Clinical Observations Access Service
Specification

New Edition, January 2000

Copyright 1999, 3M

Copyright 1999, Care Data Systems, Inc.
Copyright 1999, CareFlow/Net, Inc.
Copyright 1999, HBO & Company
Copyright 1999, Philips Medical Systems
Copyright 1999, Protocol Systems, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF

TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7F80MG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm

Contents

Preface e 1
About the Object Management Group 1
Whatis CORBA?. e 1
Associated OMG Documents ..., 2
Acknowledgments 2
1. COAS OVEIVIEW . ..ttt 1-1
1.1 Definition and Scope of Clinical Observations 1-1
1.2 Previous Work 1-2
1.3 Information Model 1-3
1.4 Dynamic DiSCOVEIY i 1-4
1.5 ValueDomains e 1-4
1.6 TypeNegotiation 1-4
1.7 XMLUsage e e 1-4
1.8 Roadmap for Extensions 1-4
1.9 Conformance Points 1-5
1.9.1 Interface Conformance Classes 1-5
1.9.2 Data Structure Conformance Classes 1-6
1.9.3 Qualified Code Conformance Classes 1-6
2. COAS Information Model 2-1
2.1 OVEIVIEW . . 2-1
2.2 Modeling Notation, 2-2
2.2.1 Modeling Definitions 2-2
2.3 Clinical ObservationsModel 2-3
2.3.1 Clinical Observations Model - Class Diagram . 2-3
2.3.2 Observation 2-4
2.3.3 CompositeObservation 2-5
2.3.4 AtomicObservation 2-6
2.3.5 ObservationReference 2-6
2.3.6 ObservationQualifier 2-7
2.3.7 ObservationvValue 2-12
24 Examples 2-26
2.4.1 ObservedSubject-Model 2-27
2.4.2 ObservedSubject-Example 2-28
2.4.3 LabUrineBattery - Example 2-31
2.4.4 LabUrineBattery - LabSegments 2-33
2.4.5 LabUrineBattedrabSegment#LONICUrineSodium
2-35

Clinical Observation Access System V1.0 January 2000 i

Contents

2.4.6 LabUrineBattery-LabSegment#2-LONICUrineColor
2-38
2.4.7 LabUrineBattery-LabSegment#3-LOINCUrineColor
2-40
2.4.8 HealthRecordEntry - Model 2-42
2.4.9 HealthRecordEntry - Example 2-43
3. DSObservationAccess Service, 3-1
3.1 OVeIVIEW . oot e 3-1
3.2 MVieWpointS e 3-2
3.2.1 Navigable Relationships Viewpoint 3-2
3.2.2 Interface Inheritance Viewpoint 3-3
3.2.3 Componentization Viewpoint. 3-5
3.2.4 Full Component Viewpoint 3-6
3.2.5 Local/Remote Observations Viewpoint 3-7
3.2.6 Local Observations Viewpoint 3-8
3.2.7 Remote Observations Viewpoint 3-9
3.2.8 Common Access Operations Viewpoint 3-10
3.2.9 Simple Query Access Viewpoint 3-11
3.2.10 Browsing Access Viewpoint 3-12
3.2.11 Asynchronous Access Viewpoint 3-13
3.2.12 Event Management Viewpoint 3-15
3.3 Data Type Definitions 3-16
3.31 IncludeFiles 3-17
3.3.2 External Typedefs 3-17
3.3.3 Forward Declarations 3-18
3.3.4 AccessComponentData. 3-19
3.3.5 AsynchException....................... 3-20
3.3.6 ObservationData 3-21
3.3.7 Observationld 3-22
3.3.8 NameValuePair 3-23
3.3.9 Subscription L 3-24
3.3.10 TimeStamp 3-24
3.3.11 TimeSpan 3-25
3.3.12 Constants 3-26
3.3.13 Internal Typedefs 3-27
3.3.14 SequUENCEeS 3-27
3.3.15 Exceptions i, 3-28
3.4 Interface Specifications 3-31
3.4.1 Foundational Observation-Oriented Interfaces 3-31
3.4.2 ObservationRemote Interface 3-31

ii Clinical Observation Access System V1.0

January 2000

Contents

3.4.3 AtomicObservationRemote Interface 3-33
3.4.4 CompositeObservationRemote Interface 3-34
3.4.5 ObservationRemotelterator Interface 3-38
3.4.6 ObservedSubject Interface 3-39
3.5 Query-Oriented Interface Specifications 3-43
3.5.1 BrowseAccessInterface 3-43
3.5.2 QueryAccess Interface 3-46
3.5.3 AsynchAccess Interface 3-49
3.5.4 AsynchCallback Interface 3-52
3.5.5 ConstraintLanguageAccess 3-53
3.6 Event and Notification Interface Specifications 3-53
3.6.1 EventSupplierInterface 3-53
3.6.2 EventConsumer Interface 3-55
3.6.3 SupplierAccess Interface 3-57
3.6.4 ConsumerAccess Interface 3-58
3.7 Utility Interface Specifications 3-59
3.7.1 ObservationLoader Interface 3-59
3.7.2 AccessComponent Interface 3-60
3.7.3 ObservationDatalterator Interface 3-63
3.7.4 QualifiedCodelterator Interface 3-64
3.7.5 AbstractFactory Interface 3-64
3.7.6 AbstractManagedObject Interface 3-65
4. DSObservationValues 4-1
41 OVEIVIEW . . .t 4-1
4.2 Data Type Definitions 4-2
4.3 Supporting TYPesSo 4-2
4.4 TIMe TYPES . ittt 4-3
441 DateTime 4-3
442 TiMESPpani 4-3
4.5 Person Type 4-3
451 Person......... .. 4-3
4.6 Nolnformation Type 4-3
4.6.1 Nolnformation 4-4
47 TeXt TYPES . ottt 4-4
471 PlainText 4-4
4.7.2 UniversalResourceldentifier............... 4-5
4.7.3 PhysicalLocationDescription 4-5
4.8 Coded TYPES . v vttt 4-5
4.8.1 CodedElement 4-5

Clinical Observation Access System V1.0 January 2000 iii

Contents

4.8.2 LooselyCodedElement................... 4-5

4.9 Multimedia TYypes ...t e 4-6
49.1 Multimedia..............., 4-7

4,10 Simple Measurement TypesS it 4-7
4.10.1 NUmMEriC 4-8

4.10.2 RaNge e 4-8

4.10.3 RAtio . ..ot 4-8

4,11 Complex MeasurementTypescvvuun.. 4-8
4.11.1 CUIVe ... 4-9

5. DSObservationTimeSeries, 5-1
5.1 OVeIVIEW . .o 5-1
5.2 Data Type Definitions 5-1
5.3 External Typedefs 5-2
5.4 TiMe TYPES . ittt 5-2
5.5 Typedef, Enum, Union, and Sequence Types........... 5-3
5.6 Iterator TYpPes e 5-3
5.7 TIMESEriesS e 5-3
58 EXceptions 5-4
5.9 TimeSeriesRemote 5-4
6. DSObservationRelations. 6-1
6.1 OVeIVIEW . .. 6-1
6.2 CEN Naming Convention 6-2
6.3 Observation Type for Relations 6-2
6.4 RelationCodes i, 6-2
6.4.1 Produce.......... 6-2

6.4.2 Document 6-3

6.4.3 Report e 6-3

6.4.4 Graphic 6-3

6.4.5 Identified/Incorporated 6-3

6.4.6 Source/Derived 6-3

6.4.7 Compared/Reference 6-3

6.4.8 Recorded 6-3

6.4.9 Supercede 6-4

6.4.10 Framework 6-4

6.4.11 Phase i 6-4

6.4.12 NextPhase 6-4

6.4.13 Associate i 6-4

Clinical Observation Access System V1.0 January 2000

Contents

6.4.14 Assigned/Setting 6-4
6.4.15 Interpretation 6-4
6.4.16 Progress e 6-5
6.4.17 CaAUSEt 6-5
6.4.18 Co-exiStS 6-5
6.4.19 Evidence 6-5
6.4.20 Triggers« 6-5
6.4.21 Goal 6-5
6.4.22 Motivation 6-5
6.4.23 CONSEQUENCE\ttt 6-6
6.4.24 TOPIC ..ot 6-6
6.4.25 Target........ ... e 6-6
6.4.26 Provides Information 6-6
6.4.27 CircumstanCesouuiinn... 6-6
7. DSObservationQualifiers 7-1
7.1 OVEeIVIEW . . o 7-1
7.2 HL7 Naming Convention 7-2
7.3 Observation Type for Qualifiers 7-2
7.4 QualifierCodes 7-3
741 COAS-Specific 7-3
742 HL7-Clinical Times 7-3
743 HL7-Roles 7-3
744 HL7-OBR (Request) 7-3
745 HL7-OBX(Reply) 7-4
7.4.6 HL7-PV1 (PatientVisit) 7-4
8. Policies 8-1
8.1 OVEeIVIEW . . . 8-2
8.2 SEARCH_DEPTH_POLICY........ ..., 8-2
8.3 RETURN_DEPTH_POLICY 8-2
8.4 SEARCH_SYNONYMOUS_CODES POLICY........ 8-3
8.5 RETURN_OBSERVATION_VALUES POLICY........ 8-3
8.6 SHORTCIRCUIT_SEARCH_... POLICY 8-4
8.7 SEARCH_SYNONYMOUS IDS POLICY 8-4
8.8 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY 84
8.9 RETURN_ITEMS_IN_TIME_SPAN_POLICY 8-4
8.10 MATCHING_STRENGTH_POLICY 8-5
8.11 PARAM_CHECKING_POLICYot 8-5

Clinical Observati

on Access System V1.0 January 2000 v

Contents

\Y

8.12 QUALIFIER_RETURN_POLICY 8-5
8.13 RELATIONS_RETURN_POLICY 8-6
8.14 RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY8-6
8.15 TIME_SERIES ... ALGORITHM_POLICY 8-6
8.16 TIME_SERIES ... PREFERENCE_POLICY 8-6
8.17 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY . 8-6
8.18 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY .. 8-7
Appendix A Complete IDL A-1
Appendix B Interoperation B-1
Appendix C Security Guidelines. C-1
Appendix D Usage Patterns D-1
Appendix E Usage Scenarioscouuueein. E-1
Appendix F Client Implementation Examples F-1
Glossary Glossary-1

Clinical Observation Access System V1.0 January 2000

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

Clinical Observation Access Service V1.0 January 2000 1

Associated OMG Documents

The CORBA documentation is organized as follows:

®* Object Management Architecture Guidefines the OMG's technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

® CORBA: Common Object Request Broker Architecture and Specificaimdains
the architecture and specifications for the Object Request Broker.

®* CORBAservices: Common Object Services Specificabatains specifications for
OMG’s Object Services.

The OMG collects information for each specification by issuing Requests for Information,
Requests for Proposals, and Requests for Comment and, with its membership, evaluating
the responses. Specifications are adopted as standards only when representatives of the
OMG membership accept them as such by vote. (The policies and procedures of the OMG
are described in detail in ti@bject Management Architecture Guife

OMG formal documents are available from our web site in PostScript and PDF format. To
obtain print-on-demand books in the documentation set or other OMG publications, con-
tact the Object Management Group, Inc. at:

Acknowledgments

OMG Headquarters
492 Old Connecticut Path
Framingham, MA 01701
USA
Tel: +1-508-820 4300
Fax: +1-508-820 4303
pubs@omg.org
http://www.omg.org

The following companies submitted and/or supported parts of this specification:

3M

AGFA

Baptist Health Systems of South Florida (BHSSF)
Care Data Systems, Inc.

CareFlow/Net, Inc.

CogniTech Corporation

GE Medical Systems

HBO & Company

HealthMagic, Inc.

2 Clinical Observation Access Service V1.0 January 2000

* Los Alamos National Labs (LANL)

* Philips Medical Systems

* Philips Research

* Protocol Systems, Inc.

* Sao Paulo Hospital das Clinicas

e Sunquest

* Theragraphics

* Universidade Federal de Sao Paulo

* University of Michigan Health Systems (UMHS)

COAS V1.0 Acknowledgments Jan. 2000

Clinical Observation Access Service V1.0 January 2000

COAS Overview 1

The OMG documents used to create this specification were corbamed/99-03-25 and
corbamed/99-05-02.

The Clinical Observations Access Service (COAS) is a set of interfaces and data
structures with which a server can supply clinical observations.

1.1 Definition and Scope of Clinical Observations

To determine the scope of a Clinical Observations Access Service we might start with
a definition of “clinical observations.” The 27th Edition of Dorland's lllustrated
Medical Dictionary defines “clinical” as,

“pertaining to a clinic or to the bedside; pertaining to or founded on actual
observation and treatment of patients, as distinguished from theoretical or basic
sciences.”

Webster's Ninth New Collegiate Dictionary defines “observation” as,

“2 b: a record obtained by the act of recognizing and noting a fact or occurrence
often involving measurement with instruments 3: a judgment on or inference from
what one has observed.”

The COAS Request For Proposals (RFP) included the following definition of “clinical
observations,”
“any information that has been captured about a single patient's medical/physical
state and relevant context information.”
Webster's Dictionary includes the following definitions of “information,”
“2 a: (1) knowledge obtained from investigation, study, or instruction (2)
INTELLIGENCE, NEWS (3) FACTS, DATA.”

The COAS RFP goes on to add,

Clinical Observation Access Service V1.0 January 2000 1-1

“This [information] may be derived by instruments such as in the case of images,
vital signs and lab results or it may be derived by a health professional via direct
examination of the patient and transcribed(sic). This term applies to information
that has been captured whether or not it has been reviewed by an appropriate
authority to confirm its applicability to the patient record.”

It is clear from the dictionary definitions of “observation” and “information” that the
common usage of “clinical observations” includes, not just raw measurements and
recordings, but also the knowledge and judgments obtained or inferred from them.
Based on these definitions and conclusions, the following working definition of
“clinical observations” is given, where the lists are intended to specifically include the
areas mentioned rather than excluding other related areas:

“any measurement, recording, or description of the anatomical, physiological,
pathological, or psychological state or history of a human being or any sample from
a human being, and any impressions, conclusions, or judgments made regarding that
individual within the context of the current delivery of health care.”

All observations share a few common features:
they are made on a specific subject of care, e.g. patient, organ, population;

they represent a snap-shot of that subject in time, either at a particular time, or over
some specified interval of time (time in this context includes the notion of both date
and time);

they are made, or recorded, by an instrument or a health care professional in some
clinical context; and

they are given (either by the patient, the health care institution, or society) some
degree of confidentiality.

Observations can be quantitative, qualitative, and recordings. For example, vital signs
and clinical laboratory results, trends in measured values, impressions from a clinical
exam, correlation of several qualitative impressions, and images and manipulations of
images such as digital subtraction angiography. For the purposes of our information
model and the derived IDL, a clinical observation includes any clinically related item
that has the necessary context information to enable it to be queried from a COAS
server.

1.2 Previous Work

A number of the submitters and supporters of this specification have used CORBA for
various observation access mechanisms.

3M - Observations are an integral part of the 3M Care Innovation Suite
(http://www.mmm.com/market/healthcare/his/product/hems/menu.htm)

Care Data Systems - Observations are part of Care Data System’s Integration and
Access Channels and the Care Data Repository products
(http://www.caredatasystems.com/quide/product-ov)htm

CareFlow|Net - Observations are part of the CareFlow|Net transcription system
(http://www.careflow.com/products.hjm

Clinical Observation Access Service V1.0 January 2000

CERC - Observations are part of the Artemis project
(http://www.cerc.wvu.edu/nim/artemis.html)

HBO & Company - Observations are an integral part of the Clinical Information
Systems products (http://206.217.199.68/caci/corporate/prodport.ns)home

Los Alamos National Laboratory - Observations are a major component of the
TeleMed project (http://www.acl.lanl.gov/TeleMegd/

Philips Medical Systems - Observations are a major component of the MIRACLE
project.

Protocol Systems - An observation service (COBS) is the major component of the
Acuity Communications Option (ACO) vital signs server.

Sunquest - Observations are a central part of the Sunquest products
(http://www.sunguest.com/marketing/

Each of these projects brings different, complementary perspectives that have
contributed to the COAS specification.

1.3 Information Model

There are a number of information models that deal with observations data. Some are
associated with standards groups and are openly available. Others are the proprietary
property of individual companies. The following lists most of the openly available
information models that we know of that include observations data.

HL7 - The version 3.0 project is taking the knowledge developed during the previous
HL7 standards and describing it in an information model
(http://www.mcis.duke.edu/standards/HL 7/data-model/HL7/modelpagg.hftik is a
generalized model for healthcare that does include observations data. This model is
subject to change over the next year or two.

DICOM - The Structured Reporting document (supplement 23) of DICOM contains an
implied information model for clinical reports which contain observations data
(ftp://ftp.nema.org/MEDICAL/DICOM/SUPPS/sup23_fz.pdf)

UK NHS - The UK National Health Service has developed general information models
for healthcare, based on a model called COSMOS that contains observations data. See
http://smwww1.med.ic.ac.uk/dm/dmgm/ccpm2ptl.caal
http://smwww1.med.ic.ac.uk/dm/dmgm/ccpm?2pt2.doc

European Consortia- The European Union has sponsored several projects whose
purpose has been to develop and validate information models of healthcare. These
include the GEHR and EHCR-SupA.

CEN-TC251 - The European Committee for Standardization Technical Committee 251
has developed several pre-standards that involve models of healthcare. In particular,
the CEN/TC251/N97-024 prestandard on “Healthcare Information System Architecture
(HISA).”

COAS V1.0 Information Model Jan. 2000 1-3

1-4

1.4 Dynamic Discovery

Clinical observations cover a very wide set of data types. Servers are likely to offer
widely different kinds of data, data formats supported, etc. COAS servers need to
expose to clients relevant context information, such as the patient population they deal
with, what kinds of observation types are supported, what kind of data formats are
supported, which interfaces are implemented, etc. We have made an effort to do this
via theAccessComponent interface. See Section 3.7.2, “AccessComponent
Interface,” on page 3-60 for details. However, it is not clear whether this effort will be
sufficient to enable the discovery of all necessary capabilities.

1.5 Value Domains

The Lexicon Query Service (LQS) contains the ability to query for ValueDomains.
ValueDomains are the set of possible codes that can be used for a particular parametel
or field. It is expected the LQS ValueDomains can be used by COAS for publishing
meta information about the particular service implementation.

1.6 Type Negotiation

1.7 XML Usage

Servers may support multiple formats for the same type of information, such as images
in gif, tiff, and jpeg formats. COAS may need a way for clients to not only determine
what formats are supported, but also to select which one(s) they can handle.
Specifications for how this is to be accomplished has been left for future revisions of
the COAS.

The eXtended Markup Language (XML) is gaining wide interest and support as a
flexible format for describing highly structured information (documents).

COAS clients and servers may provide and use XML documents. XML is implicitly
supported as a text string, for returned observations. Also, a COAS server could be
easily designed to input an XML qualifier as a filter. See the client-implementation
example “Progress Note (XML)” on page F-5 for more details.

1.8 Roadmap for Extensions

The COAS needs to provide a basis for future CORBAmed standards for accessing
healthcare related information. The COAS specification provides a small number of
core definitions, but it is expected that future CORBAmed RFPs will develop
additional data definitions that can be used by COAS without extension of the
interface, as well as develop extensions to COAS.

At the time of submission, RFPs have been published for a Clinical Image Access
Service (CIAS) and a Report Management Service (RMS). These are expected to
utilize COAS and/or to extend it. Potential responders to the CIAS and RMS RFPs

Clinical Observation Access Service V1.0 January 2000

have contributed to this COAS specification. This specification also includes
DsTimeSeries as an example, in the area of vital signs support, of an extension of the
data types and operation of COAS.

1.9 Conformance Points

This section describes the various conformance levels possible for a COAS compliant
provider of clinical observations.

There are three categories of conformance:

1. Interface conformance (i.e., conformance to one or more interfaces described in this
specification).

2. Data structure conformance (i.e., conformance to a mechanism for commiunicating
structures containing the values of observations).

3. Qualified code conformance (i.e., conformance to a naming convention for the use
of terms from other standards).

To be compliant with this specification, a server must have at least interface and data
structure conformance. Qualified code conformance is optional.

1.9.1 Interface Conformance Classes

The following taxonomy is defined for specific conformance classes of COAS
implementations. An implementation claiming conformance to any of these classes
must conform to all of the interfaces specified for that class. An implementation may
claim conformance to multiple conformance classes as long as it is conformant to each
one it claims. In order for an implementation to be COAS compliant, it must conform
to at least one of the conformance classes in the table below.

Each row in the following table includes the specification for a different conformance
class. The columns represent the interfaces on the AccessComponent. A star **’ in a
column indicates the conformance class in that row includes the interface of that
column.

Conformance Class

Access | Access | Access Access | Access Access Loader

Query [Browse | Constraint | Asynch | Supplier | Consumer | Observation

Simple COAS

*

Browse COAS

* *

ConstraintLanguage COAS

D

* *

Asynchronous COAS

Supplier COAS

Consumer COAS

Loader COAS

*

® ‘Simple COAS - This class provides the mechanisms to access observations with a
minimum of effort.

®* ‘Browse COAS - This conformance class adds the ability to make queries on the
results of previous queries, which enables the more interactive activity of browsing.

COAS V1.0 Conformance Points Jan. 2000 1-5

® ‘ConstraintLanguage COAS - This class adds, to the Simple COAS class, the
ability to use a constraint language in the construction of queries.

® ‘Asynchronous COAS - This conformance class is an alternative to the Simple
COAS class in that it provides the same access to observations, but it uses an
asynchronous connection between the client and server instead of the more common
synchronous connection.

® ‘Supplier COAS' - This class is an alternative to the Simple COAS class in that it
provides the same access to observations, but it is oriented towards providing access
to observations that may arrive in the future, and it uses a messaging
communication style to return the observations when they become available. The
client must implement the Consumer COAS class (below) in order to receive the
observations sent by the Supplier COAS class server.

® ‘Consumer COAS - This conformance class is the client side to the server
interfaces in the Supplier COAS class.

® ‘Loader COAS - This class provides a mechanism whereby legacy systems can be
wrapped with a client COAS interface and can push their data into a COAS server.

1.9.2 Data Structure Conformance Classes

This specification was developed before the availability of compilers that support the
Object-By-Value (OBV) technology, yet it anticipates it by including a mechanism for
extensibility. These conformance classes specify the mechanism for communicating
observation values. At this time there is only one mecharni@mgle Struct COAS’

This class indicates that a server uses the single stru@bgeevationDataStruct as

the explicit type returned/passeddbservationData .

® See Section 3.3.6, “ObservationData,” on page 3-21.

It is expected that future standardication will add conformance points for other data
structuring used by servers. Note, these conformance classes are independent of the
interface conformance class implemented by a server.

1.9.3 Qualified Code Conformance Classes

This specification focuses on the mechanisms to communicate information between
server and client. Qualified codes represent the application specific terms, which may
be standardized by domain specific standardization bodies. This specification includes
rules for translating the term names from another standard into the qualified codes used
in this one.

*HL7 Inside COAS ' - this class indicates the usage of HL7 defined observation types
within a COAS server. Any server claiming conformance to this class must have
observations that correspond to at least some HL7 types as defined in the
DSObservationQualifiers chapter. Furthermore, those observation types must utilize
the HL7 types as defined in this specification.

Clinical Observation Access Service V1.0 January 2000

1

It is expected that future standardization will add conformance points for other domain
specific term standards. Note, these conformance classes are optional and independen
of the interface and data structure conformance class implemented by a server.

COAS V1.0 Conformance Points Jan. 2000 1-7

1-8

Clinical Observation Access Service V1.0

January 2000

2.1 Overview

COAS Information Model 2

Contents

This chapter contains the following topics.

Topic Page
“Overview” 2-1
“Modeling Notation” 2-2
“Clinical Observations Model” 2-3
“Examples” 2-26

This chapter describes the Clinical Observation Access Service information model.
Throughout the development of this specification the model has undergone several
modifications. The final version depicts a model that is flexible and reusable without
adding flexibility that is unlikely to be used.

Several models were reviewed and used in determining the final model. Each model
contained things that were valuable in helping us understand the problem and ensuring
that we had a model that would accommodate the majority of needs.

Although this model is simplistic, it is also powerful enough to provide the

extensibility that is needed in the health care domain. There are many individuals
working on efforts to define and categorize health care information. However, there is
not a great deal of consensus at this time. Consequently, we needed to provide a mode
that could accommodate the efforts of these individuals as their work progresses and at
the same time make something available today to help in moving the health care
information technology forward. “Finding a simple solution takes time and effort,

which can be frustrating. People often react to a simple model by saying, “Oh yes,
that's obvious” and thinking “So why did it take so long to come up with it?” But

Clinical Observations Access Service V1.0 January 2000 2-1

simple models are always worth the effort. Not only do they make things easier to
build, but more importantly they make them easier to maintain and extend in the
future.”

This model presumes that all entities within a health care domain can be modeled as
composite or atomic observations. The wobservatiorhas been a long struggle from

the beginning because of the fact that it carried different connotations for various
groups and individuals. It is hoped that the reader will understand that the name is
merely a placeholder, no name is perfect.

2.2 Modeling Notation

The notation used in this chapter comes from &tthalt implements the Unified
Modeling Language (UML3

2.2.1 Modeling Definitions

Many of the definitions given here will be used throughout this chapter.

Class Diagram

A class diagram is a picture for describing generic descriptions of possible systems.
Class diagrams and object diagrams are alternate representations of object models.
Class diagrams contain classes and object diagrams contain objects.

Collaboration Diagram

Collaboration diagrams show objects, their links, and their messages. They can also
contain simple class instances and class utility instances. Each collaboration
diagram provides a view of the interactions or structural relationships that occur
between objects and object-like entities in the current model.

Object Diagram

An object diagram shows the existence of objects and their relationships in the
logical design of a system. An object diagram may represent all or part of the object
structure of a system, and primarily illustrates the semantics of mechanisms in the
logical design. A single object diagram represents a snapshot in time of an
otherwise transitory event or configuration of objects.

1. Martin FowlerAnalysis Patterns Reusable Object Modglddison Wesley. 1997. P 2.
2. Rational Rodé 98, Rose Enterprise Edition 199&ittp://www.rational.corh
3. UML Notation Guide, Version 1.1. Rational Software, September 1997.

http://www.rational.com/uml/html/notation/

Clinical Observations Access Service V1.0 January 2000

2.3 Clinical Observations Model

2.3.1 Clinical Observations Model - Class Diagram

ObservedSubject
1.*
+characterized by
0.*
+characterizes
HealthRecordEntry
0.1
+contain
0..*
L +contained in 0..*

J'r'composes Observation +referenced by T S—
#<<Required>> observationType : QualiiledCade ‘ - - :]
#<<Optional>> observationTime : TimeSpan 0.* #<<Requirer>> obsenationRekrenceType : QualiledGode

\ 1.% +references
F +qualified by|
{disjoint/complete}
0.* 1.% 0..*
+composed of 0.* +qualified by +qualifies
+qualifies -)
CompositeObservatiol AtomicObservation ObservationQuelifier

#<<Required>> observationQualifierT ype : QualifedCode

1.* 1..%
+references Hefrences
ObservationValue

1.1 1.1
+referenced by +referenced by

Figure 2-1 COAS Class Diagram

This is a Class Diagram of Clinical Observations created to assist in the design of the
Clinical Observations Access Service (COAS). “The logical view of a system
describes the existence and meaning of the key abstractions that form the ‘Hesign."

The HealthRecordEntry and ObservedSubject are represented in the model to show
how they may fit into the overall design. Although they can both be supported by this
model, we do not explicitly include any specialized services for them. We believe that
this model, and the services derived from it, will accommodate them. In the section on
Examples they will be discussed.

4. Grady BoochObject Oriented Design with ApplicatiarBenjamin Cummings. 1991.

COAS V1.0 Clinical Observations Model Jan. 2000 2-3

The following sections document the class diagram. Each of the entities in the class
diagram will be discussed.

2.3.2 Observation

Observation

#<<Required>> observationType : QualiiedCode
#<<Optional>> observationTime : TimeSpan

Figure 2-2 Observation

Observation is an abstract class containing attributes that are inherited when a
CompositeObservation is needed or when an AtomicObservation is needed.

CompositeObservation and AtomicObservation both inherit from Observation.

Observation is complete and disjoint. Complete meaning no more subclassing can be
done off of Observation and disjoint meaning that instances may have only one of the
given subtypes as a type.

observationType:QualifiedCode

Description:

This is a QualifiedCode that names the Observation. For
example, Cardiovascular Examination, Complete Blood
Count, Systolic Blood Pressure, etc. The type of this attril
is denoted as a QualifiedCode which comes from the
CORBAmed] Lexicon Query Servic¢LQS). This attribute
has been defined as a required attribute.

observationTime: TimeSpan

Description:

Denotes the time when the observation reflects a
characteristic of the observed subject. (Please reference
Section 2.4.1, “ObservedSubject - Model,” on page 2-27.)
Although is has been defined as optional it is strongly
recommended that this attribute exist.

1. CORBAmed Lexicon Query Services, March 1998. OMG CORBAmed Document 98-03-22.
http://www.omg.org/docs/corbamed/98-03-22.rtf

2-4 Clinical Observations Access Service V1.0 January 2000

ute

2.3.3 CompositeObservation

1.
+composes Observation
#<<Required>> observationType : Qualifed Code
#<<Optional>> obsewationTime : TimeSpan
{disjoint/complete}
0..*
+composed of

CompositeObservation

Figure 2-3 CompositeObservation

A CompositeObservation is a container for a set of Observations. Such a set may be a
Cardiovascular Examination, a Complete Blood Count, a LabUrineBattery, etc. A
CompositeObservation inherits the attributes of an Observation.

A CompositeObservation has no value associated with it, it is used to give some
semantic meaning to the contents that it encapsulates. For example, a Complete Blood
Count is a CompositeObservation that contains components which are
AtomicObservations such as White Blood Count, Red Blood Count, Hematocrit, etc.
The AtomicObservations Red Blood Count, etc. themselves have a value associated
with them but not Complete Blood Count. Complete Blood Count is merely used to
provide a name for the structure of information contained within it.

Relationships with Observation
® Zero or more CompositeObservations are composed of one or more Observations.

®* One or more Observations compose zero or more CompositeObservations.

COAS V1.0 Clinical Observations Model Jan. 2000 2-5

2.3.4 AtomicObservation

Observation

#<<Required>> observationType : QualifiedCode
#<<Optional>> observationTime : TimeSpan

\

{disjoint/complete}

AtomicObservation

1.

+references
ObservationValue

1.1
+referenced by ‘
\

See ObservationValue class diagram for ﬁ

further details.

Figure 2-4 AtomicObservation

An AtomicObservation is a single object with an associated value. An
AtomicObservation inherits the attributes of an Observation.

Examples of AtomicObservations can be such things as While Blood Count,
UrineColor, Systolic Blood Pressure, etc.

Relationships with ObservationValue
®* One or more AtomicObservations reference one and only one ObservationValue.

® One and only one ObservationValue is referenced by one or more
AtomicObservations.

2.3.5 ObservationReference

0.*
+referenced by
Observation ob tionRek
‘<<ReqU|red>> observationType : QualiiedCade — — - serva.|on Seisce X -
#<<Optional>> observationTime : TimeSpan | #<<Required>> observationReferenceType : QualiiedGode

2-6

+references

Figure 2-5 ObservationReference

Clinical Observations Access Service V1.0 January 2000

2

ObservationReference is an associated class defining a relationship between
Observations. The observationReferenceType attribute denotes the type of relationship
and should come from a well-defined terminology system.

observationReferenceType:QualifiedCode

The observationReferenceType attribute is used to denote the type of relationship that
exists between two Observations.

Our intention has been to reference other coding schemes where possible as opposed t
creating our own. The CEN Pre-Standard PT24s already started to create a list of
these (Table A.5) and could be used as a starting point.

Relationships with Observation
® Zero or more Observations are referenced by zero or more Observations.

® Zero or more Observations references zero or more Observations.

2.3.6 ObservationQualifier

Observation

#<<Required>> observationType : QualifedCade
#<<Optional>> observationTime : TimeSpan

1.*
+qualified by

l. .* 0 *
0. +qualified by

+quadifes
+qudifies

ObservationQualifier
#<<Required>> observationQualiferType : QualifedCode

1..*
+references
ObservationValue

1.1
‘ +referenced by
\

See ObservationValue class diagram for ﬁ

further details.

Figure 2-6 ObservationQualifier

5. European PreStandard PT27-N#i8alth Care Informatics Electronic Health Care Record
Communication Part 2 - Domain Termlisers.3.0 of 1998-12-01.

COAS V1.0 Clinical Observations Model Jan. 2000 2-7

An ObservationQualifier is not capable of standing alone. The information represented
by the ObservationValue modifies the Observation being qualified. The following
tables outline some of the possibilities for ObservationQualifiers:

Dates Comments

Dates of documenting for such things as create, edit, attesting, storing in a
database, transcribing, etc.

dictation

transcribed

sign-off

attestation

recorded

Dates of awareness for such things as reporting by patient, observing by
professional, reading a message, etc.

results become available

Dates of (clinically for such things as sampling, observing, informing,
meaningful) events operating, etc.

observation

onset

procedure

projection

consultation

specimen drawn

lab processing times

verification

QA review

collection

Roles

originator

collector

legal authenticator

technician/tester

Clinical Observations Access Service V1.0 January 2000

treater

transcriptionist

auditors

observer

observed subject

Modifier

body site [where observed]

subject/Objective

projection [in time]

hypothesis

Instance Status

outside alarm limits [high/low]

outside measurement range [high/lov

critical alarm [high/low]

completion status
QA status

preliminary/final status

normalcy

confidence

report status

active/inactive/remission

rejected/current

Context

source system

patient record categories

facility/location [where]

COAS V1.0 Clinical Observations Model

=

Jan. 2000

2-9

2-10

equipment used

algorithm/formula used [Source data]

protocol/procedure/method

order number/requisition number

encounter number

encounter type

verifier

episode of care

accession number

specimen number

assessment plan case number

health record transaction

Types

allergen

reaction

prognosis

diagnosis

treatment related

pharmacy

expiration date

refills

dose/give rate

intervention type/time

Other

how it was collected

comments

coded comments

normal value

Clinical Observations Access Service V1.0

January 2000

normal range

version

observer

rule out

severity

persistence/recurrence

onset (time?)

procedure time

observationQualifierType:QualifiedCode

Description: The observationQualifierType attribute is a QualifiedCode
and should come from a well-defined terminology system, It
is used to identify the type of qualifier that is being used to
qualify the observation.

Relationships with Observation
® Zero or more ObservationQualifiers qualifies one or more Observations.

®* One or more Observations are qualified by zero or more ObservationQualifiers.

Relationships with ObservationValue

® One or more ObservationQualifiers references one and only one ObservationValue.

® One and only one ObservationValue is referenced by one or more
ObservationQualifiers.

Relationships with ObservationQualifier
® Zero or more ObservationQualifiers qualifies one or more ObservationQualifiers.

®* One or more ObservationQualifiers are qualified by zero or more
ObservationQualifiers.

COAS V1.0 Clinical Observations Model Jan. 2000 2-11

2-12

2.3.7 ObservationValue

ObservationValue

{disjoint/incomplete}

CodedElement DateTime
<<Required>> value : QualifiedCode ¢<<Req_uired>> valu_e : TimeStamp .
‘<<Optional>> printName : String '<<Opt!0na|>> relatlonaIOperator_ : QualifedCode
#<<Optional>> accuracy : NumericValue
$<<Optional>> accuracyContext : QualifedCode

LooselyCodedElement #<<Optional>> accuracyUnit : QualifedCode
<<Required>> text: String

<<Required>> coding Schemeld : C oding Schemeld
L4
~< <Required>> versionld : String Measurement
$<<Optional>> units : QualifedCode
Curve
#<<Required>> values : XYPairs
#<<Optional>> xUnits : QualifedCode PlainT ext
$<<Optional>> yUnits : QualifedCode #<<Required>> value : String
#<<Optional>> language : QualiiedCode
Multi media
#<<Required>> header : MIME Header Nolnfomation
#<<Required>> reason : QualifedCode

TechnologyInstanceLocator

#<<Required>> protocol : QualiiedCode
#<<Required>> address : String

Figure 2-7 ObservationValue

This is a Class Diagram for ObservationValue.

An ObservationValue is a manifestation of forms of biological phenomenon. In this
model we have selected a subset of all possible values. We realize that our set is not
complete, yet we believe it to be disjoint. There are many efforts und®iway
determining what these values should and should not be within the arena of healthcare.
This model attempts to define those that are most importance at this time. Because
ObservationValue is an abstract type, the ability to extend ObservationValue exists and
should assist as new or modified ObservationValues are identified.

6. HL7 Version 3 Data Type Redesign Projettp://aurora.rg.iupui.edu/v3dt/

Clinical Observations Access Service V1.0 January 2000

CodedElement

CodedElement

#<<Required>> value : QualiiedCode
#<<Optional>> printName : String

Figure 2-8 CodedElement

The CodedElement provides a mechanism to allow for values that have been coded in
some form or another. Coded in the sense that they have a unique identifier. This
unique identifier can then be used to ask a terminology system specific questions about
the CodedElement, for example, its representation based on some context, or its
definition, etc.

value:QualifiedCode

Description: The value attribute is a QualifiedCode and should come from
a well-defined terminology system.

printName:Strin g

Description: The printName attribute is a String and can be used in
conjunction with the value attribute. It is used to provide :
textual representation of the value, possibly overriding the
definition provided by an LQS.

-

1%

LooselyCodedElement

LooselyCodedElement
#<<Required>>text : String
#<<Required>> codingSchemeld : CodingS chemeld
#<<Required>> versionld : String

Figure 2-9 LooselyCodedElement

There are times when a code that the user wants cannot be realized or found within a
terminology system (e.g., is not in the list of allowable values). In which case the
LooselyCodedElement can be used to send text instead. Such instances may occur whel
there are incomplete lists of coded values or “starter sets” for a given domain, for
example, sex, marital status, race, ethnicity, order priorities, etc. The expectation is that
the value sent for this field is nearly always coded, but exceptions are allowed.

text:Strin g

Description: The text attribute is &tring and is used when no
CodedElement from a terminology system can be determjned.

COAS V1.0 Clinical Observations Model Jan. 2000 2-13

codin gSchemeld:Codin gSchemeld

Description:

The codin gSchemeld attribute is of type CodingSchemeld

which comes from an LQS and is used to identify the coding

scheme where the text was intended.

versionld:Strin g

Description:

Theversionid attribute is a String and is used to identify the
version of the coding scheme where the text was intended.

Curve

Curve

#<<Required>> values : XYPairs
<<Optional>> xUnits : QualiiedCode
#<<Optional>> yUnits : QualiiedCode

Figure 2-10 Curve

Some observation values can be plotted graphically. Curve is used to assist in the
retrieval of such information. It is not the intention to fully identify all the necessary
attributes that may be needed for formalized plotting algorithms but rather to supply
enough information so that it is possible to plot information in a Cartesian coordinate..

values:XYPairs

Description:

The XYPairs attribute allows for a sequence of x,y values.

Where the x represents those values to be plotted on the| x-
axis and the y represents those values to be plotted on the y

axis.

xUnits:QualifiedCode

Description:

The xUnits attribute denotes the x axis units. In healthcare

this is usually a time axis, (i.e., milliseconds, seconds or
minutes). This attribute is a QualifiedCode and should co
from a well-defined terminology system.

1%

me

yUnits:QualifiedCode

Description:

TheyuUnits attribute denotes the y axis units. This attribute
a QualifiedCode and should come from a well-defined
terminology system

is

2-14 Clinical Observations Access Service V1.0 January 2000

Multimedia

Multimedia

#<<Required>> header : MIMEHeader

{disjoint/incomplete}

Application

Audio

Im age Message Model Mu ki part Text Video

Figure 2-11 Multimedia

There exists a set of documents, collectively called the Multipurpose Internet Mail
Extensions, or MIME, that specify a standard for conveying various media types over
the Internet.

The MIME Content-Type header field and media type mechanism have been carefully
designed to be extensible, and it is expected that the set of media type/subtype pairs
and their associated parameters will grow significantly over time. In order to ensure
that the set of such values is developed in an orderly, well-specified, and public
manner, the MIME standard specifies a registration process which uses the Internet
Assigned Numbers Authority (IANA)as a central registry for MIME's various areas

of extensibility.

With this in mind we have opted to utilize the MIME as the mechanism for retrieving
multimedia information. Rather than attempt to provide a description of each of the
media types (Application, Audio, Image, Message, Model, Mulitpart, Text and Video)
it seems more reasonable to provide a reference to these. They can be found in the
RFC2048 document.

header:MIMEHeader

The MIME specifications define a number of header fields that are used to describe the
content of a MIME entity. These header fields occur in at least two contexts:

« As part of a regular message header.
* In a MIME body part header within a multipart construct.

The formal definition of these header fields is as follows:
 Entity-headers

7. The Internet Assigned Numbers Authotityp://www.iana.org/listinfo.html

8. http://www.rfc-editor.org/rfc.html

COAS V1.0 Clinical Observations Model Jan. 2000 2-15

2-16

* MIME-message-headers
* MIME-part-headers

The syntax of the various specific MIME header fields are described in the RFC2045

document.

The multimedia data itself follows immediately after the header fields that describe
that portion of the data. This data is often encoded such that it is correctly conveyed
via legacy internet mail servers which can only handle 7-bit ASCII characters.

TechnologylnstanceLocator

TechnologylnstanceLocator

#<<Required>> protocol : QualiiedCode
#<<Required>> address : String

Figure 2-12 TechnologylnstancelLocator

A TechnologylnstanceLocatttis used to reference information that has some tie to a
technology that can perform some action. It is a generalization of the well-known
Universal Resource Locator, or Uniform Resource Locator (URL) concept.

protocol:QualifiedCode

Description:

This is the protocol associated with the address. The prot
indicates the technology to be used to interpret the addre
This attribute, as a QualifiedCode, and should come from
well-defined terminology system.

ocol
SS.
a

The following denotes some current internet protocols:

Protocols

HTTP

FTP

9. http://www.rfc-editor.org/rfc.html

10. HL7 Version 3 Data Type Redesign Projgtp://aurora.rg.iupui.edu/v3dt/

Clinical Observations Access Service V1.0 January 2000

address:Strin g

Description: The address attribute contains some structured sequence of
characters that the protocol knows how to interpret. For
example, www.example.com

DateTime

DateTime

#<<Required>> value : TimeStamp
#<<Optional>> relationalOperator : QualiiedCoge
<<Optional>> accuracy : NumericValue
#<<Optional>> accuracyContext : QualifiedCod
#<<Optional>> accuracyUnit : QualiiedCode

[©]

Figure 2-13 DateTime

A DateTime is used to communicate when some event occurred or when some
observations was made, recorded, or verified.

value:TimeStamp

Description:

The value attribute contains the actual date and time
information.

relationalOperator:QualifiedCode

Description:

TherelationalOperator attribute is used to modify the
meaning of the value attribute. This attribute is a
QualifiedCode and should come from a well-defined
terminology system.

The basic relational operators are denoted as follows:

Symbolic
Representation

Meaning

Equal to

Not equal to

Less than

Less than or equal to
Greater than

Greater than or equal to

COAS V1.0 Clinical Observations Model Jan. 2000 2-17

The symbolic representation comes from the C language. The coding scheme may
denote the symbolic representation differently based on the context (may be a
programming language) but the meaning should be consistent with the foregoing. This
attribute can be used to denote that an observation was not at some time value by usinc
the not-equal-to meaning.

accuracy:NumericValue

Description: Theaccuracy attribute allows for a measure of uncertainty|to
be associated with the DateTime value. For example, plus or
minus 2 days, where plus or minus is the accuracyContext
and days is the accuracyUnit.

accuracyContext:QualifiedCode

Description: TheaccuracyContext attribute is a QualifiedCode and should
come from a well-defined terminology system. The following
denotes possible accuracyContexts:

e Plus or minus
e Within

accuracyUnit:QualifiedCode

Description: The accuracyUnit attribute is a QualifiedCode and should
come from a well-defined terminology system. The following
denotes possible accuracyUnits.

¢ MilliSecond
e Second

e Minute

e Hour

¢ Day

¢ Month

e Year

Note —Accuracy, accuracyContext, and accuracyUnit should be used together as a set.

2-18 Clinical Observations Access Service V1.0 January 2000

Measurement

Measurement
#<<Optional>> units: QualifiedCode

T {digoint/incomplete}

Range TimeSeries
#<<Required>> lower : NumericValue #<<Required>> samplePeriod : TimeDelta
#<<Required>> upper : NumericValue #<<Required>> values: NumericValueSeq
#<<Optional>> lowerRelationalOperator : QualifiedCode #<<Required>> totalSize : NumericValue
#<<Optional>> upperRelationalOperator : QualifiedCode
#<<Optional>> logicalOperator : QualifiedCode

Numeric
#<<Required>> value : NumericValue
#<<Optional>> relationalOperator : QualifiedCode
#<<Optional>> precision : NumericValue

Ratio

#<<Required>> numerator : NumericValue
#<<Required>> denominator : NumericValue
#<<Optional>> relationalOperator : QualifiedCode
#<<Optional>> precision : NumericValue

Figure 2-14 Measurement

This is a Class Diagram for Measurement.

In this model we have identified a subset of all possible Measurements. We realize that
this is not complete, yet we believe it to be disjoint. Measurements can occur in a wide
variety of forms. We have concentrated on those that we believed were widely used.

unit:QualifiedCode

Description: This is the unit associated with the Range, Ratio, TimeSeries,
or Numeric. This attribute is a QualifiedCode and should
come from a well-defined terminology system.

Range

Range
#<<Required>> lower : NumericValue
#<<Required>> upper : NumericvValue
#<<Optional>> lowerRelationalOperator : QualifiedCode
#<<Optional>> upperRelationalOperator : QualifiedCode
#<<Optional>> logicalOperator : QualifiedCode

Figure 2-15 Range

COAS V1.0 Clinical Observations Model Jan. 2000 2-19

Range is used to associate two related values together with the ability to apply
relational and logical operators for combinatory expressions. For example, >= 1 &&
<= 5. It is assumed that the value in the lower attribute is less than or equal to the
value in the upper attribute.

lower:NumericValue

Description: This is the lower value of the range.

upper:NumericValue

Description: This is the upper value of the range.

lowerRelationalOperator:QualifiedCode

Description: This is the lower relational operator. This attribute is a
QualifiedCode and should come from a well-defined
terminology system. The basic relational operators are
denoted as follows:

The basic relational operators are denoted as follows:

Symbolic Meaning
Representation

== Equal to

I= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

The symbolic representation comes from the C language. The terminology system may
denote the symbolic representation differently based on some context (may be a
programming language) but the meaning should be consistent with the foregoing.

upperRelationalOperator:QualifiedCode

Description: This is the upper relational operator. This attribute is a
QualifiedCode and should come from a well-defined

terminology system. The representation and meaning are as
defined for the lowerRelationalOperator described above..

logicalOperator:QualifiedCode

Description: The logical operators allow for the ability to associate twa
values logically. This attribute is a QualifiedCode and should
come from a well-defined terminology system.

2-20 Clinical Observations Access Service V1.0 January 2000

The basic logical operators are denoted as follows:
&& And
Il Or

The symbolic representation comes from the C language. The terminology system may
denote the symbolic representation differently based on some context (may be a
programming language) but the meaning should be consistent with the foregoing.

Ratio

Ratio

'<<Required>> numerator : NumericValue
<<Required>> denominator : NumericValue

#<<Optional>> rel ationalOperator : Qualified Code

#<<Optional>> precison : Numericvalue

Figure 2-16 Ratio

A ratio value contains a numerator quantity and a denominator quantity. Ratio can be
used when referring to clinical laboratory observations that are measured by serial
dilution methods-! Thus, the ability to express titers which occur in laboratory
medicine. A titer is the maximal dissolution at which an analyte can still be detected.
Typical values of titers are: “1:32", “1:64",71:128", etc. Powers of 1/2 or 1/10 are also
common. It should be noted that the ratio data type must not be used as a handy
representation of two related values. In particular, blood pressure values, commonly
reported as 120/80 mm Hg, are not ratios!

numerator:NumericValue

Description: This is the numerator value, the first number in the ratio.

denominator:NumericValue

Description: This is the denominator value, the second number in the ratio.
It must not be zero.

relationalOperator:QualifiedCode

Description: This is the relational operator. This attribute is a
QualifiedCode and should come from a well-defined
terminology system. The basic relational operators are
denoted as follows:

11. Dr. Stanley M. Huff et all. Linking a Medical Vocabulary to a Clinical Data Model using
Abstract Syntax Notation 1.

COAS V1.0 Clinical Observations Model Jan. 2000 2-21

2-22

The basic relational operators are denoted as follows:

Symbolic
Representation

Meaning

Equal to

Not equal to

Less than

Less than or equal to
Greater than

Greater than or equal to

The symbolic representation comes from the C language. The terminology system may

denote the symbolic representation differently based on some context (may be a
programming language) but the meaning should be consistent with the foregoing.

precision:NumericValue

Description: The precision attribute is used to provide a level of precig
to the ratio. In this case the number of decimal places to
right of the decimal point. For whole number ratios, this
attribute is not required.

TimeSeries

TimeSeries

#<<Required>>saamplePeriod : TimeDelta
#<<Required>> values: NumericValue Seq
#<<Required>> totalSize : NumericValue

Figure 2-17 TimeSeries

TimeSeries supports the retrieval of an array of values. Within health care, arrays of
values are typically samples over time, and so we have included an attribute for the

sample period.

samplePeriod:TimeDelta

Description:

The samplePeriod is used to denote the length in time
between the sampling of two sequential values. This is
denoted in seconds.

values:NumericValueSeq

Clinical Observations Access Service V1.0 January 2000

ion
the

Description: This is a sequence of the scalar values of the actual
recordings. These can be octet, short, long, long long, float,
double or any.

totalSize:NumericValue

Description: The total number of observations recorded, or the number of
values in the sequence.

Numeric

Numeric
#<<Required>>value : NumericValue
#<<Optional>> rel ationalOperator : Qualified Code
#<<Optional>> precison : NumericValue

Figure 2-18 Numeric

Numeric is used to communicate a single measurement or quantitative value.

value:NumericValue

Description: This attribute contains the value itself.

relationalOperator:QualifiedCode

Description: This is the relational operator. This attribute is a
QualifiedCode and should come from a well-defined
terminology system. The basic relational operators are
denoted as follows:

The basic relational operators are denoted as follows:

Symbolic Meaning
Representation

== Equal to

I= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

COAS V1.0 Clinical Observations Model Jan. 2000 2-23

2-24

The symbolic representation comes from the C language. The terminology system may
denote the symbolic representation differently based on some context (may be a
programming language) but the meaning should be consistent with the foregoing.

precision:NumericValue

Description: The precision attribute is used to provide a level of precigion
to the value. In this case the number of decimals places t¢ the
right of the decimal point. For whole numbers this attribute is
not required.

PlainText

PlainT ext

#<<Required>> value : String
$<<Optional>> language : QualifedCode

Figure 2-19 PlainText

PlainText is used to communicate observation values as ideas in the form of writing.

value:Strin g

Description: The value attribute is used to contain the text itself.

language:QualifiedCode

Description: The language attribute is used to denote the type of written
language used in conveying the value. This attribute is a
QualifiedCode and should come from a well-defined
terminology system.

The following denotes a subset of potential languages.
» English
e French
« German
* |talian
e Spanish

Nolnformation

NolInformation
#<<Required>>reason : QudiiedCogde

Figure 2-20 Nolnformation
There are instances when it is appropriate to denote that information is unavailable or

missing. A Nolnformation value can occur in place of any other value to express both
that specific information is missing and how or why it is misstg.

Clinical Observations Access Service V1.0 January 2000

Reason:QualifiedCode

The reason attribute is used to denote why the information is missing or

unavailable. This attribute is a QualifiedCode and should come from a well-defined

terminology system.

The following represents a potential set of reasons:

Meaning

Description

Unknown

No information at all (i.e., nothing more is known abouit
the circumstances of missing information).

Asked but unknown

The person asked could not supply the information (why?)

Not available

The person asked does have the information somewhere

but not available right now (e.g., oh, | wrote down what
the doctor said last time, but | didn't bring this piece of
paper with me).

Not applicable

An answer to “gestational age” for a patient who is not
pregnant.

Not asked

The person who should collect that information forgot to
ask.

12. HL7 Version 3 Data Type Redesign Prof&tp://aurora.rg.iupui.edu/v3dt/

COAS V1.0 Clinical Observations Model Jan. 2000 2-25

2.4 Examples

2-26

Observed
Subject

Observed

Subject

Report Pathology HealthRecord
Report — Entry —
L R
Summary Discharge HealthRecord
Summary — Entry L
R R
R ’—Ij HealthRecord
Notes Note L = |
— 4}73

HealthRecord

Entry

Medication
List List -

HealthRecord

Entry

Laboratory

Results LabUrine HealthRecord
Battery — Entry
etc etc... etc

Figure 2-21 Example Health Records

This is a Collaboration Diagram for an example of the health records of an observed
subject.

This diagram represents an example of how one might put together a representation of
medical information. This diagramming technique is known as a collaboration diagram
and is used to represent interactions. It provides a view of the interactions or structural
relationships that occur between objects and object-like entities in the current model.
In this case an ObservedSubject is considered a Person (patient) that has many links tc
specific types of medical information categories. For example; reports, nurse notes,
and Laboratory Results. These categories themselves have links to specific instances
of that type of medical information. These specific instances of medical information
have links to specific information that gives meaning about that particular instance of
medical information.

Clinical Observations Access Service V1.0 January 2000

2

So, following one set of links, we see that a Person (patient) has Laboratory Results,
which contains instances of LabUrineBatterys where each LabUrineBattery has a link

to a HealthRecordEntry.

Also, the ObservedSubject (Person / patient) has links to another ObservedSubject,
such as their parent, child, or spouse.

2.4.1 ObservedSubject - Model

0..*
+referenced by
ObservedSubjed] ObservedSubjectRefrence
#<<Required>> observedSubjectType : QualiiedCode] #<<Required>> observedSubjectReferenceType : QualiiedCode
0..*
1 +references
+qualified by
1.* 0.*
0..* +qualified by 1 +qualifies
+qualifies - ;
ObservedSubjectQualifer
#<<Requred>> obsenedSubjectQualiferType : QualifedCode
1.*
+references
ObservationValue
1.1
+referenced by

Figure 2-22 ObservedSubject - Model

As mentioned earlier, we have set ObservedSubject outside the scope of this
specification and therefore we only include this model as an informational reference.
Please notice the similarities with the Clinical Observations Model. The
ObservedSubject could merely be placed on top of the Clinical Observations Model. In
essence an ObservedSubject is a CompositeObservation.

We focused on the patient when developing this specification but were aware of other
ObservedSubjects and modeled accordingly so as not to dismiss the notion of
ObservedSubjects other than a patient. The following denotes potential
ObservedSubjects:

 Patient

e Family Unit

» Population Cohort

¢ Organ

COAS V1.0 Examples Jan. 2000 2-27

2.4.2 ObservedSubject - Example

ObservedSubject: CompositeObservation
observationType = Person

Demographics:CompositeObservation
obsenvationType = Demograp hics

Insurance: Comp ositeObservation

observationType = Insurance

LaboratoryResults:CompositeObservations

obsenationType = Laboratory Results

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

HealthRecordEntry:CompositeObservation

observationType = HedthRecord Entry
observationTime = 199901040800

Figure 2-23 ObservedSubject - Example

This is an Object Diagram for one possible representation of an ObservedSubject in a
health care information environment

ObservedSubject:CompositeObservation

Observed Subject: Comp ositeOb servation
observationType = Person

Figure 2-24 ObservedSubject:CompositeObservation

This instance of an ObservedSubject is typed as a Person (patient) and has a
CompositeObservation link of type Insurance, a CompositeObservation link of type
Demographic and a CompositeObservation link of type LaboratoryResult. This
diagram is not meant to be normative but rather to show an example of what an
ObservedSubiject of type Person (patient) may have associated with it.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
ObservedSubject. For example, Person, Organ, or Epidemic.

2-28 Clinical Observations Access Service V1.0 January 2000

Insurance:CompositeObservation

Ins urance: C ompositeObservati on
observationType = Insurance

Figure 2-25 Insurance:CompositeObservation

A Person (patient) in a health care information environment usually has a link to some
insurance information. This diagram does not fully exploit what a
CompositeObservation of type Insurance has as its AtomicObservations or other
CompositeObservations. It is merely shown as a possible scenario.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation. In this case Insurance.

Demographics:CompositeObservation

Demographics:CompositeObservation
observationType = Demographics

Figure 2-26 Demographics:CompositeObservation

A Person (patient) in a health care information environment usually has a link to some
demographic information. This diagram does not fully exploit what a
CompositeObservation of type Demographic has as its AtomicObservations or other
CompositeObservations. It is merely shown as a possible scenario.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation. In this case Demographics.

LaboratoryResults:CompositeObservation

LaboratoryResults:CompositeObservations
observationType = LaboratoryResults

Figure 2-27 LaboratoryResults:CompositeObservation
A Person (patient) in a health care information environment usually has a link to some

LaboratoryResults information. In this example the LaboratoryResults has a link to a
CompositeObservation of type LabUrineBattery.

COAS V1.0 Examples Jan. 2000 2-29

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation. In this case LaboratoryResults.

LabUrineBattery:CompositeObservation

LabUrineBattery:CompositeObservation

observationType = LOINCUrineB attery
observationTime = 199812190700

Figure 2-28 LabUrineBattery:CompositeObservation

LaboratoryResults have links to Laboratory Tests. In this case a LabUrineBattery has
been depicted.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation. In this case LONICUrineBattery.

observationTime: TimeSpan

Description: Denotes the time when the LabUrineBattery became a
characteristic of the observed subject. In this case 1998
December 19 at 07:00 am.

HealthRecordEntry:CompositeObservation

HealthRecordEntry: CompositeObservation

observationType = HealthR ecod Entry
observationTime = 199901040800

Figure 2-29 HealthRecordEntry:CompositeObservation

A HealthRecordEntry may be linked to a Laboratory Test. See the HealthRecordEntry
Example in this section for a further description.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation. In this case HealthRecordEntry.

observationTime: TimeSpan

Description: Denotes the time when the HealthRecordEntry became &
characteristic of the LabUrineBattery. In this case 1999
January 1, at 08:00 am.

2-30 Clinical Observations Access Service V1.0 January 2000

2.4.3 LabUrineBattery - Example

ResultStatus: CodedElem ent
value = Final

ResultStatus:AtomicObservation

observationType = ResultStatus

DiagnosticService: Cod edElement
value = Urinalysis

Diagnosti cService: Ato micOb servation

observation Type = DiagnosticService

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

Figure 2-30 LabUrineBattery - Example

This is an Object Diagram for what might be a way to represent a
CompositeObservation of type LONICLabUrineBattery. The LON{€ database
provides a set of universal names and ID codes for identifying laboratory and clinical

observations.

LabUrineBattery:CompositeObservation

LabUrineBattery:CompositeObservation

observationType = LOINCUrineB attery
observationTime = 199812190700

Figure 2-31 LabUrineBattery:CompositeObservation

A Laboratory Test, in this case a LabUrineBattery, has been depicted. This example
shows two AtomicObservations being linked to the LabUrineBattery, a ResultStatus
and a DiagnosticService.

observationType:QualifiedCode

Description:

This is a QualifiedCode that provides the type of the
CompositeObservation. In this case LONICUrineBattery.

observationTime: TimeSpan

Description:

Denotes the time when the LabUrineBattery became a
characteristic of the observed subject. In this case 1998
December 19, at 07:00am.

13. http://www.mcis.duke.edu/standards/HL7/termcode/loinc.htm

COAS V1.0 Examples Jan. 2000 2-31

ResultStatus:AtomicObservation

ResultStatus: AtomicObservation

observationType = ResultStatus

Figure 2-32 ResultStatus:AtomicObservation

LaboratoryResults usually have an indicator to identify the status of the result.

observationType:QualifiedCode

Description:

This is a QualifiedCode that provides the type of the
AtomicObservation. In this case ResultStatus.

ResultStatus:CodedElement

ResultStatus:CodedElement

value = Final

Figure 2-33 ResultStatus:CodedElement

ResultStatus is an AtomicObservation and therefore has an ObservationValue linked to
it. In this case it is a CodedElement and should come from a well defined terminology

system.

value:QualifiedCode

Description:

The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Final.

DiagnosticService:AtomicObservation

DiagnosticService:AtomicObservation

observationType = DiagnosticService

Figure 2-34 DiagnosticService:AtomicObservation

LaboratoryResults may have an indicator of the diagnostic service that performed the

laboratory test.

observationType:QualifiedCode

Description:

This is a QualifiedCode that provides the type of the
AtomicObservation. In this case DiagnosticService.

2-32 Clinical Observations Access Service V1.0 January 2000

DiagnosticService:CodedElement

DiagnosticService:CodedElement
value = Urinalysis

Figure 2-35 DiagnosticService:CodedElement

DiagnosticService is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a CodedElement and should come from a well defined
terminology system.

value:QualifiedCode

Description: The value for a CodedElement is of tyQealifiedCode and
in this case has been identified as Urinalysis.

2.4.4 LabUrineBattery - LabSegments

ResultStatus:CodedElement DiagnosticService:CodedElement
pvalue = Final pvalue = Urinalysis

ResultStatus: AtomicObservation DiagnosticService:AtomicObservation

gobservationType = ResultStatus gobservationType = DiagnosticService

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

LabSegment#1:CompositeObservation LabSegement#2:CompositeObservation LabSegment#3:CompositeObservation

observationType = LOINCUrineSodium observationType = LOINCUrineColor obsewationType = LOINC UrineColor

Figure 2-36 LabUrineBattery - LabSegments

This is an Object Diagram showing an extension to the previous
LONICLabUrineBattery example with the addition of three specific test results.

COAS V1.0 Examples Jan. 2000 2-33

LabSegment#1:CompositeObservation

LabSegment#1:CompositeObservation
observationType = LOINCUrineSodium

Figure 2-37 LabSegment#1:CompositeObservation

A CompositeObservation of type LOINCUrineSodium.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation. In this case LOINCUrineSodium.

LabSegment#2:CompositeObservation

LabSegement#2:CompositeObservation
observationType = LOINCUrineC olor

Figure 2-38 LabSegment#2:CompositeObservation

A CompositeObservation of type LOINCUrineColor.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation. In this case LOINCUrineSodium.

LabSegment#3:CompositeObservation

LabSegment#3:CompositeObservation
observationType = LOINCUrineColor

Figure 2-39 LabSegment#3:CompositeObservation

A CompositeObservation of type LOINCUrineColor.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation. In this case LOINCUrineSodium.

2-34 Clinical Observations Access Service V1.0 January 2000

2.4.5 LabUrineBattery - LabSegment#1 - LONICUrineSodium

ResultSatus: CodedElenent] DiagnosticService:CodedHenment
F value =Find r's value = Urinalysis

ResultSatus: AtorricObservation DiagnosticService:AtonicObservation|
& observaionType =ResultStatus '] observationType = DiagnosticService

LabUrineBattery: ConpositeObservatiol

observationType = LOINCUrineBattery
observationTime = 199812190700

LabSegment#1:ConpositeObservatio
observationType = LOINCUrineSodium

NurrericMeasurenent: AtomicObservation RangeMeasurement: AtomicObservation AbnormalFlag: AtonicObservation
) observationType = Measurment ¢ observationType = Range observaionType = AbnormelFlag
| {600 < Numer{cMeasurenent.value < 100}
NunericMeasurement: Nunreri RangeMeasurment:Range
& value=423 # Upper =600 AbnorelFlag: CodedElement|
@ Uunits =mol/L & lower =100 -
units =nmmol/L ¢ RS

Figure 2-40 LabUrineBattery - LabSegment#1 - LOINCUrineSodium

This is an Object Diagram that shows an extension of the detail in one of the lab test
results, namely the LONICLabUrineSodium.

NumericMeasurement:AtomicObservation

NumericM easurement: AtomicObservation
gobsenationType = Measument

Figure 2-41 NumericMeasurement:AtomicObservation

LOINCUrineSodium has a NumericMeasurement linked to it.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case Measurement.

COAS V1.0 Examples Jan. 2000 2-35

NumericMeasurement:Numeric

NumericMeasurement:Numeric

¢value =423
ounits = mmol/L

Figure 2-42 NumericMeasurement:Numeric

NumericMeasurement is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a numeric value.

value:NumericValue

Description: The value in this instance is 423.

units:QualifiedCode

Description: The units in this instance are mmol/L.

RangeMeasurement:AtomicObservation

RangeMeasurement: AtomicObservation
gobservationType = Range

Figure 2-43 RangeMeasurement:AtomicObservation

LOINCUrineSodium has a RangeMeasurement linked to it.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case Range.

RangeMeasurement:Range

RangeMeasurment:Range
gupper = 600
‘Iower =100
‘units = mmol/L

Figure 2-44 RangeMeasurement:Range

RangeMeasurement is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a range.

2-36 Clinical Observations Access Service V1.0 January 2000

upper:NumericValue

Description: The upper value of the range is 600.

lower:NumericValue

Description: The lower value of the range is 100.

units:QualifiedCode

Description: The units in this instance are mmol/L.

AbnormalFlag:AtomicObservation

AbnormalFlag:AtomicObservation
obsewaionT ype = AbnomalFlag

Figure 2-45 AbnormalFlag:AtomicObservation

LOINCUrineSodium has an AbnormalFlag linked to it.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case AbnormalFlag.

AbnormalFlag:CodedElement

AbnomalFlag:C oded Element
svalue = Nomal

Figure 2-46 AbnormalFlag:CodedElement

AbnormalFlag is an AtomicObservation and therefore has an ObservationValue linked
to it. In this case it is a CodedElement and should come from a well defined
terminology system.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Normal.

COAS V1.0 Examples Jan. 2000 2-37

2.4.6 LabUrineBattery - LabSegment#2 - LONICUrineColor

ResultStatus:CodedElement DiagnosticService:CodedElement
pvalue = Final gvalue = Urinalysis

ResultStatus: AtomicObsewvation DiagnosticService:AtomicObservation
gobservationType = ResultStatus gobservationType = DiagnosticService

LabUrineBattery:CompositeObservation
observationType = LOINCUrineBattery
observationTime = 199812190700

LabSegment#2:CompositeObservation
gobservationType = LOINCUrineColor

Color:AtomicObservation
‘observationType = Color

AbnormalFlag: AtomicObservation
gobservationType = AbnormalFlag

{LabSegment#2CodedElement.value <> 'Clear' OR
LabSegment#2CodedElement.value <> 'Pale Yellow'}

Color:CodedElement AbnormalFlag:CodedElement
gvalue = Brown gvalue = Abnormal

Figure 2-47 LabUrineBattery - LabSegment#2 - LOINCUrineColor

This is an Object Diagram for our example LabUrineBattery - LabSegment -
LOINCUrineColor.

Color:AtomicObservation

Color.AtomicObservation
gobservationType = Color

Figure 2-48 Color:AtomicObservation

LOINCUrineSodium has a Color linked to it.

2-38 Clinical Observations Access Service V1.0 January 2000

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case Color.

Color:CodedElement

Color:C odedElement
$value = Brown

Figure 2-49 Color:CodedElement

Color is an AtomicObservation and therefore has an ObservationValue linked to it. In
this case it is a CodedElement and should come from a well defined terminology
system.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Brown.

AbnormalFlag:AtomicObservation

AbnormalFlag: AtomicObservation
gobsevationType = AbnormalFlag

Figure 2-50 AbnormalFlag:AtomicObservation

LOINCUrineSodium has an AbnormalFlag linked to it.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case AbnormalFlag.

AbnormalFlag:CodedElement

AbnomalFlag:C oded Element
pvalue = Abnormal

Figure 2-51 AbnormalFlag:CodedElement
AbnormalFlag is an AtomicObservation and therefore has an ObservationValue linked

to it. In this case it is a CodedElement and should come from a well defined
terminology system.

COAS V1.0 Examples Jan. 2000 2-39

2-40

value:QualifiedCode

Description:

The value for a CodedElement is of type QualifiedCode 3
in this case has been identified as Abnormal.

2.4.7 LabUrineBattery - LabSegment#3 - LOINCUrineColor

ResultStatus:CodedElement

‘.value = Final

DiagnosticService: Cod edE lement

value = Urinalysis

ResultStatus: AtomicObservation

DiagnosticService: AtomicObservation

gobservationType = ResultStatus

gobservationType = DiagnosticService

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

LabSegm ent#3:Co mp ositeOb servation

gobservationType = LOINCUrineColor

Color:AtomicObservation

gobservationType = Color

Color.CodedElement
gvalue = Bloody

AbnormalFlag:AtomicObservation
gobsenationType = Abnomal Flag

{LabSegment#3CodedElement.value <> 'Clear’' OR
LabSegment#3CodedElement.value <> 'Pale Yellow'}

AbnormalFlag:CodedElement
value = Abnormal

Figure 2-52 LabUrineBattery - LabSegment#3 - LOINCUrineColor

This is an Object Diagram for our example LabUrineBattery - LabSegment -

LOINCUrineColor.

Clinical Observations Access Service V1.0 January 2000

Color:AtomicObservation

Color.AtomicObservation
gobservationType = Color

Figure 2-53 Color:AtomicObservation

LOINCUrineSodium has a Color linked to it.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case Color.

Color:CodedElement

Color:CodedElement
gvalue = Bloody

Figure 2-54 Color:CodedElement

Color is an AtomicObservation and therefore has an ObservationValue linked to it. In
this case it is a CodedElement and should come from a well defined terminology
system.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Bloody.

AbnormalFlag:AtomicObservation

AbnormalFlag: AtomicObservation
gobservationType = AbnormalFlag

Figure 2-55 AbnormalFlag:AtomicObservation

LOINCUrineSodium has an AbnormalFlag linked to it.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case AbnormalFlag.

COAS V1.0 Examples Jan. 2000 2-41

2-42

AbnormalFlag:CodedElement

AbnomalFlag:C oded Element
pvalue = Abnormal

Figure 2-56 AbnormalFlag:CodedElement

AbnormalFlag is an AtomicObservation and therefore has an ObservationValue linked
to it. In this case it is a CodedElement and should come from a well defined
terminology system.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Abnormal.

2.4.8 HealthRecordEntry - Model

0.*
+references
HealthRecordEntry | HealthRe cord Entry Reference
#<<Required>> healthRecordEntryType : QualifedCpde #<<Required>> healthRecordEntryReferenceType : QualiiedCode
0.*
1 +referenced by
+qualifed by
1.* 0..*
0. +qualified by +qualifies
*qualifes HealthRecordEntryQualifier
#<<Required>> healthRecordEntryQualifierType : QualifedCGode
1.*
+references
ObservationValue
1.1
+referenced by

Figure 2-57 HealthRecordEntry - Possible Model

As mentioned early in this chapter, we have set HealthRecordEntry outside the scope
of this specification and therefore we only include this example as an informational
reference. Please notice the similarities with the Clinical Observations Model. The
HealthRecordEntry could merely be placed on top of the Clinical Observations Model.
In essence an HealthRecordEntry is a CompositeObservation.

Clinical Observations Access Service V1.0 January 2000

2.4.9 HealthRecordEntry - Example

AuthorizingClinician:AtomicObservation——{ AuthorizingClinician:QualifedPersonid

observationType = AuthorizingClinician

Auditor: AtomicObservation

observationType = Auditor

localName = Dr. Authenticator

Audtor:QudifedP ersonld

localName = Tom Audit

EncounterNumber: AtomicObservation

EncounteNumber.String

obsavaionType = EncounterlNumber

value = 123456789

HealthRecordEntryId:AtomicObservaIioﬁm—

HealthRecordEntry: CompositeObservatio

obsevaionType = HedthRecordEntryld ‘

observaionType = HedthRecordEntry
observationTime = 199901040800

HealthRecordEntryld: QualiiedNameString

localName = OurHealthRecordId123

OriginatingSource: Ato mi dObservéio

OriginatingSource: CodedElemen

observationType = OriginatingSource

value = Clinic#l

Originator:AtomicObservation

observationType = Originator

Orignaor: QudifedPersonld

localName = Dr. First

Reason: AtomicObservation

observationType = Reason

Reason CodedHement

value = Urinary Tract Infectiq

=]

Status: AtomicObservatiol

observationType = Status

Figure 2-58 HealthRecordEntry - Example

Status:CodedElement

value = Completed

t

This is an example Object Diagram for a possible HealthRecordEntry.

HealthRecordEntry:CompositeObservation

HealthRecordEntry:CompositeObservation

obsewvationType = HealthR ecord Entry
obsewvationTime = 199901040800

Figure 2-59 HealthRecordEntry:CompositeObservation

A HealthRecordEntry can be used to provide transactional information that is
associated with an Observation.

observationType: QualifiedCode

COAS V1.0

Examples Jan. 2000

2-43

Description: This is a QualifiedCode that provides the type of the
CompositeObservation. In this case HealthRecordEntry.

observationTime: TimeSpan

Description: Denotes the time when the HealthRecordEntry became a
characteristic of the subject of care. In this case 1999 January
1, at 08:00 am.

AuthoringClinician:AtomicObservation

Auth orizingClinician :Atomi cOb servation
observationType = AuthorizingClinician

Figure 2-60 AuthoringClinician:AtomicObservation

The AuthoringClinician can be used to identify the responsible individual.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case AuthoringClinician.

AuthoringClinician:QualifiedPersonld

AuthorizingClinician: QualifedPersonld
localName = Dr. Authenticator

Figure 2-61 AuthoringClinician:QualifiedPersonld

AuthoringClinician is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a QualifiedPersonld and should come from some
Enterprise Master Patient Index. There are other attributes associated with a
QualifiedPersonld other than localName but not included in this example for brevity.
Further information can be attained from the CORBAmdelerson Identification
Servicé* (PIDS).

localName:Strin g

Description: The localName is of type String and in this case has been
identified as Dr. Authenticator.

14. CORBAmed Person ldentification Services, March 1998. OMG CORBAmed Document
98-02-29 http://www.omg.org/docs/corbamed/98-02-29. rtf

2-44 Clinical Observations Access Service V1.0 January 2000

Auditor:AtomicObservation

Auditor:AtomicObser ation
observationType = Auditor

Figure 2-62 Auditor:AtomicObservation

The Auditor can be used to identify the individual from the medical records
department that was responsible for finalizing this information.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case Auditor.

Auditor:QualifiedPersonlid

Auditor:Qualified Personid
localName = Tom Audit

Figure 2-63 AuthoringClinician:QualifiedPersonld

AuthoringClinician is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a QualifiedPersonld and should come from some
Enterprise Master Patient Index.

localName:Strin g

Description: The localName is of type String and in this case has been
identified as Tom Audit.

EncounterNumber:AtomicObservation

EncounteMumber. Ato micObservation
observationType = EncounterNumber

Figure 2-64 EncounterNumber:AtomicObservation

The EncounterNumber can be used as some unique system identifier for this particular
instance of information.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case EncounterNumber.

COAS V1.0 Examples Jan. 2000 2-45

EncounterNumber:String

EncounterNumber:String
value = 123456789

Figure 2-65 EncounterNumber:String

EncounterNumber is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a String.

value:Strin g

Description: The value is of type String and in this case has been identified
as 123456789.

HelathRecordEntryld:AtomicObservation

HealthRecordEntryld:AtomicObservation
observationType = HealthRecord Entryid

Figure 2-66 HelathRecordEntryld:AtomicObservation

The HealthRecordEntryld can be used as some unique system identifier for the
HealthRecordEntry itself.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case HealthRecordEntryld.

HealthRecordEntryld:String

HealthRecordEntryld:QualiiedNameString
localName = OurHealthRecordld123

Figure 2-67 HealthRecordEntryld:String

HealthRecordEntryld is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a QualifiedNameString. There are other attributes
associated with a QualifiedNameString other than localName but not included in this
example for brevity. QualifiedNameString is identified in the CORBAmMdMS.

localName:Strin g

Description: The value is of type String and in this case has been identified
as OurHealthRecordId123.

2-46 Clinical Observations Access Service V1.0 January 2000

OriginatingSource:AtomicObservation

OriginatingSource: AtomicObservation
observationType = OriginatingSource

Figure 2-68 OriginatingSource:AtomicObservation

The OriginatingSource can be used to identify where this information originated from.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case OriginatingSource.

OriginatingSource:CodedElement

Originating Source:Cod edElement
value = Clinic#l

Figure 2-69 OriginatingSource:CodedElement

OriginatingSource is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a CodedElement.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Clinic#1.

Originator:AtomicObservation

Originator:AtomicObservation
observationType = Originator

Figure 2-70 Originator:AtomicObservation

The Originator can be used to identify who was the originator of this information.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case Originator.

COAS V1.0 Examples Jan. 2000 2-47

Originator:QualifiedPersonid

Originator:QualifiedPersonid
localName = Dr. First

Figure 2-71 Originator:QualifiedPersonld

Originator is an AtomicObservation and therefore has an ObservationValue linked to it.
In this case it is a QualifiedPersonld and should come from some Enterprise Master
Patient Index.

localName:Strin g

Description: The localName is of type String and in this case has been
identified as Dr. First.

Reason:AtomicObservation

Reason:AtomicObservation
observationType = Reason

Figure 2-72 Reason:AtomicObservation

The Reason can be used to identify why this was necessary.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case Reason.

Reason:CodedElement

Reason: Coded Element
value = Urinary Tract Infection

Figure 2-73 Reason:CodedElement

Reason is an AtomicObservation and therefore has an ObservationValue linked to it. In
this case it is a CodedElement.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Urinary Tract Infection|

2-48 Clinical Observations Access Service V1.0 January 2000

Status:AtomicObservation

Status:AtomicObservation
observationType = Status

Figure 2-74 Status:AtomicObservation

The Status can be used to indicate the state of the information.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation. In this case Status.

Status:CodedElement

Status:CodedElement
value = Completed

Figure 2-75 Status:CodedElement

Status is an AtomicObservation and therefore has an ObservationValue linked to it. In
this case it is a CodedElement.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Completed.

COAS V1.0 Examples Jan. 2000 2-49

2-50 Clinical Observations Access Service V1.0 January 2000

DSObservationAccess Service 3

Contents

This chapter contains the following topics.

Topic Page
“Overview” 3-1
“Viewpoints” 3-2
“Data Type Definitions” 3-16
“Interface Specifications” 3-31
“Query-Oriented Interface Specifications” 3-43
“Event and Notification Interface Specifications” 3-53
“Utility Interface Specifications” 3-59

3.1 Overview

The DsObservationAccess service has many interfaces and definitions, and can be
viewed from several perspectives. Several viewpoints are first shown by UML
diagrams. Each viewpoint is chosen to describe one aspect of the entire service and its
types. These initial viewpoints are not complete descriptions, showing only relevant
information for a viewpoint while hiding irrelevant information.

After the viewpoints, all IDL types and interfaces are described in detail.

Clinical Observations Access Service V1.0 January 2000 3-1

3.2 Viewpoints
This section provides an overview of theObservationAccess service. The service is

presented from several viewpoints which may include overlapping information. The
viewpoints are not meant to be orthogonal.

3.2.1 Navigable Relationships Viewpoint

Query Access AccessComponent Observ ationLoader
L N
_ —
/// \\\\\
/// \\\\\
// T
BrowseAccess SupplierAccess ConsumerAccess AsynchAccess
EventSupplier EventConsumer AsynchCallback
ConstraintLanguageAccess
AbstractFactory
Observ edSubject AbstractManagedObject
/ \ Observ ationRemotelterator
AtomicObserv ationRemote ObservationRe mote Observ ationDatalterator
CompositeObserv ationRemote QualifiedCodelterator

Figure 3-1 Direct navigation between interfaces.

All interfaces defined in thBsObservationAccess module are shown on the diagram
above. Iterators and abstract interfaces do not have direct navigation. Attributes and
operations are hidden in this diagram in order to focus in on the navigable
relationships.

Only direct navigation is shown. Some of the query interfaces have indirect
mechanisms to traverse to other interfaces as well. For example, a browse operation
could return references to @bservedSubject oOr ObservationRemote .

The starting point in th®sObservationAccess service is the\ccessComponent

interface. From there a client can traverse to the other core interfaces on the
component. This traversal capability is one of the basis for the componentization (See
Section 3.2.3, “Componentization Viewpoint,” on page 3-5).

Clinical Observations Access Service V1.0 January 2000

3.2.2 Interface Inheritance Viewpoint

Query Access

BrowseAccess

AsynchAccess

AccessComponent

ConsumerAccess

— - o | SupplierAccess
Abs tract Factory ﬁfffiiiffffffffffiiiff

Asy nchCallback

CosNotify Comm: :Notify Publish <F CosNotify Comm::StructuredPushConsumer

| CosNotify Comm::StructuredPushSupplier

CosNotif yComm:: Notif y Subscribe EventConsumer

| EventSupplier

AbstractManagedObject

ObservedSubgect

ObservationRenpte QudifiedCodelterator

ObservationD & alterat or

CompositeObservationRemote || Atomic Observ ationRemote

ObservationR emotelterator

Figure 3-2 Inheritance relationship between the vari@sObservationAccess interfaces.

This diagram shows the inheritance relationship betweeb4beservationAccess
service interfaces. The attributes and operations are hidden in this diagram in order to
focus in on the inheritance relationships.

AccessComponent is the superclass for componentization (See Section 3.2.3,
“Componentization Viewpoint,” on page 3-5).

COAS V1.0 Viewpoints Jan. 2000 3-3

3-4

The four interfaces from theosEvent module are part of the OMG Event Service.
The Event Service is not required for theObservationAccess event system,
although its use is facilitated by the use of some common interfaces.

The AbstractMana gedObject interface contains a single operatidone(), which

allows a client to indicate when it is done with an object. All subclasses of
AbstractMana gedObiject are instantiated or activated according to client requests, with
their lifetime under server control. A well-behaved client will signal when it is done
with such a remote object, and a savvy server will keep some timer for cleanup after
ill-behaved clients or traumatic client termination.

The ObservationRemote object can have subtypes that are either composite or atomic
observations. See Section 3.2.5, “Local/Remote Observations Viewpoint,” on page 3-7
for more details.

Clinical Observations Access Service V1.0 January 2000

3.2.3 Componentization Viewpoint

AccessComponent L>
[
‘ \\\
\‘ T

\
‘\ —
uery _access
| ey
\ —] QueryAccess
\ +bronse access
‘\ BrowseAccess
\ +asynch_access
\ AsynchAccess
\ +event_supplier
\
| SupplierAccess
|
\ +event_consumer
\
\ ConsumerAccess
\ +constraint_access
\
\
\
\ ConstraintLanguageAccess
mbsewation_l?a*ier
\
\
Observ ationLoader
Figure 3-3 Simplified view ofObservationAccess::AccessComponent and its
subclasses.

The base interfac&ccessComponent

includes a means for dynamic discovery of all
implemented components. Servers need implement only components which fit their
purpose, according to conformance level.

The components each inherit from thecessComponent , which in turn has

references to other components, so a client of one component can navigate from one to
another easily.

COAS V1.0 Viewpoints Jan. 2000

3-5

3.2.4 Full Component Viewpoint

AccessComponent

+observation_loader

ObservationLoader

$C0as version : tring

#pid_service : ldentificationComponent
glerminology_service : TerminologyService
sirader_service : TraderComponents
#naming_service : NamingContext

+event_consumer

ConsumerAccess

SN

®load_ob=rvations)

+guery_access

QueryAccess

%oount_obsenations)
%get_observation()

%get_components)
%get_supported_codes()
*get_supported_qualifiers()
%get_supported_policies)
*get_default_policies()

®get_type_code_for_observation_type()

%are_jterators supported()
®get_current_time()

%create_consumer()
%get_consumer_by _id()

—

+event_supplier

= SupplierAccess

$create_supplier()
®get_supplier_by id()

%get_observations()
®get_observations_by time()
%get_observations_by qualifier(
%get_observations_with_policy()

+asynch_access

i

AsynchAccess

%cancel_get()

%oount_observations()
%get_observation()
*®get_observations()
®get_observations by time()
%get_observations by _qualifier()
%get_observations with_policy()

+condraint_acc essw

+browse_access

BrowsAccess

$get_observed_subject()
®get_observed_subjects()

$get_observed subject_for_observation_id()
®get_observed_subjects for_obsenation_ids)
%count_observation)

®get_observation()

%get_observations)

®get_observations by _time()
®get_observations by _qualifier()

%get observations with_policy()

CongtraintLanguageAccess

#supported_languages : ConstraintLanguageSeq

®get by constraint()

Figure 3-4 Full view of attributes and operations faccessComponent and its subclasses.

The diagram above shows the components available Ak@essComponent , and

their attributes and operations. Several of the components share operations with similar

names like §et_observation() ” with similar semantics.

Clinical Observations Access Service V1.0

January 2000

3.2.5 Local/Remote Observations Viewpoint

<<Sequence>> <<Interface>> <<Interface>> <<Seguence>>
Observ ationRemoteSeq Observ ationRemotelterator Observ ationDatalterator Observ aionDataSeq
0..* 0.*
<<Interface>> <<Ty pedef>>
ObservationRenote Observ ationData
// \
/ 0.1

¢

<<Interface>>
CompositeObserv ationRemote

<<Interface>>
AtomicObserv ationRemote

0..1\

<<Ty pedef>>

Observ ationValue

Figure 3-5 Showing a comparison between observations accessed by reference (remote) and
observations accessed by value (local).

The DsObservationAccess service can support both reference and value access to
observations. This viewpoint shows a comparison between observations returned by
value ObservationData) and those returned by referen@bgervationRemote). In

both the local and remote flavors, only an “atomic” observation has an actual value,
while a “composite” observation is a collection of other observations.

The division of observations into composite or atomic observations is accomplished
differently for local access vs. remote access. The abstract interface
ObservationRemote has concrete subclasses, saOagervationRemote is either

atomic or composite, with no possible ambiguityOlfservationData was defined

using Object-By-Value (OBV), then the same subclassing mechanism would be used to
separate atomic from composite observations. However, because structs cannot be
subclassed in IDL, a struct based definition has the potential for ambiguity to exist
between atomic and composite observations. Although the potential for ambiguity
exists, there is a semantic requirement that €bslrvationData be either atomic

(have a value) or composite (have a non-zero aggregation of other observations), but
not both at the same time.

See Section 3.2.7, “Remote Observations Viewpoint,” on page 3-9 for more detailed
information about remote (by reference) observations.

COAS V1.0 Viewpoints Jan. 2000 3-7

See Section 3.2.6, “Local Observations Viewpoint,” on page 3-8 for more detailed
information about local (by value) observations.

3.2.6 Local Observations Viewpoint

<<Seguence>>
ObservationDataStructSeq

0..*

ObservationData Struct
#code : QualifiedCodeStr
$#composite : sequenc e<ObsenationDataStruct>
#gualifiers : sequence<ObsenationDataStruct>
$\alue : sequence<any,1>

0.1

<<Typedef>>
ObservationValue

Figure 3-6 Detail UML for ObservationDataStruct

ObservationDataStruct is the struct for passing “local” observations between client
and server by value withi@bservationDataStruct , defined as £ORBA::any . Since
DsObservationAccess does not use Objects-by-Value (OBV), and structs have no
polymorphism, the struct used for observations must encapsulate both composite
observations and atomic observations. A composite observation will have a non-zero
amount of items in theomposite attribute, and zero items in thelue attribute.
Conversely, an atomic local observation will have zero items iradihposite

attribute, and a single item in thelue attribute.

Qualifiers modify all of the data “beneath” them in a hierarchy. For example, a
modifier of “Normalcy=abnormal” found in a composite observation would apply to
all the items in the composite. However, qualifiers found lower in a tree of data can

Clinical Observations Access Service V1.0 January 2000

3

override modifiers found higher up in the tree, so a leaf observation could have a
modifier “Normalcy=normal” which applied to just that leaf, despite any qualifier
higher-up in the tree.

See Section 3.3.6, “ObservationData,” on page 3-21 for the more details.

3.2.7 Remote Observations Viewpoint

<<Interface>>
ObservationRenote

gobsenvation_code : QualifiedCode

%get observation_time()
%get observed_subject()
®get root_observation()
%get path_from root()
%get all_qualifiers()
®get _qualifiers()
%is_this_root()
%is_this_atomic()

/\
\
\

¢ T

<<Interface>> <<Interface>>
CompositeObservationRemote AtomicObservationRemote

®count_observations) ®get_observation_data()
%get_observations by_time() %get_observation_data_with_policy()
%get_observations by _qualifier() 0.1
®get_observations with_policy() h
®get_leaf observations)
¥get_|eaf_observations by time()
%get_leaf_observations by _qualifier() +observation_value
‘Qget_l eaf_observations_with_policy()
%get_leaf_observations by value_type() <<Typedef>>
®get_relations_toward_root() ObservationValue

®get_relations_away_from_root()

Figure 3-7 The operations and attributes ObservationRemote and its subclasses.

ObservationRemote encapsulates remote references for observations. A remote
observation is either a composite observation or an atomic observation. A composite
observation aggregates a set of observations, like a set of lab values, each of which is
an atomic observation, with a single data value.

See Section 3.2.10, “Browsing Access Viewpoint,” on page 3-12 for more information
about the remote browsing style of access.

COAS V1.0 Viewpoints Jan. 2000 3-9

3-10

See Section 3.4.2, “ObservationRemote Interface,” on page 3-31 for the interface

specification.

See Section 3.4.4, “CompositeObservationRemote Interface,” on page 3-34 for the type

specification.

See Section 3.4.3, “AtomicObservationRemote Interface,” on page 3-33 for the type

specification.

3.2.8 Common Access Operations Viewpoint

Query Access

BrowseAccess

Observ edSubject

®count_observ ations ()

%get observation()

®get observations()

%get observations_by _time()
%get observations_by_qualifier()
%get observations_wit h_policy ()

AsynchAccess

*count_observations()
*get_observation()
*get_observations()
®get_observations_by _time()
*get_observations_by _qualifier()
*get_observations_with_policy ()
*cancel_get()

®get_observed_subject()
®get_observed_subjects()

%get_observ ed_subject_for_observ ation_id()
%get_observ ed_subjects_for_observ ation_ids()
®count_observ ations()

®get_observation()

®get_observations()

%get_observ ations_by _time()
®get_observations_by _qualifier()
®get_observations_with_policy ()

®count_obs erv ations()
%get_observation s_by_time()
®get_observations_by _qualifier()
®get_observations_with_policy ()
®get_root_observ ations()
®get_leaf_obserw ations()
®get_any obser ation()
®get_first_obs ervation()
®get_last_observation()
®get_candidate_observations()

®get_exact_operation_ty pes()

CompositeObservationRemote

®count_observations()
%get_observati ons_by _time()

%get_observations_by _qualifier()

%get_observations _wit h_policy ()
®get_leaf_obs e ations()
®get_leaf_obser ations_by _time()
%get_leaf_observ at ions_by _qualif ier ()
®get_leaf_observ at ions_with_policy ()
®get_leaf_observ at ions_by_value_type()
®get_relations_toward_root 0

®get_relation s_away _f rom _root()

Figure 3-8 Common get_*()” style operations on multiple interfaces.

This viewpoint shows that many interfaces have common operation names. A similar
operation name implies similar semantics for the operation, though the return value
may be local QueryAccess), remote BrowseAccess), or arriving asynchronously
(AsynchAccess).

See the following for some of the different styles of access:
® Section 3.5.2, “QueryAccess Interface,” on page 3-46
® Section 3.2.10, “Browsing Access Viewpoint,” on page 3-12

® Section 3.2.11, “Asynchronous Access Viewpoint,” on page 3-13

Clinical Observations Access Service V1.0 January 2000

3.2.9 Simple Query Access Viewpoint

<<Interface>>
QueryAccess

<<Interface>> *count_obsenations()
AccessComponent ~ | %get_obsenation()
%get_obsenations()
%get obsenations_by_time()
%get_obsenations_by_qualifier()
%get obsenations_wit h_policy()

Figure 3-9 TheQueryAccess interface is the simplest interface for query access.

QueryAccess is the most straightforward and fundamental of all the components. The
client passes a query to the server and receives a response synchronously, as a local
struct. The client blocks until the server returns the results or throws an exception.

QueryAccess has operations which provide a growing list of parameters for filtering
the observations known by the server.

See Section 3.5.2, “QueryAccess Interface,” on page 3-46 for a detailed specification
of the interface.

COAS V1.0 Viewpoints Jan. 2000 3-11

3.2.10 Browsing Access Viewpoint

<<Interface>>
BrowseAccess

%get_observed_subject()
%get_observed_subjects()

<<Interface>> %get_observed_subject_for_observation_id()
AccessComponent E— ‘get_observed_subjects_for_observation_ids()
%count_observations()

%get_observation()
%get_observations()

<<Interface>> %get_observations by _time()
AbstractManagedObject ‘g et_observations_by_qualifier()
%get_observations with_policy()

<<Interface>>
ObservedSubject

<<Interface>> #observed_subject_id : Observe dSubjectld

ObservationRenote

*count_observations))
%get_observations by _time()
%get_observations by _qualifier()
®get_observations with_policy()
®get_root_observations()
%get_leaf observations()
®get_any_observation()

$get first_observation()
®get_last_observation()
%get_candidate_obsenations()
%get_exact_obsenation_types()

#observation_code : QualifiedCode

%get observation_time()
%get observed_subject()
%get root_observation()
%get path_from root()
%get all_qualifiers()
Sget qualifiers()
%is_this_root()

s _this_atomic()

<<Interface>>
CompositeObservationRemote

<<Interface>>

» i . .
count_observations() AtomicObservationRemote

%get_observations by _time()
®get_observations by _qualifier()
®get_observations with_policy()
*get_leaf_observations()
*get_leaf_observations_by_time()
*get_leaf_observations_by_qualifier()
%get_leaf_observations_with_policy()
*get_leaf_observations_by value_type()
*get_relations_toward_root()
%get_relations_away_from_root()

%get_observation_data()
%get_observation_data_with_policy()

Figure 3-10 The main interfaces involved with browsing.

3-12 Clinical Observations Access Service V1.0 January 2000

BrowseAccess Mmakes use of remote proxies to explore the servers store of
observations. A client can interactively access information a piece at a time. Each
piece of information retrieved has links to other pieces of information that the client
may access, with other queries possible based on the context of the previous requests
The server is required to keep context on the references passed back for this
navigational convenience.

Interactive access may be useful when the client program displays the results and
capabilities to the user after each command. A minimum of information has to be
passed between the client and server with each action, although this mechanism adds
responsibility to the server to maintain the lifecycle of a potentially large number of
objects.

BrowseAccess has a number of operations that return object references to a remote
ObservedSubject or ObservationRemote .

See Section 3.5.1, “BrowseAccess Interface,” on page 3-43 for a detailed description
of this interface.

The ObservedSubiject interface encapsulates the set of observations about one observe
subject, typically a person, though a subject could be a tissue sample or an animal in a
veterinary setting.

See Section 3.4.6, “ObservedSubject Interface,” on page 3-39 for a detailed description
of this interface.

3.2.11 Asynchronous Access Viewpoint

<<Interface>>
AsynchAccess

*count_observations()
<<Interface>> %get_obsenation()
AccessComponent I | %get_observations()
%get_observations_by_time()
*get_obsenvations_by_qualifier()
%get_observations_with_policy/()
*cancel_get()

Figure 3-11 The interfaces dealing with asynchronous query invocations.
AsynchAccess allows a client to request information with the results delivered

asynchronously. This prevents the client from having to do a blocking call to the server
until the results can be returned. Asynchronous access may have various uses:

COAS V1.0 Viewpoints Jan. 2000 3-13

* Partial results: an asynchronous interface can return a result in pieces. This may be
useful for something like image sets, to show the first one while receiving the rest,
as well as for federation (send results back as they are received from various
sources).

® Single-threaded clients: A single-thread GUI client could, for example, tend to
repaint and user-click responsibilities while asynchronous requests are outstanding.

* Multiple requests: a client can post several simultaneous requests and process
results in the order they are received, rather than proceeding serially from one to the
next. Without this, results from a fast server could, in effect, wait on results from a
slow server.

® Query portability between servers: an asynchronous request can be passed from one
server to another, which responds directly to the client.

®* Asynchronous model: for servers that get their data from asynchronous processes,
an asynchronous mechanism may be the best fit. For example, DICOM can involve
response times of millisecond to milli-decade (if the media is off-line), so a
DsObservationAccess server which provides this data may want to provide it
asynchronously, to match the source.

AsynchAccess affords asynchronous posting of results because the client passes in its
own object reference to asynchCallback object. This points up some potential
drawbacks to asynchronous access:

* Firewalls: a client behind a firewall may not be able to receive the callback.

® The client can no longer rely on TCP-level time-outs which bound a query duration
for a synchronous call. Instead, the client must take responsibility to track
outstanding requests and provide some ability to handle requests that fail because of
a network outage or some other traumatic termination.

* |f multiple requests are outstanding, the client must hold the sté¢etCallld)
requests in order to identify them when fulfilled.

® The client must be prepared for multiple, partial returns to a single request.

The AsynchAccess interface has operations similar to fQeeryAccess synchronous
interface, though instead of “real” return values, the operations all return an
ServerCallld value which simply identifies the request from the server point of view.
AsynchAccess also has an operation to cancel an outstanding request. See
Section 3.5.3, “AsynchAccess Interface,” on page 3-49 for a detailed description of
these operations.

The AsynchCallback interface is implemented by the client to the

DsObservationAccess server. The server calls it back with the results, or with an
exception condition. See Section 3.5.4, “AsynchCallback Interface,” on page 3-52 for a
detailed description of the interface.

3-14 Clinical Observations Access Service V1.0 January 2000

3.2.12 Event Management Viewpoint

AbstractManagedObject CosEventComm::PushSupplier

CosEventComm::PushConsumer

$done() #%disconnect_push_supplier()

*push()
‘disconnect_push_consumer()

A

EventConsumer
gconnection_id : Connectionld

— —

Ev entSupplier
'connection_id : Connectionld

®obtain_subscription_ty pes()

Qconnect_structured_push_supplier() +my Consumer Sobtain offered ty pes()

‘connect_pus h_consumer()

‘get_connected_supplier()
. gy [+my Supplier %get_connected_consumer()
created_by ®subscribe()
%describe_subscription()

%generate_test_event()

»‘ f Q
+created/

|
7+creations

|
;‘ +creations

SupplierAccess

D AccessComponent <j
%create_supplier()

%create_consumer()
%get_consumer_by_id() %get_supplier_by _id()

ConsumerAc cess

AbstractFactory

$/mex_connections : Connectionld
¢current_connections : ConnectionldSeq

Figure 3-12 The consumer and supplier interfaces involved with event management.

The DsObservationAccess service supports querying for observations that occur in

the future. This support is similar to asynchronous access in that a client (consumer)
registers an interest in particular observations, and the server (supplier) calls them back
with the information at some future time. However, the callback may happen
repeatedly since the interest in particular observations translates into a subscription
which lasts at least as long as the lifetime ofghentSupplier . Servers may add value

(not required or specified herein) by offering a subscription qualifier for a persistent
subscription, which survives across client and/or server restarts.

ConsumerAccess andSupplierAccess are the components that manage the
registration to consume and supply future observations, respectively. The event
mechanism was designed to give flexibility in connecting up event endpoints,

including consideration to do the following:

COAS V1.0 Viewpoints Jan. 2000 3-15

* Facilitate the use of the OMG Notification Service or Event Service as an
intermediary channel.

® Allow consumer and supplier endpoints to connect themselves to one another,
without an intermediary channel.

* Allow the use of a external management application to connect consumer/supplier
endpoints and channels, without explicit custom-coding assistance from the
endpoints or channels for such an external management application.

The AbstractFactory interface contains two common attributes for connections
(maximum and current amount) which are needed by botlcdhsumerAccess and
SupplierAccess . See Section 3.7.5, “AbstractFactory Interface,” on page 3-64 for the
details.

The ConsumerAccess adds an operation to instantiate ErentConsumer and to

access any formerly-creat&dentConsumer by its ID number, a uniqgue number
determined by th€onsumerAccess at instantiation. See Section 3.6.4,
“ConsumerAccess Interface,” on page 3-58 for a detailed description of this interface.

The SupplierAccess extends the capability of thebstractFactory just as did
ConsumerAccess . See Section 3.6.3, “SupplierAccess Interface,” on page 3-57 for a
detailed description of this interface.

The EventConsumer interface inherits from th€osEventComm::PushConsumer
interface to facilitate use with the OMGosEvent Service. See Section 3.6.2,
“EventConsumer Interface,” on page 3-55 for a detailed description of the interface.

The EventSupplier interface inherits from th€osEventComm::PushSupplier

interface to facilitate use with the OMGosEvent Service. The&EventSupplier

includes operations to establish a connection, and to begin a subscription to events. See
Section 3.6.1, “EventSupplier Interface,” on page 3-53 for a detailed description of the
interface.

3.3 Data Type Definitions

The following sections describe all the IDL for the data types used within the
DsObservationAccess module.

#ifndef _DS_OBSERVATION_ACCESS_IDL_
#define_DS_OBSERVATION_ACCESS_IDL_

module DsObservationAccess {

k

#endif // _DS_OBSERVATION_ACCESS_IDL_

3-16 Clinical Observations Access Service V1.0 January 2000

3

The “Ds” prefix of DsObservationAccess stands for “Domain Service.” All OMG
specifications from a domain task force are expected to start with “Ds” to isolate a
particular name space from potential clashes.

3.3.1 Include Files

#include <CosNamin g.idl>

#include <CosTradin g.idlI>

#include <Terminolo gyServices.idl>
#include <Namin gAuthority.idl>
#include <PersonldService.idl>
#include <Namin gAuthority.idl>
#include <CosEventComm.idl>
#include <CosEventChannelAdmin.idl>
#include <orb.idl>

3.3.2 External Typedefs

These definitions rename types from other standards. This section delineates all
DsObservationAccess dependencies on other standards.

typedef PersonldService::QualifiedPersonld ObservedSubjectid;

Description: Observed subjects are identified witlQaalifiedPersonld

from the PIDS standard. The qualification with a naming
authority is important, since there could be overlap in patient
identifiers at two locations.

typedef Terminolo gyServices::QualifiedCode QualifiedCode;

Description: A QualifiedCode has an embeddeadamin gAuthority which
prevents collisions between common, local names.

typedef Namin gAuthority::QualifiedNameStr QualifiedCodeStr;

Description: QualifiedCodeStr has a one-to-one mapping with
QualifiedCode . The format for the contenst of
QualifiedNameStr is well defined. Strings must begin with
colon-delimited section containing one of the

Namin gAuthority::Re gistrationAuthority — items: either
OTHER, ISO, DNS, IDL, or DCE. Following the
RegistrationAuthority is a domain, followed by a slash “/”,
and then the particular name (which can have additional
slashes as namespace dividers).

D

For example, th@ualifiedCodeStr

“DNS:om g.org/DsObservationAccess/ASYNC_OBSERVATI
ON_COUNT” has a registration authority of DNS (internet
domain name service), a domain of omg.org, and a name
within the DsObservationAccess namespace.

COAS V1.0 Data Type Definitions Jan. 2000 3-17

3-18

Description
(continued):

The Namin gAuthority::translation_library interface is
designed to be implemented locally by servers to translat
betweenQualifiedName (we rename aQualifiedCode) and
QualifiedNameStr (we call thisQualifiedCodeStr).

typedef PersonldService::DomainName IdDomainName;

Description:

Each COAS server will have one default PIDS domain wh
is identified by abomainName .

typedef PersonldService::ldentificationComponent IdentificationComponent;

Description:

The PIDS server is an instance of an
IdentificationComponent

typedef CosNamin g

::Namin gContext Namin gContext;

Description:

The relevantCosNamin g server is an instance of a
NamingContext .

typedef CosTradin g

::TraderComponents TraderComponents;

Description:

The relevant Trader service is an instance of a
TraderComponents .

typedef Terminolo gyServices::Terminolo gyService Terminolo gyService;

Description:

The relevantrerminolo gyService is an instance of
Terminolo gyService .

typedef CosEventComm::PushConsumer PushConsumer;

Description:

The EventConsumer is a subclass of
CosEventComm::PushConsumer

typedef CosEventComm::PushSupplier PushSupplier;

Description:

The EventSupplier is a subclass of
CosEventComm::PushSupplier

typedef CORBA::Typ

eCode TypeCode;

Description:

A TypeCode is a CORBA interface that is used to perform
introspection on all IDL-defined data types.

3.3.3 Forward Declarations

interface AbstractFactory;

interface AbstractMana gedObiject;
interface AccessComponent;

interface AsynchCallback;

interface AsynchAccess;

interface AtomicObservationRemote;
interface BrowseAccess;

interface CompositeObservationRemote;

Clinical Observations Access Service V1.0

January 2000

[}

ich

interface ConsumerAccess;

interface ConstraintLan guageAccess;
interface EventConsumer;

interface EventSupplier;

interface ObservationDatalterator;
interface ObservationLoader;
interface ObservationRemote;
interface ObservationRemotelterator;
interface ObservedSubject;

interface QualifiedCodelterator;
interface QueryAccess;

interface SupplierAccess;

These forward declarations for interfaces facilitates the grouping of definitions without
concern for precedence, since all interfaces are declared here.

3.3.4 AccessComponentData

struct AccessComponentData {
QueryAccess query_access;
BrowseAccess browse_access;
AsynchAccess asynch_access;
ConstraintLan guageAccess constraint_access;
ObservationLoader observation_loader;
ConsumerAccess consumer_access;
SupplierAccess supplier_access;

}

AccessComponentData provides a means to supply references to all implemented
components vidccessComponent. get_components() . This is a convenience for

clients that have a single reference to a single component, and wish to use a different
component. Since different servers may have different levels of conformity, some will
implement a given component and others will not. If a component is not implemented
by the server, that attribute will be null.

For example, if a client has a reference ®r@awseAccess component, and now
wishes to use QueryAccess component, the client can cagkt components() on his
BrowseAccess component and examine theery access field. If query access is
non-null, that component is implemented.

COAS V1.0 Data Type Definitions Jan. 2000 3-19

query_access

Description: Holds QueryAccess reference if implemented by this server.

=

browse_access

Description: Holds BrowseAccess reference if implemented by this
server.

asynch_access

Description: Holds AsynchAccess reference if implemented by this
server.

constraint_access

Description: Holds ConstraintLan guageAccess reference if implemented
by this server.

observation_loader

Description: Holds ObservationLoader reference if implemented by this
server.

consumer_access

Description: Holds ConsumerAccess reference if implemented by this
server.

supplier_access

Description: Holds SupplierAccess reference if implemented by this
server.

3.3.5 AsynchException

struct AsynchException {
QualifiedCodeStr exception_name;
strin g message;

}

AsynchException is a struct because the asynchronous callback mechanism cannot
employ the typical exception mechanism of CORBA synchronous call. Instead, a
request which results in an exception must be delivered tasthehCallback

interface, just as a regular result is delivered, with a struct.

3-20 Clinical Observations Access Service V1.0 January 2000

exception_name

Description: The name of the exception resulting from the asynchrongus
request.

message

Description: A text description of the exception.

3.3.6 ObservationData

typedef any ObservationData;

struct ObservationDataStruct {
QualifiedCodeStr code;
sequence<ObservationDataStruct> composite;
sequence<ObservationDataStruct> qualifiers;
sequence<any,1> value;

k

ObservationData is the heart of the query mechanism. Observations are passed by
value via theCorba::any type, which enables extensibility by allowing the possibility
of using valuetype or other structured definitions for observations in the future or by
local agreement in specialized environments. In this specification a single structure,
ObservationDataStruct , is defined to contain all types of observations.

ObservationDataStruct encapsulates both composite and atomic observations, which
is accomplished by including attributes for both an aggregation and a single value.
These attributegomposite andvalue, are intended to be used in a mutually exclusive
manner. One of the two attributes should be a zero-length sequence. An Observation
must be a composite observation or an atomic observation, but not both.

code
Description: The name of the observation type, as qualified by the
Namin gAuthority embedded in th@ualifiedCodeStr .
composite
Description: A sequence of observations which compose this observation.

The attributecomposite may have zero or more
ObservationDataStruct items. Thecomposite attribute must
have zero items if this observation has a non-zelae
attribute, which would make it an atomic, rather than
composite, observation.

COAS V1.0 Data Type Definitions Jan. 2000 3-21

Description Note that each of the aggregatebservationDataStruct

(continued): items may, in turn, include other observations in their
composite field, creating a “tree” of observations.

qualifiers

Description: A sequence of observations that modify the observation(s) in
thevalue or composite attribute. Qualifiers modify all of the
data “beneath” them in a hierarchy. For example, a modifier
of “Normalcy=abnormal” found in a composite observatio
would apply to all the items in the composite. However,
qualifiers found lower in a tree of data can override modifiers
found higher up in the tree, so a leaf observation could have a
modifier “Normalcy=normal” which applied to just that leaf,
despite any qualifier higher-up in the tree.

value

Description: The payload for this observation. The payload must be empty

(zero items in sequence) if this observation is a composite
observation. The only reason thaiue is a sequence is to
allow a zero-length sequence.

For an atomic observation, which has a payload, the contents
within value[0] , within theCorba::any , is a data type which
associates with the “code” field. For each code used for an

atomic observation, a single data type must be designated for
the return value.

3.3.6.1 ObservationQualifier

typedef ObservationData ObservationQualifier;

Description: This typedef shows that Qualifiers are simply other
observations.

3.3.7 Observationld

struct Observationld {
QualifiedCodeStr code;

strin g opaque;

An Observationld uniquely identifies a particular COAS observation within a server. It
is persistent over time, and can be stored by a client for use later. However, a client
may not create or modify abbservationid .

3-22 Clinical Observations Access Service V1.0 January 2000

3

The client is responsible for remembering the server associated with a given
Observationld . If the client connects to multiple servers, the client can, for example,
keep allObservationld s from a particular server in a single collection associated with
the server, or store abbservationld within some wrapping structure which provided
fields for server identification as well.

There has been discussion of adding field®lieervationld for a server name and
domain. Currently, there is no for provision for the globally identifying server names in
some federation of COAS servers, so it is not clear what would be appropriate for
server identification field(s).

One possibility for handlin@bservationld s within a federation of COAS servers can
be implemented as follows:

Assume a federation of COAS servers where a higher-level server named “Middle” is
a middleware conduit for some (static) group of lower-level COAS servers. All queries
to Middle are routed to one of many lower-level COAS servers, and the resulting
information is passed back to the client, including qualifiersdilzsservationid s.

However, when supplying theSbservationid s to its client, Middle must modify them
slightly. TheObservationild s must allow Middle to recognize the original source for

the observation. To accomplish this, Middle can prepend source-server information to
the opaque string, followed by a clear delimiter. Upon receipt obtizervationlid

from a client, Middle strips out this source-server information, using it to pass back a
reconstitutedObservationid to the proper source server.

code

Description: The code for this observation. This is read-only for a client,
and can be used for grouping or separatgervationid S.

opaque

Description: Reserved for use by server.

3.3.8 NameValuePair

struct NameValuePair {

QualifiedCodeStr name;

any value;
h
A simple associate of name and value.
name
Description: The code for this pair.
value
Description: The value for this pair.

COAS V1.0 Data Type Definitions Jan. 2000 3-23

3-24

3.3.9 Subscription

struct Subscription {
sequence<ObservedSubjectld> who;
sequence<QualifiedCodeStr> what;
sequence<ObservationQualifier> qualifier;

sequence<NameValuePair> policy;

k

Subscription encapsulates all the parameters which make up a query for future data, as
needed for &upplierAccess component.

who

Description: The observed subject(s) of the subscription.

what

Description: The codes for the desired observation(s).

qualifier

Description: Any modifying observation(s) with which to filter.

policy

Description: Any policies that should override default policies of the
server.

3.3.10 TimeStamp

typedef strin g TimeStamp; // ISO 8601 representation, with restrictions

TimeStamp is a string representation of date and time, following the ISO 8601:1988
standard, with some restrictions and modifications. The string format is restricted to
the “extended” ISO 8601 format which includes delimiters, years must be specified
with century digits, and a wildcard character is added. A complete TimeStamp format
is:

YYYY-MM-DDThh:mm:ss.dddTZD
(e.g., 1997-07-16T19:20:30.45+01:00) where:

YYYY = four-di git year (1582 minimum, 9999 maximum)

MM = two-di git month (01=January, etc.)

DD = two-di git day of month (01 throu gh 31)

T = date/time separator

hh =two di gits of hour (00 throu gh 23; am/pm NOT allowed)

mm =two di gits of minute (00 throu gh 59)

ss =two di gits of second (00 throu gh 60; 60 indicates a positive leap second)

ddd =one or more di gits for decimal fraction of a second (no limit on number of di gits)

Clinical Observations Access Service V1.0 January 2000

TZD =time zone desi gnator (Z to indicate UTC, or +hh:mm or -hh:mm from UTC)
Partial TimeStamp formats are allowed, which indicate “unknown” for items
omitted. For example, BimeStamp consisting only of
1993-02-14
is interpreted as an unknown time on the 14th of February, 1993, while
13:10:30

is interpreted as an unknown date, with time of 13:10:30 in the server’s time zone
(absence of a time zone designator indicates local time).

TimeStamp allows a character outside the 1ISO 8601 specification, a wildcard for
individual TimeStamp elementsTIME_WILDCARD = “?" is provided in the constants
section. Use this character to indicate that a specific field should be treated as
“unknown” for TimeStamp s received from COAS (output), and as a “wildcard” for
TimeStamp parameters supplied to COAS (input).

For example, receiving “1999-??-02T22:00:00Z" as an outpedStamp would be
equivalent to the concept of “2nd day of an unknown month in 1999, at 22:00:00
GMT". For an inputTimeStamp , this string would represent, for matching purposes,
“the 2nd day of any month in 1999, at 22:00:00 GMT".

The lower bound forimeStamp is specified as “1582-10-15T00:00:00Z", the date
when the Gregorian calendar was put into effect, putting month and day calculations
on a firm basis.

3.3.11 TimeSpan

struct TimeSpan {
TimeStamp start_time;
TimeStamp stop_time;

k

TimeSpan encapsulates a duration of time with two boundiimgeStamp s. The
semantics for interpreting the endpoints is INCLUSIVE. The endpoints are part of,
included in, the span of time. This span is defined for use in COAS instead of
employing the 1ISO 8601 notation of <timestamp>/<timestamp> within one string.

start_time
Description: The starting time of the span.
stop_time
Description: The ending time of the span.

COAS V1.0 Data Type Definitions Jan. 2000 3-25

3.3.12 Constants

const strin g EARLIEST_TIME ="“1582-10-15T00:00:00Z";
const strin g LATEST_TIME ~ ="9999-12-31T23:59:597";
const strin g TIME_WILDCARD = “?";

const QualifiedCodeStr PARTIAL_RESULT =

“DNS:om g.org/DsObservationAccess/PARTIAL_RESULT”;
const QualifiedCodeStr COMPLETING_RESULT =

“DNS:om g.org/DsObservationAccess/COMPLETING_RESULT";

COMPLETING_RESULT andPARTIAL_RESULT are used by thasynchAccess
interface during a callback to indicate the status of the callback--completing a request,
or only partially completing a request.

const QualifiedCodeStr ASYNC_OBSERVATION_COUNT =
“DNS:om g.org/DsObservationAccess/ASYNC_OBSERVATION_COUNT";
typedef unsi gned lon g ASYNC_OBSERVATION_COUNT_type;

ASYNC_OBSERVATION_COUNT is an observation type, used solely to identify the
return value of the operatioxsynchAccess.count_observations() . It does not make
sense to use this code in a query, sicieet_observations() explicitly hames the
“what” part of the query parameters. Only the return value needs identification. The
value in that returne@bservationData is anunsi gned long, and shown by the typedef
ASYNC_OBSERVATION_COUNT _type .

const QualifiedCodeStr EVENT_SOURCE_DOMAIN =
“DNS:om g.org/DsObservationAccess/EVENT_SOURCE_DOMAIN";
const QualifiedCodeStr EVENT_SOURCE_SERVER_NAME =
“DNS:om g.org/DsObservationAccess/EVENT_SOURCE_SERVER_NAME”;
const QualifiedCodeStr EVENT_NAME =
“DNS:om g.org/DsObservationAccess/EVENT_NAME”;
const QualifiedCodeStr TEST_EVENT =
“DNS:om g.org/DsObservationAccess/TEST_EVENT";
typedef lon g TEST_EVENT _type;

EVENT_* constants apply to th&upplierAccess component:

EVENT_SOURCE_DOMAIN: the enterprise domain (likely a PIDS context) within
which the event originated.

EVENT_SOURCE_SERVER_NAME: the name of th®sObservationAccess service
which originated the event.

EVENT_NAME: this code is intended for use whel@sNotification service is
employed. ThecosNotification service allows filtering within the channel, based on
name-value pairs, so this code would be used to identify the name of the particular
event, with a value equal to tiqualifiedCodeStr of the event itself.

TEST_EVENT is the observation code used by gupplierAccess when responding to
SupplierAccess. generate_test_event() . The value returned in th@bservationData is
along, as shown by the typed®EST EVENT type.

const QualifiedCodeStr TRADER_1_0_CONSTRAINT_LANGUAGE = “DNS:om g.org/DsObservationAccess/ TRADER_1_0_CONSTRAINT_LANGUAGE";

const QualifiedCodeStr OCL_1_1_ CONSTRAINT_LANGUAGE =“DNS:om g.org/DsObservationAccess/OCL_1_1_ CONSTRAINT_LANGUAGE";

3-26 Clinical Observations Access Service V1.0 January 2000

3

TRADER_1_0_CONSTRAINT_LANGUAGE andOCL_1_1 CONSTRAINT LANGUAGE
are two possible choices for the language use@dmgtraintLan guageAccess .
However, the choice of constraint language is left to the implementation.

const QualifiedCodeStr COAS_OBSERVATION_ID =“DNS:om g.org/DsObservationAccess/COAS_OBSERVATION_ID";

typedef Observationld COAS_OBSERVATION_ID_t ype;
COAS_OBSERVATION_ID is the code for a qualifier which provides a unique COAS
identifier for an observation. Any qualifier with this code will have, in its value
CORBA:any, a struct of typebservationld , as indicated by
COAS_OBSERVATION_ID type . In other words, the one-to-one association between a
name-value pair are, in this instanC®AS_OBSERVATION_ID andObservationid .

3.3.13 Internal Typedefs

typedef lon g Endpointld;

Description: Endpointld is used by the Event syste@gnsumerAccess
and SupplierAccess , to identify event endpoints.

typedef strin g ConstraintExpression;

Description: ConstraintExpression is used to supply a constraint to
ConstraintLan guageAccess .

typedef QualifiedCodeStr ConstraintLan guage;

Description: ConstraintLan guage is specified by the
ConstraintLan guageAccess , as a language supported by that
component.

typedef NameValuePair QueryPolicy;

Description: Each policy is a name-value pair.

typedef lon g ServerCallld;

Description: Within the AsynchAccess , each call from a client is

identified by the server with erverCallid , unique within the
lifetime of the server. This identifier can be used to canceljthe
request if necessary.

typedef lon g ClientCallld;

Description: A client to theAsynchAccess should identify each of its
calls to a server with alientCallld , unique within all

outstanding requests. This identifier is returned to the client
with the result, so that the client can match up requests with
responses, should there be more than one call outstanding.

3.3.14 Sequences

typedef sequence<AtomicObservationRemote> AtomicObsRemoteSeq;

COAS V1.0 Data Type Definitions Jan. 2000 3-27

typedef sequence<ConstraintLan guage> ConstraintLan guageSeq;
typedef sequence<Endpointld> EndpointldSeq;

typedef sequence<ObservationData> ObservationDataSeq;

typedef sequence<ObservationDataStruct> ObservationDataStructSeq;
typedef sequence<Observationld> ObservationldSeq;

typedef sequence<ObservationQualifier> ObservationQualifierSeq;
typedef sequence<ObservationRemote> ObservationRemoteSeq;
typedef sequence<ObservedSubjectld> ObservedSubjectldSeq;
typedef sequence<ObservedSubject> ObservedSubjectSeq;

typedef sequence<QualifiedCodeStr> QualifiedCodeStrSeq;

typedef sequence<QueryPolicy> QueryPolicySeq;

typedef sequence<Subscription> SubscriptionSeq;

The above IDL defines the sequence data types fob¢beservationAccess service.

3.3.15 Exceptions
exception DuplicateCodes {
QualifiedCodeStrSeq codes;

k

The DuplicateCodes exception is raised when the same code is passed multiple times
as a parameter to an operation. A complete list of distinct duplicated codes is returned.

exception Duplicatelds {
ObservedSubjectldSeq ids;

k

The Duplicatelds exception is raised when the saOigservedSubjectld is passed
multiple times as a parameter to an operation. A complete list of distinct duplicated ids
is returned.

exception DuplicateOids {

ObservationldSeq oids;

3-28 Clinical Observations Access Service V1.0 January 2000

The DuplicateOids exception is raised when the safigservationid is passed
multiple times as a parameter to an operation. A complete list of distinct duplicated
Observationlds is returned.

exception DuplicatePolicies {
QueryPolicySeq policies;

}

The DuplicatePolicies exception is raised when the sa@eryPolicy is passed
multiple times as a parameter to an operation. A complete list of distinct duplicated
policies is returned.

exception DuplicateQualifiers {
ObservationQualifierSeq qualifiers;

k

The DuplicateQualifiers exception is raised when the saoiservationQualifierData
is passed multiple times as a parameter to an operation. A complete list of distinct
duplicated qualifiers is returned.

exception InvalidCodes {
QualifiedCodeStrSeq codes;

k

The InvalidCodes exception is raised when an unrecognized (unsupported)
QualifiedCodeStr is passed as a parameter to an operation. A complete list of invalid
codes is returned.

exception InvalidEndpointld {
EndpointldSeq endpoint_ids;

}

The InvalidEndpointld exception is raised when an inval@dpointld is passed as a
parameter to an operation. Only active connections may be specified. A complete list
of invalid connection ids is returned.

exception InvalidConstraint {
strin g constraint;

k

The InvalidConstraint exception is raised when a constraint is passed as a parameter to
an operation and the server cannot parse the constraint in accordance with a supportec
language. The invalid constraint is returned.

COAS V1.0 Data Type Definitions Jan. 2000 3-29

3-30

exception Invalidlds {
ObservedSubjectldSeq ids;

}

The Invalidlds exception is raised when @bservedSubjectld is passed as a
parameter to an operation when the server does not know about that ID. A complete
list of invalid ids is returned.

exception InvalidOids {
ObservationldSeq oids;

k

The InvalidOids exception is raised whenGbservationld is passed as a parameter to
an operation when the server does not know about that observation ID. A complete list
of invalid ids is returned.

exception InvalidPolicies {
QualifiedCodeStrSeq policies;

k

The InvalidPolicies exception is raised when an unrecognized (unsupported)
QueryPolicy is passed as a parameter to an operation. A complete list of invalid
policies is returned.

exception InvalidQualifiers {
QualifiedCodeStrSeq qualifiers;

k

The InvalidQualifiers exception is raised when an unrecognized (unsupported)
ObservationQualifierData is passed as a parameter to an operation. A complete list of
violating qualifiers is returned.

exception InvalidTimeSpan {
TimeSpan span;

k

The InvalidTimeSpan exception is raised when an invalitheSpan is passed as a
parameter to an operation. The time span may be incorrectly specified, with a start
time greater than an ending time, or with unparsable items.

exception MaxConnectionsExceeded {

unsi gned lon g max_connections;

Clinical Observations Access Service V1.0 January 2000

3

The MaxConnectionsExceeded exception is raised when an event access object
(EventSupplier or EventConsumer) already has reached its maximum supported
number of connections, and a client tries to create another one. The maximum number
of connections is returned.

exception Notimplemented {

}

Notimplemented is raised when a particular COAS server does not implement a
particular operation. This exception allows a conformance class to have optional
operations. Any operation with this exception is optional.

exception NoSubscription {

k

The NoSubscription exception is raised trying to access subscription information on a
EventSupplier when no subscription has been set.

3.4 Interface Specifications

3.4.1 Foundational Observation-Oriented Interfaces

The description of th®sObservationAccess interfaces begins with those that map
most closely to the COAS Information Model (i.e., Observation-Oriented interfaces).
They support the successive refinement and interactive browsing styles of data
retrieval and data discovery.

3.4.2 ObservationRemote Interface

ObservationRemote
gobservation_code : QualifiedCode

%get_observation_time()
*®get observed_subject()
%get root_observation()
%get path_from_root()
®get_all_qualifiers()
%get_qualifiers()

s _this_root()

s _this_atomic()

AbstractManagedObject <

Figure 3-13 ObservationRemote Interface

interface ObservationRemote : AbstractMana gedObject {

COAS V1.0 Interface Specifications Jan. 2000 3-31

3-32

readonly attribute QualifiedCodeStr observation_code;

TimeSpan get_observation_time ();

ObservedSubject

get_observed_subject ();

ObservationRemote get_root_observation ();

ObservationData

get_path_from_root ();

ObservationQualifierSeq get_all_qualifiers ();

ObservationQualifierSeq get_qualifiers (
in QualifiedCodeStrSeq qualifier_names)

raises (

InvalidCodes);

boolean is_this_root ();

boolean is_this_atomic ();

observation_code

Description:

The code which identifies this observation.

get_observation_time()

Description:

Return theTimeSpan associated with this observation.

get_observed_subject()

Description:

Return a reference to the subject associated with this
observation.

get_root_observation

0

Description:

Return the root observation within which this observation
contained. If this observation is the root, returns referenc
self. Server has responsibility to keep a context of all rem

is
e 1o
ote

observations that are browsed, to keep track of their context.

get_path_from_root()

Description:

Return the root observation as @hbservationData

containing the path elements to this observation. The
ObservationData returned contains the structure of the res
observation tree pruned of all observations that don't leag
this one.

Clinical Observations Access Service V1.0 January 2000

1|
1 to

get_all_qualifiers()

Description:

Return all qualifiers.

get_qualifiers()

Description:

Return the qualifier(s) specified by name in the input
parametequalifier_names .

is_this_root()

Description:

Returns true if this observation is a root observation.

is_this_atomic()

Description:

Returns true if this observation is actually a subclass,
AtomicObservationRemote

3.4.3 AtomicObservationRemote Interface

<<Interface>>

ObservationRemote

<<Interface>>

AtomicObservationRemote

%get_obsenation_data()
%get obsenation_data_with_policy()

Figure 3-14 AtomicObservationRemote Interface

interface AtomicObservationRemote : ObservationRemote {

ObservationData get_observation_data ();

ObservationData get_observation_data_with_policy (
in QueryPolicySeq policy);

get_observation_data(

Description:

Returns the (localpbservationData item by value.

get_observation_data_with_policy()

Description:

Returns the (locakpbservationData item by value, according
to overriding policies provided.

COAS V1.0 Interface Specifications Jan. 2000 3-33

3.4.4 CompositeObservationRemote Interface

<<Interface>>
CompositeObse nationRemote

<<Interface>>
ObservationRe note

3-34

%count_observati ons()

%get observations by time()

%get observations_available()
%get observations by qualifier()
%get observations with_policy()

%get leaf obsenations()

%get leaf _obsenations by time()
%get leaf _obsenations by qualifier()
%get leaf obsenations with_policy()
%get leaf_obsenations by value type()
%get relations_toward _root()

‘get_re lations_away_from_root()

raises (
InvalidPolicies);

>

+observations

Figure 3-15 CompositeObservationRemote Interface

unsi gned lon g count_observations (
in QueryPolicySeq search_depth_policy)

in QualifiedCodeStrSeq what,

in TimeSpan when,

in unsi gned lon g max_sequence,

out ObservationRemotelterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

in QualifiedCodeStrSeq what,

in TimeSpan when,

in ObservationQualifierSeq qualifier,
in unsi gned lon g max_sequence,

out ObservationRemotelterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

Clinical Observations Access Service V1.0

<<Sequence>>
ObservationRemoteSeq

interface CompositeObservationRemote : ObservationRemote {

ObservationRemoteSeq get_observations_by_time (

ObservationRemoteSeq get_observations_by qualifier (

January 2000

ObservationRemoteSeq get_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsi gned lon g max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

AtomicObsRemoteSeq get_leaf observations ();

AtomicObsRemoteSeq get leaf observations_by time (

in QualifiedCodeStrSeq what,

in TimeSpan when,

in unsi gned lon g max_sequence,

out ObservationRemotelterator the_rest)
raises (

InvalidCodes,

DuplicateCodes,

InvalidTimeSpan);

AtomicObsRemoteSeq get_leaf observations_by_qualifier (

in QualifiedCodeStrSeq what,

in TimeSpan when,

in ObservationQualifierSeq qualifier,

in unsi gned lon g max_sequence,

out ObservationRemotelterator the_rest)
raises (

InvalidCodes,

DuplicateCodes,

InvalidTimeSpan,

InvalidQualifiers,

DuplicateQualifiers);

AtomicObsRemoteSeq get_leaf observations_with_policy (

in QualifiedCodeStrSeq what,

in TimeSpan when,

in ObservationQualifierSeq qualifier,

in QueryPolicySeq policy,

in unsi gned lon g max_sequence,

out ObservationRemotelterator the_rest)
raises (

InvalidCodes,

DuplicateCodes,

InvalidTimeSpan,

InvalidQualifiers,

DuplicateQualifiers,

COAS V1.0 Interface Specifications Jan. 2000

3-35

3-36

InvalidPolicies,
DuplicatePolicies);

AtomicObsRemoteSeq get_leaf_observations_by_value_type (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QualifiedCodeStr value_type,
in unsi gned lon g max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationDataSeq get_relations_toward_root (
in QualifiedCodeStrSeq relation_name);

ObservationDataSeq get_relations_away_from_root (
in QualifiedCodeStrSeq relation_name);

count_observations(

Description: Returns the number of observations held by this
CompositeObservationRemote , according to the provided
search-depth policy. Passing in a sequence of 0 policies
indicates the use of the default policy for this server.

Clinical Observations Access Service V1.0 January 2000

get_observation*()

Description:

These operations are similar to the operations of the same
name on th&ueryAccess interface, though returned as
references t@bservationRemote . However, observations
are matched and returned only within the “searchable” target
population of observations, associated by reference to this
CompositeObservationRemote , at a depth of search
according to the policgEARCH_DEPTH_POLICY. For
example, if the search-depth policy is
SEARCH_DEPTH_ONLY_ROOQT, only this
CompositeObservationRemote ~ will be searched (matched
against). With a search-depth policy of
SEARCH_DEPTH_DEEPEST_POSSIBLE, the searchable
population of observations consists of all observations which
might be referenced by any of the directly held references, or
their references, and so on.

get_leaf_observations()

Description:

Returns a sequence of all leaf observations that occur under

this node in the observation tree. These leaf observations are

by definition atomic (not composite), and the references
returned are t@tomicObservationRemote

get_leaf_observations_by_time(

Description:

As above, matching for the given observation code and time
span in addition to atomicity. Time spans with end times

greater than the server’s current time are interpreted to mean

“up till the current time.” Indicate “all time previous to a
given time” with a time stamp which h&aRLIEST_TIME as
the start time. Indicate “from a given time to now” with a
time stamp which hasATEST_TIME as the end time.
Therefore, a time span froBARLIEST _TIME to

LATEST _TIME is equivalent to a “don’t care” value. Note that
the “who” parameter is already part of the context of this
CompositeObservationRemote

get_leaf observations_by qualifier()

Description:

As above, matching for the given observation qualifiers in
addition

COAS V1.0 Interface Specifications Jan. 2000 3-37

get_leaf_observations_with_policy()

Description:

As above, but overriding the default policies with the one
provided.

get_relations_toward

_root()

Description:

Return observations that are related to this observation in

direction toward of the root. This operation would be useful

after navigating down through a tree of observations, and
wishing to backtrack.

get_relations_away_from_root()

Description:

Return observations that are related to this observation in
direction away from the root. This would be the normal
direction of exploration, from root out towards other relate
observations.

3.4.5 ObservationRemotelterator Interface

interface ObservationRemotelterator : AbstractMana gedObject {

unsi gned lon g max_left ();

boolean next_n (

in unsi gned lon g n,
out ObservationRemoteSeq observation_remote_seq);

the

the

2d

max_left()

Description:

This operation returns the number of items still left on the
iterator.

next_n()

Description:

This operation returns the number@ifservationRemote
objects as an out parameter as is indicated by the passe
‘n’ parameter or the maximum left. Removes the returned
objects from the iterator before returning.

d in

3-38 Clinical Observations Access Service V1.0 January 2000

3.4.6 ObservedSubject Interface

<<Interface>>
ObservedSubject

#observed_subject_id : Observ edSubjectld

’count_observ ations()
®get_observations_by_time()
%get_observations_by _qualifier()
<F——f ‘get_observations_with_policy()
®get_root_observ ations ()
’get_leaf_observ ations()
%get_any_observation()
%get_first_observ ation()
®get_last_observ ation()
‘get_candidate_observ ations()
®get_exact_observation_ty pes()

<<Interface>>
AbstractManagedObject

Figure 3-16 ObservedSubject Interface

interface ObservedSubject : AbstractMana gedObiject {
readonly attribute ObservedSubjectld observed_subject_id;

unsi gned lon g count_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (

InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemoteSeq get_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by qualifier (
in QualifiedCodeStrSeq what,

COAS V1.0 Interface Specifications Jan. 2000 3-39

in TimeSpan when,

in ObservationQualifierSeq qualifier,

in unsi gned lon g max_sequence,

out ObservationRemotelterator the_rest)
raises (

InvalidCodes,

DuplicateCodes,

InvalidTimeSpan,

InvalidQualifiers,

DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsi gned lon g max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemoteSeq get_root_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

AtomicObsRemoteSeq get_leaf observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_any_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

3-40 Clinical Observations Access Service V1.0 January 2000

ObservationRemote get_first_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_last_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_candidate_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsi gned lon g max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_exact_observation_types (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationRemotelterator the_rest)

raises (

InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

observed_subject_id

Description: The ID of the observed subject.

count_observations()

Description: Return the number of observations which match the given
search parameters.

COAS V1.0 Interface Specifications Jan. 2000 3-41

get_observations*()

Description:

Analogous to th&ueryAccess interface, except that the
“who” is the current context'®bservedSubject . See
Section 3.5.2, “QueryAccess Interface,” on page 3-46 for
details.

get_leaf_observations()

Description:

Return observations which are not composites, but rather the

final, “leaf” nodes, with data. The server will match on an
observation within an observation tree and return object

references for each leaf observation in that tree. The ser
returns a zero-length sequence if no observations match

query.

er
the

get_any_observation()

This does a query for the observation types and time spa

The server will match on any observation within an

>

observation tree and return an object reference for any one of

them. This is used when the client just needs a single

response to the query and it does not matter which of the

(potentially) multiple observations that match the query. The

server returns aull object reference if no observations mat
the query.

ch

get first_observation(), get_last observation()

This does a query for the observation types and time spa
observations with this observation subject. The server wil
match on any observation within an observation tree and
return an object reference for the first/last one in the time
span. The server returnsall if no observations match the

query.

n for
|

get_candidate_observations()

This does a query for the observation types, time span a
qualifiers for observations with this observation subject. T
server uses its own matching engine to determine if a
particular observation matches close enough to the query
criteria. The results are returned with the ones matching
being returned first

3-42 Clinical Observations Access Service V1.0 January 2000

nd
he

best

3.5

get_exact_observation_types()

This does a query for the observation types (codes) and time
span for observations with this observation subject. This
operation only returns observations which have codes that
match exactly to one of the “what” values. This is a
convenience method for employing the policy
SEARCH_SYNONYMOUS_CODES_FALSE.

Query-Oriented Interface Specifications

The second set @fsObservationAccess interfaces to be discussed are those that are
more function oriented (i.e., Query-Oriented interfaces). They support the use of query
functionality for retrieval of a lot of data in a single request.

3.5.1 BrowseAccess Interface

<<Interface>>
BrowseAccess

*get_observed_subject()
*get_obsened_subjects()

<<Interface>> *get_observed_subject_for_observation_id()
AccessComponent - ®get_obsened_subjects_for_observation_ids()
*count_observations()
*get_obsenvation()
*get_observations()
®get_observations_by_time()
*get_obsenations_by_qualifier()
*get_observations_with_policyO

Figure 3-17 BrowseAccess Interface

interface BrowseAccess : AccessComponent {
ObservedSubject get_observed_subject (
in ObservedSubjectld who)
raises (
Invalidlds);

ObservedSubjectSeq get_observed_subjects (

COAS V1.0 Query-Oriented Interface Specifications Jan. 2000 3-43

in ObservedSubjectldSeq who)
raises (

Invalidlds,

Duplicatelds);

ObservedSubject get _observed_subject_for_observation_id (
in Observationld observation_id)
raises (
InvalidOids);

ObservedSubjectSeq get_observed_subjects_for_observation_ids (
in ObservationldSeq observation_ids)
raises (
InvalidOids,
DuplicateOids);

unsi gned lon g count_observations (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (

Invalidlds,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemote get_observation (
in Observationld observation_id)
raises (
InvalidOids);

ObservationRemoteSeq get_observations (
in ObservationldSeq observation_ids)
raises (
InvalidOids,
DuplicateOids);

ObservationRemoteSeq get_observations_by_time (
in ObservedSubjectld who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
out ObservationRemotelterator the_rest)
raises (
Invalidlds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

3-44 Clinical Observations Access Service V1.0 January 2000

ObservationRemoteSeq get observations_by_qualifier (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsi gned lon g max_sequence,
out ObservationRemotelterator the_rest)

raises (

Invalidlds,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get observations_with_policy (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsi gned lon g max_sequence,
out ObservationRemotelterator the_rest)

raises (

Invalidlds,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

get_observed_subject(), get_observed_subjects()

Description:

ReturnsObservedSubject for the ObservedSubjectld passed
in.

get_observed_subject_for_observation_id(),
get_subserved_subjects_for_observation_ids()

Description: Returns arObservedSubject(Seq) for the
Observationld(Seq) passed in. That is, the server determines
the subject which is associated with a given observation.
COAS V1.0 Query-Oriented Interface Specifications Jan. 2000 3-45

get_observation*()

Description: See Section 3.5.2, “QueryAccess Interface,” on page 3-46 for
a complete definition of these operations. The difference here
is that references tObservationRemote are returned instead
of (local) ObservationData .

3.5.2 QueryAccess Interface

<<Interface>>
QueryAccess

<<Interface>> *count_obsemations()
AccessComponent] $get_obsenation()
%get _obsenations()
%get_obsenations_by_time()
%get_obsenations_by_qualifier()
®get obsenations_wit h_policy()

Figure 3-18 QueryAccess Interface

interface QueryAccess : AccessComponent {

unsi gned lon g count_observations (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (

Invalidlds,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationData get_observation (
in Observationld observation_id)
raises (
InvalidOids);

3-46 Clinical Observations Access Service V1.0 January 2000

ObservationDataSeq get_observations (

in ObservationldSeq observation_ids)

raises (

InvalidOids,
DuplicateOids);

ObservationDataSeq get_observations_by_time (

in ObservedSubjectld who,

in QualifiedCodeStrSeq what,

in TimeSpan when,

in unsi gned lon g max_sequence,
out ObservationDatalterator the_rest)

raises (

Invalidlds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationDataSeq get_observations_by_qualifier (

in ObservedSubjectldSeq who,

in QualifiedCodeStrSeq what,

in TimeSpan when,

in ObservationQualifierSeq qualifier,
in unsi gned lon g max_sequence,
out ObservationDatalterator the_rest)

raises (

Invalidlds,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationDataSeq get_observations_with_policy (

in ObservedSubjectldSeq who,

in QualifiedCodeStrSeq what,

in TimeSpan when,

in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,

in unsi gned lon g max_sequence,
out ObservationDatalterator the_rest)

raises (

COAS V1.0

Invalidlds,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

Query-Oriented Interface Specifications Jan. 2000

3-47

count_observations()

Description:

Return the number of observations which match the giver
search parameters.

get_observation(), get_observations()

Description:

Return the observation(s) corresponding to the passed in
Observationid (S).

get_observations_by_time()

Description:

Return all observations known by the server that match
criteria specified by the “who,” “what,” and “when”

parameters. A match is determined by the server’s match
engine, in accordance with default policies.
In essence, the “who,” “what,” and “when” filter the databa
of observations.

ing

se

Time spans with end times greater than the server’s current

time are interpreted to mean “through now”, so indicate the
concept “from a given time through now” with a time stamp

which hasLATEST_TIME as the end time. Indicate the
concept of “all time previous to a given time” with a time
stamp which hagARLIEST_TIME as the start time.
Therefore, a time span fro®ARLIEST _TIME to
LATEST_TIME is equivalent to a “don’t care” for time, and
includes all time possible through now.

A wildcard for individual TimeStamp elements,

TIME_WILDCARD = “?”, is provided in the constants sectiop.
Use this character to indicate that a specific field should be

treated as a wildcard. For example, “1999-??7-02T22:00:00Z"

would be equivalent to the concept of “the 2nd day of any

month in 1999, at 22:00:00 GMT".
Parsing for a wildcard is less efficient than a proper
timestamp, so use the constants mentioned above,

EARLIEST_TIME andLATEST_TIME, to indicate open-ended

searches in the past and searches which include the mos
current information, rather thanTémeStamp filled with
wildcard characters.

The “max_sequence” parameter indicates the maximum
number to be returned within tl&bservationDataSeq . A
client may choose to receive many or few items via the
synchronously returneQbservationDataSeq of

get_observation*() . If the server determines that more thamn

max_sequence observations meet the criteria for returning
the remaining observations are returned via the iterator
“the_rest”.

3-48 Clinical Observations Access Service V1.0 January 2000

Note —A server may not support iterators (See Section 3.7.2, “AccessComponent

Interface,” on page 3-60.), since iterators are remote objects and require the server to
keep state. In the cases where all observations fit in the sequence, and where iterators

are not supportedhe_rest will be null, and the returne@bservationDataSeq will
contain all the observations.

get_observations_by_qualifier()

Description:

Return observations which match the all parameters,
including the additional qualifiers. The qualifiers provided
the parameter are for filtering the database, NOT to indic
what qualifiers to return. Specify what qualifiers to return
with QUALIFIER_RETURN_POLICY.

get_observations_wit

h_policy()

Description:

Return observations which match all parameters, accordin

in
ate

gto

the overriding policies specified in the “policy” parameter.

3.5.3 AsynchAccess Interface

<<Interface>>
AsynchAccess

<<Interface>>
AccessComponent

*count_observations()
%get_observation()
*get_obsenvations()
%get_observations_by_time()
*get_observations_by_qualifier()
~get_observations_with_policy()
*cancel_get()

Figure 3-19 AsynchAccess Interface

interface AsynchAccess : AccessComponent {

ServerCallld count_observations (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in ClientCallld client_call_id,

COAS V1.0 Query-Oriented Interface Specifications Jan. 2000 3-49

3-50

in AsynchCallback client_callback);

ServerCallld get_observation (
in Observationld observation_id,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observations (
in ObservationldSeq observation_ids,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observations_by_time (
in ObservedSubjectld who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsi gned lon g max_sequence,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observations_by _qualifier (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsi gned lon g max_sequence,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observations_with_policy (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsi gned lon g max_sequence,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

void cancel_ get (
in ServerCallld server_call_id);

k

The AsynchAccess component offers a means to make requests without blocking for
the result synchronously. However, it adds complexity to the client. In particular, the
client must instantiate a callback interface, register this CORBA object with the ORB,
and take responsibility for timing out a request.

In contrast, a synchronous CORBA call can time-out a request in a relatively automatic
fashion, with a timer in the TCP layer, typically set to 30 seconds or 1 minute, and
generally provided within an ORB. An asynchronous request has no such automatic
timer support in the ORB. A client must provide logic so that when a call does not
complete, for whatever reason, the client does the right thing.

Clinical Observations Access Service V1.0 January 2000

3

Also, there is no implied timing dependency between finishing a request and getting a
reply. An asynchronous reply might begin before the request is completed. Clients
must be prepared for an answer callback before they begin a request. In particular, the
client_call_id should be ready for use at the callback implementation before the
request is made, to identify any response if multiple calls are outstanding.

count_observations()

Description: Returns the number of observations which match the given
search parameters.

get_observation*()

Description: The semantics foget_observation*() queries are the same as
Section 3.5.2, “QueryAccess Interface,” on page 3-46.
However, the results are delivered asynchronously.

In addition to the standakgkt _observation*() parameters, the
client provides an object reference toAmynchCallback .
The server calls back to that object reference in order to
return the results of the query.

Also, aclient_call_id is provided by the client. The server
returns this value when it calls thigynchCallback so that
the client can know which outstanding call is being returned
(assuming there are multiple outstanding calls for this client).
Therefore, the client should make certain that each ID is
unique within the scope of outstanding requests. For
implementation, a simple count of requests since instantigtion
should be sufficient, if multiple calls can be outstanding at
one time. If the client does not make multiple outstanding
calls, theclient_call_id has no utility and a constant can be
used.

The ServerCallld returned fromget_observation*() is an ID
from the server for the request itself. The sole purpose of the
ServerCallld is for cancellation. This identifier distinguishes
the request uniquely within the server, among all requests
from all clients. Again, for implementation, a simple count|of
incoming calls should be sufficient.

cancel_get()

Description: A client can notify the server to cancel a request that has not
yet completed. For example, consider a web browser when
the user clicks on the “stop” button. In COAS, the client
passes in th&erverCallld , which was previously returned
from theget_observation*() call. (Another alternative would
be to use ORB-specific calls to terminate the TCP connection,
but that is outside the scope of COAS, and may not allow|the
server to properly terminate processing.)

COAS V1.0 Query-Oriented Interface Specifications Jan. 2000 3-51

Note —The cancel_get() function is a courtesy to the server only. The server is NOT
responsible to actually stop the call. The call may complete, and the server may return
the result by calling thasynchCallback of the client. The client is responsible for
discarding the answer in this case. Another alternative would be to unregister the
AsynchCallback with the ORB.

3.5.4 AsynchCallback Interface

interface AsynchCallback {

void put_observations (
in ObservationDataSeq as_sequence,
in ObservationDatalterator as_iterator,
in ClientCallld client_call_id,
in QualifiedCodeStrSeq result_status);

void put_exception (
in ClientCallld client_call_id,
in AsynchException the_exception);

put_observations()

Description: Called byAsynchAccess server to return the results from
asynchronous queries. The sequence parameter contains
the observations up to the maximum number specified in|the
original call withmax_sequence . If there are more items
thanmax_sequence , the parameteds_iterator will have one
item, a reference to @bservationDatalterator , from which
the remaining observation items can be retrieved from th
server. Theas_iterator parameter will bewll if the returned
observations fit within thas_sequence parameter or the
server does not support iterators (see “AccessComponent
Interface” on page 3-60). Thesult_status parameter
supplies the client witlQualifiedCode s constructed from
constantsCOMPLETING_RESULT or PARTIAL_RESULT to
indicate the status of the callback--completing a request, |or
only partially completing a request.

D

put_exception()

Description: Called by theAsynchAccess server to return an exception
condition.

3-52 Clinical Observations Access Service V1.0 January 2000

3.5.5 ConstraintLanguageAccess

interface ConstraintLan guageAccess : AccessComponent {
readonly attribute ConstraintLan guageSeq supported_lan guages;

ObservationDataSeq get_by_constraint (
in ConstraintExpression constraint,
in QueryPolicySeq policy,
in unsi gned lon g max_sequence,
out ObservationDatalterator the_rest)
raises (
InvalidConstraint,
InvalidPolicies,
DuplicatePolicies);

supported_lan guages

Description: The sequence of constraint languages which are valid for
constraint queries.

get_by constraint()

Description: Parse the given constraint and return matching observations.
The policy parameter overrides any default policies. As with
otherget_*() calls, if more observations match the constrajnt
than indicated by thenax_sequence parameter, the
remaining observations are returned via the iterator.

3.6 Eventand Notification Interface Specifications

This section discusses teObservationAccess interfaces that subclass various
interfaces inCosEvent . They support the notification of clients by one or more servers
when an observation of interest has “arrived”. They also send either the
ObservationData itself, or sufficient information to retrieve the observation using
anotherDsObservationAccess interface.

3.6.1 EventSupplier Interface

interface EventSupplier : AbstractMana gedObject, PushSupplier {
readonly attribute Endpointld endpoint_id;
QualifiedCodeStrSeq obtain_offered_codes ();
void connect_push_consumer (

in PushConsumer push_consumer)
raises (

COAS V1.0 Event and Notification Interface Specifications Jan. 2000 3-53

CosEventChannelAdmin::AlreadyConnected);

PushConsumer get_connected_consumer ()
raises (
CosEventComm::Disconnected);

void subscribe (
in SubscriptionSeq subscriptions)
raises (
CosEventComm::Disconnected);

SubscriptionSeq describe_subscriptions ()
raises (
NoSubscription);

void generate_test_event (
in ClientCallld clientld)
raises (
CosEventComm::Disconnected);

k

The EventSupplier interface encapsulates all that is necessary to supply events. Each
supplier instance can be connected with exactlyEwsetConsumer . A server

typically creates one or more suppliers for each client that wishes to receive events. A
typical client implements thEventConsumer interface, and connects this consumer
instance with arEventSupplier provided by the server’s

SupplierAccess.create_supplier()

endpoint_id

Description: When instantiated by th8upplierAccess factory, an
EventSupplier receives an identifier from the factory. This
identifier may be used to relocate the supplier by the factory.

obtain_offered_codes()

Description: Returns a sequence of observation codes which this supplier
can supply.

connect_push_consumer()

Description: Establishes 1/2 of a connection, from the point of view of the
supplier. The analogous
EventConsumer.connect_push_supplier() must also be
called to complete the connection from the client's point of
view. The supplier can cadlisconnect() on the consumer in
order to break the connection

3-54 Clinical Observations Access Service V1.0 January 2000

subscribe()

Description: Establish an ongoing request for observations.

e The query is for future observations (as opposed to past
observations).

* The time span is implied to be from the tisbscribe() is
called until this consumer is disconnected.

* The observations are returned within the
CosEventComm::push() operation inherited by
EventConsumer . The argument within thipush() operation is
an Corba::any . Within theCorba::any is an
ObservationData .

The call tosubscribe() begins a flow of events. Before the
first call to subscribe() , no events flow. Supplier and
consumer must be connected already, or exception
Disconnected is thrown. Any subsequent call $abscribe()
removes the previous subscription and begins a new
subscription.

describe_subscription()

Description: Returns the current subscription that has been set on the
supplier.

generate_test_event()

Description: Sends a test event to the consumer. This operation will be
called by a savvy client after an interval of inactivity, to
ascertain whether all is well in the event system and network.
Without this direct request for a test event, a client might
never know of network or event system problems.

The event resulting from this call will arrive, as with all events, icCaiba::any .
Within the Corba::any will be anObservationData as follows:

ObservationDataStruct
code: TEST_EVENT // see constants
composite: [] Il empty
qualifiers: [] /I empty
value: Any {clientld } // Any containin g along, the value of the input parameter

In other words, a®bservationDataStruct with a predetermined code@EST_EVENT
from the constants section of this IDL, and with a payload of the given input parameter
clientld .

3.6.2 EventConsumer Interface

interface EventConsumer : AbstractMana gedObject, PushConsumer {

COAS V1.0 Event and Notification Interface Specifications Jan. 2000 3-55

readonly attribute Endpointld endpoint_id;
SubscriptionSeq obtain_subscriptions ();

void connect_push_supplier (
in PushSupplier push_supplier)
raises (
CosEventChannelAdmin::AlreadyConnected);

PushSupplier get_connected_supplier ()
raises(
CosEventComm::Disconnected);

k

The EventConsumer interface encapsulates all that is necessary to receive events.
Each consumer instance can be connected with exactlgw@neSupplier . A server
would itself create agventConsumer only when the server wished to receive events
itself. A typically client would NOT calConsumerAccess.create_consumer() , but
rather implement th&ventConsumer interface directly. After instantiating one of
these “home grown” instances B¥entConsumer , a typical client would connect this
consumer instance with @ventSupplier provided by the server’s
SupplierAccess.create_supplier()

endpoint_id

Description: When instantiated by th@onsumerAccess factory, an
EventConsumer receives an identifier from the factory. Th
identifier can be used to retrieve a reference to the
EventConsumer Vvia

ConsumerAccess. get_consumer_by id() .

Note that when th&ventConsumer interface is implemented
by a typical client (not @sObservationAccess server), the
identifier is not necessary nor relevant.

(7]

obtain_subscriptions()

Description: Returns a sequence 8iibscriptions which this consumer
would like to obtain. This operation is useful in an applicatjon
management scenario. For example, a management
application can use this operation to know what subscriptions
to apply when connecting up a client and supplier without|the
explicit advance knowledge of this connection by those
endpoint. Also, this operation could be reused by a client
when subscribing, since it must have just such a list of
subscription forEventSupplier.subscribe()

3-56 Clinical Observations Access Service V1.0 January 2000

connect_push_supplier()

Description: Establishes 1/2 of a connection, from the point of view of the
consumer. The analogous
EventSupplier.connect_push_consumer() must also be
called to complete the connection from the server point of
view. The consumer can calisconnect() on the supplier in
order to break the connection.

get_connected_supplier()

Description: Returns a reference to the connedfedntSupplier , or a
Disconnected exception if no connection has been
established yet.

3.6.3 SupplierAccess Interface

<<Interface>> <<Interface>>
AccessComponent SupplierAccess

— " | *%create_supplier()
®get_supplier_by _id()

<<Interface>> L
AbstractFactory

Figure 3-20 SupplierAccess Interface

interface SupplierAccess : AbstractFactory, AccessComponent {

EventSupplier create_supplier ()
raises (
MaxConnectionsExceeded);

EventSupplier get_supplier_by_id (
in Endpointld endpoint_id)
raises (
InvalidEndpointld);

COAS V1.0 Event and Notification Interface Specifications Jan. 2000 3-57

create_supplier()

Description: Creates a neWventSupplier instance and returns it.

get_supplier_by_id()

Description: This operation returns an object reference to the
EventSupplier corresponding to the parametaitipoint_id .
A SupplierAccess is responsible to keep track of all the
EventSupplier s created, with theiEndpointld s.

3.6.4 ConsumerAccess Interface

<<Interface>> n‘
AccessComponent . SemiEiEEE=S
e ConsumerAccess
<<Interface>> Q/ %create_consumer()
AbstractFactory %get_consumer_by_id()

Figure 3-21 ConsumerAccess Interface

interface ConsumerAccess : AbstractFactory, AccessComponent {

EventConsumer create_consumer ()
raises (
MaxConnectionsExceeded);

EventConsumer get_consumer_by_id (
in Endpointld endpoint_id)
raises (
InvalidEndpointld);

3-58 Clinical Observations Access Service V1.0 January 2000

create_consumer()

Description: Creates a newWventConsumer instance. Each consumer
instance can be connected with exactly BaentSupplier . A
server would create a consumer only when the server wished
to receive events from another COAS server. A typical client
would NOT callcreate_consumer() , but instead implement
the EventConsumer interface, and connect this “home
grown” instance with amEventSupplier provided by the
DsObservationAccess Server.

get_consumer_by id()

Description: This operation returns a reference to HventConsumer
corresponding to the parametgidpoint_id . To accomplish
this, theConsumerAccess factory should aggregate a
reference and aBndpointld for all theEventConsumer s that
it creates.

3.7 Ultility Interface Specifications

The rest of thédsObservationAccess interfaces are described in this section.

3.7.1 ObservationLoader Interface

interface ObservationLoader : AccessComponent {

void load_observations (
in ObservationDataSeq observations);

load_observations()

Description: Load observations into BsObservationAccess —Server.
Intended for use by legacy systems, which cannot be queried,
but can output some stream of data.

COAS V1.0 Utility Interface Specifications Jan. 2000 3-59

3.7.2 AccessComponent Interface

AccessComponent

$coas_version : string

#pid_service : IdentificationComponent
#terminology_service: TerminologyService
gtrader_service : TraderCom ponents
#nhaming_service : NamingContext

%get_components()
®get_supported_codes()
> %get_supported_qualifiers()
— %get_supported_policies() —

= %get_default_policies() —
%get_type_code_for_observation_type()
%are _jterators_supported()
%get_cument_time()

7

\\f‘/

ObservationLoader‘ ‘ ConsumerAccess ‘ ‘ SupplierAccess ‘ ‘ ConstraintLanguageAccess ‘ ‘ AsynchAccess

Figure 3-22 AccessComponent Interface

interface AccessComponent {
readonly attribute strin g coas_version;
readonly attribute IdentificationComponent pid_service;
readonly attribute Terminolo gyService terminolo gy_service;
readonly attribute TraderComponents trader_service;
readonly attribute Namin gContext namin g_service;
AccessComponentData get_components ();
QualifiedCodeStrSeq get_supported_codes (
in unsi gned lon g max_sequence,
out QualifiedCodelterator the_rest);
QualifiedCodeStrSeq get_supported_qualifiers (
in QualifiedCodeStr code)
raises (
InvalidCodes,
Notimplemented);

QualifiedCodeStrSeq get_supported_policies ();

QueryPolicySeq get_default_policies ();

3-60 Clinical Observations Access Service V1.0 January 2000

TypeCode get_type_code_for_observation_type (
in QualifiedCodeStr observation_type)
raises (
InvalidCodes,
Notimplemented);

boolean are_iterators_supported ();
TimeStamp get_current_time ();

k

AccessComponent is the superclass of all componemscessComponent allows
discovery of the context of OMG services which a given component may use, in the
form of references for pertinent services. These attributes mayllbéndicating that

the given service is lacking or unknown. Note that for each interface that provides the
AccessComponent operations, those interfaces return the same response to each
operation for a specific COAS server. So for example, a

QueryAccess. get_supported_codes() operation will return the same response as the
BrowseAccess. get_supported_codes() for the same COAS server.

coas_version

Description: Version of COAS specification supported by this
DsObservationAccess server, starting with “1.0” for the firs
approved specification.

pid_service, terminolo gy_service, trader_service, namin g_service

Description: References to other OMG standard services which compr
the context of thi®sObservationAccess server.

se

get_components()

Description: This operation returns aficcessComponentData .
AccessComponentData contains references to all
implemented components as a convenience for clients that
have one reference to a component, and wish to use a
different component.

get_supported_codes()

Description: A complete list of query codes for which this server can
supply responses. Parametex_sequence indicates the
number of codes which the client wishes to be returned within
the immediately returned sequence. Paramaterest
contains an iterator for remaining items if and only if the
number of codes is greater thaax_sequence .

Note —A query code is synonymous withQaialifiedCode from a terminology system
and denotes a type of observation, such as Complete Blood Cound, Systolic Blood
Pressure, etc.

COAS V1.0 Utility Interface Specifications Jan. 2000 3-61

get_supported_qualifiers()

Description: A complete list of qualifiers which this server can match, and
also supply as returned qualifiers, with respect to the given
observation code. A server may be able to match/supply
different sets of qualifiers for different codes.

get_supported_policies()

Description: A complete list of policies which this server can employ
when filtering on desired observations. The returned list i$ of
codes only.

get_default_policies()

Description: The policies which are in effect unless overridden via

get_observations_with_policy() . The returned list is a list 0
name-value pairs, both the name of the policy and its default
value.

get_type_code_for_observation_type()

Description: With each observation that a COAS server supports there
corresponding structure to contain and communicate the
observation’s value. For simple observation values, this might
be one of the structures definedDrObservationvalue . For
more complex values, it might be a hierarchy of
DsObservationData structures.

The methodyet_type_code_for_observation_type() returns
the corresponding IDL TypeCode for each requested
observationQualifiedCode . However, a typical client may
have these correspondences hardwired, expecting a certai
IDL structure for a given observation code.

sa

n

are_iterators_supported()

>

Description: Returns a boolean describing whether this component ca
return iteratoObservationDatalterator and iterators for some
of the data values iDsObservationValues . Iterators are
remote objects.

If a server does not support iterators,@iservationData
andObservationvalue items are returned within sequences,
and all out-parameter iterators returned as null. In this case,
the input parametanax_sequence (present in many
operations, indicating the client’s preferred number of items
returned in the sequence) is ignored by the server as it returns
all observations within the sequence.

3-62 Clinical Observations Access Service V1.0 January 2000

Description If a server supports iterators, the server will pay attention to
(continued): the max_sequence input parameter, and an iterator will be
instantiated and returned when the search for observations is
successful and the input parameteix_sequence is set to
less than the total number of observations found. Returning
an iterator requires the server to be stateful, since the iterator
is a remote object that must be instantiated and registered
with the ORB for some lifetime.
For example, an implementer expecting a very large and busy
set of clients may want to makeQaieryAccess component
which is stateless, and thus choose to return FALSE to
are_iterators_supported()

get_current_time()

Description: Return aTimeStamp for the current time on the server. This
can be useful for a client which resides in another timezone or
which has questionable date/time settings (like a PC). A client
can base a query on the server’s time rather than the client’s
time.

3.7.3 ObservationDatalterator Interface

interface ObservationDatalterator : AbstractMana gedObject {
unsi gned lon g max_left ();
boolean next_n (

inunsi gned long n,
out ObservationDataSeq observation_data_seq);

h

max_left()

Description: This operation returns the number of items still left on the
iterator.

next_n()

Description: This operation returns the number@ifservationData
objects as an out parameter as is indicated by the passed in
‘n’ parameter or the maximum left. Removes the returned
objects from the iterator before returning.

COAS V1.0 Utility Interface Specifications Jan. 2000 3-63

3.7.4 QualifiedCodelterator Interface

interface QualifiedCodelterator : AbstractMana gedObject {

unsi gned lon g max_left ();

boolean next_n (

in unsi gned lon g n,
out QualifiedCodeStrSeq codes);

max_left()

Description:

This operation returns the number of items still left on the
iterator.

next_n()

Description:

This operation returns the number@ialifiedCodeStr

objects as an out parameter as is indicated by the passed in

‘n’ parameter or the maximum left. Removes the returned
objects from the iterator before returning.

3.7.5 AbstractFactory Interface

interface AbstractFactory {

readonly attribute lon g max_connections;

readonly attribute EndpointldSeq current_connections;

max_connections

Description:

This attribute indicates the maximum number of connections

the server will allow to be active at one time. Additional
event suppliers and consumers will not be created beyond
limit.

current_connections

Description:

This attribute contains a sequence of endpoint IDs for the
currently created event consumers or suppliers.

3-64 Clinical Observations Access Service V1.0 January 2000

3.7.6 AbstractManagedObiject Interface

interface AbstractMana gedObject {

void done ();

done()

Description: Clients calls this operation when they are done using an
object. This signals the server to deactivate or garbage callect
the object. However, a savvy server will enforce a timeout
after some amount of idle time for each managed object
order to cleanup after ill-behaved clients or traumatic client
termination.

5

COAS V1.0 Utility Interface Specifications Jan. 2000 3-65

3-66 Clinical Observations Access Service V1.0 January 2000

4.1 Overview

DSObservation Values 4

Contents

This chapter contains the following topics.

Topic Page
“Overview” 4-1
“Data Type Definitions” 4-2
“Supporting Types” 4-2
“Time Types” 4-3
“Person Type” 4-3
“Nolnformation Type” 4-3
“Text Types” 4-4
“Coded Types” 4-5
“Multimedia Types” 4-6
“Simple Measurement Types” 4-7
“Complex Measurement Types” 4-8

The DsObservationvalue module defines the data containers for the Clinical
Observations Access Service (COAS) specificat@pservationvalue types are
containers for the results of observing forms of biological phenomenon.

Clinical Observations Access Service V1.0 January 2000 4-1

We have based this IDL on the Information Model presented in Section 4.1,
“Overview,” on page 4-1. We have selected a subset of all possible data containers,
with the goal of making them as simple as possible. We realize that our set is not
complete, yet we believe it to be disjoint.

If we had made use of Objects-by-Value (OBV) technology, many of the data types
defined in this module would have been sub-classes abaervationvalue class.
However, OBV was not available to a sufficient degree during the finalization of this
specification. We tried to preserve the notion of inheritance even in defining our data
containers astructs , by using a commentstruct name>:ObservationValue to

indicate this intended inheritance. A future revision of COAS may replace the
CORBA:any in ObservationDataStruct with OBV.

4.2 Data Type Definitions

The following sections describe all the IDL for the data types used within the
DsObservationvalue module. To indicate which data types are intended to be sub-
classes fronDbservationvalue , we have placed a comment immediately before those
definitions containing the syntaxéhild class>: Observationvalue ".

/I File: DsObservationValue.idl

#ifndef _DS_OBSERVATION_VALUE_IDL_
#define_DS_OBSERVATION_VALUE_IDL_

#include "DsObservationAccess.idl"
#pragma prefix "om g.org"

module DsObservationValue

{
k
#endif / _DS_OBSERVATION_VALUE_IDL_

The “Ds” prefix of DsObservationvalue stands for “Domain Service.” All OMG
services are expected to start with “Ds” to isolate a particular name space from
potential clashes.

4.3 Supporting Types

typedef Terminolo gyServices::ConceptCode ConceptCode;
typedef Namin gAuthority::QualifiedNameStr QualifiedCodeStr;

typedef DsObservationAccess::AbstractMana gedObject AbstractMana gedObject;

ConceptCode andQualifiedCodeStr are imported type definitions from the Lexicon
Query Service (LQS) and Person Identification Service (PIDS) specifications.

Clinical Observations Access Service V1.0 January 2000

4

AbstractMana gedObiject is an abstract interface that provides a convenience function
for a client to notify the server when they are done using some remote object.

4.4 Time Types

/I DateTime : ObservationValue;
typedef DsObservationAccess:: TimeStamp DateTime;

/I TimeSpan : ObservationValue;
typedef DsObservationAccess::TimeSpan TimeSpan;

These data types reuse the time definitions fbm@bservationAccess . Descriptions
for them can be found in “DateTime” on page 4-3 and in Section 3.3.10, “TimeStamp,”
on page 3-24.

4.4.1 DateTime

A DateTime conveys a point in time, including the date.

4.4.2 TimeSpan

A TimeSpan conveys a period of time, with a beginning and end.

4.5 Person Type

/I Person : ObservationValue;
typedef DsObservationAccess::ObservedSubjectld Person;

This data type is reused frobsObservationAccess . A description for it can be found
in Section 3.3.2, “External Typedefs,” on page 3-17.

4.5.1 Person

A Person contains an ID from a PIDS. It can be used to identify an organ, patient,
health care provider, or population.

4.6 Nolnformation Type

/I Nolnformation : ObservationValue;
struct Nolnformation {
QualifiedCodeStr reason;
strin g text_description;

k

const QualifiedCodeStr NO_INFORMATION =
"DNS:om g.org/DsObservationValue/NO_INFORMATION";

COAS V1.0 Time Types Jan. 2000 4-3

4-4

There are instances when it is appropriate to convey that information is unavailable or
missing. For further discussion and an example see “Nolnformation”.

4.6.1 Nolnformation

4.7 Text Types

A Nolnformation value indicates both that specific information is missing and how or
why it is missing. It can occur in place of any other observation value.

reason

Description: Thereason attribute is used to denote why the information
missing or unavailable. This attribute ixaalifiedCode and
should come from a well-defined terminology system.

S

text_description

Description: Thetext_description attribute contains a text string to be
displayed in support of the reason attribute.

NO_INFORMATION is aQualifiedCode to be used in an
AtomicObservation to indicate that the value it contains is
“Nolnformation.” This code is defined here because we
believe that this concept does not appear in existing standard
coding schemes. It is our intention for this code to fill the gap
until this concept appears in a standard coding scheme.

/I PlainText : ObservationValue;
typedef strin g PlainText;

/I UniversalResourceldentifier : ObservationValue;
struct UniversalResourceldentifier {

ConceptCode protocol;

strin g address;

}

/I PhysicalLocationDescription : ObservationValue;
typedef strin g PhysicalLocationDescription;

Although there are several data types that use a string to carry the information, only
one communicates the observation directly. The others contain textual references or
pointers to the location or resource where the data can be accessed.

4.7.1 Plain Text

PlainText is used to communicate observation values as ideas in the form of writing. It
is expected that along with the text will be a qualifier that indicates the language in
which the text is written.

Clinical Observations Access Service V1.0 January 2000

4.7.2 UniversalResourceldentifier

A UniversalResourceldentifier is used to reference information that has some tie to a
technology that can perform some action.

protocol

Description: This is the protocol associated with the address. The protocol
indicates the technology to be used to interpret the address.
For example, http.

address

Description: The address attribute contains some structured sequence of
characters that the protocol knows how to interpret. For
example, www.example.com.

4.7.3 PhysicalLocationDescription

A PhysicalLocationDescription is used to reference information or items that are not
located within some information space, but are instead located in some physical space.

4.8 Coded Types

/I CodedElement : ObservationValue;
typedef Terminolo gyServices::QualifiedCodelnfo CodedElement;

/I LooselyCodedElement : ObservationValue;

struct LooselyCodedElement {
strin g text;
Terminolo gyServices::Codin gSchemeld codin g_scheme_id;
Terminolo gyServices::Versionld version_id;

k

The coded data types provide a mechanism to communicate observation values that
have been coded in some form or another. Further information can be found in the
“CodedElement” and “LooselyCodedElement” sections below.

4.8.1 CodedElement

A CodedElement is coded in the sense that it is a unique identifier. This unique
identifier can then be used to ask a terminology system specific questions about the
CodedElement . For example, its representation based on some context, or its
definition.

4.8.2 LooselyCodedElement

There are times when a code that the user wants cannot be realized or found within a
terminology system (e.g., is not in the list of allowable values). In which case the
LooselyCodedElement can be used to send text instead.

COAS V1.0 Coded Types Jan. 2000 4-5

4-6

text

Description: Thetext attribute is a String and is used when no
CodedElement from a terminology system can be
determined.

codin g_scheme_id

Description: Thecodin g_scheme_id attribute is the id, from an LQS, that
is used to identify the coding scheme where the text was
intended.

version_id

Description: Theversion_id attribute is used to identify the version of the
coding scheme where the text was intended.

4.9 Multimedia Types

typedef sequence<octet> Blob;
interface Multimedialterator : AbstractMana gedObject {
unsi gned lon g max_left ();

boolean next_n (
inunsi gned long n,
out Blob multimedia_part);

k

/I Multimedia : ObservationValue;
struct Multimedia {
strin g content_type;
strin g other_mime_header_fields;
Blob a_blob;
unsi gned lon g lon g total_size;
Multimedialterator the_iterator;

}

We define a supporting data type and an interface for the Multimedia data type.

Blob

Description: A Blob is just an opaque container for data, even more
opaque than &ORBA::any .

Multimedialterator

Description: The Multimedialterator iS used to retrieve data in chunks.
Iterators in general are described in more detail in
Section 3.7.3, “ObservationDatalterator Interface,” on
page 3-63.

Clinical Observations Access Service V1.0 January 2000

4.9.1 Multimedia

For the communication of observations such as images, audio or video recordings or
large documents, we utilize the Multipurpose Internet Mail Extensions (MIME)
standard.

content_type

Description: The content_type is a structured attribute that identifies th
general media type (e.g., Application, Audio, Image,

Message, Model, Multipart,Text and Video, and the specific
format used).

11°

other_mime_header_fields

Description: The other_mime_header_fields contains the rest of the
MIME header. We have made this available so that clients|can
gain further information about what is contained in this data

value.

a_blob

Description: Thea_blob attribute contains the observation value itself.

total_size

Description: Thetotal_size attribute contains the number of bytes of data
in the Blob.

the_iterator

Description: the_iterator may contain a reference to a multimedia iterator

when the Blob is larger than the client wants to receive at|one
time. It can be used to retrieve the rest of the Blob in chunks.

4.10 Simple Measurement Types

/I Numeric : ObservationValue;

struct Numeric {
QualifiedCodeStr units;
float value;

k

/I Range : ObservationValue;
struct Ran ge {
QualifiedCodeStr units;
float lower;
float upper;

}

/I Ratio : ObservationValue;
struct Ratio {

float numerator;

float denominator;

COAS V1.0 Simple Measurement Types Jan. 2000 4-7

}

The simple measurement types are designed to contain single or paired numbers, that
is quantitative measurements or observations. The units associated Wit
andRange types areualifiedCode s and should come from a well-defined

terminology system. All other attributes mentioned in the Measurement sections should
be attached to the relevamiomicObseration as qualifiers.

4.10.1 Numeric

Numeric is used to communicate a single measurement or quantitative value.

4.10.2 Range

Range is used to associate two related values together. For example, 1<= X <= 5. It is
assumed that the value in the lower attribute is less than or equal to the value in the
upper attribute.

4.10.3 Ratio

A Ratio value contains a numerator quantity and a denominator quantity, and is used in
those situations where the ratio is more easily understood than the equivalent real
number. It should be noted that the ratio data type must not be used as a handy
representation of two related values. In particular, blood pressure values, commonly
reported as 120/80 mm Hg, are not ratios!

4.11 Complex Measurement Types

4-8

struct XYPair {
float x;
float y;

k

typedef sequence<XYPair> XYPairSeq;
interface Curvelterator : AbstractMana gedObiject {
unsi gned lon g max_left ();

boolean next_n (
inunsi gned long n,
out XYPairSeq curve_part);
h

/I Curve : ObservationValue;

struct Curve {
XYPairSeq xy_pairs;
QualifiedCodeStr x_units;
QualifiedCodeStr y_units;
unsi gned lon g lon g total_size;

Clinical Observations Access Service V1.0 January 2000

Curvelterator the_iterator;

k

In DsObserationvValue we define one data type that contains many measurements. To
support this data type several supporting methods must be defined.

XYPair, XYPairSeq

Description:

These are the low level data types for holding a vector of gata

pairs.

Curvelterator

Description:

The Curvelterator , like all other iterators, is the mechanism
for retrieving the data in chunks.

4.11.1 Curve

Curve is a data type

for retrieving paired measurements or values.

Xy_pairs

Description:

Thexy pairs contains the data sequence.

X_units, y_units

in the curve.

the_iterator

Description:

the_iterator may contain a reference toCarvelterator that
can be used to retrieve a very large curve data sequence
chunks.

COAS V1.0 Complex Measurement Types Jan. 2000 4-9

Description: Thex_units andy_units areQualifiedCode and should come
from a well-defined terminology system. In healthcare, the
x_units is usually a time (e.g., milliseconds, seconds, or
minutes). They_units is often a quantitative measurement,

total_size

Description: Thetotal_size attribute contains the total number of elements

in

4-10 Clinical Observations Access Service V1.0 January 2000

DSObservationTimeSeries 5

Contents

This chapter contains the following topics.

Topic Page
“Overview” 5-1
“Data Type Definitions” 5-1
“External Typedefs” 5-2
“Time Types” 5-2
“Typedef, Enum, Union, and Sequence Types” 5-3
“Iterator Types” 5-3
“TimeSeries” 5-3
“Exceptions” 5-4
“TimeSeriesRemote” 5-4

5.1 Overview

The DsObservationTimeSeries module defines an extension to the basic data types

and interfaces of thBsObservationAccess andDsObservationvValue modules. The
TimeSeries data types and operations were designed to support the unique features and
needs of accessing vital sign waveforms.

5.2 Data Type Definitions

The following sections list all the IDL for the data types used within the
DsObservationTimeSeries module.

Clinical Observations Access Service V1.0 January 2000 5-1

5-2

/I File: DsObservationTimeSeries.idl

#ifndef _DS_OBSERVATION_TIME_SERIES_IDL_
#define_DS_OBSERVATION_TIME_SERIES_IDL_

#include <DsObservationAccess.idl>

module DsObservationTimeSeries

{
k
#endif // _DS_OBSERVATION_TIME_SERIES_IDL_

Provides antifdef wrapper to preclude multiple inclusions.

5.3 External Typedefs

5.4 Time Types

typedef DsObservationAccess::AbstractMana gedObject AbstractMana gedObject;
typedef DsObservationAccess::NameValuePair NameValuePair;

typedef DsObservationAccess::QueryPolicy QueryPolicy;

typedef DsObservationAccess::QueryPolicySeq QueryPolicySeq;

typedef DsObservationAccess::ObservationQualifierSeq ObservationQualifierSeq;
typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;

typedef DsObservationAccess:: TimeStamp TimeStamp;

typedef DsObservationAccess:: TimeSpan TimeSpan;

Describes external dependencies.

/I TimeDelta : ObservationValue;

struct TimeDelta {
float delta; // calculated with constants below, NOT with calendarin g
QualifiedCodeStr units;

I8

/I approximations for time deltas, NOT for calendarin g
const float YEAR = 31557600.0; // 60*60*24*365.25
const float MONTH =2629800.0; // 60*60*24*365.25/12
const float DAY =86400.0; // 60*60*24

const float HOUR = 3600.0; /1 60*60

const float MINUTE =60.0; /1 60

const float SECOND =1.0; /11

const float MILLISECOND = 0.001; //1/1000

TimeDelta is intended for calculation with the time constants provided. For example,
an appropriate use @fmeDelta might be the time difference between the beginning of

a EKG session and the end of the session. This difference would be expressed as
seconds or milliseconds, with any necessary calculation (converting from minutes or
hours) via the constants provided. This is different than UTC calculations based on the
calendar. In particular, the number of seconds in a given calendar day or year may vary
since the spin of the earth varies, and UTC is kept in relative harmony with that spin.

Clinical Observations Access Service V1.0 January 2000

5.5 Typedef, Enum, Union, and Sequence Types

typedef NameValuePair Filter;
typedef sequence<Filter> FilterSeq;

enum ValueSeqType { OtherSegDataType, OctetType, ShortType,
LongType, Lon gLongType, FloatType, DoubleType
h

union ValueSeq switch (ValueSeqType) {
case OctetType :sequence< octet > octet_seq;
case ShortType : sequence< short > short_seq;
case Lon gType :sequence<lon g >long_seq;
case Lon gLongType : sequence< lon g long >long_long_seq;
case FloatType :sequence< float > float_seq;
case DoubleType : sequence< double > double_seq;
case OtherSeqDataType : any the_any;
h

typedef sequence<QualifiedCodeStr,1> OptionalCodeSeq;
typedef sequence<float,1> OptionalFloatSeq;

5.6 lterator Types

interface TimeSerieslterator : AbstractMana gedObject {
unsi gned lon g max_left ();

boolean next_n (
in unsi gned lon g n,
out ValueSeq curve_part);

5.7 TimeSeries

/I TimeSeries : ObservationValue;
struct TimeSeries {
TimeDelta sample_period;
ValueSeq values;
QualifiedCodeStr value_units;
unsi gned lon g lon g total_size; // number of items in values + remainin g on
iterator
TimeSerieslterator the_iterator;

}

TimeSeries will include a non-null iterator if the number of items in the sequence
“values” is greater than the current policy
RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY. In other words, specify the
number of items desired in the sequence with this policy, and that will determine
whether an iterator is returned also.

COAS V1.0 Typedef, Enum, Union, and Sequence Types Jan. 2000 5-3

This policy is analogous to the parameter “max_sequence” in

QueryAccess. get_observations_by_time() and similar operations. The input
parameter “max_sequence” specifies the number of observations to return in a
sequence. But a single observation which contaifimeSeries payload in its
ObservationDataStruct.value (CORBA::any) may have any number of items in the
TimeSeries.values (@ sequenge The number of items desired by the client is specified
via theRETURN_MAX_SEQUENCE_FOR_VALUE_POLICY.

5.8 Exceptions

exception OutOfRan ge{};
exception Notimplemented{};
exception FilterNotSupported{};

exception NoValidVvalues{};

5.9 TimeSeriesRemote

struct TimeSeriesRemoteAttributes {
QualifiedCodeStr code;
QualifiedCodeStr units;
OptionalCodeSeq accuracy;
OptionalFloatSeq precision;
OptionalFloatSeq corner_frequency;
OptionalFloatSeq hi ghest_frequency;
TimeSpan time_span;
TimeDelta time_delta;
unsi gned lon g lon g total_size;
QualifiedCodeStrSeq supported _filters;
QueryPolicySeq supported_policies;

h

/I TimeSeriesRemote : ObservationValue;
interface TimeSeriesRemote : AbstractMana gedObject {

readonly attribute QualifiedCodeStr code;

readonly attribute QualifiedCodeStr units;

readonly attribute OptionalCodeSeq accuracy;

readonly attribute OptionalFloatSeq precision;

readonly attribute OptionalFloatSeq corner_frequency;
readonly attribute OptionalFloatSeq hi ghest_frequency;
readonly attribute TimeSpan time_span;

readonly attribute TimeDelta time_delta;

readonly attribute unsi gned lon g lon g total_size;
readonly attribute QualifiedCodeStrSeq supported_filters;
readonly attribute QueryPolicySeq supported_policies;
readonly attribute ValueSeqType default_value_type;

TimeSeriesRemoteAttributes get_attributes ();

Clinical Observations Access Service V1.0 January 2000

float get_sample_number (
in unsi gned lon g long index,
out ObservationQualifierSeq qualifiers)
raises (
OutOfRan ge);

float get_sample (
in TimeStamp time_stamp,
out ObservationQualifierSeq qualifiers)
raises (
OutOfRan ge);

TimeSeries get_snippet (
in TimeSpan time_span,
out ObservationQualifierSeq qualifiers)
raises (
OutOfRan ge);

float get_max (
in TimeSpan time_span)
raises (
OutOfRan ge,
NoValidValues);

float get_min (
in TimeSpan time_span)
raises (
OutOfRan ge,
NoValidValues);

float get_mean (
in TimeSpan time_span)
raises (
OutOfRan ge,
NoValidValues);

float get_median (
in TimeSpan time_span)
raises (
OutOfRan ge,
NoValidValues);

TimeSeries get_resampled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)
raises (
Notimplemented);

TimeSeries get_rescaled (
in TimeSpan time_span,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

COAS V1.0 TimeSeriesRemote Jan. 2000

5-5

raises (

Notimplemented);

TimeSeries get_resampled_rescaled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

raises (

Notimplemented);

TimeSeries get_filtered (
in TimeSpan time_span,
in FilterSeq filters,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

raises (

Notimplemented,
FilterNotSupported);

k

(partial documentation follows)

get_attributes()

Description:

Returns the structure containing the attributes pertaining to

the specificTimeSeriesRemote .

get_sample()

Description:

Return a single data point corresponding to the timestamp
limiting qualifiers.

get_snippet()

Description:

Gets a series of data points (i.e., a waveform snippet) tha

correspond to the time period defined in the timespan.

get_max()

Description:

Returns the numeric maximum data value in the defined
timespan.

get_min()

Description:

Returns the numeric minimum data value in the defined
timespan.

get_mean()

Description:

Returns the arithmetic mean or average data value of all
individual data points included within the timespan specif

get_median()

Description:

Returns the median data value of all the individual data pa
included within the timespan specified.

5-6 Clinical Observations Access Service V1.0 January 2000

and

—

the
ed.

ints

DSObservationRelations 6

Contents

This chapter contains the following topics.

Topic Page
“Overview” 6-1

“CEN Naming Convention” 6-2
“Observation Type for Relations” 6-2
“Relation Codes” 6-2

6.1 Overview

This section describes the relations that can exist between observations. In COAS, a
relation is modeled by a qualifying, composite observation which has a code
describing the relationship. This qualifying, composite observation links an
observation and its related observations.

For example, consider a relationship where Observation A is caused by a number of
other observations. In the graphic below, a linkigervationDataStruct structure,
Observation B, holds the identity of that relationship, along with the list of related
observations.

Clinical Observations Access Service V1.0 January 2000 6-1

Figure 6-1 Observation B relates Observation A with other observations. A “IsCausedBy”
others.

A starter set of codes for relations is defined below. The relations indicated by these
codes are documented in the Comité Européen De Normalisation (CEN, European
Committee For Standardization) First Working Document of Electronic Healthcare,
Record Communication - Part 2: Domain Termlist, (CEN/TC 251/N98-116).

6.2 CEN Naming Convention

Code names from CEN/TC 251/N98-116, table A.5, are created as follows:
® start with “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/".

® add relationship names from table A.5, translated as:
* replace “/" with “_".
* replace space with nothing, capitalizing next word.
e omit apostrophe, periods, parenthesis, and other punctuation.

6.3 Observation Type for Relations

Each observation code is associated with a particular IDL static type definition. All
relation codes refer to composite observations. Hence their observation type in COAS
is a composite observation, which is j@éfservationData .

typedef DsObservationAccess::ObservationData RELATION_type;

6.4 Relation Codes

6.4.1 Produce

Relations that produce or are produced by healthcare activity.
const QualifiedCodeStr Produces = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Produces”;

const QualifiedCodeStr IsProducedB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsProducedB y";

6-2 Clinical Observations Access Service V1.0 January 2000

6.4.2 Document

Relations that document or are documented by a healthcare activity.

const QualifiedCodeStr Documents = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Documents”;

const QualifiedCodeStr IsDocumentedB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsDocumentedB y";

6.4.3 Report

Relations that report or are reported by a healthcare activity.
const QualifiedCodeStr Re ports = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Re ports";

const QualifiedCodeStr IsRe portedB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsRe portedB y";

6.4.4 Graphic

Relations that describe or are described by graphic properties of a graphic object.

const QualifiedCodeStr Describes = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Describes";

const QualifiedCodeStr IsDescribedB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsDescribedB y";

6.4.5 ldentified/Incorporated

Relations that are identified by or incorporates a graphic object within a study product.

const QualifiedCodeStr IsldentifiedWithin = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsIdentifiedWithin";

const QualifiedCodeStr Isincor poratedB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Isincor poratedB y";

6.4.6 Source/Derived

Relations that are sources for or are derived from a graphic property from a study
product.

const QualifiedCodeStr IsSourceFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsSourceFor";

const QualifiedCodeStr IsDerivedFrom = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsDerivedFrom™;

6.4.7 Compared/Reference

Relations that are compared to or are reference for a situation.

const QualifiedCodeStr IsCom paredTo = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsCom paredTo";

const QualifiedCodeStr IsReferenceFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsReferenceFor";

6.4.8 Recorded

Relations that are recorded against a family history.

const QualifiedCodeStr IsRecordedA gainst = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsRecordedA gainst";

COAS V1.0 Relation Codes Jan. 2000 6-3

6.4.9 Supercede

Relations that supercede or are superseded by a clinical state.

The relation “supersede” must not be confused with mechanisms used to manage
different versions of a document. This link in fact refers to different judgements
performed at different times according to evolving evidence. For example, a change of
diagnosis after new evidence is discovered.

const QualifiedCodeStr Su percedes = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Su percedes";

const QualifiedCodeStr IsSu percededB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsSu percededB y";

6.4.10 Framework

Relations that are a framework for or is framed in.a situation, or document.

const QualifiedCodeStr IsFrameworkFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsFrameworkFor";

const QualifiedCodeStr IsFramedB y = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsFramedB y";

6.4.11 Phase

Relations that have phases or are phases of a healthcare activity.

const QualifiedCodeStr HasPhase = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasPhase";

const QualifiedCodeStr IsPhaseOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsPhaseOf";

6.4.12 Next Phase

Relations that have a next phase or are a next phase in a healthcare activity.

const QualifiedCodeStr HasNextPhase = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasNextPhase";

const QualifiedCodeStr IsNextPhaseWRT = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsNextPhaseWRT";

6.4.13 Associate

Relations that are associated with a condition.

const QualifiedCodeStr IsAssociateTo = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsAssociate To";

6.4.14 Assigned/Setting

Relations that are assigned to or are a setting for situation assigned to a problem.

const QualifiedCodeStr IsAssi gnedTo = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsAssi gnedTo";

const QualifiedCodeStr IsSettin gFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsSettin gFor";

6.4.15 Interpretation

Relations that are interpretations of or are interpreted as a condition of findings, or
reports.

Clinical Observations Access Service V1.0 January 2000

const QualifiedCodeStr Isinter pretationOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsInter pretationOf";

const QualifiedCodeStr Isinter pretedAs = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsInter pretedAs";

6.4.16 Progress

Relations that have progress or are progress of a condition.

const QualifiedCodeStr HasPro gress = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasPro gress";

const QualifiedCodeStr IsPro gressOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsPro gressOf";

6.4.17 Cause

Relations that have causes or are causes of a condition.

const QualifiedCodeStr HasCause = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasCause";

const QualifiedCodeStr IsCauseOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsCauseOf";

6.4.18 Co-exists

Relations that co-exist with a condition.

const QualifiedCodeStr CoExistsWith = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/CoExistsWith";

6.4.19 Evidence

Relations that have evidence for or are evidence of a diagnosis.

const QualifiedCodeStr HasEvidence = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasEvidence";

const QualifiedCodeStr IsEvidenceFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsEvidenceFor";

6.4.20 Triggers

Relations that trigger or are triggered by presence of a risk state.

const QualifiedCodeStr Tri ggers = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Tri ggers";

const QualifiedCodeStr IsTri ggeredBy = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsTri ggeredBy";

6.4.21 Goal

Relations that have goals or are goals of a healthcare activity.

const QualifiedCodeStr HasGoal = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasGoal";

const QualifiedCodeStr IsGoalOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsGoalOf";

6.4.22 Motivation

Relations that have motivation or are motivation for a healthcare activity.

const QualifiedCodeStr HasMotivation = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasMotivation™;

COAS V1.0 Relation Codes Jan. 2000

6-5

const QualifiedCodeStr IsMotivationFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsMotivationFor";

6.4.23 Consequence

Relations that have consequences or are consequences of a healthcare activity.

const QualifiedCodeStr HasConse quence = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasConse quence";

const QualifiedCodeStr IsConse quenceOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsConse quenceOf";

6.4.24 Topic

Relations that have topics or are topics for informing.

const QualifiedCodeStr HasTo pic = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasTo pic";

const QualifiedCodeStr IsTo picFor = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsTo picFor";

6.4.25 Target

Relations that have targes or are targets for informing.

const QualifiedCodeStr HasTar get = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasTar get";
const QualifiedCodeStr IsTar getOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsTar getOf";

6.4.26 Provides Information

Relations that provide information about a condition.

const QualifiedCodeStr ProvidesIinformationAbout = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/ProvidesinformationAbout";

6.4.27 Circumstances

Relations that have circumstances or are circumstances for supporting an activity.

const QualifiedCodeStr HasCircumstances = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasCircumstances”;

const QualifiedCodeStr IsCircumstanceOf = "DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsCircumstanceOf";

6-6 Clinical Observations Access Service V1.0 January 2000

7.1 Overview

DSObservationQualifiers 4

Contents

This chapter contains the following topics.

Topic Page
“Overview” 7-1
“HL7 Naming Convention” 7-2
“Observation Type for Qualifiers” 7-2
“Qualifier Codes” 7-3

This chapter describes a set of codes defined for qualifiers. Qualifiers are observations
which can be used to modify and refine the meaning of other observations. For
exampleDate_TimeOfTheObservation andOrderin gProvider are common qualifiers.
Along with an observation like the amount of glucose in a blood sample, COAS clients
will often be interested in the time of the observation and the care provider who
ordered it.

The codes below, mostly from HL7 v.2.3, provide a starter set of qualifiers. This set is
in no way intended to imply an exhaustive set. However, by use of the COAS naming
convention detailed below, the implication here is that all data definitions of HL7v2.3
are usable as observations and qualifiers.

Furthermore, definitions from the Comité Européen De Normalisation (CEN, European
Committee For Standardization) First Working Document of Electronic Healthcare,
Record Communication - Part 2: Domain Termlist, (CEN/TC 251/N98-116) are all
potential qualifiers and observations. See Section 6.2, “CEN Naming Convention,” on
page 6-2.

Clinical Observations Access Service V1.0 January 2000 7-1

These codes are defined with qualifiers in mind, but the codes can be used as query
codes as well. For example, a COAS client might wish to query for all ordering
providers for a given patient over a given time span. In this case, the code

Orderin gProvider would be used as the (query) observation code rather than in the list
of qualifiers regarding some other observation.

7.2 HL7 Naming Convention

const QualifiedCodeStr S pecimenSource ="

Code names from HL7v2.3 are created as follows: based on HL7 v3.2 standard
distribution, appendix A. (APPA.doc), table A.6 DATA ELEMENT NAMES:

* start with “DNS:omg.org/DsObservationAccess/HL72.3/"

® add the HL7 segment, like OBX or PID, plus a slash

® add HL7 data element names taken from table A.6, translated as:
* replace “/” with “_”
* replace space with nothing, capitalizing next word
» omit apostrophe, periods, parenthesis, and other punctuation.

Most of the examples below are HL7 components with multiple subcomponents. To
identify individual subcomponents, additional slash(es) + subcomponent hame(s) can
follow the component names. For example, in the OBR (result) segment, one particular
code,

DNS:om g.org/DsObservationAcess/HL72.3/OBR/S pecimenSource"

SpecimenSource , iS a composite. One subcomponenspécimenSource , the body
site, can be specified as

const QualifiedCodeStr S pecimenSourceBod ySite = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/S pecimenSource/Bod ySite";

by appending the name “/BodySite” as shown. TispecimenSourceBodySite refers
to the specific subcomponent gpecimenSource .

7.3 Observation Type for Qualifiers

7-2

Each observation code is associated with a particular IDL static type definition. Most
of the examples below are HL7 components with multiple subcomponents. Hence their
observation type in COAS is a composite observation, which iOjusirvationData .

typedef DsObservationAccess::ObservationData COMPOSITE_OBSERVATION_t ype;

However, a small subcomponeBpecimenSourceBodySite , is listed in HL7
documentation as having type (CE), coded element. This would correspond to a
QualifiedCodeStr in COAS.

The association between code and data definition can be confirmed for a particular
server withAccessComponent. get_type_code_for_observation_type()

One way to indicate this association in static IDL is to list a cadde>, and
immediately following it, a typedef for a type with narmde>_type . For example,

Clinical Observations Access Service V1.0 January 2000

const QualifiedCodeStr S pecimenSourceBod ySite = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/S pecimenSource/Bod ySite";

typedef QualifiedCodeStr S pecimenSourceBod ySite_type;

7.4 Qualifier Codes

The following qualifiers are identified as a starter set.

7.4.1 COAS - Specific

const QualifiedCodeStr COAS_OBSERVATION_ID ="DNS:om g.org/DsObservationAccess/COAS_OBSERVATION_ID";

7.4.2 HL7 - Clinical Times

const QualifiedCodeStr Date_TimeOfTheObservation = "DNS:om g.org/DsObservationAccess/HL72.3/0BX/Date_TimeOfTheObservation";
const QualifiedCodeStr EventOnsetDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/PEO/EventOnsetDate_Time";

const QualifiedCodeStr OrderEffectiveDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/ORC/OrderEffectiveDate_Time";

const QualifiedCodeStr ProcedureDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/PR1/ProcedureDate_Time";

const QualifiedCodeStr Re questedDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/Re questedDate_Time";

const QualifiedCodeStr VerificationDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/IN1/VerificationDate_Time";

const QualifiedCodeStr ActionDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/GOL/ActionDate_Time";

const QualifiedCodeStr AttestationDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/DG1/AttestationDate_Time";

const QualifiedCodeStr Transcri ptionDate_Time = "DNS:om g.org/DsObservationAccess/HL72.3/TXA/Transcri ptionDate_Time";

7.4.3 HL7 - Roles

const QualifiedCodeStr PatientiIDExternallD = "DNS:om g.org/DsObservationAccess/HL72.3/PID/PatientIDExternallD";

const QualifiedCodeStr PatientIDinternallD = "DNS:om g.org/DsObservationAccess/HL72.3/PID/PatientIDinternallD";

const QualifiedCodeStr Orderin gProvider = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/Orderin gProvider";

const QualifiedCodeStr ProducerID = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/ProducerID";

const QualifiedCodeStr Collectorldentifier = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/Collectorldentifier”;

const QualifiedCodeStr Res ponsibleObserver = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/Res ponsibleObserver”;
const QualifiedCodeStr Technician = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/Technician”;

const QualifiedCodeStr Princi palResultinter preter = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/Princi palResultinter preter";

7.4.4 HL7 - OBR (Request)

const QualifiedCodeStr S pecimenSource = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/S pecimenSource";
const QualifiedCodeStr ReasonForStud y = "DNS:om g.org/DsObservationAccess/HL72.3/OBR/ReasonForStud y";
const QualifiedCodeStr Dia gnosticServiceSectionID = "DNS:om g.orgDsObservationAccess/HL72.3/OBR/Dia gnosticServiceSectionID";

const QualifiedCodeStr S pecimenSourceBod ySite = "DNS:om g.orgDsObservationAccess/HL72.3/OBR/S pecimenSourceBod ySite";

COAS V1.0 Quialifier Codes Jan. 2000

7-3

7.4.5 HL7 - OBX (Reply)

const QualifiedCodeStr AbnormalFla gs = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/AbnormalFla gs";
const QualifiedCodeStr ObservationMethod = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/ObservationMethod";
const QualifiedCodeStr Units = "DNS:om g.org/DsObservationAccess/HL72.3/0BX/Units";

const QualifiedCodeStr ReferencesRan ge = "DNS:om g.org/DsObservationAccess/HL72.3/OBX/ReferencesRan ge";

const QualifiedCodeStr Observationldentifier = "DNS:om g.org/DsObservationAccess/HL72.3/0OBX/Observationldentifier";

7.4.6 HL7 - PV1 (Patient Visit)

const QualifiedCodeStr PatientLocation = "DNS:om g.org/DsObservationAccess/HL72.3/PV1/PatientLocation";

7-4 Clinical Observations Access Service V1.0 January 2000

Policies

Contents

This chapter contains the following topics.

Topic Page
“Overview” 8-2
“SEARCH_DEPTH_POLICY” 8-2
“RETURN_DEPTH_POLICY” 8-2
“SEARCH_SYNONYMOUS_CODES_POLICY” 8-3
“RETURN_OBSERVATION_VALUES_POLICY” 8-3
“SHORTCIRCUIT_SEARCH_... POLICY” 8-4
“SEARCH_SYNONYMOUS_IDS_POLICY” 8-4
“SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY” 8-4
“RETURN_ITEMS_IN_TIME_SPAN_POLICY” 8-4
“MATCHING_STRENGTH_POLICY” 8-5
“PARAM_CHECKING_POLICY” 8-5
“QUALIFIER_RETURN_POLICY” 8-5
“RELATIONS_RETURN_POLICY” 8-6
“RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY| 8-6
“TIME_SERIES_... ALGORITHM_POLICY" 8-6
“TIME_SERIES_... PREFERENCE_POLICY" 8-6
“RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY” 8-6
“IGNORE_UNMATCHABLE_QUALIFIERS_POLICY” 8-7

Clinical Observations Access Service V1.0 January 2000

8-1

8.1 Overview

Policies are name-value pairs which instruct the server on how to search and return
observations. They consist of a policy nam&alifiedCodeStr), and a value (a
CORBA:any). Each policy has a typedef to define what is insideCthRBA::any .

8.2 SEARCH_DEPTH_POLICY

const QualifiedCodeStr SEARCH_DEPTH_POLICY = "DNS:om g.org/DsObservationAccess/ polic y/SEARCH_DEPTH_POLICY";
typedef short SearchDe pthPolic yType;

const SearchDe pthPolic yType SEARCH_DEPTH_ONLY_ROOT = 0x0;
const SearchDe pthPolic yType SEARCH_DEPTH_DEEPEST_POSSIBLE = Ox7FFF;

SEARCH_DEPTH_POLICY indicates how many levels down an item hierarchy a server
is to look for a match to the input parameters. Only positive integers, including zero,
make sense:

®* 0 means just the root of the tree.

* 1 means to search the root and one level of items below the root.
® 2 means to search the root and two more levels down

®* 3 means to search the root and three more levels down

® SEARCH_DEPTH_DEEPEST POSSIBLE means to search all levels for a match.

Default = SEARCH_DEPTH_DEEPEST_POSSIBLE.

8.3 RETURN_DEPTH_POLICY

const QualifiedCodeStr RETURN_DEPTH_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_POLICY";
typedef QualifiedCodeStr ReturnDe pthPolic yType;

const ReturnDe pthPolic yType RETURN_DEPTH_ROOT_ONLY = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_ROOT_ONLY";

const ReturnDe pthPolic yType RETURN_DEPTH_ALL = “DNS:om g.org/DsObservationAccess/ polic y/ RETURN_DEPTH_ALL";

const ReturnDe pthPolic yType RETURN_DEPTH_ALL_LEAVES = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_ALL_LEAVES";

const ReturnDe pthPolic yType RETURN_DEPTH_LEAVES_OF_MATCHED =

“DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_LEAVES_OF_MATCHED";

const ReturnDe pthPolic yType RETURN_DEPTH_MATCHED_ONLY = “DNS:om g.org/DsObservationAccess/ policy/ RETURN_DEPTH_MATCHED_ONLY";

const ReturnDe pthPolic yType RETURN_DEPTH_MATCHED_AND_DOWN =

“DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_MATCHED_AND_DOWN?”";

® RETURN_DEPTH_POLICY indicates which items in a potential tree of items which

get returned. After matching on certain items, these items may have various other
related items contained in their “composite” field, making up a “tree” of items from

the (matched) root item.
® ROOT_ONLY means that only the root item is returned.

® RETURN_ALL means the full item structure gets returned from the root, down to
and including the leaves.

® MATCHED_ONLY means to only return the item that was matched on, independent
of where it is in the tree.

® MATCHED _AND_DOWN means to return a tree of items starting with the one
matched, down to and including the leaf items.

8-2 Clinical Observations Access Service V1.0 January 2000

8

® LEAVES_OF _MATCHED means to only return the leaf items of the part of the tree
starting from the matched item on down but no Branchltems.

® ALL _LEAVES means to return all Leafltems in the whole tree that had a match,
starting from the root.

* Default = RETURN_DEPTH_MATCHED_AND_DOWN.

8.4 SEARCH_SYNONYMOUS_CODES_POLICY

const QualifiedCodeStr SEARCH_SYNONYMOUS_CODES_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_CODES_POLICY”;
typedef QualifiedCodeStr SearchS ynonymousCodesPolic yType;

const SearchS ynonymousCodesPolic yType SEARCH_SYNONYMOUS_CODES_FALSE =
“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_CODES_FALSE";
const SearchS ynonymousCodesPolic yType SEARCH_SYNONYMOUS_CODES_TRUE =
“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_CODES_TRUE";

® SEARCH_SYNONYMOUS_ CODES POLICY indicates to search for all possible
matches on a code, including any synonymous codes or subtype codes that the
server might know as a result of a Terminology (LQS) service or otherwise. For
example, if searching for all “blood-cell count” observations, both a red-blood-cell
count and white-blood-cell count would match, as subtypes.

® SEARCH_SYNONYMOUS_CODES_TRUE means all synonyms and subtypes are
considered matches too.

® SEARCH_SYNONYMOUS CODES_FALSE means that only an exact match will be
returned. Thus, FALSE implies that the set of codes is treated as an XOR list.

* default = SEARCH_SYNONYMOUS_CODES_TRUE

8.5 RETURN_OBSERVATION_VALUES_POLICY

const QualifiedCodeStr RETURN_OBSERVATION_VALUES_POLICY =
“DNS:om g.org/DsObservationAccess/ polic yRETURN_OBSERVATION_VALUES_POLICY”;
typedef QualifiedCodeStr ReturnObservationValuesPolic yType;

const ReturnObservationValuesPolic yType RETURN_NO_OBSERVATION_VALUES =

“DNS:om g.org/DsObservationAccess/ polic y/RETURN_NO_OBSERVATION_VALUES”;

const ReturnObservationValuesPolic yType RETURN_OBSERVATION_VALUES =

“DNS:om g.org/DsObservationAccess/ polic y/RETURN_OBSERVATION_VALUES”;

® RETURN_OBSERVATION_VALUES_POLICY is useful when only contextual

(“meta”) information is desired. No values are returned, only qualifiers. That is,
ObservationDataStruct.value sequences are returned empty, even for atomic
observations. Use this policy when, for example, a value is large, and the network
traffic to download it to a client would be considerable. The client can display all
the context information from qualifiers (observation time, ordering provider, etc.) in
some list of observations, without downloading the actual item until a user clicks to
examine the actual data.

¢ default = RETURN_OBSERVATION_VALUES

COAS V1.0 SEARCH_SYNONYMOUS_CODES_POLICY Jan. 2000 8-3

8.6 SHORTCIRCUIT _SEARCH_... POLICY

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY";
typedef boolean ShortcircuitSearchCodesOnSuccessPolic yType;

const ShortcircuitSearchCodesOnSuccessPolic yType SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_FALSE = FALSE;
const ShortcircuitSearchCodesOnSuccessPolic yType SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_TRUE = TRUE;

® SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY is employed only
when a sequence of query codes is passed in. If a successful match is found for one
of the codes, this policy indicates to discard the rest of the codes, short circuiting
the search for other codes. Such a policy might be useful in a situation where it is
not clear what qualified code will work for a given server, so that multiple codes are
used.

* default = SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_FALSE

8.7 SEARCH_SYNONYMOUS_IDS_POLICY

const QualifiedCodeStr SEARCH_SYNONYMOUS_IDS_POLICY =“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_IDS_POLICY";
typedef boolean SearchS ynonymousldsPolic yType;

const SearchS ynonymousldsPolic yType SEARCH_SYNONYMOUS_IDS_FALSE = FALSE;
const SearchS ynonymousldsPolic yType SEARCH_SYNONYMOUS_IDS_TRUE = TRUE;

® SEARCH_SYNONYMOUS IDS_POLICY indicates whether or not to search for all
possible matches on an ID, including any synonyms that might be known by the
server via a PIDS translation or otherwise.

® default = SEARCH_SYNONYMOUS_IDS_TRUE

8.8 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY =
"DNS:om g.org/DsObservationAccess/ polic y/SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY";
typedef boolean ShortcircuitSearchldsOnSuccessPolic yType;

const ShortcircuitSearchldsOnSuccessPolic ~ yType SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_FALSE = FALSE;
const ShortcircuitSearchidsOnSuccessPolic ~ yType SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_TRUE = TRUE;

® SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY is used in a situation
where a sequence of subject IDs is passed in. If a successful match is found for one
of the Ids, the policy indicates to discard the rest of the Ids, shortcircuit any further
searching for other codes. Such a policy might useful in a situation where it is not
clear what Id will work for a given server.

* default = SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_FALSE

8.9 RETURN_ITEMS_IN_TIME_SPAN_POLICY

const QualifiedCodeStr RETURN_ITEMS_IN_TIME_SPAN_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_POLICY";
typedef QualifiedCodeStr ReturnitemsInTimeS panPolic yType;

const ReturnitemsinTimeS panPolic yType RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY";
const ReturnitemsinTimeS panPolic yType RETURN_ITEMS_IN_TIME_SPAN_LAST ITEM_ONLY =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY”;

8-4 Clinical Observations Access Service V1.0 January 2000

const ReturnltemsInTimeS panPolic yType RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS”";

® RETURN_ITEMS_IN_TIME_SPAN_POLICY indicates whether to only return the first
or last matched items in a time span.

¢ default = RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS.

8.10 MATCHING_STRENGTH_POLICY

const QualifiedCodeStr MATCHING_STRENGTH_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/MATCHING_STRENGTH_POLICY";
typedef float Matchin gStren gthPolic yType;

const Matchin gStren gthPolic yType MATCHING_STRENGTH_WEAKEST = 0.0;
const Matchin gStren gthPolic yType MATCHING_STRENGTH_STRONGEST = 1.0;

® MATCHING_STRENGTH_POLICY indicates whether exact matches only are to be
returned, or if close (as determined by the server) matches are returned too. This
matching strength concept is similar to the PHd& candidates() operation.

¢ default = MATCHING_STRENGTH_STRONGEST.

8.11 PARAM_CHECKING_POLICY

const QualifiedCodeStr PARAM_CHECKING_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/PARAM_CHECKING_POLICY”;
typedef boolean ParamCheckin gPolic yType;

const ParamCheckin gPolic yType PARAM_CHECKING_FALSE = FALSE;
const ParamCheckin gPolic yType PARAM_CHECKING_TRUE = TRUE;

® PARAM_CHECKING_POLICY allows a server to ignore parameters that it does not
recognize (IDs, codes, qualifierBmeStamps , etc.) without throwing an exception.
Unknown items are ignored in matching algorithms. If this policy is true, the server
will raise an exception when unknown IDs or codes are passed in. For a more
narrowly-focused policy, see Section 8.18,
“IGNORE_UNMATCHABLE_QUALIFIERS_POLICY,” on page 8-7.

¢ default = PARAM_CHECKING_TRUE

8.12 QUALIFIER_RETURN_POLICY

const QualifiedCodeStr QUALIFIER_RETURN_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_RETURN_POLICY”;
typedef se quence<QualifiedCodeStr> QualifierReturnPolic yType;

const QualifiedCodeStr QUALIFIER_RETURN_ALL = “DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_RETURN_ALL";
const QualifiedCodeStr QUALIFIER_RETURN_NONE = “DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_RETURN_NONE";

const QualifiedCodeStr QUALIFIER_NOT_TO_RETURN_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_NOT_TO_RETURN_POLICY";
typedef se quence<QualifiedCodeStr> QualifierNotToReturnPolic yType;

® QUALIFIER_RETURN_POLICY makes it possible for the client to indicate exactly
which qualifiers should be returned with tbeservationData . For a list of
qualifiers: See Section 7.4, “Qualifier Codes,” on page 7-3. Note there is a great
difference between returning qualifiers, and filtering by qualifiers. The later
happens as a result of passing in qualifiers viagjgheobservations_by_qualifier()
operation and similar operations. The former is accomplished with this policy.

¢ default = QUALIFIER_RETURN_NONE

COAS V1.0 MATCHING_STRENGTH_POLICY Jan. 2000 8-5

8

8.13 RELATIONS_RETURN_POLICY

const QualifiedCodeStr RELATIONS_RETURN_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_RETURN_POLICY";
typedef se quence<QualifiedCodeStr> RelationsReturnPolic yType;

const QualifiedCodeStr RELATIONS_RETURN_ALL = “DNS:om g.org/DsObservationAccess/ polic y/RELATIONS _RETURN_ALL";
const QualifiedCodeStr RELATIONS_RETURN_NONE = “DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_RETURN_NONE";

const QualifiedCodeStr RELATIONS_NOT_TO_RETURN_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_NOT_TO_RETURN_POLICY”;
typedef se quence<QualifiedCodeStr> RelationsNotToReturnPolic yType;

® RELATIONS_RETURN_POLICY makes it possible for the client to indicate exactly
which relations should be returned with thigservationData . For a list of relations:
See Section 6.4, “Relation Codes,” on page 6-2.

¢ default = RELATIONS_RETURN_NONE

8.14 RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY

const QualifiedCodeStr RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY =
"DNS:om g.org/DsObservationAccess/ polic y/RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY";
typedef unsi gned lon g ReturnMostRecent_N_ObservationsPolic yType;

const ReturnMostRecent_N_ObservationsPolic yType RETURN_MOST_RECENT_N_OBSERVATIONS_ALL = OXFFFFFFFF;

® RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY provides a means to
return items according to their temporal proximity to the current time of the server.
This policy overrides anyimeSpan provided as an input parameter.

® default = RETURN_MOST_RECENT_N_OBSERVATIONS_ALL .

8.15 TIME_SERIES_..._ ALGORITHM_POLICY

const QualifiedCodeStr TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY”;
typedef se quence<QualifiedCodeStr> TimeSeriesRemoteResam pleAl gorithmPolic yType;

8.16 TIME_SERIES_..._ PREFERENCE_POLICY

const QualifiedCodeStr TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY";
typedef DsObservationTimeSeries::ValueSe qType TimeSeriesRemoteReturnT ypePreferencePolic yType;

8.17 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY

const QualifiedCodeStr RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY =

"DNS:om g.org/DsObservationAccess/ polic y/RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY";

typedef unsi gned lon g ReturnMaxSe quenceForValuePolic yType;

const ReturnMaxSe quenceForValuePolic yType RETURN_MAX_SEQUENCE_FOR_VALUE_ALL = OxFFFFFFFF;

® RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY is used when an
ObservationValue can include an iterator. For example,
DsObservationValues::Multimedia includes an iterator field “the_rest”. A non-null
iterator is returned within the Multimedia struct only if the number of items in the
sequence “values” is greater than the current
RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY. In other words, specify the
number of items desired in the sequence with this policy, and that will determine

8-6 Clinical Observations Access Service V1.0 January 2000

whether an iterator is returned also.

This policy is analogous to the parameter “max_sequence” in

QueryAccess. get_observations_by time() and similar operations. The input
parameter “max_sequence” specifies the number of observations to return in a
sequence. But a single observation which contaimslémedia payload in its
ObservationDataStruct.value (a CORBA::any) may have any number of items in
the Multimedia.a_blob (a sequence). The number of items desired by the client is
specified via theRETURN_MAX_SEQUENCE_FOR_VALUE_POLICY.

* default = RETURN_MAX_SEQUENCE_FOR_VALUE_ALL

8.18 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY

const QualifiedCodeStr IGNORE_UNMATCHABLE_QUALIFIERS_POLICY =

"DNS:om g.org/DsObservationAccess/ polic y/IGNORE_UNMATCHABLE_QUALIFIERS_POLICY";

typedef boolean | gnoreUnmatchableQualifiersPolic yType;

const | gnoreUnmatchableQualifiersPolic yType IGNORE_UNMATCHABLE_QUALIFIERS_TRUE = TRUE;
const | gnoreUnmatchableQualifiersPolic yType IGNORE_UNMATCHABLE_QUALIFIERS_FALSE = FALSE;

® |GNORE_UNMATCHABLE_QUALIFIERS_POLICY applies to the searching rules in
a more specific manner th®ARAM_CHECKING_POLICY. The latter turns off all
exceptions, but the user may wish to have parameter checking except for qualifiers.
HencelGNORE_UNMATCHABLE_QUALIFIERS TRUE means that unknown or
inapplicable qualifiers will not be considered in the matching algorithm. Otherwise,
the introduction of an inapplicable qualifier would cause no matches to be found. A
client can tell what qualifiers are applicable for a given query code from the method
AccessComponent. get_supported_qualifiers()

® default = IGNORE_UNMATCHABLE_QUALIFIERS_FALSE

COAS V1.0 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY Jan. 2000 8-7

8-8

Clinical Observations Access Service V1.0

January 2000

Complete IDL

A.1 DsObservationAccess

/I File: DsObservationAccess.idl

#ifndef _DS_OBSERVATION_ACCESS_IDL_
#define_DS_OBSERVATION_ACCESS_IDL_

#include <CosNamin g.idl>

#include <CosTradin g.idlI>

#include <Terminolo gy Services.idl>
#include <Namin gAuthorit y.idl>
#include <PersonldService.idl>
#include <CosEventComm.idl>
#include <CosEventChannelAdmin.idl>
#include <orb.idI>

#pragma prefix “om g.org”
module DsObservationAccess {

I
/l EXTERNAL TYPEDEFS
I

typ edef PersonldService::QualifiedPersonld ObservedSub jectld;
typedef Terminolo gy Services::QualifiedCode QualifiedCode;
typedef Namin gAuthorit y::QualifiedNameStr QualifiedCodeStr;
typ edef PersonldService::DomainName IdDomainName;

typedef PersonldService::IdentificationCom ponent IdentificationCom ponent;
typ edef CosNamin g::Namin gContext Namin gContext;

typedef CosTradin g::TraderCom ponents TraderCom ponents;

typedef Terminolo gy Services::Terminolo gy Service Terminolo gy Service;

typedef CosEventComm::PushConsumer PushConsumer;
typedef CosEventComm::PushSu pplier PushSu pplier;

typedef CORBA::T ypeCode TypeCode;
I

/| FORWARD DECLARATIONS

/i

interface AbstractFactor vy;
interface AbstractMana gedObject;

Clinical Observations Access Service V1.0

January 2000

A-1

interface AccessCom ponent;
interface As ynchCallback;

interface As ynchAccess;

interface AtomicObservationRemote;
interface BrowseAccess;

interface Com positeObservationRemote;
interface ConsumerAccess;

interface ConstraintLan guageAccess;
interface EventConsumer;

interface EventSu pplier;

interface ObservationDatalterator;
interface ObservationLoader;

interface ObservationRemote;

interface ObservationRemotelterator;
interface ObservedSub ject;

interface QualifiedCodelterator;
interface Quer yAccess;

interface Su pplierAccess;

1
/I STRUCTS
I

struct AccessCom ponentData {
QueryAccess query_access;
BrowseAccess browse_access;
AsynchAccess as ynch_access;
ConstraintLan guageAccess constraint_access;
ObservationLoader observation_loader;
ConsumerAccess consumer_access;
SupplierAccess su pplier_access;

I

struct As ynchExce ption {
QualifiedCodeStr exce ption_name;
strin g message;

I8

struct ObservationDataStruct {
QualifiedCodeStr code;
sequence<ObservationDataStruct> com posite;
sequence<ObservationDataStruct> qualifiers;
sequence<any,1> value;

I

typedef any ObservationData;
typedef ObservationData ObservationQualifier;

struct Observationld {
QualifiedCodeStr code;
strin g opaque;

I8

struct NameValuePair {
QualifiedCodeStr name;
any value;

I8

struct Subscri ption {
sequence<ObservedSub jectld> who;
sequence<QualifiedCodeStr> what;
sequence<ObservationQualifier> qualifier;
sequence<NameValuePair> policy;

b
typedef strin g TimeStam p; // 1ISO 8601 re presentation, with restrictions
struct TimeS pan {

TimeStam p start_time;
TimeStam p stop_time;

l
/Il CONSTANTS

Clinical Observations Access Service V1.0

January 2000

l

/I for TimeStam p fields

const strin g EARLIEST_TIME = “1582-10-15T00:00:00Z"; // be ginnin g of Gre gorian calendar
const strin g LATEST_TIME = “9999-12-31T23:59:59Z"; // max possible in ISO 8601 s pecification

const strin g TIME_WILDCARD ="?"; // re place individual di gits

const QualifiedCodeStr PARTIAL_RESULT = “DNS:om

g.org/DsObservationAccess/PARTIAL_RESULT";

const QualifiedCodeStr COMPLETING_RESULT = “DNS:om g.org/DsObservationAccess/COMPLETING_RESULT";

const QualifiedCodeStr ASYNC_OBSE_RVATION_COUNT =“DNS:om
typedef unsi gned lon g ASYNC_OBSERVATION_COUNT_type;

g.org/DsObservationAccess/ASYNC_OBSERVATION_COUNT";

const QualifiedCodeStr EVENT_SOURCE_DOMAIN = “DNS:om g.org/DsObservationAccess/EVENT_SOURCE_DOMAIN";

const QualifiedCodeStr EVENT_SOURCE_SERVER_NAME = “DNS:om g.org/DsObservationAccess/EVENT_SOURCE_SERVER_NAME";
const QualifiedCodeStr EVENT_NAME = “DNS:om g.org/DsObservationAccess/EVENT_NAME”;

const QualifiedCodeStr TEST_EVENT = “DNS:om g.org/DsObservationAccess/TEST_EVENT";

typedef lon g TEST_EVENT_type;

const QualifiedCodeStr TRADER_1_0_CONSTRAINT_LANGUAGE =

“DNS:om g.org/DsObservationAccess/TRADER_1_0_CONSTRAINT_LANGUAGE";

const QualifiedCodeStr OCL_1_1_CONSTRAINT_LANGUAGE = “DNS:om

g.org/DsObservationAccess/OCL_1_1_CONSTRAINT_LANGUAGE”;

const QualifiedCodeStr COAS_OBSERVATION_ID = “DNS:om g.org/DsObservationAccess/COAS_OBSERVATION_ID";

typedef Observationld COAS_OBSERVATION_ID_t ype;

Z TYPEDEFS

I

typedef lon g Endpointld;

typedef strin g ConstraintEx pression;
typedef QualifiedCodeStr ConstraintLan guage;
typedef NameValuePair Quer yPolicy;

typedef lon g ServerCallld;

typedef lon g ClientCallid;

I

/I SEQUENCES
l

typedef se quence<AtomicObservationRemote> AtomicObsRemoteSe q;

typedef se quence<ConstraintLan guage> ConstraintLan guageSeq;
typedef se quence<End pointld> End pointldSe q;

typedef se quence<ObservationData> ObservationDataSe q;

typedef se quence<ObservationDataStruct> ObservationDataStructSe q;

typedef se quence<Observationld> ObservationldSe q;

typedef se quence<ObservationQualifier> ObservationQualifierSe q;
typedef se quence<ObservationRemote> ObservationRemoteSe q;
typedef se quence<ObservedSub jectld> ObservedSub jectldSe q;
typedef se quence<ObservedSub ject> ObservedSub jectSeq;
typedef se quence<QualifiedCodeStr> QualifiedCodeStrSe q;
typedef se quence<Quer yPolic y> QueryPolic ySeq;

typedef se quence<Subscri ption> Subscri ptionSe q;

l

COAS V1.0

Jan. 2000

A-3

/I EXCEPTIONS
1

exception Du plicateCodes {
QualifiedCodeStrSe g codes;
I

exception Du plicatelds {
ObservedSub jectldSe q ids;
b

exception Du plicateOids {
ObservationldSe q oids;
b

exception Du plicatePolicies {
QueryPolic ySeq policies;
I8

exception Du plicateQualifiers {
ObservationQualifierSe q qualifiers;
b

exception InvalidCodes {
QualifiedCodeStrSe g codes;
b

exception InvalidEnd pointld {
EndpointldSe g endpoint_ids;
I8

exception InvalidConstraint {
strin g constraint;
b

exception Invalidlds {
ObservedSub jectldSe q ids;
b

exception InvalidOids {
ObservationldSe q oids;
h

exception InvalidPolicies {
QualifiedCodeStrSe q policies;
b

exce ption InvalidQualifiers {
QualifiedCodeStrSe q qualifiers;

exception InvalidTimeS pan {
TimeSpan span;
I

exception MaxConnectionsExceeded {
unsi gned lon g max_connections;
b

exception Notlm plemented {
b
exception NoSubscri ption {

I8

l
/I INTERFACES
l

/I ABSTRACT FACTORY INTERFACE
interface AbstractFactor vy {

readonl y attribute lon g max_connections;
readonl y attribute End pointldSe g current_connections;

A-4 Clinical Observations Access Service V1.0

January 2000

/I ABSTRACT MANAGED OBJECT INTERFACE

interface AbstractMana gedObject {

I

void done ();

/I ACCESS COMPONENT INTERFACE

interface AccessCom ponent {

I8

readonl y attribute strin g coas_version;

readonl y attribute IdentificationCom ponent pid_service;
readonl y attribute Terminolo gy Service terminolo gy _service;
readonl y attribute TraderCom ponents trader_service;

readonl y attribute Namin gContext namin g_service;

AccessCom ponentData get_com ponents ();

QualifiedCodeStrSe q get_supported_codes (
in unsi gned lon g max_se quence,
out QualifiedCodelterator the_rest);

QualifiedCodeStrSe q get_supported_ qualifiers (
in QualifiedCodeStr code)
raises (
InvalidCodes,
Notlm plemented);

QualifiedCodeStrSe q get_supported_ policies ();
QueryPolic ySeq get_default_ policies ();
TypeCode get_type_code_for_observation_t ype (
in QualifiedCodeStr observation_t ype)
raises (
InvalidCodes,
Notim plemented);
boolean are_iterators_su pported ();

TimeStam p get_current_time ();

/I ASYNCH ACCESS INTERFACE

interface As ynchAccess : AccessCom ponent {

ServerCallld count_observations (
in ObservedSub jectldSe g who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq policy,
in ClientCallld client_call_id,
in As ynchCallback client_callback);

ServerCallld get_observation (
in Observationld observation_id,
in ClientCallld client_call_id,
in As ynchCallback client_callback);

ServerCallld get_observations (
in ObservationldSe q observation_ids,
in ClientCallld client_call_id,
in As ynchCallback client_callback);

ServerCallld get_observations_b y_time (
in ObservedSub jectld who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
in ClientCallld client_call_id,
in As ynchCallback client_callback);

ServerCallld get_observations_b y_qualifier (
in ObservedSub jectldSe g who,

COAS V1.0 Jan. 2000

A-5

A-6

I8

in QualifiedCodeStrSe q what,

in TimeS pan when,

in ObservationQualifierSe g qualifier,
in unsi gned lon g max_se quence,

in ClientCallld client_call_id,

in As ynchCallback client_callback);

ServerCallld get_observations_with_ policy (
in ObservedSub jectldSe g who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe g qualifier,
in Quer yPolic ySeq policy,
in unsi gned lon g max_se quence,
in ClientCallld client_call_id,
in As ynchCallback client_callback);

void cancel_ get (
in ServerCallld server_call_id);

/I ASYNCH CALLBACK INTERFACE

interface As ynchCallback {

I8

void put_observations (
in ObservationDataSe q as_sequence,
in ObservationDatalterator as_iterator,
in ClientCallld client_call_id,
in QualifiedCodeStrSe ¢ result_status);

void put_exce ption (
in ClientCallld client_call_id,
in As ynchExce ption the_exce ption);

/I OBSERVATION REMOTE INTERFACE

interface ObservationRemote : AbstractMana gedObject {

I8

readonl y attribute QualifiedCodeStr observation_code;
TimeSpan get_observation_time ();
ObservedSub ject get_observed_sub ject ();
ObservationRemote get_root_observation ();
ObservationData get_path_from_root ();
ObservationQualifierSe ¢ get_all_qualifiers ();
ObservationQualifierSe g get_qualifiers (

in QualifiedCodeStrSe ¢ qualifier_names)

raises (
InvalidCodes);

boolean is_this_root ();

boolean is_this_atomic ();

/I ATOMIC OBSERVATION REMOTE INTERFACE

interface AtomicObservationRemote : ObservationRemote {

k

ObservationData get_observation_data ();

ObservationData get_observation_data_with_ policy (
in Quer yPolic ySeq policy);

/I BROWSE ACCESS INTERFACE

interface BrowseAccess : AccessCom ponent {

ObservedSub ject get_observed_sub ject (

Clinical Observations Access Service V1.0

January 2000

in ObservedSub jectld who)
raises (
Invalidlds);

ObservedSub jectSeq get_observed_sub jects (
in ObservedSub jectldSe g who)
raises (
Invalidlds,
Duplicatelds);

ObservedSub ject get_observed_sub ject_for_observation_id (
in Observationld observation_id)
raises (
InvalidOids);

ObservedSub jectSeq get_observed_sub jects_for_observation_ids (
in ObservationldSe q observation_ids)
raises (
InvalidOids,
DuplicateOids);

unsi gned lon g count_observations (
in ObservedSub jectldSe g who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe g qualifier,
in Quer yPolic ySeq policy)

raises (

Invalidlds,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemote get_observation (
in Observationld observation_id)
raises (
InvalidOids);

ObservationRemoteSe ¢ get_observations (
in ObservationldSe q observation_ids)
raises (
InvalidOids,
DuplicateOids);

ObservationRemoteSe ¢ get_observations_b y_time (
in ObservedSub jectld who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
Invalidlds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan);

ObservationRemoteSe ¢ get_observations_b y_qualifier (
in ObservedSub jectldSe g who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe ¢ qualifier,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
Invalidlds,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQuialifiers,
DuplicateQualifiers);

COAS V1.0 Jan. 2000

A-7

A-8

I8

ObservationRemoteSe ¢ get_observations_with_ policy (
in ObservedSub jectldSe g who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq policy,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
Invalidlds,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

/I COMPOSITE OBSERVATION REMOTE INTERFACE

interface Com positeObservationRemote : ObservationRemote {

unsi gned lon g count_observations (
in Quer yPolic ySeq search_de pth_policy)
raises (
InvalidPolicies);

ObservationRemoteSe q get_observations_b y_time (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan);

ObservationRemoteSe g get_observations_b y_qualifier (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQuialifiers,
DuplicateQualifiers);

ObservationRemoteSe ¢ get_observations_with_ policy (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe ¢ qualifier,
in Quer yPolic ySeq policy,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

AtomicObsRemoteSe q get_leaf observations ();

AtomicObsRemoteSe q get_leaf observations_b y_time (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)

Clinical Observations Access Service V1.0

January 2000

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan);

AtomicObsRemoteSe q get_leaf observations_b y_qualifier (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe ¢ qualifier,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers);

AtomicObsRemoteSe q get_leaf_observations_with_ policy (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq policy,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQuialifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

AtomicObsRemoteSe q get_leaf observations_b y_value_type (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe g qualifier,
in QualifiedCodeStr value_t ype,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationDataSe q get_relations_toward_root (
in QualifiedCodeStrSe ¢ relation_name);

ObservationDataSe (get_relations_awa y_from_root (
in QualifiedCodeStrSe ¢ relation_name);

I
I/l CONSTRAINT LANGUAGE ACCESS INTERFACE

interface ConstraintLan guageAccess : AccessCom ponent {
readonl y attribute ConstraintLan guageSeq supported_lan guages;

ObservationDataSe ¢ get_by_constraint (
in ConstraintEx pression constraint,
in Quer yPolic ySeq policy,
in unsi gned lon g max_se quence,
out ObservationDatalterator the_rest)
raises (
InvalidConstraint,
InvalidPolicies,
DuplicatePolicies);

b
/I CONSUMER ACCESS INTERFACE
interface ConsumerAccess : AbstractFactor y, AccessCom ponent {

EventConsumer create_consumer ()

COAS V1.0 Jan. 2000

A-9

raises (
MaxConnectionsExceeded);

EventConsumer get_consumer_b y_id (
in End pointld end point_id)
raises (
InvalidEnd pointld);
b

/I EVENT CONSUMER INTERFACE

interface EventConsumer : AbstractMana gedObject, PushConsumer {
readonl y attribute End pointld end point_id;

Subscri ptionSe q obtain_subscri ptions ();

void connect_ push_su pplier (
in PushSu pplier push_su pplier)
raises (
CosEventChannelAdmin::Alread yConnected);

PushSu pplier get_connected_su pplier ()
raises (
CosEventComm::Disconnected);

I8
/I EVENT SUPPLIER INTERFACE

interface EventSu pplier : AbstractMana gedObject, PushSu pplier {
readonl y attribute End pointld end point_id;

QualifiedCodeStrSe q obtain_offered_codes ();

void connect_ push_consumer (
in PushConsumer push_consumer)
raises (
CosEventChannelAdmin::Alread yConnected);

PushConsumer get_connected_consumer ()
raises (
CosEventComm::Disconnected);

void subscribe (
in Subscri ptionSe q subscri ptions)
raises (
CosEventComm::Disconnected);

Subscri ptionSe q describe_subscri ptions ()
raises (
NoSubscri ption);

void generate_test_event (
in ClientCallld clientld)
raises (
CosEventComm::Disconnected);

b
/I OBSERVATION DATA ITERATOR INTERFACE
interface ObservationDatalterator : AbstractMana gedObject {
unsi gned lon g max_left ();
boolean next_n (
in unsi gned lon g n,
out ObservationDataSe q observation_data_se q);
b
/I OBSERVATION LOADER INTERFACE

interface ObservationLoader : AccessCom ponent {

void load_observations (
in ObservationDataSe q observations);

A-10 Clinical Observations Access Service V1.0 January 2000

/I OBSERVATION REMOTE INTERFACE

I This interface is defined after As ynchCallBack and before AtomicObservationRemote

/I OBSERVATION REMOTE ITERATOR INTERFACE
interface ObservationRemotelterator : AbstractMana gedObject {
unsi gned lon g max_left ();

boolean next_ n (
inunsi gned lon g n,

out ObservationRemoteSe q observation_remote_se q);

I8
// OBSERVED SUBJECT INTERFACE

interface ObservedSub ject : AbstractMana gedObject {
readonl y attribute ObservedSub jectld observed_sub ject_id;

unsi gned lon g count_observations (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe g qualifier,
in Quer yPolic ySeq policy)

raises (

InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQuialifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemoteSe ¢ get_observations_b y_time (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan);

ObservationRemoteSe ¢ get_observations_b y_qualifier (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe g qualifier,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSe ¢ get_observations_with_ policy (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in Quer yPolic ySeq policy,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQuialifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemoteSe ¢ get_root_observations (

in QualifiedCodeStrSe q what,
in TimeS pan when,

COAS V1.0

Jan. 2000

A-11

in unsi gned lon g max_se quence,

out ObservationRemotelterator the_rest)
raises (

InvalidCodes,

DuplicateCodes,

InvalidTimeS pan);

AtomicObsRemoteSe q get_leaf _observations (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan);

ObservationRemote get_any_observation (
in QualifiedCodeStrSe q what,
in TimeS pan when)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan);

ObservationRemote get_first_observation (
in QualifiedCodeStrSe q what,
in TimeS pan when)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan);

ObservationRemote get_last_observation (
in QualifiedCodeStrSe q what,
in TimeS pan when)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan);

ObservationRemoteSe ¢ get_candidate_observations (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe g qualifier,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSe g get_exact_observation_t ypes (
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan);

b

/I QUALIFIED CODE ITERATOR INTERFACE

interface QualifiedCodelterator : AbstractMana gedObject {
unsi gned lon g max_left ();
boolean next_ n (

in unsi gned lon g n,
out QualifiedCodeStrSe ¢ codes);

A-12 Clinical Observations Access Service V1.0

January 2000

/I QUERY ACCESS INTERFACE
interface Quer yAccess : AccessCom ponent {

unsi gned lon g count_observations (
in ObservedSub jectldSe g who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe ¢ qualifier,
in Quer yPolic ySeq policy)

raises (

Invalidlds,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQuialifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationData get_observation (
in Observationld observation_id)
raises (
InvalidOids);

ObservationDataSe ¢ get_observations (
in ObservationldSe q observation_ids)
raises (
InvalidOids,
DuplicateOids);

ObservationDataSe g get_observations_b y_time (
in ObservedSub jectld who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in unsi gned lon g max_se quence,
out ObservationDatalterator the_rest)
raises (
Invalidlds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan);

ObservationDataSe g get_observations_b y_qualifier (
in ObservedSub jectldSe g who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe q qualifier,
in unsi gned lon g max_se quence,
out ObservationDatalterator the_rest)
raises (
Invalidlds,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationDataSe ¢ get_observations_with_ policy (
in ObservedSub jectldSe g who,
in QualifiedCodeStrSe q what,
in TimeS pan when,
in ObservationQualifierSe g qualifier,
in Quer yPolic ySeq policy,
in unsi gned lon g max_se quence,
out ObservationDatalterator the_rest)
raises (
Invalidlds,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeS pan,
InvalidQuialifiers,
DuplicateQualifiers,

COAS V1.0 Jan. 2000 A-13

InvalidPolicies,
DuplicatePolicies);

I
/I SUPPLIER ACCESS INTERFACE
interface Su pplierAccess : AbstractFactor y, AccessCom ponent {
EventSu pplier create_su pplier ()
raises (
MaxConnectionsExceeded);
EventSu pplier get_supplier_by_id (
in End pointld end point_id)
raises (
InvalidEnd pointld);
b
#endif //_DS_OBSERVATION_ACCESS_IDL_

A.2 DsObservationValue

/I File: DsObservationValue.idl

#ifndef _DS_OBSERVATION_VALUE_IDL_
#define_DS_OBSERVATION_VALUE_IDL _

#include “DsObservationAccess.idl”
#pragma prefix “om g.org”
module DsObservationValue

{

1
/I EXTERNAL TYPEDEFS
1

typedef Terminolo gyServices::ConceptCode ConceptCode;
typedef Namin gAuthority::QualifiedNameStr QualifiedCodeStr;

typedef DsObservationAccess::AbstractMana gedObject
AbstractMana gedObject;

/I DateTime : ObservationValue;
typedef DsObservationAccess::TimeStamp DateTime;

/I TimeSpan : ObservationValue;
typedef DsObservationAccess:: TimeSpan TimeSpan;

/I Person : ObservationValue;
typedef DsObservationAccess::ObservedSubjectld Person;

Il
/I NolInformation
1l

A-14 Clinical Observations Access Service V1.0 January 2000

/I Nolnformation : ObservationValue;
struct Nolnformation {
QualifiedCodeStr reason;
strin g text_description;
I8
const QualifiedCodeStr NO_INFORMATION =
“DNS:om g.org/DsObservationValue/NO_INFORMATION";

I
/I Text Types
I

/I PlainText : ObservationValue;
typedef strin g PlainText;

/I UniversalResourceldentifier : ObservationValue;
struct UniversalResourceldentifier {

ConceptCode protocol;

strin g address;

k

/I PhysicalLocationDescription : ObservationValue;
typedef strin g PhysicalLocationDescription;

I
/I Coded Types
I

/I CodedElement : ObservationValue;
typedef Terminolo gyServices::QualifiedCodelnfo CodedElement;

/I LooselyCodedElement : ObservationValue;

struct LooselyCodedElement {
strin g text;
Terminolo gyServices::Codin gSchemeld codin g_scheme_id;
Terminolo gyServices::Versionld version_id;

1l
/I Multimedia
Il

typedef sequence<octet> Blob;
interface Multimedialterator : AbstractMana gedObject {
unsi gned lon g max_left ();

boolean next_n (
inunsi gned long n,

COAS V1.0 Jan. 2000 A-15

out Blob multimedia_part);

k

/I Multimedia : ObservationValue;
struct Multimedia {
strin g content_type;
strin g other_mime_header_fields;
Blob a_blob;
unsi gned lon g lon g total_size;
Multimedialterator the_iterator;

I
/I Measurements Types
I

/I Numeric : ObservationValue;

struct Numeric {
QualifiedCodeStr units;
float value;

k

/I Range : ObservationValue;
struct Ran ge {
QualifiedCodeStr units;
float lower;
float upper;

}

/I Ratio : ObservationValue;
struct Ratio {

float numerator;

float denominator;

h

struct XYPair {
float x;
float y;

h

typedef sequence<XYPair> XYPairSeq;
interface Curvelterator : AbstractMana gedObject{
unsi gned lon g max_left ();

boolean next_n (
inunsi gned long n,
out XYPairSeq curve_part);
h

/I Curve : ObservationValue;
struct Curve {
XYPairSeq xy_pairs;
QualifiedCodeStr x_units;

A-16 Clinical Observations Access Service V1.0 January 2000

QualifiedCodeStr y_units;
unsi gned lon g lon g total_size;
Curvelterator the_iterator;

}

#endif // _DS_OBSERVATION_VALUE_IDL_

A.3 DsObservationTimeSeries

/I File: DsObservationTimeSeries.idl

#ifndef _DS_OBSERVATION_TIME_SERIES_IDL_
#define _DS_OBSERVATION_TIME_SERIES_IDL_

#include “DsObservationAccess.idl”

module DsObservationTimeSeries

{

1
/I EXTERNAL TYPEDEFS
1

typedef DsObservationAccess::AbstractMana gedObject AbstractMana gedObiject;
typedef DsObservationAccess::NameValuePair NameValuePair;

typedef DsObservationAccess::QueryPolicy QueryPolicy;

typedef DsObservationAccess::QueryPolicySeq QueryPolicySeq;

typedef DsObservationAccess::ObservationQualifierSeq ObservationQualifierSeq;
typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;

typedef DsObservationAccess:: TimeStamp TimeStamp;

typedef DsObservationAccess:: TimeSpan TimeSpan;

typedef sequence < QualifiedCodeStr > QualifiedCodeStrSeq;
I

/I Time Types
I

/I TimeDelta : ObservationValue;

struct TimeDelta {
float delta; // calculated with constants below, NOT with calendarin g
QualifiedCodeStr units;

k

/I approximations for time deltas, NOT for calendarin g

/I all units here are seconds. Use scalin g as necessary for units of TimeDelta
const float YEAR = 31557600.0; // 60*60*24*365.25

const float MONTH = 2629800.0; // 60*60*24*365.25/12

const float DAY =86400.0; // 60*60*24
const float HOUR =3600.0; //60*60
const float MINUTE =60.0; //60

const float SECOND =1.0; /1

COAS V1.0 Jan. 2000 A-17

A-18

const float MILLISECOND = 0.001; // 1/1000

typedef NameValuePair Filter;
typedef sequence < Filter > FilterSeq;

enum ValueSeqType {
OtherSeqgDataType, OctetType, ShortType,
LongType, Lon gLon gType, FloatType, DoubleType

h

union ValueSeq switch (ValueSeqType) {
case OctetType : sequence < octet > octet_seq;
case ShortType : sequence < short > short_seq;
case Lon gType : sequence < lon g >long_seq;

case Lon gLongType : sequence < lon g long >long_long_seq;

case FloatType : sequence < float > float_seq;

case DoubleType :sequence < double > double_seq;

case OtherSeqDataType : any the_any;
h

typedef sequence < QualifiedCodeStr,1 > OptionalCodeSeq;

typedef sequence < float,1 > OptionalFloatSeq;

interface TimeSerieslterator : AbstractMana gedObject {

unsi gned lon g max_left ();

boolean next_n (
in unsi gned lon g n,
out ValueSeq curve_part);

}

/I TimeSeries : ObservationValue;
struct TimeSeries {
TimeDelta sample_period,;
ValueSeq values;
unsi gned lon g lon g total_size;
TimeSerieslterator the_iterator;

I8

exception OutOfRan ge{};

exception Notimplemented { };

exception FilterNotSupported { };

exception NoValidValues { };

struct TimeSeriesRemoteAttributes {
QualifiedCodeStr code;
QualifiedCodeStr units;
OptionalCodeSeq accuracy;
OptionalFloatSeq precision;

OptionalFloatSeq corner_frequency;
OptionalFloatSeq hi ghest_frequency;

Clinical Observations Access Service V1.0

January 2000

k

TimeSpan time_span,;

TimeDelta time_delta;

unsi gned lon g lon g total_size;
QualifiedCodeStrSeq supported_filters;
QueryPolicySeq supported_policies;

/I TimeSeriesRemote : ObservationValue;
interface TimeSeriesRemote : AbstractMana gedObject {

readonly attribute QualifiedCodeStr code;

readonly attribute QualifiedCodeStr units;

readonly attribute OptionalCodeSeq accuracy;

readonly attribute OptionalFloatSeq precision;

readonly attribute OptionalFloatSeq corner_frequency;
readonly attribute OptionalFloatSeq hi ghest_frequency;
readonly attribute TimeSpan time_span;

readonly attribute TimeDelta time_delta;

readonly attribute unsi gned lon g lon g total_size;
readonly attribute QualifiedCodeStrSeq supported_filters;
readonly attribute QueryPolicySeq supported_policies;
readonly attribute ValueSeqType default_value_type;

TimeSeriesRemoteAttributes get_attributes ();

float get_sample_number (
in unsi gned lon g long index,
out ObservationQualifierSeq qualifiers)
raises (
OutOfRan ge);

float get_sample (
in TimeStamp time_stamp,
out ObservationQualifierSeq qualifiers)
raises (
OutOfRan ge);

TimeSeries get_snippet (
in TimeSpan time_span,
out ObservationQualifierSeq qualifiers)
raises (
OutOfRan ge);

float get_max (
in TimeSpan time_span)
raises (
OutOfRan ge,
NoValidValues);

float get_min (
in TimeSpan time_span)
raises (
OutOfRan ge,
NoValidValues);

float get_mean (

COAS V1.0 Jan. 2000

A-19

in TimeSpan time_span)
raises (

OutOfRan ge,

NoValidValues);

float get_median (
in TimeSpan time_span)
raises (
OutOfRan ge,
NoValidValues);

TimeSeries get_resampled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)
raises (
Notimplemented);

TimeSeries get_rescaled (
in TimeSpan time_span,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)
raises (
Notimplemented);

TimeSeries get_resampled_rescaled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)
raises (
Notimplemented);

TimeSeries get_filtered (
in TimeSpan time_span,
in FilterSeq filters,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)
raises (
Notimplemented,
FilterNotSupported);

k

#endif // _DS_OBSERVATION_TIME_SERIES_IDL_

A.4 DsObservationRelations

/I file DsObservationRelations.idl

#ifndef _DS_OBSERVATION_RELATIONS_IDL_

A-20 Clinical Observations Access Service V1.0

January 2000

#define _DS_OBSERVATION_RELATIONS_IDL_
#pragma prefix “om g.org”
#include “DsObservationAccess.idl”
module DsObservationRelations {
typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;

/I all relations are collections of observations (com posite observations)
typedef DsObservationAccess::ObservationData RELATION_t ype;

/I from CEN/TC 251/N98-116, table A.5

/I CEN descri ption names translated accordin g to the followin g rules:
/lreplace “/" with “_"

llreplace s pace with nothin g, Capitalizin g next word

/Ireplace apostro phe, periods, etc. with nothin g

/I produces /is produced b y healthcare activit y produces result, re port, stud y product
const QualifiedCodeStr Produces = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Produces”;
const QualifiedCodeStr IsProducedB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsProducedB y”;

/l'is documented b y /documents healthcare activit y is documented b y note (3.15)
const QualifiedCodeStr Documents = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Documents”;
const QualifiedCodeStr IsDocumentedB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsDocumentedB y”;

Ilis re ported within /re ports about property is re ported within re port (3.17)
const QualifiedCodeStr Re ports = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Re ports”;
const QualifiedCodeStr IsRe portedB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsRe portedB y”;

/ldescribes /is described by graphic property (3.22) describes graphic ob ject (3.21)
const QualifiedCodeStr Describes = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Describes”;
const QualifiedCodeStr IsDescribedB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsDescribedB y”;

/lis identified within /incor porates graphic ob ject is identified within stud y product (3.20)
const QualifiedCodeStr IsldentifiedWithin = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsIdentifiedWithin”;
const QualifiedCodeStr Isincor poratedB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Isincor poratedB y”;

/lis derived from /is source for graphic property is derived from stud y product
const QualifiedCodeStr IsSourceFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsSourceFor”;
const QualifiedCodeStr IsDerivedFrom = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsDerivedFrom”;

/lis com pared to /is reference for situation, document is com pared to situation, document
const QualifiedCodeStr IsCom paredTo = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsCom paredTo”;
const QualifiedCodeStr IsReferenceFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsReferenceFor”;

Ilis recorded a gainst /is recorded a gainst famil y histor y of x is recorded a gainst no evidence of x (note 3)
const QualifiedCodeStr IsRecordedA gainst = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsRecordedA gainst”;

/lsuperseds /is su perseded by clinical state su perseds clinical state (note 4)
const QualifiedCodeStr Su percedes = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Su percedes”;
const QualifiedCodeStr IsSu percededB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsSu percededB y”;

/lorganizational links
/lis framework for /is framed in contact is framework for situation, document
const QualifiedCodeStr IsFrameworkFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsFrameworkFor”;
const QualifiedCodeStr IsFramedB y = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsFramedB y”;
/Ihas phase /is phase of healthcare activit y has phase healthcare (sub)activit y
const QualifiedCodeStr HasPhase = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasPhase”;
const QualifiedCodeStr IsPhaseOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsPhaseOf”;
Illis next phase wrt /has next phase healthcare activit y is next phase wrt healthcare (siblin g) activit y

const QualifiedCodeStr HasNextPhase = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasNextPhase”;
const QualifiedCodeStr IsNextPhaseWRT = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsNextPhaseWRT";

/lis associate to /is associate to condition is associate to condition
const QualifiedCodeStr IsAssociateTo = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsAssociateTo”;

/lis assi gned to /is settin g for situation is assi gned to problem

COAS V1.0 Jan. 2000

A-21

A

const QualifiedCodeStr IsAssi gnedTo = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsAssi gnedTo”;
const QualifiedCodeStr IsSettin gFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsSettin gFor”;

/lis inter pretation of/ is inter preted as condition is inter pretation of findin gs, report
const QualifiedCodeStr Isinter pretationOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsInter pretationOf”;
const QualifiedCodeStr Isinter pretedAs = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsInter pretedAs”;

/Ihas progress /is progress of condition has progress condition (e.g. convalescence)
const QualifiedCodeStr HasPro gress = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasPro gress”;
const QualifiedCodeStr IsPro gressOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsPro gressOf”;

/Ihas cause /is cause of condition has cause condition
const QualifiedCodeStr HasCause = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasCause”;
const QualifiedCodeStr IsCauseOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsCauseOf”;

/lco-exists with /co-exists with condition co-exist with condition
const QualifiedCodeStr CoExistsWith = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/CoExistsWith”;

/lis evidence for /has evidence findin g is evidence for dia gnosis

const QualifiedCodeStr HasEvidence = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasEvidence”;

const QualifiedCodeStr IsEvidenceFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsEvidenceFor”;
I/ltriggers fis tri ggered by presence of prosthesis tri ggers risk state

const QualifiedCodeStr Tri ggers = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/Tri ggers”;

const QualifiedCodeStr IsTri ggeredBy = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsTri ggeredBy”;
/Ihas goal /is goal of healthcare activit y has goal achievable situation

const QualifiedCodeStr HasGoal = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasGoal”;

const QualifiedCodeStr IsGoalOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsGoal Of";
/Ihas motivation /is motivation for healthcare activit y has motivation current situation

const QualifiedCodeStr HasMotivation = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasMotivation”;

const QualifiedCodeStr IsMotivationFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsMotivationFor”;
/Ihas conse quence /is conse quence of healthcare activit y, event has conse quence situation (e.g. outcome)

const QualifiedCodeStr HasConse quence = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasConse quence”;
const QualifiedCodeStr IsConse quenceOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsConse quenceOf”;

/lcircumstantial links

/Ihas to pic /is to pic for informin g has to pic record com ponent
const QualifiedCodeStr HasTo pic = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasTo pic”;
const QualifiedCodeStr IsTo picFor = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsTo picFor”;
/Ihas tar get /is tar get of informin g has tar get person
const QualifiedCodeStr HasTar get = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasTar get”;
const QualifiedCodeStr IsTar getOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsTar getOf”;

/lprovides information about /is re ported by person provides information about record com ponent
const QualifiedCodeStr ProvidesIinformationAbout = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/ProvidesInformationAbout”;

/Ihas circumstances /is circumstance for su pport activit y has circumstance home circumstances
const QualifiedCodeStr HasCircumstances = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/HasCircumstances”;
const QualifiedCodeStr IsCircumstanceOf = “DNS:om g.org/DsObservationAccess/relation/CENTC251N98116/IsCircumstanceOf”;
b
#endif // _DS_OBSERVATION_RELATIONS_IDL_

A.5 DsObservationQualifiers

/I file DsObservationQualifiers.idl

#ifndef _DS_OBSERVATION_QUALIFIERS_IDL_
#define _DS_OBSERVATION_QUALIFIERS_IDL_

#pragma prefix “om g.org”
#include “DsObservationAccess.idl”

module DsObservationQualifiers {

A-22 Clinical Observations Access Service V1.0 January 2000

typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;
typedef DsObservationAccess::TimeStam p TimeStam p;

const QualifiedCodeStr COAS_OBSERVATION_ID = “DNS:om g.org/DsObservationAccess/COAS_OBSERVATION_ID";

/I all the qualifiers listed here from HL7 are defined with
/I subcom ponents in HL7 2.3, so the y all have t ype ObservationData (com posite observations)
typedef DsObservationAccess::ObservationData COMPOSITE_OBSERVATION_t ype;

/I namin g convention:

/Istart with “DNS:om g.org/DsObservationAccess/HL72.3/"

/ladd the HL7 se gment name, like OBX or PID, plus a slash
/ltake HL7 data element names from HL7 v2.3 standard distribution,
llappendix A, (APPA.doc), table A.6 DATA ELEMENT NAMES,
/ltranslated accordin g to the followin g rules:

/Ireplace “/" with “_"

llreplace s pace with nothin g, capitalizin g next word

/lomit a postro phe, periods, parentheses, and other punctuation
/Ito name subcom ponents, additional slashes can follow the com ponent names
/lsee SpecimenSourceBod ySite at bottom for exam ple

/I see HL7 descri ptions for com posite returned b y each of these data elements.

/I clinical times;

const QualifiedCodeStr Date_TimeOfTheObservation = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/Date_TimeOfTheObservation”;
const QualifiedCodeStr EventOnsetDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/PEO/EventOnsetDate_Time”;

const QualifiedCodeStr OrderEffectiveDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/ORC/OrderEffectiveDate_Time”;

const QualifiedCodeStr ProcedureDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/PR1/ProcedureDate_Time”;

const QualifiedCodeStr Re questedDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/Re questedDate_Time”;

const QualifiedCodeStr VerificationDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/IN1/VerificationDate_Time";

const QualifiedCodeStr ActionDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/GOL/ActionDate_Time”;

const QualifiedCodeStr AttestationDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/DG1/AttestationDate_Time”;

const QualifiedCodeStr Transcri ptionDate_Time = “DNS:om g.org/DsObservationAccess/HL72.3/TXA/Transcri ptionDate_Time”;

Il roles

const QualifiedCodeStr PatientIDExternallD = “DNS:om g.org/DsObservationAccess/HL72.3/PID/PatientIDExternallD”;

const QualifiedCodeStr PatientIDInternallD = “DNS:om g.org/DsObservationAccess/HL72.3/PID/Patient|DinternallD”;

const QualifiedCodeStr Orderin gProvider = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/Orderin gProvider”;

const QualifiedCodeStr ProducerID = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/ProducerID”;

const QualifiedCodeStr Collectorldentifier = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/Collectorldentifier”;

const QualifiedCodeStr Res ponsibleObserver = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/Res ponsibleObserver”;

const QualifiedCodeStr Technician = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/Technician”;

const QualifiedCodeStr Princi palResultinter preter = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/Princi palResultinter preter”;

/l from OBR (orders)

const QualifiedCodeStr S pecimenSource = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/S pecimenSource”;
const QualifiedCodeStr ReasonForStud y = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/ReasonForStud y”;
const QualifiedCodeStr Dia gnosticServiceSectionID = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/Dia gnosticServiceSectionID”;
/l from OBX (results)

const QualifiedCodeStr AbnormalFla gs = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/AbnormalFla gs”;

const QualifiedCodeStr ObservationMethod = “DNS:om g.org/DsObservationAccess/HL72.3/0OBX/ObservationMethod”;
const QualifiedCodeStr Units = “DNS:om g.org/DsObservationAccess/HL72.3/0BX/Units”;

const QualifiedCodeStr ReferencesRan ge = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/ReferencesRan ge”;
const QualifiedCodeStr Observationldentifier = “DNS:om g.org/DsObservationAccess/HL72.3/OBX/Observationldentifier”;
/I from PV1

const QualifiedCodeStr PatientLocation = “DNS:om g.org/DsObservationAccess/HL72.3/PV1/PatientLocation”;

/I note that elements of HL7 com posites can be individuall vy identified with this COAS namin g standard.

/l e.g. SpecimenSource is listed in the OBR definitions above, and one se gment

/I of SpecimenSource, like Bod vy Site, can have its own name.

const QualifiedCodeStr S pecimenSourceBod ySite = “DNS:om g.org/DsObservationAccess/HL72.3/OBR/S pecimenSource/Bod ySite”;
typedef QualifiedCodeStr S pecimenSourceBod ySite_type;

I8
#endif // _DS_OBSERVATION_QUALIFIERS_IDL_

COAS V1.0 Jan. 2000

A-23

A

A.6 DsObservationPolicies

/I file DsObservationPolicies.idl

#ifndef _DS_OBSERVATION_POLICIES_IDL_
#define _ _DS_ OBSERVATION POLICIES_IDL _

#pragma prefix “om g.org”
#include “DsObservationTimeSeries.idl”
module DsObservationPolicies {

typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;
typedef DsObservationAccess::TimeStam p TimeStam p;

const QualifiedCodeStr SEARCH_DEPTH_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/SEARCH_DEPTH_POLICY”;
typedef short SearchDe pthPolic yType;

const SearchDe pthPolic yType SEARCH_DEPTH_ONLY_ROOT = 0x0;

const SearchDe pthPolic yType SEARCH_DEPTH_DEEPEST_POSSIBLE = 0x7FFF; // default

const QualifiedCodeStr RETURN_DEPTH_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_POLICY";
typedef QualifiedCodeStr ReturnDe pthPolic yType;
const ReturnDe pthPolic yType RETURN_DEPTH_ROOT_ONLY = “DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_ROOT_ONLY";
const ReturnDe pthPolic yType RETURN_DEPTH_ALL = “DNS:om g.org/DsObservationAccess/ polic y/ RETURN_DEPTH_ALL";
const ReturnDe pthPolic yType RETURN_DEPTH_ALL_LEAVES = “DNS:om g.org/DsObservationAccess/ polic yyRETURN_DEPTH_ALL_LEAVES”;
const ReturnDe pthPolic yType RETURN_DEPTH_LEAVES_OF_MATCHED =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_DEPTH_LEAVES_OF_MATCHED";
const ReturnDe pthPolic yType RETURN_DEPTH_| MATCHED ONLY =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN DEPTH_MATCHED_ONLY";
const ReturnDe pthPolic yType RETURN_DEPTH_MATCHED_AND_DOWN =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN DEPTH_MATCHED_AND_DOWN?; // default

const QualifiedCodeStr SEARCH_SYNONYMOUS_CODES_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_CODES_POLICY”;

typedef QualifiedCodeStr SearchS ynonymousCodesPolic yType;

const SearchS ynonymousCodesPolic yType SEARCH_SYNONYMOUS_CODES_FALSE =
“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_CODES_FALSE";

const SearchS ynonymousCodesPolic yType SEARCH_SYNONYMOUS_CODES_TRUE =
“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_CODES_TRUE"; // default

const QualifiedCodeStr RETURN_OBSERVATION_VALUES_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y RETURN_OBSERVATION_VALUES_POLICY";
typedef QualifiedCodeStr ReturnObservationValuesPolic yType;
const ReturnObservationValuesPolic yType RETURN_NO_OBSERVATION_VALUES =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_NO_OBSERVATION_VALUES”;
const ReturnObservationValuesPolic yType RETURN_OBSERVATION_VALUES =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_OBSERVATION_VALUES?”; // default

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY";
typedef boolean ShortcircuitSearchCodesOnSuccessPolic yType;
const ShortcircuitSearchCodesOnSuccessPolic ~ yType SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_FALSE = FALSE; // default
const ShortcircuitSearchCodesOnSuccessPolic yType SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_TRUE = TRUE;

const QualifiedCodeStr SEARCH_SYNONYMOUS_IDS_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/SEARCH_SYNONYMOUS_IDS_POLICY”;
typedef boolean SearchS ynonymousldsPolic yType;
const SearchS ynonymousldsPolic yType SEARCH_SYNONYMOUS_IDS_FALSE = FALSE;
const SearchS ynonymousldsPolic yType SEARCH_SYNONYMOUS_IDS_TRUE = TRUE; // default

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY";
typedef boolean ShortcircuitSearchldsOnSuccessPolic yType;
const ShortcircuitSearchldsOnSuccessPolic ~ yType SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_FALSE = FALSE; // default
const ShortcircuitSearchldsOnSuccessPolic yType SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_TRUE = TRUE;

const QualifiedCodeStr RETURN_ITEMS_IN_TIME_SPAN_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_POLICY";

typedef QualifiedCodeStr ReturnltemsIinTimeS panPolic yType;

const ReturnitemsinTimeS panPolic yType RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY";

const ReturnitemsinTimeS panPolic yType RETURN_ITEMS_IN_TIME_SPAN_LAST ITEM_ONLY =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY";

A-24 Clinical Observations Access Service V1.0 January 2000

const ReturnltemsInTimeS panPolic yType RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS"; // default

const QualifiedCodeStr MATCHING_STRENGTH_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/MATCHING_STRENGTH_POLICY";
typedef float Matchin gStren gthPolic yType;

const Matchin gStren gthPolic yType MATCHING_STRENGTH_WEAKEST = 0.0;

const Matchin gStren gthPolic yType MATCHING_STRENGTH_STRONGEST = 1.0; // default

const QualifiedCodeStr PARAM_CHECKING_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/PARAM_CHECKING_POLICY”;
typedef boolean ParamCheckin gPolic yType;

const ParamCheckin gPolic yType PARAM_CHECKING_FALSE = FALSE;

const ParamCheckin gPolic yType PARAM_CHECKING_TRUE = TRUE; // default

I
/I QUALIFIER_RETURN_POLICY: see DsObservationQualifiers.idl for list of qualifiers
I

const QualifiedCodeStr QUALIFIER_RETURN_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_RETURN_POLICY”;
typedef se quence<QualifiedCodeStr> QualifierReturnPolic yType;

/I two s pecial codes for this policy;

const QualifiedCodeStr QUALIFIER_RETURN_ALL = “DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_RETURN_ALL";

const QualifiedCodeStr QUALIFIER_RETURN_NONE = “DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_RETURN_NONE?"; // default

const QualifiedCodeStr QUALIFIER_NOT_TO_RETURN_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/QUALIFIER_NOT_TO_RETURN_POLICY";
typedef se quence<QualifiedCodeStr> QualifierNotToReturnPolic yType;

I
/I RELATIONS_RETURN_POLICY: see DsObservationRelations.idl for list of relations
I

const QualifiedCodeStr RELATIONS_RETURN_POLICY = “DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_RETURN_POLICY";
typedef se quence<QualifiedCodeStr> RelationsReturnPolic yType;

/I two s pecial codes for this policy;

const QualifiedCodeStr RELATIONS_RETURN_ALL = “DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_RETURN_ALL";

const QualifiedCodeStr RELATIONS_RETURN_NONE = “DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_RETURN_NONE”"; // default

const QualifiedCodeStr RELATIONS_NOT_TO_RETURN_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/RELATIONS_NOT_TO_RETURN_POLICY”;
typedef se quence<QualifiedCodeStr> RelationsNotToReturnPolic yType;

const QualifiedCodeStr RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY”;
typedef unsi gned lon g ReturnMostRecent_N_ObservationsPolic yType;
const ReturnMostRecent_N_ObservationsPolic yType RETURN_MOST_RECENT_N_OBSERVATIONS_ALL = OxFFFFFFFF; // default

const QualifiedCodeStr TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY”;
typedef se quence<QualifiedCodeStr> TimeSeriesRemoteResam pleAl gorithmPolic yType;

const QualifiedCodeStr TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY";
typedef DsObservationTimeSeries::ValueSe gType TimeSeriesRemoteReturnT ypePreferencePolic yType;

const QualifiedCodeStr RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/ RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY”;
typedef unsi gned lon g ReturnMaxSe quenceForValuePolic yType;
const ReturnMaxSe quenceForValuePolic yType RETURN_MAX_SEQUENCE_FOR_VALUE_ALL = OxFFFFFFFF; // default

const QualifiedCodeStr IGNORE_UNMATCHABLE_QUALIFIERS_POLICY =
“DNS:om g.org/DsObservationAccess/ polic y/IGNORE_UNMATCHABLE_QUALIFIERS_POLICY”;
typedef boolean | gnoreUnmatchableQualifiersPolic yType;

const | gnoreUnmatchableQualifiersPolic yType IGNORE_UNMATCHABLE_QUALIFIERS_TRUE = TRUE;
const | gnoreUnmatchableQualifiersPolic yType IGNORE_UNMATCHABLE_QUALIFIERS_FALSE = FALSE; // default

I

#endif //_DS_OBSERVATION_POLICIES_IDL_

COAS V1.0 Jan. 2000

A-25

A-26 Clinical Observations Access Service V1.0 January 2000

Interoperation B

B.1 The TcSignalling Module

The Naming, Trader, PIDS and LQS Standards are considered building blocks and as
such are of great value to COAS, hence, the following information is supplied in order
to provide a level of understanding where each may play a role.

B.2 Naming/Trader

It is anticipated that the CORBA Naming and/or Trader Services may be used for
acquiring pertinent information about the capabilities of a COAS compliant service.
For these purposes attributes have been added to the AccessComponent Interface
definition to refer to these services if they are available. For the Naming Service the
namin g_service attribute will define the Naming Context.

For thekind field in CosNamin g:NameComponent the following will be used:

® ‘Query COAS' - A COAS component that meets the conformance class of the
same name.

* ‘Browse COAS - A COAS component that meets the conformance class of the
same name.

® ‘ConstraintLanguage COAS - A COAS component that meets the conformance
class of the same name.

® ‘Asynchronous COAS - A COAS component that meets the conformance class of
the same name.

® ‘Supplier COAS - A COAS component that meets the conformance class of the
same name.

® ‘Consumer COAS - A COAS component that meets the conformance class of the
same name.

Clinical Observations Access Service V1.0 January 2000 B-1

B.3 PIDS

B.4 LQS

®* ‘Loader COAS - A COAS component that meets the conformance class of the
same name.

The following definitions are Service Types defined for COAS components for use by
the Trader Service.

Service AccessComponent {
Interface AccessComponent;
Mandatory readonly property Strin gSeq components_implemented,;
Mandatory readonly property Strin gSeq conformance_classes;
Readonly attribute Strin gSeq pid_service;
Readonly attribute Strin gSeq terminolo gy_service;
Readonly attribute Strin gSeq trader_service;
Readonly attribute Strin gSeq namin g_service;
Readonly property Strin g component_name;
Readonly property Strin g coas_version;
Readonly property Strin gSeq supported_codes;
Readonly property Strin gSeq supported_qualifiers;
Readonly property Strin gSeq default_policies;
Readonly property Strin gSeq supported_policies;

The COAS specification has introduced the idea ablservedSubject , but has made

the distinction that it lies outside the scope of this specification in order to allow this
specification to be used in varying medical architectures. However, because an
ObservedSubject can be a person(patient) we recognized the value in utilizing the
PIDS specification in order to identify a person in an enterprise. We have an attribute
in the AccessComponent , calledpid_service, to refer to a PIDS service.

The COAS specification utilizes many of the concepts from the Lexicon Query Service
(LQS) specification in order to provide a more dynamic and extensible specification.
The COAS specification does not however mandate the use of any particular LQS but
recognizes that it provides all the necessary interfaces for a client or server to attain
information from coding schemes to assist in semantic interoperability at a coded level.
We have also introduced the idea of an LQS terminology service via the
AccessComponent interface attribute callegrminolo gy _service thereby providing a

link to terminology services.

Clinical Observations Access Service V1.0 January 2000

C.1 Overview

Security Guidelines C

The COAS interfaces may be used in many different environments with widely varying
security requirements that range from no security to extreme security. For this reason
the COAS interfaces do not expose any security information. COAS relies on the
underlying CORBA infrastructure and services which provides all the security
mechanisms needed without exposing it in the interfaces.

An attribute of security that of concern to many people is to maintain confidentiality of
certain (sensitive) information about them. For COAS this implies being able to filter
requests by:

®* who is accessing the information,
® who the information is about,

* what information is being accessed.

Other common security concerns could be preventing unauthorized modification of
data, tapping into communications to acquire sensitive information, and causing loss of
service by over burdening a service.

CORBA Security provides robust mechanisms to address these and other concerns.
Some of the security properties it does deal with includes authentication, authorization,
encryption, audit trails, non-repudiation, etc. CORBA Security, in its default mode
allows these security concerns to be addressed without the client and server software
being aware of it. This is a powerful notion, allowing security policies to be created
and enforced after applications and systems have been created and installed.

Other CORBA and CORBA Security features provide mechanisms for applications to
extend these security capabilities. For example they can obtain credentials from the
ORB and implement filters that can look at specific data passed to and returned from
operations.

Clinical Observations Access Service V1.0 January 2000 C-1

It is a requirement of the COAS to provide confidentiality of information that is stored
about an individual. This requirement fuels the need for fine grained access control on
clinical observations that are associated with identifiable observed subjects.

C.2 Security Requirements

C-2

For the COAS to be secure in its possible dissemination of information it needs to
adhere to several requirements:

® The COAS needs to authenticate a client's principal identity, role, affiliation and
other security attributes.

® The COAS needs to transmit information confidentially and with integrity.

The first requirement states that the entire COAS interface implementations must be

able to identify a potential client. If it cannot authenticate a client, then the client may
be severely limited in the particular requests that the COAS can service. The CORBA
Security Service provides the mechanisms for a server to authenticate a client.

The second requirement provides for the confidentiality of the information. The client
must communicate with the COAS using not only encryption to protect data, but
signature as well, so as not to have data tampered with during communication. There is
no sense in putting a Sensitivity level of “OwnerOnly” on an observation and have its
value transmitted to the owner in the clear. The CORBA Security Service provides
these capabilities, including SSL.

The problem is, How does one get CORBA to support this access policy model?

C.2.1 CORBA Security Overview

In an effort to keep the COAS interfaces security unaware, i.e. no extra visible security
relevant parameters in methods, access policies must be adhered to from behind the
interfaces. The CORBA security model offers several ways to apply security policies
to method invocations.

The CORBA Security SpecificatioORBAsec) is not a cookbook for using CORBA
security in building applications. It is a specification of a general framework with
which ORB vendors and application vendors can build a multitude of different security
policy models. TheCORBAsec also gives the interfaces which implementations of
applications can use to access those security services that are supplied with a secure
ORB.

A secure COAS implementation that can control access to specific observations must
be aware of the security services offered by the ORB. This caveat also means that a
client's ORB may have to know the kind of ORB and the security services that is used
by the COAS.

The CORBA security specification outlines a general security policy model. Although
the specification is vague about which approach should be taken, it is specific enough
to be able to choose from a couple of models that can be supported.

Clinical Observations Access Service V1.0 January 2000

C

The CORBA security model bases itself on credentials and security domains.
Credentials are data objects that contain attributes such as privileges, capabilities, and
sensitivity levels, amongst others. Security domains are mappings from credentials to
access rights. Credentials can be encrypted and signed to prevent tampering and to
achieve a level of trust between client and server. CORBA credentials get passed with
requests beneath the visible level of the interface. CORBA security services give the
clients and servers the ability to authenticate/verify credentials in order to implement
policies in the security domains.

Many different schemes, algorithms, services, and vendor implementations exist to
provide implementation of security policies, and many different implementations of
those schemes may be integrated into a CORBA compliant ORB. It is not the purpose
of this specification to dictate the specific implementation of an ORB or the security
services that should be used, but to outline the external requirements for the COAS
implementation. These requirements and guidelines aid in selecting a secure ORB and
the level of security functionality needed to implement the COAS access policy model.

C.2.2 Secure Interoperability Concerns

CORBA has built the communication bridge between distributed objects creating a
interoperable environment that spans heterogeneous platforms and implementations.
However, security adds another layer of complexity to the issue of interoperability.
ORB implementations are neither required to include security services nor required to
provide an interoperable mechanism of security services. However, a specification
does exist for the target object to advertise, via the IOR, the security services that it
supports and the services it requires from the client. Both the client and server ORBs
must use compatible mechanisms of the same security technology.

The CORBA Common Secure Interoperability (CSI) Specification defines 3 levels of
security functionality that ORBs may support. The levels are named, CSI Level 0, CSI
Level 1, and CSI Level 2. Each level has increasing degrees of security functionality.

The CSI Level 0 supports identity based policies only and provides mechanisms for
identity authentication and message protection with no privilege delegation. The CSI
Level 1 adds unrestricted delegation. The CSI Level 2 can implement the entire
CORBA Security Specification at Security Level 2.

Each CSI level is parameterized by mechanisms that can support the level of security
functionality, such as SPKM for CSI Level 0, GSS Kerberos for CSI Level 0 or CSI
Level 1, and CSI_ECMA for CSI Level 2. Future developments in security
functionality and mechanism are not restricted, and mechanisms can be added to each
level.

The ORB implementations may use different security technology with differing
capabilities and underlying mechanisms, such as SSL, DCE, Kerberos, Sesame, or
other standards. Choosing the ORB and its underlying security services will be critical
to protecting COAS, and it will influence the implementation of the access policy that
a secure COAS implementation must support.

COAS V1.0 Security Requirements Jan. 2000 C-3

C.3 Trust Models

C-4

For example, an ORB that only supports SPKM, i.e. CSl Level 0, can only authenticate
clients and provide confidentiality and integrity of communication. It cannot support
definition and use of security attributes beyond an access ID. Support for security
attributes beyond an access ID require CSI Level 2. Therefore, using an ORB that only
provides CSI Level O will require the COAS to maintain its own information on the
credentials of clients.

Even if an ORB's security technology supports the definition of security attributes that
can be delivered to the COAS, i.e. CSI Level 2, there are still concerns involving the
trust between the client and the COAS.

The available trust models for the COAS are simplistic. Since the COAS is a
communications end point and is not required to make requests to other services on a
client's behalf, a delegation trust model is not needed. This simplifies the model and
eliminates an absolute need for a CSl Level 1 or CSI Level 2 secure ORB (although
they may use them).

There are two basic trust models for the COAS. If the COAS and its client are
implemented using CSI Level 0 or CSI Level 1 ORBs, only the first trust model can be
supported. If a CSI Level 2 ORB is used, both trust models can be supported. The trust
models are:

1. The client's identity can and is trusted to be authenticated. However, the client is
unable or untrusted to deliver the valid credentials.

2. The client is trusted to deliver the correct credentials.

In the first model, the client ORB is required to authenticate its principal (the user) and
provide authentication information to the server ORB. The methods used to
accomplish principal authentication is specific to the mechanisms (e.g. DCE or
Kerberos) that the selected ORB supports. Management of those identities is also
specific to the mechanism. The server ORB must have a compatible mechanism that
verifies the authentication information and carries out mutual authentication of the
client.

With this trust model, a secure COAS implementation must maintain and manage a
map of identities to privilege attributes. CSI Level 0, 1, and 2 ORBs are able to support
this trust model.

Even if the ORB has CSI Level 2 functionality, it may be a local policy that a COAS
does not trust the credentials brought forth from an authenticated client. In that case,
the COAS must maintain the map or use a default set of security attributes for requests
from clients it does not trust.

In the second model, the client ORB is required to authenticate its principal and
acquire its valid credentials. The methods used to accomplish principal authentication
and acquisition of privilege attributes are specific to the mechanism that the selected
ORB supports, such as DCE and Sesame. Management of those identities and
attributes are also mechanism specific. A secure COAS installation using this trust

Clinical Observations Access Service V1.0 January 2000

C

model must take a careful look at that management scheme and operation, evaluate it,
and decide to trust it. In such a scenario, the server ORB, which has CSI Level 2
functionality, automatically verifies the credentials on invocation.

A secure COAS built to the second model leaves management of identities and their
attributes to the security services policy management system used by the ORB. The
COAS may manage security attributes for the data itself.

A secure COAS built to the first model will have some scheme to manage trusted
identities and their credentials. There is no interface or plan in the COAS to specify
this kind of management.

C.4 CORBA Credentials

To adhere to the credential model that supports trait specific access policies, a set of
credentials must contain privilege attributes such as the identity of the client, the role
in which the client is actively represented, and the sensitivity level of information to
which the client is allowed access. It will be the responsibility of a COAS
implementation to advertise to potential client vendors the specifics of these attributes
and how to represent them externally. A client ORB needs to ascertain certain
credentials about the user and must pass them to the COAS. An external representatior
of those credentials is needed so that credentials can be passed between client and
server within the CORBA security services. The COR®A&urity module defines the
structure for this representation.

module Security {
const SecurityAttributeType Accessld = 2;
const SecurityAttributeType Role =5;

const SecurityAttributeType Clearance =7,

struct SecAttribute {
AttributeType attribute_type;

Opaque definin g_authority;
Opaque value;
%
typedef sequence<SecAttribute> AttributeList;
}

Listed above are the relevant pieces of the specification frogetheity module that
apply to externalizing credential information.

C.5 CORBA Security Domain Access Policy

In addition to a credential based scheme, CORBA defines security domains. The
purpose of this section is to explain and illustrate the use of the standard CORBA
security policy domain and the way in which it may be used to implement a security
policy for the COAS. This section offers a recommendation to a COAS implementor in
order to give a feel for the kinds of security policies a COAS implementation may
need to support. It should also guide the implementor in evaluating a secure ORB and
available security services.

COAS V1.0 CORBA Credentials Jan. 2000 C-5

A security domain governs security (access) policy for objects that are managed within
that domain. In order to make scalable administration of security policy, these domains
map sets of security credentials to certain sets of rights. A right is a sort of an internal
security credential.

CORBA defines a standard set of rights that are granted to principals within a security
domain. A security domain administrator manages that map through the
SecurityAdministration ~module'sDomainAccessPolicy interface. Access decision

then can be based on a set of required rights and the rights granted to the client by the
domain access policy, by virtue of the client's credentials.

ORB security service vendors will supply a security policy management infrastructure
that implements the standard CORBA rights scheme. The COAS must use security
services that can place different required rights on the COAS interfaces. Some ORB
security services may allow a security domain to create special rights. However,
CORBA defines a standard set of rights: get, set, and manage. This right set will
suffice to handle the COAS.

In the model just described there is one security domain for all of the COAS
components. The CORBA rights families scheme within a single security policy
domain suffices to differentiate the security nature of the methods. More generally any
number of domain models can be used, such as a separate security domain for each
COAS component.

C.6 Request Content Based Policy

C-6

The CORBA standard domain access policy scheme only protects methods from
invocation at the target and without regard to content of the request. The COAS needs
a more fine grained access control in order to implement the content based access
policy required (e.g. access policies for different observations). The COAS
implementations must be made security aware to implement an access policy based on
the value of arguments in a request. There are multiple ways to implement this policy
using a secure CORBA implementation.

The CORBA Security Specification supplies two different schemes represented by an
interface hierarchy, which are Security Level 1 and Security Level 2 (these should not
be confused with CSI Levels 0, 1, and 2). These interfaces describe the level of
security functionality that is available to security aware implementations.

Security Level 1

For the COAS to take advantage of CORBA security in order to implement its access
policy model, the ORB must at least implement the CORBA Security Level 1
interfaces. A Security Level 1 compliant ORB supplies an interface to access the
attributes of the credentials received from the client.

Using theSecurityLevell interfaces, which is simplistic, gives the implementation of

the COAS interfaces the ability to examine the client's credentials and compare them to
the access control information that is managed as the access policy. However, the
implementation of the COAS must be security aware.

Clinical Observations Access Service V1.0 January 2000

module SecurityLevell {
Current get_current();

interface Current {
Security::AttributeList get_attributes(
in Security::Attribute TypeList attributes
);
%
}
Using the Security Level 1 interfaces, each implementation of a COAS query interface
must call theget_attributes() function on theCurrent pseudo object, examine the
attributes, compare them to the access policy information, and make the access
decision. If a COAS implementation chooses to use the Healthcare Resource Access
Decision Facility, it constructs an appropriate resource name and operation name, and
passes them tResourceAccessDecision::access_allowed() along with the attributes
received fromCurrent:: get_attributes() . Details on how COAS implementations must
use an HRAD Facility are provided in Section C.7, “Use of Healthcare Resource
Access Decision Facility”. In the latter case, a COAS does not need to examine the
attributes or implement any access decision logic. The COAS implementation should
enforce the access decision according to the semantics of the particular COAS
operation. It is the responsibility of the client's ORB to acquire the proper credentials
securely. It is the responsibility of the server's ORB to authenticate the credentials
received from the client, extract the security attributes from them, and make them
available to the implementation through tharent:: get_attributes() method.

Security Level 2

Using an ORB which supplies the Security Level 2 interfaces, the implementation can
be somewhat free of making the access control decision in the implementation of the
query interfaces. Having an implementation that is security unaware is attractive in
CORBA, because security policy decisions can be made underneath the functionality,
and they have the ability to be changed without retooling the application.

As with any framework, there are several ways in which to use the Security Level 2
interfaces. One approach could be to implement a replaceable security service for the
access decision. Security Level 2 describes a method in which security can be enforced
by the creation of an Access Decision object. AbeessDecision object would

interact with abomainAccessPolicy object to get effective rights and compare those

to rights returned from thRequiredRi ghts interface.

Some secure ORB implementations may allow the installation of specialized Access
Decision objects to be used in conjunction with specialzeeainAccessPolicy

objects. In the Security Level 2 interfaces, the specification implies access control only
on the invocation of a method and not the contents of the request.

module SecurityReplaceable {
interface AccessDecision {

boolean access_allowed (
in SecuirytLvel2::CredentialList red_list,

COAS V1.0 Request Content Based Policy Jan. 2000 Cc-7

C-8

in CORBA::Object tar get,
in CORBA::Identifier operation_name,
in CORBA::Identifier interface_name
)i
h
}

Currently, theAccessDecision object specified in th&ecurityReplaceable module

does not take the invocati®equest as an argument. It only makes an access decision
based on the credentials received from the client, the target object reference and
operation name, and the target's interface name. This criteria is insufficient to
implement the content based access policy, if needed by a COAS implementation to be
automatically performed by the ORB.

Since the COAS requires access control on the contents of the method invocation (such
as asking for the value of the HomePhone trait), this scheme of replacing these
Security Level 2 components cannot be used. ORB security services that use the
standard CORBA domain access policy may use third party implementations for these
components. This standard domain access policy functionality gives the COAS a high
level of invocation protection that is orthogonal to the content based access policy.
Some COAS servers may need the standard domain access policy functionality in
addition to providing content based access policy. Therefore, another approach must be
taken.

A content based access policy can be implemented in a Security Level 2 ORB by using
an interceptor. A request level interceptor takesRbguest as an argument and
therefore, it can examine the content of the invocation arguments.

module CORBA {

interface Interceptor { ... };

interface RequestLevellnterceptor : Interceptor {
void client_invoke(inout Request request);
void tar get_invoke(inout Request request);

%
}
Installing an interceptor on an ORB is ORB implementation specific, and each ORB
vendor may have their own flavor of interceptors. The ORB calls the request level
interceptor just before the invocation gets passed to the server implementation by using
thetarget_invoke() operation. The interceptor uses the Dynamic Skeleton Interface
(DSI) to examine values of the arguments of the invocation and make access decisions.
These access decisions are also based on the credentials received from the client and
the access policy. The interceptor will deny access to the invocation by raising an
exception. The server's ORB will transmit this exception back to the client.

The use of the interceptor scheme frees the implementation of the COAS interfaces
from the implementation of the access decision policy. If the access policy model
changes, then the interceptor can be changed out without retooling the COAS
implementation.

Clinical Observations Access Service V1.0 January 2000

C

As awareness of the need for more powerful and flexible security policy management
grows, more tools to create, manage, and analyze policy will come into existence. A
COAS implementation relying on interceptors to implement its security policy may be
able, with relative ease, to switch to using more robust policy services as they become
developed.

C.7 Use of Healthcare Resource Access Decision Facility

Resource names used for obtaining access decisions from HRAD facility by COAS-
compliant services, should be created in a predefined manner:

COAS_HRAC_Resource_Name ::=

'IDL:om g.org/DsObservationAccess' +

{'ObservedSubjectld’, <ObservationData.observed_subject_id>} +
{'QualifiedCodeStr’, <Strin gified ObservationData.observation_type>}+
{TimeSpan’, <Strin gified ObservationData.observation_time>}+
[{'Observationld’, <ObservationData.observation_id>}]

Text below explains the expression above in English.

If a COAS-compliant service uses Healthcare Resource Access Decision facility
(HRAD), it shall:

® create HRAD resource names according to the following rules:

1. The “resource_naming_authority” data membeR&fourceName shall adhere to
the syntax of th&lamin gAuthority::AuthorityldStr type. For the corresponding
datum element of typauthorityld , the value of authority shall be 'IDL'. The value
of namin g_entity shall be 'omg.org/DsObservationAccess'.

2. The first element of thResourceName data member
resource_name_component_listmandatory. Its memb@ame_stringshall have a
value of ObservedSubjectld ', and the value ofalue_stringshall be the value of
the observed_subject_idata member of the corresponding datum element of type
ObservationData for the observation to be accessed.

3. The second element of tResourceName data member
resource_name_component_listmandatory. Its membe@ame_stringshall have a
value of QualifiedCodeStr ', and the value ofalue_stringshall be the stringified,
via Terminolo gyServices::TranslationLibrary.qualified_code_to_name_str() , value
of the observation_typelata member of the corresponding datum element of type
ObservationData for the observation to be accessed.

4. The third element of thResourceName data member
resource_name_component_listmandatory. Its memb@ame_stringshall have a
value of TimeSpan', and the value of the correspondivejue_stringshall be the
value of theobservation_timelata member of the corresponding datum element of
type ObservationData for the observation to be accessed.

COAS V1.0 Use of Healthcare Resource Access Decision Facility Jan. 2000-9

5. The fourth element of theesourceName data member
resource_name_component_listoptional. If it is provided, its data member
name_stringshall have a value oDbservationid . The value of the corresponding
name_stringdata member shall be the value afservation_id ' of the
corresponding datum element of typbeservationData for the observation to be
accessed.

® Create HRAD operation name according to the following rules:

1. When serving invocations of operations that semantically mean “get”, operation in
DfResourceAccessDecision::access_allowed() shall have value ‘read'.

2. When serving invocations of operations that semantically mean “set”, operation in

DfResourceAccessDecision::access_allowed() shall have value 'write'.

» Obtain security attributes of the invoking principal via
SecurityLevell::Current. get_attributes() (See Section C.6, “Request Content
Based Policy” or other means.

* Obtain resource access decision(s) by invoking edbegss_allowed() or
multiple_access_allowed() on DfResourceAccessDecision::AccessDecision
interface.

* Enforce the decision according to the semantics of the operation the COAS-
compliant service is serving.

* It is not mandated by this specification how exceptions caught during an attempt
to invoke eithemccess_allowed() or multiple_access_allowed() on
DfResourceAccessDecision::AccessDecision interface are handled by a COAS-
compliant service.

C-10 Clinical Observations Access Service V1.0 January 2000

Usage Patterns D

D.1 Overview

There are a variety of scenarios for which patient observation data may need to flow
between two systems or applications. A simple set of CORBA interfaces can be useful
by deploying them in these different scenarios without having to redefine the interfaces
for each scenario. Some of the factors determining how the interfaces may be used are:

® who initiates the conversation; is the connection temporary or permanent;
®* who knows when and what should be sent for which patients;

® is the data coming from a human or machine observer;

® is the time span relative to a single encounter vs. a whole life time record;
® s the data going into a CDR/EMR or coming out;

* will it be used as one central database or distributed data resources; etc.

The subsections below will investigate some scenarios. One of the biggest determinants
in these scenarios is who knows that a particular set of information needs to be passed
between two applications. As you will see below, each scenario has a particular
usefulness that depends on this issue.

Clinical Observations Access Service V1.0 January 2000 D-1

D

D.2 Consumer Initiated

D-2

Patient
Observation
Supplier

Query f
Register

or Data ' data poll(who, what)
data query(who, what,when)
Wregister(who, what,when, where) ————

CORBA Naming
Service

Reference resolve(supplier)

Patient
Observation
Consumer(s)

-

update(data) H Consume Data JJ

Figure D-1 Data consumer initiated push and pull interaction models

A supplier of patient observation data may need to allow clients to:
® poll for the current patient data (numeric vital signs and waveforms),
® query for data that has already been collected, and

® register for automatic updates at specified times or triggered by some other event.

The supplier may publish a reference to itself in a CORBA Naming Service for others
(possibly many others) to access.

The arrows with solid heads in the diagram above represent the direction of one system
calling another. The arrow with a wire head indicates the Patient Observation Supplier
is in the CORBA Naming Service. The Patient Observation Consumer goes to the
Naming Service (or any other valid mechanism) and gets an object reference to the
supplier. The consumer then initiates any querying to, and registering with, the
supplier. This mechanism would be used by an application that may come up with a
user interface that allows the clinician to query for data or ask to be
periodically/continuously updated.

The three interfaces are named with logical descriptions for what they do. See the
specific interface sections for the actual name of the interfaces and a full description of
their capabilities. Note that an observation supplier need only implement one or both
interfaces.

1. Query for Data - This represents a CORBA interface that allows a client
system/application to query for past patient observations or poll for the current
patient information. This is a simple mechanism from the consumer’s point of view

Clinical Observations Access Service V1.0 January 2000

D

since they only have to poll/query for data when they want it, although they must
determine when to ask for the data. The polling is also simple for the supplier, but
guerying requires the storage of data to have occurred. This mechanism is more
appropriate when the time that data is needed can not be predetermined.

. Register for Data - This CORBA interface allows the client to register its Consume

Data interface with the supplier of observation data to be updated with the indicated
data and times. This is more complicated from the consumer’s point of view since
they have to implement a CORBA object. On the other hand the consumer does not
have to deal with timers, etc. to determine when to poll for information. The
supplier does not need to keep a data base of patient data for this mechanism but,
they do need to keep a connection data base. This mechanism is best suited when
the data availability can not be predetermined, such as needing data when an alarm
or other event occurs.

Consume Data - This is the CORBA interface for the call back from the registration
procedure that gets called with patient observation data.

The labels on the arrows contain pseudocode that specifies the kind of information that
must be passed in each invocation. The actual information passed and the interfaces
will be a lot more complicated than this simple picture in order to characterize the data
fully and manage the registration.

who - Patients for which data is wanted. This may be specified by identifying
patients by an identifier or by locations.

when - Times for which data is wanted. These could be specific times and/or events
of interest. This is implied to be the current time or most recent data during polling.

what - The kinds of data wanted. This could be vitals signs, waveforms, alarm
indications or other patient observations.

where - Where the data is going. This is implied for polling and queries since the
data is returned to the system initiating the call.

The simplest and most straight forward way to access data is by polling and querying.
The querying system only has to use the client side of CORBA. Registering for
automatic updates requires more work including creating a CORBA object that can be
called back. Most of the work for the registration capabilities is done by the service
side.

COAS V1.0 Consumer Initiated Jan. 2000 D-3

D

D.3 Supplier Initiated

CORBA Naming
Service

resolve(consumer) Reference
Patient Patient
Observation Observation
Supplier(s) Consumer

\\\\ update(data) Consume Data
./

Figure D-2 Supplier initiated push interaction model.

A consumer (sink) of patient observation data may need to allow clients to send (push)
data to it. The consumer may publish a reference to itself in a CORBA Naming Service
for others (possibly many others) to access it.

The supplier of the observation data can look up the consuming application in the
CORBA Naming Service and send data to the consumer when the supplier deems
necessary. An example where this scenario would be valid is when a nursing
application or patient care management application needs to send nurse notes or
manually collected vital signs to the EMR/CDR.

D.4 Third Party Initiated

In many cases, a system supplying observation data and a system consuming
observation data do not know about each other. In these cases, a third party such as a
System Administrator will set up and configure the connection between the two
systems.

These are more useful ways when the two systems run in the background
(continuously). For example, an ancillary system may need to send data to a Clinical
Data Repository (CDR) or patient care management application on a periodic bases.
Another example would be registering a nurse call system with a monitoring system in
order to be notified of alarms of interest to that nurse.

D-4 Clinical Observations Access Service V1.0 January 2000

D

D.5 Push Style

Patient
Observation
Supplier

Register

for Data

In either of these cases, neither the supplier nor consumer know about each other. The
System Administrator (or some other third party) will need to set up the connection
between the two. The Patient Observation Consumer and Patient Observation Supplier
would need to be in the CORBA Naming Service or the System Administration
Application would need to get the object references through some other means.

CORBA Naming
Service

resolve(supplier/consumer)

~

Reference System Reference
Administrator
Application
Patient
Observation
register(who, what,when, where) Consumer(s)
update(data) H Consume Data /J

Figure D-3 Third party interactions to set up a push style connection

Figure D-3 shows a slightly more complicated mechanism for registering a consumer
with a data supplier. In this case, the consumer(s) need to implement the Consume
Data interface. This works when the consumer is a data sink such as a data base.

The supplier only needs to implement the Register for Data interface. This is more
complicated than just implementing the Query for Data interfaces since the supplier
has to manage the set of consumers and the data base of the patient data. The supplie
also has to monitor the timer and alarm events to know when the data should be sent to
the consumer.

COAS V1.0 Push Style Jan. 2000 D-5

D

D.6 Pull Style

Patient
Observation
Supplier(s)

D-6

\ data poll(who, what)
\ Query for Data data query(who, what,when)
N

CORBA Naming
Service

resolve(supplier/consumer)

Reference Reference

System
Administrator
Application

Patient
Observation

register(where) CORNSIGET

Register Supplier

Figure D-4 Third party interactions to set up a pull style connection.

Figure D-4 shows another mechanism for registering a consumer with a data supplier.
In this case, the consumer needs to implement the Register Supplier interface. The
supplier only need implement the Query for Data interface. In many cases, this would
be the simplest scenario for the supplier system to implement since it already has
stored the data in a data base and needs to implement the logic to retrieve the data an
return it to the caller.

This scenario adds a complication to the consumer since it now has to implement the
Register Supplier interfaces and manage a set of suppliers from which to receive data.

Clinical Observations Access Service V1.0 January 2000

D.7 Third Party Mediated

CORBA Naming
Service

resolve(supplier/consumer)

Reference Patient Reference
Management
Application
Patient Patient
Observation data poll(who, what) Observation
date(data
Supplier(s) data query(who, what,when) up () Consumer(s)

Query for Data Consume Data

- -

Figure D-5 Third party mediator to convert pull style supplier to a push style consumer.

Figure D-5 shows a scenario where the supplier and consumer have selected (maybe by
necessity) to implement the simplest respective interfaces or at least nhon-compatible
interfaces since neither can initiate the connection. A third party application mediates
between the consumer and supplier. In some cases, this is a natural scenario since a
Patient Management Application may be taking raw data from an instrument. The
clinician would validate the data and then send the results to the CDR/EMR.

Another case may be an interface engine to bridge the two systems and the IT
department (system administrator) would configure the interface engine directly.

COAS V1.0 Third Party Mediated Jan. 2000 D-7

Clinical Observations Access Service V1.0

January 2000

Usage Scenarios E

E.1 Vital Signs Service

E.1.1 Nursing Station Scenario

A Nurse is doing his charting on a Clinical Information System (CIS). The CIS collects
vital signs from the vital signs server (patient monitoring system) every minute.

The CIS polls the vital signs server every minute for the most representative vital signs
values (median filter) over the last minute. This data is cached up for 24 hours for
immediate access by the Nursing staff. Because this polling is done so often it is
important the calls are efficient. For example it should only require a single call to
acquire the data for all vital signs on all 16 patients in that unit.

The CIS also has the ability to show waveforms from the patient. Instead of storing the
high volume of waveform data for the 24 hours it only requests them when a Nurse
wants to view them.

The Nursing staff may sometimes want to see the very latest vital signs values, where
as the stored data on the CIS is only one value per minute, and at any time the last
value shown could be as much as 1 minute old. The CIS provides a function for the
Nurse to request the very latest data. The CIS polls the vital signs server but asks for
the very latest data available for each vital sign as long as it is no older then 15
seconds. The Nurse verifies these values with the monitoring system display and
enters them into the patient record with a simple button push.

E.1.2 Doctor’s Office Scenario
A Doctor has multiple patients admitted to a hospital and needs to make her rounds

every day. Before going to the hospital she wants to review the patients condition over
the last day.

Clinical Observations Access Service V1.0 January 2000 E-1

A local application (or a web browser is used to download an applet which) connects
up to the hospital intranet and queries the vital signs server for a 24 hour trend on the
first patient. The trend is a sampling of the vital signs numerics (heart rate, blood
pressure, etc.) over the past 24 hours. Since the vital signs may be collected
continuously with changes on the order of every second or two (60*60*24=86400
samples per vital sign) it would take a long time to download. Instead the client
application asks for only one sample every 5 minutes (12*24=288 samples) since the
trend display area is only 288 pixels wide. A median filter is requested over each 5
minute period so that the most representative value is returned.

The Doctor notices a sudden drop in the blood pressure around 3:00 am and zooms in
around that time. The application changes to a 30-minute view and does another query
to the vital signs server. This time it asks for a trend over the 30 minutes with a
resolution of 5 seconds.

The Doctor wants to see what the ECG and blood pressure waveforms are doing during
this time, and so she changes views. The cursor was set at 3:05:20 am. When the
Doctor changed to the waveform view the application queried the vital signs server for
the waveforms around 3:05:20, requesting 20 seconds before through 20 seconds aftel
that point in time. It centers the waveform on the screen, which shows a window of 10
seconds for each waveform.

After scrolling through the waveform the Doctor notices a short arrhythmia starting at
3:05:43. The doctor uses the application to see when other arrhythmias might have
occurred through out the night, and sees a half dozen others.

She looks at a couple of them to make sure they really are problems and decides to put
this patient high on her list to visit first during her rounds.

E.1.3 Remote Monitoring Scenario

A hospital has installed monitors throughout the enterprise, but realizes that most
Nurses are not familiar with many of the difficulties that can be exposed with the
monitor. They implement a central monitoring group (scope techs) that provides this
functionality. Since there are so many monitors, they can not watch each one
continuously, as is usually done with monitor techs.

The scope tech's applications are registered with the vital signs servers to be notified
when alarms start and end. The application filters these alarms with a different
algorithm for each vital sign in order to reduce false alarms. The alarms that get
through the filter are displayed to the scope tech.

The application then polls the vital signs server for the waveforms (ECG, etc) starting
at the beginning of the alarm event up to the present. This information is shown to the
scope tech immediately. The application also registers with the vital signs server to be
updated every second with the latest vital signs and the waveforms for the last second.
As this data arrives the application appends the waveforms to that already displayed in
a continuous manner.

Clinical Observations Access Service V1.0 January 2000

E

It appears to the scope tech the data is being acquired and displayed continuously, but
the data is always one second behind. This small delay is acceptable for the job of the
scope tech. The delay is used so that only one packet of data is sent on the network

per second, reducing the network bandwidth required.

E.1.4 Paging System Scenario

A hospital has a nurse paging system that is used for sending messages to nurses
through out the day, as well as notifying them of code situations they may need to
attend to immediately. They choose to connect the vital signs server to the paging
system so that life threatening alarms can cause the responsible Nurse to be paged.

The paging system is registered with the vital signs server to have critical data pushed
to it when certain events occur (life threatening arrythmias and apnea). Since there is
a possibility of false alarms, other clinical information needs to be passed to the paging
system as well so the Nurse can triage the severity of the alarm. A snap shot of the
waveform associated with the alarm (ECG or Respiration) is sent along with the latest
vital signs values. Some Nurses carry large screen pagers that can display this extra
data.

Due to the time criticality of the alarm, the data must be delivered to the Nurse
quickly. From the point of view of the vital signs server it is just delivering (pushing)
the requested data to a client at the times they registered interest in. It knows nothing
about the client, except that it can accept the pushed data.

E.1.5 Logging System Scenario

Due to potential legal actions, a hospital has implemented an enterprise wide logging
system of information that may be needed in case a law suit occurs. It does not have
an electronic medical record system so it prints these out on paper that gets put into the
patient's record.

The most critical information needed is when certain alarms occur, but information is
also captured periodically during a shift. The period is determined by what unit they
are on. The information collected includes an ECG snapshot of 7 seconds and certain
vital signs (heart rate, oxygen saturation, blood pressure, and respiration rate), if they
are available. Since the blood pressure is taking sporadically, only values within the
last 15 minutes are included. All other vital signs are taken continuously and are
included if a value exists within 5 seconds of the event.

There are several ways the logging system could get the information from the vital
signs server - by polling, querying and registering.

Since the vital signs server keeps all data for 24 hours, the logging system could query
for the information every 24 hours (or less). It could query for the times the alarms it
is interested in had occurred through out the day. It could then query for the required
vitals signs and ECG at these times and at the periodic times for that unit.

COAS V1.0 Vital Signs Service Jan. 2000 E-3

E-4

The logging system could be registered with the vital signs server to send the required
vital signs and ECG at the periods in which data is logged for that unit. It could also
register to have the same information sent when the alarms of interest occur.

Alternatively the logging system could poll for the needed vital signs and ECG at the
periodic times assigned to that unit. At those same points in time it could query for
which of the important alarms had occurred since the last period and query for the vital
signs at those times.

Clinical Observations Access Service V1.0 January 2000

Client Implementation Examples F

Following are some examples of how a client might access observations via the
DsObservationAccess service. All codes, data, and clinical information are fabricated
for illustration purposes.

F.1 Lipid Panel

Consider an example where a COAS client requests a lab result, using the
QueryAccess component. The lab in question is a lipid panel for patientID “1234”,
with the sample drawn on the morning of 11 Mar 1999.

For this example, assume the following definitions. First, there are several observation
codes, one for a composite panel, and four individual measurements within the panel:

LIPID_PANEL// a battery of lipoproteins in blood sample
TRIGLYCERIDES
TOTAL_CHOLESTEROL
LOW_DENSITY_LIPOPROTEIN
HIGH_DENSITY_LIPOPROTEIN

LIPID_PANEL

Figure F-1 LIPID_PANEL is a composite observation with four elements.

Clinical Observations Access Service V1.0 January 2000 F-1

F-2

That is,LIPID_PANEL is anObservationData which contains other observations, so its
composite field has four items while itgalue field has zero length. Meanwhile, the
four contained observations are atomic observations. theisosite field is zero
length, while theivalue field (a CORBA::any) is filled with a
DsObservationValue::Numeric ~ struct.

F.1.1 Qualifiers
Assume the following qualifier codes:

NORMAL_RANGE // ran ge for this measurement/ gender
NORMALCY /I fla g for this measurement
OBSERVATION_TIME // time sample was drawn
RESULTS_AVAILABLE_TIME // time result entered into system

Figure F-2 NORMAL_RANGE is a qualifier which contains a Range struct within value.

Within the DsObservationValue::Ran ge struct is a lower and upper bound. See
DsObservationValue descriptions for more information aboRédnge.

Figure F-3 NORMALCY is a qualifier which contains @QualifiedCodeStr within value.

The enumeration of qualified codes fORMALCY might includeNORMAL,
ABNORMAL_HIGH, ABNORMAL_LOW, and potentially other codes.

Clinical Observations Access Service V1.0 January 2000

Figure F-4 OBSERVATION_TIME is a qualifier which contains a TimeSpan within value.

The observation time can be a precise point in time, indicatedTbyespan with
start_time = stop_time.

(ditto for RESULTS_AVAILABLE_TIME)

Finally, assume one more code, a value for units.

mg_PER_dL // milli grams per deciliter

F.1.2 Request

The request might look something like the following, if we assume that a COAS object
has been located and referenced as “myCoasServer” in a java syntax.

/I “who” parameter
ObservedSubjectld who = new ObservedSubjectld(
new Authorityld(Re gistrationAuthority.DNS, "myHospital.or g/pids"),"1234");

/l “what” parameter
Strin g[] what = new Strin g[1];
what[0] = LIPID_PANEL;

/I “when” parameter

TimeSpan when = new TimeSpan (
"1999-03-11T00:00:00",
"1999-03-11T11:59:00"

):

Il “the_rest” parameter (a returned iterator, if # observations > max_sequence)
ObservationDatalteratorHolder() the_rest = new ObservationDatalteratorHolder();

ObservationData[] results = myCoasServer. get_observations_by_time(
who,
what,
when,
1000, /I max_sequence, lar gest number of observations allowed in returned sequence
the_rest /I iterator for observations > max_sequence

COAS V1.0 Lipid Panel Jan. 2000 F-3

F-4

F.1.3 Result

The result returned by the COAS server could look something like the following,
depending on the default policies of the server. For this example, we assume the return
of qualifiersNORMAL_RANGE, NORMALCY, OBSERVATION_TIME, and
RESULTS_AVAILABLE_TIME . In other words, assume the default
QUALIFIER_RETURN_POLICY contains these codes and no others which apply to the
example observations.

In the example belowpbs:<code> indicates arObservationData Struct with<code>

in the code field, with the other three fieldsaifservationData , composite, qualifiers,
and value, displayed in that order. Two brackets, “[]” indicate a sequence of length
zero.

Indentation implies hierarchy, with leftmost items containing rightmost items. Initial
capitals indicates BsObservationValue struct name, likeRange. These structs are
found within the “value” field in abservationData (the value field is a

CORBA:any).

Obs:LIPID_PANEL
composite:
Obs:TRIGLYCERIDES
composite: []
qualifiers:
Obs:NORMAL_RANGE
composite: []
qualifiers: []
value: Ran ge { lower = 0, upper = 100 }
Obs:NORMALCY
composite: []
qualifiers: []
value: QualifiedCode { ABNORMAL_HIGH }
value: Numeric { value = 150, units=m g_PER_dL}
Obs:TOTAL_CHOLESTEROL
composite: []
qualifiers:
Obs:NORMAL_RANGE
composite: []
qualifiers: []
value: Ran ge { lower = 0, upper = 200 }
Obs:NORMALCY
composite: []
qualifiers: []
value: QualifiedCode { ABNORMAL_HIGH }
value: Numeric { value = 220, units=m g_PER_dL}
Obs:LOW_DENSITY_LIPOPROTEIN
composite: []
qualifiers:
Obs:NORMAL_RANGE
composite: []
qualifiers: []
value: Ran ge { lower = 0, upper = 130 }
Obs:NORMALCY
composite: []

Clinical Observations Access Service V1.0 January 2000

qualifiers: []
value: QualifiedCode { ABNORMAL_HIGH }
value: Numeric { value = 150, units=m g_PER_dL}
Obs:HIGH_DENSITY_LIPOPROTEIN

qualifiers:
Obs:OBSERVATION_TIME
value
TimeSpan
start_time = "1999-03-11T07:05:00-08"
stop_time ="1999-03-11T07:05:00-08"
Obs:RESULTS_AVAILABLE_TIME
value
TimeSpan
start_time = "1999-03-11T11:04:00-08"
stop_time ="1999-03-11T11:04:00-08"
value: []

F.2 Progress Note (XML)

Consider a COAS server which parses XML as an input qualifier, and returns XML
documents as output. Just as with the previous example, the standard operations of
QueryAccess are employed. The output is still a sequencemfervationData items,

with a single XML document as the string payload in the value field of an atomic
observation.

XML input XML output

- conspmmnn |-

Figure F-5 COAS server which parses incoming XML, and outputs XML.

This COAS server accepts XML input to create a template for matching. The example
below illustrates an input document with XML fields as follows: document.type =
“progress.note”, patient.id = “450023" and practitioner.id = “phys124”). The fields
within the input document are matched, returning complete records which have
matching information. Fields omitted from the input are considered “don't care” for
matching purposes.

Since both the input (qualifier) is an XML Progress Note and the output is an XML
Progress Note, both input (qualifiébpservationData.code and output
ObservationData.code are the same?ROGRESS_NOTE.

COAS V1.0 Progress Note (XML) Jan. 2000 F-5

For this Progress Note query example, assume the following full XML document
format as shown:

<?xml version="1.0"?>
<IDOCTYPE LevelOne SYSTEM "LevelOne.dtd"[]>
<?xml-stylesheet type="text/xsl" href="himssdemo.xsl"?>
<LevelOne>
<header>
<document>
<document.creation.date>
1999-2-3T12:27:50
</document.creation.date>
<document.id>
<id.value>PRAAPN_CFN1999-02-03T12:27:51</id.value>
</document.id>
<document.originating.system>
<id.value>CFN</id.value>
<organization.name>
Sample HIMSS Hospital</organization.name>
</document.originating.system>
<document.originator.id>
<id.value>VJ342</id.value>
</document.originator.id>
<document.state value="original"/>
<document.title>
Progress Note</document.title>
<document.type value="progress.note"/>

</document>
<event>
<event.id>
<id.value></id.value>
</event.id>

<event.date>1999-2-3T12:27:51</event.date>
<event.location.id>
<id.value>4444444</id.value>
<facility>
<namespace.id>12345</namespace.id>
<local.header>
DEPARTMENT OF FAMILY PRACTICE
</local.header>
</facility>
</event.location.id>

</event>
<patient>
<patient.id>
<id.value>
P0O13
</id.value>

</patient.id>

<patient.name>
<family.name>Presnell</family.name>
<given.name>Tricia</given.name>

</patient.name>

<patient.date.of.birth>
1992-09-14 00:00:00.0

F-6 Clinical Observations Access Service V1.0 January 2000

</patient.date.of.birth>
<patient.sex value="female"/>
<patient.address>
<street.address>
1944 Cone St. </street.address>
<city>
</city> <state.or.province>
</state.or.province>
<zip.or.postal.code>
</zip.or.postal.code>
</patient.address>
</patient>
<practitioner>
<practitioner.id>
<id.value>
D3
</id.value>
<family.name>Ross </family.name>
<given.name>Mark </given.name>
</practitioner.id>
</practitioner>
</header>
<body>
<section>
<section.title>Subjective</section.title>
<paragraph>
7y.0.white female. Chief complaint: sore throat. Pt
complains of the onset yesterday afternoon of a sore throat. Mother
relates Pt had a fever to 104 F last night. She has been treating
with children's Tylenol since then, last dose 2 hours ago. No
headache, no abdominal pain. Nausea since yesterday evening, with
vomiting after breakfast this morning. No cough, no rhinorrhea, no
hoarseness. No dysuria or diarrhea. There are no sick contacts.
</paragraph>
</section>
<section>
<section.title>Objective</section.title>
<paragraph>
T39.2C BP 110/60 left arm, sitting R 20 P
114 Allergies: None. General: ill appearing 7 year old girl, non-
toxic, good eye contact, responsive to questions. HEENT: Eyes: EOMI,
pupils are equal, round, reactive to light, sclera are non-injected,
non-icteric Ears: tympanic membranes are pearly white bilaterally,
with good cones of light, and good landmarks, no otalgia. Nares: no
discharge, turbinates non-inflamed, no muco-pus.. Mouth: There are
no gingival vesicular eruptions. Generalized swelling and erythema
ofthe pharynx. Bilateral 3+ tonsils with moderate exudate. Scarce
palatal petechiae
</paragraph>
</section>
<section>
<section.title>Assessment</section.title>
<paragraph>
Acute Pharyngitis. R/O strep.
</paragraph>

COAS V1.0 Progress Note (XML) Jan. 2000 F-7

</section>
<section>
<section.title>Plan of Care</section.title>
</section>
<section><section.title>Labs</section.title>
<paragraph>
strep screen
</paragraph>
</section>
<section>
<section.title>Rx</section.title>
<paragraph>
Penicillin 250mg, po, gid x 10 days
</paragraph>
<paragraph>
Tylenol prn fever
</paragraph>
<paragraph>
encourage po fluid
</paragraph>
<paragraph>
RTC in 7 days or soon as worsens.
</paragraph>
<paragraph>
Keep home from school, indoors until temp. less than
100 F for one full day.
</paragraph>
</section>
</body>
</LevelOne>

F.2.1 Request

/I assume
const QualifiedCodeStr PROGRESS_NOTE =
"DNS:/om g.org/Sample/Pro gressNote";

/l “who” parameter

ObservedSubjectld who = new ObservedSubjectld(
new Authorityld(Re gistrationAuthority.DNS, "myHospital.or g/pids"),
"450023"

);

/I “what” parameter
Strin g[] what = new Strin g[1];
what[0] = PROGRESS_NOTE;

/I *when” parameter (don't care)

TimeSpan when = new TimeSpan(
EARLIEST_TIME,
LATEST_TIME

F-8 Clinical Observations Access Service V1.0 January 2000

I/l “the_rest” parameter (a returned iterator, if # observations > max_sequence)
ObservationDatalteratorHolder() the_rest = new ObservationDatalteratorHolder();

[l “qualifiers” parameter

/I the followin g XML strin g is displayed on separate lines for readability
/I assume that we have inputXML filled as
I

Strin g inputXML =
<?xml version="1.0"?>
<IDOCTYPE LevelOne SYSTEM "LevelOne.dtd"[]>
<?xml-stylesheet type="text/xsl" href="himssdemo.xsl"?>
<LevelOne>
<header>
<document>
<document.type value="progress.note"/>
</document>
<patient>
<patient.id>
<id.value>
450023
</id.value>
</patient.id>
</patient>
<practitioner>
<practitioner.id>
<id.value>
phys124
</id.value>
</practitioner.id>
</practitioner>
</header>
</LevelOne>

/I put inputXML into an Any
CORBA.Any qualAny = orb.create_any();
qualAny.insert_strin g(inputXML);

ObservationData[] qualifiers = new ObservationData[1];
qualifiers[0] = new ObservationData(
PROGRESS_NOTE, /I same code for input qualifier as output--an XML doc
new ObservationData[0], // no composite members
new ObservationData[0], // no qualifiers of this qualifier
qualAny

);

I/l “the_rest” parameter (a returned iterator, if # observations > max_sequence)
ObservationDatalteratorHolder() the_rest = new ObservationDatalteratorHolder();

ObservationData[] results = myCoasServer. get_observations_by qualifier(
who,
what,
when,
qualifiers,

COAS V1.0 Progress Note (XML) Jan. 2000 F-9

100, /l max_sequence, lar gest number of observations allowed in
returned sequence
the_rest /I iterator for observations > max_sequence

F.2.2 Result

From the request example above, we have
ObservationData[] results

returning from the call. Assuming that just one record was returned, and that the
ObservationData was an atomic observation, the array of results would be unpacked as
follows:

Strin g theXML_result = results[0].value[0].extract_strin g();
We know to unpack a string from tl®®RBA::any because the code returned,
results[0].code

containsPROGRESS_NOTE, our requested observation code, which is associated with
exactly one return type, a string.

The content otheXML_result would be along the lines of the first, full-length XML
sample given above.

F.3 Non-empiric Antibiotic Decision Support

F-10

F.3.1 Usage Scenario and Example

A patient is in the Intensive Care Unit (ICU) and has been treated empirically for a
pneumonia (i.e., given antibiotics without knowledge of the bacterial cause of the
pneumonia) with Ceftazadime. Since the inception of antibiotic therapy, the patient
has not improved. Laboratory results, which include the microbiology results
(bacterium and associated sensitivities to varied antibiotics), CBC, and serum
creatinine, become available.

The physician uses a web browser to run a user interface to an antibiotic decision
support system. The physician selects the patient. The patient's demographic,
laboratory (microbiology, serum creatinine, and CBC), and vital statistics are accessed
from a centralized clinical data repository. If this data is not accessible, the physician
or a surrogate has the option to manually enter this data. In this example, the weight is
159 Ibs, the height is 72 inches, the age is 60, the sex is Male, and the serum creatinine
is 1.7.

The physician selects a formulary to be utilized by the decision support system. The
user hits the run button and the decision support is invoked on the server. The above
data is modeled in the following features. The server-side decision support system

Clinical Observations Access Service V1.0 January 2000

F

accesses the above data to create a list of drug, sensitivity, dose, dosing interval, and
daily cost information for drugs in the formulary, where sensitivities are known.
These results are prioritized by sensitivity and cost.

The results of the decision support are presented to the user. In the given example, the
bacterium is the resistant Streptococcus Pneumonia, which is sensitive only to
Vancomycin. The output suggests to the physician that his treatment should include
one gram of Vancomycin every 24 hours.

Laboratory Results:CompositeObserv ation Obs erv edSubje ct: CompositeO bserv ation ClinicalNote:CompositeObserv ation
#ypobserv ationTy pe = Laboratory Results &@pobservationTy pe = Person #yobservationTy pe = ClinicalNote
—— ®pobserv ationTime = 199901300830
—
//
-

VitalSigns:CompositeObserv ation

Demographics: CompositeObserv ation

#yobserv ationTy pe = Measurement
#yobserv ationTime = 199901300800

Sex:AtomicObserv ation

~observ ationTy pe = Demographics
&pobservationTime = 198201300722

ByobservationTy pe = Sex

Sex:CodedElement
& alue = Male

DateOf Birth: AtomicObserv ation
&yobservationTy pe = DateOf Birth

DateOfBirth:DateTime
~v alue = 196710090330

Figure F-6 Antibiotic Decision Support System - Example

This is an Object Diagram for what might be a way to represent an Antibiotic Decision
Support Systems input information.

F.3.2 ObservedSubject:CompositeObservation

Observ edSubject: Com positeObservation
#yobserv ationTy pe = Person

Figure F-7 ObservedSubject:CompositeObservation

This instance of an ObservedSubject is typed as a Person (patient) and has a
CompositeObservation link of type LaboratoryResults, a CompositeObservation link of
type ClinicalNote and a CompositeObservation link of type VitalSigns and . a
CompositeObservation link of type Demographic. This diagram is not meant to be
normative but rather to show an example of what an ObservedSubject of type Person
(patient) may have associated with it.

observationType:QualifiedCode

This is a QualifiedCode that provides the type of the ObservedSubject. For example,
Person, Organ, Epidemic, etc.

COAS V1.0 Non-empiric Antibiotic Decision Support Jan. 2000 F-11

F.3.3 LaboratoryResults:CompositeObservation

Laboratory Results: CompositeObserv ation
~observ ationTy pe = Laboratory Results

Figure F-8 LaboratoryResults:CompositeObservation

A Person (patient) in a health care information environment usually has a link to some
LaboratoryResults information.

observationType:QualifiedCode

This is aQualifiedCode that provides the type of tt@ompositeObservation . In
this casd_aboratoryResults

F.4 LaboratoryResults:CompositeObservation

Laboratory Results:CompositeObserv ation
~observ ationTy pe = Laboratory Results

—
LabChem?7:CompositeObserv ation LabCBC:C om posite Observ ation
~observ ationTy pe = LOINCChem7 ~observ ationTy pe = LOINCCBC
#yobserv ationTime = 199901300700
LabCreatinineClearance:CompositeObserv ation L abMic robiol ogy : Co mpositeO bserv ation

~observ ationTy pe = LOINCCreatinineClearance ~observ ationTy pe = Microbiology
fyobserv ationTime = 199901300650

Figure F-9 LaboratoryResults:CompositeObservation

The LaboratoryResults has aCompositeObservation link of type LabChem7,
LabCreatinineClearance, LabMicrobiology, and a LabCBC.

F-12 Clinical Observations Access Service V1.0 January 2000

F.4.1 LabChem7:CompositeObservation

LabChem7:CompositeObserv ation

~observationTy pe = LOINCChem7
#yobservationTime = 199901300700

Chem7ResultStatus:AtomicObserv ation Chem7ResultStatus: CodedElement

#yobservationTy pe : ResultStatus &yvalue = Final

LabSerumCreatinine:CompositeObserv ation

SerumCreatinineAbnormalFlag: AtomicObserv ation

~observ ationTy pe = LOINCSerumCreatinine

#ypobservationTy pe = Abnom a Flag

I
{8>=Serum CreatinineNumericMeas urem ent .v al ue>=0}

Semum Creatinine Abnomal Flag:Coded Elem ent

v alue = Normal

Serum CreatinineNumericMe asurement:Atomic Obs erv ation

SerumCreatinineRangeMeasurement: AtomicObserv ation

~observationTy pe = Measurement

~obs ervationTy pe = Range

SerumCreatinineNumericMeasurement:Numeric - K
SerumCreatinineRangeMeasurement:Range

fyvalue = 4
#yunits = mg/d|

pupper = 8
&y lower = 0
#yunits = mg/d|

a conversion.

In LOINC, the units for SerumCreatinine seem to
be in mmol/L. However, this example and its ranges
are mg/dl. Therefore, in practice, this would require

Figure F-10 LaboratoryResults:LabChem7

COAS V1.0 Non-empiric Antibiotic Decision Support Jan. 2000

F-13

F-14

F.4.2 LabCreatinineClearance:CompositeObservation

LabCreatinineClearance:CompositeObserv ation

~observ ationTy pe = LOINCC reatinineC learance ——
ByobservationTime = 199901300650

CreatinineClearanceResultStatus: AtomicObserv ation
#yobservationTy pe = ResultStatus

CreatinineClearanceResultStatus:CodedElement
&y alue = Final

CreatinineClearanceAbnormalFlag: AtomicObserv ation

~0bserv ationTy pe = AbnormalFlag

{200>=CreatinineClearanceNumericMeasurement.v alue>=12}

CreatinineClearanceNumericMeasurement: AtomicObserv ation

~observ ST S MEEIETE CreatinineClearanceAbnormalFlag: CodedElement

v alue = Normal

CreatinineClearanceNumericMeasurement:Numeric

v alue = 100
Byunits = mg/minute

CreatinineClearanceRangeMeasurement: AtomicObserv ation
~observ ationTy pe = Range

For creatinine clearance, this

example assumes ml/minute. If
LOINC uses a different unit sy stem, it
may require conv ersion. CreatinineClearanceRangeMeasurement:Range
®yupper = 200

fylover = 12

®punits = mg/minute

Figure F-11 LaboratoryResults:LabCreatinineClearance

Clinical Observations Access Service V1.0 January 2000

F.4.3 LabMicorbiology:CompositeObservation

We need to validate — - .
the CodedElements LabMicrobiology :CompositeObserv ation CultureAndSensitivity ResultStatus: AtomicObserv ation
against ICD9, #yobservationTy pe = Mcrobiology #yobservationTy pe = ResultStatus

NCPDP, LOINC,

HL7, and ASTM.

LabPenicillinasePresent: AtomicObserv ation

LabCultureAndSensitivity : CompositeObservation CultureAndSensitivity ResultStatus: CodedElement

~observa1ionType = PenicillinasePresent
#yobserv ationTime = 199901300755

#yobservationType = CultureandSensitivity &vale = Final
#yobserv ationTime = 199901300800

LabPenicillinasePresent: CodedElement

IndividualCultureAndSensitiv ity : AtomicObserv ation

#yvalue = True

#yobservationTy pe = IndividualSensitivity

BacteriumQualifier: Observ ationQualif ier

DrugQualifier: Observ ationQualif ier
#yobsevatorQualif iefType = BacteriumQualifiedC ade

~observaljorQLaJ if iefTy pe = DrugQualifiedCode

StrepPneum: Observ ationValue

~observ ationValueTy pe = ICD9CodedElement
#yvalue = ICDICodef orStrepPneum

Penicillin: Observationvalue

~observ ationValueTy pe = NCPDPCodedElement
@y alue = NCPDPCodef orPenicillin

IndividualSensitivity : Observ ationValue

~observ ationValueTy pe = SIRCodedElement
#yvae=s

Figure F-12 LaboratoryResults:LabMicorobiology

COAS V1.0

Non-empiric Antibiotic Decision Support Jan. 2000

F-15

F.4.4 LabCBC:CompositeObservation

LabCBC:CompositeObserv ation
#fyobservationTy pe = LOINCCBC

TotalNumberof WhiteBloodCells: AtomicObserv ation

~observ ationTy pe = Measurement

WBCNumericMeasurement: Numeric PercentagePoly sQualified: Observ ationQualifier
~v alue = 15000 ~0bservati onQualifierType = Measurement
#punits = quantity

We would appreciate feedback from clinical domain and
vocabulary experts on this example and its mapping to
LOINC.

PercentagePoly s:Numeric

v alue = 75
#yunits = percent

Figure F-13 LaboratoryResults:LabCBC

F.5 ClinicalNote:CompositeObservation

Clinical Note: Com positeObselv ation

~observ ationTy pe = ClinicalNote
#yobserv ationTime = 199901300830

Figure F-14 ClinicalNote:CompositeObservation

A Person (patient) in a health care information environment usually has a link to some
ClinicalNote information.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation. In this case ClinicalNote.

observationTime:TimeSpan

Description: This is a TimeSpan that provides the time of the
CompositeObservation. In this case 199901300830.

F-16 Clinical Observations Access Service V1.0 January 2000

F.5.1 ClinicalNote:CompositeObservation

ClinicalNote: CompositeObserv ation

.observationTy pe = ClinicalNote
#yobservationTime = 199901300830

Disease:AtomicObserv ation
@observationType = Disease

Diseas e:ObsevationValue NosocomialQualif ier:Observ ationQualif ier DiseaselLocationQualifier:Observ ationQualifier

~observationVa|ueTy pe = ICD9Disease ~observationQuaIifierTy pe = CodedElement ~observationQuaIifierTy pe = LocationCode
&v alue = ICD9Code for Pneumonia

NosocomialAcquired: CodedElement HospitalXY ZDisease:Observ ationValue

&value = true #yobservationValueTy pe = CalcudosLocationCode
& alue = HospitalXY Z

Figure F-15 ClinicalNote:CompositeObservation

F.6 VitalSigns:CompositeObservation

VitalSigns:C om positeObse v ation

#yobserv ationTy pe = Measurement
#yobserv ationTime = 199901300800

Figure F-16 ClinicalNote:CompositeObservation

A Person (patient) in a health care information environment usually has a link to some
ClinicalNote information.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation. In this case Measurement.

observationTime:TimeSpan

Description: This is a TimeSpan that provides the time of the
CompositeObservation. In this case 199901300830.

COAS V1.0 Non-empiric Antibiotic Decision Support Jan. 2000 F-17

F.6.1 VitalSigns:CompositeObservation

VitalSigns: CompositeObserv ation

~observationTy pe = Measurement
#yobservationTime = 199901300800

Height:Com positeObservation Weight: CompositeObserv ation Age:CompositeObserv ation
~observ ationTy pe = LOINCHeight ~observ ationTy pe = LOINCWeight ~observ ationTy pe = Age

+Calculated From

DateOfBirth:DateTime
v alue = 196710090330

Figure F-17 VitalSigns:CompositeObservation

F.6.2 Height:CompositeObservation

Height:CompositeObserv ation
~0bserv ationTy pe = LOINCHeight

HeightNumericMeasurement:AtomicObserv ation HeightRangeMeasurement:AtomicObserv ation HeightAbnormalFlag:AtomicObserv ation
~0bserv ationTy pe = Measurement ~0bservati0nTy pe = Range ~0bservati0nTy pe = AbnormalFlag
HeightNumericMeas urem ent:N um eric EisightRangeMeastrement:Range) {80>=HeightNumericMeasurement.v alue>=45}
~value =70 ~upper =80 |
~units =inch ~|ower =45 HeightAbnormalFlag:CodedElement
&punits = inch &y alue = Normal

If LOINC's representation of height are in metric, this would
require a conv ersion.

Figure F-18 Height:CompositeObservation

F-18 Clinical Observations Access Service V1.0 January 2000

F.6.3 Weight:CompositeObservation

Weight:CompositeObserv ation
#yobserv ationTy pe = LOINCWeight
— ——

Figure F-19 Weight:CompositeObservation

F.6.4 Age.CompositeObservation

Age :Com positeObs erv ation
@yobservationTy pe = Age

//
/
AgeNumericMeas urem ent: AtomicO bs erv ation AgeRangeMeasurement: AtomicObserv ation
~observationTy pe = Measurement ~observationTy pe = Range
AgeNumericMeasurement:Numeric AgeRangeMeasurement:Range
&value = 45 &upper = 100
@ypunits = year &pover =0
Bpunits =year

Figure F-20 Age:CompositeObservation

/ T
/
WeightNumericMeasurement: AtomicObserv ation WeightRangeMeasurement: AtomicObserv ation WeightAbnormalFlag: AtomicObserv ation
~observati0nTy pe = Measure ment ~observationTy pe = Range ~observati0nType = AbnormalFlag
{350>=WeightNumericMeasurement.v alue>=70}
WeightNumericMeasurement:Numeric WeightRangeMeasurement:Range
v alue = 170 =
~ s = ~upper 520 WeightAbnormalFlag:CodedElement
&punits = Ib &lower = 70
&punits = b & value = Normal
If LOINC's weights are in metric, this would
require a conversion.

AgeAbnormalFlag: AtomicObserv ation
@yobservationTy pe = AbnormalFlag

{100>=AgeNumericMeasurement.v alue>=0}

AgeAbnormalFlag:CodedElement
&y alue = Normal

COAS V1.0 Non-empiric Antibiotic Decision Support Jan. 2000

F-19

F-20 Clinical Observations Access Service V1.0 January 2000

Glossary

List of Terms

The definitions below have special meaning for this specification. Either they started
from general definitions and were refined during the development of this specification;
or they are definitions of concepts from other OMG specifications, and were taken
directly from those specifications; or they were important acronyms used in this
specification. Terms appearing lmldface type are defined elsewhere within this
section.

Access The ability to retrieve or get, and the action of
retrieving, information aboutbservationsand the
observationsthemselves.

Blob Acronym for Binary Large Obiject; used in this
document to represent an opaque stringctdts that
is passed unchanged betweengbever and the
client.t

Client Any system or application that accesses or requests
service from aDsObservationAccess Server.

Coded Concept A local name consisting of a fixed sequence of
alphanumeric characters, that is used to designate| one
or more presentations, definitions, comments or
instructions. within aoding schemé

Codin g Scheme A relation between a set obncept codesnd a set of
presentationgdefinitions commentsand instructions
which serves to designate the intended meaning
behind the codes. See th®S specification for
definitions of the terms presentations, definitions,
comments and instructiofs.

Clinical Observations Access Service V1.0 January 2000 Glossary -1

Context

The interrelated conditions in which something exi
or occurs.

Domain Name

The name of an ID Domain in which an ID has
meaning. That is, IDs are only relevant in a particu
ID Domain. Each ID Domain has a Domain Name

that is unique and different from all other ID Domalin

Namest

Encounter

A meeting between two systems in which meaning
transactions are passed and processed.

Event

A noteworthy happening or activity.

LQS

The OMG'’s Lexicon Query Service

Observation

Sts

lar

ful

An act of recognizing and noting a fact or occurrence

often involving measurement with instruments or g
judgement on or inference from what one has
observed or noted.

Observation Qualifier

One that satisfies requirements or meets a specifi
standard.

Observation Value

The fact, note, or result of asbservation.

PIDS

The OMG'’s Person ldentification Service

Policy

A definite course or method of action selected fror
among alternatives and in light of given conditions
guide and determine present and future decisions

Qualified Code

A qualified namewhich identifies a coded concept
within the context of &oding schemeA qualified
name consists of theoding schemddentifier (the
naming authority) and eoncept code(the local
name)?

Relationship

A state of affairs existing between two systems th
have dealings between each other.

Server

A DsObservationAccess
or performs actions on the behalf or interest of
requests made by @sObservationAccess client.

Subject of Care

A biological entity, patient, or population that is und
observation or measurement.

1. Person Identification Service, OMG Formal Document formal/99-03-05.

2. Lexicon Query Service, OMG Formal Document formal/99-03-06.

Glossary -2

Clinical Observations Access Service V1.0

January 2000

system that offers services

D

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	COAS Overview
	1.1 Definition and Scope of Clinical Observations
	1.2 Previous Work
	1.3 Information Model
	1.4 Dynamic Discovery
	1.5 Value Domains
	1.6 Type Negotiation
	1.7 XML Usage
	1.8 Roadmap for Extensions
	1.9 Conformance Points
	1.9.1 Interface Conformance Classes
	1.9.2 Data Structure Conformance Classes
	1.9.3 Qualified Code Conformance Classes

	COAS Information Model
	2.1 Overview
	2.2 Modeling Notation
	2.2.1 Modeling Definitions

	2.3 Clinical Observations Model
	2.3.1 Clinical Observations Model - Class Diagram
	2.3.2 Observation
	2.3.3 CompositeObservation
	2.3.4 AtomicObservation
	2.3.5 ObservationReference
	2.3.6 ObservationQualifier
	2.3.7 ObservationValue

	2.4 Examples
	2.4.1 ObservedSubject - Model
	2.4.2 ObservedSubject - Example
	2.4.3 LabUrineBattery - Example
	2.4.4 LabUrineBattery - LabSegments
	2.4.5 LabUrineBattery - LabSegment#1 - LONICUrineSodium
	2.4.6 LabUrineBattery - LabSegment#2 - LONICUrineColor
	2.4.7 LabUrineBattery - LabSegment#3 - LOINCUrineColor
	2.4.8 HealthRecordEntry - Model
	2.4.9 HealthRecordEntry - Example

	DSObservationAccess Service
	3.1 Overview
	3.2 Viewpoints
	3.2.1 Navigable Relationships Viewpoint
	3.2.2 Interface Inheritance Viewpoint
	3.2.3 Componentization Viewpoint
	3.2.4 Full Component Viewpoint
	3.2.5 Local/Remote Observations Viewpoint
	3.2.6 Local Observations Viewpoint
	3.2.7 Remote Observations Viewpoint
	3.2.8 Common Access Operations Viewpoint
	3.2.9 Simple Query Access Viewpoint
	3.2.10 Browsing Access Viewpoint
	3.2.11 Asynchronous Access Viewpoint
	3.2.12 Event Management Viewpoint

	3.3 Data Type Definitions
	3.3.1 Include Files
	3.3.2 External Typedefs
	3.3.3 Forward Declarations
	3.3.4 AccessComponentData
	3.3.5 AsynchException
	3.3.6 ObservationData
	3.3.7 ObservationId
	3.3.8 NameValuePair
	3.3.9 Subscription
	3.3.10 TimeStamp
	3.3.11 TimeSpan
	3.3.12 Constants
	3.3.13 Internal Typedefs
	3.3.14 Sequences
	3.3.15 Exceptions

	3.4 Interface Specifications
	3.4.1 Foundational Observation-Oriented Interfaces
	3.4.2 ObservationRemote Interface
	3.4.3 AtomicObservationRemote Interface
	3.4.4 CompositeObservationRemote Interface
	3.4.5 ObservationRemoteIterator Interface
	3.4.6 ObservedSubject Interface

	3.5 Query-Oriented Interface Specifications
	3.5.1 BrowseAccess Interface
	3.5.2 QueryAccess Interface
	3.5.3 AsynchAccess Interface
	3.5.4 AsynchCallback Interface
	3.5.5 ConstraintLanguageAccess

	3.6 Event and Notification Interface Specifications
	3.6.1 EventSupplier Interface
	3.6.2 EventConsumer Interface
	3.6.3 SupplierAccess Interface
	3.6.4 ConsumerAccess Interface

	3.7 Utility Interface Specifications
	3.7.1 ObservationLoader Interface
	3.7.2 AccessComponent Interface
	3.7.3 ObservationDataIterator Interface
	3.7.4 QualifiedCodeIterator Interface
	3.7.5 AbstractFactory Interface
	3.7.6 AbstractManagedObject Interface

	DSObservation Values
	4.1 Overview
	4.2 Data Type Definitions
	4.3 Supporting Types
	4.4 Time Types
	4.4.1 DateTime
	4.4.2 TimeSpan

	4.5 Person Type
	4.5.1 Person

	4.6 NoInformation Type
	4.6.1 NoInformation

	4.7 Text Types
	4.7.1 Plain Text
	4.7.2 UniversalResourceIdentifier
	4.7.3 PhysicalLocationDescription

	4.8 Coded Types
	4.8.1 CodedElement
	4.8.2 LooselyCodedElement

	4.9 Multimedia Types
	4.9.1 Multimedia

	4.10 Simple Measurement Types
	4.10.1 Numeric
	4.10.2 Range
	4.10.3 Ratio

	4.11 Complex Measurement Types
	4.11.1 Curve

	DSObservationTimeSeries
	5.1 Overview
	5.2 Data Type Definitions
	5.3 External Typedefs
	5.4 Time Types
	5.5 Typedef, Enum, Union, and Sequence Types
	5.6 Iterator Types
	5.7 TimeSeries
	5.8 Exceptions
	5.9 TimeSeriesRemote

	DSObservationRelations
	6.1 Overview
	6.2 CEN Naming Convention
	6.3 Observation Type for Relations
	6.4 Relation Codes
	6.4.1 Produce
	6.4.2 Document
	6.4.3 Report
	6.4.4 Graphic
	6.4.5 Identified/Incorporated
	6.4.6 Source/Derived
	6.4.7 Compared/Reference
	6.4.8 Recorded
	6.4.9 Supercede
	6.4.10 Framework
	6.4.11 Phase
	6.4.12 Next Phase
	6.4.13 Associate
	6.4.14 Assigned/Setting
	6.4.15 Interpretation
	6.4.16 Progress
	6.4.17 Cause
	6.4.18 Co-exists
	6.4.19 Evidence
	6.4.20 Triggers
	6.4.21 Goal
	6.4.22 Motivation
	6.4.23 Consequence
	6.4.24 Topic
	6.4.25 Target
	6.4.26 Provides Information
	6.4.27 Circumstances

	DSObservationQualifiers
	7.1 Overview
	7.2 HL7 Naming Convention
	7.3 Observation Type for Qualifiers
	7.4 Qualifier Codes
	7.4.1 COAS - Specific
	7.4.2 HL7 - Clinical Times
	7.4.3 HL7 - Roles
	7.4.4 HL7 - OBR (Request)
	7.4.5 HL7 - OBX (Reply)
	7.4.6 HL7 - PV1 (Patient Visit)

	Policies
	8.1 Overview
	8.2 SEARCH_DEPTH_POLICY
	8.3 RETURN_DEPTH_POLICY
	8.4 SEARCH_SYNONYMOUS_CODES_POLICY
	8.5 RETURN_OBSERVATION_VALUES_POLICY
	8.6 SHORTCIRCUIT_SEARCH_..._POLICY
	8.7 SEARCH_SYNONYMOUS_IDS_POLICY
	8.8 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY
	8.9 RETURN_ITEMS_IN_TIME_SPAN_POLICY
	8.10 MATCHING_STRENGTH_POLICY
	8.11 PARAM_CHECKING_POLICY
	8.12 QUALIFIER_RETURN_POLICY
	8.13 RELATIONS_RETURN_POLICY
	8.14 RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY
	8.15 TIME_SERIES_..._ALGORITHM_POLICY
	8.16 TIME_SERIES_..._PREFERENCE_POLICY
	8.17 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY
	8.18 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY

	Complete IDL
	Interoperation
	Security Guidelines
	Usage Patterns
	Usage Scenarios
	Client Implementation Examples
	A-Complete IDL
	B-Interoperation
	C-Security Guidelines
	D-Usage Patterns
	E-Usage Scenarios
	F-Client Implementation Examples
	Glossary

