CORBA Components

June2002
Version 3.0
formal/02-06-65

An Adopted Specification of theObject Management Group, Inc.

Copyright © 2002, Laboratoire d’ Informatique Fond de Lille
Copyright © 1991- 2002 Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent acommitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specificationsisfor informational
purposes and will not be copied or posted on any network computer or broadcast in any mediaand will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may require use
of aninvention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be
required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patents that are
brought to its attention. OM G specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of thiswork
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS' AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING

BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FORA PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIESLISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD FA.R. Supplement and its successors, or as specified in 48 CF.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
I1OP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmMed™, CORBAnNet™, Integrate 2002™, Middleware That's Everywhere™, UML ™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM ™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA ™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software devel oped under the terms of thislicense may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the I ssue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/lssue.

June 2002

Contents

1. ComponentModel 1-1
11 ComponentModdl 1-2
111 ComponentLevels 1-2

112 POrtS. ... 1-2

1.1.3 ComponentsandFacets 1-3

1.14 Componentldentity 1-4

1.15 ComponentHomes 1-5

1.2 Component Definition 1-5
1.3 Component Declaration 1-6
1.31 BasicComponents 1-6

1.32 EquivdentIDL 1-6

1.33 ComponentBody 1-7

14 Facetsand Navigation 1-8
141 EquivaentIDL 1-8

142 Semantics of Facet References 1-8

143 Navigationccciviuin... 1-9

144 Provided References and Component Identity . 1-12

145 Supportedinterfaces 1-13

15 Receptacleso 1-15
151 EquivaentIDL 1-15

152 Behavior i 1-16

153 Receptaclesinterface 1-18

16 Events 1-21
161 Eventtypesciiiiiiiiiian. 1-21

1.6.2 EventConsumer Interface 1-22

CORBA Components, v3.0 i

1.6.3 Event Service Provided by Container 1-23

1.6.4 Event Sources—Publishers and Emitters. 1-23

165 Publisher L. 1-24

166 Emitters 1-26

167 EBEventSinks 1-27

16.8 Eventsinterface 1-29

17 Homes 1-32

171 EquivaentiInterfaces 1-33

1.7.2 Primary Key Declarations 1-36

1.7.3 Explicit Operationsin Home Definitions.. 1-37

1.7.4 Homeinheritance 1-38

1.7.5 Semantics of Home Operations 1-39

176 CCMHomelnterfface 1-41

1.7.7 KeylessCCMHomeInterface 1-42

1.8 HomeFinders....... ... 1-42

19 Component Configuration 1-44
19.1 Exclusive Configuration and Operational

LifeCyclePhases 1-46

1.10 Configuration with Attributes 1-47

1.10.1 Attribute Configurators 1-47

1.10.2 Factory-based Configuration 1-48

111 Component Inheritance 1-51

1.11.1 CCMObjectInterface 1-52

1.12 Conformance Requirements....................... 1-54

1121 ANoteonTooOlS...........cciiiinnn. 1-55

1.12.2 Changesto Object Services 1-55

2. OMG CIDL Syntax and Semantics 2-1

2.1 OVEIVIBW .ttt e 2-2

2.2 Lexical Conventions., 2-3

221 Keywords...........cciiiiiiiiiiinnn.. 2-3

2.3 OMGCIDL Grammarc..uuuiuiiennnnnn.. 2-3

2.4 OMG CIDL Specification 2-5

25 Composition Definition 2-5

2.5.1 LifeCycle Category and Constraints 2-6

2.6 Catalog Usage Declaration. 2-7

2.7 Home Executor Definition 2-8

2.8 Home Implementation Declaration 2-9

29 StorageHomeBinding 2-9

ii CORBA Components, v3.0 June 2002

June 2002

210 HomePersistenceDeclaration 2-10

211 Executor Definition oL 2-10
212 Segment Definition 2-10
213 Segment Persistence Declaration 2-11
214 FacetDeclaration 2-12
215 Feature Delegation Specification 2-12
216 Abstract Storage Home Delegation Specification 2-13
217 Executor Delegation Specification 2-15
218 Abstract Spec Declaration. 2-16
219 Proxy HomeDeclaration 2-16
CCM Implementation Framework 31
31 Introduction 31

3.2 Component Implementation Framework (CIF) Architecture 3-1
3.2.1 Component Implementation Definition Language

(CIDL) v 3-2
3.2.2 Component persistence and behavior 3-2
3.2.3 Implementing a CORBA Component 32
3.2.4 Behaviora elements: Executors. 32
3.2.5 Unit of implementation : Composition 3-3
3.2.6 Compositionstructure 34
3.2.7 Compositions with Managed Storage 311
3.2.8 Relationship between Home Executor and Abstract
StorageHome. L 3-13
3.29 Executor Definition 3-26
3210 ProxyHomesc ... 3-35
3.2.11 Component Object References 3-36
3.3 LanguageMappingcovve i 3-38
331 Overview ... 3-38
332 Commonlinterfaces 3-39
3.33 MappingRules 3-40
The Container ProgrammingModel 4-1
4.1 Introduction 4-2
411 Externa APITypes 4-4
412 Contaner APIType, 4-4
413 CORBA UsageModd 4-4
4.1.4 Component Categories. 4-5
4.2 The Server Programming Environment 4-5
421 Component Containers 4-5

CORBA Components, v3.0 iii

422 CORBA UsageModd 4-6

42.3 Component Factories 4-8
424 Component Activation 4-8
425 Servant LifetimeManagement 4-8
426 Transactions.iii... 4-9
427 SECUrity i 4-11
428 EvENtS ... 4-12
429 Persistence.. ... 4-13
4.2.10 Application Operation Invocation 4-15
4.2.11 Component Implementations 4-15
4212 ComponentlLevels...................... 4-15
4.2.13 Component Categories 4-16
4.3 Server Programming Interfaces - Basic Components 4-21
431 ComponentInterfaces 4-21
4.3.2 Interfaces Common to both Container API
TYPES vt e 4-22
4.3.3 Interfaces Supported by the Session Container
APLTYPE .ot 4-27
4.3.4 Interfaces Supported by the Entity Container
APl Type 4-30
4.4 Server Programming Interfaces - Extended Components . 4-33
441 Interfaces Common to both Container API
TYPES . o 4-33
4.4.2 Interfaces Supported by the Session Container
APIType ... 4-36
4.4.3 Interfaces Supported by the Entity Container
APILType ... 4-38
4.5 The Client ProgrammingModel 4-45
451 Component-awareClients 4-46
45.2 Component-unawareClients 4-50
Integrating with EnterpriseJavaBeans 51
51 Introduction 5-1
52 Enterprise JavaBeans Compatibility Objectives
and Requirements 5-3
5.3 CORBA Component Views for EJBs 5-4

5.3.1 Mapping of EJB to Component IDL definitions 5-5
5.3.2 Trandation of CORBA Component requests

intoEBrequests 5-9
5.3.3 Interoperability of theView 5-10
5.3.4 CORBA Component view Example......... 5-12

CORBA Components, v3.0 June 2002

June 2002

54 EJB views for CORBA Components 5-14
5.4.1 Mapping of Component IDL to Enterprise
JavaBeans specifications 5-14
5.4.2 Trandation of EJB requestsinto CORBA
ComponentRequests 5-17
5.4.3 Interoperability of theView 5-19
544 Example............. i 5-21
55 Compliance with the Interoperability of IntegrationViews 5-22
5.6 ComparingCCM andEJB 5-23
56.1 TheHomelnterfaces 5-23
5.6.2 The Component Interfaces. 5-25
5.6.3 TheCallback Interfaces 5-26
5.6.4 TheContextInterfaces................... 5-28
5.6.5 TheTransaction Interfaces................ 5-29
5.6.6 TheMetadataInterfaces 5-30
Packaging and Deployment 6-1
6.1 Introduction 6-1
6.2 Component Packagingoou... 6-2
6.3 Software Package Descriptor 6-2
6.3.1 A softpkg Descriptor Example 6-3
6.3.2 The Software Package Descriptor XML
Elements it 6-4
6.4 CORBA Component Descriptor 6-16
6.4.1 Component Feature Description 6-16
6.4.2 Deployment Information 6-17
6.4.3 CIDL Compiler Responsibilities 6-18
6.4.4 CORBA Component Descriptor Example 6-18
6.45 The CORBA Component Descriptor
XML Elements 6-20
6.5 Component Assembly Packaging 6-39
6.6 Component Assembly File 6-40
6.7 Component Assembly Descriptor 6-40
6.7.1 Component Assembly Descriptor Example ... 6-40
6.7.2 Component Assembly Descriptor XML
Elements i 6-43
6.8 Property FileDescriptor 0., 6-61
6.8.1 Property FileExample 6-61
6.8.2 Property FileXML Elements.............. 6-62
6.9 Component Deployment 6-66

CORBA Components, v3.0 %

vi

6.9.1 Participantsin Deployment 6-67

6.9.2 Componentinstallation Interface. 6-71
6.9.3 AssemblyFactory Interface 6-72
6.9.4 Assemblyinterface 6-73
6.9.5 ServerActivatorinterface 6-74
6.9.6 ComponentServerinterface 6-75
6.9.7 Containerinterface 6-76

6.9.8 Component Entry Points (Component Home
Factories) ...t 6-78
XML DTDS. ... 7-1
7.1 softpkg.dtd 7-1
7.2 corbacomponent.dtd L 7-5
7.3 propertiesdtd 7-11
7.4 componentassembly.dtd, 7-13
Interface Repository Metamodel 8-1
8.1 Introduction 8-1
811 BaselDLPackage 8-2
8.1.2 ComponentIDL Package.................. 8-14
8.2 ConformanceCriteria. 8-26
8.2.1 ConformancePoints 8-27

8.3 MOF DTDsand IDL for the Interface Repository

Metamodel 8-27
831 XMIDTD 8-27
8.3.2 IDL fortheBaselDL Package 8-59
8.3.3 IDL for the ComponentIDL Package 8-80
CIFMetamodel 9-1
9.1 CIFPackagecco i 9-1
9.2 Classesand ASsOCIationsc.covvnenenen.n. 9-2
9.3 ConformanceCriteria. 9-5
9.3.1 ConformancePoints 9-5
9.4 MOF DTDsand IDL for the CIF Metamodel 9-6
941 XMIDTD i 9-6
942 IDL fortheClFPackage.................. 9-7

CORBA Components, v3.0 June 2002

About This Document

Preface

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group

June 2002

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.

CORBA Components, v3.0 Vi

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

® Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

® Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

® Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

® Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of
test suites used to validate conformance to an open standard or specification. The Open
Group portfolio of test suites includes tests for CORBA, the Single UNIX
Specification, CDE, Matif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime,
Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essential
for proper development and maintenance of standards-based products, ensuring
conformance of products to industry-standard APIs, applications portability, and
interoperability. In-depth testing identifies defects at the earliest possible point in the
development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/.

Intended Audience

The architecture and specifications described in this manual are aimed at software
designers and developers who want to produce applications that comply with OMG
standards for the Object Request Broker (ORB). The benefit of compliance is, in
general, to be able to produce interoperable applications that are based on distributed,
interoperating objects. As defined by the Object Management Group (OMG) in the
Object Management Architecture Guide, the ORB provides the mechanisms by which
objects transparently make requests and receive responses. Hence, the ORB provides
interoperability between applications on different machines in heterogeneous
distributed environments and seamlessly interconnects multiple object systems.

Context of CORBA

The key to understanding the structure of the CORBA architecture is the Reference
Model, which consists of the following components:

» Object Request Broker, which enables objects to transparently make and receive
reguests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described in this manual.

viii CORBA Components, v3.0 June 2002

Associated Documents

June 2002

» Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary to
construct any distributed application and are always independent of application
domains. For example, the Life Cycle Service defines conventions for creating,
deleting, copying, and moving objects; it does not dictate how the objects are
implemented in an application. Specifications for Object Services are contained in
CORBAservices: Common Object Services Specification.

« Common Facilities, a collection of services that many applications may share,
but which are not as fundamental as the Object Services. For instance, a system
management or electronic mail facility could be classified as a common facility.
Information about Common Facilities will be contained in CORBAfacilities:
Common Facilities Architecture.

» Application Objects, which are products of a single vendor on in-house
development group that controls their interfaces. Application Objects correspond
to the traditional notion of applications, so they are not standardized by OMG.
Instead, Application Objects constitute the uppermost layer of the Reference
Model.

The Object Request Broker, then, is the core of the Reference Model. It islike a
telephone exchange, providing the basic mechanism for making and receiving calls.
Combined with the Object Services, it ensures meaningful communication between
CORBA-compliant applications.

The CORBA documentation set includes the following books:

» Object Management Architecture Guide defines the OMG's technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It also provides information about the policies and procedures of OMG,
such as how standards are proposed, evaluated, and accepted.

» CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

» CORBAservices: Common Object Services Specification contains specifications
for the Object Services.

» CORBAfacilities: Common Facilities Architecture contains the architecture for
Common Fecilities.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

You can download the OMG formal documents free-of-charge from our web site in
PostScript and PDF format. Please note the OMG address and telephone numbers
below:

CORBA Components: Associated Documents iX

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mapping is
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, they
must adhere to the CORBA specifications to be called CORBA-compliant. For instance,
if a vendor supports C++, their ORB must comply with the OMG IDL to C++ binding
specified in the C++ Language Mapping Specification.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to CORBA Core, the Interworking
Architecture chapter, “Compliance to COM/CORBA |nterworking.”

Typographical Conventions

Acknowl edgements

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Couri er bol d - Programming language elements.
Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

The following companies submitted and/or supported parts of this specification:
« Laboratoire d’ Informatique Fond de Lille

CORBA Components, v3.0 June 2002

Component Model 1

Note — Thisformal specification is based on the CCM specification (ptc/99-10-04) and
the CORBA Components FTF final reports (ptc/2000-12-05 and ptc/2001-11-02).

This chapter describes the semantics of the CORBA Component Model (CCM) and the
conformance requirements for vendors.

Contents

This chapter contains the following sections.

Section Title Page
“Component Model” 1-2
“Component Definition” 1-5
“Component Declaration” 1-6
“Facets and Navigation” 1-8
“Receptacles’ 1-15
“Events’ 1-21
“Homes’ 1-32
“Home Finders’ 1-42
“Component Configuration” 1-44
“Configuration with Attributes’ 1-47
“Component Inheritance” 1-51
“Conformance Requirements’ 1-54

June 2002 CORBA Components, v3.0 1-1

1-2

1.1 Component Model

Component is a basic meta-type in CORBA. The component meta-type is an extension
and specialization of the object meta-type. Component types are specified in IDL and
represented in the Interface Repository. A component is denoted by a component
reference, which is represented by an object reference. Correspondingly, a component
definition is a specialization and extension of an interface definition.

A component type is a specific, named collection of features that can be described by
an IDL component definition or a corresponding structure in an Interface Repository.
Although the current specification does not attempt to provide mechanisms to support
formal semantic descriptions associated with component definitions, they are designed
to be associated with a single well-defined set of behaviors. Although there may be
several realizations of the component type for different run-time environments (e.g.,
OS/hardware platforms, languages, etc.), they should all behave consistently. As an
abstraction in a type system, a component type is instantiated to create concrete entities
(instances) with state and identity.

A component type encapsulates its internal representation and implementation.
Although the component specification includes standard frameworks for component
implementation, these frameworks, and any assumptions that they might entail, are
completely hidden from clients of the component.

1.1.1 Component Levels

1.1.2 Ports

There are two levels of components: basic and extended. Both are managed by
component homes, but they differ in the capabilities they can offer. Basic components
essentially provide a simple mechanism to “componentize” aregular CORBA object.
Extended components, on the other hand, provide a richer set of functionality.

A basic component is very similar in functionality to an EJB asdefined in
the Enterprise JavaBeans 1.1 specification. This allows much easier map-
ping and integration at this level.

Components support a variety of surface features through which clients and other
elements of an application environment may interact with a component. These surface
features are called ports. The component model supports four basic kinds of ports:

® Facets, which are distinct named interfaces provided by the component for client
interaction.

® Receptacles, which are named connection points that describe the component’s
ability to use a reference supplied by some external agent.

® Event sources, which are named connection points that emit events of a specified
type to one or more interested event consumers, or to an event channel.

® Event sinks, which are named connection points into which events of a specified
type may be pushed.

CORBA Components, v3.0 June 2002

June 2002

® Attributes, which are named values exposed through accessor and mutator
operations. Attributes are primarily intended to be used for component
configuration, although they may be used in a variety of other ways.

Basic components are not allowed to offer facets, receptacles, event sources and sinks.
They may only offer attributes.

Extended components may offer any type of port.

1.1.3 Components and Facets

A component can provide multiple object references, called facets, which are capable
of supporting distinct (i.e., unrelated by inheritance) IDL interfaces. The component
has a single distinguished reference whose interface conforms to the component
definition. This reference supports an interface, called the component’s equivalent
interface, that manifests the component’s surface features to clients. The equivalent
interface allows clients to navigate among the component’s facets, and to connect to
the component’s ports.

Basic components cannot support facets, therefore attempts to navigate to other facets
will always fail. The equivalent interface of a basic component is the only object
available with which a client may interact.

The other interfaces provided by the component are referred to as facets. Figure 1-1
illustrates the relationship between the component and its facets.

CORBA Components: Component Model 1-3

1-4

Component reference supports
component’s equivalent interface

-

Component

/

Implementations
of facet
interfaces are
encapsulated

\/

O
A

facet references
support independent
facet interfaces K

N
O \
L

J

Figure1-1 Component Interfaces and Facets

The relationship between the component and its facets is characterized by the
following observations:

® Theimplementations of the facet interfaces are encapsulated by the component, and
considered to be “parts’ of the component. The internal structure of a component is
opaque to clients.

¢ Clients can navigate from any facet to the component equivalent interface, and can
obtain any facet from the component equivalent interface.

® Clients can reliably determine whether any two references belong to the same
component instance.

* Thelife cycle of afacet is bounded by the life cycle of its owning component.

1.1.4 Component Identity

A component instance is identified primarily by its component reference, and
secondarily by its set of facet references (if any). The component model provides
operations to determine whether two references belong to the same component
instance, and (as mentioned above) operations to navigate among a component’s
references. The definition of “same” component instance is ultimately up to the

CORBA Components, v3.0 June 2002

1

component implementor, in that they may provide a customized implementation of this
operation. However, a component framework shall provide standard implementations
that constitute de facto definitions of “sameness’” when they are employed.

Components may also be associated with primary key values by a component home.
Primary keys are data values exposed to the component’s clients that may be used in
the context of a component home to identify component instances and obtain
references for them. Primary keys are not features of components themselves; the
association between a component instance and a particular primary key value is
maintained by the home that manages the component.

1.1.5 Component Homes

A component home is meta-type that acts as a manager for instances of a specified
component type. Component home interfaces provide operations to manage component
life cycles, and optionally, to manage associations between component instances and
primary key values. A component home may be thought of as a manager for the extent
of atype (within the scope of a container). A home must be declared for every
component declaration.

Component types are defined in isolation, independent of home types. A home
definition, however, must specify exactly one component type that it manages. Multiple
different home types can manage the same component type, though they cannot
manage the same set of component instances.

At execution time, a component instance is managed by a single home object of a
particular type. The operations on the home are roughly equivalent to static or class
methods in object-oriented programming languages.

1.2 Component Definition

A component definition in IDL implicitly defines an interface that supports the features
defined in the component definition body. It extends the concept of an interface
definition to support features that are not supported in interfaces. Component
definitions also differ from interface definitions in that they support only single
inheritance from other component types.

The IDL grammar for components may be found in CORBA Core, OMG IDL Syntax
and Semantics chapter.

June 2002 CORBA Components: Component Definition 1-5

1-6

1.3 Component Declaration

1.3.1 Basic Components

Basic components cannot avail themselves of certain features in the model. In
particular, they cannot inherit from other components, nor can they provide or use
interfaces, or make any event declarations. A basic component is declared using a
restricted version of a <component_dcl>. See CORBA Core, OMG IDL Syntax and
Semantics chapter, Section 3.17.1, “Component” for the syntax.

To avoid ambiguity between basic and extended definitions, any component declaration
that matches the following pattern is a basic component:

“component” <identifier> [<supported_interface_spec>]
“{“ {<attr_dcl> “ ;"}* “ }H

Ideally the syntax should explicitly represent these rules. However this can
only be achieved by introducing a new keyword to distinguish between
basic and extended components. It was felt that an extra keyword would
cause problemsin the future, as the distinction between basic and extended
components gets blurred. This blurring may occur due to future develop-
ment of both the CORBA Component Model and the Enterprise JavaBeans
specifications.

1.3.2 Equivalent IDL

1321

1322

The client mappings; that is, mappings of the externally-visible component features for
component declarations are described in terms of equivalent IDL.

As described above, the component meta-type is a specialization of the interface meta-
type. Each component definition has a corresponding equivalent interface. In
programming language mappings, components are denoted by object references that
support the equivalent interface implied by the component definition.

Since basic components are essentially a profile, no specific rules are defined for them.

Smpledeclaration

For a component declaration with the following form:
component component_name{ ... };
the equivalent interface shall have the following form:

interface component_name
: Components::CCMObject { ... };

Supported interfaces

For a component declaration with the following form:

CORBA Components, v3.0 June 2002

component <component_name>
supports <interface_name_1>, <interface_name_2>{ ... };

the equivalent interface shall have the following form:
interface <component_name>

: Components::CCMObject,
<interface_name_1>, <interface_name _2>{ ... };

Supported interfaces are described in detail in Sect i onl.4.5, “Supported interfaces,” on
page 1-13.

1.3.2.3 Inheritance

For a component declaration with the following form:
component <component_name> : <base_name>{ ... };
the equivalent interface shall have the following form:

interface <component_name> : <base_name>{ ... }

1.3.2.4 Inheritance and supported interfaces

For a component declaration with the following form:

component <component_name> : <base_name>
supports <interface_name_1>, <interface_name_2>{ ... };

the equivalent interface shall have the following form:

interface <component_name>
: <base_name>, <interface_name_1>, <interface_name_2>{ ... };

1.3.3 Component Body

A component forms a naming scope, nested within the scope in which the component
is declared.

Declarations for facets, receptacles, event sources, event sinks and attributes all map
onto operations on the component’s equivalent interface. These declarations and their
meanings are described in detail below.

June 2002 CORBA Components: Component Declaration 1-7

1.4 Facetsand Navigation

A component type may provide several independent interfaces to its clients in the form
of facets. Facets are intended to be the primary vehicle through which a component
exposes its functional application behavior to clients during normal execution. A
component may exhibit zero or more facets.

1.4.1 Equivalent IDL

Facet declarations imply operations on the component interface that provide access to
the provided interfaces by their names. A facet declaration of the following form:

provides <interface_type> <name>;
results in the following operation defined on the equivalent interface:
<interface_type> provide_<name> ();

The mechanisms for navigating among a component’s facets are described in

Section 1.4.3, “Navigation,” on page 1-9. The relationships between the component
identity and the facet references, and assumptions regarding facet references, are
described in Section 1.4.4, “Provided References and Component Identity,” on

page 1-12. The implementation of navigation operations are provided by the
component implementation framework in generated code; the user-provided
implementation of a component type is not responsible for navigation operations. The
responsibilities of the component servant framework for supporting navigation
operations are described in detail in the OMG CIDL Syntax and Semantics chapter.

1.4.2 Semantics of Facet References

Clients of a component instance can obtain a reference to a facet by invoking the
provide_<name> operation on the equivalent interface corresponding to the
provides declaration in the component definition. The component implementation is
responsible for guaranteeing the following behaviors;

® In general, a component instance shall be prepared to return object references for
facets throughout the instance’s life cycle. A component implementation may, as
part of its advertised behavior, return a nil object reference as the result of a
provide_<name> operation.

® An object reference returned by a provide_<name> operation shall support the
interface associated with the corresponding provides declaration in the component
definition. Specifically, when the _is_a operation is invoked on the object reference
with the Repositoryld of the provided interface type, the result shall be TRUE,
and legal operations of the facet interface shall be able to be invoked on the object
reference. If the type specified in the provides declaration is Object, then there
are no constraints on the interface types supported by the reference.

A facet reference provided by a component may support additional inter-
faces, such asinterfaces derived from the declared type, aslong asthe
stated contract is satisfied.

CORBA Components, v3.0 June 2002

June 2002

* Facet references must behave properly with respect to component identity and
navigation, as defined in Section 1.4.4, “Provided References and Component
Identity,” on page 1-12 and Section 1.4.3, “Navigation,” on page 1-9.

1.4.3 Navigation

1431

Navigation among a component’s facets may be accomplished in the following ways:

* A client may navigate from any facet reference to the component that provides the
reference via CORBA::Object::get_component.

® A client may navigate from the component interface to any facet using the
generated provide_<name> operations on the equivalent interface.

® A client may navigate from the component interface to any facet using the generic
provide_facet operation on the Navigation interface (inherited by all component
interfaces through Components::CCMObject). Other operations on the
Navigation interface (i.e., get_all_facets and get_named_facets) return
multiple references, and can also be used for navigation. When using generic
navigation operations on Navigation, facets are identified by string values that
contain their declared names.

* A client may navigate from a facet interface that derives from the Navigation
interface directly to any other facet on the same component, using provide_facet,
get_all_facets, and get_ named_facets.

® For components, such as basic components, that do not provide interfaces, only the
generic navigation operations are available on the equivalent interface. The behavior
of these operations, where there are no facets to navigate to, is defined below.

The detailed descriptions of these mechanisms follow.

get_component()

module CORBA {
interface Object { // PIDL

Object get_component ();
h
|3

If the target object reference is itself a component reference (i.e., it denotes the
component itself), the get_component operation returns the same reference (or
another equivalent reference). If the target object reference is a facet reference, the
get_component operation returns an object reference for the component. If the target
reference is neither a component reference nor a provided reference, get_component
returns a nil reference.

CORBA Components: Facetsand Navigation 1-9

I mplementation of get_component

As with other operations on CORBA::Object, get_component isimplemented as a
request to the target object. Following the pattern of other CORBA::Object operations
(i.e, _interface, is_a, and _non_existent) the operation name in GIOP request
corresponding to get_component shall be“_component”. An implementation of
get_component isarequired element of the CORBA core, even if the ORB does not
provide an implementation of CORBA components. Thus component vendors that are
not also ORB vendors can rely on the availability of this capability in a compliant
ORB.

1.4.3.2 Component-specific provide operations
The provide_<name> operation implicitly defined by a provides declaration can be
invoked to obtain a reference to the facet.

1.4.3.3 Navigation interface on the component

As described in Section 1.3, “Component Declaration,” on page 1-6 all component
interfaces implicitly inherit directly or indirectly from CCMObject, which inherits
from Components::Navigation. The definition of the Components::Navigation
interface is as follows:

module Components {
typedef string FeatureName;
typedef sequence<FeatureName> NamelList;
valuetype PortDescription

{

public FeatureName name;
public CORBA::Repositoryld type_id;
|3
valuetype FacetDescription : PortDescription
public Object facet_ref;
¥
typedef sequence<FacetDescription> FacetDescriptions;
exception InvalidName { };

interface Navigation {

Object provide_facet (in FeatureName name)
raises (InvalidName);

FacetDescriptions get_all_facets();

1-10 CORBA Components, v3.0 June 2002

June 2002

FacetDescriptions get_named_facets (in NameList names)
raises (InvalidName);

boolean same_component (in Object object_ref);

b
b

This interface provides generic navigation capabilities. It is inherited by all component
interfaces, and may be optionally inherited by any interface that is explicitly designed
to be a facet interface for a component. The descriptions of Navigation operations
follow.

provide_facet

The provide_facet operation returns a reference to the facet denoted by the name
parameter. The value of the name parameter must be identical to the name specified in
the provides declaration. The valid names are defined by inherited closure of the actual
type of the component; that is, the names of facets of the component type and al of its
inherited component types. If the value of the name parameter does not correspond to
one of the component’s facets, the InvalidName exception shall be raised. A
component that does not provide any facets (e.g., a basic component) will have no
valid name parameter to this operation and thus shall always raise the InvalidName
exception.

get_all _facets

The get_all_facets operation returns a sequence of value objects, each of which
contains the Repositoryld of the facet interface and name of the facet, along with a
reference to the facet. The sequence shall contain descriptions and references for al of
the facets in the component’s inheritance hierarchy. The order in which these values
occur in the sequence is not specified. A component that does not provide any facets
(e.g., abasic component) shall return a sequence of length zero.

get_named_facets

The get_named_facets operation returns a sequence of described references
(identical to the sequence returned by get_all_facets), containing descriptions and
references for the facets denoted by the names parameter. If any name in the names
parameter is not avalid name for a provided interface on the component, the operation
raises the InvalidName exception. The order of valuesin the returned sequence is not
specified. A component that does not provide any facets (e.g., a basic component) will
have no valid name parameter to this operation and thus shall always raise the
InvalidName exception.

The same_component operation on Navigation is described in Section 1.4.4,
“Provided References and Component Identity,” on page 1-12.

CORBA Components: Facetsand Navigation 1-11

1-12

1.4.3.4 Navigation interface onfacet interfaces

Any interface that is designed to be used as a facet interface on a component may
optionally inherit from the Navigation interface. When the navigation operations (i.e.,
provide facet, get_all facets, and get_named_facets) are invoked on the facet
reference, the operations shall return the same results as if they had been invoked on
the component interface that provided the target facet. The skeletons generated by the
Component Implementation Framework shall provide implementations of these
operations that will delegate to the component interface.

This option allows navigation from one facet to another to be per-
formed in a single request, rather than a pair of requests (to get the
component reference and navigate from there to the desired facet).
To illustrate, consider the following component definition:

module example {
interface foo : Components::Navigation {... };
interface bar { ... };
component baz session {
provides foo a;
provides bar b;
h
¥
A client could navigate froma to b as follows:
foo myFoo;
/I assume myFoo holds a reference to a foo provided by a baz

baz myBaz = bazHelper.narrow(myFoo.get_component());
bar myBar = myBaz.provide_b();

Or, it could navigate directly:

foo myFoo;
/I assume myFoo holds a reference to a foo provided by a baz
bar myBar = barHelper.narrow(myFoo.provide_interface(“b”);

1.4.4 Provided References and Component Identity

The same_component operation on the Navigation interface allows clients to
determine reliably whether two references belong to the same component instance, that
is, whether the references are facets of or directly denote the same component instance.
The component implementation is ultimately responsible for determining what the
“same component instance” means. The skeletons generated by the Component
Implementation Framework shall provide an implementation of same_component,
where “same instance” is defined in terms of opaque identity values supplied by the
component implementation or the container in the container context. User-supplied
implementations can provide different semantics.

If afacet interface inherits the Navigation interface, then the same_component
operation on the provided interface shall give the same results as the
same_component operation on the component interface that owns the provided

CORBA Components, v3.0 June 2002

1

interface. The skeletons generated by the Component Implementation Framework shall
provide an implementation of same_component for facets that inherit the
Navigation interface.

1.4.5 Supported interfaces

A component definition may optionally support one or more interfaces, or in the case
of extended components, inherit from a component that supports one or more
interfaces. When a component definition header includes a supports clause as follows:

component <component_name> supports <interface_name>{ ... };

the equivalent interface inherits both CCMObject and any supported interfaces, as fol-
lows:

interface <component_name>
: Components::CCMObject, <interface_name>{ ... };

The component implementation shall supply implementations of operations defined on
supported interfaces. Clients shall be able to widen a reference of the component’s
equivalent interface type to the type of any of the supported interfaces. Clients shall
also be able to narrow areference of type CCMObject to the type of any of the
component’s supported interfaces.

For example, given the following IDL:

module M {

interface | {
void op();

3

component A supports | {
provides | foo;

3

home AManager manages A { };

3

The AManager interface shall be derived from KeylessCCMHome, support-
ing the create_component operation, whichreturns areference of type
CCMONbject. Thisreference shall be able to be narrowed directly from
CCMODbject to I:

/1 java

M Avanager aHonme = ...; // get A's hone
or g. ong. Conponent s. CCMXj ect nyConp =
aHome. cr eat e_conponent () ;

M1 myl = M Hel per. narrow myConp);

/1 must succeed

For example, given the following IDL:

module M {
interface | {
void op();

June 2002 CORBA Components: Facetsand Navigation 1-13

1-14

3
component A supports | {
provides | foo;
h
componentB:A{..};
home BHome manages B {};
%
Theequivalent IDL is:

module M {
interface | {
void op();
interface A :
org.omg.Components.CCMObject, | { ... };
interface B: A{... };

%
which allows the following usage:

M BHone bHome = ... // get B's hone

M B nyB = bHone. create();

nyB. op(); /1 1's operations are supported
/1 directly on B s interface

The supports mechanism provides programming convenience for light-
weight components that only need to implement a single operational inter-
face. A client can invoke operations from the supported interface directly
on the component reference, without narrowing or navigation:

M A nyA = aHone. create();
nyA. op();

as opposed to

M A nyA = aHone. create();
M1 nyl = nyA provide_foo();
nyl.op();

or, assuming that the client hasA’ shome, but doesn’t statically know about
A'sinterface or home interface:

or g. ong. Conponent s. Keyl essCCVHorre generi cHone =
. /1 get A's hone;

or g. ong. Conponent s. CCMXj ect nyConp =

generi cHone. creat e_conponent () ;

M1 myl = M Hel per. narrow myConp);
nyl.op();
as opposed to

org. ong. CORBA. Obj ect obj =
nmyConp. provi de_i nterface(“foo0”);
M1 nmyl = M I Hel per.narrow(obj);
nyl.op();

This mechanism allows component-unaware clients to receive a reference

CORBA Components, v3.0

June 2002

1.5 Receptacles

to a component (passed as type CORBA: : Object) and use the supported
interface.

A component definition can describe the ability to accept object references upon which
the component may invoke operations. When a component accepts an object reference
in this manner, the relationship between the component and the referent object is called
a connection; they are said to be connected. The conceptual point of connection is
called areceptacle. A receptacle is an abstraction that is concretely manifested on a
component as a set of operations for establishing and managing connections. A
component may exhibit zero or more receptacles.

Receptacles are intended as a mechanical device for expressing a wide
variety of relationships that may exist at higher levels of abstraction. As
such, receptacles have no inherent higher-order semantics, such asimply-
ing ownership, or that certain operations will betransient across connec-
tions.

1.5.1 Equivalent IDL

June 2002

A uses declaration of the following form:
uses <interface_type> <receptacle_name>;
results in the following equivalent operations defined in the component interface:

void connect_<receptacle_name> (in <interface_type> conxn) raises (
Components::AlreadyConnected,
Components::InvalidConnection);

<interface_type> disconnect_<receptacle_name> ()
raises (Components::NoConnection);

<interface_type> get_connection_<receptacle_name> ();

A uses declaration of the following form:

uses multiple <interface_type> <receptacle_name>;

results in the following equivalent operations defined in the component interface:

struct <receptacle_name>Connection {

<interface_type> objref;

Components::Cookie ck;
sequence <<receptacle_name>Connection> <receptacle_name>Connec-
tions;

Components::Cookie

connect_<receptacle_name> (in <interface_type> connection) raises (
Components::ExceededConnectionLimit,

CORBA Components: Receptacles 1-15

1-16

Components::InvalidConnection
)i
<interface_type> disconnect_<receptacle_name> (
in Components::Cookie ck)

raises (Components::InvalidConnection);

<receptacle_name>Connections get_connections_<receptacle_name> ();

1.5.2 Behavior

1.5.2.1 Connect operations

Operations of the form connect_<receptacle_name> are implemented in part by
the component implementor, and in part by generated code in the component servant
framework. The responsibilities of the component implementation and servant
framework for implementing connect operations are described in detail in Chapter 1 -
OMG CIDL Syntax and Semantics. The receptacle holds a copy of the object reference
passed as a parameter. The component may invoke operations on this reference
according to its design. How and when the component invokes operations on the
reference is entirely the prerogative of the component implementation. The receptacle
shall hold a copy of the reference until it is explicitly disconnected.

Simplex receptacles

If areceptacle’s uses declaration does not include the optional multiple keyword,
then only a single connection to the receptacle may exist at a given time. If a client
invokes a connect operation when a connection already exists, the connection operation
shall raise the AlreadyConnected exception.

The component implementation may refuse to accept the connection for arbitrary
reasons. If it does so, the connection operation shall raise the InvalidConnection
exception.

Multiplex receptacles

If areceptacle’s uses declaration includes the optional multiple keyword, then
multiple connections to the receptacle may exist simultaneously. The component
implementation may choose to establish a limit on the number of simultaneous
connections allowed. If an invocation of a connect operation attempts to exceed this
limit, the operation shall raise the ExceededConnectionLimit exception.

The component implementation may refuse to accept the connection for arbitrary
reasons. If it does so, the connection operation shall raise the InvalidConnection
exception.

Connect operations for multiplex receptacles return values of type
Components::Cookie. Cookie values are used to identify the connection for
subsequent disconnect operations. Cookie values are generated by the receptacle

CORBA Components, v3.0 June 2002

1

implementation (the responsibility of the supplier of the component-enabled ORB, not
the component implementor). Likewise, cookie equivalence is determined by the
implementation of the receptacle implementation.

The client invoking connection operations is responsible for retaining cookie values
and properly associating them with connected object references, if the client needs to
subsequently disconnect specific references. Cookie values must be unique within the
scope of the receptacle that created them. If a cookie value is passed to a disconnect
operation on a different receptacle than that which created it, results are undefined.

Cookie values are described in detail in Section 1.5.2.4, “Cookie type,” on page 1-18."

Cookie values are required because object references cannot be reliably
tested for equivalence.

1.5.2.2 Disconnect operations

Operations of the form disconnect_receptacle_name terminate the relationship
between the component and the connected object reference.

Simplex receptacles

If a connection exists, the disconnect operation will return the connected object
reference. If no connection exists, the operation shall raise a NoConnection
exception.

Multiplex receptacles

The disconnect_receptacle_name operation of a multiplex receptacle takes a
parameter of type Components::Cookie. The ck parameter must be a value
previously returned by the connect_receptacle_name operation on the same
receptacle. It is the responsibility of the client to associate cookies with object
references they connect and disconnect. If the cookie value is not recognized by the
receptacle implementation as being associated with an existing connection, the
disconnect_receptacle_name operation shall raise an InvalidConnection
exception.

1.5.2.3 get_connection and get_connections operations

Simplex receptacles

Simplex receptacles have operations named get_connection_receptacle_name. If
the receptacle is currently connected, this operation returns the connected object
reference. If there is no current connection, the operation returns a nil object reference.

June 2002 CORBA Components: Receptacles 1-17

1-18

1524

Multiplex receptacles

Multiplex receptacles have operations named get_connections_receptacle_name.
This operation returns a sequence of structures, where each structure contains a
connected object reference and its associated cookie value. The sequence contains a
description of al of the connections that exist at the time of the invocation. If there are
no connections, the sequence length will be zero.

Cookietype
The Cookie valuetype is defined by the following IDL:

module Components {
valuetype Cookie {
private CORBA::OctetSeq cookieValue;
|3
|3

Cookie values are created by multiplex receptacles, and are used to correlate a connect
operation with a disconnect operation on multiplex receptacles.

Implementations of component-enabled ORBs may employ value type derived from
Cookie, but any derived cookie types shall be truncatable to Cookie, and the
information preserved in the cookieValue octet sequence shall be sufficient for the
receptacle implementation to identify the cookie and its associated connected
reference.

1.5.3 Receptacles Interface

The Receptacles interface provides generic operations for connecting to a
component’s receptacles. The CCMObiject interface is derived from Receptacles.
For components, such as basic components, that do not use interfaces, only the generic
receptacles operations are available on the equivalent interface. The default behavior in
such cases is defined below.

The Receptacles interfaces is defined by the following IDL:
module Components {

valuetype ConnectionDescription {
public Cookie ck;
public Object objref;

b

typedef sequence<ConnectionDescription> ConnectionDescriptions;
valuetype ReceptacleDescription : PortDescription

public boolean is_multiple;
public ConnectionDescriptions connections;

b

typedef sequence<ReceptacleDescription> ReceptacleDescriptions;

CORBA Components, v3.0 June 2002

exception ExceededConnectionLimit { };
exception CookieRequired { };
interface Receptacles {

Cookie connect (in FeatureName name, in Object connection)
raises (
InvalidName,
InvalidConnection,
AlreadyConnected,
ExceededConnectionLimit);

void disconnect (
in FeatureName name,
in Cookie ck) raises (
InvalidName,
InvalidConnection,
CookieRequired,
NoConnection);

ConnectionDescriptions get_connections (
in FeatureName name) raises (InvalidName);

ReceptacleDescriptions get_all_receptacles ();

ReceptacleDescriptions get_named_receptacles (
in NameList names) raises(InvalidName);
¥
¥

connect

The connect operation connects the object reference specified by the connection
parameter to the receptacle specified by the name parameter on the target component.
If the specified receptacle is a multiplex receptacle, the operation returns a cookie
value that can be used subsequently to disconnect the object reference. If the receptacle
is a simplex receptacle, the return value is a nil. The following exceptions may be
raised:
® |f the name parameter does not specify a valid receptacle name, then the
InvalidName exception is raised.

® |f the receptacle is a simplex receptacle and it is already connected, then the
AlreadyConnected exception is raised.

® |f the object reference in the connection parameter does not support the interface
declared in the receptacle’s uses statement, the InvalidConnection exception is
raised.

June 2002 CORBA Components: Receptacles 1-19

1-20

® |f the receptacle is a multiplex receptacle and the implementation-defined limit to
the number of connections is exceeded, the ExceededConnectionLimit
exception is raised.

® A component that does not have any receptacles (e.g., a basic component) will have
no valid name parameter to this operation and thus shall always raise the
InvalidName exception.

disconnect

If the receptacle identified by the name parameter is a simplex receptacle, the
operation will disassociate any object reference currently connected to the receptacle.
The cookie value in the ck parameter is ignored. If the receptacle identified by the
name parameter is a multiplex receptacle, the disconnect operation disassociates the
object reference associated with the cookie value (i.e., the object reference that was
connected by the operation that created the cookie value) from the receptacle. The
following exceptions may be raised:

® |f the name parameter does not specify a valid receptacle name, then the
InvalidName exception is raised.

® |f the receptacle is a simplex receptacle there is no current connection, then the
NoConnection exception is raised.

® |f the receptacle is a multiplex receptacle and the cookie value in the ck parameter
does not denote an existing connection on the receptacle, the InvalidConnection
exception is raised.

® |f the receptacle is a multiplex receptacle and a null value is specified in the ck
parameter, the CookieRequired exception is raised.

® A component that does not have any receptacles (e.g., a basic component) will have
no valid name parameter to this operation and thus shall always raise the
InvalidName exception.

get_connections

The get_connections operation returns a sequence of ConnectionDescription
structs. Each struct contains an object reference connected to the receptacle named in
the name parameter, and a cookie value that denotes the connection. If the name
parameter does not specify a valid receptacle name, then the InvalidName exception
israised. A component that does not have any receptacles (e.g., a basic component)
will have no valid name parameter to this operation and thus shall always raise the
InvalidName exception.

get_all_receptacles

The get_all_receptacles operation returns information about all receptacle ports in
the component's inheritance hierarchy as a sequence of ReceptacleDescription
values. The order in which these values occur in the sequence is not specified. For
components that do not have any receptacles (e.g., a basic component), this operation
returns a sequence of length zero.

CORBA Components, v3.0 June 2002

1.6 Events

June 2002

get_named_receptacles

The get_named_receptacles operation returns information about all receptacle
ports denoted by the names parameter as a sequence of ReceptacleDescription
values. The order in which these values occur in the sequence is not specified. If any
name in the names parameter is not a valid name for a receptacle in the component's
inheritance hierarchy, the operation raises the InvalidName exception. A component
that does not provide any receptacles (e.g., a basic component) will have no valid name
parameter to this operation and thus shall always raise the InvalidName exception.

The CORBA component model supports a publish/subscribe event model. The event
model for CORBA components is designed to be compatible with CORBA natification,
as defined in OMG document telecom/98-11-01. The interfaces exposed by the
component event model provide a simple programming interface whose semantics can
be mapped onto a subset of CORBA notification semantics.

1.6.1 Event types

1611

IDL contains event type declarations, which are a restricted form of value type
declarations. They are for the use in the CORBA Component event model.

Since the underlying implementation of the component event mechanism provided by
the container is CORBA notification, event values shall be inserted into instances of
the any type. The resulting any values shall be inserted into a CORBA notification
structured event. The mapping between a component event and a notification event is
implemented by the container.

Equivalent IDL
For the declaration of event types of the following form:

module <module_name> {
valuetype A { <A_state_members> };
eventtype B : A { <B_state_members>};

eventtype C: B { <C_state_members>};
|3
The following equivalent IDL is implied:

module <module_name> {
valuetype A { <A_state_members> };

valuetype B : A, ::Components::EventBase {
<B_state_members>

CORBA Components: Events 1-21

b

interface BConsumer : ::Components::EventConsumerBase {
void push_B (in B the_b);
|3

valuetype C : B {
<C_state_members>

b

interface CConsumer : BConsumer {
void push_C (in C the_c);
|3
|3

As shown above the first event type in the inheritance chain introduces the inheritance
from Components::EventBase into the inheritance chain for the equivalent value
types. The same rule applies for the equivalent consumer interfaces and
Components::EventConsumerBase. Consumer interfaces are in the same
inheritance relation as the event types, where they origin.

1.6.1.2 EventBase

The module Components contains the following abstract value type definition:

module Components {
abstract valuetype EventBase { };

b

It serves as base type for value types derived via the Equivalent IDL mapping for event
types.

To ensure proper transmission of value type events, this specification makes the
following clarifications to the semantics of value types when inserted into anys:

When an any containing a value type is received as a parameter in an ORB-mediated
operation, the value contained in the any shall be preserved, regardiess of whether the
receiving execution context is capable of constructing the value (in its original form or
a truncated form), or not. If the receiving context attempts to extract the value, the
extraction may fail, or the extracted value may be truncated. The value contained in the
any shall remain unchanged, and shall retain its integrity if the any is passed as a
parameter to another execution context.

1.6.2 EventConsumer Interface

The component event model is a push model. The basic mechanics of this push model
are defined by consumer interfaces. Event sources hold references to consumer
interfaces and invoke various forms of push operations to send events.

1-22 CORBA Components, v3.0 June 2002

June 2002

Component event sources hold references to consumer interfaces and push to them.
Component event sinks provide consumer references, into which other entities (e.g.,
channels, clients, other component event sources) push events.

Event consumer interfaces are derived from the
Components::EventConsumerBase interface, which is defined as follows:

module Components {
exception BadEventType {
CORBA::Repositoryld expected_event_type;
b
interface EventConsumerBase {
void push_event(in EventBase evt) raises (BadEventType);
b
b

Type-specific event consumer interfaces are derived from the EventConsumerBase
interface. Event source and sink declarations in component definitions cause type-
specific consumer interfaces to be generated for the event types used in the
declarations.

The push_event operation pushes the event denoted by the evt parameter to the
consumer. The consumer may choose to constrain the type of event it accepts. If the
actual type of the evt parameter is not acceptable to the consumer, the
BadEventType exception shall be raised. The expected_event_type member of
the exception contains the Repositoryld of the type expected by the consumer.

Note that this exception can only be raised by the consumer upon whose reference the
push_event operation was invoked. The consumer may be a proxy for an event or
notification channel with an arbitrary number of subscribers. If any of those
subscribers raise any exceptions, they will not be propagated back to the original event
source (i.e., the component).

1.6.3 Event Service Provided by Container

Container implementations provide event services to components and their clients.
Component implementations obtain event services from the container during
initialization, and mediate client access to those event services. The container
implementation is free to provide any mechanism that supports the required semantics.
The container is responsible for configuring the mechanism and determining the
specific quality of service and routing policies to be employed when delivering events.

1.6.4 Event Sources—Publishers and Emitters

An event source embodies the potential for the component to generate events of a
specified type, and provides mechanisms for associating consumers with sources.

There are two categories of event sources, emitters and publishers. Both are
implemented using event channels supplied by the container. An emitter can be
connected to at most one proxy provider by the container. A publisher can be

CORBA Components: Events 1-23

1-24

connected through the channel to an arbitrary number of consumers, who are said to
subscribe to the publisher event source. A component may exhibit zero or more
emitters and publishers.

A publisher event source has the following characteristics:

® The equivalent operations for publishers allow multiple subscribers (i.e.,
consumers) to connect to the same source simultaneously.

® Subscriptions to a publisher are delegated to an event channel supplied by the
container at run time. The component is guaranteed to be the only source publishing
to that event channel.

An emitter event source has the following characteristics:

® The equivalent operations for emitters allow only one consumer to be connected to
the emitter at a time.

® The events pushed from an emitter are delegated to an event channel supplied by the
container at run time. Other event sources, however, may use the same channel.
Events pushed from an emitter are then pushed by the container into the consumer
interface supplied as a parameter to the connect_<source> operation.

In general, emitters are not intended to be exposed to clients. Rather, they
are intended to be used for configuration purposes. It is expected that emit-
terswill be connected at the time of component initialization and configu-
ration to consumer interfaces that are proxies for event channels that may
be shared between arbitrary clients, components and other systemele-
ments.

In contrast, publishers are intended to provide clients with direct accessto
a particular event stream being generated by the component (embodied by
the publisher event source). It isour intent that clients subscribe directly to
the publisher source.

1.6.5 Publisher

1.6.5.1 Equivalent IDL

For an event source declaration of the following form:

module <module_name> {
component <component_name> {
publishes <event_type> <source_name>; };

h
The following equivalent IDL is implied:

module <module_name> {
module <component_name>EventConsumers {
interface <event_type>Consumer;

b

interface <component_name>: Components::CCMObject {

CORBA Components, v3.0 June 2002

Components::Cookie subscribe_<source_name> (
in <component_name>EventConsumers::<event_type>Consumer
consumer)
raises (Components::ExceededConnectionLimit);

<component_name>EventConsumers::<event_type>Consumer
unsubscribe_<source_name> (in Components::Cookie ck)
raises (Components::InvalidConnection);

b

module <component_name>EventConsumers {
interface <event_type>Consumer : Components::EventConsumerBase {
void push (in <event_type> evt);
¥
|3
|3

module <module_name> {
interface <component_name> : Components::CCMObject {
Components::Cookie subscribe_<source_name> (
in <event_type>Consumer consumer)
raises (Components::ExceededConnectionLimit);

<event_type>Consumer unsubscribe_<source_name> (
in Components::Cookie ck)
raises (Components::InvalidConnection);
3
¥

1.6.5.2 Event publisher operations

subscribe_<source_name>

The subscribe_<source_name> operation connects the consumer parameter to an
event channel provided to the component implementation by the container. The
component shall be the only publisher to that channel. If the implementation of the
component or the channel place an arbitrary limit on the number of subscriptions that
can be supported simultaneously, and the invocation of the subscribe operation would
cause that limit to be exceeded, the operation raises theExceededConnectionLimit
exception. The Cookie value returned by the operation identifies the subscription
formed by the association of the subscriber with the publisher event source. This value
can be used subsequently in an invocation of unsubscribe_<source_name> to
disassociate the subscriber from the publisher.

June 2002 CORBA Components: Events 1-25

unsubscribe_<source_name>

The unsubscribe_<source_name> operation destroys the subscription identified
by the ck parameter value, returning the reference to the subscriber. If the ck
parameter value does not identify an existing subscription to the publisher event
source, the operation shall raise an InvalidConnection exception.

1.6.6 Emitters

1.6.6.1 Equivalent IDL

For an event source declaration of the following form:

module <module_name> {
component <component_name> {emits <event_type> <source_name>;};

¥
The following equivalent IDL is implied:

module <module_name> {
module <component_name>EventConsumers {
interface <event_type>Consumer;

|3
interface <component_name> : Components::CCMObject {

void connect_<source_name> (
in <component_name>EventConsumers::<event_type>Consumer
consumer) raises (Components::AlreadyConnected);

<component_name>EventConsumers::<event_type>Consumer
disconnect_<source_name>()
raises (Components::NoConnection);

b

module <component_name>EventConsumers {
interface <event_type> Consumer
: Components::EventConsumerBase {
void push (in <event_type> evt);
|3
|3
|3
module <module_name> {
interface <component_name> : Components::CCMObject {
void connect_<source_name> (

in <event_type>Consumer consumer)
raises (Components::AlreadyConnected);

<event_type>Consumer disconnect_<source_name>()

1-26 CORBA Components, v3.0 June 2002

June 2002

1.6.6.2

raises (Components::NoConnection);
|3
¥

Event emitter operations
connect_<source_name>

The connect_<source_name> operation connects the event consumer denoted by
the consumer parameter to the event emitter. If the emitter is already connected to a
consumer, the operation shall raise the AlreadyConnected exception.

disconnect_<source_nhame>

The disconnect_<source_name> operation destroys any existing connection by
disassociating the consumer from the emitter. The reference to the previously
connected consumer is returned. If there was no existing connection, the operation
raises the NoConnection exception.

The following observations and constraints apply to the equivalent IDL for event
source declarations:

® The need for a typed event consumer interface requires the definition of a module
scope to guarantee that the interface name for the event subscriber is unique. The
module (whose name is formed by appending the string “EventConsumers’ to the
component type name) is defined in the same scope as the component’s equival ent
interface. The module is opened before the equivalent interface definition to provide
forward declarations for consumer interfaces. It is re-opened after the equivalent
interface definition to define the consumer interfaces.

® The name of a consumer interface isformed by appending the string “Consumer” to
the name of the event type. One consumer interface type is implied for each unique
event type used in event source and event sink declarations in the component
definition.

1.6.7 Event Snks

An event sink embodies the potential for the component to receive events of a specified
type. An event sink is, in essence, a special-purpose facet whose type is an event
consumer. External entities, such as clients or configuration services, can obtain the
reference for the consumer interface associated with the sink.

Unlike event sources, event sinks do not distinguish between connection and
subscription. The consumer interface may be associated with an arbitrary number of
event sources, unbeknownst to the component that supplies the event sink. The
component event model provides no inherent mechanism for the component to control
which events sources may be pushing to its sinks. By exporting an event sink, the
component is, in effect, declaring its willingness to accept events pushed from arbitrary
sources. A component may exhibit zero or more consumers.

CORBA Components: Events 1-27

If a component implementation needs control over which sources can push
to a particular sink it owns, the sink should not be exposed as a port on the
component. Rather, the component implementation can create a consumer
internally and explicitly connect or subscribeit to sources.

1.6.7.1 Equivalent IDL

For an event sink declaration of the following form:

module <module_name> {
component <component_name> {
consumes <event_type> <sink_name>;

The following equivalent IDL is implied:

module <module_name> {
module <component_name>EventConsumers {
interface <event_type>Consumer;

b

interface <component_name> : Components::CCMObject {
<component_name>EventConsumers::<event_type>Consumer
get_consumer_<sink_name>();

b

module <component_name>EventConsumers {
interface <event_type>Consumer :
Components::EventConsumerBase {
void push (in <event_type> evt);
¥
¥
¥
module <module_name> {

interface <component_name> : Components::CCMObject {
<event_type>Consumer get_consumer_<sink_name>();

|3
|3
1.6.7.2 Event sink operations

The get_consumer_<sink_name> operation returns a reference that supports the
consumer interface specific to the declared event type.

1-28 CORBA Components, v3.0 June 2002

1.6.8 Events interface

The Events interface provides generic access to event sources and sinks on a
component. CCMObject is derived from Events. For components, such as basic
components, that do not declare participation in events, only the generic Events
operations are available on the equivalent interface. The default behavior in such cases
is described below.

The Events interface is described as follows:

module Components {

exception InvalidName { };
exception InvalidConnection { };
exception AlreadyConnected { };
exception NoConnection { };

valuetype ConsumerDescription : PortDescription

{
b

typedef sequence<ConsumerDescription> ConsumerDescriptions;

public EventConsumerBase consumer;

valuetype EmitterDescription : PortDescription

{
b

typedef sequence<EmitterDescription> EmitterDescriptions;

public EventConsumerBase consumer;

valuetype SubscriberDescription

{
public Cookie ck;

public EventConsumerBase consumer;

typedef sequence<SubscriberDescription> SubscriberDescriptions;

valuetype PublisherDescription : PortDescription

{
b

typedef sequence<PublisherDescription> PublisherDescriptions;

public SubscriberDescriptions consumers;

interface Events {

EventConsumerBase get_consumer (in FeatureName sink_name)
raises (InvalidName);

Cookie subscribe (in FeatureName publisher_name,
in EventConsumerBase subscriber)
raises (InvalidName, InvalidConnection,

ExceededConnectionLimit);

void unsubscribe (in FeatureName publisher_name,

in Cookie ck)

June 2002 CORBA Components: Events 1-29

1-30

raises (InvalidName, InvalidConnection);
void connect_consumer (in FeatureName emitter_name,
in EventConsumerBase consumer)
raises (InvalidName, AlreadyConnected,
InvalidConnection);
EventConsumerBase disconnect_consumer (
in FeatureName source_name)
raises (InvalidName, NoConnection);
ConsumerDescriptions get_all_consumers ();
ConsumerDescriptions get_named_consumers (
in NameList names)
raises (InvalidName);
EmitterDescriptions get_all_emitters ();
EmitterDescriptions get_named_emitters (in NameList names)
raises (InvalidName);
PublisherDescriptions get_all_publishers ();
PublisherDescriptions get_named_publishers (in NameList names)
raises (InvalidName);
|3
h

get_consumer

The get_consumer operation returns the EventConsumerBase interface for the
sink specified by the sink_name parameter. If the sink_name parameter does not
specify avalid event sink on the component, the operation raises the InvalidName
exception. A component that does not have any sinks (e.g., a basic component) will
have no valid sink_name parameter to this operation and thus shall always raise the
InvalidName exception.

subscribe

The subscribe operation associates the subscriber denoted by the subscriber
parameter with the event source specified by the publisher_name parameter. If the
publisher_name parameter does not specify a valid event publisher on the
component, the operation raises the InvalidName exception. The cookie return value
can be used to unsubscribe from the source. A component that does not have any event
sources (e.g., a basic component) will have no valid publisher_name parameter to
this operation and thus shall always raise the InvalidName exception. If the object
reference in the subscriber parameter does not support the consumer interface of the
eventtype declared in the publishes statement, the InvalidConnection exception is
raised. If the implementation-defined limit to the number of subscribers is exceeded,
the ExceededConnectionLimit exception is raised.

unsubscribe
The unsubscribe operation disassociates the subscriber associated with ck parameter
with the event source specified by the publisher_name parameter. If the

publisher_name parameter does not specify a valid event source on the component,
the operation raises the InvalidName exception. If the ck parameter does not identify

CORBA Components, v3.0 June 2002

June 2002

a current subscription on the source, the operation raises the InvalidConnection
exception. A component that does not have any event sources (e.g., a basic component)
will have no valid publisher_name parameter to this operation and thus shall always
raise the InvalidName exception.

connect_consumer

The connect_consumer operation associates the consumer denoted by the
consumer parameter with the event source specified by the emitter_name
parameter. If the emitter_name parameter does not specify a valid event emitter on
the component, the operation raises the InvalidName exception. If a consumer is
already connected to the emitter, the operation raises the AlreadyConnected
exception. If the object reference in the consumer parameter does not support the
consumer interface of the eventtype declared in the emits statement, the
InvalidConnection exception is raised. The cookie return value can be used to
disconnect from the source. A component that does not have any event sources (e.g., a
basic component) will have no valid emitter_name parameter to this operation and
thus shall always raise the InvalidName exception.

disconnect_consumer

The disconnect_consumer operation disassociates the currently connected
consumer from the event source specified by the emitter_name parameter, returning
a reference to the disconnected consumer. If the emitter_name parameter does not
specify a valid event source on the component, the operation raises the InvalidName
exception. If there is no consumer connected to the emitter, the operation raises the
NoConnection exception. A component that does not have any event sources (e.g., a
basic component) will have no valid emitter_name parameter to this operation and
thus shall always raise the InvalidName exception.

get_all_consumers

The get_all_consumers operation returns information about all consumer ports in
the component's inheritance hierarchy as a sequence of ConsumerDescription
values. The order in which these values occur in the sequence is not specified. For
components that do not consume any events (e.g., a basic component), this operation
returns a sequence of length zero.

get_named_consumers

The get_named_consumers operation returns information about all consumer ports
denoted by the names parameter as a sequence of ConsumerDescription values.
The order in which these values occur in the sequence is not specified. If any namein
the names parameter is not a valid name for an event sink in the component's
inheritance hierarchy, the operation raises the InvalidName exception. A component
that does not provide any consumers (e.g., a basic component) will have no valid name
parameter to this operation and thus shall always raise the InvalidName exception.

CORBA Components: Events 1-31

1.7 Homes

1-32

get_all_emitters

The get_all_emitters operation returns information about all emitter ports in the
component's inheritance hierarchy as a sequence of EmitterDescription values. The
order in which these values occur in the sequence is not specified. For components that
do not emit any events (e.g., a basic component), this operation returns a sequence of
length zero.

get_named_emitters

The get_named_emitters operation returns information about all emitter ports
denoted by the names parameter as a sequence of EmitterDescription values. The
order in which these values occur in the sequence is not specified. If any name in the
names parameter is not a valid name for an emitter port in the component's
inheritance hierarchy, the operation raises the InvalidName exception. A component
that does not provide any emitters (e.g., a basic component) will have no valid name
parameter to this operation and thus shall always raise the InvalidName exception.

get_all_publishers

The get_all_publishers operation returns information about all publisher portsin the
component's inheritance hierarchy as a sequence of PublisherDescription values.
The order in which these values occur in the sequence is not specified. For components
that do not publish any events (e.g., a basic component), this operation returns a
sequence of length zero.

get_named_publishers

The get_named_publishers operation returns information about all publisher ports
denoted by the names parameter as a sequence of PublisherDescription values.
The order in which these values occur in the sequence is not specified. If any name in
the names parameter is not a valid name for a publisher port in the component's
inheritance hierarchy, the operation raises the InvalidName exception. A component
that does not provide any publishers (e.g., a basic component) will have no valid name
parameter to this operation and thus shall always raise the InvalidName exception.

An IDL specification may include home definitions. A home definition describes an
interface for managing instances of a specified component type. The salient
characteristics of a home definition are as follows:

* A home definition implicitly defines an equivalent interface, which can be described
in terms of IDL.

®* The presence of a primary key specification in a home definition causes home's
equivalent interface to contain a set of implicitly defined operations whose
signatures are determined by the types of the primary key and the managed
component. These operations are specified in Section 1.7.1.2, “Home definitions
with primary keys,” on page 1-34.

CORBA Components, v3.0 June 2002

June 2002

1.7.1 Equivalent Interfaces

1711

Every home definition implicitly defines a set of operations whose names are the same
for all homes, but whose signatures are specific to the component type managed by the
home and, if present, the primary key type specified by the home.

Because the same operation names are used for these operations on different homes,
the implicit operations cannot be inherited. The specification for home equivalent
interfaces accommodates this constraint. A home definition results in the definition of
three interfaces, called the explicit interface, the implicit interface, and the equivalent
interface. The name of the explicit interface has the form <home_name>Explicit,
where <home_name> is the declared name of the home definition. Similarly, the
name of the implicit interface has the form <home_name>Implicit, and the name of
the equivaent interface is simply the name of the home definition, with the form
<home_name>. All of the operations defined explicitly on the home (including
explicitly-defined factory and finder operations) are represented on the explicit
interface. The operations that are implicitly defined by the home definition are
exported by the implicit interface. The equivalent interface inherits both the explicit
and implicit interfaces, forming the interface presented to programmer using the home.

The same names are used for implicit operationsin order to provide clients
with a simple, uniform view of the basic life cycle operations—creation,
finding, and destruction. The signatures differ to make the operations spe-
cific to the storage type (and, if present, primary key) associated with the
home. These two goals—uniformity and type safety—are admittedly con-
flicting, and the resulting complexity of equivalent home interfaces reflects
this conflict. Note that this complexity manifestsitself in generated inter-
faces and their inheritance relationships; the model seen by the client pro-
grammer isrelatively smple.

Home definitions with no primary key
Given a home definition of the following form:

home <home_name> manages <component_type> {
<explicit_operations>

h

The resulting explicit, implicit, and equivalent local interfaces have the following

forms:

interface <home_name>Explicit : Components::CCMHome {
<equivalent_explicit_operations>

b

interface <home_name>Implicit : Components::KeylessCCMHome {
<component_type> create() raises(CreateFailure);

b

interface <home_name> : <home_name>Explicit, <home_name>Implicit {};

CORBA Components: Homes 1-33

1-34

1.7.1.2

where <equivalent_explicit_operations> are the operations defined in the home
declaration (<explicit_operations>), with factory and finder operations transformed
to their equivalent operations, as described in Section 1.7.3, “Explicit Operations in
Home Definitions,” on page 1-37.”

create

This operation creates a new component instance of the type managed by the home.
The CreateFailure exception is raised if any application errors are encountered in
home creation.

Home definitions with primary keys
Given a home of the following form:

home <home_name> manages <component_type> primarykey <key_type>{
<explicit_operations>

h
The resulting explicit, implicit, and equivalent interfaces have the following forms:

interface <home_name>Explicit : Components::CCMHome {
<equivalent_explicit_operations>

b

interface <home_name>Implicit {
<component_type> create (in <key_type> key)
raises (Components::CreateFailure, Components::DuplicateKeyValue,
Components::InvalidKey);

<component_type>find_by_primary_key (in <key_type> key)
raises (Components::FinderFailure, Components::UnknownKeyValue,
Components::InvalidKey);

void remove (in <key_type> key)
raises (Components::RemoveFailure, Components::UnknownKeyValue,
Components::InvalidKey);

<key_type>get_primary_key (in <component_type> comp);
|3
interface <home_name> : <home_name>Explicit , <home_name>Implicit { };

where <equivalent_explicit_operations> are the operations defined in the home
declaration (<explicit_operations>), with factory and finder operations transformed to
their equivalent operations, as described in Section 1.7.3, “Explicit Operations in
Home Definitions,” on page 1-37.

CORBA Components, v3.0 June 2002

June 2002

1.7.1.3

create

This operation creates a new component associated with the specified primary key
value, returning a reference to the component. If the specified key value is already
associated with an existing component managed by the storage home, the operation
raises an DuplicateKeyValue exception. If the key value was not a well-formed,
legal value, the operation shall raise the InvalidKey exception. All other error
conditions may raise the CreateFailure exception.

find_by primary key

This operation returns a reference to the component identified by the primary key
value. If the key value does not identify an existing component managed by the home,
an UnknownKeyValue exception is raised. If the key value was not a well-formed,
legal value, the operation shall raise the InvalidKey exception. All other error
conditions may raise the FinderFailure exception.

remove

This operation removes the component identified by the specified key value.
Subsequent requests to any of the component’s facets shall raise an
OBJECT_NOT_EXIST system exception. If the specified key value does not
identify an existing component managed by the home, the operation shall raise an
UnknownKeyValue exception. If the key value was not a well-formed, legal value,
the operation shall raise the InvalidKey exception. All other error conditions may
raise the RemoveFailure exception.

Supported interfaces

A home definition may optionally support one or more interfaces. When a home
definition header includes a supports clause as follows:

home <home_name> supports <interface_name>
manages <component_type> {
<explicit_operations>

b

The resulting explicit interface inherits both CCMHome and any supported interfaces,
as follows:

interface <home_name>Explicit : Components::CCMHome,
<interface_name> {
<equivalent_explicit_operations>

b

The home implementation shall supply implementations of operations defined on
supported interfaces. Clients shall be able to widen a reference of the home>s resulting
explicit or equivalent interface type to the type of any of the supported interfaces.
Clients shall also be able to narrow a reference of type CCMHome to the type of any
of the home»s supported interfaces.

CORBA Components: Homes 1-35

1-36

1.7.2 Primary Key Declarations

1.7.21

1.7.2.2

Primary key values shall uniquely identify component instances within the scope of the
home that manages them. Two component instances cannot exist on the same home
with the same primary key value.

Different home types that manage the same component type may specify different
primary key types. Consequently, a primary key type is not inherently related to the
component type, and vice versa. A home definition determines the association between
a component type and a primary key type. The home implementation is responsible for
maintaining the association between specific primary key values and specific
component identities.

Note that this discussion pertains to component definitions as abstractions.
A particular implementation of a component type may be cognizant of, and
dependent upon, the primary keys associated with its instances. Such
dependencies, however, are not exposed on the surface of the component
type. A particular implementation of a component type may be designed to
be manageabl e by different home interfaces with different primary keys, or
it may be inextricably bound to a particular home definition. Generally, an
implementation of a component type and the implementation of its associ-
ated home are inter-dependent, although thisis not absolutely necessary.

Primary key type constraints

Primary key and types are subject to the following constraints:

* A primary key type must be a value type derived from
Components::PrimaryKeyBase.

* A primary key type must be a concrete type with at least one public state member.
® A primary key type may not contain private state members.

* A primary key type may not contain any members whose type is a CORBA
interface reference type, including references for interfaces, abstract interfaces, and
local interfaces.

® These constraints apply recursively to the types of all of the members; that is,
members that are structs, unions, value types, sequences or arrays may not contain
interface reference types. If the type of a member is a value type or contains a value
type, it must meet al of the above constraints.

PrimaryKeyBase

The base type for all primary keys is the abstract value type
Components::PrimaryKeyBase. The definition of PrimaryKeyBase is as
follows:

module Components {
abstract valuetype PrimaryKeyBase { };

b

CORBA Components, v3.0 June 2002

June 2002

1.7.3 Explicit Operations in Home Definitions

1731

1.7.3.2

1.7.3.3

A home body may include zero or more operation declarations, where the operation
may be a factory operation, a finder operation, or a normal operation or attribute.

Factory operations

A factory operation is denoted by the factory keyword. A factory operation has a
corresponding equivalent operation on the home's explicit interface. Given a factory
declaration of the following form:

home <home_name> manages <component_type> {
factory <factory_operation_name> (<parameters>)
raises (<exceptions>);

|3

The equivalent operation on the explicit interface is as follows:

<component_type> <factory_operation_name> (<parameters>)
raises (Components::CreateFailure, <exceptions>);

A factory operation is required to support creation semantics; that is, the reference
returned by the operation shall identify a component that did not exist prior to the
operation’s invocation. Factory operations are required to raise CreateFailure and
may raise other exceptions.

Finder operations

A finder operation is denoted by the finder keyword. A finder operation has a
corresponding equivalent operation on the home's explicit interface. Given a finder
declaration of the following form:

home <home_name> manages <component_type> {
finder <finder_operation_name> (<parameters>) raises (<exceptions>);

¥
The equivalent operation on the explicit interface is as follows:

<component_type> <finder_operation_name> (<parameters>)
raises (Components::FinderFailure, <exceptions>);

A finder operation shall support the following semantics. The reference returned by the
operation shall identify a previously-existing component managed by the home. The
operation implementation determines which component’s reference to return based on
the values of the operation’s parameters. Finder operations are required to raise
FinderFailure and may raise other exceptions.

Miscellaneous exports

All of the exports, other than factory and finder operations, that appear in a home
definition are duplicated exactly on the home's explicit interface.

CORBA Components: Homes 1-37

1-38

1.7.4 Home inheritance

Given a derived home definition of the following form:

home <home_name>: <base_home_name> manages <component_type> {
<explicit_operations>

The resulting explicit interface has the following form:

interface <home_name>Explicit : <base_home_name>Explicit {
<equivalent_explicit_operations>

h
Given a derived home definition supporting one or more interfaces, as follows:

home <home_name> : <base_home_name>
supports <interface_name>
manages <component_type>{
<explicit_operations>
|3

The resulting explicit interface has the following form:

interface <home_name>Explicit : <base_home_name>Explicit,
<interface_name> {
<equivalent_explicit_operations>

b

where <equivalent_explicit_operations> are the operations defined in the home
declaration (<explicit_operations>), with factory and finder operations transformed to
their equivalent operations, as described in Section 1.7.3, “Explicit Operations in
Home Definitions,” on page 1-37. The forms of the implicit and equivalent interfaces
are identical to the corresponding forms for non-derived storage homes, determined by
the presence or absence of a primary key specification.

A home definition with no primary key specification constitutes a pair (H, T) where H
isthe home type and T is the managed component type. If the home definition includes
a primary key specification, it constitutes atriple (H, T, K), whereH and T are as
previous and K is the type of the primary key. Given a home definition (H’, T') or (H’,
T’, K), where K is a primary key type specified on H’, such that H’ is derived from H,
then T' must be identical to T or derived (directly or indirectly) from T.

Given a base home definition with a primary key (H, T, K), and a derived home
definition with no primary key (H’, T’), such that H’ is derived from H, then the
definition of H’ implicitly includes a primary key specification of type K, becoming
(H', T', K). The implicit interface for H' shall have the form specified for an implicit
interface of a home with primary key K and component type T'.

Given a base home definition (H, T, K), noting that K may have been explicitly
declared in the definition of H, or inherited from a base home type, and a home
definition (H’, T', K') such that H’ is derived from H, then T’ must be identical to or
derived from T and K’ must be identical to or derived from K.

CORBA Components, v3.0 June 2002

June 2002

Note the following observations regarding these constraints and the structure of
inherited equivalent interfaces:

® |f a home definition does not specify a primary key directly in its header, but it is
derived from a home definition that does specify a primary key, the derived home
inherits the association with that primary key type, precisely as if it had explicitly
specified that type in its header. This inheritance is transitive. For the purposes of
the following discussion, home definitions that inherit a primary key type are
considered to have specified that primary key type, even though it did not explicitly
appear in the definition header.

® Operations on CCMHome are inherited by all home equivalent interfaces. These
operations apply equally to homes with and without primary keys.

® Operations on KeylessCCMHome are inherited by all homes that do not specify
primary keys.

® Implicitly-defined operations (i.e., that appear on the implicit interface) are only
visible to the equivalent interface for the specific home type that implies their
definitions. Implicitly-defined operations on a base home type are not inherited by a
derived home type. Note that the implicit operations for a derived home may be
identical in form to the corresponding operations on the base type, but they are
defined in a different name scope.

® Explicitly-defined operations (i.e., that appear on the explicit interface) are inherited
by derived home types.

1.7.5 Semantics of Home Operations

Operations in home interfaces fall into two categories:

® Operations that are defined by the component model. Default implementations of
these operations must, in some cases, be supplied by the component-enabled ORB
product, without requiring user programming or intervention. | mplementations of
these operations must have predictable, uniform behaviors. Hence, the required
semantics for these operations are specified in detail. For convenience, we will refer
to these operations as orthodox operations.

® Operations that are defined by the user The semantics of these operations are
defined by the user-supplied implementation. Few assumptions can be made
regarding the behavior of such operations. For convenience, we will refer to these
operations as heterodox operations.

Orthodox operations include the following:
 Operations defined on CCMHome and KeylessCCMHome.
» Operations that appear on the implicit interface for any home.

Heterodox operations include the following:

 Operations that appear in the body of the home definition, including factory
operations, finder operations, and normal IDL operations and attributes.

CORBA Components: Homes 1-39

1-40

1.751

1.75.2

Orthodox operations

Because of the inheritance structure described in Section 1.7.4, “Home inheritance,” on
page 1-38 problems relating to polymorphism in orthodox operations are limited. For
the purposes of determining key uniqueness and mapping key values to components in
orthodox operations, equality of value types (given the constraints on primary key
types specified in Section 1.7.2.1, “Primary key type constraints,” on page 1-36) are
defined as follows:

® Only the state of the primary key type specified in the home definition (which is
also the actual parameter type in operations using primary keys) shall be used for
the purposes of determining equality. If the type of the actual parameter to the
operation is more derived than the formal type, the behavior of the underlying
implementation of the operation shall be as if the value were truncated to the formal
type before comparison. This applies to all value types that may be contained in the
closure of the membership graph of the actual parameter value; that is, if the type of
a member of the actual parameter value is a value type, only the state that
constitutes the member’s declared type is compared for equality.

® Two values are equal if their types are precisely equivalent and the values of al of
their public state members are equal. This applies recursively to members that are
value types.

® |f the values being compared constitute a graph of values, the two values are equal
only if the graphs are isomorphic.

® Union members are equal if both the discriminator values and the values of the
union member denoted by the discriminator are precisely equal.

®* Members that are sequences or arrays are considered equal if all of their members
are precisely equal, where order is significant.

Heterodox operations

Polymorphism in heterodox operations is somewhat more problematic, as they are
inherited by homes that may specify more-derived component and primary key types.
Assume a home definition (H, T, K), with an explicit factory operation f that takes a
parameter of type K, and a home definition (H’, T', K’), such that H’ is derived from
H, T’ is derived from T, and K’ is derived from K. The operation f (whose parameter
type is K) is inherited by equivalent interface for H'. It may be the intended behavior
of the designer that the actual type of the parameter to invocations of f on H' should be
K’, exploiting the polymorphism implied by inheritance of K by K'. Alternatively, it
may be the intended behavior of the designer that actual parameter values of either K
or K’ are legitimate, and the implementation of the operation determines what the
appropriate semantics of operation are with respect to key equality.

This specification does not attempt to define semantics for polymorphic equality.
Instead, we define the behavior of operations on home that depend on primary key
values in terms of abstract tests for equality that are provided by the implementation of
the heterodox operations.

CORBA Components, v3.0 June 2002

Implementations of heterodox operations, including implementations of key value
comparison for equality, are user-supplied. This specification imposes the following
constraints on the tests for equality of value types used as keys in heterodox
operations;

® For any two actua key values A and B, the comparison results must be the same for
all invocations of all operations on the home.

® The comparison behavior must meet the general definition of equivalence; that is, it
must be symmetric, reflexive, and transitive.

1.7.6 CCMHome Interface

The definition of the CCMHome interface is as follows:
module Components {
typedef unsigned long FailureReason;
exception CreateFailure { FailureReason reason; };
exception FinderFailure { FailureReason reason; };
exception RemoveFailure { FailureReason reason; };
exception DuplicateKeyValue { };
exception InvalidKey { };
exception UnknownKeyValue { };
interface CCMHome {
CORBA::IRObject get_component_def();
CORBA::IRObject get_home_def ();

void remove_component (in CCMObject comp)
raises (RemoveFailure);

b
b

get_component_def

The get_component_def operation returns an object reference that supports the
CORBA::ComponentIR::ComponentDef interface, describing the component type
associated with the home object. In strongly typed languages, the IRObject returned
must be narrowed to CORBA::ComponentIR::ComponentDef before use.

June 2002 CORBA Components: Homes 1-41

get_home_def

The get_home_def operation returns an object reference that supports the
CORBA::ComponentIR::HomeDef interface describing the home type. In strongly
typed languages, the IRObject returned must be narrowed to
CORBA::ComponentIR::HomeDef before use.

remove_component

The remove_component operation causes the component denoted by the reference
to cease to exist. Subsequent invocations on the reference will cause an
OBJECT_NOT_EXIST system exception to be raised. If the component denoted by
the parameter does not exist in the container associated with target home object,
remove_component raisesa BAD_PARAM system exception. All other
application errors raise the RemoveFailure exception.

Note — This specification does not define explicitly what the FailureReason values
are for the CreateFailure, FinderFailure, and RemoveFailure exceptions. These
values are currently vendor specific and will be standardized once consensus among
vendors will be established.

1.7.7 KeylessCCMHome Interface

1.8 HomeFinders

1-42

The definition of the KeylessCCMHome interface is as follows:

module Components {
interface KeylessCCMHome {
CCMObject create_component() raises (CreateFailure);
¥
¥

create_component

The create_component operation creates a new instance of the component type
associated with the home object. A home implementation may choose to disable the
parameter-less create_component operation, in which case it shall raise a
NO_IMPLEMENT system exception. All other failures raise the CreateFailure
exception.

The HomeFinder interface is, conceptually, a greatly simplified analog of the
CoslLifeCycle::FactoryFinder interface. Clients can use the HomeFinder interface
to obtain homes for particular component types, of particularly home types, or homes
that are bound to specific names in a naming service.

CORBA Components, v3.0 June 2002

1

A reference that supports the HomeFinder interface may be obtained from the ORB
pseudo-object by invoking CORBA::ORB::resolve_initial_references, with the
parameter value “ComponentHomeFinder”. This requires the following
enhancement to the ORB interface definition:

module CORBA {

interface ORB {
Object resolve_initial_references (in ObjectID identifier)
raises (InvalidName);
|3
¥

The HomeFinder interface is defined by the following IDL:

module Components {
exception HomeNotFound { };

interface HomeFinder {
CCMHome find_home_by_component_type (
in CORBA::Repositoryld comp_repid)raises (HomeNotFound);
CCMHome find_home_by _home_type (
in CORBA::Repositoryld home_repid) raises (HomeNotFound);
CCMHome find_home_by_name (
in string home_name) raises (HomeNotFound);
|3
|3

find_home_by component_type

Thefind_home_by component_type operation returns areference, which supports
the interface of a home object that manages the component type specified by the
comp_repid parameter. This parameter contains the repository identifier of the
component type required. If there are no homes that manage the specified component
type currently registered, the operation shall raise the HomeNotFound exception.

Little is guaranteed about the home interfacereturned by this operation. If
the definition of the returned home specified a primary key, there is no
generic factory operation available on any standard interface (i.e, pre-
defined, as opposed to generated type-specific interface) supported by the
home. The only generic factory operation that is potentially availableis
Components::KeylessCCMHome::create_component. The client must
first attempt to narrow the CCM Home reference returned by the
find_home_by_component_type to KeylessCCMHome. Otherwise, the
client must have specific out-of-band knowledge regarding the home inter-
face that may be returned, or the client must be sophisticated enough to
obtain the HomeDef for the home and use the DI to discover and invoke a
create operation on a type-specific interface supported by the home.

June 2002 CORBA Components: Home Finders 1-43

find_home_by home_type

The find_home_by home_type operation returns a reference that supports the
interface of the type specified by the repository identifier in the home_repid
parameter. If there are no homes of this type currently registered, the operation shall
raise the HomeNotFound exception.

The current LifeCycle find_factories operation returns a sequence of facto-
riesto the client requiring the client to choose the one that will create the
instance. Based on the experience of the submitters, CORBA components
defines operations which allows the server to choose the “ best” home for
the client request based on its knowl edge of workload, etc.

Since the operation returns a reference to CCMHome, it must be narrowed to the
specific home type before it can be used.

find_home_by name

The find_home_by name operation returns a home reference bound to the name
specified in the home_name parameter. This parameter is expected to contain a name
in the format described in the Naming Service specification (formal/01-02-65), section
2.4, “Stringified Names.” The implementation of this operation may be delegated
directly to an implementation of CORBA naming, but it is not required. The semantics
of the implementation are considerably less constrained, being defined as follows:

® The implementation is free to maintain multiple bindings for a given name, and to
return any reference bound to the name.

It is generally expected that implementations that do not choose to use
CORBA naming will do so for reasons of scalability and flexibility, in order,
for example, to provide a home which islogically more“local” to the home
finder (and thus, the client).

® The client’ sexpectations regarding the returned reference, other than that it supports
the CCMHome interface, are not guaranteed or otherwise mediated by the home.
The fact that certain names may be expected to provide certain home types or
qualities of implementation are outside the scope of this specification.

Thisis no different than any application of naming servicesin general.
Applications that require clients to be more discriminating arefree to use
the Trader service, or any other similar mechanism that allows query or
negotiation to select an appropriate home. This mechanismis intentionally
kept smple.

If the specified name does not map onto a home object registered with the finder, the
operation shall raise the HomeNotFound exception.

1.9 Component Configuration

1-44

The CORBA component model provides mechanisms to support the concept of
component configurability.

Experience has proven that building re-usable componentsinvol ves making
difficult trade-offs between providing well-defined, reasonably-scoped

CORBA Components, v3.0 June 2002

June 2002

functionality, and providing enough flexibility and generality to be useful
(or re-useful) across a variety of possible applications. Packaging assump-
tions of the component ar chitecture preclude customizing a component’ s
behavior by directly altering its implementation or (in most cases) by
deriving specialized sub-types. Instead, the model focuses on extension and
customization through delegation (e.g., via dependencies expressed with
uses declarations) and configuration. Our assumption is that generalized
components will typically provide a set of optional behaviors or modalities
that can be selected and adjusted for a specific application.

The configuration framework is designed to provide the following capabili-
ties:

» Theability to define attributes on the component type that are used to
establish a component instance’ s configuration. Component attributes
areintended to be used during a component instance' sinitialization to
establish its fundamental behavioral properties. Although the compo-
nent model does not constrain the visibility or use of attributes defined
on the component, it isgenerally assumed that they will not be of
interest to the same clientsthat will use the component after it is con-
figured. Rather, it isintended for use by component factories or by
deployment tools in the process of instantiating an assembly of com-
ponents.

» Theability to define a configuration in an environment other than the
deployment environment (e.g., an assembly tool), and store that con-
figuration in a component package or assembly package to be used

subsequently in deployment.

» Theability to define such a configuration without having to instantiate
the component type itsdlf.

» Theability to associate a pre-defined configuration with a component
factory, such that component instances created by that factory will be
initialized with the associated configuration.

e Support for visual, interactive configuration tools to define configura-
tions. Secifically, the framework all ows component implementors to
provide a configuration manager associated with the component
implementation. The configuration manager interface provides
descriptive information to interactive users, constrains configuration
options, and performs validity checks on proposed configurations.

The CORBA component model allows a distinction to be made between interface
features that are used primarily for configuration, and interface features that are used
primarily by application clients during normal application operation. This distinction,
however, is not precise, and enforcement of the distinction is largely the responsibility
of the component implementor.

It is the intent of this specification (and a strong recommendation to component

implementors and users) that operational interfaces should be either provided interfaces
or supported interfaces. Features on the component interface itself, other than provided
interfaces, (i.e., receptacles, event sources and sinks) are generally intended to be used
for configuration, although there is no structural mechanism for limiting the visibility

CORBA Components: Component Configuration 1-45

of the features on a component interface. A mechanism is provided for defining
configuration and operational phases in a component’s life cycle, and for disabling
certain interfaces during each phase.

The distinction between configuration and operational interfacesis often
hard to make in practice. For example, we expect that operational clients of
a component will want to receive events generated by a component. On the
other hand, some applications will want to establish a fixed set of event
source and sink connections as part of the overall application structure,
and will want to prevent clients from changing those connections. Likewise,
the responsibility for configuration may be hard to assign—in some appli-
cationsthe client that creates and configures a component may be the same
client that will useit operationally. For this reason, the CORBA component
model provides general guidelines and optional mechanisms that may be
employed to characterize configuration operations, but does not attempt to
define a strict separation of configuration and operational behaviors.

1.9.1 Exclusive Configuration and Operational Life Cycle Phases

A component implementation may be designed to implement an explicit configuration
phase of itslife cycle, enforcing serialization of configuration and functional operation.
If this is the case, the component life cycle is divided into two mutually exclusive
phases, the configuration phase and the operational phase.

The configuration_complete operation (inherited from
Components::CCMObject) is invoked by the agent effecting the configuration to
signal the completion of the configuration phase. The InvalidConfiguration
exception is raised if the state of the component configuration state at the time
configuration_complete is invoked does not constitute an acceptable configuration
state. It is possible that configuration may be a multi-step process, and that the validity
of the configuration may not be determined until the configuration process is complete.
The configuration_complete operation should not return to the caller until either 1)
the configuration is deemed invalid, in which case the InvalidConfiguration
exception is raised, or 2) the component instance has performed whatever work is
necessary to consolidate the final configuration and is prepared to accept requests from
arbitrary application clients.

In general, component implementations should defer as much consolida-
tion and integration of configuration state as possible until
configuration_complete isinvoked. In practice, configuring a highly-con-
nected distributed object assembly has proven very difficult, primarily
because of subtle ordering dependencies that are difficult to discover and
enforce. If possible, a component implementation should not be sensitive to
the ordering of operations (interface connections, configuration state
changes, etc.) during configuration. This is one of the primary reasons for
the definition of configuration_complete.

1-46 CORBA Components, v3.0 June 2002

1.9.1.1 Enforcing exclusion of configuration and operation

The implementation of a component may choose to disable changes to the
configuration after configuration_complete is invoked, or to disable invocations of
operations on provided interfaces until configuration_complete isinvoked. If an
implementation chooses to do either (or both), an attempt to invoke a disabled
operation should raise a BAD_INV_ORDER system exception.

Alternatively, a component implementation may choose not to distinguish between
configuration phase and deployment phase. In this case, invocation of
configuration_complete will have no effect.

The component implementation framework provides standard mechanisms to support
disabling operations during configuration or operation. Certain operations are
implemented by the component implementation framework (see Chapter 3 - CCM
Implementation Framework) and may not be disabled.

1.10 Configurationwith Attributes

June 2002

A component’s configuration is established primarily through its attributes. An
attribute configuration is defined to be a description of a set of invocations on a
component’s attribute set methods, with specified values as parameters.

There are a variety of possible approaches to attribute configuration at run time,
depending on the design of the component implementation and the needs of the
application and deployment environments. The CORBA component model defines a set
of basic mechanisms to support attribute configuration. These mechanisms can be
deployed in a number of ways in a component implementation or application.

1.10.1 Attribute Configurators

1.10.1.1

A configurator is an object that encapsulates a specific attribute configuration that can
be reproduced on many instances of a component type. A configurator may invoke any
operations on a component that are enabled during its configuration phase. In general,
a configurator is intended to invoke attribute set operations on the target component.

The Configurator interface
The following interface is supported by all configurators:
module Components {

exception WrongComponentType { };

interface Configurator {
void configure (in CCMObject comp)
raises (WrongComponentType);};
|3

configure

CORBA Components: Configuration with Attributes 1-47

1-48

1.10.1.2

The configure operation establishes its encapsulated configuration on the target
component. If the target component is not of the type expected by the configurator, the
configure operation shall raise the WrongComponentType exception.

The SandardConfigurator interface
The StandardConfigurator has the following definition:

module Components {

valuetype ConfigValue {
public FeatureName name;
public any value;

|3
typedef sequence<ConfigValue> ConfigValues;

interface StandardConfigurator : Configurator {
void set_configuration (in ConfigValues descr);
I3
|3

The StandardConfigurator interface supports the ability to provide the configurator
with a set of values defining an attribute configuration.

set_configuration

The set_configuration operation accepts a parameter containing a sequence of
ConfigValue instances, where each ConfigValue contains the name of an attribute
and a value for that attribute, in the form of an any. The name member of the
ConfigValue type contains the unqualified name of the attribute as declared in the
component definition IDL. After a configuration has been provided with
set_configuration, subsequent invocations of configure will establish the
configuration on the target component by invoking the set operations on the attributes
named in the value set, using the corresponding values provided in the anys.
Invocations on attribute set methods will be made in the order in which the values
occur in the sequence.

1.10.2 Factory-based Configuration

Factory operations on home objects may participate in the configuration process in a
variety of ways.

® A factory operation may be explicitly implemented to establish a particular
configuration.

® A factory operation may apply a configurator to newly-created component
instances. The configurator may be supplied by an agent responsible for deploying
a component implementation or a component assembly.

CORBA Components, v3.0 June 2002

® A factory operation may apply an attribute configuration (in the form of a
Components::ConfigValues sequence) to newly-created instances. The attribute
configuration may be supplied to the home object by an agent responsible for
deploying a component implementation or a component assembly.

® A factory operation may be explicitly implemented to invoke
configuration_complete on newly-created component instances, or to leave
component instances open for further configuration by clients.

* A factory operation may be directed by an agent responsible for deploying a
component implementation or assembly to invoke configuration_complete on
newly-created instances, or to leave them open for further configuration by clients.

If no attribute configuration is applied by a factory or by a client, the state established
by the component implementation’s instance initialization mechanism (e.g., the
component servant constructor) constitutes the default configuration.

1.10.2.1 HomeConfiguration interface

The implementation of a component type’s home object may optionally support the
HomeConfiguration interface. The HomeConfiguration interface is derived from
Components::CCMHome. In general, the HomeConfiguration interface is
intended for use by an agent deploying a component implementation into a container,
or an agent deploying an assembly.

The HomeConfiguration interface allows the caller to provide a Configurator
object and/or a set of configuration values that will be applied to instances created by
factory operations on the home object. It also allows the caller to cause the home
object’s factory operations to invoke configuration_complete on newly-created
instances, or to leave them open for further configuration.

The HomeConfiguration allows the caller to disable further use of the
HomeConfiguration interface on the home object.

The Configurator interface and the HomeConfiguration interface are
designed to promote greater re-use, by allowing a component implementor
to offer a wide range of behavioral variationsin a component implementa-
tion. As stated previously, the CORBA component specification isintended
to enable assembling applications from pre-built, off-the-shelf component
implementations. An expected part of the assembly process is the customi-
zation (read: configuration) of a component implementation, to select from
among available behaviors the behavior s suited to the application being
assembled. We anticipate that assemblies will need to define configurations
for specific component instances in the assembly, but also that they will
need to define configurations for a deployed component type, i.e., all of the
instances of a component type managed by a particular home object.

The HomeConfiguration interface is defined by the following IDL:
module Components {

interface HomeConfiguration : CCMHome {
void set_configurator (in Configurator cfg);
void set_configuration_values (

June 2002 CORBA Components: Configuration with Attributes 1-49

1-50

in ConfigValues config);
void complete_component_configuration (in boolean b);
void disable_home_configuration();

|3
|3
set_configurator

This operation establishes a configurator object for the target home object. Factory
operations on the home object will apply this configurator to newly-created instances.

set_configuration_values

This operation establishes an attribute configuration for the target home object, as an
instance of Components::ConfigValues. Factory operations on the home object
will apply this configurator to newly-created instances.

complete_component_configuration

This operation determines whether factory operations on the target home object will
invoke configuration_complete on newly-created instances. If the value of the
boolean parameter is TRUE, factory operations will invoke
configuration_complete on component instances after applying any required
configurator or configuration values to the instance. If the parameter is FAL SE,
configuration_complete will not be invoked.

disable_home_configuration

This operation serves the same function with respect to the home object that the
configuration_complete operation serves for components. This operation disables
further use of operations on the HomeConfiguration interface of the target home
object. If aclient attempts to invoke HomeConfiguration operations, the request will
raise aBAD _INV_ORDER system exception. This operation may also be
interpreted by the implementation of the home as demarcation between its own
configuration and operational phases, in which case the home implementation may
disable operations and attributes on the home interface.

If a home object is supplied with both a configurator and a set of configuration values,
the order in which set_configurator and set_configuration_values are invoked
determines the order in which the configurator and configuration values will be applied
to component instances. If set_configurator is invoked before
set_configuration_values, the configurator will be applied before the configuration
values, and vice-versa.

The component implementation framework defines default implementations of factory
operations that are automatically generated. These generated implementations will
behave as specified here. Component implementors are free to replace the default
factory implementations with customized implementations. If a customized home

CORBA Components, v3.0 June 2002

implementation chooses to support the HomeConfiguration interface, then the
factory operation implementations must behave as specified, with respect to component
configuration.

1.11 Component Inheritance

The mechanics of component inheritance are defined by the inheritance relationships
of the equivalent IDL component interfaces. The following rules apply to component
inheritance:

® All interfaces for non-derived component types are derived from CCMObject.

If a component type directly supports one or more IDL interfaces, the component
interface is derived from both CCMObject and the supported interfaces.

A derived component type may not directly support an interface.

The interface for a derived component type is derived from the interface of its base
component type.

A component type may have at most one base component type.

The features of a component that are expressed directly on the component interface
are inherited as defined by IDL interface inheritance. These include:

operations implied by provides statements
operations implied by uses statements
operations implied by emits statements
operations implied by publishes statements
operations implied by consumes statements
attributes

June 2002 CORBA Components: Component | nheritance 1-51

interface Receptacles

interface Events

interface Navigation

I interface | I

interface CCMObject

interface CCMHome

A A

I component A supports | I' — 7 interface A

componentB | — — — 7] interface B
interface AHome [— 4§ home AHome manages A I
interface BHome | — — — 7 home BHome manages A I

Figure 1-2 Component inheritance and related interface inheritance

1.11.1 CCMODbject Interface
The CCMODbject interface is defined by the following IDL:

module Components {

valuetype ComponentPortDescription

{
public FacetDescriptions facets;
public ReceptacleDescriptions receptacles;
public ConsumerDescriptions consumers;
public EmitterDescriptions emitters;
public PublisherDescriptions publishers;

|3

exception NoKeyAvailable { };

1-52 CORBA Components, v3.0 June 2002

interface CCMObject : Navigation, Receptacles, Events {
CORBA::IRObject get_component_def ();
CCMHome get_ccm_home();
PrimaryKeyBase get_primary_key() raises (NoKeyAvailable);
void configuration_complete() raises (InvalidConfiguration);
void remove() raises (RemoveFailure);
ComponentPortDescription get_all_ports ();

¥
get_component_def

This operation returns an IRObject reference to the component definition in the
Interface Repository. The interface repository representation of a component is defined
in the Interface Repository Metamodel chapter. In strongly typed languages, the
IRObject returned must be narrowed to CORBA::ComponentIR::ComponentDef
before use.

get_ccm_home

This operation returns a CCMHome reference to the home that manages this
component.

get_primary_key

This operation is equivalent to the same operation on the component’s home interface.
It returns a primary key value if the component is being managed by a home which
defines a primary key. Otherwise, the NoKeyAvailable exception shall be raised.
configuration_complete

This operation is called by a configurator to indicate that the initial component
configuration has completed. If the component determines that it is not sufficiently
configured to allow normal client access, it raises the InvalidConfiguration
exception. The component configuration process is described in Section 1.9,
“Component Configuration,” on page 1-44.

remove

This operation is used to delete a component. Application failures during remove may
raise the RemoveFailure exception.

June 2002 CORBA Components: Component | nheritance 1-53

get_all_ports

The get_all_ports operation returns a value of type ComponentPortDescription
containing information about all facets, receptacles, event sinks, emitted events and
published events in the component's inheritance hierarchy. The order in which the
information occurs in these sequences is not specified. If a component does not offer a
port of any type, the associated sequence will have length zero.

1.12 Conformance Requirements

This section identifies the conformance points required for compliant implementations
of the CORBA Component model.

The following conformance points are defined:

1. A CORBA COS vendor shall provide the relevant changes to the Lifecycle,
Transaction, and Security Services identified in the following Section 1.12.2,
“Changes to Object Services,” on page 1-55.

2. A CORBA ORB vendor need not provide implementations of Components aside
from the changes made to the Core to support components. Conversely a CORBA
Component vendor need not be a CORBA ORB vendor.

3. A CORBA Component vendor shall provide a conforming implementation of the
Basic Level of CORBA Components.

4. A CORBA Component vendor may provide a conforming implementation of the
Extended Level of CORBA Components.

5. To be conformant at the Basic level a non-Java product shall implement (at a
minimum) the following:

« the IDL extensions and generation rules to support the client and server side
component model for basic level components.

» CIDL. The multiple segment feature of CIDL (Section 2.12, “ Segment
Definition,” on page 2-10) need not be supported for basic components.

 acontainer for hosting basic level CORBA components.
 the XML deployment descriptors and associated zip files for basic componentsin
the format defined in Section 6.1, “Introduction,” on page 6-1.

Such implementations shall work on a CORBA ORB as defined in #1 above.

6. To be conformant at the Basic level a Java product shall implement (at a minimum):
» EJB1.1, including support for the EJB 1.1 XML DTD.
* the javato IDL mapping, also known as RMI/I1OP.
» EJB to IDL mapping as defined in Section 5.3.2, “Translation of CORBA
Component requests into EJB requests,” on page 5-9.

Such implementations shall work in a CORBA interoperable environment, including
interoperable support for [1OP, CORBA transactions and CORBA security.

7. To be conformant at the extended level, a product shall implement (at a minimum)
the requirements needed to achieve Basic PLUS:

1-54 CORBA Components, v3.0 June 2002

June 2002

 IDL extensions to support the client and server side component model for
extended level components.

» A container for hosting extended level CORBA components.

» The XML deployment descriptors and associated zip files for basic and enhanced
level components in the format defined in Section 6.1, “Introduction,” on
page 6-1.

Such implementations shall work on a CORBA ORB as defined in #1 above.

8. A CORBA Component vendor may optionally support EJB clients interacting with
CORBA Components, by implementing the IDL to EJB mapping as defined in
Section 5.4.2, “Tranglation of EJB requests into CORBA Component Requests,” on
page 5-17.

9. This specification includes extensions to IDL, in the form of new keywords and
grammar. Although a CORBA ORB vendor need not be a CORBA Component
vendor, and vice-versa, it isimportant to maintain IDL as a single language. To this
end, all compliant products of any conformance points above shall be able to parse
any valid IDL definitions. However, it is permitted to raise errors, or to ignore,
those parts of the grammar that relate to another conformance point.

Conforming implementations as defined above may also implement any additional
features of this specification not required by the above conformance points.

1.12.1 A Note on Tools

Component implementations are expected to be supported by toals. It is not possible to
define conformance points for tools, since a particular tool may only support part of
the component development and deployment life-cycle. Hence a suite of tools may be
needed. The Component architecture contains a number of definitions that are relevant
to tools, including zip files and XML formats, as well as IDL interfaces for
customization and installation. Although it cannot be enforced, tools are expected to
conform to the relevant areas with which they are dealing. For example, a tool that
generates implementations for a particular platform is expected to generate XML
according to the <i npl enent at i on> clausesin the DTD (defined in CORBA Core,
the Interface Repository chapter).

1.12.2 Changes to Object Services

1.12.2.1 LifeCycle Service

To support the factory design pattern for creating a component instance and to allow
the server, rather than a client, to select from a group of functionally equivalent
factories based on load or other server-side visible criteria, the following operation is
added to the FactoryFinder interface of the CosLifeCycle module;

module CosLifeCycle {
interface FactoryFinder {
Factory find_factory (in Key factory_key) raises (noFactory);

CORBA Components: Confor mance Requirements 1-55

b
b

The parameters of the above operation are as defined by CosLifeCycle with the
following clarifications:

® The factory_key parameter is a name conforming to the Interoperable Naming
Specification (orbos/98-10-11) for stringified names.

®* The factory_key parameter is used as an input to the find_home_by name
operation on Components::HomeFinder.

® The default factory operation on the home is used to obtain a reference which can
be narrowed to the CosLifeCycle::GenericFactory type.

1.12.2.2 Transaction Service

The following CORBA transaction service interface is changed to a local interface:

® CosTransactions::Current

1.12.2.3 Security Service

The following CORBA Security interfaces are changed to local interfaces:
® SecurityLevell::Current

® SecurityLevel2::PrincipalAuthenticator

® SecurityLevel2::Credentials

® SecurityLevel2::ReceivedCredentials

® SecurityLevel2::AuditChannel

® SecurityLevel2::AuditDecision

® SecurityLevel2::AccessDecision

® SecurityLevel2::QOPPolicy

® SecurityLevel2::MechanismPolicy

® SecurityLevel2::InvocationCredentialsPolicy
® SecurityLevel2::EstablishTrustPolicy

® SecurityLevel2::DelegationDirectivePolicy
® SecurityLevel2::Current

® SecurityReplacable::Vault

® SecurityReplacable::SecurityContext

® SecurityReplacable::ClientSecurityContext

® SecurityReplacable::ServerSecurityContext

1-56 CORBA Components, v3.0 June 2002

OMG CIDL Syntax and Semantics 2

This chapter describes OMG Component I mplementation Definition Language (CIDL)
semantics and gives the syntax for OMG CIDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 2-2
“Lexical Conventions” 2-3
“OMG CIDL Grammar” 2-3
“OMG CIDL Specification” 2-5
“Composition Definition” 2-5
“Catalog Usage Declaration” 2-7
“Home Executor Definition” 2-8
“Home Implementation Declaration” 2-9
“ Storage Home Binding” 2-9
“Home Persistence Declaration” 2-10
“Executor Definition” 2-10
“Segment Definition” 2-10
“Segment Persistence Declaration” 2-11
“Facet Declaration” 2-12
“Feature Delegation Specification” 2-12

June 2002 CORBA Components, v3.0 2-1

2.1 Overview

Section Title Page
“Abstract Storage Home Delegation Specification” 2-13
“Executor Delegation Specification” 2-15
“Abstract Spec Declaration” 2-16
“Proxy Home Declaration” 2-16

The OMG Component |mplementation Definition Language (CIDL) is alanguage used
to describe the structure and state of component implementations. Component-enable
ORB products generate implementation skeletons from CIDL definitions. Component
builders extend these skeletons to create complete implementations.

OMG CIDL obeysthe same lexical rules as OMG Persistent State Definition Language
(PSDL) and OMG IDL, athough new keywords are introduced to support concepts
specific to component implementation descriptions.

The description of OMG CIDL's lexical conventions is presented in Section 2.2,
“Lexical Conventions,” on page 2-3. A description of OMG IDL preprocessing is
presented in CORBA Core, IDL Syntax and Semantics chapter, Preprocessing section.
The scope rules for identifiers in an OMG IDL specification are described in CORBA
Core, IDL Syntax and Semantics chapter, CORBA Module section.

The OMG CIDL grammar is an extension of a combination of the OMG PSDL and
OMG IDL grammars, with new constructs to define component implementations.
OMG CIDL is adeclarative language. The grammar is presented in Section 2.3, “OMG
CIDL Grammar,” on page 2-3.

A source file containing specifications written in OMG CIDL must have a “.cdl”
extension.

The description of OMG CIDL grammar uses the same syntax notation that is used to
describe OMG IDL in CORBA Core, IDL Syntax and Semantics chapter. For reference,
Table 2-1 lists the symbols used in this format and their meaning.

Table2-1 IDL EBNF

Symbol Meaning

n= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{ The enclosed syntactic units are grouped as a single syntactic unit
1 The enclosed syntactic unit is optional—may occur zero or one time

CORBA Components, v3.0

June 2002

2.2 Lexical Conventions

This section presents the lexical conventions of OMG CIDL. In general OMG CIDL
uses the same lexical conventions as OMG PSDL and OMG IDL. It does use additional
keywords as described below.

2.2.1 Keywords

The identifiers listed in Table 2-2 are reserved for use as keywords in CIDL, and may
not be used otherwise in CIDL, unless escaped with aleading underscore. These arein
addition to the ones defined by PSDL and IDL, which may aso not be used otherwise
in CIDL, unless escaped with a leading underscore.

Table2-2 Keywords

bindsTo delegatesTo facet proxy session
catalog entity implements segment storageHome
composition | executor process service storedOn

2.3 OMGCIDL Grammar

@)
@)

®)
(4)
(®)

June 2002

The CIDL grammar is a combination of the PSDL and IDL grammars plus the
following productions:

<cidl_specification>

CORBA Components: Lexical Conventions

<cidl_definition>

<cidl_module>
<composition>

<category>

<import>* <cidl_definition>+
<type dcl>"“;”
<const_dcl>"“;"
<except_dcl>*“;"
<interface>";”
<cidl_module>*“;"
<storage_home>“;”
<abstract_storagehome>“;”
<storagetype>*“;”
<abstract_storagetype>“;”
<value>"“;”

<type_id_dcl>*“;"
<type_prefix_dcl>*“;"

<event>*“;”

<component> “;”

<home_dcl>*“;"

<composition>*“;"

“module” <identifier>

“{" <cidl_definition>+*“}"
“composition” <category> <identifier>
“{" <composition_body> “}"

“entity”

“process”

“service”

“session”

2-3

2-4

(6) <composition_body> ::=[<catalog_use_dcl>] <home_executor_def>
[<proxy_home_def>]

@) <catalog_use_dcl> ::="uses” “catalog” “{“ <catalog_dcl>+“}" ;"

(8) <catalog_dcl> ::= <catalog_type_spec> <catalog_label>

9) <catalog_type_spec> ::= <scoped_name>

(10) <catalog_label> ::= <identifier>

(12) <home_executor_def> ::= “home” “executor” <identifier> “{”

[IENTa]

<home_executor_body>“}
(12) <home_executor_body> ::= <home_impl_dcl>

[<abstract_storage_home_binding>]

[<stored_on_dcl>]

<executor_def>

[<abstract_storage _home_delegation

[<executor_delegation_spec>]

[<abstract_spec>]
(13) <home_impl_dcl> ::= “implements” <home_type _name>
(14) <home_type_name> ::= <scoped_name>
(15)<abstract_storage_home_binding>::= “bindsTo”

<abstract_storage_home_name>
(16)<abstract_storage_home_name>::= <catalog_label>“"

<abstract_storage_home_label>

(17)<abstract_storage_home_label>::= <identifier>

(18) <home_persistence_dcl> ::= “storedOn” <abstract_storage_home_
(19) <executor_def> ::= “manages” <identifier>
[<executor_body>1"“;"
(20) <executor_body> ::= “{" <executor_member>+ “}r
(22) <executor_member> ::= <segment_def>
| <feature_delegation_spec>
(22) <segment_def> ::= “segment” <identifier>
“{" <segment_member>+*“}"
(23) <segment_member> ::= <segment_ per5|stence dcl>*“;"
| <facet_dcl>*“;”
(24)<segment_persistence_dcl>::= “storedOn” <abstract_storage_home_
(25) <facet_dcl> ::= “provides” “facet” <identifier>

{“ <identifier>}*
(26)<feature_delegation_spec> ::="delegatesTo” “storage”
<feature_delegation_list>

(27) <feature_delegation_list> ::= “(” <feature_delegation>{ "
<feature_delegation> }* *)”
(28) <feature_delegation> ::= <feature _name>"“:"
<storage_member_name>
(29) <feature_name> ::= <identifier>
(30)<storage_member_name> ::= <identifier>

CORBA Components, v3.0

_spec>]

name>

name>

June 2002

(31)<abstract_storage_home_delegation_spec>::= “delegatesTo” “abstract”
“storagehome” <delegation_list>"“;”

(32)<executor_delegation_spec> ::= “delegatesTo” “executor”
<delegation_list>*“;"

(33) <delegation_list> ::= “(" <delegation>{ ", <delegation>}**“)"

(34) <delegation> ::= <operation_name> [“:" <operation_name>]

(35) <operation_name> ::= <identifier>

(36) <abstract_spec> ::= “abstract” <operation_list>"“;"

(37) <operation_list> ::= “(” <operation_name>

{“) <operation_name> }*“)"

(38) <proxy_home_def> ::=“proxy” “home” <identifier>
“{" <proxy_home_member>+"“}" “;"
(39) <proxy_home_member> ::=<home_delegation_spec>"“;"
| <abstract_spec>
(40) <home_delegation_spec> ::= “delegatesTo” “home” <delegation_list>

2.4 OMG CIDL Specification

A CIDL specification is like a PSDL and IDL specification that could also contain
composition definitions. The syntax is:

(42) <cidl_specification> ::= <import>* <cidl_definition>+
(42) <cidl_definition> ::= <type dcl>*“;"
<const_dcl>"“;"

<except_dcl>*“;"
<interface>";”
<cidl_module>*“;"
<storage_home>“;”
<abstract_storagehome>“;”
<storagetype>*“;”
<abstract_storagetype>“;”
<value>"“;”
<type_id_dcl>*“;"
<type_prefix_dcl>*“;"
<event>*“;”

<component> “;”
<home_dcl>*“;"
<composition>*“;"

(43) <cidl_module> ::= “module” <identifier>

“{" <cidl_definition>+*“}"

2.5 Composition Definition

The syntax for composition definitions is as follows:

(44) <composition> ::=*“composition” <category> <identifier>“{"
<composition_body>*}"
(45) <category> ::="“entity”

June 2002 CORBA Components: OMG CIDL Specification 2-5

| “process”
| “service”
| “session”

(46) <compaosition_body> ::= [<catalog_use_dcl>] <home_executor_def>
[<proxy_home_def>]

A composition definition is a named scope that contains elements that constitute the
composition. The elements of a composition definitions are as follows:

» The keyword composition.

» The specification of the life cycle category, one of the keywords service,
session, process, or entity. Subsequent definitions and declarations in the
composition must be consistent with the declared category, as defined in
Section 2.5.1, “Life Cycle Category and Constraints,” on page 2-6.

» Anidentifier that names the composition in the enclosing module scope.
» The composition body.

The composition body consists of the following elements:
 an optional catalog usage declaration,
» amandatory home executor definition, and
 an optiona proxy home definition.

2.5.1 Life Cycle Category and Constraints

Certain composition configurations are only valid for certain life cycle categories. The
Container Programming Model chapter describes the life cycle-related constraints from
the perspective of the container. These constraints map onto corresponding constraints
in component and composition definitions. The following lists define the CIDL
constructs that are either mandatory or invalid for the designated life cycle category.

Note that these constraints supersede the conditionality of constructs based on CIDL

syntax. If a construct is described below as mandatory for the category in question, it
is mandatory regardless of its syntactic properties. All of the constructs described as

invalid for a particular category are, of necessity, syntactically optional.

2-6 CORBA Components, v3.0 June 2002

Table2-3 Constraints for service and session components

Service and | Mandatory
Session

None

Invalid

Abstract storage home bound to home executor:
<abstract_storage_home_binding> in home
executor body.

Component home implemented by home executor
specifies a primary key.

Component home implemented by home executor
specifies explicit finder operations.

Segmented executor: <segment_def> in executor
body.

Table2-4 Constraints for process components

Process Mandatory

None

Invalid

Component home implemented by home executor
specifies a primary key.

Table2-5 Constraints for entity components

Entity Mandatory | Component home implemented by home executor
specifies a primary key.
Invalid none

2.6 Catalog Usage Declaration

June 2002

(47)
(48)
(49)
(50)

The syntax for a catalog usage declaration is as follows:

<catalog_use_dcl>
<catalog_dcl>
<catalog_type_spec>
<catalog_label>

1= "uses” “catalog” “{* <catalog_dcl>+"}" *;”
::= <catalog_type_spec> <catalog_label>

;= <scoped_name>

::= <identifier>

A catalog usage declaration consists of the following elements:
* the keywords uses and catalog, and
» ablock containing one or more catalog label declarations.

A catalog label declaration consists of the following elements:
* ascoped name denoting a previously-defined catalog, and
* an identifier that denotes a putative catalog of the specified type within the scope

of the composition.

CORBA Components: Catalog Usage Declaration

2-7

A catalog usage declaration identifies catalog types that are used by the composition
and assigns them labels that are used within the scope of the composition to refer to a
putative catalog of the specified type. A catalog usage declaration also causes the CIF
to generate implementation of the following behaviors.

During the activation of a home executor, the CIF-generated activate implementation
on the home executor shall obtain the CosPersistentState::CatalogBase interface
from the component context, and invoke get_catalog on it, requesting a catalog of
each type specified in the catalog usage declaration. The catal ogs are requested by their
repository 1D values. The home shall maintain references to the specified catal ogs, and
make them available to the executors.

2.7 Home Executor Definition

The syntax for a home executor definition is as follows:

(51) <home_executor_def> ::= “home

(52) <home_executor_body>

executor” <identifier>

“{" <home_executor_body>"“}" “;”
<home_impl_dcl>

[<abstract_storage_home_binding>]

[<stored_on_dcl>]

<executor_def>

[<abstract_storage _home_delegation_spec>]
[<executor_delegation_spec>]

[<abstract_spec>]

A home executor definition consists of the following elements:

the keywords home and executor,

an identifier that names the home executor definition within the scope of the
composition, and

a home executor body.

The home executor body consists of the following elements:

A home implementation declaration.

An optional abstract storage home binding, specifying the storage home upon
which the components managed by the home are stored.

An optional home persistence declaration, identifying an abstract storage home
upon which the state of the home executor itself is to be stored.

An executor definition, describing the component executor managed by the home
executor.

An optional delegation specification describing the mapping of home operations
to storage home operations.

An optional delegation specification describing the mapping of home factory
operations to the operations on the component executor.

An optional abstract specification, declaring operations on the home executor that
are to be left unimplemented, overriding default generated implementations.

2-8 CORBA Components, v3.0 June 2002

2

The <identifier> in the header of the home executor definition is used as the basis for
the name of the skeleton artifact generated by the CIF. The specific forms of the
executors are defined in language mappings. The general requirements for language
mappings of home executors are defined in Section 2.7, “Home Executor Definition,”
on page 2-8.

2.8 Homelmplementation Declaration

The syntax of a home implementation declaration is as follows:

(53) <home_impl_dcl> “implements” <home_type_name> “;"
(54) <home_type name> ::= <scoped_name>

The home implementation declaration consists of the following elements:
« the keyword implements, and
« a scoped name denoting a component home imported from IDL.

The home implementation declaration specifies the component home that is to be
implemented by the home executor being defined. The generated skeleton must support
the home equivalent interface, as defined in Section 1.7.1, “Equivalent Interfaces,” on
page 1-33. Implementations of orthodox home operations are generated if the life cycle
category of the composition is either entity or process and the home executor
specifies an abstract storage home binding, or if the life cycle category of the executor
is either session or service.

The detailed semantics of generated implementations are described in Section 2.8,
“Home Implementation Declaration,” on page 2-9.

2.9 SorageHomeBinding

June 2002

The syntax for a storage home binding is as follows:

(55)<abstract_storage_home_binding>::= “bindsTo”
<abstract_storage_home_name> “;”

(56)<abstract_storage_home_name>::= <catalog_label> "
<abstract_storage_home_label>

(57)<abstract_storage_home_label>::= <identifier>

An abstract storage home binding declaration consists of the following elements:
* the keyword bindsTo, and
* an abstract storage home name.

An abstract storage home name consists of a catalog label, a period separator, and a
storage home label. The catalog label must denote a catalog previously declared in the
catalog usage declaration in the current composition definition. The storage home label
must denote a storage home declared as a member of the catalog type associated with
the catalog |abel.

CORBA Components: Home Implementation Declaration 2-9

2

2.10 HomePersistence Declaration

The syntax for a home persistence declaration is as follows:

(58) <home_persistence_dcl> ::= “storedOn” <abstract_storage_home_name>

“wan
’

A home persistence declaration consists of the following elements:
« the keyword storedOn, and
« an abstract storage home name.

A home persistence declaration establishes that the home executor is itself persistent,
and that its persistent state is managed by the container. The abstract storage type of
the specified abstract storage home constitutes the state of the component home. The
specific responsibilities of generated home executors related to home persistence are
described in Section 2.9, “ Storage Home Binding,” on page 2-9.

2.11 Executor Definition

The syntax for an executor definition is as follows:

(59) <executor_def> ::= “manages” <identifier>

[<executor_body>1";"
(60) <executor_body> ::= “{” <executor_member>+"“}"
(61) <executor_member> ::= <segment_def>

| <feature_delegation_spec>

An executor definition has the following elements:
* the keyword manages,
 and identifier that names the component executor being defined, and
* an executor body, containing one or more members enclosed in braces.

An executor member is either a segment definition or a feature delegation specification,
as defined below.

The identifier in the executor definition forms the basis of the name of the
programming artifact generated as the executor skeleton. The details of executor
structure and responsibilities are defined in Section 2.7, “Home Executor Definition,”
on page 2-8, and in CIDL language mappings.

2.12 Segment Definition

The syntax for a segment definition is as follows:

(62) <segment_def> ::= “segment” <identifier>
“{" <segment_member>+*“}"
(63) <segment_member> ::= <segment_persistence_dcl>"“;”
| <facet_dcl>*“;”

A segment definition consists of the following elements:

2-10 CORBA Components, v3.0 June 2002

® the keyword segment,
® anidentifier that names the segment in the scope of the executor definition, and

® one or more segment members enclosed in braces.

A segment member is either a segment persistence declaration, or a facet declaration,
as described below.

If a segment definition occurs in an executor definition, the corresponding executor is
said to be a segmented executor. If no segment definition occurs in an executor
definition, the executor is said to be monoalithic.

A separate skeleton is generated by the CIF for each segment of a segmented executor.
Segments are independently activated. Each segment is assigned a segment identifier,
which as a numeric value of type short, by the CIF implementation. The segment
identifier is interpreted internally by the generated implementation during activation.
Segment identifiers are also used in component identities, as described in

Section 4.4.3.1, “Component Identifiers,” on page 4-38. There is no canonical
mechanism for assigning segment identifier values (other than the component
segment), as the values of segment identifiers does not affect portability or
interoperability.

All executors have a distinguished segment, the component segment, that supports the
component facet (i.e., the facet supporting the component equivalent interface). The
segment identifier value of the component segment is always zero. If a component does
not explicitly declare segments, the monolithic executor is still considered in some
contexts to be the component segment executor.

The details of segment structure and implementation responsibilities are described in
Section 2.12, “Segment Definition,” on page 2-10.

2.13 Segment Persistence Declaration

June 2002

The syntax for a segment persistence declaration is as follows:

(64)<segment_persistence_dcl>::= “storedOn” <abstract_storage_home_name>

“w.n
’

A segment persistence declaration has the following elements:
« the keyword storedOn, and
« an abstract storage home name.

A segment persistence declaration specifies the abstract storage home upon which the
state of the segment will be stored. The abstract storage type of the storage home
constitutes the state of the segment.

The detailed structure of segments, and implementation responsibilities with respect to
segment persistence are described in Section 2.13, “ Segment Persistence Declaration,”
on page 2-11.

CORBA Components: Segment Persistence Declaration 2-11

214

2.15

2-12

Facet Declaration

The syntax for a facet declaration is as follows:

(65) <facet_dcl> ::= “provides” “facet” <identifier>
{“ <identifier>}*

A facet declaration has the following elements:
» The keywords provides and facet.

» One or more identifiers separated by commas, where each identifier denotes a
facet defined by the component type implemented by the composition (i.e., the
component type managed by the home that is implemented by the home executor
defined in the composition).

A facet declaration associates one or more component facets with the segment. The
generated segment executor will provide the specified facets. A facet name may only
appear in a single segment definition. Facets that are not explicitly declared in a
segment definition are provided by the component segment.

The detailed structure of segments, and implementation responsibilities with respect to
providing facets are described in Section 2.14, “Facet Declaration,” on page 2-12.

Feature Del egation Specification

The syntax for a feature delegation specification is as follows:

(66)<feature_delegation_spec> ::="delegatesTo” “storage”
<feature_delegation_list>

(67) <feature_delegation_list> ::= “(" <feature_delegation>{ "
<feature_delegation> }*“)”
(68) <feature_delegation> ::= <feature_name>“:"
<storage_member_name>
(69) <feature_name> ::= <identifier>
(70)<storage_member_name> ::= <identifier>

A feature delegation specification has the following elements:
* the keywords delegatesTo, abstract and storagetype, and

* alist of feature delegation specifications, enclosed in parentheses and separated
by commas.

A feature delegation specification consists of the following elements:
» Anidentifier that denotes a stateful feature of the component implemented by the
composition.
* A colon.

» Anidentifier that denotes a member of the abstract storage type of the abstract
storage home specified in the abstract storage home binding in the home executor
definition.

CORBA Components, v3.0 June 2002

2

A feature delegation specification defines an association between a stateful feature of
the component being implemented and a member of the abstract storage type that
incarnates the component (or the component segment). The component executor
skeleton generated by the CIF will provide implementations of feature management
operations that store the feature's state in the specified storage member. Stateful
features include attributes, receptacles, and event sources.

The following constraints regarding feature delegation must be observed:

® Feature delegation specifications may only occur in an executor definition when the
home executor specified an abstract storage home binding.

® The type of the storage member specified in a feature delegation must be
compatible with the type of the feature. Compatibility, for the purposes of feature
delegation is defined in Table 2-6.

Table2-6 Type compatibility for feature delegation purposes

Feature Storage member type

attribute Must be identical to feature for all types except
object reference and valuetype; for object reference
and valuetype storage member must be of identical
type or base type (direct or indirect).

receptacle (simplex) Must be identical to feature type or base interface
(direct or indirect) of feature type.

receptacle (multiplex) Sequence of type compatible with receptacle type as
defined above.

emitter event source Must be identical to feature type or base interface

(direct or indirect) of feature type.

publisher event source long*

* The persistent state maintained internally by the component istheChannelld of the
notification channel created by the container.

2.16 Abstract Storage Home Delegation Specification

June 2002

The syntax for a storage home delegation specification is as follows:

(71)<abstract_storage_home_delegation_spec>::= “delegatesTo” “abstract”
“storagehome” <delegation_list>“;”

(72) <delegation_list> ::= “(" <delegation>{"“," <delegation>}**“)"

(73) <delegation> ::= <operation_name> [“:” <operation_name>]

(74) <operation_name> ::= <identifier>

An abstract storage home delegation specification has the following elements:
» The keywords delegatesTo, abstract, and storagehome.

» A list of delegation specifications enclosed in parentheses and separated by
commas.

CORBA Components: Abstract Storage Home Delegation Specification 2-13

A delegation specification has the following elements:

» Anidentifier that denotes an operation on the home equivalent interface supported
by the home executor.

» An optional delegation target, consisting of a colon, followed by identifier that
denotes an operation on the abstract storage home to which the home is bound
(i.e., the abstract storage home specified in the abstract storage home binding).

An abstract storage home delegation specification associates an operation on the home
interface with an operation on the abstract storage home interface. The CIF shall
generate an implementation of the specified home operation that delegates to the
specified abstract storage home operation.

If the optional delegation target is omitted, the home operation is assumed to be
delegated to an operation on the abstract storage home with the same name. If no such
operation exists on the abstract storage home, the specification is not legal.

The signature of the abstract storage home operation must be compatible with the
abstract storage home. Signature compatibility, from the perspective of abstract storage
home delegation, has the following definition:

® |f the home operation is an explicit factory operation, the abstract storage home
operation must be an explicit factory operation.

* |f the home operation is not a factory, the return type of the home operation must be
identical to the return type of the abstract storage home operation, except when the
return type is an object reference type or avalue type. If the return type of the home
operation is an object reference type or a value type, the return type of the storage
home operation must be identical to, or more derived than, the return type of the
home operation.

® For each exception explicitly raised by the storage home operation, an identical
exception must appear in the raises clause of the home operation. The inverse is
not true—the home operation may raise exceptions not raised by the abstract
storage home operation.

® The number of parameters in the parameter lists of the home operation and the
abstract storage home operation must be equal. Each parameter in the abstract
storage home operation must be compatible with the parameter in the same position
in the signature of the home operation, where compatibility is defined as follows:
« If the parameter in the home operation is neither an object reference type nor a
value type, the type of the corresponding parameter in the abstract storage home
operation must be identical.

« |If the parameter type in the home operation is an object reference and the
parameter is an in parameter, the corresponding parameter in the abstract storage
home operation must be identical to, or a base type (direct or indirect) of, the
parameter in the home operation.

« |If the parameter type in the home operation is an object reference and the
parameter is an out parameter, the corresponding parameter in the abstract
storage home operation must be identical to, or more derived than, the parameter
in the home operation.

2-14 CORBA Components, v3.0 June 2002

« If the parameter type in the home operation is an object reference and the
parameter is an inout parameter, the corresponding parameter in the abstract
storage home operation must be identical to the parameter in the home operation.

The following additional constraints and rules apply to abstract storage home
delegation:

An operation on the home interface may delegate to at most one operation on the
abstract storage home interface.

An operation on the abstract storage home interface may be the target of at most
one delegation from the home interface.

Implicitly defined operations on the home (i.e., orthodox operations) delegate by
default to cognate operations on the abstract storage home, as described by
Section 1.7.5.1, “Orthodox operations,” on page 1-40. These default delegations
may be over-ridden by explicit delegations. If an operation on the abstract storage
home that is normally the default target of a delegation appears as the target of an
explicit delegation, then the home operation that normally would have delegated to
that target by default shall have no generated implementation (unless one is
explicitly defined).

The detailed semantics and implementation responsibilities of delegated abstract
storage home operations are described in Section 2.16, “Abstract Storage Home
Delegation Specification,” on page 2-13.

2.17 Executor Delegation Specification

June 2002

The syntax for an executor delegation specification has the following form:

(75)<executor_delegation_spec> ::= “delegatesTo” “executor”

<delegation_list>*“;"

An executor delegation specification consists of the following elements:

the keywords delegatesTo and executor, and

a delegation list, identical structurally to the delegation list of the abstract storage
home delegation specification.

An executor delegation specification defines an operation on the component executor,
to which the specified home operation will be delegated. The following constraints
apply to executor delegation specifications:

Only factory operations may be delegated to the executor, including explicitly
declared factories and implicit create operations.

If no delegation target is explicitly specified, the operation defined on the executor
shall have the same name as the delegating home operation.

The signature of the defined operation on the executor shall be identical to the
signature of the home operation, with the exception that the return type of the
executor operation shall be void if the home does not specify a primary key, or the
return type shall be the type of the primary key if the home specifies a primary key.

CORBA Components: Executor Delegation Specification 2-15

The CIF shall generate an implementation of the home operation that delegates to the
defined operation on the executor. The detailed semantics and implementation
responsibilities are described in Section 2.17, “Executor Delegation Specification,” on
page 2-15.

2.18 Abstract Spec Declaration

The syntax for an abstract spec has the following form:

(76) <abstract_spec>
77) <operation_list>

“abstract” <operation_list>*;”

“(" <operation_name>
{“ <operation_name> }*“)"

2.19 Proxy Home Declaration

The syntax for a proxy home declaration has the following form:

(78) <proxy_home_def> ::=“proxy” “home” <identifier>
“{" <proxy_home_member>+*“}" “;”
(79) <proxy_home_member> ::=<home_delegation_spec>"“;"
| <abstract_spec>
(80) <home_delegation_spec> ::= “delegatesTo” “home” <delegation_list>

2-16 CORBA Components, v3.0 June 2002

3.1 Introduction

CCM Implementation Framework 3

This chapter describes the semantics of the CORBA Component Model
Implementation Framework.

Contents

This chapter contains the following sections.

Section Title Page

“Introduction” 31

“Component Implementation Framework (CIF) Architecture” | 3-1

“Language Mapping” 3-38

The Component Implementation Framework (CIF) defines the programming model for
constructing component implementations. | mplementations of components and
component homes are described in CIDL. See the “OMG CIDL Syntax and Semantics"
chapter for the definition and syntax. The CIF uses CIDL descriptions to generate
programming skeletons that automate many of the basic behaviors of components,
including navigation, identity inquiries, activation, state management, lifecycle
management, and so on.

3.2 Component Implementation Framework (CIF) Architecture

June 2002

As a programming abstraction, the CIF is designed to be compatible with the existing
POA framework, but also to insulate programmers from its complexity. In particular,
the CIF can be implemented using the existing POA framework, but it does not directly
expose any elements of that framework.

CORBA Components, v3.0 31

3.2.1 Component Implementation Definition Language (CIDL)

The focal point of the CIF is Component Implementation Definition Language (CIDL),
a declarative language for describing the structure and state of component
implementations. Component-enabled ORB products generate implementation
skeletons from CIDL definitions. Component builders extend these skeletons to create
complete implementations.

3.2.2 Component persistence and behavior

CIDL is a superset of the Persistent State Definition Language, defined in the
Persistent State Service specification (document orbos/99-07-07).

A CIDL implementation definition may optionally associate an abstract storage type
with the component implementation, such that the abstract storage type defines the
form of the internal state encapsulated by the component. When a component
implementation declares an associated abstract storage type in this manner, the CIF and
the run-time container environment cooperate to manage the persistence of the
component state automatically.

This chapter addresses the elements of the CIF that pertain to the implementation of a
component’s behavior.

3.2.3 Implementing a CORBA Component

The remainder of Section 3.2 provides an overview of the concepts involved in
building component implementations. It is intended to provide a high-level description
that will serve as a framework for understanding the more formal descriptions that
follow in subsequent sections. While the information in this section is normative (with
the exception of italicized, indented rationale), it is not intended to be a complete or
precise specification of the CIF, or all of the possible design options from which a
component implementor may choose.

3.2.4 Behavioral elements; Executors

We coin the term executor to indicate the programming artifact that supplies the
behavior of a component or a component home. In general, the terms executor or
component executor refer to the artifact that implements the component type, and the
term home executor refers to the artifact that implements the component home.

We chose to use the word executor rather than servant to avoid confusion
with POA servants. POA servants, while conceptually similar to executors,
are significantly different in detail, and map to different typesin program-
ming languages. Executor is pronounced with the accent on the second syl-
lable (e.g.-ZEK-yoo-tor).

We have tried to avoid terminology that is specific to object-oriented pro-
gramming languages, such as class, base class, derive, and so on, in an
attempt to be precise and acknowledge that the CIF framework may be
mapped to procedural programming languages. Hence, we typically usethe

CORBA Components, v3.0 June 2002

June 2002

word artifact or programming artifact to denote what may conveniently be
thought of as a class, and likewise, the term skel eton to denote a generated
abstract base class that is extended to form a complete implementation
class. We hope thisis not overly distracting to the reader.

3.2.5 Unit of implementation : Composition

An implementation of a component comprises a potentially complex set of artifacts
that must exhibit specific relationships and behaviors in order to provide a proper
implementation. The CIDL description of a component implementation is actually a
description of this aggregate entity, of which the component itself may be a relatively
small part. In order to enable more concise discussion, we coin the term composition to
denote both the set of artifacts that constitute the unit of component implementation,
and the definition itself. composition is the CIDL meta-type that corresponds to an
implementation definition.

A composition definition specifies the following elements:

Component home

A composition definition specifies a component home type, imported from IDL. The
specification of a component home implicitly identifies the component type for which
the composition provides an implementation (i.e., the component type managed by the
home, as specified in the IDL home definition).

Abstract Storage homebinding

A composition optionally specifies an abstract storage home to which the component
home is bound. The specification of an abstract storage home binding implicitly
identifies the abstract storage type that incarnates the component. The relationship
between a home and the component it manages to isomor phic to the relationship
between an abstract storage home and the abstract storage type it manages. When a
home binds to an abstract storage home, the component managed by the home is
implicitly bound to the abstract storage type of this abstract storage home.

Home executor

A composition definition specifies a home executor definition. The name of the home
executor definition is used as the name of the programming artifact (e.g., the class)
generated by the CIF as the skeleton for the home executor. The contents of the home
executor definition describe the relationships between the home executor and other
elements of the composition, determining the characteristics of the generated home
executor skeleton.

Component executor

A composition specifies an executor definition. The name of the executor definition is
used as the name of the programming artifact generated by the CIF as the skeleton of
the component executor. The body of the executor definition optionally specifies
executor segments, which are physical partitions of the executor, encapsulating
independent state and capable of being independently activated. Segments are

CORBA Components: Component | mplementation Framework (CIF) Architecture 33

34

described in Section 3.2.9.1, “ Segmented executors,” on page 3-27. The executor body
may also specify a mapping, or delegation, of certain component features (e.g.,
attributes) to storage members.

Delegation specification

A composition may optionally provide a specification of home operation delegation.
This specification maps operations defined on the component home to isomorphic
operations on either the abstract storage home or the component executor. The CIF
uses this description to generate implementations of operations on the home executor,
and to generate operation declarations on the component executor.

Proxy home

A composition may optionally specify a proxy home. The CIF supports the ability to
define proxy home implementations, which are not required to be collocated with the
container that executes the component implementation managed by the home. In some
configurations, proxy homes can provide implementations of home operations without
contacting the container that executes the actual home and component implementation.
Support for proxy homes is intended to increase the scalability of the CORBA
Component Model. The use of proxy homes is completely transparent to component
clients and, to a great extent, transparent to component implementations. Proxy home
behavior is described in Section 3.2.10.1, “Proxy home delegation,” on page 3-35.

3.2.6 Composition structure

A composition binds all of the previously-described elements together, and requires
that the relationships between the bound entities define a consistent whole.

Note that a component home type necessarily implies a component type; that is, the
managed component type specified in the home definition. Likewise, an abstract
storage home implies an abstract storage type. It is unnecessary, therefore, for a
composition to explicitly specify a component type or an abstract storage type. They
are implicitly determined by the specification of a home and abstract storage home.

It may seem odd that the center of focus for compositionsis the home
rather than the component, but this works out to be reasonably intuitivein
practice. The homeis the primary point of contact for a client, and the
home’s interface and behavior have a major influence on the interaction
between the client and the component.

A composition definition specifies a name that identifies the composition within the
enclosing module scope, and which constitutes the name of a scope within which the
contents of the composition are contained. The essential parts of a composition
definition are the following:

® The name of the composition.

®* Thelife cycle category of the component implementation, either service, session,
process, or entity, as defined in Section 4.1.4, “Component Categories,” on

page 4-5.

CORBA Components, v3.0 June 2002

3

® The home type being implemented (which implicitly identifies the component type
being implemented).

®* The name of the home executor to be generated.

®* The name of the component executor skeleton to be generated.

A composition definition has the following essential form:

composition <category> <composition_name> {
home executor <home_executor_name> {
implements <home_type> ;
manages <executor_name>;
|3
|3

where <composition_name> is the name of the composition, <category> identifies the
life cycle category supported by the composition, <home_executor_name> is the name
assigned to the generated home executor skeleton, <home_type> is the name of a
component home type imported from IDL, and <executor_name> is the name assigned
to the generated component executor skeleton.

This is a schematic representation of the minimal form of a composition, which
specifies no state management. The structure of the composition specified by this
schematic is illustrated in Figure 3-1. Note that the component type itself is not
explicitly specified. It is unambiguously implied by the specification of the home type,
as is the relationship between the executor and the component (i.e., that the executor
implements the component).

June 2002 CORBA Components: Component | mplementation Framework (CIF) Architecture 35

composition <category> <composition_name> {
home executor <home_executor_name>
implements <home_type>;
manages <executor_name>;

implements
component home < home executor
' manages manages
v implements
component executor

o <— explicitly defined in composition

implicitly defined by composition
IDL] - - explicitly defined elsewhere in IDL/CIDL

Figure3-1 Minimal composition structure and rel ationships

General disclaimer and abdication of responsibility with regards to pro-
gramming examples:

Before presenting programming examples, it should be noted that all exam-
ples are non-normative illustrations. In particular, the implementations
provided in the examples of code that isto be generated by the CIF are
merely schemati ¢ representations of the intended behaviors; they are by no
means indicative of the actual content of a real implementation (e.g., they
generally don’t include exception handling, testing for validity, etc.).

Although the grammar for CIDL has not been presented yet, a simple
examplewill helpillustrate the concepts described in the previous sections.
Assume the following IDL component and home definitions:

/l Example 1

1

/I USER-SPECIFIED IDL

1

module LooneyToons {

interface Bird {
void fly (in long how_long);
I3
interface Cat {
void eat (in Bird lunch);
h

component Toon {

3-6 CORBA Components, v3.0 June 2002

provides Bird tweety;
provides Cat sylvester;
I3

home ToonTown manages Toon {};

The following example shows a minimal CIDL definition that describes an
implementation binding for those IDL definitions:

Il Example 1

1

/I USER-SPECIFIED CIDL
1

import ::LooneyToons;

module MerryMelodies {
/I this is the composition:
composition session Toonimpl {
home executor ToonTownImpl {

implements LooneyToons::ToonTown;
manages ToonSessionimpl;

In this example, Toonlmpl is the name of the composition. It defines the
name of the generated home executor to be ToonTownImpl, which imple-
mented the ToonTown home interface imported from IDL. The home exec-
utor definition also specified the name of the component executor,
ToonSessionimpl, which is managed by the home executor. Note that the
component type (Toon) is not explicitly named—it is implied by the specifi-
cation of the home ToonTown, which is known to manage the component
type Toon. Thus, the declaration “ manages ToonSessionimpl” implic-
itly defines the component executor ToonSessionimpl to be the implemen-
tation of the component type Toon.

This CIDL specification would cause the generation of the following arti-
facts:

» Theskeleton for the component executor ToonSessionimpl
* The complete implementation of the home executor ToonTownImpl

e provide the following brief sketches of generated implementation skele-
tonsin Java to help illustrate the programming model for component
implementations.

Java <interface>Operations interfaces for all of the IDL interfaces are
generated, precisely as currently specified by the current Java IDL lan-
guage mapping:

June 2002 CORBA Components: Component I mplementation Framework (CIF) Architecture 3-7

/1 Exanple 1

I

/| CGENERATED FROM | DL SPECI FI CATI ON:
I

package LooneyToons;

i mport org.ong. Conponents. *;

public interface BirdOperations {
public void fly (long how_|l ong);
}

public interface CatOperations {
voi d eat (LooneyToons.Bird |unch);

}

public interface ToonOperations

ext ends CCMbj ect Operati ons {
LooneyToons. Bird provi de_tweety();
LooneyToons. Cat provi de_syl vester();

}

public interface ToonTownExplicitOperations
ext ends CCMHoneQperations { }

public interface ToonTownl nplicitOperations
ext ends Keyl essCCVHoneQper ati ons {
Toon create();

}

public interface ToonTownOperations extends
ToonTownExpl i ci t Operati ons,
ToonTownExpl i cit Operations {}

The Toonlmpl executor skeleton class has the following form:

/1 Exanple 1

/1

/| CGENERATED FROM CI DL SPECI FI CATI O\
I

package MerryMel odi es;

i mport LooneyToons;

i mport org.ong. Conmponents. *;

abstract public class ToonSessi onl npl
i mpl ements ToonQper ati ons, Sessi onConponent,
Execut or Segnent Base
{
/1 Cenerated inplenmentations of operations
/1 inherited from Sessi onConponent and
/1 Execut or Segnent Base are onitted here.
I

CORBA Components, v3.0 June 2002

prot ected ToonSessionlmpl () {

}

/1 The follow ng operations mnust

/1 generated inplenentation ...

/1 by the conponent devel oper:

abstract public BirdOperations

_get _facet_tweety();

abstract public CatOperations

_get _facet_sylvester();

The generated executor abstract base class ToonSessionimpl imple-

ments all of the operations inherited by ToonOperations, including opera-
tions on CCMObiject and its base interfaces. It also implements all of the

operations inherited through Sessi onConponent , which areinternal
operations invoked by the container and the internals of the home imple-
mentation to manage executor instance lifecycle.

A complete implementation of the home executor ToonTownImpl is gener-

ated from the CIDL specification:

/1 Exanple 1

/1

/| CGENERATED FROM CI DL SPECI FI CATI O\

/1

package MerryMel odi es;
i mport LooneyToons;
i mport org.ong. Conponents. *;

public class ToonTownl npl
i mpl ements LooneyToons, ToonTownQper at i ons,
HomeExecut or Base, CCWVHone

{
11

11
11
11
11
11
11

| npl enent ati ons of operations inherited
from Execut or Base and CCMVHone
are omtted here.

ToonHonel npl al so provides inpl enmentations
of operations inherited fromthe conponent
home interface ToonTown

CCMDbj ect creat e_conponent ()

{
}

return create();

voi d renmove_conponent (CCMXbj ect conp)

{
}

Toon create()

{

June 2002 CORBA Components: Component I mplementation Framework (CIF) Architecture

be i npl enent ed

3-10

}

/!l and so on...

The user-provided executor implementation must supply the following:

* Implementations of the operations_get _t weet y and
_get _syl vest er, which must return implementations of the
Bi r dOper at i ons and Cat Oper at i ons interfaces

» said implementations of the behaviors of the facets tweety and
sylvester, respectively

The following example shows one possible implementation strategy:

/1 Exanple 1

I

/1 PROVI DED BY COVPONENT PROGRAMVER:
I

i nport LooneyToons. *;

i mport MerryMel odi es. *;

public class nyToonl mpl extends ToonSessi onl npl
i npl ements BirdOperations, CatQperations {

protected | ong tineFl own;
protected Bird | ast Bi rdEat en;

public nyToonl npl () {
super () ;
ti meFl own = 0;
| astBirdEaten = nil;

}

public void fly (long how_| ong) {
ti meFl own += how_| ong);

}

public void eat (Bird lunch) {
| ast BirdEaten = | unch;

}

public BirdOperations _get_facet_tweety() {
return (BirdQperations) this;

}

public CatOperations _get_facet_sylvester() {
return (CatOperations) this;

This simple example implements all of the facets directly on the executor.
Thisis not the only option; the programming objects that implement
BirdOperations and CatOperations could be constructed separately and
managed by the executor class.

Thefinal bit of implementation that the component programmer must pro-

CORBA Components, v3.0

June 2002

June 2002

videisan extension of the home executor that acts asa component executor
factory, by implementing the create_executor_segment method. This
class must also provide an implementation of a static method called
create_home_executor that returns a new instance of the home executor
(asan ExecutorSegmentBase). This static method acts as an entry point
for the entire composition.

/1 Exanple 1

I

/1 PROVI DED BY COVPONENT PROGRAMVER:
/1

i mport LooneyToons. *;

i mport MerryMel odi es. *;

public class nyToonTownl npl ext ends ToonTownl npl

{
prot ected nyToonTownl npl () { super(); }

Execut or Segnent Base
create_executor_segnment (int segid) {
return new nyToonl npl ();

}

public static ExecutorSegnent Base
create_hone_executor() {
return new nyToonTownl npl () ;

Note that these last two classes constitute the entirety of the code that must
be supplied by the programmer. The implementations of operations for nav-
igation, executor activation, object reference creation and management,
and other mechanical functions are either generated or supplied by the
container.

3.2.7 Compositions with Managed Storage

A composition definition may also contain a variety of optional specifications, most of

which are related to state management. These include the following elements:

One or more catalogs that provide the storage homes to the composition
implementation. Each specified catalog is assigned an dlias, or label, that identifies
the catalog within the context of the composition.

An abstract storage home type to which the component home is bound (this
implicitly identifies the abstract storage type to which the component itself is
bound).

The life cycle category of the composition must be either entity or process to
support managed storage.

When state management is added to a composition definition, the definition takes the
following general form, expressed as a schematic:

CORBA Components: Component I mplementation Framework (CIF) Architecture

311

composition <category> <composition_name> {
uses catalog {
<catalog_type> <catalog_label>;
|3
home executor <home_executor_name> {
implements <home_type> ;
bindsTo <catalog_label.abstract_storage _home>;
manages <executor_name>;
|3
|3

where the additional elements are as follows: <catalog_type> identifies the type of a
catalog previously defined in PSDL, <catalog_label> is an alias by which the catalog
can be identified in the composition definition, and

<catalog_label.abstract_storage home> denotes a particular abstract storage home
provided by the catal og.

The structure of the resulting composition and the relationships between the elements
isillustrated in Figure 3-2.

312 CORBA Components, v3.0 June 2002

June 2002

composition <category> <composition_name> {
uses catalog {

<catalog_type> <catalog_label>;
home executor <home_executor_name>
implements <home_type>;

bindsTo <catalog_label.storage_home>;
manages <executor_name>;

implements

component home < home executor
' binds to
.manages manages
implements
component executor
. storage home
provides , 9" :
catalog * manages stored as
storage object
4— explicitly defined in composition cioL
implicitly defined by composition
g - - explicitly defined elsewhere in IDL/CIDL IDL

Figure 3-2 Structure of composition with managed storage

In many cases, it is expected that an abstract storage home will be intentionally
designed to support a particular component home.

3.2.8 Relationship between Home Executor and Abstract Storage Home

When a composition specifies managed storage, the relationship between the home
executor and the abstract storage home to which the home executor binds determines
many of the characteristics of the implementation, including what implementation
elements may be generated and how they will behave. This section provides an
overview of the basic concepts involved in home implementations and their
relationships to abstract storage homes.

CORBA Components: Component | mplementation Framework (CIF) Architecture 3-13

In general, operations on a home interface provide life cycle management. As
described in Section 1.7, “Homes,” on page 1-32, when a home definition does not
specify a primary key, the resulting equivalent home interface has the following
operations:

» A generic create_component operation inherited from KeylessCCMHome,

e aremove_component operation inherited from CCMHome, and

 an implicitly-defined type-specific parameter-less create operation.

When a home definition specifies a primary key, the resulting equivalent home
interface has the following operations:
* A remove_component operation inherited from CCMHome,
» an implicitly-defined type-specific create operation with a primary key
parameter,
 an implicitly-defined type-specific remove operation with a primary key
parameter, and
 an implicitly-defined type-specific find_by_primary_key operation.

3.2.8.1 PrimaryKey Binding

A component home can define its primary key as a valuetype with a number of public
data members, whereas abstract storage home defines keys as lists of attributes. A
composition can only bind a component home with a primary key to an abstract
storage home that defines a key on a state member whose type is this valuetype. If
there is more than one key satisfying this condition, the first key is used.

For example:

valuetype SSN {
public string social_security_number;

b

abstract storagetype Person {
readonly state SSN social_security_number;
state string name;
state string address;

b

abstract storagehome PersonStore of Person {
key social_security _number;

b

A home with primary key SSN can be bound to PersonStore. The key
social_security_number is caled the matching key.

3-14 CORBA Components, v3.0 June 2002

3.2.8.2 Implicit delegation of home operations

When a composition specifies managed storage, finder operations can be implemented
in terms of finder operations on the abstract storage home to which the home executor
is bound.

Table3-1 Delegation of finder operations to finder operations on the bound abstract
storagehome

home operation abstract storagehome operation

component find_by primary_key (key) ref<X> find_ref by matching _key name
(matching_key)

®* Thefind_by primary_key operation uses the
find_ref by matching_key name operation on the abstract storagehome. The
returned storage reference is used to create an object reference for the component
and returned to the invoking client.

® Destruction operations delegate to destroy_object operations on the reference.

The validity of these implementation semantics are predicated on the following
assumptions:

®* Theinitia state of the storage object created by the storage home constitutes avalid
initial state for the component.

® All of the persistent state of the component is defined on (or reachable from) the
storage object whose PID is associated with the component instance.

® The executor is monolithic, not segmented. Home operations can also be delegated
to abstract storage homes when the executor is segmented, but the process is
slightly more complex, and is discussed in full in Section 3.2.9.1, “ Segmented
executors,” on page 3-27.

If these assumptions do not hold (in particular, either of the first two), the component
implementor can provide custom implementations of one or more home operations to
accommodate the implementation requirements.

The following example extends the previous example to illustrate managed
storage and storage home delegation. The example highlights differences
from the previous, and does not repeat elements that are identical:

Il Example 2

1

/I USER-SPECIFIED IDL

1

module LooneyToons { // IDL

identical to previous example, except for the addition of the
primary key:

valuetype EpisodeName : Components::PrimaryKeyBase {
public string name;

June 2002 CORBA Components: Component | mplementation Framework (CIF) Architecture 3-15

3-16

h
home ToonTown manages Toon primarykey EpisodeName {

k

The CIDL now defines abstract storage types, abstract storage homes, and
a catalog. The composition binds:

/I Example 2

1

/I USER-SPECIFIED CIDL
1

import ::LooneyToons;

module MerryMelodies {

abstract storagetype ToonState {
state LooneyToons::EpisodeName episode_name;
state string name;
state unsigned long time_flown;
state LooneyToons::Bird last_bird_eaten;

k

abstract storagehome ToonStateHome of ToonState
{

key episode_name;

factory create(episode_name);

k

catalog ToonCatalog {
provides ToonStateHome TSHome;

h
/I this is the composition:

composition entity Toonlmpl {
uses catalog { ToonCatalog store; };
home executor ToonTownImpl {
implements LooneyToons::ToonTown {
bindsTo store.TSHome;
manages ToonEntitylmpl;

In this example, the composition binds the component home ToonTown to
the abstract storage home ToonStateHome, and thus, implicitly binds the
component type Toon to the abstract storage type ToonState. Note that the
primary key (if any) in the home must match a key in the abstract storage
home. As will be seen later in the CIDL grammar specification, the key-
word entity in the implementation binding declaration specifies a particu-
lar lifecycle model for the resulting implementation.

CORBA Components, v3.0

June 2002

This CIDL specification would cause the generation of the following pro-
gramming objects:

» Theskeleton for the component executor ToonEntitylmpl

» Theimplementation of the home executor ToonTownImpl

» Theincarnation interface for the abstract storage type ToonState
* Theinterface for the abstract storage home ToonStateHome

» Theinterface for the catalog ToonCatal og.

Note that the compl ete implementation of the home executor may not be
able to be generated in some cases, e.g., when no abstract storage typeis
declared or when user-defined operations with arbitrary signatures appear
on the component home definition.

Note al so that the implementations of the storage-related interfaces Toon-
State and ToonStateHome are not necessarily provided by the same
product that generates the component implementation skeletons. The CIF is
specifically designed to decouple the executor implementation from the
storage implementation, so that these capabilities may be provided by dif-
ferent products. A component-enabled ORB product is only required to gen-
erate the programming interfaces for the abstract storage type and homes
through which the executor implementation will interact with one or more
storage mechanisms. The implementations of these interfaces may be sup-
plied separately, perhaps deferred until run-time.

The interfaces generated fromthe IDL areidentical, with the exception of
the addition of the primary key:

/1 Exanple 2

I

/| GENERATED FROM | DL SPECI FI CATI ON:
/1

package LooneyToons;

i nport org.ong. Conponents. *;
same as previous except for the foll ow ng:

public interface ToonTownl nplicitOperations {
Toon creat e(LooneyToons. Epi sodeNane key)
throws Duplicat eKey, InvalidKey;
Toon find_by_ primary_key
(LooneyToons. Epi sodeNane key)
t hrows UnknownKey, | nvali dKey;
voi d renmove(LooneyToons. Epi sodeNane key)
t hrows UnknownKey, | nvali dKey;
LooneyToons. Epi sodeNane
get _primary_key(Toon conp);
}

public interface ToonTownOperations extends
ToonTownExpl i ci t Operati ons,
ToonTownExpl i citOperations {}

June 2002 CORBA Components: Component I mplementation Framework (CIF) Architecture 3-17

3-18

The abstract storage type ToonSate results in the generation of the foll ow-
ing incarnation interfaces:

/1 Exanple 2

11

/1 GENERATED FROM CI DL SPECI FI CATI ON:
I

package MerryMel odi es;

i nport org.ong. CosPersistentState. *;

i nport LooneyToons. *;

public interface ToonState extends StorageObject {
public string nanme();
public void nane (String val);
public long tine_flown();
public void tine_flown (long val);
public Bird last_bird_eaten();
public void last_bird_eaten (Bird val);

The storage home ToonStateHome results in the generation of the follow-
ing interface:

/1 Exanple 2

11

/1 GENERATED FROM CI DL SPECI FI CATI ON:
11

/1l no explicit operations
public interface ToonStat eHone
ext ends StorageHoneBase {

public ToonState
find_by episode_nane (Epi sodeNanme K);

publ i ¢ ToonSt at eRef
find_ref by episode_nanme (Epi sodeNane K);

The Toonlmpl executor skeleton class has the following form:

/1 Exanple 2

I

/| CGENERATED FROM CI DL SPECI FI CATI O\
I

package MerryMel odi es;

i mport LooneyToons;

abstract public class Toonl npl

CORBA Components, v3.0

June 2002

i npl emrents LooneyToons. ToonQper ati ons,

Execut or Segnent Base, Persi st ent Conponent

{
/1 Cenerated inplenmentations of operations
/1 inherited from CCMXj ect and
/| Execut or Segnent Base and Per si st ent Conponent
/] are omitted here.
I
/1 Toonl npl al so provides inplenentations of
/1 operations inherited from ToonState, that
/1 delegate to a separate incarnation object:

prot ected ToonSt at el ncarnati on _state;
protected Toonlnmpl () { _state = null; }

public void set_incarnation (ToonState state) {
_state = state;

}

/1 The follow ng operations nust be inplenmented
/1 by the conponent devel oper:

abstract public BirdOperations
_get _facet_tweety();

abstract public CatOperations
_get _facet_sylvester();

An implementation of the home executor ToonHomelmpl is generated from
the CIDL specification:

/1 Exanple 2

I

/| CGENERATED FROM CI DL SPECI FI CATI O\
I

package MerryMel odi es;

i mport LooneyToons;

public class ToonTownl npl
i npl ements LooneyToons. ToonTownQper at i ons,
Per si st ent Conponent, Execut or Segnent Base
{
/1 Inplenentations of operations inherited
/1 from Persi stent Conponent and
/| Execut or Segnment Base
I/ are omtted here.
I
/1 ToonHonmel npl al so provides inplenentations
/1 of operations inherited fromthe conponent
/1 home interface ToonTown, that del egate
/'l designated operations on the storage hone
I

June 2002 CORBA Components: Component | mplementation Framework (CIF) Architecture 3-19

/1 values set during initialization
/1 and activation:

protected Entity2Context _origin;
prot ected ToonSt at eHone _st or ageHone;

Toon creat e(Epi sodeNane key)

{
/] create a storage object with the key
ToonState new state = _storageHomne. cre-
at e(key);
/1 REMISIT - Bernard Normier 7/27/1999
/1 don’t know how to conplete this nethod
}
Toon find(Epi sodeNane key)
{
ToonSt at eRef ref =
_storageHone. find_ref_by_epi sode_nane(key);
/1 create reference fromref
/1 and return , sane as above...
}

/!l and so on...

The user-provided executor uses the storage accessors and mutators on the
incarnation:

/1 Exanple 2

I

/1 PROVI DED BY COVPONENT PROGRAMVER:
I

i mport LooneyToons. *;

i mport MerryMel odi es. *;

public class nyToonl npl extends Toonl npl
i mpl ements BirdOperations, CatQOperations {

public nyToonlnpl () { super(); }

void fly (long how_ | ong) {
_state.tinmeFl own
(_state.timeFlown() + how_long);
}
void eat (Bird lunch) {
_state.last_bird_eaten(lunch);
}
Bi rdOperations get_facet _tweety() {
return (BirdQperations) this;

}

3-20 CORBA Components, v3.0 June 2002

June 2002

Cat Operations get_facet_sylvester() {
return (CatOperations) this;
}
}

3.2.8.3 Explicit delegation of home operations

The previous section described the default home executor implementation generated by
the CIF. Default delegation can only be implemented for home operations or the home
base interfaces, and implicitly-defined home operations (i.e., orthodox home
operations). The syntax for home definitions permits explicitly-defined factory
operations, finder operations, and operations with arbitrary signatures to be declared on
the home. The CIF makes no assumptions about the semantics of these operations (i.e.,
the heterodox operations), other than the assumptions that factory operations return
references for newly-created components, and finder operations return references for
existing components that were indirectly identified by the parameters of the finder
operation. Implementations of these operations are not generated by default. CIDL
does, however, allow the component implementor to specify explicitly how heterodox
home operations are implemented. A CIDL home executor definition may optionally
include the declarations illustrated in the following schematic CIDL example:

composition <category> <composition_name> {

home executor <home_executor_name> {
... [l assume storage management specified

delegatesTo abstract storagehome (
<home_opg> : <storage_home_opg>,
<home_op;>: <storage_home_op>, ...

)

delegatesTo executor(
<home_op,> : <executor_op,>, ...

)i

abstract(<home_ops>, <home_op,>, ...);

|3
|3

Delegation to abstract storagehome

The delegatesTo abstract storagehome declaration specifies a sequence of
operation mappings, where each operation mapping specifies the name of an operation
on the home, and the name of an operation on the storage home. The signatures of the
operations must be compatible, as defined in Section 1.7.4, “Home inheritance,” on
page 1-38. Based on this declaration, the CIF generates implementations of the home
operations on the home executor that delegate to the specified operations on the
abstract storage home.

CORBA Components: Component | mplementation Framework (CIF) Architecture 321

3-22

Delegation to executor

The delegatesTo executor declaration specifies a sequence of operation mappings,
similar to the delegatesTo abstract storagehome declaration. The name on the
left hand side of the mapping (i.e., to the left of the colon, ‘") must denote an
explicitly-declared factory operation on the home, or the identifier “create,” denoting
the implicitly-declared factory operation. The right hand side of each mapping
specifies the name of an abstract operation that will be generated on the component
executor. The component implementor provides the implementation of the executor
operation, and the CIF provides an implementation of the operation on the home
executor that delegates to the executor.

The delegation of home operations to executors is problematic, since home operations
(other than factories) have no target component. For this reason, only factory
operations may be delegated to the component executor. The CIF implements this
delegation by defining an additional facet on the component executor, called a factory
facet. A factory facet is only exposed to the home executor; clients cannot navigate to
the factory facet, and the factory facet is not exposed in component meta-data, or
described in the FacetDescription values returned from
Navigation::get_all_facets.

The implementation of the factory operation on the home executor that delegates to the
component executor must first create an object reference that denotes the factory facet.
The home operation then invokes the mapped factory operation on the object reference,
causing the activation of the component and ensuring that the execution of the
operation on the component occurs in a proper invocation context.

If the factory operation being delegated is any operation other than the orthodox
create operation, and the home definition includes a primary key specification, the
operation generated on the factory facet of the component executor returns a value of
the specified primary key type. The delegating operation on the home executor
associates the primary key value returned from the component executor with the
storage object (i.e., the storage object’s PID) created to incarnate the component
instance.

The use of PID valuesto create object references obviates the need to have
two versions of a create method on the executar, asis the casein EJB with
create and postCreate methods. An appropriate calling context can be cre-
ated before the factory operation isinvoked on the executar.

These precise semantics of and requirements for factory operations delegated to the
executor are described in detail in Section 1.7.3.1, “Factory operations,” on page 1-37.

Suppressing generated implementation

The abstract specification overrides the generation of implementations for orthodox
home operations. The name of any explicitly-defined operation on the home may be
specified in the operation list of the abstract declaration. The CIF will not implement
the specified operations, instead | eaving unimplemented abstract operation declarations
(on whatever appropriate equivalent exists for the particular language mapping).

The following example extends the previous example to illustrate del ega-
tion of home operations to the abstract storage home and the executor. The

CORBA Components, v3.0 June 2002

exampl e highlights differences from the previous, and does not repeat ele-
ments that are identical:

Il Example 3

i

/I USER-SPECIFIED IDL

i

module LooneyToons { // IDL

identical to previous example, except for the home:

home ToonTown manages Toon primarykey EpisodeName {
factory createToon(
in string name, in long num, in Bird bref);
void arbitrary_operation();

The CIDL now defines abstract storage types, abstract storage homes, and
a catalog. The composition binds:

/l Example 3

1

/I USER-SPECIFIED CIDL
1

import ::LooneyToons;

module MerryMelodies {
... identical to the previous example, except for:

abstract storagehome ToonStateHome of ToonState

{
key episode_name;
factory create();
void do_something();
h

composition entity Toonlmpl {

uses catalog { ToonCatalog store; };

home executor ToonTownImpl {
implements LooneyToons::ToonTown;
bindsTo store.TSHome;
manages ToonEntitylmpl;
delegatesTo abstract storagehome

(arbitrary_operation : do_something);

delegatesTo executor (createToon : createToon);

In thisexample, thearbitrary_operation on the homeinterface ToonTown

June 2002 CORBA Components: Component | mplementation Framework (CIF) Architecture 3-23

is delegated to the storage home operation do_something. Note that the
operations have identical signatures. ThecreateToon factory operation is
delegated to an operation of the same name on the executor. This ddega-
tion causes the implicit definition of a factory facet on the component with
the following interface:

interface ToonlmplFactoryFacet {
EpisodeName createToon(
in string name, in long num, in Bird bref);

Thisinterfaceis not part of the public interface of the component; itsuseis
restricted to the home executor. In fact, the IDL need not be generated. All
of the code that uses the factory facet is either generated by the QF, or
derived from CIF-generated skeletons, so the CIF can simply generate lan-
guage mappings for the interface without actually providing any IDL for it.
Note also that only a subset of the normal language mapping artifacts are
required, including (in the case of Java) the abstract Operations interface,
the POA tie class to be used internally by the executar, and a local stub to
allow the home executor to make a delegating invocation. Thereis no need
to generate a remote stub, as the facet is never exposed outside of the con-
tainer.

The abstract storage home ToonStateHome interface has the added
do_something operation on the explicit interface:

/1 Exanple 3
/1
/| GENERATED FROM Cl DL SPECI FI CATI ON:
/1
public interface ToonStat eHone
ext ends StorageHoneBase {
public void do_sonething();
I

The ToonImpl executor skeleton class supports an additional facet (the
factory facet), which isreturned by the _get_factory_facet operation:

/1 Exanple 3

/1

/1 GENERATED FROM Cl DL SPECI FI CATI ON:
/1

package MerryMel odi es;

i nport LooneyToons;

abstract public class Toonl npl
i mpl ements LooneyToons. ToonCper at i ons,
Execut or Segnent Base, Persi st ent Conponent {
sane as previous
/1 The follow ng operations nust be inplenented

3-24 CORBA Components, v3.0 June 2002

/1 by the conponent devel oper:

abstract public Toonl npl Fact or yFacet Oper ati ons
_get _factory_facet();

abstract public BirdOperations
_get _facet_tweety();

abstract public CatOperations
_get _facet_sylvester();

The CIF generates implementations of the delegated operations on the
home executor:

/1 Exanple 3

/1

/| CGENERATED FROM CI DL SPECI FI CATI O\
I

package MerryMel odi es;

i mport LooneyToons;

public class ToonTownl npl
i mpl emrents LooneyToons. ToonTownQper at i ons,
CCMHone, Execut or Segnent Base

/1 values set during initialization
/1 and activation:

prot ected ToonSt at eHone _st or ageHome;
protected Entity2Context _origin;

Toon creat eToon(
String nanme, long num Bird bref)

{
ToonSt at e new st at e=
_storageHone. create();
/'l etc.
}

void arbitrary_operation() {
_storageHone. do_sonet hi ng() ;

}

The user-provide executor must implement the factory facet and operation:

/1 Exanple 3
I
/1 PROVI DED BY COVPONENT PROGRAMVER:

June 2002 CORBA Components: Component | mplementation Framework (CIF) Architecture 3-25

I
i mport LooneyToons. *;
i mport MerryMel odi es. *;

public class nyToonl npl extends Toonl npl
i npl ements BirdQOperations, CatQperations,
Toonl npl Fact or yFacet Oper ati ons{

Epi sodeNane

createToon(String nane, long num Bird bref) {
/1 presumably, the main reason for doing
/1 this kind of delegation is to initialize
/] state in the context of the conponent:
how_| ong(nunj ;
| ast _bird_eaten(bref);
Epi sodeNaneDef aul t Factory _keyFactory

= new Epi sodeNaneDef aul t Factory();

return _keyFactory. create(nane);

}

Toonl npl Fact or yFacet Qper ati ons
_get _factory _facet() {
return
(Toonl npl Fact or yFacet Operati ons) this;

3.2.9 Executor Definition

The home executor definition must include an executor definition. An executor
definition specifies the following characteristics of the component executor:

®* The name of the executor, which is used as the name of the generated executor
skeleton.

® Optionally, one or more distinct segments, or physical partitions of the executor.
Each segment encapsul ates independent state and is capable of being independently
activated. Each segment also provides at least one facet.

® Optionally, the generation of operation implementations that manage the state of
stateful component features (i.e., receptacles, attributes, and event sources) as
members of the component incarnation.

® A delegation declaration that describes a correspondence between stateful
component features and members of the abstract storage type that incarnates the
component. The CIF uses this declaration to generate implementations of the
feature-specific operations (e.g., connect_ and disconnect_ operations for
receptacles, accessors, and mutators for attributes) that store the state associated
with each specified feature in the storage member indicated on the right hand side
of the delegation.

3-26 CORBA Components, v3.0 June 2002

June 2002

3.2.9.1 Segmented executors

A component executor may be monolithic or segmented. A monolithic executor is,
from the container’s perspective, a single artifact. A segmented executor is a set of
physically distinct artifacts. Each segment may have a separate abstract state
declaration. Each segment must provide at |east one facet defined on the component
definition. The life cycle category of the composition must be entity or process if the
executor specifies segmentation.

The primary purpose for defining segmented executors is to allow requests on a subset
of the component’s facets to be serviced without requiring the entire component to be
activated. Segments are independently activated. When the container receives a request
whose target is a facet of a segmented executor, the container activates only the
segment that provides the required facet.

The following schematic CIDL illustrates the declaration of a segmented executor:
composition <category> <composition_name> {

home executor <home_executor_name> {
... [l assume storage management specified

manages <executor_name> {
segment <segment_nameg> {
storedOn <catalog_label.abstract_storage_home>;
provides (<facet_namey>, <facet_name;>, ...);
|3

segment <segment_name;>{ ... };

b
b

The abstract storage home specified in the segment’s storedOn declaration implicitly
specifies the abstract storage type that incarnates the segment. The home executor will
use this abstract storage home to create and manage instances of the segment state (i.e.,
incarnations). If the component home specifies a primary key, then all of the abstract
storage homes associated with executor segments must specify a matching key. The
facets specified in the segment’s provides declaration are implemented on the
segment.

A segmented executor has a distinguished segment associated with the component. The
component segment is implicitly declared, and supplies all of the facets not provided
by separate segments, as well as all other component features and supported interfaces.

Figure 3-3, and Figure 3-4, illustrate the structure of monolithic and segmented
executors, and the relationships between facets, storage objects, and segments. These
figures also illustrate the identity information that is embedded in component and facet
object references. Component identity information is described in more detail in
Section 1.1.4, “Component Identity,” on page 1-4.

CORBA Components: Component | mplementation Framework (CIF) Architecture 3-27

component segment (segment ID = 0)

component facet ¢
\ incarnation
Qi/facetlD=O (D =p)
facet A O——1— fecetID=F
fact B O——— facetID=F,
fact C O——1— facetID=F3
target facet state ID (PID)
component reference info 0 P
facet A referenceinfo Fy P

Figure 3-3 Monolithic executor and reference information structure

3-28 CORBA Components, v3.0 June 2002

June 2002

component segment (segment 1D = 0)

component facet

07

¢ incarnation
\ / facet ID

0 (PID = Py)

facet A O—— facetID=F;

segment (segment ID = S;)

facet B O—

incarnation
A (PID = Py)

- facetID=F,

facet C O—

- facetID = Fg

segment descriptors

target segment 1D

target facet ID

component reference info

facet B referenceinfo

Figure 3-4 Segmented

segment ID state ID

0 0 0| P
S| Py
Fs S 0 Py
S| P

executor and reference information structure

The details of the structure and behavior of segments and requirements for their
implementation are specified in Section 3.2.9.1, “Segmented executors,” on page 3-27.

The following example extends the previous example 2 to illustrate seg-
mented executors. The example highlights differences from the previous,
and does not repeat elements that are identical:

1

/I USER-SPECIFIED IDL

1

module LooneyToons { // IDL

CORBA Components: Component | mplementation Framework (CIF) Architecture 3-29

identical to previous example 2

The CIDL now defines abstract storage types, abstract storage homes, and
a catalog. The composition binds:

i

/I USER-SPECIFIED CIDL
1

import ::LooneyToons;

module MerryMelodies {

... identical to example 2 except for new storage, storage home
and executor definitions

abstract storagetype ToonState {
state LooneyToons::EpisodeName episode_name;
state string name;
state LooneyToons::Bird last_bird_eaten;

k

abstract storagehome ToonStateHome of ToonState {
key episode_name;

Bk

abstract storagetype BirdSegState {
state unsigned long time_flown;

k

abstract storagehome BirdSegStateHome of BirdSegState {
key episode_name;

k

catalog ToonCatalog {
provides ToonStateHome TSHome;
provides BirdSegStateHome BSSHome;

k

composition entity ToonImpl {
uses Catalog { ToonCatalog store; };
home executor ToonTownImpl {
implements LooneyToons:: ToonTown {
bindsTo store.TSHome;
manages ToonEntitylmpl {
segment BirdSegment {
storedOn ToonPS.BSSHome;
provides (tweety);

3-30 CORBA Components, v3.0 June 2002

The storage home BSSHome on the ToonCatal og catalog is bound to the
segment BirdSegment, which implicitly binds the segment executor for Bird-
Sagment to the abstract storage type BirdSegState. This segment provides
the facet tweety, leaving the remaining facet (sylvester) on the component
segment.

The mappings of the CIDL abstract storage types, abstract storage homes,
and the catalog are not presented, as they are not affected by the segmenta-
tion.

The generated component executor base classToonlmpl isalso not pre-
sented, asthe changes are trivial. The facet accessor _get facet_tweety is
no longer present on the component executor. There are other internal
changes that are not visible to the component implementar. The executor
for the new BirdSegment has the following form:

/1 Exanple 4

/1

/1 GENERATED FROM CI DL SPECI FI CATI ON:
/1

package MerryMel odi es;

i nport LooneyToons;

abstract public class BirdSegment
i mpl ement' s Execut or Segnent Base,
Per si st ent Conponent
{
/1 Cenerated inplenentations of operations
/1 inherited from CCMXj ect and
/1 Execut or Segrment Base and Per si st ent Conponent
/] are omitted here.
/1

protected BirdSegState _state;
protected BirdSegnent() { _state = null; }

public void set_incarnation (
Bi rdSegState state) {
_state = state;

}

/1 The follow ng operations nust be inplenented
/1 by the conponent devel oper:

abstract public BirdOperations
_get _facet_tweety();

Note that the BirdSegment executor does not implement any IDL interface
directly, as does the component segment. It is remotely accessible only
through a provided facet.

A generated implementation of the home executor ToonHomelmpl is con-
siderably different from the previous example 2. The create method must

June 2002 CORBA Components: Component | mplementation Framework (CIF) Architecture 3-31

create references for all of the segments and construct a Componentld with
the proper information::

11

/1 GENERATED FROM CI DL SPECI FI CATI ON:
I

package MerryMel odi es;

i nport LooneyToons;

public class ToonTownl npl
i mpl ement s LooneyToons. ToonTownCper at i ons,
CCMHore, Execut or Segnent Base
{
/1 I nplenentations of operations inherited
/1 from CCMHone and Execut or Segnent Base
/] are omitted here.
I
/1 ToonHorel npl al so provides inplenmentations
/1 of operations inherited fromthe conponent
/1 home interface ToonTown, that del egate
/'l designated operations on the storage hone
I

/1 values set during initialization
/1 and activation:
protected Entity2Context _origin;
prot ected ToonSt at eHone _t oonSt or ageHone;
protected Bi rdSegSt at eHone _bi r dSt or ageHone;

Toon creat e(Epi sodeNane key)

{
ToonSt ate new_toon =
_toonSt orageHone. creat e(key) ;
/'l etc.
}

There are now two segment executors to implement:

11

/1 PROVI DED BY COVPONENT PROGRAMVER:
I

i nport LooneyToons. *;

i nport MerryMel odi es. *;

public class nmyToonl npl extends Toonl npl
i mpl ements Cat Operations {

public nyToonlnpl () { super(); }
void fly (long how_ | ong) {

_state.timeFl own
(_state.timeFlown() + how_| ong);

3-32 CORBA Components, v3.0 June 2002

}

void eat (Bird lunch) {
_state.last_bird_eaten(lunch);

}

Bi rdOperations get_facet_tweety() {
return (BirdQperations) this;

}

Cat Operations get_facet_sylvester() {
return (CatQperations) this;

}

}

public class nyBirdSegl npl extends BirdSegnent
i npl ements BirdQOperations {

public nyBirdSeglnpl () { super(); }

void fly (long how_ | ong) {
_state.tinmeFl own
(_state.timeFlown() + how_|long);

}

Bi rdOperations get_facet_tweety() {
return (BirdQperations) this;

}

The programmer must also supply a different implementation of the
create_executor_segment operation on the home executor, that uses the
segment 1D value to determine which executor to create.

/1 Exanple 4

I

/1 PROVI DED BY COVPONENT PROGRAMVER:
11

i nport LooneyToons. *;

i nport MerryMel odi es. *;

public class nmyToonTownl npl ext ends ToonTownl npl

{
prot ected nyToonTownl npl () { super(); }

Execut or Segnent Base
create_executor_segnment (int segid) {

/1 case discrimnator values are constants
/'l generated on the executor segnment cl asses
switch (segid) {
case Toonl npl. _segnent _id_val ue :

return new nyToonl npl ();
case BirdSegnent. _segnent _id_val ue :

return new nyBirdSegl npl ();
def aul t

June 2002 CORBA Components: Component | mplementation Framework (CIF) Architecture 3-33

rai se an exception

3.2.9.2 Delegation of feature state

An executor may also optionally declare a correspondence between stateful component
features (which include receptacles, attributes, and event sources) and members of the
abstract storage type that incarnates the component (or the distinguished component
segment, in the case of a segmented executor). The CIF uses this declaration to
generate implementations of the feature-specific operations (e.g., connect_ and
disconnect_ operations for receptacles, accessors, and mutators for attributes) that store
the state associated with each specified feature in the storage member indicated on the
right hand side of the delegation. The following schematic CIDL illustrates a feature
delegation:

composition <category> <composition_name> {

home executor <home_executor_name> {
... [l assume storage management specified

manages <executor_name> {
delegatesTo abstract storagetype (
<feature_nameg>: <storage_member_namey>,
<feature_name;>: <storage_member_name>, ...

b

The type of the storage member must be compatible with the type associated with the
feature, as defined in the Component Model chapter. In the case of attributes, the CIF-
generated implementations of accessors and mutators retrieve and store the attribute
value in the specified storage member. The executor programming model allows
implementors to intercept invocations of the generated accessor and mutator
invocations and replace or extend their behaviors. In the case of receptacles and event
sources, the implementations of the connect_<receptacle_name>,
disconnect_<receptacle_name>, connect_<source_name>,
disconnect_<source_name>, subscribe_<source_name>, and
unsubscribe_<source_name> operations store the connected object references in
the specified members of the storage object that incarnates the component.

Thismechanismis only particularly useful if the connected object refer-
ences are persistent references, capable of causing server and object acti-
vation if necessary.

3-34 CORBA Components, v3.0 June 2002

June 2002

3.2.10 Proxy Homes

3.2.10.1

A composition definition may include a proxy home declaration. A proxy home
implements the component home interface specified by the composition definition, but
the implementation is not required to be collocated with the container where the
components managed by the home are activated.

Proxy homes are, in essence, remote projections of the actual home implementation,
which is always collocated with the executing component implementation. A proxy
home may be able to implement some subset (or potentially, all) of the operations
defined on the component home without contacting the actual home implementation.
Operations that cannot be locally implemented by the proxy home are delegated to the
actual home. The run-time implementation of the CIF (including the supporting
infrastructure of the container and the home finder) is responsible for maintaining the
associations between proxy homes and the actual home they represent. The container
provides an interface for registering proxy homes, described in Section 4.4.1.3, “The
ProxyHomeRegistration Interface,” on page 4-35.

Proxy homes offer the capacity for considerably increased scalability over collocated
homes, particularly when the home operations can be implemented locally by the
proxy home implementation. The following schematic CIDL illustrates a proxy home
definition:

composition <category> <composition_name> {

home executor <home_executor_name> {
implements <home_type> ;
bindsTo <catalog_label.abstract_storage_home>;

|3
proxy home <proxy_executor_name> {
delegatesTo home (<home_opg>, <home_op4>, ...);
abstract (<home_op,>, <home_ops>, ...);
|3
|3

The <proxy_executor_name> is used as the name of the generated skeleton artifact
for the proxy home executor. The proxy home declaration implicitly acquires the
characteristics of the actual home, as declared in the home executor definition (which
must precede the proxy home definition in the composition scope). In particular, the
proxy home implements the same home, and binds to the same abstract storage home.
The operation delegations specified in the actual home executor definition are also
acquired by the proxy home, but certain delegations are transformed according to rules
specified in Section 3.2.10.1, “Proxy home delegation,” on page 3-35.

Proxy home del egation

For proxy homes in compositions that specify managed state, the CIF assumes that the
proxy home has connectivity to the same persistent store as the actual home. Based on
this assumption, the default implementations of orthodox operations on the proxy

CORBA Components: Component | mplementation Framework (CIF) Architecture 3-35

3-36

home executor are delegated directly to the storage home, precisely as they are in the
actual home executor. In general, other operations are delegated to the actual home, by
default, although the specific rules for determining the implementation of proxy home
operations are somewhat more involved, and are described completely in Section 3.2.3,
“Implementing a CORBA Component,” on page 3-2.

3.2.11 Component Object References

32111

3.2.11.2

3.2.11.3

The CIF defines an information model for component object references. This
information model is encapsulated within the object_key field of an 110P profile, or an
equivalent field in other profiles. The information model is an abstraction; no standard
encoding within an object_key is specified. It is the responsibility of the container
and the underlying ORB to encode this information for insertion into object references
and to extract this information from the object_key in incoming requests, decode it,
and use it to activate the appropriate component or segment and dispatch the request to
the proper facet.

The Entity2Context interface, described in Section 4.4.3.7, “The Entity2Context
Interface,” on page 4-43 is used by the component implementation to provide this
information to the container, with which the container creates the object references for
the component and its facets. The Componentld interface encapsulates the
component reference information. Examples 2, 3, and 4 in the previous sections
illustrate the use of the Entity2Context and Componentld interfaces to create object
references. Figure 3-3, and Figure 3-4, illustrate the structure of the information
encapsulated in Componentld, and its relationship to executor structure.

Facet identifiers

The CIF implementation allocates numeric identifiers to facets. The facet ID values are
interpreted by generated code in the component implementation, so the assignment of
values does not need to be uniformly specified; a given CIF implementation’s choice of
facet 1D values does not affect portability or interoperability.

Sggment identifiers

The CIF implementation must also allocate numeric identifiers to segments. Similar to
facet IDs, segment I1Ds are also interpreted by the component implementation, so no
uniform allocation mechanism is specified. The implementation of
create_executor_segment (on the home executor implementation) provided by the
component implementor must interpret segment 1D values in order to create and return
the appropriate segment executor. The generated implementations of segment executor
skeletons define symbolic constants to assist the component implementor in this

mapping.

Sateidentifiers

State identifier is an abstraction that generalizes different representations of state
identifiers, the primary of which is the pid of the CORBA persistent state service. The
generic representation of a state identifier is StateldValue, an abstract val uetype from

CORBA Components, v3.0 June 2002

June 2002

32114

3.2.11.5

3.2.11.6

which specific, concrete state identity types are derived. Implementations of the
concrete sub-types are responsible for converting their representations to byte
sequences and back again.

Monolithic reference infor mation

Monoalithic references contain a facet identifier and a single state identifier. The facet
identifier denotes the target facet of the reference (or, of requests made on the
reference). The state identifier is interpreted by the component implementation and
used to retrieve the component’s state. In the case of automatically managed state, the
ClIF-generated implementation interprets the state identifier as a pid, using it to
incarnate the component’s storage object.

Note that navigation from one facet’s reference to another consists of
merely replacing the target facet identifier with the facet identifier of the
desired facet. This can be accomplished without activating the component.

Segmented referenceinformation

The reference information for segmented executors consists of the following:
® atarget facet identifier
® atarget segment identifier

® asequence of segment descriptors, each of which contains:
* the segment identifier of the segment being described
* the state identifier for the segment

The target facet identifier denotes the target of requests made on the reference, and the
target segment identifier denotes the segment on which that facet is implemented. The
sequence of segment descriptors contains one element for each segment, including the
component segment. This sequence isinvariant for all references to a given component,
over the lifetime of the component.

In the case of segmented executors, navigation is accomplished by replac-
ing the facet and segment identifiers.

Component identity

The state identifier of the component segment (or the single state identifier in the case
of monolithic executors) is interpreted as the unique identity of the component, within
the scope of the home to which it belongs. Equivalence of component identity is
defined as equivalence of state identifier values of the component segment.

CORBA Components: Component | mplementation Framework (CIF) Architecture 3-37

3.3 Language Mapping

3-38

3.3.1 Overview

This part describes the language mapping for CORBA Components and defines
interfaces that are used to implement components and homes. The language mapping,
like the mapping for the client side, is based on equivalent IDL. For components and
homes, local interfaces are defined. The user then implements these local interfaces
using existing language mapping rules.

There are two strategies for implementing a component, coined monolithic and locator.
In the monoalithic strategy, the user implements all attributes, supported interfaces, and
event consumers in a single executor interface. In the locator strategy, the user
implements a locator, and the container uses this locator to retrieve references to
executors for each port of a component. The decision which strategy is being used is
made by the home, which can return a reference to either the monolithic or to the
locator.

It is expected that the monolithic strategy is more simple to use and that it is sufficient
for most use cases, while the locator strategy gives the user even more control over the
life cycle of each executor.

Interfaces are designated internal or callback. Callback interfaces are implemented by
the user and called by the container, while internal interfaces are provided by the
container.

Some callback interfaces may be optionally implemented by the user. In order to
optionally implement an interface, the user must define an interface, in IDL, that
inherits both the base interface and the optional interface. For example, to inherit the
optional SessionSynchronization interface in the implementation of a Bank
component, the user would declare a new local interface, as shown below.

local interface MyBank :
Components::SessionSynchronization,
CCM_Bank { };

Optional interfaces are used by services that require the component’s cooperation (and
therefore callback hooks). To determine whether an implementation supports an
optional interface, the container narrows the object reference to that interface.

Internal interfaces are used by the container and various services to provide runtime
information to the component. The component accesses internal interfaces through the
context reference that it acquires through the set_session_context operation.

Details about existing internal and callback interfaces can be found in the Container
Programming Model chapter. Some of those interfaces are forward-referenced in this
section.

CORBA Components, v3.0 June 2002

June 2002

3.3.2 Common Interfaces

EnterpriseComponent is an empty callback interface that serves as common base
for all component implementations, whether monolithic or locator-based.

module Components {
local interface EnterpriseComponent {};

b

Note — The EnterpriseComponent interface is also defined in the Container
Programming Model chapter.

The ExecutorLocator interface is a callback interface that is used for the locator
implementation strategy.

module Components {
local interface ExecutorLocator : EnterpriseComponent {
Object obtain_executor (in string name)
raises (CCMException);
void release_executor (in Object exc)
raises (CCMException);
void configuration_complete()
raises (InvalidConfiguration);
¥
¥

If a home, in creating a component, returns an ExecutorLocator, the container will
invoke its obtain_executor operation prior to each invocation to retrieve the
implementation for a port. The port name, given in the nane parameter, is the same as
used in the component’s interface description in IDL, or the component’s name for the
“main” executor. The obtain_executor operation returns alocal object reference of
the expected type, as detailed below. The CCMEXception exception may be raised in
case of a system error that prohibits locating the requested executor.

The release_executor operation is called by the container once the current
invocation on an executor that was obtained through the obtain_executor operation
has finished. The locator can thus release any resources that were acquired as part of
the obtain_executor operation.

The configuration_complete operation is called to propagate the
configuration_complete operation on the CCMObject interface to the component
implementation.

Implementations of the ExecutorLocator interface for a service or session
component must implement the Components::SessionComponent interface.
Implementations of the ExecutorLocator interface for a process or entity component
must implement the Components::EntityComponent interface.

CORBA Components: Language Mapping 3-39

3-40

Note — Object is used as the return type of the obtain_executor operation, because
there is yet no IDL type for the common base of al local objects. Since local objects
inherit from Object, thisis not a problem.

The HomeExecutorBase interface is a common base for all home implementations.

module Components {
local interface HomeExecutorBase {};

b

3.3.3 Mapping Rules

3331

3.3.3.2

This section defines equivalent interfaces that are generated for each interface,
eventtype, component, and home.

Interfaces

For each non-abstract and non-local interface, alocal facet executor interface is
generated. This facet executor interface has the same name as the original interface
with a“CCM_" prefix, and inherits the original interface. So for an interface of name
<interface name>, the facet executor interface has the following form:

local interface CCM_<interface name> : <interface name> { };

If a component provides an interface as a facet, the user implements the facet executor
interface rather than the original interface in order to achieve alocal implementation.

Note — A container implementation may choose to limit generation of facet executor
interfaces to only those interfaces that are actually used as a facet.

Eventtypes

For each eventtype, alocal consumer executor interface is generated. For an eventtype
<eventtype name>, alocal interface with the same name, but with a“CCM_" prefix
and a postfix of “Consumer” is generated. Thisinterface has a single push operation
with no result, and the eventtype as a single in parameter:

local interface CCM_<eventtype name>Consumer

{
b

void push (in <eventtype name> ev);

CORBA Components, v3.0 June 2002

June 2002

3.3.3.3 Components

A component maps to three local interfaces; two of them are callback interfaces, and
oneis an internal interface. The monolithic executor callback interface is for use in
monolithic implementations, the main executor callback interface is for use in locator-
based implementations. Both callback interfaces inherit the component’s base and
supported interfaces. They also both expose the component’s attributes.

In addition, the monolithic executor callback interface also contains operations for
acquiring references to facets, and for consuming events - in the locator approach,
these jobs are mediated by the locator.

An internal context interface is defined for each component. It is implemented by the
container and handed to the component as session or entity context. The context
interface contains component-specific runtime information (e.g., for pushing events
into event source ports).

Component Main Executor I nterface

The main executor callback interface as used by the locator approach is defined by the
following rules:

1. For each component <component name>, alocal main executor interface with
the same name as the component, but with a prefix of “CCM_" and a postfix of
“ Executor” is defined.

2. The main executor interface contains al attributes declared by the component.

3. If the component has a base component with a name of <base name>, the main
executor interface inherits CCM_<base name>_Executor. If the component does
not have a base, the main executor interface inherits
Components::EnterpriseComponent.

4. If the component has supported interfaces, they are inherited by the main executor
interface.

If the container desires to acquire a reference to the main executor, it calls the
obtain_executor operation of the ExecutorLocator with the name parameter set to
<component name>.

Component Monolithic Executor I nterface
The monolithic executor callback interface is defined by the following rules:

1. For each component <component name>, alocal monolithic executor interface
with the same name as the component and a prefix of “CCM_" is defined.

2. The monolithic executor interface contains all attributes declared by the component.

3. If the component has a base component with a name of <base name>, the
monolithic executor interface inherits CCM_<base name>. If the component does
not have a base, the monolithic executor interface inherits
Components::EnterpriseComponent.

CORBA Components: Language Mapping 341

3-42

3.3.34

4. If the component has supported interfaces, they are inherited by the monolithic
interface.

5. Additional operations are added to the monolithic interface for facets and event
sinks.

6. Above rules can be satisfied by inheriting the main executor interface and adding
operations for facets and event sinks. This is an optional design choice by the
container implementation.

In a service and session component, the user may optionally inherit the
Components::SessionComponent interface in the implementation of a monolithic
executor in order to be notified by the container of activation and passivation. In a
process or entity component, the user may optionally inherit the
Components::EntityComponent interface in the implementation of a monolithic
executor.

Component Context I nterface
The context internal interface is defined by the following rules:

1. For each component <component name>, alocal context interface with the same
name as the component, but with a prefix of “CCM_" and a postfix of “_Context”
is defined.

2. If the component has a base component with a name of <base name>, the context
interface inherits CCM_<base name>_Context. If the component does not have
a base, the context interface inherits Components::CCMContext.

3. Additional operations are added to the context interface for receptacles and event
Sources.

The container will implement an interface that inherits both the above context interface
and either Components::SessionContext or Components::EntityContext,
depending on the type of the component. The component implementation can narrow
the Components::SessionContext or Components::EntityContext reference
that it receives to the above component-specific context interface.

Example

For the following component declaration in IDL,

interface Hello {
void sayHello ();

b

component HelloWorld supports Hello {
attribute string message;

b

the following local interfaces are generated:

CORBA Components, v3.0 June 2002

local interface CCM_Hello : Hello

{
}

local interface CCM_HelloWorld_Executor :
Components::EnterpriseComponent, Hello
{

b

local interface CCM_HelloWorld :
Components::EnterpriseComponent, Hello
{

b

attribute string message;

attribute string message;

local interface CCM_HelloWorld_Context :
Components::CCMContext

{

|3

Read on for further contents of these interfaces.

3.3.3.5 Ports

This section defines equivalent operations that are added to either of the three
interfaces for each port definition.

Facets

For each facet, an equivalent operation is defined in the monolithic executor interface.
For a facet of name <name> and type <type>, an operation with the same name as
the facet but with a“get_” prefix is generated. This operation has an empty parameter
list and a reference of the interface’s facet executor type as return value:

CCM_<type> get_<name> ();

Users may optionally implement facet interfaces directly in the monolithic executor
implementation by declaring a new local interface that inherits both the monolithic
executor interface and the facet executor, and by then returning a reference to itself in
the implementation of the above operation. Example:

June 2002 CORBA Components: Language Mapping 3-43

344

// 1DL
component MyComponent {
provides Mylnterface MyFacet;

b

/I User IDL
local interface MyComponentimpl :
CCM_MyComponent, CCM_MyInterface

5

Il C++

CCM_Mylinterface_ptr
MyComponent_Impl::get_MyFacet ()
{

}

If the locator strategy is used, the container calls the obtain_executor operation on
the ExecutorLocator with the name parameter set to <name> in order to acquire a
reference to the facet executor that matches this facet port.

return CCM_MyInterface::_duplicate (this);

Receptacles
For each receptacle, an equivalent operation is defined in the context interface. The
signature of this operation depends on whether the receptacle is simplex or multiplex.

For a simplex receptacle of name <name> and type <type>, an operation of the same
name as the receptacle but with a“get_connection_" prefix is generated. The
operation has an empty parameter list, and an object reference of the interface’s type as
return value:

<type> get_connection_<name> ();
If there is no connection, this operation returns a nil reference.

For a multiplex receptacle of name <name> and type <type>, an operation of the
same name as the receptacle but with a“ get_connections_" prefix is generated. The
operation has an empty parameter list and a sequence of type <name>Connections
as return value (this type is defined by the client-side equivalent IDL):

<name>Connections get_connections_<name> ();

Publisher and Emitter

For each publisher and emitter port, an equivalent operation is defined in the context
interface. For a publisher or emitter port of name <name> and type <type>, an
operation of the same name as the port but with a“push_" prefix is generated. This
operation has no return value and a single in parameter containing the event.

void push_<name> (in <type> ev);

CORBA Components, v3.0 June 2002

3

June 2002

3.3.3.6

The component may call this operation in order to push an event to the consumer (for
emitter ports) or to all subscribers (for publisher ports). The container is responsible
for delivering the event.

Consumer

For each consumer port, an equivalent operation is defined in the monolithic executor
interface. For a consumer port of name <name> and type <type>, an operation of the
same name as the port but with a“push_" prefix is generated. This operation has no
return value and a single in parameter containing the event.

void push_<name> (in <type> ev);

For component implementations that use the monolithic strategy, the container invokes
this operation whenever a client sends an event to this sink.

For component implementations that use the locator strategy, the container calls the
obtain_executor operation on the ExecutorLocator with the name parameter set to
<name> in order to acquire a reference to an implementation of the eventtype's
consumer executor interface.

Home

For each home, three callback interfaces are generated, similar in structure to the
interfaces defined on the client side. The three interfaces are named the Implicit,
Explicit, and Main home executor.

Home Explicit Executor I nterface
The home explicit executor callback interface is defined by the following rules:
1. For each home <home name>, alocal explicit executor interface with the same

name as the home, but with a prefix of “CCM_" and a postfix of “Explicit” is
defined.

2. The explicit executor interface contains all attributes and operations declared by the
home.

3. If the home has a base with a name of <base name>, the explicit executor
interface inherits CCM_<base name>Explicit. If the home does not have a base,
the explicit executor interface inherits Components::HomeExecutorBase.

4. If the home has supported interfaces, they are inherited by the explicit executor
interface.

5. Additional operations are added to the explicit executor interface for factories and

finders, see below.

Homel mplicit Executor I nterface

The contents of the home implicit executor callback interface depend on whether the
home is keyless or keyed.

CORBA Components: Language Mapping 3-45

3-46

Implicit Executor I nterfacefor KeylessHomes

For a keyless home <home name>, alocal implicit executor interface with the same
name as the home, but with a prefix of “CCM_" and a postfix of “Implicit” is defined.
This interface contains a single create operation with the following signature:

local interface CCM_<home name>Implicit {
Components::EnterpriseComponent create ()
raises (Components::CCMException);

b

The container calls the implicit create operation in order to create a new component
instance. The operation can return either a reference to a monolithic executor or to an
ExecutorLocator. In the former case, the container assumes that the monolithic
strategy is used, otherwise it will use the locator strategy. The implementation may
raise the CCMEXxception exception in order to indicate a system-level error.

Implicit Executor I nterfacefor Keyed Homes

For a keyed home <home name> with akey of <key type>, alocal implicit executor
interface with the same name as the home, but with a prefix of “CCM_" and a postfix
of “Implicit” is defined. This interface contains the following operations:

local interface CCM_<home name>Implicit {
Components::EnterpriseComponent
create (in <key type> key)
raises (Components::CCMException);
Components::EnterpriseComponent
find_by primary_key (in <key type> key)
raises (Components::CCMException);
void remove (in <key_type> key)
raises (Components::CCMException);

b

The container calls the create operation in order to create anew component associated
with the specified primary key value. The operation can return either a reference to a
monolithic executor or to an ExecutorLocator. In the former case, the container
assumes that the monolithic strategy is used, otherwise it will use the locator strategy.
The operation may raise the CCMEXxception exception to indicate a system-level
error.

The container calls the find_by_primary_key operation in order to find an existing
component associated with the specified primary key value. The operation shall return
the same reference to a monolithic executor or to an ExecutorLocator as it was
previously returned from a create operation. The operation may raise the
CCMEXxception exception to indicate a system-level error.

The container calls the remove operation in order to remove the component identified
by the specified primary key value. The operation may raise the CCMEXxception
exception to indicate a system-level error.

CORBA Components, v3.0 June 2002

June 2002

Home Main Executor | nterface

For each home <home name>, alocal main executor interface with the same name as
the home and a prefix of “CCM_" is defined. The main executor interface inherits both
the implicit and explicit executor interfaces, as shown below.

local interface CCM_<home name> :
CCM_<home name>Explicit,
CCM_<home name>Implicit

{

|3

The main executor interface does not have any other contents.

In the implementation of a home main executor for a service and session component,
the user may optionally inherit the Components::SessionComponent interface in
order to be notified by the container of activation and passivation. In the
implementation of a home main executor for a process or entity component, the user
may optionally inherit the Components::EntityComponent interface.

Note — This structure allows implementation inheritance for the explicit interface
without name clashes in the implicit interface.

Factories

For each factory in the home, an operation is defined in the explicit home executor
interface. This operation has the same parameter list as the factory and the return type
EnterpriseComponent. As with the home's create operation, factories can return
either a reference to a monolithic executor or to an ExecutorLocator.

Factories are assumed to return a new component instance.

Finders

For each finder in the home, an operation is defined in the explicit home executor
interface. This operation has the same parameter list as the finder and the return type
EnterpriseComponent. As with the home's create operation, finders can return
either a reference to a monolithic executor or to an ExecutorLocator.

Finders may return existing or new component instances. If a finder decides to return
an existing component instance, it shall return the same reference to a monolithic
executor or to an ExecutorLocator as it was previously returned from a factory or
from the create operation.

Entry Points

Some programming languages require the existence of user-provided entry points, or
Home Factories. These entry points are not part of the language mapping; they are
dealt with in the Packaging and Deployment chapter.

Home Factories, if required by a language mapping, shall return a reference to an
instance of the home's main executor interface.

CORBA Components: Language Mapping 3-47

Example
The following example shows a Bank home that manages an Account component.

home Bank manages Account {
factory open (in string name);
void close (in string name);

b

In this example, the following equivalent interfaces would be generated.

local interface CCM_BankExplicit :
Components::HomeExecutorBase

{
Components::EnterpriseComponent open (in string name);
void close (in string name);
|3
local interface CCM_BankIimplicit :
{
Components::EnterpriseComponent create ()
raises (Components::CCMException);
|3

local interface CCM_Bank :
CCM_BankExplicit,
CCM_BanklImplicit

{

|3

The user would then implement the CCM_Bank interface and eventually provide an
entry point that creates a CCM_Bank instance.

3-48 CORBA Components, v3.0 June 2002

June 2002

TheContainer Programming Model 4

This chapter describes the CORBA component container programming model.

Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 4-2
“The Server Programming Environment” 4-5
“Server Programming Interfaces - Basic Components” 4-21
“Server Programming Interfaces - Extended Components” | 4-33
“The Client Programming Model” 4-45

The container is the server’s runtime environment for a CORBA component
implementation. This environment is implemented by a deployment platform such as
an application server or a development platform like an IDE. A deployment platform
typically provides a robust execution environment designed to support very large
numbers of simultaneous users. A development platform would provide enough of a
runtime to permit customization of CORBA components prior to deployment but
perhaps support a limited number of concurrent users. From the point of view of the
CORBA component implementation, such differences are “qualities of service”
characteristics and have no effect on the set of interfaces the component implementor
can rely on. This chapter is organized as follows:

® Section 4.1 - “Introduction” introduces the programming model and defines the
elements that comprise it.

CORBA Components, v3.0 4-1

4.1

I ntroduction

The container programming model is an API framework designed to simplify the
task of building a CORBA application. Although the framework does not exclude
the component developer from using any function currently defined in CORBA, it is
intended to be complete enough in itself to support a broad spectrum of
applications.

Section 4.2 - “The Server Programming Environment” describes the programming
model the component implementor is to follow.

The programming model identifies the architectural choices which must be made to
develop a CORBA component which can be deployed in a container.

Section 4.3 - “Server Programming Interfaces - Basic Components” describes the
interfaces seen by the component devel oper.

These interfaces constitute the contract between the container provider and the
component implementor. Together with the client programming interfaces defined in
the Component Model chapter, which can be used by servers as well as clients, they
define the server programmer’s API.

Section 4.5 - “The Client Programming Model” describes the client view of a
CORBA component.

The client programming model has been described previously (see the Component
Model chapter). This section describes the specific use of CORBA required by a
client, which is NOT itself a CORBA component, to use a CORBA component
written to the server programming model described in Section 4.3, “ Server
Programming Interfaces - Basic Components,” on page 4-21.

The container programming model is made up of several elements:

The external API types define the interfaces available to a component client.

The container API type defines the API framework used by the component
devel oper.

The CORBA usage model defines the interactions between the container and the
rest of CORBA (including the POA, the ORB, and the CORBA services).

The component category is the combination of the container API type (i.e., the
server view) and the external API types (i.e., the client view).

CORBA Components, v3.0 June 2002

June 2002

3> 0o —— 0O

The overall architecture is depicted in Figure 4-1.

@— Home

—O

CORBA Callbacks
External Component @

e
e [z
o
Internal >
Container
ORB
Transactions Security Persistence Notification

Figure4-1 The Architecture of the Container Programming Model

The external API types are defined by the component IDL including the home
specification. These interfaces are righteous CORBA objects and are stored in the
Interface Repository for client use.

The container API type is a framework made up of internal interfaces and callback
interfaces used by the component developer. These are defined using the new local
interface declaration in IDL for specifying locality-constrained interfaces. The
container API type is selected using CIDL, which describes component
implementations.

The EJB session bean and entity bean can be viewed as two examples of
container API type since they offer different sets of framework APIsto the
EJB programmer. However, each of themalso impliesa client view (i.e,, the
external API types). EJB does not define a term for the two framework API
setsit supports.

The CORBA usage model is controlled by policies that specify distinct interaction
patterns with the POA and a set of CORBA services. These are defined by CIDL,
augmented using XML, and used by the container factory to create a POA when the
container is created.

CORBA Components: Introduction 4-3

The component category is a specific combination of external APl types and container
API type used to implement an application with the CORBA component technol ogy.

4.1.1 External API Types

The external API types of a component are the contract between the component
developer and the component client. We distinguish between two forms of external API
types: the home interface and the application interfaces.

These are analogous to the EJBHome and EJBObject interfaces of
Enterprise JavaBeans.

Home interfaces support operations that allow the client to obtain references to one of
the application interfaces the component implements. From the client’s perspective,
two design patterns are supported - factories for creating new objects and finders for
existing objects. These patterns are distinguished by the presence of a primarykey
parameter in the home IDL declaration.

* A home interface with a primarykey declaration supports finders and its client isa
keyfull client.

* A home interface without a primarykey declaration does not support finders and
its client is a keyless client. All home types support factory operations.

4.1.2 Container API Type

The container API type defines an API framework; that is, the contract between a
specific component and its container. This specification defines two base types that
define the common APIs and a set of derived types that provide additional function.
The session container API type defines a framework for components using transient
object references. The entity container API type defines a framework for components
using persistent object references.

4.1.3 CORBA Usage Model

A CORBA usage model specifies the required interaction pattern between the
container, the POA, and the CORBA services. We define three CORBA usage models
as part of this specification. Since all support the same set of CORBA services, they
are distinguished only by their interaction with the POA.

® stateless - which uses transient object referencesin conjunction with a POA servant
that can support any Objectld.

® conversational - which uses transient references in conjunction with a POA servant
that is dedicated to a specific Objectid.

® durable - which uses persistent references in conjunction with a POA servant that is
dedicated to a specific Objectld.

It should be obvious that the fourth possibility (persistent references with a

POA servant that can support any Objectld) makes no sense and is there-
fore not included.

CORBA Components, v3.0 June 2002

4.1.4 Component Categories

The component categories are defined as the valid combinations of external API types,
container API type, and CORBA usage model. Table 4-1 summarizes the categories
and identifies their EJB equivalent.

Table4-1 Definition of the Component Categories

CORBA Usage Model | Container Primary | Component EJB Bean
API Type Key Categories Type

stateless session No Service -

conversational session No Session Session

durable entity No Process -

durable entity Yes Entity Entity

4.2 The Server Programming Environment

June 2002

The component container provides interfaces to the component. These interfaces
support access to CORBA services (transactions, security, notification, and persistence)
and to other elements of the component model. This section describes the features of
the container that are selected by the deployment descriptor packaged with the
component implementation. These features comprise the design decisions to be made
in developing a CORBA component. Details of the interfaces provided by the container
are provided in Section 4.3, “Server Programming Interfaces - Basic Components,” on
page 4-21.

4.2.1 Component Containers

Containers provide the run-time execution environment for CORBA components. A
container is a framework for integrating transactions, security, events, and persistence
into a component’s behavior at runtime. A container provides the following functions
for its component:

» All component instances are created and managed at runtime by its container.

» Containers provide a standard set of services to a component, enabling the same
component to be hosted by different container implementations.

Components and homes are deployed into containers with the aid of container specific
tools. These tools generate additional programming language and metadata artifacts
needed by the container. The tools provide the following services:

« Editing the configuration metadata,
« editing the deployment metadata, and

* generating the implementations needed by the containers to support the
component.

The container framework defines two forms of interfaces:

CORBA Components: The Server Programming Environment 4-5

46

® Internal interfaces - These are locality-constrained interfaces defined as local
interface types, which provide container functions to the CORBA component.

These are similar to the EJBContext interface in Enterprise JavaBeans.

® Callback interfaces - These are also local interface types invoked by the container
and implemented by a CORBA component.

These interfaces provide functions analogous to the SessionBean and
EntityBean interfaces defined by Enterprise JavaBeans.

This architecture is depicted in Figure 4-1 on page 4-3.

We define a small set of container API types to support a broad spectrum of
component behavior with their associated internal and callback interfaces as part of
this specification. These container API types are defined using local interfaces.

Additional component behavior is controlled by policies specified in the deployment
descriptor. This specification defines policies that support POA interactions (CORBA
usage model), servant lifetime management, transactions, security, events, and
persistence. See the Packaging and Deployment chapter, specifically Section 6.3,

“ Software Package Descriptor,” on page 6-2, for details of how container policies are
specified.

CORBA containers are designed to be used as Enterprise JavaBeans containers. This
allows a CORBA infrastructure to be the foundation of EJB, enabling a more robust
implementation of the EJB specification. To support enterprise Beans natively within a
CORBA container, the container must support the API frameworks defined by the EJB
specification. This architecture is defined in the Integrating with Enterprise JavaBeans
chapter of this specification.

4.2.2 CORBA Usage Model

The CORBA Component Specification defines a set of CORBA usage models that
create either TRANSIENT or PERSISTENT object references and use either a 1:1 or
1:N mapping of Servant to Objectld. These CORBA usage models are summarized
in Table 4-2. A given component implementation shall support one and only one
CORBA usage model.

Table4-2 CORBA Usage Model Definitions

CORBA Usage Model Object Reference Servant:OID Mapping
stateless TRANSIENT 1N
conversational TRANSIENT 11
durable PERSISTENT 11
(Invalid) PERSISTENT LN

A CORBA usage model is specified using CIDL and is used to either create or select a
component container at deployment time.

CORBA Components, v3.0 June 2002

4.2.2.1 Component References

TRANSIENT objects support only the factory design pattern. They are created by
operations on the home interface defined in the corponent declaration.

PERSISTENT objects support either the factory design pattern or the finder design
pattern, depending on the component category. PERSISTENT objects support self-
managed or container-managed persistence. PERSISTENT aobjects can be used with
the CORBA persistent state service or any user-defined persistence mechanism. When
the CORBA persistent state service is used, servant management is aligned with the
Persistentld defined by the CORBA persistent state service and the container
supports the transformation of an Objectld to and from a Persistentld. A
Persistentld provides a persistent handle for a class of objects whose permanent state
resides in a persistent store (e.g., a database).

Home references are exported for client use by registering them with a HomeFinder
which the client subsequently interrogates or by binding them to the CORBA naming
service in the form of externally visible names.

EJB clients find references to EJBHome using JNDI, the Java API for Cos-
Naming. Placing home references is CosNaming supports both the CORBA
component client and the EJB client programming models.

4.2.2.2 Servantto Objectld Mapping

Component implementations may use either the 1:1 or 1:N mapping of Servant to
Objectld with TRANSIENT references (stateless and conver sational CORBA usage
model, respectively) but may use only the 1:1 mapping with PERSISTENT references.

* A 1:N mapping allows a Servant to be shared among all requests for the same
interface and therefore requires the object to be stateless (i.e., it has no identity).

* A 1:1 mapping binds a Servant to a specific Objectld for an explicit servant
lifetime policy (see Section 4.2.5, “ Servant Lifetime Management,” on page 4-8)
and therefore is stateful.

4.2.2.3 Threading Considerations

CORBA components support two threading models: serialize and multithread. A
threading policy of serialize means that the component implementation is not thread
safe and the container will prevent multiple threads from entering the component
simultaneously. A threading policy of multithread means that the component is
capable of mediating access to its state without container assistance and multiple
threads will be allowed to enter the component simultaneously. Threading policy is
specified in CIDL.

A threading palicy of serialize isrequired to support an enterprise Bean
since they are defined to be single-threaded.

June 2002 CORBA Components: The Server Programming Environment 4-7

4.2.3 Component Factories

A home is a component factory, responsible for creating instances of all interfaces
exported by a component. Factory operations are defined on the home interface using
the factory declaration. A default factory is automatically defined whose
implementation may be generated by tools using the information provided in the
component IDL. Specialized factories; for example, factories that accept user-defined
input arguments must be implemented by the component developer. Factory operations
are typically invoked by clients but may also be invoked as part of the implementation
of the component. A CORBA component implementation can locate its home interface
using an interface provided by the container.

4.2.4 Component Activation

CORBA components rely on the automatic activation features of the POA to tailor the
behavior of the components using information present in the component’s deployment
descriptor. Once references have been exported, clients make operation requests on the
exported references. These requests are then routed by the ORB to the POA that
created the reference and then the component container. This enables the container to
control activation and passivation for components, apply policies defined in the
component’s descriptor, and invoke callback interfaces on the component as necessary.

4.2.5 Servant Lifetime Management

Servants are programming language objects that the POA uses to dispatch operation
requests based on the Objectld contained in the object key. The server programming
model for CORBA components includes facilities to efficiently manage the memory
associated with these programming objects. To implement this sophisticated memory
management scheme, the server programmer makes several design choices:

® The container APl type must be chosen.
® The CORBA usage model must be chosen.

* A servant lifetime policy is selected. CORBA components support four servant
lifetime policies (method, transaction, component, and container).

® The designer is required to implement the callback interface associated with his
choice.

The servant lifetime policies are defined as follows:

method

The method servant lifetime policy causes the container to activate the component on
every operation request and to passivate the component when that operation has
completed. Thislimits memory consumption to the duration of an operation request but
incurs the cost of activation and passivation most frequently.

CORBA Components, v3.0 June 2002

June 2002

transaction

The transaction servant lifetime policy causes the container to activate the component
on the first operation request within a transaction and leave it active until the
transaction completes and which point the component will be passivated. Memory
remains allocated for the duration of the transaction.

component

The component servant lifetime policy causes the container to activate the component
on the first operation request and leave it active until the component implementation
requests it to be passvated. After the operation that requests the passivation completes,
the component will be passivated by the container. Memory remains allocated until
explicit application reguest.

container

The container servant lifetime policy causes the container to activate the component
on the first operation request and leave it active until the container determines it needs
to be passivated. After the current operation completes, the component will be
passivated by the container. Memory remains allocated until the container decides to
reclaim it.

Table 4-3 shows the relationship between the CORBA usage model, the container API
type, and the servant lifetime policies.

Table4-3 Servant Lifetime Policies by Container API Type

CORBA Usage Model Container APl | Valid Servant Lifetime Policies
Type
statel ess session method
conversational session method, transaction, component,
container
durable entity method, transaction, component,
container

Servant lifetime policies may be defined for each segment within a component.

4.2.6 Transactions

CORBA components may support either self-managed transactions (SMT) or
container-managed transactions (CMT). A component using self-managed
transactions will not have transaction policies defined with its deployment descriptor
and is responsible for transaction demarcation using either the container’'s
UserTransaction interface or the CORBA transaction service. A component using
container-managed transactions defines transaction policies in its associated descriptor.
The selection of container-managed transactions vs. self-managed transactions is a
component-level specification.

CORBA Components: The Server Programming Environment 4-9

4-10

When container-managed transactions are selected, additional transaction policies are
defined in the component’s deployment descriptor. The container uses these
descriptions to make the proper calls to the CORBA transaction service. The
transaction policy defined in the component’s deployment descriptor is applied by the
container prior to invoking the operation. Differing transaction policy declarations can
be made for operations on any of the component’s ports as well as for the component’s
home interface.

Table 4-4 summarizes the effects of the various transaction policy declarations and the
presence or absence of a client transaction on the transaction that is used to invoke the
requested operation on the component.

Table 4-4 Effects of Transaction Policy Declaration

Transaction Client Component’s Transaction
Attribute Transaction
NOT_SUPPORTED | - -
T1 -
REQUIRED - T2
T1 T1
SUPPORTS - -
T1 T1
REQUIRES_NEW - T2
T1 T2
MANDATORY - EXC (TRANSACTION_REQUIRED)
T1 T1
NEVER - -
T1 EXC (INVALID_TRANSACTION)

not_supported

This component does not support transactions. If the client does not provide a current
transaction, the operation is invoked immediately. If the client provides a current
transaction, it is suspended (CosTransactions::Current::suspend) before the
operation is invoked and resumed (CosTransactions::Current::resume) when the
operation completes.

CORBA Components, v3.0 June 2002

June 2002

required

This component requires a current transaction to execute successfully. If oneis
supplied by the client, it is used to invoke the operation. If one is not provided by the
client, the container starts a transaction (CosTransactions::Current::begin) before
invoking the operation and attempts to commit the transaction
(CosTransactions::Current::commit) when the operation completes.

supports

This component will support transactions if one is available. If one is provided by the
client, it is used to invoke the operation. If one is not provided by the client, the
operation is invoked outside the scope of a transaction.

requires_new

This component requires its own transaction to execute successfully. If no transaction
is provided by the client, the container starts one
(CosTransactions::Current::begin) before invoking the operation and tries to
commit it (CosTransactions::Current::commit) when the operation completes. If a
transaction is provided by the client, it is first suspended
(CosTransactions::Current::suspend), anew transaction is started
(CosTransactions::Current::begin), the operation invoked, the component’s
transaction attempts to commit (CosTransactions::Current::commit), and the
client’s transaction is resumed (CosTransactions::Current::resume).

mandatory

The component requires that the client be in a current transaction before this operation
isinvoked. If the client isin a current transaction, it is used to invoke the operation. If
not, the TRANSACTION_REQUIRED exception shall be raised.

never

This component requires that the client not be in a current transaction to execute
successfully. If no current transaction exists, the operation is invoked. If a current
transaction exists, the INVALID _TRANSACTION exception shall be raised.

4.2.7 Security

Security policy is applied consistently to all categories of components. The container
relies on CORBA security to consume the security policy declarations from the
deployment descriptor and to check the active credentials for invoking operations. The
security policy remains in effect until changed by a subsequent invocation on a
different component having a different policy.

Access permissions are defined by the deployment descriptor associated with the
component. The granularity of permissions must be aligned by the deployer with a set
of rights recognized by the installed CORBA security mechanism since it will be used
to check permissions at operation invocation time. Access permissions can be defined
for any of the component’s ports as well as the component’s home interface.

CORBA Components: The Server Programming Environment 4-11

4-12

Note — The security model used by EJB and being adopted by CORBA components
requires the secure transportation of security credentials between systems. Today that
isonly possible if SECIOP is used as the CORBA transport.

4.2.8 Events

428.1

CORBA components use a simple subset of the CORBA notification service to emit
and consume events. The subset can be characterized by the following attributes:

® Events are represented as valuetypes to the component implementor and the
component client.

® The event data structure is mapped to an any in the body of a structured event
presented to and received from CORBA notification.

® The fixed portion of the structured event is added to the event data structure by the
container on sending and removed from the event data structure when receiving.

® Components support two forms of event generation using the push model:
» A component may be an exclusive supplier of a given type of event.

» A component may supply events to a shared channel that other CORBA
notification users are aso utilizing.

®* A CORBA component consumes both forms of events using the push model.

® Events have transaction and security policies associated with the component’s event
ports as defined in the deployment descriptor.

® All channel management is implemented by the container, not the component.

® Filters are set administratively by the container, not the component.

Because events can be emitted and consumed by clients as well as component
implementations, operations for emitting and consuming events are generated from the
specifications in component IDL. The container is responsible for mapping these
operations to the CORBA notification service to provide a robust event distribution
network.

Transaction Policiesfor Events

Transaction policies are defined for component event ports, which include both events
being generated and events being consumed. The possible values are as follows:

normal

A normal event policy indicates the event should be generated or consumed outside
the scope of atransaction. If a current transaction is active, it is suspended before
sending the event or invoking the operation on the proxy object provided by the
component.

CORBA Components, v3.0 June 2002

default

A default event policy indicates the event should be generated or consumed regardless
of whether a current transaction exists. If a current transaction is active, the operation
is transactional. If not, it is non-transactional.

transaction

A transaction event policy indicates the event should be generated or consumed within
the scope of atransaction. If a current transaction is not active, a new one is initiated
before sending the event or invoking the operation on the proxy object provided by the
component. The new transaction is committed as soon as the operation is complete.

Transaction policy declarations can be defined in the deployment descriptor for each
event port defined by the component.

4.2.8.2 Security Policiesfor Events

CORBA components permits access control policies based on roles to be associated
with the generation and consumption of events. This is accomplished by associating
ACLs with the component ports used to emit/publish and consume events and using
CORBA security to restrict access. These policies provide access control based on role
for both event generation and consumption.

4.2.9 Persistence

The entity container API type supports the use of a persistence mechanism for making
component state durable; for example, storing it in a persistent store like a database.
The entity container API type defines two forms of persistence support:

® container-managed persistence (CMP) - the component developer simply defines
the state that is to be made persistent and the container (in conjunction with
generated code) automatically saves and restores state as required.

Container-managed persistence is selected by defining the abstract state associated
with a component segment using the state declaration language of the CORBA
persistent state service and connecting that state declaration to a component
segment using CIDL.

* self-managed persistence (SMP) - the component developer assumes the
responsibility for saving and restoring state when requested to do so by the
container.

Self-managed persistence is selected via CIDL declaration and triggered by the
container invoking the callback interfaces (which the component must implement)
defined later in this chapter (Section 4.3, “ Server Programming Interfaces - Basic
Components,” on page 4-21).

June 2002 CORBA Components: The Server Programming Environment 4-13

4-14

429.1

4.29.2

Table 4-5 summarizes the choices and their required responsibilities.

Table4-5 Persistence Support for Entity Container APl Type

Per sistence Per sistence Responsibility | Persistence Callback
Support Mechanism Classes Interfaces
Container CORBA Container Generated Generated
Managed Code Code
Container User Container Component Generated
Managed implements Code
Self-managed | CORBA Component Generated Component
Code implements
Self-managed | User Component Component Component
implements implements

Container-managed vs. self-managed persistence is selected via the deployment
descriptor for each segment of the component.

Container-managed Persistence

Container-managed persistence may be accomplished using the CORBA persistent
state service or any user-defined persistence mechanism. When the CORBA persistent
state service is used, the container manages all interactions with the persistence
provider and the component developer need not use the persistence interfaces offered
by the container. With container-managed persistence using the CORBA persistent
state service, it is possible to provide automatic code generation for the storage
factories, finders, and some callback operations.

If container-managed persistence is to be accomplished with a user-defined persistence
mechanism, the component developer must implement the various persistence classes
defined in the persistence framework.

Container-managed persistence is selected using CIDL and tailored using XML at
deployment time to specify connections to specific persistence providers and persistent
stores.

Self-managed Persistence

Self-managed persistence is also supported by the entity container API type. Like
container-managed persistence, the component developer has two choices: to use the
CORBA persistent state service or some user-defined persistence mechanism. But
since no declarations are available to support code generation, the component
developer is responsible for implementing both the callback interfaces and the
persistence classes. The container supports access to a component persistence
abstraction provided by the CORBA persistent state service, which hides many of the
details of the underlying persistence mechanism from the component developer.

CORBA Components, v3.0 June 2002

Self-managed persistence is selected using CIDL and tailored using XML at
deployment time to specify connections to specific persistence providers and persistent
stores.

4.2.10 Application Operation Invocation

The application operations of a component can be specified on both the component’s
supported interfaces and the provided interfaces. These operations are normal CORBA
object invocations.

Application operations may raise exceptions, both application exceptions (i.e., those
defined as part of the IDL interface definition) and system exceptions (those that are
not). Exceptions defined as part of the IDL interfaces defined for a component (that
includes both provided interfaces and supported interfaces) are raised back to the client
directly and do not affect the current transaction. All other exceptions raised by the
application are intercepted by the container which then raises the
TRANSACTION_ROLLEDBACK exception to the client, if a transaction is active.
Otherwise they are reported back to the client directly.

4.2.11 Component Implementations

A component implementation consists of one or more executors. Each executor
describes the implementation characteristics of a particular component segment. The
session container API type consists of a single executor with a single segment that is
activated in response to an operation request on any component facet. The entity
container API type can be made up of multiple segments, each of which is associated
with a different abstract state declaration. Each segment is independently activated
when an operation request on a facet associated with that segment is received.

4.2.12 Component Levels

The CORBA component specification defines two levels of component function that
can be used by component developers and supported by CORBA container providers:

® basic - The basic CORBA component supports a single interface (or multiple
interfaces related by inheritance) and does not define any ports (provided interfaces
or event source/sinks). The implementation of a basic component may use
transaction, security, and simple persistence (i.e., a single segment) and relies on its
container to manage the construction of CORBA object references.

The basic component is functionally equivalent to the EJB 1.1 Component
Architecture.

® extended - The extended component is a basic component with multiple ports
(supported interfaces, provided interfaces and/or event source/sinks). The
implementation of the extended component may use all basic function, advanced
persistence (multiple segments) plus the event model and participates in the
construction of component object references.

June 2002 CORBA Components: The Server Programming Environment 4-15

4-16

The component interfaces defined in this specification have been structured into
functional modules corresponding to the two levels of components defined above.

® Basic container APIs are defined in Section 4.3, “Server Programming Interfaces -
Basic Components,” on page 4-21.

® Extended container APIs are defined in Section 4.4, “ Server Programming
Interfaces - Extended Components,” on page 4-33.

Partitioning the component function into two discrete packages permitsthe
EJB 1.1 APIsto be used to implement basic CORBA componentsin Java. It
also supports the construction of CORBA components in any supported
CORBA language that can be accessed by EJB clients. Thisis described
further in the “ Integrating with Enterprise JavaBeans" chapter.

4.2.13 Component Categories

4.2.13.1

As indicated in Section 4.1.4, “Component Categories,” on page 4-5, this specification
defines four component categories whose behavior is specified by the two container
API types. Additionally we reserve a component category to describe the empty
container (i.e., a container API type that does not use one of the API frameworks
defined in this specification). The four component categories are described briefly in
the following sections. The component categories are independent of the component
levels defined in Section 4.2.12, “Component Levels,” on page 4-15.

The Service Component

The service component is a CORBA component with the following properties:
® no state

® no identity

® behavior

The lifespan of a service component is equivalent to the lifetime of a single operation
request (i.e., method) so it is useful for functions such as command objects that have
no duration beyond the lifetime of a single client interaction with them. A service
component can also be compared to atraditional TP monitor program like a Tuxedo
service or a CICS transaction. A service component provides a simple way of
wrapping existing procedural applications.

A service component is equivalent to a stateless EJB session bean.

Table 4-6 summarizes the characteristics of a service component as seen by the server
programmer.

CORBA Components, v3.0 June 2002

June 2002

4.2.13.2

Table4-6 Service Component Design Characteristics

Design
Characteristic

Property

External Interfaces

As defined in the component IDL

Internal Interfaces

Base Set plus
SessionContext (basic)
Session2Context (extended)

Callback Interfaces

SessionComponent

CORBA Usage Model stateless
External API Types keyless
Client Design Pattern Factory
Persistence No
Servant Lifetime Policy | method

Transactions May use, but not included in current transaction
Events Transactional or Non-transactional
Executor Single segment with a single servant and no

managed storage

Because of its absence of state, any programming language servant can service any
Objectld, enabling such servants to be managed as a pool or dynamically created as
required, depending on usage patterns. Because a service component has no identity,
Objectlds can be managed by the POA, not the component implementor, and the
client sees only the factory design pattern.

The service component can use either container-managed or self-managed transactions.

The Session Component

The session component is a CORBA component with the following properties:
® transient state
® jdentity (which is not persistent)

®* behavior

The lifespan of a session component is specified using the servant lifetime policies
defined in Section 4.2.5, “Servant Lifetime Management,” on page 4-8. A session
component (with atransaction lifetime policy) is similar to an MTS component and is

CORBA Components: The Server Programming Environment 4-17

4-18

4.2.13.3

useful for modeling things like iterators, which require transient state for the lifetime
of aclient interaction but no persistent store. A session component is equivalent to the
stateful session bean found in EJB.

Table 4-7 summarizes the characteristics of a session component as seen by the server
programmer.

Table4-7 Session Component Design Characteristics

Design Property

Characteristic

External Interfaces As defined in the component IDL
Internal Interfaces Base Set plus

SessionContext (basic)
Session2Context (extended)

Callback Interfaces SessionComponent plus (optionally)
SessionSynchronization

CORBA usage model conversational
Client Design Pattern Factory
External APl Types keyless
Persistence No

Servant Lifetime Policy | Any

Transactions May use, but not included in current transaction

Events Transactional or Non-transactional

Executor Single segment with a single servant and no managed
storage

A programming language servant is allocated to an Objectld for the duration of the
servant lifetime policy specified. At that point, the servant can be returned to a pool
and re-used for a different Objectld. Alternatively, servants may be dynamically
created as required, depending on usage patterns. Because a session component has no
persistent identity, Objectlds can be managed by the container, however extended
components may choose to participate in creating references if desired, and the client
sees only the factory design pattern.

The session component shall use either container-managed or self-managed
transactions.

The Process Component

The process component is a CORBA component with the following properties:

® Persistent state, which is not visible to the client and is managed by the process
component implementation or the container.

CORBA Components, v3.0 June 2002

4

June 2002

® Persistent identity, which is managed by the process component and can be made
visible to the client only through user-defined operations.

® Behavior, which may be transactional.

The process component is intended to model objects that represent business processes
(e.g., applying for aloan, creating an order, etc.) rather than entities (e.g., customers,
accounts, etc.). The major difference between process components and entity
components is that the process component does not expose its persistent identity to the
client (except through user-defined operations).

Table 4-8 summarizes the characteristics of process component as seen by the server
programmer.

Table 4-8 Process Component Design Characteristics

Design Property

Characteristic

External Interfaces As defined in component IDL
Internal Interfaces Base set plus

EntityContext (basic)
Entity2Context (extended)

Callback Interfaces EntityComponent

CORBA usage model durable

Client Design Pattern Factory
External API Types keyless
Persistence Self-managed with or without PSS

or Container-managed with or without PSS

Servant Lifetime Policy | Any

Transactions May use, and can be included in current transaction
Events Non-transactional or transactional events
Executor Multiple segments with associated managed storage

A process component may have transactiona behavior. The container will interact with
the CORBA transaction service to participate in the commit process. The process
component shall use container-managed transactions. This is identical to the EJB
restriction for Entity Beans.

The process component can use container-managed or self-managed persistence
using either the CORBA persistent state service or a user-defined persistence
mechanism. The implications of the various choices are described in Section 4.2.9,
“Persistence,” on page 4-13. The entity container uses callback interfaces, which
enable the process component’s implementation to retrieve and save state data at
activation and passivation respectively.

CORBA Components: The Server Programming Environment 4-19

4-20

4.2.13.4 TheEntity Component

The entity component is a CORBA component with the following properties:

® Persistent state, which is visible to the client and is managed by the entity
component implementation or the container.

® |dentity, which is architecturally visible to its clients through a primarykey
declaration.

® Behavior, which may be transactional.

As afundamental part of the architecture, entity components expose their persistent
state to the client as a result of declaring a primarykey value on their home
declaration. The entity component may be used to implement the entity bean in EJB.

Table 4-9 summarizes the characteristics of entity component as seen by the server
programmer:

Table4-9 Entity Component Design Characteristics

Design Property

Characteristic

External Interfaces As defined in the component IDL
Internal Interfaces Base set plus

EntityContext (basic)
Entity2Context (extended)

Callback Interfaces EntityComponent

CORBA usage model durable

Client Design Pattern Factory or Finder
External API Types keyfull
Persistence Self-managed with or without PSS

or Container-managed with or without PSS

Servant Lifetime Policy | Any

Transactions May use, and can be included in current transaction
Events Non-transactional or transactional events
Executor Multiple segments with associated managed storage

The entity component shall use container-managed transactions. The container shall
interact with the CORBA transaction service to participate in the commit process. This
isidentical to the EJB restriction for Entity Beans.

The entity component can use container-managed or self-managed persistence using
either the CORBA persistent state service or a user-defined persistence mechanism.
The implications of the various choices are described in Section 4.2.9, “Persistence,’

CORBA Components, v3.0 June 2002

on page 4-13. The entity container uses callback interfaces that enable the entity
component’s implementation to retrieve and save state data at activation and
passivation, respectively.

4.3 Server Programming I nterfaces- Basic Components

June 2002

This section defines the local interfaces used and provided by the component devel oper
for basic components. These interfaces are then grouped as follows:

® Interfaces common to both container API types.
® [nterfaces supported by the session container API type only.

® Interfaces supported by the entity container API type only.

Unless otherwise indicated, all of these interfaces are defined within the
Components module.

4.3.1 Component Interfaces

All components deal with three sets of interfaces:

® Internal interfaces that are used by the component developer and provided by the
container to assist in the implementation of the component’s behavior.

® External interfaces that are used by the client and implemented by the component
devel oper.

® Callback interfaces that are used by the container and implemented by the
component, either in generated code or directly, in order for the component to be
deployed in the container.

A container APl type defines a base set of internal interfaces which the component
developers use in their implementation. These interfaces are then augmented by others
that are unique to the component category being developed.

® CCMContext - serves as a bootstrap and provides accessors to the other internal
interfaces including access to the runtime services implemented by the container.

Each container API type has its own specialization of CCMContext, which we
refer to as a context.

® UserTransaction - wraps the demarcation subset of the CORBA transaction
service required by the application developer.

®* EnterpriseComponent - the base class that al callback interfaces derive from.

All components implement a callback interface that is determined by the component
category. It serves the same role as EnterpriseBean in EJB.

When a component instance is instantiated in a container, it is passed a reference to its
context, alocal interface used to invoke services. For basic components, these services
include transactions and security. The component uses this reference to invoke
operations required by the implementation at runtime beyond what is specified in its
deployment descriptor.

CORBA Components: Server Programming I nterfaces - Basic Components 4-21

4-22

4.3.2 Interfaces Common to both Container API Types

This section describes the interfaces and operations provided by both container API
types to support all categories of CORBA components.

4.3.2.1 The CCMContext Interface

The CCMContext is an internal interface that provides a component instance with
access to the common container-provided runtime services applicable to both
container API types. It serves as a “bootstrap” to the various services the container
provides for the component.

The CCMContext provides the component access to the various services provided by
the container. It enables the component to simply obtain all the references it may
require to implement its behavior.

typedef SecurityLevel2::Credentials Principal; exception lllegalState { };

local interface CCMContext {
Principal get_caller_principal();
CCMHome get_ CCM_home();
boolean get_rollback_only() raises (lllegalState);
Transaction::UserTransaction get_user_transaction()

raises (lllegalState);

boolean is_caller_in_role (in string role);
void set_rollback_only() raises (lllegalState);

¥
get_caller_principal

Theget_caller_principal operation obtains the CORBA security credentials in effect
for the caller. Security on the server is primarily controlled by the security policy in the
deployment descriptor for this component. The component may use this operation to
determine the credentials associated with the current client invocation.

get_ CCM_home

The get_ CCM_home operation is used to obtain a reference to the home interface.
The home is the interface that supports factory and finder operations for the component
and is defined by the home declaration in component IDL.

get_rollback_only

The get_rollback_only operation is used by a component to test if the current
transaction has been marked for rollback. The get_rollback_only operation returns
TRUE if the transaction has been marked for rollback, otherwise it returns FAL SE. If
no transaction is active, the IllegalState exception shall be raised. When
get_rollback_only isissued by a component, it resultsin a

CORBA Components, v3.0 June 2002

June 2002

4322

4.3.2.3

CosTransaction::Current::get_status being issued to the CORBA transaction
service and the status value returned being tested for the MARKED_ROL L BACK
state.

get_user_transaction

The get_user_transaction operation is used to access the
Transaction::UserTransaction interface. The UserTransaction interface is used
to implement self-managed transactions. The lllegalState exception shall be raised if
this component is using container-managed transactions.

is_caller_in_role

Theis_caller_in_role operation is used by the CORBA component to compare the
current credentials to the credentials defined by the role parameter. If they match,
TRUE isreturned. If not, FAL SE is returned.

set_rollback_only

The set_rollback_only operation is used by a component to mark an existing
transaction for abnormal termination. If no transaction is active, the lllegalState
exception shall be raised. When set_rollback_only isissued by a component, it
results in a CosTransaction::Current::rollback_only being issued to the CORBA
transaction service. The rules for the use of this operation are equivalent to the rules of
its corresponding CORBA transaction service operation.

The Home Interface

A home is an external interface that supports factory and finder operations for the
component. These operations are generated from the home IDL declaration (see
Section 1.7, “Homes,” on page 1-32). The context supports an operation
(get_CCM_home) to obtain a reference to the component’s home interface.

The User Transaction Interface

A CORBA component may use either container-managed or self-managed transactions,
depending on the component category. With container-managed transactions, the

component implementation relies on the transaction policy declarations packaged with
the deployment descriptor and contains no transaction APIsin itsimplementation code.

Thisisidentical to container-managed transactionsin EJB or the default
processing of an MTS component.

A component specifying self-managed transactions may use the CORBA transaction
service directly to manipulate the current transaction or it may choose to use a simpler
API, defined by this specification, which exposes only those transaction demarcation
functions needed by the component implementation.

CORBA Components: Server Programming I nterfaces - Basic Components 4-23

4-24

Manipulation of the current transaction shall be consistent between the client, the
transaction policy specified in the deployment descriptor, and the component
implementation.

For example, if the client or the container starts a transaction, the compo-
nent may not end it (commit or rollback). The rules to be used are defined
by the CORBA transaction service.

If the component uses the CosTransactions::Current interface, all operations
defined for Current may be used as defined by the CORBA transaction service with
the following exceptions:

®* The Control object returned by suspend may only be used with resume.

® Operations on Control are not supported with CORBA components and may raise
the NO_IMPLEMENT system exception.

The Control interface in the CORBA transaction service supports acces-
sorsto the Coordinator and Terminator interfaces. The Coordinator is
used to build object versions of XA resource managers. The Terminator is
used to allow a transaction to be ended by someone other than the origina-
tor. Snce neither function is within the scope of the demarcation subset of
CORBA transactions used with CORBA components, we allow CORBA
transaction services implementations used with CORBA components to
raisethe NO_IMPLEMENT exception. This provides the same level of
function asthe bean-managed transaction policy in Enterprise JavaBeans.

The UserTransaction is an internal interface implemented by the container and is
defined within its own module, Transaction, within the Components module
(Components::Transaction). Because the UserTransaction is a wrapper over
CosTransactions::Current, it is thread specific. The UserTransaction exposes a
simple demarcation subset of the CORBA transaction service to the component. The
context supports an operation (get_user_transaction) to obtain a reference to the
UserTransaction interface. The UserTransaction interface is defined by the
following IDL.

typedef sequence<octet> TranToken;
exception NoTransaction { };
exception NotSupported { };
exception SystemError { };

exception RollbackError { };
exception HeuristicMixed { };
exception HeuristicRollback { };
exception Security { };

exception InvalidToken { };

enum Status {
ACTIVE,
MARKED_ROLLBACK,
PREPARED,
COMMITTED,
ROLLED_BACK,
NO_TRANSACTION,

CORBA Components, v3.0 June 2002

June 2002

PREPARING,
COMMITTING,
ROLLING_BACK

b

local interface UserTransaction {

void begin () raises (NotSupported, SystemError);

void commit () raises (RollbackError , NoTransaction,
HeuristicMixed, HeuristicRollback,
Security, SystemError);

void rollback () raises (NoTransaction, Security, SystemError);

void set_rollback_only () raises (NoTransaction, SystemError);

Status get_status() raises (SystemError);

void set_timeout (in long to) raises (SystemError);

TranToken suspend () raises (NoTransaction, SystemError);

void resume (in TranToken txtoken)
raises (InvalidToken, SystemError);

¥
begin

The begin operation is used by a component to start a new transaction and associate it
with the current thread. When begin isissued by a component, it resultsin a
CosTransaction::Current::begin with report_heuristics set to TRUE being
issued to the CORBA transaction service. The rules for the use of this operation are
equivalent to the rules of its corresponding CORBA transaction service operation. The
NotSupported exception is returned if it is received from the CORBA transaction
service. Since nested transactions are not supported by CORBA component containers,
this indicates an attempt to start a new transaction when an existing transaction is
active. All other exceptions are converted to the SystemError exception.

commit

The commit operation is used by a component to terminate an existing transaction
normally. When commit is issued by a component, it resultsin a
CosTransaction::Current::commit being issued to the CORBA transaction service.
The rules for the use of this operation are equivalent to the rules of its corresponding
CORBA transaction service operation. If no transaction is active, the NoTransaction
exception shall be raised. If the TRANSACTION_ROLLEDBACK system
exception is returned, it is converted to the RollbackError exception. The
CosTransaction::HeuristicMixed and CosTransaction::HeuristicRollback
exceptions are reported as the HeuristicMixed and HeuristicRollback exceptions
respectively. The NO_PERMISSION system exception is converted to the
Security exception. All other exceptions are converted to the SystemError
exception.

CORBA Components: Server Programming I nterfaces - Basic Components 4-25

4-26

rollback

The rollback operation is used by a component to terminate an existing transaction
abnormally. When rollback is issued by a component, it resultsin a
CosTransaction::Current::rollback being issued to the CORBA transaction
service. The rules for the use of this operation are equivalent to the rules of its
corresponding CORBA transaction service operation. If no transaction is active, the
NoTransaction exception shall be raised. The NO_PERMISSION system
exception is converted to the Security exception. All other exceptions are converted
to the SystemError exception.

set_rollback_only

The set_rollback_only operation is used by a component to mark an existing
transaction for abnormal termination. When set_rollback_only isissued by a
component, it resultsin aCosTransaction::Current::rollback_only being issued to
the CORBA transaction service. The rules for the use of this operation are equivalent
to the rules of its corresponding CORBA transaction service operation. If no
transaction is active, the NoTransaction exception shall be raised. All other
exceptions shall be converted to the SystemError exception.

get_status

The get_status operation is used by a component to determine the status of the
current transaction. If no transaction is active, it returns the NoTransaction status
value. Otherwise it returns the state of the current transaction. When get_status is
issued by a component, it results in a CosTransaction::Current::get_status being
issued to the CORBA transaction service. The status values returned by this operation
are equivalent to the status values of its corresponding CORBA transaction service
operation. All exceptions shall be converted to the SystemError exception.

set_timeout

The set_timeout operation is used by a component to associate a time-out value with
the current transaction. The timeout value (to) is specified in seconds. When
set_timeout isissued by a component, it resultsin a
CosTransaction::Current::set_timeout being issued to the CORBA transaction
service. The rules for the use of this operation are equivalent to the rules of its
corresponding CORBA transaction service operation. All exceptions are converted to
the SystemError exception.

suspend

The suspend operation is used by a component to disconnect an existing transaction
from the current thread. The suspend operation returns a TranToken, which can only
be used in a subsequent resume operation. When suspend isissued by a component,
it results in a CosTransaction::Current::suspend being issued to the CORBA
transaction service. The rules for the use of this operation are more restrictive than the
rules of its corresponding CORBA transaction service operation:

CORBA Components, v3.0 June 2002

® Only one transaction may be suspended.

® The suspended transaction is the only transaction that may be resumed.

If no transaction is active, the NoTransaction exception shall be raised. All other
exceptions are converted to the SystemError exception.

resume

The resume operation is used by a component to reconnect a transaction previously
suspended to the current thread. The TranToken identifies the suspended transaction
that is to be resumed. If the transaction identified by TranToken has not been
suspended, the InvalidToken exception shall be raised. When resume isissued by a
component, it results in a CosTransaction::Current::resume being issued to the
CORBA transaction service. The rules for the use of this operation are more restrictive
than the rules of its corresponding CORBA transaction service operation since the
single suspended transaction is the only transaction that may be resumed. All other
exceptions are converted to the SystemError exception.

The User Transaction interface is equivalent to the User Transaction
interface (javax.transaction.User Transaction) in EJB with the addition of
the suspend and resume operations.

4.3.2.4 TheEnterpriseComponent Interface

All CORBA components must implement an interface derived from the
EnterpriseComponent interface to be housed in a component container.
EnterpriseComponent is a callback interface that defines no operations.

local interface EnterpriseComponent { };

4.3.3 Interfaces Supported by the Session Container API Type

This section describes the interfaces supported by the session container API type. This
includes both internal interfaces provided by the container and callback interfaces,
which must be implemented by components deployed in this container API type.

4.3.3.1 The SessionContext | nterface

The SessionContext is an internal interface that provides a component instance with
access to the container-provided runtime services. It serves as a “bootstrap” to the
various services the container provides for the component. The SessionContext
enables the component to simply obtain al the references it may require to implement
its behavior.

exception lllegalState { };

local interface SessionContext : CCMContext {
Object get_ CCM_object() raises (lllegalState);

b

June 2002 CORBA Components: Server Programming I nterfaces - Basic Components 4-27

4-28

4.3.3.2

get_CCM_object

The get_ CCM_object operation is used to get the reference used to invoke the
component. For basic components, this will always be the component reference. For
extended components, this will be a specific facet reference. If this operation is issued
outside of the scope of a callback operation, the lllegalState exception is returned.

The SessionComponent Interface

The SessionComponent is a callback interface implemented by a session CORBA
component. It provides operations for disassociating a context with the component and
to manage servant lifetimes for a session component.

enum CCMExceptionReason {
SYSTEM_ERROR,
CREATE_ERROR,
REMOVE_ERROR,
DUPLICATE_KEY,
FIND_ERROR,
OBJECT_NOT_FOUND,
NO_SUCH_ENTITY};

exception CCMException {CCMExceptionReason reason;};

local interface SessionComponent : EnterpriseComponent {
void set_session_context (in SessionContext ctx)
raises (CCMException);
void ccm_activate() raises (CCMException);
void ccm_passivate() raises (CCMException);
void ccm_remove () raises (CCMException);

set_session_context

The set_session_context operation is used to set the SessionContext of the
component. The container calls this operation after a component instance has been
created. This operation is called outside the scope of an active transaction.The
component may raise the CCMEXxception with the SYSTEM_ERROR minor code
to indicate a failure caused by a system level error.

ccm_activate

The ccm_activate operation is called by the container to notify a session component
that it has been made active. The component instance should perform any initialization
required prior to operation invocation.The component may raise the CCMEXxception
with the SYSTEM_ERROR minor code to indicate a failure caused by a system level
error.

CORBA Components, v3.0 June 2002

June 2002

4.3.3.3

ccm_passivate

The ccm_passivate operation is called by the container to notify a session
component that it has been made inactive. The component instance should release any
resources it acquired at activation time. The component may raise the
CCMEXxception with the SYSTEM_ERROR minor code to indicate a failure caused
by a system level error.

ccm_remove

The ccm_remove operation is called by the container when the servant is about to be
destroyed. It informs the component that it is about to be destroyed. The component
may raise the CCMEXxception with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

The SessionSynchronization Interface

The SessionSynchronization interface is a callback interface that may optionally
be implemented by the session component. It permits the component to be notified of
transaction boundaries by its container.

exception CCMException {CCMExceptionReason reason;};

local interface SessionSynchronization {
void after_begin () raises (CCMException);
void before_completion () raises (CCMException);
void after_completion (
in boolean committed) raises (CCMEXxception);

¥
after_begin

The after_begin operation is called by the container to notify a session component
that a new transaction has started, and that the subsequent operations will be invoked in
the context of the transaction.The component may raise the CCMEXxception with the
SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

before_completion

The before_completion operation is called by the container just prior to the start of
the two-phase commit protocol. The container implements the
CosTransactions::Synchronization interface of the CORBA transaction service
and invokes the before_completion operation on the component before starting its
own processing. The component may raise the CCMEXxception with the
SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

CORBA Components: Server Programming I nterfaces - Basic Components 4-29

4-30

after_completion

The after_completion operation is called by the container after the completion of the
two-phase commit protocol. If the transaction has committed, the committed value is
set to TRUE. If the transaction has been rolled back, the committed value is set to
FAL SE. The container implements the CosTransactions::Synchronization
interface of the CORBA transaction service and invokes the after_completion
operation on the component after completing its own processing. The component may
raise the CCMEXxception with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

4.3.4 Interfaces Supported by the Entity Container API Type

434.1

This section describes the interfaces supported by the entity container API type. This
includes both internal interfaces provided by the container and callback interfaces that
must be implemented by components deployed in this container API type.

The EntityContext I nterface

The EntityContext is an internal interface that provides a component instance with
access to the container-provided runtime services. It serves as a “bootstrap” to the
various services the container provides for the component.

The EntityContext enables the component to simply obtain all the references it may
require to implement its behavior.

exception lllegalState { };

local interface EntityContext : CCMContext {
Object get_ CCM_object () raises (lllegalState);
PrimaryKeyBase get_primary_key () raises (lllegalState);

|3
get_CCM_object

The get_ CCM_object operation is used to obtain the reference used to invoke the
component. For basic components, this will always be the component reference. For
extended components, this will be a specific facet reference. If this operation is issued
outside of the scope of a callback operation, the lllegalState exception is returned.

get_primary_key

The get_primary_key operation is used by an entity component to access the
primary key value declared for this component’s home. This operation is equivalent to
issuing the same operation on the component’s home interface. If this operation is
issued outside of the scope of a callback operation, the lllegalState exception is
returned.

CORBA Components, v3.0 June 2002

June 2002

4.3.4.2 TheEntityComponent Interface

The EntityComponent is a callback interface implemented by both process and
entity components. It contains operations to manage the persistent state of the
component.

Note — As currently defined, any operation request will cause the container to activate
the component segment, if required. Since the component reference is well-structured,
we could consider the possibility of trapping navigation operations prior to activation
and executing them without actually activating the component (or we could leave that
to clever implementations).

exception CCMException {CCMExceptionReason reason;};

local interface EntityComponent : EnterpriseComponent {
void set_entity_context (in EntityContext ctx)
raises (CCMException);
void unset_entity_context (Jraises (CCMException);
void ccm_activate () raises (CCMException);
void ccm_load (Jraises (CCMEXxception);
void ccm_store (Jraises (CCMException);
void ccm_passivate (Jraises (CCMException);
void ccm_remove (raises (CCMException);

¥
set_entity_context

The set_entity _context operation is used to set the EntityContext of the
component. The container calls this operation after a component instance has been
created. This operation is called outside the scope of an active transaction. The
component may raise the CCMEXxception with the SYSTEM_ERROR minor code
to indicate a failure caused by a system level error.

unset_entity_context

The unset_entity _context operation is used to remove the EntityContext of the
component. The container calls this operation just before a component instance is
destroyed. This operation is called outside the scope of an active transaction. The
component may raise the CCMEXxception with the SYSTEM_ERROR minor code
to indicate a failure caused by a system level error.

ccm_activate
The ccm_activate operation is called by the container to notify the component that it
has been made active. For most CORBA component implementations, no action is

required. The component instance should perform any initialization (other than
establishing its state) required prior to operation invocation. This operation is called

CORBA Components: Server Programming I nterfaces - Basic Components 4-31

4-32

within an unspecified transaction context. The component may raise the
CCMEXxception with the SYSTEM_ERROR minor code to indicate a failure caused
by a system level error.

ccm_load

The ccm_load operation is called by the container to instruct the component to
synchronize its state by loading it from its underlying persistent store. When container-
managed persistence is implemented using the CORBA persistent state service, this
operation can be implemented in generated code. If self-managed persistence is being
used, the component is responsible for locating its state in a persistent store. This
operation executes within the scope of the current transaction. The component may
raise the CCMException with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

ccm_store

The ccm_store operation is called by the container to instruct the component to
synchronize its state by saving it in its underlying persistent store. When container-
managed persistence is implemented using the CORBA persistent state service, this
operation can be implemented in generated code. If self-managed persistence is being
used, the component is responsible for saving its state in the persistent store. This
operation executes within the scope of the current transaction. The component may
raise the CCMEXxception with the SYSTEM_ERROR minor code to indicate a
failure caused by a system level error.

ccm_passivate

The ccm_passivate operation is called by the container to notify the component that
it has been made inactive. For most CORBA component implementations, no action is
required. The component instance should perform any termination processing (other
than saving its state) required prior to being passivated. This operation is called within
an unspecified transaction context. The component may raise the CCMEXxception
with the SYSTEM_ERROR minor code to indicate a failure caused by a system level
error.

ccm_remove

The ccm_remove operation is called by the container when the servant is about to be
destroyed. It informs the component that it is about to be destroyed. This operation is
always called outside the scope of a transaction. The component raises the
CCMEXxception with the REMOVE_ERROR minor code if it does not alow the
destruction of the component. The component may raise the CCMException with the
SYSTEM_ERROR minor code to indicate a failure caused by a system level error.

The EntityComponent interface is equivalent to the EntityBean interface
in Enterprise JavaBeans. Container-managed persistence with the CORBA
persistent state service supports automatic code generation for ccm_load
and ccm_store. For self-managed persistence, the component i mplementor
provides the ccm_load and ccm_store methods. Since both process and

CORBA Components, v3.0 June 2002

entity components have persistent state and container-managed persis-
tence, the same callback interfaces can be used.

4.4 Server Programming Interfaces - Extended Components

This section defines the local interfaces used and provided by the component devel oper
for extended components. These interfaces are grouped as in Section 4.3, “ Server
Programming Interfaces - Basic Components,” on page 4-21. Unless otherwise
indicated, all of these interfaces are defined within the Components module.
Extended components add interfaces in the following areas:

® CCM2Context - adds functions unique to extended components.

Each container API type has its own specialization of CCM2Context that we refer
to as a context. The context for extended components adds accessors to persistence
services and supports operations for managing servant lifetime policy, and creating
and managing object references in conjunction with the POA.

® Componentld - encapsulates a component identifier, which is an abstract
information model used to locate the component’s state.

Only the entity container API type supports the Componentld interface.

® Event - offers the subset of the CORBA Notification service supported by CORBA
components.

4.4.1 Interfaces Common to both Container API Types

This section describes the interfaces and operations provided for extended components
by both container API types to support all categories of CORBA components.

4.4.1.1 TheCCM2Context Interface

The CCM2Context is an internal interface that extends the CCMContext interface
to provide the extended component instance with access to additional container-
provided runtime services applicable to both container API types. These services
include advanced persistence using the CORBA Persistent State service, and runtime
management of component references and servants using the POA. The
CCM2Context is defined by the following IDL:

typedef CosPersistentState::CatalogBase CatalogBase;
typedef CosPersistentState:: Typeld Typeld;

exception PolicyMismatch { };
exception PersistenceNotAvailable { };

local interface CCM2Context : CCMContext {
HomeRegistration get_home_registration ();
EventsNotification::Event get_event();
void req_passivate () raises (PolicyMismatch);

June 2002 CORBA Components: Server Programming I nterfaces - Extended Components 4-33

4-34

4412

CatalogBase get_persistence (in Typeld catalog_type_id)
raises (PersistenceNotAvailable);

h
get_home_registration

The get_home_registration operation is used to obtain a reference to the
HomeRegistration interface. The HomeRegistration is used to register component
homes so they may be located by the HomeFinder.

req_passivate

Thereq_passivate operation is used by the component to inform the container that it
wishes to be passivated when its current operation completes. To be valid, the
component must have a servant lifetime policy of component or container. If not, the
PolicyMismatch exception shall be raised.

get_persistence

The get_persistence operation provides the component access to a persistence
framework provided by an implementation of the CORBA Persistence State service. It
returns a CosPersistentState::CatalogBase, which serves as an index to the
available storage homes. The CatalogBase is identified by its
CosPersistentState::Typeld catalog_type id. If the CatalogBase identified by
catalog_type id is not available on this container, the PersistenceNotAvailable
exception shall be raised.

The HomeRegistration I nterface

The HomeRegistration is an internal interface that may be used by the CORBA
component to register its home so it can be located by a HomeFinder.

The HomeRegistr ation interface allows a component implementation to
advertise a home instance that can be used to satisfy a client' sfind_home
reguest. It may also be used by an administrator to do the same thing. Itis
likely that the combination of HomeRegistration and HomeFinder inter-
faces will work within the domain of a single container provider unless
multiple implementations use other shareable directory mechanisms (e.g,.
an LDAP global directory). Federating HomeFindersisa similar problem
to federating CORBA security domains and we defer to the security people
for an architecture for such federation rather than attempting to specify
such an architecture in this specification.

The HomeRegistration interface is defined by the following IDL:

local interface HomeRegistration {
void register_home (
in CCMHome home_ref,
in string home_name);
void unregister_home (in CCMHome home_ref);

b

CORBA Components, v3.0 June 2002

June 2002

44.1.3

register_home

The register_home operation is used to register a component home with the
HomeFinder so it can be located by a component client. The home_ref parameter
identifies the home being registered and can be used to obtain both the
CORBA::ComponentIR::ComponentDef (CCMHome::get_component_def)
and the CORBA::InterfaceDef (CORBA::Object::get_interface_def) to support
both HomeFinder::find_home_by component_type and
HomeFinder::find_home_by home_type. The home_name parameter identifies
an Interoperable Naming Service (INS) name that can be used as input to the
HomeFinder::find_home_by_name operation. If the home_name parameter is
NULL, no name is associated with this home so this home cannot be retrieved by
name.

unregister_home

The unregister_home operation is used to remove a component home from the
HomeFinder. Once unregister_home completes, a client will never be returned a
reference to the home specified as being unregistered. The home _ref parameter
identifies the home being unregistered.

The ProxyHomeRegi stration Interface

Because CORBA components exploit the dynamic activation features of the POA, it is
possible for some component types to provide a home that is not collocated with the
component instances it creates. This permits load balancing criteria to be applied in
selecting the actual server and POA where this instance will be created. The
ProxyHomeRegistration is an internal interface, derived from
HomeRegistration, which can be used by the CORBA component to register a
remote home (i.e., one that is not collocated with the component) so it can be returned
by a HomeFinder. The ProxyHomeRegistration interface is defined by the
following IDL:

exception UnknownActualHome { };
exception ProxyHomeNotSupported { };

local interface ProxyHomeRegistration : HomeRegistration {
void register_proxy_home (
in CCMHome rhome,
in CCMHome ahome)
raises (UnknownActualHome, ProxyHomeNotSupported);

|3
register_proxy_home

The register_proxy_home operation is used to register a component home, not
collocated with the instances that it can create, with the HomeFinder so the proxy
home can be used by component clients. The rhome parameter identifies the proxy
home being registered. The ahome parameter identifies the actual home that the

CORBA Components: Server Programming I nterfaces - Extended Components 4-35

4-36

4414

rhome is associated with. If the actual home specified by ahome is not known, the
UnknownActualHome exception shall beraised. If this component does not support
proxy homes, the ProxyHomeNotSupported exception shall be raised. Support for
proxy homes is a component implementation option.

The Event Interface

typedef CosNotification::EventHeader EventHeader;
typedef CosNotifyChannnelAdmin::Channelld Channel;

exception ChannelUnavailable { };
exception InvalidSubscription { };
exception InvalidName { };
exception InvalidChannel { };

local interface LocalCookie {
boolean same_as (in LocalCookie cookie);};
local interface Event {
EventConsumerBase create_channel
(out Channel chid)
raises (ChannelUnavailable);
LocalCookie subscribe (
in EventConsumerBase ecb,
in Channel chid)raises (ChannelUnavailable);
void unsubscribe (in LocalCookie cookie)
raises (InvalidSubscription);
EventConsumerBase obtain_channel (
in string supp_name,
in EventHeader hdr) raises (InvalidName);
void listen (in EventConsumerBase ecb,
in string csmr_name) raises (InvalidName);
void push (in EventBase evt);
void destroy_channel (in Channel chid)raises (InvalidChannel);

b

EJB does not have an event API yet, but one is under development. The
Java 2 Platform, Enterprise Edition (J2EE) does however have a messag-
ing API (JMS) that supports publish/subscribe. Thisisanarea that will
need to be harmonized with EJB in the future.

4.4.2 Interfaces Supported by the Session Container API Type

This section describes the interfaces supported for extended components by the session
container API type. This includes both internal interfaces provided by the container
and callback interfaces, which must be implemented by components deployed in this
container API type.

CORBA Components, v3.0 June 2002

June 2002

4.4.2.1 The Session2Context I nterface

The Session2Context is an internal interface that extends the SessionContext to
provide a component instance with access to additional container-provided runtime
services for the session container API type. It adds the ability to create references for
components deployed in a session container API type. The Session2Context is
defined by the following IDL:

enum BadComponentReferenceReason {
NON_LOCAL_REFERENCE,
NON_COMPONENT_REFERENCE,
WRONG_CONTAINER;

b

exception BadComponentReference {
BadComponentReferenceReason reason;
¥

exception lllegalState { };

local interface Session2Context : SessionContext, CCM2Context {
Object create_ref (in CORBA::Repositoryld repid);
Object create_ref from_oid (
in PortableServer::Objectld CORBA::OctetSeq oid,
in CORBA::Repositoryld repid);
PortableServer::Objectld
CORBA::OctetSeq get_oid_from_ref (in Object objref)
raises (lllegalState, BadComponentReference);

¥
create_ref

The create_ref operation is used to create a reference to be exported to clients to
invoke operations. The repid parameter identifies the Repositoryld associated with
the interface for which a reference is being created. Invocations on the new object
reference are delivered to the appropriate segment of the component that invokes this
operation. The Repositoryld must match the Repositoryld of the component itself,
one of its bases, one of its supported interfaces, or one of its facets.

create_ref _from_oid

The create_ref _from_oid operation is used to create a reference to be exported to
clients that includes information provided by the component which it can use on
subsequent operation requests. The oid parameter identifies the ObjectSeq to be
encapsulated in the reference and the repid parameter identifies the Repositoryld
associated with the interface for which a reference is being created.

CORBA Components: Server Programming I nterfaces - Extended Components 4-37

4-38

get_oid_from_ref

The get_oid_from_ref operation is used by the component to extract the oid
encapsulated in the reference. The objref parameter specifies the reference that
contains the oid. This operation must be called within an operation invocation. If not,
the lllegalState exception shall be raised. If the reference was not created by this
container, the BadComponentReference with the WRONG_CONTAINER minor
code is raised.

4.4.3 Interfaces Supported by the Entity Container API Type

443.1

This section describes the interfaces provided for extended components by the entity

container API type. This includes both internal interfaces provided by the container

and callback interfaces, which must be implemented by components deployed in this
container API type.

Component Identifiers

The Componentld interface is an internal interface provided by the entity container
API type through which the component implementation and the container exchange
identity information, referred to as component identifiers. The Componentlid
interface encapsulates a component identifier, which is an abstract information model.
The Componentld interface is used in the following ways:

® Component implementations (usually home executor implementations) create
component identifiers to describe new components, and to create object references
that encapsulate the provided description. The Entity2Context interface acts as a
factory for component identifiers and as the factory for object references.

® The container encodes the information encapsulated by the component identifier in
the object identifier value it uses internally to create the object reference on the
encapsulated POA. The encoding is not specified, since a container’s choice of
encoding does not affect interoperability or portability.

® While dispatching an incoming request, the container extracts and decodes the
component identifier from the Objectld. The extracted component identifier is
made available to the component executor through the context before the request is
dispatched to the component.

® When the container invokes ccm_load in the component executor, the
implementation of ccm_load uses the contents of the component identifier to
locate and incarnate the required component state.

In the following discussions, component identifiers and component object references
are sometimes used as though the terms were synonymous. Since there is a one-to-one
relationship between a component identifier and an object reference created from the
component identifier, this discussion occasionally uses the term “component reference”
to mean “the component reference created from the component identifier in question,”
for the sake of brevity.

CORBA Components, v3.0 June 2002

The Componentld interface does not explicitly specify the state representation it
encapsulates. The abstract state isimplied by the interface and reflects the structure of
the executor it describes (see the CCM Implementation Framework chapter for a
complete discussion of executor structure).

A component identifier encapsulates the following information:
« A facet identifier value denoting the target facet of the component reference.
» A segment identifier value denoting the target segment of the component
reference (i.e., the segment that supports the target facet).
» A sequence of segment descriptors.

A segment descriptor includes the following:
» A segment identifier denotes the segment being described, and

* astate identifier value that denotes the persistent state of the segment in some
storage mechanism.

A monolithic executor is represented as a degenerate case of the generalized
component identifier, where the target segment identifier is set to zero and the
sequence of segment descriptors contains a single element, whose segment identifier is
zero and whose state identifier denotes the persistent state of the component’s single
segment.

The facet identifier value zero is reserved to denote the component facet; that is, the
facet that supports the component equivalent interface. The segment identifier value
zero is reserved to denote the segment that supports the component facet. For
monolithic executors, the segment identifier values is always zero.

State identifier is an abstraction that generalizes a variety of possible state identity
schemes. This specification provides a mechanism for describing state identifiers that
can be extended by component implementors, allowing customization for storage
mechanisms that do not support the standard persistence interfaces.

The Componentld local interface and supporting constructs are defined by the
following IDL:

typedef short Segmentld;
const Segmentld COMPONENT_SEGMENT = 0;

typedef short Facetld;
const Facetld COMPONENT_FACET = 0;

typedef sequence<octet> IdData,;
typedef CosPersistentState::Pid Persistentld;

exception InvalidStateldData {};

typedef short StateldType;
const StateldType PERSISTENT _ID = 0;

abstract valuetype StateldValue {
StateldType get_sid_type();

June 2002 CORBA Components: Server Programming I nterfaces - Extended Components 4-39

4-40

IdData get_sid_data();
b

local interface StateldFactory {
StateldValue create (in IdData data) raises (InvalidStateldData);

b

valuetype PersistentldValue : StateldValue {
private Persistentld pid;
Persistentld get_pid();
factory init (in Persistentld pid);

h

valuetype SegmentDescr {

private StateldValue sid;

private Segmentld seg;

StateldValue get_sid();

Segmentld get_seg_id();

factory init (in StateldValue sid, in Segmentld seg);
|3

typedef sequence<SegmentDescr> SegmentDescrSeq;

local interface Componentld {
Facetld get_target_facet();
Segmentld get_target_segment();
StateldValue get_target_state id (in StateldFactory sid_factory)
raises (InvalidStateldData);
StateldValue get_segment_state_id (
in Segmentld seg,
in StateldFactory sid_factory)
raises (InvalidStateldData);
Componentld create_with_new_target (
in Facetld new_target_facet,
in Segmentld new_target_segment);
SegmentDescrSeq get_segment_descrs (
in StateldFactory sid_factory)
raises (InvalidStateldData);

b

4.4.3.2 Sateldvalue abstract valuetype

The StateldValue type is the base valuetype for concrete, storage-specific state
identity values. The container interacts with state identities completely in terms of this
interface. A single pre-defined concrete value type derived from StateldValue is
provided for Persistentld state identities. Component implementors, or suppliers of
storage mechanisms that do not support the CORBA component persistence model can
provide their own state identity types by deriving from StateldValue and
implementing the required behaviors properly.

CORBA Components, v3.0 June 2002

June 2002

44.3.3

4434

get_sid_type

The get_sid_type operation returns a discriminator (physically, a short) that
identifies the type of the state identity encapsulated by the StateldValue. This
specification defines the value zero (0) to denote a
Components::Extended::Persistentld state identifier.

get_sid_data

The get_sid_data operation returns the encapsulated state identity expressed in a
canonical form, as a sequence of octets. The implementation of the derived concrete
value type is responsible for converting its encapsulated data into this form, and for
supplying a factory that can construct an instance of the concrete type from an IdData
value (a sequence of octets).

SateldFactory Interface

StateldFactory is the abstract base interface for factories of state identity values
derived from StateldValue. An implementation of StateldFactory must be supplied
with the implementation of a concrete state identity type. If the IdData octet sequence
provided in the data parameter cannot be decoded to create a proper instance of the
expected state identity concrete type, the operation raises an InvalidStateldData
exception.

create
The create operation constructs an instance of a concrete state identifier from the

octet sequence parameter. This operation performs the inverse of the transformation
performed by the get_sid_data.

Persistentl dValue val uetype

The PersistentldValue type is a specialization of StateldValue that encapsulates a
Persistentld value for inclusion in a component identifier.

get_pid
The get_pid operation returns the Persistentld value encapsulated by the value type.
init

The initializer for PersistentldValue creates an instance of the valuetype that
encapsulates the Persistentld value passed as a parameter.

get_sid_value
The implementation of get_sid_value for PersistentldValue performs no

transformation on the encapsulated Persistentld value. The sequence of octets
returned by get_sid_value isidentica to the encapsulated Persistentld value.

CORBA Components: Server Programming I nterfaces - Extended Components 4-41

4-42

4435

44.3.6

SeggmentDescr val uetype

The SegmentDescr type describes an executor segment, encapsulating a segment
identifier and a state identifier. A component identifier for a segmented executor
encapsulates a sequence of SegmentDescr instances.

get_sid
The get_sid operation returns the state identity value of the segment being described.
get_seg_id

The get_seg_id operation returns the segment identifier of the segment being
described.

init

Thisinitializer sets the value of the encapsulated segment identifier and state identifier
to the values of the respective parameters.

Componentld Interface

The Componentld interface encapsul ates a complete component identity. I nstances of
Componentld can only be created by the Entity2Context interface, which is
supplied by the container, or by duplicating an existing component identifier with a
new target value, with Componentld::create_with_new_target. Instances of
Componentld are also provided by the EntityContext interface in the context of a
CORBA invocation. The value of the component identifier provided by the
Entity2Context shall be identical to the component identifier value used to create the
object reference on which the invocation was made. The Componentld interfaceis a
read-only interface. Once a component identifier is constructed by the
create_component_id operation or constructed internally and provided through the
Entity2Context interface, the value of the component identifier cannot be altered.

get_target facet

The get_target_facet operation returns the facet identifier of the facet, which is the
target of the component reference; that is, the target of requests made on the
component reference.

get_target_segment

The get_target_segment operation returns the segment identifier of the target
segment; that is, the segments that provides the target facet.

CORBA Components, v3.0 June 2002

June 2002

4.4.3.7

get_target_state id

The get_target_state_id operation returns the state identifier of the target segment.
The StateldFactory specified in the sid_factory parameter is used by the
implementation of get_target_state_id to construct the proper state identifier from
the octet sequence encapsulated by the component identifier. If the state identifier of
the target segment is a PersistentldValue, the sid_factory parameter may be nil.
Container implementations shall provide a default implementation of StateldFactory
to be used when the encapsulated state identifier value is a PersistentidValue. If
provided (or default) factory cannot construct a correct state identifier of the expected
type from the undecoded octet sequence encapsulated by the component identifier, the
operation raises an Invalid StateldData exception.

get_segment_state_id

The get_segment_state_id operation returns the state identifier of the segment
specified by the seg parameter. The semantics are otherwise identical to
get_target_state_id, with respect to the meaning and use of the sid_factory
parameter.

get_segment_descrs

The get_segment_descrs operation returns a sequence containing all of the
segment descriptors encapsulated by the component identifier. The sequence is a copy
of the encapsulated sequence. The state identifier factory in the sid_factory parameter
(or the default) is used by the implementation of get_segment_descrs to construct
state identifiers of the appropriate concrete subtype of StateldValue. If provided (or
default) factory cannot construct a correct state identifier of the expected type from the
undecoded octet sequence encapsulated by the component identifier, the operation
raises an InvalidStateldData exception.

create_with_new_target

The create_with_new_target operation creates a new component identifier that is
identical to the target component identifier, except that the target facet and target
segment values are replaced with the values of the new_target_facet and
new_target_segment parameters, respectively.

Thisoperation isintended primarily to be used in implementing navigation
operations.

The Entity2Context I nterface

The Entity2Context is an internal interface that extends the Entity Context interface
to provide the extended component with access to additional container-provided
runtime services for managing object references and advanced persistence. Object
references for components deployed in an entity container APl type can choose to use
the CORBA Persistent State service or some user defined persistence mechanism. The

CORBA Components: Server Programming I nterfaces - Extended Components 4-43

4-44

Componentld interface (defined in Section 4.4.3.6, “ Componentld Interface,” on
page 4-42) encapsulates this distinction when a reference is to be used. The
Entity2Context is defined by the following IDL.

exception BadComponentReference {
BadComponentReferenceReason reason; };
exception lllegalState { };

local interface Entity2Context : EntityContext, CCM2Context {
Componentld get_component_id ()
raises (lllegalState);
Componentld create_component_id (
in Facetld target_facet,
in Segmentld target_segment,
in SegmentDescrSeq seq_descrs);
Componentld create_monolithic_component_id (
in Facetld target_facet,
in StateldValue sid);
Object create_ref from_cid (
in CORBA::Repositoryld repid,
in Componentld cid);
Componentld get_cid_from_ref (
in Object objref) raises (BadComponentReference);

h
get_component_id

The get_component_id operation is used to obtain a reference to the
Componentld interface. The Componentld interface encapsulates a persistence
identifier that can be used to access the component’s persistence state. If this operation
is issued outside of the scope of a callback operation, the lllegalState exception is
returned.

create_component_id

The create_component_id operation creates a component identifier value,
initializing it with the values specified in the parameters. The target_facet parameter
contains the facet identifier of the target facet, the target_segment parameter contains
the segment identifier of the target segment, and the seq_descrs parameter contains a
sequence of segment descriptors describing all of the segments that constitute the
component executor.

create_monolithic_component_id

The create_monolithic_component_id operation provides a simplified signature
for creating a component identifier value for monolithic executors, which have a single
segment. The target_facet parameter contains the facet identifier of the target facet,
and the sid parameter contains the state identifier for the single executor segment. The
target segment identifier encapsulated by the component identifier is set to zero, and

CORBA Components, v3.0 June 2002

4

the sequence of segment descriptors encapsulated by the component identifier has a
single element, initialized with segment identifier value zero, and state identifier value
specified by the sid parameter.

create_ref from_cid

The create_ref _from_cid operation is used by a component factory to create an
object reference that can be exported to clients. The cid parameter specifies the
Componentld value to be placed in the object reference and made available (using
the get_component_id operation on the context) when the EntityComponent
callback operations are invoked. The repid parameter identifies the Repositoryld
associated with the interface for which a reference is being created.

get_cid_from_ref

The get_cid_from_ref operation is used by a persistent component to retrieve the
Componentld encapsulated in the reference (objref). The Componentld interface
supports operations to locate the state in some persistent store. The
BadComponentReference exception can be raised if the input reference is not
local (NON_LOCAL_REFERENCE), not a component reference
(NON_COMPONENT_REFERENCE), or created by some other container
(WRONG_CONTAINER).

The Componentld structureis dependent on the home implementation and
the containe, in particular, its implementation of the Entity2Context
interface. It islikely that a Componentld created by one container will not
be under standabl e by another, hence the possibility of the
WRONG_CONTAINER exception.

4.5 The Client Programming Model

June 2002

This section describes the architecture of the component programming model as seen
by the client programmer. The client programming model as defined by IDL extensions
has been described previously (see the Component Model chapter). This section
focuses on the use of standard CORBA by the client who wishes to communicate with
a CORBA component implemented in a Component Server. It enables a CORBA
client, which is not itself a CORBA component, to communicate with a CORBA
component.

The client interacts with a CORBA component through two forms of external
interfaces - a home interface and one or more application interfaces. Home interfaces
support operations that allow the client to obtain references to an application interface
which the component implements.

From the client’s perspective, the home supports two design patterns - factories for
creating new objects and finders for existing objects. These are distinguished by the
presence of aprimarykey parameter in the home IDL.

* |f aprimarykey is defined, the home supports both factories and finders and the
client may use both.

CORBA Components: The Client Programming Model 4-45

4-46

* |f aprimarykey is not defined, the home supports only the factory design pattern
and the client must create new instances.

Two forms of clients are supported by the CORBA component model:

® Component-aware clients - These clients know they are making requests against a
component (as opposed to an ordinary CORBA aobject) and can therefore avail
themselves of unique component function; for example, navigation among multiple
interfaces and component type factories.

¢ Component-unaware clients - These clients do not know that the interface they are
making requests against is implemented by a CORBA component so they can only
invoke functions supported by an ordinary CORBA object; for example, looking up
aname in a Naming or Trader service, searching for a particular type of factory
using a factory finder, etc.

4.5.1 Component-aware Clients

4511

Clients that are defined using the IDL extensions in the Component Model chapter are
referred to as component-aware clients. Such clients can avail themselves of the
unique features of CORBA components that are not supported by ordinary CORBA
objects. The interaction between these clients and a CORBA component are outlined in
the following sections. A component-aware client interacts with a component through
one or more CORBA interfaces:

®* The equivalent interface implied by the component IDL declaration.
® Zero or more supported interfaces declared on the component specification.

® Zero or more interfaces defined by the provides clauses in the component
definition.

® The home interface that supports factory and finder operations.

Furthermore a component-aware client locates those interfaces using the
Components::HomeFinder or a naming service. The starting point for client
interactions with the component is the resolve_initial_references operation on
CORBA::ORB that provides the initial set of object references.

Initial References

Initial references for all services used by a component client are obtained using the
CORBA::ORB::resolve_initial_references operation. This operation currently
supports the following references required by a component client:

®* Name Service (“NameService”)

® Transaction Current (“ TransactionCurrent”)
® Security Current (“ SecurityCurrent”)

® Notification Service (“NotificationService”)

® |nterface Repository (“InterfaceRepository”) for DIl clients

CORBA Components, v3.0 June 2002

June 2002

451.2

4513

®* Home Finder (“ComponentHomeFinder”)

The client uses ComponentHomeFinder (defined in Section 1.8, “Home Finders,” on
page 1-42) to obtain a reference to the HomeFinder interface.

Factory Design Pattern

For factory operations, the client invokes a create operation on the home. Default
create operations are defined for each category of CORBA components for which code
can be automatically generated. These operations return an object of type
CORBA::Component that must be narrowed to the specific type. Alternatively, the
component designer may specify custom factories as part of the component definition
to define a type-specific signature for the create operation. Because these operations
are defined in IDL, operation names can be chosen by the component designer. All that
isrequired is that the operations return an object of the appropriate type.

A client using the factory design pattern uses the HomeFinder to locate the
component factory (CCMHome) by interface type. The HomeFinder returns a type-
specific factory reference, which can then be used to create new instances of the
component interface. Once created, the client makes operation requests on the
reference representing the interface. Thisis illustrated by the following code fragment:

/'l Resol ve HoneFi nder
org. ong. CORBA. Obj ect objref =
orb.resolve_initial _references("“Conponent HoneFi nder”);

Conponent HoneFi nder ff =
Conponent HoneFi nder Hel per . narr ow(obj ref);

org. ong. CORBA. Obj ect of =
ff.find horme_by type(AHoneHel per.id());

AHonme F = AHoneHel per. narrow (of);
org. ong. Conponent s. Conponent Base Alnst = F.create();
A Areal = AHel per.narrow (Alnst);

/1 Invoke Application Operation
answer = A foo(input);

Finder Design Pattern

A component-aware client wishing to use an existing component instance (rather than
create a new instance) uses a finder operation. Finders are supported for entity
components only. Client’s may use the HomeFinder as described in Section 1.8,
“Home Finders,” on page 1-42 to locate the component’s home or they may use
CORBA naming to look up a specific instance of the home by symbolic name.

CORBA Components: The Client Programming Model 4-47

4-48

4514

A client using the finder design pattern uses the CosNaming::NamingContext
interface to look up a symbolic name. The naming service returns an object reference
of the type previously bound. The client then makes operation requests on the
reference representing the interface. Thisis illustrated by the following code fragment:

org. ong. CORBA. (bj ect objref =
orb.resolve_initial_references(“Namni ngService”);

Nam ngCont ext ncRef = Nami ngCont ext Hel per. narrow(obj ref);

/'l Resolve the hject Reference in Nam ng
NanmeComponent nc = new NameConponent (“A*,"");
NanmeComponent path[] = {nc};

A aRef = AHel per.narrow(ncref.resol ve(path));

/1 Invoke Application Operation
answer = A foo(input);

Transactions

A component-aware client may optionally define the boundaries of the transaction to
be used with CORBA components. If so, it uses the CORBA transaction service to
ensure that the active transaction is associated with subsequent operations on the
CORBA component.

The client obtains a reference to CosTransactions::Current by using the
CORBA::ORB::resolve_initial_references operation specifying an ObjectID of
“TransactionCurrent”. This permits the client to define the boundaries of the
transaction; that is, how many operations will be invoked within the scope of the
client’s transaction. All operations defined for Current may be used as defined by the
CORBA Transaction service with the following exceptions:

®* The Control object returned by get_control and suspend may only be used with
resume.

® Operations on Control may raise the NO_IMPLEMENT exception with CORBA
components.

The Control interface in the CORBA transaction service supports acces-
sorsto the Coor dinator and Terminator interfaces. The Coordinator is
used to build object versions of XA resource managers. The Terminator is
used to allow a transaction to be ended by someone other than the origina-
tor. Since neither function is within the scope of the demarcation subset of
CORBA transactions used with CORBA components, we allow CORBA
transaction services implementations used with CORBA components to
raisethe NO_IMPLEMENT exception.

The following code fragment shows a typical usage:

CORBA Components, v3.0 June 2002

June 2002

4515

451.6

org. ong. CORBA. Obj ect objref =
orb.resolve_initial _references(“Transacti onCurrent”);

Current txRef = CurrentHel per.narrow obj Ref);
t xRef . begi n();

/1 Invoke Application Operation

answer = A foo(input);

txRef.commt();

Security

A component-aware client uses the existing CORBA security mechanism to manage
security for a CORBA component. There are two scenarios possible:

® Use of SSL for establishing client credentials

CORBA security today does not define a standard API for clients to use with SSL
to set the credentials that will be used to authorize subsequent requests. The
credentials must be set in a way that is proprietary to the client ORB.

® Use of SECIOP by the client ORB.

In this case, CORBA security does define an API and it must be used by the client
to establish the credentials to be used to authorize subsequent requests.

Security processing for CORBA components uses a subset of CORBA security. For
SECIOR, the client sets the credentials to be used with subsequent operations on the
component by using operations on the SecurityLevel2::PrincipalAuthenticator.
The client obtains a reference to SecurityLevel2::Current by using the
CORBA::ORB::resolve_initial_references operation specifying an ObjectID of
“SecurityCurrent”. This permits the client to access the PrincipalAuthenticator
interface to associate security credentials with subsequent operations. The following
code fragment shows a typical usage:

org. ong. CORBA. (bj ect objref =
orb.resolve_initial _references(“SecurityCurrent”);

org.ong. SecuritylLevel 2. Princi pal Aut henti cator secRef =
org.ong. SecuritylLevel 2. Princi pal Aut hent i cat or Hel per. narr ow
(obj Ref);

secRef . authenticate(...);

/1 Invoke Application Operation
answer = A foo(input);

Events

Component-aware clients wishing to emit or consume events use the component APIs
defined in the Component Model chapter. Alternatively, they may use CORBA
notification directly and conform to the subset supported by CORBA components (see
Section 4.5.2.6, “Events,” on page 4-51 for details).

CORBA Components: The Client Programming Model 4-49

4-50

4.5.2 Component-unaware Clients

4521

4522

CORBA components can also be used by clients who are unaware that they are making
requests against a component. Such clients can see only a single interface (the
supported interface of a component) and do not support navigation.

Initial References

Component-unaware clients obtain initial references using existing CORBA
mechanisms, viz. CORBA::ORB::resolve_initial_references. It is unlikely,
however, that this mechanism would be used to obtain areference to the HomeFinder.

Factory Design Pattern

The factory design pattern can be used by component-unaware clients only if the
supported interface has application operations defined. This permits existing CORBA
objects to be easily converted to CORBA components, transparently to their existing
clients. The following technigues can be used:

® The reference to afactory finder (typically the CosLifeCycle::FactoryFinder)
can be stored in the Naming or Trader service and looked up by the client before
creating the instance.

* A reference to the home interface can be obtained from the Naming service.
® The reference to the home interface can be obtained from a Trader service.

® After locating a factory finder, the factory can be located using the existing
find_factories operation or by using the new find_factory operation on the
CoslLifeCycle::FactoryFinder interface.

The current CosLifeCycle find_factories operation returns a sequence
of factories to the client requiring the client to choose the one which will
create the instance. To allow the server (i.e,. the FactoryFinder) to make
the selection, we also add a new find_factory operation to CosLifeCy-
cle which allows the server to choose the “ best” factory for the client
reguest based on its knowledge of workload, etc.

A FactoryFinder will return an Object. A component-unaware client may expect
to narrow this to CosLifeCycle::GenericFactory and use the generic create
operation. For this reason, we allow the default creation operation on home to return
a GenericFactory interface. Thisis fully described in Section 1.7, “Homes,” on
page 1-32.

® A stringified object reference can be retrieved from a file known by the component-
unaware client.

Once a reference to the home has been obtained, the client can create component
instances and make operation requests on the component. Each component exports at
least one IDL interface. A supported interface must be used by the client to invoke the
component’s application operations. Provided interfaces cannot be located using the
factory design pattern.

CORBA Components, v3.0 June 2002

4.5.2.3 Finder Design Pattern

A component-unaware client can use CORBA naming to locate an existing entity
component. Unlike the factory design pattern, the name to be looked up by the client
can be either a supported interface or any of the provided interfaces. The following
technigues can be used:

* A symbolic name associated with the component’s home can be looked up in a
Naming service to make an invocation of the finder operations.

® Alternatively, the reference to the home interface can be obtained from a Trader
service.

® The finder operation can be invoked on the entity component to return a reference
to the client.

45.2.4 Transactions

This is the same as component-aware clients (See Section 4.5.1.4, “Transactions,” on
page 4-48). However, the possibility of the NO_IMPLEMENT exception being
raised for operations on Control may have a more serious impact, since the
component-unaware client may not be expecting that to happen.

4525 Security
This is the same as component-aware clients (See Section 4.5.1.5, “Security,” on
page 4-49).

45.2.6 Events

Component-unaware clients wishing to emit or consume events must use the
equivalent CORBA notification interfaces and stay within the subset supported by
CORBA components (see Section 4.2.8, “Events,” on page 4-12 for details). Thisis
illustrated by the following code fragment:

June 2002 CORBA Components: The Client Programming Model 4-51

org. ong. CORBA. (bj ect objref =
orb.resolve_initial _references(“NotificationService”);

org. ong. CosNoti fi f yChannel Adni n. Event Channel Fact ory evf Ref =
or g. ong. Event Channel Fact or yHel per . narr owm obj Ref) ;

/'l Create an Event Channel
org. ong. CosNot i f yChannel Adnmi n. Event Channel evcRef =
evf Ref.create_channel (...);

/1 Obtain a SupplierAdnin
org. ong. CosNot i f yChannel Admi n. Suppl i er Admi n publisher =
evcRef.new for_suppliers (...);

/1 And a Consuner Proxy
org. ong. CosNot i f yComm Pr oxyConsunmer proxy =
publ i sher.obtai n_notification_push_comsumer (...);

/1 Publish a structured event
proxy. push_structured_event(...);

4-52 CORBA Components, v3.0 June 2002

5.1

June 2002

Introduction

Integratingwith Enterprise
JavaBeans

This chapter describes the integration of CORBA components with Enterprise

JavaBeans.

Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 51
“Enterprise JavaBeans Compatibility Objectives and 5-3
Requirements”

“CORBA Component Views for EJBS’ 5-4
“EJB views for CORBA Components’ 5-14
“Compliance with the Interoperability of Integration 5-22
Views’

“Comparing CCM and EJB” 5-23

This chapter describes how an Enterprise JavaBeans (EJB) component can be used by

CORBA clients, including CORBA components. The EJB will have a CORBA
component style remote interface that is described by CORBA IDL (including the

component extensions).

CORBA Components, v3.0

51

5-2

Object referencein A

View in A of targetin B
(object in system A)

This chapter also describes how a CORBA component can be used by a Java client,
including an Enterprise JavaBeans component. The CORBA component will have an
EJB style remote interface that is defined following the Enterprise JavaBeans
specification.

The concepts in this chapter follow in the same prescription for interworking as laid
out in the Common Object Request Broker Architecture (CORBA) specification,
Interworking Architecture chapter where it is discussed as follows:

How interworking can be practically achieved is illustrated in an Interworking Model,
shown in Figure 5-1. It shows how an object in Object System B can be mapped and
represented to a client in Object System A. From now on, this will be called a B/A
mapping. For example, mapping a CORBA Component Model object to be visible to
an EJB client is a CCM/EJB mapping.

Ontheleft isaclient in object system A, that wants to send a request to a target object
in system B, on the right. We refer to the entire conceptual entity that provides the
mapping as a bridge. The goal isto map and deliver any request from the client
transparently to the target.

To do so, we first provide an object in system A called a View. The View is an object
in system A that presents the identity and interface of the target in system B mapped to
the vernacular of system A, and is described as an A View of a B target. The View
exposes an interface, called the View Interface, which is isomorphic to the target's
interface in system B. The methods of the View Interface convert requests from system
A clients into requests on the target’s interface in system B. The View is a component
of the bridge. A bridge may be composed of many Views.

Object System A

Bridge Object System B

/ Object referencein B Target ot\Jject

implementation in B

Figure5-1 B/A Interworking Model

The bridge maps interface and identify forms between different object systems.
Conceptually, the bridge holds a reference in B for the target (although this is not
physically required). The bridge must provide a point of rendezvous between A and B,

CORBA Components, v3.0 June 2002

5

and may be implemented using any mechanism that permits communication between
the two systems (IPC, RPC, network, shared memory, and so forth) sufficient to
preserve all relevant object semantics.

The client treats the View as though it is the real object in system A, and makes the
request in the vernacular request form of system A. The request is translated into the
vernacular of object system B, and delivered to the target object. The net effect is that
arequest made on an interface in A is transparently delivered to the intended instance
inB.

The Interworking Model works in either direction. For example, if system A is EJB,
and system B is CCM, then the View is called the EJB View of the CCM target. The
EJB View presents the target’s interface to the EJB client. Similarly if system A is
CCM and system B is EJB, then the View is called the CCM View of the EJB target.
The CCM View presents the target’s interface to the CCM client.

5.2 Enterprise JavaBeans Compatibility Objectivesand Requirements

June 2002

The objective is to alow the creation of distributed applications that mix CORBA
components running in CORBA component servers with EJB components running in
an EJB technology-based server. This objective allows a developer to create an
application by reusing existing components of either kind.

This requires development time and runtime translations between the CORBA
component and EJB domains provided by mediated bridges. It also requires that:

®* A CORBA component view for an EJB comply with the EJB to CORBA mapping
specification. In particular, this requires that:

» An EJB definition be mapped to a CORBA component definition following the
Java Language to IDL mapping plus the extensions to that mapping that are
specified in this chapter.

» Value objects of one kind (e.g., Keys for EJB) have counterpart value objects of
the other kind.

* CORBA components accessible via CosNaming have their EJB views accessible
via JNDI, and vice versa.

®* An EJB view for a CORBA component comply with the EJB specification.

An application isto be built using both EJB and CORBA components deployed in their
respective containers. At component development time, EJB components are originally
defined in Java and CORBA components are originally defined in IDL. When
applications are assembled using both, the application assembly environment will most
commonly dictate which model these components must present to developers. During
application assembly, developers construct clients (which themselves may be
components) that make use of components in the way most natural to the particular
environment. Thus in a CORBA environment clients will expect to make use of both

CORBA Components: Enterprise JavaBeans Compatibility Objectives and Requirements 5-3

5-4

EJB Client

the CCM model and the EJB model as CORBA components, and in an EJB
environment, clients will expect to make use of both kinds as enterprise beans. All four
combinations of clients and components are illustrated in Figure 5-2.

CCM Client EJB Client

CCM Client

\1/7 CCM View EJB View W
idge

(Bridge)

Y

Br

Y

EJB

| |
CCM

v o]

EJB Container Contract CCM Container

Component/Container

Figure5-2 Interoperation in a mixed environment

In this scenario, components of one kind are made accessible to clients of another by
way of two mechanisms: generation of bindings at development time and method
translation at runtime. Thus, the containers provide an EJB view of a CORBA
component and a CCM view of an EJB.

For application developersin a CORBA environment, EJBs specified in Java are
mapped to CORBA IDL for use by CCM clients, and at runtime client calls on CCM
methods are translated by a bridge into EJB methods. In effect, the EJBs are CORBA
components.

For application developersin an EJB environment, CORBA components specified in
IDL are mapped to Javainterfaces for use by EJB clients, and at runtime client calls on
EJB methods are translated by a bridge into CCM methods. In effect, the CORBA
components are EJBs.

5.3 CORBA Component Viewsfor EJBs

This kind of view allows a CORBA client -- either a CORBA component or any piece
of code that uses CORBA, and either component-aware or not -- to access an EJB as a
CORBA component. To do this, two things are needed:

CORBA Components, v3.0 June 2002

June 2002

1. A mapping of the definition of the existing EJB into the definition of a CORBA
component. This mapping takes an EJB’s RMI remote interface and home interface
and produces an equivalent CORBA component definition.

2. A tranglation, at run-time, of CORBA component requests performed by a CORBA
client into EJB requests. This translation can be performed in terms of either
straight delegation, or as an interpretation of a CORBA client request in terms of
EJB requests.

5.3.1 Mapping of EJB to Component IDL definitions

5311

An EJB definition includes the following EJB interfaces:
®* EJB home interface - This interface extends the pre-defined EJBHome interface.

® EJB remote interface - This interface extends the pre-defined EJBObject interface.

Thus, for the purposes of this chapter, at least these EJB interfaces must be mapped
into IDL in order to obtain a CORBA component definition of a view that a CORBA
client can use to make requests on an existing EJB. An EJB home interface definition
maps into a CORBA component’s home definition, whose implied IDL inherits from
CCMHome. This means that EJBHome is mapped into CCMHome. Likewise, an
EJB remote interface definition maps into a basic CORBA component definition,
whose implied IDL inherits from CCMObject. This means that EJBObject is
mapped into CCMObject.

In addition, EJBHome and EJBObject make use of the following pre-defined EJB
interfaces:

* HomeHandle
®* Handle

* EJBMetaData

Handles are an EJB concept that has no direct counterpart in CORBA components.
Thus, HomeHandle and Handle are not directly mapped into equivalent IDL.

Notice that although Interoperable Object References (IORs) and the ORB
provided operations that manipul ate them (string_to_object and
object_to_string) are conceptually similar to Handles, there are enough
differences between 10Rs and Handles to preclude a mapping from Han-
dlesto IORs.

Meta data is available to a CORBA client but not in the same form as that provided by
EJBMetaData. Given that an EJB maps into a CORBA component, whose definition
produces the meta data that a CORBA client expects, mapping EJBMetaData into
equivalent IDL is not required.

Java Languageto IDL Mapping

The reader is assumed to be familiar with the specification for the Java to IDL
mapping, whose major aspects are repeated here for convenience.

CORBA Components: CORBA Component Views for EJBs 55

®* A Javainterface is an RMI/IDL remote interface if it at least extends
java. rm . Renot e and all of its methods throw
j ava.rm . Renot eExcepti on.

® get- and set- name pattern names are translated to IDL attributes.

® |DL generated methods have only in parameters (but these can include object
references to remote objects, allowing reference semantics normally obtained by
using parameters of typej ava. r m . Renot e).

® Java objects that inherit from j ava.i o. Seri al i zabl e or

java.io. Externalizabl e are mapped to a CORBA valuetype. All object

types appearing in RMI remotable interfaces must inherit from these interfaces or

from j ava. rm . Renot e. EJB Key and Handle types must inherit from

java.io. Serializable.

» However, the mapping does NOT require that methods on such objects or
constructors be mapped to corresponding IDL operations on val uet ypes and
i nit specifications. The developer is expected to select those methods that
should be mapped to IDL operations, and the method signatures must meet the
requirements of the mapping.

» Objects that inherit from j ava. i 0. Ext er nal i zabl e or that implement
wr it eObj ect are understood to perform custom marshalling and the
corresponding custom marshallers must be created for the CORBA valuetype.

® Arrays are mapped to “boxed” CORBA valuetypes containing sequences because
Java arrays are dynamic.

® Java exceptions are subclassable; IDL exceptions are not. Consequently a name
pattern is used to map to IDL exceptions. The Java exception object is mapped to a
CORBA valuetype. The CORBA valuetype has an inheritance hierarchy like that of
the corresponding Java exception object.

® Some additional programming is required to define Java classes (including EJB
implementations) that are accessible via RMI/I1OP. This is to account for the fact
that 110OP does not support distributed garbage collection.

5.3.1.2 EJBtoIDL mapping

In general, the CORBA component that results from mapping an EJB will support an
interface that is the Javato IDL map of the Remote interface of the EJB. The mapping
rules are as follows.

Mapping the Remote | nterface

® An EJB’s remote interface maps to a definition of a basic CORBA component that
supports the default interface. The form of the CORBA component definition is
component XXX supports XXXDefault.

® An EJB’sremote interface declaration is used to create a supports declaration and
the corresponding IDL for the primary interface of the CORBA component that the
EJB maps to. The identifier of this supported interface on the component is

CORBA Components, v3.0 June 2002

5

June 2002

XXXDefault, where XXX is the name of the EJB remote interface. This generated
interface is referred to as the Default interface of the component that the given EJB
maps to.

Each operation on the Remote interface is mapped under Javato IDL to an
equivalent operation on the XXXDefault interface.

Each pair of get XXX and set XXX methods in the EJB remote interface will be
mapped to IDL attributes in the component definition itself. Any exceptions thrown
by a get XXX method is mapped to an exception in the getraises clause of the
mapped IDL attribute. Likewise, any exception thrown by a set XXX method is
mapped to an exception in the setraises clause of the mapped IDL attribute. The
actual definitions of the exceptions thrown are mapped following the Java to IDL
rules.

Mapping the Home I nterface

An EJB’s home interface maps to a definition of a CORBA component home. The
form of the CORBA component home definition ishome YYY manages XXX,
where YYY is the name of the EJB home interface. Mapping an EJB home into a
CORBA component home requires the existence of meta data that links the EJB
home to the EJB that it hosts. These meta data are obtained from the EJB's
deployment descriptor. Thus XXX is the name of the EJB that the EJB home hosts,
asitisgiven in the EJB deployment descriptor.

The EJB home methods called cr eat e are mapped into home factory declarations
in IDL. The actual names of each of the factory operations are produced following
the rules for mapping Java names to IDL names in the Java to IDL specification.
The Java parameters of the operation are mapped to their corresponding IDL types
and names as defined by Javato IDL.

An EJB Primary Key class is mapped to a CORBA valuetype using the mapping
rulesin Javato IDL. This valuetype will be declared in the IDL for the CORBA
component home as the primary key valuetype for the component. The key
valuetype will inherit from Components::PrimaryKeyBase. If an EJB home
uses a primary key, then the form of the CORBA component home definition is
home YYY manages XXX primarykey KKK, where KKK is the name of the
valuetype that the EJB primary key class maps to.

The EJB home operation named f i ndByPr i mar yKey is mapped into the
find_by_primary_key(in <key-type> key) operation on the component’s
implicit home interface.

Finder and Creator EJB operations that return an RMI style object reference are
mapped into Component IDL operations that return a CORBA Component Object
Reference to XXX.

EJB home operations prefixed f i nd whose return type is the type of the EJB
hosted by the EJB home are mapped into component home finder operations in
IDL. The actual names of each of the finder operations are produced following the
rules for mapping Java names to IDL names in the Java to IDL specification. The
Java parameters of the operation are mapped to their corresponding IDL types and
names as defined by Java to IDL.

CORBA Components: CORBA Component Views for EJBs 5-7

5-8

® Finder EJB operations that return a Java Enumeration are mapped into CORBA
component operations that return a value of type Enumeration. This value type is
declared as:

module Components {
abstract valuetype Enumeration {
boolean has_more_elements();
CCMObject next_element();

b

The Enumeration interface is just the RMI/I10OP image of the Java Enumer-
ation class as defined in the JDK 1.1.6+. Sun has said that they intend to
replace this with the JDK 1.2 (Java 2.0) Collectionsin a future version of
the EJB specification. Subsequent to such a specification being issued, the
CORBA components specification will be updated to correspond.

A concrete specialization of this abstract value type must be provided. This
specialization has the form:

module Components {
typedef sequence<CCMObject> CCMObjectSeq;
valuetype DefaultEnumeration : Enumeration {
private CCMObjectSeq objects;
¥
¥
Any implementation of DefaultEnumeration, in any language, must provide
implementations for the two Enumeration methods. Any client ORB that supports
the interoperable bridge has to provide an implementation that knows how to read
DefaultEnumeration from the wire and to use that information to provide a local
implementation of these two methods. Any EJB container that supports the CCM-
EJB bridge has to provide an implementation that knows how to construct itself
from ajava.util.Enumeration and then write itself to the wire as a
DefaultEnumeration.

® In order for an EJB home definition that defines findByPrimaryKey to be
successfully mapped onto a CORBA component home definition, it must define a
cr eat e method that takes the primary key of the hosted EJB as its sole argument
and returns an instance of the hosted EJB. This create method is mapped to create(
in <key-type> key) on the CORBA component implicit home interface.

Mapping standard exceptions

The EJB exceptions FinderException, CreateException,
DuplicateKeyException, and RemoveException thrown by methods to find,
create, and remove an EJB are always mapped to the CCM exceptions
Components::FinderFailure, Components::CreateFailure,
Components::DuplicateKeyValue and Components::RemoveFailure,
respectively.

CORBA Components, v3.0 June 2002

5.3.2 Trandation of CORBA Component requests into EJB requests

A CORBA client that uses a CORBA component view on an EJB expects to be able to

perform CORBA component regquests on such a view. These requests need to be
translated into EJB requests at run-time. This translation can be performed at the
client-side, server-side, or a combination of the two. Table 5-1 lists the CORBA

component operations that a CORBA client can perform requests on by interface, and

it lists the corresponding EJB methods that these requests translate into, also by

interface.

Table5-1 Translation of CCM operation requests into EJB method requests

CCM Interface Operation called by client EJB Method invoked by bridge
interface
CCMHome ComponentDef EJBHome EJBMetaData

get_component_def ();

CORBA::IRObject
get_home_def ();

void remove_component (
in CCMObject comp)
raises (RemoveFailure);

getEJBMetaData ()
throws RemoteException;

EJBMetaData
getEJBMetaData()
throws RemoteException;

void remove (Handle handle) throws
RemoveException, RemoteException;

<home-name>Explicit

<name> createXXX (
<arg-list>)

raises (CreateFailure,
DuplicateKeyValue, InvalidKey);

<name> findXXX (
<arg-list>)
raises (FinderFailure, <exceptions>);

<home-name>Implicit

<name> create (

in <key-type> key)

raises (CreateFailure,
DuplicateKeyValue, InvalidKey);

<name> find_by_primary_key (
in <key-type> key)

raises (FinderFailure,
UnknownKeyValue, InvalidKey);

<home-name>

<name> create (
<arg-list>)

throws CreateException,
DuplicateKeyException;

<name> findXXX (
<arg-list>)
throws <exceptions>;

<name> create (

Object primaryKey)
throws CreateException,
DuplicateKeyException;

<name> findByPrimaryKey (<key-type> key)

throws FinderException,
ObjectNotFoundException;

void remove (EJBHome void remove (
in <key-type> key) Object primaryKey)
raises (RemoveFailure, throws RemoveException,
UnknownKeyValue, InvalidKey); RemoteException;
<key_type> get_primary_key EJBObject Object getPrimaryKey ()
(in <name> comp); throws RemoteException;
CCMObject ComponentDef EJBHome EJBMetaData
get_component_def (); getEJBMetaData ()
throws RemoteException;
CCMHome get_ccm_home (); EJBObject EJBHome getEJBHome()
throws RemoteException;
June 2002 CORBA Components: CORBA Component Views for EJBs 5-9

Table5-1 Translation of CCM operation requests into EJB method requests

CCM Interface Operation called by client EJB Method invoked by bridge
interface
CCMObject (continued) PrimaryKeyBase EJBObject Object getPrimaryKey ()
get_primary_key (); throws RemoteException;
void remove() void remove ()
raises (RemoveFailure); throws RemoveException,
RemoteException;
void Translation performed by bridge is to raise
configuration_complete () the NO_IMPLEMENT exception
raises (InvalidConfiguration);
<name> <res-type> <operation> (<arg-list>) <name> <res-type> <operation> (
raises (<exceptions>); <arg-list>)
throws <exceptions>;
<res-type> getXXX () <res-type> getXXX ()
throws <exceptions>; throws <exceptions>;
void setXXX (<arg-list>) void setXXX (<arg-list>)
throws <exceptions>; throws <exceptions>;

Notice that a CORBA client may use operations on object references such as

string_to_object and object_to_string that may be considered as analogous to EJB

Handle methods. However, these operations are not seen by the bridge since they are

performed on the ORB and thus no tranglation for these operations on the part of the

bridge is required.

The following restrictions apply:

® create (in <key_type> key) on the component implicit home interface can only
be validly invoked by a CORBA client if the underlying EJB home declares the
findByPrimaryKey operation.

* remove (in <key_type> key) on the component implicit home interface can only
be validly invoked by a CORBA client if the underlying EJB home declares the
findByPrimaryKey operation.

® get _primary_key on the component implicit home and on CCMObject can only
be validly invoked by a CORBA client if the underlying EJB home declares the
findByPrimaryKey operation.

® configuration_complete on CCMObject is not translated by the bridge, a
request on this operation by a CORBA client raises the NO_IMPLEMENT
exception.

5.3.3 Interoperability of the View

As stated in Section 5.3.2, “Translation of CORBA Component requests into EJB

requests,” on page 5-9, translation of CORBA Component requests into EJB requests

can happen at either the client-side, the server-side, or a combination of the two.
5-10 CORBA Components, v3.0 June 2002

However, in order to provide interoperability of implementations of CORBA

component views of EJBs, a minimal humber of translation points must be performed
and they must be performed at an explicitly defined location: either the client-side or
the server-side. For the implementation of a CORBA component view of an EJB, and

for an EJB home interface, the translation points are as follows.

Tranglation of specific method names

The following methods shall translate their names as indicated.

Table5-2 Translation of specific method names

CCM Interface Method name EJB Interface Translation

CCMHome get_component_def EJBHome getEJBMetaData
remove_component remove

<name>Implicit find_by_primary_key <name> findByPrimaryKey
remove remove__java_lang_Object
create create__java_lang_Object
get_primary_key EJBObject getPrimaryKey

CCMObject get_ccm_home EJBObject getEJBHome
get_primary_key getPrimaryKey

Handling of standard exceptions

The following exceptions, caught by the indicated methods, shall be translated as

indicated before raising them to their CORBA clients.

Table5-3 Handling of standard exceptions

CCM Interface

Method name

Exception caught

Translation

CCMHome

get_component_def

RemoteException

CORBA::UNKNOWN

remove_component

RemoveException
RemoteException

Components::RemoveFailure
CORBA::UNKNOWN

<name>Implicit

create

DuplicateKeyException
CreateException

Components::DuplicateKeyValue
Components::CreateFailure

find_by_primary_key

ObjectNotFoundException
FinderException

Components::UnknownKeyValue
Components::FinderFailure

remove

RemoveException
RemoteException

Components::RemoveFailure
CORBA::UNKNOWN

get_primary_key

RemoteException

CORBA::UNKNOWN

CCMObject

get_ccm_home

RemoteException

CORBA::UNKNOWN

get_primary_key

RemoteException

CORBA::UNKNOWN

CORBA Components: CORBA Component Views for EJBs

5-12

Table5-3 Handling of standard exceptions

CCM Interface Method name Exception caught Translation
remove RemoveException Components::RemoveFailure
RemoteException CORBA::UNKNOWN

Note — RemoteException istranslated into CORBA::UNKNOWN system exception
according to rules defined in formal/01-06-07, section 1.4.7.

Handling of a primary key parameter

The methods create, find_by_primary_key and remove, defined by
<home>Implicit shall translate the primary key valuetype they get as input parameter
to a CORBA::Any equivalent. Likewise, the method get_primary_key defined by
<home>Implicit shall translate the CORBA::Any value of the primary key it gets as
aresult from its request into an equivalent primary key valuetype before returning it.

The method get_primary_key, defined by CCMObject, shall translate the
CORBA::Any value of the primary key it gets as a result from its request into an
equivalent Components::PrimaryKeyBase valuetype before returning it.

5.3.4 CORBA Component view Example

In this section we show a simple EJB together with the corresponding Component IDL.
Note that the EJB deployment metadata is needed to generate the IDL; this is because
the metadata binds together the Remote interface and the Home interface.

Below are the remote interfaces of the EJB.
package exanpl e;

class Custinfo inplenents java.io.Serializable
{

public int cust No;

public String cust Nane;

public String custAddr;

H
class CustBal inplenments java.io.Serializable
{
public int cust No;
public float acctBal;
H

CORBA Components, v3.0 June 2002

interface Custonerlnquiry extends javax.ejb. EJBObj ect

{
Custinfo getCustlnfo(int iCustNo)
throws java.rm . Renpt eExcepti on;
Cust Bal get CustBal (i nt i CustNo)
throws java.rm . Renot eExcepti on;
3
i nterface CustonerlnquiryHone extends javax.ejb. EJBHonme
{
Custonmerlnquiry create()
throws java.rm . Renot eExcepti on;
3

Below are the contents of the descriptor classes as they might be expressed in an
equivalent XML document.

<ej b-jar>
<sessi on>
<descri ption>
</ descri ption>
<ej b-name> Custonerlnquiry </ejb-nane>
<hone> exanpl e. Cust oner | nqui r yHonme </ home>
<renot e> exanpl e. Custonmer | nquiry </renote>
<ej b-cl ass> exanpl e. Cust oner | nqui ryBean </ ej b-cl ass>
<session-type> Stateful </session-type>
</ sessi on>
</ejb-jar>

The EJB is a session bean, and in this case, its cr eat e operation requires no
parameters. The two operations take a key value and return values to the caller. The
EJB implementation will use JDBC to retrieve the information to be returned by the
operations on the Customer Inquiry EJB.

The serializable value classes are translated by RMI/IIOP into CORBA concrete
valuetypes as follows:

valuetype Custinfo {
public long custNo;
public ::CORBA::WStringValue custName;
public ::CORBA::WStringValue custAddr;

b

valuetype CustBal {
public long custNo;
public float custBal;

b

June 2002 CORBA Components: CORBA Component Views for EJBs 5-13

The information in the deployment descriptor and the home and remote interface
declarations is introspected and used to generate the following IDL:

interface CustomerinquiryDefault {
CustInfo getCustinfo(in long iCustNo);
CustBal getCustBal(in long iCustNo);

¥
component Customerlnquiry supports CustomerinquiryDefault {};

home CustomerinquiryHome manages Customerinquiry {
factory create();

b

5.4 EJBviewsfor CORBA Components

5-14

This kind of view allows a Java client -- either an EJB or any other piece of Java code
-- to access a CORBA component as an EJB. To do this, two things are needed:

* A mapping of the Component IDL definition of a CORBA component into an EJB
definition. This mapping only considers that portion of the Component IDL
language that has a counterpart in the EJB specification language and it ignores the
rest. Notice that “ The home and remote interfaces of the enterprise bean's client
view are defined as Java RMI interfaces. This allows the Container to implement the
home and remote interfaces as distributed objects.” One implication of this is that
the signatures on methods on an EJB's remote interface can only include parameters
with in semantics. That is, out and inout semantics for parameters is not allowed.
As a consequence, the out and inout qualifiers for parametersin IDL interface
method definitions are not included in the portion of Component IDL that can be
mapped to an EJB definition.

Note however that a Java client does not have to use an EJB view in order to access
a CCM. Any Java client can access a CCM directly viaits IDL interface using a
standard Java ORB, such as the one built into the JDK. This provides full access to
all aspects of the CCM. Since the EJB view is derived using the IDL to Java
mapping rules, the Java IDL interface is identical to the EJB view for al business
operations. The only differences are in the operations mentioned in Table 5-4 on
page 5-18 have dlightly different names and signatures.

® A trandlation, at run-time, of EJB requests performed by a Java client into CORBA
component requests.

5.4.1 Mapping of Component IDL to Enterprise JavaBeans specifications

The portion of the Component extensions to the IDL language that can be mapped to
the EJB specification language is denoted by the following subset of the Component
extensions to IDL grammar.

<component_dcl> ::= <component_header> “{" <component_body>*“}"

CORBA Components, v3.0 June 2002

June 2002

<component_header> ::= “component” <identifier> [
<supported_interface_spec>]

<supported_interface_spec> ::=“supports” <scoped_name> { “,
<scoped_name> }*

<component_body> ::= <component_export>*
<component_export>::= <attr_dcl>“;”
<attr_dcl> ::= <readonly_attr_spec> | <attr_spec>

<readonly_attr_spec>::=“readonly” “attribute” <param_type_spec>
<readonly_attr_declarator>

<readonly_attr_declarator> ::= <simple_declarator> <raises_expr> |

<simple_declarator> { “” <simple_declarator> }*
<attr_spec> ::= “attribute” <param_type_spec> <attr_declarator>

<attr_declarator> ;:= <simple_declarator> <attr_raises_expr> |

<simple_declarator>{ “” <simple_declarator> }*

<attr_raises_expr>::= <get_excep_expr>[<set_excep_expr>] |
<set_excep_expr>

<get_excep_expr>::=“getraises” <exception_list>
<set_excep_expr> ::= “setraises” <exception_list>
<exception_list>::=“(" <scoped_name>{“) <scoped_name>}+")"

<home_dcl> ::= <home_header> <home_body>

<home_header> ::=“home” <identifier>“manages” <scoped_name> [
<primary_key_ spec>]

<primary_key_spec> ::= “primarykey” <scoped_name>
<home_body> ::=“{” <home_export>*“}”

<home_export> ::= <factory_dcl>*“;" | <finder_dcl>“;"

<factory_dcl> ::= “factory” <identifier>“(“ [<init_param_decls>]")" [

<raises_expr>]

<finder_dcl> ::=“finder” <identifier>“(“ [<init_param_decls>]")" [
<raises_expr>]

CORBA Components: EJB viewsfor CORBA Components 5-15

The rules for mapping a CORBA component definition into an EJB definition are
defined in the following sections. Where appropriate, these rules rely on the standard
IDL to Java mapping.

Mapping the component definition

® A basic CORBA component definition is mapped to an EJB remote interface
definition.

®* The name of the EJB remote interface is the name of the basic CORBA component
in the Component IDL definition.

® For each operation defined in each interface that the CORBA component
supports, amethod definition will be included in the EJB remote interface that the
CORBA component maps to. That is, the EJB to which the basic CORBA
component maps defines all the supported operations defined by the basic CORBA
component.

® The signatures of the CORBA component operations are mapped to signatures of
EJB remote interface methods following the IDL to Java mapping rules. Only
signatures whose parameters have an in qualifier are allowed. Signatures that
include parameters with out or inout qualifiers shall be signaled as an error.

® For each attribute XXX that the CORBA component defines, the corresponding EJB
remote interface defines a pair of get XXX and set XXX methods, where XXX is
the name of the given attribute. If the attribute definition includes a getraises
exception clause, then the corresponding get XXX method definition in the EJB
remote interface will include a throws exception clause. Likewise, if the attribute
definition includes a setraises exception clause, then the corresponding set XXX
method definition in the EJB remote interface will include a throws exception
clause.

® Exceptions raised by CORBA component definition operations and attributes are
mapped to exceptions thrown by EJB method definitions using the standard IDL to
Java mapping rules.

Mapping the Component Home definition

®* A CORBA component’s home definition is mapped to an EJB home's remote
interface definition. That is a definition of the form home XXX manages YYY |
primarykey KKK] is mapped to an EJB home interface with name XXX.

® The methods defined by the EJB home remote interface include the implicit as well
as the explicit methods of the CORBA component’s home definition.

® Implicit CORBA component home operations are mapped to EJB home remote

interface methods as follows:

- <conponent _type> create (in <key_type> key) raises
(Component s: : Creat eFai | ure,
Component s: : Dupl i cat eKeyVal ue,
Conponent s: : I nval i dKey); mapsto<conponent type>
create (<key_type> key) throws
Dupl i cat eKeyExcepti on, CreateException.

5-16 CORBA Components, v3.0 June 2002

5

e <conponent type> find by primary_key (in <key_ type> key)
rai ses (Conponents:: FinderFail ure,

Conponent s: : UnknownKeyVal ue, Conponents:: | nvali dKey);
maps to <conponent _type> findByPri maryKey(<key type> key
) throws Object Not FoundExcepti on, Fi nder Excepti on.

e void renmove (in <key_ type> key) raises
(Conponent s: : RenoveFai | ure, Conponents: : UnknownKeyVal ue,
Conponent s: : I nval i dKey) ; maps to the remove by key method defined in
EJBHome.

* <key_type> get_primary_key (in <conponent_type> conp);
has no counterpart in an EJB home definition. Given that EJBObject already
defines get Pri mar yKey, it is not necessary to map get _pri mary_key on
the implicit home to an EJB home operation.

® Explicit CORBA component basic home operations are mapped to EJB home
remote interface methods as follows:

» A factory operation maps to an overloaded create method with the
corresponding arguments and exceptions.

» A finder operation maps to a find<identifier> method with the corresponding
arguments and exceptions, where <identifier> is the name of the finder
operation.

» The signatures of factory and finder operations are mapped to signatures of EJB
home interface methods following the IDL to Java mapping rules.

* A valuetype that is used to define the primary key of a CORBA component home
is mapped to a Java class under the rules of the standard IDL to Java mapping. In
addition, such a Java class is defined to extend j ava. i 0. Seri al i zabl e.

Mapping standard exceptions

The CCM exceptions Components::FinderFailure,
Components::CreateFailure, Components::DuplicateKeyValue and
Components::RemoveFailure raised by methods to find, create and remove a
CORBA component are always mapped to the EJB exceptions FinderException,
CreateException, DuplicateKeyException and RemoveException, respectively.

5.4.2 Trandlation of EJB requests into CORBA Component Requests

A Java client that uses an EJB view on a CORBA component expects to be able to
perform EJB requests on such a view. These requests need to be translated into
CORBA component requests at run-time. This translation can be performed at the
client-side, the server-side, or a combination of the two. Table 5-4 lists the EJB

June 2002 CORBA Components: EJB viewsfor CORBA Components 5-17

methods that a Java client can perform requests on by interface, and it lists the
corresponding CORBA component operations that these requests translate into, also by

interface.

Table5-4 Translation of EJB method requests into CCM operation requests

EJB Interface

Method called by client

CCM interface

Operation called by bridge

EJBHome

EJBMetaData getEJBMetadata () CCMHome Translation performed by bridge does
throws RemoteException; not call a CCM standard operation
void remove (Handle handle) void remove_component (
throws RemoveException, RemoteException; in CCMObject comp)

raises (RemovekFailure);
void remove (<home- void remove (

Object primaryKey)
throws RemoveException, RemoteException;

HomeHandle getHomeHandle ()
throws RemoteException;

name>Implicit

in <key-type> key)
raises (RemoveFailure,
UnknownKeyValue, InvalidKey);

Translation performed by bridge does
not call a CCM standard operation

<home-name>

<name> create (
<arg-list>)

throws CreateException,
DuplicateKeyException;

<name> findByXXX (
<arg-list>)
throws <exceptions>;

<home-
name>Explicit

<name> createXXX (
<arg-list>)

raises (CreateFailure,
DuplicateKeyValue, InvalidKey);

<name> findXXX (
<arg-list>)
raises (FinderFailure, <exceptions>);

<name>
findByPrimaryKey (
<key-type> key)

throws FinderException,
ObjectNotFoundException;

<home-
name>Implicit

<name> find_by_primary_key (
in <key-type> key)

raises (FinderFailure,
UnknownKeyValue, InvalidKey);

EJBObject EJBHome getEJBHome () CCMObject CCMHome get_ccm_home ();
throws RemoteException;
Object getPrimaryKey () PrimaryKeyBase get_primary_key ();
throws RemoteException;
void remove () void remove () raises (RemoveFailure);
throws RemoveException, RemoteException;
boolean isldentical (EJBObject object) CORBA::Object boolean is_equivalent ();
throws RemoteException;
Handle getHandle () Translation performed by bridge does
throws RemoteException; not call a CCM standard operation.
<name> <res-type> <operation> (<name> <res-type> <operation> (<arg-list>)
<arg-list>) raises (<exceptions>);
throws <exceptions>;
<res-type> getXXX () <res-type> get_ XXX ()
throws <exceptions>; raises (<exceptions>);
void setXXX (<arg-list>) <res-type> set_ XXX ()
throws <exceptions>; raises (<exceptions>);
5-18 CORBA Components, v3.0 June 2002

Table5-4 Translation of EJB method requests into CCM operation requests

EJB Interface

Method called by client

CCM interface

Operation called by bridge

EJBMetadata EJBHome getEJBHome () Translation performed by bridge on all
throws RemoteException; these invocations does not call a CCM
standard operation.
Class getHomelnterfaceClass ()
throws RemoteException;
Class getRemotelnterfaceClass ()
throws RemoteException;
Class getPrimaryKeyClass ()
throws RemoteException;
boolean isSession ()
throws RemoteException;
boolean isStatelessSession()
throws RemoteException
In addition, the EJB programming model allows a Java client to:
® | ocate EJB homes and distinguished EJB objects via JNDI.
* Demarcate transactions viaaUserTransaction object, after locating this object via
JNDI.
These requests are translated into similar requests provided by the CORBA component
programming model, as follows:
® | ocation of home and EJB objects requires the definition of a mapping of JNDI to
the COSNaming service. It also requires the mapping of a COSNaming name space
into a INDI name space.
® Transaction demarcation requires the definition of a mapping of JTA to the CORBA
transaction service. It also requires that a JNDI name space location be populated
with an object that implements UserTransaction and that maps to the
corresponding CORBA transaction service object.
5.4.3 Interoperability of the View
As stated in Section 5.4.2, “Translation of EJB requests into CORBA Component
Requests,” on page 5-17 can happen at either the client-side, the server-side, or a
combination of the two.
However, in order to provide interoperability of implementations of EJB views of
CORBA components, a minimal number of translation points must be performed and
they must be performed at an explicitly defined location: either the client-side or the
server-side. For the implementation of an EJB view of a CORBA component, and for a
CCM interface, the translation points are:
June 2002 CORBA Components: EJB viewsfor CORBA Components 5-19

Translation of specific method names

The following methods shall translate their names as indicated.

Table5-5 Translation of specific method names

EJB Interface Method name CCM Interface Tranglation
EJBHome remove CCMHome remove_component
<name> findByPrimaryKey <name>Implicit find_by_primary_key
remove__java_lang_Object remove
create__java_lang_Object create
EJBObject getEJBHome CCMObject get_ccm_home
getPrimaryKey get_primary_key
isldentical CORBA::Object is_equivalent
Handling of standard exceptions
The following exceptions, caught by the indicated methods, shall be translated as
indicated before raising them to their EJB clients.
Table5-6 Handling of standard exceptions
EJB Interface Method name Exception caught Translation
EJBHome remove Components::RemoveFailure RemoveException
CORBA system exceptions RemoteException
remove__java_lang_Object Components::RemoveFailure RemoveException
CORBA system exceptions RemoteException
<name> create Components::CreateFailure CreateException
Components::DuplicateKeyValue DuplicateKeyException
findByPrimaryKey Components::UnknownKeyValue ObjectNotFoundException
Components::FinderFailure FinderException
EJBObject getEJBHome CORBA system exceptions RemoteException
getPrimaryKey CORBA system exceptions RemoteException
remove Components::RemoveFailure RemoveException
CORBA system exceptions RemoteException
isldentical CORBA system exceptions RemoteException
Note — CORBA system exceptions are translated into RemoteException according
to rules defined in formal/01-06-07, section 1.4.8.
5-20 CORBA Components, v3.0 June 2002

June 2002

Handling of a primary key parameter

The methods create and findByPrimaryKey, defined by <name>, and
remove__java_lang_Object, defined by EJBHome, shall translate the primary key
valuetype they get as input parameter to a CORBA::Any equivalent.

The method getPrimaryKey, defined by EJBObject, shall translate the
CORBA::Any value of the primary key it gets as a result from its request into an
equivalent Java Object valuetype before returning it.

5.4.4 Example

We show a simple CORBA component definition and its corresponding EJB mapping.
The basic CORBA component Account is defined in terms of aregular IDL interface
AccountOps. The home AccountHome is defined to manage Account and to use a

primary key.

interface AccountOps {
void debit(in double amt) raises (NotEnoughFunds);
void credit(in double amt);

b

component Account supports AccountOps {
readonly attribute double balance;

b

valuetype AccountKey {
public long acctNo;

b

home AccountHome manages Account primarykey AccountKey {
finder largeAccount(double threshold);

b

The following EJB definition is derived from the definition of Account and its home.

public interface Account extends javax.ejb.EJBObject {
public void debit(double amount)
throws NotEnoughFunds, java.rmi.RemoteException;
public void credit(double amount) throws java.rmi.RemoteException;
public double getBalance() throws java.rmi.RemoteException;

b

public class AccountKey implements java.io.Serializable {
public long acctNo;
public AccountKey(long k) { acctNo =k; }

b

CORBA Components: EJB viewsfor CORBA Components 5-21

public interface AccountHome extends javax.ejb.EJBHome {
public Account create(AccountKey key)
throws DuplicateKeyException, CreateException,
java.rmi.RemoteException;
public Account findByPrimaryKey(Account key)
throws ObjectNotFoundException, FinderException,
java.rmi.RemoteException;
public Account findByLargeAccount(double threshold)
throws java.rmi.RemoteException;

b

5.5 Compliancewith the Interoperability of Integration Views

5-22

As stated in Section 5.3.3, “Interoperability of the View,” on page 5-10 and
Section 5.4.3, “Interoperability of the View,” on page 5-19, request translations must
happen at an explicitly defined location: either the client-side or the server side.

Rather than mandate one location arbitrarily, a number of levels of compliance with the
interoperability of integration views are defined. Vendors shall clearly state what level
of interoperability is supported by their implementations. These levels are:

®* NONE: Integration view implementations that comply with this level actually
perform no request translations. These implementations can still interoperate with
other implementations that understand non-translated requests (e.g.,
implementations compliant with levels SERVER-SIDE and FULL).

® CLIENT-SIDE: Translation occurs either in the address space of aclient stub or in
a separate address space downstream from the client stub but before the resulting
GIOP request gets sent to the server.

® SERVER-SIDE: Translation occurs either in the address space of a server skeleton
or in a separate address space upstream from the server skeleton but after the GIOP
regquest has been received from the client. The presence of a server-side view must
not prevent native (i.e., non-translated) access to the component.

® FULL: Integration view implementations that comply with this level comply with
both the CLIENT-SIDE and SERVER-SIDE levels. Note that a stand-alone bridge
in a separate address space complies at this level since it is both upstream of the
client (SERVER-SIDE) and downstream of the server (CLIENT-SIDE).

® FULL: Integration view implementations that comply with this level comply with
both the CLIENT and the SERVER levels.

Table 5-7 illustrates the possible combinations of level compliance that are implied by
the previous definitions. Rows in the table denote implementations compliant with a
given level that send a request. Columns denote implementations compliant with a
given level that receive a request. So, for example, a SERVER-SIDE implementation
cannot interoperate with a CLIENT-SIDE implementation because the SERVER-
SIDE implementation does not translate on send and the CLIENT-SIDE
implementation does not translate on receive.

CORBA Components, v3.0 June 2002

Table5-7 Compliance with the Interoperability of Integration Views

NONE CLIENT- SERVER- FULL
SIDE SIDE
NONE no no yes yes
CLIENT-SIDE no yes yes yes
SERVER-SIDE no no yes yes
FULL yes yes yes yes

5.6 Comparing CCM and EJB

June 2002

The following series of tables summarized the component APIs for Enterprise Java
Beans (EJB 1.1) and Basic CORBA Components. The tables are organized as follows:

1. The home interfaces that define the remote access protocols for creating or finding
EJBs or CORBA components (Section 5.6.1, “The Home Interfaces,” on page 5-23).

2. The component interfaces that define the remote access protocols for invoking
business operations on EJBs or CORBA components (Section 5.6.2, “The
Component Interfaces,” on page 5-25).

3. The callback interfaces that the CORBA component or EJB programmer must
implement (Section 5.6.3, “The Callback Interfaces,” on page 5-26).

4. The Context interfaces that provide the component devel oper access to container-
provided services (Section 5.6.4, “The Context Interfaces,” on page 5-28).

5. The Transaction interface that supports bean-managed or component-managed
transactions (Section 5.6.5, “ The Transaction Interfaces,” on page 5-29).

6. The metadata interfaces that support access to component metadata (Section 5.6.6,
“The Metadata Interfaces,” on page 5-30).

5.6.1 The Home Interfaces

Table 5-8 compares the home interfaces and operations that make up the EJB and
CORBA component models. In EJB, the EJBHome object is created by the EJB
container provider’s tools and provides implementations for methods of the base class
and delegates factory or finder methods on a derived class (<hame>Home) to
similarly named methods on the bean itself (<name>Bean).

In the CORBA component model, homes are defined as righteous CORBA objects and
the associated factory or finder methods are generated as operations on the home and
the component developer implements these directly so the container need not provide
delegation support. The component developer may not even need to provide
implementations for the default factory and finder operations if sufficient information
is provided with the component’s definition.

CORBA Components: Comparing CCM and EJB 5-23

For CORBA clients to use EJB implementations, the container provider must
externalize EJBHome to the CORBA client as a CORBA component home. This is
accomplished by extensions to the Java to IDL mapping defined in Chapter 8. For EJB
clients to access CORBA component homes, the container provider must create an
EJBHome object that serves as a bridge between equivalent operations on EJBHome
and the CORBA component home. This bridge is also described in Chapter 8.

Table5-8 Comparing the home interfaces of EJB and CORBA components

Construct | EJB Form CCM Form Notes
Module javax.ejb Components
Interface EJBHome extends java.rmi.Remote CCMHome
Operation public EJBMetaData get EJBMetaData () ComponentDef get_component_def (); CORBA IR supports
throws java.rmi.RemoteException more metadata
public HomeHandle getHomeHandle() CORBA::0bject_to_string
throws java.rmi.RemoteException provides same function
public void remove (void remove_component (CORBA references
HomeHandle handle) in CCMObject component) instead of handles
throws java.rmi.RemoteException, raises (CCMException); REMOVE_ERROR
RemoveException is minor code
public void remove (similar operation is
java.lang.Object primaryKey) defined on
throws java.rmi.RemoteException, <home>Implicit for
RemoveException Homes with primarykey
Interface HomeHandle extends java.io.Serializable CORBA reference used
for handle
public EJBHome getEJBHome() CORBA::string_to_object
throws java.rmi.RemoteException
Module <session-name> <session-home>
Interface <session>home extends EJBHome <session-home>::CCMHome,
<session-home>Implicit,
<session-home>Explicit
Operation public <session-name>Remote create (<session-component> create (); Generated operation
<arg-type> <arg-list>) Inherited from
throws CreateException <home>Implicit
Module <entity-name> <entity-home>
Interface <entity>home extends EJBHome <entity-home>::CCMHome,
<entity-home>Implicit,
<entity-home>Explicit
5-24 CORBA Components, v3.0 June 2002

Table5-8 Comparing the home interfaces of EJB and CORBA components

Construct | EJB Form CCM Form Notes
Operation public <entity-name>Remote create (<entity-component> create () Generated operation
<arg-type> <arg-list>) raises (InvalidKey, Inherited from
throws CreateException, DuplicateKey); <home>Implicit
DuplicateKeyException
public <entity-name>Remote <entity-component> find (Generated operation
findByPrimaryKey (in <key-type> key) Inherited from
<arg-type> <arg-list>) raises (InvalidKey, <home>Implicit
throws FinderException, UnknownKeyType);
ObjectNotFoundException
public <entity-name>Remote <entity-component> <find-method> (Specified operation
find<method> (in <arg-type> <arg-list>) Inherited from
<arg-type> <arg-list>) raises (<exceptions>); <home>Explicit
throws FinderException,
ObjectNotFoundException
5.6.2 The Component Interfaces
Table 5-9 compares the component interfaces and operations that make up the EJB and
CORBA component models. In EJB, the EJBObject object is created by the EJB
container provider’s tools and provides implementations for methods of the base class
and delegates business methods to a derived class (<name>Remote).
In the basic CORBA component model, components are defined as righteous CORBA
objects and the associated business methods are defined as operations on a supported
interface and the component developer implements these directly so the container need
not provided delegation support.
For CORBA clients to use EJB implementations, the container provider must
externalize EJBObject to the CORBA client as a CORBA component. Thisis
accomplished by extensions to the Javato IDL mapping defined in Chapter 8. For EJB
clients to access CORBA components, the container provider must create an
EJBObject implementation that serves as a bridge between business methods on
EJBObject and the basic CORBA component’s supported interface. This bridge is
also described in Chapter 8.
Table5-9 Comparing the remote interfaces of EJB and CORBA components
Construct | EJB Form CCM Form Notes
Module javax.ejb Components
Interface EJBObject extends java.rmi.Remote | CCMObject
Operation public EJBHome getEJBHome() CCMHome
throws java.rmi.RemoteException get_ccm_home();
public java.lang.Object primaryKey operation defined on <entity>home
getPrimaryKey()
throws java.rmi.RemoteException
June 2002 CORBA Components: Comparing CCM and EJB 5-25

Table5-9 Comparing the remote interfaces of EJB and CORBA components

Construct

EJB Form

CCM Form

Notes

Operation
(continued)

public void remove (

Handle handle)

throws java.rmi.RemoteException,
RemoveException

void remove()
raises (CCMException);

CORBA references instead of
handles; REMOVE_ERROR
is minor code

public Handle getHandle()
throws java.rmi.RemoteException

CORBA::object_to_string

public boolean isldentical (
EJBObject obj)
throws java.rmi.RemoteException

boolean is_equivalent(
in Object obj);

Interface Handle extends java.io.Serializable CORBA reference used for handle
public EJBObject getEJBObject() CORBA::string_to_object
throws java.rmi.RemoteException
Module <session-bean> <session-component>
Interface <session>Remote extends EJBObject | <session>::CCMObject
<res-type> <operation> (<res-type> <operation>(| business methods
<arg-type> <arg-list>) in <arg-type> <arg-list)
throws <exceptions> raises (<exceptions>);
Module <entity-bean> <entity-component>
Interface <entity>Remote extends EJBObject <entity>::CCMObiject

<res-type> <operation> (
<arg-type> <arg-list>)
throws <exceptions>

<res-type> <operation> (
in <arg-type> <arg-list)
raises (<exceptions>);

business methods

5.6.3 The Callback Interfaces

Table 5-10 summarizes the callback interfaces the EJB programmer or basic CORBA
component programmer must implement. The EJB interfaces are specified as Java
interfaces in accordance with the EJB 1.1 specification dated June 28, 1999. The CCM
interfaces are specified in IDL as defined in this specification.

Table 5-10 Comparing EJB and CCM Callback Interfaces

Construct | EJB Form

CCM Form

Notes

SessionContext ctx)
throws EJBException

Module javax.ejb Components::Basic

Interface EnterpriseBean EnterpriseComponent

Interface SessionBean extends EnterpriseBean SessionComponent::EnterpriseComponent
Operation public void setSessionContext (void set_session_context(

in SessionContext ctx)
raises (CCMException);

public void ejbActivate ()
throws EJBException

void ccm_activate ()
raises (CCMException);

5-26

CORBA Components, v3.0

June 2002

Table 5-10 Comparing EJB and CCM Callback Interfaces

Construct | EJB Form CCM Form Notes
Operation public void ejbPassivate () void ccm_passivate ()
(continued) throws EJBEXxception raises (CCMException);
public void ejpRemove () void ccm_remove ()
throws EJBException raises (CCMException);
Interface <name>Bean extends SessionBean Home operations are
not delegated in CCM.
Operation public void ejbCreate (Implemented on home,
<Arg-type> <arg-list>) CREATE_ERROR
throws CreateException, is minor code
EJBException)
Interface SessionSynchronization SessionSynchronization
Operation public void afterBegin () void after_begin ()
throws EJBException raises (CCMException);
public void beforeCompletion() void before_completion ()
throws EJBEXxception raises (CCMException);
public void afterCompletion (void after_completion
boolean committed) (in boolean committed)
throws EJBEXxception raises (CCMException);
Interface EntityBean extends EnterpriseBean EntityComponent::EnterpriseComponent
Operation public void setEntityContext (void set_entity_context
EntityContext ctx) (in EntityContext ctx)
throws EJBException raises CCMException;
public void unsetEntityContext () void unset_entity_context ()
throws EJBEXxception raises (CCMException);
public void ejbActivate () void ccm_activate ()
throws EJBEXxception raises (CCMException);
public void ejbLoad () void ccm_load ()
throws EJBException raises (CCMException);
public void ejbStore () void ccm_store()
throws EJBException raises (CCMException);
public void ejbPassivate () void ccm_passivate ()
throws EJBException raises (CCMException);
public void ejpRemove () void ccm_remove () REMOVE_ERROR
throws RemoveException, raises (CCMException); is a minor code
EJBException
Interface <name>Bean extends EntityBean Home operations are
not delegated in CCM.
Operation public <key-type> ejbcreate (Implemented on home,
<Arg-type> <arg-list>) CREATE_ERROR
throws CreateException, and DUPLICATE_KEY
DuplicateKeyException, are minor codes
EJBException
June 2002 CORBA Components: Comparing CCM and EJB 5-27

Table 5-10 Comparing EJB and CCM Callback Interfaces

Construct | EJB Form CCM Form Notes
public void ejbPostCreate () post_create not
throws CreateException, required in CCM due
DuplicateKeyException, to CORBA identity
EJBException model
public <key-type> findByPrimaryKey (Implemented on home,
<Arg-type> <arg-list>) FIND_ERROR,
throws FinderException, NO_SUCH_ENTITY and
NoSuchEntityException, OBJECT_NOT_FOUND
ObjectNotFoundException, are minor codes
EJBException
public <key-type> find<method> (Implemented on home,
<Arg-type> <arg-list>) FIND_ERROR,
throws FinderException, NO_SUCH_ENTITY and
NoSuchEntityException, OBJECT_NOT_FOUND
ObjectNotFoundException, are minor codes
EJBException
5.6.4 The Context Interfaces
The context interfaces summarized in Table 5-11 provide accessors to services
provided by the component container. They are used by the component devel oper when
these services are required.
Table 5-11 Comparing the EJB and CCM Context Interfaces
Construct | EJB Form CCM Form Notes
Module javax.ejb Components::Basic
Interface EJBContext CCMContext
Operation public java.security.Principal getCallerPrincipal() | Principal get_caller_principal();
public EJBHome getEJBHome() CCMHome get_ccm_home();
public boolean getRollbackOnly() boolean get_rollback_only()
throws java.lang.lllegalState raises (lllegalState);
public javax.transaction.UserTransaction Transaction::UserTransaction
getUserTransaction () get_user_transaction ()
throws java.lang.lllegalState raises (lllegalState);
public boolean isCallerinRole (boolean is_caller_in_role
java.lang.String (roleName) (in string role);
public void setRollbackOnly() void set_rollback_only()
throws java.lang.lllegalState raises lllegalState;
Interface SessionContext extends EJBContext SessionContext::CCMContext
Operation public EJBObject getEJBObject() CORBA::Object get_ CCM_Obiject() | this will be the
throws java.lang.lllegalState raises (lllegalState); component
reference
5-28 CORBA Components, v3.0 June 2002

Table 5-11 Comparing the EJB and CCM Context Interfaces

Construct | EJB Form CCM Form Notes
Interface EntityContext extends EJBContext EntityContext::CCMContext
Operation public EJBObject getEJBObject() CORBA::Object get_ CCM_Obiject() | this will be the
throws java.lang.lllegalState raises (lllegalState); component
reference
public java.lang.Object getPrimaryKey () PrimaryKeyBase get_primary_key()
throws java.lang.lllegalState raises (lllegalState);
5.6.5 The Transaction Interfaces
Table 5-12 summarizes the transaction interfaces provided for bean-managed or
component-managed transactions. Both EJB and CCM provide an accessor function in
the context to obtain a reference to a transaction service. The transaction service
supported for EJB is JTA, a subset of JTS which is equivalent to the CORBA
transaction service (OTS). The transaction service supported for CORBA components
isimplemented by the component container as a wrapper over the CORBA transaction
service. Components::Transaction is functionally equivalent to JTA (whichisnot a
distinct compliance level for OTS) with the addition of suspend and resume.
Table 5-12 Comparing the EJB Transaction service (JTA) with CORBA component transactions
Construct | EJB Form CCM Form Notes
Module javax.transaction Components::Transaction
Interface UserTransaction UserTransaction
Operation public void begin() void begin () SystemError to avoid confusion
throws NotSupported, raises (NotSupported, with System Exception
SystemException SystemError);
public void commit() void commit() map CORBA system exceptions
throws RollbackException, raises (RollbackError, TRANSACTION_ROLLED_BACK
HeuristicMixedException, HeuristicMixed, to ROLLBACK and
HeuristicRollbackException, HeuristicRollback, NO_IMPLEMENT to SECURITY
java.security.SecurityException, Security,
java.lang.lllegalStateException, lllegalState,
SystemException SystemError
public void rollback() void rollback()
throws java.security.SecurityException, | raises (Security,
java.lang.lllegalStateException, lllegalState,
SystemException SystemError);
public void setRollbackOnly() void set_rollback_only()
throws SystemException raises (SystemError);
public int getStatus() Status get_status()
throws SystemException; raises (SystemError);
June 2002 CORBA Components: Comparing CCM and EJB 5-29

Table 5-12 Comparing the EJB Transaction service (JTA) with CORBA component transactions

Construct | EJB Form CCM Form Notes
public void setTransactionTimeout (void set_transaction_timeout(
int seconds) in long to)
throws SystemException raises (SystemError);
TranToken suspend() CCM supports suspend/resume
raises (NoTransaction, which JTA does not
SystemError);
void resume(CCM supports suspend/resume
in TranToken) which JTA does not
raises (invalidToken,
SystemError);
5.6.6 The Metadata Interfaces
The EJB component model supports a limited set of metadata through the
EJBMetaData interface. The CORBA component model extends the CORBA
interface repository to add component-unique metadata for components. This meta-
datais in addition to the metadata currently provided by the IR. When EJB clients
access CORBA components, the container provider must provide an implementation of
EJBMetaData, which supports the necessary metadata from the Interface Repository
or the component descriptors. This is described further in Chapter 8. When CORBA
clients access EJB implementations, the Interface Repository is already populated for
the EJBHome and EJBObject interfaces, enabling client requests to be satisfied.
Table 5-13 compares the metadata supported by EJB and CORBA Components.
Table 5-13 Comparing component metadata between EJB and CORBA components
Construct | EJB Form CCM Form Notes
Module javax.ejb IR
Interface EJBMetaData ComponentDef
public EJBHome getEJBHome()
public java.lang.Class getHomelnterfaceClass()
public java.lang.Class getRemotelnterfaceClass()
public java.lang.Class getPrimaryKeyClass()
public boolean isSession()
public boolean isStatelessSession()
5-30 CORBA Components, v3.0 June 2002

Packagingand Deployment 6

This chapter describes the CORBA component packaging and deployment model.

Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 6-1

“Component Packaging” 6-2

“ Software Package Descriptor” 6-2

“CORBA Component Descriptor” 6-16
“Component Assembly Packaging” 6-39
“Component Assembly File’ 6-40
“Component Assembly Descriptor” 6-40
“Property File Descriptor” 6-60
“Component Deployment” 6-66

6.1 Introduction

Component implementations may be packaged and deployed.

A CORBA Component package maintains one or more implementations of a
component. It may be installed on a computer or grouped together with other
components to form an assembly. A component assembly is a group of interconnected
components represented by an assembly package.

June 2002 CORBA Components, v3.0 6-1

A package, in general, consists of one or more descriptors and a set of files. The
descriptors describe the characteristics of the package and point to its various files. The
files that make up a package, including the descriptor, may be grouped together in an
archive file or stored separately. When stored separately, the descriptor contains
pointers to the location of each file.

The component package is a specialization of a general software package. The
software packaging scheme, described here, could be used to package arbitrary
software entities. In fact it was initialy inspired by the Open Software Description
(OSD) note to the W3C. OSD is an XML vocabulary for describing software packages
and their dependencies. We have extended OSD slightly, without loss of generality, to
support component packaging.

A component package may be deployed alone, asis, or it may be included in a
component assembly package and deployed as part of the assembly along with the
other components of the assembly.

A component assembly is a set of interrelated components and component homes
represented by an assembly package. A component assembly package consists of a set
of component packages and an assembly descriptor. The assembly descriptor specifies
the components that make up the assembly, partitioning constraints, and connections.
Connections are between interface ports, represented by provides and uses features and
between event ports, represented by emits, produces, and consumes features.

Component and assembly packages are provided as input to a deployment tool.

A deployment tool deploys individual components and assemblies of components to an
installation site, usually a set of hosts on a network. The user of the deployment tool
guides in determining where each component should be installed. Components within
an assembly may be installed on a single machine or scattered across a network.

Based on an assembly descriptor and user input, the deployment tool installs and
activates component homes and instances; it configures component properties and
connects components together via interface and event ports, as indicated in the
assembly descriptor.

6.2 Component Packaging

A software package is represented by a descriptor and a set of files. The descriptor and
associated files are grouped together in a ZIP archive file. The software package could
be used to describe arbitrary software packages.

In relation to CORBA Components, software packages are used to package a CORBA
Component implementation.

6.3 Software Package Descriptor

The contents of a software package are described by a software package descriptor.
The descriptor consists of general information about the software followed by one or
more sections describing implementations of that software. An XML vocabulary is

CORBA Components, v3.0 June 2002

June 2002

used to describe component software packages. The descriptor file has a“.csd”
extension. CSD stands for CORBA Software Descriptor. When used in an archive, the
CSD file for the archive is placed in atop level directory caled “meta-inf.”

The structure and intent of the descriptor can be better understood by looking at an
example.

6.3.1 A softpkg Descriptor Example

<softpkg name="Bank" version="1,0,1,0">
<pkgtype>CORBA Component</pkgtype>
<title>Bank</title>
<author>
<company>Acme Component Corp.</company>
<webpage href="http://www.acmecomponent.com"/>
</author>
<description>Yet another bank example</description>
<license href="http://www.acmecomponent.com/license.html|" />
<idl id="IDL:M1/Bank:1.0" ><link href="ftp://x/y/Bank.idl" /></id|>

<propertyfile><fileinarchive name="bankprops.cpf"/></propertyfile>

<implementation id="DCE:700dc518-0110-11ce-ac8f-0800090b5d3e” >
<os name="WinNT" version="4,0,0,0" />
<os name="Win95" />
<processor name="x86" />
<compiler name="MyFavoriteCompiler" />
<programminglanguage name="C++" />

<dependency type="ORB" >
<name>ExORB</name>
</dependency>

<descriptor type="CORBA-Component”>
<fileinarchive name="processcontainer.ccd" />

</descriptor>

<code type="DLL">
<fileinarchive name="bank.dll"/>
<entrypoint>createBankHome</entrypoint>
</code>

<dependency type="DLL">
<localfile name="rwthr.dll"/>
</dependency>

</implementation>

<implementation id="DCE:297f3e18-0110-11ce-ac8f-08074982ad 3e”
variation="RemoteHome" >

CORBA Components: Software Package Descriptor 6-3

<0s name="Solaris" version="5,5,0,0" />
<processor name="sparc" />
<l--...-->

</implementation>

<implementation> <!-- another implementation --> </implementation>
</softpkg>

6.3.2 The Software Package Descriptor XML Elements

6.3.2.1

This section describes the XML elements that make up a software package descriptor.
The section is organized starting with the root element of the package descriptor
document, softpkg, followed by all subordinate elements, in alphabetical order. The
complete softpkg DTD may be found in the softpkg.dtd in Section 7.1, “ softpkg.dtd,”
on page 7-1.

Note — An effective strategy for studying an XML DTD isto recursively navigate from
the root element, which in this case is softpkg, to each child element.

The softpkg Root Element

The softpkg element is the root element of the document. Aswell, it isachild element
of dependency. It contains a set of general child elements that describe the software
package. This is followed by one or more implementation specifications.

A softpkg archive may contain multiple implementations of a component. This allows
the component implementor to provide specialized implementations for different
operating systems, compilers, or ORBSs, or to provide different programming language
implementations of the component. Each implementation is represented in the softpkg
descriptor as a distinct implementation element.

<IELEMENT softpkg
(title
| pkgtype
| author
| description
| license
| idl
| propertyfile
| dependency
| descriptor
| implementation
| extension
) >
<IATTLIST softpkg
name ID #REQUIRED
version CDATA #OPTIONAL >

CORBA Components, v3.0 June 2002

The attributes are as follows:

name

Uniquely identifies the package within the package.
version

Specifies the version of the component. The format of the version string is numerical
major and minor version numbers separated by commas (e.g., “1,0,0,0”).

6.3.2.2 Theauthor Element

The author element is used to identify the author of the softpkg. It may contain name,
company, and webpage child elements.

<IELEMENT author
(name
| company
| webpage
<>

6.3.2.3 Thecode Element

The code element points to afile in the archive that implements the component. This
could be, for example, aDLL, a.so, or a.class file. The fileinarchive child element is
used to indicate the codefile within the archive. codebase and link are used to point to
code files outside of any archive. The optional entrypoint child element is used to
specify an entry point to the code. The optional usage element is used to describe how
to use (i.e., invoke, the code).

<!ELEMENT code
((codebase
| fileinarchive
| link
)
, entrypoint?
, usage?
) >
<IATTLIST code
type CDATA #IMPLIED >

The type attribute specifies the type of code. The types “DLL," “Executable,” and
“Java Class” shall be recognized as valid types.

June 2002 CORBA Components: Software Package Descriptor 6-5

6-6

6.3.2.4

6.3.2.5

6.3.2.6

6.3.2.7

The codebase Element

The codebase element is used to specify aresource. If the resource isn’t available in
the local environment, then a link specifies where it may be obtained. codebase has an
EMPTY content model.

<IELEMENT codebase EMPTY >
<IATTLIST codebase
filename CDATA #IMPLIED
%simple-link-attributes; >

codebase has two attributes: name - the name of the resource, and href--as defined in
simple-link-attributes--the link.

The company Element

The company element, an optional child element of author, specifies the company that
created the softpkg. It contains string data.

<IELEMENT company (#PCDATA) >

The compiler Element

The optional compiler element specifies the compiler used to create an
implementation. compiler has an empty content model.

<I[ELEMENT compiler EMPTY >
<IATTLIST compiler
name CDATA #REQUIRED
version CDATA #IMPLIED >

The required attribute name, specifies the name of the compiler and the optional
version, the version of the compiler. The version is specified in a“w,x,y,z” format.

The dependency Element

The dependency element is used to specify environmental or other dependencies. The
type of dependency is specified by the type attribute. The dependency element is a
child element of both the softpkg element and implementation elements. When used
as a child of softpkg, it specifies general dependencies applicable to all
implementations. When used as a child of implementation, it specifies implementation
specific dependencies.

<I[ELEMENT dependency
(softpkgref
| codebase
| fileinarchive
| localfile
| name

CORBA Components, v3.0 June 2002

June 2002

6.3.2.8

6.3.2.9

6.3.2.10

| valuetypefactory
) >
<IATTLIST dependency
type CDATA #IMPLIED
action (assert | install)"assert">

The type attribute specifies the type of the resource required. The types “DLL ;"
“Executable,” and “Java Class’ shall be recognized as valid types.

When action is set to assert, the installation process must verify that the dependency
existsin the environment. If action is set to install, the installation process must install
the dependency if it does not already exist.

The description Element

The description element contains a string description. It is used to describe its parent
element. It contains string content.

<IELEMENT description (#PCDATA) >

The descriptor Element

The descriptor element is used to refer to descriptor files associated with a softpkg or
implementation. In a CORBA Component softpkg, it is used to point to the CORBA
Component descriptor.

<IELEMENT descriptor
(link
| fileinarchive
) >
<IATTLIST descriptor
type CDATA #IMPLIED>

The type attribute is the type of the descriptor.

Note — With respect to the CORBA Component model, atype of “CORBA
Component” is used to indicate a CORBA component descriptor (described in
Section 6.4.4, “CORBA Component Descriptor Example,” on page 6-18).

The entrypoint Element

The entrypoint element specifies the entry point to a software package. See
Section 6.9.8, “Component Entry Points (Component Home Factories),” on page 6-78
for information on CORBA component entry points.

<IELEMENT entrypoint (#PCDATA) >

CORBA Components: Software Package Descriptor 6-7

6-8

6.3.2.11 Theextension Element

6.3.2.12

The extension element is used to add experimental or vendor specific elements to the
softpkg DTD. The content model of the extension element is PCDATA, meaning that it
can have character data or markup.

An effort has been made to make the extension element an optional child element of
al non-trivial elements. Processors may ignore extension elements that they do not
recognize.

<IELEMENT extension (#PCDATA) >
<IATTLIST extension

class CDATA #REQUIRED
origin CDATA #REQUIRED
id ID #IMPLIED
extra CDATA #IMPLIED

html-form CDATA #IMPLIED >
The attributes of the extension element are as follows:
class

Used to distinguish this extension element usage. A processing application identifies
extension elements that it understands by examining an extension element’s class and
origin attributes.

origin

An origin attribute is required to identify the party responsible for the extension; for
example, an ORB vendor.

id

An optional 1D attribute that must be unique in the file.

extra

An extra attribute that may be used however the originator wishes.
html-form

The html-form element is used for formatting. The content will be formatted per the
html element type indicated (e.g., “").

Thefileinarchive Element

The fileinar chive element is used to specify afile in the same archive as the descriptor.
The optional link element may be used to point to an external archive, in which case
the file will be looked for in that file.

<IELEMENT fileinarchive

(link?) >
<IATTLIST fileinarchive

CORBA Components, v3.0 June 2002

name CDATA #REQUIRED >

The name attribute specifies the name or path of the element in the archive.

6.3.2.13 The humanlanguage Element

The humanlanguage element specifies a spoken language. humanlanguage has an
EMPTY content model.

<IELEMENT humanlanguage EMPTY >
<IATTLIST humanlanguage
name CDATA #REQUIRED >

The human language name is specified in the name attribute.

6.3.2.14 Theidl Element

The idl element points to file or repository containing an idl definition.

<IELEMENT idl
(link
| fileinarchive
| repository
) >
<IATTLIST idl
id CDATA #REQUIRED >

The id attribute is a repository Id that uniquely identifies the IDL equivalent interface
for the software component.

6.3.2.15 Theimplementation Element

The implementation element contains descriptive information about a particular
implementation of the software represented by the softpkg descriptor. An
implementation is described by platform dependencies, descriptors, dependencies, code
filename, entry points, and other characteristics.

<I[ELEMENT implementation
(description
| code
| compiler
| dependency
| descriptor
| extension
| programminglanguage

June 2002 CORBA Components: Software Package Descriptor 6-9

6-10

6.3.2.16

6.3.2.17

6.3.2.18

| humanlanguage
| os
| propertyfile
| processor
| runtime
>
<IATTLIST implementation
id ID #IMPLIED
variation CDATA #IMPLIED >

Theid attribute is a DCE UUID that uniquely identifies the implementation.

The variation attribute is used to indicate a variation from a normal implementation.
The interpretation of the variation attribute depends on user of the softpkg.

Note — The only valid variation string defined by the CORBA Component model is
“ProxyHome.” The ProxyHome variation indicates that the component implementation
contains a proxy home only, not a full component implementation.

Theimplref Element

The implref element is used to refer to an implementation within a softpkg.

<I[ELEMENT implref EMPTY >
<IATTLIST implref
idref CDATA #REQUIRED >

The idref attribute refers to a unique implementation element id in the softpkg
descriptor.

Thelicense Element

The license child element of softpkg is used to point to the text of a usage license. The
license is pointed to by an href attribute. The license element may have arbitrary string
content.

<IELEMENT license (#PCDATA) >
<IATTLIST license
%simple-link-attributes; >

Thelink Element

Thelink element is used to specify a generic link. The href attribute indicates the link.
The element can have string content.

<IELEMENT link (#PCDATA) >

<IATTLIST link
%simple-link-attributes; >

CORBA Components, v3.0 June 2002

June 2002

6.3.2.19

6.3.2.20

6.3.2.21

Thelocalfile Element

The localfile element is used to specify afile that is expected to be found in the local
environment.

<IELEMENT localfile EMPTY >
<IATTLIST localfile
name CDATA #REQUIRED >

The name of the file is specified in the name attribute.

The name Element

The name element is an optional child element of both the author and dependency
elements. When used as a child of author, it specifies the name of the author. When
used as a child of dependency, it specifies the expected value of the dependency. It has
string content.

<IELEMENT name (#PCDATA) >

The os Element

The os element is used to specify a particular operating system that the implementation
will work with. This can be specified multiple times if the implementation will work
on more than one os.

<!ELEMENT os EMPTY >
<IATTLIST os
name CDATA #REQUIRED
version CDATA #IMPLIED>

The name attribute specifies the name of the operating system.
The version attribute specifies the version of the osin “w,x,y,z" format.
Legal values include:

* AIX

* BSDi

* VMS

* DigitalUnix

®* DOS

® HPBLS

* HPUX

* [RIX

® Linix

CORBA Components: Software Package Descriptor 6-11

6-12

6.3.2.22

6.3.2.23

® MacOS
* 0S/2

* AS/400
* MVS

* SCO CMW
® SCO ODT
® Solaris

® SunOS

® UnixWare
* VxWorks
®* Win95

* WIinNT

The pkgtype Element

The pkgtype element is used to identify the type of software that the softpkg
represents. This specification reserves package types “CORBA Component” and
“CORBA Interface Impl” for the packaging of CORBA component and interface
implementations.

<IELEMENT pkgtype (#PCDATA) >
<IATTLIST pkgtype
versionCDATA #IMPLIED >

The optional version attribute specifies a version of the package type.

The processor Element

The processor element indicates the type of processor that the implementation must
run on, if there is any such constraint.

<IELEMENT processor EMPTY >
<IATTLIST processor
name CDATA #REQUIRED >

The name of the processor is indicated in the name attribute.

Legal values include:
* x86
® mips
® apha
® ppc

CORBA Components, v3.0 June 2002

June 2002

6.3.2.24

6.3.2.25

6.3.2.26

® sparc
®* 680x0
® vax

* AS/400
* S/390

The programminglanguageEl ement

The programminglanguage element specifies the type of the component
implementation. programminglanguage has an empty content model.
programminglanguage is a child element of implementation.

<IELEMENT programminglanguage EMPTY>
<IATTLIST programminglanguage

name CDATA #REQUIRED

version CDATA #IMPLIED >

The required programminglanguage hame and optional version attributes specify the
programming language used to implement the component.

The propertyfile Element

The propertyfile element is used to refer to a property file associated with the softpkg
or implementation.

A property file of a particular type, defined at the top level of the descriptor, may be
overridden by implementation specific property files of that type, defined in an
implementation element.

<IELEMENT propertyfile
(fileinarchive
| link) >

<IATTLIST propertyfile
type CDATA #IMPLIED >

The type attribute, distinguishes a property file from other types of property files. If
there is only one type of property file, or if the type of property file is implicit given a
context, then the type is not required.

Therepository Element

The repository element is a child element of the idl element used to point to a
repository, such as the interface repository.

<!IELEMENT repository
(ins
| objref
| link

CORBA Components: Software Package Descriptor 6-13

6-14

6.3.2.27

6.3.2.28

) >
<IATTLIST repository
type CDATA #IMPLIED >

The type attribute specifies the type of repository. Currently, the only predefined value
for type is “CORBA Interface Repository.”

The runtime Element

The runtime element specifies a runtime required by a component implementation. An
example of aruntimeis a Java VM.

<IELEMENT runtime EMPTY >
<IATTLIST runtime
name CDATA #REQUIRED
version CDATA #IMPLIED>

The name and version of the runtime are specified in the name and version
attributes. The version is specified in “w,x,y,z" format.

The simple-link-attributes Entity

The simple-link-attributes entity is used to specify link attributes. The default link
form is a simple link.

<IENTITY % simple-link-attributes "

xml:link CDATA #FIXED 'SIMPLE'
href CDATA #REQUIRED
"

The user of an element that uses these link attributes will likely only need to be
concerned with the href attribute. However the user may specify other attributes if
desired.

Note — In the context of CORBA Components, the href attribute may be used to
specify INS format names.

To demonstrate the usage of an element that employs the simple-link-attributes entity,
consider the following element definition:

<IELEMENT exampleelement EMPTY >

<IATTLIST exampleelement
%simple-link-attributes; >

This could be used as follows:

<exampleelement href="http://www.abc.com/xyz” />

CORBA Components, v3.0 June 2002

June 2002

6.3.2.29

6.3.2.30

6.3.2.31

6.3.2.32

6.3.2.33

The softpkg Element

This is the root element of the descriptor. See Section 6.3.2.1, “The softpkg Root
Element,” on page 6-4.

The softpkgref Element

The softpkgref element refers to an external softpkg. The file is referenced by a
fileinarchive element or a link. An optional implref element refers to a particular
implementation within the softpkg descriptor.

<IELEMENT softpkgref
((fileinarchive
| link
)

, implref?

) >

Thetitle Element

The title element is used to specify the friendly, or tool name of the softpkg. The title
element contains string data.

<IELEMENT title (#PCDATA) >

The usage Element

The usage element contains a string usage description.

<IELEMENT usage (#PCDATA) >

The val uetypefactory Element

The valuetypefactory element contains information needed to register and utilize a
valuetype factory. The valuetypefactory element is achild element of the dependency
element.

<IELEMENT valuetypefactory

(codebase
| fileinarchive
| link
) >
<IATTLIST valuetypefactory
repid CDATA #REQUIRED

valueentrypoint CDATA #IMPLIED
factoryentrypoint CDATA #IMPLIED >

CORBA Components: Software Package Descriptor 6-15

6.3.2.34

The repid attribute specifies the repository id of the valuetype created by the valuetype
factory. The factoryentrypoint attribute specifies an operation or function that can be
used to create an instance of a valuetype factory associated to the repository id given
by repid. The valueentrypoint attribute specifies an operation or function that can be
used to create an instance of a valuetype using a factory instance created with
factoryentrypoint.

The webpage Element

The webpage element, an optional child element of author, specifies a web page
associated with the author.

<IELEMENT webpage (#PCDATA) >
<IATTLIST webpage
%simple-link-attributes; >

6.4 CORBA Component Descriptor

6-16

The CORBA Component descriptor describes a component. It is referred to by a
<descriptor type="CORBAComponent> element in a softpkg descriptor
describing a CORBA component.The CORBA Component descriptor specifies
component characteristics, used at design and deployment time. A component
descriptor file has a recommended “.ccd” extension, standing for CORBA Component
Descriptor.

The component descriptor is generated by a CIDL compiler. Thisis convenient as the
CIDL compiler has much of the necessary information at hand. However, the compiler
doesn’t have all of the information required. The user, likely with the help of a
packaging tool, will have to modify the generated descriptor. This could be done
manually, but it is more likely to be done with the help of a packaging tool.

The component descriptor is described using an XML vocabulary. The complete XML
DTD for the descriptor isin the XML DTDs chapter. This section discusses each
element of the descriptor in detail.

6.4.1 Component Feature Description

The component descriptor provides information that a design tool may use to display
information about a component. This includes information about the interfaces that the
component supports and its ports.

Note — For the purpose of component packaging and deployment we will use the term
portsto collectively describe the interfaces that a component uses and provides and the
events that it emits, publishes, and consumes. In addition, provides and uses ports will
be called interface ports, and emits, publishes, and consumes ports will be termed
event ports.

CORBA Components, v3.0 June 2002

June 2002

The component descriptor describes the structure of a component with respect to
supported interfaces, inherited components, and uses and provides ports. The
component is described by a componentfeatures element, which describes inherited
components, supported interfaces, used and provided interfaces, and emitted, published
and consumed events. If the component inherits from other components, then the
features of that component are described in a separate componentfeatur es element and
referenced by the inheritscomponent. The primary componentfeatur es element of the
descriptor is indicated by the repositoryid element of the component descriptor.

Each interface supported or provided by a component is described by an interface
element. Interface elements are referenced by the repository id of the interface. An
interface has a name and a repository id, and may inherit from other interfaces. The
inheritance relationship is represented by the inheritsinterface element.

This information alows a tool to display the features of a component and to connect
components together based on those features. For example, a component that uses
interface X could be connected to another component that provides interface X, based
on information in each component’s descriptor.

6.4.2 Deployment Information

At deployment time, the component descriptor is used to determine the type of
container in which the component needs to be installed and to provide information
about the component to the container.

The componentkind element tells the creator of the container what kind of container
to create. A componentkind can be either session, service, process, or entity.

®* Thetransaction element indicates the transactional characteristic of the component.
® The eventpolicy is used to indicate the quality of service of event ports.

® The threading element indicates how the container should dispatch operations on
the component instance. If threading is set to multithread, then the component is
ready to accept multiple threads of control within a single instance. The component
takes responsibility for protecting its internal state. If threading is set to serialize,
then the container will serialize all calls to a single instance. Note that although the
component will not need to protect instance state, the container may employ other
threads to invoke other instances of the component type, thus the component must
protect any static or class data.

The configurationcomplete element tells the deployment agent whether the
component expects for configuration_complete to be called after its properties
have been set and its ports configured to their initial state (e.g., as described by a
component assembly descriptor).

The segments element provides the container with information necessary to map
segment tags to segment names, segment tags to facet tags, and segment tags to
abstract storage home types. The facettag element references a provides interface
element described elsewhere in the descriptor. The provides element maps facet tags to
provided interface names. A container uses the information provided by these elements

CORBA Components: CORBA Component Descriptor 6-17

to construct data structures mapping segment tags to segment names, facet tags to facet
names, and segment tags to facet tags. Note that a segment tag can map to more than 1
facet tag.

6.4.3 CIDL Compiler Responsibilities

A CIDL compiler is responsible for generating an initial component descriptor. This
initial descriptor is vendor specific and may be manipulated directly by the user or
using vendor supplied tools.

6.4.4 CORBA Component Descriptor Example

<?xml version="1.0"?>
<IDOCTYPE corbacomponent SYSTEM "corbacomponent.dtd">

<corbacomponent>

<corbaversion> 3.0 </corbaversion>
<componentrepid repid="IDL:BookStore:1.0" />
<homerepid repid="IDL:BookStoreHome:1.0" />
<componentkind>

<entity>

<servant lifetime="process" />

</entity>
</componentkind>
<security rightsfamily="corba" />
<threading policy="multithread" />
<configurationcomplete set="true" />

<segment name="bookseg" segmenttag="1">
<segmentmember facettag="1" />
<segmentmember facettag="2" />
<containermanagedpersistence>
<storagehome id="PSDL:BookHome:1.0" />
<pssimplementation id="ACME-PSS" />
<catalog type="PSDL:BookCatalog:1.0" />
<accessmode mode="READ_ONLY" />
<psstransaction policy="TRANSACTIONAL" >
<psstransactionisolationlevel level="SERIALIZABLE" />
</psstransaction>
<params>
<param name="x" value="1" />
</params>
</containermanagedpersistence>
</segment>

<homefeatures name="BookStoreHome"
repid="IDL:BookStoreHome:1.0">
<operationpolicies>
<operation name="*">
<transaction use="never" />

6-18 CORBA Components, v3.0 June 2002

June 2002

</operation>
</operationpolicies>
</homefeatures>

<componentfeatures name="BookStore" repid="IDL:BookStore:1.0">

<inheritscomponent repid="IDL:Acme/Store:1.0" />
<ports>
<provides
providesname="book_search"
repid="IDL:BookSearch:1.0"
facettag="1">
<operationpolicies>
<operation name="getByAuthor">
<requiredrights>
<right name="get"/>
</requiredrights>
</operation>
<operation name="getByTitle">
<requiredrights>
<right name="get"/>
</requiredrights>
</operation>
<operation name="getByISBN">
<requiredrights>
<right name="get"/>
</requiredrights>
</operation>
</operationpolicies>
</provides>
<provides
providesname="shopping_cart"
repid="IDL:CartFactory:1.0"
facettag="2" />
<uses
usesname="ups_rates"
repid="IDL:ShippingRates:1.0" />
<uses
usesname="fedex_rates"
repid="IDL:ShippingRates:1.0" />
<emits
emitsname="low_stock"
eventtype="StockRecord">
<eventpolicy policy="normal" />
</emits>
<publishes
publishesname="offer_alert"
eventtype="SpecialOffer">
<eventpolicy policy="normal" />
</publishes>
</ports>
</componentfeatures>

CORBA Components: CORBA Component Descriptor

6-19

<componentfeatures name="Store" repid="IDL:Acme/Store">
<supportsinterface repid="IDL:Acme/GeneralStore">
<operationpolicies>
<operation name="*">
<transaction use="required" />
</operation>
</operationpolicies>
</supportsinterface>
<ports>
<provides
providesname="admin"
repid="IDL:Acme/StoreAdmin:1.0"
facettag="3" />
</ports>
</componentfeatures>

<interface name="BookSearch" repid="IDL:BookSearch:1.0">
<inheritsinterface repid="IDL:SearchEngine:1.0" />
</interface>
<interface name="SearchEngine" repid="IDL:SearchEngine:1.0"/>
<interface name="CartFactory" repid="IDL:CartFactory:1.0"/>
<interface name="ShippingRates" repid="IDL:ShippingRates:1.0"/>
<interface name="StoreAdmin" repid="IDL:Acme/StoreAdmin:1.0">
<operationpolicies>
<operation name="*">
<transaction use="required" />
<requiredrights>
<right name="manage"/>
<right name="set"/>
</requiredrights>
</operation>
</operationpolicies>
</interface>
<interface name="GeneralStore" repid="IDL:Acme/GeneralStore:1.0"/>

</corbacomponent>

6.4.5 The CORBA Component Descriptor XML Elements

This section describes the XML elements that make up a component descriptor. The
section is organized starting with the root element of the component descriptor
document, corbacomponent, followed by all subordinate elements, in aphabetical
order. The complete CORBA component descriptor DTD may be found in Section 7.2,
“corbacomponent.dtd,” on page 7-5.

6-20 CORBA Components, v3.0 June 2002

June 2002

6.4.5.1 The corbacomponent Root Element

The corbacomponent element is the root element of the CORBA component
descriptor.

<IELEMENT corbacomponent

(corbaversion

, componentrepid

, homerepid

, componentkind

, interop?

, transaction?

, Security?

, threading

, configurationcomplete
, extendedpoapolicy*

, repository?

, segment*

, componentproperties?
, homeproperties?

, homefeatures+

, componentfeatures+

, interface*

, extension*

) >

These elements must be provided in the order presented.

cor baversion tells which version of CORBA the component is assuming.

componentrepid is the interface repository id of the component. It also refersto a
componentfeatures element later in the descriptor.

homerepid is the interface repository id of the home. It also refersto a
homefeatures element later in the descriptor.

componentkind describes properties of the component that will determine what
kind of container the component must reside in.

interop specifies interoperation information (e.g., with EJB).

transaction determines transaction policies for the entire component. This policy is
optional and may be overridden on individual facets or supported interfaces.

security specifies CORBA security rights family for the component.

threadingpolicy determines whether calls to the component will be serialized or
not.

configurationcomplete is set if the component expects for
configuration_complete to be called on the component after all of its properties
have been set and its ports have been connected.

extendedpoapolicy is used to set a POA policy for the component beyond the base
POA policies. For example, firewall policies.

CORBA Components: CORBA Component Descriptor 6-21

6-22

6.4.5.2

6.4.5.3

® repository provides a reference to a repository, such as the interface repository.

® segment describes a segment including its name, tag, member facets, and storage
home type.

® homefeatures describes the structure of the component’s homes.
® componentproperties specifies the default component properties file.
® homeproperties specifies the default home properties file.

® componentfeatures describes inherited components, supported interfaces, uses and
provides ports, and emits, publish, and consumes ports of the component. If the
primary component inherits from other components, those components are
described in separate componentfeature elements.

® interface describes the simple name and repository id of an interface and points to
inherited interfaces. Between the componentfeatures and interface elements, one
can navigate all of the interfaces that a component uses, provides, supports, and
inherits.

® extension may be used by auser or vendor to provide proprietary information in the
component descriptor.

These are the top-level elements of the document. These descriptor elements are
described in terms of attributes and other elements. The remainder of this section will
describe the top-level and child elements in detail.

Elements are presented in alphabetical order so that they will be easy to locate.

See Section 7.2, “corbacomponent.dtd,” on page 7-5 for the full text of the component
descriptor DTD.

The accessmode Element
Child element of containermanagedper sistence.

The accessmode element identifies whether the persistent state may be read and
written or only read.

<IELEMENT accessmode EMPTY>
<IATTLIST accessmode
mode (READ_ONLY|READ_WRITE) #REQUIRED >

The mode attribute identifies the access mode.

The catal og Element
Child element of container managedper sistence.

The catalog element identifies the catalog to be used in loading and storing persistent
state.

<IELEMENT catalog EMPTY>

CORBA Components, v3.0 June 2002

June 2002

6.4.5.4

6.4.5.5

<IATTLIST catalog
type CDATA #REQUIRED >

The type attribute identifies the type of catalog.

The componentfeatures Element
Child element of corbacomponent.

The componentfeatures element is used to describe a component with respect to the
components that it inherits from, the interfaces that the component supports, and its
provides, uses, emits, publish, and consumes ports. A component also has the features
that it inherits from other components. In addition, supported interfaces may inherit
from other interfaces. By following the inheritance chain, a graph is formed from the
primary component to a set of ports, supported interfaces, and other components. The
root component in this graph is identified by the repositoryid child element of

cor bacomponent.

The information obtained by traversing the componentfeatures graph may be displayed
by graphical tools. But more importantly, it allows component assembly tools to decide
what ports on a component are capable of connecting to ports on other components.

<IELEMENT componentfeatures
(inheritscomponent?
, supportsinterface*
, ports
, operationpolicies?
, extension*
) >

<IATTLIST componentfeatures
name CDATA #REQUIRED
repid CDATA #REQUIRED >

The name attribute is the non-qualified name of the component.

The repid attribute is the fully qualified repository id of the component. repid is also
used to refer to this component from elsewhere in the descriptor (for example, from the
inheritscomponent element).

The componentkind Element
Child element of corbacomponent.

The componentkind element defines the component category. For more information
on these categories, see Section 4.1.4, “Component Categories,” on page 4-5.

<IELEMENT componentkind
(' service
| session
| process
| entity

CORBA Components: CORBA Component Descriptor 6-23

6-24

6.4.5.6

6.4.5.7

6.4.5.8

6.4.5.9

| unclassified
) >
The componentproperties Element

The componentproperties element specifies a default component property file. The
format of the property file is described in Section 6.8, “Property File Descriptor,” on
page 6-60.

<I[ELEMENT componentproperties
(fileinarchive

) >
The componentrepid Element
Child element of corbacomponent.

componentrepid identifies the repository id of the component described by this
descriptor. The repository id also serves to point to the primary componentfeatures
element for this component within the descriptor, so as to distinguish it from inherited
components.

<IELEMENT componentrepid EMPTY >
<IATTLIST componentrepid
repid CDATA #IMPLIED >

repid is the fully qualified repository id of the component.

The configurationcompl ete Element
Child element of corbacomponent.

The configurationcomplete attribute is used to set whether configuration_complete
should be called on the component after it has been fully configured.

<IELEMENT configurationcomplete EMPTY >
<IATTLIST configurationcomplete
set (true | false) #REQUIRED >

The consumes Element
Child element of ports.

A consumes port specifies an event that the component expects to receive. At
deployment or creation time, the component will be connected via a channel to other
components or entities that emit the event. The eventpolicy allows the transaction
policy of the event port to be specified.

<IELEMENT consumes
(eventpolicy

CORBA Components, v3.0 June 2002

June 2002

6.4.5.10

6.4.5.11

, extension*) >

<IATTLIST consumes
consumesname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

consumesname

The consumesname attribute identifies the name associated with the consumes
statement in idl.

eventtype

The eventtype attribute identifies the repository id of the event that the component
expects to consume.

The contai ner managedper sistence Element
Child element of segment.

A container managedper sistence element specifies attributes required by the container
to manage the component’s persistent state using a PSS.

® storagehome indicates the type of abstract storage home.

® pssimplementation identifies a particular PSS implementation to be used, if not
specified, then the default PSS is used, as determined by the container
implementation.

® catalog specifies the catalog type.
® accessmode specifies the access mode--read only or read-write.

® psstransactionpolicy specifies whether transactions are to be used or not and, if so,
the isolation level.

® paramsis used to specify vendor specific parameters.

<!IELEMENT containermanagedpersistence
(storagehome
, pssimplementation?
, catalog?
, accessmode
, psstransactionpolicy
, params?
) >

The corbacomponent Element

The root element of this CORBA Component descriptor. See Section 6.4.5.1, “The
corbacomponent Root Element,” on page 6-21.

CORBA Components: CORBA Component Descriptor 6-25

6-26

6.4.5.12

6.4.5.13

6.4.5.14

6.4.5.15

6.4.5.16

The corbaversion Element
Child element of corbacomponent.

The corbaversion is used to identify the version of CORBA that the component
implementation is assuming. The version is represented by a major and minor number
separated by a“.”. For example, “<corbaversion>3.0</corbaversion>".

<IELEMENT corbaversion (#PCDATA) >

The description Element
See Section 6.3.2.8, “ The description Element,” on page 6-7.

The emits Element
Child element of ports.

An emits port specifies an event that the component generates. At deployment or
creation time, the component will be connected to a channel in which it can be
connected to consuming components. The eventpolicy allows the transaction policy of
the event port to be specified.

<IELEMENT emits
(‘eventpolicy
, extension*) >
<IATTLIST emits
emitsname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

The emitsname attribute identifies the name associated with the emits statement in idl.

The eventtype attribute identifies the repository id of the emitted events.

Theentity Element
Child element of componentkind.

The entity component kind is described in Section 4.2.1, “Component Containers,” on
page 4-5.

<IELEMENT entity
(servant) >
The eventpolicy Element

Child element of corbacomponent.

Event policies define the quality of service associated with the event ports of the
component. The possible values are defined in Section 4.2.8, “Events,” on page 4-12.

CORBA Components, v3.0 June 2002

June 2002

6.4.5.17

6.4.5.18

6.4.5.19

6.4.5.20

<IELEMENT eventpolicy EMPTY>
<IATTLIST eventpolicy
policy (normal | default | transaction) #IMPLIED>

The extendedpoapolicy Element
Child element of corbacomponent.

The extendedpoapolicy element is a name-value pair used to specify POA policies
beyond the base set of policies. It is for new policies, such as firewall, or future POA
policies yet to be defined. The extendedpoapolicy element must not be used to specify
any of the base POA policies. A set of POA policies is predefined for each component
category, except for the unclassified category. Only the unclassified component type is
flexible with respect to base POA poalicies; these are set using the poapalicies child
element of the unclassified element.

<!IELEMENT extendedpoapolicy EMPTY>

<IATTLIST extendedpoapolicy
nameCDATA #REQUIRED
valueCDATA #REQUIRED >

The name attribute is the name of the poa policy as defined in the specification where
it originated.

The value attribute is a valid attribute for the policy as defined in the specification
where it originated.

The extension Element
Child element of corbacomponent, componentfeatures, homefeatures.

See Section 6.3.2.11, “The extension Element,” on page 6-8.

Thefileinarchive Element
See Section 6.3.2.12, “The fileinarchive Element,” on page 6-8.

The homefeatures Element
Child element of corbacomponent.

The homefeatures element is used to describe a component home with respect to the
homes that it inherits from and the operationpolicies of its interface.

<IELEMENT homefeatures
(inheritshome?
, operationpolicies?
, extension*) >
<IATTLIST homefeatures
name CDATA #REQUIRED

CORBA Components: CORBA Component Descriptor 6-27

6-28

6.4.5.21

6.4.5.22

6.4.5.23

6.4.5.24

repid CDATA #REQUIRED >
The name attribute is the non-qualified name of the home.

The repid attribute is the fully qualified repository id of the home. repid is also used
to refer to this component from elsewhere in the descriptor, for example from the
inheritshome element.

The homeproperties Element

The homeproperties element specifies a default home property file. The format of the
property file is described in Section 6.8, “Property File Descriptor,” on page 6-60.

<IELEMENT homeproperties
(fileinarchive

) >
The homerepid Element
Child element of corbacomponent.

homer epid identifies the repository id of the home of the component described by this
descriptor. The home repository id also serves to point to the primary homefeatures
element for the home within the descriptor, so as to distinguish it from inherited
homes.

<!IELEMENT homerepid EMPTY >
<IATTLIST homerepid
repid CDATA #IMPLIED >

repid is the fully qualified repository id of the component.

Theinheritscomponent Element
Child element of componentfeatures.

The inheritscomponent element specifies an inherited component.

<IELEMENT inheritscomponent EMPTY>
<IATTLIST inheritscomponent
repid CDATA #REQUIRED>

The repid identifies is the repository id of the inherited component. It also serves to
refer to the componentfeatures element of the inherited component elsewhere in the
descriptor.

Theinheritshome Element

Child element of homefeatures.

The inheritshome element specifies an inherited home.

CORBA Components, v3.0 June 2002

June 2002

6.4.5.25

6.4.5.26

6.4.5.27

<IELEMENT inheritshome EMPTY>
<IATTLIST inheritshome
repid CDATA #REQUIRED>

The repid identifies is the repository id of the inherited home. It also serves to refer to
the homefeatures element of the inherited home elsewhere in the descriptor.

Theinheritsinterface Element
Child element of interface.

The inheritsinterface element is used to specify interface inheritance. This alows, for
example, for a derivation chain to be followed from a supported or provided interface
up to but excluding the Object interface.

<IELEMENT inheritsinterface EMPTY>
<IATTLIST inheritsinterface
repid CDATA #REQUIRED>

The repid identifies is the repository id of the inherited interface. It is used to refer to
the interface element of the inherited interface elsewhere in the descriptor.

Theins Element
Child element of repository.

The ins element is used to specify an interoperable naming service name.

<I[ELEMENT ins EMPTY>
<IATTLIST ins
nameCDATA #REQUIRED >

name is the INS name.

Theinterface Element
Child element of corbacomponent.

Specifies an interface that the component, either directly or through inheritance,
provides, uses, or supports. The operationpolicies child element specifies default
transaction policies and required security rights for uses of the interface.

<IELEMENT interface
(inheritsinterface*
, Operationpolicies?) >
<IATTLIST interface
name CDATA #REQUIRED
repid CDATA #REQUIRED >

The name attribute is the non-qualified name of the interface.

CORBA Components: CORBA Component Descriptor 6-29

6-30

6.4.5.28

6.4.5.29

6.4.5.30

6.4.5.31

The repid attribute is the fully qualified repository id of the interface. repid is aso
used to refer to this interface from elsewhere in the descriptor, for example from the
inheritsinterface element.

Theinterop Element
Child element of corbacomponent.

The interop element is used to specify whether this component interoperates with
another component type by acting as a view for that type or having a view of that type.

<IELEMENT interop EMPTY>

<IATTLIST interop
type CDATA #REQUIRED
direction (hasview | isview) #REQUIRED
descriptor CDATA #REQUIRED >

The type attribute is the other component type (e.g., “EJB 1.1").

The direction attribute says whether the CORBA component is a view for the other
component type or the other way around.

The descriptor attribute references the descriptor file of the foreign component within
the component archive.

Thelink Element
See Section 6.3.2.18, “The link Element,” on page 6-10.

The objref Element
Child element of repository.

The objref element is used to specify a stringified object reference.

<I[ELEMENT objref EMPTY>
<IATTLIST objref
string CDATA #REQUIRED >

The string attribute holds the stringified object reference.

The operation Element
Child element of operationpolicies.

The operation element is used to specify transaction and required security rights for a
particular operation (or group of operations if name="*").

<IELEMENT operation

(transaction?
, requiredrights?) >

CORBA Components, v3.0 June 2002

June 2002

6.4.5.32

6.4.5.33

6.4.5.34

<IATTLIST operation
name CDATA #REQUIRED >

The name attribute specifies the name of the operation. If the name is specified as“*”,
then the policies specified by this element apply to all operations in the particular
scope in which the operationpolicies parent element is defined.

The operationpolicies Element

Child element of componentfeatures, homefeatures, interface, provides, and
supportsinterface.

The operationpolicies element is used to specify a set of operation policies. It consists
of alist of operation child elements that each may specify security or transaction
policies of an operation or set of operations.

The scope of the operationpolicies element depends upon where it is specified. As a
child of componentfeatures it specifies the policies for the component operations,
such as the operations effecting facets, receptacles, and event ports. When used as a
child of homefeatures it specifies the policies of the home interface operations. As a
child of interface it specifies the operation policies for all uses of the particular
interface. Operation policies set in a supportsinterface or provides element specify
operation policies for a particular use of an interface. Note that operation policies set in
supportsinterface or provides element supersede policies set in an inter face element.

<IELEMENT operationpolicies
(operation+) >

The param Element

Child element of params.

The param element is used to specify a name-value pair.

<I[ELEMENT param EMPTY >
<IATTLIST param
name CDATA #REQUIRED
value CDATA #REQUIRED >

The name attribute specifies the name.

The value attribute specifies the value.

The params Element
Child element of container managedper sistence.

The params element is used to specify a set of one or more name-value pairs.

<I[ELEMENT params (param+) >

CORBA Components: CORBA Component Descriptor 6-31

6-32

6.4.5.35 The poapolicies Element

6.4.5.36

6.4.5.37

Child element of unclassified.

The poapolicies element is used to identify POA creation parameters for an empty
container in which an unclassified category component will reside.

<IELEMENT poapolicies EMPTY>
<IATTLIST poapolicies
thread (ORB_CTRL_MODEL | SINGLE_THREAD_SAFE) #REQUIRED
lifespan (TRANSIENT | PERSISTENT) #REQUIRED
iduniqueness (UNIQUE_ID |MULTIPLE_ID) #REQUIRED
idassignment (USER_ID | SYSTEM_ID) #REQUIRED
servantretention (RETAIN | NON_RETAIN) #REQUIRED
requestprocessing (USE_ACTIVE_OBJECT_MAP_ONLY
[USE_DEFAULT_SERVANT
|USE_SERVANT_MANAGER) #REQUIRED
implicitactivation (IMPLICIT_ACTIVATION
INON_IMPLICIT_ACTIVATION) #REQUIRED >

The poapolicies attributes are as defined in the base POA specification.

Note — Not all combinations of POA policies are valid. A good component packaging
tool will not permit the user to specify invalid POA policy combinations. If however,
an invalid combination of policies is used to configure the empty container, the
container/POA should throw an exception.

The ports Element
Child element of componentfeatures.

The ports element describes what interfaces a component provides and uses, and what
events it emits, publishes, and consumes. Any number of uses, provides, emits,
publishes, and consumes elements can be specified in any order.

<IELEMENT ports
(uses
| provides
| emits
| publishes
| consumes
)ye>

The process Element
Child element of componentkind.

The process component kind is described in Section 4.1.4, “Component Categories,”
on page 4-5.

CORBA Components, v3.0 June 2002

June 2002

6.4.5.38

6.4.5.39

6.4.5.40

<IELEMENT process
(servant) >

The provides Element
Child element of ports.
The provides element specifies an interface that is provided by the component.

The optional operationpalicies child element allows transaction policies and required
rights to be specified for the provided interface. The policies specified here override
any policies specified in the interface element, as identified by the repid.

<IELEMENT provides
(operationpolicies?
, extension*) >

<IATTLIST provides
providesname CDATA #REQUIRED
repid CDATA #REQUIRED
facettag CDATA #REQUIRED >

The providesname is the name given to the provides port in IDL.

The repid is the fully qualified repository id of the component. It is also used to
reference an interface element elsewhere in the descriptor.

The facettag is the tag for the facet. This attribute is used in combination with the
segmentmember element, defined in Section 6.4.5.48, “ The segmentmember
Element,” on page 6-36, to associate a facet with a segment.

The pssimplementation Element
Child element of container managedper sistence.

The pssimplementation element identifies a particular vendor’'s PSS implementation.

<IELEMENT pssimplementation EMPTY>
<IATTLIST pssimplementation
id CDATA #REQUIRED >

The id attribute identifies the particular PSS implementation.

psstransaction Element
Child element of containermanagedper sistence.

The psstransaction element is used to specify the PSS transactional policies
associated with the entity or process component.

<IELEMENT psstransaction (psstransactionisolationlevel?) >
<IATTLIST psstransaction

CORBA Components: CORBA Component Descriptor 6-33

6-34

6.4.5.41

6.4.5.42

6.4.5.43

policy (TRANSACTIONAL|NON_TRANSACTIONAL) #REQUIRED >

psstransactionisol ationlevel Element
Child element of psstransaction.

The psstransactionisolationlevel element is used to specify the transaction isolation
level when persistent store access is transactional.

<IELEMENT psstransactionisolationlevel EMPTY>
<IATTLIST psstransactionisolationlevel
level (READ_UNCOMMITTED|READ_COMMITTED|
REPEATABLE_READ|SERIALIZABLE) #REQUIRED >

The level attribute identifies one of four isolation levels.

The publishes Element
Child element of ports.

A publishes port specifies an event that the component publishes. At deployment or
creation time, the component will be connected to a channel by which it can be
connected to consuming components. The eventpolicy allows the transaction policy of
the event port to be specified.

<IELEMENT publishes
(‘eventpolicy
, extension*) >
<IATTLIST publishes
publishesname CDATA #REQUIRED
eventtype CDATA #REQUIRED >

The publishesname attribute identifies the name associated with the emits statement in
idl.

The event_type attribute identifies the repository id of the published events.

Therepository Element
Child element of corbacomponent.

The repository element is used to point to a repository, such as the interface repository.

<!IELEMENT repository
(ins
| objref
| link
) >
<IATTLIST repository
type CDATA #IMPLIED >

CORBA Components, v3.0 June 2002

6

June 2002

6.4.5.44

6.4.5.45

6.4.5.46

The type attribute specifies the type of repository. Currently, the only predefined value
for type is “CORBA Interface Repository.”

Therequiredrights Element
Child element of operation and security.

The requiredrights element specifies a list of required rights. When used as a child of
oper ation, the rights specified must belong to arights family specified in the security
element. When used as a child of security the list of rights specify the available rights
in the rights family.

<!IELEMENT requiredrights
(right*) >

Theright Element
Child element of requiredrights.

The right element specifies a particular required right. The right must be a member of
the rights family specified by the security element.

<IELEMENT right
(description?) >
<IATTLIST right
nameCDATA #REQUIRED >

The name attribute is the name of the required right.

The security Element
Child element of corbacomponent.

The security element is an optional child element of corbacomponent; it is required
whenever rights are assigned to component operations within the descriptor. It specifies
the rights family assumed when defining component operation rights and the rights
combinator required for interpretation of multiple required rights. The optional
requiredrights element may be used to document the rights available in the rights
family.

<IELEMENT security
(requiredrights?) >
<IATTLIST security
rightsfamily CDATA #REQUIRED
rightscombinator (secallrights | secanyrights) #REQUIRED >

The rightsfamily attribute defines the rights family (for example, the “CORBA” rights
family). The rightscombinator enumeration attribute defines the possible rights
combinator describing the interpretation of multiple rights as defined by the CORBA
Security Service.

CORBA Components: CORBA Component Descriptor 6-35

6.4.5.47 The segment Element
Child element of corbacomponent.

The segment element describes a component segment. It consists of a list of one or
more segmentmember child elements, indicating the facets that the segment supports,
and a container managedper sistence element indicating that the persistent state of the
segment is managed by the container. If the container managedper sistence element is
not present, then the persistent state, if any, is managed by the component. Note that
the container managedper sistence element is only employed for entity and process
components.

<IELEMENT segment
(segmentmember+
, containermanagedpersistence?
, extension*
) >

<IATTLIST segment
name CDATA #REQUIRED
segmenttag CDATA #REQUIRED >

name is the name of the segment.

segmenttag is the segment’s tag.

6.4.5.48 The segmentmember Element
Child element of segment.

The segmentmember element specifies a facet that is a member of a segment.

<IELEMENT segmentmember EMPTY>
<IATTLIST segmentmember
facettag CDATA #REQUIRED >

The facettag attribute indicates the member facet’s tag. It corresponds to a provided
interface with the same facet tag elsewhere in the descriptor. (See the provides tag
element in Section 6.4.5.38, “ The provides Element,” on page 6-33.)

6.4.5.49 The servant Element

Child element of entity, process, session.

Servant lifetime policies control the lifetime of the servant that implements a
component’s operations and provide an aid to efficiently manage storage of
components within a server process. Servant lifetime policies are fixed for service
components. Servant lifetime policies must be specified for session, process, and
entity components and are implemented by the component using APIs provided by the
container.

6-36 CORBA Components, v3.0 June 2002

June 2002

6.4.5.50

6.4.551

6.4.5.52

6.4.5.53

6.4.5.54

<IELEMENT servant EMPTY >
<IATTLIST servant
lifetime (component|method|transaction|container) #REQUIRED >

The possible values are defined in Section 4.2.5, “ Servant Lifetime Management,” on
page 4-8.

The service Element
Child element of componentkind.

Specifies that the component is of the service category. The service component kind
is described in Section 4.2.13.1, “The Service Component,” on page 4-16.

<IELEMENT service EMPTY >

The session Element
Child element of componentkind.

Specifies that the component is of the session category. The session component
category is described in Section 4.2.13.2, “The Session Component,” on page 4-17.

<IELEMENT session
(servant) >

The storagehome Element

Child element of segment.

The storagehome element specifies an abstract storage home type.

<IELEMENT storagehome EMPTY>
<IATTLIST storagehome
id CDATA #REQUIRED >

The id attribute specifies the repository id of the abstract storage home.

The simple-link-attributes Entity
See Section 6.3.2.28, “The simple-link-attributes Entity,” on page 6-14.

The supportsinterface Element
Child element of componentfeatures.

The supportsinterface element identifies an interface that the component supports, as
defined in IDL.

CORBA Components: CORBA Component Descriptor 6-37

6-38

6.4.5.55

6.4.5.56

6.4.5.57

The optional operationpalicies child element allows transaction policies and required
rights to be specified for the supported interface. The policies specified here override
any policies specified in the interface element, as identified by the repid.

<IELEMENT supportsinterface
(operationpolicies?
, extension*) >

<IATTLIST supportsinterface
repid CDATA #REQUIRED >

The repid is the fully qualified repository id of the component. It is also used to
reference an interface element elsewhere in the descriptor.

Thethreading Element
Child element of corbacomponent.

The threading element determines the threading policy of the container in which it is
placed.

<!IELEMENT threading EMPTY>
<IATTLIST threading
policy (serialize | multithread) #REQUIRED >

Setting policy to serialize means that the container will serialize calls to the container.

Setting policy to multithread means that multiple threads of control can be active in
the component at one time.

Thetransaction Element
Child element of corbacomponent.

The transaction element controls the way transactions are managed by the container
for this component. Seven possible values can be selected by the component devel oper
to provide maximum flexibility.

<IELEMENT transaction EMPTY >
<IATTLIST transaction

use (self-managed|not-supported|required|supports|requires-new|man-
datory|never) #REQUIRED >

If the transaction use attribute is set to self-managed, then it is assumed that the
component will manage transactions on its own. Other use values indicate that
transactions are to be managed by the container; the meaning of these values are
defined in the container chapter, Section 4.2.6, “Transactions,” on page 4-9.
The unclassified Element

Child element of componentkind.

CORBA Components, v3.0 June 2002

6

6.4.5.58

The unclassified element identifies that the component is of the unclassified sort. See
Section 4.2.1, “Component Containers,” on page 4-5 for more information on the
unclassified component category.

<IELEMENT unclassified
(poapolicies) >

The uses Element
Child element of ports.

The uses element specifies an interface that is used by the component, as specified in a
component IDL uses declaration.

<I[ELEMENT uses (extension*) >
<IATTLIST uses
usesname CDATA #REQUIRED
repid CDATA #REQUIRED >

The usesname is the name given to the uses port in IDL.

The repid is the fully qualified repository id of the component. It is also used to
reference an interface element elsewhere in the descriptor.

6.5 Component Assembly Packaging

June 2002

A component package is the vehicle for deploying a single component implementation.
A component assembly package is the vehicle for deploying a set of interrelated
component implementations. It is a template or pattern for instantiating a set of
components and introducing them to each other.

An assembly package consists of a descriptor and a set of component packages and
property files. These files may be packaged together in an archive file or distributed.
When distributed, the descriptor represents the package and holds links to its
associated files.

The component assembly descriptor describes which components make up the
assembly, how those components are partitioned, and how they are connected to each
other. A component assembly descriptor is the recipe for deploying a set of
interconnected components.

An assembly is normally created visually within a design tool; however, it is possible
to create assemblies using more primitive tools.

Note — An assembly specifies an initial configuration. The actual connected graph of
components may evolve beyond that initial configuration. The assembly does not
address the evolution of this graph.

CORBA Components: Component Assembly Packaging 6-39

6.6 Component Assembly File

The component assembly archive file is a ZIP file containing a component assembly
descriptor, a set of component archive files, and, if necessary, a set of component
property files. The component assembly archive file has a“.aar” extension.

6.7 Component Assembly Descriptor

6-40

A component assembly descriptor is specified using an XML vocabulary. Each
component assembly package must contain a single descriptor file. Component
descriptors have a “.cad” extension (Component Assembly Descriptor).

The assembly descriptor describes a component assembly. It consists of elements
describing the components used in the assembly, connection information, and
partitioning information.

A component instantiation is always relative to a home. A deployed home is called a
home “placement.”

Component instantiations are connected by their provides and uses interfaces, or by
their emits, publishes, and consumes events. |f one component provides an interface of
a particular type and another component uses an interface of that type, then we can
pass the reference of the provided interface to the component that uses it, in effect
connecting the two components. In the same way, we connect two components where
one emits or publishes an event that the other consumes.

Sets of component instances may be partitioned. Components may be free or
partitioned to a generic set of hosts and processes. Thisisreally a process of conveying
that specific components are to be collocated within a single process or host. Free
components, components that are not used in a collocation may be deployed in any
manner at deployment time.

When used in an archive, the CAD file for the archive is placed in atop level directory
caled “meta-inf.”

6.7.1 Component Assembly Descriptor Example

The following example illustrates how to write a component assembly descriptor. For
further information, see the element descriptions that follow and the XML DTDs in
Chapter 7.

<IDOCTYPE componentassembly SYSTEM "componentassembly.dtd">

<componentassembly id="227123">
<description>Example assembly"</description>
<componentfiles>
<componentfile id="A">
<fileinarchive name="ca.cesd"/>
</componentfile>
<componentfile id="B">

CORBA Components, v3.0 June 2002

June 2002

<fileinarchive name="ch.cesd"/>

</componentfile>

<componentfile id="C">
<fileinarchive name="cc.cesd">

<link href="ftp://www.xyz.com/car/cc.car"/>

<ffileinarchive>

</componentfile>

<componentfile id="D">
<fileinarchive name="cd.cesd"/>

</componentfile>

<componentfile id="E">
<fileinarchive name="ce.cesd"/>

</componentfile>

<componentfile id="F">
<fileinarchive name="cf.cesd"/>

</componentfile>

</componentfiles>

<partitioning>

<homeplacement id="AaHome">
<componentfileref idref="A"/>
<componentinstantiation id="Aa"/>

</homeplacement>

<processcollocation cardinality="*">
<usagename>Example process collocation</usagename>
<impltype language="C++" /> <!-- optional -->
<homeplacement id="BbHome" >
<componentfileref idref="B"/>
<componentinstantiation id="Bb"/>
</homeplacement>
<homeplacement id="CcHome">
<componentfileref idref="C"/>
<componentinstantiation id="Cc"/>
</homeplacement>
</processcollocation>

<hostcollocation cardinality="1">
<usagename>Example host collocation</usagename>
<processcollocation cardinality="*">
<homeplacement id="DdHome" >
<componentfileref idref="D"/>
<componentinstantiation id="Dd"/>
</homeplacement>
<homeplacement id="EdHome">
<componentfileref idref="E"/>
<componentinstantiation id="Ee"/>
</homeplacement>
</processcollocation>
<homeplacement id="FfHome">

CORBA Components: Component Assembly Descriptor 6-41

6-42

<componentfileref idref="F"/>
<componentinstantiation id="Ff"/>
</homeplacement>
</hostcollocation>

<homeplacement id="AaaHome">

<usagename>Example home for A components</usagename>
<componentfileref idref="A"/>
<componentimplref idref="an A impl"/>
<homeproperties>

<fileinarchive name="AHomeProperties.cpf"/>
</homeproperties>
<componentproperties>

<fileinarchive name="defaultAProperties.cpf"/>
</componentproperties>
<registerwithhomefinder name="AaHome"/>

<componentinstantiation id="Aaa">
<usagename>Example component instantiation </usagename>
<componentproperties>
<fileinarchive name="AaaProperties.cpf"/>
</componentproperties>
<registercomponent>
<registerwithnaming name="sink"/>
<registerwithtrader>
<traderproperties>
<traderproperty>
<traderpropertyname>ppm</traderpropertyname>
<traderpropertyvalue>10</traderpropertyvalue>
</traderproperty>
<traderproperty>
<traderpropertyname>weight</traderpropertyname>
<traderpropertyvalue>333</traderpropertyvalue>
</traderproperty>
</traderproperties>
</registerwithtrader>
</registercomponent>
</componentinstantiation>
</homeplacement>

</partitioning>

<connections>
<connectinterface>

<usesport>
<usesidentifier>abc</usesidentifier>
<componentinstantiationref idref="Aa"/>

</usesport>

<providesport>
<providesidentifier>abc</providesidentifier>
<componentinstantiationref idref="Bb"/>

CORBA Components, v3.0 June 2002

June 2002

</providesport>
</connectinterface>
<connectevent>
<consumesport>
<consumesidentifier>pqr</consumesidentifier>
<componentinstantiationref idref="Aaa"/>
</consumesport>
<emitsport>
<emitsidentifier>mno</emitsidentifier>
<componentinstantiationref idref="Ee"/>
</emitsport>
</connectevent>
</connections>

</componentassembly>

6.7.2 Component Assembly Descriptor XML Elements

This section describes the XML elements that make up a component assembly
descriptor. The section is organized starting with the root element of the descriptor
document, componentassembly, followed by all subordinate elements, in aphabetical
order. The complete component assembly DTD may be found in Section 7.4,
“componentassembly.dtd,” on page 7-13.

6.7.2.1 The componentassembly Root Element

The componentassembly element is the root element of the component assembly
descriptor. The description element is text describing the assembly. The
componentfiles element lists the component files that are used in the assembly, the
partitioning element describes how homes and components are to be deployed. The
connections element describes how deployed components and homes are to be
connected. The extension element can be used to add proprietary or experimental
elements to the component assembly document.

<IELEMENT componentassembly
(description?
, componentfiles
, partitioning
, connections?
, extension*
) >
<IATTLIST componentassembly
id ID #REQUIRED
derivedfrom CDATA #IMPLIED >

The id attribute is a DCE UUID that uniquely identifies the assembly.

The derivedfrom attribute is used to point to an assembly from which this assembly
was derived. The derivedfrom attribute contains the id of the source assembly.

CORBA Components: Component Assembly Descriptor 6-43

6-44

6.7.2.2

6.7.2.3

6.7.2.4

Note — The derivedfrom attribute is for a deployment tool that wants to create a copy
of an assembly descriptor and archive to describe an actual deployment; it maintains
the relationship between the “clone”’ and the original. The new assembly descriptor
would have the destination addresses for each placement and collocation defined; and
collocations with non-ordinal cardinality in the original assembly would be copied to
one or more collocations, with singular cardinality, in the derived assembly. The new
archive file might prune constituent component archive files to contain single
implementations to facilitate copying component implementations to target deployment
hosts.

The codebase Element
See Section 6.3.2.4, “The codebase Element,” on page 6-6.

The componentfile Element

The componentfile element refers to a component software descriptor containing
information regarding a component and home implementation. componentfile
elements are referenced by homeplacement elements.

componentfile contains either a fileinarchive, link, or codebase element.

<IELEMENT componentfile
(fileinarchive
| codebase
| link
) >

<IATTLIST componentfile
id ID #REQUIRED
type CDATA #IMPLIED >

The id attribute must uniquely identify the componentfile element within the
descriptor.

The optional type attribute specifies the type of component file. If unspecified, then the
file is assumed to be CORBA component. An example use of the type attribute would
be to specify an EJB component file, where type="EJB 1.1".

The componentfileref Element

The componentfileref element refers to a particular componentfile element in the
componentfiles block.

<IELEMENT componentfileref EMPTY >
<IATTLIST componentfileref
idref CDATA #REQUIRED >

The idref attribute corresponds to a unique componentfile id attribute.

CORBA Components, v3.0 June 2002

June 2002

6.7.2.5

6.7.2.6

6.7.2.7

The componentfiles Element

The componentfiles element is used to list al of the component files that are used in
the assembly. At least one component file must be specified.

Each component file is uniquely identified for reference elsewhere in the descriptor.
Multiple component instances may refer to a single component file.

<IELEMENT componentfiles
(componentfile+
) >

The componentimplref Element

The componentimplref element is used to refer to a particular implementation in a
component file.

<IELEMENT componentimplref EMPTY >
<IATTLIST componentimplref
idref CDATA #REQUIRED >

The idref attribute refers to a unique implementation element id in the component
descriptor. The componentimplref is optional if there is only one implementation in
the component file. Or it may be set at deployment time depending on the type of
platform that the component is deployed to.

The componentinstantiation Element

The componentinstantiation element describes a particular instantiation of a
component relative to a home placement. The componentinstantiation element is a
direct child of the homeplacement element.

The usagename child element is used to specify a name for the placement, possibly for
display in atool. The componentproperties element refers to a property file
associated with this instantiation. It is used to configure the component once it is
created and after the home sets initial property values (as specified in the
homeplacement componentproperties element). The registercomponent element
instructs the installation process to register the component or its provided interfaces
with a naming service or trader.

<IELEMENT componentinstantiation
(usagename?
, componentproperties?
, registercomponent*
, extension*
) >

<IATTLIST componentinstantiation
id ID #REQUIRED >

CORBA Components: Component Assembly Descriptor 6-45

6-46

6.7.2.8

6.7.2.9

6.7.2.10

The id attribute is a unique identifier within the assembly descriptor for the
component. The id is used to refer to the component instance in the connect block.

The componentinstantiationref Element

The componentinstantiationref element refers to a particular
componentinstantiation element in the assembly descriptor.

<IELEMENT componentinstantiationref EMPTY >
<IATTLIST componentinstantiationref
idref CDATA #REQUIRED >

The idref attribute corresponds to a unique componentinstantiation id attribute.

The componentproperties Element

The componentproperties element specifies a property file for a home. If the
component file has a default property file in the component package, the component
property file overrides the default. The property file may be specified by either a
fileinarchive or a codebase child element. The format of the property file is described
in Section 6.8, “Property File Descriptor,” on page 6-60.

When the componentproperties element is specified as part of a homeplacement
element, then the properties are used to configure each component created through that
home. When componentproperties is specified as part of a componentinstantiation
element, the properties are used to configure that single instantiation. I1f component
properties are set on both a homeplacement and an associated
componentinstantiation, then the component will be configured first by the
homeplacement component properties and then by the componentinstantiation
component properties.

<IELEMENT componentproperties
(fileinarchive
| codebase

) >

The componentsuppor tedinter face Element

Specifies a component with a supports interface that can satisfy an interface
connection to a uses port within a connectinter face element. The component is
identified by a componentinstantiationref or a findby element. The
componentinstantiationref identifies a component within the assembly. The findby
element points to an existing component that can be found within a naming service or
trader, or using a stringified object reference.

<IELEMENT componentsupportedinterface
(componentinstantiationref
| findby
)>

CORBA Components, v3.0 June 2002

June 2002

6.7.2.11

6.7.2.12

6.7.2.13

The connectevent Element

The connectevent element is used in the connections element to specify a connection
from a consumes port, of one component, to an emits or publishes port of another
component.

The consumesport element identifies a component and associated consumes port. The
emitsport element identifies a component associated emits port. The publishesport
element identifies a component and associated publishesport.

<IELEMENT connectevent
(consumesport
, (emitsport
| publishesport
)
) >
<IATTLIST connectevent
id ID #IMPLIED >

The id attribute is a unique identifier within the assembly descriptor. It is not required
or used elsewhere in the assembly descriptor; however, someone (or atool) might want
to use it to refer to a particular connectevent element.

The connecthomes Element

The connecthomes element is used to specify a connection between a proxyhome and
another home.

The proxyhome element refers to the proxy home. The destinationhome element
refers to the home to which the proxy home will be connected. The destination home
can be either another proxy home or an actual home.

<!ELEMENT connecthomes
(proxyhome
, destinationhome
)>

<IATTLIST connecthomes
id ID #IMPLIED >

The id attribute is a unique identifier within the assembly descriptor. It is not required
or used elsewhere in the assembly descriptor; however, someone (or atool) might want
to use it to refer to a particular connecthomes element.

The connectinterface Element

The connectinterface element is used to connect a component’s uses port to an
interface. The interface may be a provided or supported interface of another
component, it may be an existing interface (other than those provided by components
in the assembly), or it may be a home interface.

CORBA Components: Component Assembly Descriptor 6-47

6-48

6.7.2.14

6.7.2.15

The usesport element identifies the component and port where the connection is to be
made. The providesport element identifies a component and provides port. The
componentsupportedinter face element identifies a component that has a supported
interface that will satisfy the uses port. The existinginter face element identifies a way
to find an existing interface that will satisfy the uses. The homeinterface element
identifies a homeinterface that the uses port requires.

<IELEMENT connectinterface
(usesport
. (providesport
| componentsupportedinterface
| existinginterface
| homeinterface

)
) >
<IATTLIST connectinterface
id ID #IMPLIED >

The id attribute is a unique identifier within the assembly descriptor. It is not required
or used elsewhere in the assembly descriptor; however, someone (or atool) might want
to use it to refer to a particular connectinterface element.

The connections Element

The connections element is used to satisfy component uses and consumes
dependencies and to connect homes. The connectinter face element is used to connect
component uses ports to interfaces. The connectevent element is used to connect a
components consumes port to event producers. The connecthomes element is used to
connect a proxy home to another home.

<IELEMENT connections
(connectinterface
| connectevent
| connecthomes
| extension
)< >

Note — If a componentinstantiation involved in a connection has a cardinality greater
than 1, or if it is part of a process or host collocation with a cardinality greater than 1,
then multiple connections will be realized from or to each instance of the component.
That is, the connection will be made for each instantiation of the component.

The consumesidentifier Element

A child element of consumingcomponent, consumesidentifier identifies which
consumes “port” on the component is to participate in the relationship. The type of the
consumes event must match the type of the connected emits or publishes event.

CORBA Components, v3.0 June 2002

<IELEMENT consumesidentifier (#PCDATA) >

6.7.2.16 Theconsumesport Element

Specifies the event-consuming side of an event connection relationship. The
consumesidentifier child element identifies the particular consumes port. The
component with this consumes port is identified by a componentinstantiationref or a
findby element. The componentinstantiationref identifies a component within the
assembly. The findby element points to an existing component that can be found
within a naming service or trader, or using a stringified object reference.

<I[ELEMENT consumesport
(consumesidentifier
, (componentinstantiationref
| findby
)
)>

6.7.2.17 Thedescription Element

The description element contains a string description. It is used to describe its parent
element. It contains string content.

<IELEMENT description (#PCDATA) >

6.7.2.18 Thedestination Element

The destination element is used to record where a homeplacement,
executableplacement, hostcollocation, or processcollocation is to be (or has been)
deployed. The format of the destination string is determined by a particular deployment
tool.

<!IELEMENT destination (#PCDATA) >

6.7.2.19 Thedestinationhome Element

Identifies a home to be connected to by a proxy home. The home is identified by a
homeplacementref or afindby element. The homeplacementref identifies a home
within the assembly. The findby element points to an existing home that can be found
within a home finder, naming service, or trader, or using a stringified object reference.

<IELEMENT destinationhome
(homeplacementref
| findby
) >

June 2002 CORBA Components: Component Assembly Descriptor 6-49

6-50

6.7.2.20

6.7.2.21

6.7.2.22

The emitsidentifier Element

The emitsidentifier identifies an emits “port” on a component. The identifier
corresponds to an emits identifier specified in IDL.

<IELEMENT emitsidentifier (#PCDATA) >

The emitsport Element

Specifies the event-emiting side of an event connection relationship. The
emitsidentifier child element identifies the particular emits port. The component with
this emits port is identified by a componentinstantiationref or a findby element. The
componentinstantiationref identifies a component within the assembly. The findby
element points to an existing component that can be found within a naming service or
trader, or using a stringified object reference.

<!IELEMENT emitsport
(emitsidentifier
, (componentinstantiationref
| findby
)
)>

The executabl eplacement Element

This executableplacement element describes a deployment of an executable. The
executableplacement element may be a direct child of the partitioning element,
which states that it has no collocation constraints; or it may be a child element of the
hostcollocation element.

The usagename child element is used to specify a name for the placement, possibly for
use in atool. The componentfileref element specifies the component file. The
componentimplref element refers to a specific implementation in the softpkg
descriptor. Note that the implementation referred to by componentimplref must have a
code type of “Executable.” The invocation element specifies any arguments with
which the executable should be invoked. The destination element is used to record
where the executableplacement is to be deployed.

<IELEMENT executableplacement
(usagename?
, componentfileref
, componentimplref?
, invocation?
, destination?
, extension*
)>

<IATTLIST executableplacement
id ID #REQUIRED
cardinality CDATA "1" >

CORBA Components, v3.0 June 2002

The id attribute is a unique identifier within the assembly descriptor for the
executableplacement.

The cardinality attribute specifies how many instantiations of this executable may be
deployed. Possible values for cardinality are a specific number, a“+” to specify 1 or
more, or a“*” to specify 0 or more. The default cardinality is“1.”

6.7.2.23 Theexistinginterface Element

Specifies an interface that can satisfy an interface connection to a uses port within a
connectinterface element. The findby element points to an existing interface that can
be found within a naming service or trader, or using a stringified object reference.

<IELEMENT existinginterface
(findby) >

6.7.2.24 Theextension Element
See Section 6.3.2.11, “The extension Element,” on page 6-8.

6.7.2.25 Thefileinarchive Element

See Section 6.3.2.11, “The extension Element,” on page 6-8.

6.7.2.26 Thefindby Element

The findby element is used to resolve a connection between two components. It tells
the installation agent how to locate a party, usualy a component, interface, or home
involved in the relationship. In the simplest case, the installer will know where the item
is because it was the one responsible for installing it. But if the item to be located
already exists in the installation environment, the installer must know how to find it. It
could locate a component in a naming service, in a trader, a home finder, or by a
stringified object reference. The purpose of the findby element is to provide such
information.

The namingser vice element specifies a naming service name. The stringifiedobjectr ef
element is a stringified IOR for the item. The traderquery is a query for locating the
item in atrader. The homefinder is a name to look up a home in a home finder.

<IELEMENT findby
(namingservice
| stringifiedobjectref
| traderquery
| homefinder
| extension

) >

June 2002 CORBA Components: Component Assembly Descriptor 6-51

6-52

6.7.2.27

6.7.2.28

6.7.2.29

The homefinder Element

The homefinder element is used to indicate a home finder name for a home.

<IELEMENT homefinder EMPTY >
<IATTLIST homefinder
name CDATA #REQUIRED >

The name attribute specifies the name of the home as registered with the home finder.
Home finders are defined in Section 1.8, “Home Finders,” on page 1-42.

The homeinterface Element

Specifies a home with an interface that can satisfy an interface connection to a uses
port within a connectinterface element. The home is identified by a
homeplacementref or afindby element. The homeplacementref identifies a home
within the assembly. The findby element points to an existing home that can be found
within a home finder, a naming service or trader, or using a stringified object reference.

<IELEMENT homeinterface
(homeplacementref
| findby
) >

The homeplacement Element

This homeplacement element describes a particular deployment of a component home.
The homeplacement element may be a direct child of the partitioning element which
states that it has no collocation constraints; or it may be a child element of the
hostcollocation or processcollocation elements that states specific host or process
collocation constraints.

The usagename child element is used to specify a name for the placement, possibly for
use in atool. The componentfileref element specifies the component file. The
componentimplref element refers to a specific implementation in the component file.
The homeproperties element refers to a state file associated with the home placement;
it is used to configure the home after it is created. The componentproperties element
refers to a property file used to configure all components created through the home.
The registerwithhomefinder element instructs the installation process to register the
home with the home finder. The registerwithnaming element instructs the installation
process to register the home with a naming service. The registerwithtrader element
instructs the installation process to register the home with a trader service. The
componentinstantiation element instructs the installation agent to create a component
using this home. The destination element is used to record where the homeplacement
is to be deployed, if designated.

<IELEMENT homeplacement
(usagename?
, componentfileref
, componentimplref?

CORBA Components, v3.0 June 2002

, homeproperties?
, componentproperties?
, registerwithhomefinder*
, registerwithnaming*
, registerwithtrader*
, componentinstantiation*
, destination?
, extension*
) >
<IATTLIST homeplacement
id ID #REQUIRED
cardinality CDATA "1" >

The id attribute is a unique identifier within the assembly descriptor for the
homeplacement. The id is used to refer to the home in the connect block.

The cardinality attribute specifies how many instantiations of this component may be
deployed. Possible values for cardinality are a specific number, a“+” to specify 1 or
more, or a“*” to specify 0 or more. The default cardinality is“1.”

Note that if the cardinality is greater than 1 and there are any connections to this
homeplacement, then connections will be made to each instance of the deployed
home.

6.7.2.30 The homeplacementref Element

The homeplacementref element refers to a particular homeplacement element in the
assembly descriptor.

<!I[ELEMENT homeplacementref EMPTY >
<IATTLIST homeplacementref
idrefCDATA #REQUIRED >

The idref attribute corresponds to a unique homeplacement id attribute.

6.7.2.31 Thehomeproperties Element

The homeproperties element specifies a property file for a home. The properties are
used to configure the home when it is created. The property file may be specified by
either afileinarchive or a codebase child element. The format of the property fileis
described in Section 6.8, “Property File Descriptor,” on page 6-60.

<IELEMENT homeproperties
(fileinarchive
| codebase
) >

June 2002 CORBA Components: Component Assembly Descriptor 6-53

6-54

6.7.2.32

6.7.2.33

6.7.2.34

The hostcollocation Element

A hostcollocation specifies a group of component instances that are to be deployed
together to a single host. The child elements are an optional usagename, an optional
impltype, and a list of processcollocation, homeplacement, and
executableplacement elements. If impltype is specified, then each of the component
instances must have implementations supporting the implementation type. If impltype
is not specified, then at deployment time each of the collocated components must have
implementations supporting the target deployment platform.

<IELEMENT hostcollocation
(usagename?
, impltype?
, (homeplacement
| executableplacement
| processcollocation
| extension
)+
, destination?
)>
<IATTLIST hostcollocation
id ID #IMPLIED
cardinality CDATA "1" >

The id attribute uniquely identifies this host collocation in the component assembly
file. The cardinality attribute specifies how many instances of this host collocation
may be deployed. Possible values for cardinality are a specific number, a “+" to
specify 1 or more, or a“*” to specify 0 or more. The default cardinality is“1.”

Note that if the cardinality is greater than 1, and there are connections to components
within the hostcollocation, then connections will be made to the corresponding
components or component homes within each instance of the collocation.

The impltype Element

Placeholder for future version.

Theinvocation Element

The invocation element is used to specify invocation arguments for an executable
placement.

<IELEMENT invocation EMPTY >
<IATTLIST invocation
args CDATA #REQUIRED >

The args attribute is a string containing the arguments to be used in invoking the
executable. Note that argsis just the arguments to the executable, it does not include
the executable name.

CORBA Components, v3.0 June 2002

6.7.2.35 Thelink Element

See Section 6.3.2.18, “The link Element,” on page 6-10.

6.7.2.36 Thenamingservice Element

The naming service element is used to indicate that a component or interface should be
found using a naming service.

<IELEMENT namingservice EMPTY >
<IATTLIST namingservice
name CDATA #REQUIRED >

The name attribute specifies the naming service name to look up.

6.7.2.37 Thepartitioning Element

Component partitioning specifies a deployment pattern of homes and components to
generic processes and hosts. The pattern is expressed via collocation constraints.

A particular usage of a component is always relative to a component home. Uses of
component homes are recognized in the assembly as home placements. A home
placement, and component instantiations relative to that home, may be collocated with
other home placements and component instantiations in a process. Processes and home
placements may be collocated within alogical host. A home placement that is not part
of a process or host collocation may be deployed without constraint.

An executable placement is the placement of a particular executable. It may be
partitioned without constraint or as part of a host collocation.

Within a partitioning element, homeplacement, executableplacement, and
collocation constraints are specified. The homeplacement child element specifies a
freely deployable home. The executableplacement element specifies a freely
deployable executable. The processcollocation and hostcollocation child elements are
used to group homeplacement together into deployable units.

A homeplacement may be declared as part of a host or process collocation or by itself.
The actual host and process will be determined at deployment time. Home placements,
executable placements, process collocations, and host collocations all have an
associated cardinality. The default cardinality is“1.” An ordinal cardinality of 1 or
greater mandates that the deployable unit must be instantiated that many times,
cardinality of “+” indicates 1 or more, and “*” indicates zero or more.

<IELEMENT partitioning
(homeplacement
| executableplacement
| processcollocation
| hostcollocation
| extension
<>

June 2002 CORBA Components: Component Assembly Descriptor 6-55

6-56

6.7.2.38

6.7.2.39

6.7.2.40

The processcollocation Element

The processcollocation element specifies a group of home and associated component
instantiations that are to be deployed together to a single process. The child elements
are an optional usagename, an optional impltype, and alist of homeplacement
elements. If impltype is specified, then each of the component instances must have
implementations supporting the implementation type. If impltypeis not specified, then
at deployment time each of the collocated components have implementations
supporting the target deployment platform.

<IELEMENT processcollocation
(usagename?
, impltype?
, (homeplacement
| extension
)+
) >
<IATTLIST processcollocation
id ID #IMPLIED
cardinality CDATA "1" >

The id attribute uniquely identifies this process collocation in the component assembly
file. The cardinality attribute specifies how many instances of this process collocation
may be deployed. Possible values for cardinality are a specific number, a “+" to
specify 1 or more, or a“*” to specify 0 or more. The default cardinality is“1.”

Note that if the cardinality is greater than 1, and there are connections to components
and homes within the processcollocation, then connections will be made to
corresponding components or component homes within each instance of the
collocation.

The providesidentifier Element

The providesidentifier identifies a provides “port” on a component. The identifier
corresponds to a provides identifier specified in component IDL.

<IELEMENT providesidentifier (#PCDATA) >

The providesport Element

Specifies the interface providing side of an interface connection relationship. The
providesidentifier child element identifies the particular provides port. The component
with this provides port is identified by a componentinstantiationref or a findby
element. The componentinstantiationref identifies a component within the assembly.
The findby element points to an existing component that can be found within a naming
service or trader, or using a stringified object reference.

<IELEMENT providesport

(providesidentifier
, (componentinstantiationref

CORBA Components, v3.0 June 2002

| findby
)

)>

6.7.2.41 The publishesidentifier Element

The publishesidentifier identifies a publishes “port” on a component. The identifier
corresponds to the identifier specified in IDL for the publishes port.

<IELEMENT publishesidentifier (#PCDATA) >

6.7.2.42 The publishesport Element

Specifies the event-publishes side of an event connection relationship. The
publishesidentifier child element identifies the particular publishes port. The
component with this publishes port is identified by a componentinstantiationref or a
findby element. The componentinstantiationref identifies a component within the
assembly. The findby element points to an existing component that can be found
within a naming service or trader, or using a stringified object reference.

<IELEMENT publishesport
(publishesidentifier
, (componentinstantiationref
| findby
)
)>

6.7.2.43 Theregistercomponent Element

The registercomponent element is used to specify that a component, a provided
interface, or a published event should be registered with a naming service or trader.

If an emitsidentifier, providesidentifier, or publishesidentifier is specified, then that
element is registered. If none of the above are specified, then it is implied that the
component itself is to be registered.

Registration may be through a naming service or trader. The registerwithnaming
element specifies a naming service registration and registerwithtrader specifies a
trader registration. The interface, event, or component registration may be registered
with both a naming service and a trader, multiple times. At least one registration must
take place.

<IELEMENT registercomponent
((emitsidentifier
| providesidentifier
| publishesidentifier
)?
, (registerwithnaming
| registerwithtrader

June 2002 CORBA Components: Component Assembly Descriptor 6-57

6-58

6.7.2.44

6.7.2.45

6.7.2.46

6.7.2.47

)+

) >

The registerwithhomefinder Element

The registerwithhomefinder element tells the installer to register a component home
with the home finder.

<IELEMENT registerwithhomefinder EMPTY >
<IATTLIST registerwithhomefinder
nameCDATA #REQUIRED >

The name attribute is the name to register the home with in the home finder.

Theregisterwithnaming Element

The registerwithnaming element tells the installer to register a component instance or
home with a naming service after it is created.

<IELEMENT registerwithnaming EMPTY >
<IATTLIST registerwithnaming
name CDATA #IMPLIED >

The name attribute is the naming service name. If the name is not specified, it will be
determined at deployment time, possibly with interaction with the user.

Theregisterwithtrader Element

The registerwithtrader element tells the installer to register a component instance or
home with atrader after it is created.

<IELEMENT registerwithtrader
(traderproperties) >

<IATTLIST registerwithtrader
tradername CDATA #IMPLIED >

The proxyhome Element

Identifies a proxy home that is to be connected to another home. The home isidentified
by a homeplacementref or a findby element. The homeplacementref identifies a
home within the assembly. The findby element points to an existing home that can be
found within a home finder, naming service, or trader, or using a stringified object
reference.

<IELEMENT remotehome
(homeplacementref
| findby
) >

CORBA Components, v3.0 June 2002

6.7.2.48 Thestringifiedobjectref Element

The stringifiedobjectref element is used to locate a component by its object reference.

<IELEMENT stringifiedobjectref (#PCDATA) >

6.7.2.49 Trader elements

The trader elements are used to register a home, component or interface with a trader
and to find a home, component, or interface using a trader query. The trader elements
closely parallel trader functionality in name and purpose.

<IELEMENT traderconstraint (#PCDATA) >

<IELEMENT traderexport
(traderservicetypename
, traderproperties
) >

<IELEMENT traderpolicy
(traderpolicyname
, traderpolicyvalue
) >

<IELEMENT traderpolicyname (#PCDATA) >
<IELEMENT traderpolicyvalue (#PCDATA) >
<IELEMENT traderpreference (#PCDATA) >

<IELEMENT traderproperties
(traderproperty+) >

<IELEMENT traderproperty
(traderpropertyname
, traderpropertyvalue
) >

<IELEMENT traderpropertyname (#PCDATA) >
<IELEMENT traderpropertyvalue (#PCDATA) >

<IELEMENT traderquery
(traderservicetypename
, traderconstraint
, traderpreference?
, traderpolicy*
, traderspecifiedprop*
) >

June 2002 CORBA Components: Component Assembly Descriptor 6-59

6.7.2.50

6.7.2.51

6.7.2.52

<IELEMENT traderservicetypename (#PCDATA) >

<IELEMENT traderspecifiedprop (#PCDATA) >

Note — Refer to the OMG Trading Object Service specification (formal/00-06-27) for
additional information.

The usagename Element

A user defined “friendly” name.

<I[ELEMENT usagename (#PCDATA) >

The usesidentifier Element

A child element of usesport, usesidentifier identifies which uses “port” on the
component is to participate in the relationship. The type of the using interface must
match the type of the connected provides interface.

<!IELEMENT usesidentifier (#PCDATA) >

The usesport Element

Specifies the interface using side of an interface connection relationship. The
usesidentifier child element identifies the particular uses port. The component with
this uses port is identified by a componentinstantiationref or a findby element. The
componentinstantiationref identifies a component within the assembly. The findby
element points to an existing component that can be found within a naming service or
trader, or using a stringified object reference.

<IELEMENT usesport
(usesidentifier
, (componentinstantiationref
| findby
)
)>

6.8 Property File Descriptor

6-60

The property file details component or home attribute settings. Properties are described
using an XML vocabulary described below. The property file is used at deployment
time to configure a home or component instance. A configurator uses the property file
to determine how to set component and component home property attributes.

The property file may be edited using a text editor or with the help of a GUI tool. A
packaged component may be shipped with a set of default properties that may be
altered by the end user.

CORBA Components, v3.0 June 2002

The suggested file extension for property filesis “.cpf” (Component Property File).

6.8.1 Property File Example

The following property descriptor example has 3 properties: buffer Size, niceGuys, and
sanityTestTime.

The buffer Size parameter is a long type; the niceGuys property is a sequence of
strings; and the sanityTestTime property is a structure of type timestruct, containing
3 shorts.

<properties>

<simple name=bufSize type="long">
<description>Size of Whizitron input buffer</description>
<value>4096</value>
<defaultvalue>256</defaultvalue>

</simple>

<sequence name="niceGuys" type="sequence<string>">
<simple type="string"><value>Dave</value></simple>
<simple type="string"><value>Ed</value></simple>
<simple type="string"><value>Garrett</value></simple>
<simple type="string"><value>Jeff</value></simple>
<simple type="string"><value>Jim</value></simple>
<simple type="string"><value>Martin</value></simple>
<simple type="string"><value>Patrick</value></simple>

</sequence>

<struct name="sanityTestTime" type="timestruct">
<description>Time to start daily sanity check</description>
<simple name="hour" type="short"><value> 24 </value></simple>
<simple name="minute" type="short"><value> 0 </value></simple>
<simple name="second" type="short"><value> 0 </value></simple>
</struct>
</properties>

The properties document has 4 major elements: simple, sequence, struct, and
valuetype. The simple element describes a single primitive idl type. The sequence
element corresponds to an IDL sequence, the struct element corresponds to an IDL
struct, and the valuetype element corresponds to an IDL valuetype.

Note — If the user of the property file does not have static information about the types
specified in the property file, then it will likely need to construct the type into a
DynAny.

June 2002 CORBA Components: Property File Descriptor 6-61

6-62

6.8.2 Property File XML Elements

6.8.2.1

6.8.2.2

6.8.2.3

6.8.2.4

6.8.2.5

This section describes the XML elements that make up a propertiesfile. The section is
organized starting with the root element of the properties document, properties,
followed by all subordinate elements, in aphabetical order. The complete properties
file DTD may be found in Section 7.3, “properties.dtd,” on page 7-11.

The properties Root Element

The properties element is the root element of the properties document. It contains an
optional description and any combination of simple, sequence, struct, and valuetype
elements.

<IELEMENT properties
(description?
, (simple
| sequence
| struct
| valuetype

)*
)>

The choice Element
<IELEMENT choice (#PCDATA) >

The choice element is used to specify a valid simple property value.

The choices Element

<IELEMENT choices (choice | range)+ >

The choices element is a list of one or more choice or range elements.

The defaultvalue Element

<!IELEMENT defaultvalue (#PCDATA) >

The defaultvalue element is used to specify a default simple property value.

The description Element

<IELEMENT description (#PCDATA) >

The description element is used to provide a description of its enclosing element.

CORBA Components, v3.0 June 2002

6.8.2.6

6.8.2.7

6.8.2.8

The properties Element

The root element of the properties file. See Section 6.8.2.1, “The properties Root
Element,” on page 6-62.

Therange Element

<!IELEMENT range (value, value) >

The range element is a set of two value elements that define a specific range of valid
simple property values. The order of the range limits; that is, (min, max) or (max, min)
is not implied.

The simple Element

The simple element is used to specify an attribute value of a primitive type. simple
contains a mandatory value element, and optional description, choices, and
defaultvalue elements.

The value element is used to specify the value of the simple type. If the value element
is empty, the value is deemed unspecified. If the value is unspecified, and there is a
defaultvalue defined, then the default value will be used.

The description, choices and defaultvalue child elements may be used to provide
guidance to the end user in deciding how to set the attributes.

<IELEMENT simple
(description?
, value
, choices?
, defaultvalue?
) >
<IATTLIST simple
name CDATA #IMPLIED
type (boolean
| char
| double
| float
| short
| long
| objref
| octet
| short
| string
| ulong
| ushort
) #REQUIRED >

CORBA Components: Property File Descriptor 6-63

6-64

6.8.2.9

name

The name attribute specifies the name of the attribute as it appears in IDL. The name
attribute is required, except when the property is used in a sequence.

type

The type attribute specifies the type of the corresponding attribute. Property types are
either an IDL primitive data type, or an objref.

Note — The objref isin its stringified form in the property element. The stringified
object reference is converted into a proper object reference before being assigned to its
corresponding attribute.

The sequence Element

The sequence element is used to represent a sequence of similar types. It may be a
sequence of simple types, a sequence of structs, a sequence of valuetypes, or a
sequence of sequences. The order of the sequence elements in the property file is
preserved in the constructed sequence. An optional description may be used to describe
the sequence property.

<I[ELEMENT sequence
(description?
. (simple*
| struct*
| sequence*
| valuetype*

)

) >

<IATTLIST sequence
name CDATA #IMPLIED
type CDATA #REQUIRED >
name

The name attribute specifies the name of the sequence as it appearsin IDL. The name
attribute is required, except when the sequence property is used in another sequence.

type

The type attribute specifies the type of the corresponding IDL sequence. The type of
each element in the sequence must match the sequence type.

CORBA Components, v3.0 June 2002

June 2002

6.8.2.10

6.8.2.11

6.8.2.12

The struct Element

The struct element corresponds to an IDL structure. It may be composed of simple
properties, sequences, structs, or other valuetypes.

<IELEMENT struct
(description?
, (simple
| sequence
| struct
| valuetype
)*
) >
<IATTLIST struct
name CDATA #IMPLIED
type CDATA #REQUIRED >

name

The name attribute specifies the name of the struct attribute as it appearsin IDL. The
name attribute is required, except when the structure property is used in a sequence.

type

The type attribute specifies the type of the corresponding IDL struct.

The value Element

The value element is used to specify a simple value.

<IELEMENT value (#PCDATA) >

The valuetype Element

The valuetype element is used to specify an IDL valuetype. It may be composed of
simple properties, sequences, structs, or other val uetypes.

<IELEMENT valuetype
(description?
. (simple
| sequence
| struct
| valuetype
)*
) >
<IATTLIST valuetype
name CDATA #IMPLIED
type CDATA #REQUIRED
primarykey (true | false) “false” >

CORBA Components: Property File Descriptor 6-65

name

The name attribute specifies the name of the valuetype attribute as it appears in IDL.
The name attribute is required, except when the valuetype property is used in a
sequence.

type

The type attribute specifies the repository id of the corresponding IDL valuetype.
primarykey

The primarykey attribute indicates whether or not the valuetype property provides the

state information for an entity component primary key with a repository id given by the
type attribute.

6.9 Component Deployment

6-66

Components, component homes, and component assemblies are deployed on target
hosts in a network using a deployment tool provided by an ORB or tool vendor.

The aim of deployment is to install and “hook-up” alogical component topology to a
physical computing environment. The component topology is specified by an assembly
package, or in the degenerate case, an individual component package.

The basic steps in the deployment process are:

1. Identify on which hosts the components are to be installed. This information will
most likely come from an interaction between tool and user. Components are
deployed either singly or together with other components as part of a process or
host collocation.

2. Install component implementations on each platform where corresponding
component instances are to be deployed. If a component implementation, uniquely
identified by a UUID, is already installed on a host, then it does not have to be
installed again.

3. Instantiate component homes and components on particular hosts. The mapping for
doing so was determined in step 1.

4. Connect components as specified in the assembly descriptor’s connect blocks.

A stand-alone component package may be deployed as well as assembly packages. In
that case, step 4 does not apply. Unless otherwise noted, all interfaces defined in the
subsequent sections are in the Deployment module, which is imbedded within the
Components module.

CORBA Components, v3.0 June 2002

6.9.1 Participants in Deployment

The deployment of a component or component assembly is carried out by a
deployment application in conjunction with a set of helper objects. The helper objects
include component repositories, assembly and component factories, an object
representing an assembly itself, and a container.

The following class diagram and scenario represents a deployment architecture.

Note — Of the interfaces described below, only Componentinstallation,
AssemblyFactory, and Assembly are required by this specification; the other
interfaces are included for illustrative purposes and to support an end-to-end scenario.

6.9.1.1 Deployment Architecture

<<i nstanti at es>>
Assenbl yFactory: - - - - - - - oo oL > Assenbly

. Container. .
<<i nstantiates>>
\ « Y
A CCMHone
Conponent I nstal |l ati on <<instanti at és>>
CCMj ect

Figure6-1 Deployment Architecture

June 2002 CORBA Components: Component Deployment 6-67

6.9.1.2 Packagesand Locations

References are made above and below to assembly and component packages and their
location with some degree of intentional ambiguity to allow for future interpretations
of a package and itslocation. At a minimum a package can be interpreted as a package
descriptor or an archive that contains a package descriptor as described in Section 6.1,
“Introduction,” on page6-1. A location can be interpreted as a URI or absolute path to
a package or other file.

6.9.1.3 Deployment Scenario
The steps in deploying and activating a component assembly could unfold as follows.

1. The deployment application has a conversation with the user to determine where
each component or collocation is to be placed. Information about where
components are to be located is recorded in a copy of the component assembly
descriptor. This marked-up assembly descriptor will be used later by the Assembly
object to direct the creation and connectivity of the assembly.

2. Next the component implementations are installed on the platforms where they are
expected to be used. The deployment application calls install on the
Componentinstallation object, passing the component implementation id and a
string denoting the location of the component package. If the component has not
already been installed on the target platform, then the Componentinstallation
object retrieves the component package and optionally makes it available in the
local environment (component implementations and other needed files can be
retrieved “just in time” by a Componentinstallation object if configured to do so).

3. The deployment application then creates an Assembly object. Assembly objects
coordinate the creation and destruction of component assemblies. Each Assembly
object represents an assembly instantiation. Assembly objects are created by
calling an AssemblyFactory object on the host where the assembly object isto be
created. The AssemblyFactory is passed a string denoting the location of an
assembly package. If necessary, the AssemblyFactory brings the assembly
package into the local environment and makes its location known to the Assembly
object.

4. The assembly object uses the assembly package as a recipe for creating the
assembly. The assembly package specifies which components and component
homes to create, where they are to be located, what components are to be collocated
with each other, and what components are to be connected with each other. Based
on this information the Assembly object creates each component home and
component and “hooks-up” the assembly.

5. In creating a component, the Assembly object must create a component server,
create a container within the server, install a home object within the container, and
then use the home to create the component. This work is accomplished with the
help of a set of objects on each host. These are ServerActivator,
ComponentServer, Container, and the CCMHome.

6-68 CORBA Components, v3.0 June 2002

6

6. The Assembly object first callsthe ServerActivator on the target host to create a
component server. There is one instance of the ServerActivator object on each
host where components could be installed. The Assembly object creates the
component server by calling the create_component_server operation on the
ServerActivator object. This operation creates an empty server process and
returns a reference to the ComponentServer object of the newly created process.

7. A ComponentServer object is used by the Assembly object to create containers
within the server. A container is created when the Assembly object calls
create_container onthe ComponentServer object, passing in alist of container
configuration values. The create_container operation returns a reference to the
Container interface of the newly created container.

8. The Assembly object uses the Container interface to install the component
homes into the container. This is accomplished by calling install_home on the
Container object. The install_home operation takes a component id parameter
and returns a reference to the home interface.

9. In order to create the home, the Container must load the DLL, shared object file,
or .class file into the container process. To locate the component implementation,
the container calls the get_implementation operation of the
Componentinstallation object. It passes in the id of the component
implementation and is returned the location of the component implementation. The
container then loads the implementation DLL, shared object file, or .class file that
can be used to instantiate a home object. The home object reference is then returned
to the Assembly object.

10. The Assembly object uses the component’s home object to create a component
instance. If the component category is service, session, or process an instance is
created by calling create_component on the home reference. If the component
category is entity, then a component instance is created by calling create on the
home reference and passing in an instance of a value type derived from
Components::PrimaryKeyBase. The primary key value type instance can be
created using information supplied in a component property file. Both the create
operation and the create_component return a CCMObject object reference.

11. If applicable, a configurator is applied to the component.

12. Once al of the components are installed, the Assembly object connects
components in the assembly based on the information in the connect blocks of the
assembly descriptor. It does so by calling the receptacle and event connection
operations on the CCMObject references.

13. Following the successful consummation of each connection in the assembly, the
Assembly object may call configuration_complete on each object in the
assembly to signal that all of its configuration values have been set and all initial
connections have been fixed.

June 2002 CORBA Components: Component Deployment 6-69

6-70

6.9.1.4

Note — The operation configuration_complete should be called on components
according to their interconnection dependencies. For instance, an active (containing a
thread) component should not start before all the components connected to via its
connection ports start, else the active component could use other components that have
not yet started (i.e., on which configuration_complete has not yet been called). If
circular dependencies exist between connected components then no assumption can be
made as to the “best” order that the configuration_complete operation should called on
dependent components.

Configuration

Several operat