Lﬂ ”] [a

OBJECT MANAGEME

UML Profile for CORBA and CORBA
Components Specification

Version 1.0

Date: April 2008

OMG Document Number: formal/2008-04-07

Standard document URL: http://www.omg.org/spec/CCCMP/1.0/PDF

Associated files*: http://mwww.omg.org/spec/CCCMP/20070501 (XMI)
http://www.omg.org/spec/CCCMP/20070502 (Metamodel)

* original files: ptc/07-05-15 (XMI), ptc/07-05-16 (Metamodel)

Copyright © 2006, Fraunhofer Institute FOKUS
Copyright © 2008, Object Management Group
Copyright © 2006, Thales

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The materia in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you afully-paid up,
non-exclusive, nontransferable, perpetual, worl dwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specificationsis for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercia purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be required by
any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communi cations regul ations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entirerisk asto the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD FA.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™ CWM Logo™, IIOP™ MOF™ | OMG Interface Definition Language (OMG IDL)™ , and OMG Systems
Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize devel opers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software devel oped under the terms of this license may claim compliance or conformance with this specification if and only if
the software complianceis of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software devel oped using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s|ssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http: //mww.omg.org, under
Documents, Report a Bug/lssue (http://www.omg.org/technol ogy/agreement.htm).

Table of Contents

PrETACE .. ot i
L S OO P i 1
2 CONTOIMANCE ...uiiiiiieieeeie e e e e e eaannans 1
3 Normative ReferenCeScouuiiiiiiiiii e 1
4 Terms and DefinitioNSviiiiiiiii e 2
5 SYMDBOIS ..o 3
6 Additional INformationcooiiiiiiiii s 3
6.1 Changes to Adopted OMG SPEeCIfiCatIONScoocuviiiriiieeiiiiiiiiieee e 3

6.2 How to Read this Specificationcooooiiiii i 3

6.3 ACKNOWIEAQEMENLSccooiiiiii it 3

7 CCM Metamodelcooeuuniiiieii e e 5
7.1 OVEIVIBW ..t ei ettt ettt ettt e e e e e ettt e e e e s e et bbbt e e e e e e e s nabbeeeeeeas 5

7.2 BaseIDL MetamOdelcooiiiiiiiiiiiieiiie s 6

% R Y/ o1 oo PP PT TP UPPTTPR 7

7.2.2 CONTAINIMENT .ottt e e e e e e e e s e bbb b e e et e e ea e e e e e aaaaaanbbebeeeeaaaaaaeaeas 7

7. 2.3 MOUUIES ettt et e e e e e e e bbbttt e e e e e e e e e s e nnbbeareeeaaaaens 8

7. 2.4 INTEITACES ..eeeieiiiiie ettt e ettt et e e e e e e e e s e nb e aeeaae s 8

7.2.5 OPEIALIONS ...oiiiiiiii ittt e ettt e e e e e e e e e e e aab bbbttt e e e e ee e e e e e s aaaanbbnbbeeeaaeaaas 9

T.2.6 AUITDULES ..ottt e e e e e e e e e e e e e e e s e e s e bbb e eeeeeaaaaeas 9

T.2.7 VAIUBS ...ttt et e e e e e e e e bbbttt et e e e e e e e e e s e e anb bbb e e eaaaa s 9

7. 2.8 EXCEPLIONS ..ottt ettt e ettt e e e e e e e e e e eeaaaa s 10

7. 2.9 PArBIMETEIS ...ttt ettt a e e e e e e e e e e e e e eeeeeeeeseesansbnbanan s 10

7.2.10 BASEIDL CONSIIAINTSeeiiiiiiieeiiieiiiittiee et e e e et e e e e e e e e e e bbb e eeeeaaaaaeas 10

7.3 ComponentIlDL and Streams MetamodelScoooviiiiiiiiie i, 11

7.3.1 ComPONENt MOAEL ... 12

7.3.2 COMPONENE HOMES ...ooiiiiiiiiieieieeiie ettt e e e s e e s r e e e e e e e 12

S TS T 1 (== 0 L PP 13

RS I o] g1 =1] 0 1=] o | PRI 14

7.3.5 COMPONENTFEALUIEuiiiiiiiieieieiiieti ettt e e r e ee e e e 14

7.3.6 CompoNENtIDL CONSIIAINTSccciiiiiiiieeiiiiiiee ettt e e e e ribreeeeeaaes 15

7.4 CIFMetamodel ... 19

7.4.1 COMPOSITION eeiiiiiiiieeiittit ettt e et e e e e bbbt e e e st et e e e st be e e e e s anbbbeeeeaanbneeeeesae 21

7.4.2 Component and HOME EXECULOIScoiiuiiieeiiiiiiie ettt 21

T.4.3 SEOMENTS ..oeieeiiiiiee ettt e e e e e e e s e e e e e e et e e e e e e s e s n e reeeeeeas 22

A O O | @0 151 1 -]] PR 22

7.5 Deployment and Configuration Metamodelcccooooiiiiiiiiiiiiieee 22

AT A 10T o] (=T g T=T) = o) 25

UML Profile for CORBA and CORBA Components, v1.0 i

7.5.2 ASSEMDIY PACKAJE ...uuviiiiii it 27

TG I md (0] o= 4 1= 30

75,4 FHlES e e e e e e e e e e 30

7.5.5 CONTAINMENT ...oiiiiiiiiieii ettt e e e e e e e s e s e aab b b e e e e e e e aeeeeeesanannnnne 31

7.5.6 Deployment CONSIIAINTSciiiiiiiiiiiii e e e 31

7.6 CCMQOS MEtamMOUE!ceiiiiiiiiiiiiiiiie e 31

8 UML Profile for CORBA and CORBA Componentscc....... 35
8.1 BASEIDL PrOfileoueiiieiiiiiiiiiiiiiiiiiieeeeeeeee ettt a e e e e e e e e e 37

8.1.1 CORBA Module, Interface, Value, Constant Stereotypescccvvevvevvvvvevnnnnnnnnn. 37

8.1.2 Other stereotypes: CORBA TYPESccoviiiiiiieeeeeiie st e e 42

8.1.3 Tabular Representationoooviiiiiiiiiiiiiiis e s 52

8.1.4 CONSIIAINTS ...eeeiiiiiiieeeii ittt e e e e et e e e e e e e e e e e e e bbb e e e e e e e aeeeeeeaaaananenenees 53

8.2 ComponeNntIDL Profilecoviiviiiiiiiiiiieiiei 57

S T R Y (=] (=10 11 o [T ST PP TP 57

8.2.2 Tabular REPreSENtatiONceiiiiiii it e e 60

B.2.3 EXAMIPIE ...ttt e et e e e e e e e e e e e e aaa 63

S TG T O o o 11 = PP 65

S IR T Ry (=] £=T0 11/ o [T T PP TP 65

8.3.2 Tabular REPreSENtatioNccciiiiiiiiiiiiiie e 66

RS I 0o 11 1= 11 1 £ T PP PP TR 67

8.3.4 EXAMIPIE .ottt e e e e e e e e e 68

8.4 Deployment Profile ... 69

8.4.1L STEIEOIYPES ..eeeiiiiiiee e ittt ettt et e e e e e e et et e e e e e 69

8.4.2 Tabular REPrESENTALIONoouiiiiieiiiiiiie ettt 71

S T N @0 11 = 11 1 £ USSR 72

8.4 4 EXAMPIE et 72

8.5 CCMQOS PrOfile e e 74

8.5.1 Tabular REPreSENtAtiONceeiiiiiiieeieeiiiiiieir e e e e e s s s e e e e e e e e e s e annrneeees 75

I 0] 111 = 1 | £ TP RPTPP 75

TSI TN e T o] o] = P 76

8.6 UML Profile for Lightweight CCMcoooiiiiiiiiiiiiieeeeii e 76

8.7 Differences and Migrations between CORBA based Profiles 79

9 Profile HUSLratioNcoveviiiiei e 85
9.1 Example Scenario DESCIPLIONcoviiiiiiiiiiiiiiiee e 85

9.2 Type DEfiNItiON ..cooooviiiiiiiiiiiieee 85

9.2.1 IDL NOTALION ..etteeiieiieeee ettt ettt e e e e e e s s e bbb b e e e e e e e e e e e e snnnenenees 85

9.2.2 CIDL NOEALION ..eeiiiiiieiiieiiiiiittee ettt e ettt et e e e e e e e s e b b ae e e e e e e aeeeeeeaanannnnne 87

9.3 UML Example DIagramsccovvviiiiiiiiiiieieeee et 88

A - RETEIENCES ..o 93
INAEX .. 95

UML Profile for CORBA and CORBA Components, v1.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG's specifications include: UML® (Unified
Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all
OMG Specifications is available from the OMG website at:

http://mww.omg.org/technol ogy/documents/spec _catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
. XMI

. CWM

. Profile specifications.

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
¢ CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
. CORBA serviceCORBAfacilities

UML Profile for CORBA and CORBA Components, v1.0

. OMG Domain specifications
. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. (as of January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as 1SO standards. Please consult http://www.iso.org

Intended Audience

This specification is intended primarily for CORBA and CORBA Component Model (CCM) vendors and CORBA/
CCM tools developers. End-users may find the specification useful to design CORBA and/or CCM based
applications.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues

Readers are encouraged to report any technical or editing issues/problems with this specification by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/lssue
http: //www.omg.org/technol ogy/agreement.htm.

iv UML Profile for CORBA and CORBA Components, v1.0

1 Scope

The Common Object Request Broker Architecture (CORBA), is the Object Management Group’s standard architecture for
distributed object systems. CORBA allows applications to communicate with one another no matter where they are
located or who has designed them. CORBA 1.1 was introduced in 1991 by Object Management Group (OMG) and
defined the Interface Definition Language (IDL) and the Application Programming Interfaces (API) that enable client/
server object interaction within a specific implementation of an Object Request Broker (ORB).

CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying how ORBs from different vendors
can interoperate.

The CORBA Component Model (CCM) is a comprehensive component standard based on the reliable and well-proven
CORBA architecture. It contains concepts that allow multi-interface components, event based communication, port based
configuration, and flexible implementation structures. These concepts are specified in the CCM metamodel defined in the
OMG CORBA Components Specification, formal/06-04-01 and the existing UML Profile for CORBA Components
specifies how to represent these concepts using UML 1.5. The new version of UML (UML2.1) has brought new powerful
concepts like Structured Classifiers “Port” or “Part,” and improved the existing concepts like “Component” and
“Interface.”

This specification provides a UML2 profile that facilitates representation of concepts needed to represent a pure CORBA
or CORBA Components PSM. In conjunction with existing OMG specifications, namely UML2, CORBA, CORBA
Components, and the MOF2, this will result in significant benefits to the CORBA and CORBA Components user
community and the users of MDA in general.

2 Conformance

This specification defines three mandatory conformance points. All CCM Profile implementations must support these
conformance points:

» Implementation of the UML Profile for CORBA, defined in Section 8.1.
 Implementation of the ComponentIDL Profile, defined in Section 8.2.
« Implementation of the CIF Profile, defined in Section 8.3.

An implementation of the Deployment Profile defined in Section 8.4 and CCM QoS Profile defined in Section 8.5 is
optional. Nevertheless, it is recommended to provide deployment and QoS support for CCM Profile implementation.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of any of these publications do not apply.

- CORBA/IIOP Specification, Version 3.0.3
* MOF 2.0 Core Specification
« UML 2.1 Infrastructure Specification

UML Profile for CORBA and CORBA Components, v1.0 1

« UML 2.1 Superstructure Specification

« UML 2.0 OCL Specification

+ CORBA Component Model Specification, Version 4.0

« Streamsfor CCM Specification

» Deployment and Configuration of Component-based Distributed Applications Specification
» QoS for CCM final adopted specification

4 Terms and Definitions

For the purposes of this specification, the terms and definitions given in the normative references and the following apply.

artifact
An element that describes abstractions from programming language constructs like classes.

component
A basic metatype in CORBA that is a specialization and extension of an interface definition.

component type

A specific, named collection of features that can be described by an IDL component definition or a corresponding
structure in an Interface Repository.

facet

A distinct named interface provided by the component for client interaction.

factory
A home operation that supports creation semantics.

finder
A home operation that supports search semantics.

home
A metatype that acts as a manager for instances of a specified component type.

port
A surface feature through which clients and other elements of an application environment may interact with a component.

receptacle

A named connection point that describes the component’s ability to use a reference supplied by some external agent.

2 UML Profile for CORBA and CORBA Components, v1.0

segment
An element that describes a segmented implementation structure for a component implementation.

5 Symbols

CCM CORBA Component Model

CIF Component Implementation Framework
D& C Deployment and Configuration

IDL Interface Definition Language

MDA Model Driven Architecture

PIM Platform Independent Model

PSM Platform Specific Model

UML Unified Modeling Language

6 Additional Information

6.1 Changes to Adopted OMG Specifications

NOTE: This document shall replace the UML Profile for CORBA (formal/02-04-01) and the UML Profile for CORBA
Components (formal/05-07-06).

6.2 How to Read this Specification

Therest of this document contains the technical content of this specification. As background for this specification, readers
are encouraged to first read the CORBA Component Model (CCM) Specification (formal/06-04-01). This document is
fully based on the concepts defined in the CCM Specification, these concepts are specified in form of MOF compliant
CCM metamodel in Chapter 7. Chapter 8 provides the normative definition of the UML Profile for CORBA and CORBA
Components. Chapter 9 provides the “ATM Simulation” example expressed in terms of the defined in Chapter 8 profile.

Although the chapters are organized in alogical manner and can be read sequentialy, this is a reference specification and
is intended to be read in a non-sequential manner. Consequently, extensive cross-references are provided to facilitate
browsing and search.

6.3 Acknowledgements

The following companies submitted and/or supported parts of this specification:

» Fraunhofer Institute FOKUS
« Thales

NOTE: The technology described by this specification is based on the work of the Modelware project (http://
www.modelware-ist.org) and the AD4 project (http://www.ad4-project.com) of the European Commission. The authors
would like to thank the participants of these projects for their contributions and review activities.

UML Profile for CORBA and CORBA Components, v1.0 3

UML Profile for CORBA and CORBA Components, v1.0

7 CCM Metamodel

The CCM metamodel defines the abstract language of a modeling language that supports modeling general CCM
concepts. This metamodel defines a set of modeling elements represented as metaclasses. A concrete syntax must define
the specific notation rules for the graphical representation of this modeling language. In our case the modeling language
is UML2 and the concrete syntax for modeling CCM applications with UML2 does not exist yet. The UML profile that
will be introduced in the next section supports the representations of CCM concepts in terms of UML2 models.

7.1 Overview

Streams

BaselDL ComponentiDL CIF

QosFramewark CCMOos Deployment

Figure 7.1- CCM Metamodel package structure

As shown in Figure 7.1 the complete CCM concept space consists of further packages: BaselDL, ComponentIDL, CIF
(Component Implementation Framework), Deployment, Streams, and CCMQoS. The QoSFramework package provides
metamodel for the description of QoS properties and is defined in the “UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms”’ specification.

The Basel DL package is a MOF-compliant description of the pre-existing CORBA Interface Repository. This metamodel
has been standardized in formal/06-04-01.

The ComponentIDL package expresses the CORBA Component Model and based on the concepts already specified in the
Basel DL Package. This metamodel has been standardized in formal/06-04-01.

The CIF package contains metaclasses and associations for definition the programming model for constructing component
implementations, and is based on the reference ComponentIDL metamodel. This metamodel has been standardized in
formal/06-04-01.

The Deployment package is a MOF-compliant extended description of the Deployment and Configuration concepts for
CCM. This metamodel describes concepts like assembly or component instance, and can be used for generation of XML
deployment description.

The Streams package extends the CCM metamodel by providing additional means for modeling of communications of
continuous data streams between CORBA components.

UML Profile for CORBA and CORBA Components, v1.0 5

The CCM QoS package based on the standardized QoSFramework package mentioned above and extends the scope of the
CCM metamodel to QoS property definition for CORBA components.

7.2 BaselDL Metamodel

The first goal of the CCM metamodel is to express the extensions to CORBA IDL defined by the CORBA Component
Model Standard. Since these extensions are based on the previously-existing IDL, it is not possible to define a MOF-
compliant metamodel for the extensions without defining a MOF-compliant metamodel for the IDL base. Thus, the CCM
Standard defined the first MOF Package, entitled BaselDL. BaselDL is a MOF-compliant metamodel of the pre-existing
CORBA Interface Repository (IR) and contains all CORBA types. As shown by Figure 7.1, all further packages are

dependent upon the BaselDL Package.

f £ Contained
ModuleDed Cantainar Sofinesdn Contmng A e
—_ —eidentfier S L
el Sreg [o gefFiberedContents() | OO BaseDL Contaied 01 0 |ruposteap Suing = —
kcbapd) - CCME BursalDL Contained ;ws‘ﬂr Sing
— WL“EWJQ,"CM EagsDL C -
(f,.--') OperationDal 71
InbertaceDerrvadF rom -~ Jm&:r'zu isQneary Boclsan |
basa '_D.-WWU 0. d | el parameters. CCM BasslDL ParamesseDel |07 fordensd] |
contants SHing |
InterfaceDiel | irperiaceled | . T”"Klﬂmn 1 T IIII
SRSy Bookegy 7 = X iaAbEract Bookan .I}_]hts:ach-:r.mfrcm f P |
Booksan igCustom Bcclaan | [
_— v isTrue: statds. Eocksan #‘wﬂ:'ﬁ'ﬂfrﬁlﬂ o Il Canmss |
! Fi ! A . II,l
! ;
Yo [hemE COM BasslDL Premivaki Fi ValseFactaryDef . “u,) ,"
A _,r' SequenceDel || ValusMembarDst snceptioeDet, 0
I". beound Emm.;ud.ongp-;—":.ﬂchww Bockean ExceptionDaf
! : pelode Sinng
A , /r \ bt CM. BasDL Foekd [0.] fosrdd)
Y / , b -
1Y _,r __,.-"'f \ LY Field sEncepaon T & 0 “ExCephon
'\:I I A
WatringOef LY f L N kY dertber Sug
bound Cortaliesagrad. o II"'., I| / bound CorbalinsignedLong ., "‘.,I CoRmssEr GoRpsesEs
' S \ | _; . \ /! UnisnFisld
\\ '.\II | ,r; _,_,-"' H“"-m II"._‘ ,-"' v
| / -~ Iy \ labsl Swing LAt 1.
T I 0" §0." getAlribube

. . L
=,
SringDet ﬂ% TypdB) 0r s - AttribartaDoed
bound Cotalinsgnaedlogy | 1OLType f=—] N - e 1
.—13_1 — '_T)'P'd G itFeadonly Bookan
- | e) -
N el = N~
| . / \ T~
& L - LY '--..__H__

FimadDar
digits CorbaShon F T]
scaky CorbaShorn Chscrmananesdty ,.J" Y _\ — \‘ 1 ConstariDel
| ., " o
/ "'., \\ WalusBoxDied [———— constValue Sinng
/ \
/ Y S idergfior. Sng
J \ . directon COM BassiDL Parametarhioos
P /! Y N
UnionDst | \ Lt
re——
uricctembens. CCME BaseDL Unorrsid [0 "|-!:\-'d-medi Y mambers. Sting (0.7
k)
j
StructDel T o
Farwratiide

mwmberd. CCM BasslDL Fisld [0.7) [ohdesed)

Figure 7.2 - BaselDL Metamodel
UML Profile for CORBA and CORBA Components, v1.0

Basel DL definitions focus on interfaces, the operations supported by those interfaces, and exceptions that may be raised
by operations. This requires quite a bit more: a large part of BaselDL is concerned with the definition of data types. This
is because data can be exchanged between client and server only if their types are defined in Basel DL. Figure 7.2 shows
all of the metaclasses and relationships defined in the Basel DL Package.

7.2.1 Typing

In the existing CORBA IR, elements, that are “typed” such as constants, attributes, operations, etc. contain an attribute of
type IDLType. However, the same IDLType can be the type for many elements, so an attribute (with its composition
semantics) is not appropriate. Instead, the abstract Typed metaclass and an association between Typed and the IDLType
metaclasses were specified and eliminate the need for repeating the type attribute.

The abstract metaclass IDLType represents OMG IDL types such as Interface, Array, or IDL primitive types such as long
or string.

IDL provides a number of built-in basic types, and they are shown in Figure 7.2 by the metaclass PrimitiveDef. This
metaclass has an attribute “kind” from type PrimitiveKind. The PrimitiveKind metaclass provides all inherent CORBA
types like short, long, or string.

In addition to providing the built-in basic types, IDL permits you to define complex types. enumerations (EnumDef),
structures (SructDef), unions (UnionDef), sequences (SequenceDef), and arrays (ArrayDef). You can also use typedef
(TypedefDef) to explicitly name a type.

Basel DL permits the definition of constants by the metaclass ConstantDef. This metaclass has an attribute constValue for
fixed value of the constant.

For more information about CORBA types please refer to the CORBA Specification (http://www.omg.org/spec/ CORBAY/).
7.2.2 Containment

Many elements in the metamodel descend from Container or Contained metaclasses.

The abstract metaclass Contained is inherited by all elements that are contained by other BaselDL elements. All elements
within the Basel DL, except definitions of anonymous (ArrayDef, StringDef, WstringDef, FixedDef, and SequenceDef),
and primitive types are contained by other elements. All metaclasses derived from the Contained metaclass hold an
identifier (attribute “identifier”), repositorylD (attribute “repositorylD”), and version (attribute “version”).

The abstract metaclass Container is used to describe a containment hierarchy in the Basel DL metamodel. A Container
can contain any number of elements derived from the Contained metaclass. All metaclasses derived from Container are
also derived from Contained.

UML Profile for CORBA and CORBA Components, v1.0 7

UnionDef
unionktembers: CCM:BaselDL:UnionField [0.7] {ordered}

AttributeDef
isReadonly. Boolean

AliasDef ExceptionDef
\ J ValueMemberDef
Contained
ValueBoxDefl | TypedefDef identifier: String
repositondd: String

wersion: String e
OperationDef

Ac:ontents 0.x

E Def
numbe ConstantDef

members: String [0.7]

constValue: String

Contains ValueFactoryDef

StructDef
members. CCh: BaselDL:Field [0. 7] {ordered}

0.1

definedin
L 4

ModuleDef | | Container Ll ['ValueDef

InterfaceDef

Figure 7.3 - BaselDL Containment hierarchy
7.2.3 Modules

The metaclass ModuleDef defines an IDL module. IDL uses the module construct to create namespaces, therefore the
ModuleDef metaclass is a'so a Container: modules combine related definitions into a logical group and prevent pollution
of the global namespace. Modules can contain any definition that can appear at global scope (type, constant, exception,
and interface definitions). In addition, modules can contain other modules, so nested hierarchies are also possible.

7.2.4 Interfaces

The most important metaclass in the BaselDL is the InterfaceDef, which describes an IDL Interface defined as a set of
operations that an instance of that interface must support. InterfaceDef forms a namespace and is a Container. You can
nest the following contained elements inside an interface definition:

» ConstDef (Constant definitions)
» TypedefDef (all named non-object.type definitions like structure, union, or enumeration)

 ExceptionDef (Exception definitions)

8 UML Profile for CORBA and CORBA Components, v1.0

« AttributeDef (Attribute definitions)
» OperationDef (Operation definitions)

InterfaceDef does not have a private or protected part. By definition, everything in an InterfaceDef is public. Interfaces
can inherit from one or more other Interfaces (association InterfaceDerivedFrom).

Interfaces may be abstract (attribute “isAbstract”) or local (attribute “isLocal”).
7.2.5 Operations

An IDL operation is defined using the metaclass OperationDef and consists of:

» Thetype of the operation's return result (OperationDef inherits from Typed metaclass); the type may be any type that
can be defined in Basel DL. Operations that do not return a result specify the void type.

» A parameter list (attribute “ parameters’) that specifies zero or more parameter declarations for the operation.

« An optional raises expression (metaclass “ ExceptionDef”) that indicates which exceptions may be raised as a result of
an invocation of this operation.

- Anoptiona context expression (attribute “context”) that indicates which elements of the request context may be
consulted by the method that implements the operation.

The attribute “isOneway” specifies which invocation semantics the communication service must provide for invocations
of a particular operation.

7.2.6 Attributes

The metaclass AttributeDef describes an IDL attribute. An attribute definition is logically equivalent to declaring a pair of
accessory functions; one to retrieve the value of the attribute (“get”-function) and one to set the value of the attribute
(“set”-function).

The attribute “isReadonly” indicates that only a “get”-function (the retrieve value function) is allowed.
7.2.7 Values

The metaclass ValueDef describes a CORBA value type. Value types share many of the characteristics of InterfaceDef and
SructDef metaclasses:

« They support description of complex state (i.e., arbitrary graphs, with recursion and cycles).

» Their instances are aways local to the context in which they are used (because they are always copied when passed as
a parameter to aremote call).

 They support both public and private (to the implementation) data members.

« They support single inheritance (of valuetype: association “ValueDerivedFrom”) and can support a single non-abstract
interface (association “ supportss’).

» They also may be abstract (attribute “isAbstract”), custom (attribute “isCustom’), or truncated (attribute
“isTruncatable”).

UML Profile for CORBA and CORBA Components, v1.0 9

7.2.8 Exceptions

The metaclass ExceptionDef permits the declaration of data type like structures, which may be returned to indicate that an
exceptional condition has occurred during the performance of a request. Each IDL exception is characterized by the type
of the associated return value (as specified by the attribute “members’ in its declaration).

7.2.9 Parameters

The metaclass Parameter Def defines an IDL parameter contained in the IDL operation. A parameter declaration has a
directional attribute “direction” that informs the communication service in both the client and the server of the direction
in which the parameter is to be passed.

7.2.10 BaselDL Constraints

[1] An AttributeDef can be defined within an InterfaceDef or within a ValueDef

[1] context AttributeDef inv:
self.definedl n.ocll sKindOf (InterfaceDef) or self.definedl n.ocll sKindOf (ValueDef)

[2] An OperationDef must be defined within an InterfaceDef or within a ValueDef

[2] context OperationDef inv:
self. definedl n.ocll sKindOf (I nterfaceDef) or self.definedln.ocll sKindOf (ValueDef)

[3] A ValueMemberDef must be defined within a ValueDef

[3] context ValueMemberDef inv:
self.definedl n.ocll sTypeof (ValueDef)

[4] Abstract ValueDefs may only derive from other abstract ValueDefs

[4]context ValueDef inv:
self.isAbstract implies base->isEmpty

[5] base element (if any) refers to a concrete ValueDef

[5] context ValueDef inv:
self.base->notEmpty implies not self.base.isAbstract

[6] AbstractBase refers only to abstract ValueDef metaclass instances

[6] context ValueDef inv:
self.abstractBase->for All(self.isAbstract)

[7] Abstract InterfaceDefs may only derive from other abstract InterfaceDef metaclass instances

[7] context InterfaceDef inv:
self.isAbstract implies base->forAll (isAbstract)

[8] Contained elements have unique hames within their Container

[8] contextContained inv:
contents->forAll (cO, ¢l | cO <> cl implies cO.identifier <> cl.identifier)

10 UML Profile for CORBA and CORBA Components, v1.0

7.3 ComponentIDL and Streams Metamodels

The following UML class diagram describes a metamodel representing the extensions to CORBA IDL defined by the
CORBA Component Model. These extensions are dependent on the types defined in the CORBA Core and called
ComponentIDL, so the metamodel ComponentIDL is dependent on the metamodel BaselDL representing the base IDL
and introduced in the previous section.

All ComponentIDL concepts depicted in the ComponentIDL metamodel are described in the CORBA Components
Specification, thus, for more details please refer to the document formal/06-04-01.

Figure 7.4 shows the extended metaclasses from the Basel DL metamodel InterfaceDef, ValueDef, and OperationDef
indicated with grey color.

InterfacalarnvadFrom

arati base 0. [L derived 0,
P onDef providesitf
/g T InterfaceDaf 1
*, e =
; \, lisAbstract Boclean e
/ \\ isLocal Boolsan L5
supportstt § 0, supgorsit o = b ¢ uses_tped by
FactoryDef FinderDef
*
factones ‘P'0." findars 7 0 * uses_def |0
UsesDef prowides_pyped_by
COMPONEN_SUpport multiple: Boolean
home.{BcIENY home, finder home_supparts ||a.::-a.p.'|mc:|:-:a"'*”r nr
1 (:(I‘rl[)l]rli-!rll IH(:EFJl.’-JI:li—."
homedef 1 homedef e
P
COMPOnBnts o comp provides_def 0.
HomeDef cnmedef . 1
. | ComponentDef FrovidesDed|
0 1 comp facet
H : e ROME b
0.7 homeEnd companant_hame componentEnd g componsnt_facet o
com| . 1 4
homeEnd | 0. f"’x: _‘,.-f; ?fcmp ._T;'Emp ™~
- LOIMp
N _,e-"‘-’ -// Py \\
SIS COmpanant_smits _etmponent publlshn:‘!f compongnt_siriks AMPONENL_SOUICEs
prrnary_key.[7 q - _,:"" o ff .\.h“-
P 7 COMPONent_consumes .
ValusDef - - somcess. 0.*
emiitss 0"~ publishess 0.*" ‘:“"”””‘9"5‘-/0 I Sinkssy 0 3 - Dl
= SinkDef ourceDe
EmitsDef |PubllshasDal‘| ConsumssDef
\'1
~ ’ .
. 4 FOUpEs S,
\ ",
PN [‘»/ ones 0. |LL groupedTypes 0.1 .
EventDef |hpe avent_port| EventPonDef StreamTypeDef Iﬂtrﬁam o - I'\ﬁ ird
[T eveni_pon_typed_by g » = Sireem_par !SmamPonDﬁ
efream_port_typed_by 0L

Figure 7.4 - Comp

UML Profile for CO

land. Stream Typelsfind 'r1

onentIDL Metamodel

RBA and CORBA Components, v1.0

7.3.1 Component Model

The central metaclass in the ComponentlDL metamodel (Figure 7.4) is the ComponentDef metaclass that represents a
CORBA Component type. A component definition in the CORBA Components Specification implicitly defines an
interface (InterfaceDef) that supports (see the association “component_supports’ between ComponentDef and
InterfaceDef metaclasses) the features defined in the component definition body. ComponentDef metaclass extends the
concept of an interface definition (inherits from InterfaceDef metaclass) to support features that are not supported in
interfaces. Component definitions also differ from interface definitions in that they support only single inheritance from
other component types but they can inherit from more than one interface (the association “component_supports”).

Components support a variety of surface features through which they can interact with each other. These surface features
are called ports. The ComponentDef metaclass supports four kinds of ports (facets, receptacles, event sink, and event
source) defined in the CCM Standard and two additional kinds of ports - stream sink and stream source defined in the
Streams for CCM Specification (ptc/05-07-01):

1. Themetaclass ProvidesDef represents facets, which are interfaces (InterfaceDef) provided by the component. It isa
synchronous operational communication mechanism between components.

2. The metaclass UsesDef represents receptacl es, which are named ports that define the component’s ability to use a
reference supplied by other components. There are two receptacle kinds. simplex receptacles can only use asingle
reference, multiplex receptacles can use several references. The boolean attribute “multiplel tf” represents the kind of
receptacles. It is a synchronous operational communication mechanism between components.

3. The metaclass ConsumesDef represents event sinks, which are named ports into which events of a specified type may
be pushed. It is an asynchronous communication mechanism between components.

4. The metaclasses EmitsDef and PublishesDef represent event sources, which are named ports that emit events of a
specified type to one (EmitsDef) or more (PublishesDef) interested event consumers. It is an asynchronous
communication mechanism between components.

5. The metaclass SnkDef represents stream sinks, which are named portsinto which continuous data called streams of a
specified type may be pushed. It is an asynchronous communication mechanism between components.

6. The metaclass SourceDef represents stream sources, which are named ports that emit continuous data of a specified
type to the stream consumer. It is an asynchronous communication mechanism between components.

As described above CORBA component model supports a publish/subscribe event model and contains event type
declaration (metaclass EventDef), which is a restricted form of CORBA value type (inherits from the Basel DL metaclass
ValueDef). The metaclass EventPortDef is an abstract class for all event ports.

7.3.2 Component Homes

CORBA Components are managed by homes (metaclass HomeDef, see Figure 7.4), which are CORBA Interfaces (inherit
from InterfaceDef) providing operations to manage component life cycles, and optionally, to manage associations between
component instances and primary key values (association key_home). Components are independent of their homes;
however, a home must specify exactly one component that it manages (see the multiplicities of the association
component_home). Multiple different home types can manage the same component type, though they cannot manage the
same set of component instances.

A home may include zero or more operation declarations, where the operation may be a factory operation (FactoryDef),
a finder operation (FinderDef), or a normal operation or attribute.

12 UML Profile for CORBA and CORBA Components, v1.0

7.3.3 Streams

As mentioned above, the CORBA Component Model supports two different kinds of communication: synchronous
operational communication and asynchronous event communication. The OMG document “ Streams for CCM
Specification” (ptc/05-07-01) extends the CORBA Component Model with an optional conformance point: native support
for the communication of continuous data streams between CORBA components. It extends the Basel DL and
ComponentI DL metamodels standardized in CORBA Components Specification with constructs to model stream-specific
ports on a component shown in Figure 7.4. Furthermore, it defines a stream type to be used for the classification of data
streams:

IDLType

SourceDef SinkDef

0.1

+hased_type

stream_type

+Hrom_idl_type & 1

+stream_type +stream_port
StreamTypeDef 1

+ kind StreamTypeDeflind

stream_port_typed_by 0.7 StreamPortDef

+groupedTypes 'N +ones 0.
0.1

aroupes

wenumerations
StreamTypeDefKind

+ BASIC_STREAM: ;

+ CONSTRUCTED STREAM: o

+ WALUE_STREAM: + identifier. String

+ RAW _STREAM: + repositoryld: String
+ wersion: String

Figure 7.5 - CCM Stream Metamodel

Figure 7.5 introduces an additional kind of port for the communication of stream data, called a stream port (abstract
metaclass SreamPortDef). A stream port can be a source port or a sink port (see Figure 7.4). A source port produces
stream data of a stream type. A sink port consumes stream data of a stream type. The metaclass SreamTypeDef represents
a stream type. The stream type may be of kind (attribute “kind” of the metaclass SreamTypeDef) basic, constructed,
value, or raw defined by SreamTypeDefKind enumeration (from ptc/2005-07-01):

» Basic stream types are defined as concrete data formats for the information content of streams, which are not
necessarily defined using IDL, but are encoded some other way. Basic streams are used to transport streams of encoded
data, typically audio or video data. The datais consumed and produced by component implementation logic as octet
sequences.

 Value stream types are a subtype of basic streams, which transport consecutive marshaled instances of data types
specified in asubset of IDL. If the IDL datatype of avalue stream is octet, it is indistinguishable from a basic stream
that does not have a specified IDL datatype, and is not considered a value stream type.

» Constructed stream types are a hierarchical grouping of multiple basic stream types or other constructed types,
indicating the ability to produce or consume any of the basic or value types.

UML Profile for CORBA and CORBA Components, v1.0 13

« Raw streams are not typed, and intended for applications where the format of the stream does not influence the
functionality of acomponent. Examples for the applicability of thistype are acomponent that encrypts or compresses a
data stream or a component that reads from or writesto afile.

7.3.4 Containment

The following UML class diagram describes the derivation of the metamodel elements from the BaselDL Container and
Contained elements:

+definedin Cortains corients| Contained
Containar - |
01 0" e identifier String
{2+ repoatondd. Stang
A waran. Stang
| WA, - : : = y
_.-'h b Y pr ;-.I L ™y x""__
/ o ProvidesDisf -~ / | *, S
/ . \—‘ _f,-' I .
Interfacaief ValuaDef __,.f | StrsamTypeDet
4 W I

CompanesntDef I-inmu[:la‘r | A El.ren!P af
| —— EvantDaf e -:’ |
StreamPertDel OperationDef
Cbl‘lSLl‘l'l‘ltSDH -
AL 4%

| | \
tuhllshasDqu / \ { \
/ /
Emltsl:lel' L !
SinkDef | |SourceDef| | FinderDief l FactoryDef
—

Figure 7.6 - ComponentIDL Containment hierarchy

Since the ComponentDef and HomeDef metaclasses inherit from InterfaceDef they form also naming scopes.
7.3.5 ComponentFeature

An instance of ComponentDef describes a CORBA Component in an abstract manner. The definition contains a
description of all features of a component that are visible from the outside. In detail, the features supported by a CORBA
Component are:

» The component equivalent interface, containing all implicit operations, operations and attributes that are inherited by a
component (also from supported interfaces), and attributes defined inside the component.

« Thefacets of acomponent; that is, al interfaces that are provided by the component to the outside.
» Thereceptacles of acomponent; that is, all interfaces that are used by a component.
« Theevents, which a component can emit, publish, or consume.

« The streams, which a component can produce or consume.

14 UML Profile for CORBA and CORBA Components, v1.0

If a component is going to be implemented, all these features must be handled by the component implementation. To
provide a common basis for defining the related implementation definitions (as part of CIF) the abstract metaclass
ComponentFeature is defined. The metaclasses ComponentDef, ProvidesDef, UsesDef, and EventPortDef are defined as
subclasses of the abstract metaclass ComponentFeature (see Figure 7.7):

ComponentFeature

idesDef /

ComponentDef

UsesDef

EventPortDef StreamPortDef

/i‘? i
PublishesDef SinkDef
SourceDef
EmitsDef

ConsumesDef

Figure 7.7 - ComponentFeature abstract metaclass

7.3.6 ComponentIDL Constraints

[9] A ProvidesDef can be defined only within a ComponentDef.

[9] context ProvidesDef inv:
self.definedl n.ocl Type = ComponentDef

[10] A UsesDef can be defined only within a ComponentDef.

[10] context UsesDef inv:
self.definedl n.ocl Type = ComponentDef

[11] An EventPortDef can be defined only within a ComponentDef.

[11] context EventPortDef inv:
self.definedl n.ocl Type = ComponentDef

[12] A FactoryDef can be defined only within a HomeDef.

[12] context FactoryDef inv:
self.definedl n.ocl Type = HomeDef

[13] A FinderDef can be defined only within a HomeDef.

[13] contextFinderDef inv:
self.definedl n.ocl Type = HomeDef

UML Profile for CORBA and CORBA Components, v1.0 15

[14] A PrimaryKeyDef can be defined only within a HomeDef.

[14] context PrimaryKeyDef inv:
self.definedl n.ocl Type = HomeDef

[15] All of the ProvidesDef metaobjects that populate the Association component_facet also populate the
ComponentDef's inherited Contains Association.

[15] context ProvidesDef inv:
component.contents->includesAll (facet)

[16] All of the UsesDef metaobjects that populate the Association component_receptacle also populate the
ComponentDef's inherited Contains Association.

[16] context UsesDef inv:
component.contents->includesAll (receptacle)

[17] All of the EmitsDef metaobjects that populate the Association component_emits also populate the
ComponentDef's inherited Contains Association.

[17] context EmitsDef inv:
component.contents->includesAll (emitss)

[18] All of the PublishesDef metaobjects that populate the Association component_publishes also populate the
ComponentDef's inherited Contains Association.

[18] contextPublishesDef inv:
component.contents->includesAll (publishess)

[19] AIll of the ConsumesDef metaobjects that populate the Association component_consumes also populate the
ComponentDef's inherited Contains Association.

[19] context ConsumesDe inv:
component.contents->includesAll (consumess)

[20] All of the SinkDef metaobjects that populate the Association component_sinks also populate the
ComponentDef's inherited Contains Association.

[20] context SinkDef inv:
component.contents->includesAll (sinkss)

[21] All of the SourceDef metaobjects that populate the Association component_sources also populate the
ComponentDef's inherited Contains Association.

[21] context SourceDef inv:
component.contents->includesAll (sourcess)

[22] All of the FactoryDef metaobjects that populate the Association home_factory also populate the HomeDef's
inherited Contains Association.

[22] contextFactoryDef inv:
home.contents->includesAll (factories)

[23] All of the FinderDef metaobjects that populate the Association home_finder also populate the HomeDef's
inherited Contains Association.

16 UML Profile for CORBA and CORBA Components, v1.0

[23] context FinderDef inv:
home.contents->includesAll (finders)

[24] The ValueDef specified as the event type must descend directly or indirectly from Components::EventBase.

[24] contextValueDef inv:
type.descendsFrom (" Components:.: EventBase")

descendsFrom (absoluteName : string) : Boolean
{ descendsFrom (absoluteName) =
if self.absoluteName = absoluteName then

true
else
if base->isEmpty then
false
else
if base.descendsFrom(absoluteName) then
true
else
false
endif
endif
endif

}

[25] The return type of FactoryDef must be the same as the type of the component that the FactoryDef's home
manages.

[25] context FactoryDef inv:
self.type = home.manages.type

[26] The return type of FinderDef must be the same as the type of the component that the FinderDef's home manages.

[26] context FinderDef inv:
self.type = home.manages.type

[27] A ComponentDef C may be derived from at most one base.

[27] contextComponentDef inv:
self.base->size <=1

[28] Furthermore, that one base must be a ComponentDef.

[28] context ComponentDef inv:
self.base->notEmpty implies (base->forAll (ocl Type = ComponentDef)

[29] A ComponentDef may not define operations.

[29] context ComponentDef inv:
self.contents->forAll (ocl Type <> OperationDef)

[30] A supported InterfaceDef of ComponentDef must not be one of the derived forms of InterfaceDef
(i.e., ComponentDef or a HomeDef).

UML Profile for CORBA and CORBA Components, v1.0 17

[30] context ComponentDef inv:
self.supports->forAll (ocll sTypeOf (InterfaceDef))

[31] A HomeDef may be derived from at most one base.

[31] context HomeDef inv:
base.size() <= 1

[32] Furthermore, that one base must be a HomeDef.

[32] context HomeDef inv:
base-> notEmpty implies (base->forAll (oclType = HomeDef)

[33] The valuetype of a primary key must not have private state members.

[34] The valuetype of a primary key must not have members that are interfaces.

[35] The valuetype of a primary key must have at least one state member.

[36] Contraints [33], [34], and [35] apply recursively to valuetype members that are valuetypes.

[33, 34, 35, 36] isAcceptableKeyType (type)

isAcceptableKeyType (valueType : ValueDef) : Boolean

{ valueType.contents.forAll

(c | c.ocll sTypeOf(ValuefMemberDef) implies ¢.OclAsType (ValueMember Def).isPublicMember)
and valueType.contents.forAll (not ocll sKindOf (I nterfaceDef))
and valueType.contents.exists (ocll sTypeOf(ValueM ember Def))
and valueType.contents.forAll (c | c.ocll sKindOf (ValueDef) implies isAcceptableKeyType (c))

[37] Given a home definition H that manages a component type T, and given a home definition H' that manages a
component type T', such that H' is derived from H, then T' must be identical to T or derived (directly or indirectly)
from T.

[38] If H or one of its ancestors defines a primary key K and H' defines a primary key K', then K' must be identical to
or derived (directly or indirectly) from K.

[37,38]

NOTE: Previously-defined additional OCL operation “descendsFrom” and new additional OCL operation “primaryKey”
are used:

context HomeDef inv:
self.base->forAll (baseHome | self.manages.descendsFrom (baseH ome.manages) and
primaryKey (self)->notEmpty implies
primaryKey (self).type.descendsFrom(primaryKey(baseHome).type))

primaryKey (home : HomeDef) : PrimaryKeyDef
{ if home.key->isEmpty then
if home.base->isEmpty then
result = home.key
else
primaryKey (home.base)
endif

18 UML Profile for CORBA and CORBA Components, v1.0

else
result = home.key
endi f }

[39] Basic ComponentDef objects shall not have ports and do not inherit from other components.

[39] context ComponentDef inv:
self.isBasic implies
facets->isEmpty and receptacles->isEmpty and
emitss->isEmpty and publishess->isEmpty and consumess->isEmpty and
sinkss->isEmpty and sourcess->isEmpty and
base->isEmpty

[40] HomeDef objects of basic ComponentDef have only factories and finders, do not inherit from other homes, and
manage only basic components.

[40] context HomeDef inv:
manages->isBasic implies (key->isEmpty and base->isEmpty and manages.isBasic)

[41] If StreamTypeDef object is a constructed stream, then its multiplicity must be more than one, in any other case the
multiplicity is null.

[41] context StreamTypeDef inv:
if self.kind = CONSTRUCTED_STREAM
then
groupedTypes.size() > 0
else
groupedTypes.size() = 0
endif

[42] None of the StreamTypeDef of kind RAW_STREAM can be grouped.[42] context StreamTypeDef inv:

if groupedTypes.size() >0
then
self.alllnstances () -> forAll (' s| skind <> RAW_STREAM)
else
groupedTypes.size() = 0
endif

7.4 CIF Metamodel

A CORBA Component encapsulates its internal representation and implementation. The Component |mplementation
Framework (CIF) metamodel defines the programming model for constructing component implementations described in
Component Implementation Definition Language (CIDL). CIDL is a declarative language for describing the structure and
state of component implementations (for more information please refer to the CORBA Component Model document
formal/06-04-01). Component-enabled ORB products generate implementation skeletons from CIDL definitions.
Component builders extend these skeletons to create compl ete implementations.

CIF metamodel package obviously depends on the ComponentI DL package (see Figure 7.1) since its main purpose is to
enable the modeling of implementations for components specified using the ComponentIDL definitions. The extended
metaclasses ComponentDef, HomeDef, and ComponentFeature from the ComponentI DL package are indicated with gray
color in Figure 7.8.

UML Profile for CORBA and CORBA Components, v1.0 19

The CIF metamodel represented in Figure 7.8 updates the metamodel defined in the CORBA Component Specification
(formal/06-04-01). The updated CIF metamodel contains a new metaclass CompositionDef. This metaclass provides
means for modeling component implementation as a composition of artifacts and will be explained in the next section.

To avoid unneeded complexity and misunderstanding metaclasses ArtifactDef and Policy have been deleted from the
original CIF metamodel. To conform to composition definition in formal/06-04-01 (section 8.2.5) metaclasses
Homel mplDef and ComponentI mplDef have been renamed as HomeExecutor Def and ComponentExecutor Def.

Contalmer i Containad
sdafinedin sconbents |+ 1dentler BIIII:-K;
5 — = mwpositordd. Sting
T prd B 0.5+ version Sting
<0 e, T
., !
M"‘*._
wBNLIMBTENONN
CompositionDef CompanantC ategary
+ catpoory. COM:CIE ComponantCategary + PROCESS
+ SESSION
+ ENTITY
+egrmpdien 0.1 + SERVICE
+ EXTEMSION

COMERS III.'.I'I_I_"II'II'I'D.'-.E.IEI'

+hiome_exeCubor -1!_. 1

HomeDel

+EBS +homaE nd
HomeExeeutorDaf e

0.’ B _irrgdermrs

+hame_irmg ‘0. sharmsEnd 40.*

manages -'-::rr..':.m-':rr Rama

reompansnt_irmgl)1 +COMpanantEnd |1

CompenentExecutorDef) 5595 +eomporsniEnd
e :
0.r COmMponard_implemants 1

CompanentDef

+comparnlimplEnd 1

":-l:"g'f_ll:'l'l‘:i

4-",I'\E|r“'|l'|r‘:. N
] L

SegmentDef _'C_""?J'“"“r provided by *fealres ComponentFeature |
| 1 e

« isBeralizad Booksan

Figure 7.8 - Component Implementation Framework Metamodel

The term executor is used to indicate the programming artifact that supplies the behavior of a component or a component
home. In general, the terms executor or component executor refer to the artifact that implements the component type, and
the term home executor refers to the artifact that implements the component home.

CIF metamodel comprises a set of artifacts that must exhibit specific relationships and behaviors in order to provide a
proper implementation. An overview on these is to be seen in Figure 7.8 and their meaning is explained in the following.

20 UML Profile for CORBA and CORBA Components, v1.0

7.4.1 Composition

The description of a component implementation is a description of aggregate entity, of which the component itself may be
arelatively small part. To denote the set of artifacts that constitute the unit of component implementation, the metaclass
CompositionDef is defined. CompositionDef inherits from the Container Def metaclass and specifies the following
metaclasses: HomeExecutor Def, ComponentExecutor Def, and HomeDef (from ComponentIDL metamodel). The name of
the CompositionDef identifies the name of a scope within the contents of the composition (HomeExecutorDef,
ComponentExecutor Def, and HomeDef) are contained. The attribute “category” of the CompositionDef identifies the life
cycle category of the component implementation ComponentExecutor Def supported by the composition. The attribute has
a type ComponentCategory defined as an enumeration type contained in five possible component categories: service,
session, process, entity, and extension. The component categories service, session, process, and entity are defined and
specified in formal/06-04-01, the extension category is added to the CIF metamodel for indication of vendor specific
extensions done for a component implementation. For example, implementing the QoS extension can be done in a
proprietary way by modifying the container. The QoS for CCM specification defines concepts for developing and
integrating such extension for CCM in a standard way. The extended components differ from plain application
components and should be deployed into containers of a particular type (container category). This type is the extension
container type as defined in Section 5.9 of the QoS for CCM specification.

The most important properties of the component categories are briefly described below:
» Service: no state, no identity, behavior.
« Session: transient state, identity (which is not persistent), behavior.
» Process: persistent state, persistent identity, behavior, which may be transactional.

 Entity: persistent state, identity, which is architecturally visible to its clients through a primary key declaration,
behavior, which may be transactional.

« Extension: vendor specific.
7.4.2 Component and Home Executors

The metaclass ComponentExecutor Def is used to model an implementation for a given component type. It specifies an
association to ComponentDef to allow instances to point exactly to the component that the instance is going to implement.
A ComponentExecutor Def always has exactly one ComponentDef associated while each ComponentDef might be
implemented by different ComponentExecutor Def metaclass instances. ComponentExecutor Def is specified as being a
Container, by doing so, instances are able to contain other definitions.

The ComponentExecutor Def definition optionally specifies executor segments (SegmentDef metaclass), which are
physical partitions of the component executor, encapsulating independent state and capable of being independently
activated. Segments are described in the next section. The only definitions that are allowed to be contained by a
ComponentExecutor Def are instances of SegmentDef.

The metaclass HomeExecutor Def is used to model home executors (implementations). The name of the home executor is
used as the name of the programming artifact (e.g., the class) generated by the CIF as the skeleton for the home executor.
The contents of the HomeExecutor Def describe the relationships between the HomeExecutor Def and other elements of the
composition, determining the characteristics of the generated home executor skeleton. Each instance of HomeExecutor Def
in amodel implements exactly one instance of HomeDef. This relation is modeled by the association implements between
both metaclasses. HomeExecutor Def inherits from the abstract metaclass Container and manages exactly one
ComponentExecutor Def, this relation is modeled by the association “manages.”

UML Profile for CORBA and CORBA Components, v1.0 21

7.4.3 Segments

A component implementation may be monolithic or segmented. A monolithic component implementation is a single
artifact. A segmented component implementation is a set of physically distinct artifacts. Each segment may have a
separate abstract state declaration. Each segment must provide at least one facet defined on the component definition. The
life cycle category of the composition must be entity or process if the component implementation specifies segmentation.
The primary purpose for defining segmented component implementations is to allow requests on a subset of the
component’s facets to be serviced without requiring the entire component to be activated.

The metaclass SegmentDef is used to model a segmented implementation structure for a component implementation. This
means that the behavior for each facet (ComponentFeature abstract metaclass) can be provided by a separate segment of
the component implementation (most likely a separate programming language class in the code generated by the CIF
tools) if necessary. Instances of SegmentDef are always contained in instances of ComponentExecutor Def and therefore
are derived from Contained. SegmentDef has an association to ComponentFeature so that instances must point to facets of
a component that the segment is going to provide. The attribute isSerialized is used to indicate that the access to segment
is required to be serialized or not.

The new CCM specification, version 4.0 obsoletes the original idea of component segmentation defined in pre-existing
versions and allows composition and decomposition on any level, and therefore the ability to add another level of
decomposition on the lowest level. This specification is based on the latest CCM specification and considers any level of
component decomposition; this concept is defined in the Deployment and Configuration metamodel described in the next
section.

7.4.4 CIF Constraints

There are no further additions or constraints on the CIF metamodel.

7.5 Deployment and Configuration Metamodel

Component implementations may be packaged and deployed. A Component package maintains one or more deployable
implementations of a component. It may be installed on a computer or grouped together with other components to form
an assembly. A component assembly is a group of interconnected components represented by an assembly package.
Component and assembly packages are provided as input to a deployment tool. Based on deployment descriptors and user
input, a deployment tool installs and activates component and home instances; it configures component instance
properties and connects them together via interface, event, or stream ports.

The original CCM 3.0 Specification (formal/02-06-65) standardized deployment and configuration process for CCM
applications in the section “Packaging and Deployment”: deployment process steps, architecture, and deployment
descriptors. Deployment descriptors are XML descriptions of component and assembly packages contents and other
deployment information used by a deployment tool. One way for reducing the complexity of the deployment and
configuration process of CCM components in the distributed environment is to have an expressive and robust metamodel
and specific notation for modeling of deployment and configuration information, which can enable the automation of the
entire deployment process of CCM applications (e.g., by generation of deployment descriptions automatically).

However, the original CCM specification defines neither a conceptual base for describing deployment and configuration
requirements of components, nor a high level notation for the presentation of resulting models. The Deployment and
Configuration of Component-based Distributed Applications (D& C) specification (formal/06-04-02) defines metadata and
interfaces to facilitate the deployment and configuration of component-based applications into heterogeneous distributed
target systems in general, in platform-independent manner. The original CCM 3.0 Specification (formal/02-06-65) has
since been superseded by the new CCM 4.0 specification (formal/06-04-01), which describes mappings and extensions of

22 UML Profile for CORBA and CORBA Components, v1.0

the platform-independent model for Deployment and Configuration defined in formal/06-04-02 to CCM, but these
mappings and extensions are not based on those defined in CCM 4 standard MOF metamodel. The reason was that at time
of mapping definition some important concepts like component instance or implementation needed as conceptual base for
deployment and configuration data definition were missing in the CCM metamodel. Thus, additional concepts for
modeling of deployment and configuration data for CCM applications were defined and will be introduced in this section
as a deployment metamodel. In that connection we tried to consider deployment information and concepts defined in both
existing standards: D& C and CCM 4.0 and combine them together to provide a support for new deployment tools for
CCM applications.

UML Profile for CORBA and CORBA Components, v1.0 23

WonolithicimplemurtationDe
: 5 AssamiblyPholel =a%i e ormectiong D B &

sCoemgly 0.0 e i
: - Ty
L N IWWH HM_ComE Rl ponnected INSIBNGE wcomp_engll ”| ConmectionEndDel

+homs_anstuter iy 1 514 ﬂ'l_'ﬂ—fv_ﬁ1
T A R o ‘c

AT At RTINS
actionkind Finderserviceking Finderservice
[root jes) troct Jeaty [ieal}
+ ASSERT + HOMEFINDER + regnamg 9*""3
+ INSTALL + HAMING + sEtvicE COM FinderSericebing
+ TRADING
+ UNDEFHED
aBNLTET ations
ConnectionEndkind aErLmEr A
I
+ COMPOMENTINTERFALE
+ COMPOMENTSUPPORTECINTERFACE + AN _TVPE
+ EVENTCHANNELFORT * SECQUENCE TYPE
+ EVENTPORT + SMPLE_TYPE
+ HOMEINTERFACE * BTRUCT_TWPE
+ SMPLENTERFACE + WALUETYPE_TwPE
& STREAMPORT

Figure 7.9 - Deployment metamodel: main diagram

24 UML Profile for CORBA and CORBA Components, v1.0

The Deployment and Configuration metamodel defines a set of modeling elements represented as metaclasses and extends
the existing CCM metamodel by these new metaclasses. In order to be able to model deployable CCM applications a
concrete syntax must define the specific notation rules for the graphical representation of defined modeling language
(metamodel). In our case we use UML 2: the UML Profile for Deployment and Configuration of CCM applications that
will be introduced in the next section supports the representations of CCM deployment and configuration concepts in
UML 2 models.

Deployment metamodel package depends on the CIF package (see Figure 7.1) since its main purpose is to enable the
modeling of component packages and assemblies, which contain deployable implementation artifacts and instances of
component and home implementations specified in CIF. Figure 7.9 shows all of the metaclasses and relationships defined
in the Deployment metamodel package. The extended CIF metaclasses ComponentFeature, CompositionDef,
ComponentExecutor Def, and HomeExecutor Def are identified with gray color.

7.5.1 Implementations

A component package of a CCM application represented by the metaclass ComponentPkgDef may contain a set of
alternative implementations for one component (see association “realized” between ComponentPkgDef and
ComponentDef metaclasses), for example, implementations for different operating systems, compilers, or ORBs, or
different programming language implementations like JAVA or C++. These implementations, which contain descriptive
information about a particular implementation of the software, are physical units of deployment process and represented
by the metaclass | mplementationDef.

+pkig_C reafizes +realzad 2| ComponentDef

o -
’ T eyt 1
*l:-m?.-; 1 . componantEnd 11

| \
I'.'l.lrIIiJl.IIII:'II'._|ILII| o

ComponentPhgDef

COMntans_impls Y
i ", ,
I} e, ".x
,II i +homeEnd 0"
Hmpts '1';')) - HomeDef
- Engligh
ImplementaticnDef all Comporentimplementation must mplement the saeme Componen Ded motackqect the
| ComponeniPackage is for
! oCL shomseEnd T 1
‘ conbext ComponenlPackags
+|rminl '|I i i impls=>lor8ll (] i mon_impl compos hams_sxecutor homeEnd comporsniBnd = realized ©)
mon farm home_implameants
\
+||'r_'-'|_|:"|'_".l:l 1 LT (U
MonaolithiclmplemantationDef

HomeEwecutorDef

shome_sxacubor

= 7
Hnik 0.7 P

implaments_comp composition_romesmec
) H-"_ _.-'-"

0.1~
A FCOmESSnch
CompositionDef

scarmpos 1
.

Figure 7.10 - Component package and Implementations

UML Profile for CORBA and CORBA Components, v1.0 25

The Deployment & Configuration specification defines two types of component implementations: monolithic or assembly
based implementations. A monolithic implementation is contained in an artifact (e.g., an executable file or library as a
result), an assembly based implementation is a set of interconnected sub-component implementations. The monolithic
implementation is represented by the metaclass MonolithiclmplementationDef, assembly based implementation is
represented by the metaclass AssemblyPkgDef.

The metaclass CompositionDef (see ComponentlDL metamodel) describes internal implementation structure of a

MonolithiclmplementationDef: for each monolithic component implementation one composition description must be
defined.

The ImplementationDef metaclass is described by further ContainedFile and DependentFile, metaclasses, which are
introduced below.

ConfigurationDef CompesitionDef

+ category COMOCIF ComponantCategony

+|F|l'.-'-f-'-.”:-"|f'|'T o1

I *COMPS
inaroanneclions !
implaments_comp
+ass(1 !
LM r‘il N
T
AssemblyPkgDef {aor} MonolithicimplementationDer
VESE
0.1)
H"'x o ", +rmar gl 0,1 L 4
+a55_phgs | 0.7 \“a___ ./" +man_imgd | 1
-, : -
a55_foem i -
contains_phas o mmon_foem
~ P
.
"'\H P
e
ol 1 vimpl 17 reuirgs_on
+hlgs)0 ~
ImplementationDer
campnnernF“nge‘r| vphag vimpls P
- S+ uad String
| 1 containg_impls 1.7
pka_c |0 "
F bk]I\II -
B reqfo. "
realizes jdl_descrption T
", RequirementDel
,
Y
' *,
+Hrahzed_c Hiles 0.

1
ComponentDef IDLFile

Figure 7.11 - ImplementationDef description

The ImplementationDef has the attribute “uuid” that uniquely identifies each instance of the ImplementationDef metaclass
in amodel. The ImplementationDef may have properties (e.g., configuration properties) or non-functional properties (e.g.,
QoS-properties), this feature the metaclass inherits from the metaclass PropOwner Def (see Figure 7.13).

The ComponentPkgDef metaclass can point to the IDL file (metaclass IDLFile) containing an IDL definition of the
component's (or home's) interface definition. A component package can be described by properties like author, title, or
license information. These properties are defined using the abstract metaclass PropOwner Def (see Figure 7.13).

26 UML Profile for CORBA and CORBA Components, v1.0

The RequirementDef metaclass is used to specify features requested by component implementations (I mplementationDef)
like compiler type, programming language, in which the ImplementationDef is realized; or type of operational system (0s)
that the ImplementationDef will work with. These features are described as properties, which the RequirementDef
metaclass inherits from the abstract metaclass PropOwner Def (see Figure 7.13).

The ContainedFile metaclass points to a file that implements the component, for example, a DLL or a .class file. The
“codetype” attribute (Figure 7.14) specifies the type of code, the “entrypoint” attribute is used to specify an entry point to
the code and the attribute “entrypointusage” is used to describe how to use (i.e., invoke) the code.

The ContainedFile, IDLFile, and DependentFile metaclasses are derived from the abstract metaclass File that defines
general information about files like file name, file location, etc. (see Figure 7.14).

The DependentFile metaclass is used to specify environmental or other file dependencies of the ImplementationDef.
When the attribute “action” is set to “assert” (see the enumeration ActionKind Figure 7.9), the installation process must
verify that the dependency exists in the environment. If the attribute is set to “install,” the installation process must install
the dependency file if it does not already exist.

The IDLFile metaclass points to an IDL file. The IDL file is optional: some tools that deploy and execute CCM
applications might need the IDL description to interact with the ports of the application’s component interface.

7.5.2 Assembly Package

An assembly package as a main top object for deployment process. Assembly package may contain component packages
and one description of the initial configuration of a CCM application. An initial configuration is a set of interconnected
component implementation instances often called as an assembly; it is a template for instantiating a set of component
implementations that make up the application and connecting them to each other at run time. This template or description
is used by deployment tools as a main input.

UML Profile for CORBA and CORBA Components, v1.0 27

ExternalinstancelDef
findy Finderseniceled [0 1]
abjectred Sring [0.1]

e Crnac b Ores

AssemblyPigDef |

wad Swring

cormbcbivd_dol_inglancs

end_end [*

| o] o irrercornL 0. 1
hote .,,.,1[ConnactionEndDe £ P T ConnectionDet | conn corfig |ConfigurationDef
= fkind COM- Deployment ConnectionEnding L ' - 4
or L et _ il conn i RIS 1
s - J J
1 connection_snd2 1 L]
comp_and | 0.° cif |-| 0" config’ config 0 *

conneched_featurs ’

b
hidwanre 0 1 A

/ h
ComponantFestun) theleatre comp_inst RegisterinstanceDef hest_colocs pe_collocs

o *|Sndty FinderSendceDed

1 regrstered_featre

——
TeQisrandn or

cofmCbed_inSlance COAM, FeQramran of \H.
Comg_inst 1.~ 4
- et 0.

RISHRISE ;.. o 0.7
colloc
ComponentinstanceDel
S Comp_inGts [HaostCollocationDef host processas | ProcessCollocationDef
ini_comp_inst] carcinalty Cortalinssgnedlong = - = -
* chirstingtic 2| ———— .
. "'l eeocilabieplacements | o el 1 processoollocalions 0

&

comp 0"
connected_home_insiance
oredie_Conn
b -~
thehoeni) 1 v e
£y :
i horme. nsil HomelnstanceDef Jhome_insts cosbine - CollecationDel
= cardnaliity Corbalingignedong i cardinglity, Corallngionsdl on
0.1 ragratenwtte FinderSanaceDet [0.1] . homeglacements FENER b
ESFLATIRI0N AT ERON
ConnectionEndkind FinderSerdceliingd FinderServiceDef
COMPONENTINTERFACE ARG P ~r - T
COMPONENTSUPFPORTEDINTERF ACE TRA B PymaE = e cein
EVENTRORT HOW CER egnams. Siring
HOMEMTERFACE LMDEFMED
STREAMFORT

Figure 7.12 - Assembly package description

Figure 7.12 represents the assembly package description: the metaclass AssemblyPkgDef that uniquely is identified by the
attribute “uuid” lists the component packages (ComponentPackageDef) that may be included in the assembly package and
contain information regarding a component and home implementation. AssemblyPkgDef describes a possible initial
configuration description of sub component implementation instances at the runtime (metaclass ConfigurationDef). The
ConfigurationDef metaclass describes a template for instantiating of an assembly.

The ConfigurationDef metaclass specifies further metaclasses: ProcessCollocationDef, HostCollocationDef,
ComponentPackageFile, and Connection.

Implementation instances of an application can be deployed either to one single host (host collocation) or different hosts;
they may be executed in one single process (process collocation) or in different processes, which can be run on one or
several hosts. The metaclasses ProcessCollocationDef and HostCollocationDef define these two different locality kinds.
The abstract metaclass CollocationDef is a parent class for both metaclasses, its attribute “cardinality” specifies how

28 UML Profile for CORBA and CORBA Components, v1.0

many instances of the process or host collocation may be deployed. If the cardinality is greater than 1, and there are
connections to components and homes within the collocation, then connections will be made to corresponding
components or component homes within each instance of the collocation.

The ProcessCollocationDef metaclass specifies a group of home (Homel nstanceDef metaclass) and associated component
(ComponentlnstanceDef metaclass) instantiations that are to be deployed together to a single process.

A HostCollocationDef metaclass specifies a group of component instances that are to be deployed together to a single
host.

The ConnectionDef metaclass describes how instances of deployed component and home implementations have to be
initially connected to each other at the run time. The ConnectionDef is specified by two connection ends
(connection_end1 and connection_end2 associations): one target and one source end. Both are described by the metaclass
ConnectionEndDef and its attribute “kind,” which indicates the kind of a connection end (ConnectionEndKind). There are
several kinds of connection ends:

+ COMPONENTINTERFACE is used to specify a connection between component uses and provides ports.

« COMPONENTSUPPORTEDINTERFACE is used to specify a connection between component with a supports
interface and a uses port.

« HOMEINTERFACE is used to specify a connection between a home with an interface and a uses port.
+ EVENPORT isused to connect a component consumes port to event producer.
« STREAMPORT isused to connect a component consumes port to stream producer.

The ConnectionEndDef is associated (association “connected_feature”) with the abstract metaclass ComponentFeature
defined in the ComponentIDL metamodel (see Figure 7.7) and generalized real component and component ports.

Each Connection connects two component instances via ports (ComponentFeature metaclass). The
ComponentlnstanceDef metaclass is used to describe the connected component instance created by its home instance
(Homel nstanceDef metaclass). The attribute “cardinality” is used to specify how many instantiations of a component or
home may be deployed. The attribute “registerwith” of the HomelnstanceDef instructs the installation process how to
register the home and has the type of metaclass Finder ServiceDef, which describes such register information.

The RegisterInstanceDef metaclass is used to specify that a component instance has to be registered after it is created. The
attribute “findby” points to the registration kind (e.g., naming service or trader), its type Finder ServiceDef is introduced
below. The component type of the registered instance, provided interfaces, or published events are described by the
metaclass ComponentFeature.

The Finder ServiceDef metaclass is used to resolve a connection between two instances. Its attribute “service” tells how to
locate a party, usually a component, interface, or home involved in the connection. In our case (see Figure 7.11), it could
be located in a naming service (NAMING), in atrader (TRADING), by a home finder (HOMEFINDER), or by an
undefined service (UNDEFINED).

UML Profile for CORBA and CORBA Components, v1.0 29

7.5.3 Properties

The PropertyDef metaclass (Figure 7.13) specifies attribute settings of elements. Properties can be used at deployment
time to configure home or component instances. |mplementations may also have properties. The abstract metaclass
PropOwnerDef specifies following property owners: ComponentlnstanceDef, Homel nstanceDef, AssemblyPkgDef,
ComponentPkgDef, ImplementationDef, MonolithiclmplementationDef, and RequirementDef.

wnon_func_prop_owner | ImplementationDef
1 [+ uwwd Sinng

=

uRMUMaratons iy
FropertyType
ANY_TVFE

SIMPLE_TYPE
STRUCT_TYPE
VALUETYPE_TYPE

A

nan_func_props

ComponentPhgDef

HomelnstanceDef

+ cardinalty. CorbalinsgnedLong
v ragistensith. FindsrSerdceDal [01]

SEGLUENCE_TYRE -

AzzamblyPhgDef

propaty_ v

L3
scomp_default_prop_owmer,

,

™

defaul_prop_for_comp_instances

,

Y

+Qrop .'.|,|I

MonolithiclmplementationDef

RequirementDef

ComponentinstanceDef
+ cardinaity Corbalinsignadlong

[T

+NON_TUnc_peop_ovmer 11 +COnf_prop_owmier

nan_func_praps

0. T=non_func_prop

vomp_defaul_prop "

FPropertyDef

wnon_func_prop 0"

propemy_tps PropemyTypes
+ fype Sthing
+ wilei Sinng

COnE_props

vconf_prog

[0

Figure 7.13 - Properties description

Each property has a property type defined as an any (ANY _TY PE), simple (SIMPLE_TY PE), sequence
(SEQUENCE_TYPE), struct (STRUCT_TYPE), or valuetype (VALUE_TYPE) (see attribute “property_type” and the
metaclass PropertyType). The simple property describes a single primitive Basel DL type. The sequence property
corresponds to a Basel DL sequence, the struct corresponds to a Basel DL struct, and the valuetype property corresponds

to a BaselDL valuetype.

754

Files

Component or Assembly packages may contain descriptors and a set of files. The descriptors describe the characteristics
of packages and point to their various files. Figure 7.14 represents different file metaclasses: ComponentPackageFile
points to component files, which are component packages, included in one assembly, IDLFile describes files that contain

30 UML Profile for CORBA and CORBA Components, v1.0

IDL description, DependentFile specifies environmental or other file dependencies of an ImplementationDef metaclass,
and ContainedFile (see also Section 7.5.1) specifies a file that contains the component implementation (e.g., DLL-File).
All file metaclasses inherit from the abstract metaclass File, which has two attributes. “filename” and “location.”

ContainadFile

|C omponentPackageF ile]

| I

+ codetype Sinng
+ anbrypomnt Sinng
v antrypomlesags Sinng

f
[)

+ flaname Sinng
lacabon Snng

'
=
A

WA,

DependentFile IOLFile
+ acbon COM Deployment: Acbankind

Figure 7.14 - File description
7.5.5 Containment

The following UML class diagram describes the derivation of the Deployment and Configuration metamodel elements
from the Basel DL Container and Contained elements:

CDnngur:mnnD!" RegisterinstanceDhef ConnectonEndDef

", # \
%, o N £

+COMers

T —-=) _ wdafinedr Contains Cartained Y
ConnectionDef Conainer [#57 T — FropertyDel

[
ik

=

ProplwnerDef File

Figure 7.15 - Deployment and Configuration containment
7.5.6 Deployment Constraints

[49] A ComponentPkgDef may contain different Implementation objects that realize the same ComponentDef.

[49] context ComponentPkgDef inv:
impls->forAll (i| i.mon_impl.compos.home_executor.homeEnd.componentEnd = realized_c)

7.6 CCMQoS Metamodel

The modeling of non-functional properties such as QoS properties is defined in a platform independent way in the
specification “UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms”
(ptc/05-05-02). Chapter 8 of that specification defines a comprehensive metamodel for the description of QoS properties.

UML Profile for CORBA and CORBA Components, v1.0 31

The modeling of QoS properties for CORBA Components requires the definition of a link between QoS metamodel and
CCM metamodel. This link is defined in the metamodel package CCMQoS. The QoS metamodel consists of three
packages:

1. QoSCharacteristics (defines the model elements for the description of QoS Characteristics),
2. QoS Constraints package (defines the modeling elements for the description of QoS contracts and constraints), and

3. the QoS Levels package (includes the modeling elements for the specification of QoS modes and transitions.

|cCMaos Deployment

w1

GoesFramewark

GoSCharacteristics) QasContraint: |GosLevels
ket s ssasnassnad

Figure 7.16 - CCMQoS package dependencies

The QoSCharacteristics metamodel defines a metaclass QoSContext that allows describing the context of quality
expression (for more information please refer to ptc/05-05-02). We use this metaclass to describe QoS properties for
CORBA Component and link it to the CCM metamodel (the Deployment metamodel is extended) by defining an
additional metaclass Binding. The Binding metaclass has two attributes: “name” (the name of the Binding) and “CCMQoS
metamodel: Bindingmandatory” (if “true,” then the QoS property is bound in any case).

32 UML Profile for CORBA and CORBA Components, v1.0

1 DosContext +Dased 0.7
HomelnstanceDef -] content_denved
«home_inst) +darved 0.*

T sq0G_Confest 1
0¥ =
o _imst_banding
= conbend,_binding
-
Lo S dl +brDinding Wy 0.
;Compunan‘tlnﬂanu[ﬂuf s 0MmE_insl i shinding| Binding
i = 1 y o1+ mandatory. Boolean
e comp_st_inding 971« name String
. L .
rbinding +bindengst 0"
o /
L - f
e J
conneghion_binding : f.-"
- In'
tonn_gnd 0. component_binding
CannectianEndDef .-":

!

kand CC eployment ConnectonEndiind !
N I Cieployg nectonEndiin seomp_fBsiuro ‘-:I

ComponantFeatun

Figure 7.17 - CCMQoS metamodel: Binding

Due to the fact that definition of QoS properties for CORBA Components may have different scopes, different links for
QoS properties need to be defined. So, the metaclass Binding (see Figure 7.17) correlates a QoSContext with a component
feature definition (ComponentFeature), or a ComponentlnstanceDef, or a Homel nstanceDef, or a ConnectionEndDef.
Binding the QoSContext to the ComponentFeature makes QoS property applicable for the component type. This means
that also all instances of this component type are related to the QosContext. The binding of the QoSContext to the
ComponentlnstanceDef makes QoS properties relevant to only a specific component instance but for the component
instance in general. The binding the QoSContext to the Homel nstanceDef makes QoS properties relevant to a group of
component instances that are managed by a specific home instance. The binding of the QoSContext to a
ConnectionEndDef make QoS properties only relevant to a specific port of a component instance.

UML Profile for CORBA and CORBA Components, v1.0 33

34

UML Profile for CORBA and CORBA Components, v1.0

8 UML Profile for CORBA and CORBA Components

The UML Profile for CORBA and CORBA Components (CCM profile) defines limited extensions to the reference UML 2
metamodel with the purpose of adapting the UML metamodel to the CORBA Components. The extension done by this
profile does not change the UML2 metamodel, and keeps its semantics.

In UML2, profiles are packages that structure UML extensions. The principal extension mechanism in UML2 is the
concept of stereotype. Stereotypes are specific metaclasses, having restrictions and the specific extension mechanism.

Additional semantics can be specified using Stereotype properties (“attributes’ in UML 2, "tagged values’ in UML1.x)
and constraints in the context of a profile.

A UML profile extends parts of the UML metamodel in a constrained way. All new modeling concepts must be supported
by UML modeling elements. The new attributes must respect the semantic of UML modeling elements. All associations
are binary associations. We are not able to redefine features, but we can add new features (meta attributes of stereotypes).
UML metaclasses are extended by stereotypes, using a mechanism called extension.

For the Profile specification we use both graphical and tabular notations. To be able to interchange CCM Profile between
tools, together with models to which they have been applied, the Profile is defined as an interchangeable UML model (by
using the UML XMI interchange mechanisms):

» The metaclass extensions are expressed via UML class diagrams.
« A Profileisakind of UML Package that extends the UML metamodel.

» A stereotypeisalimited kind of metaclass that cannot be used by itself, but must always be used in conjunction with
one of the metaclassesit extends. Each stereotype is expressed via a stereotyped with <<stereotype>> Classifier box. All
classes, which define stereotypes and extend the UML metamodel, are indicated with yellow color; al original
metaclasses from the UML metamodel are indicated with white color on represented following class diagrams.

» When astereotype is applied to amodel element, the values of the properties may be referred to as tagged values.
» Likeaclass, astereotype may have properties that may be referred to tag definitions.

» Each stereotypeisaclientin aUML Extension with the UML metaclassthat it extends. This Extension (UML
Association) is stereotyped with <<extends>>.

» Generalization Relationships among stereotypes are expressed in the standard UML manner.

An alternative and usually more compact way of specifying stereotypes and tags is using tables. The columns of the
stereotype specification table are defined as follows:

» Stereotype: the name of the stereotype and in parenthesis “()” the name of the metaclass or association between two
metaclasses from the CCM metamodel (Profile to Metamodel mapping), which instances are represented by this
stereotype in UML models.

» Base Class: the UML metamodel element that serves as the base for the stereotype.
» Parent: the direct parent of the stereotype being defined (Note: if one exists, otherwise the symbol “NA” is used).
« Tags: alist of al tags of the tagged values that may be associated with this stereotype (or NA if none are defined).

» Constraints: alist of constraint numbers applied to the stereotype.

UML Profile for CORBA and CORBA Components, v1.0 35

Constraints represent semantic information attached to an element. A list of constraints associated with a stereotype is
expressed in English and OCL separately from the stereotypes and tags specification. The following OCL convenience
operations are used in the CCM Profile specification; they were defined in the UML1.3 Profile for CORBA and adopted
for this specification in order to produce more compact and readable OCL:

For Element

[1] The operation allStereotypes results in a Set containing the Element’s Stereotype and all Stereotypes inherited
by that Stereotype (as opposed to all Stereotypes inherited by the Element).
context Element _inv:

al|Sereotypes : Set?Stereot%/
allStereotypes = self.stereofypé->union (self.stereotype.generalization.parent.all Ster eotypes)

[2] The operation isStereotyped determines whether the Model Element has a Stereotype whose name is equal to the
input name.
context EIement inv:

isStereotyped : StereotSPeName String) : Boolean;
self.ster eotype name = stereotypeName

[3] The operation isStereokinded determines whether the Model Element has a Stereotype whose name is equal to the
input name or if it has a Stereotype one of whose ancestors' name is equal to the input name.
context Element inv:

istereogkinded : (stereotypeName : String) : Boolea
self.all Stereotypes->exists (stereotype | stéfeotype. name stereotypeName)

Some abstract Stereotypes are defined and, in keeping with UML notation, abstractness is denoted by italicizing the
Stereotype's name; they cannot be instantiated. The abstract Stereotypes are useful for avoiding repetition in multiple
Stereotypes that logically have common properties.

Profile Structure

The general structure of the CCM profile model is the same as the general structure of the CCM metamodel and is shown
in Figure 8.1.

wprofiles
cem
«profiles «profiles «profi
profiles
BaselDL ComponentiDL CIF
é
3
«profile» «profiles «profile»
QoSFramework CCMQoS Deployment

Figure 8.1 - CCM Profile package structure

36 UML Profile for CORBA and CORBA Components, v1.0

8.1 BaselDL Profile

This chapter is the normative definition of the CORBA plain (BaselDL) Profile of UML. It consists of a UML model,
showing extensions to UML (stereotypes) using the notation described in the previous chapter. This is followed by a
tabular description of the Profile and defined constraints.

8.1.1 CORBA Module, Interface, Value, Constant Stereotypes

An IDL module is represented by a UML package (from Kernel) stereotyped as <<CORBAModule>>. IDL module
containment (nesting) is modeled by Namespace containment of one <<CORBAM odule>>-stereotyped UML package

within another.

<<stereotype>>

<<stereotype>>
CORBAModule

CORBAConstant

<<extends>> <<exiends>>
<<metaclass>> | , 0.1 ccmetaclass>> |k 0./1<<metaclass>>
Property IR *classifier — ojassifier Package
(from Kemel) _*/attribute (from Kernel) (from Kernel)
* . 1. +package
trownedAttribute +shecific
0.1 +generalization
+clas <<metaclass>> <<metaclass>> <emetaciasssd
+ownedOperation| <<metaclass
<<metaclass>> Generalization Interface - Operation
Class (from Interfaces) K
(from Kenel) (from Kernel) .1 (from Kernel)
<<extends>>
<<extepds>>
<<extends>> <<exterlds>> <<oltendss>
<<stereotype>> p— —
<<stereotype>> <<stereotype>> stereotype:
CORBAConstants CORBASupports CORBAInterface CORBAValue <;§t:\f/e?tyr'3:e>>
BisLocal : Boolean BisCustom : Boolean co alueFactory

=isTruncatable : Boolean

Figure 8.2 - BaselDL Profile: Extended UML classes (1)

CORBA interfaces are represented using a UML Interface (from Interfaces) stereotyped as <<CORBAIInterface>>. Local
interfaces are represented using the tagged value “isLocal” = TRUE.

CORBA value types are represented by a UML Interface stereotyped as <<CORBAVaue>>. CORBA custom value types
are represented by the tag “isCustom” and truncatable value types are represented by the tag “isTruncatable.”

CORBA interfaces and value types may have attributes and operations.

Attributes are represented as UML Properties (Attributes) - as usual in UML, each IDL operation is represented as a UML
Operation. A value type factory operation, which is some kind of constructor, is represented using a UML Operation that

is stereotyped <<CORBAValueFactory>>.

Values may be derived from other values and can support an interface. The support by a value type of an IDL interface
type is represented by a Generalization relationship, which is stereotyped <<CORBA Supports>>.

UML Profile for CORBA and CORBA Components, v1.0 37

An IDL constant is modeled as a stereotyped with <<CORBA Constant>> UML Property, with the constant value
expression represented by the Property’s attribute “default” (default: String [0..1]).

For constants defined within a CORBA module scope a hew stereotype <<CORBA Constants>> for UML Classis

introduced. The name of the Class must be “ Constants.”

The UML notation of a CORBA module for the following IDL example is shown in Figure 8.3.

module Parent

{
module Childl {};
module Child2
{
module Grandchild {};
};:
}i
wCORBAMOUES
Farent
wCOIRBAMOOUE = «CORDAMOdulex
childi Child2
wC QR BA N e
Grandehild
1

Figure 8.3 - CORBA Module notation

38

UML Profile for CORBA and CORBA Components, v1.0

The UML notation of an interface for the following IDL example is shown in Figure 8.4:

interface TestInterface

{
struct TestStruct
{
string Memberl;
};:
attribute string MyStringAttr;
attribute TestStruct MyStructAttr;
void MyOpl(in string str, inout TestStruct t);
boolean MyOp2(inout TestStruct t);
}i

aCDRBAINETaces
Tazgnrarfacs

MyStringALr: string
ey Srectallr. TestStruct

MyOp1(str string, ©:TestStruct) | voud
MyCIp20L . TedSiuct) . boolean

wCORBASruct:
Testinterface:
TesrStruce

MWemberi: string

Figure 8.4 - Example Interface containing a Struct

The UML notation for a CORBA value type for the following IDL example is shown in Figure 8.5:

UML Profile for CORBA and CORBA Components, v1.0

interface PrettyPrint

{
string print();
}:
valuetype Time
{
public short hour;
public short minute;
}:
valuetype Date
{
public short day:;
public short month;
public short year;
}:

valuetype DateAndTime : Time supports PrettyPrint
private Date the date;
factory init(in short hr, in short min);

Date get date();

}:
wCORBAVAILE: alORBANtATAC S
Time PremyFring
hawr. short .
i siring
minute: short prindl) : eting
A

; f
b
4 aCORBASUC
! Date

\ f

!
Y «CORBASupporss day. shorl
\ f manth: shart
\ K year. short
1
!
lI'l. A
sCOREAV e
DateAndTime
trwe_dasbe, Deabe

gel_datel) . Dabe
ccCORBAVAlUCF aClory> >
inilfshort, shart)

Figure 8.5 - Valuetype example

The UML notation for CORBA constants for the following IDL example is shown in Figure 8.6.

40 UML Profile for CORBA and CORBA Components, v1.0

module Y

{
constant short S = 3;
interface X
{
constant long L = S + 20;
}i
}i
«CORBAMOGUIE:
Y
«CORBAINterface» «CORBACOnstants:
X Constants
<<CORBACONstant== <<CORBACONStant:=
L long = 5+20 5. short=3

Figure 8.6 - Constant example

UML Profile for CORBA and CORBA Components, v1.0

8.1.2 Other stereotypes: CORBA Types

e wstereotypen P ——
astereotypes astaraotypes Mr:r-'f-tp.frcrfres_ CORBATypeDet CO;BABOthpdvn;I "
COREACase COREADfaUlt MulfinliciHyElenrenf

label: String izsdrdered: Boalean = true
isUnique: Boolean = tue
lower: Integer=1
upper: UnlimitedHdatural = 1
«stereotypex wstereotypes asterectypes
CORBASwitch CORBAUmanFiald COREBA Wrapper
/ Basic. TyoedElenter]
wertendzn wextendsn
- '
ametaclasss = o
Kernel::Property wsteraotypes
COREBAPT mitive asterectypes
COREAEnum
a.r
wextendss membears: String|

ouned Attribute
wstereotypes westendss /

COREBAANOOYMoUS Sequence datatypeg'o.j / /«extendsn

wmetaclasss ametaclasss . .
wextendss o claszifier literal «metaclasss

Kernel -1 Kernel - = Harnel

DataType Enumerstion 0.7 | EnurmnerstionLiteral

wextendsy
wstareotypen "

COREBAARORyYMOUS ATy

wastendsy

ustereotypes wstereotypes
CORBACoRsiruciod o CORBAException

inde:: string wextendsn

wstereotypew
COREA Temalafe

wextendss

zenumerations
Pri mitiwe Kind

wsteraotrp...
Corbadfmy COREAStruct
CorbaBoolean
CorbaChar
Corbalouble
CorbaFloat xstereotypes

COREALong wstaraotypes COREBABourded astereotyp...
Corbalanglouble COREAArTay CORBAURIon

Corbalonglong " X bound: Integer
CorbaObjectRef indesx: string
CorbaOctet

CORBAShort
Corbalnsignedlong
Corbalnsignedlonglong
CorbalnsignedShort
CORBAV0Id
CorbaWChar

wstereotypes
COREASequence

wsteraotypes astereotypes
CORBAString COREBAWString

Figure 8.7 - BaselDL Profile: Extended UML classes (Il)
A UML DataType (from Kernel) is atype whose instances are identified only by their value. A DataType is a specia kind
of classifier, similar to a class and may contain attributes to support the modeling of structured data types.

CORBAPrimitive

The CORBA basic and other types are represented by the UML DataType with the <<CORBAPrimitive>> stereotype in
the "CORBA" package. This package also contains the base types for CORBA interfaces and value types.

42 UML Profile for CORBA and CORBA Components, v1.0

The following <<CORBA Primitive>>-stereotyped UML DataTypes are introduced in the package “CORBA.” their
semantics is defined in the “OMG IDL Syntax and Semantics’ chapter of the CORBA Specification.

- short

» long

« longLong

+ double

 longDouble

« unsignedShort

 unsignedLong

 unsignedLonglLong

. any
 boolean
e octet

- void

- char

« wchar
- float

» string
+ wstring

«CORBAMDCUIE»
CORBA

w(:ORBAMOIUIES |
COREA

any

boolean

char

double

float

long

long double
lang long
object

octet

shart

string
typecode
unsigned lang
unsigned lang long
unsigned short
woid

wechar

wstring

{from Logical Model)

=LORBAFTIMENVE =
void

=CORBAPrimithnze
lang

wCORBAPrMtvEs
any

L= DEWIIIFIlM:".

Hoat

sCORBARPMMItha2

beolean

«CORBAPmithe

leng double

sCORBEAFImtvE=
thar

.--CC'HB.-'-J"rIrunww

lang lang

sCORBAPMMithS
double

wCORBAPmithes
object

«OORBEAFTIMIth g
short

«COREAPTImthvE:»
octet

i IR LA TimiEhE
string

WL ORBAR rimithE
typecode

2L DRBAPTImLE:
unsigned lang

o ORBAPEmithes
unsigned lang
leng

eCIORBAPrimithoe:
unsigned shart

wCIORBAPimithoes
wehar

wCORBAPrimithes
watring

Figure 8.8 - CORBA package

CORBAConstructed

The extended UML metamodel contains an abstract stereotype <<CORBA Constructed>>, which is a generalization of
<<CORBA Struct>>, <<CORBAUnion>>, and <<CORBAEXxception>> stereotypes. Each of them shares the characteristics
of having ordered named elements of some CORBA type. Each member of a constructed type that is either of a CORBA

UML Profile for CORBA and CORBA Components, v1.0 43

basic type or user defined type is represented as a UML Property (Attribute) by the Data Type. The order of membersis
represented by the attribute “isOrdered” of the UML Property class, which inherits this attribute from the metaclass
MultiplicityElement (see Figure 8.7). This attribute specifies whether the values in an instantiation of this element are
ordered. Default value is true.

CORBAEnumeration

IDL enumerations consist of ordered lists of identifiers and are represented by UML Enumeration stereotyped as
<<CORBAEnum>> whose values are enumerated in the model as enumeration literals. An example of <<CORBAEnum>>
contents is represented in Figure 8.9.

The type and initial numeric values of the UML Attributes representing enumeration elements may be omitted in the
notation, as the type is always short, and the initialValue can be deduced from the ordering of the Attributes.

CORBAUnion
IDL union definitions are represented by a UML DataType stereotyped as <<CORBAUnion>>.

Each member of the IDL union is represented by the abstract class CORBAUnionField that extends a UML Property. The
abstract stereotype <<CORBAUnionField>> is specialized to the concrete stereotypes <<CORBADefault>> and
<<CORBA Case>>.

The discriminator type is represented as an additional Property of the <<CORBAUnion>>, which is stereotyped as a
<<CORBA Switch>>. This Property has always the name “discriminator.” Case labels are referred to the defined type of
the discriminator. Each member of an IDL union is represented as a UML Property (Attribute) and stereotyped either
<<CORBA Default>> or <<CORBA Case>>. <<CORBA Case>>-member has a Tag “label” attached with its label name value
being the case label for this member in the union declaration. For union declarations in which there is a default case, the
<<CORBA Default>>-member is used.

enum Contents

{
INTEGER_ CL;
FLOAT CL;
DOUBLE_CL;
COMPLEX_ CL;
STRUCTURED_ CL;
};:
union Reading switch (Contents)
{
case INTEGER CL: long a_ long;
case FLOAT CL:
case DOUBLE CL: double a double;
default: any an_any;
};:

44 UML Profile for CORBA and CORBA Components, v1.0

«CORBAEnUM»
Contents

INTEGER_CL:
FLOAT_CL
DOUBLE_CL:
COMPLEX_CL:
STRUCTURED_CL:

«CORBAUNioN:
Reading

«CORBASwitch» discriminator, Contents

«CORBACase» a_long: long {lahle=INTEGER_CL}

«CORBACase» a_double; double {lable=FLOAT_CL, DOUBLE_CL}
«CORBACase» an_any. any {lable=default)

Figure 8.9 - Union example (a)

«CORBAUNiON»
Reading

«CORBASwitch» discriminator: Contents

«CORBACase» a_long: long {lable=INTEGER_CL}

«CORBACase» a_double: double {lable=FLOAT_CL, DOUBLE_CL}
«CORBADefault» an_any. any

Figure 8.10 - Union example (b)

CORBAStruct

IDL struct definitions are represented by a UML DataType stereotyped as <<CORBA Struct>>. Each member of the IDL

struct can be represented as a UML Property (Attribute) as shown in Figure 8.11 and Figure 8.12.

<<CORBA Struct>> inherits from the abstract stereotype <<CORBA Constructed>> described above and defines a new
name scope containing other declarations (members). These members must have the same order as in derived IDL
declarations (when UML models are derived from IDL) to be able to generate correct equivalent IDL from the UML

model.

struct Fraction

{

double numeric;

string alphabetic;

}:

struct Problem

{

string expression;

Fraction result;

Boolean correctness;

}i

«CORBAStrICT
Fraction

numeric: double
alphabetic: string

«CORBAStructs
Problem

expression: string
result: Fraction
correctness: boolean

Figure 8.11 - Struct example

UML Profile for CORBA and CORBA Components, v1.0

45

A CORBA struct can act as the namespace (see Figure 8.7 metaclass Namespace) for the following CORBA types:
structs, unions, and enums. Only these three types can be defined within struct’s scope. Nesting of elements limits the
visibility of the element to within the scope of the namespace of the containing struct and is used for reasons of
information hiding.

struct A
{
struct B
{
short k;
long j;
} pi
string q;
}i

The following example (IDL above) demonstrates alternative UML representations (dependent on the UML tool) of the
nested struct B:

«CORBAStructs
A~
w«CORBASTructs « CORBAStructs
p: AoB ry AB
q: string «CORBAStruct:
AB p: AB ki short
q: =tring j: long
ki zhort
j: long
(a) (b)

Figure 8.12 - Alternative Struct representations with nested elements

CORBAEXxception

IDL exception definitions are represented by UML DataType stereotyped as <<CORBAException>>. Each member of the
IDL Exception is represented as a UML Property. Exceptions, like structures, create a namespace, so the exception
member names need to be unique only within their enclosing exception. Exceptions are types but cannot be used as data
members of user-defined types.

46 UML Profile for CORBA and CORBA Components, v1.0

The following IDL can be represented in UML as in Figure 8.13.

exception Failed {};

exception RangeError

{
unsigned long supplied val;
unsigned long min permitted_val;
unsigned long max permitted val;

};:

interface Unreliable

{
void can fail() raises (Failed);
can _also fail (in long 1) raises (Failed, RangeError);

}i

«CORBAExCeption» CORBAException»

RangeError Failed

supplied_val: unsigned long
min_permitted_val: unsigned long
max_permitted_wval: unsigned long

«CORBAInterfaces
Unreliable

can_fail{) : void
Failed
can_alsa_fail{long) : void
Failed
RangeError

Figure 8.13 - Exception example

The extended UML metamodel contains an abstract stereotype <<CORBATemplate>>, which is a generalization of
<<CORBA String>>, <<CORBAWString>>, and <<CORBA Sequence>> stereotypes. All <<CORBATemplate>> elements
have atag “bound” that indicates the maximum size of the element.

CORBAString and CORBAWString

IDL string is similar to a sequence of char and represented by a UML DataType stereotyped as <<CORBAString>>. IDL
wstring is like a sequence of wchar and represented by a UML DataType stereotyped as <<CORBAWString>>. The type
wstring is similar to string, except that its element type is wchar instead of char. If a positive integer maximum size is

specified, the string (or wstring) is termed a bounded string (or wstring); if no maximum size is specified, the string (or
wstring) is termed an unbounded string (or wstring). The package “CORBA” (see Figure 8.8) contains unbounded string
and wstring elements (no maximum size is specified) as stereotyped <<CORBAPrimitive>> UML DataTypes. Bounded

IDL strings and wstrings are represented by a UML DataType stereotyped as <<CORBAString>> or <<CORBAWString>>.

CORBASequence

A CORBA Sequence is a one-dimensional array with two characteristics: a maximum size (which is fixed at compile
time) and a length (which is determined at run time).

UML Profile for CORBA and CORBA Components, v1.0 47

CORBA Seqguences are IDL template types that take a CORBA type as their element parameter, and optionally an integer
as an upper bound specification. Sequences are anonymous, and can either be named by a typedef, or by the member
name of a constructed type. Sequences are represented in the Profile by two means:

- Named by atypedef declaration sequences are represented by the UML DataType with the stereotype
<<CORBA Seguence>>. Sequence members are represented by an attribute of the DataType, which always has the name
“members’ (profile keyword), members type is represented by the type of the “members’ -attribute and the max size is
represented by the multiplicity of the “members’-attribute.

« Named by the member name of a constructed type sequences are represented by the UML DataType with the stereotype
<<CORBA AnonymousSequence>>. Anonymous sequences get a name by concatenation name of the container
(containing type), “::” and “m”<n>, where n is the member number of the anonymous sequence in the container.

Sequences that are declared as the type-declarator of a typedef are given the name of that typedef and the stereotype
<<CORBA Sequence>>. The following IDL example is represented in Figure 8.14.

typedef sequence<short, 4> foo;

typedef sequence<long> foo_ 1lg;

«CORBASequence» «CORBASequence»
foo foo_lg
members: short [0..3] members. long [0..*]

Figure 8.14 - CORBASequence example

Sequences that are anonymous (declared in some context where they don't have a type name, such as a struct member
type) are given the stereotype <<CORBAAnonymousSequence>>. The following IDL example has the sequence
declaration as a struct member. The UML notation for this example is represented in Figure 8.15.

struct bar

long val;
sequence <short, 6> my shorts;
}:
«CORBAStruct» «CORBAANonymousSequence»
bar bar::m2
val: long members: short [0..5]
my_shorts. bar:m2

Figure 8.15 - CORBAAnonymousSequence example

48 UML Profile for CORBA and CORBA Components, v1.0

The following IDL is featuring an anonymous sequence as the type of another sequence is represented below.

typedef sequence <sequence <string,4>> foo 1;

«CORBASequence» «CORBAANnonymousSequence»
foo_1 foo_1:m1l
members: foo_1:ml members: string [0..3]

Figure 8.16 - Nested CORBAAnonymousSequence example

CORBAArray

OMG IDL defines multidimensional, fixed-size arrays. CORBA Arrays are IDL indexed types that take a CORBA type as
their element type, and have at least one integer as the size of the array. Additional array dimensions are specified by
additional integers. Arrays are anonymous, and can either be named by a typedef, or by the member name of a
constructed type. Similar to sequences arrays are represented in the Profile by two means:

« Named by atypedef declaration arrays are represented by the UML DataType with the stereotype <<CORBAArray>>.
Array members are represented by an attribute of the DataType, which always has the name “members’ (profile
keyword), “members’ type is represented by the type of the attribute. The array size (dimensions) is represented by the
tag “index” of the DataType. The value of the “tag ,,index” isalist of integers separated by comma where each integer
represents the size of each multidimensional array dimension (e.g., “index”=n, m). One-dimensional arrays are
represented as “index”=n, where nis an integer and must be greater than 0.

« Named by the member name of a constructed type arrays are represented by the DataType with the stereotype
<<CORBAAnonymousATrray>>. Anonymous arrays get a name by concatenation name of the container (containing
type), “::” and “m”<n>, where n is the member number of the anonymous array in the container. This stereotype has
also thetag “index” representing the index of the array described above.

Since CORBA IDL does not support open arrays like “typedef short s[];” because IDL does not support pointers, integer
m, n, and k must be greater than O.

CORBA IDL array determines the number of elements of an array, but IDL does not specify how elements of the
multidimensional arrays are to be ordered for data transfer between agents. Therefore, for common and correct
understanding of CORBA UML models the same convention as GIOP (defined in the CORBA Specification) is used: the
array members represented by the “members’ attribute are always in row major order. In row major ordering the leftmost
index (or index of the first dimension) varies most slowly, and the rightmost index (or index of the last dimension) varies
most quickly.

UML Profile for CORBA and CORBA Components, v1.0 49

Arrays that are declared as the type-declarator of a typedef are given the name of that typedef and the stereotype
<<CORBAArray>>. The following IDL example shows UML representations for arrays.

typedef short short arr([4];

typedef my struct my struct arr[5] [10];

« CORBAATITaYS
short_arr

members: short

tags
index =g
«CORBAATaYS
« CORBAStucte rmy_struct_arr
rny_struct
members: my_struct
tags
index =510

Figure 8.17 - Array example declared as typedef

An IDL array that is declared in any other context is represented by an Attribute stereotyped as
<<CORBAAnonymousArray>>. The following IDL is represented in Figure 8.18.

struct boom

{

string zoom[4];

my struct loom[2] [2] [2];

«CORBAStucts
boorm

zoom: boom:md
loom: boom:mZ

« CORBAAROnymousAITay
bocmzmd

members: string

tags
index =4

wCORBAARO YT OUSATTIY
boorn:mZ

members: my_struct

tags
index=2272

Figure 8.18 - Anonymous Array representation

There are two declarations in IDL that provide existing named types with another identifier:

50

UML Profile for CORBA and CORBA Components, v1.0

 typedefs - give a name to an existing type (or to a new template type), and
 boxed value declarations - give a new nameto an existing type, and allow the new type to be passed as anull parameter.

Such declarations are called “wrapper” declarations and represented by the abstract stereotype <<CORBAWTrapper>>.
There are two concrete specializations of <<CORBAWTrapper>>: <<CORBATypedef>> and <<CORBABoxedValue>>.

CORBATypeDef

Typedefsin IDL serve two purposes. The first purpose is to rename types that already have names to provide an alias for
an existing type. These typedefs are represented by UML DataTypes stereotyped as <<CORBATypeDef>>. For example,
the IDL below provides an dlias “Alias Interface” for the interface “Initial_Interface:”

interface Initial Interface;

typedef Initial Interface Alias Interface;

«CORBAINterfaces «CORBATypeDef:
Initial_Interface | Alias_Interface

Figure 8.19 - TypeDef example

The second purpose is to provide a type name for anonymous template types, such as sequences or arrays. These typedefs
are modeled by DataTypes that are stereotyped as <<CORBA Sequence>> and <<CORBAArray>> (see above).

CORBABoxedValue

Boxed values are similar to typedefs: they provide a new name for an existing type, and change the parameter passing
semantics to allow instances of the new type to be null. When boxing an existing type declaration, the boxed value
specializes the existing DataTypes (using a UML Generalization relationship) with a new DataType being the
specialization, giving the type a new name, and possible null value semantics, but no new features. So, a boxed value type
is represented by a UML DataType stereotyped as <<CORBABoxedVal ue>>.

The IDL below is represented in Figure 8.20.

valuetype OptionalNameSeq sequence<string>;

valuetype OptionalStruct my struct;

«CORBABOxedvalue»
OptionhalNameSeq

«CORBAANONYMOUSSEQUENCE» ANONYMOUS: String

«CORBAStruct:» «CORBABOxedvalue»
my_struet |- OptionalStruct

Figure 8.20 - BoxedValue example

UML Profile for CORBA and CORBA Components, v1.0 51

8.1.3 Tabular Representation

Table 8.1 represents the Basel DL Profile information.

Table 8.1 - BaselDL Profile

Stereotype Base Class Parent Tags Constraints
CORBA Interface (InterfaceDef) Interface N/A isLocal: [4]
<<CORBA Interface>> Boolean
CORBAValue (ValueDef) Interface N/A isCustom: [5],16], [7]
<<CORBAVaue>> Boolean

isTruncatable:

Boolean
CORBA Constant (ConstantDef) Property N/A [14]
<<CORBA Constant>>
CORBA Constants Class N/A [12], [13]
<<CORBA Constants>>
CORBA Supports (supportss) Generalization N/A [8]
<<CORBA Supports>>.
CORBAVadueFactory Operation N/A [9],[10]
(ValueFactoryDef)
<<CORBAV alueFactory>>
CORBAModule (ModuleDef) Package N/A [15]
<< CORBAModule>>
CORBAPrimitive (PrimitiveDef) DataType N/A [16]
<< CORBAPrimitive>>
CORBA Constructed DataType N/A [17], [18]
<<CORBA Constructed>>
CORBAUnion (UnionDef) DataType CORBA Constructed
<<CORBAUnion>>
CORBASwitch Property
<<CORBASwitch>>
CORBAUnionField (UnionFiel dDef) Property
<<CORBAUnionField>>
CORBADefault Property CORBAUnionField
<<CORBAD¢efault>>
CORBACase Property CORBAUnionField label: String
<<CORBA Case>>

52 UML Profile for CORBA and CORBA Components, v1.0

Table 8.1 - BaselDL Profile

CORBAStruct (StructDef) DataType CORBA Constructed [19]
<<CORBA Struct>>

CORBA Exception (ExceptionDef) DataType CORBA Constructed [20]
<<CORBA Exception>>

CORBAEnum (EnumDef) Enumeration

<<CORBAENnum>>

CORBATemplate DataType bound: Integer
<<CORBATemplate>>

CORBAString (StringDef) DataType CORBATemplate

<<CORBAString>>

CORBAWString (WstringDef) DataType CORBATemplate

<<CORBAWString>>

CORBA Seqguence (SegquenceDef) DataType CORBATemplate [21], [22]
<<CORBA Sequence>>

CORBAAnonymousSequence Property CORBA Sequence [23]
(SequenceDef)

<<CORBAAnonymousSequence>>

CORBAArray (ArrayDef) DataType [24]
<<CORBAATrray>>

CORBAAnNonymousArray Property CORBAATrray index:String [25]
(ArrayDef)

<<CORBAAnNonymousArray>>

CORBAWTrapper DataType [26] - [30]
<<CORBAWTrapper>>

CORBATYypedef (TypedefDef) DataType CORBAW:Tapper [31]
<<CORBATYypedef>>

CORBABoxedValue (VaueBoxDef) DataType CORBAWTapper

<<CORBABoxedVdue>>

8.1.4 Constraints

[4] A <<CORBAInterface>>-stereotyped Interface tagged “isLocal” can only participate in Generalizations with
other <<CORBA Interface>>-stereotyped Interfaces tagged “isLocal.”

context CORBAI nterface inv:
(self.generalization->forAll(parent.isStereotyped(" CORBAInterface") and
parent.stereotype.taggedVal ue->sel ect(hame = " isLocal")->size = 1)) and
(self.generalization->forAll(child.isStereotyped(" CORBAI nterface") and
child.stereotype.taggedValue->select(name = " isLocal")->size = 1))

UML Profile for CORBA and CORBA Components, v1.0 53

[5] A concrete <<CORBAVaue>>-stereotyped Interface may only specialize a single other concrete
<<CORBAValue>>-stereotyped Interface.

context CORBAValue inv:

not self.isAbstract implies self.i;eneralization->select(parent.isStereokinded(" CORBAValue") and
not parent.isAbstract)->size =

[6] A <<CORBAVaue>>-stereotyped Interface may only specialize a single <<CORBA Interface>>-stereotyped
Interface, and it must do so using a <<CORBAValueSupports>>-stereotyped Generalization.

context CORBAValue inv:
let supportedl nterface = self.generalization->sel ect(parent.istereotyped (" CORBAInterface")) and
let supportsGeneralization = supportedl nterface.generalization-> intersection(self.generalization) in
supportedi nterface->size = 1 and supportsGeneralization.isSter eotyped(" CORBAValueSupports")

[71 A <<CORBAVaue>>-stereotyped Class may only contain a single Operation stereotyped as
<<CORBAValueFactory>>.

context CORBAValue inv:
self.allOperations->collect(isStereotyped(" CORBAValueFactory"))->size <= 1

[8] A <<CORBASupports>>-stereotyped Generalization must have a <<CORBA Interface>>-stereotyped Interface as
its parent and a <<CORBAVal ue>>-stereotyped Interface as its child.

context CORBASupports inv:
self.parent.isStereotyped(" CORBAInterface") and self.child.isStereotyped(" CORBAValue")

[9] A <<CORBAValueFactory>>-stereotyped Operation can have only in parameters and has no return type.

context CORBAValueFactory inv:
self.parameter->forAll(kind = #in)

[10] A <<CORBAValueFactory>>-stereotypedOperation must be owned by a <<CORBAVal ue>>-stereotyped or
<<CORBA CustomValue>>-stereotyped Class.

context CORBAValueFactory inv:
self.owner.istereokinded(" CORBAValue")

[11] A <<CORBAConstants>>-stereotyped Class must be directly contained by a <<CORBAM odul e>>-stereotyped
package.

context CORBAConstant inv:
self.namespace.isStereotyped(* CORBAModul€e")

[12] All the features of a <<CORBA Constants>>-stereotyped Class must be <<CORBA Constant>>-stereotyped
Attributes.

context CORBAConstant inv:
self feature->forAll(feature | feature.ocll sTypeOf (Property) and feature.isStereotyped (* CORBAConstant"))

[13] A <<CORBAConstants>>-stereotyped Class cannot participate in any Associations.

context CORBAConstant inv:
self.associations->isEmpty

54 UML Profile for CORBA and CORBA Components, v1.0

[14]

The owner of a <<CORBA Constant>>-stereotyped Property must be stereotyped <<CORBA Constants>>,
<<CORBAInterface>> or <<CORBAValue>>.

context CORBAConstant inv:

[15]

self.owner.isStereotyped(" CORBAConstants") or
self.owner.isStereokinded(" CORBAI nterface") or

self.owner.isStereokinded(" CORBAValue")

A <<CORBAModule>>-stereotyped package may directly contain at most one Class stereotyped as
<<CORBA Constants>>.

context CORBAModule inv:

[16]

[17]

self.ownedElement->collect(el | el.isStereotyped(" CORBAConstants"))->size <= 1

All basic types (<<CORBAPrimitive>>-stereotyped UML DataTypes) are included in the package “CORBA.”.
The CORBA package also contains an Interface “Object,” stereotyped as <<CORBAInterface>>, and an Interface
“ValueBase,” stereotyped as <<CORBAVaue>>.

All features of a <<CORBA Constructed>>-stereotyped Classifier must be Attributes with visibility “public.”
context CORBA Constructed inv:

self.feature->forAll(feature | feature.ocll sTypeOf(Attribute) and feature.visibility = #public)

[18]

A <<CORBA Constructed>>-stereotyped Classifier cannot participate in any Generalization relationships.

context CORBAConstructed inv:

[19]

self.generalization->isEmpty and self.specialization->isEmpty

All the Attributes of a <<CORBA Struct>>-stereotyped Classifier must have multiplicity 1..1.

context CORBAStruct inv:

[20]

self.all Attributes->for All(multiplicity.range.lower = 1 and multiplicity.range.upper = 1)

A <<CORBAEXxception>>-stereotyped Exception cannot be the type of a navigable AssociationEnd.

context CORBAEXxeption inv:

[21]

[22]

[23]

self.allEnds->forAll(end | end.type = self implies not end.isNavigable)

The single navigable opposite AssociationEnd of a <<CORBA Sequence>>- stereotyped Classifier must have
multiplicity 1..1 if it cannot be a null in CORBA; that is, unless it is an object type or a boxed value type.

The single navigable opposite AssociationEnd of a <<CORBA Sequence>>-stereotyped Classifier must have
multiplicity 0.1 if it is a boxed value type or object type.

A <<CORBA AnonymousSequence>>-stereotyped Class must have exactly one navigable opposite
AssociationEnd whose multiplicity is 1..1.

context CORBAAnonymousSequence inv:

navigableOppositeEnds->size = 1 and navigableOppositeEnds ->forAll
(end | end.multiplicity.range.lower = 1 and end.multiplicity.range.upper = 1)

UML Profile for CORBA and CORBA Components, v1.0 55

[24] The single navigable opposite AssociationEnd of a <<CORBAATrray>>- stereotyped Class must have multiplicity
1.1.

context CORBAArray inv:
navigableOppositeEnds->forAll
(end | end.multiplicity.range.lower = 1 and end.multiplicity.range.upper = 1)

[25] A <<CORBAAnNonymousArray>>-stereotyped Class must have exactly one navigable opposite AssociationEnd
whose multiplicity is 1..1.

context CORBAAnonymousArray inv:
navigableOppositeEnds->size = 1 and navigableOppositeEnds->forAll
(end | end.multiplicity.range.lower = 1 and end.multiplicity.range.upper = 1)

[26] A <<CORBAWTrapper>>-stereotyped Classifier must participate as the child in exactly one Generalization
relationship.

context CORBAWrapper inv:
self.generalization->select(gen | gen.child = self)->size=1

[27] The Generalization relationship in which a <<CORBAWTrapper>>-stereotyped Classifier participates has the
empty string as its discriminator and no powertypes.

context CORBAWrapper inv:
self.generalization->forAll(gen | gen.discriminator =
gen.powertype->isEmpty)

and

[28] A <<CORBAWTrapper>>-stereotyped Classifier may not have any non-inherited features.

context CORBAWrapper inv:
self.feature->isEmpty

[29] A <<CORBAWTrapper>>-stereotyped Classifier may not participate in any Associations with navigable opposite
AssociationEnds.

context CORBAWrapper inv:
self.navigableOppositeEnds->isEmpty

[30] A <<CORBAWTrapper>> can only extend a DataType or a Interface.

context CORBAWrapper inv:
self.ocll sTypeOf (DataType) or self.ocll sTypeOf(Interface)

[31] The parent of a <<CORBATypedef>>-stereotyped Classifier must not be stereotyped as
<<CORBA AnonymousSequence>> or <<CORBAANonymousArray>>.

context CORBATypedef inv:

self.generalization->forAll (gen |not gen.parent.isStereotyped(" CORBAAnonymousSequence”) and
not gen.parent.isStereotyped(" CORBAAnonymousArray"))

56 UML Profile for CORBA and CORBA Components, v1.0

8.2 ComponentIDL Profile

8.2.1 Stereotypes

A CORBA Component is defined using a UML <<CORBAComponent>> stereotyped Class. A <<CORBAComponent>>
can inherit from another one (single inheritance) using the UML generalization. It can also inherit from a set of CORBA
interfaces. These relationships are represented by the <<CORBA Supports>> stereotyped generalization defined in
BaselDL Profile.

<<metaclass>> 0.1 - <<me|t3ac|?ss>>
EncapsulatedClassifier < p or)
(from Ports) +ownedPort rom Ports
<<metaclass>> <<stereotype>>
Class <<extends>> CORBAComponent

(from StructuredClasses)

Figure 8.21 - ComponentIDL Profile: Extended UML classes (I)

A component type defines attributes and ports. The attributes are used to configure the component. By using ports,
components can use or provide a set of services (typed with a CORBA interface). There are different kinds of ports:
facets, receptacles, event ports, and stream ports.

UML Profile for CORBA and CORBA Components, v1.0 57

<<stereotype>> <<stereotype>>

SIS CORBAConsumes .
CORBAEmMits CORBAPublishes

<<stereotype>>
CORBAEventPort

<<stereotype>>
CORBAUses

multiple : PrimitiveKind

<<extends>>

+required
= = <<metaclass>> * * <<metaclass>>
Port Interface
+provided
<<extends>> * *
<<exten...
<<stereotype>>
CORBAProvides
<<stereotype>>
CORBAStreamPort
<<stereotype>> <<stereotype>>
CORBASiInk CORBASource

Figure 8.22 ComponentIDL Profile: Extended UML classes (ll)
The facet definitions are represented by a UML Port stereotyped as <<CORBAProvides>>.

The receptacle definitions are represented by a UML Port stereotyped as <<CORBAUses>>. The tag “multiple” by the
<<CORBAUses>> indicates whether the multiple connections to the receptacle may exist simultaneously or not.

The component has event ports. There are two kinds of event ports: event source and event sink. An event source can be
either an emitter (only one consumer) or a publisher (several consumers). Event sources are used to send events; event
sinks are used to receive events. The extended UML metamodel contains an abstract stereotype <<CORBAEventPort>>,
which extends a UML Port and generalizes <<CORBA Consumes>> stereotype representing port where events are
consumed, <<CORBAEmits>> stereotype where events are published only to one consumer, and <<CORBA Publishes>>
stereotype where events are published to several consumers.

For the stream communication components have stream ports. The abstract stereotype <<CORBA StreamPort>> represents
stream ports and generalizes stereotypes <<CORBA Source>> for a source port and <<CORBASink>> for sink ports. A
stream type is represented by a UML Interface stereotyped as <<CORBA Stream>>. The tag “kind” identifies the kind of
the <<CORBA Stream>>.

58 UML Profile for CORBA and CORBA Components, v1.0

ametaclazss - .| emetaclasss wmetaclazs. . ; smetaclasss
Jatt A reception signal A
Kernel :: pbute Classitiey Karmal:: Cornmuni cati ons P 98 Cammurications

Property g = o1 Classifier :Reception g = 0. :Signal

owned Reception /% 0.7

ho..1
wmetaclasse q wmetaclasse wmetaclasse
d Operat
Kernel:: nedDparaten rterfaces::Interfacy = Communications
Operstion (g = o1 nterface
wEntendse wentendss wEntendse wentendsn
eteractypex esteraotypex wstenaotypen wemtendzy wsterectypes
CORBAFactory CORBAFinder BaselDL:CORBMValLe COREAHOmE
isCustom: Boolean
isTruncatable: Boolean
wenumeration:
StreamType Kind wstaneotypes
COREBAStreamn
BASIC_STREAW wstanaatypes
COMSTRUCTED _STRE& kind: StreamType Kind
Raw STR COREMAEvert
wELUE STREA
wtereotypes wmetaclazss cstereotypes
COREAPTimarykey Constructs::issociation COREAManages
wentendss = = wentendss
izDerived: Boolean

Figure 8.23 - ComponentIDL Profile: Extended UML classes (lll)

A Component home is represented by a UML Interface stereotyped as <<CORBAHome>>. A component home must be
associated to a component type. This relationship is made explicit using a <<CORBAManages>> stereotyped UML
Association between a <<CORBAHome>> and a <<CORBA Component>>. <<CORBAHome>> can inherit from another
<<CORBAHome>> (single inheritance) using a UML Generalization. <<CORBAHome>> can support several
<<CORBAInterface>>, this relationship is represented by the stereotyped as <<CORBA Supports>> Generalization.

A <<CORBAHome>> can be associated with a primary key (necessary for persistent components). There is exactly one
key instance for each (persistent component, home) instance couple. To enforce this constraint, the primary key is
represented using a <<CORBAValue>> stereotyped UML Interface, the relationship between home and its primary key is
represented by an Association stereotyped as <<CORBAPrimaryK ey>>.

<<CORBAHome>> can own attributes and operations. A UML Operation stereotyped as <<CORBAFactory>> is used to
represent component factory operations, and as <<CORBAFinder>> is used to represent components finder operations.

Event types are represented by a UML Interface stereotyped as <<CORBAEvent>>. The <<CORBAEvent>> stereotype is a
specialization of the <<CORBAVaue>> stereotype. It inherits from all <<CORBAValue>> constraints.

UML Profile for CORBA and CORBA Components, v1.0 59

8.2.2 Tabular Representation

Table 8.2 represents the ComponentI DL Profile information.

Table 8.2 - ComponentIDL Profile

Stereotype Base Class Par ent Tags Constraints
CORBA Component (ComponentDef) | Class [32] - [35]
<<CORBA Component>>

CORBAProvides (ProvidesDef) Port

<<CORBAProvides>>

CORBAUses (UsesDef) Port isMultiple:
<<CORBAUses>> Boolean

CORBAEventPort (EventPortDef) Port

<<CORBAEventPort>>

CORBAEvent (EventDef) Interface

<<CORBAEvent>>

CORBAEmMits (EmitsDef) Port CORBAEventPort

<<CORBAEMits>>

CORBA Publishes (PublishesDef) Port CORBAEventPort

<<CORBA Publishes>>

CORBA Consumes (ConsumesDef) Port CORBAEventPort

<<CORBA Consumes>>

CORBA Stream (StreamTypeDef) Interface kind:

<<CORBA Stream>> StreamKind

CORBA StreamPort (StreamPortDef) | Port

<<CORBA StreamPort>>

CORBA Source (SourceDef) Port CORBA StreamPort

<<CORBA Source>>

CORBASInk (SinkDef) Port CORBA StreamPort

<<CORBASink>>

CORBAHome (HomeDef) Interface [39] - [42]
<< CORBAHoOmMe >>

CORBAFactory (FactoryDef) Operation [44], [45]
<< CORBAFactory >>

CORBAFinder (FinderDef) Operation [46], [47]
<< CORBAFinder >>

60 UML Profile for CORBA and CORBA Components, v1.0

Table 8.2 - ComponentIDL Profile

CORBAManages Association [36] - [38]
<< CORBAManages >>

CORBAPrimaryKey Association

<< CORBAPrimaryK ey>>

CORBAVaue (ValueDef) Interface [43]
<<CORBAVaue>>

Constraints

[32] A “CORBAComponent” cannot own operations.

context CORBAComponent inv:
self.feature forAll(not ocll sKindOf (behavioral Feature))

[33] A “CORBAComponent” can only inherit from a“CORBAComponent” or a “CORBAInterface”

context CORBAComponent inv:
self.generalization -> forAll (g : Generalization | g.parent.isStereotyped (" CORBAComponent") or
g.parent.isStereotyped(" CORBAI nterface"))

[34] Only single inheritance is possible between “CORBAComponent.”

context CORBAComponent inv:
self.generalization -> select(parent.isStereotyped(" CORBAComponent")) ?size <=1

[35] Each “CORBAComponent” inheritance from a “ CORBAInterface” must be stereotyped “ CORBA Supports.”

context CORBAComponent inv:

Sgenerallzatlon -> forAll (g : Generalization | g.parent.isStereotyped(" CORBAI nterface") implies
ereotyped(" CORBASupports"))

[36] Thereis exactly one “CORBAManages’ association for each Home.

context CORBAManages inv:
self.connection ?select(isStereotyped(" CORBAManages')) ->size= 1

[37] The “CORBAHome" side cardinality must be 1..1.

context CORBAHome inv:
self.connection ?exists(participant.isStereotyped(" CORBAHome")) and multiplicity.min=1 and multiplicity.max=1)

[38] The “CORBAComponent” side cardinality must be “0..n.”

context CORBAComponent inv:
self.connection ?exists(participant.isStereotyped(* CORBAComponent”)) and multiplicity.min=0 and multiplicity.max=n)

[39] A “CORBAHome” can inherit from one “CORBAHome” at most.

context CORBAHome inv:
self.generalization ?select(parent.isStereotyped(" CORBAHome")) ?size=1

UML Profile for CORBA and CORBA Components, v1.0 61

[40] If “CORBAHome” hl inherits from “CORBAHome” h2 and h2 manages “CORBA Component” C2 then h1l must
manage C2 or any other component C1 that inherits from C2.

context CORBAHome inv:
let hl=self and let h2=self.generalization ->
sel ect(parent.isStereotyped(" CORBAHome")) and h2 ->notEmpty implies
let C2=h2.connection ->select(participant.isStereotyped(" CORBAComponent")) and
let C1=h1.connection ->select(participant.isStereotyped(" CORBAComponent")) and
(C1 = C2 or ClallParents ->includes(C2))

[41] If “CORBAHome” hl inherits from h2, and “CORBAHome" h2 is associated with primary key k2, then hl
must be associated with k2 or with a primary key k1 that inherits from k2.

context CORBAHome inv:
let hl=self and let h2=self.generalization ->
select(parent.isStereotyped(" CORBAHome")) and h2 ->notEmpty implies
let k2=h2.connection-> select(isStereotyped (" CORBAManages')).LinkToClass.ClassPart and let
k1=self.connection>sel ect(isStereotyped(" CORBAManages")).LinkToClass.ClassPart and
k1 = k2 or kl.allParents->includes(k2))

[42] Each“CORBAHome” inheritance from a “CORBAInterface” must be stereotyped.

context CORBAHome inv:
self.generalization ->forAll g,Generalization | g.parent.istereotyped (" CORBAInterface")
implies g.istereotyped(" CORBASupports"))

[43] The valuetype of a primary key:

[43-1] must not have private state members

[43-2] must not have members that are interfaces

[43-3] must have at |east one state member

[43-5] must descend directly or indirectly from Components::PrimaryK eyBase

[43-4] Contraints [43-1], [43-2], and [43-3] apply recursively to valuetype members that are valuetypes.
[43-1, 43-2, 43-3, 43-4] isAcceptableKeyType(type)

isAcceptableKeyType (valueType : ValueDef) : boolean

{ valueType.contents.forAll (c | c.ocll sTypeOf(ValuefMemberDef) implies

¢.Ocl AsType(ValueM ember Def).isPublicMember) and

valueType.contents.forAll (not ocllsKindOf (I nterfaceDef)) and
valueType.contents.exists (ocll sTypeOf(ValueM ember Def)) and

valueType.contents.forAll (c | c.ocll sKindOf (ValueDef) implies isAcceptableKeyType (c))

}

[43-5] type.descendsFrom(" Components:: PrimaryKeyBase")
descendsFrom(absoluteName : string) : boolean
{ descendsFrom(absoluteName) =
if self.absoluteName = absoluteName
then true
else
if base->isEmpty

62 UML Profile for CORBA and CORBA Components, v1.0

then false

else
if base.descendsFrom(absoluteName)
then true
else
false
endif
endif

endif }

[44] A “CORBAHomeFactory” operation has only input parameters.

context CORBAHomeFactory inv:
self. parameter ?forAll(kind=#in)

[45] A “CORBAHomeFactory” can only be defined in a“CORBAHome.”

context CORBAHomeFactory inv:
self.owner.isStereotyped(" CORBAHoOmMe")

[46] A “CORBAHomeFinder” operation has only input parameters.

context CORBAHomeFinder inv:
self. parameter ?forAll(kind=#in)

[47] A “CORBAHomeFinder” can only be defined in a“CORBAHome.”

context CORBAHomeFinder inv:
self.owner.isStereotyped(" CORBAHoOmMe")

8.2.3 Example

Following IDL describes the Philosophers example:

typedef enum PhilosopherState

{

EATING,
THINKING,
HUNGRY,
STARVING,
DEAD};

eventtype StatusInfo {

public string name;

public PhilosopherState state;
public long secondesSinceLastMeal;
public boolean hasLeftFork;

public boolean hasRightFork;};

exception InUse {};
// Interfaces

interface Registration ({

UML Profile for CORBA and CORBA Components, v1.0

63

string register();};

interface Fork

{

void get() raises (InUse);
void release();};

//Components and Homes
component Philosopher {

uses Fork left;

uses Fork right;

uses Registration registration;
publishes StatusInfo info;};

home PhilosopherHome manages Philosopher {};

component Fork {
provides Fork the fork;};

home ForkHome manages Fork {};

component Registrator supports Registration {};

home RegistratorHome manages Registrator {};

component Observer {
consumes StatusInfo info;};

home ObserverHome manages Observer {};

The UML model of components described in IDL above is shown in the figure below:

64 UML Profile for CORBA and CORBA Components, v1.0

=COHBAINterrace:
Registration
requstanf) © slang

«CORBASUPPOMs

=CORBAComponent
Registrator

aCORBAManagess

«CORBAHDME:
RegistratorHome

Registration

wCRBAHOME:
PhilosopherHems

aCREAMananes

Philosopher

«COROACOmponents

ccCORBAPublishes»»
inta

% << 00REALIEE
refestraton

QeCORBALSESs» > et

Figure 8.24 - ComponentIDL Profile example

8.3

8.3.1

CIF Profile

Stereotypes

Satusinio

o OREALES > »

rgnt
h

Fark

sCORBAENLMS wCORBAEVENte COREAITETatEs
PhilosopherState Siatusinfe Fork wCORBAERTEtion
EATING name.slring - Inlse
THIMHING state’ Phinsopherstate qei(] : voia
HUMGHY secondesSincel asibeal. long }
STARVEG hasl effFork_hoolean neieaser) | v
DEALD harsRightForke boolesmn

wCORBAHDmE
FarkHam#

=CDRBAMaNAgess

«CORBAComponent=
Fark

—_
e e CORBAPTOVides > »
the fork

Fork

wCORBAHOmEY
ObserverHome

«CORBAMaNAges=

«COREAC Dmponent
Observer

_
I‘“CDRWWUHH

Info
'y

Statusinfo

The CIF Profile defines how CORBA components have to be implemented. An implementation of a component comprises
a potentially complex set of artifacts (e.g., component or home executors) that must exhibit specific relationships and
behaviors in order to provide a proper implementation. A composition is a unit of component implementation and
contains such artifacts. A composition is represented using a UML Component (from the package
“PackagingComponents”) with the stereotype <<CORBA Composition>>.

A component implementation is represented using a UML Class with the stereotype <<CORBA ComponentExecutor>>.
The <<CORBA ComponentExecutor>> is always defined within a <<CORBA Composition>> element.

A home implementation is represented using a UML Class with the stereotype <<CORBAHomeExecutor>>. The
<<CORBAHomeExecutor>> is always defined within a <<CORBA Composition>> element.

The relationships between components and component executors and between homes and home executors are represented
by an Association stereotyped as <<CORBAImplements>>.

UML Profile for CORBA and CORBA Components, v1.0

65

A segment is represented using a UML Part (Property) with the stereotype <<CORBA Segment>>. Segments are physical
partitions of a <<CORBA ComponentExecutor>> element and always represented in the internal structure of a
<<CORBA ComponentExecutor>> element (as UML parts, see example in Figure 8.26).

<<stereotype>>
CORBAHomeEXxecutor
<<extends>>
<<metaclass>> <<metaclass>>
Class - Component *'ibstrac... +realization «Rn:;?;:;sn» +realizingClassifi <<n(1?tac!iass>>
(from StructuredCasses) (from BasicConponents) 0.1 * (from BasicConponents) 1 (fromKerne)
A
D b <<extends>>
<<metaclass>>
<<metaclass>> StructuredClassifier
<<stereotype>> Component p—— (frominternalStructures)
CORBAComponentExecutor (from PackagingGorrponents) CORBAImplemerts o1
<<enumeration>>
ComponentCategory *\+/part
dse;sion <<stereotype>>
je”t'ty <<stereotype>> CORBASegment <<extends>> «n;t(ﬁi?s»
age?ﬂ-cf:s CORBAComposition isSerialized : Boolean (frominternalStructures)
B tension “category : ComponentCategory
Figure 8.25 - CIF Profile: Extended UML classes
8.3.2 Tabular Representation
Table 8.3 represents the CIF Profile information.
Table 8.3 - CIF Profile
Ster eotype Base Class Parent Tags Constraints
CORBA ComponentExecutor Class 49
P
(ComponentExecutorDef)
<<CORBA ComponentExecutor>>
CORBAHomeExecutor Class [53]
(HomeExecutorDef)
<<CORBAHomeExecutor>>
CORBAImplements Realization 48], [50
p
<<CORBAImplements>> (Association)

66 UML Profile for CORBA and CORBA Components, v1.0

Table 8.3 - CIF Profile

CORBAManages Association [51], [52]
<< CORBAManages>>

(from ComponentIDL Profile)

CORBA Composition Component category: [54]
(CompositionDef) ComponentCategory

<<CORBA Composition>>

CORBA Segment (SegmentDef) Property (Part) isSerialized: [55]
<<CORBA Segment>> Boolean

8.3.3 Constraints

[48] Thereis an association between <<CORBA ComponentExecutor>> and <<CORBA Component>>.

context CORBAI mplements inv:
self.connection ? exists(participant.isStereotyped(" CORBAComponentExecutor")) and
self.connection ?exists(participant.isStereotyped(" CORBAComponent™))

[49] A <<CORBAComponentExecutor>> always has exactly one <<CORBA Component>> associated while each
<<CORBA Component>> might be implemented by different types of <<CORBA ComponentExecutor>>.

context CORBAComponentExecutor inv:
self.connection ? exists(participant.isStereotyped(" CORBAComponentExecutor") and multiplicity.min=1 and max=*)
self.connection ?exists(participant.isStereotyped(" CORBAComponent") and multiplicity.min=1 and max=1)

[50] Each <<CORBAHomeExecutor>> in a model implements exactly one <<CORBAHomMe>>.

context CORBAHomeEXxecutor inv:
self.connection ?exists(participant.isStereotyped(" CORBAHomeExecutor") and multiplicity.min=1 and max=1)
self.connection ?exists(participant.isStereotyped(* CORBAHome") and multiplicity.min=1 and max=1)

[51] It's an association between a “ CORBAHomeExecutor” and a “ CORBA ComponentExecutor.”

context CORBAManages inv:
self.connection ?exists(participant.isStereotyped(" CORBAHomeEXxecutor™)) and
self.connection ? exists(participant.isStereotyped(" CORBAComponentExecutor"))

[52] Each <<CORBAHomeExecutor>> manages exactly one <<CORBA ComponentExecutor>>, this relation is
modeled by the association <<CORBAManages>>.

context CORBAHomeExecutor inv:
self.connection ? exists(participant.isStereotyped(" CORBAComponentExecutor”) and multiplicity.min=1 and max=1)

[53] For each instance x of <<CORBAHomeExecutor>> the instance of <<CORBAComponent>>, which is
associated to the instance of <<CORBAHome>> associated to X, is the same instance as the instance of
<<CORBA Component>> associated to the instance of <<CORBA ComponentExecutor>>, which is associated to
X.

context CORBAHomeExecutor inv:
self.home.component = self.component_impl.component

UML Profile for CORBA and CORBA Components, v1.0 67

[54] Thelife cycle category of the <<CORBAComposition>> must be “entity” or “process’ if the contained
component implementation is segmented.

context CORBAComposition inv:
self.component_impl.segments>1 implies (self.category=ENTITY or self.category=PROCESS)

[55] <<CORBASegment>> classes are always contained in <<CORBA ComponentExecutor>>.

context CORBASegment inv:
self.definedl n.ocll sTypeOf(ComponentExecutor Def)

8.3.4 Example

The following IDL for the component Fork from the Philosophers example is represented in Figure 8.26:

composition entity ForkImpl

home executor ForkHomeExecutor {
implements ForkHome;
manages ForkExecutor ({
segment Seg { provides the fork; }}};
«CORBACOMmposition:
Forkimpl
tags
category = entity
<<COREAFC°Drr£pDnent>> «CORBAMaNages» <<CFO°RrESE|E1r28»
<<CORBAProvidess==
Cine_fork
R 3
«CORBAImplements» !
! «CORBAIMplementss»
«CORBACOmponentExecutors i
Forklmpl::ForkExecutor «CORBAManages» «CORBAHDMEEXECULar »
Forklmpl::
«CORBASEgMEnt» the_fork ForkHomeExecutor
Seg
=T

Figure 8.26 - CIF Profile example

68 UML Profile for CORBA and CORBA Components, v1.0

8.4 Deployment Profile

The Component Implementation Framework (CIF) Profile defines how to model constructing component
implementations. How to model components and component homes is defined in the ComponentI DL Profile (see previous
sections). The CIF Profile uses ComponentI DL Profile descriptions to model CCM applications and then generate
programming skeletons that automate many of the basic behaviors of components, including navigation, identity inquiries,
activation, state management, lifecycle management, and so on. Generated CCM components are units of deployment
process, which includes installation, configuration, planning, preparation, and launch of such CCM applications. In order
to deploy a component-based application like CCM applications instances of each component must first be created, then
interconnected and configured. The Deployment Profile defines how to model deployment and configuration information
of CCM applications. The Deployment Profile uses the CIF Profile (e.g., for modeling of component and home executors)
and introduces possibilities for modeling of an initial configuration: a set of interconnected component instances
(assembly) of a CCM application at run time and other deployment information.

8.4.1 Stereotypes

A CORBA Assembly package is represented using a UML Package with the stereotype <<CORBAAssemblyPkg>>. The
<<CORBA AssemblyPkg>> element may contain one or more component packages represented using a UML Package with
the stereotype <<CORBAAComponentPkg>>.

UML Profile for CORBA and CORBA Components, v1.0 69

asterectypes

wsterectypes wmetaclasss
COREAComponent Pkg Kerrel :: COREANzzemblvPlg
wextendsa Package mxtendss + uuid: String

rationg
TR ametaclasse Enmerst
; Aotionkind
COREBARequirement Wermel ::Clazs
+ type: String wentendse ASSERT
+ walua: String IMSTALL

b +oumnedhiember
wmetaclasss wmetaclasss o ametaclasss

Kerrel:

Internal Structires:: rl;}Kemen'.-.-Cn'as.s.‘ﬁer
StructnredClassifiar ———————{=| Packagesbleblement

+ wisibility: “Wsibility Kind

+utilized Bement 1.1

0.7
ollzborations ametaclasss wmetaclas s A i whetaclasss ametaclasss
Collaboration Basicccc'mponrirdsx Sriifacts; ortifact | g ma"'fesm"l_:" brtifacts:: pPependancies:
ompone i i i
+ fileName: String 1.1 0.7 | Manifestation Ibstraction

N T |

caxtendss wextends:s wrtendse -
wStEne oty pes ametaciasss
ssterectypes asteraatypan ustereotypes COREBAFe Clepenoenoies:
COREBAConfiguration COREBAColocation COREAMonalithicImplermertatian + location: String Dependency
+ cardingtittw: Integer | [+ udid: String
/ astarectypen
COREBAIDLFile
wStEne oty pes wExtendse
COREBAHost Collocation S
— - CORBAProcess Collocation ustereotypen
+ destination: String r——— COREAContainedFile
asterectypes CORBEADependentFile sstenentypes

+ codetype: String

+ action: Actionkind + entrypoint: String
+ entrypointusage: String

CORBAReqUires

COREBAComponertFile

Figure 8.27 - Deployment Profile: Extended UML classes

A component package <<CORBAAComponentPkg>> is a set of metadata (e.g., IDL description) and compiled code
modules that contain implementations of a component. The implementations in <<CORBAA ComponentPkg>> can be
monolithic and represented as a UML Component with the stereotype <<CORBAM onolithiclmplementation>> or in the
form of an assembly and represented as a UML Package with the stereotype <<CORBAAssemblyPkg>>.
<<CORBAMonoalithiclmplementation>> elements can be described by platform dependencies, code filename, entry points,
and other deployment characteristics. These characteristics or implementation requirements can be represented by the
stereotyped UML class <<CORBARequirement>>. The possible requirements of an implementation are listed below:

« licensekey: point to the key of a usage license

« licensetextref: point to the text of a usage license

 uuid: unique identifier of an implementation

« compiler: specifiesthe compiler used to create an implementation

 programminglanguage: specifies the type of the component implementation

« description: string description for any additional information

« humanlanguage: specifies a spoken language

70 UML Profile for CORBA and CORBA Components, v1.0

» 0s. specifies a particular operating system that the implementation will work with
 processor: indicates the type of processor that the implementation must run on

The name of the <<CORBARequirement>> class instance can be one of the names listed above (or other), the tag “type’
of the <<CORBARequirement>> class represents a concrete type of the requirement and the tag “value” of the class helps
to define a concrete version of the requirement’s type. For example, the UML class “Processor” with the stereotype
<<CORBARequirement>> can have tagged values “type=Intel” and “value=Core™2 Duo.”

The initial configuration of a CCM application is represented as a UML Collaboration with the stereotype

<<CORBA Configuration>> and contains instances of component and home implementations. These instances can be
collocated in the same process or run on the same node (host). For these two kinds of collocation representation
<<CORBAProcessCollocation>> and <<CORBAHostCollocation>> stereotypes are defined. They both inherit from the
abstract stereotype class <<CORBA Collocation>>, which have the “cardinality” tag. The “cardinality” tag represents how
many instances of collocation may be deployed.

The assembly and component packages may contain different deployment artifacts: specifications of a physical piece of
information that is used or produced by a software development process, or by deployment and operation of a system.
Examples of such artifacts are all defined in the Deployment metamodel files: component, IDL, contained and dependent
files described in Section 3.2.4. All these files are represented using a UML Artifact with stereotypes
<<CORBAAComponentFile>>, <<CORBAAIDLFile>>, <<CORBAA ContainedFile>>, and <<CORBAA DependentFile>>.
These files are usually required from implementations. The relationship between a <<CORBAImplementation>> element
and required artifacts is represented using the UML Dependency with a stereotype <<CORBARequires>>.

8.4.2 Tabular Representation

Table 8.4 represents the Deployment Profile information.

Table 8.4 - Deployment Profile

Stereotype Base Class Parent Tags Congt-raints
CORBARequirement Class type: String

(RequirementDef) value: String

<<CORBARequirement>>

CORBAFile (File) Artifact

<<CORBAFile>>

CORBAMonoalithiclmplementation Component
(MonalithiclmplementationDef)
<<CORBAImplementation>>

CORBAContainedFile Artifact CORBAFile codetype: String,
(ContainedFile) entrypoint: String,
<<CORBA ContainedFile>> entrypointusage: String
CORBADependentFile Artifact CORBAFile action: ActionKind

(DependentFile)
<<CORBA DependentFile>>

CORBAComponentFile Artifact CORBAFile
(ComponentFile)
<<CORBA ComponentFile>>

UML Profile for CORBA and CORBA Components, v1.0 71

Table 8.4 - Deployment Profile

CORBAIDLFile (IDLFile) Artifact CORBAFile
<<CORBAIDLFile>>

CORBARequires Dependency
<<CORBAReguires>>

CORBAAssemblyPkg Package
(AssemblyPkgDef)
<<CORBAAssembly>>

CORBA ComponentPkg Package
(ComponentPkgDef)
<<CORBA ComponentPkg>>

CORBA ProcessCollocation Collaboration | CORBA
(ProcessCollocationDef) Collocation
<<CORBA ProcessCollocation>>

CORBAHostCollocation Collaboration | CORBA destination: String
(HostCollocationDef) Collocation
<<CORBAHostCollocation>>

CORBAC Caollocation (CollocationDef) | Collaboration cardinality:String
<<CORBA Collocation>>

CORBAConfiguration Collaboration
(ConfigurationDef)
<<CORBA Configuration>>

8.4.3 Constraints

There are no specific constraints for this profile.

8.4.4 Example

There is no IDL notation for deployment information: as input to a deployment tool, component and assembly packages

are provided. These packages contain one or more XML descriptors and a set of files. The XML descriptors contain all
needed deployment and configuration data used by a deployment tool.

72 UML Profile for CORBA and CORBA Components, v1.0

WCORBAAssamblyFkgs
FPhilosophers

|
aCORBAComposiions
Forkimpl s CORBAComponantFkg »
ForkPkg

=y

T iCORBAReaizEn a :
T |=CORBAMonglithickmplemantation s Pﬁ:ﬁfs;_:grl:rlg?"

ForklmplWin
wCOREBAIDLFibew
Philosophers cidl

«CORBARaquirement s b
kel «CORBARequIress

,-'ﬁCORB.ﬂ-ﬁnqmr-:.s'-
tags - .
type = Windows o CORBAContanedries [
e «CORBARSqUires s Forkimphiin di
’ tags
) codetype = "DLL"
Fod antrypoant = "create FarkHomekE"
wCORBARaquiraments Antyypoinusage = exsoulor
compiler
tags
Bype = VT e+
value = Microsoft Met 7

Figure 8.28 - Deployment Profile example: package structure of an application

The figure below represents one possible initial configuration of the Philosophers application:

UML Profile for CORBA and CORBA Components, v1.0

FhilsssphersCantip
sCORBANmEExBOURors
el OREAHOmS A0
Rugi ik E §
A Ragumatartin nsamat 4 PhilesaphsrdemsEverutor
_--"'-'.. I
T ' [-
registrator : FEgSITISOn I ==
RegistratorEcecutor [sLORRAC omgoneniEx i)
bab PRBsicpherlizecutar [F
 E=sooooo == I
= B
 CORBAPTOTess Colstation «CORBACOmpOnenExec o

ekl FeriEdacuter

aCORRAl omporsTEE Ul

",

ForkCalla<ation

CORBAComponentEssoutors) |
Tarkl ForkEvstutor =

-

observer :ChserverExecutar

._.‘ ok

aCORBAHmEE LR =
hi FerkHomeExecutar

s DR EAHome E bR

Mg o

CORRAl ompors g !'(-:1:.
srze PhilsispherEuseunss

Rl ObserverHomeExscutar

right

=L ORfaHome Bt
Wl :PhilasapheriamaEsesutor

Figure 8.29 - Deployment Profile example: initial configuration of an application

8.5 CCMQoS Profile

The “UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms” (ptc/05-05-02)
defines a comprehensive UML 2.0 profile for the description of QoS properties. The modeling of QoS properties for
CORBA Components requires the definition of alink between QoS profile and CCM profile. This link is defined in the
profile package CCM QoS and is a small extension done by the stereotype QoSBinding (see Figure 8.30). The
QoSBinding class extends the UML metaclass Comment and can be attached to any UML element instance.

74

UML Profile for CORBA and CORBA Components, v1.0

annotatedElement
<<metaclass>>

* Element
(from Ownerships)

&

<<metaclass>>
Element

¢o

<<metaclass>>
Comment

body : String *

ownedComment

<<extends>>

<<stereotype>>
QoSBinding
name : string
mandatory : boolean

Figure 8.30 - CCMQoS Profile: extended UML classes

The example shown below describes a simple video service: stream-based communication between two CORBA
components StreamClient and StreamServer. The stereotyped with <<QoS Characteristics>> VideoQoS class represents
quantifiable characteristics (dimensions for the quantification) of the video services. For more information about QoS
please refer to the OMG document ptc/05-05-02.

The Binding metaclass is represented using a UML Comment with stereotype <<QoSBinding>> and can be attached either
to a component or its port or its instances. The <<QoSBinding>> element has two tags. “name” and “mandatory.”

8.5.1 Tabular Representation

Table 8.5 represents the CCM QoS Profile information.

Table 8.5 - CCMQoS Profile

Stereotype BaseClass | Parent | Tags Constraints
QoSBinding (Binding) Comment name: string
<<QoSBinding>> mandatory: boolean

8.5.2 Constraints

There are no specific constraints for this profile.

UML Profile for CORBA and CORBA Components, v1.0 75

8.5.3 Example

«CORBAINterface: «CORBAStream:
Streaminfo Raw
+ wideo name: string
+ media 2 strin tags
+ media size: long kind = BASIC_STREAM

<=CORBASOUrCE=>

«CZORBACOMponents «CORBACOMponents
StreamcClient <=CORBAISES>> StreamsServer stream_out
info_sink | Faw
<<CORBAProvides=» | °
Streaminfo info_source

<<CORBASINK:> L1
strearn_in
R Streaminfo

== 05Binding>>

tags
"1 name=+ideoGoSBinding
mandatory=yes

«ClnSCharacteristics
VideoQos

+ «QoSDimensions rate; short {unit (bit/sec), direction (increasing)}
+ «Q0SDimensions vieo_height. short
+ «@0SDimensions video_width: short

Figure 8.31 - CCMQoS Profile: video example

8.6 UML Profile for Lightweight CCM

This profile provides modeling concepts of the basic level of CORBA Components defined as Lightweight CCM Profile
and specified in the CCM specification (formal/06-04-01).

The Lightweight CCM profile provides an enriched environment for low-footprint, embedded, and real-time CORBA
solutions. It considers only specific parts of the CCM specification that are impacted and the normative specific
subsetting of CCM. General CCM capabilities and support, such as Persistence, CIDL, Home finders, or Configuration
are not included in Lightweight CCM (see formal/06-04-01, section 13).

The UML Profile for Lightweight CCM is defined as a subset of the CCM Profile described in previous sections. There
are no new stereotypes or tags for this profile added. The following changes made in Lightweight CCM do not have a
bearing on the UML Profile for Lightweight CCM:

» Changes associated with excluding support for introspection, navigation, and type-specific operations redundant with
generic operations.

» Changes associated with excluding support for transactions.
« Changes associated with excluding support for security.
 Changes associated with excluding support for configurators.

» Changes associated with excluding support for proxy homes.

76 UML Profile for CORBA and CORBA Components, v1.0

Changes associated with excluding support for persistence, segmentation and home finders impact CCM Metamodel and
Profile. Following normative exclusions described in the Lightweight CCM profile have been taken into account:

Table 8.6 - Lightweight CCM

Normative M etamodel impacts Profileimpacts

Exclusion

Exclude support for The association “key _home” between The Stereotype

primary keys. metaclasses HomeDef and ValueDef hasbeen | <<CORBAPrimaryKey>> has been removed.
removed.

Exclude support for Excluding CIDL isaresult of excluding support for both persistence and segmentation (see

CIDL. Exclusions below).

Exclude composition

The metaclass CompositionDef has been
removed.

The attributes of the enumeration
ComponentCategory “process’, “
“extension” have been removed.
Theattribute “ category” has been added to the
metaclass ComponentExcecutor Def.

entity” and

The Stereotype <<CORBAComposition>>
has been removed.

Thetag “category” has been moved from the
stereotype <<CORBA Composition>> to the
<<CORBA ComponentExecutor>>

Restrict CIF
metamodel to asingle
segment per
implementation

Removesegmentation
support

Exclude support for
home finders and
finder operations

The multiplicity of the association between
ComponentExcecutor Def and SegmentDef has
been changed to 1:1.

(see previous Exclusion)

The Finder Def metacl ass has been removed.

Following Constraint has been added:

56

con]text CORBAComponentExecutor inv:
self.connection ?

(participant. |sStere0t fed CORBASegment)
and multiplicity.min=1 and max=

(see previous Exclusion)

The Stereotype <<CORBAFinder>> has been
removed

The following figures represent changed metamodels (ComponentIDL and CIF) for Lightweight CCM:

UML Profile for CORBA and CORBA Components, v1.0

77

InterfacaDemvedrram
+base 0. Hﬂdﬂl'i'wﬁ nr sprovidasid

home_supports ssupponshi InterfaceDef _;]
0|+ isAbstract Boolean
+ isLocal Boolean
ssupportstf g 0 & susesit
Lses_typed by
+usas_def 0"
provides_typed_by
UsesDef
COMpanent_supports fleaf)
+ muliple: Boclean
-5
sreceptacle” 0.
!
compangnt_receptack
shomedet [0 * +COMPOnets (« +promdes_def 0.
HemelDef ! Ml ProvidesDef
flealt| +homeEnd wcomponentEnd ﬂumpnnunﬂ:r{u}:m ﬁmmn acet rov u{; a?}
0.* component_home 1 T component_facet 0.F
shomedef 3 L +|:|:|mp'-‘:\'::|mﬁf 1
harne_factony COMPOnSnt_smits component_publishes
COMPANent_consumes
e S
slactones)0, * +amitssy0. " spublishess 0!
FactoryD EmitsDef
fleaf)
| .
OperationDef EventDef |+hype sevent_porr| EventPortlaf
{leatl} (5 event_port_typed_by o *

Figure 8.32 - ComponentIDL metamodel for the Lightweight CCM

78

UML Profile for CORBA and CORBA Components, v1.0

I Centained

Container e
definedin cortarel! 1er. smng
. S repositoryld: Siring
0.1 Cartains 0. " |varsion: String

0
HomsExscutorDaf| - detode S} HomeDef
n.r homse_implansats [
hiame_Impl’"0." homeEnd [0 "
Mmanages L.J:.,FL.",CENJ .
componant_irmplde1
: -~ ¥ companartEnd 1
ComponentExecutorDel [zsas cormponentEnd
= = ComponentDef
||:a1£|gur5r ComponanCatagong (0 " componart_implamearnls 1
'
'Z\',-TIII"Z'I'IIZ"F[I'I'IDEFJ'l' 1
wenumerabon: SEOTIBNE
ComponsntC ategory
SESSION
SERVICE a,.:.g“.._.-.-.[.‘_. 1
TN s features ¥
SegmentDef ‘2l provided by 3

| *| CompenentFeature

1sSenahzed Boolean

Figure 8.33 - CIF metamodel for the Lightweight CCM

8.7 Differences and Migrations between CORBA based Profiles

The UML Profile for CORBA (formal/02-04-01) specification (CORBA Profile) provides a standard means for expressing
semantics of CORBA IDL using UML 1.3 notation and support for expressing these semantics with UML tools. The
profile doesn’t provide any means for expressing semantics of the CCM concepts like component or port. The profile
doesn’t define any MOF-based CORBA IDL metamodel.

The UML Profile for CORBA Component Model (CCM) specification (formal/05-07-06) provides a standard means for
expressing both: pure CORBA and CCM-based applications, but using UML 1.5 notation. It is specified to work with
MOF repositories since the profile defines a MOF-based CORBA IDL and CCM metamodel. This profile is based on the
UML Profile for CORBA, extends it to the component-based semantics, and defines how to represent these semantics
using UML 1.5. There are no migration rules from the UML Profile for CORBA to the UML Profile for CCM: all
representations for CORBA IDL (including all data types, CORBA module and interface) were adopted for this profile.

This specification (CORBA& CCM Profile) provides a standard means for expressing both: pure CORBA and CCM-based
applications using UML 2 notation. UML 2 facilitates and simplifies representation of many concepts needed to represent
a pure CORBA or CORBA Components. The profile updates the MOF-based CCM metamodel and extends this
metamodel to QoS and Deployment concepts. Due to various differences between UML 1.x and UML 2.x versions and
new concepts in UML 2.x some migration rules were defined (see Table and description below). These rules provide an
ability to automatically transform UML 1.x models based on the CORBA Profile to UML 2.x models based on the profile
defined in this specification.

UML Profile for CORBA and CORBA Components, v1.0 79

This specification is intended to replace the existing UML Profile for CORBA (formal/02-04-01) and UML Profile for
CCM (formal/05-07-06) specifications.

Table 8.7 summarizes the main concepts of CORBA and CCM and gives an overview how mentioned above three
specifications deals with these concepts. Additionally, the table shows all differences between profiles and identifies were
some clarifications are needed for the successfully migration from the UML 1.x to UML2.x profile definition.

Table 8.7 - Differences between Profiles

Concepts CORBA Profile | CCM Profile(UML | CORBA&CCM Profile
(UML 1.3) 1.5) (UML 2.2)

Module Package Package Package
Interface Class Class Interface
Value Class Class Interface
Constant Attribute Attribute Property (Attribute)
Primitive Types Data Type Data Type Data Type
Union Class Class Data Type
Struct Class Class DataType
Exception Exception Exception Data Type
Enum Class Class Enumeration
Sequence Class Class DataType
Array Class Class Data Type
AnonymousSequence Class Class Data Type
AnonymousArray Class Class Data Type
TypeDef Class or Data Type Classor Data Type Data Type
Component Class Class
Facet (provided port) Association betweena | Port

component and its

provided interface
Receptacles (used port) Association betweena | Port

component and a used

interface
Event port Association betweena | Port
(published, emitted or consumed) component and its

(published, emitted or

consumed) event
Event Class Interface
Stream Interface

80 UML Profile for CORBA and CORBA Components, v1.0

Concepts CORBA Profile | CCM Profile(UML | CORBA&CCM Profile
(UML 1.3) 1.5) (UML 2.1)

Stream port Port

(source of sink)

Home Class Interface

Component Executor Class Class

Home Executor Class Class

Composition Component

Segment Class Part (Property)

Requirement Class

File Artifact

(contained, dependent, IDL or

component)

Assembly package Package

Component package Package

Monolithic implementation Component

Collocation Collaboration

(host or process)

Configuration Collaboration

QoS Binding Comment

From the table above the following migrations from the CCM Profile (incl. CORBA Profile) to CORBA&CCM Profile

have been identified:

CCM Profile
UML 1.3

Class

A ssociation

Exception

CORBA & CCM Profile
UML 2.1

(Interface
> DataType

i Enumeration
Part (Property)

Port

\/

DataType

Figure 8.34 - Profile mappings

UML Profile for CORBA and CORBA Components, v1.0

\/

81

From the table and figure above following mappings (see also Figure 8.34) have been identified and described below:
+ Class2Interface
» Class2DataType
 Class2Part(Property)
+ Class2Enumeration
 Association2Port

» Exception2DataType

Class2Interface

The UML1.3 metamodel element “Interface” was inappropriate for modeling an IDL interface, as it may not have
Attributes or Associations that can be navigated from the Interface. Therefore, the metaclass Class was taken to represent
CORBA interface. The UML 2 metamodel element “Interface” provides all features for the representation of CORBA
Interface. Mapping between these two metaclasses is simply described below:

Class2l nterface (cl, itf)

FORALL UML1Class cl WHERE c.stereotype = "CORBAInterface” || "CORBAHome"

CREATE UML 2Interface itf

SETTING itf.stereotype = cl.stereotype, itf.name = cl.name, itf.attribute = cl.attribute, itf.operation = cl.opertaion,
itf.tag.isLocal = cl.tag.isLocal;

Class2DataType

The CORBA profile uses the metamodel element “DataType” only for the representation of CORBA Primitive types like
short or string and TypeDefs, for user-defined Types like struct or sequence using of DataType was not possible, since
DataTypes was not allowed to contain any Attributes, and Attributes are the best way to model struct/union members. The
UML?2 DataType may contain attributes to support the modeling of structured data types. Mapping between these two
metaclasses is simply described below:

Class2DataType (cl, dt)

FORALL UML1Class cl WHERE cl.stereotype = ("CORBAStruct" || "CORBAUnion" || "CORBASequence" ||
"CORBAArray")

CREATE UML2DataType dt

SETTING dt.stereotype = cl.stereotype, dt.name = cl.name, dt.attribute = cl.attribute;

Class2Part

CCM segment is a set of artifacts, where each artifact is a physical part of the component executor and provides at least
one facet. Each segment encapsulates independent state and is capable of being independently activated. The CCM Profile
uses the metamodel element Class to model a segmented implementation structure for a component implementation
(executor). UML 2 provides a new concept Part (metamodel element Property from Internal Structures). A part declares
that an instance of the classifier may contain a set of instances by composition.

Class2Part (cl, part)

FORALL UML1Assoc ass LINKING UML1Class cl, UML1Class seg

WHERE cl.stereotype = "CORBAComponentImpl" AND seg.stereotype = "CORBA Segment"
CREATE UML2Class cl2

82 UML Profile for CORBA and CORBA Components, v1.0

SETTING cl2. stereotype = "CORBAComponentExecutor”, cl2.name = cl.name
CREATE UML 2Property part IN cl2
SETTING part.stereotype =seg.stereotype, part.name = seg.name, part.isSerialized= seg. isSerialized;

Class2Enumeration

The CORBA Profile uses the UML Class to represent a CORBA IDL enum type. Each element of the enum type is
represented as an UML Attribute of the UML Class, with the same name as the enum element. UML 2 metamodel
provides a metamodel element Enumeration for modeling such data types like IDL enum, whose instances may be any of
a number of user-defined enumeration literals.

Class2Enumeration (cl, en)

FORALL UML1Class cl WHERE cl.stereotype = "CORBAEnum"

CREATE UML2Enumeration en

SETTING en.stereotype = cl.stereotype, en.name = cl.name, en.attribute = cl.attribute;

Association2Port

The metaclass Port is a new metamodel element, which has been added to UML 2. A port is a property of a UML
classifier that specifies a distinct interaction point between that classifier and its environment or between the (behavior of
the) classifier and its internal parts. A Port may specify the services a classifier provides (offers) to its environment as
well as the services that a classifier expects (requires) of its environment. Due to missing port concept in the UML 1.x
metamodel, CCM Profile uses metaclass Association for representing component portsin CCM. This has been changed in
the current specification and the UML 2 port definition used for modeling of CCM component ports.

Association2Port(ass, port)

FORALL UML1Assoc ass LINKING UML1Class cl1, UML1Class cl2

WHERE cl1.stereotype = "CORBAComponent” AND cl2.stereotype = ("CORBAInterface" || "CORBAEvent")
CREATE UML 2Port pt

SETTING pt. stereotype =ass.stereotype, pt.name = ass.name;

Exception2DataType

In CORBA Profile an IDL exception is represented by UML Exceptions (from CommonBehavior). In the UML 1.x
metamodel, metaclass Exception is derived from metaclass Signal. UML 2 metamodel doesn't contain a metaclass
Exception, exceptions that may be raised during an invocation of an operation are represented by an abstract metamodel
element Type, which serves as a constraint on the range of values represented by a typed element. CORBA& CCM Profile
represents an IDL exception by UML DataType element.

Exception2DataType(ex, dt)

FORALL UML 1Exception ex WHERE ex.stereotype = "CORBAException"
CREATE UML2DataType dt

SETTING dt. stereotype =ex.stereotype, dt.name = ex.name, dt.attribute=ex.attribute;

UML Profile for CORBA and CORBA Components, v1.0 83

84

UML Profile for CORBA and CORBA Components, v1.0

9 Profile lllustration

9.1 Example Scenario Description

The “Simulation” example contains a set of components for simulating an Air Traffic Management (ATM) scenario in a
very simplified way. The main purpose is to demonstrate the general usage of a graphical interface framework inside of
the components while using a real world example context (simulation of ATM).

In the “Simulation” scenario there could be a number of planes, which are tracked by radar station whenever the planes
arein their area of observation. Since the radar stations have only a limited area of observation and are located at different

geographical positions it is important to combine the information that is provided by each of the radar stations into one
single picture.

The example contains the following CORBA component types:

» Plane: This component represents a plane in the air that can be tracked by aradar station. It has a graphical user
interface to receive commands regarding the speed and the heading of the plane. A plane component has a receptacle
of type Planelnput that is used to provide the current position of the plane to the simulation server. This demonstrates
the usages of a synchronous communication.

» SimulationServer: This component should be instantiated once in asimulation scenario. It retrieves the position of all
planes in a synchronous manner. Radar station can get information about the planes that are in their area of
observation. The simulation server computes this based on the location position provided by the radar stations. This
component does not expose a graphical user interface.

» Radar: This component simulates aradar station. The component acquires the information about the planes that are
currently in its area of observation by sending a synchronous request to the simulation server. In this request the radar
station provides its own location. The information about the planes is then presented to the user in agraphical form.
Furthermore, the radar station provides the information about the planes in the area of observation to the TAPDisplay
component in an asynchronous manner.

« TAPDisplay: This component obtains information from all radar station about the position of the radar station and the

planesin the area of observation. The TAPDisplay presents the information gathered from all radar stationsto the user
inasingle view.

9.2 Type Definition

The example uses the following IDL 3 basic types and exceptions;
9.2.1 IDL Notation

module Simulation

{

[* Position e.g. of an airplane */
struct Position{

double longitude;

double latitude;

double altitude;};

/* Position of aradar Contact */

UML Profile for CORBA and CORBA Components, v1.0 85

86

struct PolarPosition{
double angle;
double distance;};

struct RadarObject({
string identifier;
Position position;};

/* Transponder information */
struct TransponderObject{

string identifier;

double altitude;};

[* a sequence of radar contacts */
typedef sequence<RadarObject> RadarData;

/* List of radar contacts submitted to base stations */
eventtype RadarEvent {

public string radar identifier;

public Position radar position;

public RadarData radardata;

public double radius;};

/* dynamic information about airplane position */

[* possibly from FlightGear */

interface PlaneInput {

void set position(in string identifier,

[* plane */

/* only needed if FlightGear is not available */

component Plane {

attribute
attribute
attribute
attribute
attribute
attribute

string
double
double
double
double
double

identifier;
initial longitude;
initial latitude;
initial_altitude;
initial course;
speed;

uses PlaneInput sim_server;};
home PlaneHome manages Plane {};

interface RetrieveRadarData {

in Position current position);};

[* callculates the List of radar contacts visible for a given position of a Radar */
RadarData get data(in Position radar position, in double radius);};

component SimulationServer{
provides PlaneInput the input;

provides RetrieveRadarData radar output;};

home SimulationServerHome manages SimulationServer {};

component Radar {
attribute string radar identifier;
attribute double longitude;

UML Profile for CORBA and CORBA Components, v1.0

attribute double latitude;
attribute double radius;
attribute double pixel radius;
uses RetrieveRadarData sim server;
publishes RadarEvent to_ tac_display;};
home RadarHome manages Radar {};

component TAPDisplay {
attribute string identifier;
attribute double longitude;
attribute double latitude;
attribute double horizontal range;
attribute double vertical range
attribute double horizontal pixels;
attribute double vertical pixels;
consumes RadarEvent from radar;};

home TAPDisplayHome manages TAPDisplay {};

9.2.2 CIDL Notation

module Simulation
composition session PlaneImpl {
home executor PlaneHomeImpl {
implements PlaneHome;
manages PlaneSessionImpl;};};

composition session SimulationServerImpl {
home executor SimulationServerHomeImpl {
implements SimulationServerHome;

manages SimulationServerSessionimpl;};};

composition session RadarImpl {
home executor RadarHomeImpl {
implements RadarHome;
manages RadarSessionImpl;};};

composition session TAPDisplayImpl {
home executor TAPDisplayHomeImpl {
implements TAPDisplayHome;
manages TAPDisplaySessionImpl;};};

-
~

UML Profile for CORBA and CORBA Components, v1.0

9.3

UML Example Diagrams

«CORBAMDOUIE»
CORBA
«CORBAPrimitive» | |«CORBAPTimIitive:s «CORBAPTImitive:s «CORBAPTimitives «CORBAPTImMitive:s
void any boolean char double
«CORBAPrimitive» | |«CORBAPrmitves| |«CORBAPTmitives | |«CORBAPrimitives| |«CORBAPTIMItves
long float long double long long object
«CORBAPrimitive»| |«CORBAPrimitive»| |«CORBAPrimitives| |«CORBARrmitves| |«CORBAPrimitive»
short octet string typecode unsigned long
«CORBAPTIMItive» | [«CORBAPTimitives «CORBAPTIMItvE:s «CORBAPTIMItives
unsigned long unsigned short wchar wstring
leng
Figure 9.1 - CORBA Package
«CORBAINterfaces «CORBANtErtaces «CORBAEvent»
RetrieveRadarData Planelnput RadarEveni
get_datarPosition, doubie) | RadarData set_position(string, Position) : void radar_identifier. string

radar position: Position
radardata: RadarData
radius. double

«CORBAStrUCt: «CORBAStrUCt:

PolarPosition Position «CORBASEqUENCE

angle: double longituce: double RadarData «CORBASIrUCE
distance: double latitude: double seq: RadarOhbject [1..n] {ordered} RadarObject

altitude: double

identifier: string
position: Position

«CORBACOmponent»

SimulationServer | '203r_oUtpLt

«CORBACOmponents

the_input
Plane

RetrieveRadarData

identifier. string
initial_latitude: double
initial_longitude: double

Initial_altitude: double Planelnput
nitial_course: double
speed. double
sim_server
«CORBACOMponents
TAPDisplay
Planelinput
identifier. string
«CORBACOMPOnENts lanigiiugz - @ouldle
B harizontal_range: dauble
sim server |atitude: double
Iongitude: dousle - vertical_range: double
raciar_identifier: string harizontal_pixels: double
Jatitude: dauble [vertical_pixels: double
racius: double RetrieveRadarData —
pixel_radius. double Ifrumjadar
T to_tac_display RadarEvent

RadarEvent

Figure 9.2 - User-defined data types, interfaces and components

88 UML Profile for CORBA and CORBA Components, v1.0

«CORBACOmpositions
Planelmpl

tags
category = session

«ZORBACOmpositions
Radarimpl

tags

category = session feey

Figure 9.3 - Compositions

«CORBACOmMposition:
SimulationServerimpl

tags

category = session

«CORBACOmpositions
TAPDisplaylmpl

tags

category = session

«CORBACOmMposition:
Planelmpl

category = Session

«CORBAComponent»
Plane

- identifier: string
- initial_latitude: double

tags

«CORBAHDME:
PlaneHome

- initial_longitude: double |1
- initial_altitude: double
- initial_course: double
- speed: double

«CORBAIMplemMEents:

«CORBAComponentExecutors

«CORBAManages»

«CORBAIMplements»

Planelmpl::
PlaneSessionimpl

«CORBAMaNnages:

«CORBAHOMEEXECULOrs
Planelmpl::
PlaneHomelmpl

UML Profile for CORBA and CORBA Components, v1.0

Figure 9.4 - Composition description for Plane component

89

«CORBAASSEMDIYPRY»
SimulationApplication

«CORBAC omponentPkg»
PlanePkg

«CORBAC DmponentPkg»
RadarPkg

«CORBACOMponentPkgs
SimulationServerPkyg

«CORBACOMponentPkg»
TAPDisplayPkyg

«CCORBACo
PlanePkg

mponentPkgs

«CORBAIDLFile» &
simdemo cidl

&l
«CORBAMonoliticimplementations

Plane_W

gl
«CORBAMonoliticimplementations»
Plane_L

Figure 9.5 - Assembly package and component package content for the Plane component

«CORBAContainedFile»
Flanelmpl.dl

Plane_W

tags
codetype = DLL
entrypoint = create_PlansHomel
entrypointusage = executor

«CORBACompositions
Planelmpl

tags
category = session

«CORBAContainedrile» B
Planelmpl co

tags
codetype =DLL
entrypoint = create_PlaneHome
entrypointusage = executor

«CORBARealize» :
- «CORBAReqUires»

<<COF§BARequ|res»

Planelmpl.ccd

i
«CORBADependentFile» &)

tags
action = INSTALL

A

«CORBARealize » :
=5 «CORBARequires»

CORBARequires:

«CORBAPequ\res»

Plane_L

« COREAMonaliticimplementations

«CORBARequires» os_|
,,,,,,,,, -7 tags
""" type = Linux

Figure 9.6 - Component Implementation description

90

UML Profile for CORBA and CORBA Components, v1.0

gll S —
«CORBAMonoliticimplementations « CORBAReqUiIres»™ ~pm s b iemant,
3]
«CORBARequires»
4{_/,,-’ L

os_wW
tags
ype = Windows
value = 2000 Professional

«CORBARequirements
compiler

tags
type = C++

value = Microsoft Visual C++ 6

)

«CORBARequirement»

value = openSUSE 10.3

" [«CORBAHOmeEecutors
homes5 :
TAPDisplayHomelmp

to_tac_display

«CORBAC onfiguration» el

InitialConfiguration

«CORBAComponentExecutors
tapdisplay :
TAPDisplaySessionimp

—fram_radar

«CORBAHomEExecutors

to_tac_display

«CORBACOmpofEntExecUtors
radar1 :RadarSessionimpl

[

SImn_server

home2 :RadarHomelmpl

«CORBACOMponentExecutors
radar2 :RadarSessianimpl

sim_server

‘,,-"(EEORBAProcessColloca

Process2

home3 :

s [CORBAHOMEEXECULDr

k! i FlaneHomelmpl

«CORBACOMETNENtEXECUtar
plane2 :PlaneSessionimpl

Figure 9.7 - Initial Configuration Description

radar_outpu

«CORBAHOmeEXeCUtors
home4 :

«CORBACOMpONENtEXecutars
sim_server:
SimulationServerSessionimpl

the_input

frd_;_f—— SimulationServerHomelmpl

UML Profile for CORBA and CORBA Components, v1.0

/,f"c'(EORBAProcessCollocatio-rif:"-\.‘
Processi)

«CORBAHOMeExecutors |
home1 :PlaneHomelmpl

«CORBAC ompurientExecutors)
plane1 :PlaneSessionimpl

91

92

UML Profile for CORBA and CORBA Components, v1.0

Annex A References

(1
(2]
(3]
[4]
(3]
6]
[7]
(8]
(9]

Meta Object Facility (MOF) Core Specification, Version 2.0, OMG document formal/2006-01-01

CORBA Components Specification, OMG document formal/02-06-65

Unified Modeling Language (UML) Specification, Version 2.0, OMG document formal/03-03-01

Unified Modeling Language (UML) Superstructure Specification, Version 2.1.1: OMG document formal/07-02-05
Unified Modeling Language (UML) Infrastructure Specification, Version 2.1.1: OMG document formal/07-02-06:
UML 2.1.1 XMI file: OMG document ptc/06-10-06

UML Diagram Interchange Specification: OMG document formal/06-04-04

UML OCL Specification, Version 2.0: OMG document formal/06-05-01

CORBA Component Model Specification, Version 4.0: OMG document formal/2006-04-01

[10] The UML Profile for CORBA, OMG document formal/02-04-01

UML Profile for CORBA and CORBA Components, v1.0 93

94

UML Profile for CORBA and CORBA Components, v1.0

INDEX

A

Acknowledgements 3
ActionKind 27

Additional Information 3
ArtifactDef 20
AssemblyPkgDef 26, 28, 30
AttributeDef 9

B

Basel DL constraints 10
Basel DL metamodel 6
Basel DL package 5
Basel DL Profile 37
Binding 32

C

CCM metamodel 5

CCMQoS 32

CCMQoS package 6

CCMQosS Profile 74

Changes to Adopted OMG Specifications 3
CIDL Notation 87

CIF package 5

CIF Profile 65

codetype 27

CollocationDef 28

Common Object Request Broker Architecture (CORBA) 1
Complex types 7

Component Homes 12

Component |mplementation Definition Language (CIDL) 19
Component Implementation Framework (CIF) 19
Component Model 12
ComponentDef 12, 14, 21, 25
ComponentExecutorDef 20, 21
ComponentFeature 15, 22
ComponentIDL 11

ComponentIDL package 5, 19
ComponentI DL Profile 57
ComponentIlmplDef 20
ComponentlnstanceDef 29, 30
ComponentPackageDef 28
ComponentPackageFile 30
ComponentPkgDef 25, 26, 30
CompositionDef 21, 26
ConfigurationDef 28

Conformance 1

Conformance points 1
connected_feature 29

Connection 28, 29

ConnectionDef 29
ConnectionEndDef 29

ConsumesDef 12

Contained 7

ContainedFile 26, 31

ContainerDef 21

CORBA Component Model (CCM) 1
CORBAArray 49

UML Profile for CORBA and CORBA Components, v1.0

CORBABoxedValue 51
CORBAEnumeration 44
CORBAEXxception 46
CORBA Sequence 47
CORBAString 47
CORBAStruct 45
CORBATypeDef 51
CORBAUnion 44
CORBAWstring 47

D

DataType 42
Definitions 2
DependentFile 26, 31
Deployment package 5
Deployment Profile 69
Diagrams 88

E

EmitsDef 12
entrypointusage 27
EventDef 12
EventPortDef 12
ExceptionDef 10

F

FactoryDef 12
Files 30

FinderDef 12
FinderServiceDef 29

H

HomeDef 12, 21
HomeExecutorDef 20, 21
HomelmplDef 20
HomelnstanceDef 29, 30

HostCollocationDef 28, 29
How to Read this Specification 3

|

IDL notation 85
IDLFile 26, 30
IDLType 7

ImplementationDef 25, 26, 27, 30

InterfaceDef 8, 12

K
key_home 12

L
Lightweight CCM 76

M
ModuleDef 8

MonolithiclmplementationDef 26, 30

N
Normative References 1

o]
OperationDef 9

P
ParameterDef 10
Policy 20

ProcessCollocationDef 28, 29

PropertyDef 30
PropOwnerDef 26
ProvidesDef 12
PublishesDef 12

Q
QoSContext 32

R

References 1
RegisterInstanceDef 29
RequirementDef 27, 30

S

Scope 1

SegmentDef 22
SinkDef 12

SourceDef 12
Stereotypes 57
StreamPortDef 13
Streams Metamodels 11
Streams package 5
StreamTypeDef 13
StreamTypeDefKind 13
Symbols 3

T
Terms 2
Terms and definitions 2
Types 7

U
UML DataType 42

UML Example Diagrams 88
UML Profile for CORBA and CORBA Components (CCM

profile) 35

UML Profilefor Lightweight CCM 76

UsesDef 12

\Y
ValueDef 9

96

UML Profile for CORBA and CORBA Components, v1.0

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 How to Read this Specification
	6.3 Acknowledgements

	7 CCM Metamodel
	7.1 Overview
	7.2 BaseIDL Metamodel
	7.2.1 Typing
	7.2.2 Containment
	7.2.3 Modules
	7.2.4 Interfaces
	7.2.5 Operations
	7.2.6 Attributes
	7.2.7 Values
	7.2.8 Exceptions
	7.2.9 Parameters
	7.2.10 BaseIDL Constraints

	7.3 ComponentIDL and Streams Metamodels
	7.3.1 Component Model
	7.3.2 Component Homes
	7.3.3 Streams
	7.3.4 Containment
	7.3.5 ComponentFeature
	7.3.6 ComponentIDL Constraints

	7.4 CIF Metamodel
	7.4.1 Composition
	7.4.2 Component and Home Executors
	7.4.3 Segments
	7.4.4 CIF Constraints

	7.5 Deployment and Configuration Metamodel
	7.5.1 Implementations
	7.5.2 Assembly Package
	7.5.3 Properties
	7.5.4 Files
	7.5.5 Containment
	7.5.6 Deployment Constraints

	7.6 CCMQoS Metamodel

	8 UML Profile for CORBA and CORBA Components
	8.1 BaseIDL Profile
	8.1.1 CORBA Module, Interface, Value, Constant Stereotypes
	8.1.2 Other stereotypes: CORBA Types
	8.1.3 Tabular Representation
	8.1.4 Constraints

	8.2 ComponentIDL Profile
	8.2.1 Stereotypes
	8.2.2 Tabular Representation
	8.2.3 Example

	8.3 CIF Profile
	8.3.1 Stereotypes
	8.3.2 Tabular Representation
	8.3.3 Constraints
	8.3.4 Example

	8.4 Deployment Profile
	8.4.1 Stereotypes
	8.4.2 Tabular Representation
	8.4.3 Constraints
	8.4.4 Example

	8.5 CCMQoS Profile
	8.5.1 Tabular Representation
	8.5.2 Constraints
	8.5.3 Example

	8.6 UML Profile for Lightweight CCM
	8.7 Differences and Migrations between CORBA based Profiles

	9 Profile Illustration
	9.1 Example Scenario Description
	9.2 Type Definition
	9.2.1 IDL Notation
	9.2.2 CIDL Notation

	9.3 UML Example Diagrams

	Annex A References

