)
like compiler type, programming language, in which the ImplementationDef is realized; or type of operational system (os)
that the ImplementationDef will work with. This features are described as properties, which the RequirementDef
metaclass inherits from the abstract metaclass PropOwnerDef (see Figure 7.13).

The ContainedFile metaclass points to a file that implements the component, for example, a DLL or a .class file. The
"codetype" attribute (Figure 7.14) specifies the type of code, the "entrypoint" attribute is used to specify an entry point to
the code and the attribute "entrypointusage"is used to describe how to use (i.e. invoke) the code.

The ContainedFile, IDLFile and DependentFile metaclasses are derived from the abstract metaclass File that defines
general information about files like file name, file location, etc (see Figure 7.14).
24 UML Profile for CORBA and CORBA Components Adopted Specification

The DependentFile metaclass is used to specify environmental or other file dependencies of the ImplementationDef.
When the attribute "action" is set to "assert" (see the enumeration ActionKind Figure 7.9), the installation process must
verify that the dependency exists in the environment. If the attribute is set to "install", the installation process must install
the dependency file if it does not already exist.

The IDLFile metaclass points to an IDL file. The IDL file is optional: some tools that deploy and execute CCM
applications might need the IDL description to interact with the ports of the application's component interface.

7.5.2 Assembly Package

An assembly package as a main top object for deployment process. Assembly package may contain component packages
and one description of the initial configuration of a CCM application. An initial configuration is a set of interconnected
component implementation instances often called as an assembly; it is a template for instantiating a set of component
implementations make up the application and connecting them to each other at run time. This template or description is
used by deployment tools as a main input.

Figure 7.12 - Assembly package description
UML Profile for CORBA and CORBA Components Adopted Specificition 25

Figure 7.12 represents the assembly package description: the metaclass AssemblyPkgDef that uniquely identified by the
attribute "uuid" lists the component packages (ComponentPackageDef) that may be included in the assembly package and
contain information regarding a component and home implementation. AssemblyPkgDef descibes a possible initial
configuration description of sub component implementation instances at the runtime (metaclass ConfigurationDef). The
ConfigurationDef metaclass describes a template for instantiating of an assembly.

The ConfigurationDef metaclass specifies further metaclasses: ProcessCollocationDef, HostCollocationDef,
ComponentPackageFile and Connection.

Implementation instances of an application can be deployed either to one single host (host collocation) or different hosts;
they may be executed in one single process (process collocation) or in different processes, which can be run on one or
several hosts. The metaclasses ProcessCollocationDef and HostCollocationDef define these two different locality kinds.
The abstract metaclass CollocationDef is a parent class for both metaclasses, its attribute "cardinality" specifies how
many instances of the process or host collocation may be deployed. If the cardinality is greater than 1, and there are
connections to components and homes within the collocation, then connections will be made to corresponding
components or component homes within each instance of the collocation.

The ProcessCollocationDef metaclass specifies a group of home (HomeInstanceDef metaclass) and associated component
(ComponentInstanceDef metaclass) instantiations that are to be deployed together to a single process.

A HostCollocationDef metaclass specifies a group of component instances that are to be deployed together to a single
host.

The ConnectionDef metaclass describes how instances of deployed component and home implementations have to be
initially connected to each other at the run time. The ConnectionDef is specified by two connection ends
(connection_end1 and connection_end2 associations): one target and one source end. Both are described by the metaclass
ConnectionEndDef and its attribute "kind", which indicates the kind of a connection end (ConnectionEndKind). There are
several kinds of connection ends:

• COMPONENTINTERFACE is used to specify a connection between component uses and provides ports

• COMPONENTSUPPORTEDINTERFACE is used to specify a connection between component with a supports inter-
face and a uses port

• HOMEINTERFACE is used to specify a connection between a home with an interface and a uses port.

• EVENPORT is used to connect a component consumes port to event producer

• STREAMPORT is used to connect a component consumes port to stream producer

The ConnectionEndDef is associated (association "connected_feature") with the abstract metaclass ComponentFeature
defined in the ComponentIDL metamodel (see Figure 7.7) and generalized real component and component ports.

Each Connection connects two component instances via ports (ComponentFeature metaclass). The
ComponentInstanceDef metaclass is used to describe the connected component instance created by its home instance
(HomeInstanceDef metaclass). The attribute "cardinality" is used to specify how many instantiations of a component or
home may be deployed. The attribute "registerwith" of the HomeInstanceDef instructs the installation process how to
register the home and has the type of metaclass FinderServiceDef, which describe such register information.

The RegisterInstanceDef metaclass is used to specify that a component instance has to be registered after it is created. The
attribute "findby" points to the registration kind (e.g. naming service or trader), its type FinderServiceDef is introduced
below. The component type of the registered instance, provided interfaces or published events are described by the
metaclass ComponentFeature.
26 UML Profile for CORBA and CORBA Components Adopted Specification

The FinderServiceDef metaclass is used to resolve a connection between two instances. Its attribute "service" tells how to
locate a party, usually a component, interface, or home involved in the connection. In our case (see Figure 7.11), it could
be located in a naming service (NAMING), in a trader (TRADING), by a home finder (HOMEFINDER) or by an
undefined service (UNDEFINED).

7.5.3 Properties

The PropertyDef metaclass (Figure 7.13) specifies attribute settings of elements. Properties can be used at deployment
time to configure home or component instances. Implementations may also have properties. The abstract metaclass
PropOwnerDef specifies following property owners: ComponentInstanceDef, HomeInstanceDef, AssemblyPkgDef,
ComponentPkgDef, ImplementationDef, MonolithicImplementationDef and RequirementDef.

Figure 7.13 - Properties description

Each property has a property type defined as an any (ANY_TYPE), simple (SIMPLE_TYPE), sequence
(SEQUENCE_TYPE), struct (STRUCT_TYPE) or valuetype (VALUE_TYPE) (see attribute "property_type" and the
metaclass PropertyType). The simple property describes a single primitive BaseIDL type. The sequence property
corresponds to a BaseIDL sequence, the struct corresponds to a BaseIDL struct, and the valuetype property corresponds
to a BaseIDL valuetype.

7.5.4 Files

A Component or Assembly packages may contain descriptors and a set of files. The descriptors describe the
characteristics of packages and point to their various files. Figure 7.14 represents different file metaclasses:
ComponentPackageFile points to component files, which are component packages, included in one assembly, IDLFile
UML Profile for CORBA and CORBA Components Adopted Specificition 27

describes file that contain IDL description, DependentFile specifies environmental or other file dependencies of an
ImplementationDef metaclass and ContainedFile (see also Section 7.5.1) specifies a file which contains the component
implementation (e.g. DLL-File). All file metaclasses inherits from the abstract metaclass File, which has two attributes:
"filename" and "location".

Figure 7.14 - File description

7.5.5 Containment

The following UML class diagram describes the derivation of the Deployment and Configuration metamodel elements
from the BaseIDL Container and Contained elements:

Figure 7.15 - Deployment and Configuration containment

7.5.6 Deployment Constraints

[49] A ComponentPkgDef may contain different Implementation objects that realize the same ComponentDef
[49] context ComponentPkgDef inv:

impls->forAll (i| i.mon_impl.compos.home_executor.homeEnd.componentEnd = realized_c)

7.6 CCMQoS Metamodel
The modeling of non-functional properties such as QoS properties is defined in a platform independent way in the
specification "UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms"
(ptc/05-05-02). Chapter 8 of that specification defines a comprehensive metamodel for the description of QoS properties.
The modeling of QoS properties for CORBA Components requires the definition of a link between QoS metamodel and
28 UML Profile for CORBA and CORBA Components Adopted Specification

CCM metamodel. This link is defined in the metamodel package CCMQoS. The QoS metamodel consists of three
packages: the QoSCharacteristics (defines the model elements for the description of QoS Characteristics); the QoS
Constraints package (defines the modeling elements for the description of QoS contracts and constraints) and the QoS
Levels package (includes the modeling elements for the specification of QoS modes and transitions.

Figure 7.16 - CCMQoS package dependencies

The QoSCharacteristics metamodel defines a metaclass QoSContext that allows describing the context of quality
expression (for more information please refer to ptc/05-05-02). We use this metaclass to describe QoS properties for
CORBA Component and link it to the CCM metamodel (the Deployment metamodel is extended) by defining an
additional metaclass Binding. The Binding metaclass has two attributes: "name" (the name of the Binding) and "CCMQoS
metamodel: Bindingmandatory" (if "true" then the QoS property is bound in any case).

Figure 7.17 - CCMQoS metamodel: Binding

Due to the fact that definition of QoS properties for CORBA Components may have different scopes different links for
QoS properties need to be defined. So, the metaclass Binding (see Figure 7.17) correlates a QoSContext with a component
feature definition (ComponentFeature), or a ComponentInstanceDef, or a HomeInstanceDef or a ConnectionEndDef.
UML Profile for CORBA and CORBA Components Adopted Specificition 29

Binding the QoSContext to the ComponentFeature makes QoS property applicable for the component type. This means
that also all instances of this component type are related to the QosContext. The binding of the QoSContext to the
ComponentInstanceDef makes QoS properties relevant to only a specific component instance but for the component
instance in general. The binding the QoSContext to the HomeInstanceDef makes QoS properties relevant to a group of
component instances that are managed by a specific home instance. The binding of the QoSContext to a
ConnectionEndDef make QoS properties only relevant to a specific port of a component instance.
30 UML Profile for CORBA and CORBA Components Adopted Specification

8 UML Profile for CORBA and CORBA Components

The UML Profile for CORBA and CORBA Components (CCM profile) defines limited extensions to the reference UML2
metamodel with the purpose of adapting the UML metamodel to the CORBA Components. The extension done by this
profile does not change the UML2 metamodel, and keeps its semantics.

In UML2, profiles are packages that structure UML extensions. The principal extension mechanism in UML2 is the
concept of stereotype. Stereotypes are specific metaclasses, having restrictions and the specific extension mechanism.

Additional semantics can be specified using Stereotype properties ("attributes" in UML2, "tagged values" in UML1.x) and
constraints in the context of a profile.

A UML profile extends parts of the UML metamodel in a constrained way. All new modeling concepts must be supported
by UML modeling elements. The new attributes must respect the semantic of UML modeling elements. All associations
are binary associations. We are not able to redefine features, but we can add new features (meta attributes of stereotypes).
UML metaclasses are extended by stereotypes, using a mechanism called extension.

For the Profile specification we use both graphical and tabular notations. To be able to interchange CCM Profile between
tools, together with models to which they have been applied, the Profile is defined as an interchangeable UML model (by
using the UML XMI interchange mechanisms):

• The metaclass extensions are expressed via UML class diagrams.

• A Profile is a kind of UML Package that extends the UML metamodel.

• A stereotype is a limited kind of metaclass that cannot be used by itself, but must always be used in conjunction with
one of the metaclasses it extends. Each stereotype is expressed via a stereotyped with <<stereotype>> Classifier box.
All classes, which define stereotypes and extend the UML metamodel, are indicated with yellow color; all original
metaclasses from the UML metamodel are indicated with white color on represented following class diagrams.

• When a stereotype is applied to a model element, the values of the properties may be referred to as tagged values.

• Like a class, a stereotype may have properties, which may be referred to tag definitions.

• Each stereotype is a client in a UML Extension with the UML metaclass that it extends. This Extension (UML
Association) is stereotyped with <<extends>>.

• Generalization Relationships among stereotypes are expressed in the standard UML manner.

An alternative and usually more compact way of specifying stereotypes and tags is using tables. The columns of the
stereotype specification table are defined as follows:

• Stereotype: the name of the stereotype and in parenthesis "()" the name of the metaclass or association between two
metaclasses from the CCM metamodel (Profile to Metamodel mapping), which instances are represented by this
stereotype in UML models.

• Base Class: the UML metamodel element that serves as the base for the stereotype.

• Parent: the direct parent of the stereotype being defined (NB: if one exists, otherwise the symbol "NA" is used).

• Tags: a list of all tags of the tagged values that may be associated with this stereotype (or NA if none are defined).

• Constraints: a list of constraint numbers applied to the stereotype.

UML Profile for CORBA and CORBA Components Adopted Specification 31

Constraints represent semantic information attached to an element. A list of constraints associated with a stereotype is
expressed in English and OCL separately from the stereotypes and tags specification. The following OCL convenience
operations are used in the CCM Profile specification; they were defined in the UML1.3 Profile for CORBA and adopted
for this specification in order to produce more compact and readable OCL:

For Element:

[1] The operation allStereotypes results in a Set containing the Element's Stereotype and all Stereotypes inherited by
 that Stereotype (as opposed to all Stereotypes inherited by the Element).
context Element inv:
allStereotypes : Set(Stereotype);
allStereotypes = self.stereotype->union (self.stereotype.generalization.parent.allStereotypes)

[2] The operation isStereotyped determines whether the ModelElement has a Stereotype whose name is equal to the
 input name.
context Element inv:
isStereotyped : (stereotypeName : String) : Boolean;
self.stereotype.name = stereotypeName

[3] The operation isStereokinded determines whether the ModelElement has a Stereotype whose name is equal to the
 input name or if it has a Stereotype one of whose ancestors' name is equal to the input name.
context Element inv:
isStereokinded : (stereotypeName : String) : Boolean;
self.allStereotypes->exists (stereotype | stereotype.name = stereotypeName)

Some abstract Stereotypes are defined and, in keeping with UML notation, abstractness is denoted by italicizing the
Stereotype's name; they cannot be instantiated. The abstract Stereotypes are useful for avoiding repetition in multiple
Stereotypes that logically have common properties.

Profile Structure

The general structure of the CCM profile model is the same as the general structure of the CCM metamodel and is shown
in Figure 8.1:

Figure 8.1 - CCM Profile package structure

8.1 BaseIDL Profile
This chapter is the normative definition of the CORBA plain (BaseIDL) Profile of UML. It consists of a UML model,
showing extensions to UML (stereotypes) using the notation described in the previous chapter. This is followed by a
tabular description of the Profile and defined constraints.
32 UML Profile for CORBA and CORBA Components Adopted Specification

8.1.1 CORBA Module, Interface, Value, Constant Stereotypes

An IDL module is represented by a UML package (from Kernel) stereotyped as <<CORBAModule>>. IDL module
containment (nesting) is modeled by Namespace containment of one <<CORBAModule>>-stereotyped UML package
within another.

Figure 8.2 - BaseIDL Profile: Extended UML classes (I)

CORBA interfaces are represented using a UML Interface (from Interfaces) stereotyped as <<CORBAInterface>>. Local
interfaces are represented using the tagged value "isLocal" = TRUE.

CORBA value types are represented by a UML Interface stereotyped as <<CORBAValue>>. CORBA custom value types
are represented by the tag "isCustom" and truncatable value types are represented by the tag "isTruncatable".

CORBA interfaces and value types may have attributes and operations.

Attributes are represented as UML Properties (Attributes) - as usual in UML, each IDL operation is represented as a UML
Operation. A value type factory operation , which is some kind of constructor, is represented using a UML Operation that
is stereotyped <<CORBAValueFactory>>.

Values may be derived from other values and can support an interface. The support by a value type of an IDL interface
type is represented by a Generalization relationship, which is stereotyped <<CORBASupports>>.

An IDL constant is modeled as a stereotyped with <<CORBAConstant>> UML Property, with the constant value
expression represented by the Property's attribute "default" (default: String [0..1]).

For constants defined within a CORBA module scope a new stereotype <<CORBAConstants>> for UML Class is
introduced. The name of the Class must be "Constants."

The UML notation of a CORBA module for the following IDL example is shown in Figure 8.3.

CORBAModule
<<stereotype>>

CORBASupports
<<stereotype>>

CORBAInterface
isLocal : Boolean

<<stereotype>>
CORBAValue

isCustom : Boolean
isTruncatable : Boolean

<<stereotype>>

Interface
(from Interfaces)

<<metaclass>>

<<extends>> <<extends>>

CORBAValueFactory
<<stereotype>>

Operation
(from Kernel)

<<metaclass>>

*0..1

+ownedOperation

*0..1

<<extends>>

Package
(from Kernel)

<<metaclass>>

<<extends>>

Generalization
(from Kernel)

<<metaclass>>

<<extends>>

CORBAConstant
<<stereotype>>

Classifier
(from Kernel)

<<metaclass>> 0..1*

+package

0..1*

1

*

+specific
1

+generalization
*

Property
(from Kernel)

<<metaclass>>

<<extends>>

0..1
* +classifier

0..1

+/attribute
*

Class
(from Kernel)

<<metaclass>>

0..1

*

+class 0..1

+ownedAttribute*

CORBAConstants
<<stereotype>>

<<extends>>
UML Profile for CORBA and CORBA Components Adopted Specification 33

Figure 8.3 - CORBA Module notation

The UML notation of an interface for the following IDL example is shown in Figure 8.4:

Figure 8.4 - Example Interface containing a Struct

The UML notation for a CORBA value type for the following IDL example is shown in Figure 8.5:

module Parent

{

 module Child1 {};

 module Child2

 {

 module Grandchild {};

 };

};

interface TestInterface

{

struct TestStruct

{

 string Member1;

};

attribute string MyStringAttr;

attribute TestStruct MyStructAttr;

void MyOp1(in string str, inout TestStruct t);

boolean MyOp2(inout TestStruct t);

};
34 UML Profile for CORBA and CORBA Components Adopted Specification

Figure 8.5 - Valuetype example

The UML notation for CORBA constants for the following IDL example is shown in Figure 8.6:

interface PrettyPrint

{

string print();

};

valuetype Time

{

public short hour;

public short minute;

};

valuetype Date

{

 public short day;

 public short month;

 public short year;

};

valuetype DateAndTime : Time supports PrettyPrint

{

private Date the_date;

factory init(in short hr, in short min);

Date get_date();

};
UML Profile for CORBA and CORBA Components Adopted Specification 35

Figure 8.6 - Constant example

module Y

{

 constant short S = 3;

 interface X

 {

 constant long L = S + 20;

 };

};
36 UML Profile for CORBA and CORBA Components Adopted Specification

8.1.2 Other stereotypes: CORBA Types

Figure 8.7 - BaseIDL Profile: Extended UML classes (II)

An UML DataType (from Kernel) is a type whose instances are identified only by their value. A DataType is a special
kind of classifier, similar to a class and may contain attributes to support the modeling of structured data types.
UML Profile for CORBA and CORBA Components Adopted Specification 37

CORBAPrimitive
The CORBA basic and other types are represented by the UML DataType with the <<CORBAPrimitive>> stereotype in
the "CORBA" package. This package also contains the base types for CORBA interfaces and value types.

The following <<CORBAPrimitive>>-stereotyped UML DataTypes are introduced in the package "CORBA.", their
semantics is defined in Chapter 3, "OMG IDL Syntax and Semantics," of the CORBA/IIOP Specification.

• short

• long

• longLong

• double

• longDouble

• unsignedShort

• unsignedLong

• unsignedLongLong

• any

• boolean

• octet

• void

• char

• wchar

• float

• string

• wstring

Figure 8.8 - CORBA package
38 UML Profile for CORBA and CORBA Components Adopted Specification

CORBAConstructed
The extended UML metamodel contains an abstract stereotype <<CORBAConstructed>>, which is a generalization of
<<CORBAStruct>>, <<CORBAUnion>> and<<CORBAException>> stereotypes. Each of them shares the characteristics
of having ordered named elements of some CORBA type. Each member of a constructed type that is either of a CORBA
basic type or user defined type is represented as a UML Property (Attribute) by the Data Type. The order of members is
represented by the attribute "isOrdered" of the UML Property class, which inherits this attribute from the metaclass
MultiplicityElement (see Figure 8.7). This attribute specifies whether the values in an instantiation of this element are
ordered. Default value is true.

CORBAEnumeration
IDL enumerations consist of ordered lists of identifiers and are represented by UML Enumeration stereotyped as
<<CORBAEnum>> whose values are enumerated in the model as enumeration literals. An example of
<<CORBAEnum>> contents is represented in Figure 8.9.

The type and initial numeric values of the UML Attributes representing enumeration elements may be omitted in the
notation, as the type is always short, and the initialValue can be deduced from the ordering of the Attributes.

CORBAUnion
IDL union definitions are represented by a UML DataType stereotyped as <<CORBAUnion>>.

Each member of the IDL union is represented by the abstract class CORBAUnionField that extends a UML Property. The
astract stereotype <<CORBAUnionField>> is specialized to the concrete stereotypes <<CORBADefault>> and
<<CORBACase>>.

The discriminator type is represented as an additional Property of the <<CORBAUnion>>, which is stereotyped as a
<<CORBASwitch>>. This Property has always the name "discriminator". Case labels are referred to the defined type of
the discriminator. Each member of an IDL union is represented as a UML Property (Attribute) and stereotyped either
<<CORBADefault>> or <<CORBACase>>. <<CORBACase>>-member has a Tag "label" attached with its label name
value being the case label for this member in the union declaration. For union declarations in which there is a default
case, the <<CORBADefault>>-member is used.
UML Profile for CORBA and CORBA Components Adopted Specification 39

Figure 8.9 - Union example (a)

Figure 8.10 - Union example (b)

CORBAStruct

IDL struct definitions are represented by a UML DataType stereotyped as <<CORBAStruct>>. Each member of the IDL
struct can be represented as a UML Property (Attribute) as shown in Figure 8.11 and Figure 8.12.

enum Contents

{

 INTEGER_CL;

FLOAT_CL;

DOUBLE_CL;

COMPLEX_CL;

STRUCTURED_CL;

};

union Reading switch (Contents)

{

 case INTEGER_CL: long a_long;

 case FLOAT_CL:

 case DOUBLE_CL: double a_double;

 default: any an_any;

};

Issue 10836, 10838 - delete the association version of containment for struct members
40 UML Profile for CORBA and CORBA Components Adopted Specification

<<CORBAStruct>> inherits from the abstract stereotype <<CORBAConstructed>> described above and defines a new
name scope containing other declarations (members). These members must have the same order as in derived IDL
declarations (when UML models are derived from IDL) to be able to generate correct equivalent IDL from the UML
model.

Figure 8.11 - Struct example

A CORBA struct can act as the namespace (see Figure 8.7 metaclass Namespace) for following CORBA types: structs,
unions, and enums. Only these three types can be defined within struct's scope. Nesting of elements limits the visibility of
the element to within the scope of the namespace of the containing struct and is used for reasons of information hiding.

The following example(IDL above) demonstrates alternative UML representations (dependent on the UML tool) of the
nested struct B:

struct Fraction

{

 double numeric;

 string alphabetic;

};

struct Problem

{

 string expression;

 Fraction result;

 Boolean correctness;

};

Issue 11010 - replace Figure 8.12 with A::B instead B

struct A

{

 struct B

 {

 short k;

 long j;

 } p;

 string q;

};
UML Profile for CORBA and CORBA Components Adopted Specification 41

Figure 8.12 - Alternative Struct representations with nested elements

CORBAException
IDL exception definitions are represented by UML DataType stereotyped as <<CORBAException>>. Each member of the
IDL Exception is represented as a UML Property. Exceptions, like structures, create a namespace, so the exception
member names need to be unique only within their enclosing exception. Exceptions are types but cannot be used as data
members of user-defined types.

The following IDL can be represented in UML as in Figure 8.13:

Figure 8.13 - Exception example

(b) (a)

exception Failed {};

exception RangeError

{

unsigned long supplied_val;

unsigned long min_permitted_val;

unsigned long max_permitted_val;

};

interface Unreliable

{

 void can_fail() raises (Failed);

 can_also_fail (in long l) raises (Failed, RangeError);

};
42 UML Profile for CORBA and CORBA Components Adopted Specification

The extended UML metamodel contains an abstract stereotype <<CORBATemplate>>, which is a generalization of
<<CORBAString>>, <<CORBAWstring>> and <<CORBASequence>> stereotypes. All <<CORBATemplate>> elements
have a tag "bound" that indicates the maximum size of the element.

CORBAString and CORBAWstring
IDL string is similar to a sequence of char and represented by a UML DataType stereotyped as <<CORBAString>>. IDL
wstring is like a sequence of wchar and represented by a UML DataType stereotyped as <<CORBAWstring>>. The type
wstring is similar to string, except that its element type is wchar instead of char. If a positive integer maximum size is
specified, the string (or wstring) is termed a bounded string (or wstring); if no maximum size is specified, the string (or
wstring) is termed an unbounded string (or wstring). The package "CORBA" (see Figure 8.8) contains unbounded string
and wstring elements (no maximum size is specified) as stereotyped <<CORBAPrimitive>> UML DataTypes. Bounded
IDL strings and wstrings are represented by a UML DataType stereotyped as <<CORBAString>> or
<<CORBAWstring>>.

CORBASequence

A CORBA Sequence is a one-dimensional array with two characteristics: a maximum size (which is fixed at compile
time) and a length (which is determined at run time).

CORBA Sequences are IDL template types that take a CORBA type as their element parameter, and optionally an integer
as an upper bound specification. Sequences are anonymous, and can either be named by a typedef, or by the member
name of a constructed type. Sequences are represented in the Profile by two means:

• Named by a typedef declaration sequences are represented by the UML DataType with the stereotype
<<CORBASequence>>. Sequence members are represented by an attribute of the DataType, which always has the
name "members" (profile keyword), members type is represented by the type of the "members"-attribute and the max
size is represented by the multiplicity of the "members"-attribute.

• Named by the member name of a constructed type sequences are represented by the UML DataType with the
stereotype <<CORBAAnonymousSequence>>. Anonymous sequences get a name by concatenation name of the
container (containing type), "::" and "m"<n>, where n is the member number of the anonymous sequence in the
container.

Sequences that are declared as the type-declarator of a typedef are given the name of that typedef and the stereotype
<<CORBASequence>>. The following IDL example is represented in Figure 8.14:

Issue 10834 - clarify or fix sequence mapping

typedef sequence<short, 4> foo;

typedef sequence<long> foo_lg;
UML Profile for CORBA and CORBA Components Adopted Specification 43

Figure 8.14 - CORBASequence example

Sequences that are anonymous (declared in some context where they don't have a type name, such as a struct member
type) are given the stereotype <<CORBAAnonymousSequence>>. The following IDL example has the sequence
declaration as a struct member. The UML notation for this example is represented in Figure 8.15.

Figure 8.15 - CORBAAnonymousSequence example

The following IDL is featuring an anonymous sequence as the type of another sequence is represented below:

Figure 8.16 - Nested CORBAAnonymousSequence example

CORBAArray

«CORBASequence»

foo

members: short [0..3]

«CORBASequence»
foo_lg

members: long [0..*]

struct bar

{

 long val;

 sequence <short, 6> my_shorts;

};

 «CORBAStruct»
bar

val: long
my_shorts: bar::m2

«CORBAAnonymousSequence»
bar::m2

members: short [0..5]

«CORBASequence»

foo_1

members: foo_1::m1

«CORBAAnonymousSequence»
foo_1::m1

members: string [0..3]

typedef sequence <sequence <string,4>> foo_1;

Issue 10835 - clarify or fix array mapping

Issue 11009 - more clarification for „index“ and element order of multidimensional arrays
44 UML Profile for CORBA and CORBA Components Adopted Specification

OMG IDL defines multidimensional, fixed-size arrays. CORBA Arrays are IDL indexed types that take a CORBA type as
their element type, and have at least one integer as the size of the array. Additional array dimensions are specified by
additional integers. Arrays are anonymous, and can either be named by a typedef, or by the member name of a
constructed type. Similar to sequences arrays are represented in the Profile by two means:

• Named by a typedef declaration arrays are represented by the UML DataType with the stereotype <<CORBAArray>>.
Array members are represented by an attribute of the DataType, which always has the name "members" (profile
keyword), "members" type is represented by the type of the attribute. The array size (dimensions) is represented by the
tag "index" of the DataType. The value of the tag „index“ is a list of integers separated by comma where each integer
represents the size of each multidimensional array dimension (e.g.: "index"=n, m). One-dimensional arrays are
represented as “index”=n, where n is an integer and must be greater than 0.

• Named by the member name of a constructed type arrays are represented by the DataType with the stereotype
<<CORBAAnonymousArray>>. Anonymous arrays get a name by concatenation name of the container (containing
type), "::" and "m"<n>, where n is the member number of the anonymous array in the container. This stereotype has
also the tag "index" representing the index of the array described above.

Since CORBA IDL does not support open arrays like "typedef short s [];" because IDL does not support pointers, integer
m,n and k must be greater than 0.

CORBA IDL array determines the number of elements of an array, but IDL does not specify how elements of the
multidimensional arrays are to be ordered for data transfer between agents. Therefore, for common and correct
understanding of CORBA UML models the same convention as GIOP (defined in CORBA/IIOP Specification, Chapter
15.3.2.4 "Array") is used: the array members represented by the "members" attribute are always in row major order. In
row major ordering the leftmost index (or index of the first dimension) varies most slowly, and the rightmost index (or
index of the last dimension) varies most quickly.

Arrays that are declared as the type-declarator of a typedef are given the name of that typedef and the stereotype
<<CORBAArray>>. The following IDL example shows UML representations for arrays:

Figure 8.17 - Array example declared as typedef

An IDL array that is declared in any other context is represented by an Attribute stereotyped as
<<CORBAAnonymousArray>>.

typedef short short_arr[4];

typedef my_struct my_struct_arr[5][10];
UML Profile for CORBA and CORBA Components Adopted Specification 45

The following IDL is represented in Figure 8.18:

Figure 8.18 - Anonymous Array representation

There are two declarations in IDL that provide existing named types with another identifier: typedefs - give a name to an
existing type (or to a new template type), and boxed value declarations - give a new name to an existing type, and allow
the new type to be passed as a null parameter. Such declarations are called "wrapper" declarations and represented by the
abstract stereotype <<CORBAWrapper>>. There are two concrete specializations of <<CORBAWrapper>>:
<<CORBATypedef>> and <<CORBABoxedValue>>.

CORBATypeDef
Typedefs in IDL serve two purposes. First purpose is to rename types that already have names to provide an alias for an
existing type. These typedefs are represented by UML DataTypes stereotyped as <<CORBATypeDef>>. For example, the
IDL below provides an alias "Alias_Interface" for the interface "Initial_Interface":

Figure 8.19 - TypeDef example

struct boom

{

 string zoom[4];

 my_struct loom[2][2][2];

};

interface Initial_Interface;

typedef Initial_Interface Alias_Interface;
46 UML Profile for CORBA and CORBA Components Adopted Specification

Second purpose is to provide a type name for anonymous template types, such as sequences or arrays. These typedefs are
modeled by DataTypes that are stereotyped as <<CORBASequence>> and <<CORBAArray>> (see above).

CORBABoxedValue
Boxed values are similar to typedefs: they provide a new name for an existing type, and change the parameter passing
semantics to allow instances of the new type to be null. When boxing an existing type declaration, the boxed value
specializes the existing DataTypes (using a UML Generalization relationship) with a new DataType being the
specialization, giving the type a new name, and possible null value semantics, but no new features. So, a boxed value type
is represented by a UML DataType stereotyped as <<CORBABoxedValue>>.

The IDL below is represented in Figure 8.20:

Figure 8.20 - BoxedValue example

8.1.3 Tabular representation

Table 8.1. BaseIDL Profile

Stereotype Base Class Parent Tags Constraints

CORBAInterface (InterfaceDef)
<<CORBAInterface>>

Interface N/A isLocal:
Boolean

[4]

CORBAValue (ValueDef)
<<CORBAValue>>

Interface N/A isCustom:
Boolean
isTruncatable:
Boolean

[5], [6], [7]

CORBAConstant (ConstantDef)
<<CORBAConstant>>

Property N/A [14]

CORBAConstants
<<CORBAConstants>>

Class N/A [12], [13]

CORBASupports (supportss)
<<CORBASupports>>.

Generalization N/A [8]

valuetype OptionalNameSeq sequence<string>;

valuetype OptionalStruct my_struct;
UML Profile for CORBA and CORBA Components Adopted Specification 47

CORBAValueFactory
(ValueFactoryDef)
<<CORBAValueFactory>>

Operation N/A [9], [10]

CORBAModule (ModuleDef)
<< CORBAModule>>

Package N/A [15]

CORBAPrimitive (PrimitiveDef)
<< CORBAPrimitive>>

DataType N/A [16]

CORBAConstructed
<<CORBAConstructed>>

DataType N/A [17], [18]

CORBAUnion (UnionDef)
<<CORBAUnion>>

DataType CORBAConstructed

CORBASwitch
<<CORBASwitch>>

Property

CORBAUnionField (UnionFieldDef)
<<CORBAUnionField>>

Property

CORBADefault
<<CORBADefault>>

Property CORBAUnionField

CORBACase
<<CORBACase>>

Property CORBAUnionField lable: String

CORBAStruct (StructDef)
<<CORBAStruct>>

DataType CORBAConstructed [19]

CORBAException (ExceptionDef)
<<CORBAException>>

DataType CORBAConstructed [20]

CORBAEnum (EnumDef)
<<CORBAEnum>>

Enumeration

CORBATemplate
<<CORBATemplate>>

DataType bound: Integer

CORBAString (StringDef)
<<CORBAString>>

DataType CORBATemplate

CORBAWstring (WstringDef)
<<CORBAWstring>>

DataType CORBATemplate

CORBASequence (SequenceDef)
<<CORBASequence>>

DataType CORBATemplate [21], [22]

CORBAAnonymousSequence
(SequenceDef)
<<CORBAAnonymousSequence>>

Property CORBASequence [23]

Table 8.1. BaseIDL Profile
48 UML Profile for CORBA and CORBA Components Adopted Specification

8.1.4 Constraints

[4] A <<CORBAInterface>>-stereotyped Interface tagged "isLocal" can only participate in Generalizations with
 other <<CORBAInterface>>-stereotyped Interfaces tagged "isLocal."
context CORBAInterface inv:

(self.generalization->forAll(parent.isStereotyped("CORBAInterface") and
parent.stereotype.taggedValue->select(name = "isLocal")->size = 1)) and
(self.generalization->forAll(child.isStereotyped("CORBAInterface") and
child.stereotype.taggedValue->select(name = "isLocal")->size = 1))

[5] A concrete <<CORBAValue>>-stereotyped Interface may only specialize a single other concrete
 <<CORBAValue>>-stereotyped Interface.
context CORBAValue inv:

not self.isAbstract implies self.generalization->select(parent.isStereokinded("CORBAValue") and
not parent.isAbstract)->size = 1

[6] A <<CORBAValue>>-stereotyped Interface may only specialize a single <<CORBAInterface>>-stereotyped
 Interface, and it must do so using a <<CORBAValueSupports>>-stereotyped Generalization.
context CORBAValue inv:

let supportedInterface = self.generalization->select(parent.isStereotyped ("CORBAInterface")) and
let supportsGeneralization = supportedInterface.generalization-> intersection(self.generalization) in
supportedInterface->size = 1 and supportsGeneralization.isStereotyped("CORBAValueSupports")

[7] A <<CORBAValue>>-stereotyped Class may only contain a single Operation stereotyped as
 <<CORBAValueFactory>>.
context CORBAValue inv:

self.allOperations->collect(isStereotyped("CORBAValueFactory"))->size <= 1

[8] A <<CORBASupports>>-stereotyped Generalization must have a <<CORBAInterface>>-stereotyped Interface as
 its parent and a <<CORBAValue>>-stereotyped Interface as its child.
context CORBASupports inv:

self.parent.isStereotyped("CORBAInterface") and self.child.isStereotyped("CORBAValue")

[9] A <<CORBAValueFactory>>-stereotyped Operation can have only in parameters and has no return type.
context CORBAValueFactory inv:

self.parameter->forAll(kind = #in)

[10] A <<CORBAValueFactory>>-stereotypedOperation must be owned by a <<CORBAValue>>-stereotyped or
 <<CORBACustomValue>>-stereotyped Class.

CORBAArray (ArrayDef)
<<CORBAArray>>

DataType [24]

CORBAAnonymousArray
(ArrayDef)
<<CORBAAnonymousArray>>

Property CORBAArray index:String [25]

CORBAWrapper
<<CORBAWrapper>>

DataType [26] - [30]

CORBATypedef (TypedefDef)
<<CORBATypedef>>

DataType CORBAWrapper [31]

CORBABoxedValue (ValueBoxDef)
<<CORBABoxedValue>>

DataType CORBAWrapper

Table 8.1. BaseIDL Profile
UML Profile for CORBA and CORBA Components Adopted Specification 49

context CORBAValueFactory inv:
self.owner.isStereokinded("CORBAValue")

[11] A <<CORBAConstants>>-stereotyped Class must be directly contained by a <<CORBAModule>>-stereotyped
 package.
context CORBAConstant inv:

self.namespace.isStereotyped("CORBAModule")

[12] All the features of a <<CORBAConstants>>-stereotyped Class must be <<CORBAConstant>>-stereotyped
 Attributes.
context CORBAConstant inv:

self.feature->forAll(feature | feature.oclIsTypeOf (Property) and feature.isStereotyped ("CORBAConstant"))

[13] A <<CORBAConstants>>-stereotyped Class cannot participate in any Associations.
context CORBAConstant inv:

self.associations->isEmpty

[14] The owner of a <<CORBAConstant>>-stereotyped Property must be stereotyped <<CORBAConstants>>,
 <<CORBAInterface>> or<<CORBAValue>>.
context CORBAConstant inv:

self.owner.isStereotyped("CORBAConstants") or
self.owner.isStereokinded("CORBAInterface") or
self.owner.isStereokinded("CORBAValue")

[15] A <<CORBAModule>>-stereotyped package may directly contain at most one Class stereotyped as
 <<CORBAConstants>>.
context CORBAModule inv:

self.ownedElement->collect(el | el.isStereotyped("CORBAConstants"))->size <= 1

[16] All basic types (<<CORBAPrimitive>>-stereotyped UML DataTypes) are included in the package "CORBA.".
 The CORBA package also contains an Interface "Object," stereotyped as <<CORBAInterface>>, and an Interface
 "ValueBase," stereotyped as <<CORBAValue>>.

[17] All features of a <<CORBAConstructed>>-stereotyped Classifier must be Attributes with visibility "public."
 context CORBAConstructed inv:

self.feature->forAll(feature | feature.oclIsTypeOf(Attribute) and feature.visibility = #public)

[18] A <<CORBAConstructed>>-stereotyped Classifier cannot participate in any Generalization relationships.
context CORBAConstructed inv:

self.generalization->isEmpty and self.specialization->isEmpty

[19] All the Attributes of a <<CORBAStruct>>-stereotyped Classifier must have multiplicity 1..1.
context CORBAStruct inv:

self.allAttributes->forAll(multiplicity.range.lower = 1 and multiplicity.range.upper = 1)

[20] A <<CORBAException>>-stereotyped Exception cannot be the type of a navigable AssociationEnd.
context CORBAExeption inv:

self.allEnds->forAll(end | end.type = self implies not end.isNavigable)

[21] The single navigable opposite AssociationEnd of a <<CORBASequence>>- stereotyped Classifier must have
 multiplicity 1..1 if it cannot be a null in CORBA; that is, unless it is an object type or a boxed value type.

[22] The single navigable opposite AssociationEnd of a <<CORBASequence>>-stereotyped Classifier must have
 multiplicity 0..1 if it is a boxed value type or object type.

[23] A <<CORBAAnonymousSequence>>-stereotyped Class must have exactly one navigable opposite
 AssociationEnd whose multiplicity is 1..1.
context CORBAAnonymousSequence inv:

navigableOppositeEnds->size = 1 and navigableOppositeEnds ->forAll
(end | end.multiplicity.range.lower = 1 and end.multiplicity.range.upper = 1)
50 UML Profile for CORBA and CORBA Components Adopted Specification

[24] The single navigable opposite AssociationEnd of a <<CORBAArray>>- stereotyped Class must have multiplicity
 1..1.
context CORBAArray inv:

navigableOppositeEnds->forAll
(end | end.multiplicity.range.lower = 1 and end.multiplicity.range.upper = 1)

[25] A <<CORBAAnonymousArray>>-stereotyped Class must have exactly one navigable opposite AssociationEnd
 whose multiplicity is 1..1.
context CORBAAnonymousArray inv:

navigableOppositeEnds->size = 1 and navigableOppositeEnds->forAll
(end | end.multiplicity.range.lower = 1 and end.multiplicity.range.upper = 1)

[26] A <<CORBAWrapper>>-stereotyped Classifier must participate as the child in exactly one Generalization
 relationship.
context CORBAWrapper inv:

self.generalization->select(gen | gen.child = self)->size = 1

[27] The Generalization relationship in which a <<CORBAWrapper>>-stereotyped Classifier participates has the
 empty string as its discriminator and no powertypes.
context CORBAWrapper inv:

self.generalization->forAll(gen | gen.discriminator = "" and
gen.powertype->isEmpty)

[28] A <<CORBAWrapper>>-stereotyped Classifier may not have any non-inherited features.
context CORBAWrapper inv:

self.feature->isEmpty

[29] A <<CORBAWrapper>>-stereotyped Classifier may not participate in any Associations with navigable opposite
AssociationEnds.

context CORBAWrapper inv:
self.navigableOppositeEnds->isEmpty

[30] A <<CORBAWrapper>> can only extend a DataType or a Interface.
context CORBAWrapper inv:

self.oclIsTypeOf(DataType) or self.oclIsTypeOf(Interface)

[31] The parent of a <<CORBATypedef>>-stereotyped Classifier must not be stereotyped as
<<CORBAAnonymousSequence>> or <<CORBAAnonymousArray>>.

context CORBATypedef inv:
self.generalization->forAll (gen |not gen.parent.isStereotyped("CORBAAnonymousSequence") and
not gen.parent.isStereotyped("CORBAAnonymousArray"))

8.2 ComponentIDL Profile

8.2.1 Stereotypes

A CORBA Component is defined using a UML <<CORBAComponent>> stereotyped Class. A <<CORBAComponent>>
can inherit from another one (single inheritance) using the UML generalization. It can also inherit from a set of CORBA
interfaces. These relationships are represented by the <<CORBASupports>> stereotyped generalization defined in
BaseIDL Profile.
UML Profile for CORBA and CORBA Components Adopted Specification 51

Figure 8.21 - ComponentIDL Profile: Extended UML classes (I)

A component type defines attributes and ports. The attributes are used to configure the component. By using ports,
components can use or provide a set of services (typed with a CORBA interface). There are different kinds of ports:
facets, receptacles, event ports and stream ports.

Figure 8.22 ComponentIDL Profile: Extended UML classes (II)

The facet definitions are represented by a UML Port stereotyped as <<CORBAProvides>>.

The receptacle definitions are represented by a UML Port stereotyped as <<CORBAUses>>. The tag "multiple" by the
<<CORBAUses>> indicates whether the multiple connections to the receptacle may exist simultaneously or not.

The component has event ports. There are two kinds of event ports: event source and event sink. An event source can be
either an emitter (only one consumer) or a publisher (several consumers). Event sources are used to send events; event
sinks are used to receive events. The extended UML metamodel contains an abstract stereotype <<CORBAEventPort>>,
which extends a UML Port and generalizes <<CORBAConsumes>> stereotype representing port where events are
consumed, <<CORBAEmits>> stereotype where events are published only to one consumer, and <<CORBAPublishes>>
stereotype where events are published to several consumers.

Port

(from Ports)

<<metaclass>>

EncapsulatedClassifier
(from Ports)

<<metaclass>> *0..1

+ownedPort

*0..1

Class
(from StructuredClasses)

<<metaclass>>
CORBAComponent

<<stereotype>>
<<extends>>

CORBAEmits
<<stereotype>> CORBAConsumes

<<stereotype>>
CORBAPublishes

<<stereotype>>

CORBASink
<<stereotype>>

CORBASource
<<stereotype>>

CORBAUses
multiple : PrimitiveKind

<<stereotype>>

CORBAProvides
<<stereotype>>

Interface
<<metaclass>>

CORBAStreamPort
<<stereotype>>

Port
<<metaclass>>

<<extends>>

<<extends>>

* **

+required

*

* **

+provided

*

<<exten...

CORBAEventPort
<<stereotype>>

<<extends>>
52 UML Profile for CORBA and CORBA Components Adopted Specification

For the stream communication components have stream ports. The abstract stereotype <<CORBAStreamPort>>
represents stream ports and generalizes stereotypes <<CORBASource>> for a source ports and <<CORBASink>> for
sink ports. A stream type is represented by a UML Interface stereotyped as <<CORBAStream>>. The tag "kind" identifies
the kind of the <<CORBAStream>>.

Figure 8.23 - ComponentIDL Profile: Extended UML classes (III)

A Component home is represented by a UML Interface stereotyped as <<CORBAHome. A component home must be
associated to a component type. This relationship is made explicit using a <<CORBAManages>> stereotyped UML
Association between a <<CORBAHome>> and a <<CORBAComponent>>. <<CORBAHome>> can inherit from another
<<CORBAHome>> (single inheritance) using a UML Generalization. <<CORBAHome>> can support several
<<CORBAInterface>>, this relationship is represented by the stereotyped as <<CORBASupports>> Generalization.

A <<CORBAHome>> can be associated with a primary key (necessary for persistent components). There is exactly one
key instance for each (persistent component, home) instance couple. To enforce this constraint, the primary key is
represented using a <<CORBAValue>> stereotyped UML Interface, the relationship between home and its primary key is
represented by an Association stereotyped as <<CORBAPrimaryKey>>.

<<CORBAHome>> can own attributes and operations. A UML Operation stereotyped as <<CORBAFactory>> is used to
represent component factory operations, and as <<CORBAFinder>> is used to represent components finder operations.

Event types are represented by a UML Interface stereotyped as <<CORBAEvent>>. The <<CORBAEvent>> stereotype is
a specialization of the <<CORBAValue>> stereotype. It inherits from all <<CORBAValue>> constraints.
UML Profile for CORBA and CORBA Components Adopted Specification 53

8.2.2 Tabular representation

Table 8.2. ComponentIDL Profile

Stereotype Base Class Parent Tags Constraints

CORBAComponent (ComponentDef)
<<CORBAComponent>>

Class [32] - [35]

CORBAProvides (ProvidesDef)
<<CORBAProvides>>

Port

CORBAUses (UsesDef)
<<CORBAUses>>

Port isMultiple:
Boolean

CORBAEventPort (EventPortDef)
<<CORBAEventPort>>

Port

CORBAEvent (EventDef)
<<CORBAEvent>>

Interface

CORBAEmits (EmitsDef)
<<CORBAEmits>>

Port CORBAEventPort

CORBAPublishes (PublishesDef)
<<CORBAPublishes>>

Port CORBAEventPort

CORBAConsumes (ConsumesDef)
<<CORBAConsumes>>

Port CORBAEventPort

CORBAStream (StreamTypeDef)
<<CORBAStream>>

Interface kind:
StreamKind

CORBAStreamPort (StreamPortDef)
<<CORBAStreamPort>>

Port

CORBASource (SourceDef)
<<CORBASource>>

Port CORBAStreamPort

CORBASink (SinkDef)
<<CORBASink>>

Port CORBAStreamPort

CORBAHome (HomeDef)
<< CORBAHome >>

Interface [39] - [42]

CORBAFactory (FactoryDef)
<< CORBAFactory >>

Operation [44], [45]

CORBAFinder (FinderDef)
<< CORBAFinder >>

Operation [46], [47]
54 UML Profile for CORBA and CORBA Components Adopted Specification

Constraints

[32] A "CORBAComponent" cannot own operations.
context CORBAComponent inv:

self.feature forAll(not oclIsKindOf (behavioralFeature))

[33] A "CORBAComponent" can only inherit from a "CORBAComponent" or a "CORBAInterface"
context CORBAComponent inv:

self.generalization -> forAll (g : Generalization | g.parent.isStereotyped ("CORBAComponent") or
 g.parent.isStereotyped("CORBAInterface"))

[34] Only single inheritance is possible between "CORBAComponent".
context CORBAComponent inv:

self.generalization -> select(parent.isStereotyped("CORBAComponent")) ?size <= 1

[35] Each "CORBAComponent" inheritance from a "CORBAInterface" must be stereotyped "CORBASupports"
context CORBAComponent inv:

self.generalization -> forAll (g : Generalization | g.parent.isStereotyped("CORBAInterface") implies
g.isStereotyped("CORBASupports"))

[36] There is exactly one "CORBAManages" association for each Home.
context CORBAManages inv:

self.connection ?select(isStereotyped("CORBAManages")) ->size = 1

[37] The "CORBAHome" side cardinality must be 1..1
context CORBAHome inv:

self.connection ?exists(participant.isStereotyped("CORBAHome")) and multiplicity.min=1 and multiplicity.max=1)

[38] The "CORBAComponent" side cardinality must be "0..n".
context CORBAComponent inv:

self.connection ?exists(participant.isStereotyped("CORBAComponent")) and multiplicity.min=0 and multiplicity.max=n)

[39] A "CORBAHome" can inherit from one "CORBAHome" at most.
context CORBAHome inv:

self.generalization ?select(parent.isStereotyped("CORBAHome")) ?size=1

[40] If "CORBAHome h1 inherits from "CORBAHome" h2 and h2 manages "CORBAComponent" C2 then h1 must
manage C2 or any other component C1 that inherits from C2.

context CORBAHome inv:
let h1=self and let h2=self.generalization ->
select(parent.isStereotyped("CORBAHome")) and h2 ->notEmpty implies
let C2=h2.connection ->select(participant.isStereotyped("CORBAComponent")) and
let C1=h1.connection ->select(participant.isStereotyped("CORBAComponent")) and
(C1 = C2 or C1.allParents ->includes(C2))

[41] If " CORBAHome " h1 inherits from h2, and " CORBAHome " h2 is associated with primary key k2 then h1
must be associated with k2 or with a primary key k1 that inherits from k2.

context CORBAHome inv:
let h1=self and let h2=self.generalization ->

CORBAManages
<< CORBAManages >>

Association [36] - [38]

CORBAPrimaryKey
<< CORBAPrimaryKey>>

Association

CORBAValue (ValueDef)
<<CORBAValue>>

Interface [43]

Table 8.2. ComponentIDL Profile
UML Profile for CORBA and CORBA Components Adopted Specification 55

select(parent.isStereotyped("CORBAHome")) and h2 ->notEmpty implies
let k2=h2.connection-> select(isStereotyped ("CORBAManages")).LinkToClass.ClassPart and let
k1=self.connection>select(isStereotyped("CORBAManages")).LinkToClass.ClassPart and
k1 = k2 or k1.allParents->includes(k2))

[42] Each "CORBAHome" inheritance from a "CORBAInterface" must be stereotyped.
context CORBAHome inv:

self.generalization ->forAll g,Generalization | g.parent.isStereotyped ("CORBAInterface")
implies g.isStereotyped("CORBASupports"))

[43] The valuetype of a primary key:

[43-1] must not have private state members

[43-2] must not have members that are interfaces

[43-3] must have at least one state member

[43-5] must descend directly or indirectly from Components::PrimaryKeyBase

[43-4] Contraints [43-1], [43-2], and [43-3] apply recursively to valuetype members that are valuetypes

[43-1, 43-2, 43-3, 43-4] isAcceptableKeyType(type)
isAcceptableKeyType (valueType : ValueDef) : boolean
{ valueType.contents.forAll (c | c.oclIsTypeOf(ValuefMemberDef) implies
 c.OclAsType(ValueMemberDef).isPublicMember) and
 valueType.contents.forAll (not oclIsKindOf (InterfaceDef)) and
 valueType.contents.exists (oclIsTypeOf(ValueMemberDef)) and
 valueType.contents.forAll (c | c.oclIsKindOf (ValueDef) implies isAcceptableKeyType (c))
}

[43-5] type.descendsFrom("Components::PrimaryKeyBase")
descendsFrom(absoluteName : string) : boolean
{ descendsFrom(absoluteName) =
 if self.absoluteName = absoluteName

 then true
else

if base->isEmpty
then false

else
if base.descendsFrom(absoluteName)

then true
else

 false
endif

endif
endif }

[44] A "CORBAHomeFactory" operation has only input parameters.
context CORBAHomeFactory inv:

self. parameter ?forAll(kind=#in)

[45] A "CORBAHomeFactory" can only be defined in a "CORBAHome".
context CORBAHomeFactory inv:

self.owner.isStereotyped("CORBAHome")

[46] A "CORBAHomeFinder" operation has only input parameters.
context CORBAHomeFinder inv:

self. parameter ?forAll(kind=#in)
56 UML Profile for CORBA and CORBA Components Adopted Specification

[47] A "CORBAHomeFinder" can only be defined in a "CORBAHome".
context CORBAHomeFinder inv:

self.owner.isStereotyped("CORBAHome")

8.2.3 Example

Following IDL describes the Philosophers example:

typedef enum PhilosopherState

{

EATING,
THINKING,
HUNGRY,
STARVING,
DEAD};

eventtype StatusInfo {

public string name;
public PhilosopherState state;
public long secondesSinceLastMeal;
public boolean hasLeftFork;
public boolean hasRightFork;};

exception InUse {};

// Interfaces

interface Registration {
string register();};

interface Fork
{

void get() raises (InUse);
void release();};

//Components and Homes

component Philosopher {

uses Fork left;
uses Fork right;
uses Registration registration;
publishes StatusInfo info;};

home PhilosopherHome manages Philosopher {};

component Fork {

provides Fork the_fork;};

home ForkHome manages Fork {};

component Registrator supports Registration {};

home RegistratorHome manages Registrator {};
UML Profile for CORBA and CORBA Components Adopted Specification 57

component Observer {

consumes StatusInfo info;};

home ObserverHome manages Observer {};

The UML model of components described in IDL above is shown in the figure below:

Figure 8.24 - ComponentIDL Profile example

8.3 CIF Profile

8.3.1 Stereotypes

The CIF Profile defines how CORBA components have to be implemented. An implementation of a component comprises
a potentially complex set of artifacts (e.g., component or home executors) that must exhibit specific relationships and
behaviors in order to provide a proper implementation. A composition is a unit of component implementation and
contains such artifacts. A composition is represented using a UML Component (from the package
"PackagingComponents") with the stereotype <<CORBAComposition>>.

A component implementation is represented using a UML Class with the stereotype <<CORBAComponentExecutor>>.
The <<CORBAComponentExecutor>> is always defined within a <<CORBAComposition>> element.
58 UML Profile for CORBA and CORBA Components Adopted Specification

A home implementation is represented using a UML Class with the stereotype <<CORBAHomeExecutor>>. The
<<CORBAHomeExecutor>> is always defined within a <<CORBAComposition>> element.

The relationships between components and component executors and between homes and home executors are represented
by an Association stereotyped as <<CORBAImplements>>.

A segment is represented using a UML Part (Property) with the stereotype <<CORBASegment>>. Segments are physical
partitions of a <<CORBAComponentExecutor>> element and always represented in the internal structure of a
<<CORBAComponentExecutor>> element (as UML parts, see example in Figure 8.26).

Figure 8.25 - CIF Profile: Extended UML classes

8.3.2 Tabular representation

Table 8.3. CIF Profile

Stereotype Base Class Parent Tags Constraints

CORBAComponentExecutor
(ComponentExecutorDef)
<<CORBAComponentExecutor>>

Class [49]

CORBAHomeExecutor
(HomeExecutorDef)
<<CORBAHomeExecutor>>

Class [53]

CORBAImplements
<<CORBAImplements>>

Realization
(Association)

[48], [50]

StructuredClassifier
(f rom InternalStructures)

<<metaclass>>

Property
(from InternalStructures)

<<metaclass>>

0..1

*

0..1

+/part
*

CORBASegment
isSerialized : Boolean

<<stereotype>>
<<extends>>

CORBAImplements
<<stereotype>>

Component
(from BasicComponents)

<<metaclass>>
Realization

(f rom BasicComponents)

<<metaclass>>

<<extends>>

0..1 *

+abstrac...

0..1

+realization
*

Classifier
(f rom Kernel)

<<metaclass>>

1

+realizingClassifier

1

ComponentCategory
session
entity
process
sevice
extension

<<enumeration>>

CORBAComposition
category : ComponentCategory

<<stereotype>>

Component
(f rom PackagingComponents)

<<metaclass>>

CORBAComponentExecutor
<<stereotype>>

CORBAHomeExecutor
<<stereotype>>

Class
(from StructuredClasses)

<<metaclass>>

<<extends>>

<<extends>>
UML Profile for CORBA and CORBA Components Adopted Specification 59

8.3.3 Constraints

[48] There is an association between <<CORBAComponentExecutor>> and <<CORBAComponent>>.
context CORBAImplements inv:

self.connection ? exists(participant.isStereotyped("CORBAComponentExecutor")) and
self.connection ?exists(participant.isStereotyped("CORBAComponent"))

[49] A <<CORBAComponentExecutor>> always has exactly one <<CORBAComponent>> associated while each
<<CORBAComponent>> might be implemented by different types of <<CORBAComponentExecutor>>.

context CORBAComponentExecutor inv:
self.connection ? exists(participant.isStereotyped("CORBAComponentExecutor") and multiplicity.min=1 and max=*)
self.connection ?exists(participant.isStereotyped("CORBAComponent") and multiplicity.min=1 and max=1)

[50] Each << CORBAHomeExecutor >> in a model implements exactly one <<CORBAHome>>.
context CORBAHomeExecutor inv:

self.connection ?exists(participant.isStereotyped("CORBAHomeExecutor") and multiplicity.min=1 and max=1)
self.connection ?exists(participant.isStereotyped("CORBAHome") and multiplicity.min=1 and max=1)

[51] It's an association between a "CORBAHomeExecutor" and a "CORBAComponentExecutor".
context CORBAManages inv:

self.connection ?exists(participant.isStereotyped("CORBAHomeExecutor")) and
 self.connection ? exists(participant.isStereotyped("CORBAComponentExecutor"))

[52] Each << CORBAHomeExecutor >> manages exactly one <<CORBAComponentExecutor>>, this relation is
modeled by the association <<CORBAManages>>.

context CORBAHomeExecutor inv:
self.connection ? exists(participant.isStereotyped("CORBAComponentExecutor") and multiplicity.min=1 and max=1)

[53] For each instance x of <<CORBAHomeExecutor>> the instance of <<CORBAComponent>>, which is
associated to the instance of <<CORBAHome>> associated to x, is the same instance as the instance of
<<CORBAComponent>> associated to the instance of <<CORBAComponentExecutor>>, which is associated to
x.

context CORBAHomeExecutor inv:
self.home.component = self.component_impl.component

[54] The life cycle category of the <<CORBAComposition>> must be "entity" or "process" if the contained
component implementation is segmented.

context CORBAComposition inv:
self.component_impl.segments>1 implies (self.category=ENTITY or self.category=PROCESS)

[55] <<CORBASegment>> classes are always contained in <<CORBAComponentExecutor>>.
context CORBASegment inv:

self.definedIn.oclIsTypeOf(ComponentExecutorDef)

CORBAManages
<< CORBAManages>>
(from ComponentIDL Profile)

Association [51], [52]

CORBAComposition
(CompositionDef)
<<CORBAComposition>>

Component category:
ComponentCategory

[54]

CORBASegment (SegmentDef)
<<CORBASegment>>

Property (Part) isSerialized:
Boolean

[55]

Table 8.3. CIF Profile
60 UML Profile for CORBA and CORBA Components Adopted Specification

8.3.4 Example

The following IDL for the component Fork from the Philosophers example is represented in Figure 8.26:

composition entity ForkImpl

{

home executor ForkHomeExecutor {
implements ForkHome;
manages ForkExecutor {
segment Seg { provides the_fork; }}};

};

Figure 8.26 - CIF Profile example

8.4 Deployment Profile
The Component Implementation Framework (CIF) Profile defines how to model constructing component
implementations. How to model components and component homes is defined in the ComponentIDL Profile (see previous
sections). The CIF Profile uses ComponentIDL Profile descriptions to model CCM applications and then generate
programming skeletons that automate many of the basic behaviors of components, including navigation, identity inquiries,
activation, state management, lifecycle management, and so on. Generated CCM components are units of deployment
process, which includes installation, configuration, planning, preparation, and launch of such CCM applications. In order
to deploy a component-based application like CCM applications instances of each component must first be created, then
interconnected and configured. The Deployment Profile defines how to model deployment and configuration information
of CCM applications. The Deployment Profile uses the CIF Profile (e.g., for modeling of component and home executors)
and introduces possibilities for modeling of an initial configuration: a set of interconnected component instances
(assembly) of a CCM application at run time and other deployment information.
UML Profile for CORBA and CORBA Components Adopted Specification 61

8.4.1 Stereotypes

A CORBA Assembly package is represented using a UML Package with the stereotype <<CORBAAssemblyPkg>>. The
<<CORBAAssemblyPkg>> element may contain one or more component packages represented using a UML Package
with the stereotype <<CORBAAComponentPkg>>.

Figure 8.27 Deployment Profile: Extended UML classes

A component package <<CORBAAComponentPkg>> is a set of metadata (e.g., IDL description) and compiled code
modules that contain implementations of a component. The implementations in <<CORBAAComponentPkg>> can be
monolithic and and represented as a UML Component with the stereotype <<CORBAMonolithicImplementation>> or in
form of an assembly and represented as a UML Package with the stereotype <<CORBAAssemblyPkg>>.
<<CORBAMonolithicImplementation>> elements can be described by platform dependencies, code filename, entry
points, and other deployment characteristics. These characteristics or implementation requirements can be represented by
the stereotyped UML class <<CORBARequirement>>. The possible requirements of an implementation are listed below:

Abstraction
(from Dependencies)

<<metaclass>>

CORBAContainedFile
codetype : String
entrypoint : String
entrypointusage : String

<<stereotype>>

CORBADependentFile
action : ActionKind

<<stereotype>>

Manifestation
(from Artifacts)

<<metaclass>>

CORBAFile
location : String

<<stereotype>>

ActionKind
INSTALL
ASSERT

<<enumeration>>

CORBARequirement
type : String
value : String

<<stereotype>>

Dependency
(from Dependencies)CORBARequires

<<stereotype>>
<<extends>>

CORBAIDLFile
<<stereotype>>

CORBAAssemblyPkg
<<stereotype>>

Package
(from Kernel)

<<metaclass>>

<<extends>>

CORBAComponentPkg
<<stereotype>><<extends>>

CORBAComponentFile
<<stereotype>>

StructuredClassifier
(from InternalStructures)

<<metaclass>>

CORBAConfiguration
<<stereotype>>

Collaboration
(from Collaborations)

<<extends>>

CORBACollocation
cardinatilty : Integer

<<stereotype>>

<<extends>>

CORBAHostCollocation
destination : String

<<stereotype>>

CORBAProcessCollocation
<<stereotype>>

PackageableElement
(from Kernel)

*

1

*

+utilizedElement 1

CORBAMonolithicImplementation
<<stereotype>>

Component
(from BasicComponents)

<<metaclass>>

<<extends>>

Class
(from Kernel)

<<metaclass>><<extends>>

Artifact
fileName : String

<<metaclass>>

1 *1

+manifestation

*

<<extends>>

Property
0..1 *

+class
0..1

+ownedAttribute
*

Classifier
(from Kernel)

<<metaclass>>

+/attribute

+classifier

0..1

*

0..1

*

62 UML Profile for CORBA and CORBA Components Adopted Specification

• licensekey: point to the key of a usage license

• licensetextref: point to the text of a usage license

• uuid: unique identifier of an implementation

• compiler: specifies the compiler used to create an implementation

• programminglanguage: specifies the type of the component implementation

• description: string description for any additional information

• humanlanguage: specifies a spoken language

• os: specifies a particular operating system that the implementation will work with

• processor: indicates the type of processor that the implementation must run on

The name of the <<CORBARequirement>> class instace can be one of the names listed above (or other), the tag "type"
of the <<CORBARequirement>> class represents a concrete type of the requirement and the tag "value" of the class helps
to define a concrete version of the reqirement's type. For example, the UML class "Processor" with the stereotype
<<CORBARequirement>> can have tagged values "type=Intel" and "value=Core™2 Duo ".

The initial configuration of a CCM application is represented as a UML Collaboration with the stereotype
<<CORBAConfiguration>> and contains instances of component and home implementations. These instances can be
collocated in the same process or run on the same node (host). For these two kinds of collocation representation
<<CORBAProcessCollocation>> and <<CORBAHostCollocation>> stereotypes are defined. They both inherit from the
abstract stereotype class <<CORBACollocation>>, which have "cardinality" tag.. The "cardinality" tag represents how
many instances of collocation may be deployed.

The assembly and component packages may contain different deployment artifacts: specifications of a physical piece of
information that is used or produced by a software development process, or by deployment and operation of a system.
Examples of such artifacts are all defined in the Deployment metamodel files: component, IDL, contained and dependent
files described in the section 3.2.4. All these files are represented using a UML Artifact with stereotypes
<<CORBAAComponentFile>>, <<CORBAAIDLFile>>, <<CORBAAContainedFile>> and
<<CORBAADependentFile>>. These files are usually required from implementations. The relationship between a
<<CORBAImplementation>> element and required artifacts is represented using the UML Dependency with a stereotype
<<CORBARequires>>.

8.4.2 Tabular representation

Table 8.4. Deployment Profile

Stereotype Base Class Parent Tags Const-
raints

CORBARequirement
(RequirementDef)
<<CORBARequirement>>

Class type: String
value: String

CORBAFile (File)
<<CORBAFile>>

Artifact
UML Profile for CORBA and CORBA Components Adopted Specification 63

8.4.3 Constraints

There are no specific constraints for this profile.

8.4.4 Example

There is no IDL notation for deployment information: as input to a deployment tool component and assembly packages
are provided. These packages contain one or more XML descriptors and a set of files. The XML descriptors contain all
needed deployment and configuration data used by a deployment tool.

CORBAMonolithicImplementation
(MonolithicImplementationDef)
<<CORBAImplementation>>

Component

CORBAContainedFile
(ContainedFile)
<<CORBAContainedFile>>

Artifact CORBAFile codetype: String,
entrypoint: String,
entrypointusage: String

CORBADependentFile
(DependentFile)
<<CORBADependentFile>>

Artifact CORBAFile action: ActionKind

CORBAComponentFile
(ComponentFile)
<<CORBAComponentFile>>

Artifact CORBAFile

CORBAIDLFile (IDLFile)
<<CORBAIDLFile>>

Artifact CORBAFile

CORBARequires
<<CORBARequires>>

Dependency

CORBAAssemblyPkg
(AssemblyPkgDef)
<<CORBAAssembly>>

Package

CORBAComponentPkg
(ComponentPkgDef)
<<CORBAComponentPkg>>

Package

CORBAProcessCollocation
(ProcessCollocationDef)
<<CORBAProcessCollocation>>

Collaboration CORBACollocation

CORBAHostCollocation
(HostCollocationDef)
<<CORBAHostCollocation>>

Collaboration CORBACollocation destination:String

CORBACollocation (CollocationDef)
<<CORBACollocation>>

Collaboration cardinality:String

CORBAConfiguration
(ConfigurationDef)
<<CORBAConfiguration>>

Collaboration

Table 8.4. Deployment Profile
64 UML Profile for CORBA and CORBA Components Adopted Specification

Figure 8.28 - Deployment Profile example: package structure of an application

The figure below represents one possible initial configuration of the Philosophers application:
UML Profile for CORBA and CORBA Components Adopted Specification 65

Figure 8.29 - Deployment Profile example: initial configuration of an application

8.5 CCMQoS Profile
The UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms" (ptc/05-05-02)
defines a comprehensive UML 2.0 profile for the description of QoS properties. The modeling of QoS properties for
CORBA Components requires the definition of a link between QoS profile and CCM profile. This link is defined in the
profile package CCMQoS and is a small extension done by the stereotype QoSBinding (see Figure 8.30). The
QoSBinding class extends the UML metaclass Comment and can be attached to any UML element instance.
66 UML Profile for CORBA and CORBA Components Adopted Specification

Figure 8.30 - CCMQoS Profile: extended UML classes

The example shown below describes a simple video service: stream-based communication between two CORBA
components StreamClient and StreamServer. The stereotyped with <<QoS Characteristics>> VideoQoS class represents
quantifiable characteristics (dimensions for the quantification) of the video services. For more information about QoS
please refer to the OMG document ptc/05-05-02.

The Binding metaclass is represented using a UML Comment with stereotype <<QoSBinding >> and can be attached
either to a component or its port or its instances. The <<QoSBinding >> element has two tags: "name" and "mandatory."

8.5.1 Tabular representation

8.5.2 Constraints

There are no specific constraints for this profile.

Table 8.5. CCMQoS Profile

Stereotype Base Class Parent Tags Constraints

QoSBinding (Binding)
<<QoSBinding >>

Comment name: string
mandatory: boolean

QoSBinding
name : string
mandatory : boolean

<<stereotype>>

Element
<<metaclass>>

Element
(from Ownerships)

<<metaclass>>

Comment
body : String

<<metaclass>>

0..1

*

0..1

ownedComment

*

*

annotatedElement

*

<<extends>>
UML Profile for CORBA and CORBA Components Adopted Specification 67

8.5.3 Example

Figure 8.31 - CCMQoS Profile: video example

8.6 UML Profile for Lightweight CCM
This profile provides modeling concepts of the basic level of CORBA Components defined as Lightweight CCM Profile
and specified in the CCM specification (formal/06-04-01).

The Lightweight CCM profile provides an enriched environment for low-footprint, embedded, and real-time CORBA
solutions. It considers only specific parts of CCM specification that are impacted and the normative specific subsetting of
CCM. General CCM capabilities and support, like for example, Persistence, CIDL, Home finders or Configuration are not
included in Lightweight CCM (see formal/06-04-01, section 13).

The UML Profile for Lightweight CCM is defined as a subset of the CCM Profile descried in previous sections. There are
no new stereotypes or tags for this profile added. Following changes made in Lightweight CCM don't have a bearing on
the UML Profile for Lightweight CCM:

• Changes associated with excluding support for introspection, navigation and type-specific operations redundant with
generic operations.

• Changes associated with excluding support for transactions.

• Changes associated with excluding support for security.

• Changes associated with excluding support for configurators.

• Changes associated with excluding support for proxy homes.
68 UML Profile for CORBA and CORBA Components Adopted Specification

Changes associated with excluding support for persistence, segmentation and home finders impact CCM Metamodel and
Profile. Following normative exclusions described in the Lightweight CCM profile have been taken into account:

The following figures represent changed metamodels (ComponentIDL and CIF) for Lightweight CCM:

Table 8.6. Lightweight CCM

Normative
Exclusion

Metamodel impacts Profile impacts

Exclude support for
primary keys.

The association “key_home” between
metaclasses HomeDef and ValueDef has been
removed.

The Stereotype
<<CORBAPrimaryKey>> has been removed.

Exclude support for
CIDL.

Excluding CIDL is a result of excluding support for both persistence and segmentation (see
Exclusions below).

Exclude composition The metaclass CompositionDef has been
removed.
The attributes of the enumeration
ComponentCategory “process”, “entity” and
“extension” have been removed.
The attribute “category” has been added to the
metaclass ComponentExcecutorDef.

The Stereotype <<CORBAComposition>>
has been removed.
The tag “category” has been moved from the
stereotype <<CORBAComposition>> to the
<<CORBAComponentExecutor>>

Restrict CIF
metamodel to a single
segment per
implementation

The multiplicity of the association between
ComponentExcecutorDef and SegmentDef has
been changed to 1:1.

Following Constraint has been added:
[56]
context CORBAComponentExecutor inv:
self.connection ? exists
(participant.isStereotyped ("CORBASegment")
and multiplicity.min=1 and max=1)

Remove segmentation
support

(see previous Exclusion) (see previous Exclusion)

Exclude support for
home finders and
finder operations

The FinderDef metaclass has been removed. The Stereotype <<CORBAFinder>> has been
removed
UML Profile for CORBA and CORBA Components Adopted Specification 69

Figure 8.32 - ComponentIDL metamodel for the Lightweight CCM
70 UML Profile for CORBA and CORBA Components Adopted Specification

Figure 8.33 - CIF metamodel for the Lightweight CCM

8.7 Differences and migrations between CORBA based Profiles
The UML Profile for CORBA (formal/02-04-01) specification (CORBA Profile) provides a standard means for expressing
semantics of CORBA IDL using UML 1.3 notation and support for expressing these semantics with UML tools. The
profile doesn't provide any means for expressing semantics of the CCM concepts like component or port. The profile
doesn't define any MOF-based CORBA IDL metamodel.

The UML Profile for CORBA Component Model (CCM) specification (formal/05-07-06) provides a standard means for
expressing both: pure CORBA and CCM-based applications, but using UML 1.5 notation. It is specified to work with
MOF repositories since the profile defines a MOF-based CORBA IDL and CCM metamodel. This profile is based on the
the UML Profile for CORBA, extends it to the component-based semantics and defines how to represent these semantics
using UML 1.5. There are no migration rules from the UML Profile for CORBA to the UML Profile for CCM: all
representations for CORBA IDL (including all data types, CORBA module and interface) were adopted for this profile.

This specification (CORBA&CCM Profile) provides a standard means for expressing both: pure CORBA and CCM-based
applications using UML 2 notation. UML 2 facilitates and simplifies representation of many concepts needed to represent
a pure CORBA or CORBA Components. The profile updates the MOF-based CCM metamodel and extends this
metamodel to QoS and Deployment concepts. Due to various differences between UML 1.x and UML 2.x versions and

Issue 10837 - add a new chapter about differencies and migrations between CORBA based Profiles
UML Profile for CORBA and CORBA Components Adopted Specification 71

new concepts in UML 2.x some migration rules were defined (see Table and discription below). These rules provide an
ability to automatically transform UML 1.x models based on the CORBA Profile to UML 2.x models based on the profile
defined in this specification.

This specification is intended to replace the existing UML Profile for CORBA (formal/02-04-01) and UML Profile for
CCM (formal/05-07-06) specifications.

The table below summarizes the main concepts of CORBA and CCM and gives an overview how mentioned above three
specifications deals with these concepts. Additionally, the table shows all differences between profiles and identifies were
some clarifications are needed for the successfully migration from the UML 1.x to UML2.x profile definition.

Table 8.7 Differences between Profiles

Concepts CORBA Profile
(UML 1.3)

CCM Profile
(UML 1.5)

CORBA&CCM Profile
(UML 2.1)

Module Package Package Package
Interface Class Class Interface
Value Class Class Interface
Constant Attribute Attribute Property (Attribute)
Primitive Types DataType DataType DataType
Union Class Class DataType
Struct Class Class DataType
Exception Exception Exception DataType
Enum Class Class Enumeration
Sequence Class Class DataType
Array Class Class DataType
AnonymousSequence Class Class DataType
AnonymousArray Class Class DataType
TypeDef Class or DataType Class or

DataType
DataType

Component Class Class
Facet (provided port) Association

between a
component and
its provided
interface

Port

Receptacles (used port) Association
between a
component and
a used
interface

Port

Event port
(published, emitted or consumed)

 Association
between a
component and
its (published,
emitted or
consumed) event

Port

Event Class Interface

72 UML Profile for CORBA and CORBA Components Adopted Specification

From the table above following migrations from the CCM Profile (incl. CORBA Profile) to CORBA&CCM Profile have
been identified:

Figure 8.34 Profile mappings

Concepts CORBA Profile
(UML 1.3)

CCM Profile
(UML 1.5)

CORBA&CCM Profile
(UML 2.1)

Stream Interface
Stream port
(source or sink)

 Port

Home Class Interface
Component Executor Class Class
Home Executor Class Class
Composition Component
Segment Class Part (Property)
Requirement Class
File
(contained, dependent, IDL or
component)

 Artifact

Assembly package Package
Component package Package
Monolithic implementation Component
Collocation
(host or process)

 Collaboration

Configuration Collaboration
QoS Binding Comment

Class

Association

Exception

Interface
DataType

Enumeration
Part (Property)

Port

DataType

CCM Profile
UML 1.3

CORBA & CCM Profile
UML 2.1
UML Profile for CORBA and CORBA Components Adopted Specification 73

From the table and figure above following mappings (see also Figure 8.34) have been identified and described below:

• Class2Interface

• Class2DataType

• Class2Part(Property)

• Class2Enumeration

• Association2Port

• Exception2DataType

Class2Interface

The UML1.3 metamodel element "Interface" was inappropriate for modeling an IDL interface, as it may not have
Attributes or Associations that can be navigated from the Interface. Therefore, the metaclass Class was taken to represent
CORBA interface. The UML 2 metamodel element "Interface" provides all features for the representation of CORBA
Interface. Mapping between these two metaclasses is simply described below:

Class2Interface (cl, itf)
FORALL UML1Class cl WHERE c.stereotype = "CORBAInterface" || "CORBAHome“
CREATE UML2Interface itf
SETTING itf.stereotype = cl.stereotype, itf.name = cl.name, itf.attribute = cl.attribute, itf.operation = cl.opertaion,
itf.tag.isLocal = cl.tag.isLocal;

Class2DataType

The CORBA profile uses the metamodel element "DataType" only for the representation of CORBA Primitive types like
short or string and TypeDefs, for user-defined Types like struct or sequence using of DataType was not possible, since
DataTypes was not allowed to contain any Attributes, and Attributes are the best way to model struct/union members. The
UML2 DataType may contain attributes to support the modeling of structured data types. Mapping between these two
metaclasses is simply described below:

Class2DataType (cl, dt)
FORALL UML1Class cl WHERE cl.stereotype = ("CORBAStruct" || "CORBAUnion" || "CORBASequence" ||
"CORBAArray")
CREATE UML2DataType dt
SETTING dt.stereotype = cl.stereotype, dt.name = cl.name, dt.attribute = cl.attribute;

Class2Part

CCM segment is a set of artifacts, where each artifact is a physical part of the component executor and provides at least
one facet. Each segment encapsulates independent state and is capable of being independently activated. The CCM Profile
uses the metamodel element Class to model a segmented implementation structure for a component implementation
(executor). UML 2 provides a new concept Part (metamodel element Property from InternalStructures). A part declares
that an instance of the classifier may contain a set of instances by composition.
74 UML Profile for CORBA and CORBA Components Adopted Specification

Class2Part (cl, part)
FORALL UML1Assoc ass LINKING UML1Class cl, UML1Class seg
WHERE cl.stereotype = "CORBAComponentImpl" AND seg.stereotype = "CORBASegment"
CREATE UML2Class cl2
SETTING cl2. stereotype = "CORBAComponentExecutor", cl2.name = cl.name
CREATE UML2Property part IN cl2
SETTING part.stereotype =seg.stereotype, part.name = seg.name, part.isSerialized= seg. isSerialized;

Class2Enumeration

The CORBA Profile uses the UML Class to represent a CORBA IDL enum type. Each element of the enum type is
represented as an UML Attribute of the UML Class, with the same name as the enum element. UML 2 metamodel
provides a metamodel element Enumeration for modelling such data types like IDL enum, whose instances may be any of
a number of user-defined enumeration literals.

Class2Enumeration (cl, en)
FORALL UML1Class cl WHERE cl.stereotype = "CORBAEnum"
CREATE UML2Enumeration en
SETTING en.stereotype = cl.stereotype, en.name = cl.name, en.attribute = cl.attribute;

Association2Port

The metaclass Port is a new metamodel element, which has been added to UML 2. A port is a property of an UML
classifier that specifies a distinct interaction point between that classifier and its environment or between the (behavior of
the) classifier and its internal parts. A Port may specify the services a classifier provides (offers) to its environment as
well as the services that a classifier expects (requires) of its environment. Due to missing port concept in the UML 1.x
metamodel CCM Profile uses metaclass Association for representing component ports in CCM. This has been changed in
the current specification and the UML 2 port definition used for modelling of CCM component ports.

Association2Port(ass, port)
FORALL UML1Assoc ass LINKING UML1Class cl1, UML1Class cl2
WHERE cl1.stereotype = "CORBAComponent" AND cl2.stereotype = ("CORBAInterface" || "CORBAEvent")
CREATE UML2Port pt
SETTING pt. stereotype =ass.stereotype, pt.name = ass.name;

Exception2DataType

In CORBA Profile an IDL exception is represented by UML Exceptions (from CommonBehavior). In the UML 1.x
metamodel, metaclass Exception is derived from metaclass Signal. UML 2 metamodel doesn't contain a metaclass
Exception, exceptions that may be raised during an invocation of an operation are representing by an abstract metamodel
element Type, which serves as a constraint on the range of values represented by a typed element. CORBA&CCM Profile
represents an IDL exception by UML DataType element.

Exception2DataType(ex, dt)
FORALL UML1Exception ex WHERE ex.stereotype = "CORBAException"
CREATE UML2DataType dt
SETTING dt. stereotype =ex.stereotype, dt.name = ex.name, dt.attribute=ex.attribute;
UML Profile for CORBA and CORBA Components Adopted Specification 75

76 UML Profile for CORBA and CORBA Components Adopted Specification

9 Profile Illustration

9.1 Example Scenario Description
The "Simulation" example contains a set of components for simulating an Air Traffic Management (ATM) scenario in a
very simplified way. The main purpose is to demonstrate the general usage of a graphical interface framework inside of
the components while using a real world example context (simulation of ATM).

In the "Simulation" scenario there could be a number of planes, which are tracked by radar station whenever the plains are
in their area of observation. Since the radar stations have only a limited area of observation and are located at different
geographical positions it is important to combine the information that is provided by each of the radar station into one
single picture.

The example contains following CORBA component types:

• Plane: This component represents a plane in the air that can be tracked by a radar station. It has a graphical user inter-
face to receive commands regarding the speed and the heading of the plane. A plane component has a receptacle of
type PlaneInput that is used to provide the current position of the plane to the simulation server. This demonstrates the
usages of a synchronous communication.

• SimulationServer: This component should be instantiated once in a simulation scenario. It retrieves the position of all
planes in a synchronous manner. Radar station can get information about the planes that are in their area of observa-
tion. The simulation server computes this based on the location position provided by the radar stations. This compo-
nent does not expose a graphical user interface.

• Radar: This component simulates a radar station. The component acquires the information about the planes that are
currently in its area of observation by sending a synchronous request to the simulation server. In this request the radar
station provide its own location. The information about the planes is then presented to the user in a graphical form.
Furthermore, the radar station provides the information about the planes in the area of observation to the TAPDisplay
component in a asynchronous manner.

• TAPDisplay: This component obtains information from all radar station about the position of the radar station and the
planes in the area of observation. The TAPDisplay presents the information gathered from all radar stations to the user
in a single view.

9.2 Type Definition
The example use the following IDL3 basic types and exceptions:

9.2.1 IDL notation

module Simulation
{

/* Position e.g. of an airplane */
struct Position{

double longitude;
double latitude;

 double altitude;};

/* Position of a radar Contact */
UML Profile for CORBA and CORBA Components Adopted Specification 77

struct PolarPosition{
 double angle;
 double distance;};

struct RadarObject{
string identifier;
Position position;};

/* Transponder information */
struct TransponderObject{
 string identifier;
 double altitude;};

/* a sequence of radar contacts */
typedef sequence<RadarObject> RadarData;

/* List of radar contacts submitted to base stations */
eventtype RadarEvent {
 public string radar_identifier;
 public Position radar_position;
 public RadarData radardata;
 public double radius;};

/* dynamic information about airplane position */

/* possibly from FlightGear */
interface PlaneInput {
 void set_position(in string identifier, in Position current_position);};

/* plane */

/* only needed if FlightGear is not available */
component Plane {
 attribute string identifier;

 attribute double initial_longitude;
 attribute double initial_latitude;
 attribute double initial_altitude;
 attribute double initial_course;
 attribute double speed;
 uses PlaneInput sim_server;};
home PlaneHome manages Plane {};

interface RetrieveRadarData {

 /* callculates the List of radar contacts visible for a given position of a Radar */
 RadarData get_data(in Position radar_position, in double radius);};

component SimulationServer{
 provides PlaneInput the_input;
 provides RetrieveRadarData radar_output;};
home SimulationServerHome manages SimulationServer {};

component Radar {
 attribute string radar_identifier;
 attribute double longitude;
78 UML Profile for CORBA and CORBA Components Adopted Specification

 attribute double latitude;
 attribute double radius;
 attribute double pixel_radius;
 uses RetrieveRadarData sim_server;
 publishes RadarEvent to_tac_display;};
home RadarHome manages Radar {};

component TAPDisplay {
 attribute string identifier;

 attribute double longitude;
 attribute double latitude;
 attribute double horizontal_range;
 attribute double vertical_range
 attribute double horizontal_pixels;
 attribute double vertical_pixels;
 consumes RadarEvent from_radar;};
home TAPDisplayHome manages TAPDisplay {};

};

9.2.2 CIDL notation

module Simulation
{
 composition session PlaneImpl {
 home executor PlaneHomeImpl {
 implements PlaneHome;
 manages PlaneSessionImpl;};};

 composition session SimulationServerImpl {
 home executor SimulationServerHomeImpl {
 implements SimulationServerHome;

 manages SimulationServerSessionImpl;};};

 composition session RadarImpl {
 home executor RadarHomeImpl {
 implements RadarHome;
 manages RadarSessionImpl;};};

 composition session TAPDisplayImpl {
 home executor TAPDisplayHomeImpl {
 implements TAPDisplayHome;
 manages TAPDisplaySessionImpl;};};
};
UML Profile for CORBA and CORBA Components Adopted Specification 79

9.3 UML Example diagrams

Figure 9.1 - CORBA Package

Figure 9.2 - User-defined data types, interfaces and components
80 UML Profile for CORBA and CORBA Components Adopted Specification

Figure 9.3 - Compositions

Figure 9.4 - Composition description for Plane component
UML Profile for CORBA and CORBA Components Adopted Specification 81

Figure 9.5 Assembly package and component package content for the Plane component

Figure 9.6 - Component Implementation description
82 UML Profile for CORBA and CORBA Components Adopted Specification

Figure 9.7 - Initial Configuration Description
UML Profile for CORBA and CORBA Components Adopted Specification 83

84 UML Profile for CORBA and CORBA Components Adopted Specification

Annex A References

[1] Meta Object Facility (MOF) Core Specification, Version 2.0, OMG document formal/2006-01-01

[2] CORBA Components Specification, OMG document formal/02-06-65

[3] Unified Modeling Language (UML) Specification, Version 2.0, OMG document formal/03-03-01

[4] Unified Modeling Language (UML) Superstructure Specification, Version 2.1.1: OMG document formal/07-02-05

[5] Unified Modeling Language (UML) Infrastructure Specification, Version 2.1.1: OMG document formal/07-02-06:

[6] UML 2.1.1 XMI file: OMG document ptc/06-10-06

[7] UML Diagram Interchange Specification: OMG document formal/06-04-04

[8] UML OCL Specification, Version 2.0: OMG document formal/06-05-01

[9] CORBA Component Model Specification, Version 4.0: OMG document formal/2006-04-01

[10] The UML Profile for CORBA, OMG document formal/02-04-01
UML Profile for CORBA and CORBA Components Adopted Specification 85

86 UML Profile for CORBA and CORBA Components Adopted Specification

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 How to Read this Specification
	6.3 Acknowledgements

	7 CCM Metamodel
	7.1 Overview
	7.2 BaseIDL Metamodel
	7.2.1 Typing
	7.2.2 Containment
	7.2.3 Modules
	7.2.4 Interfaces
	7.2.5 Operations
	7.2.6 Attributes
	7.2.7 Values
	7.2.8 Exceptions
	7.2.9 Parameters
	7.2.10 BaseIDL Constraints

	7.3 ComponentIDL and Streams Metamodels
	7.3.1 Component Model
	7.3.2 Component Homes
	7.3.3 Streams
	7.3.4 Containment
	7.3.5 ComponentFeature
	7.3.6 ComponentIDL Constraints

	7.4 CIF Metamodel
	7.4.1 Composition
	7.4.2 Component and Home Executors
	7.4.3 Segments
	7.4.4 CIF Constraints

	7.5 Deployment and Configuration Metamodel
	7.5.1 Implementations
	7.5.2 Assembly Package
	7.5.3 Properties
	7.5.4 Files
	7.5.5 Containment
	7.5.6 Deployment Constraints

	7.6 CCMQoS Metamodel

	8 UML Profile for CORBA and CORBA Components
	8.1 BaseIDL Profile
	8.1.1 CORBA Module, Interface, Value, Constant Stereotypes
	8.1.2 Other stereotypes: CORBA Types
	8.1.3 Tabular representation
	8.1.4 Constraints

	8.2 ComponentIDL Profile
	8.2.1 Stereotypes
	8.2.2 Tabular representation
	8.2.3 Example

	8.3 CIF Profile
	8.3.1 Stereotypes
	8.3.2 Tabular representation
	8.3.3 Constraints
	8.3.4 Example

	8.4 Deployment Profile
	8.4.1 Stereotypes
	8.4.2 Tabular representation
	8.4.3 Constraints
	8.4.4 Example

	8.5 CCMQoS Profile
	8.5.1 Tabular representation
	8.5.2 Constraints
	8.5.3 Example

	8.6 UML Profile for Lightweight CCM
	8.7 Differences and migrations between CORBA based Profiles

	9 Profile Illustration
	9.1 Example Scenario Description
	9.2 Type Definition
	9.2.1 IDL notation
	9.2.2 CIDL notation

	9.3 UML Example diagrams

	Annex A References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

