Date: December, 2013

OBJECT MANAGEMENT GROUP

@MN Case Management Model and Notation (CMMN)

Version 1.0

OMG Document Number: dtc/2013-12-11
Normative reference: http://www.omg.org/spec/CMMN/1.0

Machine readable file(s): http://www.omg.org/spec/CMMN/20131201
Normative:
XMI:

http://www.omg.org/spec/CMMN/20131201/CMMNZ210.xmi

XSD:
http://www.omg.org/spec/CMMN/20131201/CMMN10.xsd
http://www.omg.org/spec/CMMN/20131201/CMMN10CaseModel.xsd




Copyright © 2011, Agile Enterprise Design, LLC
Copyright © 2011, BizAgi Limited

Copyright © 2011, Cordys Nederland BV
Copyright © 2011, International Business Machines Corporation
Copyright © 2011, Oracle Incorporated

Copyright © 2011, SAP AG

Copyright © 2011, Stiftelsen SINTEF

Copyright © 2011, Kofax plc

Copyright © 2011, TIBCO

Copyright © 2011, Trisotech

Copyright © 2013, Object Management Group, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any copies
of this specification; (2) the use of the specifications is for informational purposes and will not be copied or
posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

2 Case Management Model and Notation, v1.0



Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(2) (i) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (¢)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ |
Unified Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™,
CORBA logos™, XMI Logo™, CWM™, CWM Logo™, [IOP™ | IMM™ | OMG Interface Definition
Language (IDL)™ , and OMG SysML™ are trademarks of the Object Management Group. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their respective
owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Case Management Model and Notation, v1.0 3



Software developed under the terms of this license may claim compliance or conformance with this specification
if and only if the software compliance is of a nature fully matching the applicable compliance points as stated in
the specification. Software developed only partially matching the applicable compliance points may claim only
that the software was based on this specification, but may not claim compliance or conformance with this
specification. In the event that testing suites are implemented or approved by Object Management Group, Inc.,
software developed using this specification may claim compliance or conformance with the specification only if
the software satisfactorily completes the testing suites.

4 Case Management Model and Notation, v1.0



OMG?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue

Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/lIssue
(http://www.omg.org/report_issue.htm.)

Case Management Model and Notation, v1.0



Table of Contents

B0 1 0] LS 0% 000 2] 4 6
B 10) L0 0 301 T 9
B2 1) L0 0 1 1 0] (T 11
Y o0 ) 15
3T I o (10 [T ot o - 1 L, 15
I 1 ¢ T T o0 1, 15
S T 011 L0 ) 0 o0 15
L2 073 0¥ 05 11 T ) 4 L = 15
2.1 Visual Notation CONfOrmManCe ... issssss s s s ssssssssssss sssssssssssnsssnsssnssssnsssnnas 16
2.2 Case Modeling CONfOIMANCE .....c.cuucimsmsessmsssssmsssssssssssss st st s s s s sasas 17
2.3 BPMN Compatibility CONformance........cummsmmmsmsmsmsmsmsmsnmssssssssssssssssssssssssssssssssssssssssssssssssssss 17
2.4 CMMN Complete CONfOIrMAICE .......ccourursmsursmssssmsmsssssssssssssssssssssssssssssssssssssssssssssssssassssssssssssssssnsssssssssssns 18
1 I 2 =Y =3 o <) 1 T . 18
1S 700 T 0 1 = 1 o 7 18
INODN-NOTTNATIVE c.ciiieriernserssssssssssrsssssssssssssssssssssssssssssssssssssssasssassssssasssssasssasssas sasssssssssnsssnsssnssssssssnsssnsssnnssnnsse 18
1 7 18
4  Additional INformation ... —————————————— 18
0 A 5 7= Tl €3 311D o U 18
2 /N 7= 1 =) iz LI o 0) 1 o= .1 19
L T I 1 1 20
4.4 INteroperability ... ————————————————— 20
4.5 Submitting and Supporting Organizations ... —————————————— 21
4.6 TPR ANA PAtENTS ..c.icciiierrirririsesissssssssssssssesssssssssssssssssssssssssssssssssssssssssssssasssss sssssssssssasssasssnssasssssasssasssnssnnnss 21
4.7 Guide to the SPecCifiCation ... ——————————————————————————— 21
5 Case Management EIEMENTS ..o sssssssssssssssssssssssssssssssssassssssssssssasass 22
L5 T 0 T30 = 1 ) (o o 1) o <O 22
51,1 CMMNELIEINENL coctictcceesessssssssss st sss s s ssssssssssssssssssssssssasssssesssssesss s essssssssssssssssassessessessessessessessessees 22
LT 7 D 1T 1D (o) o ST 22
LS00 O {1 0 o ) oSO 24
LT I T OF= YY) O U (=Y (00U DT 410D Lo o N 24
5.2  Case MOAeE]l EICIMEILS .....ccceeirrrrrrsnrsssrssssssssssssssssssssssssssssssssssssssssssssssssssssssssasssassasssssasssasssasssnssasnsssnsssnsssns 26
LI T 07 Y] < PP 26
LI (o ) (< 27
5.3 Information Model EIEINENLS ......ccccviimimmimmmnmmmmmsmmssmssisssssssssssssssssssssssssssssssssesssnsssnssssssssnsssmsssnsssns 27
B.3.1  CASEFIlE e bbb bbb b bR 28
5.3.2  CASEFIIEITRIM s bbb s bbb bbb R bbb b bbb 28
5.4 Plan Model EICINENTS .....cciiiiiiiieiiiniisiisiisnissssssssss s ssssssssssssssssssssssssssssasssss sess ssss s smsssmssns sesnsssnsssnsnsns 30
5.4.1  PlanltemMDefiNItioN s ssssss st sssssssssssssssssssssssssssssssssssssssssssssssssssssssasssssssssasssssanes 30
54,2 EVENELISTEINET oo sessss st b s s ss s bbb s bbb R e b bbb bbb aen 31
LI T L U 1T o) U< 34
544 PlanNFTragMeEnt. .. ceeceeeeersseeesseesseeessseessssesssssesssssesssssesssssesssssessssssessssssssssssesssssessssssssssssesssasesssmssssssssesssasesesssss 34
oI T S =1 o U =) o VOO 35
51416 SEINETY oooreeeeeeeeeseeeseeesseeesseeesssees e ss st es s R R8s 8RR R8RS 8RR R R R R R R R R R 36
5.4.7  EXPIESSIONNS cuureerreeeseesseeesseeesseeesssessssessseessssesssseesssessssssssssssseesssesessssssssssssssssssessseesssesessesesssssssssssssesssessssesesssesssssssssssssneses 41

6 Case Management Model and Notation, v1.0



548 SEAEE .ouereeeeeeesreeessesesssesessssesssssesessssssssss s s R RS RS R RS RS AR R SRR LR AR R SRR 41

5.4.9  Planmin@TaADIe ...cceieeeeeeeeeueeeseeissessseeesseeesseeesssesssss st seess s eesss s ess bbb R bR AR R R 43
R 00 I T PP 47
54.11  PlanItemMCONEIOL . resisnssssnessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssneses 53
6 NOTATION... i 57
L 0 T 58
6.2 Case Plan MOAEIS ... sssss s sssss s sssss s sssas s s sas s s 58
6.3 CaSe File LIS ....cciciiiiisarsnsmssnsesnssssss s s sssss s s s s s ss s s s s s e sas e sas e sassnsas s sasnnssansmsansnsanses 59
L Y - 1. 59
6.5 ENtry and EXit CriterioN. .. insissssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssenes 60
6.6  Plan FragIMeEnts .......coccciiimsimsinsinsissssssssssssssssssssssssss s sasss s sss s s s s sas s nas e sms s smsasnssnses 61
L0 - 1] < 62
6.7.1  HUIMAN TASK cttteturerueersseeessesersssesssesssssesesssssessssesesssesessssesssssesesssesssssessssssssssssessssssasssssesssssssssssasssssesssasssessssssssassesssns 62
6.7.2  CASE TaASK . ieurieereeerreeeuseeeseeesseesse s s seess e eessseesss s s8R 8RR R £ R SRR AR R R R R R R R 63
6.7.3  PIOCESS TASK ciiuurieureeueeeuseeessseessessssessseessseesssesssse s s st s ssseee s s8R R EE SRR LRSS R SRR E R R R R R 64
6.8  MiIlESTOMES...ciuiiiuisiiansissssmsssssssssssssssss s sr s e e AR R R R R R R R AR R A AR R RRE R RRR R RRR R RRR R RRR R AR R R R R SRR R AR RS 65
LEI0 T A T 11 10 ) L) o 65
L0 0 013 11 T o 0] 66
6.10.1  CONNECLOT USAEE ..corrverrrmsrersrersressressseesssesssesssssssssessssesssessssssessssssssesssssssssesssessssssesssssssssssssesssessssssssssesssessasessaeses 66
6.11 Planning Table ... ————————————— 68
6.12  DECOTALOTS...iiiiiiiimimis s SRR 71
6.12.1  AULOCOMPIELE DECOTALOT c.uveeueeereeeeersseessseessseesssessssesssesssssssss s bbb e bbbt 71
6.12.2  ManUAlACtIVAtION DECOTATOT .cuuuieereeereeuseesseesseesseessseesssssesssssssss s s ssssssssssessss s s s s ss s s s sss s s sneses 72
6.12.3  REQUITEA DECOTALOT .eoreeusrerssrerseeessssesssseeesssesssssesesssessssssesssssesssssessssssssssssessssssesssssesssssssssssasssssesssssssessssssssasesessses 73
6.12.4  ReEPELItION DECOTALOT ..curreeerreeerserseessee s e sesssessesssesses s s s sse s ses s s ssse bbb s s s sns s 74
6.12.5 Decorator Applicability SUMMATY .....oceeeeeeeeesseerseessesssesssesssss e ssessssessssessssss s sasassssaseans 74
L0 1S T 0 €= 1 11} 1] L 76
7 Execution SemanticCs ... 78
7.1 Case INSTANCE ... ——————————————————— 78
7.2 CaseFileItem LIifeCyCle.....ssssssssssssssss s sssss s sssss s sssssssssssssssnss 78
7.2.1  CaseFIleltem OPEIatiONS ... ererreeseeesreeesseesssesesssesssssessssseessssssssssssesssssessssssssssssss s s ssssssssasesesssss 79
7.3 CasePlanModel LifEeCYCIes ... s sssss s sssss s ssssssssssssssssssns 81
7.3.1  Case INSTANCE LIfECYIE oot ceseess et ses s ssssessss s ssases s s bbb 82
7.3.2  Stage and TaSK LIfECYCIE .t seessecessecsssess s ssssssessssess s s s asanes 84
7.3.3 EventListener and MileStone LifeCyCle ... eeeeeseesssesssssesssssesssssssssssssssesssssssssesesssns 89
A N T 1 L o, 90
7.5 Behavior Property RUles......immmmsmsssinsssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 91
7.5.1  StaZE.aULOCOMPLETE. .couuieeeeeeeeeeeesseeesseeessseesssesssss s es e ssseeesssees s ess bR ER e R R bR AR R bbb 91
7.5.2  ManUalACHIVAtIONRULE...... ettt eesseesseesseesseeesseeesssesss bbb ss bbb bbb bbbt 91
7.5.3  REQUITEARUIE. ... irresrressesssssssssssss s sssssssssssssssss s s ss s ss s ssssssssssssss s st sesss s s sssss s st st sesssssssssssssasssssnnses 91
7.5.4  RePEUTIONRUIE oottt s s s s 92
7.5.5  APPICADIIETRULE ..ottt ees s sees s ss e s eess s sss s bbb RS 92
T o B 111 11D 1 -, 92
7 A 00 11 LT 0 ) o, 92
8 EXChange FOrmats...... s sssssssssssssssssssssssssssssssssssssssssnssas 93
8.1 Interchanging Incomplete MOdELS .......ccoimincimnssmnssmnisnsssssssssss s ssssssssas 93
8.2 Machine Readable Files ... s sssssssssssssssssssssnses 93
£ T D €] D 93
LS G 700 N B To Yot D00 0= Y o U1 o 93

Case Management Model and Notation, v1.0 7



8.3.2 References Within CIMMN XSD ... sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssessssssasses 93

Case Management Model and Notation, v1.0



Table

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

of Figures

Design-time phase modeling and run-time phase planning...........cccooeviiiinieieneeee, 20
Definitions Class dIAgram..........cciieiiiieiiere et esreeeennes 22
CaSE ClaSS AIAGIAM ... ittt ettt ettt be et e e e e s beenbe et e neenbe e 26
CaSeFile Class AIagram.........cuccviieiieie et e st e e e e steeneesneenneens 28
PlanltemDefinition Class diagram ..........cocuoiiiiiiieieiie e 30
EventListener Class Qiagram ........cccveiviieieeie et nreeneenes 32
PlanFragment Class dIagram ..........cooeiiiiiiiiiie et 34
SENLIY ClaSS QIAQIAIM ......ocvieieeie ettt e te e e s e e te e e e sreesteeneeaneenneans 37
Stage ClasS AIAQIAM ....cc.eiiiiiiee ettt sttt st e e s r e nbe e e snee b e 42

PlanningTable Class diagram ..........cccociiiiiieii i 44
TaSK ClaSS QIAGIAM ......eiiieiiee ettt b e e b sbe e re e b e 48
PlanltemControl Class diagram ...........ccooeiieieiie i 54
CasePlanMOde] SHAPE .......oviii i 58
CasePlanMOodel EXAMPIE .......ciiiiee ettt ae e nneas 59
CaSEFIEIEM SHAPE ...t 59
Collapsed Stage and Expanded Stage Shapes.........ccccciveiviieeiieiesieiiee s 60
Discretionary Collapsed Stage and Discretionary Expanded Stage Shapes..........cccccee...... 60
ENtryCriterion SNAPE .....c.veieieiieee ettt e e e e te e e s e e aeeneenneas 60

Figure 19: EXITCIITErION SNAPE. .....cui ittt re e enes 61
Figure 20: Collapsed and Expanded versions of a Stage with two entry criterion, one sub Stage and
ENTEE TASKS ...ttt ettt b ettt b e bt e bt Rt b et Rt be et ne e nreeaeenes 61
Figure 21: Collapsed PlanFragment and Expanded PlanFragment Shapes..........c.cccevvvverveieeveernenne 61
FIQUIE 22: TASK SNAPE ... ettt bbb ettt e et e st be e b enes 62
Figure 23: DISCrEtIONAIY TASK .......cveiieiieeieiieieete e e et e e e st e e sseesteaseesraesteensessaeseeneenreeeeenes 62
Figure 24: Task with one entry criterion and one exit CrterioN .........cocevieiiriie e 62
Figure 25: Non-blocking HUMaNTasK Shape ..........cceiieiiiiiiiee st 62
Figure 26: Blocking HUMANTASK SNAPE..........ooiiiiiiiieee e e 63
Figure 27: Non-Blocking and Blocking Discretionary HUManTasks .........ccccoceviveveeiesiienneric e 63
FIgUure 28: CaSETASK SNAPE ......coiuieiiiiiiiieee ettt sttt sttt b ettt e et e st e sre e e enes 63
Figure 29: Discretionary CaseTask SNAPE ......ccvcueiieiieeieiieieerieseese e steese e e e e sae e e e neeenes 63
Figure 30: Alternative CaseTask SNAPE.........uuiiiiiiieiieie et 64
Figure 31: Alternative Discretionary CaseTask SNAPE .......cc.cvverieririeeiiesiese e 64
FIQUIe 32: ProCeSSTASK SNAPE ... ..cuiiiiiiieiisie ittt sttt ettt beebeeneenre e e enes 64
Figure 33: Discretionary ProCesSTasK SNAPE ........ccueieerieiierieiesiesieeieseesie e e e e ae e sae e e esneenes 64
Figure 34: Alternative ProCesSTasK SNAPES ........cviiieiiiieiieriieee et st 64
Figure 35: Alternative Discretionary ProcessTask SNAPES ........ccvvereerieieeieerieseesesee e sie e e see e 65
Figure 36: MIlEStONE SNAPE........ooiii e et re e 65
Figure 37: Milestone With 0Nne eNtry CrHtEIION .........ccueiveieiiece e 65
Figure 38: EVENTLISIENET SNAPE ......eiiiiiiieeiiiie ettt sttt sttt nre e enes 65
Figure 39: TIMErEVENtLIStENEr SNAPE. .....c.iiieice e enes 65
Figure 40: USerEVentLIStENEr SNAPE.......cooviiiiiiii e e 66
FIQUIE 41: CONNECIOT SNAPE ....vvevieeieciie ittt ee et et e st e e e st e teeseesre e teesaesseenseaneenreeeeanes 66
Figure 42: Sentry-based dependency between twWo TasKS..........ccovriiriiieninie e 66
Figure 43: Dependency between a blocking HumanTask and its associated Discretionary Tasks...... 66
Figure 44: Using Sentry-based connectors to visualize "AND"..........cccooriiiiinnene e 67

Case Management Model and Notation, v1.0



Figure 45: Using Sentry-based connectors to visualize "OR"...........cccov i 67

Figure 46: Using Sentry-based connector to visualize dependency between Stages..........ccccceveveneen. 67
Figure 47: Using the Sentry-based connector to visualize dependency between a Task and a Milestone
...................................................................................................................................................... 68
Figure 48: Using the Sentry-based connector to visualize dependency between a Task and a
TIMEIEVENTLISIENET ......eeii ettt e e et e s e nteeteeneesbeeaeeneenreeeeenes 68
Figure 49: Using the Sentry-based connector to visualize dependency between a Task and a
(@8 1o T =] | (=] o S PSPSSSSRRR 68
Figure 50: PlanningTable with Discretionaryltems Not Visualized Shape............ccccocvevveiieiiiicinnenne, 68
Figure 51: Planning Table with Discretionaryltems Visualized Shape...........ccccocvviieniiininicicienen, 68
Figure 52: Stage and Discretionary Stage with PlanningTable............cccoooiiiiii i, 69
Figure 53: Blocking HumanTask and Discretionary Blocking HumanTask with PlanningTable........ 69
Figure 54: Stage with PlanningTable Collapsed and EXpanded ............cccccoveiiieiiiiiicvie e 69
Figure 55: Blocking Human Task with Discretionaryltems not expanded and expanded................... 70
Figure 56: Collapsed Stage with Collapsed PlanningTable ............cccooiiiiiiii i, 70
Figure 57: Expanded Stage with Collapsed PlanningTable ..., 70
Figure 58: Expanded Stage with Expanded PlanningTable ............c.cooi i 71
Figure 59: Expanded Stage with Expanded PlanningTable and Expanded HumanTask PlanningTable
...................................................................................................................................................... 71
Figure 60: AULOCOMPIELE DECOTALON .......cveveiiiteiiisie ettt bbb 72
Figure 61: Stage Shape variations with AutoComplete DeCOrator ..........cccccveivieevieiiieesie e 72
Figure 62: CasePlanModel with AutoComplete DeCOrator............covuiiiirieiieienese e, 72
Figure 63: ManualACtivation DECOTALON ...........eiivieiiiiie et srae s 73
Figure 64: ManualActivation Decorator example on Task and Stage..........cccovvereieninieninsciee, 73
Figure 65: ReQUITEH DECOTALON .........iiiieiiie it iie sttt e e e et e e s e e sbe e s saeebaesnnaenes 73
Figure 66: Required Decorator example on Task and Stage ..........ccocvereerineiininense e 73
Figure 67: Required Decorator example on MIlESIONE .........ccvveiiiiiiiiii i 74
Figure 68: REPEtITION DECOTALON ........c.viieiiieiteitesie sttt bbb nns 74
Figure 69: Repetition Decorator example on Task and Stage.........ccccvvviivivie i 74
Figure 70: Repetition Decorator example 0n MIIESIONE ...........cccoviiiiiiinieee e, 74
Figure 71: CasePlanModel Shape with all possible DeCOrators.........cccvvvvveiieiiieeiie e 75
Figure 72: Stage Shape with all possible DeCOrators..........cccoveiiiiriniiieeee e, 76
Figure 73: Task Shape with all possible DeCOrators ..........ccoccviiieiieciie e 76
Figure 74: Non-Blocking and Blocking HumanTask Shapes with all possible Decorators................. 76
Figure 75: Milestone Shape with all possible DeCOrators.........cccueivvveiieiiieiie e 76
Figure 76: Claims Management EXamPIe ... 77
Figure 77: CaseFileltem instance lIfECYCIE ........oovv i 78
Figure 78: Lifecycle 0f @ CaSe INSLANCE ........ccoiiiiiiiieieiee e 82
Figure 79: Lifecycle of a Stage or Task INSTANCE ........cccveiieiiiieiie e 84
Figure 80: Lifecycle of an EventListener or Milestone INSTaNCe ...........c.ccovverereneneneneneseseeeeen, 89

10 Case Management Model and Notation, v1.0



Table of Tables

Table 1: CoNfOrMANCE IMALIIX ...cccvviiieiiiiie ettt e s st e e e s eb e e e s s bbb e e e s sbb e e e s s sabbeeessbbaeeeaas 16
Table 2: CMMNEIEMENT ttITDULES ......cciviicciii ettt e e e s era e e s beeeanreas 22
Table 3: DefiNItIONS AtIrTDULES ........viiiiieiie e e e e e s sbbae e e 24
Table 4: IMPOIt AtITDULES ........eeie e e s te e e e s e e sreennenreas 24
Table 5: CaseFileltemDefinition attriDULES .......ccoicviiiii e 24
Table 6: DefinitionTypes and their URIS .......ccoiieiiei e sae e 25
Table 7: Property attribULES ..ot nreas 25
Table 8: Property Types and theilr URIS.........ccoiiiiieiiic e 26
BRI 1o [ RO T T 1 ] 01U (=R 27
Table 10: Role attributes and model @aSSOCIAtIONS ..........ccuviiiiiiiciii e 27
Table 11: CaseFile attributes and model aSSOCIALIONS..........cocvvviiiiiiiiie e 28
Table 12: CaseFileltem attrIDULES.........ooieie et ere e e anreas 29
Table 13: PlanitemDefinition attriDULES .......c.vviiiiiiiie et bbae e 31
Table 14: TIMerEVentLiStENer attriDULES.......c..ccicviiiceie et 32
Table 17: USerEVENtLIStENEr AttrTDULES .......ocvviiiiiiiiie ettt e e s ebbae e 34
Table 18: PlanFragment attributes and model assOCIatIONS...........c.ccvvveeieereciiesiee e 35
Table 19: PIaNItem @ttrIDULES. ......c.vviiii ittt e e s b e e e s s bt e e e s s eab b e e e s sbbaeeeeas 36
Table 20: SENEIY AtIFTDULES. ... ccvi et e e e s e e teenaesneenreennenreas 38
Table 21: CaseFileltemONPart attriDULES .........cooiiiiiiii i 38
Table 22: CaseFileltemTransition ENUMETALION ........c..coivvieiiiie it 39
Table 23: PlanitemONPart attribDULES .........cooiviiiiiiiie e 39
Table 24: PlanltemTransition ENUMETATION ........ccvviiiivie ettt e e srbe e srae e s eba e e s aeeeanreas 41
Table 25: ITPArt attrIDULES .......ooiiiiiiic e s s et s s sab b e e e s sbbae e e 41
Table 26: EXPreSSioN @ttrIDULES ........cveiueiieieeieciese e ee st e e e teennesneesaaeneenreas 41
Table 27: Stage attriDULES ........coiiieee e st nreas 43
Table 29: PlanningTable attriDULES. .........cc.oiveiiecee e ae e nneas 45
Table 30: TableItem AttrIDULES. .......ooiiiieiie e s s b e e e s sbbae e e 45
Table 31: Discretionaryltem attriDULES...........ccueiieiiee e ereas 46
Table 33: Task attributes and MOdel aSSOCIALIONS .........ccuviviiiiiiiic e 49
Table 34: Parameter attriDULES. ........coivii ittt e s s e e s ebae e s eba e e s beeeanreas 49
Table 35: ParameterMapping attriDULES .........ccveiieiiiiiiie e 49
Table 36: CaseParameter attriDULES .........c.uiiiiii ittt sb e e erb e e s eba e e s beeeanreas 50
Table 37: HUMANTASK QtITDULES ......ccoieiiiii ettt e e sbbae e 51
Table 38: ProcessTask attriULES ...........oicviiiiiie et eba e s b e e nreas 52
Table 39: Process attriDULES........cc.viiiii e s b e s s eab b e e e s sbraeeeeas 52
Table 40: Process IMplementation TYPES.......ccueiieiieieiieieeieseesieesiesreesteeaessaesaeeaesseesseesesseesseeneessens 52
Table 41: CaSETaSK AtIITDULES .......vvieeiiiiii ettt e e e e e s s b b e e e s s b b e e e s s eabbeeessbbaeeeaas 53
Table 42: PlanltemControl attributes and model assoCIiatioNS ............cccovveeivieeiiie i 55
Table 43: ManualActivatioNRUIE AttrTDULES .........ccviiiiiiiiii e 56
Table 44: ReqUIredRUIE @tIFTDULES.......ccvviie et esreenaenreas 56
Table 45: RepetitionRUIE attrIDULES.........c.ei e 57
Table 46: Applicability of PlanitemCoNntrol FUIES...........ooveiiiieiiee e 57
Table 44: Decorators Applicability Summary Table..........ccoooiiiii 75
Table 47: CaseFileltem INSTANCE STALES........cociiiirie et eabe e s era e e s ebeeeaareas 78

Case Management Model and Notation, v1.0 11



Table 48:
Table 49:
Table 50:
Table 51:
Table 52:
Table 53:
Table 54:
Table 55:
Table 54:
Table 56:
Table 57:
Table 58:

12

CaseFileltem INStanCe tranSItiONS.........ccuiiiuieiieiii e 79
CaseFileltem iNStanCe OPEIatiONS..........cuiiiiiieieiere e 81
Case, EventListener, Milestone, Stage and Task instance States............cccvvvevivvevieiiveeinennn, 82
CaSE INSTANCE STALES .. eevveeiieieeeie ettt et e st e ste e eereenteesaesreenreeneeaneenneens 83
Case INSLANCE TrANSITIONS ....c.vviiieeiie e e e e b e e sab e e be e naeeree e 84
Stage and Task INSTANCES STALES.........civeieririeiieieie et 85
Stage and Task iNStanCe tranSItIONS.........oiiieiieiii e 87
Stage instance state top-dowWNn Propagation ............ccceeererererenieieeiese et 89
EventListener and Milestone INStanCe StatesS.........cccvveiieiiieiie i 90
EventListener and Milestone inStance tranSitioNS..........ccoovevereerieeieseene e seese e e 90
Stage instance termination CHEEIIA ........cvviiuieiie it 91
Planning constrained to Case, Stage and Task instance lifecycles...........cccccvverivniciinennnnne. 92

Case Management Model and Notation, v1.0



Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware
and networking infrastructures, and software development environments. OMG’s specifications include:
UML® (Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™
(Common Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Specifications are available from the OMG website at:
http://www.omg.org/spec

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
« CORBA/IIOP
» Data Distribution Services
» Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
* UML, MOF, CWM, XMI
» UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
* CORBAServices
» CORBAFacilities

Case Management Model and Notation, v1.0 13



OMG Domain Specifications
CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications, available
in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting the
Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as 1ISO standards. Please consult http://www.is0.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary
English. However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 11 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier/Courier New - 11 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a
document, specification, or other publication.

14 Case Management Model and Notation, v1.0



1 Scope

1.1 Project Goals
The goals of this project are to:
1. Create a Case Management specification (referred to herein as CMMN 1.0).

2. Submit the specification as a response to the OMG RFP for Case Management Process Modeling (OMG
document: Bmi/2010-09-23)

1.2 In Scope
1. Define Case Management Model, notation, and operational semantics of the model.
2. Leverage a content management model based on properties, documents, folders, and relationships.

3. Leverage a standard expression and query language as the default CMMN expression and query
language.

4. Specify how case events and constraints may be applied.
Specify interchange format for Case Management Model (XMI and XSD).

1.3 Out of Scope
Deployment mechanics
Run-time API’s.
Operational simulation.

Definition of an [business] organizational model.

o~ e

Definition of business goals.

2 Conformance

Software can claim compliance or conformance with CMMN 1.0 if and only if the software fully matches the
applicable compliance points as stated in the specification. Software developed only partially matching the
applicable compliance points can claim only that the software was based on this specification, but cannot claim
compliance or conformance with this specification. The specification defines four types of compliance points
namely Visual Notation Conformance, Case Modeling Conformance, BPMN Compatibility Conformance, and
CMMN Complete Conformance. The implementation is said to have CMMN Complete Conformance if it
complies with all of the requirements stated in Sections 2.1, 2.4, 5, 6, 7, and 8.

An implementation claiming compliance or conformance to CMMN Complete Conformance or to Case
Modeling Conformance is NOT REQUIRED to support BPMN Compatibility Conformance and vice-versa. An
implementation claiming compliance or conformance to CMMN Complete Conformance, to Case Modeling
Conformance, or to BPMN Compatibility Conformance is REQUIRED to be conformant to the Visual Notation
Conformance.

A conforming implementation is NOT REQUIRED to support any element or attribute that is specified herein to
be non-normative or informative. In each instance in which this specification defines a feature to be “optional,”
it specifies whether the option is in:

o How the feature will be displayed

Case Management Model and Notation, v1.0 15



o Whether the feature will be displayed
o  Whether the feature will be supported

A conforming implementation is NOT REQUIRED to support any feature whose support is specified to be
optional. If an implementation supports an optional feature, it SHALL support it as specified. A conforming
implementation SHALL support any “optional” feature for which the option is only in whether or how it SHALL
be displayed.

The following table summarizes the conformance types, by listing the sections that each conformance type must
implement.

Sections Visual Notation Case Modeling BPMN Compatibility CMMN Complete
Conformance Conformance Conformance Conformance
2.1 v v v v
2.2 v v
2.3 v v
2.4 N
5 v v
6 v v v v
6.7.2.1 \ \
6.7.2.2 v \
7 v
8 v ol

Table 1: Conformance Matrix

2.1 Visual Notation Conformance

An implementation that creates and displays CMMN models SHALL conform to the specifications and
restrictions with respect to diagrammatic relationships between graphical elements, as described in Section 6. A
key element of CMMN is the choice of shapes and icons used for the graphical elements identified in this
specification. The intent is to create a standard visual language that all case modelers will recognize and
understand. An implementation that creates and displays CMMN models SHALL use the graphical elements,
shapes, markers and decorators illustrated in this specification.

There is flexibility in the size, color, line style, and text positions of the defined graphical elements, except where
otherwise specified. In particular,

o CMMN elements MAY have labels (e.g., its name and/or other attributes) placed inside the shape, or
above or below the shape, in any direction or location, depending on the preference of the modeler or
modeling tool vendor.

16 Case Management Model and Notation, v1.0



e Thefills that are used for the graphical elements MAY be white or clear. The notation MAY be extended
to use other fill colors to suit the purpose of the modeler or tool (e.g., to highlight the value of an object
attribute).

e Graphical elements, shapes and decorators MAY be of any size that suits the purposes of the modeler or
modeling tool.

e The lines that are used to draw the graphical elements MAY be black.

0 The notation MAY be extended to use other line colors to suit the purpose of the modeler or tool
(e.g., to highlight the value of an object attribute).

0 The notation MAY be extended to use other line styles to suit the purpose of the modeler or tool
(e.g., to highlight the value of an object attribute) with the condition that the line style MUST
NOT conflict with any current CMMN or BPMN defined line style.

The following extensions to a CMMN model are permitted:

e New decorators or indicators MAY be added to the specified graphical elements. These decorators or
indicators could be used to highlight a specific attribute of a CMMN element or to represent a new
subtype of the corresponding concept.

e Anew shape representing a kind of Case File Item or Plan Item MAY be added to a model, but the new
Case File Item or Plan Item shape SHALL NOT conflict with the shape specified for any other CMMN
or BPMN element or decorator.

e Graphical elements MAY be colored, and the coloring MAY have specified semantics that extend the
information conveyed by the element as specified in this standard.

e The line style of a graphical element MAY be changed, but that change SHALL NOT conflict with any
other line style REQUIRED by this specification or BPMN.

e Anextension SHALL NOT change the specified shape of a defined graphical element or decorator. (e.g.,
changing a square into a triangle, or changing rounded corners into squared corners, etc.).

This compliance point is intended to be used by entry-level CMMN tools.

2.2 Case Modeling Conformance

The implementation claiming conformance to the Case Modeling Conformance SHALL comply with all of the
requirements set forth in Sections 5, 6, and 8; and it should be conformant with the Visual Notation
Conformance in Section 2.2. A tool claiming Modeling Conformance MUST fully support the underlying
metamodel in section 5, and MUST fully support the visual notation in section 6. Conformant implementations
MUST fully support and interpret the exchange format specified in Section 7.

This compliance point is intended to be used by modeling only tools.

2.3 BPMN Compatibility Conformance

The implementation claiming conformance to the BPMN Compatibility Conformance SHALL comply with all
of the optional BPMN compatibility requirements set forth in Sections 6.7.2.1 and 6.7.3.1, and should be
conformant with the Visual Notation Conformance in Section 2.2. The optional BPMN compatibility
requirements set forth in Sections 6.7.2.1 and 6.7.3.1, are considered required to claim conformance to the
BPMN Compatibility Conformance. A BPMN Compatibility Conformance implementation is NOT
REQUIRED to be conformant to the Case Modeling Conformance or to the CMMN Complete Conformance.

This compliance point is intended to be used by tools supporting both BPMN and CMMN.

Case Management Model and Notation, v1.0 17



2.4 CMMN Complete Conformance

The implementation claiming conformance to the CMMN Complete Conformance SHALL comply with all of
the requirements set forth in Sections 5, 6, 7 and 8; and it should be conformant with the Visual Notation
Conformance in Section 2.2. A tool claiming CMMN Complete Conformance MUST fully support and interpret
the underlying metamodel in section 5. Conformant implementations MUST fully support the visual notation in
section 6. Conformant implementations MUST fully support and interpret the execution semantics and life-cycle
specified in Section 7, and it MUST fully support and interpret the exchange formats in section 8.

This compliance point is intended to be uses by tools supporting CMMN modeling and execution.

3 References

3.1 Normative
RFC-2119

o Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, IETF RFC 2119, March 1997
http://www.ietf.org/rfc/rfc2119.txt

3.2 Non-Normative

Aalst, W.M.P. van der, Weske, M.: Case Handling: a new paradigm for business process support. Data &
Knowledge Engineering. 53(2). 129-162, 2005

Business Process Model and Notation (BPMN) Version 2.0, OMG, January 2011,
http://www.omg.org/spec/BPMN/2.0/PDF/

Davenport, Th. H. and Nohria, N., Case Management and the Integration of Labor, Sloan Management Review,
1994,

Davenport, Th. H, Thinking for a Living: How to Get Better Performance and Results from Knowledge Workers,
HarvardBusinessSchool Press, 2005.

Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath Ill, F.T., Hobson, S., Linehan, M., Maradugu, S., Nigam,
A., Sukaviriya, P., and Vaculin, R., Introducing the Guard-Stage-Milestone Approach for Specifying Business
Entity Lifecycles. Proceedings of the 7th International conference on Web Services and Formal Methods
(WS-FM 2010). Bravetti, M., and Bultan, T. (eds.). Springer-Verlag, Berling, Heidelberg, 1-24. 2010.

Hull, R. et. al., Business artifacts with guard-stage-milestone lifecycles: Managing artifact interactions with
conditions and events. Proceedings of the 5th ACM Intl. Conf. on Distributed Event-based Systems (DEBS),
pages 51-62, New York, NY, USA, 2011.

Man, H. de, Case Management: A Review of Modeling Approaches, BPTrends, January 2009.
[http://www.bptrends.com/publicationfiles/01-09-ART-%20Case%20Management-1-DeMan.%20doc--final.p
df ]

4 Additional Information

4.1 Background

This specification defines a common meta-model and notation for modeling and graphically expressing a Case,
as well as an interchange format for exchanging Case models among different tools. The specification is
intended to capture the common elements that Case management products use, while also taking into account

18 Case Management Model and Notation, v1.0


http://www.ietf.org/rfc/rfc2119.txt

current research contributions on Case management. It is to Case management products what the OMG
Business Process Model and Notation (BPMN) specification is to business process management products.

BPMN has been adopted as a business process modeling standard. It addresses capabilities incorporated in a
number of other business process modeling languages, where processes are described as the predefined
sequences of activities with decisions (gateways) to direct the sequence along alternative paths or for iterations.
These models are effective for predefined, fully specified, repeatable business processes.

For some time, there has been discussion of the need to model activities that are not so predefined and repeatable,
but instead depend on evolving circumstances and ad hoc decisions by knowledge workers regarding a particular
situation, a case (see Davenport 1994 and 2005; and Van der Aalst 2005). Applications of Case management
include licensing and permitting in government, application and claim processing in insurance, patient care and
medical diagnosis in healthcare, mortgage processing in banking, problem resolution in call centers, sales and
operations planning, invoice discrepancy handling, maintenance and repair of machines and equipment, and
engineering of made-to-order products.

4.2 General concept

A Case is a proceeding that involves actions taken regarding a subject in a particular situation to achieve a
desired outcome. Traditional examples come from the legal and medical worlds, where a legal Case involves
the application of the law to a subject in a certain fact situation, and a medical Case involves the care of a patient
in the context of a medical history and current medical problems. The subject of a Case may be a person, a legal
action, a business transaction, or some other focal point around which actions are taken to achieve an objective.
The situation commonly includes data that inform and drive the actions taken in a Case.

Any individual Case may be resolved in a completely ad-hoc manner, but as experience grows in resolving
similar Cases over time, a set of common practices and responses can be defined for managing Cases ina
more rigorous and repeatable manner. This becomes the practice of Case management, around which software
products have emerged to assist Case Workers whose job is to process and resolve Cases.

Case management is often directed by a human—a Case manager or a team of Case workers—with minimal
predefined encoding of the work to be performed. A Case may not have a single, designated Case manager,
but may collaboratively engage different participants as required to make decisions or perform certain Tasks.

Planning at run-time is a fundamental characteristic of Case management. Case management requires
modeling and notation which can express the essential flexibility that human Case workers, especially
knowledge workers, require for run-time planning for the selection of Tasks for a Case, run-time ordering of
the sequence in which the Tasks are executed, and ad-hoc collaboration with other knowledge workers on the
Tasks (see De Man, January 2009).

Case management planning is typically concerned with determination of which Tasks are applicable, or
which follow-up Tasks are required, given the state of the Case. Decisions may be triggered by events or new
facts that continuously emerge during the course of the Case, such as the receipt of new documents, completion
of certain Tasks, or achieving certain Mi lestones. Individual Tasks that are planned and executed in the
context of the Case might be predefined procedural Processes in themselves, but the overall Case cannot
be orchestrated by a predefined sequence of Tasks.

Representation of the circumstances and the decision factors in a Case model requires references to data about
the subject of the Case. The collection of data about the Case is often described as a CaseFi le. Documents
and other unstructured or structured data about a Case are captured and referenced in the CaseFi le for
decision-making by Case workers.

Modeling of constraints and guidance on the actions to be taken in a Case requires the specification of rules that
reference the data in the CaseFi le. A Case model may specify constraints on run-time state transitions as

Case Management Model and Notation, v1.0 19



well as constraints on actions, and recommendations for actions, that are dependent on the run-time state of the
Case. Even though this specification is focused on modeling and notation, not run-time Case management per
se, execution semantics is important for modeling of constraints and rules that depend on run-time state. To that
end, execution semantics defined in this specification -- describing how EventListeners, Stages, Tasks,
and Mi lestones affect each other and the state of the Case during the run-time management of a Case --
have been influenced by recent research into business artifacts and the guard-stage-milestone formalism (see
Hull 2010).

Cases are directed not just by explicit knowledge about the particular Case and its context represented in the
CaseFi le, but also by explicit knowledge encoded as rules by business analysts, the tacit knowledge of human
participants, and tacit knowledge from the organization or community in which participants are members.

A Case has two distinct phases, the design-time phase and the run-time phase. During the design-time phase,
business analysts engage in modeling, which includes defining Tasks that are always part of pre-defined
segments in the Case model, and “discretionary” Tasks that are available to the Case worker, to be applied in
addition, to his/her discretion. In the run-time phase, Case workers execute the plan, particularly by performing
Tasks as planned, while the plan may continuously evolve, due to the same or other Case workers being
engaged in planning, i.e. adding discretionary Tasks to the plan of the Case instance in run-time. The
following figure describes these concepts.

Design-time phase Run-time phase

Modeling Plan Planning
Plan C,D

ltems . A -
o B B i Acase worker can add

; one or more instances
— of C andlor D to the plan

F o~ 1 -
I 9 o 9 _
Discretionary This is the plan
Items to be executed

Figure 1: Design-time phase modeling and run-time phase planning

4.3 Target users

Business analysts are the anticipated users of Case management tools for capturing and formalizing repeatable
patterns of common Tasks, EventListeners, and Mi lestones into a Case model. A new Case model
may be defined as entirely at the discretion of human participants initially, but it should be expected to evolve as
repeatable patterns and best practices emerge. Patterns and outcomes from execution of the Case model can be
incorporated iteratively by business analysts into the Case model, in the form of improved rules and more
predictable patterns of Tasks, in order to make Case management more repeatable and improve outcomes
over time.

4.4 Interoperability

In the context of Case management, this specification defines a meta-model (that is, a model for defining
models), a notation for expressing Case models, and an XML Model for Interchange (XMI) and XML-Schema
for exchanging Case models among different Case management vendors' environments and tools. The
meta-model can be used by Case management definition tools to define functions and features that a business
analyst could use to define a Case model for a particular type of Case, such as invoice discrepancy handling.
The notation is intended for use by those tools to express the model graphically.

This specification enables portability of Case models, so that users can take a model defined in one vendor's
environment and use it in another vendor's environment. The CMMN XMI and/or XML-Schema are intended
for importing and exporting Case models among different Case management vendors' environments and tools.

20 Case Management Model and Notation, v1.0



A Case model is intended to be used by a run-time Case management product to guide and assist a knowledge
worker in the handling of a particular instance of a Case, for example a particular invoice discrepancy. The
meta-model and notation are used to express a case model in a common notation for a particular type of Case,
and the resulting model can subsequently be instantiated for the handling of a particular instance of a Case.

4.5 Submitting and Supporting Organizations
The following companies are formal submitting members of OMG:
BizAgi Limited

Cordys Nederland BV

International Business Machines Corporation

Oracle Incorporated

SAP AG
Kofax plc

The following organizations have contributed to the development of this specification but are not formal
submitters:

Agile Enterprise Design, LLC
Stiftelsen SINTEF

TIBCO Software

Trisotech

The following persons were members of the core teams that contributed to the content specification: Alan
Babich, Henk de Man, Heidi Buelow, Bill Carpenter, Martin Chapman, Fred Cummins, Brian Elvesater, Denis
Gagne, Rick Hull, Dave Ings, Oliver Kieselbach, Matthias Kloppmann, Mike Marin, Greg Melahn, Paul O’Neill,
Ralf Mueller, Ravi Rangaswamy, Jesus Sanchez, Arvind Srinivasan, Allen Takatsuka, Ivana Trickovic, Ganesh
Vaideeswaran, Paul Vincent.

In addition, the following persons contributed valuable ideas and feedback that improved the content and the
quality of this specification: Thomas Hildebrandt, Knut Hinkelmann, Jana Koehler, Matthias Kurz, Robert Lario,
Paul Winsberg

4.6 IPR and Patents
The authors intend to contribute this work to OMG on a RF on RAND basis.

4.7 Guide to the Specification

This specification is organized into sections. Those sections that are normative are indicated as such.

Case Management Model and Notation, v1.0 21



5 Case Management Elements

5.1 Core Infrastructure

5.1.1 CMMNEIlement

CMMNE I ement is the abstract base class for all other classes in the Case metamodel.

Attribute

Description

id : String

The ID of a Case metamodel object.

description : String

The description of a Case metamodel object

Table 2: CMMNElement attributes

All reference associations between CMMNE lements that are directly or indirectly contained in a Case MUST
be resolvable within that Case, unless stated differently in the remainder of this specification.

5.1.2 Definitions

The Definitions class is the outermost containing object for all CMMNE lements. It defines the scope of
visibility and the namespace for all contained elements. The interchange of CMMN files will always be through
one or more Definitions.

CMMNElement

+id : String
+description ; String

f

Definitions

+name : String
+targetNamespace : URI
+expressionLanguage : LRI
+axporter : String
+exporterVersion : String
+author : String
+creationDate : DateTima

package CMMN [ Deﬂnitions]/J

Himports

Import

L= +importType : String

+name ; String

Hocation : String
+namespace : URI

HimportRef [0..1

0.

CaseFileltemDefinition

Property

*properties | hame : String

+caseFileltemDefinitions |+name : String
1 0.+ [+defintionTypa : URI 1
+structureRef | QName
+CASes Case
1 Q.+ |+name : String
+processes Process
1 0. +name : String

+implementationType . URI

0. |+ype: URI

Figure 2: Definitions class diagram

Table 3 defines the attributes of DefFinitions. It refers to concepts that are specified later on in the document,
such as Case (5.2), CaseFile (5.3.1), CaseFileltem (5.3.2) and Process (5.4.8).

Attribute

Description

22

Case Management Model and Notation, v1.0




name : String

The name of the Definitions object.

targetNamespace : URI

This attribute identifies the namespace associated
with the Definitions objects and follows the
convention established by XML Schema.

expressionLanguage : URI

The expression language used for this
Definitions object. The default is
“http://www.w3.0rg/1999/XPath”. This value MAY
be overridden on each individual Expression.
The language MUST be specified in a URI format

exporter : String

This attribute identifies the tool that is exporting the
CMMN model file.

exporterVersion : String

This attribute identifies the version of the tool that is
exporting the CMMN model file

author : String

This attribute identifies the author of the CMMN
model file

creationDate : DateTime

This attribute identifies the creation date of the
CMMN model file

imports : Import[0..*]

This attribute is used to import externally defined
elements and make them available for use by
elements within this Definitions. A
Definitions object that contains a Case MUST
contain the Imports that are referenced by the
CaseFileltemDefinitions of the
CaseFileltemsinthe CaseFi le of that Case.

caseFileltemDefinitions : CaseFileltemDefinition[0..*]

This attribute is used for the definition of
CaseFileltemelements and makes those
definitions available to use by elements within this
Definitions. ADefinitions object that
contains a Case MUST contain the
CaseFileltemDefinitions of the
CaseFileltems inthe CaseFile of that
Case.

cases : Case[0..*]

This attribute is used to define Cases and make
them available for use by elements within this
Definitions.

processes: Process[0..*]

This attribute is used to define Processes and
makes them available to use by elements within this
Definitions. ProcessTasks of a Case
MUST refer to Processes that are contained by
the Definitions object that also contains the
Case. ProcessTask and integration with

Case Management Model and Notation, v1.0

23




Process is specified in 5.4.10.5.1.

Table 3: Definitions attributes

5.1.3 Import

Type definitions that are externally defined can be imported into the CaseF1i le. This enables
CaseFileltemDefinitions to refer to those externally defined types. The Import class has the
following attributes:

Attribute Description

importType : String | The type of the import. For example, for XML-Schema, the import type is XSD.

location : String The location URL of the import

namespace : URI The namespace of the imported elements

Table 4: Import attributes

For CaseFileltemDefinitions of definition type XSDElement, XSDComplexType, XSDSimpleType
and XSDElement, the Import class SHOULD be used to import an XML Schema definition into the Case
model. For other definition types, the use of Import is not further specified.

5.1.4 CaseFileltemDefinition

CaseFileltemDefinition elements specify the structure of a CaseFilleltem. CaseFileltemis
specified in 5.3.2.

Attribute Description

definitionType : URI The URI specifying the definition type of the CaseFi leltem. Table 6
specifies definition types.

structureRef : QName A qualified name referring to the concrete structure of the definition entity. For
XML-Schema typed case file definition elements, the structureRef refers to
a XML complex type, element or simple type in a XML-Schema.

importRef : Import[0..1] A (optional) reference to an Import. External structure definitions such as
XML-Schema might be imported into the CaseFi le and then referred from
CaseFileltemDefinition

properties : Property[0..*] Zero or more Property objects

Table 5: CaseFileltemDefinition attributes

The following definition types are specified for the CaseFileltemDefinition:

Definition Type URI
Folder in CMIS http://www.omg.org/spec/CMMN/DefinitionType/CMISFolder
Document in CMIS http://www.omg.org/spec/CMMN/DefinitionType/CMISDocument

24 Case Management Model and Notation, v1.0




Relationship in CMIS

http://www.omg.org/spec/CMMN/DefinitionType/CMISRelationship

XML-Schema Element

http://www.omg.org/spec/CMMN/DefinitionType/XSDElement

XML Schema Complex Type

http://www.omg.org/spec/CMMN/DefinitionType/XSDComplexType

XML Schema Simple Type

http://www.omg.org/spec/CMMN/DefinitionType/XSDSimpleType

Unknown

http://www.omg.org/spec/CMMN/DefinitionType/Unknown

Unspecified

http://www.omg.org/spec/CMMN/DefinitionType/Unspecified

Table 6: DefinitionTypes and their URIs

5.1.4.1 Property

Property MAY complement CaseFileltemDefinitions. The following table gives an overview of
the Property attributes:

Attribute Description
name : String The name of the attribute
type : URI The type of the attribute. The type MUST be a URI. Table 8 specifies these types.

Table 7: Property attributes

Property types are derived from the top-level built-in primitive types of XML Schema and include the
following, see the description of the individual types in the XML Schema specification for an exact definition of

the value space.

Type URI

string http://www.omg.org/spec/CMMN/Property Type/string
boolean http://www.omg.org/spec/CMMN/Property Type/boolean
integer http://www.omg.org/spec/CMMN/Property Type/integer
float http://www.omg.org/spec/CMMN/Property Type/float
double http://www.omg.org/spec/CMMN/Property Type/double
duration http://www.omg.org/spec/CMMN/Property Type/duration
dateTime http://www.omg.org/spec/CMMN/Property Type/date Time
time http://www.omg.org/spec/CMMN/Property Type/time

date http://www.omg.org/spec/CMMN/Property Type/date
gYearMonth http://www.omg.org/spec/CMMN/Property Type/gYearMonth

Case Management Model and Notation, v1.0 25



http://www.w3.org/TR/xmlschema-2/%23built-in-primitive-datatypes

gYear http://www.omg.org/spec/CMMN/Property Type/gY ear

gMonthDay http://www.omg.org/spec/CMMN/Property Type/gMonthDay
gDay http://www.omg.org/spec/CMMN/Property Type/gDay
gMonth http://www.omg.org/spec/CMMN/Property Type/gMonth
hexBinary http://www.omg.org/spec/ CMMN/Property Type/hexBinary

base64Binary http://www.omg.org/spec/ CMMN/Property Type/base64Binary

anyURI http://www.omg.org/spec/CMMN/Property Type/anyURI

QName http://www.omg.org/spec/CMMN/Property Type/QName

Table 8: Property Types and their URIs

5.2 Case Model Elements

Case is a top-level concept that combines all elements that constitute a Case model. The following diagram
illustrates the metamodel of the Case and its associated classes.

ackage CMMN y Case‘J
d g [ . ] CMMNE ameant

+id : String
+description ; String

I

Case +case +caseRoles Role
+name : String 1 0. [+name : String

+Case +casePlanModel Stage
1 1

+caseFileModel +case
1 1

CaseFile

0.1 0.1

#inputs |0.." +outputs (0.."

CaseParameter

Figure 3: Case class diagram

A Case consists of a caseFi1 leModel, a casePlanModel and a set of caseRoles. It also contains
inputs and outputs, to enable interaction of the Case with its environment.

In this section we will regularly refer to aspects of CMMN execution semantics, in particular to elements of
CMMN-defined lifecycles. Chapter 7 provides a complete specification of CMMN execution semantics and
related lifecycles.

5.2.1 Case

The Case class inherits from the CMMNE Iement class and comprises of the following additional attributes:

26 Case Management Model and Notation, v1.0




Attribute Description

name : String The name of the Case

caseRoles : Role[0..*] This attribute lists the Rol e objects associated with the Case. These Roles
are specific to the Case, and are not known outside the context of the
Case.

caseFileModel : CaseFile[1] One CaseFi le object. Every Case MUST be associated with exactly one
CaseFile. CaseFile isspecified in 5.3.1.

casePlanModel : Stage[1] The plan model of the Case. Every Case MUST be associated with exactly
one plan model. It is defined by association to Stage. Stage is specified in
5.4.8. As it will appear in that section, Stage represents a recursive concept
(Stages can be nested within other Stages), used as container of elements
from which the plan of the case is constructed and can further evolve, and
having a lifecycle that can be tracked in run-time. The “most outer” Stage is
associated to the Case as its casePlanModel.

inputs : CaseParameter[0..*] Input Parameters of the Case. A Case might have input Parameters
so that it can be called from outside, e.g. by other
Cases.CaseParameters are specified in 5.4.10.3.

outputs : CaseParameter[0..*] | Output Parameters of the Case. A Case might have output
parameters so that it can return a result to e.g. a calling Case.

Table 9: Case attributes

5.2.2 Role

CaseRol es authorize case workers or teams of case workers to perform HumanTasks (specified in 5.4.10.4),
plan based on Discretionaryltems (specified in 5.4.9.2), and raise user events (by triggering
UserEventListeners, as specified in 5.4.2.2).

Example Roles of a case might be:

e Doctor. A doctor Role may contain one or more participants that are allowed to perform
HumanTasks, trigger UserEventListeners, or do planning that requires doctor skills.

e Patient. A Case may provide an interface for patients to do planning that may correspond to scheduling
appointments, complete HumanTasks that may correspond to providing information about their health,
etc. In a typical application, a Case may limit the patient Rol e to contain a single participant.

e Nurse. A nurse Role may represent one or more participants with the skills of a nurse care provider
Assignment of Rolles to participants, such as to individuals or teams, is not included in the scope of CMMN.

The Rol e class inherits from the CMMNE Iement class and comprises of the following additional attributes:

Attribute Description

name : String The name of the Role

case : Case[1] The Case that contains the caseRol es.

Table 10: Role attributes and model associations

5.3 Information Model Elements

The information model of a Case comprises of classes for the management of the information (data) aspects of
a Case. All information, or references to information, that is required as context for managing a Case, is
defined by a CaseFi le. The metamodel of CaseFi le is represented in Figure 4.

Case Management Model and Notation, v1.0 27




package CMMN[C&S&FH&” T ——
Y ]

+id : String
+description : String

CaseFile +caseFileltems CaseFileltem definiticnRef | CaseF Defini
0.1 1.* |+name : String 0.* q +name : String
+multiplicity : Multiplicity Enum +definitionType : URI
+children HargetRafs +structureRef : QName
0. 0.” 0.*
+sourceRef |0..1 .
+parent (0.1 +importRef | 0..1
«enumerations Import
MultiplicityEnum +name : String
ZeroOrOne +importType : String
ZeroOrMore +Hocation : String
ExactlyOne +namespace : UR|
OneOrMore
Unspecified
Unknown

Figure 4: CaseFile class diagram

This model supports, amongst others, the information structure of the CMIS standard for content management
systems, standards known from Service Oriented Architectures (SOA) like XML Schema and Object Oriented
models based on UML.

5.3.1 CaseFile

Information in the CaseFi l e serves as context for raising events and evaluating Expressions as well as
point of reference for CaseParameters, such as inputs and outputs of Tasks. CaseFi le also serves
as container for data that is accessible by other systems and people outside of the Case, through
CaseParameters. CaseFile is meant as logical model. It does not imply any assumptions about physical
storage of information.

Every Case is associated with exactly one CaseFi le. The Case information is represented by the
CaseFile. It contains CaseFi leltems that can be any type of data structure. In particular containment
hierarchies and other content objects can be represented. The Case File is represented in the metamodel by
the class CaseFi e, which has the following attributes:

Attribute Description

caseFileltems : CaseFileltem[1..*] This attribute lists the CaseFileltems of aCaseFile. A
CaseFile MUST contain at least one CaseFileltem

Table 11: CaseFile attributes and model associations

5.3.2 CaseFileltem

A CaseFile consists of CaseFileltems. A CaseFileltem may represent a piece of information of any
nature, ranging from unstructured to structured, and from simple to complex, which information can be defined
based on any information modeling “language”. A CaseFi leltem can be anything from a folder or document
stored in CMIS, an entire folder hierarchy referring or containing other CaseFi leltems or simply an XML
document with a given structure. The structure, as well as the “language” (or format) to define the structure, is
defined by the associated CaseFileltemDefinition (see 5.1.4). This may include the definition of
properties (“metadata”) of a CaseFi leltem. If the internal content of the CaseFi leltem is known, an
XML Schema, describing the CaseFi leltem, may be imported.

CaseFileltems can be used to represent containment structures organized into arbitrary hierarchies by using
the parent/children containment association. For example, a folder hierarchy can be implemented by using a

28 Case Management Model and Notation, v1.0




CaseFileltemDefinition.definitionType of CMISFolder, and using children and parent
CaseFileltems as the folder structure. The resulting hierarchy can include metadata for each folder
represented by the properties as defined by the associated CaseFileltemDefinition.

Case file items can be used to represent arbitrary content. For example, documents can be implemented by using
CaseFileltemDefinition._definitionType of CMISDocument. There is no need to know the
internals of those content objects, but if the internals of the object are known, the XML Schema can be defined
by the Import class (see 5.1.3) of the CaseFi leltemDefinition. The document or content object can
include metadata as well, as represented by the properties as defined by the associated
CaseFileltemDefinition.

The following attributes are defined for CaseFileltem:

Attribute Description
name : String The name of the CaseFileltem
multiplicity : MultiplicityEnum The multiplicity of the CaseFi leltem. The multiplicity

specifies the number of potential instances of this
CaseFileltem inthe context of a particular Case instance.

For example: An auto-damage claim might require “4”
photographs of tire profiles. An antecedent investigation might
involve “zero or more” police reports.

definitionRef : CaseFileltemDefinition[1] A reference to the CaseFileltemDefinition. Every
CaseFileltem MUST be associated to exactly one
CaseFileltemDefinition.

children : CaseFileltem[0..*] Zero or more children of the CaseFi leltem. The children
objects are contained by the CaseFileltem.

A CaseFileltemis said to be “nested” in another
CaseFileltem, whenthe CaseFileltemisaone the
children of another CaseF i el tem, either directly, or
recursively through even other CaseFileltems.

The set of chi ldren of a CaseFileltem MUST NOT
include that CaseFi leltemorany CaseFileltemin
which that CaseFi leltem is nested.

parent : CaseFileltem[0..1] Zero or one parent of the CaseFileltem.
targetRefs : CaseFileltem[0..*] Zero or more references to target CaseFileltems.
sourceRef : CaseFileltem[0..1] Zero or one source CaseFileltem.

Table 12: CaseFileltem attributes

5.3.2.1 Versioning

This specification does not define versioning of CaseF i1 leltem instances. It is recognized that any
information element may have various versions, but a version control mechanism is outside the scope of this

Case Management Model and Notation, v1.0 29




specification. It is also recognized that vendors may use version control mechanisms in their products, and such
extensions may not be interchangeable. However, to guarantee basic interchangeability, when no extensions are
used, it is assumed that whenever a case model, or expression, references an information element, that reference
MUST refer to the latest, most current, version of that information element.

5.4 Plan Model Elements

This section specifies caseP lanModel (see Figure 3). For a particular Case model, caseP lanModell
comprises both all elements that represent the initial plan of the case, and all elements that support the further
evolution of the plan through run-time planning by case workers. As Figure 3 indicates, caseP lanModel is
defined by association to Stage. As it will appear in this section, Stage represents a recursive concept -
Stages can be nested within other Stages - that serves as container of any element required to construct and
further evolve Case plans. The “most outer” Stage is associated to the Case as its caseP lanModel.

5.4.1 PlanltemDefinition

PlanltemDefinition elements define the building blocks from which Case (instance) plans are
constructed. PlanltemDefinition is an abstract class that inherits from CMMNE lement.

package CMMN |25 Plan ltem Definition u

CMMNElameant
+id : String
+description : String

I

PlanftemDefinition +defaultControl | PlanitemContral
+name : 3tring 0.1 0.1
|P‘IanFragmum | | Task | |Evlrl'lListunur | | Milestone

=]

Figure 5: PlanltemDefinition class diagram

PlanltemDefinition is specialized into several concepts that are specified subsequent sections in this
document: EventListener, Milestone, PlanFragment (and Stage) and Task.

The class PlanltemControl specifies defaults for aspects of control of PlanltemDefinitions, such as
whether these instances have to be completed before the Case or a Stage of the Case, that contains the
instances, can complete. PlanltemControl and these aspects will be specified in 5.4.11. As it will appear
later, unlike Stages and the other sub-types of PlanltemDefinition, PlanFragments (that are not
Stages) will not be instantiated in run-time.

PlanltemDefinition has the following attributes:

30 Case Management Model and Notation, v1.0



Attribute Description

name : String The name of the PlanltemDefinition
defaultControl : PlanltemControl[0..1] Element that specifies the default for aspects of control of
PlanltemDefinitions.

DefaultControl MUST NOT be specified for the Stage that
is referenced by the Case as its caseP lanModel.

Table 13: PlanltemDefinition attributes

5.4.2 EventListener

In CMMN an event is something that “happens” during the course of a Case. Events may trigger, for example,
the enabling, activation and termination of Stages and Tasks, or the achievement of Mi lestones. Any
event has a cause. CMMN predefines many events, and their causes, such as:

e Anything that can happen to information in the CaseFi le. This is defined by “standard events” that
denote transitions in the CMMN-defined lifecycle of CaseFileltems.

e Anything that can happen to Stages, Tasks and Mi lestones. This is defined by “standard events”
that denote transitions in the CMMN-defined lifecycle of these.

However, elapse of time cannot be captured via these “standard events”. Also it will often lead to very indirect
modeling, when any user event, such as the approval or rejection of something, has to be captured through
impact on data in the CaseF1 le or through transitions in lifecyles of e.g. Tasks or Mi lestones.

For this reason, additional class is introduced, called EventListener, which is specialized into
TimerEventListener and UserEventListener. EventListener has its own CMMN-predefined
lifecycle, so that also any elapse of time as well as any user event, can still be captured as “standard events”,
denoting transitions in the CMMN-defined lifecycle of EventListener.

EventListener inherits from PlanltemDefinition, so that instances of EventListeners can be
elements of Case plans as well.

This will enable CMMN, to handle any event in a uniform way, namely as “standard events” that denote
transitions in CMMN-defined lifecycles. These standard events are handled via Sentries. Sentries and
these “standard events” are specified in section 5.4.6.

Case Management Model and Notation, v1.0 31




package CMMN | EventListeneru

PlanitemDearinition

+name : String

EventListener
i

LT —— TimerEventListener
I—J +timerExpression ; String

0.

0.1
+authorzedRoleRefs (0.* +imerStart |0..1

Role StartTrigger
CasaFilaltem StartTrigger PlanltemStartTrigger
+standardEvent : CaseFileltemTransition +standardEvent : PlanltemTransition
0.1 0.1
+sourceRef |1 +sourceRef |1
CaseFileltem Planltem

+name | String +name : String
+multiplicity : Multiplicity Enum

Figure 6: EventListener class diagram

5.4.2.1 TimerEventListener

A TimerEventListener isaPlanltemDefinition, which instances are used to catch predefined
elapses of time. It inherits from EventListener. The following table lists the attributes of class
TimerEventListener:

Attribute Description

timerExpression : String | An expression string that is conforming to the 1SO-8601 format for date and time,
duration or interval representations.

timerStart : The starting trigger of the TimerEventListener. This attribute is optional. If
StartTrigger[0..1] timerStart is specified, then at runtime, if the trigger occurs the time of
occurrence of the trigger is captured and the timerExpression SHOULD be
relative to the timestamp captured when the timerStart trigger occurs.

Table 14: TimerEventListener attributes

5.4.2.1.1 StartTrigger

The TimerEventListener StartTrigger addresses the event of a lifecycle state change that triggers
the starting point of TimerEventListener. StartTrigger is an abstract class that inherits from
CMMNE Iement and has two sub-classes, CaseFileltemStartTrigger and
PlanltemStartTrigger.

32 Case Management Model and Notation, v1.0




5.4.2.1.2 CaseFileltemStartTrigger
The class CaseFileltemStartTri

gger inherits from StartTrigger and has the following attributes

Attribute

Description

standardEvent : CaseFileltemTransition

Reference to a state transition in the CaseF i el tem lifecyle
(see 7.2). The enumeration CaseFileltemTransitionis
specified in 5.4.6.2.1.

sourceRef : CaseFileltem[1]

Reference to a CaseFi leltem. If the associated
CaseFileltem is undergoing the state transition as specified
by attribute standardEvent, the StartTrigger MUST
occur (in run-time).

Table 15: CaseFileltemStartTrigger attributes

5.4.2.1.3 PlanltemStartTrigger
The class PlanltemStartTrigger

inherits from StartTrigger and has the following attributes

Attribute

Description

standardEvent : PlanltemTransition

Reference to a state transition in the lifecycle of a Stage, Task,
EventListener or Mi lestone (see 7.3). The enumeration
PlanltemTransition is specified in 5.4.6.3.1.

If definitionReT of the Planltem, that is referenced by the
StartTrigger as sourceReT, represents a Stage or Task, the
value of standardEvent of the StartTrigger MUST denote a
transition of the CMMN-defined lifecycle of Stage / Task (see 7.3.2).

If definitionReT of the Planltem, that is referenced by the
StartTrigger as sourceRef, represents an EventListener or
Mi lestone, the value of standardEvent of the StartTrigger
MUST denote a transition of the CMMN-defined lifecycle of
EventListener /Milestone (see 7.3.3).

sourceRef : Planltem[0..1]

Reference to a Planltem. If the associated Planltem is undergoing
a state transition as specified by attribute standardEvent the
StartTrigger MUST occur (in run-time).

Table 16: PlanltemStartTrigger attributes

5.4.2.2 UserEventListener

A UserEventListenerisaPlanl

temDefinition, which instances are used to catch events that are

raised by a user, which events are used to influence the proceeding of the Case directly, instead of indirectly via

impacting information in the CaseFil

e. AUserEventListener enables direct interaction of a user with

the Case. It inherits from EventListener. The following table lists the attributes of class

UserEventListener:

Attribute Description

Case Management Model and Notation, v1.0 33




authorizedRoleRefs : Role[0..*] The Roles that are authorized to raise the user event

Table 17: UserEventListener attributes

5.4.3 Milestone

AMilestoneisaPlanltemDefinition that represents an achievable target, defined to enable evaluation
of progress of the Case. No work is directly associated with aMi lestone, but completion of set of tasks or
the availability of key deliverables (information in the CaseF1i le) typically leads to achieving a Mi lestone.

5.4.4 PlanFragment

A PlanFragment is a set of Planltems (see 5.4.5), possibly dependent on each other, and that often occur
in Case plans in combination, representing a pattern.

package CMMM[ Plan Fragment U

PlankamDafinition
+name : String

0.1

+definitionRef
1

Fi

i

PlanFragment

+defaultContral (0.1 0.x +plantems (0..* +zentries |0..*

PlanitemControl Planitem +entryCriteriaRefs Sentry
+itemControl

+name : String 0.1 0.*  |+name : String
0.1 0.1 +exitCriteriaRefs
0.1 0.*

Figure 7: PlanFragment class diagram

Dependencies between Planltems, in PlanFragments, are defined as Sentries (see 5.4.6). A
PlanFragment is a container of Planltems and the Sentries that define the criteria according to which
the Planltems are enabled (or entered) and terminated (or exited).

Simple examples of PlanFragments are:
e A combination of two Tasks, whereby, the completion of one Task satisfies the Sentry that enables
the start of the other.
e A combination of an EventListener and a Task, whereby the occurrence of the event satisfies the
Sentry that enables the start of the Task.

PlanFragments can represent Planltem-and-Sentry patterns of any complexity. Simple
PlanFragments may not contain Sentries. PlanFragment inherits from Planl temDefinition,
because the combination of Planltems (and Sentries) that it contains can be added to the plan of a Case
(instance) as a unit. Unlike other PlanltemDefinitions, a PlanFragment (that is not a Stage) does
not have a representation in run-time, i.e. there is no notion of lifecycle tracking of a PlanFragment (not

34 Case Management Model and Notation, v1.0




being a Stage) in the context of a Case instance. Just the Plantems that are contained in it are instantiated
and have their lifecyles that are tracked.

In order to plan a combination of Planltems that is tracked, in the plan of a Case instance, as combination, a
specialization of PlanFragment should be used, called a Stage. Stage is specified in 5.4.8. Stages have
lifecycles, PlanFragments (not being Stages) don’t.

The class PlanFragment has the following attributes:

Attribute Description

planitems : Planltem[0..*] The Planltems that are contained by the PlanFragment.

sentries : Sentry[0..*] The Sentrys contained by the PlanFragment.

Table 18: PlanFragment attributes and model associations

5.4.5 Planitem
A Planltem objectis a use of a PlanltemDefinition elementin a PlanFragment (or Stage) .

As soon as experience is gained in applying a Case model, best practices might evolve, e.g. recognizing the
usefulness, or even necessity, of applying re-usable combinations of PlanltemDefinitions. The same
PlanltemDefinition might be (re-)used multiple times as part of different combinations, i.e. as part of
different PlanFragments (or Stages). Hence, a PlanltemDefinition, e.g. a Task or
EventListener, is defined once, and can be (re-) used in multiple PlanFragments (and Stages).

This required a separate class, Planltem, that refers to Planl temDefinition. Multiple Planltems
might refer to the same PlanltemDefinition. APlanltemDefinition is (re-)used in multiple
PlanFragments (or Stages) when these PlanFragments (or Stages) contain Planltems that refer
to or (“use”) that same PlanltemDefinition.

Attribute Description

name : String The name of the Plan I tem object. This attribute supersedes the
attribute of the corresponding PlanltemDefinition element.

itemControl : PlanltemControl[0..1] The PlanltemControl controls aspects of the behavior of
instances of the Plan I tem object.

If a PlanltemControl object is specified for a Planltem, then
it MUST overwrite the PlanltemControl object of the
associated PlanltemDefinition element. Otherwise, the
behavior of the Plan1tem object is specified by the
PlanltemControl object of its associated
PlanltemDefinition. PlanltemControl is specified in
5.4.11.

definitionRef : PlanltemDefinition[1] Reference to the corresponding PlanltemDefinition object.

For every Planltem object, there MUST be exactly one
PlanltemDefinition object.

Case Management Model and Notation, v1.0 35




DefinitionRef MUST NOT represent the Stage that is the
casePlanModel of the Case.

DefinitionRef MUST NOT represent a PlanFragment that is not
a Stage.

This implies that a PlanFragment, not being a Stage, cannot be
used as Planltem inside a PlanFragment or Stage. As
Planltems may refer to a PlanltemDefinition thatisa
Stage, Stages can be nested. A Stage is said to be “nested” in
another Stage, when the Stage is the PlanltemDefinition
of a Planltem that is contained in that other Stage, either
directly, or recursively through even other Stages.

DefinitionRef of a Planltem that is contained by a Stage
MUST NOT be that Stage or any Stage in which that Stage is
nested.

Reference to zero or more Sentries that represent the
Planltem’s entry criteria. EntryCriteriaRefs of a
Planltem MUST refer to Sentries that are contained by the
Stage or PlanFragment that contains that Planltem.

entryCriteriaRefs : Sentry[0..*]

A Planltem that is defined by an EventListener MUST NOT
have entryCriteriaRefs.

Reference to zero or more Sentries that represent the
Planltem’s exit criteria. ExitCriteriaRefs of aPlanltem
MUST refer to Sentries that are contained by the Stage or
PlanFragment that contains that Planltem.

exitCriteriaRefs : Sentry[0..*]

A Planltem that is defined by an EventListener or
Milestone MUST NOT have exitCriteriaRefs.

A Planltem that is defined by a Task that is non-blocking
(1sBlocking set to “false”) MUST NOT have
exitCreteriaRefs.

Table 19: Planltem attributes

5.4.6 Sentry

A Sentry “watches out” for important situations to occur (or “events™), which influence the further
proceedings of a Case (and hence their name).

A Sentry is a combination of an “event and/or condition”. When the event is received, a condition might be
applied to evaluate whether the event has effect or not. Sentries may take the following form:

1. Anevent part and a condition part in the form
on <event> if <condition>
or

36 Case Management Model and Notation, v1.0




An event part in the form

on <event>
or

Just a condition part in the form

if <condition>

package CMMN[ Sertry U

CMMINElement «enumerationz «enumerationz
+idl ; String CaseFiletemTransition | | PlantemTransition
+description : String addChild close

a5 addReference complete
[ create create
delete digable
removeChild enable
removeReference exit
EENing replace fault
1 +name : String 1 update manualStart
. ocour
+onParts |0.* +sentryRef |0..1 +ifPart |0..1 parentResume
OnPart Part parentSuspend
reactivate
reenable
o resums
- 0.1 start
0 +comtextRef 0.1 +condition |1 [
CaseFiletemOnPart PlanltemOnPart CaseFilettem Expression
+standardEvent : CaseFiletemTransition | |+standardEvent - FlantemTransition +language : LRI
+hody : String
0.* 0.x

+sourceRef |1

+sourceRef |1

CaseFileltem

Planltem

+name : String
+multiplicity : MuttiplicityEnum

+name : String

Figure 8: Sentry class diagram

As discussed in section 5.4.2, CMMN defines of a set of “standard events”, based on transitions in
CMMN-defined lifecycles, that is capable of capturing any event that is relevant in the context of a Case. This
includes timer events, case information events and user events.

A Sentry may consist of two parts:

Zero or more OnParts. An OnPart specifies the event that serves as trigger. When the event is
catched, the OnPart is said to “occur”.

Zero or one I'fPart. The I'fPart specifies a condition, as Expression that evaluates over the
CaseFile. If all OnParts of a Sentry have occurred, and its 1 fPart (if existent) evaluates to
“true”, the Sentry is said to be “satisfied”.

A Sentry that is satisfied actually triggers the Plan1tem that refers to it (see Figure 7):

When the Sentry is referenced by one of the Planltem’s entryCriteriaRefs, the Planltem
(its instance) will transit, based on the entry criteria-related transition in its lifecycle: a Task or Stage
will be enabled, and a Mi lestone will be achieved.

When the Sentry is referenced by one of the Planltem’s exitCriteriaRefs, the Planltem
will transit, based on the exit criteria-related transition in its lifecycle: a Task or Stage will be
terminated (exited).

Chapter 7 will analyze the relationship between Sentries and lifecycles in detail.

Sentry inherits from CMMNE lement and has the following attributes:

Attribute

Description

Case Management Model and Notation, v1.0 37




name : String The name of the Sentry.

onParts : OnPart[0..*] Defines the OnParts of the Sentry.

ifPart : IfPart[0..1] Defines the 1fPart of the Sentry.

Table 20: Sentry attributes
A Sentry MUST have an IfPart or at least one OnPart.

5.4.6.1 OnPart

The Sentry OnPart addresses the “event” aspect of a Sentry. The class OnPart is an abstract class that
inherits from CMMNE Iement. It has two sub-classes: CaseFi leltemOnPart and PlanltemOnPart.

5.4.6.2 CaseFileltemOnPart

The class CaseF i1 el temOnPart inherits from OnPart and has the following attributes:

Attribute Description

standardEvent : CaseFileltemTransition Reference to a state transition in the CaseFi leltem lifecyle
(see 7.2). The enumeration CaseFileltemTransition is
specified in 5.4.6.2.1.

sourceRef : CaseFileltem[1] Reference to a CaseFi leltem. If the associated
CaseFileltem is undergoing the state transition as specified
by attribute standardEvent, the OnPart MUST occur (in
run-time).

Table 21: CaseFileltemOnPart attributes

5.4.6.2.1 CaseFileltemTransition

CaseFileltemTransition is an enumeration that specifies transitions in the CMMN-defined lifecycle of
CaseFileltems (see 7.2). Its values are:

CaseFileltem Description

Lifecycle State

transition

addChild A new child CaseFi leltem has been added to an existing CaseFileltem. The

lifecycle state remains Available.

addReference A new reference to a CaseFi leltem has been added to a CaseFileltem. The
lifecycle state remains Available.

create A CaseFi lel tem transitions from the initial state to Available.
delete A CaseFileltem transitions from Available to Discarded
removeChild A child CaseFi leltem has been removed from a CaseFi leltem. The lifecycle state

remains Available.

38 Case Management Model and Notation, v1.0




removeReference A reference to a CaseFi lel tem has been removed from a CaseFileltem. The

lifecycle state remains Available.

replace The content of a CaseF i leltem has been replaced. The lifecycle state remains
Available.
update The CaseFi leltem has been updated. The lifecycle state remains Available.

Table 22: CaseFileltemTransition enumeration

5.4.6.3 PlanltemOnPart

The class Plan I temOnPart inherits from OnPart and has the following attributes:

Attribute

Description

standardEvent : PlanltemTransition

Reference to a state transition in the lifecycle of a Stage, Task,
EventListener or Mi lestone (see 7.3). The enumeration
PlanltemTransition is specified in 5.4.6.3.1.

If definitionReT of the Planltem, that is referenced by the
OnPart as sourceRef, represents a Stage or Task, the value of
standardEvent of the OnPart MUST denote a transition of the
CMMN-defined lifecycle of Stage / Task (see 7.3.2).

If definitionReT of the Planltem, that is referenced by the
OnPart as sourceRef, represents an EventListener or

Mi lestone, the value of standardEvent of the OnPart MUST
denote a transition of the CMMN-defined lifecycle of
EventListener /Milestone (see 7.3.3).

sourceRef : Planltem[0..1]

Reference to a Planltem. If the associated Planltem is undergoing
a state transition as specified by attribute standardEvent the
OnPart MUST occur (in run-time).

SourceReT represents a Planltem that MUST be contained by the
same PlanFragment (or Stage) that also contains the Sentry that
contains the PlanltemOnPart.

sentryRef: Sentry [0..1]

A reference to a Sentry. It enforces that the PlanltemOnPart of
the Sentry occurs when the Plan I tem that is referenced by
sourceReT transits by the exit transition in its lifecycle, due to the
Sentry that is referenced by sentryReT being satisfied. An
example is provided and explained in section 6.10.1, in relation to
Figure 46.

SentryRefT, if specified, MUST refer to a Sentry that is referenced
by an exitCriteriaRef of the Planltem that is referred to as the
sourceRef of the PlanltemOnPart.

When sentryRef is specified, standardEvent MUST have value
“exit”.

Table 23: PlanltemOnPart attributes

Case Management Model and Notation, v1.0 39




5.4.6.3.1 PlanltemTransition

PlanltemTransition is an enumeration that specifies transitions in the CMMN-defined lifecycles of
Stages, Tasks, EventListeners and Mi lestones (see 7.3). Its values are:

Planltem Description

Lifecycle State

transition

close The casePlanModel transitions from Completed, Terminated, Failed or Suspended to
Closed

complete The casePlanModel , Stage or Task transitions from Active to Completed.

Create e The casePlanModel transitions from the initial state to Active

e The Planltem transitions from the initial state to Available

disable The Stage or Task transitions from Enabled to Disabled

enable The Stage or Task transitions from Available to Enabled

exit The Stage or Task transitions from Available, Enabled, Disabled, Active, Failed or
Suspended to Terminated.

fault The Stage or Task transitions from Active to Failed

manualStart

The Stage or Task transitions from Enabled to Active.

occur The EventListener or Mi lestone transitions from Available to Completed.
parentResume The Stage or Task transitions from Suspended to Available, Enabled, Disabled or
Active depending on its state before it was suspended
parentSuspend The Stage or Task transitions from Available, Enabled, Disabled or Active to
Suspended
reactivate e The casePlanModel transitions from Completed, Terminated, Failed or
Suspended to Active
e The Planltem transitions from Failed to Active
reenable The Stage or Task transitions from Disabled to Enabled
resume o The Task or Stage transitions from Suspended to Active.
e The EventListener or Mi lestone transitions from Suspended to Available.
start The Stage or Task transitions from Available to Active
suspend e The casePlanModel, Stage or Task transitions from Active to Suspended.
o The EventListener orMi lestone transitions from Available to Suspended.
40 Case Management Model and Notation, v1.0




terminate e The casePlanModel, Stage or Task transitions from Active to Terminated

e The EventListener or Mi lestone transitions from Available to
Terminated.

Table 24: PlanltemTransition enumeration
5.4.6.4 IfPart

The I'fPart of a Sentry is used to specify an (optional) condition.

The class I FPart inherits from CMMNElement, and has the following attributes

Attribute Description

contextRef : CaseFileltem[0..1] The context of the 1 fPart.

The caseFi leltem that serves as starting point for evaluation of the
Expression that is specified by the condi tion of the I fPart. If not
specified, evaluation starts at the CaseF i le object that is referenced by
the Case as its caseFi leModel.

condition : Expression[1] A condition that is defined as Expression. The Expression MUST
evaluate to boolean. Expressions are specified in 5.4.7.

Table 25: IfPart attributes

5.4.7 Expressions

Expressions specify String objects that are evaluated over information in the CaseFile. Expressions
do also specify the language in which the String objects MUST be specified.

Expression inherits from CMMNE lement, and has the following attributes:

Attribute Description

language : URI The language in which the Expression body is specified.

The language attribute is optional. The default value of the language attribute is defined by
the value of expressionLanguage of the Definitions object. If a value is
specified for the language attribute of an Expression, it overwrites the default for that
Expression.

body : String The actual expression. It MUST be valid according to the specified language.

Table 26: Expression attributes

5.4.8 Stage

A Stage inherits from PlanFragment. As PlanFragment it isa PlanltemDefinition as well,
and serves as building block for Case (instance) plans therefore.

Case Management Model and Notation, v1.0 41




package CMMN | Stageu

PlanFragment PlanftermDeafinition

+name : 3tring

PlanningTable 1

l +planltemDefinitions | 0..*

+planningTable | 0.1 Stage
T +autoComplete | Boolean = false
0.1
+exitCriteriaRefs|0..*
Sentry

+name : String

Figure 9: Stage class diagram

As a PlanFragment, a Stage can contain Planltems and Sentries.

Unlike PlanFragments (that are not Stages), Stages do have run-time representations in a Case
(instance) plan. Instances of Stages are tracked through the CMMN-defined Stage lifecycle (see 7.3.2).
Stages maybe considered “episodes” of a Case, though Case models allow for defining Stages that can be

planned in parallel also.

The following is supported for a Stage, which is not supported for a PlanFragment (that is not a Stage):

e A Stage can be used as Planltem inside PlanFragments or other Stages.

o A Stage (instance) can serve as context for planning, i.e. a Stage can have a PlanningTable, to
support users in planning additional (“discretionary”) items into instances of the Stage in run-time.
PlanningTables and Discretionaryltems are specified in 5.4.9

¢ The Case refers to a Stage as its casePlanModel. This defines the “most outer” Stage of the

Case.

0 This “most outer” Stage also contains the PlanltemDefinitions that are used in the

Case.

0 This “most outer” Stage of the Case may also contain Sentries that serve as exit criteria
for that Stage, and hence for the Case.

The class Stage has the following attributes:

Attribute

Description

planltemDefinitions : PlanltemDefinition[0..*]

This attribute lists the PlanltemDefinition objects
available in the Stage, and its nested Stages.
PlanltemDefinitions MUST NOT be contained by
any other Stage than the casePlanningModel of the
Case.

autoComplete : Boolean = false

This attribute controls completion of the Stage. If “false”, a
Stage requires a user to manually complete it, which is
often appropriate for Stages that contain “discretionary”
items (see 5.4.9.2) and/or non-required Tasks or Stages

42

Case Management Model and Notation, v1.0




(see 5.4.11.2). Stage completion logic is specified in detail
in7.5.1.

planningTable : PlanningTable[0..1]

Defines the (optional) PlanningTable of the
Stage. PlanningTable is specified in 5.4.9.

exitCriteriaRefs : Sentry[0..*]

Reference to zero or more Sentries that serve as the exit
criteria for the Stage.

ExitCriteriaRefs of a Stage MUST refer to
Sentries that are contained by that Stage.

Only the Stage that is referenced by the Case as its
casePlanningModel can have exitCriteriaRefs.
Note that it is only useful for that Stage to directly have
exitCriteriaRefs, as it cannot be further nested in
other Stages (other Stages can contain both
Planltems that represent Stages and the Sentries
that impose entry and/or exit criteria on them).

Table 27: Stage attributes

5.4.9 PlanningTable

Planning is a run-time effort. A PlanningTabl e defines the scope of planning, in terms of identifying a
sub-set of PlanltemDefinitions that can be considered for planning in a certain context. The context for

planning might be:

e A Stage. Whena Stage hasaPlanningTable, that PlanningTable can be used, for an
instance of that Stage, to plan instances of Tasks and Stages into that Stage instance.

e A HumanTask. When a HumanTask has a PlanningTable (see 5.4.10.4), that
PlanningTable can be used, for an instance of that HumanTask, to plan instances of Tasks and
Stages into the instance of the Stage that contains that instance of the HumanTask.

Case Management Model and Notation, v1.0

43




ackage CMMN [ |2 Planning Table
P g [ g U CMMNEamant Role
+id : String +name : String
+description : String
I +authorizedRoleRefs (0..°
0.
+ableltems Tablaltem
1.
'I' 0.
+planningTable |1 ‘
try CriteriaRef:
PlanningTable Discretionaryltem ol kbiobvanbeitly Sentry
0..1 0.* =
+exitCriteriaRefs [ *name : String
5 0..1 0.*
1 0.
0.1
+applicability Rules |0..* +definiticnRef |1 +itemContral | 0..1
ApplicabilityRule PlanftemDelinition +defaultControl | PlanitemCaontrol
+name : String +nams : String 0.1 0.1
+applicability RuleRefs |0..* 0."
textRef
0.1 blinkisiaiiis CaseFileltam
0.1
+condition =risEd
1 Hanguage : LRI
+body : String

Figure 10: PlanningTable class diagram

Instances of Tasks and Stages that are defined by the same PlanltemDefinition might be planned
based on possibly multiple PlanningTables. This required a separate class, Discretionaryltem (see
5.4.9.2), that refers to PlanltemDefinition. Multiple Discretionaryltems might refer to the same
PlanltemDefinition. APlanltemDefinition is (re-)used in multiple PlanningTables when
these PlanningTables contain Discretionaryltems that refer to or (“use”) that same
PlanltemDefinition.

For convenience, aDiscretionaryltemthat referstoaPlanltemDefinition thatisa Task, might be
called a “discretionary Task”. Similarly we can consider “discretionary PlanFragments” and “discretionary
Stages”. Note that PlanFragments that are no Stages can only be “discretionary”, as Planltems
cannot refer to them (see 5.4.5). Note again that, when a PlanFragment (that is not a Stage) is used for
planning, just the Planltems that are contained in it are instantiated and have their lifecyles that are tracked.
The PlanFragment (that is not a Stage) is not instantiated itself.

For convenience during run-time planning, in situations where a PlanningTable would contain potentially
many Discretionaryltems, itis possible to definea PlanningTable recursively:aPlanningTable
containing other PlanningTables.

Users (Case workers) are said to “plan” (in run-time), when they select Discretionaryltems from a
PlanningTable, and move instances of their associated PlanltemDefinitions into the plan of the
Case (instance).

It is possible to authorize Roles for planning of certain Discretionaryltems and
sub-PlanningTables. It is also possible to make Discretionaryltems (and
sub-PlanningTables) dynamically applicable for planning, based on conditions that evaluate over the
CaseFile. Both Role authorizations and ApplicabilityRules (see 5.4.9.3) can dynamically control
what Discretionaryltems, possibly organized via sub-PlanningTables, are exposed to Case
workers that are involved in planning.

44 Case Management Model and Notation, v1.0



Chapter 7 specifies semantics of run-time planning in detail, amongst others specifying when Stage instances
become eligible for planning (into them) and until when planning can be performed. PlanningTables of
HumanTasks, as well as the purpose of planning via HumanTasks, will be specified in 5.4.10.4.

PlanningTable inherits from CMMNE lement, and has the following attributes:

Attribute

Description

tableltems : Tableltem[1..*]

A list of Tableltem objects (see 5.4.9.1), available for
planning.

A PlanningTable is said to be “nested” in another
PlanningTable, when the PlanningTableisa
Tableltem that is contained by that other
PlanningTable, either directly, or recursively through even
other PlanningTables.

The set of tableltems of aPlanningTable MUST NOT
include that PlanningTable or any PlanningTable in
which that PlanningTabl e is nested.

APlanningTable MUST contain at least one Tablel tem.

applicabilityRules : ApplicabilityRule[0..*]

Zero or more ApplicabilityRule objects.

Table 29: PlanningTable attributes

5.4.9.1 Tableltem

A Tableltem might be aDiscretionaryltem, oraPlanningTable.

Tableltem inherits from CMMNE lement and has the following attributes:

Attribute

Description

authorizedRoleRefs : Role[0..*]

References to zero or more Role objects that are authorized
to plan, based on the Tableltem.

applicabilityRuleRefs : ApplicabilityRule[0..*]

References to zero or more ApplicabilityRule
objects.

If the condition of the ApplicabilityRule object
evaluates to “true”, then the Tableltem is applicable for
planning, otherwise it is not. If no ApplicabilityRule
is associated with a Tableltem, its applicability is
considered “true”.

A PlanningTable that contains a Table I tem MUST
contain the Applicabi lityRules that represent the
applicabilityRuleRefs of that Tableltem.

Table 30: Tableltem attributes

Case Management Model and Notation, v1.0

45




5.4.9.2 Discretionaryltem

A Discretionaryltem identifies a PlanltemDefinition, of which instances can be planned, to the
“discretion” of a Case worker that is involved in planning, which instances are planned into the context (see
5.4.9 and 7.6) that is implied by the PlanningTabl e that contains the Discretionaryltem, either
directly, or via a nested PlanningTable.

Discretionary ltem inherits from Tableltem and has the following attributes:

Attribute Description

Defines the PlanltemDefinition associated with the

definitionRef : PlanltemDefinition[1] _ - g . i
Discretionaryltem, and which is the basis for planning.

The definitionRef of aDiscretionaryltem MUST
represent a Task or a PlanFragment (or Stage).

itemControl : PlanltemControl[0..1] An optional PlanltemControl object. The PlanltemControl
object controls aspects of the behavior of instances that are planned
viathe Discretionaryltem.

If the itemControl attribute is specified it MUST overwrite the
value of attribute defaultControl of the
Discretionaryltem associated PlanltemDefinition

Reference to zero or more Sentries that represent the

entryCriteriaRefs : Sentry[0..* N _ -
y V10-] Discretionaryltem’s entry criteria.

Reference to zero or more Sentries that represent the

exitCriteriaRefs : Sentry[0..*] - ) f L
Discretionaryltem’”s exit criteria.

ADiscretionaryltem that is defined by a Task that is
non-blocking (isBlocking set to “false”) MUST NOT have
exitCreteriaRefs.

Table 31: Discretionaryltem attributes

A PlanltemDefinition is said to be “discretionary” to a HumanTask or Stage, when the HumanTask
or Stage has a PlanningTable, that, directly or through PlanningTabl e nesting, contains a
Discretionary I tem that refers to that PlanltemDefinition, or to aHumanTask or Stage, that has
aPlanningTable, etc., ultimately arriving at a HumanTask or Stage that hasa PlanningTable, that,
directly or through PlanningTabl e nesting, contains a Discretionaryltem that refers to that
PlanltemDefinition.

A Stage MUST NOT be discretionary to itself or its nested Stages.

A Stage MUST NOT be discretionary to a HumanTask that is PlanltemDefinition of aPlanltem
that is contained by the Stage or its nested Stages.

The entryCriteriaRefs and exitCriteriaRefs of aDiscretionaryltem MUST be contained
in the Stage that also contains the PlanningTabl e that contains the Discretionary ltem, directly or
recursively through a hierarchy of PlanningTables, or in the Stage that also contains the HumanTask
that has the PlanningTabl e that contains the Discretionary ltem, directly or recursively through a
hierarchy of PlanningTables.

46 Case Management Model and Notation, v1.0




When entryCriteriaRefs or exitCriteriaRefs of aDiscretionaryltem have OnParts that
are Planltem OnParts, these OnParts MUST have a sourceRefT that is contained in the Stage that
also contains the PlanningTabl e that contains the Discretionaryltem, directly or recursively through
a hierarchy of PlanningTables, or in the Stage that also contains the HumanTask that has the
PlanningTable that contains the Discretionaryltem, directly or recursively through a hierarchy of
PlanningTables.

5.4.9.3 Applicability Rules

ApplicabilityRules are used to specify, whether a Tablel tem is “applicable” (“eligible”, “available™)
for planning, based conditions that are evaluated over information in the CaseFile.

Tableltems for which an associated Applicabi lityRule evaluates to “false”, will not be exposed to
Case workers for planning purpose.

The class Applicabi l1tyRule has the following attributes:

Attribute Description

name : String The name of the ApplicabilityRule.

contextRef : CaseFileltem[0..1] | The context of the ApplicabilityRule.

The caseFi leltem that serves as starting point for evaluation of the
Expression that is specified by the condition of the
ApplicabilityRule. If not specified, evaluation starts at the

CaseFi le object that is referenced by the Case as its caseFi leModel.

condition : Expression[1] The Expression that serves as condition of the
ApplicabilityRule. If it evaluates to “true”, then the associated
Tableltemisavailable for planning (if a Case worker is also assigned the
Role that is authorized for planning based on that Table I tem).

Expressions are specified in 5.4.7.

Table 32: ApplicabilityRule attributes

5.4.10 Task

A Task is an atomic unit of work. Task is a base class for all Tasks in CMMN and inherits from
PlanltemDefinition.

Case Management Model and Notation, v1.0 47




package CMMN[Tasku

PlanitemDalinition

+name : String

T

Task

+isBlocking : Boolean = true

HumanTask
0.1

ProcessTask ‘ | CaseTask ’7
0.

0.°

+planningTablg0..1 +performerRef |0..1

PlanningTable Role

+name : String

+processRef

0.1 0.1
+mappings (0..* +mappings

=
e

ParamaterMapping

0.1

0.1

1
+transformation | 0..1

0..
CMMNE/ament
Expression
+id : String

+daescription : String

Y

+soyrceRef
1 +targetRef +caseRef (1

Process

Paramater Case

+name : String

+implementationType : URI

+name : String +name : String

0.1 |04 T 0.1 0.1
| +inputs |0..* +outputs [0..*
" .
nputs Paramater CasoParametar +inputs
0. 0.*
+outputs +outputs
0. 0.
0.-
0.1
+bindingRefinement |0..1 +bindingRef (0..1
Exprassion CaseFilaltem
+language : URI +name ;. String
+body : String +multiplicity : Multiplicity Enum

Figure 11: Task class diagram

The Task class has the following attributes:

Attribute

Description

isBlocking : Boolean = true

If isBlocking is setto “true”, the Task is waiting until the work associated
with the Task is completed. If isBlocking is setto “false”, the Task is not
waiting for the work to complete and completes immediately, upon
instantiation.

The default value of attribute isBlocking MUST be “true”.

A Task that is non-blocking (isBlocking set to “false”) MUST NOT have
outputs.

inputs : CaseParameter[0..*]

Zero or more CaseParameter objects (see 5.4.10.3) that specify the
input of the Task.

outputs : CaseParameter[0..*]

Zero or more CaseParameter objects (see 5.4.10.3) that specify the

48

Case Management Model and Notation, v1.0




output of the Task.

Table 33: Task attributes and model associations

5.4.10.1 Parameter

The class Parameter is an abstract base class for CaseParameter and ProcessParameter. It inherits
from CMMNE I e lent, and has the following attributes:

Attribute Description

name : String The name of the Parameter.

Table 34: Parameter attributes

5.4.10.2 ParameterMapping

The class ParameterMapping is used for the input/output mapping of CaseTasks and ProcessTasks.
It inherits from CMMNE lement and has the following attributes:

Attribute

Description

transformation : Expression[0..1]

The transformation Expression transforms the parameter referred to by
sourceRefT to the parameter referred to by targetRef. Any expression
language might be chosen for the transformation (for example XSLT,
XPath, etc.)

Expressions are specified in 5.4.7.

sourceRef : Parameter[1]

One source Parameter.

targetRef : Parameter[1]

One target Parameter.

Table 35: ParameterMapping attributes

5.4.10.3 CaseParameter

The class CaseParameter is used to model the inputs and outputs of Cases and Tasks.

It inherits from Parameter and has the following attributes:

Attribute

Description

Case Management Model and Notation, v1.0 49




bindingRef : CaseFileltem][0..1]

A reference to a CaseFileltem.

When a Task has an output that is a CaseParameter with
bindingRef that references a CaseFi lel tem, the effect that the
execution of instances of that Task has on instances of that
CaseFileltem can be observed in terms of transitions in the
CMMN:-lifecyle of CaseFileltem (see 7.2).

Similarly, when a Case has an Input that is a CaseParameter
with bindingReT that references a CaseFi leltem, the effect that
passing on information to an instance of the Case, via that
CaseParameter, has on instances of that CaseFi leltem in the
CaseFi le of that Case instance, can be observed in terms of
transitions in the CMMN-lifecyle of CaseFileltem (see 7.2).

Outputs of Cases and inputs of Tasks are merely concerned
with retrieval of CaseFi leltem (instances) from the CaseFi le of
a Case instance.

bindingRefinement : Expression[0..1]

An optional Expression to further refine the binding of the
CaseParameter to the CaseFileltem, that it is referenced by
the bindingRefT of the CaseParameter. For example, if the
bindingRef would refer to a CaseFi lel tem that represents a
purchase order, the bindingRefinement might be used to
effectively reduce the collection of referenced purchase orders to a
particular purchase order (note that multiplicity of the

CaseFi leltem might be greater than zero), or to effectively refer to
(an) associated CaseFi el tem(s), such as (a) purchase order line(s).

Expressions are specified in 5.4.7.

Table 36: CaseParameter attributes

5.4.10.4 HumanTask

A HumanTask is a Task that is performed by a Case worker.

When a HumanTask is not “blocking” (isBlocking is “false™), it can be considered a “manual” Task, i.e.
the Case management system is not tracking the lifecycle of the HumanTask (instance).

A HumanTask can have a PlanningTabl e, so that the HumanTask can also be used for planning Though
planning can also be performed based on the PlanningTable of a Stage that contains the HumanTask, it
has sometimes advantages to also perform planning from the HumanTask directly, such as:

e It brings a particular perspective of planning: Tableltems inthe PlanningTable of a
HumanTask, that is used as Plan ltem inside a Stage, are the basis for planning of Stages and
Tasks that can be considered follow-up Stages and Tasks of that particular HumanTask. Planning
based on the PlanningTabl e of the containing Stage, adds instances of Stages and Tasks that
are contained by (an instance of) the Stage, but not particularly as follow-up of that HumanTask. The
PlanningTable of the HumanTask typically contains Table I tems that are particularly relevant
in the context of planning from that particular HumanTask, whereas the PlanningTable of the
containing Stage might provide a wider range of Tableltems.

50

Case Management Model and Notation, v1.0




e |t helps to avoid the overhead of defining “arbitrary” Stages that just contain a single Planltem: In
order to have a context with a more narrowly defined PlanningTable, it is often not preferred to
define further Stage nesting (by contained Stages that have their PlanningTables and that
contain a HumanTask), but rather use a HumanTask with PlanningTable, which HumanTask is
contained in the Stage directly.

o Itallows to use the Role that is referenced by the performerReT of the HumanTask to effectively
serve as the Roll e that is authorized to plan based on any Tableltem inthe PlanningTable of the
HumanTask, or to enforce that Case workers that plan based on Planltems in that PlanningTable have
to be assigned both the HumanTask-related Role and the Tableltem-related Roles.

HumanTask inherits from Task, and has the following attributes:

Attribute Description

planningTable : PlanningTable[0..1] | An optional PlanningTable associated to the HumanTask. A
HumanTask can be used for planning, and its PlanningTable
might contain Tableltems that are useful in the particular planning
context.

A HumanTask that is non-blocking (isBlocking set to “false”)
MUST NOT have aPlanningTable.

performerRef : Role[0..1] The performer of the HumanTask.

Table 37: HumanTask attributes

5.4.10.5 ProcessTask
A ProcessTask can be used in the Case to call a Business Process (see 5.4.10.5.1).

Parameters are used to pass information between the ProcessTask (in a Case) and the Process to
which it refers: inputs of the ProcessTask are mapped to I nputs of the Process, and outputs of the
ProcessTask are mapped to outputs of the Process. This way instances of (elements of)
CaseFileltems from the CaseFi le of the Case can be passed to the Process and outputs of the
Process can be passed back and mapped to instances of (elements of) CaseFileltems.

When a ProcessTask is “blocking” (isBlocking is “true”), the ProcessTask is waiting until the
Process associated with the ProcessTask is completed. If isBlocking is set to “false”, the
ProcessTask is not waiting for the Process to complete, and completes immediately, upon its instantiation
and calling its associated Process.

The class ProcessTask inherits from Task, and has the following attributes

Attribute Description

processRef : Process[1] A reference to a Process (see 5.4.10.5.1).

mappings : ParameterMapping[0..*] | Zero or more ParameterMapping objects. A
ParameterMapping of a ProcessTask specifies how an input
of the ProcessTask is mapped to an input of the called Process
and how an output of the called Process is mapped to an output
of the ProcessTask.

Case Management Model and Notation, v1.0 51




Table 38: ProcessTask attributes

5.4,10.5.1 Process

A Process in CMMN is an abstraction of Processes as they are specified in various Process modeling
specifications, in particular the ones that are listed in Table 40.

The class Process inherits from CMMNE lement and has the following attributes

Attribute Description

implementationType : URI The implementation type of the Business Process. It MUST be provided
in URI format

inputs : ProcessParameter[0..*] Zero or more inputs of the Business Process

outputs : ProcessParameter[0..*] | Zero or more outputs of the Business Process

Table 39: Process attributes

The following implementationTypes are defined to support various Business Process modeling
standards:

Implementation Type URI Description

http://www.omg.org/spec/CMMN/Process Type/BPMN20 The Process to call is implemented in
BPMN 2.0

http://www.omg.org/spec/CMMN/Process Type/XPDL2 The Process to call is implemented in
XPDL 2.x

http://www.omg.org/spec/CMMN/ProcessType/WSBPEL20 | The Process to call is implemented in
WS-BPEL 2.0

http://www.omg.org/spec/CMMN/ProcessType/WSBPEL1 | The Process to call is implemented in
WS-BPEL 1.x

Table 40: Process Implementation Types

5.4.10.6 CaseTask

A CaseTask can be used to call another Case. A CaseTask triggers the creation of an instance of that other
Case, which creation denotes the initial transition in the CMMN-defined lifecycle of a Case instance (see 7.3).

The difference between using a CaseTask and a Stage is that a CaseTask calls a Case that has its own
context, i.e. it is based on its own CaseFi le, whereas a Stage represents behavior that shares the same
context with the Stage, i.e. it is based on the same CaseFi le and is “embedded” in the same Case.

Parameters are used to pass information between the CaseTask (in a Case) and the Case to which it
refers: inputs of the CaseTask are mapped to Inputs of the Case, and outputs of the CaseTask are
mapped to outputs of the Case. This way instances of (elements of) CaseFi leltems can be exchanged
between (CaseFi les of) Cases.

52 Case Management Model and Notation, v1.0




When a CaseTask is “blocking” (isBlocking is “true”), the CaseTask is waiting until the Case
associated with the CaseTask is completed. If isBlocking is set to “false”, the CaseTask is not waiting
for the Case to complete, and completes immediately, upon its instantiation and invocation of its associated
Case.

The class CaseTask inherits from Task, and has the following attributes:

Attribute Description

caseRef : Case[1] A reference to the Case that is called as part of the CaseTask

mappings : ParameterMapping[0..*] | Zero or more ParameterMapping objects. A
ParameterMapping of a CaseTask specifies how an input of
the CaseTask is mapped to an input of the called Case and how an
output of the called Case is mapped to an output of the
CaseTask.

Table 41: CaseTask attributes

5.4.11 PlanltemControl

PlanltemControls define aspects of control of instances of Tasks, Stages, EventListeners and
Mi lestones. They are defined in relation to their “origins” in the model - Planltems and
Discretionaryltems - and maybe defaulted by PlanltemControls that are defined in relation to the
PlanltemDefinitions to which the Planltems and Discretionaryltems refer to via their
definitionRef.

PlanltemControls may specify the following:

¢ Under which conditions will Tasks and Stages, once enabled, start manually or automatically. This
is specified by ManualActivationRules, as part of PlanltemControls (see 5.4.11.1).

e Under which conditions will Tasks, Stages and Mi lestones be “required” to complete or
terminate before their containing Stage can complete. This is specified by RequiredRules, as part
of PlanltemControls (see 5.4.11.2)

e Under which conditions will Tasks, Stages and Mi lestones need to be repeated. This is specified
by RepetitionRules, as part of PlanltemControls (see 5.4.11.3).

Run-time semantics in relation to these rules will be specified in chapter 7.

Case Management Model and Notation, v1.0 53




package CMMN [ Flan ltem Control]/J

CMMNElemant

Planltem Discretionaryltem

+id : String
+description : String

+name : String

+name : String

‘T‘ 0.1 0.1
itemControl
PlanftemDetinition +defaultControl | PlanitemCaontral
+name | String 0.1 0.1 0.1
+itemControl
0.1
$1 1 $1
+repetitionRule [0..1 +requiredRule [0..1 +manualfctivationRule |0..1
RepetitionRule RequiredRule ManualAectivationRule
+name | String 0.7 +name : 3tring +name | String
0.* 0.
0.1 0..1 0.1
+condition |1
+condition s +condition
1 +anguage : UR!I 1
+body : String
+contextRef
o CaseFileltem +oontextRef
+contextRef | tName : String D.1
o +muttiplicity . Multiplicity Enum

Figure 12: PlanltemControl class diagram

The class PlanltemControl inherits from CMMNElement and has the following attributes:

Attribute

Description

manual ActivationRule :Manual ActivationRules[0..1]

Optional ManualActivationRule, as contained
by the PlanltemControl.

A ManualActivationRulle comprises of an
Expression that MUST evaluate to boolean. If no
ManualActivationRule is specified then the
default is considered “true”.

A PlanltemControl that is the
defaultControl of an EventListener or

Mi lestone, or that is the itemControl of a
Planltemor Discretionaryltem that is defined
by an EventListener or Mi lestone, MUST
NOT contain a ManualActivationRule.

requiredRule : RequiredRule[0..1]

Optional RequiredRule, as contained by the
PlanltemControl.

A RequiredRule comprises of an Expression
that MUST evaluate to boolean. If no RequiredRule
is specified, the default is “false”.

A PlanltemControl that is the

54

Case Management Model and Notation, v1.0




defaultControl of an EventListener, or that
is the itemControl of aPlanltemor
Discretionaryltem that is defined by an
EventListener, MUST NOT contain a
RequiredRule.

repetitionRule : RepetitionRule[0..1] Optional RepetitionRule, as contained by the
PlanltemControl.

A RepetitionRule comprises of an Expression
that MUST evaluate to boolean. If no
RepetitionRule object is specified, the default is
“false”.

A PlanltemControl thatis the itemControl of
aDiscretionaryltem, MUST NOT contain a
RepetitionRule. (This is because the concept of
“repetition” depends on the semantics of Sentries
(see 5.4.11.3), and Discretionaryltems are not
associated with Sentries.)

A PlanltemControl that is the
defaultControl of an EventListener, or that
is the itemControl of a Planltem that is defined
by an EventListener, MUST NOT contain a
RepetitionRule.

A Planltem that has a PlanltemControl that
contains a RepetitionRule, MUST have an entry
criterion that refers to a Sentry that has at least one
OnPart. (This is because the concept of “repetition”
depends on the semantics of Sentries with
onParts (see 5.4.11.3).)

Table 42: PlanltemControl attributes and model associations

A PlanltemControl MUST be the itemControl of aPlanltemor Discretionaryltem or the
defaultControl ofaPlanltemDefinition.

A PlanltemControl MUST contain at least one repetitionRule or one requiredRule or one
manualActivationRule.
5.4.11.1 ManualActivationRule

A ManualActivationRule specifies under which conditions Tasks and Stages, once enabled, start
manually or automatically.

The class ManualActivationRule inherits from CMMNE lement and has the following attributes

Attribute Description

name : String The name of the ManualActivationRule

Case Management Model and Notation, v1.0 55




contextRef : CaseFileltem[0..1] | The context of the ManualActivationRule.

The caseFi leltem that serves as starting point for evaluation of the
Expression that is specified by the condition of the
ManualActivationRule. If not specified, evaluation starts at the
CaseFi le object that is referenced by the Case as its caseFi leModel.

condition : Expression[1] A condition that is defined as Expression. Expressions are specified
in5.4.7.

An Expression that MUST evaluate to boolean. If the expression
evaluates to “false”, the instance of the Task or Stage MUST be activated
automatically when it is in state Available, otherwise it MUST wait for
manual activation (when it is in state Enabled) (see 7.3.2).

Table 43: ManualActivationRule attributes

5.4.11.2 RequiredRule

A RequiredRule specifies under which conditions Tasks, Stages, EventListeners and
Mi lestones will be “required” to complete or terminate before their containing Stage can complete.

The class Requi redRule inherits from CMMNElement and has the following attributes:

Attribute Description

name : String The name of the RequiredRule

contextRef : CaseFileltem[0..1] | The context of the RequiredRule.

The caseFi leltem that serves as starting point for evaluation of the
Expression that is specified by the condition of the
RequiredRule. If not specified, evaluation starts at the CaseFile
object that is referenced by the Case as its caseFi leModel.

Condition : Expression[1] A condition that is defined as Expression. Expressions are specified
in5.4.7.

An Expression that MUST evaluate to boolean. If the Expression
evaluates to “true”, then the instance of the Task, Stage, or Mi lestone
is required and MUST be in state Disabled, Completed, Terminated, or
Failed before its containing Stage (instance) can complete (see 7.3 and
7.5), otherwise it is considered optional.

Table 44: RequiredRule attributes

5.4.11.3 RepetitionRule

A RepetitionRule specifies under which conditions Tasks, Stages and Mi lestones will have
repetitions. Each repetition is a new instance of it. The trigger for the repetition is a Sentry, that is referenced
as entry criterion, being satisfied, whereby an OnPart of that Sentry occurs. For example: A Task might be
repeated each time a certain document is created. The Task (as Planltem) might have an entry criterion,
referring to a Sentry, having on OnPart, whereby the onPart refers to the CaseF i el tem that represents
the type of document, and whereby the standardEvent of the OnPart is specified as “create”. When the

56 Case Management Model and Notation, v1.0




RepetitionRule as contained in the PlanltemControl of the Task (as Planltem) also evaluates to
“true”, the Task is repeated upon creation of the document.

EventListeners cannot have RepetitionRule. The notion of repetition is not useful for
UserEventListeners. However, for a TimerEventListener repetition can be defined via a
timerExpression based on ISO-8601, by defining repeating intervals in it (using “R<n>/" notation).

The class RepetitionRule inherits from CMMNElement and has the following attributes:

Attribute Description

name : String The name of the RepetitionRule

contextRef : CaseFileltem[0..1] | The context of the RepetitionRule.

The caseFi leltem that serves as starting point for evaluation of the
Expression that is specified by the condition of the
RepetitionRule. If not specified, evaluation starts at the CaseFile
object that is referenced by the Case as its caseFi leModel.

condition : Expression[1] A condition that is defined as Expression. Expressions are specified
in5.4.7.

An Expression that MUST evaluate to boolean. If the Expression
evaluates to “true”, then the instance of the Task, Stage, or Mi lestone
maybe repeated, otherwise it MUST NOT be repeated.

Table 45: RepetitionRule attributes

The following table summarizes applicability of rules associated with PlanltemControl, in relation to
Tasks, Stages, EventListeners and Mi lestones:

RepetitionRule RequiredRule ManualActivationRule
Stage Applicable Applicable Applicable
Task Applicable Applicable Applicable
Milestone Applicable Applicable N/A
EventListener N/A N/A N/A

Table 46: Applicability of PlanltemControl rules

6 Notation

The following sections provide an overview of the CMMN notation used for modeling the core
constructs of a Case.

Case Management Model and Notation, v1.0 57




6.1 Case

The CMMN notation provides for the depiction of the behavioral model elements of a Case (i.e. elements of a
Case’s casePlanModel). As far as modeling of information is concerned, only the information model
elements (i.e. CaseFileltems) that are involved in the behavior of the Case are depicted. In other words,
the CMMN notation does not provide for the visual modeling of the information model elements of the Case.
As with many other modeling languages, there are many different ways in which to model a Case using CMMN
and its notation. It is left to the modeler to choose the best model to capture the essence of the situation at hand
for the desired purpose.

6.2 Case Plan Models

The complete behavior model of a Case is captured in a casePlanModel. A casePlanModel is depicted
using a “Folder” shape that consists of a rectangle with an upper left smaller rectangle attached to it. The name of
the Case can be enclosed into the upper left rectangle.

/ <CaseName> \

Figure 13: CasePlanModel Shape

The various elements of a caseP lanModel are depicted within the boundary of the caseP lanMode Il shape.
Note that the casePlanModel is the outermost Stage that can be defined for a Case.

The following diagram shows an example of a Case’s casePlanModel. Although incomplete, this diagram
exemplifies the basis of Case modeling using the CMMN notation.

58 Case Management Model and Notation, v1.0



/ Treat Fracture \ E

....... Perform Prescribe
- Surgery Rehabilitation
Examine | ’ Perform
Patient XRay B
,,,,, P Prescribe
- : Fixation

L Prescribe
Sling :
R Apply Cast

Prescribe  }
Medication

Figure 14: CasePlanModel Example

CMMN is declarative by nature, thus one should not read any meaning into the relative positioning of shapes.

6.3 Case File Items

A CaseFileltemis depicted by a “Document” shape that consists of a rectangle with a broken upper right
corner.

Figure 15: CaseFileltem Shape

6.4 Stages

A Stage is depicted by a rectangle shape with angled corners and a marker in the form of a “+” sign in a small
box at its bottom center. When the Stage is expanded it is depicted by a rectangle shape with angled corners
and a marker in the form of a “-” sign in a small box at its bottom center.

Case Management Model and Notation, v1.0 59



AN 5 d

Figure 16: Collapsed Stage and Expanded Stage Shapes

A Stage may be discretionary (i.e used as Discretionary ltemthatis contained inaPlanningTable).
A discretionary Stage has the shape of a rectangle with short dashed lines and angled corners and a marker in
the form of a “+” sign in a small box at its bottom center, while a discretionary expanded Stage has the shape of
a rectangle with short dashed lines and angled corners and a marker in the form of a “-” sign in a small box at its
bottom center.

.............................................................

.
0

¢ememcsccccccscccccccccananay
Veeccecccccccccccccccccnccaannns

Figure 17: Discretionary Collapsed Stage and Discretionary Expanded Stage Shapes

When a Stage is expanded, elements that are contained in it become visible.

6.5 Entry and Exit Criterion

Planltems may have associated Sentries. When a Sentry is used as an entry criterion it is depicted by a
shallow “Diamond” shape.

0

Figure 18: EntryCriterion Shape
When a Sentry is used as an exit criterion it is depicted by a solid “Diamond” shape.

60 Case Management Model and Notation, v1.0



¢

Figure 19: ExitCriterion Shape

When allowed, the Entry Criterion and EXit Criterion shapes can be placed as decorator anywhere on the
boundary of a shape depicting the Planltem.

81 N
R
ERij

= ¢

Figure 20: Collapsed and Expanded versions of a Stage with two entry criterion, one sub Stage and three Tasks

6.6 Plan Fragments

A PlanFragment is depicted by a rectangle shape with dashed lines and softly rounded corners and a marker
in the form of a “+” sign in small box at its bottom center. When the PlanFragment is expanded it is depicted
by a rectangle shape with dashed lines and softly rounded corners and a marker in the form of a “-” sign in a
small box at its bottom center.

Figure 21: Collapsed PlanFragment and Expanded PlanFragment Shapes

When a PlanFragment is expanded, elements contained in it become visible.

Case Management Model and Notation, v1.0 61



6.7 Tasks

A Task is depicted by a rectangle shape with rounded corners.

Figure 22: Task Shape

A Task may be discretionary (i.e. used as Discretionaryltem contained ina PlanningTable). A
discretionary Task is depicted by a rectangle shape with dashed lines and rounded corners

.................

Figure 23: Discretionary Task

A Task may be associated with one or more entry criteria Sentries and one or more exit criteria Sentries.

The following example illustrates a Task with one entry criterion and one exit criterion.

Figure 24: Task with one entry criterion and one exit criterion

6.7.1 Human Task

A HumanTask has two possible depictions. If the HumanTask is non-blocking (i.e. iIsBlocking set to
“false™), it is depicted by a rectangle with rounded corners and a “Hand” symbol in the upper left corner. If the
HumanTask is blocking (i.e. isBlocking set to “true”), it is depicted by a rectangle with rounded corners
and a “User” symbol in the upper left corner.

Figure 25: Non-blocking HumanTask Shape

62 Case Management Model and Notation, v1.0



Figure 26: Blocking HumanTask Shape

A HumanTask may be discretionary (i.e. used as Discretionaryltem contained inaPlanningTable).
A discretionary HumanTask is depicted by a rectangle shape with dashed lines and rounded corners with the
appropriate marker depending if it is blocking or not.

................................
3 '\ K

H ]
. ]
. .
14 [
’ [
L)

: H
] ]
] ]
L] ]
]

’ \

----------------------------------

Figure 27: Non-Blocking and Blocking Discretionary HumanTasks

6.7.2 Case Task

A CaseTask is depicted by rectangle shape with rounded corners with a “Folder” symbol in the upper left
corner.

Figure 28: CaseTask Shape

A CaseTask may be discretionary (i.e. used as Discretionary ltem containted in a PlanningTable).
A discretionary CaseTask is depicted by a dash lined rectangle with rounded corners with a “Folder” symbol
in the upper right corner.

.................

.................

Figure 29: Discretionary CaseTask Shape

6.7.2.1 Case Task for BPMN Compatibility Conformance

Tools implementing the BPMN Compatibility Conformance type SHOULD use this additional notation; this
section is optional otherwise.

Case Management Model and Notation, v1.0 63



A CaseTask can also be depicted by a rectangle shape with rounded corners with a “Folder” symbol in the
upper left corner, a collapsed marker and a thick border.

Figure 30: Alternative CaseTask shape

A discretionary CaseTask can also be depicted by a dash-lined rectangle with rounded corners with a “Folder”
symbol in the upper left corner, a collapsed marker and a thick border.

Figure 31: Alternative Discretionary CaseTask shape

6.7.3 Process Task

A ProcessTask is depicted by a rectangle shape with rounded corners with a “Chevron” symbol in the upper
left corner.

Figure 32: ProcessTask Shape

A ProcessTask may be discretionary (i.e. used as Discretionaryltem contained in a
PlanningTable). A discretionary ProcessTask is depicted by a dash lined rectangle with rounded
corners with a “Chevron” symbol in the upper left corner.

.................

.................

Figure 33: Discretionary ProcessTask Shape

6.7.3.1 Process Task for BPMN Compatibility Conformance

Tools implementing the BPMN Compatibility Conformance type SHOULD use this additional notation; this
section is optional otherwise.

A ProcessTask can also be depicted by a rectangle shape with rounded corners with an optional “Chevron”
symbol in the upper left corner, a collapsed marker and a thick border.

Figure 34: Alternative ProcessTask Shapes

64 Case Management Model and Notation, v1.0



A discretionary ProcessTask can also be depicted by a dash-lined rectangle with rounded corners with an
optional “Chevron” symbol in the upper left corner, a collapsed marker and a thick border.

Figure 35: Alternative Discretionary ProcessTask Shapes

6.8 Milestones

A Mi lestone is depicted by a rectangle shape with half-rounded ends.

D

Figure 36: Milestone Shape

A Mi lestone may have zero or more entry criteria.

S

Figure 37: Milestone with one entry criterion

6.9 EventListeners

An EventListener is depicted by a double line circle shape with an open center so that markers can be
placed within it to indicate variations of an EventListener. The circle MUST be drawn with a double line.

O

Figure 38: EventListener Shape

A TimerEventListener is depicted by double line circle shape with a “Clock” marker in the center.

Figure 39: TimerEventListener Shape

A UserEventListener is depicted by double line circle shape with a “User” symbol marker in the center.

Case Management Model and Notation, v1.0 65



Figure 40: UserEventListener Shape

6.10 Connectors

Certain dependencies between elements that are shown inside expanded Stages or PlanFragments are depicted
using connectors. The shape of the connector object is a dotted line. The connector MUST not have arrowheads.

Figure 41: Connector Shape

One such depicted dependency is the onPart of a Sentry. For example, the following diagram illustrates a
situation where the entry criteria of Task B depends on the completion of Task A.

Figure 42: Sentry-based dependency between two Tasks

The other type of dependency that is visualized is the dependency between a HumanTask and
Discretionaryltems inits PlanningTable, when the HumanTask is shown with its
PlanningTable expanded. These dependencies are also depicted by the same dotted line connector.

.................

Task 1

.................

.................

Discretionary
Task 2

Figure 43: Dependency between a blocking HumanTask and its associated Discretionary Tasks

6.10.1 Connector Usage

Connectors that represent Sentry onParts, can be used to visualize (possibly complex) dependencies
between Planltems. The following picture illustrates a situation where Task C can be activated only if Task
A and Task B complete.

66 Case Management Model and Notation, v1.0



Figure 44: Using Sentry-based connectors to visualize "AND"

The following picture illustrates a situation where Task C can be activated if Task A or Task B completes.

Task C

Figure 45: Using Sentry-based connectors to visualize "OR"

The following diagram illustrates a situation where Stage B depends on the exit criterion of Stage A.

StageA @i Stage B

Figure 46: Using Sentry-based connector to visualize dependency between Stages

Note that the connection of the connector (i.e. onPart of the entry criterion Sentry of B) to the exit criterion
Sentry of A visualizes the sentryReT of the onPart of the entry criterion Sentry of B (see 5.4.6.1).

The construct in Figure 47 maybe considered a “Stage transition”, triggered by a particular event. Stage B is
enabled via its entry criterion (depicted on its boundary), the OnPart of which may specify as
standardEvent the termination of Stage A, given that it terminates based on the exit criterion (as depicted
on its boundary). That exit criterion may itself has an OnPart (not depicted as connector) that refers e.g. to the
creation of a document (CaseF i el tem instance). So, when an instance of the document is created, Stage A
terminates, and Stage B is enabled upon termination of Stage A, given that it terminates based on that
document creation event.

Case Management Model and Notation, v1.0 67



The following diagram illustrates a situation where Task A depends on the achievement of Mi lestone A.

______________________ B rasen

Figure 47: Using the Sentry-based connector to visualize dependency between a Task and a Milestone

The following diagram illustrates a situation where Task A depends on a TimerEventListener.

Task A

Figure 48: Using the Sentry-based connector to visualize dependency between a Task and a TimerEventListener

The following diagram illustrates a situation where Task A depends on a CaseFileltem.

........................... ‘ Task A

Figure 49: Using the Sentry-based connector to visualize dependency between a Task and a CaseFileltem

6.11 Planning Table

A Stage or aHumanTask can have aPlanningTable. APlanningTable is depicted by a “Table”
shape composed of six cells with the center bottom cell containing a marker indicating if the
Discretionaryltemsare visualized or not. When Discretionaryltems are NOT visualized a marker
in the form of a “+” sign is present in the bottom center cell. When Discretionaryltem are visualized a
marker in the form of a “-” sign is present in the bottom center cell.

B

Figure 50: PlanningTable with Discretionaryltems Not Visualized Shape

B

Figure 51: Planning Table with Discretionaryltems Visualized Shape

68 Case Management Model and Notation, v1.0



The PlanningTabl e shape can only be placed as a decorator on the boundary of a Stage or a HumanTask
object. The following example illustrates a Stage with a PlanningTable.

i e,

+ N ’
.
\N . 4

Figure 52: Stage and Discretionary Stage with PlanningTable

The following example illustrates a blocking HumanTask with a PlanningTable.

Figure 53: Blocking HumanTask and Discretionary Blocking HumanTask with PlanningTable

When a user “expands” a PlanningTable, its contained Discretionary |l tems become visible within
the Stage.

I T
/ Stage A L] \ / Stage A L= g, \

Task A Task A

AN = e AN L P

Figure 54: Stage with PlanningTable Collapsed and Expanded

When the PlanningTable of HumanTask is expanded, its contained Discretionaryltems are
visualized outside the HumanTask shape. The relationship between the Discretionary ltems and the
HumanTask is visualized with the dotted line connector.

Case Management Model and Notation, v1.0 69



Task 1

cemcmccccacas

Discretionary
Task 2

ceecmccccacas

Figure 55: Blocking Human Task with Discretionaryltems not expanded and expanded

The next four figures illustrate expansion of PlanningTables.

L]
Stage A

Figure 56: Collapsed Stage with Collapsed PlanningTable

Figure 57: Expanded Stage with Collapsed PlanningTable

70 Case Management Model and Notation, v1.0



0¥

.................

O
3
=

Figure 58: Expanded Stage with Expanded PlanningTable

/ Stage A L=l \

i Discretionary E

<> E Task 1 '
= E ] s

: : .+ Discretionary |

; DT1 ; P Task2

\ =

Figure 59: Expanded Stage with Expanded PlanningTable and Expanded HumanTask PlanningTable

6.12 Decorators

In order for the CMMN notation to be as expressive as possible, different shape decorators are introduced. These
decorators are useful to visually indicate some particular behavior patterns of Planltems and
Discretionaryltems.

6.12.1 AutoComplete Decorator

When a Stage autoComp lete attribute is set to “true”, then an AutoComplete decorator is added to the
bottom center of the Stage shape.

The AutoComplete Decorator is a small black square.

Case Management Model and Notation, v1.0 71



Figure 60: AutoComplete Decorator

| [E3)

............................................................

RETTTELEEEEN

.......................

semccccsccccscsccccscnscnanan,
Veeceececcccccccccccccccccnannns

R LI T T S SR

Figure 61: Stage Shape variations with AutoComplete Decorator

The next picture shows the outermost Stage of a Case, the caseP lanModel, with AutoComplete
Decorator.

Figure 62: CasePlanModel with AutoComplete Decorator

6.12.2 ManualActivation Decorator

The Manual Activation Decorator, representing a ManualActivationRule, is a small white-filled triangle
pointing to the right.

72 Case Management Model and Notation, v1.0



>

Figure 63: ManualActivation Decorator

The Manual Activation Decorator is visible when a ManualActivationRule is defined for the Planltem
or Discretionaryltem.

= e o e gy
&
I

&

EE:" T, __E:_J.____ .

Figure 64: ManualActivation Decorator example on Task and Stage

6.12.3 Required Decorator
The Required Decorator is a bold black “Exclamation” symbol.

|
Figure 65: Required Decorator

The Required Decorator is visible when a RequiredRule is defined for Planltem or
Discretionaryltem.

.................

I ! -

.......................

Figure 66: Required Decorator example on Task and Stage

Case Management Model and Notation, v1.0 73



-

Figure 67: Required Decorator example on Milestone

6.12.4 Repetition Decorator

The Repetition Decorator, depicting a RepetitionRule, consists of two bold vertical bars crossed by two
bold horizontal bars (identical to ASCII # symbol).

Figure 68: Repetition Decorator

The Repetition Decorator is visible when a RepetitionRule is defined for a Planltem or
Discretionaryltem.

— e —

—_—— e — —

oy
[ T |

|I|# ey E# &

Figure 69: Repetition Decorator example on Task and Stage

D

Figure 70: Repetition Decorator example on Milestone

6.12.5 Decorator Applicability Summary
Various Decorators can be added to CMMN shapes. The following table presents Decorators applicability.

Manual

. L o S Repetition
Planning Table | Entry Critrion | Exit Criterion AutoComplete Activation

Required
Decorator

Applicability E O ‘ B i | "
CasePlanModel M M |Z

74 Case Management Model and Notation, v1.0



Stage

M M M

Task
HumanTask
[::::] only EZ] EZ]
MileStone
EventListener

O

CaseFileltem

]

PlanFragment

_—————

Table 3: Decorators Applicability Summary Table

Figure 71: CasePlanModel Shape with all possible Decorators

Case Management Model and Notation, v1.0

75



| #

Figure 72: Stage Shape with all possible Decorators

L

Figure 73: Task Shape with all possible Decorators

Figure 74: Non-Blocking and Blocking HumanTask Shapes with all possible Decorators
Figure 75: Milestone Shape with all possible Decorators

6.13 Examples

The following picture shows a combination of various elements, by means of a small example, which is about
claims management.

76 Case Management Model and Notation, v1.0



|| Claims File III
T

ldentify Responsibilities ~ e —— -

e 2 '

- - - {y Responsibilities } ______ {} Change :

L) | Identified Responsibilities |

Identify ! | $ .l

Responsibilites [ | .,  mm—m—=—=====-=
!

Base
Information
Attached

R i Claims
Processed

D [

=
H
s
g
-
5
3
3
=
£
=1

o

H

A

(=8

3

|
]
|
]
1
o

I
G Review :
| [T Create Claims [~~~ "~~~ ~7°° PR ———— E ¥ Documents |
Motification — | | I # [
IF i=sssssssan T Creale: o 2 | 2 emseissas
v I Claim
1 | D i : 1 I : gm————— = e
.__{:’ Request Missing | I e 0 |
Documents I | Create i
| | |
S oensn nanci] e I = : Letter |
i I

Figure 76: Claims Management Example

Case Management Model and Notation, v1.0 77



7 Execution Semantics

Most of the execution semantics is described by the lifecycle of important CMMNE lement instances. In
particular the lifecycle for Task, Stage, Milestone, EventListener, and CaseFileltem instances
describe the majority of the execution semantics. In addition to the lifecycle there are behavioral property rules
that also describe the behavior of a case management system.

This chapter first describes the overall semantics associated with Case instances. It then describes the
semantics of the caseFi leModel, and concludes with the semantics of the caseP lanModel portion.

7.1 Case Instance

A Case instance is composed of information represented by a caseFi leModel and behavior represented by
a casePlanModel. In addition, there are roles, which correspond to humans expected to participate in the
Case.

When a Case instance is created, the caseFi1 leModel, casePlanModel, and caseRoles are
all initialized. The Stage instance implementing the caseP lanMode I starts executing in an Active
state (see 7.3), and while the Case instance is not in Closed state the caseFi leModel can be
modified, planning can occur, and human participants can be assigned to roles.

7.2 CaseFileltem Lifecycle
The following diagram illustrates the lifecycle of a CaseFi le ltem instance:

create
7 update = replace ™ ™
/ N\
f ___——»| Available |- __ \

| | - \
/ |

'\\ \ _ / \omove child~ / /

~— r'emove reference ’

Discarded

Figure 77: CaseFileltem instance lifecycle

A CaseFileltem instance has the following states:

State Description

Available In this state a CaseFi el tem instance is available for Case workers to use

Discarded A CaseFileltem instance in this state is considered deleted and is not available to Case
workers or expressions

Table 47: CaseFileltem instance states

78 Case Management Model and Notation, v1.0



A CaseFileltem instance can undergo the following transitions:

Transition |From To Description

create @ Available Transition to the Available state when a CaseFi leltem instance is
created

update Available Available Transition when a CaseFi leltem instance property is updated

replace Available Available Transition when the CaseFi leltem instance content is replaced

add child Available Available Transition when another CaseFi leltem instance is added to the
children relationship (meaning an entry is added to
CaseFileltem.children)

remove Available Available Transition when another CaseFi leltem instance is removed from
child the chi ldren relationship (meaning an entry is removed from
CaseFileltem.children)

add Available Available Transition when another CaseFi leltem instance is added to the
reference target reference relationship (meaning an entry is added to
CaseFileltem.targetRe®)

remove Available Available Transition when another CaseFi lel tem instance is removed from
reference the targetRef relationship (meaning an entry is removed from
CaseFileltem. targetRef)

delete Available Discarded Terminal state

Table 48: CaseFileltem instance transitions

A Task instance output MAY have an effect on CaseFi leltem instances that are specified as output

CaseParameters of a Task instance.

7.2.1 CaseFileltem operations

The following standard operations are defined for CaseFi leltem instances to support navigation over the

CaseFile:

Operation Parameters Description

getCaseFileltemInstance IN Get a CaseFi leltem instance of given
itemName : String 1 temName. If no Cas_eFl leltem _

instance for the given 1temName exists,
ouT an empty CaseFi leltem instance

CaseFileltem instance MUST be returned.

getCaseFileltemInstance IN Get a CaseFi leltem instance of given
itemName : String itemName and index. Ttus operation
) MUST be used for CaseFileltem
index : Integer instances with a multiplicity greater than

Case Management Model and Notation, v1.0

79




ouT
CaseFileltem instance

one. The Index is used to identify a
concrete CaseFi leltem instance from
the collection of CaseFileltem
instances. If no CaseFileltem
instance for the given 1temName exists,
or if the index is out of the range of
CaseFileltem instances, an empty
CaseFileltem instance MUST be
returned.

getCaseFileltemInstanceProperty

IN
item : CaseFileltem instance
propertyName : String
ouT

Get the value of a CaseFileltem
instance property. If propertyName
refers to a non-existing property of the
CaseFileltem instance, an empty
Element MUST be returned. The Element
returned MUST be of the specified

Element property type for the CaseFileltem
instance.
getCaseFileltemInstanceChild IN Get a child CaseFi leltem instance for

item : CaseFileltem instance

childName : String

a given CaseFi leltem instance. The
value of parameter ch i IdName specifies
the name of the child to get. If no child of

OoUT the given name exists for the
. CaseFileltem instance, an empty
CaseFileltem CaseFileltem instance MUST be
returned.
getCaseFileltemInstanceParent IN Get the parent CaseFi leltem instance
item : CaseFileltem instance | Of @ CaseFileltem instance. If no
parent exists then an empty
ouT CaseFileltem instance MUST be

CaseFileltem instance

returned.

getCaseFileltemInstanceTarget

IN
item : CaseFileltem instance
targetName : String

ouT
CaseFileltem instance

Get a target CaseFi lel'tem instance for
a given CaseFi leltem instance. The
value of parameter targetName
specifies the name of the target to get. If
no target of the given name exists for the
CaseFileltem instance, an empty
CaseFileltem instance MUST be
returned.

getCaseFileltemInstanceSource

IN
item : CaseFileltem instance
ouT

CaseFileltem instance

Get the source CaseFi leltem instance
of a CaseFilelteminstance. If no
source exists then an empty
CaseFileltem instance MUST be
returned.

80

Case Management Model and Notation, v1.0




Table 49: CaseFileltem instance operations

An implementation that uses XPath as expression language (see 5.1.2), MIGHT use XPath Extension Functions
to implement those operations.

7.3 CasePlanModel Lifecycles

The behavior associated with Case models in CMMN is the result of combining a variation of the operational
semantics for business artifacts managed based on the guard-stage-milestone (GSM) concept, with other
concepts, such as, most notably, dynamic planning, the application of finite state machine lifecycles for
CaseFileltem, EventListener, Milestone, Stage and Task instances, and application of so-called
Behavior Property Rules (see 7.5). Further generalizations include the possibility that
PlanltemDefinitions may have multiple, simultaneous occurrences, and the separation of

Mi lestones from Stages (in GSM, each milestone is associated with a stage, and achieving the milestone
has the effect of terminating the stage).

Stages contain other Planltems (Stages, Tasks, Mi lestones, and EventListeners). The
terminology used in this specification, calls the elements inside a Stage its children, and the container Stage
the parent. Therefore, a child of a Stage is an element contained in that Stage. The parent of an element is the
Stage that contains that element. This terminology refers to a single level of containment; a second level of
containment may be referenced using grandchildren or grandparent. For example for a Stage S1 containing a
single Stage S2 that itself contains a single Task T1, this specification will say that S1 is the parent of S2, and
S2 is the parent of T1, T1 is the only child of S2, and S2 is the only child of S1.

This section describes the lifecycle of some important CMMNE Iement instances, including Case and all the
PlanltemDefinition derived classes (Stage, Task, Mi lestone, and EventListener) instances.

It is important to understand that when we talk about EventListener, Mi lestone, Stage or Task
instances we refer to the instances that originate from instantiating a PlanltemDefinition that is referred
froma Planltemor Discretionaryltem associated with the corresponding EventListener,

Mi lestone, Stage or Task.

There are nine states used in these lifecycles, and they are described in the following table.

State Description

Active Indicates behavior is being executed in the instance

Available The instance is waiting for a Sentry to become “true” or for an event to occur, so that the instance
can progress to its primary purpose (e.g., become Active or Enabled)

Closed Terminal state. There is no activity (no behavior being executed) in the Case instance, and further
planning in the Case's caseP lanModel is not permitted. This state is only available for the
outermost Stage instance implementing the Case's casePlanModel

Completed | Semi-terminal state® for Case instance, but terminal state for all other EventListener,

Mi lestone, Stage or Task instances. There is no activity (no behavior being executed) in the
element. A Case instance could transition back to Active by engaging in planning at the outermost
Stage instance implementing the Case s casePlanModel

Disabled Semi-terminal state. Indicates a Case worker (human) decision to disable the instance, because it

1 For the purpose of this specification, a semi-terminal state is a state with a transition out of the state, but it is considered terminal to

calculate Completion state of its parent Stage instance.

Case Management Model and Notation, v1.0 81



State Description

may not be required for the Case instance at hand

Enabled The instance is waiting for a Case worker (human) decision to become Active or Disabled

Failed Semi-terminal state. This state indicates an exception or software failure.

Suspended | Indicates a Case worker (human) decision to temporary suspend work on an Active instance.
There is no activity (no behavior being executed) in the instance, but a Case worker (human) could
move the instance back to an Active state.

Terminated | Terminal state. Indicates termination by an exit criteria or a Case worker (human) decision to
terminate an Active instance.

Table 50: Case, EventListener, Milestone, Stage and Task instance states

Terminal states (Closed, Completed, and Terminated) and semi-terminal states (Disabled, and Failed) are used
to calculate the completion of its enclosing Stage instance. A semi-terminal state is a state with a transition out
of the state, but it is considered terminal to calculate Completion state of its parent Stage instance.

7.3.1 Case Instance Lifecyle

The Case lifecycle corresponds to the Stage instance implementing the Case”s caseP lanModel, which
in below text is referred as the outermost Stage instance of the Case instance. The outermost Stage instance
is special in two areas:

1- 1t MUST NOT contain entry criteria.

2- That Stage instance implements the Case lifecycle described in this section, which is different than
the lifecycle for all other Stage instances.

The following diagram illustrates the lifecycle of a Case instance, by illustrating the lifecycle of the Case™s
casePlanModel.

create

re-activate )
P Active

) A
/ ZAN
complete ,-f-"":,',-/ ;:“‘*=-=, ___ suspend

f -

:,\ - Kerminate \\\\fault HH‘\‘\.
\ 2 v Y
\ Completed Terminated Failed Suspended
| close
Y
Closed

Figure 78: Lifecycle of a Case instance
82 Case Management Model and Notation, v1.0



A Case instance has the following states:

State

Description

Active

In this state the Case instance is executing; meaning the outermost Stage instance is in the
Active state

Suspended

This state allows a Case worker (human) to temporarily suspend an executing Case instance. A
Case instance MUST propagate this state to its outermost Stage instance. This state MUST then
be propagated down to the outermost Stage instance’s contained EventListener,

Mi lestone, Stage and Task instances.

Completed

The Case instance is completed, when all the required Mi lestone, Stage and Task instances
in the outermost Stage instance are completed (completed or terminated), and there are no
executing (Active) Stage or Task instances.

Terminated

Terminal state. This state can be achieved by an exit criteria and also allows a Case worker
(human) to terminate an executing Case instance. This state is reached when the outermost
Stage instance reaches it.

Failed

Semi-terminal state. This state is reached when the outermost Stage instance reaches it. The state
indicates an exception or software failure.

Closed

Terminal state. In this state no new activity is allowed in the Case. The Case instance
caseFileModel and all its content becomes read only, and no new Task or Stage instances

can be planned

Table 51: Case instance states

A Case instance can undergo the following transitions:

Transition

From To Description

create

@ Active Transition to the initial state (Active) when the Case instance is
created. The outermost Stage instance skips the Available state and
MUST transition directly to the Active state, because that Stage

instance does not have a (entry criteria) Sentry.

suspend

Active Suspended | Transition by Case worker (human) decision. This state propagates
down to the outermost Stage instance, which in turn propagates it
down to all its internal EventListener, Mi lestone, Stage

and Task instances.

terminate

Active Terminated | Transition by Case worker (human) decision. This state propagates
down to the outermost Stage instance, which in turn propagates it
down to all its internal EventListener, Milestone, Stage

and Task instances

complete

Active Completed | Transition when all the required Mi lestone, Stage and Task
instances have reached a terminal state (Closed, and Terminated) or a
semi-terminal state (Completed, Disabled, and Failed), and there are

no executing (Active) Stage or Task instances.

fault

Failed Transition when the outermost Stage instance reaches the Failed

state due to an exception or software failure

Active

Case Management Model and Notation, v1.0 83




Transition [From To

Description

re-activate Completed Active

Terminated
Failed
Suspended

Transition by a Case worker (human), or an administrator.

close Closed

Completed
Terminated
Failed

Suspended

Transition by the system, an administrator, or Case worker (human)
when no further work or modifications should be allow for this Case

Table 52: Case instance transitions

7.3.2 Stage and Task Lifecycle
The following diagram illustrates the lifecycle of a Stage or Task instance:

7 create ~
s /i\ ~ \
( Available j
.
star - enable re-enable
B e PN
,( Enabled }disab_'e ,_( Disabled \
[ N N4
' manual
\ o ~
—L\\ resume
— Active — (Hj
/ \ \‘. | T | parent
le-activate \\ suspend | | parent s | |resume
.', fault | \ \ .sus;:;fn—L_\
\I‘ Y ~ S Suspended\
i \ /

—~ /’

‘ complete
B A
4 N
Completed |
\ J

\{ Failed ,II\\,I T
NED)

—
‘.(} exit

terminate

Vs
| Terminated \
N J

—

Figure 79: Lifecycle of a Stage or Task instance

A Stage or Task instance has the following states:

84

Case Management Model and Notation, v1.0




State Description

Available | A Stage or Task instance becomes available when the Stage instance in which it resides moves
into Active state. While available, the Stage or Task instance is waiting for its entry criteria
(Sentry) to become “true”. A missing entry criteria (Sentry) is considered “true”.

Enabled A Stage or Task instance in this state is waiting for a human to start or disable it. Only Stage or
Task instances that require Case worker (human) intervention to start get into this state
(ManualActivationRule evaluates to “true™)

Disabled Semi-terminal state. This state is reached when a Case worker (human) decides the Stage or
Task instance should not execute in this instance of the Case

Active The Stage or Task considered instance is executing in this state. Stage instances in this state
contain at least one Stage or Task instance in the Available, Enabled, Active, Suspended state,
or autoComplete is set to “false”.

Suspended | This state allows a Case worker (human) to temporarily suspend an executing Stage or Task
instance. A Stage instance MUST propagate this state to all its contained EventListener,
Mi lestone, Stage and Task instances.

Failed Semi-terminal state. This state indicates an exception or software failure

Completed | Terminal state. This state indicates normal termination of the Stage or Task instance. For a
Stage instance it indicates all its contained Stage or Task instances MUST be either completed
or terminated.

Terminated | Terminal state. This state indicates a termination by a Case worker (human), or termination by

reaching the exit criteria sentry. A Stage instance MUST propagate this state to all its contained
EventListener, Milestone, Stage and Task instances.

Table 53: Stage and Task instances states

A Stage or Task instance can undergo the following transitions:

Transition

From To Description

Create

@ Available Transition to the initial state (Available) when the Stage or
Task instance is created. This happens when the Stage
instance containing this Stage or Task instance transitions
to Active. The RepetitionRule and the
RequiredRule Boolean expressions MUST be evaluated
in this transition, and their Boolean values SHOULD be
maintained for the rest of the life of the Stage or Task
instance.

enable

Available Enabled Transition when the entry criteria (sentry) becomes “true” and
the Stage or Task instance requires manual intervention to
transition to Active or Disabled. This transition only happens
if the Manual ActivationRule evaluates to “true” at the
moment the sentry becomes “true”. The
ManualActivationRule Boolean expression MUST be
evaluated in this transition and its Boolean value SHOULD be
maintained for the rest of the life of the Stage or Task

Case Management Model and Notation, v1.0 85




Transition

From

To

Description

instance.

start

Available

Active

Transition when the entry criteria (sentry) becomes “true” and
the Stage or Task instance does not require manual
intervention. This transition only happens if the
ManualActivationRule evaluates to “false” at the
moment the sentry becomes “true”. The
ManualActivationRule Boolean expression MUST be
evaluated in this transition, and its Boolean value SHOULD
be maintained for the rest of the life of the Stage or Task
instance.

disable

Enabled

Disabled

Transition by Case worker (human) decision

manual start

Enabled

Active

Transition by Case worker (human) decision

suspend

Active

Suspended

Transition by Case worker (human) decision or propagation
from outer Stage instance. For a Stage instance, this state
MUST propagate to all its contained EventListener,

Mi lestone, Stage and Task instances.

fault

Active

Failed

Transition when an exception or software failure occurs. This
state MUST NOT propagate.

complete

Active

Completed

Transition when the Stage or Task instance completes
normally. For a Stage instance, this means that all its child
Task and Stage instances have reached a terminal or
semi-terminal state (all child Task and Stage instances
have reached disabled, terminated, completed, or fault). For a
Task instance, this means its purpose has been accomplished
(CaseTask instances have launched a new Case instance;
ProcessTask instances have launched a Process
instance and if output parameters are required then the Case
or Process instance has completed and returned the output
parameters; HumanTask instances have been completed by a
human; etc.)

terminate

Active

Terminated

Transition by Case worker (human) decision or propagation
from outer Stage instance. For a Stage instance, this state
MUST propagate to all its contained EventListener,

Mi lestone, Stage and Task instances.

exit

Available
Active
Enabled
Disabled,
Suspended
Failed

Terminated

Transition when the exit criteria of the Stage or Task
instance becomes “true”, or when the parent Stage instance
transitions to Terminate state. This transition may represent a
normal or an abnormal termination.

resume

Suspended

Active

Transition by Case worker (human) decision or propagation
from outer Stage instance. For a Stage instance, this state
MUST propagate to all its contained EventListener,

86

Case Management Model and Notation, v1.0




Transition [From To Description
Mi lestone, Stage and Task instances.
re-activate | Failed Active Transition by the systems, an administrator, or by Case
worker (human) when the source of the failure has been
resolved
re-enable Disabled Enabled Transition by a Case worker (human) decision
parent Available Suspended Transition to Suspended when the parent Stage instance
suspend ] transitions to Suspended. Stage instances MUST propagate
Active this state down to all its children.
Enable
Disabled
parent Suspended Available Transition to the state previous to be suspended, when the
resume Active parent stage transition out of Suspened. Stages propagate this
Enable state down to all its children
Disabled

Table 54: Stage and Task instance transitions

Stage instances propagate down some of their states, as follows:

When Stage moves into | Child Stages and Tasks transition as Child Milestones or Event Listeners
state follows transition as follows

Transition | Enter state | Transition From state | To state Transition | From state | To state
create, Available -- 1] 1} -- 1} 4]
parent

resume

enable, Enabled -- 1] 1] -- 0] %)
re-enable,

parent

resume

disable, Disabled -- 1] 4] - 4] 4]
parent

resume

start, Active create 1] Available create @ Available
manual

start

resume, Active parent Available Suspended N/A Available <impossible>
parent resume

resume

resume, Active parent Enabled Suspended

parent resume

resume

resume, Active parent Disabled Suspended

parent resume

resume

resume, Active parent Active Suspended

parent resume

resume

resume, Active parent Suspended Suspended resume Suspended Available
parent resume

resume

Case Management Model and Notation, v1.0

87




resume, Active -- Failed Failed(1)

parent

resume

resume, Active -- Completed | Completed -- Completed Completed
parent

resume

resume, Active -- Terminated | Terminated - Terminated | Terminated
parent

resume

suspend, Suspended parent Available Suspended suspend Available Suspended
parent suspend

suspend

suspend, Suspended parent Enabled Suspended

parent suspend

suspend

suspend, Suspended parent Disabled Suspended

parent suspend

suspend

suspend, Suspended parent Active Suspended

parent suspend

suspend

suspend, Suspended -- Suspended Suspended -- Suspended Suspended
parent

suspend

suspend, Suspended -- Failed Failed(1)

parent

suspend

suspend, Suspended -- Completed | Completed -- Completed Completed
parent

suspend

suspend, Suspended -- Terminated | Terminated -- Terminated | Terminated
parent

suspend

fault Failed -- Available Available -- Available Available
fault Failed -- Enabled Enabled

fault Failed -- Disabled Disabled

fault Failed -- Active Active

fault Failed -- Suspended Suspended -- Suspended Suspended
fault Failed -- Failed Failed

fault Failed -- Completed | Completed -- Completed Completed
fault Failed -- Terminated | Terminated -- Terminated | Terminated
complete Completed N/A Available <impossible> | N/A Available Available
complete Completed N/A Enabled <impossible>

complete Completed | -- Disabled Disabled

complete Completed N/A Active <impossible>

complete Completed N/A Suspended <impossible> | N/A Suspended Suspended
complete Completed | -- Failed Failed

complete Completed | -- Completed | Completed -- Completed Completed
complete Completed | -- Terminated | Terminated -- Terminated | Terminated
exit, Terminated | exit Available Terminated parent Available Terminated
terminate terminate

exit, Terminated | exit Enabled Terminated

terminate

exit, Terminated | exit Disabled Terminated

terminate

exit, Terminated | exit Active Terminated

88 Case Management Model and Notation, v1.0




terminate

exit,
terminate

Terminated

exit Suspended Terminated parent Suspended Terminated

terminate

exit,
terminate

Terminated

exit Failed Terminated

exit,
terminate

Terminated

Completed | Completed Completed | Completed

exit,
terminate

Terminated

Terminated | Terminated Terminated | Terminated

Table 55: Stage instance state top-down propagation

Notes

(1) If the exception is fixed and the restart transition is taken to Active, then it should continue transition
into Suspended state.

7.3.3 EventListener and Milestone Lifecycle

The following diagram illustrates the lifecycle of an EventListener or Mi lestone instance:

create
resume
- h"\
Available _suspend = Suspended
arent
\"‘-‘.‘_H_tem'linate ?erminate
T |
occur ™
\ 4
Completed Terminated

Figure 80: Lifecycle of an EventListener or Milestone instance

An EventListener or Mi lestone instance has the following states:

State Description

Available In this state an EventListener instance is waiting for the event to occur. A Mi lestone
instance in this state is waiting for the Sentry (as entry criterion) to be satisfied.

Suspended | This state allows a Case worker (human) or an enclosing Stage instance to temporarily suspend
an EventListener instance for which the event has not yet occurred, or to suspend a
Mi Iestone instance that has not been reached.

Completed | Terminal state. For Events this state indicates that the EventListener instance was triggered,
and that the event has been consumed. For Mi lestone instances this state indicates that one of
the achieving criteria of the Mi lestone instance became “true”, i.e., that the Milestone has been
achieved.

Terminated | Terminal state. This state indicates a termination by a Case worker (human) or an enclosing

Case Management Model and Notation, v1.0

89




State Description

Stage instance, indicating that a Case worker (human) is not interest anymore on the event being
listened to, or in the milestone being reached.

Table 4: EventListener and Milestone instance states

An EventListener or Mi lestone instance can undergo the following transitions:

Transition |From To Description

create @ Available Transition to the initial state (Available) when an EventListener
or Mi lestone instance is created. For a Mi lestone instance, the
RepetitionRule and RequiredRule Boolean expression
MUST be evaluated in this transition, and their Boolean value
SHOULD be maintained for the rest of the life of the Mi lestone
instance.

suspend Available Suspended | Transition by Case worker (human) decision or propagation from
outer Stage instance.

terminate | Available Terminated | Transition by Case worker (human) decision or propagation from
outer Stage instance.

occur Available Completed | For event listener transitions when the event being listened by the
EventListener instance does occurs. For a
UserEventListener instance this transition happens when a
Case worker (human) decides to raise the event. For Mi lestone
instance transitions when one of the achieving Sentries (entry
critera) is satisfied.

resume Suspended | Available Transition by Case worker (human) decision or propagation from
outer Stage instance.

parent Terminated | Transition when the parent stage transition to terminate.

. Available
terminate

Suspend

Table 56: EventListener and Milestone instance transitions

7.4 Sentry

When multiple entry criteria (sentries) are used only one is required to trigger the transition of the Stage or
Task instance out of Available state. The same is true for exit criteria. When multiple exit criteria (sentries) are
used only one is required to trigger to transition the Stage or Task instance from Active to Terminated.

A Sentry"s onPart is satisfied when one of the following conditions is satisfied:
e ForaPlanltemOnPart, its Sentry referred by sentryRef has occurred.

e ForaPlanltemOnPartor CaseFileltemOnPart, its sourceRef transitions into the transition
described by the standardEvent (PlanltemTransition, or CaseFileltemTransition)

A Sentry is satisfied when one of the following conditions is satisfied:

e All of the onParts are satisfied AND the i FPart condition evaluates to “true”.

90 Case Management Model and Notation, v1.0



e All of the onParts are satisfied AND there is no 1 fPart.

e The i FPart condition evaluates to “true” AND there are no onParts.

7.5 Behavior Property Rules

Dynamically evaluated rules are used to derive Boolean values that can influence the execution of a Case
instance. These are called, collectively, Behavior Property Rules. These rules are:

e Applicability rule (see 5.4.9.3)

e Stage.autocomplete (see 5.4.8)

o ManualActivationRule (see 5.4.11.1)
e RequiredRule (see 5.4.11.2)

e RepetitionRule (see 5.4.11.3)

In this section we consider how the semantics of these rules is related to transitions of the lifecycles of
EventListener, Mi lestone, Stage resp. Task instances.

7.5.1 Stage.autoComplete

The following table describes the termination criteria of Stage instances based on the autoComplete

attribute.

autoComplete =true

autoComplete =false

Stage instance
completion
criteria

There are no Active children, AND all
required (requi redRule evaluates
to “true”) children are in {Disabled,
Completed, Terminated, Failed}

There are no Active children AND (all children are in
{Disabled, Completed, Terminated, Failed} AND there are no
Discretionaryltems) OR (Manual Completion AND
all required (requiredRule evaluates to “true”) children
are in {Disabled, Completed, Terminated, Failed})

Table 57: Stage instance termination criteria

In other words, a Stage instance SHOULD complete if a user has no option to do further planning or work with
the Stage instance.

7.5.2 ManualActivationRule

The ManualActivationRule determines whether the Task or Stage instance should move to state
Enabled or Active. This rule is evaluated and used when one of the entry criterions of the Task or Stage
instance is satisfied. If this rules evaluate to “true” the Task or Stage instance transitions from Available to
Enabled, otherwise it transitions from Available to Active. This rule impacts Stage or Task instances in

Available state.

7.5.3 RequiredRule

The RequiredRule determines whether the Mi lestone, Stage or Task instance having this condition
MUST be in the Completed, Terminated, Failed or Disabled state in order for its parent Stage instance to
transition into the Completed state. This rule MUST be evaluated when the Mi lestone, Stage or Task
instance is instantiated and transitions to the Available state, and their Boolean value SHOULD be maintained
for the rest of the life of the Mi lestone, Stage or Task instance. If this rule is not present, then it is
considered “false”. If this rule evaluates to “true”, the parent Stage instance MUST NOT transition to

Case Management Model and Notation, v1.0

91




Complete state unless this Mi Iestone, Stage or Task instance is in the Completed, Terminated, Failed or
Disabled state. This rule impacts Stage instances in Available state.

7.5.4 RepetitionRule

This rule MUST be evaluated when the Mi lestone, Stage or Task instance is instantiated and transitions to
the Available state, and their Boolean value SHOULD be maintained for the rest of the life of the Mi lestone,
Stage or Task instance.

Stage and Task instances with a RepetitionRule evaluating to “true” will create an instance every time
an entry criterion with an onPart is satisfied. Under that condition a new instance is created and because the
entry criteria is satisfied it moves from the Available state to either Active or Enabled state depending on the
ManualActivationRule.

7.5.5 ApplicabilityRule

This rule is evaluated and used for planning. It impacts planning by a HumanTask or into a Stage instance.
During planning the only Discretionaryltems that MUST be shown to the Case Worker (in the
authorizedRoleRef) are those, for which the Applicabi lityRule evaluates to “true”.

7.6 Planning

Planning is constrained to certain states in the lifecycle of the Stage or HumanTask instance as described in
the following table.

Contain a Planning Table |States for which planning is allow
casePlanModel Active, Failed, Suspended, Completed, Terminated
Stage instance Active, Available, Enabled, Disabled, Failed, Suspended
HumanTask instance Active

Table 58: Planning constrained to Case, Stage and Task instance lifecycles

If a Stage instance is in Active state, then the planned Plan1tems are instantiated immediately after planning
completes. If the Stage instance is in another valid planning state, the planned P lan Items are instantiated
when the Stage instance transitions to Active state. When a Stage instance hasa PlanningTable, the
Tableltems of that PlanningTable can be used for planning. The resulting instances of the planning
MUST be added to the Stage instance.

Case workers planning at a particular HumanTask instance are constrained to use the PlanningTable for
that HumanTask instance. The resulting instances of the planning MUST be added to the parent Stage
instance of the HumanTask instance. Those planned PlanFragments, Stages or Tasks are instantiated
immediately after planning completes (because the parent Stage instance in which the planning task is taking
place is in Active state).

7.7 Connector

Connectors are optional visual elements only and do not have associated execution semantics.

92 Case Management Model and Notation, v1.0



8 Exchange Formats

8.1 Interchanging Incomplete Models

It is common for Case models to be interchanged before they are complete. This occurs frequently when doing
iterative modeling, where one user (such as a subject matter expert or business user) first defines a high-level
model and then passes it on to another person to complete or refine the model.

Such “incomplete” models are ones in which not all of the mandatory model attributes have been filled in yet or
the cardinality lower bound of attributes and associations has not been satisfied.

XMl allows for the interchange of such incomplete models. In CMMN, we extend this capability to interchange
of XML files based on the CMMN XML-Schema. In such XML files, implementers are expected to support this
interchange by:

o Disregarding missing attributes that are marked as “required” in the CMMN XML-Schema.

e Reducing the lower bound of elements with “minOccurs” greater than 0.

8.2 Machine Readable Files

CMMN 1.0 machine-readable files, including XSD and XMl files can be found in OMG Document
bmi/2013-12-01, which is a zip file containing all the files:

o XML-Schema (XSD) files are found under the XSD folder of the zip file, the main file is
XSD/CMMN10.xsd

o XMl files are found under the XM folder of the zip file, the main file is XMI/CMMNZ10.xmi

8.3 XSD

8.3.1 Document Structure

A domain-specific set of Case model elements is interchanged in one or more CMMN files. The root element of
each file MUST be <cmmn:definitions>. The set of files MUST be self-contained, i.e. all definitions that are
used in a file MUST be imported directly or indirectly using the <cmmn:import> element.

Each file MUST declare a “targetNamespace” that MAY differ between multiple files of one Case model.
CMMN files MAY import non-CMMN files (such as XSD’s and BPMN files) if the contained elements use
external definitions.

8.3.2 References within CMMN XSD

All CMMN elements contain ID’s and within the CMMN XML-Schema, references to elements are expressed
via these ID’s. The XML-Schema IDREF (for a reference with multiplicity 1) and IDREFS (for references with
multiplicity greater than 1) types are the traditional mechanisms used for referencing by ID’s within a single
XML file. The CMMN XSD supports referencing by ID, across files, by utilizing QNames. A QName consists
of two parts: An (optional) namespace prefix and a local part. When used to reference a CMMN element, the
local part is expected to be the ID of the element.

For example, consider the following Case
<case name="Fraud Investigation” id="Fraud_Investigation_Case ID1”>

</case>

When this Case is referenced from another file, the reference would take the following form

Case Management Model and Notation, v1.0 93



caseRef="case_ns:Fraud_lnvestigation_Case_ I1D1”

where “case_ns” is the namespace prefix associated with the case namespace upon import, and
“Fraud_Investigation_Case_ID1” is the value of the ID attribute for the Case.

The CMMN XML-Schema utilizes IDREF and IDREFS wherever possible and resorts to QName only when
references can span multiple files. In both situations however, the reference is still based on ID’s.

94 Case Management Model and Notation, v1.0



	Table of Contents
	Table of Figures
	Table of Tables
	1  Scope
	1.1 Project Goals
	1.2 In Scope
	1.3 Out of Scope

	2 Conformance
	2.1 Visual Notation Conformance
	2.2 Case Modeling Conformance
	2.3 BPMN Compatibility Conformance
	2.4 CMMN Complete Conformance

	3 References
	3.1 Normative
	3.2 Non-Normative

	4 Additional Information
	4.1 Background
	4.2 General concept
	4.3 Target users
	4.4 Interoperability
	4.5 Submitting and Supporting Organizations
	4.6 IPR and Patents
	4.7 Guide to the Specification

	5 Case Management Elements
	5.1 Core Infrastructure
	5.1.1 CMMNElement
	5.1.2 Definitions
	5.1.3 Import
	5.1.4 CaseFileItemDefinition
	5.1.4.1 Property


	5.2 Case Model Elements
	5.2.1 Case
	5.2.2 Role

	5.3 Information Model Elements
	5.3.1 CaseFile
	5.3.2 CaseFileItem
	5.3.2.1 Versioning


	5.4 Plan Model Elements
	5.4.1 PlanItemDefinition
	5.4.2 EventListener
	5.4.2.1 TimerEventListener
	5.4.2.1.1 StartTrigger
	5.4.2.1.2 CaseFileItemStartTrigger
	5.4.2.1.3 PlanItemStartTrigger

	5.4.2.2 UserEventListener

	5.4.3 Milestone
	5.4.4 PlanFragment
	5.4.5 PlanItem
	5.4.6 Sentry
	5.4.6.1 OnPart
	5.4.6.2 CaseFileItemOnPart
	5.4.6.2.1 CaseFileItemTransition

	5.4.6.3 PlanItemOnPart
	5.4.6.3.1 PlanItemTransition

	5.4.6.4 IfPart

	5.4.7 Expressions
	5.4.8 Stage
	5.4.9 PlanningTable
	5.4.9.1 TableItem
	5.4.9.2 DiscretionaryItem
	5.4.9.3 Applicability Rules

	5.4.10 Task
	5.4.10.1 Parameter
	5.4.10.2 ParameterMapping
	5.4.10.3 CaseParameter
	5.4.10.4 HumanTask
	5.4.10.5 ProcessTask
	5.4.10.5.1 Process

	5.4.10.6 CaseTask

	5.4.11 PlanItemControl
	5.4.11.1 ManualActivationRule
	5.4.11.2 RequiredRule
	5.4.11.3 RepetitionRule



	6 Notation
	6.1 Case
	6.2 Case Plan Models
	6.3 Case File Items
	6.4 Stages
	6.5 Entry and Exit Criterion
	6.6 Plan Fragments
	6.7 Tasks
	6.7.1 Human Task
	6.7.2 Case Task
	6.7.2.1 Case Task for BPMN Compatibility Conformance

	6.7.3 Process Task
	6.7.3.1 Process Task for BPMN Compatibility Conformance


	6.8 Milestones
	6.9 EventListeners
	6.10  Connectors
	6.10.1 Connector Usage

	6.11  Planning Table
	6.12  Decorators
	6.12.1 AutoComplete Decorator
	6.12.2 ManualActivation Decorator
	6.12.3 Required Decorator
	6.12.4 Repetition Decorator
	6.12.5  Decorator Applicability Summary

	6.13  Examples

	7  Execution Semantics
	7.1 Case Instance
	7.2 CaseFileItem Lifecycle
	7.2.1 CaseFileItem operations

	7.3 CasePlanModel Lifecycles
	7.3.1 Case Instance Lifecyle
	7.3.2 Stage and Task Lifecycle
	7.3.3 EventListener and Milestone Lifecycle

	7.4 Sentry
	7.5 Behavior Property Rules
	7.5.1 Stage.autoComplete
	7.5.2 ManualActivationRule
	7.5.3 RequiredRule
	7.5.4 RepetitionRule
	7.5.5 ApplicabilityRule

	7.6 Planning
	7.7 Connector

	8 Exchange Formats
	8.1 Interchanging Incomplete Models
	8.2 Machine Readable Files
	8.3 XSD
	8.3.1 Document Structure
	8.3.2 References within CMMN XSD



