
Clinical Observations Access Service 
Specification

New Edition, January 2000



ree, paid 
he mod-
nged the 
 herein 

y 
ch a 
 of 
e users 

tails an 
ocument 

 

ted 
ages, 

 above 
 the sole 
arks or 
 is pro-

used in 
ation 

orth in 
G

G IDL, 
Inc. 
Copyright 1999, 3M
Copyright 1999, Care Data Systems, Inc.
Copyright 1999, CareFlow/Net, Inc.
Copyright 1999, HBO & Company
Copyright 1999, Philips Medical Systems
Copyright 1999, Protocol Systems, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-f
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of t
ified version.  Each of the copyright holders listed above has agreed that no person shall be deemed to have infri
copyright in the included material of any such copyright holder by reason of having used the specification set forth
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications ma
require use of an invention covered by patent rights.  OMG shall not be responsible for identifying patents for whi
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
those patents that are brought to its attention.  OMG specifications are prospective and advisory only.  Prospectiv
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document de
Object Management Group specification in accordance with the license and notices set forth on this page.  This d
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION  IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE  MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF 
TITLE OR OWNERSHIP,  IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR  
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies lis
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover dam
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, tradem
other special designations to indicate compliance with these materials. This document contains information which
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or 
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or inform
storage and retrieval systems--without permission of the copyright owner. 

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set f
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OM®and 
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OM
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, 
X/Open is a trademark of X/Open Company Ltd.



readers 
 at 
ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage 
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form
http://www.omg.org/library/issuerpt.htm.





Contents

1

1
 1

2

2

1-1

-1

1-2

1-3

1-4

1-4

1-4

1-4

1-4

1-5
1-5
 1-6
1-6

1

2-1

2-2
-2

2-3
-3
2-4
2-5
-6
2-6
-7
-12

2-26
-27
-28
31
33
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

About the Object Management Group  . . . . . . . . . . . . . . . . . . . 
What is CORBA?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Associated OMG Documents . . . . . . . . . . . . . . . . . . . . . . . . . . 

Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1. COAS Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 Definition and Scope of Clinical Observations . . . . . . . . . 1

1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3 Information Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1.4 Dynamic Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.5 Value Domains  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.6 Type Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.7 XML Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1.8 Roadmap for Extensions . . . . . . . . . . . . . . . . . . . . . . . . . .

1.9 Conformance Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.9.1 Interface Conformance Classes . . . . . . . . . . . .
1.9.2 Data Structure Conformance Classes . . . . . . . .
1.9.3 Qualified Code Conformance Classes . . . . . . .

2. COAS Information Model  . . . . . . . . . . . . . . . . . . . . . . . . . . 2-

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Modeling Notation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Modeling Definitions . . . . . . . . . . . . . . . . . . . . 2

2.3 Clinical Observations Model . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 Clinical Observations Model - Class Diagram . 2
2.3.2 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.3 CompositeObservation  . . . . . . . . . . . . . . . . . .
2.3.4 AtomicObservation  . . . . . . . . . . . . . . . . . . . . . 2
2.3.5 ObservationReference  . . . . . . . . . . . . . . . . . . .
2.3.6 ObservationQualifier . . . . . . . . . . . . . . . . . . . . 2
2.3.7 ObservationValue . . . . . . . . . . . . . . . . . . . . . . . 2

2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1 ObservedSubject - Model  . . . . . . . . . . . . . . . . 2
2.4.2 ObservedSubject - Example . . . . . . . . . . . . . . . 2
2.4.3 LabUrineBattery - Example . . . . . . . . . . . . . . . 2-
2.4.4 LabUrineBattery - LabSegments . . . . . . . . . . . 2-
2.4.5 LabUrineBattery - LabSegment#1 - LONICUrineSodium 

2-35
Clinical Observation Access System V1.0               January 2000 i



Contents

r 

r 

42
43

3-1

3-1

3-2
-2
-3
-5
-6
-7
-8
-9
10
11
12
13
15

-16
-17
-17
-18
-19
20
-21
-22
-23
-24
-24
-25
-26
-27
3-27
-28

-31
-31
-31
2.4.6 LabUrineBattery - LabSegment#2 - LONICUrineColo
2-38

2.4.7 LabUrineBattery - LabSegment#3 - LOINCUrineColo
2-40

2.4.8 HealthRecordEntry - Model  . . . . . . . . . . . . . . 2-
2.4.9 HealthRecordEntry - Example . . . . . . . . . . . . . 2-

3. DSObservationAccess Service  . . . . . . . . . . . . . . . . . . . . . . .  

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Viewpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Navigable Relationships Viewpoint . . . . . . . . . 3
3.2.2 Interface Inheritance Viewpoint . . . . . . . . . . . . 3
3.2.3 Componentization Viewpoint . . . . . . . . . . . . . .  3
3.2.4 Full Component Viewpoint  . . . . . . . . . . . . . . . 3
3.2.5 Local/Remote Observations Viewpoint . . . . . . 3
3.2.6 Local Observations Viewpoint . . . . . . . . . . . . . 3
3.2.7 Remote Observations Viewpoint . . . . . . . . . . . 3
3.2.8 Common Access Operations Viewpoint  . . . . . 3-
3.2.9 Simple Query Access Viewpoint . . . . . . . . . . . 3-
3.2.10 Browsing Access Viewpoint  . . . . . . . . . . . . . . 3-
3.2.11 Asynchronous Access Viewpoint . . . . . . . . . . . 3-
3.2.12 Event Management Viewpoint . . . . . . . . . . . . . 3-

3.3 Data Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.1 Include Files  . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.2 External Typedefs  . . . . . . . . . . . . . . . . . . . . . . 3
3.3.3 Forward Declarations  . . . . . . . . . . . . . . . . . . . 3
3.3.4 AccessComponentData. . . . . . . . . . . . . . . . . . .  3
3.3.5 AsynchException . . . . . . . . . . . . . . . . . . . . . . . 3-
3.3.6 ObservationData  . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.7 ObservationId  . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.8 NameValuePair  . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.9 Subscription . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.10 TimeStamp  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.11 TimeSpan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.12 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.13 Internal Typedefs . . . . . . . . . . . . . . . . . . . . . . . 3
3.3.14 Sequences  . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.15 Exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

3.4 Interface Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.1 Foundational Observation-Oriented Interfaces 3
3.4.2 ObservationRemote Interface  . . . . . . . . . . . . . 3
ii Clinical Observation Access System  V1.0                  January 2000



Contents

33
-34
-38
-39

-43
-43
-46
-49
52
-53

-53
-53
-55
-57
-58

59
-59
-60
-63
64
64

-65

4-1

4-1

4-2

4-2

4-3
4-3
4-3

4-3
 4-3

4-3
-4

4-4
-4
-5
-5

4-5
4-5
3.4.3 AtomicObservationRemote Interface . . . . . . . . 3-
3.4.4 CompositeObservationRemote Interface . . . . . 3
3.4.5 ObservationRemoteIterator Interface . . . . . . . . 3
3.4.6 ObservedSubject Interface . . . . . . . . . . . . . . . . 3

3.5 Query-Oriented Interface Specifications . . . . . . . . . . . . . . 3
3.5.1 BrowseAccess Interface . . . . . . . . . . . . . . . . . . 3
3.5.2 QueryAccess Interface . . . . . . . . . . . . . . . . . . . 3
3.5.3 AsynchAccess Interface  . . . . . . . . . . . . . . . . . 3
3.5.4 AsynchCallback Interface  . . . . . . . . . . . . . . . . 3-
3.5.5 ConstraintLanguageAccess  . . . . . . . . . . . . . . . 3

3.6 Event and Notification Interface Specifications  . . . . . . . . 3
3.6.1 EventSupplier Interface . . . . . . . . . . . . . . . . . . 3
3.6.2 EventConsumer Interface  . . . . . . . . . . . . . . . . 3
3.6.3 SupplierAccess Interface . . . . . . . . . . . . . . . . . 3
3.6.4 ConsumerAccess Interface  . . . . . . . . . . . . . . . 3

3.7 Utility Interface Specifications  . . . . . . . . . . . . . . . . . . . . . 3-
3.7.1 ObservationLoader Interface . . . . . . . . . . . . . . 3
3.7.2 AccessComponent Interface  . . . . . . . . . . . . . . 3
3.7.3 ObservationDataIterator Interface . . . . . . . . . . 3
3.7.4 QualifiedCodeIterator Interface . . . . . . . . . . . . 3-
3.7.5 AbstractFactory Interface  . . . . . . . . . . . . . . . . 3-
3.7.6 AbstractManagedObject Interface . . . . . . . . . . 3

4. DSObservation Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Data Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3 Supporting Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 Time Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1 DateTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.2 TimeSpan . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.5 Person Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1 Person. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.6 NoInformation Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1 NoInformation  . . . . . . . . . . . . . . . . . . . . . . . . .  4

4.7 Text Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.1 Plain Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.7.2 UniversalResourceIdentifier . . . . . . . . . . . . . . .  4
4.7.3 PhysicalLocationDescription . . . . . . . . . . . . . . 4

4.8 Coded Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.1 CodedElement  . . . . . . . . . . . . . . . . . . . . . . . . .  
Clinical Observation Access System V1.0               January 2000 iii



Contents

4-5

4-6
-7

 4-7
4-8
 4-8
4-8

 4-8
4-9

-1

5-1

5-1

5-2

5-2

5-3

5-3

5-3

5-4

5-4

-1

6-1

6-2

6-2

6-2
6-2
6-3
6-3
6-3
-3
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-4
4.8.2 LooselyCodedElement . . . . . . . . . . . . . . . . . . .

4.9 Multimedia Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9.1 Multimedia . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

4.10 Simple Measurement Types . . . . . . . . . . . . . . . . . . . . . . . .
4.10.1 Numeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10.2 Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10.3 Ratio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.11 Complex Measurement Types  . . . . . . . . . . . . . . . . . . . . . .
4.11.1 Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. DSObservationTimeSeries  . . . . . . . . . . . . . . . . . . . . . . . . . .  5

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Data Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 External Typedefs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.4 Time Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5 Typedef, Enum, Union, and Sequence Types . . . . . . . . . . .

5.6 Iterator Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.7 TimeSeries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.8 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.9 TimeSeriesRemote  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6. DSObservationRelations . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 CEN Naming Convention  . . . . . . . . . . . . . . . . . . . . . . . . .

6.3 Observation Type for Relations . . . . . . . . . . . . . . . . . . . . .

6.4 Relation Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.1 Produce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.2 Document  . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.3 Report  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.4 Graphic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.5 Identified/Incorporated  . . . . . . . . . . . . . . . . . . 6
6.4.6 Source/Derived  . . . . . . . . . . . . . . . . . . . . . . . .
6.4.7 Compared/Reference . . . . . . . . . . . . . . . . . . . .
6.4.8 Recorded  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.9 Supercede  . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.10 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.11 Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.12 Next Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.13 Associate . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iv Clinical Observation Access System  V1.0                  January 2000



Contents

6-4
6-4
6-5
6-5
6-5
6-5
6-5
6-5
-5
6-6

6-6
6-6
-6

 6-6

-1

 7-1

7-2

7-2

7-3
-3
-3
-3
-3

-4
-4

 8-1

 8-2

-2

-2

3

-4

4

-4

5

5

6.4.14 Assigned/Setting  . . . . . . . . . . . . . . . . . . . . . . .
6.4.15 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.16 Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.17 Cause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.18 Co-exists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.19 Evidence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.20 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.21 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.22 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6.4.23 Consequence  . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.24 Topic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.25 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.26 Provides Information . . . . . . . . . . . . . . . . . . . . 6
6.4.27 Circumstances  . . . . . . . . . . . . . . . . . . . . . . . . .

7. DSObservationQualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.2 HL7 Naming Convention  . . . . . . . . . . . . . . . . . . . . . . . . .

7.3 Observation Type for Qualifiers  . . . . . . . . . . . . . . . . . . . .

7.4 Qualifier Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4.1 COAS - Specific  . . . . . . . . . . . . . . . . . . . . . . . 7
7.4.2 HL7 - Clinical Times . . . . . . . . . . . . . . . . . . . . 7
7.4.3 HL7 - Roles  . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
7.4.4 HL7 - OBR (Request)  . . . . . . . . . . . . . . . . . . . 7
7.4.5 HL7 - OBX (Reply)  . . . . . . . . . . . . . . . . . . . . .  7
7.4.6 HL7 - PV1 (Patient Visit)  . . . . . . . . . . . . . . . . 7

8. Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.2 SEARCH_DEPTH_POLICY . . . . . . . . . . . . . . . . . . . . . . . 8

8.3 RETURN_DEPTH_POLICY  . . . . . . . . . . . . . . . . . . . . . . 8

8.4 SEARCH_SYNONYMOUS_CODES_POLICY . . . . . . . .  8-

8.5 RETURN_OBSERVATION_VALUES_POLICY. . . . . . . . 8-3

8.6 SHORTCIRCUIT_SEARCH_..._POLICY  . . . . . . . . . . . . 8

8.7 SEARCH_SYNONYMOUS_IDS_POLICY . . . . . . . . . . . 8-

8.8 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY 8

8.9 RETURN_ITEMS_IN_TIME_SPAN_POLICY  . . . . . . . . 8-4

8.10 MATCHING_STRENGTH_POLICY . . . . . . . . . . . . . . . . 8-

8.11 PARAM_CHECKING_POLICY . . . . . . . . . . . . . . . . . . . . 8-
Clinical Observation Access System V1.0               January 2000 v



Contents

5

-6

6

6

-6

-1

-1

-1

D-1

E-1

-1
y-1
8.12 QUALIFIER_RETURN_POLICY  . . . . . . . . . . . . . . . . . . 8-

8.13 RELATIONS_RETURN_POLICY  . . . . . . . . . . . . . . . . . .  8

8.14 RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY8-

8.15 TIME_SERIES_..._ALGORITHM_POLICY . . . . . . . . . . 8-

8.16 TIME_SERIES_..._PREFERENCE_POLICY  . . . . . . . . . 8

8.17 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY  .  8-6

8.18 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY . . 8-7

Appendix A  Complete IDL . . . . . . . . . . . . . . . . . . . . . . . . . A

Appendix B  Interoperation . . . . . . . . . . . . . . . . . . . . . . . . . B

Appendix C  Security Guidelines . . . . . . . . . . . . . . . . . . . . . C

Appendix D  Usage Patterns  . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix E  Usage Scenarios . . . . . . . . . . . . . . . . . . . . . . . 

Appendix F  Client Implementation Examples . . . . . . . . . . F
Glossary  . . . . . . . . . . . . . . . . . . . . . . . . . . Glossar
vi Clinical Observation Access System  V1.0                  January 2000



Preface 
d by 
users. 
nol-
of 
e-

. Con-
plica-

tion 
 

ent 
er of 
ica-
 

ic 
ber 
can 
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and 
Founded in 1989, the OMG promotes the theory and practice of object-oriented tech
ogy in software development. The organization's charter includes the establishment 
industry guidelines and object management specifications to provide a common fram
work for application development. Primary goals are the reusability, portability, and 
interoperability of object-based software in distributed, heterogeneous environments
formance to these specifications will make it possible to develop a heterogeneous ap
tions environment across all major hardware platforms and operating systems. 

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA).  The OMA provides the
conceptual infrastructure upon which all OMG specifications are based. 

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numb
hardware and software products available today. Simply stated, CORBA allows appl
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group 
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specif
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors 
interoperate. 
Clinical Observation Access Service V1.0                          January 2000 1



 
 are 
ides 
 are 

tion, 
ating 
f the 

 OMG 

t. To 
con-
Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains 
the architecture and specifications for the Object Request Broker. 

• CORBAservices: Common Object Services Specification contains specifications for 
OMG’s Object Services. 

The OMG collects information for each specification by issuing Requests for Informa
Requests for Proposals, and Requests for Comment and, with its membership, evalu
the responses. Specifications are adopted as standards only when representatives o
OMG membership accept them as such by vote. (The policies and procedures of the
are described in detail in the Object Management Architecture Guide.) 

OMG formal documents are available from our web site in PostScript and PDF forma
obtain print-on-demand books in the documentation set or other OMG publications, 
tact the Object Management Group, Inc. at: 

 
OMG Headquarters

492 Old Connecticut Path
Framingham, MA 01701

USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303

pubs@omg.org
http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• 3M

• AGFA

• Baptist Health Systems of South Florida (BHSSF)

• Care Data Systems, Inc.

• CareFlow/Net, Inc.

• CogniTech Corporation

• GE Medical Systems

• HBO & Company

• HealthMagic, Inc.
2 Clinical Observation Access Service V1.0                          January 2000



• Los Alamos National Labs (LANL)

• Philips Medical Systems

• Philips Research

• Protocol Systems, Inc.

• Sao Paulo Hospital das Clinicas

• Sunquest

• Theragraphics

• Universidade Federal de Sao Paulo

• University of Michigan Health Systems (UMHS)
COAS V1.0          Acknowledgments           Jan. 2000 3



4 Clinical Observation Access Service V1.0                          January 2000



COAS Overview 1
nd 

 

 with 

ic 

ce 
rom 

cal 

cal 
The OMG documents used to create this specification were corbamed/99-03-25 a
corbamed/99-05-02.

The Clinical Observations Access Service (COAS) is a set of interfaces and data
structures with which a server can supply clinical observations.

1.1 Definition and Scope of Clinical Observations

To determine the scope of a Clinical Observations Access Service we might start
a definition of “clinical observations.” The 27th Edition of Dorland's Illustrated 
Medical Dictionary defines “clinical” as,

“pertaining to a clinic or to the bedside; pertaining to or founded on actual 
observation and treatment of patients, as distinguished from theoretical or bas
sciences.”

Webster's Ninth New Collegiate Dictionary defines “observation” as,

“2 b: a record obtained by the act of recognizing and noting a fact or occurren
often involving measurement with instruments   3: a judgment on or inference f
what one has observed.”

The COAS Request For Proposals (RFP) included the following definition of “clini
observations,”

“any information that has been captured about a single patient's medical/physi
state and relevant context information.”

Webster's Dictionary includes the following definitions of “information,”

“2 a: (1) knowledge obtained from investigation, study, or instruction (2) 
INTELLIGENCE, NEWS (3) FACTS, DATA.”

The COAS RFP goes on to add,
Clinical Observation Access Service V1.0                          January 2000 1-1



1

es, 
ct 

n 
 

e 
d 
. 

the 

rom 
g that 

 over 
ate 

some 

e 

igns 
ical 

ns of 
ion 
em 
S 

 for 

d 
“This [information] may be derived by instruments such as in the case of imag
vital signs and lab results or it may be derived by a health professional via dire
examination of the patient and transcribed(sic). This term applies to informatio
that has been captured whether or not it has been reviewed by an appropriate
authority to confirm its applicability to the patient record.”

It is clear from the dictionary definitions of “observation” and “information” that th
common usage of “clinical observations” includes, not just raw measurements an
recordings, but also the knowledge and judgments obtained or inferred from them
Based on these definitions and conclusions, the following working definition of 
“clinical observations” is given, where the lists are intended to specifically include 
areas mentioned rather than excluding other related areas:

“any measurement, recording, or description of the anatomical, physiological, 
pathological, or psychological state or history of a human being or any sample f
a human being, and any impressions, conclusions, or judgments made regardin
individual within the context of the current delivery of health care.”

All observations share a few common features:

they are made on a specific subject of care, e.g. patient, organ, population;

they represent a snap-shot of that subject in time, either at a particular time, or
some specified interval of time (time in this context includes the notion of both d
and time);

they are made, or recorded, by an instrument or a health care professional in 
clinical context; and

they are given (either by the patient, the health care institution, or society) som
degree of confidentiality.

Observations can be quantitative, qualitative, and recordings. For example, vital s
and clinical laboratory results, trends in measured values, impressions from a clin
exam, correlation of several qualitative impressions, and images and manipulatio
images such as digital subtraction angiography. For the purposes of our informat
model and the derived IDL, a clinical observation includes any clinically related it
that has the necessary context information to enable it to be queried from a COA
server.

1.2 Previous Work

A number of the submitters and supporters of this specification have used CORBA
various observation access mechanisms.

3M - Observations are an integral part of the 3M Care Innovation Suite 
(http://www.mmm.com/market/healthcare/his/product/hems/menu.htm).

Care Data Systems - Observations are part of Care Data System’s Integration an
Access Channels and the Care Data Repository products 
(http://www.caredatasystems.com/guide/product-ov.htm).

CareFlow|Net - Observations are part of the CareFlow|Net transcription system 
(http://www.careflow.com/products.htm).
1-2 Clinical Observation Access Service V1.0                          January 2000



1

 

 

e are 
ietary 

ious 

l is 

 an 

els 
a. See 

 
se 

251 
lar, 
ture 
CERC - Observations are part of the Artemis project 
(http://www.cerc.wvu.edu/nlm/artemis.html).

HBO & Company - Observations are an integral part of the Clinical Information 
Systems products (http://206.217.199.68/caci/corporate/prodport.nsf/home).

Los Alamos National Laboratory - Observations are a major component of the 
TeleMed project (http://www.acl.lanl.gov/TeleMed/).

Philips Medical Systems - Observations are a major component of the MIRACLE
project.

Protocol Systems - An observation service (COBS) is the major component of the
Acuity Communications Option (ACO) vital signs server.

Sunquest - Observations are a central part of the Sunquest products 
(http://www.sunquest.com/marketing/).

Each of these projects brings different, complementary perspectives that have 
contributed to the COAS specification.

1.3 Information Model

There are a number of information models that deal with observations data. Som
associated with standards groups and are openly available. Others are the propr
property of individual companies. The following lists most of the openly available 
information models that we know of that include observations data.

HL7  - The version 3.0 project is taking the knowledge developed during the prev
HL7 standards and describing it in an information model 
(http://www.mcis.duke.edu/standards/HL7/data-model/HL7/modelpage.html). This is a 
generalized model for healthcare that does include observations data. This mode
subject to change over the next year or two.

DICOM  - The Structured Reporting document (supplement 23) of DICOM contains
implied information model for clinical reports which contain observations data 
(ftp://ftp.nema.org/MEDICAL/DICOM/SUPPS/sup23_fz.pdf).

UK NHS - The UK National Health Service has developed general information mod
for healthcare, based on a model called COSMOS that contains observations dat
http://smwww1.med.ic.ac.uk/dm/dmgm/ccpm2pt1.doc and 
http://smwww1.med.ic.ac.uk/dm/dmgm/ccpm2pt2.doc

European Consortia - The European Union has sponsored several projects whose
purpose has been to develop and validate information models of healthcare. The
include the GEHR and EHCR-SupA.

CEN-TC251 - The European Committee for Standardization Technical Committee 
has developed several pre-standards that involve models of healthcare. In particu
the CEN/TC251/N97-024 prestandard on “Healthcare Information System Architec
(HISA).” 
COAS V1.0           Information Model           Jan. 2000 1-3



1

er 
 
 deal 
e 
 this 

 be 

. 
meter 
g 

ages 
ine 

s of 

 

y 
be 
 

ng 
of 

s 
 
s 
1.4 Dynamic Discovery

Clinical observations cover a very wide set of data types. Servers are likely to off
widely different kinds of data, data formats supported, etc. COAS servers need to
expose to clients relevant context information, such as the patient population they
with, what kinds of observation types are supported, what kind of data formats ar
supported, which interfaces are implemented, etc.  We have made an effort to do
via the AccessComponent  interface. See Section 3.7.2, “AccessComponent 
Interface,” on page 3-60 for details. However, it is not clear whether this effort will
sufficient to enable the discovery of all necessary capabilities.

1.5 Value Domains

The Lexicon Query Service (LQS) contains the ability to query for ValueDomains
ValueDomains are the set of possible codes that can be used for a particular para
or field. It is expected the LQS ValueDomains can be used by COAS for publishin
meta information about the particular service implementation.

1.6 Type Negotiation

Servers may support multiple formats for the same type of information, such as im
in gif, tiff, and jpeg formats. COAS may need a way for clients to not only determ
what formats are supported, but also to select which one(s) they can handle. 
Specifications for how this is to be accomplished has been left for future revision
the COAS.

1.7 XML Usage

The eXtended Markup Language (XML) is gaining wide interest and support as a
flexible format for describing highly structured information (documents).

COAS clients and servers may provide and use XML documents. XML is implicitl
supported as a text string, for returned observations. Also, a COAS server could 
easily designed to input an XML qualifier as a filter. See the client-implementation
example “Progress Note (XML)” on page F-5 for more details.

1.8 Roadmap for Extensions

The COAS needs to provide a basis for future CORBAmed standards for accessi
healthcare related information. The COAS specification provides a small number 
core definitions, but it is expected that future CORBAmed RFPs will develop 
additional data definitions that can be used by COAS without extension of the 
interface, as well as develop extensions to COAS.

At the time of submission, RFPs have been published for a Clinical Image Acces
Service (CIAS) and a Report Management Service (RMS). These are expected to
utilize COAS and/or to extend it. Potential responders to the CIAS and RMS RFP
1-4 Clinical Observation Access Service V1.0                          January 2000



1

f the 

liant 

n this 

ating 

 use 

data 

s 
ay 

 each 
rm 

ce 
in a 

ith a 

he 
sing.
have contributed to this COAS specification. This specification also includes 
DsTimeSeries as an example, in the area of vital signs support, of an extension o
data types and operation of COAS.

1.9 Conformance Points

This section describes the various conformance levels possible for a COAS comp
provider of clinical observations.

There are three categories of conformance:

1. Interface conformance (i.e., conformance to one or more interfaces described i
specification).

2. Data structure conformance (i.e., conformance to a mechanism for commiunic
structures containing the values of observations).

3. Qualified code conformance (i.e., conformance to a naming convention for the
of terms from other standards).

To be compliant with this specification, a server must have at least interface and 
structure conformance. Qualified code conformance is optional.

1.9.1 Interface Conformance Classes

The following taxonomy is defined for specific conformance classes of COAS 
implementations. An implementation claiming conformance to any of these classe
must conform to all of the interfaces specified for that class. An implementation m
claim conformance to multiple conformance classes as long as it is conformant to
one it claims. In order for an implementation to be COAS compliant, it must confo
to at least one of the conformance classes in the table below.

Each row in the following table includes the specification for a different conforman
class. The columns represent the interfaces on the AccessComponent. A star ‘*’ 
column indicates the conformance class in that row includes the interface of that 
column.

• ‘Simple COAS’ - This class provides the mechanisms to access observations w
minimum of effort.

• ‘Browse COAS’ - This conformance class adds the ability to make queries on t
results of previous queries, which enables the more interactive activity of brow

Conformance Class Query 
Access

Browse 
Access

Constraint 
Access

Asynch 
Access

Supplier 
Access

Consumer 
Access

Observation 
Loader

Simple COAS *
Browse COAS * *
ConstraintLanguage COAS * *
Asynchronous COAS *
Supplier COAS *
Consumer COAS *
Loader COAS *
COAS V1.0           Conformance Points           Jan. 2000 1-5



1

 
 
mon 

t it 
ccess 

he 
he 

n be 
rver.

the 
for 
ng 

ta 
f the 

en 
may 
udes 
 used 

es 

ize 
• ‘ConstraintLanguage COAS’ - This class adds, to the Simple COAS class, the 
ability to use a constraint language in the construction of queries.

• ‘Asynchronous COAS’ - This conformance class is an alternative to the Simple
COAS class in that it provides the same access to observations, but it uses an
asynchronous connection between the client and server instead of the more com
synchronous connection.

• ‘Supplier COAS’ - This class is an alternative to the Simple COAS class in tha
provides the same access to observations, but it is oriented towards providing a
to observations that may arrive in the future, and it uses a messaging 
communication style to return the observations when they become available. T
client must implement the Consumer COAS class (below) in order to receive t
observations sent by the Supplier COAS class server.

• ‘Consumer COAS’ - This conformance class is the client side to the server 
interfaces in the Supplier COAS class.

• ‘Loader COAS’ - This class provides a mechanism whereby legacy systems ca
wrapped with a client COAS interface and can push their data into a COAS se

1.9.2 Data Structure Conformance Classes

This specification was developed before the availability of compilers that support 
Object-By-Value (OBV) technology, yet it anticipates it by including a mechanism 
extensibility. These conformance classes specify the mechanism for communicati
observation values. At this time there is only one mechanism: *’Single Struct COAS’ 
This class indicates that a server uses the single structure ObservationDataStruct  as 
the explicit type returned/passed in ObservationData . 

• See Section 3.3.6, “ObservationData,” on page 3-21.  

It is expected that future standardication will add conformance points for other da
structuring used by servers. Note, these conformance classes are independent o
interface conformance class implemented by a server. 

1.9.3 Qualified Code Conformance Classes

This specification focuses on the mechanisms to communicate information betwe
server and client. Qualified codes represent the application specific terms, which 
be standardized by domain specific standardization bodies. This specification incl
rules for translating the term names from another standard into the qualified codes
in this one. 

*’HL7 Inside COAS ’ - this class indicates the usage of HL7 defined observation typ
within a COAS server. Any server claiming conformance to this class must have 
observations that correspond to at least some HL7 types as defined in the 
DSObservationQualifiers chapter. Furthermore, those observation types must util
the HL7 types as defined in this specification. 
1-6 Clinical Observation Access Service V1.0                          January 2000



1

ain 
endent 
It is expected that future standardization will add conformance points for other dom
specific term standards. Note, these conformance classes are optional and indep
of the interface and data structure conformance class implemented by a server.
COAS V1.0           Conformance Points           Jan. 2000 1-7



1

1-8 Clinical Observation Access Service V1.0                          January 2000



COAS Information Model 2
l. 
al 
out 

del 
uring 

 
re is 
model 
nd at 
 

s, 
Contents

This chapter contains the following topics. 

2.1 Overview

This chapter describes the Clinical Observation Access Service information mode
Throughout the development of this specification the model has undergone sever
modifications. The final version depicts a model that is flexible and reusable with
adding flexibility that is unlikely to be used.

Several models were reviewed and used in determining the final model. Each mo
contained things that were valuable in helping us understand the problem and ens
that we had a model that would accommodate the majority of needs.

Although this model is simplistic, it is also powerful enough to provide the 
extensibility that is needed in the health care domain. There are many individuals
working on efforts to define and categorize health care information. However, the
not a great deal of consensus at this time. Consequently, we needed to provide a 
that could accommodate the efforts of these individuals as their work progresses a
the same time make something available today to help in moving the health care
information technology forward. “Finding a simple solution takes time and effort, 
which can be frustrating. People often react to a simple model by saying, “Oh ye
that's obvious” and thinking “So why did it take so long to come up with it?” But 

Topic Page

“Overview” 2-1

“Modeling Notation” 2-2

“Clinical Observations Model” 2-3

“Examples” 2-26
Clinical Observations Access Service  V1.0                        January 2000 2-1



2

o 

d as 
 
 
is 

ems. 
odels. 

 also 

r 

 
bject 
 the 
simple models are always worth the effort. Not only do they make things easier t
build, but more importantly they make them easier to maintain and extend in the 
future.”1

This model presumes that all entities within a health care domain can be modele
composite or atomic observations. The word observation has been a long struggle from
the beginning because of the fact that it carried different connotations for various
groups and individuals. It is hoped that the reader will understand that the name 
merely a placeholder, no name is perfect.

2.2 Modeling Notation

The notation used in this chapter comes from a tool2 that implements the Unified 
Modeling Language (UML)3.

2.2.1 Modeling Definitions

Many of the definitions given here will be used throughout this chapter.

Class Diagram

A class diagram is a picture for describing generic descriptions of possible syst
Class diagrams and object diagrams are alternate representations of object m
Class diagrams contain classes and object diagrams contain objects.

Collaboration Diagram

Collaboration diagrams show objects, their links, and their messages. They can
contain simple class instances and class utility instances. Each collaboration 
diagram provides a view of the interactions or structural relationships that occu
between objects and object-like entities in the current model.

Object Diagram

An object diagram shows the existence of objects and their relationships in the
logical design of a system. An object diagram may represent all or part of the o
structure of a system, and primarily illustrates the semantics of mechanisms in
logical design. A single object diagram represents a snapshot in time of an 
otherwise transitory event or configuration of objects.

1. Martin Fowler. Analysis Patterns Reusable Object Models. Addison Wesley. 1997. P 2.

2. Rational Rose 98, Rose Enterprise Edition 1998.   http://www.rational.com/

3. UML Notation Guide, Version 1.1. Rational Software, September 1997. 

http://www.rational.com/uml/html/notation/
2-2 Clinical Observations Access Service  V1.0                        January 2000



2

f the 

.”

ow 
this 
that 
n on 
2.3 Clinical Observations Model

2.3.1 Clinical Observations Model - Class Diagram

Figure 2-1 COAS Class Diagram

This is a Class Diagram of Clinical Observations created to assist in the design o
Clinical Observations Access Service (COAS). “The logical view of a system 
describes the existence and meaning of the key abstractions that form the design4

The HealthRecordEntry and ObservedSubject are represented in the model to sh
how they may fit into the overall design. Although they can both be supported by 
model, we do not explicitly include any specialized services for them. We believe 
this model, and the services derived from it, will accommodate them. In the sectio
Examples they will be discussed.

4. Grady Booch. Object Oriented Design with Applications. Benjamin Cummings. 1991.

ObservationReference

<<Required>> observationReferenceType : QualifiedCode

{disjoint/complete} 

AtomicObservation

ObservationValue

CompositeObservation ObservationQualifier

<<Required>> observationQualifierType : QualifiedCode

Observation

<<Required>> observationType : QualifiedCode
<<Optional>> observationTime : TimeSpan

HealthRecordEntry

ObservedSubject

1..*

1..1

+references
1..*

+referenced by
1..1

+referenced by

1..1

0..*1..*

+qualifies
0..*

+qualified by
1..*

+references
1..*1..*

1..1

0..*

0..*

+references
0..*

+referenced by
0..*

0..*

1..*

+composed of

0..*

+composes
1..*

1..*

0..*

+qualified by

1..*

+qualifies
0..*

+contained in

0..*

+contai n
0..10..1

0..*

+characterizes

0..*

+characterized by

1..*

0..*

1..*
COAS V1.0           Clinical Observations Model             Jan. 2000 2-3



2

ss 

n be 
f the 

 

The following sections document the class diagram. Each of the entities in the cla
diagram will be discussed.

2.3.2 Observation

Figure 2-2 Observation

Observation is an abstract class containing attributes that are inherited when a 
CompositeObservation is needed or when an AtomicObservation is needed. 

CompositeObservation and AtomicObservation both inherit from Observation.

Observation is complete and disjoint. Complete meaning no more subclassing ca
done off of Observation and disjoint meaning that instances may have only one o
given subtypes as a type.

observationType:QualifiedCode

Description: This is a QualifiedCode that names the Observation. For 
example, Cardiovascular Examination, Complete Blood 
Count, Systolic Blood Pressure, etc. The type of this attribute
is denoted as a QualifiedCode which comes from the 
CORBAmed Lexicon Query Service1(LQS). This attribute 
has been defined as a required attribute.

1.  CORBAmed Lexicon Query Services, March 1998. OMG CORBAmed Document 98-03-22. 
http://www.omg.org/docs/corbamed/98-03-22.rtf

observationTime: TimeSpan

Description: Denotes the time when the observation reflects a 
characteristic of the observed subject. (Please reference 
Section 2.4.1, “ObservedSubject - Model,” on page 2-27.) 
Although is has been defined as optional it is strongly 
recommended that this attribute exist.

Observation

<<Required>> observationType : QualifiedCode
<<Optional>> observationTime : TimeSpan
2-4 Clinical Observations Access Service  V1.0                        January 2000



2

 be a 

 
Blood 

tc. 
ted 
to 

ions.
2.3.3 CompositeObservation

Figure 2-3 CompositeObservation

A CompositeObservation is a container for a set of Observations. Such a set may
Cardiovascular Examination, a Complete Blood Count, a LabUrineBattery, etc. A 
CompositeObservation inherits the attributes of an Observation.

A CompositeObservation has no value associated with it, it is used to give some
semantic meaning to the contents that it encapsulates. For example, a Complete 
Count is a CompositeObservation that contains components which are 
AtomicObservations such as White Blood Count, Red Blood Count, Hematocrit, e
The AtomicObservations Red Blood Count, etc. themselves have a value associa
with them but not Complete Blood Count. Complete Blood Count is merely used 
provide a name for the structure of information contained within it.

Relationships with Observation

• Zero or more CompositeObservations are composed of one or more Observat

• One or more Observations compose zero or more CompositeObservations.

{disjoint/complete}  

CompositeObservation

Observation

<<Required>> observationType : Qual ifiedCode
<<Opt ional> > observationTime : TimeSpan

0..*

1..*

+ composed of
0..*

+composes

1..*
COAS V1.0           Clinical Observations Model             Jan. 2000 2-5



2

e.
2.3.4 AtomicObservation

Figure 2-4 AtomicObservation

An AtomicObservation is a single object with an associated value. An 
AtomicObservation inherits the attributes of an Observation.

Examples of AtomicObservations can be such things as While Blood Count, 
UrineColor, Systolic Blood Pressure, etc.

Relationships with ObservationValue

• One or more AtomicObservations reference one and only one ObservationValu

• One and only one ObservationValue is referenced by one or more 
AtomicObservations.

2.3.5 ObservationReference

Figure 2-5 ObservationReference

Observation

<<Required>> observationType : QualifiedCode
<<Optional>> observationTime : TimeSpan

See ObservationValue class diagram for 
further details.

{disjoint/complete} 

AtomicObservation

ObservationValue

1..*

1..1

+references
1..*

+referenced by

1..1

+references

Observation

<<Required>> observationType : QualifiedCode
<<Optional>> observationTime : TimeSpan

ObservationReference

<<Required>> observationReferenceType : QualifiedCode
0..*

0 .. *

0..*

+referenced by
0 .. *
2-6 Clinical Observations Access Service  V1.0                        January 2000



2

nship 

 that 

sed to 
f 
ObservationReference is an associated class defining a relationship between 
Observations. The observationReferenceType attribute denotes the type of relatio
and should come from a well-defined terminology system.

observationReferenceType:QualifiedCode

The observationReferenceType attribute is used to denote the type of relationship
exists between two Observations.

Our intention has been to reference other coding schemes where possible as oppo
creating our own. The CEN Pre-Standard PT275 has already started to create a list o
these (Table A.5) and could be used as a starting point.

Relationships with Observation

• Zero or more Observations are referenced by zero or more Observations.

• Zero or more Observations references zero or more Observations.

2.3.6 ObservationQualifier

Figure 2-6 ObservationQualifier

5. European PreStandard PT27-N13. Health Care Informatics Electronic Health Care Record 
Communication Part 2 - Domain Termlist. vers.3.0   of 1998-12-01.

+referenced by

See ObservationValue class diagram for 
further details.

ObservationValue

ObservationQualifier

<<Required>> observationQualifierType : QualifiedCode

Observation

<<Required>> observationType : QualifiedCode
<<Optional>> observationTime : TimeSpan

1..1

0..*1..*

+qualifies

0..*
+qual ified by

1..*

+references

1..*1..*

1..1

1..*

0..*

+qualified by

1..*

+qualifi es
0..*
COAS V1.0           Clinical Observations Model             Jan. 2000 2-7



2

nted 
An ObservationQualifier is not capable of standing alone. The information represe
by the ObservationValue modifies the Observation being qualified. The following 
tables outline some of the possibilities for ObservationQualifiers:

Dates Comments

Dates of documenting for such things as create, edit, attesting, storing in a 
database, transcribing, etc.

dictation

transcribed

sign-off

attestation

recorded

Dates of awareness for such things as reporting by patient, observing by 
professional, reading a message, etc.

results become available

Dates of (clinically 
meaningful) events 

for such things as sampling, observing, informing, 
operating, etc.

observation

onset

procedure

projection

consultation

specimen drawn

lab processing times

verification

QA review

collection

Roles

originator 

collector 

legal authenticator 

technician/tester 
2-8 Clinical Observations Access Service  V1.0                        January 2000



2

treater 

transcriptionist 

auditors 

observer 

observed subject

Modifier

body site [where observed] 

subject/Objective 

projection [in time] 

hypothesis 

Instance Status

outside alarm limits [high/low] 

outside measurement range [high/low] 

critical alarm [high/low] 

completion status 

QA status 

preliminary/final status 

normalcy 

confidence 

report status 

active/inactive/remission 

rejected/current 

Context

source system

patient record categories

facility/location [where]
COAS V1.0           Clinical Observations Model             Jan. 2000 2-9



2

equipment used

algorithm/formula used [Source data]

protocol/procedure/method

order number/requisition number

encounter number

encounter type

verifier

episode of care

accession number

specimen number

assessment plan case number

health record transaction

Types

allergen 

reaction 

prognosis 

diagnosis 

treatment related 

pharmacy 

expiration date 

refills 

dose/give rate 

intervention type/time 

Other

how it was collected 

comments 

coded comments 

normal value 
2-10 Clinical Observations Access Service  V1.0                        January 2000



2

.

alue.

s.
Relationships with Observation

• Zero or more ObservationQualifiers qualifies one or more Observations.

• One or more Observations are qualified by zero or more ObservationQualifiers

Relationships with ObservationValue

• One or more ObservationQualifiers references one and only one ObservationV

• One and only one ObservationValue is referenced by one or more 
ObservationQualifiers.

Relationships with ObservationQualifier

• Zero or more ObservationQualifiers qualifies one or more ObservationQualifier

• One or more ObservationQualifiers are qualified by zero or more 
ObservationQualifiers.

normal range 

version 

observer 

rule out 

severity 

persistence/recurrence 

onset (time?) 

procedure time 

observationQualifierType:QualifiedCode

Description: The observationQualifierType attribute is a QualifiedCode 
and should come from a well-defined terminology system. It 
is used to identify the type of qualifier that is being used to 
qualify the observation.
COAS V1.0           Clinical Observations Model             Jan. 2000 2-11



2

s 
 not 

care. 
se 
 and 
2.3.7 ObservationValue

Figure 2-7 ObservationValue

This is a Class Diagram for ObservationValue.

An ObservationValue is a manifestation of forms of biological phenomenon. In thi
model we have selected a subset of all possible values. We realize that our set is
complete, yet we believe it to be disjoint. There are many efforts underway6 in 
determining what these values should and should not be within the arena of health
This model attempts to define those that are most importance at this time. Becau
ObservationValue is an abstract type, the ability to extend ObservationValue exists
should assist as new or modified ObservationValues are identified.

6. HL7 Version 3 Data Type Redesign Project http://aurora.rg.iupui.edu/v3dt/

PlainText

<<Required>> value : String
<<Optional>> language : QualifiedCode

DateTime

<<Required>> value : TimeStamp
<<Optional>> relationalOperator : QualifiedCode
<<Optional>> accuracy : NumericValue
<<Optional>> accuracyContext : QualifiedCode
<<Optional>> accuracyUnit : QualifiedCode

NoInformation

<< Required>> reason :  Qualifi edCode

CodedElement

<<Required>> value : QualifiedCode
<<Optional>> printName : String

ObservationValue

Multimedia

<< Required>> header :  MIMEHeader

Measurement

<<Optional>> units : QualifiedCode
Curve

<<Required>> values : XYPairs
<<Optional>> xUnits : QualifiedCode
<<Optional>> yUnits : QualifiedCode

{disjoint/incomplete}

TechnologyInstanceLocator

<<Required>> protocol : Qual ifi edCode
<<Required>> address : String

LooselyCodedElement

<<Required>> tex t :  String
<<Required>> codingSchemeId : CodingSchemeId
<<Required>> versionId : St ri ng
2-12 Clinical Observations Access Service  V1.0                        January 2000



2

ed in 
 

about 
 

hin a 
 
r when 

 that 

 

d.
CodedElement

Figure 2-8 CodedElement

The CodedElement provides a mechanism to allow for values that have been cod
some form or another. Coded in the sense that they have a unique identifier. This
unique identifier can then be used to ask a terminology system specific questions 
the CodedElement, for example, its representation based on some context, or its
definition, etc.

LooselyCodedElement

Figure 2-9 LooselyCodedElement

There are times when a code that the user wants cannot be realized or found wit
terminology system (e.g., is not in the list of allowable values). In which case the
LooselyCodedElement can be used to send text instead. Such instances may occu
there are incomplete lists of coded values or “starter sets” for a given domain, for 
example, sex, marital status, race, ethnicity, order priorities, etc. The expectation is
the value sent for this field is nearly always coded, but exceptions are allowed.

value:QualifiedCode

Description: The value attribute is a QualifiedCode and should come from
a well-defined terminology system.

printName:Strin g

Description: The printName  attribute is a String and can be used in 
conjunction with the value attribute. It is used to provide a 
textual representation of the value, possibly overriding the 
definition provided by an LQS.

text:Strin g

Description: The text attribute is a Strin g and is used when no 
CodedElement from a terminology system can be determine

CodedElement

<<Required>> value : QualifiedCode
<<Optional>> printName : String

LooselyCodedElement

<<Required>> text  : String
<<Required>> codingSchemeId : CodingS chemeId
<<Required>> vers ionId : String
COAS V1.0           Clinical Observations Model             Jan. 2000 2-13



2

e 
ry 
ply 
ate..

 

y 

 

.

Curve

Figure 2-10 Curve

Some observation values can be plotted graphically. Curve is used to assist in th
retrieval of such information. It is not the intention to fully identify all the necessa
attributes that may be needed for formalized plotting algorithms but rather to sup
enough information so that it is possible to plot information in a Cartesian coordin

codin gSchemeId:Codin gSchemeId

Description: The codin gSchemeId  attribute is of type CodingSchemeId 
which comes from an LQS and is used to identify the coding
scheme where the text was intended.

versionId:Strin g

Description: The versionId attribute is a String and is used to identify the 
version of the coding scheme where the text was intended.

values:XYPairs

Description: The XYPairs  attribute allows for a sequence of x,y values. 
Where the x represents those values to be plotted on the x-
axis and the y represents those values to be plotted on the 
axis.

xUnits:QualifiedCode

Description: The xUnits  attribute denotes the x axis units. In healthcare 
this is usually a time axis, (i.e., milliseconds, seconds or 
minutes). This attribute is a QualifiedCode and should come
from a well-defined terminology system.

yUnits:QualifiedCode

Description: The yUnits  attribute denotes the y axis units. This attribute is 
a QualifiedCode and should come from a well-defined 
terminology system

Curve

<<Required>> values : XYPairs
<<Optional>> xUnits : QualifiedCode
<<Optional>> yUnits : QualifiedCode
2-14 Clinical Observations Access Service  V1.0                        January 2000



2

l 
over 

fully 
airs 
re 

net 
 

ing 
e 

eo) 
the 

e the 
Multimedia

Figure 2-11 Multimedia

There exists a set of documents, collectively called the Multipurpose Internet Mai
Extensions, or MIME, that specify a standard for conveying various media types 
the Internet.

The MIME Content-Type header field and media type mechanism have been care
designed to be extensible, and it is expected that the set of media type/subtype p
and their associated parameters will grow significantly over time. In order to ensu
that the set of such values is developed in an orderly, well-specified, and public 
manner, the MIME standard specifies a registration process which uses the Inter
Assigned Numbers Authority (IANA)7 as a central registry for MIME's various areas
of extensibility.

With this in mind we have opted to utilize the MIME as the mechanism for retriev
multimedia information. Rather than attempt to provide a description of each of th
media types (Application, Audio, Image, Message, Model, Mulitpart, Text and Vid
it seems more reasonable to provide a reference to these. They can be found in 
RFC20488 document.

header:MIMEHeader

The MIME specifications define a number of header fields that are used to describ
content of a MIME entity. These header fields occur in at least two contexts: 

• As part of a regular message header.

• In a MIME body part header within a multipart construct.

The formal definition of these header fields is as follows: 

• Entity-headers

7. The Internet Assigned Numbers Authority http://www.iana.org/listinfo.html

8. http://www.rfc-editor.org/rfc.html

Multimedia

<<Required>> header : MIMEHeader

TextIm age VideoAudioApplication

{disjoint/incomplete}

MultipartMessage Model
COAS V1.0           Clinical Observations Model             Jan. 2000 2-15



2

45

e 
yed 

 a 
 

l 
 

• MIME-message-headers

• MIME-part-headers

The syntax of the various specific MIME header fields are described in the RFC209 
document.

The multimedia data itself follows immediately after the header fields that describ
that portion of the data. This data is often encoded such that it is correctly conve
via legacy internet mail servers which can only handle 7-bit ASCII characters.

TechnologyInstanceLocator

Figure 2-12 TechnologyInstanceLocator

A TechnologyInstanceLocator10 is used to reference information that has some tie to
technology that can perform some action. It is a generalization of the well-known
Universal Resource Locator, or Uniform Resource Locator (URL) concept.

The following denotes some current internet protocols:

9. http://www.rfc-editor.org/rfc.html

10. HL7 Version 3 Data Type Redesign Project http://aurora.rg.iupui.edu/v3dt/

protocol:QualifiedCode

Description: This is the protocol associated with the address. The protoco
indicates the technology to be used to interpret the address.
This attribute, as a QualifiedCode, and should come from a 
well-defined terminology system.

Protocols
HTTP
FTP

TechnologyInstanceLocator

<<Required>> protocol : QualifiedCode
<<Required>> address : String
2-16 Clinical Observations Access Service  V1.0                        January 2000



2

 

DateTime

Figure 2-13 DateTime

A DateTime is used to communicate when some event occurred or when some 
observations was made, recorded, or verified.

The basic relational operators are denoted as follows:

address:Strin g

Description: The address attribute contains some structured sequence of
characters that the protocol knows how to interpret. For 
example, www.example.com

value:TimeStamp

Description: The value attribute contains the actual date and time 
information.

relationalOperator:QualifiedCode

Description: The relationalOperator  attribute is used to modify the 
meaning of the value attribute. This attribute is a 
QualifiedCode and should come from a well-defined 
terminology system. 

Symbolic 
Representation

Meaning

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

DateTime

<<Required>> value : TimeStamp
<<Optional>> relationalOperator : QualifiedCode
<<Optional>> accuracy : NumericValue
<<Optional>> accuracyContext : QualifiedCode
<<Optional>> accuracyUnit : QualifiedCode
COAS V1.0           Clinical Observations Model             Jan. 2000 2-17



2

y 

 This 
 using 

 a set.

r 
The symbolic representation comes from the C language. The coding scheme ma
denote the symbolic representation differently based on the context (may be a 
programming language) but the meaning should be consistent with the foregoing.
attribute can be used to denote that an observation was not at some time value by
the not-equal-to meaning.

Note – Accuracy, accuracyContext, and accuracyUnit should be used together as

accuracy:NumericValue

Description: The accuracy  attribute allows for a measure of uncertainty to 
be associated with the DateTime value. For example, plus o
minus 2 days, where plus or minus is the accuracyContext 
and days is the accuracyUnit.

accuracyContext:QualifiedCode

Description: The accuracyContext  attribute is a QualifiedCode and should 
come from a well-defined terminology system. The following 
denotes possible accuracyContexts:

• Plus or minus
• Within

accuracyUnit:QualifiedCode

Description: The accuracyUnit  attribute is a QualifiedCode and should 
come from a well-defined terminology system. The following 
denotes possible accuracyUnits.

• MilliSecond
• Second
• Minute
• Hour
• Day
• Month
• Year
2-18 Clinical Observations Access Service  V1.0                        January 2000



2

 that 
wide 
ed.

, 
Measurement

Figure 2-14 Measurement 

This is a Class Diagram for Measurement.

In this model we have identified a subset of all possible Measurements. We realize
this is not complete, yet we believe it to be disjoint. Measurements can occur in a 
variety of forms. We have concentrated on those that we believed were widely us

Range

Figure 2-15 Range

unit:QualifiedCode

Description: This is the unit associated with the Range, Ratio, TimeSeries
or Numeric. This attribute is a QualifiedCode and should 
come from a well-defined terminology system.

Measurement

<<Optional>> units : QualifiedCode

Range

<<Required>> lower : NumericValue
<<Required>> upper : NumericValue
<<Optional>> lowerRelationalOperator : QualifiedCode
<<Optional>> upperRelationalOperator : QualifiedCode
<<Optional>> logicalOperator : QualifiedCode

Ratio

<<Required>> numerator : NumericValue
<<Required>> denominator : NumericValue
<<Optional>> relationalOperator : QualifiedCode
<<Optional>> precision : NumericValue

TimeSeries

<<Required>> samplePeriod : TimeDelta
<<Required>> values : NumericValueSeq
<<Required>> totalSize : NumericValue

Numeric

<<Required>> value : NumericValue
<<Optional>> relationalOperator : QualifiedCode
<<Optional>> precision : NumericValue

{disjoint/incomplete}

Range

<<Required>> lower : NumericValue
<<Required>> upper : NumericValue
<<Optional>> lowerRelationalOperator : QualifiedCode
<<Optional>> upperRelationalOperator : QualifiedCode
<<Optional>> logicalOperator : QualifiedCode
COAS V1.0           Clinical Observations Model             Jan. 2000 2-19



2

& 
e 

 may 

.

 

 

Range is used to associate two related values together with the ability to apply 
relational and logical operators for combinatory expressions. For example, >= 1 &
<= 5. It is assumed that the value in the lower attribute is less than or equal to th
value in the upper attribute.

The basic relational operators are denoted as follows:

The symbolic representation comes from the C language. The terminology system
denote the symbolic representation differently based on some context (may be a 
programming language) but the meaning should be consistent with the foregoing

lower:NumericValue

Description: This is the lower value of the range.

upper:NumericValue

Description: This is the upper value of the range.

lowerRelationalOperator:QualifiedCode

Description: This is the lower relational operator. This attribute is a 
QualifiedCode and should come from a well-defined 
terminology system. The basic relational operators are 
denoted as follows:

Symbolic 
Representation

Meaning

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

upperRelationalOperator:QualifiedCode

Description: This is the upper relational operator. This attribute is a 
QualifiedCode and should come from a well-defined 
terminology system. The representation and meaning are as
defined for the lowerRelationalOperator described above..

logicalOperator:QualifiedCode

Description: The logical operators allow for the ability to associate two 
values logically. This attribute is a QualifiedCode and should
come from a well-defined terminology system. 
2-20 Clinical Observations Access Service  V1.0                        January 2000



2

 may 

.

n be 
al 

ted. 
lso 

y 

. 
The basic logical operators are denoted as follows:

&& And

|| Or

The symbolic representation comes from the C language. The terminology system
denote the symbolic representation differently based on some context (may be a 
programming language) but the meaning should be consistent with the foregoing

Ratio

Figure 2-16 Ratio

A ratio value contains a numerator quantity and a denominator quantity. Ratio ca
used when referring to clinical laboratory observations that are measured by seri
dilution methods.11 Thus, the ability to express titers which occur in laboratory 
medicine. A titer is the maximal dissolution at which an analyte can still be detec
Typical values of titers are: “1:32”, “1:64”,”1:128”, etc. Powers of 1/2 or 1/10 are a
common. It should be noted that the ratio data type must not be used as a handy 
representation of two related values. In particular, blood pressure values, commonl
reported as 120/80 mm Hg, are not ratios!

11. Dr. Stanley M. Huff et all. Linking a Medical Vocabulary to a Clinical Data Model using 
Abstract Syntax Notation 1.

numerator:NumericValue

Description: This is the numerator value, the first number in the ratio.

denominator:NumericValue

Description: This is the denominator value, the second number in the ratio
It must not be zero.

relationalOperator:QualifiedCode

Description: This is the relational operator. This attribute is a 
QualifiedCode and should come from a well-defined 
terminology system. The basic relational operators are 
denoted as follows:

Ratio

<<Required>> numerator : Numeri cV alue
<<Required>> denom inator :  Numeri cVal ue
<<Optiona l>> rel ationa lOperator : Qualif ied Code
<<Optiona l>> pre cision  : NumericV alue
COAS V1.0           Clinical Observations Model             Jan. 2000 2-21



2

 may 

.

 of 
the 

 
 

The basic relational operators are denoted as follows:

The symbolic representation comes from the C language. The terminology system
denote the symbolic representation differently based on some context (may be a 
programming language) but the meaning should be consistent with the foregoing

TimeSeries

Figure 2-17 TimeSeries

TimeSeries supports the retrieval of an array of values. Within health care, arrays
values are typically samples over time, and so we have included an attribute for 
sample period.

Symbolic 
Representation

Meaning

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

precision:NumericValue

Description: The precision attribute is used to provide a level of precision
to the ratio. In this case the number of decimal places to the
right of the decimal point. For whole number ratios, this 
attribute is not required.

samplePeriod:TimeDelta

Description: The samplePeriod is used to denote the length in time 
between the sampling of two sequential values. This is 
denoted in seconds.

values:NumericValueSeq

TimeSeries

<<Required>> sa mplePeri od : Ti meDelta
<<Required>> values :  Num ericValue Seq
<<Required>> totalSize : NumericValue
2-22 Clinical Observations Access Service  V1.0                        January 2000



2

f 
Numeric

Figure 2-18 Numeric

Numeric is used to communicate a single measurement or quantitative value.

The basic relational operators are denoted as follows:

Description: This is a sequence of the scalar values of the actual 
recordings. These can be octet, short, long, long long, float, 
double or any.

totalSize:NumericValue

Description: The total number of observations recorded, or the number o
values in the sequence.

value:NumericValue

Description: This attribute contains the value itself.

relationalOperator:QualifiedCode

Description: This is the relational operator. This attribute is a 
QualifiedCode and should come from a well-defined 
terminology system.  The basic relational operators are 
denoted as follows:

Symbolic 
Representation

Meaning

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

Numeric

<<Required>> va lue : NumericValue
<<Optiona l>> rel ationa lOperator : Qualif ied Code
<<Optiona l>> pre cision  : NumericValue
COAS V1.0           Clinical Observations Model             Jan. 2000 2-23



2

 may 

.

ing.

le or 
both 

 
e 
 

The symbolic representation comes from the C language. The terminology system
denote the symbolic representation differently based on some context (may be a 
programming language) but the meaning should be consistent with the foregoing

PlainText

Figure 2-19 PlainText

PlainText is used to communicate observation values as ideas in the form of writ

The following denotes a subset of potential languages.

• English

• French

• German

• Italian

• Spanish

NoInformation

Figure 2-20 NoInformation

There are instances when it is appropriate to denote that information is unavailab
missing. A NoInformation value can occur in place of any other value to express 
that specific information is missing and how or why it is missing.12

precision:NumericValue

Description: The precision attribute is used to provide a level of precision
to the value. In this case the number of decimals places to th
right of the decimal point. For whole numbers this attribute is
not required.

value:Strin g

Description: The value attribute is used to contain the text itself.

language:QualifiedCode

Description: The language attribute is used to denote the type of written 
language used in conveying the value. This attribute is a 
QualifiedCode and should come from a well-defined 
terminology system.

PlainT ext

<<Required>> value : String
<<Optional>> language : QualifiedCode

NoInformat ion

<<Required>> reason : Qual ifi edCode
2-24 Clinical Observations Access Service  V1.0                        January 2000



2

ned 

)

Reason:QualifiedCode

The reason attribute is used to denote why the information is missing or 
unavailable. This attribute is a QualifiedCode and should come from a well-defi
terminology system.

The following represents a potential set of reasons:

12. HL7 Version 3 Data Type Redesign Project http://aurora.rg.iupui.edu/v3dt/

Meaning Description

Unknown No information at all (i.e., nothing more is known about 
the circumstances of missing information).

Asked but unknown The person asked could not supply the information (why?

Not available The person asked does have the information somewhere 
but not available right now (e.g., oh, I wrote down what 
the doctor said last time, but I didn't bring this piece of 
paper with me).

Not applicable An answer to “gestational age” for a patient who is not 
pregnant. 

Not asked The person who should collect that information forgot to 
ask.
COAS V1.0           Clinical Observations Model             Jan. 2000 2-25



2

ved 

ion of 
ram 
tural 
del. 
inks to 
s, 
nces 
n 

e of 
2.4 Examples

Figure 2-21 Example Health Records

This is a Collaboration Diagram for an example of the health records of an obser
subject.

This diagram represents an example of how one might put together a representat
medical information. This diagramming technique is known as a collaboration diag
and is used to represent interactions. It provides a view of the interactions or struc
relationships that occur between objects and object-like entities in the current mo
In this case an ObservedSubject is considered a Person (patient) that has many l
specific types of medical information categories. For example; reports, nurse note
and  Laboratory Results. These categories themselves have links to specific insta
of that type of medical information. These specific instances of medical informatio
have links to specific information that gives meaning about that particular instanc
medical information.

Observed
Subject

HealthRecord
Ent ry

LabUrine
Bat tery

Laboratory
Results

Report

Summary

Pathology 
Report

Discharge 
Summary

No te

Nurse 
Notes

LetterReferral 
Letter

List
Medication

 L ist

etc...

Observed
Subject

HealthRecord
Entry

HealthRecord
Entry

HealthRecord
Entry

HealthRecord
Entry

HealthRecord
Entry

etc... etc. ..
2-26 Clinical Observations Access Service  V1.0                        January 2000



2

ults, 
 link 

ct, 

ce. 

l. In 

ther 
So, following one set of links, we see that a Person (patient) has Laboratory Res
which contains instances of LabUrineBatterys where each LabUrineBattery has a
to a HealthRecordEntry.

Also, the ObservedSubject (Person / patient) has links to another ObservedSubje
such as their parent, child, or spouse.

2.4.1 ObservedSubject - Model

Figure 2-22 ObservedSubject - Model

As mentioned earlier, we have set ObservedSubject outside the scope of this 
specification and therefore we only include this model as an informational referen
Please notice the similarities with the Clinical Observations Model. The 
ObservedSubject could merely be placed on top of the Clinical Observations Mode
essence an ObservedSubject is a CompositeObservation.

We focused on the patient when developing this specification but were aware of o
ObservedSubjects and modeled accordingly so as not to dismiss the notion of 
ObservedSubjects other than a patient. The following denotes potential 
ObservedSubjects:

• Patient

• Family Unit

• Population Cohort

• Organ

ObservedSubjectReference

<<Required>> observedSubjectReferenceType : QualifiedCode
ObservedSubject

<<Required>> observedSubjectType : QualifiedCode

0..*

0..*

+references
0..*

+referenced by
0..*

ObservationValue

ObservedSubjectQualifier

<<Required>> observedSubjectQualifierType : QualifiedCode

1..*

0..*

+qualified by

1..*

+qualifies

0..*

1..*

1..1

+references
1..*

+referenced by
1..1

0..*1..*

+qualifies

0..*
+qualified by

1..*
COAS V1.0           Examples             Jan. 2000 2-27



2

t in a 

e 

.

2.4.2 ObservedSubject - Example

Figure 2-23 ObservedSubject - Example 

This is an Object Diagram for one possible representation of an ObservedSubjec
health care information environment

ObservedSubject:CompositeObservation

Figure 2-24 ObservedSubject:CompositeObservation

This instance of an ObservedSubject is typed as a Person (patient) and has a 
CompositeObservation link of type Insurance, a CompositeObservation link of typ
Demographic and a CompositeObservation link of type LaboratoryResult. This 
diagram is not meant to be normative but rather to show an example of what an 
ObservedSubject of type Person (patient) may have associated with it.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
ObservedSubject. For example, Person, Organ, or Epidemic

HealthRecordEntry:CompositeObservation

observat ionType = Heal thRecordEntry
observat ionTime = 199901040800

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

Insurance:CompositeObservation

observationType = Insurance

Demographics:CompositeObservation

observat ionType = Demographics

LaboratoryResults:CompositeObservations

observat ionType =  LaboratoryResul ts

ObservedSubject:CompositeObservation

observationType = Person

ObservedSubject:CompositeObservat ion

observationType = Person
2-28 Clinical Observations Access Service  V1.0                        January 2000



2

ome 

ome 

her 

ome 
o a 
Insurance:CompositeObservation

Figure 2-25 Insurance:CompositeObservation

A Person (patient) in a health care information environment usually has a link to s
insurance information. This diagram does not fully exploit what a 
CompositeObservation of type Insurance has as its AtomicObservations or other 
CompositeObservations. It is merely shown as a possible scenario.

Demographics:CompositeObservation

Figure 2-26 Demographics:CompositeObservation 

A Person (patient) in a health care information environment usually has a link to s
demographic information. This diagram does not fully exploit what a 
CompositeObservation of type Demographic has as its AtomicObservations or ot
CompositeObservations. It is merely shown as a possible scenario.

LaboratoryResults:CompositeObservation

Figure 2-27 LaboratoryResults:CompositeObservation 

A Person (patient) in a health care information environment usually has a link to s
LaboratoryResults information. In this example the LaboratoryResults has a link t
CompositeObservation of type LabUrineBattery. 

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
CompositeObservation. In this case Insurance.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
CompositeObservation. In this case Demographics.

Insurance:CompositeObservation

observationType = Insurance

Demographics:CompositeObservation

observationType = Demographics

LaboratoryResults:CompositeObservations

observat ionType = LaboratoryResults
COAS V1.0           Examples             Jan. 2000 2-29



2

 has 

ntry 
LabUrineBattery:CompositeObservation

Figure 2-28 LabUrineBattery:CompositeObservation

LaboratoryResults have links to Laboratory Tests. In this case a LabUrineBattery
been depicted.

HealthRecordEntry:CompositeObservation

Figure 2-29 HealthRecordEntry:CompositeObservation 

A HealthRecordEntry may be linked to a Laboratory Test. See the HealthRecordE
Example in this section for a further description.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
CompositeObservation. In this case LaboratoryResults.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
CompositeObservation. In this case LONICUrineBattery.

observationTime: TimeSpan

Description: Denotes the time when the LabUrineBattery became a 
characteristic of the observed subject. In this case 1998 
December 19 at 07:00 am.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
CompositeObservation. In this case HealthRecordEntry.

observationTime: TimeSpan

Description: Denotes the time when the HealthRecordEntry became a 
characteristic of the LabUrineBattery. In this case 1999 
January 1, at 08:00 am.

LabUrineBattery:CompositeObservation

observationType = LOINCUrineB attery
observationTime = 199812190700

HealthRecordEntry:CompositeObservation

observat ionType = HealthR ecordEntry
observat ionTime =  199901040800
2-30 Clinical Observations Access Service  V1.0                        January 2000



2

ical 

ple 
us 
2.4.3 LabUrineBattery - Example

Figure 2-30 LabUrineBattery - Example

This is an Object Diagram for what might be a way to represent a 
CompositeObservation of type LONICLabUrineBattery. The LONIC13 database 
provides a set of universal names and ID codes for identifying laboratory and clin
observations.

LabUrineBattery:CompositeObservation

Figure 2-31 LabUrineBattery:CompositeObservation

A Laboratory Test, in this case a LabUrineBattery, has been depicted. This exam
shows two AtomicObservations being linked to the LabUrineBattery, a ResultStat
and a DiagnosticService.

13. http://www.mcis.duke.edu/standards/HL7/termcode/loinc.htm

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
CompositeObservation. In this case LONICUrineBattery.

observationTime: TimeSpan

Description: Denotes the time when the LabUrineBattery became a 
characteristic of the observed subject. In this case 1998 
December 19, at 07:00am.

ResultStatus:CodedElement

value = Final

ResultStatus:AtomicObservation

observationType = ResultStatus

Diagnosti cService:CodedElement

value = Urinalysis

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

Diagnosti cService:AtomicObservat ion

observationType = DiagnosticService

LabUrineBattery:CompositeObservation

observationType = LOINCUrineB attery
observationTime = 199812190700
COAS V1.0           Examples             Jan. 2000 2-31



2

ed to 
logy 

 the 

 

ResultStatus:AtomicObservation

Figure 2-32 ResultStatus:AtomicObservation 

LaboratoryResults usually have an indicator to identify the status of the result.

ResultStatus:CodedElement

Figure 2-33 ResultStatus:CodedElement 

ResultStatus is an AtomicObservation and therefore has an ObservationValue link
it. In this case it is a CodedElement and should come from a well defined termino
system.

DiagnosticService:AtomicObservation

Figure 2-34 DiagnosticService:AtomicObservation

LaboratoryResults may have an indicator of the diagnostic service that performed
laboratory test.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case ResultStatus.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Final.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case DiagnosticService.

ResultStatus:AtomicObservation

observationType = ResultStatus

ResultStatus:CodedElement

value = Final

DiagnosticService:AtomicObservation

observationType = DiagnosticService
2-32 Clinical Observations Access Service  V1.0                        January 2000



2

e 
d 
DiagnosticService:CodedElement

Figure 2-35 DiagnosticService:CodedElement 

DiagnosticService is an AtomicObservation and therefore has an ObservationValu
linked to it. In this case it is a CodedElement and should come from a well define
terminology system.

2.4.4 LabUrineBattery - LabSegments

Figure 2-36 LabUrineBattery - LabSegments

This is an Object Diagram showing an extension to the previous 
LONICLabUrineBattery example with the addition of three specific test results. 

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and 
in this case has been identified as Urinalysis.

DiagnosticService:CodedElement

value = Urinalysis

DiagnosticService:CodedElement

value = Urinalysis

ResultStatus:CodedElement

value = Final

DiagnosticService:AtomicObservation

observationType = DiagnosticService

ResultStatus:AtomicObservation

observationType = ResultStatus

LabSegment#1:CompositeObservation

observationType = LOINCUrineSodium

LabSegment#3:CompositeObservation

observat ionType = LOINC UrineColor

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

LabSegement#2:CompositeObservation

observationType = LOINCUrineColor
COAS V1.0           Examples             Jan. 2000 2-33



2

LabSegment#1:CompositeObservation

Figure 2-37 LabSegment#1:CompositeObservation

A CompositeObservation of type LOINCUrineSodium.

LabSegment#2:CompositeObservation

Figure 2-38 LabSegment#2:CompositeObservation

A CompositeObservation of type LOINCUrineColor.

LabSegment#3:CompositeObservation

Figure 2-39 LabSegment#3:CompositeObservation 

A CompositeObservation of type LOINCUrineColor.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
CompositeObservation. In this case LOINCUrineSodium.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
CompositeObservation. In this case LOINCUrineSodium.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
CompositeObservation. In this case LOINCUrineSodium.

LabSegment#1:CompositeObservation

observationType = LOINCUrineSodium

LabSegement#2:CompositeObservation

observationType = LOINCUrineC olor

LabSegment#3:CompositeObservation

observationType = LOINCUrineColor
2-34 Clinical Observations Access Service  V1.0                        January 2000



2

 test 
2.4.5 LabUrineBattery - LabSegment#1 - LONICUrineSodium

Figure 2-40 LabUrineBattery - LabSegment#1 - LOINCUrineSodium

This is an Object Diagram that shows an extension of the detail in one of the lab
results, namely the LONICLabUrineSodium.

NumericMeasurement:AtomicObservation

Figure 2-41 NumericMeasurement:AtomicObservation 

LOINCUrineSodium has a NumericMeasurement linked to it.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case Measurement.

RangeMeasurment:Range 

upper = 600 
lower = 100 
units = mmol/L 

DiagnosticService:CodedElement 

value = Urinalysis 

ResultStatus:CodedElement 

value = Final 

DiagnosticService:AtomicObservation 

observationType = DiagnosticService 

ResultStatus:AtomicObservation 

observationType = ResultStatus 

NumericMeasurement:Numeric 

value = 423 
units = mmol/L 

LabUrineBattery:CompositeObservation 

observationType = LOINCUrineBattery 
observationTime = 199812190700 

NumericMeasurement:AtomicObservation 

observationType = Measurment 

RangeMeasurement:AtomicObservation 

observationType = Range 

LabSegment#1:CompositeObservation 

observationType = LOINCUrineSodium 

AbnormalFlag:CodedElement 

value = Normal 

AbnormalFlag:AtomicObservation 

observationType = AbnormalFlag 

{600 < NumericMeasurement.value < 100} 

NumericMeasurement:Atom icObservat ion

observationType = Measurment
COAS V1.0           Examples             Jan. 2000 2-35



2

Value 

alue 
NumericMeasurement:Numeric

Figure 2-42 NumericMeasurement:Numeric 

NumericMeasurement is an AtomicObservation and therefore has an Observation
linked to it. In this case it is a numeric value.

RangeMeasurement:AtomicObservation

Figure 2-43 RangeMeasurement:AtomicObservation 

LOINCUrineSodium has a RangeMeasurement linked to it.

RangeMeasurement:Range

Figure 2-44 RangeMeasurement:Range 

RangeMeasurement is an AtomicObservation and therefore has an ObservationV
linked to it. In this case it is a range.

value:NumericValue

Description: The value in this instance is 423.

units:QualifiedCode

Description: The units in this instance are mmol/L.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case Range.

NumericMeasurement:Numeric

value = 423
units = mmol/L

RangeMeasurement:AtomicObservation

observationType = Range

RangeMeasurment:Range

upper = 600
lower = 100
units = mmol/L
2-36 Clinical Observations Access Service  V1.0                        January 2000



2

ked 

 

AbnormalFlag:AtomicObservation

Figure 2-45 AbnormalFlag:AtomicObservation 

LOINCUrineSodium has an AbnormalFlag linked to it.

AbnormalFlag:CodedElement

Figure 2-46 AbnormalFlag:CodedElement

AbnormalFlag is an AtomicObservation and therefore has an ObservationValue lin
to it. In this case it is a CodedElement and should come from a well defined 
terminology system.

upper:NumericValue

Description: The upper value of the range is 600.

lower:NumericValue

Description: The lower value of the range is 100.

units:QualifiedCode

Description: The units in this instance are mmol/L.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case AbnormalFlag.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Normal.

AbnormalFlag:AtomicObservation

observat ionT ype = AbnormalFlag

AbnormalFlag:C odedElement

value = Normal
COAS V1.0           Examples             Jan. 2000 2-37



2

2.4.6 LabUrineBattery - LabSegment#2 - LONICUrineColor

Figure 2-47 LabUrineBattery - LabSegment#2 - LOINCUrineColor

This is an Object Diagram for our example LabUrineBattery - LabSegment - 
LOINCUrineColor.

Color:AtomicObservation

Figure 2-48 Color:AtomicObservation 

LOINCUrineSodium has a Color linked to it.

AbnormalFlag:CodedElement

value = Abnormal

DiagnosticService:CodedElement

value =  Urinalysis

ResultStatus:CodedElement

value = Final

DiagnosticService:AtomicObservation

observationType = DiagnosticService

ResultStatus:AtomicObservat ion

observationType = Resul tStatus

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

Color:CodedElement

value = Brown

Color:AtomicObservation

observationType = Color
AbnormalFlag:AtomicObservation

observationType = AbnormalFlag

DiagnosticService:AtomicObservation

observationType = DiagnosticService

ResultStatus:AtomicObservat ion

observationType = ResultStatus

{LabSegment#2CodedElement.value <> 'Clear' OR 
LabSegment#2CodedElement.value <> 'Pale Yellow'}

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

LabSegment#2:CompositeObservation

observationType = LOINCUrineColor

Color:AtomicObservation

observationType = Color
2-38 Clinical Observations Access Service  V1.0                        January 2000



2

t. In 
 

ked 

 

Color:CodedElement

Figure 2-49 Color:CodedElement 

Color is an AtomicObservation and therefore has an ObservationValue linked to i
this case it is a CodedElement and should come from a well defined terminology
system.

AbnormalFlag:AtomicObservation

Figure 2-50 AbnormalFlag:AtomicObservation 

LOINCUrineSodium has an AbnormalFlag linked to it.

AbnormalFlag:CodedElement

Figure 2-51 AbnormalFlag:CodedElement

AbnormalFlag is an AtomicObservation and therefore has an ObservationValue lin
to it. In this case it is a CodedElement and should come from a well defined 
terminology system.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case Color.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Brown.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case AbnormalFlag.

C olor:C odedElement

value = Brown

AbnormalFlag:AtomicObservation

observationType = AbnormalFlag

AbnormalFlag:C odedElement

value = Abnorm al
COAS V1.0           Examples             Jan. 2000 2-39



2

 

2.4.7 LabUrineBattery - LabSegment#3 - LOINCUrineColor

Figure 2-52 LabUrineBattery - LabSegment#3 - LOINCUrineColor

This is an Object Diagram for our example LabUrineBattery - LabSegment - 
LOINCUrineColor.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Abnormal.

Color:CodedElement

value = Bloody

AbnormalFlag:CodedElement

value = Abnormal

DiagnosticService:CodedElement

value = Urinalysis

ResultStatus:CodedElement

value = F inal

DiagnosticService:AtomicObservation

observationType = DiagnosticService

ResultStatus:AtomicObservation

observationType = ResultStatus

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

DiagnosticService:AtomicObservation

observationType = DiagnosticService

ResultStatus:AtomicObservation

observationType = ResultStatus

Color:AtomicObservation

observationType = Color

AbnormalFlag:AtomicObservation

observat ionType = AbnormalFlag

{LabSegment#3CodedElement.value <> 'Clear' OR 
LabSegment#3CodedElement.value <> 'Pale Yellow'}

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

LabSegment#3:Composi teObservation

observationType = LOINCUrineColor
2-40 Clinical Observations Access Service  V1.0                        January 2000



2

t. In 
 

 

Color:AtomicObservation

Figure 2-53 Color:AtomicObservation 

LOINCUrineSodium has a Color linked to it.

Color:CodedElement

Figure 2-54 Color:CodedElement 

Color is an AtomicObservation and therefore has an ObservationValue linked to i
this case it is a CodedElement and should come from a well defined terminology
system.

AbnormalFlag:AtomicObservation

Figure 2-55 AbnormalFlag:AtomicObservation 

LOINCUrineSodium has an AbnormalFlag linked to it.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case Color.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Bloody.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case AbnormalFlag.

Color:AtomicObservation

observationType = Color

C olor:C odedElement

value = Bloody

AbnormalFlag:AtomicObservation

observationType = AbnormalFlag
COAS V1.0           Examples             Jan. 2000 2-41



2

ked 

cope 
al 
 
del. 

 

AbnormalFlag:CodedElement

Figure 2-56 AbnormalFlag:CodedElement 

AbnormalFlag is an AtomicObservation and therefore has an ObservationValue lin
to it. In this case it is a CodedElement and should come from a well defined 
terminology system.

2.4.8 HealthRecordEntry - Model

Figure 2-57 HealthRecordEntry - Possible Model

As mentioned early in this chapter, we have set HealthRecordEntry outside the s
of this specification and therefore we only include this example as an information
reference. Please notice the similarities with the Clinical Observations Model. The
HealthRecordEntry could merely be placed on top of the Clinical Observations Mo
In essence an HealthRecordEntry is a CompositeObservation.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Abnormal.

AbnormalFlag:C odedElement

value = Abnorm al

HealthRecordEntryReference

<<Required>> healthRecordEntryReferenceType : QualifiedCode

HealthRecordEntry

<<Required>> healthRecordEntryType : QualifiedCode

0..*

0..*

+references
0..*

+referenced by
0..*

HealthRecordEntryQualifier

<<Required>> healthRecordEntryQualifierType : QualifiedCode

1..*

0..*

+qualified by
1..*

+qualifies
0..*

0..*1..*
+qualifies
0..*

+qualified by
1..*

ObservationValue

1..*

1..1

+references
1..*

+referenced by

1..1
2-42 Clinical Observations Access Service  V1.0                        January 2000



2

2.4.9 HealthRecordEntry - Example

Figure 2-58 HealthRecordEntry - Example

This is an example Object Diagram for a possible HealthRecordEntry.

HealthRecordEntry:CompositeObservation

Figure 2-59 HealthRecordEntry:CompositeObservation 

A HealthRecordEntry can be used to provide transactional information that is 
associated with an Observation.

observationType: QualifiedCode

AuthorizingClinician:QualifiedPersonId
localName = Dr. Authenticator

EncounterNumber:String

value = 123456789

HealthRecordEntryId:QualifiedNameString

localName = OurHealthRecordId123

Reason:CodedElement

value = Urinary Tract Infection

Originator:QualifiedPersonId

localName = Dr. First

Status:CodedElement

value = Completed

OriginatingSource:CodedElement

value = Clinic#1

Auditor:QualifiedPersonId
localName = Tom Audit

AuthorizingClinician:AtomicObservation

observationType = AuthorizingClinician

EncounterNumber:AtomicObservation

observationType = EncounterNumber

HealthRecordEntryId:AtomicObservation
observationType = HealthRecordEntryId

Reason:AtomicObservation

observationType = Reason

Originator:AtomicObservation
observationType = Originator

Status:AtomicObservation
observationType = Status

OriginatingSource:AtomicObservation
observationType = OriginatingSource

HealthRecordEntry:CompositeObservation
observationType = HealthRecordEntry
observationTime = 199901040800

Auditor:AtomicObservation
observationType = Auditor

HealthRecordEntry:CompositeObservation

observat ionType = HealthR ecordEntry
observat ionTime =  199901040800
COAS V1.0           Examples             Jan. 2000 2-43



2

e 

ity. 

y 
AuthoringClinician:AtomicObservation

Figure 2-60 AuthoringClinician:AtomicObservation 

The AuthoringClinician can be used to identify the responsible individual.

AuthoringClinician:QualifiedPersonId

Figure 2-61 AuthoringClinician:QualifiedPersonId

AuthoringClinician is an AtomicObservation and therefore has an ObservationValu
linked to it. In this case it is a QualifiedPersonId and should come from some 
Enterprise Master Patient Index. There are other attributes associated with a 
QualifiedPersonId other than localName but not included in this example for brev
Further information can be attained from the CORBAmed Person Identification 
Service14 (PIDS).

Description: This is a QualifiedCode that provides the type of the 
CompositeObservation. In this case HealthRecordEntry.

observationTime: TimeSpan

Description: Denotes the time when the HealthRecordEntry became a 
characteristic of the subject of care. In this case 1999 Januar
1, at 08:00 am.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case AuthoringClinician.

localName:Strin g

Description: The localName is of type String and in this case has been 
identified as Dr. Authenticator.

14. CORBAmed Person Identification Services, March 1998. OMG CORBAmed Document 
98-02-29. http://www.omg.org/docs/corbamed/98-02-29.rtf

Authori zingCl in ici an:AtomicObservat ion

observationType = AuthorizingClinician

AuthorizingC linician:Qualifi edPersonId

localName = Dr. Authenticator
2-44 Clinical Observations Access Service  V1.0                        January 2000



2

e 

icular 
Auditor:AtomicObservation

Figure 2-62 Auditor:AtomicObservation 

The Auditor can be used to identify the individual from the medical records 
department that was responsible for finalizing this information.

Auditor:QualifiedPersonId

Figure 2-63 AuthoringClinician:QualifiedPersonId

AuthoringClinician is an AtomicObservation and therefore has an ObservationValu
linked to it. In this case it is a QualifiedPersonId and should come from some 
Enterprise Master Patient Index.

EncounterNumber:AtomicObservation

Figure 2-64 EncounterNumber:AtomicObservation 

The EncounterNumber can be used as some unique system identifier for this part
instance of information.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case Auditor.

localName:Strin g

Description: The localName is of type String and in this case has been 
identified as Tom Audit.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case EncounterNumber.

Audi tor:AtomicObservation

observationType = Auditor

Audi tor:QualifiedPersonId

localName = Tom Audi t

EncounterNumber:AtomicObservation

observationType = EncounterNumber
COAS V1.0           Examples             Jan. 2000 2-45



2

ue 

alue 

this 

d 

d 
EncounterNumber:String

Figure 2-65 EncounterNumber:String

EncounterNumber is an AtomicObservation and therefore has an ObservationVal
linked to it. In this case it is a String.

HelathRecordEntryId:AtomicObservation

Figure 2-66 HelathRecordEntryId:AtomicObservation 

The HealthRecordEntryId can be used as some unique system identifier for the 
HealthRecordEntry itself.

HealthRecordEntryId:String

Figure 2-67 HealthRecordEntryId:String

HealthRecordEntryId is an AtomicObservation and therefore has an ObservationV
linked to it. In this case it is a QualifiedNameString. There are other attributes 
associated with a QualifiedNameString other than localName but not included in 
example for brevity. QualifiedNameString is identified in the CORBAmed LQS.

value:Strin g

Description: The value is of type String and in this case has been identifie
as 123456789.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case HealthRecordEntryId.

localName:Strin g

Description: The value is of type String and in this case has been identifie
as OurHealthRecordId123.

EncounterNumber:String

value = 123456789

HealthRecordEntryId:AtomicObservation

observat ionType = HealthRecordEntryId

HealthRecordEntryId:QualifiedNameString

localName = OurHealthRecordId123
2-46 Clinical Observations Access Service  V1.0                        January 2000



2

rom.

e 

 

OriginatingSource:AtomicObservation

Figure 2-68 OriginatingSource:AtomicObservation 

The OriginatingSource can be used to identify where this information originated f

OriginatingSource:CodedElement

Figure 2-69 OriginatingSource:CodedElement

OriginatingSource is an AtomicObservation and therefore has an ObservationValu
linked to it. In this case it is a CodedElement.

Originator:AtomicObservation

Figure 2-70 Originator:AtomicObservation 

The Originator can be used to identify who was the originator of this information.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case OriginatingSource.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Clinic#1.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case Originator.

OriginatingSource:AtomicObservation

observationType = OriginatingSource

OriginatingSource:CodedElement

value = Clinic#1

Originator:AtomicObservation

observationType = Originator
COAS V1.0           Examples             Jan. 2000 2-47



2

to it. 
ter 

 it. In 

 

Originator:QualifiedPersonId

Figure 2-71  Originator:QualifiedPersonId

Originator is an AtomicObservation and therefore has an ObservationValue linked 
In this case it is a QualifiedPersonId and should come from some Enterprise Mas
Patient Index.

Reason:AtomicObservation

Figure 2-72 Reason:AtomicObservation 

The Reason can be used to identify why this was necessary.

Reason:CodedElement

Figure 2-73 Reason:CodedElement

Reason is an AtomicObservation and therefore has an ObservationValue linked to
this case it is a CodedElement.

localName:Strin g

Description: The localName is of type String and in this case has been 
identified as Dr. First.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case Reason.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Urinary Tract Infection.

Orig inator:Qualifi edPersonId

localName = Dr. First

Reason:AtomicObservation

observationType = Reason

Reason:CodedElement

value = Urinary Tract Infection
2-48 Clinical Observations Access Service  V1.0                        January 2000



2

it. In 

 

Status:AtomicObservation

Figure 2-74 Status:AtomicObservation 

The Status can be used to indicate the state of the information.

Status:CodedElement

Figure 2-75 Status:CodedElement

Status is an AtomicObservation and therefore has an ObservationValue linked to 
this case it is a CodedElement.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
AtomicObservation. In this case Status.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Completed.

Status:AtomicObservation

observationType = Status

Status:CodedElement

value = Completed
COAS V1.0           Examples             Jan. 2000 2-49



2

2-50 Clinical Observations Access Service  V1.0                        January 2000



DSObservationAccess Service 3
 

nd its 
nt 
Contents

This chapter contains the following topics. 

3.1 Overview

The DsObservationAccess  service has many interfaces and definitions, and can be
viewed from several perspectives. Several viewpoints are first shown by UML 
diagrams. Each viewpoint is chosen to describe one aspect of the entire service a
types. These initial viewpoints are not complete descriptions, showing only releva
information for a viewpoint while hiding irrelevant information. 

After the viewpoints, all IDL types and interfaces are described in detail.

Topic Page

“Overview” 3-1

“Viewpoints” 3-2

“Data Type Definitions” 3-16

“Interface Specifications” 3-31

“Query-Oriented Interface Specifications” 3-43

“Event and Notification Interface Specifications” 3-53

“Utility Interface Specifications” 3-59
Clinical Observations Access Service  V1.0                        January 2000 3-1



3

e 

 
nd 

tion 

(See 
3.2 Viewpoints

This section provides an overview of the DsObservationAccess  service. The service is 
presented from several viewpoints which may include overlapping information. Th
viewpoints are not meant to be orthogonal.

3.2.1 Navigable Relationships Viewpoint

Figure 3-1 Direct navigation between interfaces.

All interfaces defined in the DsObservationAccess  module are shown on the diagram
above. Iterators and abstract interfaces do not have direct navigation. Attributes a
operations are hidden in this diagram in order to focus in on the navigable 
relationships.

Only direct navigation is shown. Some of the query interfaces have indirect 
mechanisms to traverse to other interfaces as well. For example, a browse opera
could return references to an ObservedSubject  or ObservationRemote . 

The starting point in the DsObservationAccess  service is the AccessComponent  
interface. From there a client can traverse to the other core interfaces on the 
component. This traversal capability is one of the basis for the componentization 
Section 3.2.3, “Componentization Viewpoint,” on page 3-5).

AbstractFactory

Observ at ionDataIterator

Observ at ionRem oteIterator

AbstractM anagedObject

Asy nchC allbackEv entSupplier

Query Acces s

C onstraintLanguageAccess

Observ at ionLoader

Asy nc hAccessBrowseAccess SupplierAccess

AccessCom ponent

C onsum erAccess

Ev entConsum er

Qualif iedCodeIterator

Observati onRe moteAtom icObserv ationR em ote

C om pos iteObserv ationRem ote

Observ edSubjec t
3-2 Clinical Observations Access Service  V1.0                        January 2000



3

er to 
3.2.2 Interface Inheritance Viewpoint

Figure 3-2 Inheritance relationship between the various DsObservationAccess  interfaces.

This diagram shows the inheritance relationship between the DsObservationAccess  
service interfaces. The attributes and operations are hidden in this diagram in ord
focus in on the inheritance relationships. 

AccessComponent  is the superclass for componentization (See Section 3.2.3, 
“Componentization Viewpoint,” on page 3-5).

AbstractFactory

EventSupplier

EventConsumer

AsynchCallback

Observat ionDataIterator

ObservationRemote

ObservedSubject

CompositeObservationRemote AtomicObserv ationRemote
ObservationRemoteIterator

AbstractManagedObject

QueryAccess

ObservationLoader

ConsumerAccess

ConstraintLanguageAccess

BrowseAccess

AsynchAccess

AccessComponent

SupplierAccess

CosNotif yComm::StructuredPushSupplier

CosNotif yComm::StructuredPushConsumerCosNotif yComm: :Not if y Publish

CosNotif yComm::Notif ySubscribe

Qualif iedCodeIterator
COAS V1.0           Viewpoints             Jan. 2000 3-3



3

ith 
e 
fter 

mic 
3-7 
The four interfaces from the CosEvent  module are part of the OMG Event Service. 
The Event Service is not required for the DsObservationAccess  event system, 
although its use is facilitated by the use of some common interfaces.

The AbstractMana gedObject  interface contains a single operation, done() , which 
allows a client to indicate when it is done with an object. All subclasses of 
AbstractMana gedObject  are instantiated or activated according to client requests, w
their lifetime under server control. A well-behaved client will signal when it is don
with such a remote object, and a savvy server will keep some timer for cleanup a
ill-behaved clients or traumatic client termination.

The ObservationRemote  object can have subtypes that are either composite or ato
observations. See Section 3.2.5, “Local/Remote Observations Viewpoint,” on page
for more details.
3-4 Clinical Observations Access Service  V1.0                        January 2000



3

ll 
eir 

one to 
3.2.3 Componentization Viewpoint

Figure 3-3  Simplified view of ObservationAccess::AccessComponent  and its 
subclasses.

The base interface AccessComponent  includes a means for dynamic discovery of a
implemented components. Servers need implement only components which fit th
purpose, according to conformance level.

The components each inherit from the AccessComponent , which in turn has 
references to other components, so a client of one component can navigate from 
another easily.

QueryAccess

ConstraintLanguageAccess

ObservationLoader

ConsumerAccess

SupplierAccess

AsynchAccess

BrowseAccess

AccessComponent

+query_access

+constraint_access

+observation_loader

+event_consumer

+event_supplier

+asynch_access

+browse_access
COAS V1.0           Viewpoints             Jan. 2000 3-5



3

imilar 
3.2.4 Full Component Viewpoint

Figure 3-4 Full view of attributes and operations for AccessComponent  and its subclasses.

The diagram above shows the components available from AccessComponent , and 
their attributes and operations. Several of the components share operations with s
names like “get_observation() ” with similar semantics.

QueryAccess

count_observations()
get_observation()
get_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()

ConstraintLanguageAccess

supported_languages : ConstraintLanguageSeq

get_by_constraint()

ObservationLoader

load_observations()

AsynchAccess

count_observations()
get_observation()
get_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()
cancel_get()

ConsumerAccess

create_consumer()
get_consumer_by_id()

SupplierAccess

create_supplier()
get_supplier_by_id()

BrowseAccess

get_observed_subject()
get_observed_subjects()
get_observed_subject_for_observation_id()
get_observed_subjects_for_observation_ids()
count_observations()
get_observation()
get_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()

AccessComponent

coas_version : string
pid_service : IdentificationComponent
terminology_service : TerminologyService
trader_service : TraderComponents
naming_service : NamingContext

get_components()
get_supported_codes()
get_supported_qualifiers()
get_supported_policies()
get_default_policies()
get_type_code_for_observation_type()
are_iterators_supported()
get_current_time()

+query_access

+constraint_access

+observation_loader

+asynch_access

+event_consumer

+event_supplier

+browse_access
3-6 Clinical Observations Access Service  V1.0                        January 2000



3

) and

 
 by 

e, 

ed 

ed to 
be 
t 
 

, but 

ed 
3.2.5 Local/Remote Observations Viewpoint

Figure 3-5  Showing a comparison between observations accessed by reference (remote
 observations accessed by value (local).

The DsObservationAccess  service can support both reference and value access to
observations. This viewpoint shows a comparison between observations returned
value (ObservationData ) and those returned by reference (ObservationRemote ). In 
both the local and remote flavors, only an “atomic” observation has an actual valu
while a “composite” observation is a collection of other observations. 

The division of observations into composite or atomic observations is accomplish
differently for local access vs. remote access. The abstract interface 
ObservationRemote  has concrete subclasses, so an ObservationRemote  is either 
atomic or composite, with no possible ambiguity. If ObservationData  was defined 
using Object-By-Value (OBV), then the same subclassing mechanism would be us
separate atomic from composite observations. However, because structs cannot 
subclassed in IDL, a struct based definition has the potential for ambiguity to exis
between atomic and composite observations. Although the potential for ambiguity
exists, there is a semantic requirement that each ObservationData  be either atomic 
(have a value) or composite (have a non-zero aggregation of other observations)
not both at the same time. 

See Section 3.2.7, “Remote Observations Viewpoint,” on page 3-9 for more detail
information about remote (by reference) observations.

ObservationRemoteSeq
<<Sequence>>

ObservationRemoteIterator
<<Interface>>

ObservationDataIterator
<<Interface>>

ObservationRemote
<<Interface>>

0..*0..*

CompositeObservationRemote
<<Interface>>

AtomicObservationRemote
<<Interface>>

ObservationValue

<<Typedef >>

0..10..1

ObservationDataSeq
<<Sequence>>

ObservationData
<<Typedef >>

0..10..1

0..*0..*
COAS V1.0           Viewpoints             Jan. 2000 3-7



3

 

 

 
ero 

o 
an 
See Section 3.2.6, “Local Observations Viewpoint,” on page 3-8 for more detailed
information about local (by value) observations.

3.2.6 Local Observations Viewpoint

Figure 3-6  Detail UML for ObservationDataStruct

ObservationDataStruct  is the struct for passing “local” observations between client
and server by value within ObservationDataStruct , defined as a CORBA::any . Since 
DsObservationAccess  does not use Objects-by-Value (OBV), and structs have no 
polymorphism, the struct used for observations must encapsulate both composite
observations and atomic observations. A composite observation will have a non-z
amount of items in the composite  attribute, and zero items in the value  attribute. 
Conversely, an atomic local observation will have zero items in the composite  
attribute, and a single item in the value  attribute. 

Qualifiers modify all of the data “beneath” them in a hierarchy. For example, a 
modifier of “Normalcy=abnormal” found in a composite observation would apply t
all the items in the composite. However, qualifiers found lower in a tree of data c

ObservationDataStructSeq
<<Sequence>>

ObservationDataStruct

code :  Qual ifiedCodeStr
composite :  sequence<Observat ionDataStruct>
qualifiers :  sequence<ObservationDataStruct>
value :  sequence<any,1>

0..*0..*

ObservationValue
<<Typedef>>

0..10..1
3-8 Clinical Observations Access Service  V1.0                        January 2000



3

 

site 
ich is 

tion 
override modifiers found higher up in the tree, so a leaf observation could have a
modifier “Normalcy=normal” which applied to just that leaf, despite any qualifier 
higher-up in the tree.

 See Section 3.3.6, “ObservationData,” on page 3-21 for the more details.

3.2.7 Remote Observations Viewpoint

Figure 3-7 The operations and attributes for ObservationRemote  and its subclasses.

ObservationRemote  encapsulates remote references for observations. A remote 
observation is either a composite observation or an atomic observation. A compo
observation aggregates a set of observations, like a set of lab values, each of wh
an atomic observation, with a single data value.

See Section 3.2.10, “Browsing Access Viewpoint,” on page 3-12 for more informa
about the remote browsing style of access. 

AtomicObservationRemote

get_observation_data()
get_observation_data_with_policy()

<<Interface>>

ObservationValue

<<Typedef>>

0..10..1

+observation_value

CompositeObservationRemote

count_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()
get_leaf_observations()
get_leaf_observations_by_time()
get_leaf_observations_by_qualifier()
get_leaf_observations_with_policy()
get_leaf_observations_by_value_type()
get_relations_toward_root()
get_relations_away_from_root()

<<Interface>>

ObservationRemote

observation_code : QualifiedCode

get_observation_time()
get_observed_subject()
get_root_observation()
get_path_from_root()
get_all_qualifiers()
get_qualifiers()
is_this_root()
is_this_atomic()

<<Interface>>
COAS V1.0           Viewpoints             Jan. 2000 3-9



3

 

 type 

pe 

ilar 
ue 
See Section 3.4.2, “ObservationRemote Interface,” on page 3-31 for the interface
specification. 

See Section 3.4.4, “CompositeObservationRemote Interface,” on page 3-34 for the
specification.

 See Section 3.4.3, “AtomicObservationRemote Interface,” on page 3-33 for the ty
specification.

3.2.8 Common Access Operations Viewpoint

Figure 3-8  Common “get_*()” style operations on multiple interfaces.

This viewpoint shows that many interfaces have common operation names. A sim
operation name implies similar semantics for the operation, though the return val
may be local (QueryAccess ), remote (BrowseAccess ), or arriving asynchronously 
(AsynchAccess ). 

See the following for some of the different styles of access:

• Section 3.5.2, “QueryAccess Interface,” on page 3-46

• Section 3.2.10, “Browsing Access Viewpoint,” on page 3-12

• Section 3.2.11, “Asynchronous Access Viewpoint,” on page 3-13

Query Access

c ount _obser v ations ()
g et_o bser v ati on( )
g et_o bser v ati ons( )
g et_o bser v ati ons_b y _ti me()
g et_o bser v ati ons_b y _qual if ier( )
g et_o bser v ati ons_wit h_pol icy ()

Observ edSubject

count _obs erv at ions()
get_obser v ation s_by _time()
get_obser v ation s_by _qua lif ier()
get_obser v ation s_wit h_po licy ()
get_roo t_ob serv ations()
get_le af _ob serv ations()
get_any _ob serv ation()
get_f irst _obs erv ation()
get_la s t_o bserv ation()
get_candi dat e_observ at ions()
get_exact _ope ration_ty pe s()

Br owseAcce ss

get_observ ed_subject()
get_observ ed_subjects()
get_observ ed_subject_f or_observ ation_id()
get_observ ed_subjects_f or_observ ation_ids()
count_observ ations()
get_observ ation()
get_observ ations()
get_observ ations_by _time()
get_observ ations_by _qualif ier()
get_observ ations_with_policy ()Asy nchAccess

count_observ ations()
get_observ ation()
get_observ ations()
get_observ ations_by _time()
get_observ ations_by _qualif ier()
get_observ ations_with_policy ()
cancel_get()

CompositeObserv ationRem ote

count _obse rv at io ns()
get_obser v ati ons _by _time()
get_obser v ati ons _by _qua lif ier( )
get_obser v ati ons _wit h_po licy ()
get_le af _obs erv at ions()
get_le af _obs erv at ions_by _t ime( )
get_le af _obs erv at ions_by _q ualif ier ()
get_le af _obs erv at ions_with_ policy ( )
get_le af _obs erv at ions_by _v a lue _ty pe ()
get_rel at ion s_to ward_ root ()
get_rel at ion s_away _f rom _root( )
3-10 Clinical Observations Access Service  V1.0                        January 2000



3

The 
 local 
n.

g 

tion 
3.2.9 Simple Query Access Viewpoint

Figure 3-9  The QueryAccess  interface is the simplest interface for query access.

QueryAccess  is the most straightforward and fundamental of all the components. 
client passes a query to the server and receives a response synchronously, as a
struct. The client blocks until the server returns the results or throws an exceptio

QueryAccess  has operations which provide a growing list of parameters for filterin
the observations known by the server.

See Section 3.5.2, “QueryAccess Interface,” on page 3-46 for a detailed specifica
of the interface.

AccessComponent
<<Interface>>

QueryAccess

count_observations()
get_observat ion()
get_observat ions()
get_observat ions_by_t ime()
get_observat ions_by_qualifier()
get_observat ions_with_policy()

<<Interface>>
COAS V1.0           Viewpoints             Jan. 2000 3-11



3

3.2.10 Browsing Access Viewpoint

Figure 3-10  The main interfaces involved with browsing.

AccessComponent
<<Interface>>

BrowseAccess

get_observed_subject()
get_observed_subjects()
get_observed_subject_for_observation_id()
get_observed_subjects_for_observation_ids()
count_observations()
get_observat ion()
get_observat ions()
get_observat ions_by_time()
get_observat ions_by_qualifier()
get_observat ions_with_policy()

<<Interface>>

ObservationRemote

observation_code : QualifiedCode

get_observation_time()
get_observed_subject()
get_root_observation()
get_path_from_root()
get_all_qualifiers()
get_qualifiers()
is_this_root()
is_this_atomic()

<<Interface>>

CompositeObservationRemote

count_observations()
get_observat ions_by_time()
get_observat ions_by_qualifier()
get_observat ions_with_pol icy()
get_leaf_observations()
get_leaf_observations_by_time()
get_leaf_observations_by_qual ifier()
get_leaf_observations_with_policy()
get_leaf_observations_by_value_type()
get_relations_toward_root()
get_relations_away_from_root()

<<Interface>>

AtomicObservationRemote

get_observation_data()
get_observation_data_with_policy()

<<Interface>>

ObservedSubject

observed_subject_id : ObservedSubjectId

coun t_observati ons()
ge t_observations_by_time()
ge t_observations_by_qualif ier()
ge t_observations_with_policy()
ge t_root_observations()
ge t_leaf_observations()
ge t_any_observation()
ge t_first_observati on()
ge t_last_observati on()
ge t_candidate_observa tions()
ge t_exact_observa tion_types()

<<Interface>>

AbstractManagedObject
<<Interface>>
3-12 Clinical Observations Access Service  V1.0                        January 2000



3

h 
nt 
uests. 

d 
 
 adds 
of 

te 

tion 

served 
l in a 

iption 

rver 
BrowseAccess  makes use of remote proxies to explore the servers store of 
observations. A client can interactively access information a piece at a time. Eac
piece of information retrieved has links to other pieces of information that the clie
may access, with other queries possible based on the context of the previous req
The server is required to keep context on the references passed back for this 
navigational convenience. 

Interactive access may be useful when the client program displays the results an
capabilities to the user after each command. A minimum of information has to be
passed between the client and server with each action, although this mechanism
responsibility to the server to maintain the lifecycle of a potentially large number 
objects.

BrowseAccess  has a number of operations that return object references to a remo
ObservedSubject  or ObservationRemote . 

See Section 3.5.1, “BrowseAccess Interface,” on page 3-43 for a detailed descrip
of this interface.

The ObservedSubject interface encapsulates the set of observations about one ob
subject, typically a person, though a subject could be a tissue sample or an anima
veterinary setting. 

See Section 3.4.6, “ObservedSubject Interface,” on page 3-39 for a detailed descr
of this interface.

3.2.11 Asynchronous Access Viewpoint

Figure 3-11  The interfaces dealing with asynchronous query invocations.

AsynchAccess  allows a client to request information with the results delivered 
asynchronously. This prevents the client from having to do a blocking call to the se
until the results can be returned. Asynchronous access may have various uses:

AccessComponent
<<Interface>>

AsynchAccess

count_observations()
get_observation()
get_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()
cancel_get()

<<Interface>>
COAS V1.0           Viewpoints             Jan. 2000 3-13



3

ay be 
est, 

ding.

s 
o the 
m a 

m one 

ses, 
olve 

in its 

tion 

se of 

. 

f 

for a 
• Partial results: an asynchronous interface can return a result in pieces. This m
useful for something like image sets, to show the first one while receiving the r
as well as for federation (send results back as they are received from various 
sources).

• Single-threaded clients: A single-thread GUI client could, for example, tend to 
repaint and user-click responsibilities while asynchronous requests are outstan

• Multiple requests: a client can post several simultaneous requests and proces
results in the order they are received, rather than proceeding serially from one t
next. Without this, results from a fast server could, in effect, wait on results fro
slow server.

• Query portability between servers: an asynchronous request can be passed fro
server to another, which responds directly to the client.

• Asynchronous model: for servers that get their data from asynchronous proces
an asynchronous mechanism may be the best fit. For example, DICOM can inv
response times of millisecond to milli-decade (if the media is off-line), so a 
DsObservationAccess  server which provides this data may want to provide it 
asynchronously, to match the source. 

AsynchAccess  affords asynchronous posting of results because the client passes 
own object reference to an AsynchCallback  object. This points up some potential 
drawbacks to asynchronous access:

• Firewalls: a client behind a firewall may not be able to receive the callback.

• The client can no longer rely on TCP-level time-outs which bound a query dura
for a synchronous call. Instead, the client must take responsibility to track 
outstanding requests and provide some ability to handle requests that fail becau
a network outage or some other traumatic termination.

• If multiple requests are outstanding, the client must hold the state (ClientCallId ) 
requests in order to identify them when fulfilled.

• The client must be prepared for multiple, partial returns to a single request.

The AsynchAccess  interface has operations similar to the QueryAccess  synchronous 
interface, though instead of “real” return values, the operations all return an 
ServerCallId  value which simply identifies the request from the server point of view
AsynchAccess  also has an operation to cancel an outstanding request. See 
Section 3.5.3, “AsynchAccess Interface,” on page 3-49 for a detailed description o
these operations.

The AsynchCallback  interface is implemented by the client to the 
DsObservationAccess  server. The server calls it back with the results, or with an 
exception condition. See Section 3.5.4, “AsynchCallback Interface,” on page 3-52 
detailed description of the interface.
3-14 Clinical Observations Access Service  V1.0                        January 2000



3

 
er) 

 back 

on 
 
nt 
3.2.12 Event Management Viewpoint

Figure 3-12  The consumer and supplier interfaces involved with event management.

The DsObservationAccess  service supports querying for observations that occur in
the future. This support is similar to asynchronous access in that a client (consum
registers an interest in particular observations, and the server (supplier) calls them
with the information at some future time. However, the callback may happen 
repeatedly since the interest in particular observations translates into a subscripti
which lasts at least as long as the lifetime of the EventSupplier . Servers may add value
(not required or specified herein) by offering a subscription qualifier for a persiste
subscription, which survives across client and/or server restarts.

ConsumerAccess  and SupplierAccess  are the components that manage the 
registration to consume and supply future observations, respectively. The event 
mechanism was designed to give flexibility in connecting up event endpoints, 
including consideration to do the following:

AbstractFactory

max_connections : ConnectionId
current_connections : ConnectionIdSeq

AccessComponent

ConsumerAc cess

create_consumer()
get_consumer_by _id()

Ev entConsumer

connection_id : ConnectionId

obtain_subscription_ty pes()
connect_structured_push_supplier()
get_connected_supplier()

+created_by

+creations

SupplierAccess

create_supplier()
get_supplier_by _id()

Ev entSupplier

connection_id : ConnectionId

obtain_of f ered_ty pes()
connect_pus h_consumer()
get_connected_consumer()
subscribe()
describe_subscription()
generate_tes t_ev ent()

+my Consumer

+my Supplier

+created_by
+creations

AbstractManagedObject

done()

CosEventComm::PushConsumer

push()
disconnect_push_consumer()

CosEv entComm::PushSupplier

disconnect_push_supplier()
COAS V1.0           Viewpoints             Jan. 2000 3-15



3

 

lier 

he 

ace.

 a 

e.

s. See 
 the 
• Facilitate the use of the OMG Notification Service or Event Service as an 
intermediary channel.

• Allow consumer and supplier endpoints to connect themselves to one another,
without an intermediary channel.

• Allow the use of a external management application to connect consumer/supp
endpoints and channels, without explicit custom-coding assistance from the 
endpoints or channels for such an external management application.

The AbstractFactory  interface contains two common attributes for connections 
(maximum and current amount) which are needed by both the ConsumerAccess  and 
SupplierAccess . See Section 3.7.5, “AbstractFactory Interface,” on page 3-64 for t
details.

The ConsumerAccess  adds an operation to instantiate an EventConsumer  and to 
access any formerly-created EventConsumer  by its ID number, a unique number 
determined by the ConsumerAccess  at instantiation. See Section 3.6.4, 
“ConsumerAccess Interface,” on page 3-58 for a detailed description of this interf

The SupplierAccess  extends the capability of the AbstractFactory  just as did 
ConsumerAccess . See Section 3.6.3, “SupplierAccess Interface,” on page 3-57 for
detailed description of this interface.

The EventConsumer  interface inherits from the CosEventComm::PushConsumer  
interface to facilitate use with the OMG CosEvent  Service. See Section 3.6.2, 
“EventConsumer Interface,” on page 3-55 for a detailed description of the interfac

The EventSupplier  interface inherits from the CosEventComm::PushSupplier  
interface to facilitate use with the OMG CosEvent  Service. The EventSupplier  
includes operations to establish a connection, and to begin a subscription to event
Section 3.6.1, “EventSupplier Interface,” on page 3-53 for a detailed description of
interface.

3.3 Data Type Definitions

The following sections describe all the IDL for the data types used within the 
DsObservationAccess  module.

#ifndef _DS_OBSERVATION_ACCESS_IDL_
#define _DS_OBSERVATION_ACCESS_IDL_

...
module DsObservationAccess {
        ...

};

#endif  // _DS_OBSERVATION_ACCESS_IDL_
3-16 Clinical Observations Access Service  V1.0                        January 2000



3

a 

 

The “Ds” prefix of DsObservationAccess  stands for “Domain Service.” All OMG 
specifications from a domain task force are expected to start with “Ds” to isolate 
particular name space from potential clashes.

3.3.1 Include Files
#include <CosNamin g.idl>
#include <CosTradin g.idl>
#include <Terminolo gyServices.idl>
#include <Namin gAuthority.idl>
#include <PersonIdService.idl>
#include <Namin gAuthority.idl>
#include <CosEventComm.idl>
#include <CosEventChannelAdmin.idl>
#include <orb.idl>

3.3.2 External Typedefs

These definitions rename types from other standards. This section delineates all 
DsObservationAccess  dependencies on other standards.

typedef PersonIdService::QualifiedPersonId    ObservedSubjectId;

Description: Observed subjects are identified with a QualifiedPersonId  
from the PIDS standard. The qualification with a naming 
authority is important, since there could be overlap in patient
identifiers at two locations.

typedef Terminolo gyServices::QualifiedCode   QualifiedCode;

Description: A QualifiedCode  has an embedded Namin gAuthority  which 
prevents collisions between common, local names.

typedef Namin gAuthority::QualifiedNameStr  QualifiedCodeStr;

Description: QualifiedCodeStr  has a one-to-one mapping with 
QualifiedCode . The format for the contenst of 
QualifiedNameStr  is well defined. Strings must begin with a 
colon-delimited section containing one of the 
Namin gAuthority::Re gistrationAuthority  items: either 
OTHER, ISO, DNS, IDL, or DCE.  Following the 
RegistrationAuthority  is a domain, followed by a slash “/”, 
and then the particular name (which can have additional 
slashes as namespace dividers).

For example, the QualifiedCodeStr  
“DNS:om g.org/DsObservationAccess/ASYNC_OBSERVATI
ON_COUNT” has a registration authority of DNS (internet 
domain name service), a domain of omg.org, and a name 
within the DsObservationAccess  namespace.
COAS V1.0           Data Type Definitions             Jan. 2000 3-17



3

 

3.3.3 Forward Declarations

interface AbstractFactory;
interface AbstractMana gedObject;
interface AccessComponent;
interface AsynchCallback;
interface AsynchAccess;
interface AtomicObservationRemote;
interface BrowseAccess;
interface CompositeObservationRemote;

Description 
(continued):

The Namin gAuthority::translation_library  interface is 
designed to be implemented locally by servers to translate 
between QualifiedName  (we rename as QualifiedCode ) and 
QualifiedNameStr  (we call this QualifiedCodeStr ).

typedef PersonIdService::DomainName  IdDomainName;

Description: Each COAS server will have one default PIDS domain which
is identified by a DomainName .

typedef PersonIdService::IdentificationComponent  IdentificationComponent;

Description: The PIDS server is an instance of an 
IdentificationComponent .

typedef CosNamin g::Namin gContext  Namin gContext;

Description: The relevant CosNamin g server is an instance of a 
Namin gContext .

typedef CosTradin g::TraderComponents  TraderComponents;

Description: The relevant Trader service is an instance of a 
TraderComponents .

typedef Terminolo gyServices::Terminolo gyService  Terminolo gyService;

Description: The relevant Terminolo gyService  is an instance of 
Terminolo gyService .

typedef CosEventComm::PushConsumer  PushConsumer;

Description: The EventConsumer  is a subclass of 
CosEventComm::PushConsumer .

typedef CosEventComm::PushSupplier  PushSupplier;

Description: The EventSupplier  is a subclass of 
CosEventComm::PushSupplier .

typedef CORBA::TypeCode  TypeCode;

Description: A TypeCode  is a CORBA interface that is used to perform 
introspection on all IDL-defined data types.
3-18 Clinical Observations Access Service  V1.0                        January 2000



3

out 

 

erent 
 will 
nted 
interface ConsumerAccess;
interface ConstraintLan guageAccess;
interface EventConsumer;
interface EventSupplier;
interface ObservationDataIterator;
interface ObservationLoader;
interface ObservationRemote;
interface ObservationRemoteIterator;
interface ObservedSubject;
interface QualifiedCodeIterator;
interface QueryAccess;
interface SupplierAccess;

These forward declarations for interfaces facilitates the grouping of definitions with
concern for precedence, since all interfaces are declared here.

3.3.4 AccessComponentData

struct AccessComponentData {

QueryAccess query_access;

BrowseAccess browse_access;

AsynchAccess asynch_access;

ConstraintLan guageAccess constraint_access;

ObservationLoader observation_loader;

ConsumerAccess consumer_access;

SupplierAccess supplier_access;

};

AccessComponentData  provides a means to supply references to all implemented
components via AccessComponent. get_components() . This is a convenience for 
clients that have a single reference to a single component, and wish to use a diff
component. Since different servers may have different levels of conformity, some
implement a given component and others will not. If a component is not impleme
by the server, that attribute will be null. 

For example, if a client has a reference to a BrowseAccess  component, and now 
wishes to use a QueryAccess  component, the client can call get_components()  on his 
BrowseAccess  component and examine the query_access field. If query_access  is 
non-null, that component is implemented.
COAS V1.0           Data Type Definitions             Jan. 2000 3-19



3

ot 
3.3.5 AsynchException

struct AsynchException {

QualifiedCodeStr exception_name;

strin g messa ge;

};

AsynchException  is a struct because the asynchronous callback mechanism cann
employ the typical exception mechanism of CORBA synchronous call. Instead, a 
request which results in an exception must be delivered to the AsynchCallback  
interface, just as a regular result is delivered, with a struct.

query_access

Description: Holds QueryAccess  reference if implemented by this server.

browse_access

Description: Holds BrowseAccess  reference if implemented by this 
server.

asynch_access

Description: Holds AsynchAccess  reference if implemented by this 
server.

constraint_access

Description: Holds ConstraintLan guageAccess  reference if implemented 
by this server.

observation_loader

Description: Holds ObservationLoader  reference if implemented by this 
server.

consumer_access

Description: Holds ConsumerAccess  reference if implemented by this 
server.

supplier_access

Description: Holds SupplierAccess  reference if implemented by this 
server.
3-20 Clinical Observations Access Service  V1.0                        January 2000



3

y 
y 
by 
re, 

ch 
e. 
e 
tion 

. 
3.3.6 ObservationData

typedef any ObservationData;

struct ObservationDataStruct {

QualifiedCodeStr code;

sequence<ObservationDataStruct> composite;

sequence<ObservationDataStruct> qualifiers;

sequence<any,1> value;

};

ObservationData  is the heart of the query mechanism. Observations are passed b
value via the Corba::any  type, which enables extensibility by allowing the possibilit
of using valuetype or other structured definitions for observations in the future or 
local agreement in specialized environments. In this specification a single structu
ObservationDataStruct , is defined to contain all types of observations.

ObservationDataStruct  encapsulates both composite and atomic observations, whi
is accomplished by including attributes for both an aggregation and a single valu
These attributes, composite  and value , are intended to be used in a mutually exclusiv
manner. One of the two attributes should be a zero-length sequence. An Observa
must be a composite observation or an atomic observation, but not both.

exception_name

Description: The name of the exception resulting from the asynchronous 
request.

messa ge

Description: A text description of the exception.

code

Description: The name of the observation type, as qualified by the 
Namin gAuthority  embedded in the QualifiedCodeStr .

composite

Description: A sequence of observations which compose this observation
The attribute composite  may have zero or more 
ObservationDataStruct  items. The composite  attribute must 
have zero items if this observation has a non-zero value  
attribute, which would make it an atomic, rather than 
composite, observation.
COAS V1.0           Data Type Definitions             Jan. 2000 3-21



3

 It 
ent 

 

 
a 

 

s 

r 
3.3.6.1 ObservationQualifier

3.3.7 ObservationId

struct ObservationId {
   
    QualifiedCodeStr code;

    strin g opaque;
};

An ObservationId  uniquely identifies a particular COAS observation within a server.
is persistent over time, and can be stored by a client for use later. However, a cli
may not create or modify an ObservationId .

Description 
(continued):

Note that each of the aggregated ObservationDataStruct  
items may, in turn, include other observations in their 
composite  field, creating a “tree” of observations.

qualifiers

Description: A sequence of observations that modify the observation(s) in
the value  or composite  attribute. Qualifiers modify all of the 
data “beneath” them in a hierarchy. For example, a modifier 
of “Normalcy=abnormal” found in a composite observation 
would apply to all the items in the composite. However, 
qualifiers found lower in a tree of data can override modifiers
found higher up in the tree, so a leaf observation could have 
modifier “Normalcy=normal” which applied to just that leaf, 
despite any qualifier higher-up in the tree.

value

Description: The payload for this observation. The payload must be empty
(zero items in sequence) if this observation is a composite 
observation. The only reason that value  is a sequence is to 
allow a zero-length sequence.

For an atomic observation, which has a payload, the content
within value[0] , within the Corba::any , is a data type which 
associates with the “code” field. For each code used for an 
atomic observation, a single data type must be designated fo
the return value.

typedef ObservationData ObservationQualifier;

Description: This typedef shows that Qualifiers are simply other 
observations.
3-22 Clinical Observations Access Service  V1.0                        January 2000



3

le, 
ith 
 

s in 
r 

 

e” is 
ries 
 

 

n to 

k a 
The client is responsible for remembering the server associated with a given 
ObservationId . If the client connects to multiple servers, the client can, for examp
keep all ObservationId s from a particular server in a single collection associated w
the server, or store an ObservationId  within some wrapping structure which provided
fields for server identification as well. 

There has been discussion of adding fields to ObservationId  for a server name and 
domain. Currently, there is no for provision for the globally identifying server name
some federation of COAS servers, so it is not clear what would be appropriate fo
server identification field(s).

One possibility for handling ObservationId s within a federation of COAS servers can
be implemented as follows:

Assume a federation of COAS servers where a higher-level server named “Middl
a middleware conduit for some (static) group of lower-level COAS servers. All que
to Middle are routed to one of many lower-level COAS servers, and the resulting
information is passed back to the client, including qualifiers like ObservationId s. 
However, when supplying these ObservationId s to its client, Middle must modify them
slightly. The ObservationId s must allow Middle to recognize the original source for 
the observation. To accomplish this, Middle can prepend source-server informatio
the opaque string, followed by a clear delimiter. Upon receipt of the ObservationId  
from a client, Middle strips out this source-server information, using it to pass bac
reconstituted ObservationId  to the proper source server. 

3.3.8 NameValuePair

struct NameValuePair {

QualifiedCodeStr name;

any value;

};

A simple associate of name and value.

code

Description: The code for this observation. This is read-only for a client, 
and can be used for grouping or separating ObservationId s.

opaque

Description: Reserved for use by server.

name

Description: The code for this pair.

value

Description: The value for this pair.
COAS V1.0           Data Type Definitions             Jan. 2000 3-23



3

ta, as 

8 
 to 
d 

rmat 
3.3.9 Subscription

struct Subscription {

sequence<ObservedSubjectId> who;

sequence<QualifiedCodeStr> what;

sequence<ObservationQualifier> qualifier;

sequence<NameValuePair> policy;
};

Subscription encapsulates all the parameters which make up a query for future da
needed for a SupplierAccess  component.

3.3.10 TimeStamp

typedef strin g TimeStamp;  // ISO 8601 representation, with restrictions

TimeStamp  is a string representation of date and time, following the ISO 8601:198
standard, with some restrictions and modifications. The string format is restricted
the “extended” ISO 8601 format which includes delimiters, years must be specifie
with century digits, and a wildcard character is added. A complete TimeStamp fo
is:

YYYY-MM-DDThh:mm:ss.dddTZD

(e.g., 1997-07-16T19:20:30.45+01:00) where:

YYYY = four-di git year (1582 minimum, 9999 maximum)
MM   = two-di git month (01=January, etc.)
DD    = two-di git day of month (01 throu gh 31)
T       = date/time separator
hh     = two di gits of hour (00 throu gh 23; am/pm NOT allowed)
mm   = two di gits of minute (00 throu gh 59)
ss      = two di gits of second (00 throu gh 60; 60 indicates a positive leap second)
ddd   = one or more di gits for decimal fraction of a second (no limit on number of di gits)

who

Description: The observed subject(s) of the subscription.

what

Description: The codes for the desired observation(s).

qualifier

Description: Any modifying observation(s) with which to filter.

policy

Description: Any policies that should override default policies of the 
server.
3-24 Clinical Observations Access Service  V1.0                        January 2000



3

one 

, 

ons 

, 
TZD   = time zone desi gnator (Z to indicate UTC, or +hh:mm or -hh:mm from UTC)

Partial TimeStamp  formats are allowed, which indicate “unknown” for items 
omitted.  For example, a TimeStamp  consisting only of

1993-02-14

is interpreted as an unknown time on the 14th of February, 1993, while

13:10:30

is interpreted as an unknown date, with time of 13:10:30 in the server’s time z
(absence of a time zone designator indicates local time).

TimeStamp  allows a character outside the ISO 8601 specification, a wildcard for 
individual TimeStamp  elements. TIME_WILDCARD  = “?” is provided in the constants 
section. Use this character to indicate that a specific field should be treated as 
“unknown” for TimeStamp s received from COAS (output), and as a “wildcard” for 
TimeStamp  parameters supplied to COAS (input). 

For example, receiving “1999-??-02T22:00:00Z” as an output TimeStamp  would be 
equivalent to the concept of “2nd day of an unknown month in 1999, at 22:00:00 
GMT”. For an input TimeStamp , this string would represent, for matching purposes
“the 2nd day of any month in 1999, at 22:00:00 GMT”.

The lower bound for TimeStamp  is specified as “1582-10-15T00:00:00Z”, the date 
when the Gregorian calendar was put into effect, putting month and day calculati
on a firm basis.

3.3.11 TimeSpan

struct TimeSpan {

TimeStamp start_time;

TimeStamp stop_time;

};

TimeSpan  encapsulates a duration of time with two bounding TimeStamp s. The 
semantics for interpreting the endpoints is INCLUSIVE. The endpoints are part of
included in, the span of time. This span is defined for use in COAS instead of 
employing the ISO 8601 notation of <timestamp>/<timestamp> within one string.

start_time

Description: The starting time of the span.

stop_time

Description: The ending time of the span.
COAS V1.0           Data Type Definitions             Jan. 2000 3-25



3

uest, 

he 
 

 
lar 
3.3.12 Constants
const strin g EARLIEST_TIME   = “1582-10-15T00:00:00Z”;
const strin g LATEST_TIME      = “9999-12-31T23:59:59Z”;
const strin g TIME_WILDCARD = “?”;

const QualifiedCodeStr PARTIAL_RESULT = 
“DNS:om g.org/DsObservationAccess/PARTIAL_RESULT”;

const QualifiedCodeStr COMPLETING_RESULT = 
“DNS:om g.org/DsObservationAccess/COMPLETING_RESULT”;

COMPLETING_RESULT  and PARTIAL_RESULT  are used by the AsynchAccess  
interface during a callback to indicate the status of the callback--completing a req
or only partially completing a request.

const QualifiedCodeStr ASYNC_OBSERVATION_COUNT = 
“DNS:om g.org/DsObservationAccess/ASYNC_OBSERVATION_COUNT”;

typedef unsi gned lon g ASYNC_OBSERVATION_COUNT_type;

ASYNC_OBSERVATION_COUNT  is an observation type, used solely to identify the 
return value of the operation AsynchAccess.count_observations() . It does not make 
sense to use this code in a query, since count_observations()  explicitly names the 
“what” part of the query parameters. Only the return value needs identification. T
value in that returned ObservationData  is an unsi gned  lon g, and shown by the typedef
ASYNC_OBSERVATION_COUNT_type .

const QualifiedCodeStr EVENT_SOURCE_DOMAIN  = 
“DNS:om g.org/DsObservationAccess/EVENT_SOURCE_DOMAIN”;

const QualifiedCodeStr EVENT_SOURCE_SERVER_NAME = 
“DNS:om g.org/DsObservationAccess/EVENT_SOURCE_SERVER_NAME”;

const QualifiedCodeStr EVENT_NAME  = 
“DNS:om g.org/DsObservationAccess/EVENT_NAME”;

const QualifiedCodeStr TEST_EVENT   = 
“DNS:om g.org/DsObservationAccess/TEST_EVENT”;

typedef lon g TEST_EVENT_type;

EVENT_* constants apply to the SupplierAccess  component:

EVENT_SOURCE_DOMAIN: the enterprise domain (likely a PIDS context) within 
which the event originated.

EVENT_SOURCE_SERVER_NAME: the name of the DsObservationAccess  service 
which originated the event.

EVENT_NAME: this code is intended for use when a CosNotification  service is 
employed. The CosNotification  service allows filtering within the channel, based on
name-value pairs, so this code would be used to identify the name of the particu
event, with a value equal to the QualifiedCodeStr  of the event itself.

TEST_EVENT is the observation code used by the SupplierAccess  when responding to 
SupplierAccess. generate_test_event() . The value returned in the ObservationData  is 
a lon g, as shown by the typedef TEST_EVENT_type .

const QualifiedCodeStr TRADER_1_0_CONSTRAINT_LANGUAGE = “DNS:om g.org/DsObservationAccess/TRADER_1_0_CONSTRAINT_LANGUAGE”;
const QualifiedCodeStr OCL_1_1_CONSTRAINT_LANGUAGE   = “DNS:om g.org/DsObservationAccess/OCL_1_1_CONSTRAINT_LANGUAGE”;
3-26 Clinical Observations Access Service  V1.0                        January 2000



3

 

 a 

 

 

TRADER_1_0_CONSTRAINT_LANGUAGE  and OCL_1_1_CONSTRAINT_LANGUAGE  
are two possible choices for the language used by ConstraintLan guageAccess . 
However, the choice of constraint language is left to the implementation.

const QualifiedCodeStr COAS_OBSERVATION_ID  = “DNS:om g.org/DsObservationAccess/COAS_OBSERVATION_ID”;
typedef ObservationId COAS_OBSERVATION_ID_t ype;

COAS_OBSERVATION_ID  is the code for a qualifier which provides a unique COAS
identifier for an observation. Any qualifier with this code will have, in its value 
CORBA::any , a struct of type ObservationId , as indicated by 
COAS_OBSERVATION_ID_type . In other words, the one-to-one association between
name-value pair are, in this instance, COAS_OBSERVATION_ID  and ObservationId .

3.3.13 Internal Typedefs

3.3.14 Sequences

typedef sequence<AtomicObservationRemote> AtomicObsRemoteSeq;

typedef lon g EndpointId;

Description: EndpointId  is used by the Event system, ConsumerAccess  
and SupplierAccess , to identify event endpoints.

typedef strin g ConstraintExpression;

Description: ConstraintExpression  is used to supply a constraint to 
ConstraintLan guageAccess .

typedef QualifiedCodeStr ConstraintLan guage;

Description: ConstraintLan guage is specified by the 
ConstraintLan guageAccess , as a language supported by that 
component.

typedef NameValuePair QueryPolicy;

Description: Each policy is a name-value pair.

typedef lon g ServerCallId;

Description: Within the AsynchAccess , each call from a client is 
identified by the server with a ServerCallId , unique within the 
lifetime of the server. This identifier can be used to cancel the
request if necessary.

typedef lon g ClientCallId;

Description: A client to the AsynchAccess  should identify each of its 
calls to a server with a ClientCallId , unique within all 
outstanding requests. This identifier is returned to the client 
with the result, so that the client can match up requests with
responses, should there be more than one call outstanding.
COAS V1.0           Data Type Definitions             Jan. 2000 3-27



3

mes 
rned.

 ids 
typedef sequence<ConstraintLan guage> ConstraintLan guageSeq;

typedef sequence<EndpointId> EndpointIdSeq;

typedef sequence<ObservationData> ObservationDataSeq;

typedef sequence<ObservationDataStruct> ObservationDataStructSeq;

typedef sequence<ObservationId> ObservationIdSeq;

typedef sequence<ObservationQualifier> ObservationQualifierSeq;

typedef sequence<ObservationRemote> ObservationRemoteSeq;

typedef sequence<ObservedSubjectId> ObservedSubjectIdSeq;

typedef sequence<ObservedSubject> ObservedSubjectSeq;

typedef sequence<QualifiedCodeStr> QualifiedCodeStrSeq;

typedef sequence<QueryPolicy> QueryPolicySeq;

typedef sequence<Subscription> SubscriptionSeq;

The above IDL defines the sequence data types for the DsObservationAccess  service.

3.3.15 Exceptions

exception DuplicateCodes {

QualifiedCodeStrSeq codes;

};

The DuplicateCodes exception is raised when the same code is passed multiple ti
as a parameter to an operation. A complete list of distinct duplicated codes is retu

exception DuplicateIds {

ObservedSubjectIdSeq ids;

};

The DuplicateIds exception is raised when the same ObservedSubjectId  is passed 
multiple times as a parameter to an operation. A complete list of distinct duplicated
is returned.

exception DuplicateOids {

ObservationIdSeq oids;

};
3-28 Clinical Observations Access Service  V1.0                        January 2000



3

d 

d 

t 

lid 

 list 

er to 
ported 
The DuplicateOids exception is raised when the same ObservationId  is passed 
multiple times as a parameter to an operation. A complete list of distinct duplicate
ObservationIds  is returned.

exception DuplicatePolicies {

QueryPolicySeq policies;

};

The DuplicatePolicies exception is raised when the same QueryPolicy  is passed 
multiple times as a parameter to an operation. A complete list of distinct duplicate
policies is returned.

exception DuplicateQualifiers {

ObservationQualifierSeq qualifiers;

};

The DuplicateQualifiers exception is raised when the same ObservationQualifierData  
is passed multiple times as a parameter to an operation. A complete list of distinc
duplicated qualifiers is returned.

exception InvalidCodes {

QualifiedCodeStrSeq codes;

};

The InvalidCodes exception is raised when an unrecognized (unsupported) 
QualifiedCodeStr  is passed as a parameter to an operation. A complete list of inva
codes is returned.

exception InvalidEndpointId {

EndpointIdSeq endpoint_ids;

};

The InvalidEndpointId exception is raised when an invalid EndpointId  is passed as a 
parameter to an operation. Only active connections may be specified. A complete
of invalid connection ids is returned.

exception InvalidConstraint {

strin g constraint;

};

The InvalidConstraint exception is raised when a constraint is passed as a paramet
an operation and the server cannot parse the constraint in accordance with a sup
language. The invalid constraint is returned.
COAS V1.0           Data Type Definitions             Jan. 2000 3-29



3

lete 

o 
te list 

t of 

rt 
exception InvalidIds {

ObservedSubjectIdSeq ids;

};

The InvalidIds exception is raised when an ObservedSubjectId  is passed as a 
parameter to an operation when the server does not know about that ID. A comp
list of invalid ids is returned.

exception InvalidOids {

ObservationIdSeq oids;

};

The InvalidOids exception is raised when a ObservationId  is passed as a parameter t
an operation when the server does not know about that observation ID. A comple
of invalid ids is returned.

exception InvalidPolicies {

QualifiedCodeStrSeq policies;

};

The InvalidPolicies exception is raised when an unrecognized (unsupported) 
QueryPolicy  is passed as a parameter to an operation. A complete list of invalid 
policies is returned.

exception InvalidQualifiers {

QualifiedCodeStrSeq qualifiers;

};

The InvalidQualifiers exception is raised when an unrecognized (unsupported) 
ObservationQualifierData  is passed as a parameter to an operation. A complete lis
violating qualifiers is returned.

exception InvalidTimeSpan {

TimeSpan span;

};

The InvalidTimeSpan exception is raised when an invalid TimeSpan  is passed as a 
parameter to an operation. The time span may be incorrectly specified, with a sta
time greater than an ending time, or with unparsable items.

exception MaxConnectionsExceeded {

unsi gned lon g max_connections;

};
3-30 Clinical Observations Access Service  V1.0                        January 2000



3

mber 

n a 

s). 
The MaxConnectionsExceeded exception is raised when an event access object 
(EventSupplier  or EventConsumer ) already has reached its maximum supported 
number of connections, and a client tries to create another one. The maximum nu
of connections is returned.

exception NotImplemented {

};

NotImplemented is raised when a particular COAS server does not implement a 
particular operation. This exception allows a conformance class to have optional 
operations. Any operation with this exception is optional.

exception NoSubscription {

};

The NoSubscription exception is raised trying to access subscription information o
EventSupplier  when no subscription has been set.

3.4 Interface Specifications

3.4.1 Foundational Observation-Oriented Interfaces

The description of the DsObservationAccess  interfaces begins with those that map 
most closely to the COAS Information Model (i.e., Observation-Oriented interface
They support the successive refinement and interactive browsing styles of data 
retrieval and data discovery.

3.4.2 ObservationRemote Interface

Figure 3-13 ObservationRemote Interface

interface ObservationRemote : AbstractMana gedObject {

ObservationRemote
observation_code : QualifiedCode

get_observation_time()
get_observed_subject()
get_root_observation()
get_path_from_root()
get_all_qualifiers()
get_qualifiers()
is_this_root()
is_this_atomic()

AbstractManagedObject
COAS V1.0           Interface Specifications             Jan. 2000 3-31



3

 
 
.

 

readonly attribute QualifiedCodeStr observation_code;

TimeSpan get_observation_time ();

ObservedSubject get_observed_subject ();

ObservationRemote get_root_observation ();

ObservationData get_path_from_root ();

ObservationQualifierSeq get_all_qualifiers ();

ObservationQualifierSeq get_qualifiers (
in QualifiedCodeStrSeq qualifier_names )

raises (
InvalidCodes );

boolean is_this_root ();

boolean is_this_atomic ();

};

observation_code

Description: The code which identifies this observation.

get_observation_time()

Description: Return the TimeSpan  associated with this observation.

get_observed_subject()

Description: Return a reference to the subject associated with this 
observation.

get_root_observation()

Description: Return the root observation within which this observation is 
contained. If this observation is the root, returns reference to
self. Server has responsibility to keep a context of all remote
observations that are browsed, to keep track of their context

get_path_from_root()

Description: Return the root observation as an ObservationData  
containing the path elements to this observation. The 
ObservationData  returned contains the structure of the real 
observation tree pruned of all observations that don’t lead to
this one.
3-32 Clinical Observations Access Service  V1.0                        January 2000



3

3.4.3 AtomicObservationRemote Interface

Figure 3-14 AtomicObservationRemote Interface

interface AtomicObservationRemote : ObservationRemote {

ObservationData get_observation_data ();

ObservationData get_observation_data_with_policy (
in QueryPolicySeq policy );

};

get_all_qualifiers()

Description: Return all qualifiers.

get_qualifiers()

Description: Return the qualifier(s) specified by name in the input 
parameter qualifier_names .

is_this_root()

Description: Returns true if this observation is a root observation.

is_this_atomic()

Description: Returns true if this observation is actually a subclass, 
AtomicObservationRemote .

get_observation_data(

Description: Returns the (local) ObservationData  item by value.

get_observation_data_with_policy()

Description: Returns the (local) ObservationData  item by value, according 
to overriding policies provided.

ObservationRemote

<<Interface>> AtomicObservationRemote

get_observation_data()
get_observation_data_with_policy()

<<Interface>>
COAS V1.0           Interface Specifications             Jan. 2000 3-33



3

3.4.4 CompositeObservationRemote Interface

Figure 3-15 CompositeObservationRemote Interface

interface CompositeObservationRemote : ObservationRemote {

unsi gned lon g count_observations (
in QueryPolicySeq search_depth_policy )

raises (
InvalidPolicies );

ObservationRemoteSeq get_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan );

ObservationRemoteSeq get_observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers );

Observati onRemote
<<Interface>>

CompositeObservationRemote

count_observati ons()
get_observati ons_by_time()
get_observati ons_available()
get_observati ons_by_qualifi er()
get_observati ons_with_pol icy()
get_leaf_observations()
get_leaf_observations_by_ti me()
get_leaf_observations_by_qual ifier()
get_leaf_observations_with_policy()
get_leaf_observations_by_value_type()
get_relati ons_toward_root()
get_relati ons_away_from_root()

<<Interface>>

ObservationRemoteSeq
<<Sequence>>

+observations
3-34 Clinical Observations Access Service  V1.0                        January 2000



3

ObservationRemoteSeq get_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

AtomicObsRemoteSeq get_leaf_observations ();

AtomicObsRemoteSeq get_leaf_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan );

AtomicObsRemoteSeq get_leaf_observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers );

AtomicObsRemoteSeq get_leaf_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
COAS V1.0           Interface Specifications             Jan. 2000 3-35



3

InvalidPolicies,
DuplicatePolicies );

AtomicObsRemoteSeq get_leaf_observations_by_value_type (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QualifiedCodeStr value_type,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers );

ObservationDataSeq get_relations_toward_root (
in QualifiedCodeStrSeq relation_name );

ObservationDataSeq get_relations_away_from_root (
in QualifiedCodeStrSeq relation_name );

};

count_observations(

Description: Returns the number of observations held by this 
CompositeObservationRemote , according to the provided 
search-depth policy. Passing in a sequence of 0 policies 
indicates the use of the default policy for this server.
3-36 Clinical Observations Access Service  V1.0                        January 2000



3

t 

 
r 

r 
e 

 

n 
get_observation*()

Description: These operations are similar to the operations of the same 
name on the QueryAccess  interface, though returned as 
references to ObservationRemote .  However, observations 
are matched and returned only within the “searchable” targe
population of observations, associated by reference to this 
CompositeObservationRemote , at a depth of search 
according to the policy SEARCH_DEPTH_POLICY. For 
example, if the search-depth policy is 
SEARCH_DEPTH_ONLY_ROOT, only this 
CompositeObservationRemote  will be searched (matched 
against). With a search-depth policy of 
SEARCH_DEPTH_DEEPEST_POSSIBLE , the searchable 
population of observations consists of all observations which
might be referenced by any of the directly held references, o
their references, and so on.

get_leaf_observations()

Description: Returns a sequence of all leaf observations that occur unde
this node in the observation tree. These leaf observations ar
by definition atomic (not composite), and the references 
returned are to AtomicObservationRemote .

get_leaf_observations_by_time(

Description: As above, matching for the given observation code and time
span in addition to atomicity. Time spans with end times 
greater than the server’s current time are interpreted to mea
“up till the current time.” Indicate “all time previous to a 
given time” with a time stamp which has EARLIEST_TIME  as 
the start time. Indicate “from a given time to now” with a 
time stamp which has LATEST_TIME  as the end time. 
Therefore, a time span from EARLIEST_TIME  to 
LATEST_TIME  is equivalent to a “don’t care” value. Note that 
the “who” parameter is already part of the context of this 
CompositeObservationRemote .

get_leaf_observations_by_qualifier()

Description: As above, matching for the given observation qualifiers in 
addition.
COAS V1.0           Interface Specifications             Jan. 2000 3-37



3

e 

e 

 

3.4.5 ObservationRemoteIterator Interface

interface ObservationRemoteIterator : AbstractMana gedObject {

unsi gned lon g max_left ();

boolean next_n (
in unsi gned lon g n,
out ObservationRemoteSeq observation_remote_seq );

};

get_leaf_observations_with_policy()

Description: As above, but overriding the default policies with the ones 
provided.

get_relations_toward_root()

Description: Return observations that are related to this observation in th
direction toward of the root. This operation would be useful 
after navigating down through a tree of observations, and 
wishing to backtrack.

get_relations_away_from_root()

Description: Return observations that are related to this observation in th
direction away from the root. This would be the normal 
direction of exploration, from root out towards other related 
observations.

max_left()

Description: This operation returns the number of items still left on the 
iterator.

next_n()

Description: This operation returns the number of ObservationRemote  
objects as an out parameter as is indicated by the passed in
‘n’ parameter or the maximum left. Removes the returned 
objects from the iterator before returning.
3-38 Clinical Observations Access Service  V1.0                        January 2000



3

3.4.6 ObservedSubject Interface

Figure 3-16 ObservedSubject Interface

interface ObservedSubject : AbstractMana gedObject {

readonly attribute ObservedSubjectId observed_subject_id;

unsi gned lon g count_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

ObservationRemoteSeq get_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan );

ObservationRemoteSeq get_observations_by_qualifier (
in QualifiedCodeStrSeq what,

Observ edSubject

observ ed_subject_id : Observ edSubjectId

count_observ ations()
get_observ ations_by _time()
get_observ ations_by _qualif ier()
get_observ ations_with_policy ()
get_root_observ ations()
get_leaf _observ ations()
get_any _observ ation()
get_f irst_observ ation()
get_last_observ ation()
get_candidate_observ ations()
get_exact_observ ation_ty pes()

<<Interf ace>>

AbstractManagedObject
<<Interf ace>>
COAS V1.0           Interface Specifications             Jan. 2000 3-39



3

in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers );

ObservationRemoteSeq get_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

ObservationRemoteSeq get_root_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan );

AtomicObsRemoteSeq get_leaf_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan );

ObservationRemote get_any_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan );
3-40 Clinical Observations Access Service  V1.0                        January 2000



3

ObservationRemote get_first_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan );

ObservationRemote get_last_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan );

ObservationRemoteSeq get_candidate_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers );

ObservationRemoteSeq get_exact_observation_types (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan );

};

observed_subject_id

Description: The ID of the observed subject.

count_observations()

Description: Return the number of observations which match the given 
search parameters.
COAS V1.0           Interface Specifications             Jan. 2000 3-41



3

e 

 

f 

 

r 

 

t 
get_observations*()

Description: Analogous to the QueryAccess  interface, except that the 
“who” is the current context’s ObservedSubject . See 
Section 3.5.2, “QueryAccess Interface,” on page 3-46 for 
details.

get_leaf_observations()

Description: Return observations which are not composites, but rather th
final, “leaf” nodes, with data. The server will match on any 
observation within an observation tree and return object 
references for each leaf observation in that tree. The server 
returns a zero-length sequence if no observations match the
query.

get_any_observation()

This does a query for the observation types and time span. 
The server will match on any observation within an 
observation tree and return an object reference for any one o
them. This is used when the client just needs a single 
response to the query and it does not matter which of the 
(potentially) multiple observations that match the query. The
server returns a null  object reference if no observations match 
the query.

get_first_observation(), get_last_observation()

This does a query for the observation types and time span fo
observations with this observation subject. The server will 
match on any observation within an observation tree and 
return an object reference for the first/last one in the time 
span. The server returns a null  if no observations match the 
query.

get_candidate_observations()

This does a query for the observation types, time span and 
qualifiers for observations with this observation subject. The
server uses its own matching engine to determine if a 
particular observation matches close enough to the query 
criteria. The results are returned with the ones matching bes
being returned first
3-42 Clinical Observations Access Service  V1.0                        January 2000



3

re 
uery 

e 
3.5 Query-Oriented Interface Specifications

The second set of DsObservationAccess  interfaces to be discussed are those that a
more function oriented (i.e., Query-Oriented interfaces). They support the use of q
functionality for retrieval of a lot of data in a single request.

3.5.1 BrowseAccess Interface

Figure 3-17 BrowseAccess Interface

interface BrowseAccess : AccessComponent {

ObservedSubject get_observed_subject (
in ObservedSubjectId who )

raises (
InvalidIds );

ObservedSubjectSeq get_observed_subjects (

get_exact_observation_types()

This does a query for the observation types (codes) and tim
span for observations with this observation subject. This 
operation only returns observations which have codes that 
match exactly to one of the “what” values. This is a 
convenience method for employing the policy 
SEARCH_SYNONYMOUS_CODES_FALSE .

BrowseAccess

get_observed_subject()
get_observed_subjects()
get_observed_subject_for_observation_id()
get_observed_subjects_for_observation_ids()
count_observations()
get_observation()
get_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()

<<Interface>>

AccessComponent

<<Interface>>
COAS V1.0           Query-Oriented Interface Specifications             Jan. 2000 3-43



3

in ObservedSubjectIdSeq who )
raises (

InvalidIds,
DuplicateIds );

ObservedSubject get_observed_subject_for_observation_id (
in ObservationId observation_id )

raises (
InvalidOids );

ObservedSubjectSeq get_observed_subjects_for_observation_ids (
in ObservationIdSeq observation_ids )

raises (
InvalidOids,
DuplicateOids );

unsi gned lon g count_observations (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy )

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

ObservationRemote get_observation (
in ObservationId observation_id )

raises (
InvalidOids );

ObservationRemoteSeq get_observations (
in ObservationIdSeq observation_ids )

raises (
InvalidOids,
DuplicateOids );

ObservationRemoteSeq get_observations_by_time (
in ObservedSubjectId who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan );
3-44 Clinical Observations Access Service  V1.0                        January 2000



3

 

ObservationRemoteSeq get_observations_by_qualifier (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers );

ObservationRemoteSeq get_observations_with_policy (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsi gned lon g max_sequence,
out ObservationRemoteIterator the_rest )

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

};

get_observed_subject(),    get_observed_subjects()

Description: Returns ObservedSubject  for the ObservedSubjectId  passed 
in.

get_observed_subject_for_observation_id(),
get_subserved_subjects_for_observation_ids() 

Description: Returns an ObservedSubject(Seq)  for the 
ObservationId(Seq)  passed in. That is, the server determines
the subject which is associated with a given observation.
COAS V1.0           Query-Oriented Interface Specifications             Jan. 2000 3-45



3

r 
 

3.5.2 QueryAccess Interface

Figure 3-18 QueryAccess Interface

interface QueryAccess : AccessComponent {

unsi gned lon g count_observations (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy )

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

ObservationData get_observation (
in ObservationId observation_id )

raises (
InvalidOids );

get_observation*()

Description: See Section 3.5.2, “QueryAccess Interface,” on page 3-46 fo
a complete definition of these operations. The difference here
is that references to ObservationRemote  are returned instead 
of (local) ObservationData .

AccessComponent

<<Interface>>

QueryAccess

count_observations()
get_observat ion()
get_observat ions()
get_observat ions_by_t ime()
get_observat ions_by_qualifier()
get_observat ions_with_policy()

<<Interface>>
3-46 Clinical Observations Access Service  V1.0                        January 2000



3

ObservationDataSeq get_observations (
in ObservationIdSeq observation_ids )

raises (
InvalidOids,
DuplicateOids );

ObservationDataSeq get_observations_by_time (
in ObservedSubjectId who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationDataIterator the_rest )

raises (
InvalidIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan );

ObservationDataSeq get_observations_by_qualifier (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsi gned lon g max_sequence,
out ObservationDataIterator the_rest )

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers );

ObservationDataSeq get_observations_with_policy (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsi gned lon g max_sequence,
out ObservationDataIterator the_rest )

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

};
COAS V1.0           Query-Oriented Interface Specifications             Jan. 2000 3-47



3

 

 

count_observations()

Description: Return the number of observations which match the given 
search parameters.

get_observation(), get_observations()

Description: Return the observation(s) corresponding to the passed in 
ObservationId (s).

get_observations_by_time()

Description: Return all observations known by the server that match 
criteria specified by the “who,” “what,” and “when” 
parameters. A match is determined by the server’s matching
engine, in accordance with default policies.
In essence, the “who,” “what,” and “when” filter the database 
of observations.
Time spans with end times greater than the server’s current 
time are interpreted to mean “through now”, so indicate the 
concept “from a given time through now” with a time stamp 
which has LATEST_TIME  as the end time. Indicate the 
concept of “all time previous to a given time” with a time 
stamp which has EARLIEST_TIME  as the start time. 
Therefore, a time span from EARLIEST_TIME  to 
LATEST_TIME  is equivalent to a “don’t care” for time, and 
includes all time possible through now.
A wildcard for individual TimeStamp elements, 
TIME_WILDCARD  = “?”, is provided in the constants section. 
Use this character to indicate that a specific field should be 
treated as a wildcard. For example, “1999-??-02T22:00:00Z”
would be equivalent to the concept of “the 2nd day of any 
month in 1999, at 22:00:00 GMT”.
Parsing for a wildcard is less efficient than a proper 
timestamp, so use the constants mentioned above, 
EARLIEST_TIME  and LATEST_TIME , to indicate open-ended 
searches in the past and searches which include the most 
current information, rather than a TimeStamp  filled with 
wildcard characters.
The “max_sequence” parameter indicates the maximum 
number to be returned within the ObservationDataSeq . A 
client may choose to receive many or few items via the 
synchronously returned ObservationDataSeq  of 
get_observation*() . If the server determines that more than 
max_sequence observations meet the criteria for returning, 
the remaining observations are returned via the iterator 
“the_rest”.
3-48 Clinical Observations Access Service  V1.0                        January 2000



3

 
er to 
rators 

 

o 
Note – A server may not support iterators (See Section 3.7.2, “AccessComponent
Interface,” on page 3-60.), since iterators are remote objects and require the serv
keep state. In the cases where all observations fit in the sequence, and where ite
are not supported, the_rest  will be null , and the returned ObservationDataSeq  will 
contain all the observations.

3.5.3 AsynchAccess Interface

Figure 3-19 AsynchAccess Interface

interface AsynchAccess : AccessComponent {

ServerCallId count_observations (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in ClientCallId client_call_id,

get_observations_by_qualifier()

Description: Return observations which match the all parameters, 
including the additional qualifiers. The qualifiers provided in 
the parameter are for filtering the database, NOT to indicate
what qualifiers to return. Specify what qualifiers to return 
with QUALIFIER_RETURN_POLICY.

get_observations_with_policy()

Description: Return observations which match all parameters, according t
the overriding policies specified in the “policy” parameter.

AccessComponent

<<Interface>>

AsynchAccess

count_observations()
get_observation()
get_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()
cancel_get()

<<Interface>>
COAS V1.0           Query-Oriented Interface Specifications             Jan. 2000 3-49



3

for 
he 
RB, 

atic 
d 
tic 
t 
in AsynchCallback client_callback );

ServerCallId get_observation (
in ObservationId observation_id,
in ClientCallId client_call_id,
in AsynchCallback client_callback );

ServerCallId get_observations (
in ObservationIdSeq observation_ids,
in ClientCallId client_call_id,
in AsynchCallback client_callback );

ServerCallId get_observations_by_time (
in ObservedSubjectId who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
in ClientCallId client_call_id,
in AsynchCallback client_callback );

ServerCallId get_observations_by_qualifier (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsi gned lon g max_sequence,
in ClientCallId client_call_id,
in AsynchCallback client_callback );

ServerCallId get_observations_with_policy (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsi gned lon g max_sequence,
in ClientCallId client_call_id,
in AsynchCallback client_callback );

void cancel_ get (
in ServerCallId server_call_id );

};

The AsynchAccess  component offers a means to make requests without blocking 
the result synchronously. However, it adds complexity to the client. In particular, t
client must instantiate a callback interface, register this CORBA object with the O
and take responsibility for timing out a request. 

In contrast, a synchronous CORBA call can time-out a request in a relatively autom
fashion, with a timer in the TCP layer, typically set to 30 seconds or 1 minute, an
generally provided within an ORB. An asynchronous request has no such automa
timer support in the ORB. A client must provide logic so that when a call does no
complete, for whatever reason, the client does the right thing.
3-50 Clinical Observations Access Service  V1.0                        January 2000



3

ing a 
s 
r, the 

 

 

 

t 

, 
 

Also, there is no implied timing dependency between finishing a request and gett
reply. An asynchronous reply might begin before the request is completed. Client
must be prepared for an answer callback before they begin a request. In particula
client_call_id should be ready for use at the callback implementation before the 
request is made, to identify any response if multiple calls are outstanding.

count_observations()

Description: Returns the number of observations which match the given 
search parameters.

get_observation*()

Description: The semantics for get_observation*()  queries are the same as 
Section 3.5.2, “QueryAccess Interface,” on page 3-46. 
However, the results are delivered asynchronously.
In addition to the standard get_observation*()  parameters, the 
client provides an object reference to an AsynchCallback . 
The server calls back to that object reference in order to 
return the results of the query.
Also, a client_call_id  is provided by the client. The server 
returns this value when it calls the AsynchCallback  so that 
the client can know which outstanding call is being returned 
(assuming there are multiple outstanding calls for this client).
Therefore, the client should make certain that each ID is 
unique within the scope of outstanding requests. For 
implementation, a simple count of requests since instantiation
should be sufficient, if multiple calls can be outstanding at 
one time. If the client does not make multiple outstanding 
calls, the client_call_id  has no utility and a constant can be 
used.
The ServerCallId returned from get_observation*()  is an ID 
from the server for the request itself. The sole purpose of the
ServerCallId  is for cancellation. This identifier distinguishes 
the request uniquely within the server, among all requests 
from all clients. Again, for implementation, a simple count of 
incoming calls should be sufficient.

cancel_ get()

Description: A client can notify the server to cancel a request that has no
yet completed. For example, consider a web browser when 
the user clicks on the “stop” button. In COAS, the client 
passes in the ServerCallId , which was previously returned 
from the get_observation*()  call. (Another alternative would 
be to use ORB-specific calls to terminate the TCP connection
but that is outside the scope of COAS, and may not allow the
server to properly terminate processing.)
COAS V1.0           Query-Oriented Interface Specifications             Jan. 2000 3-51



3

T 
eturn 

 

 

Note – The cancel_ get() function is a courtesy to the server only. The server is NO
responsible to actually stop the call. The call may complete, and the server may r
the result by calling the AsynchCallback  of the client. The client is responsible for 
discarding the answer in this case. Another alternative would be to unregister the
AsynchCallback  with the ORB.

3.5.4 AsynchCallback Interface

interface AsynchCallback {

void put_observations (
in ObservationDataSeq as_sequence,
in ObservationDataIterator as_iterator,
in ClientCallId client_call_id,
in QualifiedCodeStrSeq result_status );

void put_exception (
in ClientCallId client_call_id,
in AsynchException the_exception );

};

put_observations()

Description: Called by AsynchAccess  server to return the results from 
asynchronous queries. The as_sequence parameter contains 
the observations up to the maximum number specified in the
original call with max_sequence . If there are more items 
than max_sequence , the parameter as_iterator  will have one 
item, a reference to a ObservationDataIterator , from which 
the remaining observation items can be retrieved from the 
server. The as_iterator  parameter will be null  if the returned 
observations fit within the as_sequence  parameter or the 
server does not support iterators (see “AccessComponent 
Interface” on page 3-60). The result_status parameter 
supplies the client with QualifiedCode s constructed from 
constants COMPLETING_RESULT  or PARTIAL_RESULT  to 
indicate the status of the callback--completing a request, or 
only partially completing a request.

put_exception()

Description: Called by the AsynchAccess  server to return an exception 
condition.
3-52 Clinical Observations Access Service  V1.0                        January 2000



3

rs 

. 
3.5.5 ConstraintLanguageAccess

interface ConstraintLan guageAccess : AccessComponent {

readonly attribute ConstraintLan guageSeq supported_lan guages;

ObservationDataSeq get_by_constraint (
in ConstraintExpression constraint,
in QueryPolicySeq policy,
in unsi gned lon g max_sequence,
out ObservationDataIterator the_rest )

raises (
InvalidConstraint,
InvalidPolicies,
DuplicatePolicies );

};

3.6 Event and Notification Interface Specifications

This section discusses the DsObservationAccess  interfaces that subclass various 
interfaces in CosEvent . They support the notification of clients by one or more serve
when an observation of interest has “arrived”.  They also send either the 
ObservationData  itself, or sufficient information to retrieve the observation using 
another DsObservationAccess  interface.

3.6.1 EventSupplier Interface

interface EventSupplier : AbstractMana gedObject, PushSupplier {

readonly attribute EndpointId endpoint_id;

QualifiedCodeStrSeq obtain_offered_codes ();

void connect_push_consumer (
in PushConsumer push_consumer )

raises (

supported_lan guages

Description: The sequence of constraint languages which are valid for 
constraint queries.

get_by_constraint()

Description: Parse the given constraint and return matching observations
The policy parameter overrides any default policies. As with 
other get_*() calls, if more observations match the constraint 
than indicated by the max_sequence  parameter, the 
remaining observations are returned via the iterator.
COAS V1.0           Event and Notification Interface Specifications             Jan. 2000 3-53



3

ach 

ts. A 
 

.

r 

 

CosEventChannelAdmin::AlreadyConnected );

PushConsumer get_connected_consumer ()
raises (

CosEventComm::Disconnected );

void subscribe (
in SubscriptionSeq subscriptions )

raises (
CosEventComm::Disconnected );

SubscriptionSeq describe_subscriptions ()
raises (

NoSubscription );

void generate_test_event (
in ClientCallId clientId )

raises (
CosEventComm::Disconnected );

};

The EventSupplier  interface encapsulates all that is necessary to supply events. E
supplier instance can be connected with exactly one EventConsumer . A server 
typically creates one or more suppliers for each client that wishes to receive even
typical client implements the EventConsumer  interface, and connects this consumer
instance with an EventSupplier  provided by the server’s 
SupplierAccess.create_supplier() .

endpoint_id

Description: When instantiated by the SupplierAccess  factory, an 
EventSupplier  receives an identifier from the factory. This 
identifier may be used to relocate the supplier by the factory

obtain_offered_codes()

Description: Returns a sequence of observation codes which this supplie
can supply.

connect_push_consumer()

Description: Establishes 1/2 of a connection, from the point of view of the
supplier. The analogous 
EventConsumer.connect_push_supplier()  must also be 
called to complete the connection from the client’s point of 
view. The supplier can call disconnect()  on the consumer in 
order to break the connection
3-54 Clinical Observations Access Service  V1.0                        January 2000



3

eter 

. 
The event resulting from this call will arrive, as with all events, in an Corba::any . 
Within the Corba::any  will be an ObservationData  as follows:

ObservationDataStruct
    code: TEST_EVENT  // see constants
    composite:  []        // empty
    qualifiers:   []        // empty
    value:   Any { clientId } // Any containin g a lon g, the value of the input parameter

In other words, an ObservationDataStruct  with a predetermined code TEST_EVENT 
from the constants section of this IDL, and with a payload of the given input param
clientId .

3.6.2 EventConsumer Interface

interface EventConsumer : AbstractMana gedObject, PushConsumer {

subscribe()

Description: Establish an ongoing request for observations.
• The query is for future observations (as opposed to past 

observations).
• The time span is implied to be from the time subscribe()  is 

called until this consumer is disconnected.
• The observations are returned within the 

CosEventComm::push()  operation inherited by 
EventConsumer . The argument within this push()  operation is 
an Corba::any . Within the Corba::any  is an 
ObservationData .

The call to subscribe()  begins a flow of events. Before the 
first call to subscribe() , no events flow. Supplier and 
consumer must be connected already, or exception 
Disconnected is thrown. Any subsequent call to subscribe()  
removes the previous subscription and begins a new 
subscription.

describe_subscription()

Description: Returns the current subscription that has been set on the 
supplier.

generate_test_event()

Description: Sends a test event to the consumer. This operation will be 
called by a savvy client after an interval of inactivity, to 
ascertain whether all is well in the event system and network
Without this direct request for a test event, a client might 
never know of network or event system problems.
COAS V1.0           Event and Notification Interface Specifications             Jan. 2000 3-55



3

. 

ts 

 

 
 

readonly attribute EndpointId endpoint_id;

SubscriptionSeq obtain_subscriptions ();

void connect_push_supplier (
in PushSupplier push_supplier )

raises (
CosEventChannelAdmin::AlreadyConnected );

PushSupplier get_connected_supplier ()
raises(

CosEventComm::Disconnected );
};

The EventConsumer  interface encapsulates all that is necessary to receive events
Each consumer instance can be connected with exactly one EventSupplier . A server 
would itself create an EventConsumer  only when the server wished to receive even
itself. A typically client would NOT call ConsumerAccess.create_consumer() , but 
rather implement the EventConsumer  interface directly. After instantiating one of 
these “home grown” instances of EventConsumer , a typical client would connect this 
consumer instance with an EventSupplier  provided by the server’s 
SupplierAccess.create_supplier() .

endpoint_id

Description: When instantiated by the ConsumerAccess  factory, an 
EventConsumer  receives an identifier from the factory. This 
identifier can be used to retrieve a reference to the 
EventConsumer  via 
ConsumerAccess. get_consumer_by_id() .
Note that when the EventConsumer  interface is implemented 
by a typical client (not a DsObservationAccess  server), the 
identifier is not necessary nor relevant.

obtain_subscriptions()

Description: Returns a sequence of Subscriptions  which this consumer 
would like to obtain. This operation is useful in an application
management scenario. For example, a management 
application can use this operation to know what subscriptions
to apply when connecting up a client and supplier without the
explicit advance knowledge of this connection by those 
endpoint. Also, this operation could be reused by a client 
when subscribing, since it must have just such a list of 
subscription for EventSupplier.subscribe() .
3-56 Clinical Observations Access Service  V1.0                        January 2000



3

 

3.6.3 SupplierAccess Interface

Figure 3-20 SupplierAccess Interface

interface SupplierAccess : AbstractFactory, AccessComponent {

EventSupplier create_supplier ()
raises (

MaxConnectionsExceeded );

EventSupplier get_supplier_by_id (
in EndpointId endpoint_id )

raises (
InvalidEndpointId );

};

connect_push_supplier()

Description: Establishes 1/2 of a connection, from the point of view of the
consumer. The analogous 
EventSupplier.connect_push_consumer()  must also be 
called to complete the connection from the server point of 
view. The consumer can call disconnect()  on the supplier in 
order to break the connection.

get_connected_supplier()

Description: Returns a reference to the connected EventSupplier , or a 
Disconnected exception if no connection has been 
established yet.

AccessComponent
<<Interf ace>>

SupplierAccess

create_supplier()
get_supplier_by _id()

<<Inte rf ace>>

AbstractFactory
<<Interf ace>>
COAS V1.0           Event and Notification Interface Specifications             Jan. 2000 3-57



3

3.6.4 ConsumerAccess Interface

Figure 3-21 ConsumerAccess Interface

interface ConsumerAccess : AbstractFactory, AccessComponent {

EventConsumer create_consumer ()
raises (

MaxConnectionsExceeded );

EventConsumer get_consumer_by_id (
in EndpointId endpoint_id )

raises (
InvalidEndpointId );

};

create_supplier()

Description: Creates a new EventSupplier  instance and returns it.

get_supplier_by_id()

Description: This operation returns an object reference to the 
EventSupplier  corresponding to the parameter endpoint_id . 
A SupplierAccess  is responsible to keep track of all the 
EventSupplier s created, with their EndpointId s.

AbstractFactory
<<Interface>>

ConsumerAccess

create_consumer()
get_consumer_by_id()

<<Interface>>AccessComponent
<<Interface>>
3-58 Clinical Observations Access Service  V1.0                        January 2000



3

d 
 

, 
3.7 Utility Interface Specifications

The rest of the DsObservationAccess  interfaces are described in this section.

3.7.1 ObservationLoader Interface

interface ObservationLoader : AccessComponent {

void load_observations (
in ObservationDataSeq observations );

};

create_consumer()

Description: Creates a new EventConsumer  instance. Each consumer 
instance can be connected with exactly one EventSupplier . A 
server would create a consumer only when the server wishe
to receive events from another COAS server. A typical client
would NOT call create_consumer() , but instead implement 
the EventConsumer  interface, and connect this “home 
grown” instance with an EventSupplier  provided by the 
DsObservationAccess  server.

get_consumer_by_id()

Description: This operation returns a reference to the EventConsumer  
corresponding to the parameter endpoint_id . To accomplish 
this, the ConsumerAccess  factory should aggregate a 
reference and an EndpointId  for all the EventConsumer s that 
it creates.

load_observations()

Description: Load observations into a DsObservationAccess  server. 
Intended for use by legacy systems, which cannot be queried
but can output some stream of data.
COAS V1.0           Utility Interface Specifications             Jan. 2000 3-59



3

3.7.2 AccessComponent Interface

Figure 3-22 AccessComponent Interface

interface AccessComponent {

readonly attribute strin g coas_version;

readonly attribute IdentificationComponent pid_service;

readonly attribute Terminolo gyService terminolo gy_service;

readonly attribute TraderComponents trader_service;

readonly attribute Namin gContext namin g_service;

AccessComponentData get_components ();

QualifiedCodeStrSeq get_supported_codes (
in unsi gned lon g max_sequence,
out QualifiedCodeIterator the_rest );

QualifiedCodeStrSeq get_supported_qualifiers (
in QualifiedCodeStr code )

raises (
InvalidCodes,
NotImplemented );

QualifiedCodeStrSeq get_supported_policies ();

QueryPolicySeq get_default_policies ();

QueryAccess BrowseAccess

ConstraintLanguageAccessObservationLoader AsynchAccessConsumerAccess Su ppl ierAccess

AccessComponent

coas_version : strin g
pid _service : Id enti ficationCompone nt
terminolo gy_service : TerminologyS ervice
trader_service :  TraderCom ponen ts
naming_service : Namin gContext

get_co mponen ts()
get_supported_co des()
get_supported_qualifiers()
get_supported_pol icies()
get_default_policies()
get_type_co de_for_observation_type()
are _iterators_supported()
get_cu rrent_time()
3-60 Clinical Observations Access Service  V1.0                        January 2000



3

the 

 the 
 

e 

d 

 

 

TypeCode get_type_code_for_observation_type (
in QualifiedCodeStr observation_type )

raises (
InvalidCodes, 
NotImplemented );

boolean are_iterators_supported ();

TimeStamp get_current_time ();

};

AccessComponent  is the superclass of all components. AccessComponent  allows 
discovery of the context of OMG services which a given component may use, in 
form of references for pertinent services. These attributes may be null , indicating that 
the given service is lacking or unknown. Note that for each interface that provides
AccessComponent  operations, those interfaces return the same response to each
operation for a specific COAS server. So for example, a 
QueryAccess. get_supported_codes()  operation will return the same response as th
BrowseAccess. get_supported_codes()  for the same COAS server.

Note – A query code is synonymous with a QualifiedCode  from a terminology system 
and denotes a type of observation, such as Complete Blood Cound, Systolic Bloo
Pressure, etc.

coas_version

Description: Version of COAS specification supported by this 
DsObservationAccess  server, starting with “1.0” for the first 
approved specification.

pid_service, terminolo gy_service, trader_service, namin g_service

Description: References to other OMG standard services which comprise
the context of this DsObservationAccess  server.

get_components()

Description: This operation returns an AccessComponentData . 
AccessComponentData  contains references to all 
implemented components as a convenience for clients that 
have one reference to a component, and wish to use a 
different component.

get_supported_codes()

Description: A complete list of query codes for which this server can 
supply responses. Parameter max_sequence  indicates the 
number of codes which the client wishes to be returned within
the immediately returned sequence. Parameter the_rest 
contains an iterator for remaining items if and only if the 
number of codes is greater than max_sequence .
COAS V1.0           Utility Interface Specifications             Jan. 2000 3-61



3

 

 

t 

a 

t 

 

s 
get_supported_qualifiers()

Description: A complete list of qualifiers which this server can match, and
also supply as returned qualifiers, with respect to the given 
observation code. A server may be able to match/supply 
different sets of qualifiers for different codes.

get_supported_policies()

Description: A complete list of policies which this server can employ 
when filtering on desired observations. The returned list is of
codes only.

get_default_policies()

Description: The policies which are in effect unless overridden via 
get_observations_with_policy() . The returned list is a list of 
name-value pairs, both the name of the policy and its defaul
value.

get_type_code_for_observation_type()

Description: With each observation that a COAS server supports there is 
corresponding structure to contain and communicate the 
observation’s value. For simple observation values, this migh
be one of the structures defined in DsObservationValue . For 
more complex values, it might be a hierarchy of 
DsObservationData  structures. 
The method get_type_code_for_observation_type()  returns 
the corresponding IDL TypeCode for each requested 
observation QualifiedCode . However, a typical client may 
have these correspondences hardwired, expecting a certain 
IDL structure for a given observation code.

are_iterators_supported()

Description: Returns a boolean describing whether this component can 
return iterator ObservationDataIterator  and iterators for some 
of the data values in DsObservationValues . Iterators are 
remote objects.
If a server does not support iterators, all ObservationData  
and ObservationValue  items are returned within sequences, 
and all out-parameter iterators returned as null. In this case,
the input parameter max_sequence (present in many 
operations, indicating the client’s preferred number of items 
returned in the sequence) is ignored by the server as it return
all observations within the sequence.
3-62 Clinical Observations Access Service  V1.0                        January 2000



3

 

s 

r 

y 

r 
t 
s 

 

3.7.3 ObservationDataIterator Interface

interface ObservationDataIterator : AbstractMana gedObject {

unsi gned lon g max_left ();

boolean next_n (
in unsi gned lon g n,
out ObservationDataSeq observation_data_seq );

};

Description 
(continued):

If a server supports iterators, the server will pay attention to
the max_sequence  input parameter, and an iterator will be 
instantiated and returned when the search for observations i
successful and the input parameter max_sequence  is set to 
less than the total number of observations found. Returning 
an iterator requires the server to be stateful, since the iterato
is a remote object that must be instantiated and registered 
with the ORB for some lifetime.
For example, an implementer expecting a very large and bus
set of clients may want to make a QueryAccess  component 
which is stateless, and thus choose to return FALSE to 
are_iterators_supported() .

get_current_time()

Description: Return a TimeStamp  for the current time on the server. This 
can be useful for a client which resides in another timezone o
which has questionable date/time settings (like a PC). A clien
can base a query on the server’s time rather than the client’
time.

max_left()

Description: This operation returns the number of items still left on the 
iterator.

next_n()

Description: This operation returns the number of ObservationData  
objects as an out parameter as is indicated by the passed in
‘n’ parameter or the maximum left. Removes the returned 
objects from the iterator before returning.
COAS V1.0           Utility Interface Specifications             Jan. 2000 3-63



3

 

 

is 
3.7.4 QualifiedCodeIterator Interface

interface QualifiedCodeIterator : AbstractMana gedObject {

unsi gned lon g max_left ();

boolean next_n (
in unsi gned lon g n,
out QualifiedCodeStrSeq codes );

};

3.7.5 AbstractFactory Interface

interface AbstractFactory {

readonly attribute lon g max_connections;

readonly attribute EndpointIdSeq current_connections;

};

max_left()

Description: This operation returns the number of items still left on the 
iterator.

next_n()

Description: This operation returns the number of QualifiedCodeStr  
objects as an out parameter as is indicated by the passed in
‘n’ parameter or the maximum left. Removes the returned 
objects from the iterator before returning.

max_connections

Description: This attribute indicates the maximum number of connections
the server will allow to be active at one time. Additional 
event suppliers and consumers will not be created beyond th
limit.

current_connections

Description: This attribute contains a sequence of endpoint IDs for the 
currently created event consumers or suppliers.
3-64 Clinical Observations Access Service  V1.0                        January 2000



3

t 
3.7.6 AbstractManagedObject Interface

interface AbstractMana gedObject {

void done ();

};

done()

Description: Clients calls this operation when they are done using an 
object. This signals the server to deactivate or garbage collec
the object. However, a savvy server will enforce a timeout 
after some amount of idle time for each managed object in 
order to cleanup after ill-behaved clients or traumatic client 
termination.
COAS V1.0           Utility Interface Specifications             Jan. 2000 3-65



3

3-66 Clinical Observations Access Service  V1.0                        January 2000



DSObservation Values 4
Contents

This chapter contains the following topics. 

4.1 Overview

The DsObservationValue  module defines the data containers for the Clinical 
Observations Access Service (COAS) specification. ObservationValue  types are 
containers for the results of observing forms of biological phenomenon.

Topic Page

“Overview” 4-1

“Data Type Definitions” 4-2

“Supporting Types” 4-2

“Time Types” 4-3

“Person Type” 4-3

“NoInformation Type” 4-3

“Text Types” 4-4

“Coded Types” 4-5

“Multimedia Types” 4-6

“Simple Measurement Types” 4-7

“Complex Measurement Types” 4-8
Clinical Observations Access Service  V1.0                        January 2000 4-1



4

rs, 
t 

s 

his 
data 

se 
We have based this IDL on the Information Model presented in Section 4.1, 
“Overview,” on page 4-1. We have selected a subset of all possible data containe
with the goal of making them as simple as possible. We realize that our set is no
complete, yet we believe it to be disjoint.

If we had made use of Objects-by-Value (OBV) technology, many of the data type
defined in this module would have been sub-classes of an ObservationValue  class. 
However, OBV was not available to a sufficient degree during the finalization of t
specification.  We tried to preserve the notion of inheritance even in defining our 
containers as structs , by using a comment <struct name>:ObservationValue  to 
indicate this intended inheritance. A future revision of COAS may replace the 
CORBA::any  in ObservationDataStruct  with OBV.

4.2 Data Type Definitions

The following sections describe all the IDL for the data types used within the 
DsObservationValue  module. To indicate which data types are intended to be sub-
classes from ObservationValue , we have placed a comment immediately before tho
definitions containing the syntax “<child class>: ObservationValue ”.

// File: DsObservationValue.idl

#ifndef _DS_OBSERVATION_VALUE_IDL_
#define _DS_OBSERVATION_VALUE_IDL_

#include "DsObservationAccess.idl"

#pragma prefix "om g.org"

module DsObservationValue
{
...
};

#endif // _DS_OBSERVATION_VALUE_IDL_

The “Ds” prefix of DsObservationValue  stands for “Domain Service.” All OMG 
services are expected to start with “Ds” to isolate a particular name space from 
potential clashes. 

4.3 Supporting Types

typedef Terminolo gyServices::ConceptCode   ConceptCode;
typedef Namin gAuthority::QualifiedNameStr  QualifiedCodeStr;

typedef DsObservationAccess::AbstractMana gedObject  AbstractMana gedObject;

ConceptCode  and QualifiedCodeStr  are imported type definitions from the Lexicon 
Query Service (LQS) and Person Identification Service (PIDS) specifications.
4-2 Clinical Observations Access Service  V1.0                        January 2000



4

ion 

p,” 

t, 
AbstractMana gedObject  is an abstract interface that provides a convenience funct
for a client to notify the server when they are done using some remote object.

4.4 Time Types

// DateTime : ObservationValue;
typedef DsObservationAccess::TimeStamp DateTime;

// TimeSpan : ObservationValue;
typedef DsObservationAccess::TimeSpan TimeSpan;

These data types reuse the time definitions from DsObservationAccess . Descriptions 
for them can be found in “DateTime” on page 4-3 and in Section 3.3.10, “TimeStam
on page 3-24.

4.4.1 DateTime

A DateTime  conveys a point in time, including the date.

4.4.2 TimeSpan

A TimeSpan  conveys a period of time, with a beginning and end.

4.5 Person Type

// Person : ObservationValue;
typedef DsObservationAccess::ObservedSubjectId   Person;

This data type is reused from DsObservationAccess . A description for it can be found 
in Section 3.3.2, “External Typedefs,” on page 3-17.

4.5.1 Person

A Person contains an ID from a PIDS. It can be used to identify an organ, patien
health care provider, or population.

4.6 NoInformation Type

// NoInformation : ObservationValue;
struct NoInformation {

QualifiedCodeStr reason;
strin g text_description;

};

const QualifiedCodeStr NO_INFORMATION  = 
"DNS:om g.org/DsObservationValue/NO_INFORMATION";
COAS V1.0           Time Types             Jan. 2000 4-3



4

le or 

or 

nly 
 or 

g. It 
in 

d 
 

There are instances when it is appropriate to convey that information is unavailab
missing. For further discussion and an example see “NoInformation”.

4.6.1 NoInformation

A NoInformation  value indicates both that specific information is missing and how 
why it is missing. It can occur in place of any other observation value.

4.7 Text Types

// PlainText : ObservationValue;
typedef strin g PlainText;

// UniversalResourceIdentifier : ObservationValue;
struct UniversalResourceIdentifier {

ConceptCode protocol;
strin g address;

};

// PhysicalLocationDescription : ObservationValue;
typedef strin g PhysicalLocationDescription;

Although there are several data types that use a string to carry the information, o
one communicates the observation directly. The others contain textual references
pointers to the location or resource where the data can be accessed.

4.7.1 Plain Text

PlainText  is used to communicate observation values as ideas in the form of writin
is expected that along with the text will be a qualifier that indicates the language 
which the text is written.

reason

Description: The reason  attribute is used to denote why the information is 
missing or unavailable. This attribute is a QualifiedCode  and 
should come from a well-defined terminology system.

text_description

Description: The text_description  attribute contains a text string to be 
displayed in support of the reason attribute.

NO_INFORMATION is a QualifiedCode  to be used in an 
AtomicObservation  to indicate that the value it contains is 
“NoInformation.” This code is defined here because we 
believe that this concept does not appear in existing standar
coding schemes. It is our intention for this code to fill the gap
until this concept appears in a standard coding scheme.
4-4 Clinical Observations Access Service  V1.0                        January 2000



4

 a 

ot 
pace.

that 
e  

the 

hin a 
 

l 
 

 

4.7.2 UniversalResourceIdentifier

A UniversalResourceIdentifier  is used to reference information that has some tie to
technology that can perform some action.

4.7.3 PhysicalLocationDescription

A PhysicalLocationDescription  is used to reference information or items that are n
located within some information space, but are instead located in some physical s

4.8 Coded Types

// CodedElement : ObservationValue;
typedef Terminolo gyServices::QualifiedCodeInfo CodedElement;

// LooselyCodedElement : ObservationValue;
struct LooselyCodedElement {

strin g text;
Terminolo gyServices::Codin gSchemeId codin g_scheme_id;
Terminolo gyServices::VersionId version_id;

};

The coded data types provide a mechanism to communicate observation values 
have been coded in some form or another. Further information can be found in th
“CodedElement” and “LooselyCodedElement” sections below.

4.8.1 CodedElement

A CodedElement  is coded in the sense that it is a unique identifier. This unique 
identifier can then be used to ask a terminology system specific questions about 
CodedElement . For example, its representation based on some context, or its 
definition.

4.8.2 LooselyCodedElement

There are times when a code that the user wants cannot be realized or found wit
terminology system (e.g., is not in the list of allowable values). In which case the
LooselyCodedElement  can be used to send text instead.

protocol

Description: This is the protocol associated with the address. The protoco
indicates the technology to be used to interpret the address.
For example, http.

address

Description: The address attribute contains some structured sequence of
characters that the protocol knows how to interpret. For 
example, www.example.com.
COAS V1.0           Coded Types             Jan. 2000 4-5



4

4.9 Multimedia Types

typedef sequence<octet> Blob;

interface MultimediaIterator  : AbstractMana gedObject {

unsi gned lon g max_left ();

boolean next_n (
in unsi gned lon g n,
out Blob multimedia_part );

};

// Multimedia : ObservationValue;
struct Multimedia {

strin g content_type;
strin g other_mime_header_fields;
Blob a_blob;
unsi gned lon g lon g total_size;
MultimediaIterator the_iterator;

};

We define a supporting data type and an interface for the Multimedia data type. 

text

Description: The text  attribute is a String and is used when no 
CodedElement  from a terminology system can be 
determined.

codin g_scheme_id

Description: The codin g_scheme_id  attribute is the id, from an LQS, that 
is used to identify the coding scheme where the text was 
intended.

version_id

Description: The version_id  attribute is used to identify the version of the 
coding scheme where the text was intended.

Blob

Description: A Blob  is just an opaque container for data, even more 
opaque than a CORBA::any .

MultimediaIterator

Description: The MultimediaIterator is used to retrieve data in chunks. 
Iterators in general are described in more detail in 
Section 3.7.3, “ObservationDataIterator Interface,” on 
page 3-63.
4-6 Clinical Observations Access Service  V1.0                        January 2000



4

s or 

n 

 
.

4.9.1 Multimedia

For the communication of observations such as images, audio or video recording
large documents, we utilize the Multipurpose Internet Mail Extensions (MIME) 
standard. 

4.10 Simple Measurement Types

// Numeric : ObservationValue;
struct Numeric {

QualifiedCodeStr units;
float value;

};

// Range : ObservationValue;
struct Ran ge {

QualifiedCodeStr units;
float lower;
float upper;

};

// Ratio : ObservationValue;
struct Ratio {

float numerator;
float denominator;

content_type

Description: The content_type  is a structured attribute that identifies the 
general media type (e.g., Application, Audio, Image, 
Message, Model, Multipart,Text and Video, and the specific 
format used).

other_mime_header_fields

Description: The other_mime_header_fields  contains the rest of the 
MIME header. We have made this available so that clients ca
gain further information about what is contained in this data 
value.

a_blob

Description: The a_blob  attribute contains the observation value itself.

total_size

Description: The total_size attribute contains the number of bytes of data 
in the Blob.

the_iterator

Description: the_iterator  may contain a reference to a multimedia iterator 
when the Blob is larger than the client wants to receive at one
time. It can be used to retrieve the rest of the Blob in chunks
COAS V1.0           Simple Measurement Types             Jan. 2000 4-7



4

, that 

ould 

 It is 
 the 

ed in 
l 

y 
};

The simple measurement types are designed to contain single or paired numbers
is quantitative measurements or observations. The units associated with the Numeric  
and Range types are QualifiedCode s and should come from a well-defined 
terminology system. All other attributes mentioned in the Measurement sections sh
be attached to the relevant AtomicObseration  as qualifiers.

4.10.1 Numeric

Numeric  is used to communicate a single measurement or quantitative value.

4.10.2 Range

Range is used to associate two related values together. For example, 1<= X <= 5.
assumed that the value in the lower attribute is less than or equal to the value in
upper attribute.

4.10.3 Ratio

A Ratio  value contains a numerator quantity and a denominator quantity, and is us
those situations where the ratio is more easily understood than the equivalent rea
number. It should be noted that the ratio data type must not be used as a handy 
representation of two related values. In particular, blood pressure values, commonl
reported as 120/80 mm Hg, are not ratios!

4.11 Complex Measurement Types

struct XYPair {
float x;
float y;

};

typedef sequence<XYPair> XYPairSeq;

interface CurveIterator  : AbstractMana gedObject {

unsi gned lon g max_left ();

boolean next_n (
in unsi gned lon g n,
out XYPairSeq curve_part );

};

// Curve : ObservationValue;
struct Curve {

XYPairSeq xy_pairs;
QualifiedCodeStr x_units; 
QualifiedCodeStr y_units; 
unsi gned lon g lon g total_size;
4-8 Clinical Observations Access Service  V1.0                        January 2000



4

. To 

 

 

CurveIterator the_iterator;
};

In DsObserationValue  we define one data type that contains many measurements
support this data type several supporting methods must be defined.

4.11.1 Curve

Curve  is a data type for retrieving paired measurements or values.

XYPair, XYPairSeq

Description: These are the low level data types for holding a vector of data
pairs.

CurveIterator

Description: The CurveIterator , like all other iterators, is the mechanism 
for retrieving the data in chunks.

xy_pairs

Description: The xy_pairs  contains the data sequence.

x_units, y_units

Description: The x_units  and y_units  are QualifiedCode  and should come 
from a well-defined terminology system. In healthcare, the 
x_units  is usually a time (e.g., milliseconds, seconds, or 
minutes). The y_units  is often a quantitative measurement.

total_size

Description: The total_size  attribute contains the total number of elements 
in the curve.

the_iterator

Description: the_iterator  may contain a reference to a CurveIterator  that 
can be used to retrieve a very large curve data sequence in
chunks.
COAS V1.0           Complex Measurement Types             Jan. 2000 4-9



4

4-10 Clinical Observations Access Service  V1.0                        January 2000



DSObservationTimeSeries 5
 

s and 
Contents

This chapter contains the following topics. 

5.1 Overview

The DsObservationTimeSeries  module defines an extension to the basic data types
and interfaces of the DsObservationAccess  and DsObservationValue  modules. The 
TimeSeries  data types and operations were designed to support the unique feature
needs of accessing vital sign waveforms.

5.2 Data Type Definitions

The following sections list all the IDL for the data types used within the 
DsObservationTimeSeries  module.

Topic Page

“Overview” 5-1

“Data Type Definitions” 5-1

“External Typedefs” 5-2

“Time Types” 5-2

“Typedef, Enum, Union, and Sequence Types” 5-3

“Iterator Types” 5-3

“TimeSeries” 5-3

“Exceptions” 5-4

“TimeSeriesRemote” 5-4
Clinical Observations Access Service  V1.0                        January 2000 5-1



5

le, 
of 
s 
 or 
n the 
 vary 
pin. 
// File: DsObservationTimeSeries.idl

#ifndef _DS_OBSERVATION_TIME_SERIES_IDL_
#define _DS_OBSERVATION_TIME_SERIES_IDL_

#include <DsObservationAccess.idl>

module DsObservationTimeSeries
{
...
};

#endif // _DS_OBSERVATION_TIME_SERIES_IDL_

Provides an #ifdef  wrapper to preclude multiple inclusions.

5.3 External Typedefs

typedef DsObservationAccess::AbstractMana gedObject  AbstractMana gedObject;
typedef DsObservationAccess::NameValuePair         NameValuePair;
typedef DsObservationAccess::QueryPolicy               QueryPolicy;
typedef DsObservationAccess::QueryPolicySeq         QueryPolicySeq;
typedef DsObservationAccess::ObservationQualifierSeq ObservationQualifierSeq;
typedef DsObservationAccess::QualifiedCodeStr       QualifiedCodeStr;
typedef DsObservationAccess::TimeStamp                TimeStamp;
typedef DsObservationAccess::TimeSpan                  TimeSpan;

Describes external dependencies.

5.4 Time Types

// TimeDelta : ObservationValue;
struct TimeDelta {
      float  delta;  // calculated with constants below, NOT with calendarin g
      QualifiedCodeStr units;
};

// approximations for time deltas, NOT for calendarin g
const float YEAR          = 31557600.0;  // 60*60*24*365.25
const float MONTH       = 2629800.0;   // 60*60*24*365.25/12
const float DAY             = 86400.0;      // 60*60*24
const float HOUR          = 3600.0;        // 60*60
const float MINUTE       = 60.0;           // 60
const float SECOND      = 1.0;             // 1
const float MILLISECOND = 0.001;      // 1/1000

TimeDelta  is intended for calculation with the time constants provided. For examp
an appropriate use of TimeDelta  might be the time difference between the beginning 
a EKG session and the end of the session. This difference would be expressed a
seconds or milliseconds, with any necessary calculation (converting from minutes
hours) via the constants provided. This is different than UTC calculations based o
calendar. In particular, the number of seconds in a given calendar day or year may
since the spin of the earth varies, and UTC is kept in relative harmony with that s
5-2 Clinical Observations Access Service  V1.0                        January 2000



5

5.5 Typedef, Enum, Union, and Sequence Types

typedef NameValuePair  Filter;
typedef sequence<Filter>  FilterSeq;

enum ValueSeqType { OtherSeqDataType, OctetType, ShortType,
    Lon gType, Lon gLon gType, FloatType, DoubleType
};

union ValueSeq switch ( ValueSeqType ) {
case OctetType    : sequence< octet > octet_seq;
case ShortType    : sequence< short > short_seq;
case Lon gType     : sequence< lon g > lon g_seq;
case Lon gLon gType : sequence< lon g lon g > lon g_lon g_seq;
case FloatType    : sequence< float > float_seq;
case DoubleType   : sequence< double > double_seq;
case OtherSeqDataType : any the_any;

};

typedef sequence<QualifiedCodeStr,1>  OptionalCodeSeq;
typedef sequence<float,1>  OptionalFloatSeq;

5.6 Iterator Types

interface TimeSeriesIterator  : AbstractMana gedObject {

unsi gned lon g max_left ();

boolean next_n (
in unsi gned lon g n,
out ValueSeq curve_part );

};

5.7 TimeSeries

// TimeSeries : ObservationValue;
struct TimeSeries {

TimeDelta sample_period;
ValueSeq values;
QualifiedCodeStr value_units;
unsi gned lon g lon g total_size;  // number of items in values + remainin g on 

iterator
TimeSeriesIterator the_iterator;

};

TimeSeries  will include a non-null iterator if the number of items in the sequence 
“values” is greater than the current policy 
RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY. In other words, specify the 
number of items desired in the sequence with this policy, and that will determine 
whether an iterator is returned also.
COAS V1.0           Typedef, Enum, Union, and Sequence Types             Jan. 2000 5-3



5

d 
This policy is analogous to the parameter “max_sequence” in 
QueryAccess. get_observations_by_time()  and similar operations. The input 
parameter “max_sequence” specifies the number of observations to return in a 
sequence. But a single observation which contains a TimeSeries  payload in its 
ObservationDataStruct.value (CORBA::any)  may have any number of items in the 
TimeSeries.values ( a sequence). The number of items desired by the client is specifie
via the RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY.

5.8 Exceptions

exception OutOfRan ge{};

exception NotImplemented{};

exception FilterNotSupported{};

exception NoValidValues{};

5.9 TimeSeriesRemote

struct TimeSeriesRemoteAttributes {
QualifiedCodeStr code;
QualifiedCodeStr units;
OptionalCodeSeq accuracy;
OptionalFloatSeq precision;
OptionalFloatSeq corner_frequency;
OptionalFloatSeq hi ghest_frequency;
TimeSpan time_span;
TimeDelta time_delta;
unsi gned lon g lon g total_size;
QualifiedCodeStrSeq supported_filters;
QueryPolicySeq supported_policies;

};

// TimeSeriesRemote : ObservationValue;
interface TimeSeriesRemote : AbstractMana gedObject {

readonly attribute QualifiedCodeStr code;
readonly attribute QualifiedCodeStr units;
readonly attribute OptionalCodeSeq accuracy;
readonly attribute OptionalFloatSeq precision;
readonly attribute OptionalFloatSeq corner_frequency;
readonly attribute OptionalFloatSeq hi ghest_frequency;
readonly attribute TimeSpan time_span;
readonly attribute TimeDelta time_delta;
readonly attribute unsi gned lon g lon g total_size;
readonly attribute QualifiedCodeStrSeq supported_filters;
readonly attribute QueryPolicySeq supported_policies;
readonly attribute ValueSeqType default_value_type;

TimeSeriesRemoteAttributes get_attributes ();
5-4 Clinical Observations Access Service  V1.0                        January 2000



5

float get_sample_number ( 
in unsi gned lon g lon g index,
out ObservationQualifierSeq qualifiers )

raises (
OutOfRan ge );

float get_sample ( 
in TimeStamp time_stamp,
out ObservationQualifierSeq qualifiers )

raises (
OutOfRan ge );

TimeSeries get_snippet ( 
in TimeSpan time_span,
out ObservationQualifierSeq qualifiers )

raises (
OutOfRan ge );

float get_max ( 
in TimeSpan time_span )

raises (
OutOfRan ge, 
NoValidValues );

float get_min ( 
in TimeSpan time_span )

raises (
OutOfRan ge, 
NoValidValues  );

float get_mean ( 
in TimeSpan time_span )

raises (
OutOfRan ge, 
NoValidValues );

float get_median ( 
in TimeSpan time_span )

raises (
OutOfRan ge, 
NoValidValues );

TimeSeries get_resampled ( 
in TimeSpan time_span, 
in TimeDelta sample_rate,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers )

raises (
NotImplemented );

TimeSeries get_rescaled ( 
in TimeSpan time_span, 
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers )
COAS V1.0           TimeSeriesRemote             Jan. 2000 5-5



5

d 

 

 

raises (
NotImplemented );

TimeSeries get_resampled_rescaled ( 
in TimeSpan time_span, 
in TimeDelta sample_rate,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers )

raises (
NotImplemented );

TimeSeries get_filtered ( 
in TimeSpan time_span, 
in FilterSeq filters,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers )

raises (
NotImplemented,
FilterNotSupported );

};

(partial documentation follows)

get_attributes()

Description: Returns the structure containing the attributes pertaining to 
the specific TimeSeriesRemote .

get_sample()

Description: Return a single data point corresponding to the timestamp an
limiting qualifiers.

get_snippet()

Description: Gets a series of data points (i.e., a waveform snippet) that 
correspond to the time period defined in the timespan.

get_max()

Description: Returns the numeric maximum data value in the defined 
timespan.

get_min()

Description: Returns the numeric minimum data value in the defined 
timespan.

get_mean()

Description: Returns the arithmetic mean or average data value of all the
individual data points included within the timespan specified.

get_median()

Description: Returns the median data value of all the individual data points
included within the timespan specified.
5-6 Clinical Observations Access Service  V1.0                        January 2000



DSObservationRelations 6
S, a 

r of 

 

Contents

This chapter contains the following topics. 

6.1 Overview

This section describes the relations that can exist between observations. In COA
relation is modeled by a qualifying, composite observation which has a code 
describing the relationship. This qualifying, composite observation links an 
observation and its related observations.

For example, consider a relationship where Observation A is caused by a numbe
other observations. In the graphic below, a linking ObservationDataStruct  structure, 
Observation B, holds the identity of that relationship, along with the list of related
observations.

Topic Page

“Overview” 6-1

“CEN Naming Convention” 6-2

“Observation Type for Relations” 6-2

“Relation Codes” 6-2
Clinical Observations Access Service  V1.0                        January 2000 6-1



6

” 

ese 
n 
, 

ll 
OAS 
Figure 6-1  Observation B relates Observation A with other observations. A “IsCausedBy
others.

A starter set of codes for relations is defined below. The relations indicated by th
codes are documented in the Comité Européen De Normalisation (CEN, Europea
Committee For Standardization) First Working Document of Electronic Healthcare
Record Communication - Part 2: Domain Termlist, (CEN/TC 251/N98-116).

6.2 CEN Naming Convention

Code names from CEN/TC 251/N98-116, table A.5, are created as follows:

• start with “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/”.

• add relationship names from table A.5, translated as:

• replace “/” with “_”.

• replace space with nothing, capitalizing next word. 

• omit apostrophe, periods, parenthesis, and other punctuation.

6.3 Observation Type for Relations

Each observation code is associated with a particular IDL static type definition. A
relation codes refer to composite observations. Hence their observation type in C
is a composite observation, which is just ObservationData .

typedef DsObservationAccess::ObservationData RELATION_type;

6.4 Relation Codes

6.4.1 Produce

Relations that produce or are produced by healthcare activity.

const QualifiedCodeStr Produces = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Produces";

const QualifiedCodeStr IsProducedB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsProducedB y";

Observation A 
code
composite
qualifiers
value

Observation B 
code: IsCausedBy
composite
qualifiers
value

Observation ...
Observation ...

Observation ...
Observation ...
6-2 Clinical Observations Access Service  V1.0                        January 2000



6

.

duct.

y 
6.4.2 Document

Relations that document or are documented by a healthcare activity.

const QualifiedCodeStr Documents = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Documents";

const QualifiedCodeStr IsDocumentedB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsDocumentedB y";

6.4.3 Report

Relations that report or are reported by a healthcare activity.

const QualifiedCodeStr Re ports = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Re ports";

const QualifiedCodeStr IsRe portedB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsRe portedB y";

6.4.4 Graphic

Relations that describe or are described by graphic properties of a graphic object

const QualifiedCodeStr Describes = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Describes";

const QualifiedCodeStr IsDescribedB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsDescribedB y";

6.4.5 Identified/Incorporated

Relations that are identified by or incorporates a graphic object within a study pro

const QualifiedCodeStr IsIdentifiedWithin = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsIdentifiedWithin";

const QualifiedCodeStr IsIncor poratedB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsIncor poratedB y";

6.4.6 Source/Derived

Relations that are sources for or are derived from a graphic property from a stud
product.

const QualifiedCodeStr IsSourceFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsSourceFor";

const QualifiedCodeStr IsDerivedFrom = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsDerivedFrom";

6.4.7 Compared/Reference

Relations that are compared to or are reference for a situation.

const QualifiedCodeStr IsCom paredTo = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsCom paredTo";

const QualifiedCodeStr IsReferenceFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsReferenceFor";

6.4.8 Recorded

Relations that are recorded against a family history.

const QualifiedCodeStr IsRecordedA gainst = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsRecordedA gainst";
COAS V1.0           Relation Codes             Jan. 2000 6-3



6

e 

e of 

.

r 
6.4.9 Supercede

Relations that supercede or are superseded by a clinical state.

The relation “supersede” must not be confused with mechanisms used to manag
different versions of a document. This link in fact refers to different judgements 
performed at different times according to evolving evidence. For example, a chang
diagnosis after new evidence is discovered.

const QualifiedCodeStr Su percedes = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Su percedes";

const QualifiedCodeStr IsSu percededB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsSu percededB y";

6.4.10 Framework

Relations that are a framework for or is framed in.a situation, or document.

const QualifiedCodeStr IsFrameworkFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsFrameworkFor";

const QualifiedCodeStr IsFramedB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsFramedB y";

6.4.11 Phase

Relations that have phases or are phases of a healthcare activity.

const QualifiedCodeStr HasPhase = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasPhase";

const QualifiedCodeStr IsPhaseOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsPhaseOf";

6.4.12 Next Phase

Relations that have a next phase or are a next phase in a healthcare activity.

const QualifiedCodeStr HasNextPhase = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasNextPhase";

const QualifiedCodeStr IsNextPhaseWRT = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsNextPhaseWRT";

6.4.13 Associate

Relations that are associated with a condition.

const QualifiedCodeStr IsAssociateTo = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsAssociateTo";

6.4.14 Assigned/Setting

Relations that are assigned to or are a setting for situation assigned to a problem

const QualifiedCodeStr IsAssi gnedTo = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsAssi gnedTo";

const QualifiedCodeStr IsSettin gFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsSettin gFor";

6.4.15 Interpretation

Relations that are interpretations of or are interpreted as a condition of findings, o
reports.
6-4 Clinical Observations Access Service  V1.0                        January 2000



6

const QualifiedCodeStr IsInter pretationOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsInter pretationOf";

const QualifiedCodeStr IsInter pretedAs = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsInter pretedAs";

6.4.16 Progress

Relations that have progress or are progress of a condition.

const QualifiedCodeStr HasPro gress = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasPro gress";

const QualifiedCodeStr IsPro gressOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsPro gressOf";

6.4.17 Cause

Relations that have causes or are causes of a condition.

const QualifiedCodeStr HasCause = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasCause";

const QualifiedCodeStr IsCauseOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsCauseOf";

6.4.18 Co-exists

Relations that co-exist with a condition.

const QualifiedCodeStr CoExistsWith = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/CoExistsWith";

6.4.19 Evidence

Relations that have evidence for or are evidence of a diagnosis.

const QualifiedCodeStr HasEvidence = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasEvidence";

const QualifiedCodeStr IsEvidenceFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsEvidenceFor";

6.4.20 Triggers

Relations that trigger or are triggered by presence of a risk state.

const QualifiedCodeStr Tri ggers = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Tri ggers";

const QualifiedCodeStr IsTri ggeredB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsTri ggeredB y";

6.4.21 Goal

Relations that have goals or are goals of a healthcare activity.

const QualifiedCodeStr HasGoal = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasGoal";

const QualifiedCodeStr IsGoalOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsGoalOf";

6.4.22 Motivation

Relations that have motivation or are motivation for a healthcare activity.

const QualifiedCodeStr HasMotivation = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasMotivation";
COAS V1.0           Relation Codes             Jan. 2000 6-5



6

.

const QualifiedCodeStr IsMotivationFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsMotivationFor";

6.4.23 Consequence

Relations that have consequences or are consequences of a healthcare activity.

const QualifiedCodeStr HasConse quence = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasConse quence";

const QualifiedCodeStr IsConse quenceOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsConse quenceOf";

6.4.24 Topic

Relations that have topics or are topics for informing.

const QualifiedCodeStr HasTo pic = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasTo pic";

const QualifiedCodeStr IsTo picFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsTo picFor";

6.4.25 Target

Relations that have targes or are targets for informing.

const QualifiedCodeStr HasTar get = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasTar get";

const QualifiedCodeStr IsTar getOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsTar getOf";

6.4.26 Provides Information

Relations that provide information about a condition.

const QualifiedCodeStr ProvidesInformationAbout = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/ProvidesInformationAbout";

6.4.27 Circumstances

Relations that have circumstances or are circumstances for supporting an activity

const QualifiedCodeStr HasCircumstances = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasCircumstances";

const QualifiedCodeStr IsCircumstanceOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsCircumstanceOf";
6-6 Clinical Observations Access Service  V1.0                        January 2000



DSObservationQualifiers 7
tions 

ents 

et is 
ing 

2.3 

ean 
, 
 
” on 
Contents

This chapter contains the following topics. 

7.1 Overview

This chapter describes a set of codes defined for qualifiers. Qualifiers are observa
which can be used to modify and refine the meaning of other observations. For 
example, Date_TimeOfTheObservation  and Orderin gProvider  are common qualifiers. 
Along with an observation like the amount of glucose in a blood sample, COAS cli
will often be interested in the time of the observation and the care provider who 
ordered it.

The codes below, mostly from HL7 v.2.3, provide a starter set of qualifiers. This s
in no way intended to imply an exhaustive set. However, by use of the COAS nam
convention detailed below, the implication here is that all data definitions of HL7v
are usable as observations and qualifiers. 

Furthermore, definitions from the Comité Européen De Normalisation (CEN, Europ
Committee For Standardization) First Working Document of Electronic Healthcare
Record Communication - Part 2: Domain Termlist, (CEN/TC 251/N98-116) are all
potential qualifiers and observations.  See Section 6.2, “CEN Naming Convention,
page 6-2.

Topic Page

“Overview” 7-1

“HL7 Naming Convention” 7-2

“Observation Type for Qualifiers” 7-2

“Qualifier Codes” 7-3
Clinical Observations Access Service  V1.0                        January 2000 7-1



7

ery 

 list 

To 
 can 
cular 

ost 
 their 

ar 
These codes are defined with qualifiers in mind, but the codes can be used as qu
codes as well. For example, a COAS client might wish to query for all ordering 
providers for a given patient over a given time span. In this case, the code 
Orderin gProvider  would be used as the (query) observation code rather than in the
of qualifiers regarding some other observation.

7.2 HL7 Naming Convention

Code names from HL7v2.3 are created as follows: based on HL7 v3.2 standard 
distribution, appendix A. (APPA.doc), table A.6 DATA ELEMENT NAMES:

• start with “DNS:omg.org/DsObservationAccess/HL72.3/”

• add the HL7 segment, like OBX or PID, plus a slash

• add HL7 data element names taken from table A.6, translated as:

• replace “/” with “_”

• replace space with nothing, capitalizing next word 

• omit apostrophe, periods, parenthesis, and other punctuation.

Most of the examples below are HL7 components with multiple subcomponents. 
identify individual subcomponents, additional slash(es) + subcomponent name(s)
follow the component names. For example, in the OBR (result) segment, one parti
code,

const QualifiedCodeStr S pecimenSource = "DNS:om g.org/DsObservationAcess/HL72.3/OBR/S pecimenSource"

SpecimenSource , is a composite. One subcomponent of SpecimenSource , the body 
site, can be specified as 

const QualifiedCodeStr S pecimenSourceBod ySite = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/S pecimenSource/Bod ySite";

by appending the name “/BodySite” as shown. Thus, SpecimenSourceBodySite  refers 
to the specific subcomponent of SpecimenSource . 

7.3 Observation Type for Qualifiers

Each observation code is associated with a particular IDL static type definition. M
of the examples below are HL7 components with multiple subcomponents. Hence
observation type in COAS is a composite observation, which is just ObservationData .

typedef DsObservationAccess::ObservationData COMPOSITE_OBSERVATION_t ype;

However, a small subcomponent, SpecimenSourceBodySite , is listed in HL7 
documentation as having type (CE), coded element. This would correspond to a 
QualifiedCodeStr  in COAS.

The association between code and data definition can be confirmed for a particul
server with AccessComponent. get_type_code_for_observation_type() .

One way to indicate this association in static IDL is to list a code <code> , and 
immediately following it, a typedef for a type with name <code>_type . For example, 
7-2 Clinical Observations Access Service  V1.0                        January 2000



7

const QualifiedCodeStr S pecimenSourceBod ySite = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/S pecimenSource/Bod ySite";

typedef QualifiedCodeStr S pecimenSourceBod ySite_t ype;

7.4 Qualifier Codes

The following qualifiers are identified as a starter set.

7.4.1 COAS - Specific

const QualifiedCodeStr COAS_OBSERVATION_ID = "DNS:om g.org/DsObservationAccess/COAS_OBSERVATION_ID";

7.4.2 HL7 - Clinical Times

const QualifiedCodeStr Date_TimeOfTheObservation = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/Date_TimeOfTheObservation";

const QualifiedCodeStr EventOnsetDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/PEO/EventOnsetDate_Time";

const QualifiedCodeStr OrderEffectiveDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/ORC/OrderEffectiveDate_Time";

const QualifiedCodeStr ProcedureDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/PR1/ProcedureDate_Time";

const QualifiedCodeStr Re questedDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/Re questedDate_Time";

const QualifiedCodeStr VerificationDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/IN1/VerificationDate_Time";

const QualifiedCodeStr ActionDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/GOL/ActionDate_Time";

const QualifiedCodeStr AttestationDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/DG1/AttestationDate_Time";

const QualifiedCodeStr Transcri ptionDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/TXA/Transcri ptionDate_Time";

7.4.3 HL7 - Roles

const QualifiedCodeStr PatientIDExternalID = "DNS:om g.org/DsObservationAccess/HL72.3/PID/PatientIDExternalID";

const QualifiedCodeStr PatientIDInternalID = "DNS:om g.org/DsObservationAccess/HL72.3/PID/PatientIDInternalID";

const QualifiedCodeStr Orderin gProvider = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/Orderin gProvider";

const QualifiedCodeStr ProducerID = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/ProducerID";

const QualifiedCodeStr CollectorIdentifier = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/CollectorIdentifier";

const QualifiedCodeStr Res ponsibleObserver = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/Res ponsibleObserver";

const QualifiedCodeStr Technician = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/Technician";

const QualifiedCodeStr Princi palResultInter preter = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/Princi palResultInter preter";

7.4.4 HL7 - OBR (Request)

const QualifiedCodeStr S pecimenSource = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/S pecimenSource";

const QualifiedCodeStr ReasonForStud y = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/ReasonForStud y";

const QualifiedCodeStr Dia gnosticServiceSectionID = "DNS:om g.orgDsObservationAccess/HL72.3/OBR/Dia gnosticServiceSectionID";

const QualifiedCodeStr S pecimenSourceBod ySite = "DNS:om g.orgDsObservationAccess/HL72.3/OBR/S pecimenSourceBod ySite";
COAS V1.0           Qualifier Codes             Jan. 2000 7-3



7

7.4.5 HL7 - OBX (Reply)

const QualifiedCodeStr AbnormalFla gs = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/AbnormalFla gs";

const QualifiedCodeStr ObservationMethod = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/ObservationMethod";

const QualifiedCodeStr Units = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/Units";

const QualifiedCodeStr ReferencesRan ge = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/ReferencesRan ge";

const QualifiedCodeStr ObservationIdentifier = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/ObservationIdentifier";

7.4.6 HL7 - PV1 (Patient Visit)

const QualifiedCodeStr PatientLocation = "DNS:om g.org/DsObservationAccess/HL72.3/PV1/PatientLocation";
7-4 Clinical Observations Access Service  V1.0                        January 2000



Policies 8
Contents

This chapter contains the following topics. 

Topic Page

“Overview” 8-2

“SEARCH_DEPTH_POLICY” 8-2

“RETURN_DEPTH_POLICY” 8-2

“SEARCH_SYNONYMOUS_CODES_POLICY” 8-3

“RETURN_OBSERVATION_VALUES_POLICY” 8-3

“SHORTCIRCUIT_SEARCH_..._POLICY” 8-4

“SEARCH_SYNONYMOUS_IDS_POLICY” 8-4

“SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY” 8-4

“RETURN_ITEMS_IN_TIME_SPAN_POLICY” 8-4

“MATCHING_STRENGTH_POLICY” 8-5

“PARAM_CHECKING_POLICY” 8-5

“QUALIFIER_RETURN_POLICY” 8-5

“RELATIONS_RETURN_POLICY” 8-6

“RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY” 8-6

“TIME_SERIES_..._ALGORITHM_POLICY” 8-6

“TIME_SERIES_..._PREFERENCE_POLICY” 8-6

“RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY” 8-6

“IGNORE_UNMATCHABLE_QUALIFIERS_POLICY” 8-7
Clinical Observations Access Service  V1.0                        January 2000 8-1



8

urn 

er 
ro, 

h 
ther 
m 

o 

ent 
8.1 Overview

Policies are name-value pairs which instruct the server on how to search and ret
observations. They consist of a policy name (a QualifiedCodeStr ), and a value (a 
CORBA::any ). Each policy has a typedef to define what is inside the CORBA::any .

8.2 SEARCH_DEPTH_POLICY
const QualifiedCodeStr SEARCH_DEPTH_POLICY = "DNS:om g.org/DsObservationAccess/ polic y/SEARCH_DEPTH_POLICY”;
typedef short SearchDe pthPolic yType;

const SearchDe pthPolic yType SEARCH_DEPTH_ONLY_ROOT = 0x0;
const SearchDe pthPolic yType SEARCH_DEPTH_DEEPEST_POSSIBLE = 0x7FFF;

SEARCH_DEPTH_POLICY  indicates how many levels down an item hierarchy a serv
is to look for a match to the input parameters. Only positive integers, including ze
make sense:

• 0 means just the root of the tree. 

• 1 means to search the root and one level of items below the root.

• 2 means to search the root and two more levels down

• 3 means to search the root and three more levels down

• SEARCH_DEPTH_DEEPEST_POSSIBLE  means to search all levels for a match.

• Default = SEARCH_DEPTH_DEEPEST_POSSIBLE .

8.3 RETURN_DEPTH_POLICY
const QualifiedCodeStr RETURN_DEPTH_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_POLICY”;
typedef QualifiedCodeStr ReturnDe pthPolic yType;

const ReturnDe pthPolic yType RETURN_DEPTH_ROOT_ONLY = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_ROOT_ONLY”;
const ReturnDe pthPolic yType RETURN_DEPTH_ALL = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_ALL”;
const ReturnDe pthPolic yType RETURN_DEPTH_ALL_LEAVES = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_ALL_LEAVES”;
const ReturnDe pthPolic yType RETURN_DEPTH_LEAVES_OF_MATCHED = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_LEAVES_OF_MATCHED”;
const ReturnDe pthPolic yType RETURN_DEPTH_MATCHED_ONLY = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_MATCHED_ONLY”;
const ReturnDe pthPolic yType RETURN_DEPTH_MATCHED_AND_DOWN = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_MATCHED_AND_DOWN”;

• RETURN_DEPTH_POLICY indicates which items in a potential tree of items whic
get returned. After matching on certain items, these items may have various o
related items contained in their “composite” field, making up a “tree” of items fro
the (matched) root item.

• ROOT_ONLY means that only the root item is returned.

• RETURN_ALL  means the full item structure gets returned from the root, down t
and including the leaves.

• MATCHED_ONLY  means to only return the item that was matched on, independ
of where it is in the tree.

• MATCHED_AND_DOWN  means to return a tree of items starting with the one 
matched, down to and including the leaf items.
8-2 Clinical Observations Access Service  V1.0                        January 2000



8

e 

, 

e 
r 
ell 

 

, 

ork 
all 
) in 
s to 
• LEAVES_OF_MATCHED  means to only return the leaf items of the part of the tre
starting from the matched item on down but no BranchItems.

• ALL_LEAVES  means to return all LeafItems in the whole tree that had a match
starting from the root.

• Default = RETURN_DEPTH_MATCHED_AND_DOWN .

8.4 SEARCH_SYNONYMOUS_CODES_POLICY
const QualifiedCodeStr SEARCH_SYNONYMOUS_CODES_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_CODES_POLICY”;
typedef QualifiedCodeStr SearchS ynon ymousCodesPolic yType;

const SearchS ynon ymousCodesPolic yType SEARCH_SYNONYMOUS_CODES_FALSE = 
“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_CODES_FALSE”;
const SearchS ynon ymousCodesPolic yType SEARCH_SYNONYMOUS_CODES_TRUE = 
“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_CODES_TRUE”;

• SEARCH_SYNONYMOUS_CODES_POLICY  indicates to search for all possible 
matches on a code, including any synonymous codes or subtype codes that th
server might know as a result of a Terminology (LQS) service or otherwise. Fo
example, if searching for all “blood-cell count” observations, both a red-blood-c
count and white-blood-cell count would match, as subtypes.

• SEARCH_SYNONYMOUS_CODES_TRUE means all synonyms and subtypes are 
considered matches too.

• SEARCH_SYNONYMOUS_CODES_FALSE  means that only an exact match will be
returned. Thus, FALSE implies that the set of codes is treated as an XOR list.

• default = SEARCH_SYNONYMOUS_CODES_TRUE

8.5 RETURN_OBSERVATION_VALUES_POLICY
const QualifiedCodeStr RETURN_OBSERVATION_VALUES_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_OBSERVATION_VALUES_POLICY”;
typedef QualifiedCodeStr ReturnObservationValuesPolic yType;

const ReturnObservationValuesPolic yType RETURN_NO_OBSERVATION_VALUES = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_NO_OBSERVATION_VALUES”;
const ReturnObservationValuesPolic yType RETURN_OBSERVATION_VALUES = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_OBSERVATION_VALUES”;

• RETURN_OBSERVATION_VALUES_POLICY  is useful when only contextual 
(“meta”) information is desired. No values are returned, only qualifiers. That is
ObservationDataStruct.value  sequences are returned empty, even for atomic 
observations. Use this policy when, for example, a value is large, and the netw
traffic to download it to a client would be considerable. The client can display 
the context information from qualifiers (observation time, ordering provider, etc.
some list of observations, without downloading the actual item until a user click
examine the actual data.

• default = RETURN_OBSERVATION_VALUES
COAS V1.0           SEARCH_SYNONYMOUS_CODES_POLICY             Jan. 2000 8-3



8

r one 
ing 
it is 

 are 

e 

r one 
ther 
 not 
8.6 SHORTCIRCUIT_SEARCH_..._POLICY
const QualifiedCodeStr SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY”;
typedef boolean ShortcircuitSearchCodesOnSuccessPolic yType;

const ShortcircuitSearchCodesOnSuccessPolic yType SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_FALSE = FALSE;
const ShortcircuitSearchCodesOnSuccessPolic yType SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_TRUE  = TRUE;

• SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY  is employed only 
when a sequence of query codes is passed in. If a successful match is found fo
of the codes, this policy indicates to discard the rest of the codes, short circuit
the search for other codes. Such a policy might be useful in a situation where 
not clear what qualified code will work for a given server, so that multiple codes
used.

• default = SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_FALSE

8.7 SEARCH_SYNONYMOUS_IDS_POLICY
const QualifiedCodeStr SEARCH_SYNONYMOUS_IDS_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_IDS_POLICY”;
typedef boolean SearchS ynon ymousIdsPolic yType;

const SearchS ynon ymousIdsPolic yType SEARCH_SYNONYMOUS_IDS_FALSE = FALSE;
const SearchS ynon ymousIdsPolic yType SEARCH_SYNONYMOUS_IDS_TRUE = TRUE;

• SEARCH_SYNONYMOUS_IDS_POLICY indicates whether or not to search for all 
possible matches on an ID, including any synonyms that might be known by th
server via a PIDS translation or otherwise.

• default = SEARCH_SYNONYMOUS_IDS_TRUE

8.8 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY
const QualifiedCodeStr SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY = 
"DNS:om g.org/DsObservationAccess/ polic y/SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY";
typedef boolean ShortcircuitSearchIdsOnSuccessPolic yType;

const ShortcircuitSearchIdsOnSuccessPolic yType SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_FALSE = FALSE;
const ShortcircuitSearchIdsOnSuccessPolic yType SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_TRUE = TRUE;

• SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY  is used in a situation 
where a sequence of subject IDs is passed in. If a successful match is found fo
of the Ids, the policy indicates to discard the rest of the Ids, shortcircuit any fur
searching for other codes. Such a policy might useful in a situation where it is
clear what Id will work for a given server.

• default = SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_FALSE

8.9 RETURN_ITEMS_IN_TIME_SPAN_POLICY
const QualifiedCodeStr RETURN_ITEMS_IN_TIME_SPAN_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_POLICY”;
typedef QualifiedCodeStr ReturnItemsInTimeS panPolic yType;

const ReturnItemsInTimeS panPolic yType RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY”;
const ReturnItemsInTimeS panPolic yType RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY”;
8-4 Clinical Observations Access Service  V1.0                        January 2000



8

t 

 
his 

ot 
 
rver 
 

 

at 
const ReturnItemsInTimeS panPolic yType RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS”;

• RETURN_ITEMS_IN_TIME_SPAN_POLICY  indicates whether to only return the firs
or last matched items in a time span.

• default = RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS .

8.10 MATCHING_STRENGTH_POLICY
const QualifiedCodeStr MATCHING_STRENGTH_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/MATCHING_STRENGTH_POLICY”;
typedef float Matchin gStren gthPolic yType;

const Matchin gStren gthPolic yType MATCHING_STRENGTH_WEAKEST = 0.0;
const Matchin gStren gthPolic yType MATCHING_STRENGTH_STRONGEST = 1.0;

• MATCHING_STRENGTH_POLICY  indicates whether exact matches only are to be
returned, or if close (as determined by the server) matches are returned too. T
matching strength concept is similar to the PIDS find_candidates()  operation.

• default = MATCHING_STRENGTH_STRONGEST.

8.11 PARAM_CHECKING_POLICY
const QualifiedCodeStr PARAM_CHECKING_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/PARAM_CHECKING_POLICY”;
typedef boolean ParamCheckin gPolic yType;

const ParamCheckin gPolic yType PARAM_CHECKING_FALSE = FALSE;
const ParamCheckin gPolic yType PARAM_CHECKING_TRUE = TRUE;

• PARAM_CHECKING_POLICY  allows a server to ignore parameters that it does n
recognize (IDs, codes, qualifiers, TimeStamps , etc.) without throwing an exception.
Unknown items are ignored in matching algorithms. If this policy is true, the se
will raise an exception when unknown IDs or codes are passed in. For a more
narrowly-focused policy, see Section 8.18, 
“IGNORE_UNMATCHABLE_QUALIFIERS_POLICY,” on page 8-7.

• default = PARAM_CHECKING_TRUE

8.12 QUALIFIER_RETURN_POLICY
const QualifiedCodeStr QUALIFIER_RETURN_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_RETURN_POLICY”;
typedef se quence<QualifiedCodeStr> QualifierReturnPolic yType;

const QualifiedCodeStr QUALIFIER_RETURN_ALL = “DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_RETURN_ALL”;
const QualifiedCodeStr QUALIFIER_RETURN_NONE = “DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_RETURN_NONE”;

const QualifiedCodeStr QUALIFIER_NOT_TO_RETURN_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_NOT_TO_RETURN_POLICY”;
typedef se quence<QualifiedCodeStr> QualifierNotToReturnPolic yType;

• QUALIFIER_RETURN_POLICY  makes it possible for the client to indicate exactly
which qualifiers should be returned with the ObservationData . For a list of 
qualifiers: See Section 7.4, “Qualifier Codes,” on page 7-3. Note there is a gre
difference between returning qualifiers, and filtering by qualifiers. The later 
happens as a result of passing in qualifiers via the get_observations_by_qualifier()  
operation and similar operations. The former is accomplished with this policy.

• default = QUALIFIER_RETURN_NONE
COAS V1.0           MATCHING_STRENGTH_POLICY             Jan. 2000 8-5



8

 

ver. 

 
e 

ne 
8.13 RELATIONS_RETURN_POLICY
const QualifiedCodeStr RELATIONS_RETURN_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_RETURN_POLICY”;
typedef se quence<QualifiedCodeStr> RelationsReturnPolic yType;

const QualifiedCodeStr RELATIONS_RETURN_ALL = “DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_RETURN_ALL”;
const QualifiedCodeStr RELATIONS_RETURN_NONE = “DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_RETURN_NONE”;

const QualifiedCodeStr RELATIONS_NOT_TO_RETURN_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_NOT_TO_RETURN_POLICY”;
typedef se quence<QualifiedCodeStr> RelationsNotToReturnPolic yType;

• RELATIONS_RETURN_POLICY  makes it possible for the client to indicate exactly
which relations should be returned with the ObservationData . For a list of relations: 
See Section 6.4, “Relation Codes,” on page 6-2.

• default = RELATIONS_RETURN_NONE

8.14 RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY
const QualifiedCodeStr RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY = 
"DNS:om g.org/DsObservationAccess/ polic y/RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY";
typedef unsi gned lon g ReturnMostRecent_N_ObservationsPolic yType;

const ReturnMostRecent_N_ObservationsPolic yType RETURN_MOST_RECENT_N_OBSERVATIONS_ALL = 0xFFFFFFFF;

• RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY  provides a means to 
return items according to their temporal proximity to the current time of the ser
This policy overrides any TimeSpan  provided as an input parameter. 

• default = RETURN_MOST_RECENT_N_OBSERVATIONS_ALL .

8.15 TIME_SERIES_..._ALGORITHM_POLICY
const QualifiedCodeStr TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY”;
typedef se quence<QualifiedCodeStr> TimeSeriesRemoteResam pleAl gorithmPolic yType;

8.16 TIME_SERIES_..._PREFERENCE_POLICY
const QualifiedCodeStr TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY”;
typedef DsObservationTimeSeries::ValueSe qType TimeSeriesRemoteReturnT ypePreferencePolic yType;

8.17 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY
const QualifiedCodeStr RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY = 
"DNS:om g.org/DsObservationAccess/ polic y/RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY";
typedef unsi gned lon g ReturnMaxSe quenceForValuePolic yType;
const ReturnMaxSe quenceForValuePolic yType RETURN_MAX_SEQUENCE_FOR_VALUE_ALL = 0xFFFFFFFF;

• RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY  is used when an 
ObservationValue  can include an iterator. For example, 
DsObservationValues::Multimedia  includes an iterator field “the_rest”. A non-null
iterator is returned within the Multimedia struct only if the number of items in th
sequence “values” is greater than the current 
RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY. In other words, specify the 
number of items desired in the sequence with this policy, and that will determi
8-6 Clinical Observations Access Service  V1.0                        January 2000



8

 

is 

 

fiers. 

ise, 
d. A 
hod 
whether an iterator is returned also.

This policy is analogous to the parameter “max_sequence” in 
QueryAccess. get_observations_by_time()  and similar operations. The input 
parameter “max_sequence” specifies the number of observations to return in a
sequence. But a single observation which contains a Multimedia  payload in its 
ObservationDataStruct.value  (a CORBA::any ) may have any number of items in 
the Multimedia.a_blob  (a sequence). The number of items desired by the client 
specified via the RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY .

• default = RETURN_MAX_SEQUENCE_FOR_VALUE_ALL

8.18 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY
const QualifiedCodeStr IGNORE_UNMATCHABLE_QUALIFIERS_POLICY = 
"DNS:om g.org/DsObservationAccess/ polic y/IGNORE_UNMATCHABLE_QUALIFIERS_POLICY";
typedef boolean I gnoreUnmatchableQualifiersPolic yType;
const I gnoreUnmatchableQualifiersPolic yType IGNORE_UNMATCHABLE_QUALIFIERS_TRUE = TRUE; 
const I gnoreUnmatchableQualifiersPolic yType IGNORE_UNMATCHABLE_QUALIFIERS_FALSE = FALSE;

• IGNORE_UNMATCHABLE_QUALIFIERS_POLICY  applies to the searching rules in
a more specific manner than PARAM_CHECKING_POLICY. The latter turns off all 
exceptions, but the user may wish to have parameter checking except for quali
Hence IGNORE_UNMATCHABLE_QUALIFIERS_TRUE  means that unknown or 
inapplicable qualifiers will not be considered in the matching algorithm. Otherw
the introduction of an inapplicable qualifier would cause no matches to be foun
client can tell what qualifiers are applicable for a given query code from the met
AccessComponent. get_supported_qualifiers() .

• default = IGNORE_UNMATCHABLE_QUALIFIERS_FALSE
COAS V1.0           IGNORE_UNMATCHABLE_QUALIFIERS_POLICY             Jan. 2000 8-7



8

8-8 Clinical Observations Access Service  V1.0                        January 2000



 Complete IDL A
A.1 DsObservationAccess
// File: DsObservationAccess.idl

#ifndef _DS_OBSERVATION_ACCESS_IDL_
#define _DS_OBSERVATION_ACCESS_IDL_

#include <CosNamin g.idl>
#include <CosTradin g.idl>
#include <Terminolo gyServices.idl>
#include <Namin gAuthorit y.idl>
#include <PersonIdService.idl>
#include <CosEventComm.idl>
#include <CosEventChannelAdmin.idl>
#include <orb.idl>

#pragma prefix “om g.org”

module DsObservationAccess {

// 
// EXTERNAL TYPEDEFS
// 

typedef PersonIdService::QualifiedPersonId  ObservedSub jectId;
typedef Terminolo gyServices::QualifiedCode  QualifiedCode;
typedef Namin gAuthorit y::QualifiedNameStr   QualifiedCodeStr;
typedef PersonIdService::DomainName         IdDomainName;

typedef PersonIdService::IdentificationCom ponent IdentificationCom ponent;
typedef CosNamin g::Namin gContext                 Namin gContext;
typedef CosTradin g::TraderCom ponents             TraderCom ponents;
typedef Terminolo gyServices::Terminolo gyService  Terminolo gyService;

typedef CosEventComm::PushConsumer  PushConsumer;
typedef CosEventComm::PushSu pplier  PushSu pp lier;

typedef CORBA::T ypeCode  TypeCode;

// 
// FORWARD DECLARATIONS
// 

interface AbstractFactor y;
interface AbstractMana gedObject;
Clinical Observations Access Service V1.0                         January 2000 A-1



A

interface AccessCom ponent;
interface As ynchCallback;
interface As ynchAccess;
interface AtomicObservationRemote;
interface BrowseAccess;
interface Com positeObservationRemote;
interface ConsumerAccess;
interface ConstraintLan guageAccess;
interface EventConsumer;
interface EventSu pp lier;
interface ObservationDataIterator;
interface ObservationLoader;
interface ObservationRemote;
interface ObservationRemoteIterator;
interface ObservedSub ject;
interface QualifiedCodeIterator;
interface Quer yAccess;
interface Su pplierAccess;

// 
// STRUCTS
// 

struct AccessCom ponentData {
QueryAccess query_access;
BrowseAccess browse_access;
AsynchAccess as ynch_access;
ConstraintLan guageAccess constraint_access;
ObservationLoader observation_loader;
ConsumerAccess consumer_access;
SupplierAccess su pp lier_access;

};

struct As ynchExce ption {
QualifiedCodeStr exce ption_name;
strin g messa ge;

};

struct ObservationDataStruct {
QualifiedCodeStr code;
sequence<ObservationDataStruct> com posite;
sequence<ObservationDataStruct> qualifiers;
sequence<an y,1> value;

};

typedef an y ObservationData;
typedef ObservationData ObservationQualifier;

struct ObservationId {
QualifiedCodeStr code;
strin g opaque;

};

struct NameValuePair {
QualifiedCodeStr name;
any value;

};

struct Subscri ption {
sequence<ObservedSub jectId> who;
sequence<QualifiedCodeStr> what;
sequence<ObservationQualifier> qualifier;
sequence<NameValuePair> polic y;

};

typedef strin g TimeStam p;  // ISO 8601 representation, with restrictions

struct TimeS pan {
TimeStam p start_time;
TimeStam p sto p_time;

};

// 
// CONSTANTS
A-2 Clinical Observations Access Service V1.0                         January 2000 



A

// 

// for TimeStam p fields
const strin g EARLIEST_TIME  = “1582-10-15T00:00:00Z”; // be ginnin g of Gre gorian calendar
const strin g LATEST_TIME  = “9999-12-31T23:59:59Z”; // max possible in ISO 8601 s pecification
const strin g TIME_WILDCARD  = “?”; // re place individual di gits

const QualifiedCodeStr PARTIAL_RESULT = “DNS:om g.org/DsObservationAccess/PARTIAL_RESULT”;
const QualifiedCodeStr COMPLETING_RESULT = “DNS:om g.org/DsObservationAccess/COMPLETING_RESULT”;
const QualifiedCodeStr ASYNC_OBSERVATION_COUNT = “DNS:om g.org/DsObservationAccess/ASYNC_OBSERVATION_COUNT”;
typedef unsi gned lon g ASYNC_OBSERVATION_COUNT_t ype;

const QualifiedCodeStr EVENT_SOURCE_DOMAIN = “DNS:om g.org/DsObservationAccess/EVENT_SOURCE_DOMAIN”;
const QualifiedCodeStr EVENT_SOURCE_SERVER_NAME = “DNS:om g.org/DsObservationAccess/EVENT_SOURCE_SERVER_NAME”;
const QualifiedCodeStr EVENT_NAME = “DNS:om g.org/DsObservationAccess/EVENT_NAME”;
const QualifiedCodeStr TEST_EVENT = “DNS:om g.org/DsObservationAccess/TEST_EVENT”;
typedef lon g TEST_EVENT_type;

const QualifiedCodeStr TRADER_1_0_CONSTRAINT_LANGUAGE = 
“DNS:om g.org/DsObservationAccess/TRADER_1_0_CONSTRAINT_LANGUAGE”;

const QualifiedCodeStr OCL_1_1_CONSTRAINT_LANGUAGE = “DNS:om g.org/DsObservationAccess/OCL_1_1_CONSTRAINT_LANGUAGE”;

const QualifiedCodeStr COAS_OBSERVATION_ID = “DNS:om g.org/DsObservationAccess/COAS_OBSERVATION_ID”;
typedef ObservationId COAS_OBSERVATION_ID_t ype;

// 
// TYPEDEFS
// 

typedef lon g EndpointId;

typedef strin g ConstraintEx pression;

typedef QualifiedCodeStr ConstraintLan guage;

typedef NameValuePair Quer yPolic y;

typedef lon g ServerCallId;

typedef lon g ClientCallId;

// 
// SEQUENCES
// 

typedef se quence<AtomicObservationRemote> AtomicObsRemoteSe q;

typedef se quence<ConstraintLan guage> ConstraintLan guageSeq;

typedef se quence<End pointId> End pointIdSe q;

typedef se quence<ObservationData> ObservationDataSe q;

typedef se quence<ObservationDataStruct> ObservationDataStructSe q;

typedef se quence<ObservationId> ObservationIdSe q;

typedef se quence<ObservationQualifier> ObservationQualifierSe q;

typedef se quence<ObservationRemote> ObservationRemoteSe q;

typedef se quence<ObservedSub jectId> ObservedSub jectIdSe q;

typedef se quence<ObservedSub ject> ObservedSub jectSeq;

typedef se quence<QualifiedCodeStr> QualifiedCodeStrSe q;

typedef se quence<Quer yPolic y> QueryPolic ySeq;

typedef se quence<Subscri ption> Subscri ptionSe q;

// 
COAS V1.0                         Jan. 2000 A-3



A

// EXCEPTIONS
// 

exception Du plicateCodes {
QualifiedCodeStrSe q codes;

};

exception Du plicateIds {
ObservedSub jectIdSe q ids;

};

exception Du plicateOids {
ObservationIdSe q oids;

};

exception Du plicatePolicies {
QueryPolic ySeq policies;

};

exception Du plicateQualifiers {
ObservationQualifierSe q qualifiers;

};

exception InvalidCodes {
QualifiedCodeStrSe q codes;

};

exception InvalidEnd pointId {
EndpointIdSe q endpoint_ids;

};

exception InvalidConstraint {
strin g constraint;

};

exception InvalidIds {
ObservedSub jectIdSe q ids;

};

exception InvalidOids {
ObservationIdSe q oids;

};

exception InvalidPolicies {
QualifiedCodeStrSe q policies;

};

exception InvalidQualifiers {
QualifiedCodeStrSe q qualifiers;

};

exception InvalidTimeS pan {
TimeSpan span;

};

exception MaxConnectionsExceeded {
unsi gned lon g max_connections;

};

exception NotIm plemented {
};

exception NoSubscri ption {
};

// 
// INTERFACES
// 

// ABSTRACT FACTORY INTERFACE

interface AbstractFactor y {
readonl y attribute lon g max_connections;
readonl y attribute End pointIdSe q current_connections;

};
A-4 Clinical Observations Access Service V1.0                         January 2000 



A

// ABSTRACT MANAGED OBJECT INTERFACE

interface AbstractMana gedObject {
void done ( );

};

// ACCESS COMPONENT INTERFACE

interface AccessCom ponent {
readonl y attribute strin g coas_version;
readonl y attribute IdentificationCom ponent pid_service;
readonl y attribute Terminolo gyService terminolo gy_service;
readonl y attribute TraderCom ponents trader_service;
readonl y attribute Namin gContext namin g_service;

AccessCom ponentData get_com ponents ( );

QualifiedCodeStrSe q get_su pported_codes (
in unsi gned lon g max_se quence,
out QualifiedCodeIterator the_rest );

QualifiedCodeStrSe q get_su pported_ qualifiers (
in QualifiedCodeStr code )

raises (
InvalidCodes,
NotIm plemented );

QualifiedCodeStrSe q get_su pported_ policies ( );

QueryPolic ySeq get_default_ policies ( );

TypeCode get_type_code_for_observation_t ype (
in QualifiedCodeStr observation_t ype)

raises (
InvalidCodes, 
NotIm plemented );

boolean are_iterators_su pported ( );

TimeStam p get_current_time ( );
};

// ASYNCH ACCESS INTERFACE

interface As ynchAccess : AccessCom ponent {

ServerCallId count_observations (
in ObservedSub jectIdSe q who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq polic y,
in ClientCallId client_call_id,
in As ynchCallback client_callback );

ServerCallId get_observation (
in ObservationId observation_id,
in ClientCallId client_call_id,
in As ynchCallback client_callback );

ServerCallId get_observations (
in ObservationIdSe q observation_ids,
in ClientCallId client_call_id,
in As ynchCallback client_callback );

ServerCallId get_observations_b y_time (
in ObservedSub jectId who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
in ClientCallId client_call_id,
in As ynchCallback client_callback );

ServerCallId get_observations_b y_qualifier (
in ObservedSub jectIdSe q who,
COAS V1.0                         Jan. 2000 A-5



A

in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in unsi gned lon g max_se quence,
in ClientCallId client_call_id,
in As ynchCallback client_callback );

ServerCallId get_observations_with_ polic y (
in ObservedSub jectIdSe q who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq polic y,
in unsi gned lon g max_se quence,
in ClientCallId client_call_id,
in As ynchCallback client_callback );

void cancel_ get (
in ServerCallId server_call_id );

};

// ASYNCH CALLBACK INTERFACE

interface As ynchCallback {

void put_observations (
in ObservationDataSe q as_sequence,
in ObservationDataIterator as_iterator,
in ClientCallId client_call_id,
in QualifiedCodeStrSe q result_status );

void put_exce ption (
in ClientCallId client_call_id,
in As ynchExce ption the_exce ption );

};

// OBSERVATION REMOTE INTERFACE

interface ObservationRemote : AbstractMana gedObject {
readonl y attribute QualifiedCodeStr observation_code;

TimeSpan get_observation_time ( );

ObservedSub ject get_observed_sub ject ( );

ObservationRemote get_root_observation ( );

ObservationData get_path_from_root ( );

ObservationQualifierSe q get_all_ qualifiers ( );

ObservationQualifierSe q get_qualifiers (
in QualifiedCodeStrSe q qualifier_names )

raises (
InvalidCodes );

boolean is_this_root ( );

boolean is_this_atomic ( );
};

// ATOMIC OBSERVATION REMOTE INTERFACE

interface AtomicObservationRemote : ObservationRemote {

ObservationData get_observation_data ( );

ObservationData get_observation_data_with_ polic y (
in Quer yPolic ySeq polic y );

};

// BROWSE ACCESS INTERFACE

interface BrowseAccess : AccessCom ponent {

ObservedSub ject get_observed_sub ject (
A-6 Clinical Observations Access Service V1.0                         January 2000 



A

in ObservedSub jectId who )
raises (

InvalidIds );

ObservedSub jectSeq get_observed_sub jects (
in ObservedSub jectIdSe q who )

raises (
InvalidIds,
DuplicateIds );

ObservedSub ject get_observed_sub ject_for_observation_id (
in ObservationId observation_id )

raises (
InvalidOids );

ObservedSub jectSeq get_observed_sub jects_for_observation_ids (
in ObservationIdSe q observation_ids )

raises (
InvalidOids,
DuplicateOids );

unsi gned lon g count_observations (
in ObservedSub jectIdSe q who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq polic y )

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

ObservationRemote get_observation (
in ObservationId observation_id )

raises (
InvalidOids );

ObservationRemoteSe q get_observations (
in ObservationIdSe q observation_ids )

raises (
InvalidOids,
DuplicateOids );

ObservationRemoteSe q get_observations_b y_time (
in ObservedSub jectId who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan );

ObservationRemoteSe q get_observations_b y_qualifier (
in ObservedSub jectIdSe q who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers );
COAS V1.0                         Jan. 2000 A-7



A

ObservationRemoteSe q get_observations_with_ polic y (
in ObservedSub jectIdSe q who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq polic y,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

};

// COMPOSITE OBSERVATION REMOTE INTERFACE

interface Com positeObservationRemote : ObservationRemote {

unsi gned lon g count_observations (
in Quer yPolic ySeq search_de pth_polic y )

raises (
InvalidPolicies );

ObservationRemoteSe q get_observations_b y_time (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan );

ObservationRemoteSe q get_observations_b y_qualifier (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers );

ObservationRemoteSe q get_observations_with_ polic y (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq polic y,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

AtomicObsRemoteSe q get_leaf_observations ( );

AtomicObsRemoteSe q get_leaf_observations_b y_time (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )
A-8 Clinical Observations Access Service V1.0                         January 2000 



A

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan );

AtomicObsRemoteSe q get_leaf_observations_b y_qualifier (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers );

AtomicObsRemoteSe q get_leaf_observations_with_ polic y (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq polic y,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

AtomicObsRemoteSe q get_leaf_observations_b y_value_t ype (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in QualifiedCodeStr value_t ype,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers );

ObservationDataSe q get_relations_toward_root (
in QualifiedCodeStrSe q relation_name );

ObservationDataSe q get_relations_awa y_from_root (
in QualifiedCodeStrSe q relation_name );

};

// CONSTRAINT LANGUAGE ACCESS INTERFACE

interface ConstraintLan guageAccess : AccessCom ponent {
readonl y attribute ConstraintLan guageSeq supported_lan guages;

ObservationDataSe q get_by_constraint (
in ConstraintEx pression constraint,
in Quer yPolic ySeq polic y,
in unsi gned lon g max_se quence,
out ObservationDataIterator the_rest )

raises (
InvalidConstraint,
InvalidPolicies,
DuplicatePolicies );

};

// CONSUMER ACCESS INTERFACE

interface ConsumerAccess : AbstractFactor y, AccessCom ponent {

EventConsumer create_consumer ( )
COAS V1.0                         Jan. 2000 A-9



A

raises (
MaxConnectionsExceeded );

EventConsumer get_consumer_b y_id (
in End pointId end point_id )

raises (
InvalidEnd pointId );

};

// EVENT CONSUMER INTERFACE

interface EventConsumer : AbstractMana gedObject, PushConsumer {
readonl y attribute End pointId end point_id;

Subscri ptionSe q obtain_subscri ptions ( );

void connect_ push_su pp lier (
in PushSu pp lier push_su pp lier )

raises (
CosEventChannelAdmin::Alread yConnected );

PushSu pp lier get_connected_su pp lier ( )
raises (

CosEventComm::Disconnected );
};

// EVENT SUPPLIER INTERFACE

interface EventSu pp lier : AbstractMana gedObject, PushSu pplier {
readonl y attribute End pointId end point_id;

QualifiedCodeStrSe q obtain_offered_codes ( );

void connect_ push_consumer (
in PushConsumer push_consumer )

raises (
CosEventChannelAdmin::Alread yConnected );

PushConsumer get_connected_consumer ( )
raises (

CosEventComm::Disconnected );

void subscribe (
in Subscri ptionSe q subscri ptions )

raises (
CosEventComm::Disconnected );

Subscri ptionSe q describe_subscri ptions ( )
raises (

NoSubscri ption );

void generate_test_event (
in ClientCallId clientId )

raises (
CosEventComm::Disconnected );

};

// OBSERVATION DATA ITERATOR INTERFACE

interface ObservationDataIterator : AbstractMana gedObject {

unsi gned lon g max_left ( );

boolean next_n (
in unsi gned lon g n,
out ObservationDataSe q observation_data_se q );

};

// OBSERVATION LOADER INTERFACE

interface ObservationLoader : AccessCom ponent {

void load_observations (
in ObservationDataSe q observations );

};
A-10 Clinical Observations Access Service V1.0                         January 2000 



A

// OBSERVATION REMOTE INTERFACE

// This interface is defined after As ynchCallBack and before AtomicObservationRemote

// OBSERVATION REMOTE ITERATOR INTERFACE

interface ObservationRemoteIterator : AbstractMana gedObject {

unsi gned lon g max_left ( );

boolean next_n (
in unsi gned lon g n,
out ObservationRemoteSe q observation_remote_se q );

};

// OBSERVED SUBJECT INTERFACE

interface ObservedSub ject : AbstractMana gedObject {
readonl y attribute ObservedSub jectId observed_sub ject_id;

unsi gned lon g count_observations (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq polic y )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

ObservationRemoteSe q get_observations_b y_time (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan );

ObservationRemoteSe q get_observations_b y_qualifier (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers );

ObservationRemoteSe q get_observations_with_ polic y (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq polic y,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

ObservationRemoteSe q get_root_observations (
in QualifiedCodeStrSe q what,
in TimeS pan when,
COAS V1.0                         Jan. 2000 A-11



A

in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan );

AtomicObsRemoteSe q get_leaf_observations (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan );

ObservationRemote get_any_observation (
in QualifiedCodeStrSe q what,
in TimeS pan when )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan );

ObservationRemote get_first_observation (
in QualifiedCodeStrSe q what,
in TimeS pan when )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan );

ObservationRemote get_last_observation (
in QualifiedCodeStrSe q what,
in TimeS pan when )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan );

ObservationRemoteSe q get_candidate_observations (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers );

ObservationRemoteSe q get_exact_observation_t ypes (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationRemoteIterator the_rest )

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan );

};

// QUALIFIED CODE ITERATOR INTERFACE

interface QualifiedCodeIterator : AbstractMana gedObject {

unsi gned lon g max_left ( );

boolean next_n (
in unsi gned lon g n,
out QualifiedCodeStrSe q codes );

};
A-12 Clinical Observations Access Service V1.0                         January 2000 



A

// QUERY ACCESS INTERFACE

interface Quer yAccess : AccessCom ponent {

unsi gned lon g count_observations (
in ObservedSub jectIdSe q who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq polic y )

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies );

ObservationData get_observation (
in ObservationId observation_id )

raises (
InvalidOids );

ObservationDataSe q get_observations (
in ObservationIdSe q observation_ids )

raises (
InvalidOids,
DuplicateOids );

ObservationDataSe q get_observations_b y_time (
in ObservedSub jectId who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationDataIterator the_rest )

raises (
InvalidIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan );

ObservationDataSe q get_observations_b y_qualifier (
in ObservedSub jectIdSe q who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in unsi gned lon g max_se quence,
out ObservationDataIterator the_rest )

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers );

ObservationDataSe q get_observations_with_ polic y (
in ObservedSub jectIdSe q who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq polic y,
in unsi gned lon g max_se quence,
out ObservationDataIterator the_rest )

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers,
COAS V1.0                         Jan. 2000 A-13



A

InvalidPolicies,
DuplicatePolicies );

};

// SUPPLIER ACCESS INTERFACE

interface Su pplierAccess : AbstractFactor y, AccessCom ponent {

EventSu pp lier create_su pp lier ( )
raises (

MaxConnectionsExceeded );

EventSu pp lier get_su pplier_b y_id (
in End pointId end point_id )

raises (
InvalidEnd pointId );

};

};

#endif  // _DS_OBSERVATION_ACCESS_IDL_

A.2 DsObservationValue
// File: DsObservationValue.idl

#ifndef _DS_OBSERVATION_VALUE_IDL_
#define _DS_OBSERVATION_VALUE_IDL_

#include “DsObservationAccess.idl”

#pragma prefix “om g.org”

module DsObservationValue
{

// 
// EXTERNAL TYPEDEFS
// 

typedef Terminolo gyServices::ConceptCode  ConceptCode;
typedef Namin gAuthority::QualifiedNameStr  QualifiedCodeStr;

typedef DsObservationAccess::AbstractMana gedObject  
AbstractMana gedObject;

// DateTime : ObservationValue;
typedef DsObservationAccess::TimeStamp   DateTime;

// TimeSpan : ObservationValue;
typedef DsObservationAccess::TimeSpan    TimeSpan;

// Person : ObservationValue;
typedef DsObservationAccess::ObservedSubjectId  Person;

//-----------------------------------------------------
// NoInformation
//-----------------------------------------------------
A-14 Clinical Observations Access Service V1.0                         January 2000 



A

// NoInformation : ObservationValue;
struct NoInformation {

QualifiedCodeStr reason;
strin g text_description;

};
const QualifiedCodeStr NO_INFORMATION = 

“DNS:om g.org/DsObservationValue/NO_INFORMATION”;

//-----------------------------------------------------
// Text Types
//-----------------------------------------------------

// PlainText : ObservationValue;
typedef strin g PlainText;

// UniversalResourceIdentifier : ObservationValue;
struct UniversalResourceIdentifier {

ConceptCode protocol;
strin g address;

};

// PhysicalLocationDescription : ObservationValue;
typedef strin g PhysicalLocationDescription;

//-----------------------------------------------------
// Coded Types
//-----------------------------------------------------

// CodedElement : ObservationValue;
typedef Terminolo gyServices::QualifiedCodeInfo CodedElement;

// LooselyCodedElement : ObservationValue;
struct LooselyCodedElement {

strin g text;
Terminolo gyServices::Codin gSchemeId codin g_scheme_id;
Terminolo gyServices::VersionId version_id;

};

//-----------------------------------------------------
// Multimedia
//-----------------------------------------------------

typedef sequence<octet> Blob;

interface MultimediaIterator  : AbstractMana gedObject {

unsi gned lon g max_left ( );

boolean next_n (
in unsi gned lon g n,
COAS V1.0                         Jan. 2000 A-15



A

out Blob multimedia_part );
};

// Multimedia : ObservationValue;
struct Multimedia {

strin g content_type;
strin g other_mime_header_fields;
Blob a_blob;
unsi gned lon g lon g total_size;
MultimediaIterator the_iterator;

};

//-----------------------------------------------------
// Measurements Types
//-----------------------------------------------------

// Numeric : ObservationValue;
struct Numeric {

QualifiedCodeStr units;
float value;

};

// Range : ObservationValue;
struct Ran ge {

QualifiedCodeStr units;
float lower;
float upper;

};

// Ratio : ObservationValue;
struct Ratio {

float numerator;
float denominator;

};

struct XYPair {
float x;
float y;

};
typedef sequence<XYPair> XYPairSeq;

interface CurveIterator  : AbstractMana gedObject {

unsi gned lon g max_left ( );

boolean next_n (
in unsi gned lon g n,
out XYPairSeq curve_part );

};

// Curve : ObservationValue;
struct Curve {

XYPairSeq xy_pairs;
QualifiedCodeStr x_units; 
A-16 Clinical Observations Access Service V1.0                         January 2000 



A

QualifiedCodeStr y_units; 
unsi gned lon g lon g total_size;
CurveIterator the_iterator;

};

};

#endif // _DS_OBSERVATION_VALUE_IDL_

A.3 DsObservationTimeSeries
// File: DsObservationTimeSeries.idl

#ifndef _DS_OBSERVATION_TIME_SERIES_IDL_
#define _DS_OBSERVATION_TIME_SERIES_IDL_

#include “DsObservationAccess.idl”

module DsObservationTimeSeries
{

// 
// EXTERNAL TYPEDEFS
// 

typedef DsObservationAccess::AbstractMana gedObject AbstractMana gedObject;
typedef DsObservationAccess::NameValuePair  NameValuePair;
typedef DsObservationAccess::QueryPolicy  QueryPolicy;
typedef DsObservationAccess::QueryPolicySeq QueryPolicySeq;
typedef DsObservationAccess::ObservationQualifierSeq ObservationQualifierSeq;
typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;
typedef DsObservationAccess::TimeStamp TimeStamp;
typedef DsObservationAccess::TimeSpan  TimeSpan;

typedef sequence < QualifiedCodeStr > QualifiedCodeStrSeq;

//-----------------------------------------------------
// Time Types
//-----------------------------------------------------

// TimeDelta : ObservationValue;
struct TimeDelta {

float delta;  // calculated with constants below, NOT with calendarin g
QualifiedCodeStr units;

};

// approximations for time deltas, NOT for calendarin g
//  all units here are seconds. Use scalin g as necessary for units of TimeDelta
const float YEAR     = 31557600.0;  // 60*60*24*365.25
const float MONTH   = 2629800.0;   // 60*60*24*365.25/12
const float DAY           = 86400.0;    // 60*60*24
const float HOUR          = 3600.0;    // 60*60
const float MINUTE          = 60.0;     // 60
const float SECOND           = 1.0;     // 1
COAS V1.0                         Jan. 2000 A-17



A

const float MILLISECOND  = 0.001;  // 1/1000

typedef NameValuePair Filter;
typedef sequence < Filter > FilterSeq;

enum ValueSeqType {
OtherSeqDataType, OctetType, ShortType,
Lon gType, Lon gLon gType, FloatType, DoubleType 

};

union ValueSeq switch ( ValueSeqType ) {
case OctetType        : sequence < octet > octet_seq;
case ShortType        : sequence < short > short_seq;
case Lon gType         : sequence < lon g > lon g_seq;
case Lon gLon gType : sequence < lon g lon g > lon g_lon g_seq;
case FloatType         : sequence < float > float_seq;
case DoubleType      : sequence < double > double_seq;
case OtherSeqDataType : any the_any;

};

typedef sequence < QualifiedCodeStr,1 > OptionalCodeSeq;
typedef sequence < float,1 > OptionalFloatSeq;

interface TimeSeriesIterator  : AbstractMana gedObject {
unsi gned lon g max_left ( );

boolean next_n (
in unsi gned lon g n,
out ValueSeq curve_part );

};

// TimeSeries : ObservationValue;
struct TimeSeries {

TimeDelta sample_period;
ValueSeq values;
unsi gned lon g lon g total_size;
TimeSeriesIterator the_iterator;

};

exception OutOfRan ge { };

exception NotImplemented { };

exception FilterNotSupported { };

exception NoValidValues { };

struct TimeSeriesRemoteAttributes {
QualifiedCodeStr code;
QualifiedCodeStr units;
OptionalCodeSeq accuracy;
OptionalFloatSeq precision;
OptionalFloatSeq corner_frequency;
OptionalFloatSeq hi ghest_frequency;
A-18 Clinical Observations Access Service V1.0                         January 2000 



A

TimeSpan time_span;
TimeDelta time_delta;
unsi gned lon g lon g total_size;
QualifiedCodeStrSeq supported_filters;
QueryPolicySeq supported_policies;

};

// TimeSeriesRemote : ObservationValue;
interface TimeSeriesRemote : AbstractMana gedObject {

readonly attribute QualifiedCodeStr code;
readonly attribute QualifiedCodeStr units;
readonly attribute OptionalCodeSeq accuracy;
readonly attribute OptionalFloatSeq precision;
readonly attribute OptionalFloatSeq corner_frequency;
readonly attribute OptionalFloatSeq hi ghest_frequency;
readonly attribute TimeSpan time_span;
readonly attribute TimeDelta time_delta;
readonly attribute unsi gned lon g lon g total_size;
readonly attribute QualifiedCodeStrSeq supported_filters;
readonly attribute QueryPolicySeq supported_policies;
readonly attribute ValueSeqType default_value_type;

TimeSeriesRemoteAttributes get_attributes ( );

float get_sample_number (
in unsi gned lon g lon g index,
out ObservationQualifierSeq qualifiers )

raises (
OutOfRan ge );

float get_sample (
in TimeStamp time_stamp,
out ObservationQualifierSeq qualifiers )

raises (
OutOfRan ge );

TimeSeries get_snippet (
in TimeSpan time_span,
out ObservationQualifierSeq qualifiers )

raises (
OutOfRan ge );

float get_max (
in TimeSpan time_span )

raises (
OutOfRan ge,
NoValidValues );

float get_min (
in TimeSpan time_span )

raises (
OutOfRan ge,
NoValidValues );

float get_mean (
COAS V1.0                         Jan. 2000 A-19



A

in TimeSpan time_span )
raises (

OutOfRan ge,
NoValidValues );

float get_median (
in TimeSpan time_span )

raises (
OutOfRan ge,
NoValidValues );

TimeSeries get_resampled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers )

raises (
NotImplemented );

TimeSeries get_rescaled (
in TimeSpan time_span,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers )

raises (
NotImplemented );

TimeSeries get_resampled_rescaled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers )

raises (
NotImplemented );

TimeSeries get_filtered (
in TimeSpan time_span,
in FilterSeq filters,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers )

raises (
NotImplemented,
FilterNotSupported );

};

};

#endif // _DS_OBSERVATION_TIME_SERIES_IDL_

A.4 DsObservationRelations
// file DsObservationRelations.idl

#ifndef _DS_OBSERVATION_RELATIONS_IDL_
A-20 Clinical Observations Access Service V1.0                         January 2000 



A

#define _DS_OBSERVATION_RELATIONS_IDL_

#pragma prefix “om g.org”

#include “DsObservationAccess.idl”

module DsObservationRelations {

typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;

// all relations are collections of observations (com posite observations )
typedef DsObservationAccess::ObservationData RELATION_t ype;

// from CEN/TC 251/N98-116, table A.5

// CEN descri ption names translated accordin g to the followin g rules:
//replace “/” with “_”
//replace s pace with nothin g, Capitalizin g next word 
//replace apostro phe, periods, etc. with nothin g

// produces /is produced b y healthcare activit y produces result, re port, stud y product
const QualifiedCodeStr Produces = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Produces”;
const QualifiedCodeStr IsProducedB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsProducedB y”;

// is documented b y /documents healthcare activit y is documented b y note (3.15)
const QualifiedCodeStr Documents = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Documents”;
const QualifiedCodeStr IsDocumentedB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsDocumentedB y”;

//is re ported within /re ports about property is re ported within re port (3.17)
const QualifiedCodeStr Re ports = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Re ports”;
const QualifiedCodeStr IsRe portedB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsRe portedB y”;

//describes /is described b y graphic property (3.22) describes graphic ob ject (3.21)
const QualifiedCodeStr Describes = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Describes”;
const QualifiedCodeStr IsDescribedB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsDescribedB y”;

//is identified within /incor porates graphic ob ject is identified within stud y product (3.20)
const QualifiedCodeStr IsIdentifiedWithin = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsIdentifiedWithin”;
const QualifiedCodeStr IsIncor poratedB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsIncor poratedB y”;

//is derived from /is source for graphic property is derived from stud y product
const QualifiedCodeStr IsSourceFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsSourceFor”;
const QualifiedCodeStr IsDerivedFrom = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsDerivedFrom”;

//is com pared to /is reference for situation, document is com pared to situation, document
const QualifiedCodeStr IsCom paredTo = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsCom paredTo”;
const QualifiedCodeStr IsReferenceFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsReferenceFor”;

//is recorded a gainst /is recorded a gainst famil y histor y of x is recorded a gainst no evidence of x (note 3 )
const QualifiedCodeStr IsRecordedA gainst = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsRecordedA gainst”;

//superseds /is su perseded b y clinical state su perseds clinical state (note 4 )
const QualifiedCodeStr Su percedes = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Su percedes”;
const QualifiedCodeStr IsSu percededB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsSu percededB y”;

//organizational links

//is framework for /is framed in contact is framework for situation, document
const QualifiedCodeStr IsFrameworkFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsFrameworkFor”;
const QualifiedCodeStr IsFramedB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsFramedB y”;

//has phase /is phase of healthcare activit y has phase healthcare (sub )activit y
const QualifiedCodeStr HasPhase = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasPhase”;
const QualifiedCodeStr IsPhaseOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsPhaseOf”;

//is next phase wrt /has next phase healthcare activit y is next phase wrt healthcare (siblin g) activit y
const QualifiedCodeStr HasNextPhase = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasNextPhase”;
const QualifiedCodeStr IsNextPhaseWRT = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsNextPhaseWRT”;

//is associate to /is associate to condition is associate to condition
const QualifiedCodeStr IsAssociateTo = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsAssociateTo”;

//is assi gned to /is settin g for situation is assi gned to problem
COAS V1.0                         Jan. 2000 A-21



A

const QualifiedCodeStr IsAssi gnedTo = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsAssi gnedTo”;
const QualifiedCodeStr IsSettin gFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsSettin gFor”;

//is inter pretation of/ is inter preted as condition is inter pretation of findin gs, report
const QualifiedCodeStr IsInter pretationOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsInter pretationOf”;
const QualifiedCodeStr IsInter pretedAs = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsInter pretedAs”;

//has progress /is progress of condition has progress condition (e.g. convalescence )
const QualifiedCodeStr HasPro gress = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasPro gress”;
const QualifiedCodeStr IsPro gressOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsPro gressOf”;

//has cause /is cause of condition has cause condition
const QualifiedCodeStr HasCause = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasCause”;
const QualifiedCodeStr IsCauseOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsCauseOf”;

//co-exists with /co-exists with condition co-exist with condition
const QualifiedCodeStr CoExistsWith = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/CoExistsWith”;

//is evidence for /has evidence findin g is evidence for dia gnosis
const QualifiedCodeStr HasEvidence = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasEvidence”;
const QualifiedCodeStr IsEvidenceFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsEvidenceFor”;

//tri ggers /is tri ggered b y presence of prosthesis tri ggers risk state
const QualifiedCodeStr Tri ggers = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Tri ggers”;
const QualifiedCodeStr IsTri ggeredB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsTri ggeredB y”;

//has goal /is goal of healthcare activit y has goal achievable situation
const QualifiedCodeStr HasGoal = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasGoal”;
const QualifiedCodeStr IsGoalOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsGoalOf”;

//has motivation /is motivation for healthcare activit y has motivation current situation
const QualifiedCodeStr HasMotivation = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasMotivation”;
const QualifiedCodeStr IsMotivationFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsMotivationFor”;

//has conse quence /is conse quence of healthcare activit y, event has conse quence situation (e.g. outcome )
const QualifiedCodeStr HasConse quence = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasConse quence”;
const QualifiedCodeStr IsConse quenceOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsConse quenceOf”;

//circumstantial links

//has to pic /is to pic for informin g has to pic record com ponent
const QualifiedCodeStr HasTo pic = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasTo pic”;
const QualifiedCodeStr IsTo picFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsTo picFor”;

//has tar get /is tar get of informin g has tar get person
const QualifiedCodeStr HasTar get = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasTar get”;
const QualifiedCodeStr IsTar getOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsTar getOf”;

//provides information about /is re ported b y person provides information about record com ponent
const QualifiedCodeStr ProvidesInformationAbout = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/ProvidesInformationAbout”;

//has circumstances /is circumstance for su pport activit y has circumstance home circumstances
const QualifiedCodeStr HasCircumstances = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasCircumstances”;
const QualifiedCodeStr IsCircumstanceOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsCircumstanceOf”;

};

#endif // _DS_OBSERVATION_RELATIONS_IDL_

A.5 DsObservationQualifiers
// file DsObservationQualifiers.idl

#ifndef _DS_OBSERVATION_QUALIFIERS_IDL_
#define _DS_OBSERVATION_QUALIFIERS_IDL_

#pragma prefix “om g.org”

#include “DsObservationAccess.idl”

module DsObservationQualifiers {
A-22 Clinical Observations Access Service V1.0                         January 2000 



A

typedef DsObservationAccess::QualifiedCodeStr  QualifiedCodeStr;
typedef DsObservationAccess::TimeStam p         TimeStam p;

const QualifiedCodeStr COAS_OBSERVATION_ID = “DNS:om g.org/DsObservationAccess/COAS_OBSERVATION_ID”;

// all the qualifiers listed here from HL7 are defined with
// subcom ponents in HL7 2.3, so the y all have t ype ObservationData (com posite observations )

typedef DsObservationAccess::ObservationData COMPOSITE_OBSERVATION_t ype;

// namin g convention: 
//start with “DNS:om g.org/DsObservationAccess/HL72.3/”
//add the HL7 se gment name, like OBX or PID, plus a slash
//take HL7 data element names from HL7 v2.3 standard distribution, 
//appendix A, (APPA.doc ), table A.6 DATA ELEMENT NAMES, 
//translated accordin g to the followin g rules:
//replace “/” with “_”
//replace s pace with nothin g, capitalizin g next word 
//omit a postro phe, periods, parentheses, and other punctuation
//to name subcom ponents, additional slashes can follow the com ponent names
//see SpecimenSourceBod ySite at bottom for exam ple

// see HL7 descri ptions for com posite returned b y each of these data elements.

// clinical times; 

const QualifiedCodeStr Date_TimeOfTheObservation = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/Date_TimeOfTheObservation”;
const QualifiedCodeStr EventOnsetDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/PEO/EventOnsetDate_Time”;
const QualifiedCodeStr OrderEffectiveDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/ORC/OrderEffectiveDate_Time”;
const QualifiedCodeStr ProcedureDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/PR1/ProcedureDate_Time”;
const QualifiedCodeStr Re questedDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/Re questedDate_Time”;
const QualifiedCodeStr VerificationDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/IN1/VerificationDate_Time”;
const QualifiedCodeStr ActionDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/GOL/ActionDate_Time”;
const QualifiedCodeStr AttestationDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/DG1/AttestationDate_Time”;
const QualifiedCodeStr Transcri ptionDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/TXA/Transcri ptionDate_Time”;

// roles

const QualifiedCodeStr PatientIDExternalID = “DNS:om g.org/DsObservationAccess/HL72.3/PID/PatientIDExternalID”;
const QualifiedCodeStr PatientIDInternalID = “DNS:om g.org/DsObservationAccess/HL72.3/PID/PatientIDInternalID”;
const QualifiedCodeStr Orderin gProvider = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/Orderin gProvider”;
const QualifiedCodeStr ProducerID = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/ProducerID”;
const QualifiedCodeStr CollectorIdentifier = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/CollectorIdentifier”;
const QualifiedCodeStr Res ponsibleObserver = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/Res ponsibleObserver”;
const QualifiedCodeStr Technician = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/Technician”;
const QualifiedCodeStr Princi palResultInter preter = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/Princi palResultInter preter”;

// from OBR (orders )

const QualifiedCodeStr S pecimenSource = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/S pecimenSource”;
const QualifiedCodeStr ReasonForStud y = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/ReasonForStud y”;
const QualifiedCodeStr Dia gnosticServiceSectionID = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/Dia gnosticServiceSectionID”;

// from OBX (results )

const QualifiedCodeStr AbnormalFla gs = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/AbnormalFla gs”;
const QualifiedCodeStr ObservationMethod = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/ObservationMethod”;
const QualifiedCodeStr Units = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/Units”;
const QualifiedCodeStr ReferencesRan ge = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/ReferencesRan ge”;
const QualifiedCodeStr ObservationIdentifier = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/ObservationIdentifier”;

// from PV1

const QualifiedCodeStr PatientLocation = “DNS:om g.org/DsObservationAccess/HL72.3/PV1/PatientLocation”;

// note that elements of HL7 com posites can be individuall y identified with this COAS namin g standard.
// e.g.  SpecimenSource is listed in the OBR definitions above, and one se gment
// of SpecimenSource, like Bod y Site, can have its own name.

const QualifiedCodeStr S pecimenSourceBod ySite = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/S pecimenSource/Bod ySite”;
typedef QualifiedCodeStr S pecimenSourceBod ySite_t ype;

};

#endif // _DS_OBSERVATION_QUALIFIERS_IDL_
COAS V1.0                         Jan. 2000 A-23



A

A.6 DsObservationPolicies
// file DsObservationPolicies.idl

#ifndef _DS_OBSERVATION_POLICIES_IDL_
#define _DS_OBSERVATION_POLICIES_IDL_

#pragma prefix “om g.org”

#include “DsObservationTimeSeries.idl”

module DsObservationPolicies {

typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;
typedef DsObservationAccess::TimeStam p        TimeStam p;

const QualifiedCodeStr SEARCH_DEPTH_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/SEARCH_DEPTH_POLICY”;
typedef short SearchDe pthPolic yType;

const SearchDe pthPolic yType SEARCH_DEPTH_ONLY_ROOT = 0x0;
const SearchDe pthPolic yType SEARCH_DEPTH_DEEPEST_POSSIBLE = 0x7FFF; // default

const QualifiedCodeStr RETURN_DEPTH_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_POLICY”;
typedef QualifiedCodeStr ReturnDe pthPolic yType;
const ReturnDe pthPolic yType RETURN_DEPTH_ROOT_ONLY = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_ROOT_ONLY”;
const ReturnDe pthPolic yType RETURN_DEPTH_ALL = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_ALL”;
const ReturnDe pthPolic yType RETURN_DEPTH_ALL_LEAVES = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_ALL_LEAVES”;
const ReturnDe pthPolic yType RETURN_DEPTH_LEAVES_OF_MATCHED = 

“DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_LEAVES_OF_MATCHED”;
const ReturnDe pthPolic yType RETURN_DEPTH_MATCHED_ONLY = 

“DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_MATCHED_ONLY”;
const ReturnDe pthPolic yType RETURN_DEPTH_MATCHED_AND_DOWN = 

“DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_MATCHED_AND_DOWN”; // default

const QualifiedCodeStr SEARCH_SYNONYMOUS_CODES_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_CODES_POLICY”;

typedef QualifiedCodeStr SearchS ynon ymousCodesPolic yType;
const SearchS ynon ymousCodesPolic yType SEARCH_SYNONYMOUS_CODES_FALSE = 

“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_CODES_FALSE”;
const SearchS ynon ymousCodesPolic yType SEARCH_SYNONYMOUS_CODES_TRUE = 

“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_CODES_TRUE”; // default

const QualifiedCodeStr RETURN_OBSERVATION_VALUES_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_OBSERVATION_VALUES_POLICY”;

typedef QualifiedCodeStr ReturnObservationValuesPolic yType;
const ReturnObservationValuesPolic yType RETURN_NO_OBSERVATION_VALUES = 

“DNS:om g.org/DsObservationAccess/ polic y/RETURN_NO_OBSERVATION_VALUES”;
const ReturnObservationValuesPolic yType RETURN_OBSERVATION_VALUES = 

“DNS:om g.org/DsObservationAccess/ polic y/RETURN_OBSERVATION_VALUES”; // default

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY”;

typedef boolean ShortcircuitSearchCodesOnSuccessPolic yType;
const ShortcircuitSearchCodesOnSuccessPolic yType SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_FALSE = FALSE;  // default
const ShortcircuitSearchCodesOnSuccessPolic yType SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_TRUE  = TRUE; 

const QualifiedCodeStr SEARCH_SYNONYMOUS_IDS_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_IDS_POLICY”;

typedef boolean SearchS ynon ymousIdsPolic yType;
const SearchS ynon ymousIdsPolic yType SEARCH_SYNONYMOUS_IDS_FALSE = FALSE;
const SearchS ynon ymousIdsPolic yType SEARCH_SYNONYMOUS_IDS_TRUE  = TRUE; // default

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY”;

typedef boolean ShortcircuitSearchIdsOnSuccessPolic yType;
const ShortcircuitSearchIdsOnSuccessPolic yType SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_FALSE = FALSE; // default
const ShortcircuitSearchIdsOnSuccessPolic yType SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_TRUE  = TRUE;

const QualifiedCodeStr RETURN_ITEMS_IN_TIME_SPAN_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_POLICY”;

typedef QualifiedCodeStr ReturnItemsInTimeS panPolic yType;
const ReturnItemsInTimeS panPolic yType RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY = 

“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY”;
const ReturnItemsInTimeS panPolic yType RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY = 

“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY”;
A-24 Clinical Observations Access Service V1.0                         January 2000 



A

const ReturnItemsInTimeS panPolic yType RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS”; // default

const QualifiedCodeStr MATCHING_STRENGTH_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/MATCHING_STRENGTH_POLICY”;
typedef float Matchin gStren gthPolic yType;
const Matchin gStren gthPolic yType MATCHING_STRENGTH_WEAKEST = 0.0;
const Matchin gStren gthPolic yType MATCHING_STRENGTH_STRONGEST = 1.0; // default

const QualifiedCodeStr PARAM_CHECKING_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/PARAM_CHECKING_POLICY”;
typedef boolean ParamCheckin gPolic yType;
const ParamCheckin gPolic yType PARAM_CHECKING_FALSE = FALSE;
const ParamCheckin gPolic yType PARAM_CHECKING_TRUE  = TRUE; // default

//
// QUALIFIER_RETURN_POLICY: see DsObservationQualifiers.idl for list of qualifiers 
//

const QualifiedCodeStr QUALIFIER_RETURN_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_RETURN_POLICY”;
typedef se quence<QualifiedCodeStr> QualifierReturnPolic yType;
// two s pecial codes for this polic y; 
const QualifiedCodeStr QUALIFIER_RETURN_ALL = “DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_RETURN_ALL”;
const QualifiedCodeStr QUALIFIER_RETURN_NONE = “DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_RETURN_NONE”; // default

const QualifiedCodeStr QUALIFIER_NOT_TO_RETURN_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_NOT_TO_RETURN_POLICY”;

typedef se quence<QualifiedCodeStr> QualifierNotToReturnPolic yType;

//
// RELATIONS_RETURN_POLICY: see DsObservationRelations.idl for list of relations
//

const QualifiedCodeStr RELATIONS_RETURN_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_RETURN_POLICY”;
typedef se quence<QualifiedCodeStr> RelationsReturnPolic yType;
// two s pecial codes for this polic y; 
const QualifiedCodeStr RELATIONS_RETURN_ALL = “DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_RETURN_ALL”;
const QualifiedCodeStr RELATIONS_RETURN_NONE = “DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_RETURN_NONE”; // default

const QualifiedCodeStr RELATIONS_NOT_TO_RETURN_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_NOT_TO_RETURN_POLICY”;

typedef se quence<QualifiedCodeStr> RelationsNotToReturnPolic yType;

const QualifiedCodeStr RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY”;

typedef unsi gned lon g ReturnMostRecent_N_ObservationsPolic yType;
const ReturnMostRecent_N_ObservationsPolic yType RETURN_MOST_RECENT_N_OBSERVATIONS_ALL = 0xFFFFFFFF; // default

const QualifiedCodeStr TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY”;

typedef se quence<QualifiedCodeStr> TimeSeriesRemoteResam pleAl gorithmPolic yType;

const QualifiedCodeStr TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY”;

typedef DsObservationTimeSeries::ValueSe qType TimeSeriesRemoteReturnT ypePreferencePolic yType;

const QualifiedCodeStr RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY”;

typedef unsi gned lon g ReturnMaxSe quenceForValuePolic yType;
const ReturnMaxSe quenceForValuePolic yType RETURN_MAX_SEQUENCE_FOR_VALUE_ALL = 0xFFFFFFFF; // default

const QualifiedCodeStr IGNORE_UNMATCHABLE_QUALIFIERS_POLICY = 
“DNS:om g.org/DsObservationAccess/ polic y/IGNORE_UNMATCHABLE_QUALIFIERS_POLICY”;

typedef boolean I gnoreUnmatchableQualifiersPolic yType;
const I gnoreUnmatchableQualifiersPolic yType IGNORE_UNMATCHABLE_QUALIFIERS_TRUE = TRUE;
const I gnoreUnmatchableQualifiersPolic yType IGNORE_UNMATCHABLE_QUALIFIERS_FALSE  = FALSE; // default

};

#endif // _DS_OBSERVATION_POLICIES_IDL_
COAS V1.0                         Jan. 2000 A-25



A

A-26 Clinical Observations Access Service V1.0                         January 2000 



 Interoperation B
d as 
rder 

 
e. 
e 

the 

 

 

 

 of 

e 

the 
B.1 The TcSignalling Module

The Naming, Trader, PIDS and LQS Standards are considered building blocks an
such are of great value to COAS, hence, the following information is supplied in o
to provide a level of understanding where each may play a role. 

B.2 Naming/Trader

It is anticipated that the CORBA Naming and/or Trader Services may be used for
acquiring pertinent information about the capabilities of a COAS compliant servic
For these purposes attributes have been added to the AccessComponent Interfac
definition to refer to these services if they are available. For the Naming Service 
namin g_service  attribute will define the Naming Context.

For the kind  field in CosNamin g:NameComponent  the following will be used:

•  ‘Query COAS’ - A COAS component that meets the conformance class of the
same name.

• ‘Browse COAS’ - A COAS component that meets the conformance class of the
same name.

• ‘ConstraintLanguage COAS’ - A COAS component that meets the conformance
class of the same name.

• ‘Asynchronous COAS’ - A COAS component that meets the conformance class
the same name.

• ‘Supplier COAS’ - A COAS component that meets the conformance class of th
same name.

• ‘Consumer COAS’ - A COAS component that meets the conformance class of 
same name.
Clinical Observations Access Service V1.0                        January 2000 B-1



B

 

 by 

his 

 
bute 

vice 
on. 
 but 

tain 
evel. 
• ‘Loader COAS’ - A COAS component that meets the conformance class of the
same name.

The following definitions are Service Types defined for COAS components for use
the Trader Service.

Service AccessComponent {
Interface AccessComponent;
Mandatory readonly property Strin gSeq components_implemented;
Mandatory readonly property Strin gSeq conformance_classes;
Readonly attribute Strin gSeq pid_service;
Readonly attribute Strin gSeq terminolo gy_service;
Readonly attribute Strin gSeq trader_service;
Readonly attribute Strin gSeq namin g_service;
Readonly property Strin g component_name;
Readonly property Strin g coas_version;
Readonly property Strin gSeq supported_codes;
Readonly property Strin gSeq supported_qualifiers;
Readonly property Strin gSeq default_policies;
Readonly property Strin gSeq supported_policies;

};

B.3 PIDS

The COAS specification has introduced the idea of an ObservedSubject , but has made 
the distinction that it lies outside the scope of this specification in order to allow t
specification to be used in varying medical architectures. However, because an 
ObservedSubject  can be a person(patient) we recognized the value in utilizing the
PIDS specification in order to identify a person in an enterprise. We have an attri
in the AccessComponent , called pid_service,  to refer to a PIDS service.

B.4 LQS

The COAS specification utilizes many of the concepts from the Lexicon Query Ser
(LQS) specification in order to provide a more dynamic and extensible specificati
The COAS specification does not however mandate the use of any particular LQS
recognizes that it provides all the necessary interfaces for a client or server to at
information from coding schemes to assist in semantic interoperability at a coded l
We have also introduced the idea of an LQS terminology service via the 
AccessComponent  interface attribute called terminolo gy_service  thereby providing a 
link to terminology services.
B-2 Clinical Observations Access Service V1.0                        January 2000 



 Security Guidelines C
ing 
son 

 

 of 
lter 

f 
ss of 

ns. 
tion, 
 
ware 
d 

s to 
the 
from 
C.1 Overview

The COAS interfaces may be used in many different environments with widely vary
security requirements that range from no security to extreme security. For this rea
the COAS interfaces do not expose any security information. COAS relies on the
underlying CORBA infrastructure and services which provides all the security 
mechanisms needed without exposing it in the interfaces.

An attribute of security that of concern to many people is to maintain confidentiality
certain (sensitive) information about them. For COAS this implies being able to fi
requests by:

• who is accessing the information,

• who the information is about,

• what information is being accessed.

Other common security concerns could be preventing unauthorized modification o
data, tapping into communications to acquire sensitive information, and causing lo
service by over burdening a service.

CORBA Security provides robust mechanisms to address these and other concer
Some of the security properties it does deal with includes authentication, authoriza
encryption, audit trails, non-repudiation, etc. CORBA Security, in its default mode
allows these security concerns to be addressed without the client and server soft
being aware of it. This is a powerful notion, allowing security policies to be create
and enforced after applications and systems have been created and installed.

Other CORBA and CORBA Security features provide mechanisms for application
extend these security capabilities. For example they can obtain credentials from 
ORB and implement filters that can look at specific data passed to and returned 
operations.
Clinical Observations Access Service V1.0                         January 2000 C-1



C

red 
ol on 

o 

d 

 be 
ay 

RBA 

ient 

ere is 
e its 
s 

urity 
 the 
ies 

 

rity 

cure 

must 
at a 
sed 

gh 
ough 
It is a requirement of the COAS to provide confidentiality of information that is sto
about an individual. This requirement fuels the need for fine grained access contr
clinical observations that are associated with identifiable observed subjects. 

C.2 Security Requirements

For the COAS to be secure in its possible dissemination of information it needs t
adhere to several requirements:

• The COAS needs to authenticate a client's principal identity, role, affiliation an
other security attributes.

• The COAS needs to transmit information confidentially and with integrity.

The first requirement states that the entire COAS interface implementations must
able to identify a potential client. If it cannot authenticate a client, then the client m
be severely limited in the particular requests that the COAS can service. The CO
Security Service provides the mechanisms for a server to authenticate a client.

The second requirement provides for the confidentiality of the information. The cl
must communicate with the COAS using not only encryption to protect data, but 
signature as well, so as not to have data tampered with during communication. Th
no sense in putting a Sensitivity level of “OwnerOnly” on an observation and hav
value transmitted to the owner in the clear. The CORBA Security Service provide
these capabilities, including SSL.

The problem is, How does one get CORBA to support this access policy model? 

C.2.1 CORBA Security Overview

In an effort to keep the COAS interfaces security unaware, i.e. no extra visible sec
relevant parameters in methods, access policies must be adhered to from behind
interfaces. The CORBA security model offers several ways to apply security polic
to method invocations.

The CORBA Security Specification (CORBAsec ) is not a cookbook for using CORBA
security in building applications. It is a specification of a general framework with 
which ORB vendors and application vendors can build a multitude of different secu
policy models. The CORBAsec  also gives the interfaces which implementations of 
applications can use to access those security services that are supplied with a se
ORB.

A secure COAS implementation that can control access to specific observations 
be aware of the security services offered by the ORB. This caveat also means th
client’s ORB may have to know the kind of ORB and the security services that is u
by the COAS.

The CORBA security specification outlines a general security policy model. Althou
the specification is vague about which approach should be taken, it is specific en
to be able to choose from a couple of models that can be supported.
C-2 Clinical Observations Access Service V1.0                         January 2000 



C

, and 
ls to 
 to 
 with 
 the 
ent 

to 
f 
pose 
ity 
AS 

 and 
del. 

a 
ns. 
. 
d to 

n 
t it 
RBs 

 of 
 CSI 
lity. 

for 
SI 

urity 
I 

 each 

or 
itical 
hat 
The CORBA security model bases itself on credentials and security domains. 
Credentials are data objects that contain attributes such as privileges, capabilities
sensitivity levels, amongst others. Security domains are mappings from credentia
access rights. Credentials can be encrypted and signed to prevent tampering and
achieve a level of trust between client and server. CORBA credentials get passed
requests beneath the visible level of the interface. CORBA security services give
clients and servers the ability to authenticate/verify credentials in order to implem
policies in the security domains.

Many different schemes, algorithms, services, and vendor implementations exist 
provide implementation of security policies, and many different implementations o
those schemes may be integrated into a CORBA compliant ORB. It is not the pur
of this specification to dictate the specific implementation of an ORB or the secur
services that should be used, but to outline the external requirements for the CO
implementation. These requirements and guidelines aid in selecting a secure ORB
the level of security functionality needed to implement the COAS access policy mo

C.2.2 Secure Interoperability Concerns

CORBA has built the communication bridge between distributed objects creating 
interoperable environment that spans heterogeneous platforms and implementatio
However, security adds another layer of complexity to the issue of interoperability
ORB implementations are neither required to include security services nor require
provide an interoperable mechanism of security services. However, a specificatio
does exist for the target object to advertise, via the IOR, the security services tha
supports and the services it requires from the client. Both the client and server O
must use compatible mechanisms of the same security technology. 

The CORBA Common Secure Interoperability (CSI) Specification defines 3 levels
security functionality that ORBs may support. The levels are named, CSI Level 0,
Level 1, and CSI Level 2. Each level has increasing degrees of security functiona

The CSI Level 0 supports identity based policies only and provides mechanisms 
identity authentication and message protection with no privilege delegation. The C
Level 1 adds unrestricted delegation. The CSI Level 2 can implement the entire 
CORBA Security Specification at Security Level 2.

Each CSI level is parameterized by mechanisms that can support the level of sec
functionality, such as SPKM for CSI Level 0, GSS Kerberos for CSI Level 0 or CS
Level 1, and CSI_ECMA for CSI Level 2. Future developments in security 
functionality and mechanism are not restricted, and mechanisms can be added to
level.

The ORB implementations may use different security technology with differing 
capabilities and underlying mechanisms, such as SSL, DCE, Kerberos, Sesame, 
other standards. Choosing the ORB and its underlying security services will be cr
to protecting COAS, and it will influence the implementation of the access policy t
a secure COAS implementation must support.
COAS V1.0              Security Requirements              Jan. 2000 C-3



C

icate 
rt 
 
 only 
e 

that 
the 

 on a 
nd 
gh 

 be 
 trust 

t is 

 and 

o 
that 
 

 a 
port 

S 
ase, 
uests 

ation 
ted 

t 
For example, an ORB that only supports SPKM, i.e. CSI Level 0, can only authent
clients and provide confidentiality and integrity of communication. It cannot suppo
definition and use of security attributes beyond an access ID. Support for security
attributes beyond an access ID require CSI Level 2. Therefore, using an ORB that
provides CSI Level 0 will require the COAS to maintain its own information on th
credentials of clients.

Even if an ORB's security technology supports the definition of security attributes 
can be delivered to the COAS, i.e. CSI Level 2, there are still concerns involving 
trust between the client and the COAS.

C.3 Trust Models

The available trust models for the COAS are simplistic. Since the COAS is a 
communications end point and is not required to make requests to other services
client's behalf, a delegation trust model is not needed. This simplifies the model a
eliminates an absolute need for a CSI Level 1 or CSI Level 2 secure ORB (althou
they may use them).

There are two basic trust models for the COAS. If the COAS and its client are 
implemented using CSI Level 0 or CSI Level 1 ORBs, only the first trust model can
supported. If a CSI Level 2 ORB is used, both trust models can be supported. The
models are:

1. The client's identity can and is trusted to be authenticated. However, the clien
unable or untrusted to deliver the valid credentials.

2. The client is trusted to deliver the correct credentials.

In the first model, the client ORB is required to authenticate its principal (the user)
provide authentication information to the server ORB. The methods used to 
accomplish principal authentication is specific to the mechanisms (e.g. DCE or 
Kerberos) that the selected ORB supports. Management of those identities is als
specific to the mechanism. The server ORB must have a compatible mechanism 
verifies the authentication information and carries out mutual authentication of the
client.

With this trust model, a secure COAS implementation must maintain and manage
map of identities to privilege attributes. CSI Level 0, 1, and 2 ORBs are able to sup
this trust model.

Even if the ORB has CSI Level 2 functionality, it may be a local policy that a COA
does not trust the credentials brought forth from an authenticated client. In that c
the COAS must maintain the map or use a default set of security attributes for req
from clients it does not trust.

In the second model, the client ORB is required to authenticate its principal and 
acquire its valid credentials. The methods used to accomplish principal authentic
and acquisition of privilege attributes are specific to the mechanism that the selec
ORB supports, such as DCE and Sesame. Management of those identities and 
attributes are also mechanism specific. A secure COAS installation using this trus
C-4 Clinical Observations Access Service V1.0                         January 2000 



C

ate it, 
 

heir 
he 

 
ify 

et of 
role 
to 

utes 

tation 
and 

 
 

rity 
r in 
 
 and 
model must take a careful look at that management scheme and operation, evalu
and decide to trust it. In such a scenario, the server ORB, which has CSI Level 2
functionality, automatically verifies the credentials on invocation. 

A secure COAS built to the second model leaves management of identities and t
attributes to the security services policy management system used by the ORB. T
COAS may manage security attributes for the data itself.

A secure COAS built to the first model will have some scheme to manage trusted
identities and their credentials. There is no interface or plan in the COAS to spec
this kind of management.

C.4 CORBA Credentials

To adhere to the credential model that supports trait specific access policies, a s
credentials must contain privilege attributes such as the identity of the client, the 
in which the client is actively represented, and the sensitivity level of information 
which the client is allowed access. It will be the responsibility of a COAS 
implementation to advertise to potential client vendors the specifics of these attrib
and how to represent them externally. A client ORB needs to ascertain certain 
credentials about the user and must pass them to the COAS. An external represen
of those credentials is needed so that credentials can be passed between client 
server within the CORBA security services. The CORBA Security  module defines the 
structure for this representation.

module Security {

    const SecurityAttributeType   AccessId  = 2;
    const SecurityAttributeType   Role      = 5;
    const SecurityAttributeType   Clearance = 7;

    struct SecAttribute {
        AttributeType      attribute_type;
        Opaque             definin g_authority;
        Opaque             value;
    };
    typedef sequence<SecAttribute> AttributeList;
}

Listed above are the relevant pieces of the specification from the Security  module that 
apply to externalizing credential information. 

C.5 CORBA Security Domain Access Policy

In addition to a credential based scheme, CORBA defines security domains. The
purpose of this section is to explain and illustrate the use of the standard CORBA
security policy domain and the way in which it may be used to implement a secu
policy for the COAS. This section offers a recommendation to a COAS implemento
order to give a feel for the kinds of security policies a COAS implementation may
need to support. It should also guide the implementor in evaluating a secure ORB
available security services.
COAS V1.0              CORBA Credentials              Jan. 2000 C-5



C

ithin 
ains 
rnal 

urity 

by the 

ture 
ity 
RB 

 

 any 
ach 

eeds 
ss 

ed on 
olicy 

y an 
 not 

cess 

 

f 
m to 

e 
A security domain governs security (access) policy for objects that are managed w
that domain. In order to make scalable administration of security policy, these dom
map sets of security credentials to certain sets of rights. A right is a sort of an inte
security credential.

CORBA defines a standard set of rights that are granted to principals within a sec
domain. A security domain administrator manages that map through the 
SecurityAdministration  module's DomainAccessPolicy  interface. Access decision 
then can be based on a set of required rights and the rights granted to the client 
domain access policy, by virtue of the client's credentials.

ORB security service vendors will supply a security policy management infrastruc
that implements the standard CORBA rights scheme. The COAS must use secur
services that can place different required rights on the COAS interfaces. Some O
security services may allow a security domain to create special rights. However, 
CORBA defines a standard set of rights: get, set, and manage. This right set will
suffice to handle the COAS.

In the model just described there is one security domain for all of the COAS 
components. The CORBA rights families scheme within a single security policy 
domain suffices to differentiate the security nature of the methods. More generally
number of domain models can be used, such as a separate security domain for e
COAS component.

C.6 Request Content Based Policy

The CORBA standard domain access policy scheme only protects methods from 
invocation at the target and without regard to content of the request. The COAS n
a more fine grained access control in order to implement the content based acce
policy required (e.g. access policies for different observations). The COAS 
implementations must be made security aware to implement an access policy bas
the value of arguments in a request. There are multiple ways to implement this p
using a secure CORBA implementation.

The CORBA Security Specification supplies two different schemes represented b
interface hierarchy, which are Security Level 1 and Security Level 2 (these should
be confused with CSI Levels 0, 1, and 2). These interfaces describe the level of 
security functionality that is available to security aware implementations.

Security Level 1

For the COAS to take advantage of CORBA security in order to implement its ac
policy model, the ORB must at least implement the CORBA Security Level 1 
interfaces. A Security Level 1 compliant ORB supplies an interface to access the
attributes of the credentials received from the client.

Using the SecurityLevel1  interfaces, which is simplistic, gives the implementation o
the COAS interfaces the ability to examine the client's credentials and compare the
the access control information that is managed as the access policy. However, th
implementation of the COAS must be security aware.
C-6 Clinical Observations Access Service V1.0                         January 2000 



C

face 

cess 
, and 

t 

he 
uld 

tials 
s 
 

 can 
 the 
in 
ality, 

l 2 
r the 
orced 

e 

ss 

only 
module SecurityLevel1 {

    Current get_current();

    interface Current {
        Security::AttributeList get_attributes( 
               in  Security::AttributeTypeList attributes 
        );
    };
}

Using the Security Level 1 interfaces, each implementation of a COAS query inter
must call the get_attributes()  function on the Current  pseudo object, examine the 
attributes, compare them to the access policy information, and make the access 
decision. If a COAS implementation chooses to use the Healthcare Resource Ac
Decision Facility, it constructs an appropriate resource name and operation name
passes them to ResourceAccessDecision::access_allowed()  along with the attributes 
received from Current:: get_attributes() . Details on how COAS implementations mus
use an HRAD Facility are provided in Section C.7, “Use of Healthcare Resource 
Access Decision Facility”. In the latter case, a COAS does not need to examine t
attributes or implement any access decision logic. The COAS implementation sho
enforce the access decision according to the semantics of the particular COAS 
operation. It is the responsibility of the client's ORB to acquire the proper creden
securely. It is the responsibility of the server's ORB to authenticate the credential
received from the client, extract the security attributes from them, and make them
available to the implementation through the Current:: get_attributes()  method.

Security Level 2

Using an ORB which supplies the Security Level 2 interfaces, the implementation
be somewhat free of making the access control decision in the implementation of
query interfaces. Having an implementation that is security unaware is attractive 
CORBA, because security policy decisions can be made underneath the function
and they have the ability to be changed without retooling the application.

As with any framework, there are several ways in which to use the Security Leve
interfaces. One approach could be to implement a replaceable security service fo
access decision. Security Level 2 describes a method in which security can be enf
by the creation of an Access Decision object. The AccessDecision  object would 
interact with a DomainAccessPolicy  object to get effective rights and compare thos
to rights returned from the RequiredRi ghts  interface. 

Some secure ORB implementations may allow the installation of specialized Acce
Decision objects to be used in conjunction with specialized DomainAccessPolicy  
objects. In the Security Level 2 interfaces, the specification implies access control 
on the invocation of a method and not the contents of the request. 

module SecurityReplaceable {

    interface AccessDecision {
        boolean access_allowed (
            in   SecuirytLvel2::CredentialList   red_list,
COAS V1.0              Request Content Based Policy              Jan. 2000 C-7



C

ion 
 

 to be 

 (such 

 
hese 
 high 
y. 
n 
st be 

using 

B 
l 
using 
 

sions. 
t and 
 

es 
 

            in   CORBA::Object                   tar get,
            in   CORBA::Identifier               operation_name,
            in   CORBA::Identifier               interface_name
        );
    };
}

Currently, the AccessDecision  object specified in the SecurityReplaceable  module 
does not take the invocation Request  as an argument. It only makes an access decis
based on the credentials received from the client, the target object reference and
operation name, and the target's interface name. This criteria is insufficient to 
implement the content based access policy, if needed by a COAS implementation
automatically performed by the ORB. 

Since the COAS requires access control on the contents of the method invocation
as asking for the value of the HomePhone trait), this scheme of replacing these 
Security Level 2 components cannot be used. ORB security services that use the
standard CORBA domain access policy may use third party implementations for t
components. This standard domain access policy functionality gives the COAS a
level of invocation protection that is orthogonal to the content based access polic
Some COAS servers may need the standard domain access policy functionality i
addition to providing content based access policy. Therefore, another approach mu
taken.

A content based access policy can be implemented in a Security Level 2 ORB by 
an interceptor. A request level interceptor takes the Request  as an argument and 
therefore, it can examine the content of the invocation arguments.

module CORBA {

    interface Interceptor { ... };
    interface RequestLevelInterceptor : Interceptor {
        void client_invoke( inout Request request );
        void tar get_invoke( inout Request request );
    };
}

Installing an interceptor on an ORB is ORB implementation specific, and each OR
vendor may have their own flavor of interceptors. The ORB calls the request leve
interceptor just before the invocation gets passed to the server implementation by 
the target_invoke()  operation. The interceptor uses the Dynamic Skeleton Interface
(DSI) to examine values of the arguments of the invocation and make access deci
These access decisions are also based on the credentials received from the clien
the access policy. The interceptor will deny access to the invocation by raising an
exception. The server's ORB will transmit this exception back to the client.

The use of the interceptor scheme frees the implementation of the COAS interfac
from the implementation of the access decision policy. If the access policy model
changes, then the interceptor can be changed out without retooling the COAS 
implementation. 
C-8 Clinical Observations Access Service V1.0                         January 2000 



C

ent 
. A 
 be 
come 

S-

 

e 

e 

of 
As awareness of the need for more powerful and flexible security policy managem
grows, more tools to create, manage, and analyze policy will come into existence
COAS implementation relying on interceptors to implement its security policy may
able, with relative ease, to switch to using more robust policy services as they be
developed.

C.7 Use of Healthcare Resource Access Decision Facility

Resource names used for obtaining access decisions from HRAD facility by COA
compliant services, should be created in a predefined manner: 

COAS_HRAC_Resource_Name ::= 
'IDL:om g.org/DsObservationAccess' +
{‘ObservedSubjectId’, <ObservationData.observed_subject_id> } +
{‘QualifiedCodeStr’, <Strin gified ObservationData.observation_type>}+
{‘TimeSpan’, <Strin gified ObservationData.observation_time>}+
[{‘ObservationId’, <ObservationData.observation_id>}]

Text below explains the expression above in English.

If a COAS-compliant service uses Healthcare Resource Access Decision facility 
(HRAD), it shall:

• create HRAD resource names according to the following rules:

1. The “resource_naming_authority” data member of ResourceName  shall adhere to 
the syntax of the Namin gAuthority::AuthorityIdStr  type. For the corresponding 
datum element of type AuthorityId , the value of authority shall be 'IDL'. The value
of namin g_entity  shall be 'omg.org/DsObservationAccess'.

2. The first element of the ResourceName  data member 
resource_name_component_list is mandatory. Its member name_string shall have a 
value of 'ObservedSubjectId ', and the value of value_string shall be the value of 
the observed_subject_id data member of the corresponding datum element of typ
ObservationData  for the observation to be accessed.

3. The second element of the ResourceName  data member 
resource_name_component_list is mandatory. Its member name_string shall have a 
value of 'QualifiedCodeStr ', and the value of value_string shall be the stringified, 
via Terminolo gyServices::TranslationLibrary.qualified_code_to_name_str() , value 
of the observation_type data member of the corresponding datum element of typ
ObservationData  for the observation to be accessed.

4. The third element of the ResourceName  data member 
resource_name_component_list is mandatory. Its member name_string shall have a 
value of 'TimeSpan ', and the value of the corresponding value_string shall be the 
value of the observation_time data member of the corresponding datum element 
type ObservationData  for the observation to be accessed.
COAS V1.0              Use of Healthcare Resource Access Decision Facility              Jan. 2000C-9



C

 

n in 

n in 

mpt 

-

5. The fourth element of the ResourceName  data member 
resource_name_component_list is optional. If it is provided, its data member 
name_string shall have a value of ‘ObservationId ’. The value of the corresponding
name_string data member shall be the value of ‘observation_id ’ of the 
corresponding datum element of type ObservationData  for the observation to be 
accessed.

• Create HRAD operation name according to the following rules:

1. When serving invocations of operations that semantically mean “get”, operatio
DfResourceAccessDecision::access_allowed()  shall have value 'read'.

2. When serving invocations of operations that semantically mean “set”, operatio
DfResourceAccessDecision::access_allowed()  shall have value 'write'.

• Obtain security attributes of the invoking principal via 
SecurityLevel1::Current. get_attributes()  (See Section C.6, “Request Content 
Based Policy” or other means.

• Obtain resource access decision(s) by invoking either access_allowed()  or 
multiple_access_allowed()  on DfResourceAccessDecision::AccessDecision  
interface.

• Enforce the decision according to the semantics of the operation the COAS-
compliant service is serving.

• It is not mandated by this specification how exceptions caught during an atte
to invoke either access_allowed()  or multiple_access_allowed()  on 
DfResourceAccessDecision::AccessDecision  interface are handled by a COAS
compliant service.
C-10 Clinical Observations Access Service V1.0                         January 2000 



 Usage Patterns D
low 
seful 
aces 
d are: 

inants 
assed 
D.1 Overview

There are a variety of scenarios for which patient observation data may need to f
between two systems or applications. A simple set of CORBA interfaces can be u
by deploying them in these different scenarios without having to redefine the interf
for each scenario. Some of the factors determining how the interfaces may be use

• who initiates the conversation; is the connection temporary or permanent; 

• who knows when and what should be sent for which patients; 

• is the data coming from a human or machine observer; 

• is the time span relative to a single encounter vs. a whole life time record; 

• is the data going into a CDR/EMR or coming out; 

• will it be used as one central database or distributed data resources; etc.

The subsections below will investigate some scenarios. One of the biggest determ
in these scenarios is who knows that a particular set of information needs to be p
between two applications. As you will see below, each scenario has a particular 
usefulness that depends on this issue.
Clinical Observations Access Service V1.0                        January 2000 D-1



D

ent. 

ers 

stem 
plier 

e 
he 

h a 

e 
n of 
oth 

 
iew 
D.2 Consumer Initiated

Figure D-1 Data consumer initiated push and pull interaction models

A supplier of patient observation data may need to allow clients to: 

• poll for the current patient data (numeric vital signs and waveforms), 

• query for data that has already been collected, and 

• register for automatic updates at specified times or triggered by some other ev

The supplier may publish a reference to itself in a CORBA Naming Service for oth
(possibly many others) to access.

The arrows with solid heads in the diagram above represent the direction of one sy
calling another. The arrow with a wire head indicates the Patient Observation Sup
is in the CORBA Naming Service. The Patient Observation Consumer goes to th
Naming Service (or any other valid mechanism) and gets an object reference to t
supplier. The consumer then initiates any querying to, and registering with, the 
supplier. This mechanism would be used by an application that may come up wit
user interface that allows the clinician to query for data or ask to be 
periodically/continuously updated.

The three interfaces are named with logical descriptions for what they do. See th
specific interface sections for the actual name of the interfaces and a full descriptio
their capabilities. Note that an observation supplier need only implement one or b
interfaces.

1. Query for Data - This represents a CORBA interface that allows a client 
system/application to query for past patient observations or poll for the current
patient information. This is a simple mechanism from the consumer’s point of v

Patient
Observat ion

Supplier

CORBA Naming
Service

Query for Data

Register for Data

Patient
Observat ion
Consumer(s)

Consume Data

data poll(who, what)
data query(who, what,when)

register(who, what,when, where)

update( data )

Reference resolve(supplier)
D-2 Clinical Observations Access Service V1.0                        January 2000 



D

st 
 but 
re 

me 
ated 
nce 
s not 

 but, 
when 
alarm 

tion 

 that 
ces 

data 

ents 
ling.

 

the 

ying. 

n be 
e 
since they only have to poll/query for data when they want it, although they mu
determine when to ask for the data. The polling is also simple for the supplier,
querying requires the storage of data to have occurred. This mechanism is mo
appropriate when the time that data is needed can not be predetermined.

2. Register for Data - This CORBA interface allows the client to register its Consu
Data interface with the supplier of observation data to be updated with the indic
data and times. This is more complicated from the consumer’s point of view si
they have to implement a CORBA object. On the other hand the consumer doe
have to deal with timers, etc. to determine when to poll for information. The 
supplier does not need to keep a data base of patient data for this mechanism
they do need to keep a connection data base. This mechanism is best suited 
the data availability can not be predetermined, such as needing data when an 
or other event occurs.

3. Consume Data - This is the CORBA interface for the call back from the registra
procedure that gets called with patient observation data.

The labels on the arrows contain pseudocode that specifies the kind of information
must be passed in each invocation. The actual information passed and the interfa
will be a lot more complicated than this simple picture in order to characterize the 
fully and manage the registration.

• who - Patients for which data is wanted. This may be specified by identifying 
patients by an identifier or by locations.

• when - Times for which data is wanted. These could be specific times and/or ev
of interest. This is implied to be the current time or most recent data during pol

• what - The kinds of data wanted. This could be vitals signs, waveforms, alarm
indications or other patient observations.

• where - Where the data is going. This is implied for polling and queries since 
data is returned to the system initiating the call.

The simplest and most straight forward way to access data is by polling and quer
The querying system only has to use the client side of CORBA. Registering for 
automatic updates requires more work including creating a CORBA object that ca
called back. Most of the work for the registration capabilities is done by the servic
side.
COAS  V1.0            Consumer Initiated           Jan. 2000 D-3



D

ush) 
rvice 

 
s 

 

h as a 

ical 
es. 

m in 
D.3 Supplier Initiated

Figure D-2 Supplier initiated push interaction model.

A consumer (sink) of patient observation data may need to allow clients to send (p
data to it. The consumer may publish a reference to itself in a CORBA Naming Se
for others (possibly many others) to access it.

The supplier of the observation data can look up the consuming application in the
CORBA Naming Service and send data to the consumer when the supplier deem
necessary. An example where this scenario would be valid is when a nursing 
application or patient care management application needs to send nurse notes or
manually collected vital signs to the EMR/CDR.

D.4 Third Party Initiated

In many cases, a system supplying observation data and a system consuming 
observation data do not know about each other. In these cases, a third party suc
System Administrator will set up and configure the connection between the two 
systems. 

These are more useful ways when the two systems run in the background 
(continuously). For example, an ancillary system may need to send data to a Clin
Data Repository (CDR) or patient care management application on a periodic bas
Another example would be registering a nurse call system with a monitoring syste
order to be notified of alarms of interest to that nurse.

Patient
Observat ion
Supplier(s)

CORBA Naming
Service

Patient
Observat ion
Consumer

Consume Dataupdate( data )

Referenceresolve(consumer)
D-4 Clinical Observations Access Service V1.0                        January 2000 



D

r. The 
n 

pplier 

mer 
e 
. 

e 
ier 
upplier 
ent to 
In either of these cases, neither the supplier nor consumer know about each othe
System Administrator (or some other third party) will need to set up the connectio
between the two. The Patient Observation Consumer and Patient Observation Su
would need to be in the CORBA Naming Service or the System Administration 
Application would need to get the object references through some other means.

D.5 Push Style

Figure D-3 Third party interactions to set up a push style connection

Figure D-3 shows a slightly more complicated mechanism for registering a consu
with a data supplier. In this case, the consumer(s) need to implement the Consum
Data interface. This works when the consumer is a data sink such as a data base

The supplier only needs to implement the Register for Data interface. This is mor
complicated than just implementing the Query for Data interfaces since the suppl
has to manage the set of consumers and the data base of the patient data. The s
also has to monitor the timer and alarm events to know when the data should be s
the consumer.

Patient
Observat ion

Supplier

CORBA Naming
Service

Register for Data

Patient
Observat ion
Consumer(s)

Consume Data

register(who, what,when, where)

update( data )

Reference

resolve(supplier/consumer)

System
Administrator

Application

Reference
COAS  V1.0            Push Style           Jan. 2000 D-5



D

plier. 
he 
ould 
s 
ta and 

t the 
 data.
D.6 Pull Style

Figure D-4 Third party interactions to set up a pull style connection.

Figure D-4 shows another mechanism for registering a consumer with a data sup
In this case, the consumer needs to implement the Register Supplier interface. T
supplier only need implement the Query for Data interface. In many cases, this w
be the simplest scenario for the supplier system to implement since it already ha
stored the data in a data base and needs to implement the logic to retrieve the da
return it to the caller. 

This scenario adds a complication to the consumer since it now has to implemen
Register Supplier interfaces and manage a set of suppliers from which to receive

Patient
Observat ion
Supplier(s)

CORBA Naming
Service

Patient
Observat ion
Consumer

Reference

resolve(supplier/consumer)

System
Administrator

Application

Reference

Register Supplier

Query for Data

register(where)

data poll(who, what)
data query(who, what,when)
D-6 Clinical Observations Access Service V1.0                        January 2000 



D

ybe by 
ible 
ates 
ce a 
 

D.7 Third Party Mediated

Figure D-5 Third party mediator to convert pull style supplier to a push style consumer.

Figure D-5 shows a scenario where the supplier and consumer have selected (ma
necessity) to implement the simplest respective interfaces or at least non-compat
interfaces since neither can initiate the connection. A third party application medi
between the consumer and supplier. In some cases, this is a natural scenario sin
Patient Management Application may be taking raw data from an instrument. The
clinician would validate the data and then send the results to the CDR/EMR.

Another case may be an interface engine to bridge the two systems and the IT 
department (system administrator) would configure the interface engine directly.

Patient
Observat ion
Supplier(s)

CORBA Naming
Service

Patient
Observat ion
Consumer(s)

Reference

resolve(supplier/consumer)

Patient
Management
Application

Reference

Consume DataQuery for Data

update(data)
data poll(who, what)

data query(who, what,when)
COAS  V1.0            Third Party Mediated           Jan. 2000 D-7



D

D-8 Clinical Observations Access Service V1.0                        January 2000 



 Usage Scenarios E
cts 

igns 
r 
 
o 

 the 
se 

here 
ast 
 the 
s for 

 

ds 
 over 
E.1 Vital Signs Service

E.1.1 Nursing Station Scenario

A Nurse is doing his charting on a Clinical Information System (CIS). The CIS colle
vital signs from the vital signs server (patient monitoring system) every minute.

The CIS polls the vital signs server every minute for the most representative vital s
values (median filter) over the last minute.  This data is cached up for 24 hours fo
immediate access by the Nursing staff.  Because this polling is done so often it is
important the calls are efficient.  For example it should only require a single call t
acquire the data for all vital signs on all 16 patients in that unit.

The CIS also has the ability to show waveforms from the patient. Instead of storing
high volume of waveform data for the 24 hours it only requests them when a Nur
wants to view them.

The Nursing staff may sometimes want to see the very latest vital signs values, w
as the stored data on the CIS is only one value per minute, and at any time the l
value shown could be as much as 1 minute old.  The CIS provides a function for
Nurse to request the very latest data.  The CIS polls the vital signs server but ask
the very latest data available for each vital sign as long as it is no older then 15 
seconds.  The Nurse verifies these values with the monitoring system display and
enters them into the patient record with a simple button push.

E.1.2 Doctor’s Office Scenario

A Doctor has multiple patients admitted to a hospital and needs to make her roun
every day.  Before going to the hospital she wants to review the patients condition
the last day.
Clinical Observations Access Service V1.0                        January 2000 E-1



E

ects 
n the 
 

 

 the 
 5 

ms in 
query 

uring 
the 
r for 
s after 
f 10 

g at 
ve 

to put 

t 

this 

ified 

 

rting 
o the 
to be 
ond.  
ed in 
A local application (or a web browser is used to download an applet which) conn
up to the hospital intranet and queries the vital signs server for a 24 hour trend o
first patient.  The trend is a sampling of the vital signs numerics (heart rate, blood
pressure, etc.) over the past 24 hours.  Since the vital signs may be collected 
continuously with changes on the order of every second or two (60*60*24=86400
samples per vital sign) it would take a long time to download.  Instead the client 
application asks for only one sample every 5 minutes (12*24=288 samples) since
trend display area is only 288 pixels wide.  A median filter is requested over each
minute period so that the most representative value is returned.

The Doctor notices a sudden drop in the blood pressure around 3:00 am and zoo
around that time.  The application changes to a 30-minute view and does another 
to the vital signs server.  This time it asks for a trend over the 30 minutes with a 
resolution of 5 seconds.

The Doctor wants to see what the ECG and blood pressure waveforms are doing d
this time, and so she changes views.  The cursor was set at 3:05:20 am.  When 
Doctor changed to the waveform view the application queried the vital signs serve
the waveforms around 3:05:20, requesting 20 seconds before through 20 second
that point in time.  It centers the waveform on the screen, which shows a window o
seconds for each waveform.

After scrolling through the waveform the Doctor notices a short arrhythmia startin
3:05:43.  The doctor uses the application to see when other arrhythmias might ha
occurred through out the night, and sees a half dozen others.

She looks at a couple of them to make sure they really are problems and decides 
this patient high on her list to visit first during her rounds.

E.1.3 Remote Monitoring Scenario

A hospital has installed monitors throughout the enterprise, but realizes that mos
Nurses are not familiar with many of the difficulties that can be exposed with the 
monitor.  They implement a central monitoring group (scope techs) that provides 
functionality.  Since there are so many monitors, they can not watch each one 
continuously, as is usually done with monitor techs.

The scope tech's applications are registered with the vital signs servers to be not
when alarms start and end.  The application filters these alarms with a different 
algorithm for each vital sign in order to reduce false alarms.  The alarms that get
through the filter are displayed to the scope tech.

The application then polls the vital signs server for the waveforms (ECG, etc) sta
at the beginning of the alarm event up to the present.  This information is shown t
scope tech immediately. The application also registers with the vital signs server 
updated every second with the latest vital signs and the waveforms for the last sec
As this data arrives the application appends the waveforms to that already display
a continuous manner.
E-2 Clinical Observations Access Service V1.0                        January 2000 



E

ly, but 
of the 
work 

es 
o 
g 
ed.

shed 
re is 
ging 

 the 
test 

extra 

g) 
thing 

ging 
 have 
to the 

n is 
ey 

ertain 
they 
the 
 

al 

uery 
s it 
ired 
It appears to the scope tech the data is being acquired and displayed continuous
the data is always one second behind.  This small delay is acceptable for the job 
scope tech.  The delay is used so that only one packet of data is sent on the net
per second, reducing the network bandwidth required.

E.1.4 Paging System Scenario

A hospital has a nurse paging system that is used for sending messages to nurs
through out the day, as well as notifying them of code situations they may need t
attend to immediately.  They choose to connect the vital signs server to the pagin
system so that life threatening alarms can cause the responsible Nurse to be pag

The paging system is registered with the vital signs server to have critical data pu
to it when certain events occur (life threatening arrythmias and apnea).  Since the
a possibility of false alarms, other clinical information needs to be passed to the pa
system as well so the Nurse can triage the severity of the alarm.  A snap shot of
waveform associated with the alarm (ECG or Respiration) is sent along with the la
vital signs values.  Some Nurses carry large screen pagers that can display this 
data.

Due to the time criticality of the alarm, the data must be delivered to the Nurse 
quickly.  From the point of view of the vital signs server it is just delivering (pushin
the requested data to a client at the times they registered interest in.  It knows no
about the client, except that it can accept the pushed data.

E.1.5 Logging System Scenario

Due to potential legal actions, a hospital has implemented an enterprise wide log
system of information that may be needed in case a law suit occurs.  It does not
an electronic medical record system so it prints these out on paper that gets put in
patient's record.

The most critical information needed is when certain alarms occur, but informatio
also captured periodically during a shift.  The period is determined by what unit th
are on.  The information collected includes an ECG snapshot of 7 seconds and c
vital signs (heart rate, oxygen saturation, blood pressure, and respiration rate), if 
are available.  Since the blood pressure is taking sporadically, only values within 
last 15 minutes are included.  All other vital signs are taken continuously and are
included if a value exists within 5 seconds of the event.

There are several ways the logging system could get the information from the vit
signs server - by polling, querying and registering.

Since the vital signs server keeps all data for 24 hours, the logging system could q
for the information every 24 hours (or less).  It could query for the times the alarm
is interested in had occurred through out the day.  It could then query for the requ
vitals signs and ECG at these times and at the periodic times for that unit.
COAS V1.0          Vital Signs Service            Jan. 2000 E-3



E

uired 
also 

 the 
for 
 vital 
The logging system could be registered with the vital signs server to send the req
vital signs and ECG at the periods in which data is logged for that unit.  It could 
register to have the same information sent when the alarms of interest occur.

Alternatively the logging system could poll for the needed vital signs and ECG at
periodic times assigned to that unit.  At those same points in time it could query 
which of the important alarms had occurred since the last period and query for the
signs at those times.
E-4 Clinical Observations Access Service V1.0                        January 2000 



 Client Implementation Examples F
ed 

 

ation 
anel:
Following are some examples of how a client might access observations via the 
DsObservationAccess  service. All codes, data, and clinical information are fabricat
for illustration purposes.

F.1 Lipid Panel

Consider an example where a COAS client requests a lab result, using the 
QueryAccess  component. The lab in question is a lipid panel for patientID “1234”,
with the sample drawn on the morning of 11 Mar 1999.

For this example, assume the following definitions. First, there are several observ
codes, one for a composite panel, and four individual measurements within the p

LIPID_PANEL// a battery of lipoproteins in blood sample
TRIGLYCERIDES
TOTAL_CHOLESTEROL 
LOW_DENSITY_LIPOPROTEIN 
HIGH_DENSITY_LIPOPROTEIN

Figure F-1  LIPID_PANEL is a composite observation with four elements.

L I P I D _ P A N E L

T R I G L Y C E R I D E S

T O T A L _ C H O L E S T E R O L

L O W _ D E N S I T Y _ L I P O P R O T E I N

H I G H _ D E N S I T Y _ L I P O P R O T E I N
Clinical Observations Access Service V1.0                        January 2000 F-1



F

s 
That is, LIPID_PANEL  is an ObservationData  which contains other observations, so it
composite  field has four items while its value  field has zero length. Meanwhile, the 
four contained observations are atomic observations. Their composite  field is zero 
length, while their value  field (a CORBA::any ) is filled with a 
DsObservationValue::Numeric  struct.

F.1.1 Qualifiers

Assume the following qualifier codes:

NORMAL_RANGE  // ran ge for this measurement/ gender
NORMALCY          // fla g for this measurement 
OBSERVATION_TIME   // time sample was drawn
RESULTS_AVAILABLE_TIME  // time result entered into system

Figure F-2  NORMAL_RANGE is a qualifier which contains a Range struct within value.

Within the DsObservationValue::Ran ge struct is a lower and upper bound. See 
DsObservationValue  descriptions for more information about Range.

Figure F-3  NORMALCY is a qualifier which contains a QualifiedCodeStr  within value.

The enumeration of qualified codes for NORMALCY  might include NORMAL , 
ABNORMAL_HIGH , ABNORMAL_LOW , and potentially other codes.

c o d e :  N O R M A L _ R A N G E
c o m p o s i t e :  [ ]
q u a l i f i e r s :  [ ]
v a l u e :  R a n g e  {  }

c o d e :  N O R M A L C Y
c o m p o s i t e :  [ ]
q u a l i f i e r s :  [ ]
v a l u e :  Q u a l i f i e d C o d e S t r  {  }
F-2 Clinical Observations Access Service V1.0                        January 2000 



F

ject 
Figure F-4  OBSERVATION_TIME is a qualifier which contains a TimeSpan within value.

The observation time can be a precise point in time, indicated by a TimeSpan  with 
start_time = stop_time.

(ditto for RESULTS_AVAILABLE_TIME )

Finally, assume one more code, a value for units.

mg_PER_dL  // milli grams per deciliter

F.1.2 Request

The request might look something like the following, if we assume that a COAS ob
has been located and referenced as “myCoasServer” in a java syntax.

// “who” parameter
ObservedSubjectId who = new ObservedSubjectId( 

new AuthorityId( Re gistrationAuthority.DNS, "myHospital.or g/pids"),"1234" );

// “what” parameter
Strin g[] what = new Strin g[1];
what[0] = LIPID_PANEL;

// “when” parameter
TimeSpan when = new TimeSpan (   

"1999-03-11T00:00:00", 
"1999-03-11T11:59:00" 

);

// “the_rest” parameter (a returned iterator, if # observations > max_sequence)
ObservationDataIteratorHolder() the_rest = new ObservationDataIteratorHolder(); 

ObservationData[] results = myCoasServer. get_observations_by_time( 
who, 
what, 
when,
1000, // max_sequence, lar gest number of observations allowed in returned sequence
the_rest // iterator for observations > max_sequence

);

c o d e :  O B S E R V A T I O N _ T I M E
c o m p o s i te :  [ ]
q u a l i f i e r s :  [ ]
v a lu e :  T im e S p a n  {  }
COAS V1.0            Lipid Panel             Jan. 2000 F-3



F

return 

the 

h 

l 
F.1.3 Result

The result returned by the COAS server could look something like the following, 
depending on the default policies of the server. For this example, we assume the 
of qualifiers NORMAL_RANGE , NORMALCY, OBSERVATION_TIME , and 
RESULTS_AVAILABLE_TIME . In other words, assume the default 
QUALIFIER_RETURN_POLICY  contains these codes and no others which apply to 
example observations.

In the example below, Obs:<code>  indicates an ObservationData  struct with <code>  
in the code field, with the other three fields of ObservationData , composite, qualifiers, 
and value, displayed in that order. Two brackets, “[]” indicate a sequence of lengt
zero. 

Indentation implies hierarchy, with leftmost items containing rightmost items. Initia
capitals indicates a DsObservationValue  struct name, like Range. These structs are 
found within the “value” field in an ObservationData  (the value field is a 
CORBA::any ).

    Obs:LIPID_PANEL
        composite:
            Obs:TRIGLYCERIDES
                composite: []
                qualifiers:
                        Obs:NORMAL_RANGE
                                composite: []
                                qualifiers: []
                                value: Ran ge { lower = 0, upper = 100 }
                        Obs:NORMALCY
                                composite: []
                                qualifiers: []
                                value: QualifiedCode { ABNORMAL_HIGH }
                value: Numeric { value = 150, units = m g_PER_dL }
            Obs:TOTAL_CHOLESTEROL
                composite: []
                qualifiers:
                        Obs:NORMAL_RANGE
                                composite: []
                                qualifiers: []
                                value: Ran ge { lower = 0, upper = 200 }
                        Obs:NORMALCY
                                composite: []
                                qualifiers: []
                                value: QualifiedCode { ABNORMAL_HIGH }
                value: Numeric { value = 220, units = m g_PER_dL }
            Obs:LOW_DENSITY_LIPOPROTEIN
                composite: []
                qualifiers:
                        Obs:NORMAL_RANGE
                                composite: []
                                qualifiers: []
                                value: Ran ge { lower = 0, upper = 130 }
                        Obs:NORMALCY
                                composite: []
F-4 Clinical Observations Access Service V1.0                        January 2000 



F

L 
 of 

ple 

r 

L 
                                qualifiers: []
                                value: QualifiedCode { ABNORMAL_HIGH }
                value: Numeric { value = 150, units = m g_PER_dL }
            Obs:HIGH_DENSITY_LIPOPROTEIN
                ...
        qualifiers:
            Obs:OBSERVATION_TIME
                value
                    TimeSpan
                        start_time = "1999-03-11T07:05:00-08"
                        stop_time  = "1999-03-11T07:05:00-08"
            Obs:RESULTS_AVAILABLE_TIME
                value
                    TimeSpan
                        start_time = "1999-03-11T11:04:00-08"
                        stop_time  = "1999-03-11T11:04:00-08"
        value: []

F.2 Progress Note (XML)

Consider a COAS server which parses XML as an input qualifier, and returns XM
documents as output. Just as with the previous example, the standard operations
QueryAccess  are employed. The output is still a sequence of ObservationData  items, 
with a single XML document as the string payload in the value field of an atomic 
observation.

Figure F-5   COAS server which parses incoming XML, and outputs XML.

This COAS server accepts XML input to create a template for matching. The exam
below illustrates an input document with XML fields as follows: document.type = 
“progress.note”, patient.id = “450023” and practitioner.id = “phys124”). The fields 
within the input document are matched, returning complete records which have 
matching information. Fields omitted from the input are considered “don’t care” fo
matching purposes. 

Since both the input (qualifier) is an XML Progress Note and the output is an XM
Progress Note, both input (qualifier) ObservationData.code  and output 
ObservationData.code  are the same: PROGRESS_NOTE.

X M L  inpu t X M L  ou tpu t

C O A S parsing  X M L
COAS V1.0            Progress Note (XML)             Jan. 2000 F-5



F

For this Progress Note query example, assume the following full XML document 
format as shown:

<?xml version="1.0"?>
<!DOCTYPE LevelOne SYSTEM "LevelOne.dtd"[]>
<?xml-stylesheet type="text/xsl" href="himssdemo.xsl"?>
<LevelOne>

<header>
<document>

<document.creation.date>
1999-2-3T12:27:50

</document.creation.date>
            <document.id>
                 <id.value>PRAAPN_CFN1999-02-03T12:27:51</id.value>
            </document.id>
            <document.originating.system>
                <id.value>CFN</id.value>

<organization.name>
Sample HIMSS Hospital</organization.name>

            </document.originating.system>
            <document.originator.id>
                <id.value>VJ342</id.value>
            </document.originator.id>
            <document.state value="original"/>

<document.title>
Progress Note</document.title>

            <document.type value="progress.note"/>
        </document>
        <event>

<event.id>
<id.value></id.value>

               </event.id>
               <event.date>1999-2-3T12:27:51</event.date>

<event.location.id>
<id.value>4444444</id.value>
<facility>

 <namespace.id>12345</namespace.id>
<local.header>

DEPARTMENT OF FAMILY PRACTICE
</local.header>

</facility>
</event.location.id>

        </event>
        <patient>

<patient.id>
<id.value>

P013  
</id.value>

</patient.id>
<patient.name> 

<family.name>Presnell</family.name>
<given.name>Tricia</given.name>

</patient.name>
<patient.date.of.birth>

1992-09-14 00:00:00.0
F-6 Clinical Observations Access Service V1.0                        January 2000 



F

</patient.date.of.birth>
<patient.sex value="female"/>
<patient.address>

<street.address>
1944 Cone St. </street.address>

<city>
</city> <state.or.province>
</state.or.province>
<zip.or.postal.code>
</zip.or.postal.code>

</patient.address>
</patient>
<practitioner>

<practitioner.id>
<id.value>

D3 
</id.value>
<family.name>Ross </family.name>  
<given.name>Mark </given.name>

</practitioner.id>
</practitioner>         

</header>
<body>

<section>
<section.title>Subjective</section.title>
<paragraph>

7 y.o. white female. Chief complaint: sore throat. Pt 
complains of the onset yesterday afternoon of a sore throat. Mother 
relates Pt had a fever to 104 F last night. She has been treating 
with children's Tylenol since then, last dose 2 hours ago. No 
headache, no abdominal pain. Nausea since yesterday evening, with 
vomiting after breakfast this morning. No cough, no rhinorrhea, no 
hoarseness. No dysuria or diarrhea. There are no sick contacts.

</paragraph>
</section>
<section>

<section.title>Objective</section.title>
<paragraph>

T 39.2C    BP 110/60 left arm, sitting    R 20    P 
114  Allergies: None. General:  ill appearing 7 year old girl, non-
toxic, good eye contact, responsive to questions. HEENT: Eyes: EOMI, 
pupils are equal, round, reactive to light, sclera are non-injected, 
non-icteric Ears: tympanic membranes are pearly white bilaterally, 
with good cones of light, and good landmarks, no otalgia. Nares: no 
discharge, turbinates non-inflamed, no muco-pus..  Mouth:  There are 
no gingival vesicular eruptions. Generalized swelling and erythema 
of the pharynx.  Bilateral 3+ tonsils with moderate exudate.  Scarce 
palatal petechiae  

</paragraph>
</section>
<section>

<section.title>Assessment</section.title>
<paragraph>

Acute Pharyngitis.  R/O strep.
</paragraph>
COAS V1.0            Progress Note (XML)             Jan. 2000 F-7



F

</section>
<section>

<section.title>Plan of Care</section.title>
</section>
<section><section.title>Labs</section.title>

<paragraph>
strep screen

</paragraph>
</section>
<section>

<section.title>Rx</section.title>
<paragraph>

Penicillin 250mg, po, qid x 10 days
</paragraph>
<paragraph>

Tylenol prn fever
</paragraph>
<paragraph>

encourage po fluid
</paragraph>
<paragraph>

RTC in 7 days or soon as worsens.
</paragraph>
<paragraph>

Keep home from school, indoors until temp. less than 
100 F for one full day.

</paragraph>
</section>

</body>
</LevelOne>

F.2.1 Request

// assume 
const QualifiedCodeStr PROGRESS_NOTE = 

"DNS:/om g.org/Sample/Pro gressNote";

// “who” parameter
ObservedSubjectId who = new ObservedSubjectId( 

new AuthorityId( Re gistrationAuthority.DNS, "myHospital.or g/pids"),
"450023" 

);

// “what” parameter
Strin g[] what = new Strin g[1];
what[0] = PROGRESS_NOTE;

// “when” parameter (don’t care)
TimeSpan when = new TimeSpan(   

EARLIEST_TIME, 
LATEST_TIME 

);
F-8 Clinical Observations Access Service V1.0                        January 2000 



F

// “the_rest” parameter (a returned iterator, if # observations > max_sequence)
ObservationDataIteratorHolder() the_rest = new ObservationDataIteratorHolder(); 

// “qualifiers” parameter

// the followin g XML strin g is displayed on separate lines for readability
// assume that we have inputXML filled as 
// 

Strin g inputXML = 
<?xml version="1.0"?>
<!DOCTYPE LevelOne SYSTEM "LevelOne.dtd"[]>
<?xml-stylesheet type="text/xsl" href="himssdemo.xsl"?>
<LevelOne>

<header>
<document>

            <document.type value="progress.note"/>
        </document>
        <patient>

<patient.id>
<id.value>

450023  
</id.value>               

</patient.id>
</patient>
<practitioner>

<practitioner.id>
<id.value>

phys124 
</id.value>

</practitioner.id>
        </practitioner>         

</header>
</LevelOne>

// put inputXML into an Any
CORBA.Any qualAny = orb.create_any();
qualAny.insert_strin g( inputXML );

ObservationData[] qualifiers = new ObservationData[1];
qualifiers[0] = new ObservationData( 

PROGRESS_NOTE, // same code for input qualifier as output--an XML doc
new ObservationData[0], // no composite members
new ObservationData[0], // no qualifiers of this qualifier
qualAny

);

// “the_rest” parameter (a returned iterator, if # observations > max_sequence)
ObservationDataIteratorHolder() the_rest = new ObservationDataIteratorHolder(); 

ObservationData[] results = myCoasServer. get_observations_by_qualifier( 
who, 
what, 
when,
qualifiers,
COAS V1.0            Progress Note (XML)             Jan. 2000 F-9



F

d as 

ith 

a 
 
nt 

n 

ssed 
cian 
ght is 
tinine 

The 
bove 
m 
100, // max_sequence, lar gest number of observations allowed in 
returned sequence
the_rest // iterator for observations > max_sequence

);

F.2.2 Result

From the request example above, we have

ObservationData[] results

returning from the call. Assuming that just one record was returned, and that the 
ObservationData  was an atomic observation, the array of results would be unpacke
follows:

Strin g theXML_result = results[0].value[0].extract_strin g();

We know to unpack a string from the CORBA::any  because the code returned, 

results[0].code

contains PROGRESS_NOTE, our requested observation code, which is associated w
exactly one return type, a string.

The content of theXML_result  would be along the lines of the first, full-length XML 
sample given above.

F.3 Non-empiric Antibiotic Decision Support 

F.3.1 Usage Scenario and Example

A patient is in the Intensive Care Unit (ICU) and has been treated empirically for 
pneumonia (i.e., given antibiotics without knowledge of the bacterial cause of the
pneumonia) with Ceftazadime.  Since the inception of antibiotic therapy, the patie
has not improved.  Laboratory results, which include the microbiology results 
(bacterium and associated sensitivities to varied antibiotics), CBC, and serum 
creatinine, become available.

The physician uses a web browser to run a user interface to an antibiotic decisio
support system.  The physician selects the patient.  The patient’s demographic, 
laboratory (microbiology, serum creatinine, and CBC), and vital statistics are acce
from a centralized clinical data repository. If this data is not accessible, the physi
or a surrogate has the option to manually enter this data.  In this example, the wei
159 lbs, the height is 72 inches, the age is 60, the sex is Male, and the serum crea
is 1.7.

The physician selects a formulary to be utilized by the decision support system.  
user hits the run button and the decision support is invoked on the server.  The a
data is modeled in the following features.  The server-side decision support syste
F-10 Clinical Observations Access Service V1.0                        January 2000 



F

, and 

le, the 

de 

sion 

k of 

 
rson 

ple, 
accesses the above data to create a list of drug, sensitivity, dose, dosing interval
daily cost information for drugs in the formulary, where sensitivities are known.   
These results are prioritized by sensitivity and cost.

The results of the decision support are presented to the user. In the given examp
bacterium is the resistant Streptococcus Pneumonia, which is sensitive only to 
Vancomycin.  The output suggests to the physician that his treatment should inclu
one gram of Vancomycin every 24 hours.

Figure F-6 Antibiotic Decision Support System - Example 

This is an Object Diagram for what might be a way to represent an Antibiotic Deci
Support Systems input information.

F.3.2 ObservedSubject:CompositeObservation

Figure F-7 ObservedSubject:CompositeObservation

This instance of an ObservedSubject is typed as a Person (patient) and has a 
CompositeObservation link of type LaboratoryResults, a CompositeObservation lin
type ClinicalNote and a CompositeObservation link of type VitalSigns and . a 
CompositeObservation link of type Demographic. This diagram is not meant to be
normative but rather to show an example of what an ObservedSubject of type Pe
(patient) may have associated with it.

observationType:QualifiedCode

This is a QualifiedCode that provides the type of the ObservedSubject. For exam
Person, Organ, Epidemic, etc.

DateOf Birth:DateTime

v alue = 196710090330

Sex:CodedElement

v alue = Male
DateOf Birth:AtomicObserv ation

observ ationTy pe = DateOf Birth

Sex:AtomicObserv ation

observ ationTy pe = Sex

Vit alSigns:Composi teObserv a tion

observ ationTy pe = Measurement
observ ationTime = 199901300800

Demographics: Composit eObserv ation

observ ationTy pe = Demographics
observ ationTime = 198201300722

Laboratory Results:CompositeObserv ation

observ ationTy pe = Laboratory Results

ClinicalNote:CompositeObserv ation

observ ationTy pe = ClinicalNote
observ ationTime = 199901300830

Obs erv edSubject: Composit eObserv ation

observ ationTy pe = Person

Observ edSubject:Com positeObserv at ion

observ ationTy pe = Person
COAS V1.0            Non-empiric Antibiotic Decision Support             Jan. 2000 F-11



F

ome 
F.3.3 LaboratoryResults:CompositeObservation

Figure F-8 LaboratoryResults:CompositeObservation

A Person (patient) in a health care information environment usually has a link to s
LaboratoryResults  information.

observationType:QualifiedCode

This is a QualifiedCode  that provides the type of the CompositeObservation . In 
this case LaboratoryResults .

F.4 LaboratoryResults:CompositeObservation

Figure F-9 LaboratoryResults:CompositeObservation

The LaboratoryResults  has a CompositeObservation  link of type LabChem7, 
LabCreatinineClearance,  LabMicrobiology, and a LabCBC.

Laboratory Resul ts: CompositeObserv at ion

observ ationTy pe = Laboratory Results

LabChem7:CompositeObserv ation

observ ationTy pe = LOINCChem7
observ ationTime = 199901300700

LabCreatinineClearance:CompositeObserv ation

observ ationTy pe = LOINCCreatinineClearance
observ ationTime = 199901300650

LabCBC:C om posi teObserv a tion

observ ationTy pe = LOINCCBC

LabMic robiology : Composit eObserv ation

observ ationTy pe = Microbiology

Laboratory Results:CompositeObserv ation

observ ationTy pe = Laborat ory R es ult s
F-12 Clinical Observations Access Service V1.0                        January 2000 



F

F.4.1 LabChem7:CompositeObservation

Figure F-10 LaboratoryResults:LabChem7

In LOINC, the units f or SerumCreatinine seem to
be in mmol/L.  Howev er, this example and its ranges
are mg/dl.  Theref ore, in practice, this would require 
a conv ersion.

Chem7ResultStatus: CodedElement

v alue = Final

Chem7ResultStatus:AtomicObserv ation

observ ationTy pe : ResultStatus

SerumCreatinineRangeMeasurement:Range

upper = 8
lower = 0
units = mg/dl

SerumCreatinineNumericMeasurement:Numeric

v alue = 4
units = mg/dl

Serum Creat inineAbnormalFlag:CodedElem ent

v alue = Normal

LabChem7:CompositeObserv ation

observ ationTy pe = LOINCChem7
observ ationTime = 199901300700

SerumCreatinineRangeMeasurement:AtomicObserv ation

obs erv ationTy pe = Range

Serum CreatinineNumer icMeasurement:At omic Obs erv at ion

observ ationTy pe = Measurement

SerumCreatinineAbnormalFlag:AtomicObserv ation

observ a tionTy pe = Abnorm alFlag

{8>=Serum Creat in ineNumer icMeas urem ent .v alue>=0}

LabSerumCreatinine:CompositeObserv ation

observ ationTy pe = LOINCSerumCreatinine
COAS V1.0            Non-empiric Antibiotic Decision Support             Jan. 2000 F-13



F

F.4.2 LabCreatinineClearance:CompositeObservation

Figure F-11 LaboratoryResults:LabCreatinineClearance

CreatinineClearanceNumericMeasurement:Numeric

v alue = 100
units = mg/minute

CreatinineClearanceResultStatus:CodedElement

v alue = Final

CreatinineClearanceAbnormalFlag:CodedElement

v alue = Normal

CreatinineClearanceRangeMeasurement:Range

upper = 200
lower = 12
units = mg/minute

CreatinineClearanceNumericMeasurement:AtomicObserv ation

observ ationTy pe = Measurement

CreatinineClearanceResultStatus:AtomicObserv ation

observ ationTy pe = ResultStatus

CreatinineClearanceAbnormalFlag:AtomicObserv ation

observ ationTy pe = AbnormalFlag

{200>=CreatinineClearanceNumericMeasurement.v alue>=12}

CreatinineClearanceRangeMeasurement:AtomicObserv ation

observ ationTy pe = Range

LabCreatinineClearance:CompositeObserv ation

observ ationTy pe = LOINCC reatinineC learance
observ ationTime = 199901300650

For creatinine clearance, this
example assumes ml/minute.  If
LOINC uses a dif f erent unit sy stem, it 
may  require conv ersion.
F-14 Clinical Observations Access Service V1.0                        January 2000 



F

F.4.3 LabMicorbiology:CompositeObservation

Figure F-12 LaboratoryResults:LabMicorobiology

We need to validate 
the CodedElements 
against ICD9, 
NCPDP, LOINC, 
HL7, and ASTM.

StrepPneum:ObservationValue

observationValueType = ICD9CodedElement
value = ICD9CodeforStrepPneum

Penicillin:ObservationValue

observationValueType = NCPDPCodedElement
value = NCPDPCodeforPenicillin

IndividualSensitiv ity:ObservationValue

observationValueType = SIRCodedElement
value = S

BacteriumQualif ier:ObservationQualif ier

observationQualif ierType = BacteriumQualifiedCode

CultureAndSensitivityResultStatus:CodedElement

value = Final

CultureAndSensitivityResultStatus:AtomicObservation

observationType = ResultStatus

LabCultureAndSensitivity:CompositeObservation

observationType = CultureandSensitivity
observationTime = 199901300800

LabMicrobiology:CompositeObservation

observationType = Microbiology

LabPenicillinasePresent:CodedElement

value = True

LabPenicillinasePresent:AtomicObservation

observationType = PenicillinasePresent
observationTime = 199901300755

IndividualCultureAndSensitiv ity:AtomicObservation

observationType = IndividualSensitiv ity

DrugQualif ier:ObservationQualif ier

observationQualif ierType = DrugQualif iedCode
COAS V1.0            Non-empiric Antibiotic Decision Support             Jan. 2000 F-15



F

ome 
F.4.4 LabCBC:CompositeObservation

Figure F-13 LaboratoryResults:LabCBC

F.5 ClinicalNote:CompositeObservation

Figure F-14 ClinicalNote:CompositeObservation

A Person (patient) in a health care information environment usually has a link to s
ClinicalNote information.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
CompositeObservation. In this case ClinicalNote.

observationTime:TimeSpan

Description: This is a TimeSpan that provides the time of the 
CompositeObservation. In this case 199901300830.

LabCBC:CompositeObserv ation

observ ationTy pe = LOIN CCBC

WBCNumericMeasurement: Numeric

v alue = 15000
units = quantity

TotalNumberof WhiteBloodCells:AtomicObserv ation

observ ationTy pe = Measurement

PercentagePoly s:Numeric

v alue = 75
units = percent

PercentagePoly sQualif ied: Observ ationQualif ier

observ ationQual if ierTy pe = Measurement

We would appreciate f eedback f rom clinical domain and 
v ocabulary  experts on this example and its mapping to 
LOINC.

Cl in icalNote: Com positeObserv at ion

observ ationTy pe = ClinicalNote
observ ationTime = 199901300830
F-16 Clinical Observations Access Service V1.0                        January 2000 



F

ome 
F.5.1 ClinicalNote:CompositeObservation

Figure F-15 ClinicalNote:CompositeObservation

F.6 VitalSigns:CompositeObservation

Figure F-16 ClinicalNote:CompositeObservation

A Person (patient) in a health care information environment usually has a link to s
ClinicalNote information.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the 
CompositeObservation. In this case Measurement.

observationTime:TimeSpan

Description: This is a TimeSpan that provides the time of the 
CompositeObservation. In this case 199901300830.

NosocomialAcquired:CodedElement

v alue = true

ClinicalNote:CompositeObserv ation

observ ationTy pe = ClinicalNote
observ ationTime = 199901300830

NosocomialQualif ier:Observ ationQualif ier

observ ationQualif ierTy pe = CodedElement
Diseas e:Obse rv at ionValue

observ ationValueTy pe = ICD9Disease
v alue = ICD9Code f or Pneumonia

Disease:AtomicObserv ation

observ ationTy pe = Disease

HospitalXYZDisease:Observ ationValue

observ ationValueTy pe = CalcudosLocationCode
v alue = HospitalXYZ

DiseaseLocationQualif ier:Observ ationQualif ier

observ ationQualif ierTy pe = LocationCode

Vita lSigns:C om positeObserv at ion

observ ationTy pe = Measurement
observ ationTime = 199901300800
COAS V1.0            Non-empiric Antibiotic Decision Support             Jan. 2000 F-17



F

F.6.1 VitalSigns:CompositeObservation

Figure F-17 VitalSigns:CompositeObservation

F.6.2 Height:CompositeObservation

Figure F-18 Height:CompositeObservation

Heigh t:Com posi teObserv at ion

observ ationTy pe = LOINCHeight

Weight:CompositeObserv ation

observ ationTy pe = LOINCWeight

Vita lSigns: Composit eObserv ation

observ ationTy pe = Measurement
observ ationTime = 199901300800

DateOf Birth:DateTime

v alue = 196710090330

Age:CompositeObserv ation

observ ationTy pe = Age

+Calculated From

He igh tNumericMeas urem ent :N um eric

v alue = 70
units = inch

HeightRangeMeasurement:Range

upper = 80
lower = 45
units = inch

HeightNumericMeasurement:AtomicObserv ation

observ ationTy pe = Measurement

HeightRangeMeasurement:AtomicObserv ation

observ ationTy pe = Range

Height:CompositeObserv ation

observ ationTy pe = LOINCHeight

HeightAbnormalFlag:CodedElement

v alue = Normal

HeightAbnormalFlag:AtomicObserv ation

observ ationTy pe = AbnormalFlag

{80>=HeightNumericMeasurement.v alue>=45}

I f LOINC's representation of  height are in metric, this would
require a conv ersion.
F-18 Clinical Observations Access Service V1.0                        January 2000 



F

F.6.3 Weight:CompositeObservation

Figure F-19 Weight:CompositeObservation

F.6.4 Age:CompositeObservation

Figure F-20 Age:CompositeObservation

WeightAbnormalFlag:CodedElement

v alue = Normal

WeightNumericMeasurement:Numeric

v alue = 170
units = lb

WeightRangeMeasurement:Range

upper = 350
lower = 70
units = lb

WeightAbnormalFlag:AtomicObserv ation

observ ationTy pe = AbnormalFlag

{350>=WeightNumericMeasurement.v alue>=70}

WeightNumericMeasurement:AtomicObserv ation

observationTy pe = Measurement

WeightRangeMeasurement:AtomicObserv ation

observ ationTy pe = Range

Weight:CompositeObserv ation

observ ationTy pe = LOINCWeight

I f LOIN C's weights are in met ric, th is would
require a c onv ers ion.

AgeNumericMeasurement:Numeric

v alue = 45
units = y ear

AgeRangeMeasurement:Range

upper  = 100
lowe r = 0
units = y ear

AgeNumericMeas urem ent:AtomicO bs erv at ion

observ ationTy pe = Measurement

AgeRangeMeasurement:AtomicObserv ation

observ ationTy pe = Range

Age :Com positeObs erv ation

observ ationTy pe = Age

AgeAbnormalFlag:CodedElement

v alue = Normal

AgeAbnormalFlag:AtomicObserv ation

observ ationTy pe = AbnormalFlag

{100>=AgeNumericMeasurement.v alue>=0}
COAS V1.0            Non-empiric Antibiotic Decision Support             Jan. 2000 F-19



F

F-20 Clinical Observations Access Service V1.0                        January 2000 



Glossary
ted 
ion; 
n 

 

List of Terms

The definitions below have special meaning for this specification. Either they star
from general definitions and were refined during the development of this specificat
or they are definitions of concepts from other OMG specifications, and were take
directly from those specifications; or they were important acronyms used in this 
specification. Terms appearing in boldface type are defined elsewhere within this 
section.

Access The ability to retrieve or get, and the action of 
retrieving, information about observations and the 
observations themselves.

Blob Acronym for Binary Large Object; used in this 
document to represent an opaque string of octets  that 
is passed unchanged between the server and the 
client.1

Client Any system or application that accesses or requests 
service from a DsObservationAccess  server.

Coded Concept A local name, consisting of a fixed sequence of 
alphanumeric characters, that is used to designate one
or more presentations, definitions, comments or 
instructions. within a coding scheme.2

Codin g Scheme A relation between a set of concept codes and a set of 
presentations, definitions, comments, and instructions, 
which serves to designate the intended meaning 
behind the codes. See the LQS specification for 
definitions of the terms presentations, definitions, 
comments and instructions.2
Clinical Observations Access Service  V1.0                        January 2000 Glossary -1



Context The interrelated conditions in which something exists 
or occurs.

Domain Name The name of an ID Domain in which an ID has 
meaning. That is, IDs are only relevant in a particular 
ID Domain. Each ID Domain has a Domain Name 
that is unique and different from all other ID Domain 
Names.1

Encounter A meeting between two systems in which meaningful 
transactions are passed and processed.

Event A noteworthy happening or activity.

LQS The OMG’s Lexicon Query Service

Observation An act of recognizing and noting a fact or occurrence 
often involving measurement with instruments or a 
judgement on or inference from what one has 
observed or noted.

Observation Qualifier One that satisfies requirements or meets a specified 
standard.

Observation Value The fact, note, or result of an observation.

PIDS The OMG’s Person Identification Service

Policy A definite course or method of action selected from 
among alternatives and in light of given conditions to 
guide and determine present and future decisions.

Qualified Code A qualified name which identifies a coded concept 
within the context of a coding scheme. A qualified 
name consists of the coding scheme identifier (the 
naming authority) and a concept code (the local 
name).2

Relationship A state of affairs existing between two systems that 
have dealings between each other.

Server A DsObservationAccess  system that offers services 
or performs actions on the behalf or interest of 
requests made by a DsObservationAccess client.

Subject of Care A biological entity, patient, or population that is under 
observation or measurement.

1. Person Identification Service, OMG Formal Document formal/99-03-05.

2. Lexicon Query Service, OMG Formal Document formal/99-03-06.
Glossary -2 Clinical Observations Access Service  V1.0                        January 2000


	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	COAS Overview
	1.1 Definition and Scope of Clinical Observations
	1.2 Previous Work
	1.3 Information Model
	1.4 Dynamic Discovery
	1.5 Value Domains
	1.6 Type Negotiation
	1.7 XML Usage
	1.8 Roadmap for Extensions
	1.9 Conformance Points
	1.9.1 Interface Conformance Classes
	1.9.2 Data Structure Conformance Classes
	1.9.3 Qualified Code Conformance Classes


	COAS Information Model
	2.1 Overview
	2.2 Modeling Notation
	2.2.1 Modeling Definitions

	2.3 Clinical Observations Model
	2.3.1 Clinical Observations Model - Class Diagram
	2.3.2 Observation
	2.3.3 CompositeObservation
	2.3.4 AtomicObservation
	2.3.5 ObservationReference
	2.3.6 ObservationQualifier
	2.3.7 ObservationValue

	2.4 Examples
	2.4.1 ObservedSubject - Model
	2.4.2 ObservedSubject - Example
	2.4.3 LabUrineBattery - Example
	2.4.4 LabUrineBattery - LabSegments
	2.4.5 LabUrineBattery - LabSegment#1 - LONICUrineSodium
	2.4.6 LabUrineBattery - LabSegment#2 - LONICUrineColor
	2.4.7 LabUrineBattery - LabSegment#3 - LOINCUrineColor
	2.4.8 HealthRecordEntry - Model
	2.4.9 HealthRecordEntry - Example


	DSObservationAccess Service
	3.1 Overview
	3.2 Viewpoints
	3.2.1 Navigable Relationships Viewpoint
	3.2.2 Interface Inheritance Viewpoint
	3.2.3 Componentization Viewpoint
	3.2.4 Full Component Viewpoint
	3.2.5 Local/Remote Observations Viewpoint
	3.2.6 Local Observations Viewpoint
	3.2.7 Remote Observations Viewpoint
	3.2.8 Common Access Operations Viewpoint
	3.2.9 Simple Query Access Viewpoint
	3.2.10 Browsing Access Viewpoint
	3.2.11 Asynchronous Access Viewpoint
	3.2.12 Event Management Viewpoint

	3.3 Data Type Definitions
	3.3.1 Include Files
	3.3.2 External Typedefs
	3.3.3 Forward Declarations
	3.3.4 AccessComponentData
	3.3.5 AsynchException
	3.3.6 ObservationData
	3.3.7 ObservationId
	3.3.8 NameValuePair
	3.3.9 Subscription
	3.3.10 TimeStamp
	3.3.11 TimeSpan
	3.3.12 Constants
	3.3.13 Internal Typedefs
	3.3.14 Sequences
	3.3.15 Exceptions

	3.4 Interface Specifications
	3.4.1 Foundational Observation-Oriented Interfaces
	3.4.2 ObservationRemote Interface
	3.4.3 AtomicObservationRemote Interface
	3.4.4 CompositeObservationRemote Interface
	3.4.5 ObservationRemoteIterator Interface
	3.4.6 ObservedSubject Interface

	3.5 Query-Oriented Interface Specifications
	3.5.1 BrowseAccess Interface
	3.5.2 QueryAccess Interface
	3.5.3 AsynchAccess Interface
	3.5.4 AsynchCallback Interface
	3.5.5 ConstraintLanguageAccess

	3.6 Event and Notification Interface Specifications
	3.6.1 EventSupplier Interface
	3.6.2 EventConsumer Interface
	3.6.3 SupplierAccess Interface
	3.6.4 ConsumerAccess Interface

	3.7 Utility Interface Specifications
	3.7.1 ObservationLoader Interface
	3.7.2 AccessComponent Interface
	3.7.3 ObservationDataIterator Interface
	3.7.4 QualifiedCodeIterator Interface
	3.7.5 AbstractFactory Interface
	3.7.6 AbstractManagedObject Interface


	DSObservation Values
	4.1 Overview
	4.2 Data Type Definitions
	4.3 Supporting Types
	4.4 Time Types
	4.4.1 DateTime
	4.4.2 TimeSpan

	4.5 Person Type
	4.5.1 Person

	4.6 NoInformation Type
	4.6.1 NoInformation

	4.7 Text Types
	4.7.1 Plain Text
	4.7.2 UniversalResourceIdentifier
	4.7.3 PhysicalLocationDescription

	4.8 Coded Types
	4.8.1 CodedElement
	4.8.2 LooselyCodedElement

	4.9 Multimedia Types
	4.9.1 Multimedia

	4.10 Simple Measurement Types
	4.10.1 Numeric
	4.10.2 Range
	4.10.3 Ratio

	4.11 Complex Measurement Types
	4.11.1 Curve


	DSObservationTimeSeries
	5.1 Overview
	5.2 Data Type Definitions
	5.3 External Typedefs
	5.4 Time Types
	5.5 Typedef, Enum, Union, and Sequence Types
	5.6 Iterator Types
	5.7 TimeSeries
	5.8 Exceptions
	5.9 TimeSeriesRemote

	DSObservationRelations
	6.1 Overview
	6.2 CEN Naming Convention
	6.3 Observation Type for Relations
	6.4 Relation Codes
	6.4.1 Produce
	6.4.2 Document
	6.4.3 Report
	6.4.4 Graphic
	6.4.5 Identified/Incorporated
	6.4.6 Source/Derived
	6.4.7 Compared/Reference
	6.4.8 Recorded
	6.4.9 Supercede
	6.4.10 Framework
	6.4.11 Phase
	6.4.12 Next Phase
	6.4.13 Associate
	6.4.14 Assigned/Setting
	6.4.15 Interpretation
	6.4.16 Progress
	6.4.17 Cause
	6.4.18 Co-exists
	6.4.19 Evidence
	6.4.20 Triggers
	6.4.21 Goal
	6.4.22 Motivation
	6.4.23 Consequence
	6.4.24 Topic
	6.4.25 Target
	6.4.26 Provides Information
	6.4.27 Circumstances


	DSObservationQualifiers
	7.1 Overview
	7.2 HL7 Naming Convention
	7.3 Observation Type for Qualifiers
	7.4 Qualifier Codes
	7.4.1 COAS - Specific
	7.4.2 HL7 - Clinical Times
	7.4.3 HL7 - Roles
	7.4.4 HL7 - OBR (Request)
	7.4.5 HL7 - OBX (Reply)
	7.4.6 HL7 - PV1 (Patient Visit)


	Policies
	8.1 Overview
	8.2 SEARCH_DEPTH_POLICY
	8.3 RETURN_DEPTH_POLICY
	8.4 SEARCH_SYNONYMOUS_CODES_POLICY
	8.5 RETURN_OBSERVATION_VALUES_POLICY
	8.6 SHORTCIRCUIT_SEARCH_..._POLICY
	8.7 SEARCH_SYNONYMOUS_IDS_POLICY
	8.8 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY
	8.9 RETURN_ITEMS_IN_TIME_SPAN_POLICY
	8.10 MATCHING_STRENGTH_POLICY
	8.11 PARAM_CHECKING_POLICY
	8.12 QUALIFIER_RETURN_POLICY
	8.13 RELATIONS_RETURN_POLICY
	8.14 RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY
	8.15 TIME_SERIES_..._ALGORITHM_POLICY
	8.16 TIME_SERIES_..._PREFERENCE_POLICY
	8.17 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY
	8.18 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY

	Complete IDL
	Interoperation
	Security Guidelines
	Usage Patterns
	Usage Scenarios
	Client Implementation Examples
	A-Complete IDL
	B-Interoperation
	C-Security Guidelines
	D-Usage Patterns
	E-Usage Scenarios
	F-Client Implementation Examples
	Glossary

