
UML Profile for CORBA Components
Specification

This OMG document replaces the draft adopted specification (ptc/04-10-07). It is an OMG Final
Adopted Specification and is currently in the finalization phase. Comments on the content of this
document are welcomed, and should be directed to issues@omg.org by December 12, 2004.

You may view the pending issues for this specification from the OMG revision issues web page
http://cgi.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on February 11,

2005. If you are reading this after that date, please download the available specification from the

OMG formal specifications web page.

OMG Draft Adopted Specification
ptc/2004-11-05

Date: January 2005

UML Profile for CORBA Components
OMG Specification

ptc/2004-11-05

Copyright © 2003, Alcatel
Copyright © 2003, Fraunhofer Institute FOKUS
Copyright © 2003, Object Management Group
Copyright © 2003, Thales

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS

OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT
NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY
OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

UML Profile for CORBA Components Specification, v1.0 i

Table of Contents

1 Scope ... 1

2 Conformance .. 1

3 Normative References .. 1

4 Terms and Definitions ... 1

5 Symbols.. 2

6 Additional Information ... 3
6.1 Changes to Adopted OMG Specifications ... 3
6.2 The Relationship to the UML 2.0 ... 3
6.3 Acknowledgements ... 3

7 Overview ... 5
7.1 UML Subset Definition .. 5
7.2 CCM Package structure .. 6

8 CCM Profile Definition .. 7
8.1 ComponentIDL Profile ... 8

 8.1.1 ComponentIDL metamodel ... 8
 8.1.2 Profile Definition .. 9
 8.1.3 Metamodel to Profile Mapping .. 22

8.2 UML Profile for CIF ... 24
 8.2.1 CIF Metamodel .. 24
 8.2.2 Profile Definition .. 25
 8.2.3 Metamodel to Profile Mapping .. 32

9 Profile Illustration with the Dinning Philosopher 34
9.1 Example Scenario Description .. 34
9.2 Type Definition .. 34
9.3 Interface Definition .. 35
9.4 Component Definition .. 35
9.5 Home Definition... 38
9.6 Component Implementation Definition .. 39

References .. 43

ii ptc/2004-11-05

UML Profile for CORBA Components Specification, v1.0 1

1 Scope

The CORBA Component Model (CCM) is a comprehensive component architecture based on the reliable and well-proven
CORBA middleware. It contains concepts that allow multi-interface components, event based communication, port based
configuration and flexible implementation structures. These concepts are specified in the CCM metamodel defined in the
OMG CORBA Components Specification, formal/02-06-65 .

This specification provides the normative UML Profile for CORBA Components. The Profile defines a set of UML 1.5
extensions to represent CCM concepts like CORBA Component or CORBA Home. It is based on the UML Profile for
CORBA, formal/02-04-01 and extends this Profile to allow the modeling of additional concepts of ComponentIDL and
Component Implementation Framework (CIF) according to the CCM metamodel.

This specification is compliant with the Model Driven Architecture (MDA) defined by the OMG and provides a standard
means for expressing CCM-based applications (PSMs) using UML notation and thus to support all kind of MDA model
transformations such PIM→PSM or PSM→PSM and also work with MOF repositories.

2 Conformance

This specification defines three conformance points. Implementations must support all these conformance points:

• Implementation of the UML Profile for CORBA defined in formal/02-04-01.

• Implementation of the ComponentIDL Profile defined in section 8.1.

• Implementation of the CIF Profile defined in section 8.2.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• Unified Modeling Language (UML) Specification, Version 1.5

• CORBA Components Specification, Version 3.0

• The UML Profile for CORBA, Version 1.0

• MOF Specification, Version 1.4

4 Terms and Definitions

For the purposes of this specification, the terms and definitions given in the normative references and the following apply.

artifact

An element which descibes abstractions from programming language constructs like classes.

2 UML Profile for CORBA Components Specification, v1.0

component

A basic metatype in CORBA which is a specialization and extension of an interface definition.

component type

A specific, named collection of features that can be described by an IDL component definition or a corresponding structure in

an Interface Repository.

facet

A distinct named interface provided by the component for client interaction.

factory

A home operation which supports creation semantics.

finder

A home operation which supports search semantics.

home

A metatype that acts as a manager for instances of a specified component type.

port

A surface feature through which clients and other elements of an application environment may interact with a component.

receptacle

A named connection point that describes the component’s ability to use a reference supplied by some external agent.

segment

An element which describes a segmented implementation structure for a component implementation.

5 Symbols

CCM CORBA Component Model

CIF Component Implementation Framework

IDL Interface Definition Language

MDA Model Driven Architecture

PIM Platform Independent Model

PSM Platform Specific Model

UML Unified Modeling Language

UML Profile for CORBA Components Specification, v1.0 3

6 Additional Information

6.1 Changes to Adopted OMG Specifications

There are no changes to existing OMG Specifications.

6.2 The Relationship to the UML 2.0

The CCM profile is defined as a UML 1.5 profile. In September, 2000, OMG started to work on the Release 2.0 major
revision of the UML specification. UML 2.0 is tailored to MDA requirements, and is being proposed in four separate
RFPs: UML Infrastructure, UML Superstructure, Object Constraint Language, and UML Diagram Interchange. It s
excepted, that new UML 2.0 concepts (e.g., port, component, etc.) will simplify the modeling of component-based
infrastructures like CCM or EJB. However, the necessity of the UML profile for CCM will not disappear and it will be a
possible subject for a separated RFP in the future.

6.3 Acknowledgements

The following companies submitted and/or supported parts of this specification:

• Alcatel

• Fraunhofer Institute FOKUS

• IKV++ Technologies AG

• Laboratoire d'Informatique Fondamentale de Lille

• Technical University Berlin

• Thales

NOTE: The technology proposed by this specification is based on the work of the MASTER project (http://www.esi.es/
Master) and the COACH project (http://www.ist-coach.org/) of the IST Program of the European Commission. The
submitters would like to thank the participants of these projects for their contributions and review activities.

4 UML Profile for CORBA Components Specification, v1.0

UML Profile for CORBA Components Specification, v1.0 5

7 Overview
The UML Profile for CORBA Components specification was designed to provide a standard means for expressing the
semantics of CORBA Component Model (CCM) using UML notation and thus to support expressing these semantics with
UML tools. The Profile described in this manual are aimed at software designers and developers who want to design
component-based CORBA applications. There is already an OMG Standard that defines how to model pure CORBA
applications using UML: The UML Profile for CORBA (or CORBA Profile, formal/02-04-01). The UML Profile for
CORBA Components (or CCM Profile) is considered as an extension to the pure CORBA Profile and strictly based on its
definition exactly like the CORBA Components Standard (formal/02-06-65) is considered as an extension to the Common
Object Request Broker Architecture and Specification that contains the architecture and specifications for base CORBA
Interface Definition Language (IDL). The dependencies between UML, CORBA Profile and CCM Profile are shown in
the Figure 1.

7.1 UML Subset Definition

The UML Profile for CCM depends on the UML Core package (formal/03-03-01) and the UML Profile for
CORBA.

Figure 1 - Import dependencies between UML Metamodel, CORBA Profile and CCM Profile packages

The following concrete UML metaclasses, and implicitly all super-metaclasses of these metaclasses, are used:

• Generalization

• Association

• Class

• Operation

• Constraint

• Package

The CCM metamodel is defined on top of the CORBA (BaseIDL Package, see Figure 2) metamodel. We have the same
relationship at the profile level, it means that the CCM Profile uses the CORBA Profile. The CCM Profile uses the
definition of all CORBA data types and specializes the following stereotypes defined in the CORBA Profile:

UML
<<Metamodel>>

CORBA
<<Profile>>

CCM
<<Profile>>

<<import>>

<<import>>
<<import>>

6 UML Profile for CORBA Components Specification, v1.0

• «CORBAInterface»

• «CORBAValue»

7.2 CCM Package structure

Figure 2 - Package structure of CCM metamodels

As shown in Figure 2 the whole CCM concept space is represented by three metamodel Packages: BaseIDL,
ComponentIDL and CIF (Component Implementation Framework).

The ComponentIDL Package expresses the Component Model extensions to CORBA IDL. This package is dependent
upon the BaseIDL Package which is a MOF-compliant metamodel of the base CORBA IDL. Since these extensions are
derived from the previously-existing IDL base, it was not possible to define a MOF-compliant metamodel for the
extensions without defining a MOF-compliant metamodel for the IDL base. Therefore, the BaseIDL metamodel was
specified and explained in the CORBA Components Specification, section 8.1.1 "BaseIDL Package". The UML Profile
for CORBA is based on this metamodel. The ComponentIDL metamodel concepts are specified and explained in the
CORBA Components Specification, section 8.1.2 "ComponentIDL Package". This document gives only the short
introduction of the ComponentIDL Package in section 8.1.1.

The CIF Package contains metaclasses and associations for definition the programming model for constructing component
implementations. This CIF Package depends on the ComponentIDL Package since its main purpose is to enable the
modeling of implementations for components specified using the ComponentIDL definitions. The short introduction of
the CIF Package content is given in section 8.2.1 this document.

The XMI format for the exchange of CCM metadata is provided in the CORBA Components Specification, sections 8.3.1
and 9.4.1.

BaseIDL
<<metamodel>>

ComponentIDL
<<metamodel>>

CIF
<<metamodel>>

UML Profile for CORBA Components Specification, v1.0 7

8 CCM Profile Definition
The general definition of a UML Profile can be found in the UML Profile for CORBA specification in the section 2.1
„General Definition of a UML Profile“.

The CCM Profile specifies a set of UML extensions like stereotypes, tagged values and constraints. The concept of
stereotype is the most important and provides a way of classifying elements so that they behave in some respects as if
they were instances of new "virtual" metamodel constructs. The classified element properties can be expressed via tagged
values. For the graphical representation of the „virtual“ metamodel we use the following approach:

• the model is expressed via UML class diagrams.

• each stereotype is expressed via a stereotyped with <<stereotype>> Classifier box.

• each tagged value is expressed via comma delimited sequence of property specifications inside a pair of braces
 ({ }) by a stereotype.

• each stereotype is a client in a UML Dependency Relationship with the UML metaclass that it extends.
These Dependencies are stereotyped with <<stereotype>>.

• Generalization Relationships among stereotypes are expressed in the standard UML manner.

The UML „virtual“ metamodel of all stereotype and tagged value declarations for the CCM Profile is provided in the
OMG documents ptc/2005-01-02 (Rose model file) or ptc/2005-01-03 (XML file).

An alternative and usually more compact way of specifying stereotypes and tags is using tables. The columns of the
stereotype specification table are defined as follows:

• Stereotype: the name of the stereotype.

• Base Class: the UML metamodel element that serves as the base for the stereotype.

• Parent: the direct parent of the stereotype being defined (NB: if one exists, otherwise the symbol "NA" is used).

• Tags: a list of all tags of the tagged values that may be associated with this stereotype (or NA if none are defined).

• Description: an informal description with possible explanatory comments.

The columns of the tag specification table are defined as follows:

• Tag: the name of the tag.

• Stereotype: the name of the stereotype that owns this tag, or "NA" if it is a stand alone tag.

• Type: the name of the type of the values that can be associated with the tag.

• Multiplicity: the maximum number of values that may be associated with one tag instance.

• Description: an informal description with possible explanatory comments.

This specification provides both forms of specifying stereotypes and tagged values: tabular and graphical.

Constraints represent semantic information attached to an element. A list of constraints associated with a stereotype is
expressed in English and OCL separately from the stereotypes and tags specification. The following OCL convenience
operation is used in the UML Profile for CCM, it is defined in [7] for the metaclass ModelElement in order to produce
more compact and readable OCL:

8 UML Profile for CORBA Components Specification, v1.0

The operation isStereotyped determines whether the ModelElement has a Stereotype whose name is equal to the input name.

isStereotyped : (stereotypeName : String) : Boolean;
self.stereotype.name = stereotypeName

8.1 ComponentIDL Profile

8.1.1 ComponentIDL metamodel

Figure 3 gives the structure of the CCM external concepts. A more detail description of these concepts can be found in
the CCM OMG standard definition.

Figure 3 - ComponentIDL Metamodel

OperationDef
(f rom BaseIDL)

EventDef

EventPor
tDef

1

0..n

+type1

0..n

Event_TypeAss

FactoryDef FinderDef

ValueDef
(f rom BaseIDL)

ProvidesDef
UsesDef

multipleItf : Boolean

EmitsDef PublishesDef ConsumesDef

InterfaceDef
(f rom BaseI DL)

1

0..n

+providesItf
1

0..n
0..n

1

0..n
+usesItf

1

HomeDef

1

0..n

1

+factory
0..n

1

0..n

1

+finder
0..n

0..1

0..n

+primary_key0..1

+homeEnd

0..n

Key_Home

0..n

0..n

+supportsItf0..n

+comp

0..n

Component_Supports

ComponentDef

1

0..n

1

+facet

0..n

0..n

1

+receptacle 0..n

1

1

0..n

1

+emits
0..n

1

0..n

1

+publishes 0..n

1

0..n

1

+consumes

0..n

0..n

0..n

+supportsItf 0..n

+components

0..n
1

0..n+componentEnd
1

+homeEnd

0..n

Container
(f rom BaseI DL)

0..n

BaseIDL

UML Profile for CORBA Components Specification, v1.0 9

This abstract model is used to characterize CORBA Component interfaces. The ComponentIDL (known also as IDL3)
language has been defined to describe instances of this Metamodel. It is a generalization of the OMG IDL language.

A component type defines attributes and ports. The attributes are used to configure the component. By using ports,
components can use or provide a set of services (typed with a CORBA interface). There are four kinds of ports:

1. A facet is a component provided interface. It is a synchronous communication mechanism.

2. A receptacle is a component required interface. It is a synchronous communication mechanism.

3. An event sink is a component provided interface. It is an asynchronous communication mechanism.

4. An event source is a component required interface. It is an asynchronous communication mechanism.

A component is a kind of interface. A component can inherit from another one and support one or more interfaces. A
component cannot inherit from several components at the same time. Multiple inheritance is only possible for interfaces.

A facet represents a component’s role. It is described using an interface. A facet is the only visible part for clients. It is
only a declarative part. Clients have no access to the implementation part. Facet implementations are hidden inside the
component. Facets and components have the same lifecycle. Each facet has its own reference.

With a receptacle a component can use a reference. This relationship is called a connection. Connections are used for
component assembly. There are two receptacle kinds. Simple receptacle can only use a single reference. “Multiple”
receptacle can use several references.

The CCM also provides a provider/consumer event model. They are two kinds of event ports: event source and event
sink. An event source can be either an emitter (only one consumer) or a publisher (several consumers). Event sources are
used to send events; event sinks are used to receive events.

CORBA Components are managed by homes. A component home provides component factory operations. It can also
provide component finder operations. “Home” supports single inheritance.

8.1.2 Profile Definition

Component

A CORBA Component is defined using a UML “CORBAComponent” stereotyped class. A “CORBAComponent” can
inherit from another one (single inheritance) using the UML generalization. It can also inherit from a set of CORBA
interfaces. These relationships are materialized with “CORBASupports” stereotyped generalizations.

10 UML Profile for CORBA Components Specification, v1.0

Table 1 - CORBAComponent and CORBASupports Stereotypes

Figure 4 - Explicit Modeling of CORBAComponent and CORBASupports Stereotypes

<<CORBAComponent>> Constraint

A « CORBAComponent » is a kind of « CORBAInterface ». Each “CORBAComponent” must respect the
“CORBAInterface” constraints. It must also respect the following additional constraints:

• A «CORBAComponent» cannot own operations:

Stereotype Base Class Parent Tags Description

CORBAComponent
<<CORBAComponent>>

Class CORBAInterface NA A CORBA
Component is a
class with specific,
named collection of
features like
attributes or ports.
An instance of the
component has state
and identity.

CORBASupports

<<CORBASupports>>
Generalization NA NA CORBASupports is

a generalization
relationship between
component and its
inherit interface(s).

Generalization
< <m etac lass>> Class

<<m etac lass>>

CORBAComponent
<<s tereotype>>

CO RBAInterface
(from CORBAProfile)

<<s tereotype>>

<<s tereotype>>

CORBASupports
< <s tereotype>>

<<s tereotype>>

UML Profile for CORBA Components Specification, v1.0 11

self.feature→forAll(not oclIsKindOf (behavioralFeature))

• A «CORBAComponent» can only inherit from a «CORBAComponent» or a «CORBAInterface»:

self.generalization→forAll (g : Generalization | g.parent.isStereotyped ("CORBAComponent") or g.parent.isStereo-
typed("CORBAInterface"))

• Only single inheritance is possible between «CORBAComponent»:

self.generalization→
select(parent.isStereotyped("CORBAComponent"))→size <= 1

• Each «CORBAComponent» inheritance from a «CORBAInterface» must be stereotyped «CORBASupports»:

self.generalization→forAll (g : Generalization | g.parent.isStereotyped("CORBAInterface") implies g.isStereotyped("COR-
BASupports"))

Example

The CCM Component inheritance model is the UML counterpart of the following IDL3 declaration:

interface I1 { } ;
interface I2 { } ;
component C1 supports I1, I2 { } ;
component C2 : C1 { } ;

Figure 5 - CCM Component inheritance

Facet and Receptacle

The facets are described using a composition association between a CORBAComponent and a CORBA interface. This
association must be stereotyped “CORBAProvides.” The name of this stereotyped association gives the facet name. The
AssociationEnd cardinalities are [1..1] for both association sides.

<<CORBAInterface>>
I1

<<CORBAInterface>>
I2

<<CORBAComponent>>
C1

<<CORBAComponent>>
C2

<<CORBASupports>> <<CORBASupports>>

12 UML Profile for CORBA Components Specification, v1.0

The receptacles are described using a composition association between a CORBAComponent and a CORBA interface.
This association must be stereotyped “CORBAUses”. The role name of the interface AssociationEnd gives the receptacle
name. The component side AssociationEnd cardinality must be [1..1]. The receptacle side AssociationEnd cardinality is
[1..n] where n is the receptacle cardinality. Table 2 describes facet and receptacle stereotypes. Table 3 defines the
associated tagged value „multiple“.

Figure 6 - Explicit Modeling of CORBAUses and CORBAProvides Stereotypes

Association
<<metaclass>>

CORBAUses
{ «taggedValue» multiple:Boolean [1] }

<< stereotype>>
CO RBAProvides
<< stereotype>>

<<stereotype>> << stereotype>>

UML Profile for CORBA Components Specification, v1.0 13

Table 2 - CORBAProvides and CORBAUses stereotypes

Table 3 - Tag definition for CORBAUses Stereotype

Constraints

• It’s an association between a «CORBAComponent» and a «CORBAInterface»:

self.connection→exists(participant.isStereotyped("CORBAComponent")) and self.connection→exists (participant.isStereo-
typed("CORBAInterface"))

• The «CORBAComponent» side is a composition:

self.connection→exists(participant.isStereotyped("CORBAComponent") and aggregation = #composite)

CCMFacet additional constraints

• It’s an association stereotyped «CORBAProvides»:

Stereotype Base Class Parent Tags Description

CORBAProvides
 << CORBAProvides >>

Association NA NA A CORBAProvides
is an association
between component
and its provided
interfaces that
represents the
component port
called facet.

CORBAUses
 << CORBAUses >>

Association NA multiple A CORBAUses is
an association
between component
and interfaces that
component uses.
The association
represents the
component port
called receptacle.

Tag Stereotype Type Multiplicity Description

multiple CORBAUses Boolean 1 Indicates whether
the multiple
connections to the
receptacle may exist
simultaneously or
not.

14 UML Profile for CORBA Components Specification, v1.0

self.isStereotyped("CORBAProvides”)

• The “CORBAInterface” side cardinality must be 1:

self.connection→exists(participant.isStereotyped("CORBAInterface") and multiplicity.min=1 and multiplicity.max=1)

CCMReceptacle additional constraints

• It’s an association stereotyped «CORBAUses»:

self.isStereotyped("CORBAUses”)

• The «CORBAInterface» side cardinality must be 1 for simple receptacle.

self.connection→exists(participant.isStereotyped("CORBAInterface") and multiplicity.min=1 and multiplicity.max=1)

• The «CCMReceptacle» side cardinality must greater than one for multiple receptacles.

self.connection→exists(participant.isStereotyped("CORBAInterface") and multiplicity.min=1 and multiplicity.max>1)

Example

The Facets and Receptacles model is the UML counterpart of the following IDL3 declaration:

interface I1 { };
interface I2 { };
interface I3 { };
component C1 {

provides I1 facet1;
uses I2 receptacle1;

uses multiple I3 receptacle2;
};

Figure 7 - Facets and Receptacles

<<CORBAInterface>>
I1

<<CORBAInterface>>
I2

<<CORBAInterface>>
I3

<<CORBAComponent>>
C1

<<CORBAProvides>>

facet1

1 1

<<CORBAUses>>

receptacle1 1

1

<<CORBAUses>>

receptacle2

1
1..*

UML Profile for CORBA Components Specification, v1.0 15

Events

Event types are defined using a « CORBAEvent » stereotyped class. The “CORBAEvent” stereotype is a specialization of
the « CORBAValue » stereotype. It inherits from all “CORBAValue” constraints. Event source is defined either by a
“CORBAEmits” stereotyped composition association or by a “CORBAPublishes” association between a
“CORBAComponent” and a “CORBAEvent.” The event source port name is defined using this stereotyped association
name.

Event sinks are defined the same way using a “CORBAConsumes” stereotyped composition association.

Table 4 describes event and event port stereotypes.

Table 4 - CORBAEvent, CORBAEventPort, CORBAEmits, CORBAPublishes and CORBAConsumes stereotypes

Stereotype Base Class Parent Tags Description

CORBAEvent
 << CORBAEvent >>

Class CORBAValue NA A CORBAEvent class
represents an event
type (data type for
component current
state) that one
component wishes to
notify (event source)
another component
about (event sink).

CORBAEventPort
 << CORBAEventPort >>

Association NA NA A CORBAEventPort is
an association between
a component and an
event.
CORBAEventPort is
an abstract class and
can not be instantiated
directly.

CORBAEmits
 << CORBAEmits >>

Association CORBAEventPort NA A CORBAEmits is an
association between
component and events
that this component
emits.

CORBAPublishes
 << CORBAPublishes >>

Association CORBAEventPort NA A CORBAPublishes is
an association between
component and events
that this component
publishes.

CORBAConsumes
 << CORBAConsumes >>

Association CORBAEventPort NA A CORBAConsumes is
an association between
component and events
that this component
consumes.

16 UML Profile for CORBA Components Specification, v1.0

Figure 8 - Explicit Modeling of CORBAEvent, CORBAEventPort, CORBAEmits, CORBAPublishes and
 CORBAConsumes Stereotypes

Constraints

• It’s a binary association.

self.connection→size=2

• It’s an association between a «CORBAComponent» and a «CORBAEvent».

self.connection→exists(participant.isStereotyped("CORBAComponent")) and self.connection->exists (participant.isStereo-
typed("CORBAEvent"))

• The « CORBAComponent » side is a composition.

self.connection→exists(participant.isStereotyped("CORBAComponent") and aggregation = #composite)

• The «CORBAEvent» side cardinality must be 1.

self.connection→exists(participant.isStereotyped("CORBAEvent") and multiplicity.min=1 and multiplicity.max=1)

«CORBAEmits» constraints

• The «CORBAEmits» side cardinality must be 1.

self.connection→exists(participant.isStereotyped("CORBAEmits") and multiplicity.min=1 and multiplicity.max=1)

«CORBAPublishes» constraints

• The «CORBAPublishes» side cardinality can be 1 or more.

self.connection→exists(participant.isStereotyped("CORBAPublishes") and multiplicity.max>1)

Class
<<metaclass>>

Association
<<metaclass>>

CORBAValue
(from CORBAProfile)

<<stereotype>>

<<stereotype>>

CORBAEvent
<<stereotype>>

CORBAEmits
<<stereotype>> CORBAPublishes

<<stereotype>>

CORBAEventPort
<<stereotype>>

CORBAConsumes
<<stereotype>>

<<stereotype>>

UML Profile for CORBA Components Specification, v1.0 17

Example

The Event sink and event source model is the UML counterpart of the following IDL3 declaration:

eventtype E1 { };
eventtype E2 { };
eventtype E3 { };
component C1 {

 emits E1 source1;
 publishes E2 source2;
 consumes E3 sink1;

};

Figure 9 - Event sink and event source

Component Home

A Component home is described using a “CORBAHome” stereotyped class. This stereotype specializes the
“CORBAInterface” stereotype. A component home must be associated to a component type. This relationship is made
explicit using a “CORBAManages” stereotyped association between a “CORBAHome” and a “CORBAComponent.”

A “CORBAHome” can inherit from another “CORBAHome” (single inheritance) using a UML generalization. A
“CORBAHome” can support several “CORBAInterface.” Each “CORBAInterface” generalization must be stereotyped
”CORBASupports.”

A “CORBAHome” can be associated with a primary key (necessary for persistent components). There is exactly one key
instance for each (persistent component, home) instance couple. To enforce this constraint, the primary key is represented
using a ”CORBAValue” stereotyped AssociationClass. The ”CORBAValue” stereotype was defined in the UML Profile
for CORBA [7].

<<CORBAEvent>>
E1

<<CORBAEvent>>
E2

<<CORBAEvent>>
E3

<<CORBAComponent>>
C1

<<CORBAEmits>>

source1

1

1

<<CORBAPublishes>>

source2

1 1

<<CORBAConsumes>>

sink1

1
1

18 UML Profile for CORBA Components Specification, v1.0

A “CORBAHome” can own attributes and operations. The stereotype “CORBAFactory” is used for the component
factory operations. The stereotype “CORBAFinder” is used for components finder operations. Table 5 describes the
component home stereotypes.

Table 5 - CORBAHome, CORBAFactory, CORBAFinder, CORBAManages and CORBAPrimaryKey stereotypes

Stereotype Base Class Parent Tags Description

CORBAHome
<< CORBAHome >>

Class CORBAInterface NA A CORBAHome is a
class that acts as a
manager for instances of
a specified component.
CORBA Home inherits
from CORBA Interface
and provides operations
(factory and finder) to
manage component life
cycles, and optionally, to
manage associations
between component
instances and primary
key values. A home must
be declared for every
component declaration.

CORBAFactory
 << CORBAFactory >>

Operation NA NA CORBAFactory is an
operation that creates a
new instance of the
component associated
with the home object.

CORBAFinder
<< CORBAFinder >>

Operation NA NA CORBAFinder is an
operation that obtains
homes for particular
component e.g.

CORBAManages
<< CORBAManages >>

Association NA NA CORBAManages is an
association between
components and their
homes.

CORBAPrimaryKey
<< CORBAPrimaryKey>>

Association NA NA CORBAPrimaryKey is
an association between
home and its primary
key.

UML Profile for CORBA Components Specification, v1.0 19

Figure 10 - Explicit Modeling of CORBAHome, CORBAFactory, CORBAFinder, CORBAManages and
 CORBAPrimaryKey stereotypes

Constraints

• There is exactly one « CORBAManages » association for each Home.

self.connection→select(isStereotyped(“CORBAManages”))→size = 1

• The «CORBAHome» side cardinality must be 1..1

self.connection→exists(participant.isStereotyped("CORBAHome")) and multiplicity.min=1 and multiplicity.max=1)

• The «CORBAComponent» side cardinality must be “0..n”

self.connection→exists(participant.isStereotyped("CORBAComponent")) and multiplicity.min=0 and multiplicity.max=n)

• A « CORBAHome » can inherit from one « CORBAHome » at most.

self.generalization→select(parent.isStereotyped("CORBAHome"))→size=1

• If “CORBAHome” h1 inherits from “CORBAHome” h2 and h2 manages “CORBAComponent” C2 then h1 must man-
age C2 or any other component C1 that inherits from C2.

let h1=self and let h2=self.generalization→select(parent.isStereotyped("CORBAHome")) and h2→notEmpty implies let
C2=h2.connection→
select(participant.isStereotyped("CORBAComponent")) and let C1=
h1.connection→select(participant.isStereotyped("CORBAComponent")) and (C1 = C2 or C1.allParents→includes(C2))

• If « CORBAHome » h1 inherits from h2, and « CORBAHome » h2 is associated with primary key k2 then h1 must be

Association
<<metaclass>>

Class
<<metaclass>>

CORBAHome
<<stereotype>>

CORBAManages
<<stereotype>>

CORBAPrimaryKey
<<stereotype>>

Operation
<<metaclass>>CORBAInterface

(from CORBAProfile)

<<stereotype>>

<<stereotype>>

CORBAFinder
<<stereotype>>

CORBAFactory
<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

20 UML Profile for CORBA Components Specification, v1.0

associated with k2 or with a primary key k1 that inherits from k2.

let h1=self and let h2=self.generalization→select(parent.isStereotyped("CORBAHome")) and h2→notEmpty implies let
k2=h2.connection
→select(isStereotyped("CORBAManages")).LinkToClass.ClassPart and let k1=self.connection
→select(isStereotyped("CORBAManages")).LinkToClass.ClassPart and (k1 = k2 or k1.allParents->includes(k2))

• Each «CORBAHome» inheritance from a «CORBAInterface» must be stereotyped.

self.generalization→forAll
(g : Generalization | g.parent.isStereotyped("CORBAInterface")
implies g.isStereotyped("CORBASupports"))

 «CORBAManages» constraints

• It’s an association between a «CORBAHome» and a «CORBAComponent».

self.connection→exists(participant.isStereotyped("CORBAHome")) and self.connection→exists(participant.isStereo-
typed("CORBAComponent"))

«CORBAValue» of a primary key constraints

• The valuetype of a primary key
 [1] must not have private state members
 [2] must not have members that are interfaces
 [3] must have at least one state member
 [5] must descend directly or indirectly from Components::PrimaryKeyBase
 [4] Contraints [1], [2], and [3] apply recursively to valuetype members that are valuetypes

[1,2,3,4] isAcceptableKeyType(type)

isAcceptableKeyType(valueType : ValueDef) : boolean
{
 valueType.contents.forAll (c | c.oclIsTypeOf(ValuefMemberDef) implies
 c.OclAsType(ValueMemberDef).isPublicMember) and
 valueType.contents.forAll (not oclIsKindOf (InterfaceDef)) and
 valueType.contents.exists (oclIsTypeOf(ValueMemberDef)) and
 valueType.contents.forAll (c | c.oclIsKindOf (ValueDef) implies isAcceptableKeyType (c))
}

[5] type.descendsFrom("Components::PrimaryKeyBase")

descendsFrom(absoluteName : string) : boolean
{
 descendsFrom(absoluteName) =
 if self.absoluteName = absoluteName then
 true
 else
 if base->isEmpty then
 false
 else
 if base.descendsFrom(absoluteName) then
 true
 else
 false
 endif

UML Profile for CORBA Components Specification, v1.0 21

 endif
endif
}

«CORBAHomeFactory» constraints

• A « CORBAHomeFactory » operation has only input parameters.

self. parameter→forAll(kind=#in)

• A «CORBAHomeFactory» can only be defined in a “CORBAHome”.

self.owner.isStereotyped("CORBAHome")

«CORBAHomeFinder» constraints

• A « CORBAHomeFinder » has only input parameters.

self. parameter→forAll(kind=#in)

• A « CORBAHomeFinder » can only be defined in a “CORBAHome”

self.owner.isStereotyped("CORBAHome")

Example

The following IDL3 example can be represented using the Component Home model.

module Components {
abstract valuetype PrimaryKeyBase {};
};
valuetype Key : Components::PrimaryKeyBase { public string _key; };
component C1 { };
component C2 { };
home C1Home manages C1 primarykey Key {

 finder findByName(in string name);
 factory create(in string name);

};
interface I1 { };
interface I2 { };
home myHome supports I1, I2 manages C2 { ... };
home C2Home : myHome manages C2 { };

22 UML Profile for CORBA Components Specification, v1.0

Figure 11 - Component Home

8.1.3 Metamodel to Profile Mapping

The mapping between the profile and the metamodel of the CCM is specified by giving the relation between the
metamodel elements and the elements of the profile. It is shown in the following figures. The graphical relation
“represents” means that the specific modelElement of the metamodel is represented by the associated construct(s) of the
profile. For example, an instance of the metaclass ComponentDef is represented by a UML class stereotyped as
CORBAComponent.

Figure 12 - Component mapping

<<CORBAComponent>>
C1

<<CORBAComponent>>
C2

<<CORBAHome>>
C1Home

<<CORBAHome>>
C2Home

<<CORBAValue>>
Key

<<CORBAInterface>>
I1

<<CORBAInterface>>
I2

<<CORBAHome>>
myHome

<<CORBAManages>>
1 *

<<CORBAManages>>
* 1

<<CORBAFinder>>
+findByName(in name:string)

<<CORBAFactory>>
+create(in name:string)

<<CORBAManages>>
1

*

<<CORBASupports>> <<CORBASupports>>

<<CORBAValue>>
PrimaryKeyBase _key : string

Components

<<CORBAPrimaryKey>> 1
1

CORBAProfile

ComponentIDLProfile

BaseIDL

ComponentIDL

UML

{represents}

{represents}

{represents}

<<stereotype>>
CORBAInterface

<<stereotype>>
CORBAComponent

<<metaclass>>
InterfaceDef

<<metaclass>>
ComponentDef

<<metaclass>>
Generalization

<<stereotype>>
CORBASupports

<<metaclass>>
Class

supports
*

*

<<stereotype>>

<<stereotype>>

<<stereotype>>

UML Profile for CORBA Components Specification, v1.0 23

Figure 13 - Ports mapping

Figure 14 - Events mapping

ComponentIDL

ProvidesDef

UML
ComponentIDLProfile

{represents}

{represents}

UsesDef

<<metaclass>>
ComponentDef

Association

<<stereotype>>
CORBAProvides

<<stereotype>>
CORBAUses

facet
1
*

receptacle
1

*
<< stereotype >>

<< stereotype >>

ComponentIDL

<<metaclass>>
EmitsDef

<<metaclass>>
PublishesDef

<<metaclass>>
ConsumesDef

<<metaclass>>
EventPortDef

ComponentIDLProfile
{represents}

{represents}

{represents} {represents}

UML

<<metaclass>>
ComponentDef

<<stereotype>>
CORBAEventPort

<<stereotype>>
CORBAEmits

<<stereotype>>
CORBAPublishes

<<stereotype>>
CORBAConsumes

<<metaclass>>
Association

1
publishes

*

<< stereotype >>

<< stereotype >>
<< stereotype >>

<< stereotype >>
consumes *

1

emits *
1

24 UML Profile for CORBA Components Specification, v1.0

Figure 15 - Home mappings

8.2 UML Profile for CIF

8.2.1 CIF Metamodel

Figure 16 gives the structures of the CCM CIF concepts. A more detail description of these concepts can be found in [4].

The CIF metamodel defines additional metaclasses and associations to specify how a component has to be implemented.

The component implementation (ComponentImplDef) is used to model an implementation definition for a given
component definition. It specifies an association to component definition to allow instances to point exactly to the
component the instance is going to implement.

Segment type (SegmentDef) is used to model a segmented implementation structure for a component implementation. The
behavior for each component feature (ComponentFeature) can be provided by a separate segment of the component
implementation.

Segment type has in addition an association to an Artifact type (ArtifactDef) which is model of programming language
constructs (e.g., classes) used to actually implement the behavior for component features.

Segment definitions modeled as instances of the Segment type may contain a set of policies (Policy), which have to be
applied to realizations of the segment in the implementation code. These policies include for example activation policies
for the artifact associated to a segment. The complete set of required policies is not defined yet, so the metamodel is
flexible in this case. In the CCM Profile Policy concept is not for interest and is not considered further.

ComponentIDL
<<metaclass>>

ComponentDef

ComponentIDLProfile
UML

{represents}

{represents}

{represents}

{represents}

{represents}
HomeDef

FinderDef

FactoryDef

ValueDef

<<stereotype>>
CORBAHome

<<stereotype>>
CORBAManages

<<stereotype>>
CORBAFactory

<<stereotype>>
CORBAFinder

<<stereotype>>
CORBAValue

<<metaclass>>
Class

<<metaclass>>
Association

Operation
1

primary_key

*

0..1

factory *

1

finder
* 1 homeEnd

components *

<< stereotype >>

<< stereotype >>

<< stereotype >>

<< stereotype >>

<< stereotype >>

homeEnd
Key_Home

<<metaclass>>

CORBAProfile

BaseIDL
<<stereotype>>

CORBAPrimaryKey
{represents}

<< stereotype >>

UML Profile for CORBA Components Specification, v1.0 25

Figure 16 - CIF metamodel

8.2.2 Profile Definition

Component implementation

A component implementation is defined using a UML class with the stereotype “CORBAComponentImpl”.

ComponentIDL

Contained Container
0..n

0..1
+contents

0..n
+definedIn

0..1
Con tains

Specification of Policies
Specification of State

ComponentCategory
PROCESS
SESSION
ENTITY
SERVICE

<<enumeration>>

IInterfaceDef

ArtifactDef

ComponentFeature

Policy

SegmentDef
isSerialized : Boolean 1 1

+segment
1

+artifact
1 se gments_artifact

1..n

1

+features
1..n

+segment
1

implemented...

0..n

1..n

+policies
0..n

+segs
1..n

ass_policies
ComponentImplDef

category : CCMMetamodel::CIF::ComponentCategory

1..n

1

+segments
1..n

+component
1

/segments

<<implicit

ComponentDef

1

0..n

+component 1

+segs 0..n

implements
HomeImplDef

0..n

1

+home_impl 0..n
+component_impl

manages

HomeDef
0..n 1

+home
0..n

+component
1

Component_Home

0..n

1
+segs

+home
1 implements

BaseIDL

26 UML Profile for CORBA Components Specification, v1.0

Table 6 - CORBAComponentImpl and CORBAImplements stereotypes

Table 7 - Tag definition for CORBAComponentImpl Stereotype

Stereotype Base Class Parent Tags Description

CORBAComponentImpl
<<CORBAComponentImpl>>

Class NA category A CORBAComponentImpl
is a class for
implementation definition
for a given component
definition.

CORBAImplements
 << CORBAImplements >>

Association NA CORBAImplements is an
association between
components and
component
implementations and
between homes and home
implementations.

Tag Stereotype Type Multiplicity Description

category CORBAComponentImpl ComponentCategory 1 Indicates the life
cycle category of
the component
implementation.
CCM specifies four
categories of the
component
implementation:
session, entity,
process and service.

UML Profile for CORBA Components Specification, v1.0 27

Figure 17 - Explicit Modeling of CORBAComponentImpl and CORBAImplements stereotypes

<<CORBAComponentImpl>> constraints

• There is an association between <<CORBAComponentImpl>> and <<CORBAComponent>>.

self.connection→
exists(participant.isStereotyped("CORBAComponentImpl")) and self.connection→exists(participant.isStereotyped("COR-
BAComponent"))

• The only classes that are allowed to be contained by a <<CORBAComponentImpl>> are classes with the stereotype
<<CORBASegment>>.

self.connection→
exists(participant.isStereotyped("CORBAComponentImpl") and aggregation = #composite and aggregation.participant.isS-
tereotyped("CORBASegment"))

<<CORBAImplements>> contraints

• A <<CORBAComponentImpl>> always has exactly one <<CORBAComponent>> associated while each <<CORBA-
Component>> might be implemented by different types of <<CORBAComponentImpl>>.

self.connection→
exists(participant.isStereotyped("CORBAComponentImpl") and multiplicity.min=1 and max=*)
self.connection→exists(participant.isStereotyped("CORBAComponent") and multiplicity.min=1 and max=1)

• Each << CORBAHomeImpl >> in a model implements exactly one <<CORBAHome>>.

self.connection→exists(participant.isStereotyped("CORBAHomeImpl") and multiplicity.min=1 and max=1)
self.connection→exists(participant.isStereotyped("CORBAHome") and multiplicity.min=1 and max=1)

<<CORBAManages>> constraints

• It’s an association between a «CORBAHomeImpl» and a «CORBAComponentImpl».

self.connection→
exists(participant.isStereotyped("CORBAHomeImpl")) and self.connection→

CORBAComponentImpl
{ «taggedValue» category:ComponentCategory[1] }

<<stereotype>>

CORBAImplements
<<stereotype>>

Class
<<metaclass>>

<<stereotype>>

Association
<<metaclass>>

<<stereotype>>

ComponentCategory
session
entity
process
sevice

<<enumeration>>

28 UML Profile for CORBA Components Specification, v1.0

exists(participant.isStereotyped("CORBAComponentImpl"))

• Each << CORBAHomeImpl >> manages exactly one <<CORBAComponentImpl>>, this relation is modeled by the
association <<CORBAManages>>.

self.connection→
exists(participant.isStereotyped("CORBAComponentImpl") and multiplicity.min=1 and max=1)

Home implementation

A home implementation of a component is defined using a UML class with the stereotype “CORBAHomeImpl”.

Table 8 - CORBAHomeImpl stereotype

Figure 18 - Explicit Modeling of CORBAHomeImpl stereotype

<<CORBAHomeImpl>> contraints

• For each instance x of <<CORBAHomeImpl>> the instance of <<CORBAComponent>>, which is associated to the
instance of <<CORBAHome>> associated to x is the same instance as the instance of <<CORBAComponent>> asso-
ciated to the instance of <<CORBAComponentImpl>>, which is associated to x.

self.home.component = self.component_impl.component

• The life cycle category of the <<CORBAComponentImpl>> must be “entity” or “process” if the component imple-
mentation is segmented.

Stereotype Base Class Parent Tags Description

CORBAHomeImpl
<<CORBAHomeImpl>>

Class NA NA A CORBAHomeImpl is a
class for implementation
definition for a given home
definition.

C la s s
< < m e ta c la s s > >

C O R B A H o m e Im p l
< <s te re oty pe >>

< < s te re o typ e > >

UML Profile for CORBA Components Specification, v1.0 29

self.segments>1 implies (self.category=ENTITY or self.category=PROCESS)

Example

The following IDL3 example describes a representation of the minimal form as a composition (without Managed
Storage), which specifies a unit of component implementation.

component ExmplCom {};
home ExmplHome manages ExmplCom {};
composition session ExmplComImpl {

 home executor ExmplHomeImpl{
implements ExmplHome;
manages ExmplComSessionImpl;
};
};

Using the UML Profile for CCM the described composition above can be represented with the following UML model:

Figure 19 - CIDL composition: unit of a component implementation in CCM

Segment and artifact

A segment of a component implementation is defined using a UML class with the stereotype “CORBASegment.”

An artifact of a component implementation is defined using a UML class with the stereotype “CORBAArtifact.”

ExmplHome
<<CORBAHome>>

ExmplCom
<<CORBAComponent>>

*

1

exmpl3

<<CORBAManages>>

*

1

ExmplHomeImpl
<<CORBAHomeIMpl>>

1 1 1 1

exmpl1
<<CORBAImplements>>

ExmplComSessionImpl
<<CORBAComponentImpl>>

1 1 1 1

exmpl2
<<CORBAImplements>>

1

*

<<CORBAManages>>

exmpl4

30 UML Profile for CORBA Components Specification, v1.0

Table 9 - CORBASegment and CORBAArtifact stereotypes

Table 10 - Tag definition for CORBASegment stereotype

Stereotype Base Class Parent Tags Description

CORBASegment
<< CORBASegment>>

Class NA isSerialized
features

A CORBASegment is a class
that is used to model a
segmented implementation
structure for a component
implementation. This means
that the behaviour for each
component feature can be
provided by a separate
segment of the component
implementation.

.
CORBAArtifact

<< CORBAArtifact >>
Class NA NA A CORBAArtifact is a class

that represents the
abstractions from
programming language
constructs like Classes.
.

Tag Stereotype Type Multipl
icity

Description

isSerialized CORBASegment Boolean 1 Indicates that the
access to segment is
required to be
serialized or not.

features CORBASegment String 1..n Indicates which
component feature
is provided by the
segment.

UML Profile for CORBA Components Specification, v1.0 31

Figure 20 - Explicit Modeling of CORBASegment and CORBAArtifact stereotype

<<CORBASegment>> contraints

• <<CORBASegment>> classes are always contained in <<CORBAComponentImpl>>.

self.definedIn.oclIsTypeOf(ComponentImplDef)

<<CORBAArtifact>> contraints

• The only allowed Container for ArtifactDef is ModuleDef.

self.definedIn.oclIsTypeOf(ModuleDef)

Example

The following IDL3 example extends the previous example to illustrate segmented executors (component
implementation). A segmented executor ExmplComEntityImpl is a set of physically distinct artifacts ExmplFacet1
and ExmplFacet2.

component ExmplCom {};
home ExmplHome manages ExmplCom {};
composition entity ExmplComImpl {

 home executor ExmplHomeImpl{
implements ExmplHome;
manages ExmplComEntityImpl{
 segment ExmplSeg1{
provides (ExmplFacet1); };
 segment ExmplSeg2{
provides (ExmplFacet1); };
};
 };
};

Using the UML Profile for CCM the described composition above can be represented with the following UML model:

Class
(from Core)

<<metaclass>>

CORBASegment

{ «taggedValue» isSerialized:Boolean[1] }
{ «taggedValue» features :S tring[1..n] }

<<stereotyp e> >

<<stereotype>>

CORBAArtifac t
<<stereotype>>

< <s tereot yp e>>

32 UML Profile for CORBA Components Specification, v1.0

Figure 21 - Segments and artifacts

8.2.3 Metamodel to Profile Mapping

The mapping between the profile and the metamodel of the CCM is specified by giving the relation between the
metamodel elements and the elements of the profile. It is shown in the following figure. The graphical relation
“represents” means that the specific model element of the metamodel is represented by the associated construct(s) of the
profile. For example, an instance of the metaclass ComponentImplDef would be represented by a UML class stereotyped
as CORBAComponentImpl.

ExmplComEntityImpl

<<CORBAComponentImpl>>

ExmplFacet1
<<CORBAArtifact>>

ExmplSeg1
<<CORBASegment>>

1

1

1

ExmplFacet2
<<CORBAArtifact>>

ExmplSeg2
<<CORBASegment>>

1

1

1

1

1

1

1

1 1

UML Profile for CORBA Components Specification, v1.0 33

Figure 22 - CIF metamodel to CCM Profile and CCM Profile to UML mapping

CCM
<<Profile>>

CORBAComponentImpl
<< stereotype >>

CORBAArtifact
<< stereotype >>

CORBAImplements
<<stereotype>>

CORBAHomeImpl
<<stereotype>>

 CORBAManages << stereotype >>

{represents} {represents}

{represents}

{represents} {represents} {represents}

UML
<<Metamodel>>

<< stereotype >>

<< stereotype >>

<< stereotype >>

<< stereotype >>

<< stereotype >>

<< stereotype >>

CORBASegment
<< stereotype >>

CIF
<<Met amodel>>

ArtifactDef

ComponentFeature

Policy

SegmentDef
isSerialized : Boolean

1

1

+segment 1

+artifact 1
segments_artifact

1..n

1

+features 1..n

+segment
1

implemented_by

0..n

1..n

+policies
0..n

+segs
1..n

ass_policies
ComponentImplDef

category : CCMMetamodel::CIF::ComponentCategory

1..n

1

+segments
1..n

+component
1

/segments
<<implicit>>

ComponentDef

1

0.. n

+component 1

+segs 0..n
implements

HomeImplDef
0..n 1
+home_impl
0..n

+component_impl
1 manages

HomeDef
0..n 1

+home
0..n

+component
1

Component_Home

0..n

1

+segs
0..n

+home 1
implements

Class

<<metaclass>>

Association

<<metaclass>>

34 UML Profile for CORBA Components Specification, v1.0

9 Profile Illustration with the Dinning Philosopher

9.1 Example Scenario Description

The example scenario includes three different types of components:

1. Philosopher

2. Fork

3. Observer

A configurable number of philosophers (active components) are sitting around a table. Philosophers perform actions:
thinking, eating and sleeping. They do not need any resources in order to think or to sleep, but they need two forks in
order to eat, one for the left hand and one for the right hand. Therefore, before starting to eat, a philosopher tries to get
two forks.

An observer will be notified by all philosophers in case of an activity change (when a philosopher starts eating, starts
thinking or starts sleeping). Furthermore, the critical state of getting hungry is notified to an observer as well.

9.2 Type Definition

The example use the following IDL3 basic types and exceptions:

module Dinner {
exception InUse{};
Exception TooMuchPhilosopher{};

typedef string PhilosopherName;
typedef enum PhilosopherState {

EATING,
THINKING,
HUNGRY,
STARVING,
DEAD

};
}

The Type and exception definition model gives the same information using the CORBA UML profile.

UML Profile for CORBA Components Specification, v1.0 35

Figure 23 - Type and exception definition

9.3 Interface Definition

The interfaces needed for port definitions are the following ILD3 definition:

Module Dinner {

interface Registration {
PhilosopherName register()raises (TooMuchPhilosopher);

};
interface Fork {

void get() raises (InUse);
 void release();
 };
};

The Interfaces definition model gives the same information using the CORBA UML profile.

Figure 24 - Interfaces definition

9.4 Component Definition

The IDL3 component definitions are the following:

module Dinner {
eventtype StatusInfo {

public PhilosopherName name;
public PhilosopherState state;

<<CORBAEnum>>
PhilosopherState

<<CORBATypedef>>

{primitive}
PhilosopherName

<<CORBAPrimitive>>
::CORBA::String <<CORBAException>>

::Dinner::InUse
EATING : undefined
THINKING : undefined
HUNGRY : undefined
STRAVING : undefined
DEAD : undefined

<<CORBAException>>
::Dinner:: TooMuchPhilosopher

<<CORBAInterface>>
Registration

<<CORBAInterface>>
Fork

+register():PhilosopherName +get()
+release()

36 UML Profile for CORBA Components Specification, v1.0

public long secondesSinceLastMeal;
public boolean hasLeftFork;
public boolean hasRightFork;

};

component Philosopher {
readonly attribute long metabolicRate;
uses Fork leftFork;
uses Fork rightFork;
uses Registration registration;
publishes StatusInfo statusInfo;

};

component Fork {
provides Fork one_fork;

};

component Registrator supports Registration {
};

component Observer {
consumes StatusInfo info;

};
};

The Philosopher external view model, the Fork component external view model, the Registrator external view model, and
Observer external view model give the same information using the CCM UML profile.

UML Profile for CORBA Components Specification, v1.0 37

Figure 25 - Philosopher external view

Figure 26 - ForkComponent external view

<<CORBAComponent>>
::Dinners:: Philosopher

<<CORBAInterface>>
::Dinners:: Registration

<<CORBAInterface>>
::Dinners::Fork

<<CORBAEvent>>
::Dinners:: StatusInfo

leftFork

rightFork

<<CORBAUses>>
<<CORBAUses>>

registration

1

1

+metabolicRate : integer

<<CORBAUses>>
1

1

+name : string
+state : PhilosopherState
+secondesSinceLastMeal : long
+hasLeftFork : boolean
+hasRightFork : boolean

<<CCMPublishes>>

1

1
statusInfo

1

1

<<CORBAComponent>>
::Dinners:: ForkComponent

<<CORBAInterface>>
::Dinners:: Fork

<<CCMProvides>>
one_fork 1 1

38 UML Profile for CORBA Components Specification, v1.0

Figure 27 - Registrator external view

Figure 28 - Observer external view

9.5 Home Definition

The IDL3 home definitions are the following:

module Dinner {
home RegistratorHome manages Registrator {};
home PhilosopherHome manages Philosopher {};
home ForkHome manages Fork {};
home ObserverHome manages Observer {};
};

The Registrator home, Philosopher home, Fork home and Observer home give the same information using the CCM UML
profile.

Figure 29 - Registrator home

<<CORBAInterface>>

::Dinners:: Registration

<<CORBAComponent>>
::Dinners::Registrator

<<CORBASupports>>

+register():PhilosopherName

<<CORBAComponent>>
::Dinners:: Observer

<<CORBAEvent>>
::Dinners:: StatusInfo

<<CORBAConsumes>>
statusInfo 1 1

<<CORBAHome>>
::Dinners:: RegistratorHome

<<CORBAComponent>>
::Dinners:: Registrator

<<CORBAManages>>
1 *

UML Profile for CORBA Components Specification, v1.0 39

Figure 30 - Philosopher home

Figure 31 - Fork home

Figure 32 - Observer home

9.6 Component Implementation Definition

The IDL3 component implementation definition is a composition. For each component the following composition
descriptions were defined:

module Dinner {

composition session PhilosopherImpl {
home executor PhilosopherHomeImpl {
implements PhilosopherHome;
manages PhilosopherSessionImpl;
};
};

composition entity ForkImpl {
home executor ForkHomeImpl {
implements ForkHome;
manages ForkEntityImpl {
segment Seg { provides the_fork; }

<<CORBAComponent>>
::Dinners:: Philosopher

<<CORBAHome>>
::Dinners:: PhilosopherHome

<<CORBAManages>>

1 *

<<CORBAComponent>>

::Dinners:: ForkComponent
<<CORBAHome>>

::Dinners::ForkHome
<<CORBAManages>>

1 *

<<CORBAComponent>>

::Dinners:: Observer
<<CORBAHome>>

::Dinners:: ObserverHome
<<CORBAManages>>

1 *

40 UML Profile for CORBA Components Specification, v1.0

};
};
};

composition session ObserverImpl {
home executor ObserverHomeImpl {
implements ObserverHome;
manages ObserverSessionImpl;
};
};

composition session RegistratorImpl {
home executor RegistratorHomeImpl {
implements RegistratorHome;
manages RegistratorSessionImpl;
};

};
};

The implementations for the components: Fork, Philosopher, Registrator and Observer in form of compositions described
above have following representations using the UML Profile for CCM:

Figure 33 - The Composition model for the Philosopher component

PhilosopherHome
<<CCMHome>>

Philosopher
<<CCMComponent>>

*

1

manages_1
<<CCMManages>>

*

1

PhilosopherHomeImpl
<<CCMHomeImpl>>

1 1 1 1

implements_1
<<CCMImplements>>

PhilosopherSessionImpl
<<CCMComponentImpl>>

1 1 1 1

implements_2
<<CCMImplements>>

1

<<CCMManages>>

manages_2
*

UML Profile for CORBA Components Specification, v1.0 41

Figure 34 - The Composition model for the ForkComponent

Figure 35 - The Composition model for the Registrator component

ForkHome
<<CCMHome>>

Fork
<<CCMComponent>>

*

1

manages_1
<<CCMManages>>

*

1

ForkHomeImpl
<<CCMHomeIMpl>>

1 1 1 1

implements_1
<<CCMImplements>>

ForkEntityImpl
<<CCMComponentImpl>>

1 1 1 1

implements_2
<<CCMImplements>>

Seg
<<CCMSegment>> 1 1

the_fork
<<CCMArtifact>>

1

1

+impl_class

+segment

1

1

<<CCMManages>>
manages_2

1

*

RegistratorHome
<<CCMHome>>

Registrator
<<CCMComponent>>

*

1

manages_1
<<CCMManages>>

*

1

RegistratorHomeImpl
<<CCMHomeImpl>>

1 1 1 1

implements_1
<<CCMImplements>>

RegistratorSessionImpl
<<CCMComponentImpl>>

1 1 1 1

implements_2
<<CCMImplements>>

1

*

<<CCMManages>>

manages_2

42 UML Profile for CORBA Components Specification, v1.0

Figure 36 - The Composition model for the Observer component

ObserverHome
<<CCMHome>>

Observer
<<CCMComponent>>

*

1

manages_1
<<CCMManages>>

*

1

ObserverHomeImpl
<<CCMHomeImpl>>

1 1 1 1

implements_1
<<CCMImplements>>

ObserverSessionImpl
<<CCMComponentImpl>>

1 1 1 1

implements_2
<<CCMImplements>>

<<CCMManages>>

manages_2

1

*

UML Profile for CORBA Components Specification, v1.0 43

A References
[1] Meta Object Facility (MOF) Specification, Version 1.4, OMG document ptc/2001-10-04

[2] MOF 2.0 to OMG IDL Mapping RFP, OMG document ad/2001-11-07

[3] MOF 2.0 Core RFP, OMG document: ad/2001-11-05

[4] CORBA Components Specification, OMG TC Document formal/02-06-65

[5] www.puml.org/mml

[6] Unified Modeling Language (UML) Specification, Version 1.5, OMG TC Document formal/03-03-01

[7] The UML Profile for CORBA, OMG TC Document formal/02-04-01

[8] Virtual metamodel for the UML Profile for CCM (DTD), OMG document: ptc/2005-01-01

[9] Virtual metamodel for the UML Profile for CCM (MDL), OMG document: ptc/2005-01-02

[10] Virtual metamodel for the UML Profile for CCM (XML), OMG document: ptc/2005-01-03

