
Clinical Observations Access Service
Specification

April 2001
Version 1.0

ee, paid
e mod-

nged the
 herein

y
ch a
 of
e users

tails an
ocument

ted
ages,

 above
 the sole
arks or
 is pro-

used in
ation

orth in

G IDL,
Inc.
Copyright 1999, 3M
Copyright 1999, Care Data Systems, Inc.
Copyright 1999, CareFlow/Net, Inc.
Copyright 1999, HBO & Company
Copyright 1999, Philips Medical Systems
Copyright 1999, Protocol Systems, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-fr
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of th
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infri
copyright in the included material of any such copyright holder by reason of having used the specification set forth
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications ma
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for whi
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospectiv
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document de
Object Management Group specification in accordance with the license and notices set forth on this page. This d
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies lis
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover dam
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, tradem
other special designations to indicate compliance with these materials. This document contains information which
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or inform
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set f
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OM
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group,
X/Open is a trademark of X/Open Company Ltd.

readers
 at
ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form
http://www.omg.org/library/issuerpt.htm.

Contents

vii

1-1

-1

1-3

1-3

1-4

1-4

1-4

1-5

1-5

1-5

1-5
1-7

1-7

1

2-1

2-2

-2

2-3
-3

2-4
2-5

-6
2-6

-7
-12

2-26
-27

-28
31

34

6

9

1
43
Preface .

1. COAS Overview. .

1.1 Definition and Scope of Clinical Observations 1

1.2 Previous Work .

1.3 Information Model .

1.4 Dynamic Discovery .

1.5 Value Domains .

1.6 Type Negotiation .

1.7 XML Usage .

1.8 Roadmap for Extensions .

1.9 Conformance Points .

1.9.1 Interface Conformance Classes
1.9.2 Data Structure Conformance Classes

1.9.3 Qualified Code Conformance Classes

2. COAS Information Model. 2-

2.1 Overview .

2.2 Modeling Notation .

2.2.1 Modeling Definitions . 2

2.3 Clinical Observations Model .
2.3.1 Clinical Observations Model - Class Diagram . 2

2.3.2 Observation .
2.3.3 CompositeObservation

2.3.4 AtomicObservation. 2
2.3.5 ObservationReference.

2.3.6 ObservationQualifier . 2
2.3.7 ObservationValue . 2

2.4 Examples .
2.4.1 ObservedSubject - Model 2

2.4.2 ObservedSubject - Example 2
2.4.3 LabUrineBattery - Example 2-

2.4.4 LabUrineBattery - LabSegments 2-
2.4.5 LabUrineBattery - LabSegment#1 -

LONICUrineSodium . 2-3
2.4.6 LabUrineBattery - LabSegment#2 -

LONICUrineColor . 2-3

2.4.7 LabUrineBattery - LabSegment#3 -
LOINCUrineColor . 2-4

2.4.8 HealthRecordEntry - Model 2-
Clinical Observations Access System, v1.0 April 2001 i

Contents

44

3-1

3-1

3-2

-2
-3

-4
-5

-6
-7

-8
-9

10
11

12
14

-15

16
-16

17
-18

19
-20

-21
-22

-23
-23

-24
-25

-26
-27

-27

-30

30

-31

-34
-38

-38
2.4.9 HealthRecordEntry - Example 2-

3. DSObservationAccess Service .

3.1 Overview .

3.2 Viewpoints .

3.2.1 Navigable Relationships Viewpoint 3
3.2.2 Interface Inheritance Viewpoint 3

3.2.3 Componentization Viewpoint 3
3.2.4 Full Component Viewpoint. 3

3.2.5 Local/Remote Observations Viewpoint 3
3.2.6 Local Observations Viewpoint 3

3.2.7 Remote Observations Viewpoint 3
3.2.8 Common Access Operations Viewpoint 3

3.2.9 Simple Query Access Viewpoint 3-
3.2.10 Browsing Access Viewpoint 3-

3.2.11 Asynchronous Access Viewpoint 3-
3.2.12 Event Management Viewpoint 3-

3.3 Data Type Definitions . 3

3.3.1 Include Files . 3-
3.3.2 External Typedefs . 3

3.3.3 Forward Declarations . 3-
3.3.4 AccessComponentData. 3

3.3.5 AsynchException . 3-
3.3.6 ObservationData . 3

3.3.7 ObservationId . 3
3.3.8 NameValuePair . 3

3.3.9 Subscription . 3
3.3.10 TimeStamp . 3

3.3.11 TimeSpan . 3
3.3.12 Constants . 3

3.3.13 Internal Typedefs . 3
3.3.14 Sequences . 3

3.3.15 Exceptions . 3

3.4 Interface Specifications . 3

3.4.1 Foundational Observation-Oriented Interfaces . 3-

3.4.2 ObservationRemote Interface 3
3.4.3 AtomicObservationRemote Interface 3-33

3.4.4 CompositeObservationRemote Interface 3
3.4.5 ObservationRemoteIterator Interface 3

3.4.6 ObservedSubject Interface 3
ii Clinical Observations Access System, v1.0 April 2001

Contents

-42

-43
-45

-49
52

-53

-53

53
-55

-57
-58

59

-59
-60

63
64

64
65

4-1

4-1

4-2

4-2

4-3

-3
4-3

4-3

4-3

4-3

-4

4-4
-4

-5

4-5

4-5
-5

4-6
-7
3.5 Query-Oriented Interface Specifications 3

3.5.1 BrowseAccess Interface 3
3.5.2 QueryAccess Interface 3

3.5.3 AsynchAccess Interface 3
3.5.4 AsynchCallback Interface. 3-

3.5.5 ConstraintLanguageAccess. 3

3.6 Event and Notification Interface Specifications 3

3.6.1 EventSupplier Interface 3-
3.6.2 EventConsumer Interface 3

3.6.3 SupplierAccess Interface 3
3.6.4 ConsumerAccess Interface 3

3.7 Utility Interface Specifications. 3-

3.7.1 ObservationLoader Interface 3
3.7.2 AccessComponent Interface 3

3.7.3 ObservationDataIterator Interface 3-
3.7.4 QualifiedCodeIterator Interface 3-

3.7.5 AbstractFactory Interface 3-
3.7.6 AbstractManagedObject Interface 3-

4. DSObservation Values. .

4.1 Overview .

4.2 Data Type Definitions .

4.3 Supporting Types .

4.4 Time Types .

4.4.1 DateTime . 4
4.4.2 TimeSpan .

4.5 Person Type .

4.5.1 Person .

4.6 NoInformation Type .

4.6.1 NoInformation . 4

4.7 Text Types .
4.7.1 Plain Text . 4

4.7.2 UniversalResourceIdentifier 4-5
4.7.3 PhysicalLocationDescription 4

4.8 Coded Types. .

4.8.1 CodedElement .
4.8.2 LooselyCodedElement 4

4.9 Multimedia Types. .
4.9.1 Multimedia . 4
Clinical Observations Access System, v1.0 April 2001 iii

Contents

4-7
-8

4-8
4-8

4-8

4-9

-1

5-1

5-1

5-2

5-2

5-3

5-3

5-3

5-4

5-4

-1

6-1

6-2

6-2

6-2
6-2

6-3
6-3

6-3
-3

6-3
6-4

6-4
6-4

6-4

6-4
6-5

6-5
6-5

-5
6-5

6-6
4.10 Simple Measurement Types .
4.10.1 Numeric . 4

4.10.2 Range .
4.10.3 Ratio .

4.11 Complex Measurement Types .

4.11.1 Curve .

5. DSObservationTimeSeries . 5

5.1 Overview .

5.2 Data Type Definitions .

5.3 External Typedefs. .

5.4 Time Types .

5.5 Typedef, Enum, Union, and Sequence Types

5.6 Iterator Types .

5.7 TimeSeries .

5.8 Exceptions .

5.9 TimeSeriesRemote .

6. DSObservationRelations . 6

6.1 Overview .

6.2 CEN Naming Convention. .

6.3 Observation Type for Relations .

6.4 Relation Codes .
6.4.1 Produce. .

6.4.2 Document .
6.4.3 Report .

6.4.4 Graphic .
6.4.5 Identified/Incorporated 6

6.4.6 Source/Derived .
6.4.7 Compared/Reference .

6.4.8 Recorded. .
6.4.9 Supersede .

6.4.10 Framework .

6.4.11 Phase .
6.4.12 Next Phase .

6.4.13 Associate .
6.4.14 Assigned/Setting. .

6.4.15 Interpretation . 6
6.4.16 Progress .

6.4.17 Cause .
iv Clinical Observations Access System, v1.0 April 2001

Contents

6-6

6-6
6-6

6-6
-6

6-7
6-7

6-7
-7

6-8

-1

7-1

7-2

7-2

7-3
-3

-3
-3

-4
-4

-5

8-1

8-2

-2

-2

3

-4

4

5

5

6

6

-7

7

7

6.4.18 Co-exists. .

6.4.19 Evidence .
6.4.20 Triggers .

6.4.21 Goal .
6.4.22 Motivation . 6

6.4.23 Consequence. .
6.4.24 Topic. .

6.4.25 Target .
6.4.26 Provides Information . 6

6.4.27 Circumstances .

7. DSObservationQualifiers . 7

7.1 Overview .

7.2 HL7 Naming Convention .

7.3 Observation Type for Qualifiers .

7.4 Qualifier Codes .
7.4.1 COAS - Specific . 7

7.4.2 HL7 - Clinical Times . 7
7.4.3 HL7 - Roles . 7

7.4.4 HL7 - OBR (Request) . 7
7.4.5 HL7 - OBX (Reply) . 7

7.4.6 HL7 - PV1 (Patient Visit) 7

8. Policies .

8.1 Overview .

8.2 SEARCH_DEPTH_POLICY . 8

8.3 RETURN_DEPTH_POLICY . 8

8.4 SEARCH_SYNONYMOUS_CODES_POLICY 8-

8.5 RETURN_OBSERVATION_VALUES_POLICY. 8-3

8.6 SHORTCIRCUIT_SEARCH_..._POLICY. 8

8.7 SEARCH_SYNONYMOUS_IDS_POLICY 8-

8.8 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY8-

8.9 RETURN_ITEMS_IN_TIME_SPAN_POLICY. 8-5

8.10 MATCHING_STRENGTH_POLICY 8-

8.11 PARAM_CHECKING_POLICY . 8-

8.12 QUALIFIER_RETURN_POLICY 8-

8.13 RELATIONS_RETURN_POLICY 8

8.14 RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY8-

8.15 TIME_SERIES_..._ALGORITHM_POLICY 8-
Clinical Observations Access System, v1.0 April 2001 v

Contents

-7

1

1

1

-1

-1

1

8.16 TIME_SERIES_..._PREFERENCE_POLICY 8

8.17 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY . 8-8

8.18 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY . . 8-8

 Appendix A - Complete IDL . A-

 Appendix B - Interoperation . B-

 Appendix C - Security Guidelines . C-

 Appendix D - Usage Patterns. D

 Appendix E - Usage Scenarios. E

 Appendix F - Client Implementation Examples. F-1

Glossary .
vi Clinical Observations Access System, v1.0 April 2001

Preface
d by
sers.

nol-
of
e-

 Con-
plica-

tion

ent
r of

ca-

c
ber
can
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and u
Founded in 1989, the OMG promotes the theory and practice of object-oriented tech
ogy in software development. The organization's charter includes the establishment
industry guidelines and object management specifications to provide a common fram
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments.
formance to these specifications will make it possible to develop a heterogeneous ap
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numbe
hardware and software products available today. Simply stated, CORBA allows appli
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specifi
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors
interoperate.
Clinical Observation Access Service, v1.0 April 2001 vii

n

 are
ides
 are

aces

d

 so

d,
dards

 (The

mat.
ons,
Associated OMG Documents

In addition to the CORBA Transportation specifications, the CORBA documentatio
set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBAservices: Common Object Services Specification, a collection of OMG’s
Object Services specifications.

• CORBAfacilities: Common Facilities Specification, a collection of OMG’s Common
Facility specifications.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interf
between related services and functions.

• CORBA Healthcare: Comprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services an
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:
viii Clinical Observation Access Service, v1.0 April 2001

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• 3M

• AGFA

• Baptist Health Systems of South Florida (BHSSF)

• Care Data Systems, Inc.

• CareFlow/Net, Inc.

• CogniTech Corporation

• GE Medical Systems

• HBO & Company

• HealthMagic, Inc.

• Los Alamos National Labs (LANL)

• Philips Medical Systems

• Philips Research

• Protocol Systems, Inc.

• Sao Paulo Hospital das Clinicas

• Sunquest

• Theragraphics

• Universidade Federal de Sao Paulo

• University of Michigan Health Systems (UMHS)
COAS, v1.0 Acknowledgments April 2001 ix

x Clinical Observation Access Service, v1.0 April 2001

COAS Overview 1
with
Contents

This chapter contains the following topics.

The Clinical Observations Access Service (COAS) is a set of interfaces and data
structures with which a server can supply clinical observations.

1.1 Definition and Scope of Clinical Observations

To determine the scope of a Clinical Observations Access Service we might start
a definition of “clinical observations.” The 27th Edition of Dorland's Illustrated
Medical Dictionary defines “clinical” as,

Topic Page

“Definition and Scope of Clinical Observations” 1-1

“Previous Work” 1-3

“Information Model” 1-3

“Dynamic Discovery” 1-4

“Value Domains” 1-4

“Type Negotiation” 1-4

“XML Usage” 1-5

“Roadmap for Extensions” 1-5

“Conformance Points” 1-5
Clinical Observation Access Service, v1.0 April 2001 1-1

1

ic

ce
rom

cal

es,
ect
n

d
.

the

rom
g that

 over
ate

some

e

igns
ical
s of
“pertaining to a clinic or to the bedside; pertaining to or founded on actual
observation and treatment of patients, as distinguished from theoretical or bas
sciences.”

Webster's Ninth New Collegiate Dictionary defines “observation” as,

“2 b: a record obtained by the act of recognizing and noting a fact or occurren
often involving measurement with instruments 3: a judgment on or inference f
what one has observed.”

The COAS specification included the following definition of “clinical observations,”

“any information that has been captured about a single patient’s medical/physi
state and relevant context information.”

Webster's Dictionary includes the following definitions of “information,”

“2 a: (1) knowledge obtained from investigation, study, or instruction (2)
INTELLIGENCE, NEWS (3) FACTS, DATA.”

The COAS specification goes on to add,

“This [information] may be derived by instruments such as in the case of imag
vital signs, and lab results or it may be derived by a health professional via dir
examination of the patient and transcribed(sic). This term applies to informatio
that has been captured whether or not it has been reviewed by an appropriate
authority to confirm its applicability to the patient record.”

It is clear from the dictionary definitions of “observation” and “information” that the
common usage of “clinical observations” includes, not just raw measurements an
recordings, but also the knowledge and judgments obtained or inferred from them
Based on these definitions and conclusions, the following working definition of
“clinical observations” is given, where the lists are intended to specifically include
areas mentioned rather than excluding other related areas:

“any measurement, recording, or description of the anatomical, physiological,
pathological, or psychological state or history of a human being or any sample f
a human being, and any impressions, conclusions, or judgments made regardin
individual within the context of the current delivery of healthcare.”

All observations share a few common features:

• They are made on a specific subject of care (e.g., patient, organ, population).

• They represent a snap-shot of that subject in time, either at a particular time, or
some specified interval of time (time in this context includes the notion of both d
and time).

• They are made, or recorded, by an instrument or a healthcare professional in
clinical context.

• They are given (either by the patient, the healthcare institution, or society) som
degree of confidentiality.

Observations can be quantitative, qualitative, and recordings. For example, vital s
and clinical laboratory results, trends in measured values, impressions from a clin
exam, correlation of several qualitative impressions, and images and manipulation
1-2 Clinical Observation Access Service, v1.0 April 2001

1

on
m

S

 for

d

e are
etary
images such as digital subtraction angiography. For the purposes of our informati
model and the derived IDL, a clinical observation includes any clinically related ite
that has the necessary context information to enable it to be queried from a COA
server.

1.2 Previous Work

A number of the submitters and supporters of this specification have used CORBA
various observation access mechanisms.

3M - Observations are an integral part of the 3M Care Innovation Suite
(http://www.mmm.com/market/healthcare/his/product/hems/menu.htm).

Care Data Systems - Observations are part of Care Data System’s Integration an
Access Channels and the Care Data Repository products
(http://www.caredatasystems.com/guide/product-ov.htm).

CareFlow|Net - Observations are part of the CareFlow|Net transcription system
(http://www.careflow.com/products.htm).

CERC - Observations are part of the Artemis project
(http://www.cerc.wvu.edu/nlm/artemis.html).

HBO & Company - Observations are an integral part of the Clinical Information
Systems products (http://206.217.199.68/caci/corporate/prodport.nsf/home).

Los Alamos National Laboratory - Observations are a major component of the
TeleMed project (http://www.acl.lanl.gov/TeleMed/).

Philips Medical Systems - Observations are a major component of the MIRACLE
project.

Protocol Systems - An observation service (COBS) is the major component of the
Acuity Communications Option (ACO) vital signs server.

Sunquest - Observations are a central part of the Sunquest products
(http://www.sunquest.com/marketing/).

Each of these projects brings different, complementary perspectives that have
contributed to the COAS specification.

1.3 Information Model

There are a number of information models that deal with observations data. Som
associated with standards groups and are openly available. Others are the propri
property of individual companies. The following lists most of the openly available
information models that we know of that include observations data.
COAS, v1.0 Previous Work April 2001 1-3

1

ous

l is

 an

els
. See

e

251
r, the

e

er

 deal
e
 this

 be

meter
g

ages
ine

 of
HL7 - The version 3.0 project is taking the knowledge developed during the previ
HL7 standards and describing it in an information model
(http://www.mcis.duke.edu/standards/HL7/data-model/HL7/modelpage.html). This is a
generalized model for healthcare that does include observations data. This mode
subject to change over the next year or two.

DICOM - The Structured Reporting document (supplement 23) of DICOM contains
implied information model for clinical reports which contain observations data
(ftp://ftp.nema.org/MEDICAL/DICOM/SUPPS/sup23_fz.pdf).

UK NHS - The UK National Health Service has developed general information mod
for healthcare, based on a model called COSMOS that contains observations data
http://smwww1.med.ic.ac.uk/dm/dmgm/ccpm2pt1.doc and
http://smwww1.med.ic.ac.uk/dm/dmgm/ccpm2pt2.doc

European Consortia - The European Union has sponsored several projects whose
purpose has been to develop and validate information models of healthcare. Thes
include the GEHR and EHCR-SupA.

CEN-TC251 - The European Committee for Standardization Technical Committee
has developed several pre-standards that involve models of healthcare. In particula
CEN/TC251/N97-024 prestandard on “Healthcare Information System Architectur
(HISA).”

1.4 Dynamic Discovery

Clinical observations cover a very wide set of data types. Servers are likely to off
widely different kinds of data, data formats supported, etc. COAS servers need to
expose to clients relevant context information, such as the patient population they
with, what kinds of observation types are supported, what kind of data formats ar
supported, which interfaces are implemented, etc. We have made an effort to do
via the AccessComponent interface. See Section 3.7.2, “AccessComponent
Interface,” on page 3-60 for details. However, it is not clear whether this effort will
sufficient to enable the discovery of all necessary capabilities.

1.5 Value Domains

The Lexicon Query Service (LQS) contains the ability to query for ValueDomains.
ValueDomains are the set of possible codes that can be used for a particular para
or field. It is expected the LQS ValueDomains can be used by COAS for publishin
meta information about the particular service implementation.

1.6 Type Negotiation

Servers may support multiple formats for the same type of information, such as im
in gif, tiff, and jpeg formats. COAS may need a way for clients to not only determ
what formats are supported, but also to select which one(s) they can handle.
Specifications for how this is to be accomplished has been left for future revisions
the COAS.
1-4 Clinical Observation Access Service, v1.0 April 2001

1

y
be

ng
of

s

s

f the

liant

 this

ting

 use

data

s
ay
1.7 XML Usage

The eXtended Markup Language (XML) is gaining wide interest and support as a
flexible format for describing highly structured information (documents).

COAS clients and servers may provide and use XML documents. XML is implicitl
supported as a text string, for returned observations. Also, a COAS server could
easily designed to input an XML qualifier as a filter. See the client-implementation
example “Progress Note (XML)” on page F-5 for more details.

1.8 Roadmap for Extensions

The COAS needs to provide a basis for future CORBAmed standards for accessi
healthcare related information. The COAS specification provides a small number
core definitions, but it is expected that future CORBAmed RFPs will develop
additional data definitions that can be used by COAS without extension of the
interface, as well as develop extensions to COAS.

At the time of submission, RFPs have been published for a Clinical Image Acces
Service (CIAS) and a Report Management Service (RMS). These are expected to
utilize COAS and/or to extend it. Potential responders to the CIAS and RMS RFP
have contributed to this COAS specification. This specification also includes
DsTimeSeries as an example, in the area of vital signs support, of an extension o
data types and operation of COAS.

1.9 Conformance Points

This section describes the various conformance levels possible for a COAS comp
provider of clinical observations.

There are three categories of conformance:

1. Interface conformance (i.e., conformance to one or more interfaces described in
specification).

2. Data structure conformance (i.e., conformance to a mechanism for commiunica
structures containing the values of observations).

3. Qualified code conformance (i.e., conformance to a naming convention for the
of terms from other standards).

To be compliant with this specification, a server must have at least interface and
structure conformance. Qualified code conformance is optional.

1.9.1 Interface Conformance Classes

The following taxonomy is defined for specific conformance classes of COAS
implementations. An implementation claiming conformance to any of these classe
must conform to all of the interfaces specified for that class. An implementation m
COAS, v1.0 XML Usage April 2001 1-5

1

each
t

 The

ith a

he
sing.

mon

t it
ccess

he

 be
rver.
claim conformance to multiple conformance classes as long as it is conformant to
one it claims. For an implementation to be COAS compliant, it must conform to a
least one of the conformance classes in Table 1-1.

Each row in Table 1-1 includes the specification for a different conformance class.
columns represent the interfaces on the AccessComponent. A star ‘*’ in a column
indicates the conformance class in that row includes the interface of that column.

• ‘ Simple COAS’ - This class provides the mechanisms to access observations w
minimum of effort.

• ‘ Browse COAS’ - This conformance class adds the ability to make queries on t
results of previous queries, which enables the more interactive activity of brow

• ‘ ConstraintLanguage COAS’ - This class adds, to the Simple COAS class, the
ability to use a constraint language in the construction of queries.

• ‘Asynchronous COAS’ - This conformance class is an alternative to the Simple
COAS class in that it provides the same access to observations, but it uses an
asynchronous connection between the client and server instead of the more com
synchronous connection.

• ‘ Supplier COAS’ - This class is an alternative to the Simple COAS class in tha
provides the same access to observations, but it is oriented towards providing a
to observations that may arrive in the future, and it uses a messaging
communication style to return the observations when they become available. T
client must implement the Consumer COAS class (below) to receive the
observations sent by the Supplier COAS class server.

• ‘ Consumer COAS’ - This conformance class is the client side to the server
interfaces in the Supplier COAS class.

• ‘ Loader COAS’ - This class provides a mechanism whereby legacy systems can
wrapped with a client COAS interface and can push their data into a COAS se

Table 1-1 Conformance Classes

Conformance Class Query
Access

Browse
Access

Constraint
Access

Asynch
Access

Supplier
Access

Consumer
Access

Observation
Loader

Simple COAS *

Browse COAS * *

ConstraintLanguage COAS * *

Asynchronous COAS *

Supplier COAS *

Consumer COAS *

Loader COAS *
1-6 Clinical Observation Access Service, v1.0 April 2001

1

the
for
ng

ta
f the

en
may
udes
 used

es

se

ain
ndent
1.9.2 Data Structure Conformance Classes

This specification was developed before the availability of compilers that support
Object-By-Value (OBV) technology, yet it anticipates it by including a mechanism
extensibility. These conformance classes specify the mechanism for communicati
observation values. At this time there is only one mechanism: *’Single Struct COAS’
This class indicates that a server uses the single structure ObservationDataStruct as
the explicit type returned/passed in ObservationData . See Section 3.3.6,
“ObservationData,” on page 3-20.

It is expected that future standardization will add conformance points for other da
structuring used by servers. Note, these conformance classes are independent o
interface conformance class implemented by a server.

1.9.3 Qualified Code Conformance Classes

This specification focuses on the mechanisms to communicate information betwe
server and client. Qualified codes represent the application specific terms, which
be standardized by domain specific standardization bodies. This specification incl
rules for translating the term names from another standard into the qualified codes
in this one.

*’HL7 Inside COAS ’ - this class indicates the usage of HL7 defined observation typ
within a COAS server. Any server claiming conformance to this class must have
observations that correspond to at least some HL7 types as defined in the
DSObservationQualifiers chapter (Chapter 7 of this specification). Furthermore, tho
observation types must utilize the HL7 types as defined in this specification.

It is expected that future standardization will add conformance points for other dom
specific term standards. Note, these conformance classes are optional and indepe
of the interface and data structure conformance class implemented by a server.
COAS, v1.0 Conformance Points April 2001 1-7

1

1-8 Clinical Observation Access Service, v1.0 April 2001

COAS Information Model 2
l.
al
ut

del
uring

e is
at
at the

,
Contents

This chapter contains the following topics.

2.1 Overview

This chapter describes the Clinical Observation Access Service information mode
Throughout the development of this specification the model has undergone sever
modifications. The final version depicts a model that is flexible and reusable witho
adding flexibility that is unlikely to be used.

Several models were reviewed and used in determining the final model. Each mo
contained things that were valuable in helping us understand the problem and ens
that we had a model that would accommodate the majority of needs.

Although this model is simplistic, it is also powerful enough to provide the
extensibility that is needed in the healthcare domain. There are many individuals
working on efforts to define and categorize healthcare information. However, ther
not a great deal of consensus at this time. Consequently, a model was needed th
could accommodate the efforts of these individuals as their work progresses and
same time make something available today to help in moving the healthcare
information technology forward. “Finding a simple solution takes time and effort,
which can be frustrating. People often react to a simple model by saying, “Oh yes
that’s obvious” and thinking “So why did it take so long to come up with it?” But

Topic Page

“Overview” 2-1

“Modeling Notation” 2-2

“Clinical Observations Model” 2-3

“Examples” 2-26
Clinical Observations Access Service, v1.0 April 2001 2-1

2

 as

is

ems.
odels.

 also

r

ject
 the
simple models are always worth the effort. Not only do they make things easier to
build, but more importantly they make them easier to maintain and extend in the
future.”1

This model presumes that all entities within a healthcare domain can be modeled
composite or atomic observations. The word observation has been a long struggle from
the beginning because of the fact that it carried different connotations for various
groups and individuals. It is hoped that the reader will understand that the name
merely a placeholder, no name is perfect.

2.2 Modeling Notation

The notation used in this chapter comes from a tool2 that implements the Unified
Modeling Language (UML)3.

2.2.1 Modeling Definitions

Many of the definitions given here will be used throughout this chapter.

Class Diagram
A class diagram is a picture for describing generic descriptions of possible syst
Class diagrams and object diagrams are alternate representations of object m
Class diagrams contain classes and object diagrams contain objects.

Collaboration Diagram
Collaboration diagrams show objects, their links, and their messages. They can
contain simple class instances and class utility instances. Each collaboration
diagram provides a view of the interactions or structural relationships that occu
between objects and object-like entities in the current model.

Object Diagram
An object diagram shows the existence of objects and their relationships in the
logical design of a system. An object diagram may represent all or part of the ob
structure of a system, and primarily illustrates the semantics of mechanisms in
logical design. A single object diagram represents a snapshot in time of an
otherwise transitory event or configuration of objects.

1. Martin Fowler. Analysis Patterns Reusable Object Models. Addison Wesley. 1997. P 2.

2. Rational Rose 98, Rose Enterprise Edition 1998. http://www.rational.com/

3. UML Notation Guide, Version 1.1. Rational Software, September 1997.

http://www.rational.com/uml/html/notation/
2-2 Clinical Observations Access Service, v1.0 April 2001

2

f the

.”
2.3 Clinical Observations Model

2.3.1 Clinical Observations Model - Class Diagram

Figure 2-1 COAS Class Diagram

This is a Class Diagram of Clinical Observations created to assist in the design o
Clinical Observations Access Service (COAS). “The logical view of a system
describes the existence and meaning of the key abstractions that form the design4

4. Grady Booch. Object Oriented Design with Applications. Benjamin Cummings. 1991.

ObservationReference
<<Required>> observationReferenceType : QualifiedCode

{disjoint/complete}

AtomicObservation

ObservationValue

CompositeObservation ObservationQualifier

<<Required>> observationQualifierType : Quali fiedCode

Observation
<<Required>> observationType : QualifiedCode
<<Optional>> observationTime : TimeSpan

HealthRecordEntry

ObservedSubject

1..*

1..1

+references
1..*

+referenced by
1..1

+referenced by
1..1

0..*1..*

+qualifies
0..*

+qualified by
1..*

+references
1..*1..*

1..1

0..*

0..*

+references
0..*

+referenced by
0..*

0..*

1..*

+composed of

0..*

+composes
1..*

1..*

0..*

+qualified by

1..*

+qualifies
0..*

+contained in

0..*

+contai n
0..10..1

0..*

+characterizes

0..*

+characterized by

1..*

0..*

1..*
COAS, v1.0 Clinical Observations Model April 2001 2-3

2

this
that

ss

n be
f the

The HealthRecordEntry and ObservedSubject are represented in the model to show
how they may fit into the overall design. Although they can both be supported by
model, we do not explicitly include any specialized services for them. We believe
this model, and the services derived from it, will accommodate them. They will be
discussed in the section on Examples.

The following sections document the class diagram. Each of the entities in the cla
diagram will be discussed.

2.3.2 Observation

Figure 2-2 Observation

Observation is an abstract class containing attributes that are inherited when a
CompositeObservation is needed or when an AtomicObservation is needed.

CompositeObservation and AtomicObservation both inherit from Observation.

Observation is complete and disjoint. Complete meaning no more subclassing ca
done off of Observation and disjoint meaning that instances may have only one o
given subtypes as a type.

observationType:QualifiedCode

Description: This is a QualifiedCode that names the Observation. For
example, Cardiovascular Examination, Complete Blood
Count, Systolic Blood Pressure, etc. The type of this attribute
is denoted as a QualifiedCode that comes from the
CORBAmed Lexicon Query Service1(LQS). This attribute
has been defined as a required attribute.

1. CORBAmed Lexicon Query Services, March 1998. OMG CORBAmed Document 98-03-22.
http://www.omg.org/docs/corbamed/98-03-22.rtf

observationTime: TimeSpan

Description: Denotes the time when the observation reflects a
characteristic of the observed subject. (Please reference
Section 2.4.1, “ObservedSubject - Model,” on page 2-27.)
Although is has been defined as optional it is strongly
recommended that this attribute exist.

Observation

<<Required>> observationType : QualifiedCode
<<Optional>> observationTime : TimeSpan
2-4 Clinical Observations Access Service, v1.0 April 2001

2

e a

Blood

c.
ed
to

s.
2.3.3 CompositeObservation

Figure 2-3 CompositeObservation

A CompositeObservation is a container for a set of Observations. Such a set may b
Cardiovascular Examination, a Complete Blood Count, a LabUrineBattery, etc. A
CompositeObservation inherits the attributes of an Observation.

A CompositeObservation has no value associated with it, it is used to give some
semantic meaning to the contents that it encapsulates. For example, a Complete
Count is a CompositeObservation that contains components which are
AtomicObservations such as White Blood Count, Red Blood Count, Hematocrit, et
The AtomicObservations Red Blood Count, etc. themselves have a value associat
with them but not Complete Blood Count. Complete Blood Count is merely used
provide a name for the structure of information contained within it.

Relationships with Observation

• Zero or more CompositeObservations are composed of one or more Observation

• One or more Observations compose zero or more CompositeObservations .

{disjo int/complete}

Compos it eObservati on

Observation

<<Required>> observati onType : Qual ifiedCode
<<Opt ional>> observationTime : TimeSpan

0..*

1..*

+ composed of
0..*

+composes

1..*
COAS, v1.0 Clinical Observations Model April 2001 2-5

2

2.3.4 AtomicObservation

Figure 2-4 AtomicObservation

An AtomicObservation is a single object with an associated value. An
AtomicObservation inherits the attributes of an Observation.

Examples of AtomicObservations can be such things as While Blood Count,
UrineColor, Systolic Blood Pressure, etc.

Relationships with ObservationValue

• One or more AtomicObservations reference one and only one ObservationValue .

• One and only one ObservationValue is referenced by one or more
AtomicObservations .

2.3.5 ObservationReference

Figure 2-5 ObservationReference

Observation

<<Required>> observationType : QualifiedCode
<<Optional>> observationTime : TimeSpan

See ObservationValue class diagram for
further details.

{disjoint/complete}

AtomicObservation

ObservationValue

1..*

1..1

+references
1..*

+referenced by

1..1

+references

Observation

<<Required>> observationType : QualifiedCode
<<Optional>> observationTime : TimeSpan

ObservationReference

<<Required>> observationReferenceType : QualifiedCode
0..*

0 .. *

0..*

+referenced by
0 .. *
2-6 Clinical Observations Access Service, v1.0 April 2001

2

at

sed to
f
ObservationReference is an associated class defining a relationship between
Observations. The observationReferenceType attribute denotes the type of
relationship and should come from a well-defined terminology system.

observationReferenceType:QualifiedCode

The observationReferenceType attribute is used to denote the type of relationship th
exists between two Observations.

Our intention has been to reference other coding schemes where possible as oppo
creating our own. The CEN Pre-Standard PT275 has already started to create a list o
these (Table A.5) and could be used as a starting point.

Relationships with Observation

• Zero or more Observations are referenced by zero or more Observations.

• Zero or more Observations references zero or more Observations.

2.3.6 ObservationQualifier

Figure 2-6 ObservationQualifier

5. European PreStandard PT27-N13. Health Care Informatics Electronic Health Care Record
Communication Part 2 - Domain Termlist. vers.3.0 of 1998-12-01.

+referenced by

See ObservationValue class diagram for
further details.

ObservationValue

ObservationQualifier

<<Required>> observationQualifierType : QualifiedCode

Observation

<<Required>> observationType : QualifiedCode
<<Optional>> observationTime : TimeSpan

1..1

0..*1..*

+qualifies

0..*
+qual ified by

1..*

+references

1..*1..*

1..1

1..*

0..*

+qualified by

1..*

+qualifi es
0..*
COAS, v1.0 Clinical Observations Model April 2001 2-7

2

ted
An ObservationQualifier is not capable of standing alone. The information represen
by the ObservationValue modifies the Observation being qualified. The following
tables outline some of the possibilities for ObservationQualifiers :

Table 2-1 ObservationQualifiers

Dates Comments

Dates of documenting for such things as create, edit, attesting, storing in a
database, transcribing, etc.

dictation

transcribed

sign-off

attestation

recorded

Dates of awareness for such things as reporting by patient, observing by
professional, reading a message, etc.

results become available

Dates of (clinically
meaningful) events

for such things as sampling, observing, informing,
operating, etc.

observation

onset

procedure

projection

consultation

specimen drawn

lab processing times

verification

QA review

collection

Roles

originator

collector

legal authenticator
2-8 Clinical Observations Access Service, v1.0 April 2001

2

technician/tester

treater

transcriptionist

auditors

observer

observed subject

Modifier

body site [where observed]

subject/Objective

projection [in time]

hypothesis

Instance Status

outside alarm limits [high/low]

outside measurement range [high/low]

critical alarm [high/low]

completion status

QA status

preliminary/final status

normalcy

confidence

report status

active/inactive/remission

rejected/current

Context

source system

patient record categories
COAS, v1.0 Clinical Observations Model April 2001 2-9

2

facility/location [where]

equipment used

algorithm/formula used [Source data]

protocol/procedure/method

order number/requisition number

encounter number

encounter type

verifier

episode of care

accession number

specimen number

assessment plan case number

health record transaction

Types

allergen

reaction

prognosis

diagnosis

treatment related

pharmacy

expiration date

refills

dose/give rate

intervention type/time

Other

how it was collected

comments

coded comments
2-10 Clinical Observations Access Service, v1.0 April 2001

2

Relationships with Observation

• Zero or more ObservationQualifiers qualifies one or more Observations.

• One or more Observations are qualified by zero or more ObservationQualifiers .

Relationships with ObservationValue

• One or more ObservationQualifiers references one and only one
ObservationValue .

• One and only one ObservationValue is referenced by one or more
ObservationQualifiers .

Relationships with ObservationQualifier

• Zero or more ObservationQualifiers qualifies one or more ObservationQualifiers .

• One or more ObservationQualifiers are qualified by zero or more
ObservationQualifiers .

normal value

normal range

version

observer

rule out

severity

persistence/recurrence

onset (time?)

procedure time

observationQualifierType:QualifiedCode

Description: The observationQualifierType attribute is a QualifiedCode
and should come from a well-defined terminology system. It
is used to identify the type of qualifier that is being used to
qualify the observation.
COAS, v1.0 Clinical Observations Model April 2001 2-11

2

 not

care.
se
2.3.7 ObservationValue

Figure 2-7 ObservationValue

This is a Class Diagram for ObservationValue .

An ObservationValue is a manifestation of forms of biological phenomenon. In this
model we have selected a subset of all possible values. We realize that our set is
complete, yet we believe it to be disjoint. There are many efforts underway6 in
determining what these values should and should not be within the arena of health
This model attempts to define those that are most importance at this time. Becau
ObservationValue is an abstract type, the ability to extend ObservationValue exists
and should assist as new or modified ObservationValues are identified.

6. HL7 Version 3 Data Type Redesign Project http://aurora.rg.iupui.edu/v3dt/

PlainText

<<Required>> value : String
<<Optional>> language : QualifiedCode

DateTime

<<Required>> value : TimeStamp
<<Optional>> relationalOperator : QualifiedCode
<<Optional>> accuracy : NumericValue
<<Optional>> accuracyContext : QualifiedCode
<<Optional>> accuracyUnit : QualifiedCode

NoInformation

<<Required>> reason : Qualifi edCode

CodedElement

<<Required>> value : QualifiedCode
<<Optional>> printName : String

ObservationValue

Multimedia

<<Required>> header : MIMEHeader

Measuremen t

<<Optional>> units : QualifiedCode
Curve

<<Required>> values : XYPairs
<<Optional>> xUnits : QualifiedCode
<<Optional>> yUnits : QualifiedCode

{disjoint/incomplete}

TechnologyInstanceLocator

<<Required>> protocol : Qual ifi edCode
<<Required>> address : String

LooselyCodedElement

<<Required>> text : String
<<Required>> codingSchemeId : CodingSchemeId
<<Required>> versionId : St ring
2-12 Clinical Observations Access Service, v1.0 April 2001

2

d in

about

hin a

, for
 that
CodedElement

Figure 2-8 CodedElement

The CodedElement provides a mechanism to allow for values that have been code
some form or another. Coded in the sense that they have a unique identifier. This
unique identifier can then be used to ask a terminology system specific questions
the CodedElement , for example, its representation based on some context, or its
definition, etc.

LooselyCodedElement

Figure 2-9 LooselyCodedElement

There are times when a code that the user wants cannot be realized or found wit
terminology system (e.g., is not in the list of allowable values). In which case the
LooselyCodedElement can be used to send text instead. Such instances may occur
when there are incomplete lists of coded values or “starter sets” for a given domain
example, sex, marital status, race, ethnicity, order priorities, etc. The expectation is
the value sent for this field is nearly always coded, but exceptions are allowed.

value:QualifiedCode

Description: The value attribute is a QualifiedCode and should come from
a well-defined terminology system.

printName:String

Description: The printName attribute is a String and can be used in
conjunction with the value attribute. It is used to provide a
textual representation of the value, possibly overriding the
definition provided by an LQS.

text:String

Description: The text attribute is a String and is used when no
CodedElement from a terminology system can be
determined.

CodedElement

<<Required>> value : QualifiedCode
<<Optional>> printName : String

LooselyCodedElement

<<Required>> text : String
<<Required>> codingSchemeId : CodingSchemeId
<<Required>> vers ionId : String
COAS, v1.0 Clinical Observations Model April 2001 2-13

2

e
ry
ply
ate..

.

Curve

Figure 2-10 Curve

Some observation values can be plotted graphically. Curve is used to assist in th
retrieval of such information. It is not the intention to fully identify all the necessa
attributes that may be needed for formalized plotting algorithms but rather to sup
enough information so that it is possible to plot information in a Cartesian coordin

codingSchemeId:CodingSchemeId

Description: The codingSchemeId attribute is of type CodingSchemeId
that comes from an LQS and is used to identify the coding
scheme where the text was intended.

versionId:String

Description: The versionId attribute is a String and is used to identify the
version of the coding scheme where the text was intended.

values:XYPairs

Description: The XYPairs attribute allows for a sequence of x,y values.
Where the x represents those values to be plotted on the x-
axis and the y represents those values to be plotted on the y
axis.

xUnits:QualifiedCode

Description: The xUnits attribute denotes the x axis units. In healthcare
this is usually a time axis (i.e., milliseconds, seconds, or
minutes). This attribute is a QualifiedCode and should come
from a well-defined terminology system.

yUnits:QualifiedCode

Description: The yUnits attribute denotes the y axis units. This attribute is
a QualifiedCode and should come from a well-defined
terminology system.

Curve

<<Required>> values : XYPairs
<<Optional>> xUnits : QualifiedCode
<<Optional>> yUnits : QualifiedCode
2-14 Clinical Observations Access Service, v1.0 April 2001

2

l
ver

fully
airs

e set

ing
e

eo)
the

e the
Multimedia

Figure 2-11 Multimedia

There exists a set of documents, collectively called the Multipurpose Internet Mai
Extensions, or MIME, that specify a standard for conveying various media types o
the Internet.

The MIME Content-Type header field and media type mechanism have been care
designed to be extensible, and it is expected that the set of media type/subtype p
and their associated parameters will grow significantly over time. To ensure that th
of such values is developed in an orderly, well-specified, and public manner, the
MIME standard specifies a registration process that uses the Internet Assigned
Numbers Authority (IANA)7 as a central registry for MIME’s various areas of
extensibility.

With this in mind we have opted to utilize the MIME as the mechanism for retriev
multimedia information. Rather than attempt to provide a description of each of th
media types (Application, Audio, Image, Message, Model, Multipart, Text, and Vid
it seems more reasonable to provide a reference to these. They can be found in
RFC20488 document.

header:MIMEHeader

The MIME specifications define a number of header fields that are used to describ
content of a MIME entity. These header fields occur in at least two contexts:

• As part of a regular message header.

• In a MIME body part header within a multipart construct.

The formal definition of these header fields is as follows:

• Entity-headers

7. The Internet Assigned Numbers Authority http://www.iana.org/listinfo.html

8. http://www.rfc-editor.org/rfc.html

Multimedia

<<Required>> header : MIMEHeader

TextImage VideoAudioApplication

{disjoint/incomplete}

Multi partMessage Model
COAS, v1.0 Clinical Observations Model April 2001 2-15

2

45

e
yed

 a

ol

• MIME-message-headers

• MIME-part-headers

The syntax of the various specific MIME header fields are described in the RFC209
document.

The multimedia data itself follows immediately after the header fields that describ
that portion of the data. This data is often encoded such that it is correctly conve
via legacy internet mail servers which can only handle 7-bit ASCII characters.

TechnologyInstanceLocator

Figure 2-12 TechnologyInstanceLocator

A TechnologyInstanceLocator10 is used to reference information that has some tie to
technology that can perform some action. It is a generalization of the well-known
Universal Resource Locator, or Uniform Resource Locator (URL) concept.

The following denotes some current internet protocols:

9. http://www.rfc-editor.org/rfc.html

10. HL7 Version 3 Data Type Redesign Project http://aurora.rg.iupui.edu/v3dt/

protocol:QualifiedCode

Description: This is the protocol associated with the address. The protoc
indicates the technology to be used to interpret the address.
This attribute, as a QualifiedCode , should come from a well-
defined terminology system.

Protocols

HTTP

FTP

TechnologyInstanceLocator

<<Required>> protocol : QualifiedCode
<<Required>> address : String
2-16 Clinical Observations Access Service, v1.0 April 2001

2

f
DateTime

Figure 2-13 DateTime

A DateTime is used to communicate when some event occurred or when some
observations was made, recorded, or verified.

The basic relational operators are denoted as follows:

address:String

Description: The address attribute contains some structured sequence o
characters that the protocol knows how to interpret. For
example, www.example.com

value:TimeStamp

Description: The value attribute contains the actual date and time
information.

relationalOperator:QualifiedCode

Description: The relationalOperator attribute is used to modify the
meaning of the value attribute. This attribute is a
QualifiedCode and should come from a well-defined
terminology system.

Symbolic
Representation

Meaning

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

DateTime

<<Required>> value : TimeStamp
<<Optional>> relationalOperator : QualifiedCode
<<Optional>> accuracy : NumericValue
<<Optional>> accuracyContext : QualifiedCode
<<Optional>> accuracyUnit : QualifiedCode
COAS, v1.0 Clinical Observations Model April 2001 2-17

2

y

 This
 using
The symbolic representation comes from the C language. The coding scheme ma
denote the symbolic representation differently based on the context (may be a
programming language) but the meaning should be consistent with the foregoing.
attribute can be used to denote that an observation was not at some time value by
the not-equal-to meaning.

Note – Accuracy , accuracyContext , and accuracyUnit should be used together as a
set.

accuracy:NumericValue

Description: The accuracy attribute allows for a measure of uncertainty to
be associated with the DateTime value. For example, plus or
minus 2 days, where plus or minus is the accuracyContext
and days is the accuracyUnit .

accuracyContext:QualifiedCode

Description: The accuracyContext attribute is a QualifiedCode and should
come from a well-defined terminology system. The following
denotes possible accuracyContext s:
• Plus or minus
• Within

accuracyUnit:QualifiedCode

Description: The accuracyUnit attribute is a QualifiedCode and should
come from a well-defined terminology system. The following
denotes possible accuracyUnit s.
• MilliSecond
• Second
• Minute
• Hour
• Day
• Month
• Year
2-18 Clinical Observations Access Service, v1.0 April 2001

2

 that
wide
ed.

s,
Measurement

Figure 2-14 Measurement

This is a Class Diagram for Measurement.

In this model we have identified a subset of all possible Measurements. We realize
this is not complete, yet we believe it to be disjoint. Measurements can occur in a
variety of forms. We have concentrated on those that we believed were widely us

Range

Figure 2-15 Range

unit:QualifiedCode

Description: This is the unit associated with the Range, Ratio, TimeSerie
or Numeric. This attribute is a QualifiedCode and should
come from a well-defined terminology system.

Measurement
<<Optional>> units : QualifiedCode

Range

<<Required>> lower : NumericValue
<<Required>> upper : NumericValue
<<Optional>> lowerRelationalOperator : QualifiedCode
<<Optional>> upperRelationalOperator : QualifiedCode
<<Optional>> logicalOperator : QualifiedCode

Ratio

<<Required>> numerator : NumericValue
<<Required>> denominator : NumericValue
<<Optional>> relationalOperator : QualifiedCode
<<Optional>> precision : NumericValue

TimeSeries

<<Required>> samplePeriod : TimeDelta
<<Required>> values : NumericValueSeq
<<Required>> totalSize : NumericValue

Numeric

<<Required>> value : NumericValue
<<Optional>> relationalOperator : QualifiedCode
<<Optional>> precision : NumericValue

{disjoint/incomplete}

Range

<<Required>> lower : NumericValue
<<Required>> upper : NumericValue
<<Optional>> lowerRelationalOperator : QualifiedCode
<<Optional>> upperRelationalOperator : Quali fiedCode
<<Optional>> logicalOperator : Quali fiedCode
COAS, v1.0 Clinical Observations Model April 2001 2-19

2

&
e

 may

.

Range is used to associate two related values together with the ability to apply
relational and logical operators for combinatory expressions. For example, >= 1 &
<= 5. It is assumed that the value in the lower attribute is less than or equal to th
value in the upper attribute.

The basic relational operators are denoted as follows:

The symbolic representation comes from the C language. The terminology system
denote the symbolic representation differently based on some context (may be a
programming language) but the meaning should be consistent with the foregoing

lower:NumericValue

Description: This is the lower value of the range.

upper:NumericValue

Description: This is the upper value of the range.

lowerRelationalOperator:QualifiedCode

Description: This is the lower relational operator. This attribute is a
QualifiedCode and should come from a well-defined
terminology system.

Symbolic
Representation

Meaning

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

upperRelationalOperator:QualifiedCode

Description: This is the upper relational operator. This attribute is a
QualifiedCode and should come from a well-defined
terminology system. The representation and meaning are as
defined for the lowerRelationalOperator described above.
2-20 Clinical Observations Access Service, v1.0 April 2001

2

 may

.

n be
l

ted.
lso

y
The basic logical operators are denoted as follows:

&& And

|| Or

The symbolic representation comes from the C language. The terminology system
denote the symbolic representation differently based on some context (may be a
programming language) but the meaning should be consistent with the foregoing

Ratio

Figure 2-16 Ratio

A ratio value contains a numerator quantity and a denominator quantity. Ratio ca
used when referring to clinical laboratory observations that are measured by seria
dilution methods.11 Thus, the ability to express titers which occur in laboratory
medicine. A titer is the maximal dissolution at which an analyte can still be detec
Typical values of titers are: “1:32”, “1:64”,”1:128”, etc. Powers of 1/2 or 1/10 are a
common. It should be noted that the ratio data type must not be used as a handy
representation of two related values. In particular, blood pressure values, commonl
reported as 120/80 mm Hg, are not ratios.

logicalOperator:QualifiedCode

Description: The logical operators allow for the ability to associate two
values logically. This attribute is a QualifiedCode and should
come from a well-defined terminology system.

11. Dr. Stanley M. Huff et all. Linking a Medical Vocabulary to a Clinical Data Model using
Abstract Syntax Notation 1.

numerator:NumericValue

Description: This is the numerator value, the first number in the ratio.

Ratio

<<Required>> numerat or : Numeri cV alue
<<Required>> denom in ator : Numeri cVal ue
<<Optiona l>> rel ationa lOperator : Qualif iedCode
<<Optiona l>> pre cision : NumericValue
COAS, v1.0 Clinical Observations Model April 2001 2-21

2

 may

.

o.

The basic relational operators are denoted as follows:

The symbolic representation comes from the C language. The terminology system
denote the symbolic representation differently based on some context (may be a
programming language) but the meaning should be consistent with the foregoing

TimeSeries

Figure 2-17 TimeSeries

denominator:NumericValue

Description: This is the denominator value, the second number in the rati
It must not be zero.

relationalOperator:QualifiedCode

Description: This is the relational operator. This attribute is a
QualifiedCode and should come from a well-defined
terminology system.

Symbolic
Representation

Meaning

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

precision:NumericValue

Description: The precision attribute is used to provide a level of precision
to the ratio. In this case the number of decimal places to the
right of the decimal point. For whole number ratios, this
attribute is not required.

TimeSeries

<<Required>> sa mplePeri od : Ti meDelta
<<Required>> values : Num ericValue Seq
<<Required>> totalSize : NumericValue
2-22 Clinical Observations Access Service, v1.0 April 2001

2

f
the

f
TimeSeries supports the retrieval of an array of values. Within healthcare, arrays o
values are typically samples over time, and so we have included an attribute for
sample period.

Numeric

Figure 2-18 Numeric

Numeric is used to communicate a single measurement or quantitative value.

The basic relational operators are denoted as follows:

samplePeriod:TimeDelta

Description: The samplePeriod is used to denote the length in time
between the sampling of two sequential values. This is
denoted in seconds.

values:NumericValueSeq

Description: This is a sequence of the scalar values of the actual
recordings. These can be octet, short, long, long long, float,
double or any.

totalSize:NumericValue

Description: The total number of observations recorded, or the number o
values in the sequence.

value:NumericValue

Description: This attribute contains the value itself.

relationalOperator:QualifiedCode

Description: This is the relational operator. This attribute is a
QualifiedCode and should come from a well-defined
terminology system.

Symbolic
Representation

Meaning

== Equal to

!= Not equal to

< Less than

Numeric

<<Required>> va lue : NumericValue
<<Optiona l>> rel ationa lOperator : Qualif iedCode
<<Optiona l>> pre cision : NumericValue
COAS, v1.0 Clinical Observations Model April 2001 2-23

2

 may

.

g.

e

The symbolic representation comes from the C language. The terminology system
denote the symbolic representation differently based on some context (may be a
programming language) but the meaning should be consistent with the foregoing

PlainText

Figure 2-19 PlainText

PlainText is used to communicate observation values as ideas in the form of writin

The following denotes a subset of potential languages.

• English

• French

• German

• Italian

• Spanish

<= Less than or equal to

> Greater than

>= Greater than or equal to

precision:NumericValue

Description: The precision attribute is used to provide a level of precision
to the value. In this case the number of decimals places to th
right of the decimal point. For whole numbers this attribute is
not required.

value:String

Description: The value attribute is used to contain the text itself.

language:QualifiedCode

Description: The language attribute is used to denote the type of written
language used in conveying the value. This attribute is a
QualifiedCode and should come from a well-defined
terminology system.

PlainT ext

<<Required>> value : String
<<Optional>> language : QualifiedCode
2-24 Clinical Observations Access Service, v1.0 April 2001

2

le or
oth

ble.

)

NoInformation

Figure 2-20 NoInformation

There are instances when it is appropriate to denote that information is unavailab
missing. A NoInformation value can occur in place of any other value to express b
that specific information is missing and how or why it is missing.12

Reason:QualifiedCode

The reason attribute is used to denote why the information is missing or unavaila
This attribute is a QualifiedCode and should come from a well-defined terminology
system.

The following represents a potential set of reasons:

12. HL7 Version 3 Data Type Redesign Project http://aurora.rg.iupui.edu/v3dt/

Meaning Description

Unknown No information at all (i.e., nothing more is known about
the circumstances of missing information).

Asked but unknown The person asked could not supply the information (why?

Not available The person asked does have the information somewhere
but not available right now (e.g., I wrote down what the
doctor said last time, but I didn’t bring this piece of paper
with me).

Not applicable An answer to “gestational age” for a patient who is not
pregnant.

Not asked The person who should collect that information forgot to
ask.

NoInformat ion

<<Required>> reason : Qual ifiedCode
COAS, v1.0 Clinical Observations Model April 2001 2-25

2

ved

ion of
ram
tural
del.
s

otes,
ces of
ave
2.4 Examples

Figure 2-21 Example Health Records

This is a Collaboration Diagram for an example of the health records of an obser
subject.

This diagram represents an example of how one might put together a representat
medical information. This diagramming technique is known as a collaboration diag
and is used to represent interactions. It provides a view of the interactions or struc
relationships that occur between objects and object-like entities in the current mo
In this case an ObservedSubject is considered a Person (patient) that has many link
to specific types of medical information categories. For example; reports, nurse n
and Laboratory Results. These categories themselves have links to specific instan
that type of medical information. These specific instances of medical information h
links to specific information that gives meaning about that particular instance of
medical information.

Observed
Subject

HealthRecord
Entry

LabUrine
Bat tery

Laboratory
Results

Report

Summary

Pathology
Report

Discharge
Summary

Note

Nurse
Notes

LetterReferral
Letter

List
Medication

 L ist

etc...

Observed
Subject

HealthRecord
Entry

HealthRecord
Entry

HealthRecord
Entry

HealthRecord
Entry

HealthRecord
Entry

etc... etc. ..
2-26 Clinical Observations Access Service, v1.0 April 2001

2

ults,
link

ce.

l.

ther
So, following one set of links, we see that a Person (patient) has Laboratory Res
which contains instances of LabUrineBatterys where each LabUrineBattery has a
to a HealthRecordEntry.

Also, the ObservedSubject (Person / patient) has links to another ObservedSubject ,
such as their parent, child, or spouse.

2.4.1 ObservedSubject - Model

Figure 2-22 ObservedSubject - Model

As mentioned earlier, we have set ObservedSubject outside the scope of this
specification and therefore we only include this model as an informational referen
Please notice the similarities with the Clinical Observations Model. The
ObservedSubject could merely be placed on top of the Clinical Observations Mode
In essence an ObservedSubject is a CompositeObservation .

We focused on the patient when developing this specification but were aware of o
ObservedSubject s and modeled accordingly so as not to dismiss the notion of
ObservedSubject s other than a patient.

The following denotes potential ObservedSubject s:

• Patient

• Family Unit

• Population Cohort

• Organ

ObservedSubjectReference

<<Required>> observedSubjectReferenceType : QualifiedCode
ObservedSubject

<<Required>> observedSubjectType : QualifiedCode

0..*

0..*

+references
0..*

+referenced by
0..*

ObservationValue

ObservedSubjectQualifier

<<Required>> observedSubjectQualifierType : QualifiedCode

1..*

0..*

+qualified by

1..*

+qualifies

0..*

1..*

1..1

+references
1..*

+referenced by
1..1

0..*1..*

+qualifies

0..*
+qualified by

1..*
COAS, v1.0 Examples April 2001 2-27

2

2.4.2 ObservedSubject - Example

Figure 2-23 ObservedSubject - Example

This is an Object Diagram for one possible representation of an ObservedSubject in a
healthcare information environment

ObservedSubject:CompositeObservation

Figure 2-24 ObservedSubject:CompositeObservation

This instance of an ObservedSubject is typed as a Person (patient) and has a
CompositeObservation link of type Insurance, a CompositeObservation link of type
Demographic, and a CompositeObservation link of type LaboratoryResult . This
diagram is not meant to be normative but rather to show an example of what an
ObservedSubject of type Person (patient) may have associated with it.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
ObservedSubject . For example, Person, Organ, or Epidemic.

HealthRecordEntry:CompositeObservation

observat ionType = Heal thRecordEntry
observat ionTime = 199901040800

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

Insurance: Compos it eObservati on

observationType = Insurance

Demographics:CompositeObservation

observat ionType = Demographics

LaboratoryResults:CompositeObservations

observat ionType = LaboratoryResul ts

ObservedSubject:CompositeObservation

observationType = Person

ObservedSubj ect:Composit eObservat ion

observationType = Person
2-28 Clinical Observations Access Service, v1.0 April 2001

2

ome

ome
Insurance:CompositeObservation

Figure 2-25 Insurance:CompositeObservation

A Person (patient) in a healthcare information environment usually has a link to s
insurance information. This diagram does not fully exploit what a
CompositeObservation of type Insurance has as its AtomicObservations or other
CompositeObservations . It is merely shown as a possible scenario.

Demographics:CompositeObservation

Figure 2-26 Demographics:CompositeObservation

A Person (patient) in a healthcare information environment usually has a link to s
demographic information. This diagram does not fully exploit what a
CompositeObservation of type Demographic has as its AtomicObservation s or other
CompositeObservation s. It is merely shown as a possible scenario.

LaboratoryResults:CompositeObservation

Figure 2-27 LaboratoryResults:CompositeObservation

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation . In this case Insurance .

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation . In this case Demographics.

Insurance:C omposit eObservation

observationType = Insurance

Demographics:CompositeObservation

observationType = Demographics

LaboratoryResults:CompositeObservations

observat ionType = LaboratoryResults
COAS, v1.0 Examples April 2001 2-29

2

ome
A Person (patient) in a healthcare information environment usually has a link to s
LaboratoryResults information. In this example the LaboratoryResults has a link to a
CompositeObservation of type LabUrineBattery .

LabUrineBattery:CompositeObservation

Figure 2-28 LabUrineBattery:CompositeObservation

LaboratoryResults have links to Laboratory Tests. In this case a LabUrineBattery has
been depicted.

HealthRecordEntry:CompositeObservation

Figure 2-29 HealthRecordEntry:CompositeObservation

A HealthRecordEntry may be linked to a Laboratory Test. See the
“HealthRecordEntry - Example” on page 2-44 for a further description.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation . In this case LaboratoryResults .

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation . In this case LONICUrineBattery .

observationTime: TimeSpan

Description: Denotes the time when the LabUrineBattery became a
characteristic of the observed subject. In this case 1998
December 19 at 07:00 am.

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

HealthRecordEntry:CompositeObservation

observat ionType = HealthR ecordEntry
observat ionTi me = 199901040800
2-30 Clinical Observations Access Service, v1.0 April 2001

2

ical
.

2.4.3 LabUrineBattery - Example

Figure 2-30 LabUrineBattery - Example

This is an Object Diagram for what might be a way to represent a
CompositeObservation of type LONICLabUrineBattery . The LONIC13 database
provides a set of universal names and ID codes for identifying laboratory and clin
observations.

LabUrineBattery:CompositeObservation

Figure 2-31 LabUrineBattery:CompositeObservation

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation . In this case HealthRecordEntry .

observationTime: TimeSpan

Description: Denotes the time when the HealthRecordEntry became a
characteristic of the LabUrineBattery . In this case 1999
January 1, at 08:00 am.

13. http://www.mcis.duke.edu/standards/HL7/termcode/loinc.htm

ResultStatus: CodedElement

value = Final

ResultStatus:AtomicObservation

observationType = Result Status

Diagnosti cService:CodedElement

value = Urinalysis

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

Diagnosti cService:AtomicObservat ion

observationType = DiagnosticService

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700
COAS, v1.0 Examples April 2001 2-31

2

A Laboratory Test, in this case a LabUrineBattery , has been depicted. This example
shows two AtomicObservations being linked to the LabUrineBattery , a ResultStatus
and a DiagnosticService .

ResultStatus:AtomicObservation

Figure 2-32 ResultStatus:AtomicObservation

LaboratoryResults usually have an indicator to identify the status of the result.

ResultStatus:CodedElement

Figure 2-33 ResultStatus:CodedElement

ResultStatus is an AtomicObservation and therefore has an ObservationValue linked
to it. In this case it is a CodedElement and should come from a well defined
terminology system.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation . In this case LONICUrineBattery .

observationTime: TimeSpan

Description: Denotes the time when the LabUrineBattery became a
characteristic of the observed subject. In this case 1998
December 19, at 07:00am.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case ResultStatus .

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Final.

ResultStatus:AtomicObservation

observationType = ResultStatus

ResultStatus:CodedElement

value = Final
2-32 Clinical Observations Access Service, v1.0 April 2001

2

the
DiagnosticService:AtomicObservation

Figure 2-34 DiagnosticService:AtomicObservation

LaboratoryResults may have an indicator of the diagnostic service that performed
laboratory test.

DiagnosticService:CodedElement

Figure 2-35 DiagnosticService:CodedElement

DiagnosticService is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a CodedElement and should come from a well defined
terminology system.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case DiagnosticService .

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Urinalysis.

DiagnosticService:AtomicObservation

observationType = DiagnosticService

DiagnosticService:CodedElement

value = Urinalysis
COAS, v1.0 Examples April 2001 2-33

2

2.4.4 LabUrineBattery - LabSegments

Figure 2-36 LabUrineBattery - LabSegments

This is an Object Diagram showing an extension to the previous
LONICLabUrineBattery example with the addition of three specific test results.

LabSegment#1:CompositeObservation

Figure 2-37 LabSegment#1:CompositeObservation

A CompositeObservation of type LOINCUrineSodium .

LabSegment#2:CompositeObservation

Figure 2-38 LabSegment#2:CompositeObservation

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation . In this case LOINCUrineSodium .

DiagnosticService:CodedElement

value = Urinalysis

ResultStatus:CodedElement

value = Final

DiagnosticService:AtomicObservation

observationType = DiagnosticService

ResultStatus:AtomicObservation

observationType = ResultStatus

LabSegment#1:CompositeObservation

observationType = LOINCUrineSodium

LabSegment#3:CompositeObservation

observat ionType = LOINC UrineColor

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

LabSegement#2:CompositeObservation

observationType = LOINCUrineColor

LabSegment#1:CompositeObservation

observationType = LOINCUrineSodium

LabSegement#2:CompositeObservation

observationType = LOINCUrineColor
2-34 Clinical Observations Access Service, v1.0 April 2001

2

A CompositeObservation of type LOINCUrineColor .

LabSegment#3:CompositeObservation

Figure 2-39 LabSegment#3:CompositeObservation

A CompositeObservation of type LOINCUrineColor .

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation . In this case LOINCUrineSodium .

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation . In this case LOINCUrineSodium .

LabSegment#3:CompositeObservation

observationType = LOINCUrineColor
COAS, v1.0 Examples April 2001 2-35

2

 test
2.4.5 LabUrineBattery - LabSegment#1 - LONICUrineSodium

Figure 2-40 LabUrineBattery - LabSegment#1 - LOINCUrineSodium

This is an Object Diagram that shows an extension of the detail in one of the lab
results, namely the LONICLabUrineSodium .

NumericMeasurement:AtomicObservation

Figure 2-41 NumericMeasurement:AtomicObservation

LOINCUrineSodium has a NumericMeasuremen t linked to it.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case Measurement .

RangeMeasurment:Range

upper = 600
lower = 100
units = mmol/L

DiagnosticService:CodedElement

value = Urinalysis

ResultStatus:CodedElement

value = Final

DiagnosticService:AtomicObservation

observationType = DiagnosticService

ResultStatus:AtomicObservation

observationType = ResultStatus

NumericMeasurement:Numeric

value = 423
units = mmol/L

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

NumericMeasurement:AtomicObservation

observationType = Measurment

RangeMeasurement:AtomicObservation

observationType = Range

LabSegment#1:CompositeObservation

observationType = LOINCUrineSodium

AbnormalFlag:CodedElement

value = Normal

AbnormalFlag:AtomicObservation

observationType = AbnormalFlag

{600 < NumericMeasurement.value < 100}

NumericMeasurement:At omicObservat ion

observationType = Measurment
2-36 Clinical Observations Access Service, v1.0 April 2001

2

NumericMeasurement:Numeric

Figure 2-42 NumericMeasurement:Numeric

NumericMeasurement is an AtomicObservation and therefore has an
ObservationValue linked to it. In this case it is a numeric value.

RangeMeasurement:AtomicObservation

Figure 2-43 RangeMeasurement:AtomicObservation

LOINCUrineSodium has a RangeMeasurement linked to it.

RangeMeasurement:Range

Figure 2-44 RangeMeasurement:Range

RangeMeasurement is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a range.

value:NumericValue

Description: The value in this instance is 423.

units:QualifiedCode

Description: The units in this instance are mmol/L.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case Range .

NumericMeasurement:Numeric

value = 423
units = mmol/L

RangeMeasurement:AtomicObservation

observationType = Range

RangeMeasurment:Range

upper = 600
lower = 100
units = mmol/L
COAS, v1.0 Examples April 2001 2-37

2

AbnormalFlag:AtomicObservation

Figure 2-45 AbnormalFlag:AtomicObservation

LOINCUrineSodium has an AbnormalFlag linked to it.

AbnormalFlag:CodedElement

Figure 2-46 AbnormalFlag:CodedElement

AbnormalFlag is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a CodedElement and should come from a well defined
terminology system.

upper:NumericValue

Description: The upper value of the range is 600.

lower:NumericValue

Description: The lower value of the range is 100.

units:QualifiedCode

Description: The units in this instance are mmol/L.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case AbnormalFlag .

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Normal.

AbnormalFlag:AtomicObservation

observat ionT ype = AbnormalFl ag

AbnormalFlag:C odedElement

val ue = Normal
2-38 Clinical Observations Access Service, v1.0 April 2001

2

2.4.6 LabUrineBattery - LabSegment#2 - LONICUrineColor

Figure 2-47 LabUrineBattery - LabSegment#2 - LOINCUrineColor

This is an Object Diagram for our example LabUrineBattery - LabSegment -
LOINCUrineColor.

Color:AtomicObservation

Figure 2-48 Color:AtomicObservation

LOINCUrineSodium has a Color linked to it.

AbnormalFlag:CodedElement

value = Abnormal

DiagnosticService:CodedElement

value = Urinalysis

ResultStatus:CodedElement

value = Final

DiagnosticService:AtomicObservation

observationType = DiagnosticService

ResultStatus: At om icObservat ion

observationType = Resul tStat us

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

Color:CodedElement

value = Brown

Color:AtomicObservation

observationType = Color
AbnormalFlag:AtomicObservation

observationType = AbnormalFlag

DiagnosticService:AtomicObservation

observationType = DiagnosticService

ResultStatus: At om icObservat ion

observationType = ResultStatus

{LabSegment#2CodedElement.value <> 'Clear' OR
LabSegment#2CodedElement.value <> 'Pale Yellow'}

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

LabSegment#2:CompositeObservation

observationType = LOINCUrineColor

Color:AtomicObservation

observationType = Color
COAS, v1.0 Examples April 2001 2-39

2

Color:CodedElement

Figure 2-49 Color:CodedElement

Color is an AtomicObservation and therefore has an ObservationValue linked to it. In
this case it is a CodedElement and should come from a well defined terminology
system.

AbnormalFlag:AtomicObservation

Figure 2-50 AbnormalFlag:AtomicObservation

LOINCUrineSodium has an AbnormalFlag linked to it.

AbnormalFlag:CodedElement

Figure 2-51 AbnormalFlag:CodedElement

AbnormalFlag is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a CodedElement and should come from a well defined
terminology system.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case Color .

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Brown.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case AbnormalFlag .

C ol or:C odedElement

value = Brown

AbnormalFlag:AtomicObservation

observationType = AbnormalFlag

AbnormalFlag:C odedElement

val ue = Abnormal
2-40 Clinical Observations Access Service, v1.0 April 2001

2

2.4.7 LabUrineBattery - LabSegment#3 - LOINCUrineColor

Figure 2-52 LabUrineBattery - LabSegment#3 - LOINCUrineColor

This is an Object Diagram for our example LabUrineBattery - LabSegment -
LOINCUrineColor.

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Abnormal.

Color:CodedElement

value = Bloody

AbnormalFlag:CodedElement

value = Abnormal

Diagnosti cService:CodedElement

value = Urinalysis

ResultStatus:CodedElement

value = F inal

DiagnosticService:AtomicObservation

observationType = DiagnosticService

ResultStatus:AtomicObservation

observationType = ResultStatus

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

DiagnosticService:AtomicObservation

observationType = DiagnosticService

ResultStatus:AtomicObservation

observationType = ResultStatus

Color:AtomicObservation

observationType = Color

AbnormalFlag:AtomicObservation

observat ionType = AbnormalFlag

{LabSegment#3CodedElement.value <> 'Clear' OR
LabSegment#3CodedElement.value <> 'Pale Yellow'}

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

LabSegment #3:Composi teObservation

observationType = LOINCUrineColor
COAS, v1.0 Examples April 2001 2-41

2

Color:AtomicObservation

Figure 2-53 Color:AtomicObservation

LOINCUrineSodium has a Color linked to it.

Color:CodedElement

Figure 2-54 Color:CodedElement

Color is an AtomicObservation and therefore has an ObservationValue linked to it. In
this case it is a CodedElement and should come from a well defined terminology
system.

AbnormalFlag:AtomicObservation

Figure 2-55 AbnormalFlag:AtomicObservation

LOINCUrineSodium has an AbnormalFlag linked to it.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case Color .

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Bloody.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case AbnormalFlag .

Color:AtomicObservation

observationType = Color

C ol or:C odedElement

value = Bloody

AbnormalFlag:AtomicObservation

observationType = AbnormalFlag
2-42 Clinical Observations Access Service, v1.0 April 2001

2

al

el.
AbnormalFlag:CodedElement

Figure 2-56 AbnormalFlag:CodedElement

AbnormalFlag is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a CodedElement and should come from a well defined
terminology system.

2.4.8 HealthRecordEntry - Model

Figure 2-57 HealthRecordEntry - Possible Model

As mentioned early in this chapter, we have set HealthRecordEntry outside the scope
of this specification and therefore we only include this example as an information
reference. Please notice the similarities with the Clinical Observations Model. The
HealthRecordEntry could merely be placed on top of the Clinical Observations Mod
In essence a HealthRecordEntry is a CompositeObservation .

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Abnormal.

AbnormalFlag:C odedElement

val ue = Abnormal

HealthRecordEntryReference

<<Required>> healthRecordEntryReferenceType : QualifiedCode

HealthRecordEntry

<<Required>> healthRecordEntryType : QualifiedCode

0..*

0..*

+references
0..*

+referenced by
0..*

HealthRecordEntryQualifier

<<Required>> healthRecordEntryQualifierType : QualifiedCode

1..*

0..*

+qualified by
1..*

+qualifies
0..*

0..*1..*
+qualifies
0..*

+qualified by
1..*

ObservationValue

1..*

1..1

+references
1..*

+referenced by

1..1
COAS, v1.0 Examples April 2001 2-43

2

2.4.9 HealthRecordEntry - Example

Figure 2-58 HealthRecordEntry - Example

This is an example Object Diagram for a possible HealthRecordEntry .

HealthRecordEntry:CompositeObservation

Figure 2-59 HealthRecordEntry:CompositeObservation

A HealthRecordEntry can be used to provide transactional information that is
associated with an Observation.

AuthorizingClinician:QualifiedPersonId

localName = Dr. Authenticator

EncounterNumber:String

value = 123456789

HealthRecordEntryId:QualifiedNameString

localName = OurHealthRecordId123

Reason:CodedElement
value = Urinary Tract Infection

Originator:QualifiedPersonId

localName = Dr. First

Status:CodedElement

value = Completed

OriginatingSource:CodedElement

value = Clinic#1

Audi tor:Qual ifiedPersonId

localName = Tom Audit

AuthorizingClinician:AtomicObservation

observationType = AuthorizingClinician

EncounterNumber:AtomicObservation

observationType = EncounterNumber

HealthRecordEntryId:AtomicObservation

observationType = HealthRecordEntryId

Reason:AtomicObservation

observationType = Reason

Originator:AtomicObservation

observationType = Originator

Status:AtomicObservation

observationType = Status

OriginatingSource:AtomicObservation

observationType = OriginatingSource

HealthRecordEntry:CompositeObservation

observationType = Heal thRecordEntry
observationTime = 199901040800

Auditor:AtomicObservation

observationType = Auditor

HealthRecordEntry:CompositeObservation

observat ionType = HealthR ecordEntry
observat ionTi me = 199901040800
2-44 Clinical Observations Access Service, v1.0 April 2001

2

y
AuthoringClinician:AtomicObservation

Figure 2-60 AuthoringClinician:AtomicObservation

The AuthoringClinician can be used to identify the responsible individual.

AuthoringClinician:QualifiedPersonId

Figure 2-61 AuthoringClinician:QualifiedPersonId

AuthoringClinician is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a QualifiedPersonId and should come from some
Enterprise Master Patient Index. There are other attributes associated with a
QualifiedPersonId other than localName but not included in this example for brevity.
Further information can be attained from the CORBAmed Person Identification
Service14 (PIDS).

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation . In this case HealthRecordEntry .

observationTime: TimeSpan

Description: Denotes the time when the HealthRecordEntry became a
characteristic of the subject of care. In this case 1999 Januar
1, at 08:00 am.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case AuthoringClinician .

localName:String

Description: The localName is of type String and in this case has been
identified as Dr. Authenticator.

Authori zingCl in ici an:Atomi cObservat ion
observationType = AuthorizingClinician

AuthorizingC linician: Qualifi edPersonId

localName = Dr. Authenticator
COAS, v1.0 Examples April 2001 2-45

2

Auditor:AtomicObservation

Figure 2-62 Auditor:AtomicObservation

The Auditor can be used to identify the individual from the medical records
department that was responsible for finalizing this information.

Auditor:QualifiedPersonId

Figure 2-63 AuthoringClinician:QualifiedPersonId

AuthoringClinician is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a QualifiedPersonId and should come from some
Enterprise Master Patient Index.

EncounterNumber:AtomicObservation

Figure 2-64 EncounterNumber:AtomicObservation

14. CORBAmed Person Identification Services, March 1998. OMG CORBAmed Document
98-02-29. http://www.omg.org/docs/corbamed/98-02-29.rtf

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case Auditor .

localName:String

Description: The localName is of type String and in this case has been
identified as Tom Audit.

Audi tor:AtomicObservation
observationType = Auditor

Audi tor:QualifiedPersonId

localName = Tom Audi t

Encount erNumber: AtomicObservation
observationType = EncounterNumber
2-46 Clinical Observations Access Service, v1.0 April 2001

2

lar
The EncounterNumber can be used as some unique system identifier for this particu
instance of information.

EncounterNumber:String

Figure 2-65 EncounterNumber:String

EncounterNumber is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a String .

HealthRecordEntryId:AtomicObservation

Figure 2-66 HelathRecordEntryId:AtomicObservation

The HealthRecordEntryId can be used as some unique system identifier for the
HealthRecordEntry itself.

HealthRecordEntryId:String

Figure 2-67 HealthRecordEntryId:String

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case EncounterNumber .

value:String

Description: The value is of type String and in this case has been
identified as 123456789.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case HealthRecordEntryId .

EncounterNumber:String

value = 123456789

HealthRecordEntryId:AtomicObservation
observat ionType = HealthRecordEntryId

HealthRecordEntryId:QualifiedNameString

localName = OurHealthRecordId123
COAS, v1.0 Examples April 2001 2-47

2

m.
HealthRecordEntryId is an AtomicObservation and therefore has an
ObservationValue linked to it. In this case it is a QualifiedNameString . There are
other attributes associated with a QualifiedNameString other than localName but not
included in this example for brevity. QualifiedNameString is identified in the
CORBAmed LQS.

OriginatingSource:AtomicObservation

Figure 2-68 OriginatingSource:AtomicObservation

The OriginatingSource can be used to identify where this information originated fro

OriginatingSource:CodedElement

Figure 2-69 OriginatingSource:CodedElement

OriginatingSource is an AtomicObservation and therefore has an ObservationValue
linked to it. In this case it is a CodedElement .

Originator:AtomicObservation

Figure 2-70 Originator:AtomicObservation

localName:String

Description: The value is of type String and in this case has been
identified as OurHealthRecordId123.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case OriginatingSource .

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Clinic#1.

OriginatingSource:AtomicObservation
observationType = OriginatingSource

OriginatingSource:CodedElement

value = Clinic#1

Originator:AtomicObservation
observationType = Originator
2-48 Clinical Observations Access Service, v1.0 April 2001

2

er
The Originator can be used to identify who was the originator of this information.

Originator:QualifiedPersonId

Figure 2-71 Originator:QualifiedPersonId

Originator is an AtomicObservation and therefore has an ObservationValue linked to
it. In this case it is a QualifiedPersonId and should come from some Enterprise Mast
Patient Index.

Reason:AtomicObservation

Figure 2-72 Reason:AtomicObservation

The Reason can be used to identify why this was necessary.

Reason:CodedElement

Figure 2-73 Reason:CodedElement

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case Originator .

localName:String

Description: The localName is of type String and in this case has been
identified as Dr. First.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case Reason .

Originator:QualifiedPersonId

localName = Dr. First

Reason:AtomicObservation
observationType = Reason

Reason:CodedElement

value = Urinary Tract Infection
COAS, v1.0 Examples April 2001 2-49

2

Reason is an AtomicObservation and therefore has an ObservationValue linked to it.
In this case it is a CodedElement .

Status:AtomicObservation

Figure 2-74 Status:AtomicObservation

The Status can be used to indicate the state of the information.

Status:CodedElement

Figure 2-75 Status:CodedElement

Status is an AtomicObservation and therefore has an ObservationValue linked to it. In
this case it is a CodedElement .

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Urinary Tract Infection.

observationType: QualifiedCode

Description: This is a QualifiedCode that provides the type of the
AtomicObservation . In this case Status .

value:QualifiedCode

Description: The value for a CodedElement is of type QualifiedCode and
in this case has been identified as Completed.

Status:AtomicObservation
observationType = Status

Status:CodedElement

value = Completed
2-50 Clinical Observations Access Service, v1.0 April 2001

DSObservationAccess Service 3

nd its
nt
Contents

This chapter contains the following topics.

3.1 Overview

The DsObservationAccess service has many interfaces and definitions, and can be
viewed from several perspectives. Several viewpoints are first shown by UML
diagrams. Each viewpoint is chosen to describe one aspect of the entire service a
types. These initial viewpoints are not complete descriptions, showing only releva
information for a viewpoint while hiding irrelevant information.

After the viewpoints, all IDL types and interfaces are described in detail.

Topic Page

“Overview” 3-1

“Viewpoints” 3-2

“Data Type Definitions” 3-15

“Interface Specifications” 3-30

“Query-Oriented Interface Specifications” 3-42

“Event and Notification Interface Specifications” 3-53

“Utility Interface Specifications” 3-59
Clinical Observations Access Service, v1.0 April 2001 3-1

3

e

nd

tion

(See
3.2 Viewpoints

This section provides an overview of the DsObservationAccess service. The service is
presented from several viewpoints which may include overlapping information. Th
viewpoints are not meant to be orthogonal.

3.2.1 Navigable Relationships Viewpoint

Figure 3-1 Direct navigation between interfaces.

All interfaces defined in the DsObservationAccess module are shown on the diagram
above. Iterators and abstract interfaces do not have direct navigation. Attributes a
operations are hidden in this diagram in order to focus in on the navigable
relationships.

Only direct navigation is shown. Some of the query interfaces have indirect
mechanisms to traverse to other interfaces as well. For example, a browse opera
could return references to an ObservedSubject or ObservationRemote .

The starting point in the DsObservationAccess service is the AccessComponent
interface. From there a client can traverse to the other core interfaces on the
component. This traversal capability is one of the basis for the componentization
Section 3.2.3, “Componentization Viewpoint,” on page 3-4).

AbstractFac tory

Observ ationDataIterator

Observ ationRemoteIterator

AbstractManagedObjec t

Asy nchCallbackEv entSupplier

Query Acces s

Cons traintLanguageAccess

Observ ationLoader

Asy nc hAccessBrowseAccess SupplierAccess

AccessComponent

ConsumerAccess

Ev entConsumer

Qualif iedCodeIterator

Observati onRe moteAtomicObserv ationRemote

CompositeObserv ationRemote

Observ edSubjec t
3-2 Clinical Observations Access Service, v1.0 April 2001

3

us in
3.2.2 Interface Inheritance Viewpoint

Figure 3-2 Inheritance relationship between the various DsObservationAccess interfaces.

This diagram shows the inheritance relationship between the DsObservationAccess
service interfaces. The attributes and operations are hidden in this diagram to foc
on the inheritance relationships.

AccessComponent is the superclass for componentization (See Section 3.2.3,
“Componentization Viewpoint,” on page 3-4).

AbstractFactory

EventSupplier

EventConsumer

AsynchCallback

Observat ionDataIterator

ObservationRemote

ObservedSubject

CompositeObservationRemote AtomicObserv ationRemote
ObservationRemoteIterator

AbstractManagedObject

QueryAccess

ObservationLoader

ConsumerAccess

ConstraintLanguageAccess

BrowseAccess

AsynchAccess

AccessComponent

SupplierAccess

CosNotif yComm::StructuredPushSupplier

CosNotif yComm::StructuredPushConsumerCosNotif yComm: :Not if y Publish

CosNotif yComm::Notif ySubscribe

Quali f iedCodeIterator
COAS, v1.0 Viewpoints April 2001 3-3

3

ith
e
fter

mic
3-6
The four interfaces from the CosEvent module are part of the OMG Event Service.
The Event Service is not required for the DsObservationAccess event system,
although its use is facilitated by the use of some common interfaces.

The AbstractManagedObject interface contains a single operation, done() , which
allows a client to indicate when it is done with an object. All subclasses of
AbstractManagedObject are instantiated or activated according to client requests, w
their lifetime under server control. A well-behaved client will signal when it is don
with such a remote object, and a savvy server will keep some timer for cleanup a
ill-behaved clients or traumatic client termination.

The ObservationRemote object can have subtypes that are either composite or ato
observations. See Section 3.2.5, “Local/Remote Observations Viewpoint,” on page
for more details.

3.2.3 Componentization Viewpoint

Figure 3-3 Simplified view of ObservationAccess::AccessComponent and its
subclasses.

QueryAccess

ConstraintLanguageAccess

ObservationLoader

ConsumerAccess

SupplierAccess

AsynchAccess

BrowseAccess

AccessComponent

+query_access

+constraint_access

+observation_loader

+event_consumer

+event_supplier

+asynch_access

+browse_access
3-4 Clinical Observations Access Service, v1.0 April 2001

3

l
ir

ne to

imilar
The base interface AccessComponent includes a means for dynamic discovery of al
implemented components. Servers need implement only components which fit the
purpose, according to conformance level.

The components each inherit from the AccessComponent , which in turn has
references to other components, so a client of one component can navigate from o
another easily.

3.2.4 Full Component Viewpoint

Figure 3-4 Full view of attributes and operations for AccessComponent and its subclasses.

The diagram above shows the components available from AccessComponent , and
their attributes and operations. Several of the components share operations with s
names like “get_observation() ” with similar semantics.

QueryAccess

count_observations()
get_observation()
get_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()

ConstraintLanguageAccess

supported_languages : ConstraintLanguageSeq

get_by_constraint()

ObservationLoader

load_observations()

AsynchAccess

count_observations()
get_observation()
get_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()
cancel_get()

ConsumerAccess

create_consumer()
get_consumer_by_id()

SupplierAccess

create_supplier()
get_supplier_by_id()

BrowseAccess

get_observed_subject()
get_observed_subjects()
get_observed_subject_for_observation_id()
get_observed_subjects_for_observation_ids()
count_observations()
get_observation()
get_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()

AccessComponent

coas_version : string
pid_service : IdentificationComponent
terminology_service : TerminologyService
trader_service : TraderComponents
naming_service : NamingContext

get_components()
get_supported_codes()
get_supported_qualifiers()
get_supported_policies()
get_default_policies()
get_type_code_for_observation_type()
are_iterators_supported()
get_current_time()

+query_access

+constraint_access

+observation_loader

+asynch_access

+event_consumer

+event_supplier

+browse_access
COAS, v1.0 Viewpoints April 2001 3-5

3

) and

 by

e,

ed

ed to
e
t

 but

ed
3.2.5 Local/Remote Observations Viewpoint

Figure 3-5 Showing a comparison between observations accessed by reference (remote
 observations accessed by value (local).

The DsObservationAccess service can support both reference and value access to
observations. This viewpoint shows a comparison between observations returned
value (ObservationData) and those returned by reference (ObservationRemote). In
both the local and remote flavors, only an “atomic” observation has an actual valu
while a “composite” observation is a collection of other observations.

The division of observations into composite or atomic observations is accomplish
differently for local access vs. remote access. The abstract interface
ObservationRemote has concrete subclasses, so an ObservationRemote is either
atomic or composite, with no possible ambiguity. If ObservationData was defined
using Object-By-Value (OBV), then the same subclassing mechanism would be us
separate atomic from composite observations. However, because structs cannot b
subclassed in IDL, a struct based definition has the potential for ambiguity to exis
between atomic and composite observations. Although the potential for ambiguity
exists, there is a semantic requirement that each ObservationData be either atomic
(have a value) or composite (have a non-zero aggregation of other observations),
not both at the same time.

See Section 3.2.7, “Remote Observations Viewpoint,” on page 3-8 for more detail
information about remote (by reference) observations.

ObservationRemoteSeq
<<Sequence>>

ObservationRemoteIterator
<<Interface>>

ObservationDataIterator
<<Interface>>

ObservationRemote
<<Interface>>

0..*0..*

CompositeObservationRemote
<<Interface>>

AtomicObservationRemote
<<Interface>>

ObservationValue

<<Typedef>>

0..10..1

ObservationDataSeq
<<Sequence>>

ObservationData
<<Typedef>>

0..10..1

0..*0..*
3-6 Clinical Observations Access Service, v1.0 April 2001

3

ero

all

See Section 3.2.6, “Local Observations Viewpoint,” on page 3-7 for more detailed
information about local (by value) observations.

3.2.6 Local Observations Viewpoint

Figure 3-6 Detail UML for ObservationDataStruct

ObservationDataStruct is the struct for passing “local” observations between client
and server by value within ObservationDataStruct , defined as a CORBA::any . Since
DsObservationAccess does not use Objects-by-Value (OBV), and structs have no
polymorphism, the struct used for observations must encapsulate both composite
observations and atomic observations. A composite observation will have a non-z
amount of items in the composite attribute, and zero items in the value attribute.
Conversely, an atomic local observation will have zero items in the composite
attribute, and a single item in the value attribute.

Qualifiers modify all of the data “beneath” them in a hierarchy. For example, a
modifier of “Normalcy=abnormal” found in a composite observation would apply to
the items in the composite. However, qualifiers found lower in a tree of data can
override modifiers found higher up in the tree, so a leaf observation could have a
modifier “Normalcy=normal” which applied to just that leaf, despite any qualifier
higher-up in the tree.

See Section 3.3.6, “ObservationData,” on page 3-20 for the more details.

O b s e rva t ion D a ta S t ru c tS e q
< < S e q u e n c e > >

O b s e rva t ion D a ta S t ru c t
c o d e : Q ual if ie d Co d e S t r
c o m p o s it e : se q u e n c e < Ob s er va t io n Da t a S tr u c t>
q u a li fie r s : s e q u e n c e < Ob s e rva t io n D a ta S tr u ct >
va lu e : s e qu e n c e < a n y ,1 >

0 . . *0 . . *

O b s e rva t ion V a lu e
< < Ty p e d ef> >

0 .. 10 .. 1
COAS, v1.0 Viewpoints April 2001 3-7

3

site
ich is

ion

 type

e
3.2.7 Remote Observations Viewpoint

Figure 3-7 The operations and attributes for ObservationRemote and its subclasses.

ObservationRemote encapsulates remote references for observations. A remote
observation is either a composite observation or an atomic observation. A compo
observation aggregates a set of observations, like a set of lab values, each of wh
an atomic observation, with a single data value.

See Section 3.2.10, “Browsing Access Viewpoint,” on page 3-11 for more informat
about the remote browsing style of access.

See Section 3.4.2, “ObservationRemote Interface,” on page 3-31 for the interface
specification.

See Section 3.4.4, “CompositeObservationRemote Interface,” on page 3-34 for the
specification.

See Section 3.4.3, “AtomicObservationRemote Interface,” on page 3-33 for the typ
specification.

AtomicObservationRemote

get_observation_data()
get_observation_data_with_pol icy()

<<Interface>>

ObservationValue

< <Typedef>>

0..10..1

+observation_value

CompositeObservationRemote

count_observations()
get_observations_by_time()
get_observations_by_qual i fier()
get_observations_with_pol icy()
get_leaf_observations()
get_leaf_observations_by_time()
get_leaf_observations_by_qual i fier()
get_leaf_observations_with_pol icy()
get_leaf_observations_by_value_type()
get_relations_toward_root()
get_relations_away_from_root()

<<Interface>>

ObservationRemote

observation_code : Qual i fiedCode

get_observation_time()
get_observed_subject()
get_root_observation()
get_path_from_root()
get_al l_qual i fiers()
get_qual i fiers()
is_this_root()
is_this_atomic()

<<Interface>>
3-8 Clinical Observations Access Service, v1.0 April 2001

3

ilar
ue
3.2.8 Common Access Operations Viewpoint

Figure 3-8 Common “get_*()” style operations on multiple interfaces.

This viewpoint shows that many interfaces have common operation names. A sim
operation name implies similar semantics for the operation, though the return val
may be local (QueryAccess), remote (BrowseAccess), or arriving asynchronously
(AsynchAccess).

See the following for some of the different styles of access:

• Section 3.5.2, “QueryAccess Interface,” on page 3-45

• Section 3.2.10, “Browsing Access Viewpoint,” on page 3-11

• Section 3.2.11, “Asynchronous Access Viewpoint,” on page 3-12

Query Ac cess

c ount _obser v ations ()
g e t_o bser v a ti on()
g e t_o bser v a ti ons ()
g e t_o bser v a ti ons _b y _ti m e()
g e t_o bser v a ti ons _b y _qual if ie r()
g e t_o bser v a ti ons _wit h_pol ic y ()

Observ edS ubjec t

count _obs erv at ions ()
ge t_obser v at ion s _by _t im e()
ge t_obser v at ion s _by _qua lif ie r()
ge t_obser v at ion s _wit h_po lic y ()
ge t_ roo t_ob s erv a tions ()
ge t_ le a f _ob s erv a tions ()
ge t_any _ob s erv a tion ()
ge t_ f irst _obs erv at ion ()
ge t_ la s t_o bs erv a tion ()
ge t_candi dat e_observ at ions ()
ge t_ex act _ope rat ion_ ty pe s ()

Br owseAcc e ss

ge t_observ ed_subjec t()
ge t_observ ed_subjec ts ()
ge t_observ ed_subjec t_ f o r_observ a tion_id ()
ge t_observ ed_subjec ts _f or_observ at ion_ ids ()
coun t_observ a tions ()
ge t_observ at ion()
ge t_observ at ions ()
ge t_observ at ions _by _t im e()
ge t_observ at ions _by _qualif ie r()
ge t_observ at ions _with_polic y ()As y nc hA ccess

coun t_observ a tions ()
ge t_observ at ion()
ge t_observ at ions ()
ge t_observ at ions _by _t im e()
ge t_observ at ions _by _qualif ie r()
ge t_observ at ions _with_polic y ()
canc el_get ()

C om pos iteObs erv a tionR em ote

count _obse rv at io ns ()
ge t_obser v ati ons _by _t im e()
ge t_obser v ati ons _by _qua lif ie r()
ge t_obser v ati ons _wit h_po lic y ()
ge t_ le a f _obs erv at ions ()
ge t_ le a f _obs erv at ions_by _ t ime()
ge t_ le a f _obs erv at ions_by _q ualif ier ()
ge t_ le a f _obs erv at ions_with_ polic y ()
ge t_ le a f _obs erv at ions_by _v a lue _ ty pe ()
ge t_ rel at ion s _to ward_ root ()
ge t_ rel at ion s _away _f rom _roo t()
COAS, v1.0 Viewpoints April 2001 3-9

3

he
local
.

g

tion
3.2.9 Simple Query Access Viewpoint

Figure 3-9 The QueryAccess interface is the simplest interface for query access.

QueryAccess is the most straightforward and fundamental of all the components. T
client passes a query to the server and receives a response synchronously, as a
struct. The client blocks until the server returns the results or throws an exception

QueryAccess has operations which provide a growing list of parameters for filterin
the observations known by the server.

See Section 3.5.2, “QueryAccess Interface,” on page 3-45 for a detailed specifica
of the interface.

AccessComponent
<<Interface>>

QueryAccess

count_observations()
get_observation()
get_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()

<<Interface>>
3-10 Clinical Observations Access Service, v1.0 April 2001

3

piece

. The

onal
3.2.10 Browsing Access Viewpoint

Figure 3-10 The main interfaces involved with browsing

BrowseAccess makes use of remote proxies to explore the servers store of
observations. A client can interactively access information a piece at a time. Each
of information retrieved has links to other pieces of information that the client may
access, with other queries possible based on the context of the previous requests
server is required to keep context on the references passed back for this navigati
convenience.

AccessComponent
<<Interface>>

BrowseAccess

get_observed_subject()
get_observed_subjects()
get_observed_subject_for_observation_id()
get_observed_subjects_for_observation_ids()
count_observations()
get_observation()
get_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()

<<Interface>>

ObservationRemote

observation_code : QualifiedCode

get_observation_time()
get_observed_subject()
get_root_observation()
get_path_from_root()
get_all_qualifiers()
get_qualifiers()
is_this_root()
is_this_atomic()

<<Interface>>

CompositeObservationRemote

count_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_pol icy()
get_leaf_observations()
get_leaf_observations_by_time()
get_leaf_observations_by_qual ifier()
get_leaf_observations_with_policy()
get_leaf_observations_by_value_type()
get_relations_toward_root()
get_relations_away_from_root()

<<Interface>>

AtomicObservationRemote

get_observation_data()
get_observation_data_with_policy()

<<Interface>>

ObservedSubject

observed_subject_id : ObservedSubjectId

count_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()
get_root_observations()
get_leaf_observations()
get_any_observation()
get_first_observati on()
get_last_observati on()
get_candidate_observations()
get_exact_observation_types()

<<Interface>>

AbstractManagedObject
<<Interface>>
COAS, v1.0 Viewpoints April 2001 3-11

3

d

 adds

f

te

on of

r an

ption

rver

ay be
est,

ding.
Interactive access may be useful when the client program displays the results an
capabilities to the user after each command. A minimum of information has to be
passed between the client and server with each action, although this mechanism
responsibility to the server to maintain the lifecycle of a potentially large number o
objects.

BrowseAccess has a number of operations that return object references to a remo
ObservedSubject or ObservationRemote .

See Section 3.5.1, “BrowseAccess Interface,” on page 3-43 for a detailed descripti
this interface.

The ObservedSubject interface encapsulates the set of observations about one
observed subject, typically a person, though a subject could be a tissue sample o
animal in a veterinary setting.

See Section 3.4.6, “ObservedSubject Interface,” on page 3-38 for a detailed descri
of this interface.

3.2.11 Asynchronous Access Viewpoint

Figure 3-11 The interfaces dealing with asynchronous query invocations.

AsynchAccess allows a client to request information with the results delivered
asynchronously. This prevents the client from having to do a blocking call to the se
until the results can be returned. Asynchronous access may have various uses:

• Partial results: an asynchronous interface can return a result in pieces. This m
useful for something like image sets, to show the first one while receiving the r
as well as for federation (send results back as they are received from various
sources).

• Single-threaded clients: A single-thread GUI client could, for example, tend to
repaint and user-click responsibilities while asynchronous requests are outstan

A c c e s s C o m p o n e n t
< < In t e r fa c e > >

A s y n c h A c c e s s

c o u n t _ o b s e rva t io n s ()
g e t _ o b s e rva t io n ()
g e t _ o b s e rva t io n s ()
g e t _ o b s e rva t io n s _ b y _ t im e ()
g e t _ o b s e rva t io n s _ b y _ q u a l i fi e r ()
g e t _ o b s e rva t io n s _ w i t h _ p o l i c y ()
c a n c e l_ g e t ()

< < In t e r fa c e > >
3-12 Clinical Observations Access Service, v1.0 April 2001

3

o the

 a

m one

ses,
olve

in its

tion

se of

w.

f

or a
• Multiple requests: a client can post several simultaneous requests and process
results in the order they are received, rather than proceeding serially from one t
next. Without this, results from a fast server could, in effect, wait on results from
slow server.

• Query portability between servers: an asynchronous request can be passed fro
server to another, which responds directly to the client.

• Asynchronous model: for servers that get their data from asynchronous proces
an asynchronous mechanism may be the best fit. For example, DICOM can inv
response times of millisecond to milli-decade (if the media is off-line), so a
DsObservationAccess server which provides this data may want to provide it
asynchronously, to match the source.

AsynchAccess affords asynchronous posting of results because the client passes
own object reference to an AsynchCallback object. This points up some potential
drawbacks to asynchronous access:

• Firewalls: a client behind a firewall may not be able to receive the callback.

• The client can no longer rely on TCP-level time-outs which bound a query dura
for a synchronous call. Instead, the client must take responsibility to track
outstanding requests and provide some ability to handle requests that fail becau
a network outage or some other traumatic termination.

• If multiple requests are outstanding, the client must hold the state (ClientCallId)
requests in order to identify them when fulfilled.

• The client must be prepared for multiple, partial returns to a single request.

The AsynchAccess interface has operations similar to the QueryAccess synchronous
interface, though instead of “real” return values, the operations all return a
ServerCallId value, which simply identifies the request from the server point of vie
AsynchAccess also has an operation to cancel an outstanding request. See
Section 3.5.3, “AsynchAccess Interface,” on page 3-49 for a detailed description o
these operations.

The AsynchCallback interface is implemented by the client to the
DsObservationAccess server. The server calls it back with the results, or with an
exception condition. See Section 3.5.4, “AsynchCallback Interface,” on page 3-52 f
detailed description of the interface.
COAS, v1.0 Viewpoints April 2001 3-13

3

er)

 back

 that

ing
3.2.12 Event Management Viewpoint

Figure 3-12 The consumer and supplier interfaces involved with event management.

The DsObservationAccess service supports querying for observations that occur in
the future. This support is similar to asynchronous access in that a client (consum
registers an interest in particular observations, and the server (supplier) calls them
with the information at some future time. However, the callback may happen
repeatedly since the interest in particular observations translates into a subscription
lasts at least as long as the lifetime of the EventSupplier . Servers may add value (not
required or specified herein) by offering a subscription qualifier for a persistent
subscription, which survives across client and/or server restarts.

ConsumerAccess and SupplierAccess are the components that manage the
registration to consume and supply future observations, respectively. The event
mechanism was designed to give flexibility in connecting up event endpoints, includ
consideration to do the following:

• Facilitate the use of the OMG Notification Service or Event Service as an
intermediary channel.

AbstractFactory

max_connections : ConnectionId
current_connections : ConnectionIdSeq

AccessComponent

ConsumerAc cess

create_consumer()
get_consumer_by _id()

Ev entConsumer

connection_id : ConnectionId

obtain_subscription_ty pes()
connect_structured_push_supplier()
get_connected_supplier()

+created_by

+creations

SupplierAccess

create_supplier()
get_supplier_by _id()

Ev entSupplier

connection_id : ConnectionId

obtain_of f ered_ty pes()
connect_pus h_consumer()
get_connected_consumer()
subscribe()
describe_subscription()
generate_tes t_ev ent()

+my Consumer

+my Supplier

+created_by
+creations

AbstractManagedObject

done()

CosEventComm::PushConsumer

push()
disconnect_push_consumer()

CosEv entComm::PushSupplier

disconnect_push_supplier()
3-14 Clinical Observations Access Service, v1.0 April 2001

3

plier

he

ace.

 a

e.

s. See
 the

a
• Allow consumer and supplier endpoints to connect themselves to one another,
without an intermediary channel.

• Allow the use of an external management application to connect consumer/sup
endpoints and channels, without explicit custom-coding assistance from the
endpoints or channels for such an external management application.

The AbstractFactory interface contains two common attributes for connections
(maximum and current amount), which are needed by both the ConsumerAccess and
SupplierAccess . See Section 3.7.5, “AbstractFactory Interface,” on page 3-64 for t
details.

The ConsumerAccess adds an operation to instantiate an EventConsumer and to
access any formerly-created EventConsumer by its ID number, a unique number
determined by the ConsumerAccess at instantiation. See Section 3.6.4,
“ConsumerAccess Interface,” on page 3-58 for a detailed description of this interf

The SupplierAccess extends the capability of the AbstractFactory just as did
ConsumerAccess . See Section 3.6.3, “SupplierAccess Interface,” on page 3-57 for
detailed description of this interface.

The EventConsumer interface inherits from the CosEventComm::PushConsumer
interface to facilitate use with the OMG CosEvent Service. See Section 3.6.2,
“EventConsumer Interface,” on page 3-55 for a detailed description of the interfac

The EventSupplier interface inherits from the CosEventComm::PushSupplier
interface to facilitate use with the OMG CosEvent Service. The EventSupplier
includes operations to establish a connection, and to begin a subscription to event
Section 3.6.1, “EventSupplier Interface,” on page 3-53 for a detailed description of
interface.

3.3 Data Type Definitions

The following sections describe all the IDL for the data types used within the
DsObservationAccess module.

#ifndef _DS_OBSERVATION_ACCESS_IDL_
#define _DS_OBSERVATION_ACCESS_IDL_

...
module DsObservationAccess {
 ...

};

#endif // _DS_OBSERVATION_ACCESS_IDL_

The “Ds” prefix of DsObservationAccess stands for “Domain Service.” All OMG
specifications from a domain task force are expected to start with “Ds” to isolate
particular name space from potential clashes.
COAS, v1.0 Data Type Definitions April 2001 3-15

3

3.3.1 Include Files
#include <CosNaming.idl>
#include <CosTrading.idl>
#include <TerminologyServices.idl>
#include <NamingAuthority.idl>
#include <PersonIdService.idl>
#include <NamingAuthority.idl>
#include <CosEventComm.idl>
#include <CosEventChannelAdmin.idl>
#include <orb.idl>

3.3.2 External Typedefs

These definitions rename types from other standards. This section delineates all
DsObservationAccess dependencies on other standards.

typedef PersonIdService::QualifiedPersonId ObservedSubjectId;

Description: Observed subjects are identified with a QualifiedPersonId
from the PIDS standard. The qualification with a naming
authority is important, since there could be overlap in patient
identifiers at two locations.

typedef TerminologyServices::QualifiedCode QualifiedCode;

Description: A QualifiedCode has an embedded NamingAuthority that
prevents collisions between common, local names.

typedef NamingAuthority::QualifiedNameStr QualifiedCodeStr;

Description: QualifiedCodeStr has a one-to-one mapping with
QualifiedCode . The format for the contenst of
QualifiedNameStr is well defined. Strings must begin with a
colon-delimited section containing one of the
NamingAuthority::RegistrationAuthority items: either
OTHER, ISO, DNS, IDL, or DCE. Following the
RegistrationAuthority is a domain, followed by a slash “/”,
and then the particular name (which can have additional
slashes as namespace dividers).

For example, the QualifiedCodeStr
“DNS:omg.org/DsObservationAccess/ASYNC_OBSERVATI
ON_COUNT” has a registration authority of DNS (internet
domain name service), a domain of omg.org, and a name
within the DsObservationAccess namespace.
3-16 Clinical Observations Access Service, v1.0 April 2001

3

3.3.3 Forward Declarations

interface AbstractFactory;
interface AbstractManagedObject;
interface AccessComponent;
interface AsynchCallback;
interface AsynchAccess;
interface AtomicObservationRemote;
interface BrowseAccess;
interface CompositeObservationRemote;
interface ConsumerAccess;

Description
(continued):

The NamingAuthority::translation_library interface is
designed to be implemented locally by servers to translate
between QualifiedName (we rename as QualifiedCode) and
QualifiedNameStr (we call this QualifiedCodeStr).

typedef PersonIdService::DomainName IdDomainName;

Description: Each COAS server will have one default PIDS domain, which
is identified by a DomainName .

typedef PersonIdService::IdentificationComponent IdentificationComponent;

Description: The PIDS server is an instance of an
IdentificationComponent .

typedef CosNaming::NamingContext NamingContext;

Description: The relevant CosNaming server is an instance of a
NamingContext .

typedef CosTrading::TraderComponents TraderComponents;

Description: The relevant Trader service is an instance of a
TraderComponents .

typedef TerminologyServices::TerminologyService TerminologyService;

Description: The relevant TerminologyService is an instance of
TerminologyService .

typedef CosEventComm::PushConsumer PushConsumer;

Description: The EventConsumer is a subclass of
CosEventComm::PushConsumer .

typedef CosEventComm::PushSupplier PushSupplier;

Description: The EventSupplier is a subclass of
CosEventComm::PushSupplier .

typedef CORBA::TypeCode TypeCode;

Description: A TypeCode is a CORBA interface that is used to perform
introspection on all IDL-defined data types.
COAS, v1.0 Data Type Definitions April 2001 3-17

3

out

erent
will
ted
interface ConstraintLanguageAccess;
interface EventConsumer;
interface EventSupplier;
interface ObservationDataIterator;
interface ObservationLoader;
interface ObservationRemote;
interface ObservationRemoteIterator;
interface ObservedSubject;
interface QualifiedCodeIterator;
interface QueryAccess;
interface SupplierAccess;

These forward declarations for interfaces facilitates the grouping of definitions with
concern for precedence, since all interfaces are declared here.

3.3.4 AccessComponentData

struct AccessComponentData {

QueryAccess query_access;

BrowseAccess browse_access;

AsynchAccess asynch_access;

ConstraintLanguageAccess constraint_access;

ObservationLoader observation_loader;

ConsumerAccess consumer_access;

SupplierAccess supplier_access;

};

AccessComponentData provides a means to supply references to all implemented
components via AccessComponent.get_components() . This is a convenience for
clients that have a single reference to a single component, and wish to use a diff
component. Since different servers may have different levels of conformity, some
implement a given component and others will not. If a component is not implemen
by the server, that attribute will be null.

For example, if a client has a reference to a BrowseAccess component, and now
wishes to use a QueryAccess component, the client can call get_components() on his
BrowseAccess component and examine the query_access field. If query_access is
non-null, that component is implemented.

query_access

Description: Holds QueryAccess reference if implemented by this server.
3-18 Clinical Observations Access Service, v1.0 April 2001

3

ot

3.3.5 AsynchException

struct AsynchException {

QualifiedCodeStr exception_name;

string message;

};

AsynchException is a struct because the asynchronous callback mechanism cann
employ the typical exception mechanism of CORBA synchronous call. Instead, a
request that results in an exception must be delivered to the AsynchCallback interface,
just as a regular result is delivered, with a struct.

browse_access

Description: Holds BrowseAccess reference if implemented by this
server.

asynch_access

Description: Holds AsynchAccess reference if implemented by this
server.

constraint_access

Description: Holds ConstraintLanguageAccess reference if implemented
by this server.

observation_loader

Description: Holds ObservationLoader reference if implemented by this
server.

consumer_access

Description: Holds ConsumerAccess reference if implemented by this
server.

supplier_access

Description: Holds SupplierAccess reference if implemented by this
server.

exception_name

Description: The name of the exception resulting from the asynchronous
request.

message

Description: A text description of the exception.
COAS, v1.0 Data Type Definitions April 2001 3-19

3

y

by
re,

h is
hese

tion

n.
3.3.6 ObservationData

typedef any ObservationData;

struct ObservationDataStruct {

QualifiedCodeStr code;

sequence<ObservationDataStruct> composite;

sequence<ObservationDataStruct> qualifiers;

sequence<any,1> value;

};

ObservationData is the heart of the query mechanism. Observations are passed b
value via the Corba::any type, which enables extensibility by allowing the possibility
of using valuetype or other structured definitions for observations in the future or
local agreement in specialized environments. In this specification a single structu
ObservationDataStruct , is defined to contain all types of observations.

ObservationDataStruct encapsulates both composite and atomic observations, whic
accomplished by including attributes for both an aggregation and a single value. T
attributes, composite and value , are intended to be used in a mutually exclusive
manner. One of the two attributes should be a zero-length sequence. An Observa
must be a composite observation or an atomic observation, but not both.

code

Description: The name of the observation type, as qualified by the
NamingAuthority embedded in the QualifiedCodeStr .

composite

Description: A sequence of observations which compose this observatio
The attribute composite may have zero or more
ObservationDataStruct items. The composite attribute must
have zero items if this observation has a non-zero value
attribute, which would make it an atomic, rather than
composite, observation.

Note that each of the aggregated ObservationDataStruct
items may, in turn, include other observations in their
composite field, creating a “tree” of observations.
3-20 Clinical Observations Access Service, v1.0 April 2001

3

 It
nt

n

a

y

s

r
3.3.6.1 ObservationQualifier

3.3.7 ObservationId

struct ObservationId {

 QualifiedCodeStr code;

 string opaque;
};

An ObservationId uniquely identifies a particular COAS observation within a server.
is persistent over time, and can be stored by a client for use later. However, a clie
may not create or modify an ObservationId .

qualifiers

Description: A sequence of observations that modify the observation(s) i
the value or composite attribute. Qualifiers modify all of the
data “beneath” them in a hierarchy. For example, a modifier
of “Normalcy=abnormal” found in a composite observation
would apply to all the items in the composite. However,
qualifiers found lower in a tree of data can override modifiers
found higher up in the tree, so a leaf observation could have
modifier “Normalcy=normal,” which applied to just that leaf,
despite any qualifier higher-up in the tree.

value

Description: The payload for this observation. The payload must be empt
(zero items in sequence) if this observation is a composite
observation. The only reason that value is a sequence is to
allow a zero-length sequence.

For an atomic observation, which has a payload, the content
within value[0] , within the Corba::any , is a data type that
associates with the “code” field. For each code used for an
atomic observation, a single data type must be designated fo
the return value.

typedef ObservationData ObservationQualifier;

Description: This typedef shows that Qualifiers are simply other
observations.
COAS, v1.0 Data Type Definitions April 2001 3-21

3

e,
ith

s in
r

dle”
ll

e

an

The client is responsible for remembering the server associated with a given
ObservationId . If the client connects to multiple servers, the client can, for exampl
keep all ObservationId s from a particular server in a single collection associated w
the server, or store an ObservationId within some wrapping structure, which provided
fields for server identification as well.

There has been discussion of adding fields to ObservationId for a server name and
domain. Currently, there is no for provision for the globally identifying server name
some federation of COAS servers, so it is not clear what would be appropriate fo
server identification field(s).

One possibility for handling ObservationId s within a federation of COAS servers can
be implemented as follows:

Assume a federation of COAS servers where a higher-level server named “Mid
is a middleware conduit for some (static) group of lower-level COAS servers. A
queries to Middle are routed to one of many lower-level COAS servers, and th
resulting information is passed back to the client, including qualifiers like
ObservationId s. However, when supplying these ObservationId s to its client,
Middle must modify them slightly. The ObservationId s must allow Middle to
recognize the original source for the observation. To accomplish this, Middle c
prepend source-server information to the opaque string, followed by a clear
delimiter. Upon receipt of the ObservationId from a client, Middle strips out this
source-server information, using it to pass back a reconstituted ObservationId to the
proper source server.

3.3.8 NameValuePair

struct NameValuePair {

QualifiedCodeStr name;

any value;

};

code

Description: The code for this observation. This is read-only for a client,
and can be used for grouping or separating ObservationId s.

opaque

Description: Reserved for use by server.
3-22 Clinical Observations Access Service, v1.0 April 2001

3

ta, as

8
 to
d
A simple associate of name and value.

3.3.9 Subscription

struct Subscription {

sequence<ObservedSubjectId> who;

sequence<QualifiedCodeStr> what;

sequence<ObservationQualifier> qualifier;

sequence<NameValuePair> policy;
};

Subscription encapsulates all the parameters which make up a query for future da
needed for a SupplierAccess component.

3.3.10 TimeStamp

typedef string TimeStamp; // ISO 8601 representation, with restrictions

TimeStamp is a string representation of date and time, following the ISO 8601:198
standard, with some restrictions and modifications. The string format is restricted
the “extended” ISO 8601 format which includes delimiters, years must be specifie
with century digits, and a wildcard character is added. A complete TimeStamp format
is:

name

Description: The code for this pair.

value

Description: The value for this pair.

who

Description: The observed subject(s) of the subscription.

what

Description: The codes for the desired observation(s).

qualifier

Description: Any modifying observation(s) with which to filter.

policy

Description: Any policies that should override default policies of the
server.
COAS, v1.0 Data Type Definitions April 2001 3-23

3

one

,

ons
YYYY-MM-DDThh:mm:ss.dddTZD

(e.g., 1997-07-16T19:20:30.45+01:00) where:

YYYY = four-digit year (1582 minimum, 9999 maximum)
MM = two-digit month (01=January, etc.)
DD = two-digit day of month (01 through 31)
T = date/time separator
hh = two digits of hour (00 through 23; am/pm NOT allowed)
mm = two digits of minute (00 through 59)
ss = two digits of second (00 through 60; 60 indicates a positive leap second)
ddd = one or more digits for decimal fraction of a second (no limit on number of

digits)
TZD = time zone designator (Z to indicate UTC, or +hh:mm or -hh:mm from UTC)

Partial TimeStamp formats are allowed, which indicate “unknown” for items
omitted. For example, a TimeStamp consisting only of

1993-02-14

is interpreted as an unknown time on the 14th of February, 1993, while

13:10:30

is interpreted as an unknown date, with time of 13:10:30 in the server’s time z
(absence of a time zone designator indicates local time).

TimeStamp allows a character outside the ISO 8601 specification, a wildcard for
individual TimeStamp elements. TIME_WILDCARD = “?” is provided in the constants
section. Use this character to indicate that a specific field should be treated as
“unknown” for TimeStamp s received from COAS (output), and as a “wildcard” for
TimeStamp parameters supplied to COAS (input).

For example, receiving “1999-??-02T22:00:00Z” as an output TimeStamp would be
equivalent to the concept of “2nd day of an unknown month in 1999, at 22:00:00
GMT”. For an input TimeStamp , this string would represent, for matching purposes
“the 2nd day of any month in 1999, at 22:00:00 GMT”.

The lower bound for TimeStamp is specified as “1582-10-15T00:00:00Z”, the date
when the Gregorian calendar was put into effect, putting month and day calculati
on a firm basis.

3.3.11 TimeSpan

struct TimeSpan {

TimeStamp start_time;

TimeStamp stop_time;

};
3-24 Clinical Observations Access Service, v1.0 April 2001

3

,

uest,

e

TimeSpan encapsulates a duration of time with two bounding TimeStamp s. The
semantics for interpreting the endpoints is INCLUSIVE. The endpoints are part of
included in, the span of time. This span is defined for use in COAS instead of
employing the ISO 8601 notation of <timestamp>/<timestamp> within one string.

3.3.12 Constants
const string EARLIEST_TIME = “1582-10-15T00:00:00Z”;
const string LATEST_TIME = “9999-12-31T23:59:59Z”;
const string TIME_WILDCARD = “?”;

const QualifiedCodeStr PARTIAL_RESULT =
“DNS:omg.org/DsObservationAccess/PARTIAL_RESULT”;

const QualifiedCodeStr COMPLETING_RESULT =
“DNS:omg.org/DsObservationAccess/COMPLETING_RESULT”;

COMPLETING_RESULT and PARTIAL_RESULT are used by the AsynchAccess
interface during a callback to indicate the status of the callback--completing a req
or only partially completing a request.

const QualifiedCodeStr ASYNC_OBSERVATION_COUNT =
“DNS:omg.org/DsObservationAccess/ASYNC_OBSERVATION_COUNT”;

typedef unsigned long ASYNC_OBSERVATION_COUNT_type;

ASYNC_OBSERVATION_COUNT is an observation type, used solely to identify the
return value of the operation AsynchAccess.count_observations() . It does not make
sense to use this code in a query, since count_observations() explicitly names the
“what” part of the query parameters. Only the return value needs identification. Th
value in that returned ObservationData is an unsigned long , and shown by the typedef
ASYNC_OBSERVATION_COUNT_type .

const QualifiedCodeStr EVENT_SOURCE_DOMAIN =
“DNS:omg.org/DsObservationAccess/EVENT_SOURCE_DOMAIN”;

const QualifiedCodeStr EVENT_SOURCE_SERVER_NAME =
“DNS:omg.org/DsObservationAccess/EVENT_SOURCE_SERVER_NAME”;

const QualifiedCodeStr EVENT_NAME =
“DNS:omg.org/DsObservationAccess/EVENT_NAME”;

const QualifiedCodeStr TEST_EVENT =
“DNS:omg.org/DsObservationAccess/TEST_EVENT”;

typedef long TEST_EVENT_type;

EVENT_* constants apply to the SupplierAccess component:

EVENT_SOURCE_DOMAIN: the enterprise domain (likely a PIDS context) within
which the event originated.

start_time

Description: The starting time of the span.

stop_time

Description: The ending time of the span.
COAS, v1.0 Data Type Definitions April 2001 3-25

3

ar

 a
EVENT_SOURCE_SERVER_NAME: the name of the DsObservationAccess service
that originated the event.

EVENT_NAME: this code is intended for use when a CosNotification service is
employed. The CosNotification service allows filtering within the channel, based on
name-value pairs, so this code would be used to identify the name of the particul
event, with a value equal to the QualifiedCodeStr of the event itself.

TEST_EVENT is the observation code used by the SupplierAccess when responding to
SupplierAccess.generate_test_event() . The value returned in the ObservationData is
a long , as shown by the typedef TEST_EVENT_type .

const QualifiedCodeStr TRADER_1_0_CONSTRAINT_LANGUAGE =
“DNS:omg.org/DsObservationAccess/TRADER_1_0_CONSTRAINT_LANGUAGE”;

const QualifiedCodeStr OCL_1_1_CONSTRAINT_LANGUAGE =
“DNS:omg.org/DsObservationAccess/OCL_1_1_CONSTRAINT_LANGUAGE”;

TRADER_1_0_CONSTRAINT_LANGUAGE and OCL_1_1_CONSTRAINT_LANGUAGE
are two possible choices for the language used by ConstraintLanguageAccess .
However, the choice of constraint language is left to the implementation.

const QualifiedCodeStr COAS_OBSERVATION_ID =
“DNS:omg.org/DsObservationAccess/COAS_OBSERVATION_ID”;

typedef ObservationId COAS_OBSERVATION_ID_type;

COAS_OBSERVATION_ID is the code for a qualifier, which provides a unique COAS
identifier for an observation. Any qualifier with this code will have, in its value
CORBA::any , a struct of type ObservationId , as indicated by
COAS_OBSERVATION_ID_type . In other words, the one-to-one association between
name-value pair are, in this instance, COAS_OBSERVATION_ID and ObservationId .

3.3.13 Internal Typedefs

typedef long EndpointId;

Description: EndpointId is used by the Event system, ConsumerAccess
and SupplierAccess , to identify event endpoints.

typedef string ConstraintExpression;

Description: ConstraintExpression is used to supply a constraint to
ConstraintLanguageAccess .

typedef QualifiedCodeStr ConstraintLanguage;

Description: ConstraintLanguage is specified by the
ConstraintLanguageAccess , as a language supported by that
component.

typedef NameValuePair QueryPolicy;

Description: Each policy is a name-value pair.
3-26 Clinical Observations Access Service, v1.0 April 2001

3

3.3.14 Sequences

typedef sequence<AtomicObservationRemote> AtomicObsRemoteSeq;

typedef sequence<ConstraintLanguage> ConstraintLanguageSeq;

typedef sequence<EndpointId> EndpointIdSeq;

typedef sequence<ObservationData> ObservationDataSeq;

typedef sequence<ObservationDataStruct> ObservationDataStructSeq;

typedef sequence<ObservationId> ObservationIdSeq;

typedef sequence<ObservationQualifier> ObservationQualifierSeq;

typedef sequence<ObservationRemote> ObservationRemoteSeq;

typedef sequence<ObservedSubjectId> ObservedSubjectIdSeq;

typedef sequence<ObservedSubject> ObservedSubjectSeq;

typedef sequence<QualifiedCodeStr> QualifiedCodeStrSeq;

typedef sequence<QueryPolicy> QueryPolicySeq;

typedef sequence<Subscription> SubscriptionSeq;

The above IDL defines the sequence data types for the DsObservationAccess service.

3.3.15 Exceptions

exception DuplicateCodes {

QualifiedCodeStrSeq codes;

};

typedef long ServerCallId;

Description: Within the AsynchAccess , each call from a client is
identified by the server with a ServerCallId , unique within the
lifetime of the server. This identifier can be used to cancel the
request if necessary.

typedef long ClientCallId;

Description: A client to the AsynchAccess should identify each of its
calls to a server with a ClientCallId , unique within all
outstanding requests. This identifier is returned to the client
with the result, so that the client can match up requests with
responses, should there be more than one call outstanding.
COAS, v1.0 Data Type Definitions April 2001 3-27

3

 is

 ids

d

d

 A

lid
The DuplicateCodes exception is raised when the same code is passed multiple
times as a parameter to an operation. A complete list of distinct duplicated codes
returned.

exception DuplicateIds {

ObservedSubjectIdSeq ids;

};

The DuplicateIds exception is raised when the same ObservedSubjectId is passed
multiple times as a parameter to an operation. A complete list of distinct duplicated
is returned.

exception DuplicateOids {

ObservationIdSeq oids;

};

The DuplicateOids exception is raised when the same ObservationId is passed
multiple times as a parameter to an operation. A complete list of distinct duplicate
ObservationIds is returned.

exception DuplicatePolicies {

QueryPolicySeq policies;

};

The DuplicatePolicies exception is raised when the same QueryPolicy is passed
multiple times as a parameter to an operation. A complete list of distinct duplicate
policies is returned.

exception DuplicateQualifiers {

ObservationQualifierSeq qualifiers;

};

The DuplicateQualifiers exception is raised when the same
ObservationQualifierData is passed multiple times as a parameter to an operation.
complete list of distinct duplicated qualifiers is returned.

exception InvalidCodes {

QualifiedCodeStrSeq codes;

};

The InvalidCodes exception is raised when an unrecognized (unsupported)
QualifiedCodeStr is passed as a parameter to an operation. A complete list of inva
codes is returned.
3-28 Clinical Observations Access Service, v1.0 April 2001

3

 list

eter

lete

o
e list
exception InvalidEndpointId {

EndpointIdSeq endpoint_ids;

};

The InvalidEndpointId exception is raised when an invalid EndpointId is passed as a
parameter to an operation. Only active connections may be specified. A complete
of invalid connection ids is returned.

exception InvalidConstraint {

string constraint;

};

The InvalidConstraint exception is raised when a constraint is passed as a param
to an operation and the server cannot parse the constraint in accordance with a
supported language. The invalid constraint is returned.

exception InvalidIds {

ObservedSubjectIdSeq ids;

};

The InvalidIds exception is raised when an ObservedSubjectId is passed as a
parameter to an operation when the server does not know about that ID. A comp
list of invalid ids is returned.

exception InvalidOids {

ObservationIdSeq oids;

};

The InvalidOids exception is raised when a ObservationId is passed as a parameter t
an operation when the server does not know about that observation ID. A complet
of invalid ids is returned.

exception InvalidPolicies {

QualifiedCodeStrSeq policies;

};

The InvalidPolicies exception is raised when an unrecognized (unsupported)
QueryPolicy is passed as a parameter to an operation. A complete list of invalid
policies is returned.

exception InvalidQualifiers {

QualifiedCodeStrSeq qualifiers;

};
COAS, v1.0 Data Type Definitions April 2001 3-29

3

t of

rt

t

mber

on

s).
rieval
The InvalidQualifiers exception is raised when an unrecognized (unsupported)
ObservationQualifierData is passed as a parameter to an operation. A complete lis
violating qualifiers is returned.

exception InvalidTimeSpan {

TimeSpan span;

};

The InvalidTimeSpan exception is raised when an invalid TimeSpan is passed as a
parameter to an operation. The time span may be incorrectly specified, with a sta
time greater than an ending time, or with unparsable items.

exception MaxConnectionsExceeded {

unsigned long max_connections;

};

The MaxConnectionsExceeded exception is raised when an event access objec
(EventSupplier or EventConsumer) already has reached its maximum supported
number of connections, and a client tries to create another one. The maximum nu
of connections is returned.

exception NotImplemented {

};

NotImplemented is raised when a particular COAS server does not implement a
particular operation. This exception allows a conformance class to have optional
operations. Any operation with this exception is optional.

exception NoSubscription {

};

The NoSubscription exception is raised trying to access subscription information
a EventSupplier when no subscription has been set.

3.4 Interface Specifications

3.4.1 Foundational Observation-Oriented Interfaces

The description of the DsObservationAccess interfaces begins with those that map
most closely to the COAS Information Model (i.e., Observation-Oriented interface
They support the successive refinement and interactive browsing styles of data ret
and data discovery.
3-30 Clinical Observations Access Service, v1.0 April 2001

3

3.4.2 ObservationRemote Interface

Figure 3-13 ObservationRemote Interface

interface ObservationRemote : AbstractManagedObject {

readonly attribute QualifiedCodeStr observation_code;

TimeSpan get_observation_time ();

ObservedSubject get_observed_subject ();

ObservationRemote get_root_observation ();

ObservationData get_path_from_root ();

ObservationQualifierSeq get_all_qualifiers ();

ObservationQualifierSeq get_qualifiers (
in QualifiedCodeStrSeq qualifier_names)

raises (
InvalidCodes);

boolean is_this_root ();

boolean is_this_atomic ();

};

ObservationRemote
observation_code : QualifiedCode

get_observation_time()
get_observed_subject()
get_root_observation()
get_path_from_root()
get_all_qualif iers()
get_qualifiers()
is_this_root()
is_this_atomic()

Abst ractManagedObject
COAS, v1.0 Interface Specifications April 2001 3-31

3

.

observation_code

Description: The code which identifies this observation.

get_observation_time()

Description: Return the TimeSpan associated with this observation.

get_observed_subject()

Description: Return a reference to the subject associated with this
observation.

get_root_observation()

Description: Return the root observation within which this observation is
contained. If this observation is the root, returns reference to
self. Server has responsibility to keep a context of all remote
observations that are browsed, to keep track of their context

get_path_from_root()

Description: Return the root observation as an ObservationData
containing the path elements to this observation. The
ObservationData returned contains the structure of the real
observation tree pruned of all observations that don’t lead to
this one.

get_all_qualifiers()

Description: Return all qualifiers.

get_qualifiers()

Description: Return the qualifier(s) specified by name in the input
parameter qualifier_names .

is_this_root()

Description: Returns true if this observation is a root observation.

is_this_atomic()

Description: Returns true if this observation is actually a subclass,
AtomicObservationRemote .
3-32 Clinical Observations Access Service, v1.0 April 2001

3

3.4.3 AtomicObservationRemote Interface

Figure 3-14 AtomicObservationRemote Interface

interface AtomicObservationRemote : ObservationRemote {

ObservationData get_observation_data ();

ObservationData get_observation_data_with_policy (
in QueryPolicySeq policy);

};

get_observation_data(

Description: Returns the (local) ObservationData item by value.

get_observation_data_with_policy()

Description: Returns the (local) ObservationData item by value, according
to overriding policies provided.

ObservationRemote

<<Interface>> AtomicObservationRemote

get_observation_data()
get_observation_data_with_policy()

<<Interface>>
COAS, v1.0 Interface Specifications April 2001 3-33

3

3.4.4 CompositeObservationRemote Interface

Figure 3-15 CompositeObservationRemote Interface

interface CompositeObservationRemote : ObservationRemote {

unsigned long count_observations (
in QueryPolicySeq search_depth_policy)

raises (
InvalidPolicies);

ObservationRemoteSeq get_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (

Observati onRe mote
<<Interface>>

Com po siteObse rva tion Rem ote

coun t_o bservati ons()
ge t_o bservati ons_ by_tim e()
ge t_o bservati ons_ availa ble()
ge t_o bservati ons_ by_qu alifi er()
ge t_o bservati ons_ with_ pol icy()
ge t_le af_ obse rva tion s()
ge t_le af_ obse rva tion s_by_ti me ()
ge t_le af_ obse rva tion s_by_q ual ifier()
ge t_le af_ obse rva tion s_with _po licy()
ge t_le af_ obse rva tion s_by_valu e_ typ e()
ge t_re lati ons_ towa rd_root()
ge t_re lati ons_ away_from _roo t()

<<Interface>>

ObservationRemoteSeq
<<Sequence>>

+observations
3-34 Clinical Observations Access Service, v1.0 April 2001

3

in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

AtomicObsRemoteSeq get_leaf_observations ();

AtomicObsRemoteSeq get_leaf_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

AtomicObsRemoteSeq get_leaf_observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

AtomicObsRemoteSeq get_leaf_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);
COAS, v1.0 Interface Specifications April 2001 3-35

3

t

r
AtomicObsRemoteSeq get_leaf_observations_by_value_type (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QualifiedCodeStr value_type,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationDataSeq get_relations_toward_root (
in QualifiedCodeStrSeq relation_name);

ObservationDataSeq get_relations_away_from_root (
in QualifiedCodeStrSeq relation_name);

};

count_observations(

Description: Returns the number of observations held by this
CompositeObservationRemote , according to the provided
search-depth policy. Passing in a sequence of 0 policies
indicates the use of the default policy for this server.

get_observation*()

Description: These operations are similar to the operations of the same
name on the QueryAccess interface, though returned as
references to ObservationRemote . However, observations
are matched and returned only within the “searchable” targe
population of observations, associated by reference to this
CompositeObservationRemote , at a depth of search
according to the policy SEARCH_DEPTH_POLICY. For
example, if the search-depth policy is
SEARCH_DEPTH_ONLY_ROOT, only this
CompositeObservationRemote will be searched (matched
against). With a search-depth policy of
SEARCH_DEPTH_DEEPEST_POSSIBLE , the searchable
population of observations consists of all observations which
might be referenced by any of the directly held references, o
their references, and so on.
3-36 Clinical Observations Access Service, v1.0 April 2001

3

r
e

n

e

e
get_leaf_observations()

Description: Returns a sequence of all leaf observations that occur unde
this node in the observation tree. These leaf observations ar
by definition atomic (not composite), and the references
returned are to AtomicObservationRemote .

get_leaf_observations_by_time(

Description: As above, matching for the given observation code and time
span in addition to atomicity. Time spans with end times
greater than the server’s current time are interpreted to mea
“up till the current time.” Indicate “all time previous to a
given time” with a time stamp that has EARLIEST_TIME as
the start time. Indicate “from a given time to now” with a
time stamp that has LATEST_TIME as the end time.
Therefore, a time span from EARLIEST_TIME to
LATEST_TIME is equivalent to a “don’t care” value. Note that
the “who” parameter is already part of the context of this
CompositeObservationRemote .

get_leaf_observations_by_qualifier()

Description: As above, matching for the given observation qualifiers in
addition.

get_leaf_observations_with_policy()

Description: As above, but overriding the default policies with the ones
provided.

get_relations_toward_root()

Description: Return observations that are related to this observation in th
direction toward of the root. This operation would be useful
after navigating down through a tree of observations, and
wishing to backtrack.

get_relations_away_from_root()

Description: Return observations that are related to this observation in th
direction away from the root. This would be the normal
direction of exploration, from root out towards other related
observations.
COAS, v1.0 Interface Specifications April 2001 3-37

3

3.4.5 ObservationRemoteIterator Interface

interface ObservationRemoteIterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
in unsigned long n,
out ObservationRemoteSeq observation_remote_seq);

};

3.4.6 ObservedSubject Interface

Figure 3-16 ObservedSubject Interface

max_left()

Description: This operation returns the number of items still left on the
iterator.

next_n()

Description: This operation returns the number of ObservationRemote
objects as an out parameter as is indicated by the passed in
‘n’ parameter or the maximum left. Removes the returned
objects from the iterator before returning.

Observ edSubject

observ ed_subject_id : Observ edSubjectId

count_observ ations()
get_observ ations_by _time()
get_observ ations_by _qualif ier()
get_observ ations_with_policy ()
get_root_observ ations()
get_leaf _observ ations()
get_any _observ ation()
get_f irs t_observ ation()
get_last_observ ation()
get_candidate_observ ations()
get_exact_observ ation_ty pes()

<<Interf ace>>

AbstractManagedObject
<<Interf ace>>
3-38 Clinical Observations Access Service, v1.0 April 2001

3

interface ObservedSubject : AbstractManagedObject {

readonly attribute ObservedSubjectId observed_subject_id;

unsigned long count_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemoteSeq get_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
COAS, v1.0 Interface Specifications April 2001 3-39

3

DuplicatePolicies);

ObservationRemoteSeq get_root_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

AtomicObsRemoteSeq get_leaf_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_any_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_first_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_last_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_candidate_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
3-40 Clinical Observations Access Service, v1.0 April 2001

3

e

f

InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_exact_observation_types (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

};

observed_subject_id

Description: The ID of the observed subject.

count_observations()

Description: Return the number of observations that match the given
search parameters.

get_observations*()

Description: Analogous to the QueryAccess interface, except that the
“who” is the current context’s ObservedSubject . See
Section 3.5.2, “QueryAccess Interface,” on page 3-45 for
details.

get_leaf_observations()

Description: Return observations which are not composites, but rather th
final, “leaf” nodes, with data. The server will match on any
observation within an observation tree and return object
references for each leaf observation in that tree. The server
returns a zero-length sequence if no observations match the
query.

get_any_observation()

Description: This does a query for the observation types and time span.
The server will match on any observation within an
observation tree and return an object reference for any one o
them. This is used when the client just needs a single
response to the query and it does not matter which of the
(potentially) multiple observations that match the query. The
server returns a null object reference if no observations match
the query.
COAS, v1.0 Interface Specifications April 2001 3-41

3

re
uery

or

t

e
3.5 Query-Oriented Interface Specifications

The second set of DsObservationAccess interfaces to be discussed are those that a
more function oriented (i.e., Query-Oriented interfaces). They support the use of q
functionality for retrieval of a lot of data in a single request.

get_first_observation(), get_last_observation()

Description: This does a query for the observation types and time span f
observations with this observation subject. The server will
match on any observation within an observation tree and
return an object reference for the first/last one in the time
span. The server returns a null if no observations match the
query.

get_candidate_observations()

Description: This does a query for the observation types, time span and
qualifiers for observations with this observation subject. The
server uses its own matching engine to determine if a
particular observation matches close enough to the query
criteria. The results are returned with the ones matching bes
being returned first

get_exact_observation_types()

Description: This does a query for the observation types (codes) and tim
span for observations with this observation subject. This
operation only returns observations which have codes that
match exactly to one of the “what” values. This is a
convenience method for employing the policy
SEARCH_SYNONYMOUS_CODES_FALSE .
3-42 Clinical Observations Access Service, v1.0 April 2001

3

3.5.1 BrowseAccess Interface

Figure 3-17 BrowseAccess Interface

interface BrowseAccess : AccessComponent {

ObservedSubject get_observed_subject (
in ObservedSubjectId who)

raises (
InvalidIds);

ObservedSubjectSeq get_observed_subjects (
in ObservedSubjectIdSeq who)

raises (
InvalidIds,
DuplicateIds);

ObservedSubject get_observed_subject_for_observation_id (
in ObservationId observation_id)

raises (
InvalidOids);

ObservedSubjectSeq get_observed_subjects_for_observation_ids (
in ObservationIdSeq observation_ids)

raises (
InvalidOids,
DuplicateOids);

unsigned long count_observations (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (

BrowseA cces s

get_observed_subject()
get_observed_subjects()
get_observed_subject_for_observation_id()
get_observed_subjects_for_observation_ids()
count_observations()
get_observation()
get_observations()
get_observations_by_time()
get_observations_by_qualifier()
get_observations_with_policy()

<<Interface>>

AccessComponent

<<Interface>>
COAS, v1.0 Query-Oriented Interface Specifications April 2001 3-43

3

InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemote get_observation (
in ObservationId observation_id)

raises (
InvalidOids);

ObservationRemoteSeq get_observations (
in ObservationIdSeq observation_ids)

raises (
InvalidOids,
DuplicateOids);

ObservationRemoteSeq get_observations_by_time (
in ObservedSubjectId who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by_qualifier (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
3-44 Clinical Observations Access Service, v1.0 April 2001

3

r

in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

};

3.5.2 QueryAccess Interface

Figure 3-18 QueryAccess Interface

get_observed_subject(), get_observed_subjects()

Description: Returns ObservedSubject for the ObservedSubjectId passed
in.

get_observed_subject_for_observation_id(),
get_subserved_subjects_for_observation_ids()

Description: Returns an ObservedSubject(Seq) for the
ObservationId(Seq) passed in. That is, the server determines
the subject that is associated with a given observation.

get_observation*()

Description: See Section 3.5.2, “QueryAccess Interface,” on page 3-45 fo
a complete definition of these operations. The difference here
is that references to ObservationRemote are returned instead
of (local) ObservationData .

Ac c es s C om pon en t

< < In terfac e> >

Q ue ry A c c es s

c ount_ob s e rva ti ons ()
g et_obs e rvat ion()
g et_obs e rvat ions ()
g et_obs e rvat ions _by_t im e()
g et_obs e rvat ions _by_qua l ifi e r()
g et_obs e rvat ions _w it h_po l ic y ()

< < In terfac e> >
COAS, v1.0 Query-Oriented Interface Specifications April 2001 3-45

3

interface QueryAccess : AccessComponent {

unsigned long count_observations (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationData get_observation (
in ObservationId observation_id)

raises (
InvalidOids);

ObservationDataSeq get_observations (
in ObservationIdSeq observation_ids)

raises (
InvalidOids,
DuplicateOids);

ObservationDataSeq get_observations_by_time (
in ObservedSubjectId who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationDataIterator the_rest)

raises (
InvalidIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationDataSeq get_observations_by_qualifier (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationDataIterator the_rest)

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
3-46 Clinical Observations Access Service, v1.0 April 2001

3

InvalidQualifiers,
DuplicateQualifiers);

ObservationDataSeq get_observations_with_policy (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationDataIterator the_rest)

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

};

count_observations()

Description: Return the number of observations which match the given
search parameters.

get_observation(), get_observations()

Description: Return the observation(s) corresponding to the passed in
ObservationId (s).

get_observations_by_time()

Description: Return all observations known by the server that match
criteria specified by the “who,” “what,” and “when”
parameters. A match is determined by the server’s matching
engine, in accordance with default policies.
In essence, the “who,” “what,” and “when” filter the database
of observations.

(continued)
COAS, v1.0 Query-Oriented Interface Specifications April 2001 3-47

3

er to
rators

Note – A server may not support iterators (See Section 3.7.2, “AccessComponent
Interface,” on page 3-60.), since iterators are remote objects and require the serv
keep state. In the cases where all observations fit in the sequence, and where ite
are not supported, the_rest will be null , and the returned ObservationDataSeq will
contain all the observations.

Description: Time spans with end times greater than the server’s current
time are interpreted to mean “through now,” so indicate the
concept “from a given time through now” with a time stamp
which has LATEST_TIME as the end time. Indicate the
concept of “all time previous to a given time” with a time
stamp which has EARLIEST_TIME as the start time.
Therefore, a time span from EARLIEST_TIME to
LATEST_TIME is equivalent to a “don’t care” for time, and
includes all time possible through now.
A wildcard for individual TimeStamp elements,
TIME_WILDCARD = “?”, is provided in the constants section.
Use this character to indicate that a specific field should be
treated as a wildcard. For example, “1999-??-02T22:00:00Z”
would be equivalent to the concept of “the 2nd day of any
month in 1999, at 22:00:00 GMT”.
Parsing for a wildcard is less efficient than a proper
timestamp, so use the constants mentioned above,
EARLIEST_TIME and LATEST_TIME , to indicate open-ended
searches in the past and searches which include the most
current information, rather than a TimeStamp filled with
wildcard characters.
The “max_sequence” parameter indicates the maximum
number to be returned within the ObservationDataSeq . A
client may choose to receive many or few items via the
synchronously returned ObservationDataSeq of
get_observation*() . If the server determines that more than
max_sequence observations meet the criteria for returning,
the remaining observations are returned via the iterator
“the_rest”.
3-48 Clinical Observations Access Service, v1.0 April 2001

3

e

3.5.3 AsynchAccess Interface

Figure 3-19 AsynchAccess Interface

interface AsynchAccess : AccessComponent {

ServerCallId count_observations (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in ClientCallId client_call_id,
in AsynchCallback client_callback);

ServerCallId get_observation (
in ObservationId observation_id,
in ClientCallId client_call_id,
in AsynchCallback client_callback);

ServerCallId get_observations (
in ObservationIdSeq observation_ids,
in ClientCallId client_call_id,

get_observations_by_qualifier()

Description: Return observations that match all parameters, including th
additional qualifiers. The qualifiers provided in the parameter
are for filtering the database, NOT to indicate what qualifiers
to return. Specify what qualifiers to return with
QUALIFIER_RETURN_POLICY.

get_observations_with_policy()

Description: Return observations that match all parameters, according to
the overriding policies specified in the “policy” parameter.

Ac cessCom ponent

<< Interface>>

As ynchAccess

count_observat ions ()
get_observation()
get_observations ()
get_observations_by_tim e()
get_observations_by_qualifier()
get_observations_with_policy ()
cancel_get()

<< In terface >>
COAS, v1.0 Query-Oriented Interface Specifications April 2001 3-49

3

for
he
RB,

atic
d
tic
t

ng a
s
r, the
in AsynchCallback client_callback);

ServerCallId get_observations_by_time (
in ObservedSubjectId who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
in ClientCallId client_call_id,
in AsynchCallback client_callback);

ServerCallId get_observations_by_qualifier (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
in ClientCallId client_call_id,
in AsynchCallback client_callback);

ServerCallId get_observations_with_policy (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
in ClientCallId client_call_id,
in AsynchCallback client_callback);

void cancel_get (
in ServerCallId server_call_id);

};

The AsynchAccess component offers a means to make requests without blocking
the result synchronously. However, it adds complexity to the client. In particular, t
client must instantiate a callback interface, register this CORBA object with the O
and take responsibility for timing out a request.

In contrast, a synchronous CORBA call can time-out a request in a relatively autom
fashion, with a timer in the TCP layer, typically set to 30 seconds or 1 minute, an
generally provided within an ORB. An asynchronous request has no such automa
timer support in the ORB. A client must provide logic so that when a call does no
complete, for whatever reason, the client does the right thing.

Also, there is no implied timing dependency between finishing a request and getti
reply. An asynchronous reply might begin before the request is completed. Client
must be prepared for an answer callback before they begin a request. In particula
client_call_id should be ready for use at the callback implementation before the
request is made, to identify any response if multiple calls are outstanding.
3-50 Clinical Observations Access Service, v1.0 April 2001

3

ot

,

count_observations()

Description: Returns the number of observations that match the given
search parameters.

get_observation*()

Description: The semantics for get_observation*() queries are the same as
Section 3.5.2, “QueryAccess Interface,” on page 3-45.
However, the results are delivered asynchronously.
In addition to the standard get_observation*() parameters, the
client provides an object reference to an AsynchCallback .
The server calls back to that object reference in order to
return the results of the query.
Also, a client_call_id is provided by the client. The server
returns this value when it calls the AsynchCallback so that
the client can know which outstanding call is being returned
(assuming there are multiple outstanding calls for this client).
Therefore, the client should make certain that each ID is
unique within the scope of outstanding requests. For
implementation, a simple count of requests since instantiation
should be sufficient, if multiple calls can be outstanding at
one time. If the client does not make multiple outstanding
calls, the client_call_id has no utility and a constant can be
used.
The ServerCallId returned from get_observation*() is an ID
from the server for the request itself. The sole purpose of the
ServerCallId is for cancellation. This identifier distinguishes
the request uniquely within the server, among all requests
from all clients. Again, for implementation, a simple count of
incoming calls should be sufficient.

cancel_get()

Description: A client can notify the server to cancel a request that has n
yet completed. For example, consider a web browser when
the user clicks on the “stop” button. In COAS, the client
passes in the ServerCallId , which was previously returned
from the get_observation*() call. (Another alternative would
be to use ORB-specific calls to terminate the TCP connection
but that is outside the scope of COAS, and may not allow the
server to properly terminate processing.)
COAS, v1.0 Query-Oriented Interface Specifications April 2001 3-51

3

T
eturn

Note – The cancel_get() function is a courtesy to the server only. The server is NO
responsible to actually stop the call. The call may complete, and the server may r
the result by calling the AsynchCallback of the client. The client is responsible for
discarding the answer in this case. Another alternative would be to unregister the
AsynchCallback with the ORB.

3.5.4 AsynchCallback Interface

interface AsynchCallback {

void put_observations (
in ObservationDataSeq as_sequence,
in ObservationDataIterator as_iterator,
in ClientCallId client_call_id,
in QualifiedCodeStrSeq result_status);

void put_exception (
in ClientCallId client_call_id,
in AsynchException the_exception);

};

put_observations()

Description: Called by AsynchAccess server to return the results from
asynchronous queries. The as_sequence parameter contains
the observations up to the maximum number specified in the
original call with max_sequence . If there are more items
than max_sequence , the parameter as_iterator will have one
item, a reference to a ObservationDataIterator , from which
the remaining observation items can be retrieved from the
server. The as_iterator parameter will be null if the returned
observations fit within the as_sequence parameter or the
server does not support iterators (see “AccessComponent
Interface” on page 3-60). The result_status parameter
supplies the client with QualifiedCode s constructed from
constants COMPLETING_RESULT or PARTIAL_RESULT to
indicate the status of the callback--completing a request, or
only partially completing a request.

put_exception()

Description: Called by the AsynchAccess server to return an exception
condition.
3-52 Clinical Observations Access Service, v1.0 April 2001

3

rs

s.
3.5.5 ConstraintLanguageAccess

interface ConstraintLanguageAccess : AccessComponent {

readonly attribute ConstraintLanguageSeq supported_languages;

ObservationDataSeq get_by_constraint (
in ConstraintExpression constraint,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationDataIterator the_rest)

raises (
InvalidConstraint,
InvalidPolicies,
DuplicatePolicies);

};

3.6 Event and Notification Interface Specifications

This section discusses the DsObservationAccess interfaces that subclass various
interfaces in CosEvent . They support the notification of clients by one or more serve
when an observation of interest has “arrived.” They also send either the
ObservationData itself, or sufficient information to retrieve the observation using
another DsObservationAccess interface.

3.6.1 EventSupplier Interface

interface EventSupplier : AbstractManagedObject, PushSupplier {

readonly attribute EndpointId endpoint_id;

QualifiedCodeStrSeq obtain_offered_codes ();

void connect_push_consumer (
in PushConsumer push_consumer)

raises (

supported_languages

Description: The sequence of constraint languages, which are valid for
constraint queries.

get_by_constraint()

Description: Parse the given constraint and return matching observation
The policy parameter overrides any default policies. As with
other get_*() calls, if more observations match the constraint
than indicated by the max_sequence parameter, the
remaining observations are returned via the iterator.
COAS, v1.0 Event and Notification Interface Specifications April 2001 3-53

3

ach

ts. A

.

an

CosEventChannelAdmin::AlreadyConnected);

PushConsumer get_connected_consumer ()
raises (

CosEventComm::Disconnected);

void subscribe (
in SubscriptionSeq subscriptions)

raises (
CosEventComm::Disconnected);

SubscriptionSeq describe_subscriptions ()
raises (

NoSubscription);

void generate_test_event (
in ClientCallId clientId)

raises (
CosEventComm::Disconnected);

};

The EventSupplier interface encapsulates all that is necessary to supply events. E
supplier instance can be connected with exactly one EventConsumer . A server
typically creates one or more suppliers for each client that wishes to receive even
typical client implements the EventConsumer interface, and connects this consumer
instance with an EventSupplier provided by the server’s
SupplierAccess.create_supplier() .

endpoint_id

Description: When instantiated by the SupplierAccess factory, an
EventSupplier receives an identifier from the factory. This
identifier may be used to relocate the supplier by the factory

obtain_offered_codes()

Description: Returns a sequence of observation codes that this supplier c
supply.

connect_push_consumer()

Description: Establishes 1/2 of a connection, from the point of view of the
supplier. The analogous
EventConsumer.connect_push_supplier() must also be
called to complete the connection from the client’s point of
view. The supplier can call disconnect() on the consumer in
order to break the connection
3-54 Clinical Observations Access Service, v1.0 April 2001

3

eter

.
The event resulting from this call will arrive, as with all events, in a Corba::any .
Within the Corba::any will be an ObservationData as follows:

ObservationDataStruct
 code: TEST_EVENT // see constants
 composite: [] // empty
 qualifiers: [] // empty
 value: Any { clientId } // Any containing a long, the value of the input parameter

In other words, an ObservationDataStruct with a predetermined code TEST_EVENT
from the constants section of this IDL, and with a payload of the given input param
clientId .

3.6.2 EventConsumer Interface

interface EventConsumer : AbstractManagedObject, PushConsumer {

readonly attribute EndpointId endpoint_id;

subscribe()

Description: Establish an ongoing request for observations.
• The query is for future observations (as opposed to past

observations).
• The time span is implied to be from the time subscribe() is

called until this consumer is disconnected.
• The observations are returned within the

CosEventComm::push() operation inherited by
EventConsumer . The argument within this push() operation is
a Corba::any . Within the Corba::any is an ObservationData .

The call to subscribe() begins a flow of events. Before the
first call to subscribe() , no events flow. Supplier and
consumer must be connected already, or exception
Disconnected is thrown. Any subsequent call to
subscribe() removes the previous subscription and begins a
new subscription.

describe_subscription()

Description: Returns the current subscription that has been set on the
supplier.

generate_test_event()

Description: Sends a test event to the consumer. This operation will be
called by a savvy client after an interval of inactivity, to
ascertain whether all is well in the event system and network
Without this direct request for a test event, a client might
never know of network or event system problems.
COAS, v1.0 Event and Notification Interface Specifications April 2001 3-55

3

.

s

SubscriptionSeq obtain_subscriptions ();

void connect_push_supplier (
in PushSupplier push_supplier)

raises (
CosEventChannelAdmin::AlreadyConnected);

PushSupplier get_connected_supplier ()
raises(

CosEventComm::Disconnected);
};

The EventConsumer interface encapsulates all that is necessary to receive events
Each consumer instance can be connected with exactly one EventSupplier . A server
would itself create an EventConsumer only when the server wished to receive event
itself. Typically, a client would NOT call ConsumerAccess.create_consumer() , but
rather implement the EventConsumer interface directly. After instantiating one of
these “home grown” instances of EventConsumer , a typical client would connect this
consumer instance with an EventSupplier provided by the server’s
SupplierAccess.create_supplier() .

endpoint_id

Description: When instantiated by the ConsumerAccess factory, an
EventConsumer receives an identifier from the factory. This
identifier can be used to retrieve a reference to the
EventConsumer via
ConsumerAccess.get_consumer_by_id() .
Note that when the EventConsumer interface is implemented
by a typical client (not a DsObservationAccess server), the
identifier is neither necessary nor relevant.

obtain_subscriptions()

Description: Returns a sequence of Subscriptions that this consumer
would like to obtain. This operation is useful in an application
management scenario. For example, a management
application can use this operation to know what subscriptions
to apply when connecting up a client and supplier without the
explicit advance knowledge of this connection by those
endpoint. Also, this operation could be reused by a client
when subscribing, since it must have just such a list of
subscription for EventSupplier.subscribe() .
3-56 Clinical Observations Access Service, v1.0 April 2001

3

3.6.3 SupplierAccess Interface

Figure 3-20 SupplierAccess Interface

interface SupplierAccess : AbstractFactory, AccessComponent {

EventSupplier create_supplier ()
raises (

MaxConnectionsExceeded);

EventSupplier get_supplier_by_id (
in EndpointId endpoint_id)

raises (
InvalidEndpointId);

};

connect_push_supplier()

Description: Establishes half a connection, from the point of view of the
consumer. The analogous
EventSupplier.connect_push_consumer() must also be
called to complete the connection from the server point of
view. The consumer can call disconnect() on the supplier in
order to break the connection.

get_connected_supplier()

Description: Returns a reference to the connected EventSupplier , or a
Disconnected exception if no connection has been
established yet.

AccessComponent
<<Interf ace>>

SupplierAccess

create_supplier()
get_supplier_by _id()

<<Interf ace>>

AbstractFactory
<<Interf ace>>
COAS, v1.0 Event and Notification Interface Specifications April 2001 3-57

3

3.6.4 ConsumerAccess Interface

Figure 3-21 ConsumerAccess Interface

interface ConsumerAccess : AbstractFactory, AccessComponent {

EventConsumer create_consumer ()
raises (

MaxConnectionsExceeded);

EventConsumer get_consumer_by_id (
in EndpointId endpoint_id)

raises (
InvalidEndpointId);

};

create_supplier()

Description: Creates a new EventSupplier instance and returns it.

get_supplier_by_id()

Description: This operation returns an object reference to the
EventSupplier corresponding to the parameter endpoint_id .
A SupplierAccess is responsible to keep track of all the
EventSupplier s created, with their EndpointId s.

AbstractFactory
<<Interface>>

ConsumerAccess

create_consumer()
get_consumer_by_id()

<<Interface>>AccessComponent
<<Interface>>
3-58 Clinical Observations Access Service, v1.0 April 2001

3

d

,
3.7 Utility Interface Specifications

The rest of the DsObservationAccess interfaces are described in this section.

3.7.1 ObservationLoader Interface

interface ObservationLoader : AccessComponent {

void load_observations (
in ObservationDataSeq observations);

};

create_consumer()

Description: Creates a new EventConsumer instance. Each consumer
instance can be connected with exactly one EventSupplier . A
server would create a consumer only when the server wishe
to receive events from another COAS server. A typical client
would NOT call create_consumer() , but instead implement
the EventConsumer interface, and connect this “home
grown” instance with an EventSupplier provided by the
DsObservationAccess server.

get_consumer_by_id()

Description: This operation returns a reference to the EventConsumer
corresponding to the parameter endpoint_id . To accomplish
this, the ConsumerAccess factory should aggregate a
reference and an EndpointId for all the EventConsumer s that
it creates.

load_observations()

Description: Load observations into a DsObservationAccess server.
Intended for use by legacy systems, which cannot be queried
but can output some stream of data.
COAS, v1.0 Utility Interface Specifications April 2001 3-59

3

3.7.2 AccessComponent Interface

Figure 3-22 AccessComponent Interface

interface AccessComponent {

readonly attribute string coas_version;

readonly attribute IdentificationComponent pid_service;

readonly attribute TerminologyService terminology_service;

readonly attribute TraderComponents trader_service;

readonly attribute NamingContext naming_service;

AccessComponentData get_components ();

QualifiedCodeStrSeq get_supported_codes (
in unsigned long max_sequence,
out QualifiedCodeIterator the_rest);

QualifiedCodeStrSeq get_supported_qualifiers (
in QualifiedCodeStr code)

raises (
InvalidCodes,
NotImplemented);

QualifiedCodeStrSeq get_supported_policies ();

QueryPolicySeq get_default_policies ();

QueryAccess BrowseAccess

ConstraintLanguageAccessObservationLoader AsynchAccessConsumerAccess Su ppl ierAccess

AccessComponent

coas_version : strin g
pid _service : Id entificationCompone nt
terminolo gy_service : TerminologyS ervice
trader_service : TraderCom ponen ts
naming_service : Namin gContext

get _co mponen ts()
get _supported_co des()
get _supported_qualifiers()
get _supported_pol icies()
get _defaul t_policies()
get _type_co de_for_observation_type()
are _iterat ors_supported()
get _cu rrent_time()
3-60 Clinical Observations Access Service, v1.0 April 2001

3

form

e

d

e

TypeCode get_type_code_for_observation_type (
in QualifiedCodeStr observation_type)

raises (
InvalidCodes,
NotImplemented);

boolean are_iterators_supported ();

TimeStamp get_current_time ();

};

AccessComponent is the superclass of all components. AccessComponent allows
discovery of the context of OMG services that a given component may use, in the
of references for pertinent services. These attributes may be null , indicating that the
given service is lacking or unknown. Note that for each interface that provides the
AccessComponent operations, those interfaces return the same response to each
operation for a specific COAS server. So for example, a
QueryAccess.get_supported_codes() operation will return the same response as th
BrowseAccess.get_supported_codes() for the same COAS server.

Note – A query code is synonymous with a QualifiedCode from a terminology system
and denotes a type of observation, such as Complete Blood Cound, Systolic Bloo
Pressure, etc.

coas_version

Description: Version of COAS specification supported by this
DsObservationAccess server, starting with “1.0” for the first
approved specification.

pid_service, terminology_service, trader_service, naming_service

Description: References to other OMG standard services, which compris
the context of this DsObservationAccess server.

get_components()

Description: This operation returns an AccessComponentData .
AccessComponentData contains references to all
implemented components as a convenience for clients that
have one reference to a component, and wish to use a
different component.

get_supported_codes()

Description: A complete list of query codes for which this server can
supply responses. Parameter max_sequence indicates the
number of codes that the client wishes to be returned within
the immediately returned sequence. Parameter the_rest
contains an iterator for remaining items if and only if the
number of codes is greater than max_sequence .
COAS, v1.0 Utility Interface Specifications April 2001 3-61

3

t

 a

t

s
get_supported_qualifiers()

Description: A complete list of qualifiers that this server can match and
supply as returned qualifiers, with respect to the given
observation code. A server may be able to match/supply
different sets of qualifiers for different codes.

get_supported_policies()

Description: A complete list of policies that this server can employ when
filtering on desired observations. The returned list is of codes
only.

get_default_policies()

Description: The policies that are in effect unless overridden via
get_observations_with_policy() . The returned list is a list of
name-value pairs, both the name of the policy and its defaul
value.

get_type_code_for_observation_type()

Description: With each observation that a COAS server supports there is
corresponding structure to contain and communicate the
observation’s value. For simple observation values, this migh
be one of the structures defined in DsObservationValue . For
more complex values, it might be a hierarchy of
DsObservationData structures.
The method get_type_code_for_observation_type() returns
the corresponding IDL TypeCode for each requested
observation QualifiedCode . However, a typical client may
have these correspondences hardwired, expecting a certain
IDL structure for a given observation code.

are_iterators_supported()

Description: Returns a boolean describing whether this component can
return iterator ObservationDataIterator and iterators for some
of the data values in DsObservationValues . Iterators are
remote objects.
If a server does not support iterators, all ObservationData
and ObservationValue items are returned within sequences,
and all out-parameter iterators returned as null. In this case,
the input parameter max_sequence (present in many
operations, indicating the client’s preferred number of items
returned in the sequence) is ignored by the server as it return
all observations within the sequence.
3-62 Clinical Observations Access Service, v1.0 April 2001

3

s

r

y

e.

3.7.3 ObservationDataIterator Interface

interface ObservationDataIterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
in unsigned long n,
out ObservationDataSeq observation_data_seq);

};

Description
(continued):

If a server supports iterators, the server will pay attention to
the max_sequence input parameter, and an iterator will be
instantiated and returned when the search for observations i
successful and the input parameter max_sequence is set to
less than the total number of observations found. Returning
an iterator requires the server to be stateful, since the iterato
is a remote object that must be instantiated and registered
with the ORB for some lifetime.
For example, an implementer expecting a very large and bus
set of clients may want to make a QueryAccess component
which is stateless, and thus choose to return FALSE to
are_iterators_supported() .

get_current_time()

Description: Return a TimeStamp for the current time on the server. This
can be useful for a client that resides in another timezone or
has questionable date/time settings (like a PC). A client can
base a query on the server’s time rather than the client’s tim

max_left()

Description: This operation returns the number of items still left on the
iterator.

next_n()

Description: This operation returns the number of ObservationData
objects as an out parameter as is indicated by the passed in
‘n’ parameter or the maximum left. Removes the returned
objects from the iterator before returning.
COAS, v1.0 Utility Interface Specifications April 2001 3-63

3

s

s
3.7.4 QualifiedCodeIterator Interface

interface QualifiedCodeIterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
in unsigned long n,
out QualifiedCodeStrSeq codes);

};

3.7.5 AbstractFactory Interface

interface AbstractFactory {

readonly attribute long max_connections;

readonly attribute EndpointIdSeq current_connections;

};

max_left()

Description: This operation returns the number of items still left on the
iterator.

next_n()

Description: This operation returns the number of QualifiedCodeStr
objects as an out parameter as is indicated by the passed in
‘n’ parameter or the maximum left. Removes the returned
objects from the iterator before returning.

max_connections

Description: This attribute indicates the maximum number of connection
the server will allow to be active at one time. Additional
event suppliers and consumers will not be created beyond thi
limit.

current_connections

Description: This attribute contains a sequence of endpoint IDs for the
currently created event consumers or suppliers.
3-64 Clinical Observations Access Service, v1.0 April 2001

3

t
3.7.6 AbstractManagedObject Interface

interface AbstractManagedObject {

void done ();

};

done()

Description: Clients calls this operation when they are done using an
object. This signals the server to deactivate or garbage collec
the object. However, a savvy server will enforce a timeout
after some amount of idle time for each managed object in
order to cleanup after ill-behaved clients or traumatic client
termination.
COAS, v1.0 Utility Interface Specifications April 2001 3-65

3

3-66 Clinical Observations Access Service, v1.0 April 2001

DSObservation Values 4
Contents

This chapter contains the following topics.

4.1 Overview

The DsObservationValue module defines the data containers for the Clinical
Observations Access Service (COAS) specification. ObservationValue types are
containers for the results of observing forms of biological phenomenon.

Topic Page

“Overview” 4-1

“Data Type Definitions” 4-2

“Supporting Types” 4-2

“Time Types” 4-3

“Person Type” 4-3

“NoInformation Type” 4-3

“Text Types” 4-4

“Coded Types” 4-5

“Multimedia Types” 4-6

“Simple Measurement Types” 4-7

“Complex Measurement Types” 4-8
Clinical Observations Access Service, v1.0 April 2001 4-1

4

,”
of
e

d in

e

se
This IDL was based on the Information Model presented in Section 4.1, “Overview
on page 4-1. A subset of all possible data containers was selected, with the goal
making them as simple as possible. This set is not complete, but is believed to b
disjoint.

If the Objects-by-Value (OBV) technology was used, many of the data types define
this module would have been sub-classes of an ObservationValue class. However,
OBV was not available to a sufficient degree during the finalization of this
specification. The submitters tried to preserve the notion of inheritance even in
defining the data containers as structs , by using a comment <struct
name>:ObservationValue to indicate this intended inheritance. A future revision of
COAS may replace the CORBA::any in ObservationDataStruct with OBV.

4.2 Data Type Definitions

The following sections describe all the OMG IDL for the data types used within th
DsObservationValue module. To indicate which data types are intended to be sub-
classes from ObservationValue , we have placed a comment immediately before tho
definitions containing the syntax “<child class>: ObservationValue ”.

// File: DsObservationValue.idl

#ifndef _DS_OBSERVATION_VALUE_IDL_
#define _DS_OBSERVATION_VALUE_IDL_

#include "DsObservationAccess.idl"

#pragma prefix "omg.org"

module DsObservationValue
{
...
};

#endif // _DS_OBSERVATION_VALUE_IDL_

The “Ds” prefix of DsObservationValue stands for “Domain Service.” All OMG
services are expected to start with “Ds” to isolate a particular name space from
potential clashes.

4.3 Supporting Types

typedef TerminologyServices::ConceptCode ConceptCode;
typedef NamingAuthority::QualifiedNameStr QualifiedCodeStr;

typedef DsObservationAccess::AbstractManagedObject AbstractManagedObject;

ConceptCode and QualifiedCodeStr are imported type definitions from the Lexicon
Query Service (LQS) and Person Identification Service (PIDS) specifications.
4-2 Clinical Observations Access Service, v1.0 April 2001

4

on

p,”

t,
AbstractManagedObject is an abstract interface that provides a convenience functi
for a client to notify the server when they are done using some remote object.

4.4 Time Types

// DateTime : ObservationValue;
typedef DsObservationAccess::TimeStamp DateTime;

// TimeSpan : ObservationValue;
typedef DsObservationAccess::TimeSpan TimeSpan;

These data types reuse the time definitions from DsObservationAccess . Descriptions
for them can be found in “DateTime” on page 4-3 and in Section 3.3.10, “TimeStam
on page 3-23.

4.4.1 DateTime

A DateTime conveys a point in time, including the date.

4.4.2 TimeSpan

A TimeSpan conveys a period of time, with a beginning and end.

4.5 Person Type

// Person : ObservationValue;
typedef DsObservationAccess::ObservedSubjectId Person;

This data type is reused from DsObservationAccess . A description for it can be found
in Section 3.3.2, “External Typedefs,” on page 3-16.

4.5.1 Person

A Person contains an ID from a PIDS. It can be used to identify an organ, patien
healthcare provider, or population.

4.6 NoInformation Type

// NoInformation : ObservationValue;
struct NoInformation {

QualifiedCodeStr reason;
string text_description;

};

const QualifiedCodeStr NO_INFORMATION =
"DNS:omg.org/DsObservationValue/NO_INFORMATION";
COAS, v1.0 Time Types April 2001 4-3

4

le or

or

nly
 or

g. It
in

d

There are instances when it is appropriate to convey that information is unavailab
missing. For further discussion and an example see “NoInformation” on page 4-4.

4.6.1 NoInformation

A NoInformation value indicates both that specific information is missing and how
why it is missing. It can occur in place of any other observation value.

4.7 Text Types

// PlainText : ObservationValue;
typedef string PlainText;

// UniversalResourceIdentifier : ObservationValue;
struct UniversalResourceIdentifier {

ConceptCode protocol;
string address;

};

// PhysicalLocationDescription : ObservationValue;
typedef string PhysicalLocationDescription;

Although there are several data types that use a string to carry the information, o
one communicates the observation directly. The others contain textual references
pointers to the location or resource where the data can be accessed.

4.7.1 Plain Text

PlainText is used to communicate observation values as ideas in the form of writin
is expected that along with the text will be a qualifier that indicates the language
which the text is written.

reason

Description: The reason attribute is used to denote why the information is
missing or unavailable. This attribute is a QualifiedCode and
should come from a well-defined terminology system.

text_description

Description: The text_description attribute contains a text string to be
displayed in support of the reason attribute.

NO_INFORMATION is a QualifiedCode to be used in an
AtomicObservation to indicate that the value it contains is
“NoInformation.” This code is defined here because we
believe that this concept does not appear in existing standar
coding schemes. It is our intention for this code to fill the gap
until this concept appears in a standard coding scheme.
4-4 Clinical Observations Access Service, v1.0 April 2001

4

 a

ot
pace.

hat
e

the

hin a

ol

f
4.7.2 UniversalResourceIdentifier

A UniversalResourceIdentifier is used to reference information that has some tie to
technology that can perform some action.

4.7.3 PhysicalLocationDescription

A PhysicalLocationDescription is used to reference information or items that are n
located within some information space, but are instead located in some physical s

4.8 Coded Types

// CodedElement : ObservationValue;
typedef TerminologyServices::QualifiedCodeInfo CodedElement;

// LooselyCodedElement : ObservationValue;
struct LooselyCodedElement {

string text;
TerminologyServices::CodingSchemeId coding_scheme_id;
TerminologyServices::VersionId version_id;

};

The coded data types provide a mechanism to communicate observation values t
have been coded in some form or another. Further information can be found in th
“CodedElement” and “LooselyCodedElement” sections below.

4.8.1 CodedElement

A CodedElement is coded in the sense that it is a unique identifier. This unique
identifier can then be used to ask a terminology system specific questions about
CodedElement . For example, its representation based on some context, or its
definition.

4.8.2 LooselyCodedElement

There are times when a code that the user wants cannot be realized or found wit
terminology system (e.g., is not in the list of allowable values). In which case the
LooselyCodedElement can be used to send text instead.

protocol

Description: This is the protocol associated with the address. The protoc
indicates the technology to be used to interpret the address.
For example, http.

address

Description: The address attribute contains some structured sequence o
characters that the protocol knows how to interpret. For
example, www.example.com.
COAS, v1.0 Coded Types April 2001 4-5

4

4.9 Multimedia Types

typedef sequence<octet> Blob;

interface MultimediaIterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
in unsigned long n,
out Blob multimedia_part);

};

// Multimedia : ObservationValue;
struct Multimedia {

string content_type;
string other_mime_header_fields;
Blob a_blob;
unsigned long long total_size;
MultimediaIterator the_iterator;

};

We define a supporting data type and an interface for the Multimedia data type.

text

Description: The text attribute is a String and is used when no
CodedElement from a terminology system can be
determined.

coding_scheme_id

Description: The coding_scheme_id attribute is the id, from an LQS, that
is used to identify the coding scheme where the text was
intended.

version_id

Description: The version_id attribute is used to identify the version of the
coding scheme where the text was intended.

Blob

Description: A Blob is just an opaque container for data, even more
opaque than a CORBA::any .

MultimediaIterator

Description: The MultimediaIterator is used to retrieve data in chunks.
Iterators in general are described in more detail in
Section 3.7.3, “ObservationDataIterator Interface,” on
page 3-63.
4-6 Clinical Observations Access Service, v1.0 April 2001

4

s, or
sed.

n

.

4.9.1 Multimedia

For the communication of observations such as images, audio or video recording
large documents, the Multipurpose Internet Mail Extensions (MIME) standard is u

4.10 Simple Measurement Types

// Numeric : ObservationValue;
struct Numeric {

QualifiedCodeStr units;
float value;

};

// Range : ObservationValue;
struct Range {

QualifiedCodeStr units;
float lower;
float upper;

};

// Ratio : ObservationValue;
struct Ratio {

float numerator;
float denominator;

};

content_type

Description: The content_type is a structured attribute that identifies the
general media type (e.g., Application, Audio, Image,
Message, Model, Multipart,Text and Video, and the specific
format used).

other_mime_header_fields

Description: The other_mime_header_fields contains the rest of the
MIME header. We have made this available so that clients ca
gain further information about what is contained in this data
value.

a_blob

Description: The a_blob attribute contains the observation value itself.

total_size

Description: The total_size attribute contains the number of bytes of data
in the Blob.

the_iterator

Description: the_iterator may contain a reference to a multimedia iterator
when the Blob is larger than the client wants to receive at one
time. It can be used to retrieve the rest of the Blob in chunks
COAS, v1.0 Simple Measurement Types April 2001 4-7

4

, that

ould

 It is
the

ed in
l

y
The simple measurement types are designed to contain single or paired numbers
is quantitative measurements or observations. The units associated with the Numeric
and Range types are QualifiedCode s and should come from a well-defined
terminology system. All other attributes mentioned in the Measurement sections sh
be attached to the relevant AtomicObservation as qualifiers.

4.10.1 Numeric

Numeric is used to communicate a single measurement or quantitative value.

4.10.2 Range

Range is used to associate two related values together. For example, 1<= X <= 5.
assumed that the value in the lower attribute is less than or equal to the value in
upper attribute.

4.10.3 Ratio

A Ratio value contains a numerator quantity and a denominator quantity, and is us
those situations where the ratio is more easily understood than the equivalent rea
number. It should be noted that the ratio data type must not be used as a handy
representation of two related values. In particular, blood pressure values, commonl
reported as 120/80 mm Hg, are not ratios!

4.11 Complex Measurement Types

struct XYPair {
float x;
float y;

};

typedef sequence<XYPair> XYPairSeq;

interface CurveIterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
in unsigned long n,
out XYPairSeq curve_part);

};

// Curve : ObservationValue;
struct Curve {

XYPairSeq xy_pairs;
QualifiedCodeStr x_units;
QualifiedCodeStr y_units;
unsigned long long total_size;
CurveIterator the_iterator;

};
4-8 Clinical Observations Access Service, v1.0 April 2001

4

. To

ta
In DsObservationValue we define one data type that contains many measurements
support this data type several supporting methods must be defined.

4.11.1 Curve

Curve is a data type for retrieving paired measurements or values.

XYPair, XYPairSeq

Description: These are the low level data types for holding a vector of da
pairs.

CurveIterator

Description: The CurveIterator , like all other iterators, is the mechanism
for retrieving the data in chunks.

xy_pairs

Description: The xy_pairs contains the data sequence.

x_units, y_units

Description: The x_units and y_units are QualifiedCode and should come
from a well-defined terminology system. In healthcare, the
x_units is usually a time (e.g., milliseconds, seconds, or
minutes). The y_units is often a quantitative measurement.

total_size

Description: The total_size attribute contains the total number of elements
in the curve.

the_iterator

Description: the_iterator may contain a reference to a CurveIterator that
can be used to retrieve a very large curve data sequence in
chunks.
COAS, v1.0 Complex Measurement Types April 2001 4-9

4

4-10 Clinical Observations Access Service, v1.0 April 2001

DSObservationTimeSeries 5

s and
Contents

This chapter contains the following topics.

5.1 Overview

The DsObservationTimeSeries module defines an extension to the basic data types
and interfaces of the DsObservationAccess and DsObservationValue modules. The
TimeSeries data types and operations were designed to support the unique feature
needs of accessing vital sign waveforms.

5.2 Data Type Definitions

The following sections list all the IDL for the data types used within the
DsObservationTimeSeries module.

Topic Page

“Overview” 5-1

“Data Type Definitions” 5-1

“External Typedefs” 5-2

“Time Types” 5-2

“Typedef, Enum, Union, and Sequence Types” 5-3

“Iterator Types” 5-3

“TimeSeries” 5-3

“Exceptions” 5-4

“TimeSeriesRemote” 5-4
Clinical Observations Access Service, v1.0 April 2001 5-1

5

le,
of
as
 or
n the
 vary
pin.
// File: DsObservationTimeSeries.idl

#ifndef _DS_OBSERVATION_TIME_SERIES_IDL_
#define _DS_OBSERVATION_TIME_SERIES_IDL_

#include <DsObservationAccess.idl>

module DsObservationTimeSeries
{
...
};

#endif // _DS_OBSERVATION_TIME_SERIES_IDL_

Provides an #ifdef wrapper to preclude multiple inclusions.

5.3 External Typedefs

typedef DsObservationAccess::AbstractManagedObject AbstractManagedObject;
typedef DsObservationAccess::NameValuePair NameValuePair;
typedef DsObservationAccess::QueryPolicy QueryPolicy;
typedef DsObservationAccess::QueryPolicySeq QueryPolicySeq;
typedef DsObservationAccess::ObservationQualifierSeq ObservationQualifierSeq;
typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;
typedef DsObservationAccess::TimeStamp TimeStamp;
typedef DsObservationAccess::TimeSpan TimeSpan;

Describes external dependencies.

5.4 Time Types

// TimeDelta : ObservationValue;
struct TimeDelta {
 float delta; // calculated with constants below, NOT with calendaring
 QualifiedCodeStr units;
};

// approximations for time deltas, NOT for calendaring
const float YEAR = 31557600.0; // 60*60*24*365.25
const float MONTH = 2629800.0; // 60*60*24*365.25/12
const float DAY = 86400.0; // 60*60*24
const float HOUR = 3600.0; // 60*60
const float MINUTE = 60.0; // 60
const float SECOND = 1.0; // 1
const float MILLISECOND = 0.001; // 1/1000

TimeDelta is intended for calculation with the time constants provided. For examp
an appropriate use of TimeDelta might be the time difference between the beginning
an EKG session and the end of the session. This difference would be expressed
seconds or milliseconds, with any necessary calculation (converting from minutes
hours) via the constants provided. This is different than UTC calculations based o
calendar. In particular, the number of seconds in a given calendar day or year may
since the spin of the earth varies, and UTC is kept in relative harmony with that s
5-2 Clinical Observations Access Service, v1.0 April 2001

5

5.5 Typedef, Enum, Union, and Sequence Types

typedef NameValuePair Filter;
typedef sequence<Filter> FilterSeq;

enum ValueSeqType { OtherSeqDataType, OctetType, ShortType,
 LongType, LongLongType, FloatType, DoubleType
};

union ValueSeq switch (ValueSeqType) {
case OctetType : sequence< octet > octet_seq;
case ShortType : sequence< short > short_seq;
case LongType : sequence< long > long_seq;
case LongLongType : sequence< long long > long_long_seq;
case FloatType : sequence< float > float_seq;
case DoubleType : sequence< double > double_seq;
case OtherSeqDataType : any the_any;

};

typedef sequence<QualifiedCodeStr,1> OptionalCodeSeq;
typedef sequence<float,1> OptionalFloatSeq;

5.6 Iterator Types

interface TimeSeriesIterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
in unsigned long n,
out ValueSeq curve_part);

};

5.7 TimeSeries

// TimeSeries : ObservationValue;
struct TimeSeries {

TimeDelta sample_period;
ValueSeq values;
QualifiedCodeStr value_units;
unsigned long long total_size; // number of items in values + remaining on

iterator
TimeSeriesIterator the_iterator;

};

TimeSeries will include a non-null iterator if the number of items in the sequence
“values” is greater than the current policy
RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY. In other words, specify the
number of items desired in the sequence with this policy, and that will determine
whether an iterator is returned also.
COAS, v1.0 Typedef, Enum, Union, and Sequence Types April 2001 5-3

5

d
This policy is analogous to the parameter “max_sequence” in
QueryAccess.get_observations_by_time() and similar operations. The input
parameter “max_sequence” specifies the number of observations to return in a
sequence. But a single observation which contains a TimeSeries payload in its
ObservationDataStruct.value (CORBA::any) may have any number of items in the
TimeSeries.values (a sequence). The number of items desired by the client is specifie
via the RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY.

5.8 Exceptions

exception OutOfRange{};

exception NotImplemented{};

exception FilterNotSupported{};

exception NoValidValues{};

5.9 TimeSeriesRemote

struct TimeSeriesRemoteAttributes {
QualifiedCodeStr code;
QualifiedCodeStr units;
OptionalCodeSeq accuracy;
OptionalFloatSeq precision;
OptionalFloatSeq corner_frequency;
OptionalFloatSeq highest_frequency;
TimeSpan time_span;
TimeDelta time_delta;
unsigned long long total_size;
QualifiedCodeStrSeq supported_filters;
QueryPolicySeq supported_policies;

};

// TimeSeriesRemote : ObservationValue;
interface TimeSeriesRemote : AbstractManagedObject {

readonly attribute QualifiedCodeStr code;
readonly attribute QualifiedCodeStr units;
readonly attribute OptionalCodeSeq accuracy;
readonly attribute OptionalFloatSeq precision;
readonly attribute OptionalFloatSeq corner_frequency;
readonly attribute OptionalFloatSeq highest_frequency;
readonly attribute TimeSpan time_span;
readonly attribute TimeDelta time_delta;
readonly attribute unsigned long long total_size;
readonly attribute QualifiedCodeStrSeq supported_filters;
readonly attribute QueryPolicySeq supported_policies;
readonly attribute ValueSeqType default_value_type;

TimeSeriesRemoteAttributes get_attributes ();
5-4 Clinical Observations Access Service, v1.0 April 2001

5

float get_sample_number (
in unsigned long long index,
out ObservationQualifierSeq qualifiers)

raises (
OutOfRange);

float get_sample (
in TimeStamp time_stamp,
out ObservationQualifierSeq qualifiers)

raises (
OutOfRange);

TimeSeries get_snippet (
in TimeSpan time_span,
out ObservationQualifierSeq qualifiers)

raises (
OutOfRange);

float get_max (
in TimeSpan time_span)

raises (
OutOfRange,
NoValidValues);

float get_min (
in TimeSpan time_span)

raises (
OutOfRange,
NoValidValues);

float get_mean (
in TimeSpan time_span)

raises (
OutOfRange,
NoValidValues);

float get_median (
in TimeSpan time_span)

raises (
OutOfRange,
NoValidValues);

TimeSeries get_resampled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

raises (
NotImplemented);

TimeSeries get_rescaled (
in TimeSpan time_span,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)
COAS, v1.0 TimeSeriesRemote April 2001 5-5

5

d

e

s
raises (
NotImplemented);

TimeSeries get_resampled_rescaled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

raises (
NotImplemented);

TimeSeries get_filtered (
in TimeSpan time_span,
in FilterSeq filters,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

raises (
NotImplemented,
FilterNotSupported);

};

(partial documentation follows)

get_attributes()

Description: Returns the structure containing the attributes pertaining to
the specific TimeSeriesRemote .

get_sample()

Description: Return a single data point corresponding to the timestamp an
limiting qualifiers.

get_snippet()

Description: Gets a series of data points (i.e., a waveform snippet) that
correspond to the time period defined in the timespan.

get_max()

Description: Returns the numeric maximum data value in the defined
timespan.

get_min()

Description: Returns the numeric minimum data value in the defined
timespan.

get_mean()

Description: Returns the arithmetic mean or average data value of all th
individual data points included within the timespan specified.

get_median()

Description: Returns the median data value of all the individual data point
included within the timespan specified.
5-6 Clinical Observations Access Service, v1.0 April 2001

DSObservationRelations 6
S, a
bing
ts

r of

Contents

This chapter contains the following topics.

6.1 Overview

This section describes the relations that can exist between observations. In COA
relation is modeled by a qualifying, composite observation that has a code descri
the relationship. This qualifying, composite observation links an observation and i
related observations.

For example, consider a relationship where Observation A is caused by a numbe
other observations. In the graphic below, a linking ObservationDataStruct structure,
Observation B, holds the identity of that relationship, along with the list of related
observations.

Topic Page

“Overview” 6-1

“CEN Naming Convention” 6-2

“Observation Type for Relations” 6-2

“Relation Codes” 6-2
Clinical Observations Access Service, v1.0 April 2001 6-1

6

”

se
n
,

ll
OAS
Figure 6-1 Observation B relates Observation A with other observations. A “IsCausedBy
others.

A starter set of codes for relations is defined below. The relations indicated by the
codes are documented in the Comité Européen De Normalisation (CEN, Europea
Committee For Standardization) First Working Document of Electronic Healthcare
Record Communication - Part 2: Domain Termlist, (CEN/TC 251/N98-116).

6.2 CEN Naming Convention

Code names from CEN/TC 251/N98-116 (table A.5) are created as follows:

• start with “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/”.

• add relationship names from table A.5, translated as:

• replace “/” with “_”.

• replace space with nothing, capitalizing next word.

• omit apostrophe, periods, parenthesis, and other punctuation.

6.3 Observation Type for Relations

Each observation code is associated with a particular IDL static type definition. A
relation codes refer to composite observations. Hence their observation type in C
is a composite observation, which is just ObservationData .

typedef DsObservationAccess::ObservationData RELATION_type;

6.4 Relation Codes

6.4.1 Produce

Relations that produce or are produced by healthcare activity.

const QualifiedCodeStr Produces =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Produces";

const QualifiedCodeStr IsProducedBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsProducedBy";

Observation A
code
composite
qualifiers
value

Observation B
code: IsCausedBy
composite
qualifiers
value

Observation ...
Observation ...

Observation ...
Observation ...
6-2 Clinical Observations Access Service, v1.0 April 2001

6

.

duct.

6.4.2 Document

Relations that document or are documented by a healthcare activity.

const QualifiedCodeStr Documents =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Documents";

const QualifiedCodeStr IsDocumentedBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsDocumentedBy";

6.4.3 Report

Relations that report or are reported by a healthcare activity.

const QualifiedCodeStr Reports =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Reports";

const QualifiedCodeStr IsReportedBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsReportedBy";

6.4.4 Graphic

Relations that describe or are described by graphic properties of a graphic object

const QualifiedCodeStr Describes =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Describes";

const QualifiedCodeStr IsDescribedBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsDescribedBy";

6.4.5 Identified/Incorporated

Relations that are identified by or incorporates a graphic object within a study pro

const QualifiedCodeStr IsIdentifiedWithin =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsIdentifiedWithin";

const QualifiedCodeStr IsIncorporatedBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsIncorporatedBy";

6.4.6 Source/Derived

Relations that are sources for or are derived from a graphic property from a study
product.

const QualifiedCodeStr IsSourceFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsSourceFor";

const QualifiedCodeStr IsDerivedFrom =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsDerivedFrom";
COAS, v1.0 Relation Codes April 2001 6-3

6

e of
6.4.7 Compared/Reference

Relations that are compared to or are reference for a situation.

const QualifiedCodeStr IsComparedTo =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsComparedTo";

const QualifiedCodeStr IsReferenceFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsReferenceFor";

6.4.8 Recorded

Relations that are recorded against a family history.

const QualifiedCodeStr IsRecordedAgainst =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsRecordedAgainst";

6.4.9 Supersede

Relations that supersede or are superseded by a clinical state.

The relation “supersede” must not be confused with mechanisms used to manage
different versions of a document. This link in fact refers to different judgements
performed at different times according to evolving evidence. For example, a chang
diagnosis after new evidence is discovered.

const QualifiedCodeStr Supersedes =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Supersedes";

const QualifiedCodeStr IsSupersededBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsSupersededBy";

6.4.10 Framework

Relations that are a framework for or is framed in.a situation, or document.

const QualifiedCodeStr IsFrameworkFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsFrameworkFor";

const QualifiedCodeStr IsFramedBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsFramedBy";

6.4.11 Phase

Relations that have phases or are phases of a healthcare activity.

const QualifiedCodeStr HasPhase =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasPhase";

const QualifiedCodeStr IsPhaseOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsPhaseOf";
6-4 Clinical Observations Access Service, v1.0 April 2001

6

.

r
6.4.12 Next Phase

Relations that have a next phase or are a next phase in a healthcare activity.

const QualifiedCodeStr HasNextPhase =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasNextPhase";

const QualifiedCodeStr IsNextPhaseWRT =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsNextPhaseWRT";

6.4.13 Associate

Relations that are associated with a condition.

const QualifiedCodeStr IsAssociateTo =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsAssociateTo";

6.4.14 Assigned/Setting

Relations that are assigned to or are a setting for situation assigned to a problem

const QualifiedCodeStr IsAssignedTo =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsAssignedTo";

const QualifiedCodeStr IsSettingFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsSettingFor";

6.4.15 Interpretation

Relations that are interpretations of or are interpreted as a condition of findings, o
reports.

const QualifiedCodeStr IsInterpretationOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsInterpretationOf";

const QualifiedCodeStr IsInterpretedAs =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsInterpretedAs";

6.4.16 Progress

Relations that have progress or are progress of a condition.

const QualifiedCodeStr HasProgress =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasProgress";

const QualifiedCodeStr IsProgressOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsProgressOf";
COAS, v1.0 Relation Codes April 2001 6-5

6

6.4.17 Cause

Relations that have causes or are causes of a condition.

const QualifiedCodeStr HasCause =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasCause";

const QualifiedCodeStr IsCauseOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsCauseOf";

6.4.18 Co-exists

Relations that co-exist with a condition.

const QualifiedCodeStr CoExistsWith =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/CoExistsWith";

6.4.19 Evidence

Relations that have evidence for or are evidence of a diagnosis.

const QualifiedCodeStr HasEvidence =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasEvidence";

const QualifiedCodeStr IsEvidenceFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsEvidenceFor";

6.4.20 Triggers

Relations that trigger or are triggered by presence of a risk state.

const QualifiedCodeStr Triggers =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Triggers";

const QualifiedCodeStr IsTriggeredBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsTriggeredBy";

6.4.21 Goal

Relations that have goals or are goals of a healthcare activity.

const QualifiedCodeStr HasGoal =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasGoal";

const QualifiedCodeStr IsGoalOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsGoalOf";

6.4.22 Motivation

Relations that have motivation or are motivation for a healthcare activity.
6-6 Clinical Observations Access Service, v1.0 April 2001

6

const QualifiedCodeStr HasMotivation =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasMotivation";

const QualifiedCodeStr IsMotivationFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsMotivationFor";

6.4.23 Consequence

Relations that have consequences or are consequences of a healthcare activity.

const QualifiedCodeStr HasConsequence =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasConsequence";

const QualifiedCodeStr IsConsequenceOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsConsequenceOf";

6.4.24 Topic

Relations that have topics or are topics for informing.

const QualifiedCodeStr HasTopic =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasTopic";

const QualifiedCodeStr IsTopicFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsTopicFor";

6.4.25 Target

Relations that have targets or are targets for informing.

const QualifiedCodeStr HasTarget =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasTarget";

const QualifiedCodeStr IsTargetOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsTargetOf";

6.4.26 Provides Information

Relations that provide information about a condition.

const QualifiedCodeStr ProvidesInformationAbout =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/ProvidesInformationAbout";
COAS, v1.0 Relation Codes April 2001 6-7

6

.

6.4.27 Circumstances

Relations that have circumstances or are circumstances for supporting an activity

const QualifiedCodeStr HasCircumstances =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasCircumstances";

const QualifiedCodeStr IsCircumstanceOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsCircumstanceOf";
6-8 Clinical Observations Access Service, v1.0 April 2001

DSObservationQualifiers 7
tions
mple,

ill
red it.

et is
ing

2.3

ean
,

” on
Contents

This chapter contains the following topics.

7.1 Overview

This chapter describes a set of codes defined for qualifiers. Qualifiers are observa
that can be used to modify and refine the meaning of other observations. For exa
Date_TimeOfTheObservation and OrderingProvider are common qualifiers. Along
with an observation like the amount of glucose in a blood sample, COAS clients w
often be interested in the time of the observation and the care provider who orde

The codes below, mostly from HL7 v.2.3, provide a starter set of qualifiers. This s
in no way intended to imply an exhaustive set. However, by use of the COAS nam
convention detailed below, the implication here is that all data definitions of HL7v
are usable as observations and qualifiers.

Furthermore, definitions from the Comité Européen De Normalisation (CEN, Europ
Committee For Standardization) First Working Document of Electronic Healthcare
Record Communication - Part 2: Domain Termlist, (CEN/TC 251/N98-116) are all
potential qualifiers and observations. See Section 6.2, “CEN Naming Convention,
page 6-2.

Topic Page

“Overview” 7-1

“HL7 Naming Convention” 7-2

“Observation Type for Qualifiers” 7-2

“Qualifier Codes” 7-3
Clinical Observations Access Service, v1.0 April 2001 7-1

7

ery

 list

To
can
cular

ost
their

ar
These codes are defined with qualifiers in mind, but the codes can be used as qu
codes as well. For example, a COAS client might wish to query for all ordering
providers for a given patient over a given time span. In this case, the code
OrderingProvider would be used as the (query) observation code rather than in the
of qualifiers regarding some other observation.

7.2 HL7 Naming Convention

Code names from HL7v2.3 are created as follows: based on HL7 v3.2 standard
distribution, appendix A. (APPA.doc), table A.6 DATA ELEMENT NAMES:

• start with “DNS:omg.org/DsObservationAccess/HL72.3/”

• add the HL7 segment, like OBX or PID, plus a slash

• add HL7 data element names taken from table A.6, translated as:

• replace “/” with “_”

• replace space with nothing, capitalizing next word

• omit apostrophe, periods, parenthesis, and other punctuation.

Most of the examples below are HL7 components with multiple subcomponents.
identify individual subcomponents, additional slash(es) + subcomponent name(s)
follow the component names. For example, in the OBR (result) segment, one parti
code,

const QualifiedCodeStr SpecimenSource =
"DNS:omg.org/DsObservationAcess/HL72.3/OBR/SpecimenSource"

SpecimenSource , is a composite. One subcomponent of SpecimenSource , the body
site, can be specified as

const QualifiedCodeStr SpecimenSourceBodySite =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/SpecimenSource/BodySite";

by appending the name “/BodySite” as shown. Thus, SpecimenSourceBodySite refers
to the specific subcomponent of SpecimenSource .

7.3 Observation Type for Qualifiers

Each observation code is associated with a particular IDL static type definition. M
of the examples below are HL7 components with multiple subcomponents. Hence
observation type in COAS is a composite observation, which is just ObservationData .

typedef DsObservationAccess::ObservationData COMPOSITE_OBSERVATION_type;

However, a small subcomponent, SpecimenSourceBodySite , is listed in HL7
documentation as having type (CE), coded element. This would correspond to a
QualifiedCodeStr in COAS.

The association between code and data definition can be confirmed for a particul
server with AccessComponent.get_type_code_for_observation_type() .
7-2 Clinical Observations Access Service, v1.0 April 2001

7

One way to indicate this association in static IDL is to list a code <code> , and
immediately following it, a typedef for a type with name <code>_type . For example,

const QualifiedCodeStr SpecimenSourceBodySite =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/SpecimenSource/BodySite";

typedef QualifiedCodeStr SpecimenSourceBodySite_type;

7.4 Qualifier Codes

The following qualifiers are identified as a starter set.

7.4.1 COAS - Specific

const QualifiedCodeStr COAS_OBSERVATION_ID =
"DNS:omg.org/DsObservationAccess/COAS_OBSERVATION_ID";

7.4.2 HL7 - Clinical Times

const QualifiedCodeStr Date_TimeOfTheObservation =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/Date_TimeOfTheObservation";

const QualifiedCodeStr EventOnsetDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/PEO/EventOnsetDate_Time";

const QualifiedCodeStr OrderEffectiveDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/ORC/OrderEffectiveDate_Time";

const QualifiedCodeStr ProcedureDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/PR1/ProcedureDate_Time";

const QualifiedCodeStr RequestedDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/RequestedDate_Time";

const QualifiedCodeStr VerificationDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/IN1/VerificationDate_Time";

const QualifiedCodeStr ActionDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/GOL/ActionDate_Time";

const QualifiedCodeStr AttestationDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/DG1/AttestationDate_Time";

const QualifiedCodeStr TranscriptionDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/TXA/TranscriptionDate_Time";

7.4.3 HL7 - Roles

const QualifiedCodeStr PatientIDExternalID =
"DNS:omg.org/DsObservationAccess/HL72.3/PID/PatientIDExternalID";
COAS, v1.0 Qualifier Codes April 2001 7-3

7

const QualifiedCodeStr PatientIDInternalID =
"DNS:omg.org/DsObservationAccess/HL72.3/PID/PatientIDInternalID";

const QualifiedCodeStr OrderingProvider =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/OrderingProvider";

const QualifiedCodeStr ProducerID =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/ProducerID";

const QualifiedCodeStr CollectorIdentifier =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/CollectorIdentifier";

const QualifiedCodeStr ResponsibleObserver =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/ResponsibleObserver";

const QualifiedCodeStr Technician =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/Technician";

const QualifiedCodeStr PrincipalResultInterpreter =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/PrincipalResultInterpreter";

7.4.4 HL7 - OBR (Request)

const QualifiedCodeStr SpecimenSource =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/SpecimenSource";

const QualifiedCodeStr ReasonForStudy =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/ReasonForStudy";

const QualifiedCodeStr DiagnosticServiceSectionID =
"DNS:omg.orgDsObservationAccess/HL72.3/OBR/DiagnosticServiceSectionID";

const QualifiedCodeStr SpecimenSourceBodySite =
"DNS:omg.orgDsObservationAccess/HL72.3/OBR/SpecimenSourceBodySite";

7.4.5 HL7 - OBX (Reply)

const QualifiedCodeStr AbnormalFlags =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/AbnormalFlags";

const QualifiedCodeStr ObservationMethod =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/ObservationMethod";

const QualifiedCodeStr Units =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/Units";

const QualifiedCodeStr ReferencesRange =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/ReferencesRange";

const QualifiedCodeStr ObservationIdentifier =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/ObservationIdentifier";
7-4 Clinical Observations Access Service, v1.0 April 2001

7

7.4.6 HL7 - PV1 (Patient Visit)

const QualifiedCodeStr PatientLocation =
"DNS:omg.org/DsObservationAccess/HL72.3/PV1/PatientLocation";
COAS, v1.0 Qualifier Codes April 2001 7-5

7

7-6 Clinical Observations Access Service, v1.0 April 2001

Policies 8
Contents

This chapter contains the following topics.

Topic Page

“Overview” 8-2

“SEARCH_DEPTH_POLICY” 8-2

“RETURN_DEPTH_POLICY” 8-2

“SEARCH_SYNONYMOUS_CODES_POLICY” 8-3

“RETURN_OBSERVATION_VALUES_POLICY” 8-3

“SHORTCIRCUIT_SEARCH_..._POLICY” 8-4

“SEARCH_SYNONYMOUS_IDS_POLICY” 8-4

“SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY” 8-5

“RETURN_ITEMS_IN_TIME_SPAN_POLICY” 8-5

“MATCHING_STRENGTH_POLICY” 8-5

“PARAM_CHECKING_POLICY” 8-6

“QUALIFIER_RETURN_POLICY” 8-6

“RELATIONS_RETURN_POLICY” 8-7

“RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY” 8-7

“TIME_SERIES_..._ALGORITHM_POLICY” 8-7

“TIME_SERIES_..._PREFERENCE_POLICY” 8-7

“RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY” 8-8

“IGNORE_UNMATCHABLE_QUALIFIERS_POLICY” 8-8
Clinical Observations Access Service, v1.0 April 2001 8-1

8

urn

er
ro,

et

m
8.1 Overview

Policies are name-value pairs, which instruct the server on how to search and ret
observations. They consist of a policy name (a QualifiedCodeStr) and a value (a
CORBA::any). Each policy has a typedef to define what is inside the CORBA::any .

8.2 SEARCH_DEPTH_POLICY

const QualifiedCodeStr SEARCH_DEPTH_POLICY =
"DNS:omg.org/DsObservationAccess/policy/SEARCH_DEPTH_POLICY”;

typedef short SearchDepthPolicyType;

const SearchDepthPolicyType SEARCH_DEPTH_ONLY_ROOT = 0x0;
const SearchDepthPolicyType SEARCH_DEPTH_DEEPEST_POSSIBLE = 0x7FFF;

SEARCH_DEPTH_POLICY indicates how many levels down an item hierarchy a serv
is to look for a match to the input parameters. Only positive integers, including ze
make sense:

• 0 means just the root of the tree.

• 1 means to search the root and one level of items below the root.

• 2 means to search the root and two more levels down

• 3 means to search the root and three more levels down

• SEARCH_DEPTH_DEEPEST_POSSIBLE means to search all levels for a match.

• Default = SEARCH_DEPTH_DEEPEST_POSSIBLE .

8.3 RETURN_DEPTH_POLICY

const QualifiedCodeStr RETURN_DEPTH_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_POLICY”;

typedef QualifiedCodeStr ReturnDepthPolicyType;

const ReturnDepthPolicyType RETURN_DEPTH_ROOT_ONLY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_ROOT_ONLY”;

const ReturnDepthPolicyType RETURN_DEPTH_ALL =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_ALL”;

const ReturnDepthPolicyType RETURN_DEPTH_ALL_LEAVES =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_ALL_LEAVES”;

const ReturnDepthPolicyType RETURN_DEPTH_LEAVES_OF_MATCHED =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_LEAVES_OF_MATCHED”;

const ReturnDepthPolicyType RETURN_DEPTH_MATCHED_ONLY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_MATCHED_ONLY”;

const ReturnDepthPolicyType RETURN_DEPTH_MATCHED_AND_DOWN =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_MATCHED_AND_DOWN”;

• RETURN_DEPTH_POLICY indicates which items in a potential tree of items that g
returned. After matching on certain items, these items may have various other
related items contained in their “composite” field, making up a “tree” of items fro
the (matched) root item.
8-2 Clinical Observations Access Service, v1.0 April 2001

8

o

ent

e

,

e
r
ell

• ROOT_ONLY means that only the root item is returned.

• RETURN_ALL means the full item structure gets returned from the root, down t
and including the leaves.

• MATCHED_ONLY means to only return the item that was matched on, independ
of where it is in the tree.

• MATCHED_AND_DOWN means to return a tree of items starting with the one
matched, down to and including the leaf items.

• LEAVES_OF_MATCHED means to only return the leaf items of the part of the tre
starting from the matched item on down but no BranchItems.

• ALL_LEAVES means to return all LeafItems in the whole tree that had a match
starting from the root.

• Default = RETURN_DEPTH_MATCHED_AND_DOWN .

8.4 SEARCH_SYNONYMOUS_CODES_POLICY

const QualifiedCodeStr SEARCH_SYNONYMOUS_CODES_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_CODES_POLICY”;

typedef QualifiedCodeStr SearchSynonymousCodesPolicyType;

const SearchSynonymousCodesPolicyType SEARCH_SYNONYMOUS_CODES_FALSE =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_CODES_FALSE”;

const SearchSynonymousCodesPolicyType SEARCH_SYNONYMOUS_CODES_TRUE =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_CODES_TRUE”;

• SEARCH_SYNONYMOUS_CODES_POLICY indicates to search for all possible
matches on a code, including any synonymous codes or subtype codes that th
server might know as a result of a Terminology (LQS) service or otherwise. Fo
example, if searching for all “blood-cell count” observations, both a red-blood-c
count and white-blood-cell count would match, as subtypes.

• SEARCH_SYNONYMOUS_CODES_TRUE means all synonyms and subtypes are
considered matches too.

• SEARCH_SYNONYMOUS_CODES_FALSE means that only an exact match will be
returned. Thus, FALSE implies that the set of codes is treated as an XOR list.

• default = SEARCH_SYNONYMOUS_CODES_TRUE

8.5 RETURN_OBSERVATION_VALUES_POLICY

const QualifiedCodeStr RETURN_OBSERVATION_VALUES_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_OBSERVATION_VALUES_POLICY”;

typedef QualifiedCodeStr ReturnObservationValuesPolicyType;

const ReturnObservationValuesPolicyType RETURN_NO_OBSERVATION_VALUES =
“DNS:omg.org/DsObservationAccess/policy/RETURN_NO_OBSERVATION_VALUES”;

const ReturnObservationValuesPolicyType RETURN_OBSERVATION_VALUES =
“DNS:omg.org/DsObservationAccess/policy/RETURN_OBSERVATION_VALUES”;
COAS, v1.0 SEARCH_SYNONYMOUS_CODES_POLICY April 2001 8-3

8

,

ork
ll

) in
s to

r one
ing
it is
 are

e
• RETURN_OBSERVATION_VALUES_POLICY is useful when only contextual
(“meta”) information is desired. No values are returned, only qualifiers. That is
ObservationDataStruct.value sequences are returned empty, even for atomic
observations. Use this policy when, for example, a value is large, and the netw
traffic to download it to a client would be considerable. The client can display a
the context information from qualifiers (observation time, ordering provider, etc.
some list of observations, without downloading the actual item until a user click
examine the actual data.

• default = RETURN_OBSERVATION_VALUES

8.6 SHORTCIRCUIT_SEARCH_..._POLICY

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY”;

typedef boolean ShortcircuitSearchCodesOnSuccessPolicyType;

const ShortcircuitSearchCodesOnSuccessPolicyType
SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_FALSE = FALSE;

const ShortcircuitSearchCodesOnSuccessPolicyType
SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_TRUE = TRUE;

• SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY is employed only
when a sequence of query codes is passed in. If a successful match is found fo
of the codes, this policy indicates to discard the rest of the codes, short circuit
the search for other codes. Such a policy might be useful in a situation where
not clear what qualified code will work for a given server, so that multiple codes
used.

• default = SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_FALSE

8.7 SEARCH_SYNONYMOUS_IDS_POLICY

const QualifiedCodeStr SEARCH_SYNONYMOUS_IDS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_IDS_POLICY”;

typedef boolean SearchSynonymousIdsPolicyType;

const SearchSynonymousIdsPolicyType SEARCH_SYNONYMOUS_IDS_FALSE = FALSE;
const SearchSynonymousIdsPolicyType SEARCH_SYNONYMOUS_IDS_TRUE = TRUE;

• SEARCH_SYNONYMOUS_IDS_POLICY indicates whether or not to search for all
possible matches on an ID, including any synonyms that might be known by th
server via a PIDS translation or otherwise.

• default = SEARCH_SYNONYMOUS_IDS_TRUE
8-4 Clinical Observations Access Service, v1.0 April 2001

8

r one
ther
t is

8.8 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY =
"DNS:omg.org/DsObservationAccess/policy/
SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY";

typedef boolean ShortcircuitSearchIdsOnSuccessPolicyType;

const ShortcircuitSearchIdsOnSuccessPolicyType
SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_FALSE = FALSE;

const ShortcircuitSearchIdsOnSuccessPolicyType
SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_TRUE = TRUE;

• SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY is used in a situation
where a sequence of subject IDs is passed in. If a successful match is found fo
of the Ids, the policy indicates to discard the rest of the Ids, short-circuit any fur
searching for other codes. Such a policy might be useful in a situation where i
not clear what Id will work for a given server.

• default = SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_FALSE

8.9 RETURN_ITEMS_IN_TIME_SPAN_POLICY

const QualifiedCodeStr RETURN_ITEMS_IN_TIME_SPAN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
RETURN_ITEMS_IN_TIME_SPAN_POLICY”;

typedef QualifiedCodeStr ReturnItemsInTimeSpanPolicyType;

const ReturnItemsInTimeSpanPolicyType
RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY =
“DNS:omg.org/DsObservationAccess/policy/
RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY”;

const ReturnItemsInTimeSpanPolicyType
RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY =
“DNS:omg.org/DsObservationAccess/policy/
RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY”;

const ReturnItemsInTimeSpanPolicyType
RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS =
“DNS:omg.org/DsObservationAccess/policy/
RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS”;

• RETURN_ITEMS_IN_TIME_SPAN_POLICY indicates whether to only return the first
or last matched items in a time span.

• default = RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS .

8.10 MATCHING_STRENGTH_POLICY

const QualifiedCodeStr MATCHING_STRENGTH_POLICY =
“DNS:omg.org/DsObservationAccess/policy/MATCHING_STRENGTH_POLICY”;

typedef float MatchingStrengthPolicyType;

const MatchingStrengthPolicyType MATCHING_STRENGTH_WEAKEST = 0.0;
COAS, v1.0 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY April 20018-5

8

his

ot

ver

t
const MatchingStrengthPolicyType MATCHING_STRENGTH_STRONGEST = 1.0;

• MATCHING_STRENGTH_POLICY indicates whether exact matches only are to be
returned, or if close (as determined by the server) matches are returned too. T
matching strength concept is similar to the PIDS find_candidates() operation.

• default = MATCHING_STRENGTH_STRONGEST.

8.11 PARAM_CHECKING_POLICY

const QualifiedCodeStr PARAM_CHECKING_POLICY =
“DNS:omg.org/DsObservationAccess/policy/PARAM_CHECKING_POLICY”;

typedef boolean ParamCheckingPolicyType;

const ParamCheckingPolicyType PARAM_CHECKING_FALSE = FALSE;
const ParamCheckingPolicyType PARAM_CHECKING_TRUE = TRUE;

• PARAM_CHECKING_POLICY allows a server to ignore parameters that it does n
recognize (IDs, codes, qualifiers, TimeStamps , etc.) without throwing an exception.
Unknown items are ignored in matching algorithms. If this policy is true, the ser
will raise an exception when unknown IDs or codes are passed in. For a more
narrowly-focused policy, see Section 8.18,
“IGNORE_UNMATCHABLE_QUALIFIERS_POLICY,” on page 8-8.

• default = PARAM_CHECKING_TRUE

8.12 QUALIFIER_RETURN_POLICY

const QualifiedCodeStr QUALIFIER_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_RETURN_POLICY”;

typedef sequence<QualifiedCodeStr> QualifierReturnPolicyType;

const QualifiedCodeStr QUALIFIER_RETURN_ALL =
“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_RETURN_ALL”;

const QualifiedCodeStr QUALIFIER_RETURN_NONE =
“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_RETURN_NONE”;

const QualifiedCodeStr QUALIFIER_NOT_TO_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
QUALIFIER_NOT_TO_RETURN_POLICY”;

typedef sequence<QualifiedCodeStr> QualifierNotToReturnPolicyType;

• QUALIFIER_RETURN_POLICY makes it possible for the client to indicate exactly
which qualifiers should be returned with the ObservationData . For a list of
qualifiers see Section 7.4, “Qualifier Codes,” on page 7-3. Note there is a grea
difference between returning qualifiers, and filtering by qualifiers. The later
happens as a result of passing in qualifiers via the get_observations_by_qualifier()
operation and similar operations. The former is accomplished with this policy.

• default = QUALIFIER_RETURN_NONE
8-6 Clinical Observations Access Service, v1.0 April 2001

8

ver.
8.13 RELATIONS_RETURN_POLICY

const QualifiedCodeStr RELATIONS_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RELATIONS_RETURN_POLICY”;

typedef sequence<QualifiedCodeStr> RelationsReturnPolicyType;

const QualifiedCodeStr RELATIONS_RETURN_ALL =
“DNS:omg.org/DsObservationAccess/policy/RELATIONS_RETURN_ALL”;

const QualifiedCodeStr RELATIONS_RETURN_NONE =
“DNS:omg.org/DsObservationAccess/policy/RELATIONS_RETURN_NONE”;

const QualifiedCodeStr RELATIONS_NOT_TO_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
RELATIONS_NOT_TO_RETURN_POLICY”;

typedef sequence<QualifiedCodeStr> RelationsNotToReturnPolicyType;

• RELATIONS_RETURN_POLICY makes it possible for the client to indicate exactly
which relations should be returned with the ObservationData . For a list of relations
see Section 6.4, “Relation Codes,” on page 6-2.

• default = RELATIONS_RETURN_NONE

8.14 RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY

const QualifiedCodeStr RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY =
"DNS:omg.org/DsObservationAccess/policy/
RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY";

typedef unsigned long ReturnMostRecent_N_ObservationsPolicyType;

const ReturnMostRecent_N_ObservationsPolicyType
RETURN_MOST_RECENT_N_OBSERVATIONS_ALL = 0xFFFFFFFF;

• RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY provides a means to
return items according to their temporal proximity to the current time of the ser
This policy overrides any TimeSpan provided as an input parameter.

• default = RETURN_MOST_RECENT_N_OBSERVATIONS_ALL .

8.15 TIME_SERIES_..._ALGORITHM_POLICY

const QualifiedCodeStr TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY”;

typedef sequence<QualifiedCodeStr> TimeSeriesRemoteResampleAlgorithmPolicyType;

8.16 TIME_SERIES_..._PREFERENCE_POLICY

const QualifiedCodeStr TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY”;

typedef DsObservationTimeSeries::ValueSeqType
TimeSeriesRemoteReturnTypePreferencePolicyType;
COAS, v1.0 RELATIONS_RETURN_POLICY April 2001 8-7

8

e

e

is

fiers.

se,
d. A
hod
8.17 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY

const QualifiedCodeStr RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY =
"DNS:omg.org/DsObservationAccess/policy/RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY";

typedef unsigned long ReturnMaxSequenceForValuePolicyType;
const ReturnMaxSequenceForValuePolicyType RETURN_MAX_SEQUENCE_FOR_VALUE_ALL =

0xFFFFFFFF;

• RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY is used when an
ObservationValue can include an iterator. For example,
DsObservationValues::Multimedia includes an iterator field “the_rest”. A non-null
iterator is returned within the Multimedia struct only if the number of items in th
sequence “values” is greater than the current
RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY. In other words, specify the
number of items desired in the sequence with this policy, and that will determin
whether an iterator is returned also.

This policy is analogous to the parameter “max_sequence” in
QueryAccess.get_observations_by_time() and similar operations. The input
parameter “max_sequence” specifies the number of observations to return in a
sequence. But a single observation which contains a Multimedia payload in its
ObservationDataStruct.value (a CORBA::any) may have any number of items in
the Multimedia.a_blob (a sequence). The number of items desired by the client
specified via the RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY.

• default = RETURN_MAX_SEQUENCE_FOR_VALUE_ALL

8.18 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY

const QualifiedCodeStr IGNORE_UNMATCHABLE_QUALIFIERS_POLICY =
"DNS:omg.org/DsObservationAccess/policy/IGNORE_UNMATCHABLE_QUALIFIERS_POLICY";

typedef boolean IgnoreUnmatchableQualifiersPolicyType;
const IgnoreUnmatchableQualifiersPolicyType IGNORE_UNMATCHABLE_QUALIFIERS_TRUE =

TRUE;
const IgnoreUnmatchableQualifiersPolicyType IGNORE_UNMATCHABLE_QUALIFIERS_FALSE =

FALSE;

• IGNORE_UNMATCHABLE_QUALIFIERS_POLICY applies to the searching rules in
a more specific manner than PARAM_CHECKING_POLICY . The latter turns off all
exceptions, but the user may wish to have parameter checking except for quali
Hence IGNORE_UNMATCHABLE_QUALIFIERS_TRUE means that unknown or
inapplicable qualifiers will not be considered in the matching algorithm. Otherwi
the introduction of an inapplicable qualifier would cause no matches to be foun
client can tell what qualifiers are applicable for a given query code from the met
AccessComponent.get_supported_qualifiers() .

• default = IGNORE_UNMATCHABLE_QUALIFIERS_FALSE
8-8 Clinical Observations Access Service, v1.0 April 2001

 Complete IDL A
A.1 DsObservationAccess

// File: DsObservationAccess.idl

#ifndef _DS_OBSERVATION_ACCESS_IDL_
#define _DS_OBSERVATION_ACCESS_IDL_

#include <CosNaming.idl>
#include <CosTrading.idl>
#include <TerminologyServices.idl>
#include <NamingAuthority.idl>
#include <PersonIdService.idl>
#include <CosEventComm.idl>
#include <CosEventChannelAdmin.idl>
#include <orb.idl>

#pragma prefix “omg.org”

module DsObservationAccess {

//
// EXTERNAL TYPEDEFS
//

typedef PersonIdService::QualifiedPersonId ObservedSubjectId;
typedef TerminologyServices::QualifiedCode QualifiedCode;
typedef NamingAuthority::QualifiedNameStr QualifiedCodeStr;
typedef PersonIdService::DomainName IdDomainName;

typedef PersonIdService::IdentificationComponent IdentificationComponent;
typedef CosNaming::NamingContext NamingContext;
typedef CosTrading::TraderComponents TraderComponents;
typedef TerminologyServices::TerminologyService TerminologyService;
Clinical Observations Access Service V1.0 April 2001 A-1

A

typedef CosEventComm::PushConsumer PushConsumer;
typedef CosEventComm::PushSupplier PushSupplier;

typedef CORBA::TypeCode TypeCode;

//
// FORWARD DECLARATIONS
//

interface AbstractFactory;
interface AbstractManagedObject;
interface AccessComponent;
interface AsynchCallback;
interface AsynchAccess;
interface AtomicObservationRemote;
interface BrowseAccess;
interface CompositeObservationRemote;
interface ConsumerAccess;
interface ConstraintLanguageAccess;
interface EventConsumer;
interface EventSupplier;
interface ObservationDataIterator;
interface ObservationLoader;
interface ObservationRemote;
interface ObservationRemoteIterator;
interface ObservedSubject;
interface QualifiedCodeIterator;
interface QueryAccess;
interface SupplierAccess;

//
// STRUCTS
//

struct AccessComponentData {
QueryAccess query_access;
BrowseAccess browse_access;
AsynchAccess asynch_access;
ConstraintLanguageAccess constraint_access;
ObservationLoader observation_loader;
ConsumerAccess consumer_access;
SupplierAccess supplier_access;

};

struct AsynchException {
QualifiedCodeStr exception_name;
string message;

};

struct ObservationDataStruct {
QualifiedCodeStr code;
sequence<ObservationDataStruct> composite;
A-2 Clinical Observations Access Service V1.0 April 2001

A

sequence<ObservationDataStruct> qualifiers;
sequence<any,1> value;

};

typedef any ObservationData;
typedef ObservationData ObservationQualifier;

struct ObservationId {
QualifiedCodeStr code;
string opaque;

};

struct NameValuePair {
QualifiedCodeStr name;
any value;

};

struct Subscription {
sequence<ObservedSubjectId> who;
sequence<QualifiedCodeStr> what;
sequence<ObservationQualifier> qualifier;
sequence<NameValuePair> policy;

};

typedef string TimeStamp; // ISO 8601 representation, with restrictions

struct TimeSpan {
TimeStamp start_time;
TimeStamp stop_time;

};

//
// CONSTANTS
//

// for TimeStamp fields
const string EARLIEST_TIME = “1582-10-15T00:00:00Z”; // beginning of Gregorian calendar
const string LATEST_TIME = “9999-12-31T23:59:59Z”; // max possible in ISO 8601 specification
const string TIME_WILDCARD = “?”; // replace individual digits

const QualifiedCodeStr PARTIAL_RESULT = “DNS:omg.org/DsObservationAccess/PARTIAL_RESULT”;
const QualifiedCodeStr COMPLETING_RESULT = “DNS:omg.org/DsObservationAccess/COMPLETING_RESULT”;
const QualifiedCodeStr ASYNC_OBSERVATION_COUNT =

“DNS:omg.org/DsObservationAccess/ASYNC_OBSERVATION_COUNT”;
typedef unsigned long ASYNC_OBSERVATION_COUNT_type;

const QualifiedCodeStr EVENT_SOURCE_DOMAIN =
“DNS:omg.org/DsObservationAccess/EVENT_SOURCE_DOMAIN”;

const QualifiedCodeStr EVENT_SOURCE_SERVER_NAME =
“DNS:omg.org/DsObservationAccess/EVENT_SOURCE_SERVER_NAME”;

const QualifiedCodeStr EVENT_NAME = “DNS:omg.org/DsObservationAccess/EVENT_NAME”;
const QualifiedCodeStr TEST_EVENT = “DNS:omg.org/DsObservationAccess/TEST_EVENT”;
typedef long TEST_EVENT_type;
COAS V1.0 April 2001 A-3

A

const QualifiedCodeStr TRADER_1_0_CONSTRAINT_LANGUAGE =
“DNS:omg.org/DsObservationAccess/TRADER_1_0_CONSTRAINT_LANGUAGE”;

const QualifiedCodeStr OCL_1_1_CONSTRAINT_LANGUAGE =
“DNS:omg.org/DsObservationAccess/OCL_1_1_CONSTRAINT_LANGUAGE”;

const QualifiedCodeStr COAS_OBSERVATION_ID =
“DNS:omg.org/DsObservationAccess/COAS_OBSERVATION_ID”;

typedef ObservationId COAS_OBSERVATION_ID_type;

//
// TYPEDEFS
//

typedef long EndpointId;

typedef string ConstraintExpression;

typedef QualifiedCodeStr ConstraintLanguage;

typedef NameValuePair QueryPolicy;

typedef long ServerCallId;

typedef long ClientCallId;

//
// SEQUENCES
//

typedef sequence<AtomicObservationRemote> AtomicObsRemoteSeq;

typedef sequence<ConstraintLanguage> ConstraintLanguageSeq;

typedef sequence<EndpointId> EndpointIdSeq;

typedef sequence<ObservationData> ObservationDataSeq;

typedef sequence<ObservationDataStruct> ObservationDataStructSeq;

typedef sequence<ObservationId> ObservationIdSeq;

typedef sequence<ObservationQualifier> ObservationQualifierSeq;

typedef sequence<ObservationRemote> ObservationRemoteSeq;

typedef sequence<ObservedSubjectId> ObservedSubjectIdSeq;

typedef sequence<ObservedSubject> ObservedSubjectSeq;

typedef sequence<QualifiedCodeStr> QualifiedCodeStrSeq;

typedef sequence<QueryPolicy> QueryPolicySeq;
A-4 Clinical Observations Access Service V1.0 April 2001

A

typedef sequence<Subscription> SubscriptionSeq;

//
// EXCEPTIONS
//

exception DuplicateCodes {
QualifiedCodeStrSeq codes;

};

exception DuplicateIds {
ObservedSubjectIdSeq ids;

};

exception DuplicateOids {
ObservationIdSeq oids;

};

exception DuplicatePolicies {
QueryPolicySeq policies;

};

exception DuplicateQualifiers {
ObservationQualifierSeq qualifiers;

};

exception InvalidCodes {
QualifiedCodeStrSeq codes;

};

exception InvalidEndpointId {
EndpointIdSeq endpoint_ids;

};

exception InvalidConstraint {
string constraint;

};

exception InvalidIds {
ObservedSubjectIdSeq ids;

};

exception InvalidOids {
ObservationIdSeq oids;

};

exception InvalidPolicies {
QualifiedCodeStrSeq policies;

};

exception InvalidQualifiers {
QualifiedCodeStrSeq qualifiers;

};
COAS V1.0 April 2001 A-5

A

exception InvalidTimeSpan {
TimeSpan span;

};

exception MaxConnectionsExceeded {
unsigned long max_connections;

};

exception NotImplemented {
};

exception NoSubscription {
};

//
// INTERFACES
//

// ABSTRACT FACTORY INTERFACE

interface AbstractFactory {
readonly attribute long max_connections;
readonly attribute EndpointIdSeq current_connections;

};

// ABSTRACT MANAGED OBJECT INTERFACE

interface AbstractManagedObject {
void done ();

};

// ACCESS COMPONENT INTERFACE

interface AccessComponent {
readonly attribute string coas_version;
readonly attribute IdentificationComponent pid_service;
readonly attribute TerminologyService terminology_service;
readonly attribute TraderComponents trader_service;
readonly attribute NamingContext naming_service;

AccessComponentData get_components ();

QualifiedCodeStrSeq get_supported_codes (
in unsigned long max_sequence,
out QualifiedCodeIterator the_rest);

QualifiedCodeStrSeq get_supported_qualifiers (
in QualifiedCodeStr code)

raises (
InvalidCodes,
NotImplemented);

QualifiedCodeStrSeq get_supported_policies ();
A-6 Clinical Observations Access Service V1.0 April 2001

A

QueryPolicySeq get_default_policies ();

TypeCode get_type_code_for_observation_type (
in QualifiedCodeStr observation_type)

raises (
InvalidCodes,
NotImplemented);

boolean are_iterators_supported ();

TimeStamp get_current_time ();
};

// ASYNCH ACCESS INTERFACE

interface AsynchAccess : AccessComponent {

ServerCallId count_observations (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in ClientCallId client_call_id,
in AsynchCallback client_callback);

ServerCallId get_observation (
in ObservationId observation_id,
in ClientCallId client_call_id,
in AsynchCallback client_callback);

ServerCallId get_observations (
in ObservationIdSeq observation_ids,
in ClientCallId client_call_id,
in AsynchCallback client_callback);

ServerCallId get_observations_by_time (
in ObservedSubjectId who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
in ClientCallId client_call_id,
in AsynchCallback client_callback);

ServerCallId get_observations_by_qualifier (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
in ClientCallId client_call_id,
in AsynchCallback client_callback);

ServerCallId get_observations_with_policy (
COAS V1.0 April 2001 A-7

A

in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
in ClientCallId client_call_id,
in AsynchCallback client_callback);

void cancel_get (
in ServerCallId server_call_id);

};

// ASYNCH CALLBACK INTERFACE

interface AsynchCallback {

void put_observations (
in ObservationDataSeq as_sequence,
in ObservationDataIterator as_iterator,
in ClientCallId client_call_id,
in QualifiedCodeStrSeq result_status);

void put_exception (
in ClientCallId client_call_id,
in AsynchException the_exception);

};

// OBSERVATION REMOTE INTERFACE

interface ObservationRemote : AbstractManagedObject {
readonly attribute QualifiedCodeStr observation_code;

TimeSpan get_observation_time ();

ObservedSubject get_observed_subject ();

ObservationRemote get_root_observation ();

ObservationData get_path_from_root ();

ObservationQualifierSeq get_all_qualifiers ();

ObservationQualifierSeq get_qualifiers (
in QualifiedCodeStrSeq qualifier_names)

raises (
InvalidCodes);

boolean is_this_root ();

boolean is_this_atomic ();
};

// ATOMIC OBSERVATION REMOTE INTERFACE
A-8 Clinical Observations Access Service V1.0 April 2001

A

interface AtomicObservationRemote : ObservationRemote {

ObservationData get_observation_data ();

ObservationData get_observation_data_with_policy (
in QueryPolicySeq policy);

};

// BROWSE ACCESS INTERFACE

interface BrowseAccess : AccessComponent {

ObservedSubject get_observed_subject (
in ObservedSubjectId who)

raises (
InvalidIds);

ObservedSubjectSeq get_observed_subjects (
in ObservedSubjectIdSeq who)

raises (
InvalidIds,
DuplicateIds);

ObservedSubject get_observed_subject_for_observation_id (
in ObservationId observation_id)

raises (
InvalidOids);

ObservedSubjectSeq get_observed_subjects_for_observation_ids (
in ObservationIdSeq observation_ids)

raises (
InvalidOids,
DuplicateOids);

unsigned long count_observations (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemote get_observation (
in ObservationId observation_id)

raises (
InvalidOids);
COAS V1.0 April 2001 A-9

A

ObservationRemoteSeq get_observations (
in ObservationIdSeq observation_ids)

raises (
InvalidOids,
DuplicateOids);

ObservationRemoteSeq get_observations_by_time (
in ObservedSubjectId who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by_qualifier (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

};
A-10 Clinical Observations Access Service V1.0 April 2001

A

// COMPOSITE OBSERVATION REMOTE INTERFACE

interface CompositeObservationRemote : ObservationRemote {

unsigned long count_observations (
in QueryPolicySeq search_depth_policy)

raises (
InvalidPolicies);

ObservationRemoteSeq get_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

AtomicObsRemoteSeq get_leaf_observations ();

AtomicObsRemoteSeq get_leaf_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)
COAS V1.0 April 2001 A-11

A

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

AtomicObsRemoteSeq get_leaf_observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

AtomicObsRemoteSeq get_leaf_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

AtomicObsRemoteSeq get_leaf_observations_by_value_type (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QualifiedCodeStr value_type,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationDataSeq get_relations_toward_root (
in QualifiedCodeStrSeq relation_name);

ObservationDataSeq get_relations_away_from_root (
in QualifiedCodeStrSeq relation_name);

};
A-12 Clinical Observations Access Service V1.0 April 2001

A

// CONSTRAINT LANGUAGE ACCESS INTERFACE

interface ConstraintLanguageAccess : AccessComponent {
readonly attribute ConstraintLanguageSeq supported_languages;

ObservationDataSeq get_by_constraint (
in ConstraintExpression constraint,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationDataIterator the_rest)

raises (
InvalidConstraint,
InvalidPolicies,
DuplicatePolicies);

};

// CONSUMER ACCESS INTERFACE

interface ConsumerAccess : AbstractFactory, AccessComponent {

EventConsumer create_consumer ()
raises (

MaxConnectionsExceeded);

EventConsumer get_consumer_by_id (
in EndpointId endpoint_id)

raises (
InvalidEndpointId);

};

// EVENT CONSUMER INTERFACE

interface EventConsumer : AbstractManagedObject, PushConsumer {
readonly attribute EndpointId endpoint_id;

SubscriptionSeq obtain_subscriptions ();

void connect_push_supplier (
in PushSupplier push_supplier)

raises (
CosEventChannelAdmin::AlreadyConnected);

PushSupplier get_connected_supplier ()
raises (

CosEventComm::Disconnected);
};

// EVENT SUPPLIER INTERFACE

interface EventSupplier : AbstractManagedObject, PushSupplier {
readonly attribute EndpointId endpoint_id;

QualifiedCodeStrSeq obtain_offered_codes ();

void connect_push_consumer (
COAS V1.0 April 2001 A-13

A

in PushConsumer push_consumer)
raises (

CosEventChannelAdmin::AlreadyConnected);

PushConsumer get_connected_consumer ()
raises (

CosEventComm::Disconnected);

void subscribe (
in SubscriptionSeq subscriptions)

raises (
CosEventComm::Disconnected);

SubscriptionSeq describe_subscriptions ()
raises (

NoSubscription);

void generate_test_event (
in ClientCallId clientId)

raises (
CosEventComm::Disconnected);

};

// OBSERVATION DATA ITERATOR INTERFACE

interface ObservationDataIterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
in unsigned long n,
out ObservationDataSeq observation_data_seq);

};

// OBSERVATION LOADER INTERFACE

interface ObservationLoader : AccessComponent {

void load_observations (
in ObservationDataSeq observations);

};

// OBSERVATION REMOTE INTERFACE

// This interface is defined after AsynchCallBack and before AtomicObservationRemote

// OBSERVATION REMOTE ITERATOR INTERFACE

interface ObservationRemoteIterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
in unsigned long n,
out ObservationRemoteSeq observation_remote_seq);
A-14 Clinical Observations Access Service V1.0 April 2001

A

};

// OBSERVED SUBJECT INTERFACE

interface ObservedSubject : AbstractManagedObject {
readonly attribute ObservedSubjectId observed_subject_id;

unsigned long count_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemoteSeq get_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
COAS V1.0 April 2001 A-15

A

InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemoteSeq get_root_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

AtomicObsRemoteSeq get_leaf_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_any_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_first_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_last_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_candidate_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)
A-16 Clinical Observations Access Service V1.0 April 2001

A

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_exact_observation_types (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemoteIterator the_rest)

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

};

// QUALIFIED CODE ITERATOR INTERFACE

interface QualifiedCodeIterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
in unsigned long n,
out QualifiedCodeStrSeq codes);

};

// QUERY ACCESS INTERFACE

interface QueryAccess : AccessComponent {

unsigned long count_observations (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationData get_observation (
in ObservationId observation_id)

raises (
InvalidOids);
COAS V1.0 April 2001 A-17

A

ObservationDataSeq get_observations (
in ObservationIdSeq observation_ids)

raises (
InvalidOids,
DuplicateOids);

ObservationDataSeq get_observations_by_time (
in ObservedSubjectId who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationDataIterator the_rest)

raises (
InvalidIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationDataSeq get_observations_by_qualifier (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationDataIterator the_rest)

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationDataSeq get_observations_with_policy (
in ObservedSubjectIdSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationDataIterator the_rest)

raises (
InvalidIds,
DuplicateIds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

};

// SUPPLIER ACCESS INTERFACE
A-18 Clinical Observations Access Service V1.0 April 2001

A

interface SupplierAccess : AbstractFactory, AccessComponent {

EventSupplier create_supplier ()
raises (

MaxConnectionsExceeded);

EventSupplier get_supplier_by_id (
in EndpointId endpoint_id)

raises (
InvalidEndpointId);

};

};

#endif // _DS_OBSERVATION_ACCESS_IDL_

A.2 DsObservationValue
// File: DsObservationValue.idl

#ifndef _DS_OBSERVATION_VALUE_IDL_
#define _DS_OBSERVATION_VALUE_IDL_

#include “DsObservationAccess.idl”

#pragma prefix “omg.org”

module DsObservationValue
{

//
// EXTERNAL TYPEDEFS
//

typedef TerminologyServices::ConceptCode ConceptCode;
typedef NamingAuthority::QualifiedNameStr QualifiedCodeStr;

typedef DsObservationAccess::AbstractManagedObject
AbstractManagedObject;

// DateTime : ObservationValue;
typedef DsObservationAccess::TimeStamp DateTime;

// TimeSpan : ObservationValue;
typedef DsObservationAccess::TimeSpan TimeSpan;

// Person : ObservationValue;
typedef DsObservationAccess::ObservedSubjectId Person;

//---
// NoInformation
COAS V1.0 April 2001 A-19

A

//---

// NoInformation : ObservationValue;
struct NoInformation {

QualifiedCodeStr reason;
string text_description;

};
const QualifiedCodeStr NO_INFORMATION =

“DNS:omg.org/DsObservationValue/NO_INFORMATION”;

//---
// Text Types
//---

// PlainText : ObservationValue;
typedef string PlainText;

// UniversalResourceIdentifier : ObservationValue;
struct UniversalResourceIdentifier {

ConceptCode protocol;
string address;

};

// PhysicalLocationDescription : ObservationValue;
typedef string PhysicalLocationDescription;

//---
// Coded Types
//---

// CodedElement : ObservationValue;
typedef TerminologyServices::QualifiedCodeInfo CodedElement;

// LooselyCodedElement : ObservationValue;
struct LooselyCodedElement {

string text;
TerminologyServices::CodingSchemeId coding_scheme_id;
TerminologyServices::VersionId version_id;

};

//---
// Multimedia
//---

typedef sequence<octet> Blob;

interface MultimediaIterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
A-20 Clinical Observations Access Service V1.0 April 2001

A

in unsigned long n,
out Blob multimedia_part);

};

// Multimedia : ObservationValue;
struct Multimedia {

string content_type;
string other_mime_header_fields;
Blob a_blob;
unsigned long long total_size;
MultimediaIterator the_iterator;

};

//---
// Measurements Types
//---

// Numeric : ObservationValue;
struct Numeric {

QualifiedCodeStr units;
float value;

};

// Range : ObservationValue;
struct Range {

QualifiedCodeStr units;
float lower;
float upper;

};

// Ratio : ObservationValue;
struct Ratio {

float numerator;
float denominator;

};

struct XYPair {
float x;
float y;

};
typedef sequence<XYPair> XYPairSeq;

interface CurveIterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
in unsigned long n,
out XYPairSeq curve_part);

};

// Curve : ObservationValue;
struct Curve {

XYPairSeq xy_pairs;
COAS V1.0 April 2001 A-21

A

QualifiedCodeStr x_units;
QualifiedCodeStr y_units;
unsigned long long total_size;
CurveIterator the_iterator;

};

};

#endif // _DS_OBSERVATION_VALUE_IDL_

A.3 DsObservationTimeSeries
// File: DsObservationTimeSeries.idl

#ifndef _DS_OBSERVATION_TIME_SERIES_IDL_
#define _DS_OBSERVATION_TIME_SERIES_IDL_

#include “DsObservationAccess.idl”

module DsObservationTimeSeries
{

//
// EXTERNAL TYPEDEFS
//

typedef DsObservationAccess::AbstractManagedObject AbstractManagedObject;
typedef DsObservationAccess::NameValuePair NameValuePair;
typedef DsObservationAccess::QueryPolicy QueryPolicy;
typedef DsObservationAccess::QueryPolicySeq QueryPolicySeq;
typedef DsObservationAccess::ObservationQualifierSeq ObservationQualifierSeq;
typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;
typedef DsObservationAccess::TimeStamp TimeStamp;
typedef DsObservationAccess::TimeSpan TimeSpan;

typedef sequence < QualifiedCodeStr > QualifiedCodeStrSeq;

//---
// Time Types
//---

// TimeDelta : ObservationValue;
struct TimeDelta {

float delta; // calculated with constants below, NOT with calendaring
QualifiedCodeStr units;

};

// approximations for time deltas, NOT for calendaring
// all units here are seconds. Use scaling as necessary for units of TimeDelta
const float YEAR = 31557600.0; // 60*60*24*365.25
const float MONTH = 2629800.0; // 60*60*24*365.25/12
const float DAY = 86400.0; // 60*60*24
const float HOUR = 3600.0; // 60*60
const float MINUTE = 60.0; // 60
A-22 Clinical Observations Access Service V1.0 April 2001

A

const float SECOND = 1.0; // 1
const float MILLISECOND = 0.001; // 1/1000

typedef NameValuePair Filter;
typedef sequence < Filter > FilterSeq;

enum ValueSeqType {
OtherSeqDataType, OctetType, ShortType,
LongType, LongLongType, FloatType, DoubleType

};

union ValueSeq switch (ValueSeqType) {
case OctetType : sequence < octet > octet_seq;
case ShortType : sequence < short > short_seq;
case LongType : sequence < long > long_seq;
case LongLongType : sequence < long long > long_long_seq;
case FloatType : sequence < float > float_seq;
case DoubleType : sequence < double > double_seq;
case OtherSeqDataType : any the_any;

};

typedef sequence < QualifiedCodeStr,1 > OptionalCodeSeq;
typedef sequence < float,1 > OptionalFloatSeq;

interface TimeSeriesIterator : AbstractManagedObject {
unsigned long max_left ();

boolean next_n (
in unsigned long n,
out ValueSeq curve_part);

};

// TimeSeries : ObservationValue;
struct TimeSeries {

TimeDelta sample_period;
ValueSeq values;
unsigned long long total_size;
TimeSeriesIterator the_iterator;

};

exception OutOfRange { };

exception NotImplemented { };

exception FilterNotSupported { };

exception NoValidValues { };

struct TimeSeriesRemoteAttributes {
QualifiedCodeStr code;
QualifiedCodeStr units;
OptionalCodeSeq accuracy;
OptionalFloatSeq precision;
OptionalFloatSeq corner_frequency;
COAS V1.0 April 2001 A-23

A

OptionalFloatSeq highest_frequency;
TimeSpan time_span;
TimeDelta time_delta;
unsigned long long total_size;
QualifiedCodeStrSeq supported_filters;
QueryPolicySeq supported_policies;

};

// TimeSeriesRemote : ObservationValue;
interface TimeSeriesRemote : AbstractManagedObject {

readonly attribute QualifiedCodeStr code;
readonly attribute QualifiedCodeStr units;
readonly attribute OptionalCodeSeq accuracy;
readonly attribute OptionalFloatSeq precision;
readonly attribute OptionalFloatSeq corner_frequency;
readonly attribute OptionalFloatSeq highest_frequency;
readonly attribute TimeSpan time_span;
readonly attribute TimeDelta time_delta;
readonly attribute unsigned long long total_size;
readonly attribute QualifiedCodeStrSeq supported_filters;
readonly attribute QueryPolicySeq supported_policies;
readonly attribute ValueSeqType default_value_type;

TimeSeriesRemoteAttributes get_attributes ();

float get_sample_number (
in unsigned long long index,
out ObservationQualifierSeq qualifiers)

raises (
OutOfRange);

float get_sample (
in TimeStamp time_stamp,
out ObservationQualifierSeq qualifiers)

raises (
OutOfRange);

TimeSeries get_snippet (
in TimeSpan time_span,
out ObservationQualifierSeq qualifiers)

raises (
OutOfRange);

float get_max (
in TimeSpan time_span)

raises (
OutOfRange,
NoValidValues);

float get_min (
in TimeSpan time_span)

raises (
OutOfRange,
NoValidValues);
A-24 Clinical Observations Access Service V1.0 April 2001

A

float get_mean (
in TimeSpan time_span)

raises (
OutOfRange,
NoValidValues);

float get_median (
in TimeSpan time_span)

raises (
OutOfRange,
NoValidValues);

TimeSeries get_resampled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

raises (
NotImplemented);

TimeSeries get_rescaled (
in TimeSpan time_span,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

raises (
NotImplemented);

TimeSeries get_resampled_rescaled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

raises (
NotImplemented);

TimeSeries get_filtered (
in TimeSpan time_span,
in FilterSeq filters,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

raises (
NotImplemented,
FilterNotSupported);

};

};

#endif // _DS_OBSERVATION_TIME_SERIES_IDL_

A.4 DsObservationRelations

// file DsObservationRelations.idl
COAS V1.0 April 2001 A-25

A

#ifndef _DS_OBSERVATION_RELATIONS_IDL_
#define _DS_OBSERVATION_RELATIONS_IDL_

#pragma prefix “omg.org”

#include “DsObservationAccess.idl”

module DsObservationRelations {

typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;

// all relations are collections of observations (composite observations)
typedef DsObservationAccess::ObservationData RELATION_type;

// from CEN/TC 251/N98-116, table A.5

// CEN description names translated according to the following rules:
//replace “/” with “_”
//replace space with nothing, Capitalizing next word
//replace apostrophe, periods, etc. with nothing

// produces /is produced by healthcare activity produces result, report, study product
const QualifiedCodeStr Produces = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Produces”;
const QualifiedCodeStr IsProducedBy =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsProducedBy”;

// is documented by /documents healthcare activity is documented by note (3.15)
const QualifiedCodeStr Documents =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Documents”;
const QualifiedCodeStr IsDocumentedBy =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsDocumentedBy”;

//is reported within /reports about property is reported within report (3.17)
const QualifiedCodeStr Reports = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Reports”;
const QualifiedCodeStr IsReportedBy =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsReportedBy”;

//describes /is described by graphic property (3.22) describes graphic object (3.21)
const QualifiedCodeStr Describes = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Describes”;
const QualifiedCodeStr IsDescribedBy =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsDescribedBy”;

//is identified within /incorporates graphic object is identified within study product (3.20)
const QualifiedCodeStr IsIdentifiedWithin =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsIdentifiedWithin”;
const QualifiedCodeStr IsIncorporatedBy =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsIncorporatedBy”;

//is derived from /is source for graphic property is derived from study product
const QualifiedCodeStr IsSourceFor =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsSourceFor”;
const QualifiedCodeStr IsDerivedFrom =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsDerivedFrom”;
A-26 Clinical Observations Access Service V1.0 April 2001

A

//is compared to /is reference for situation, document is compared to situation, document
const QualifiedCodeStr IsComparedTo =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsComparedTo”;
const QualifiedCodeStr IsReferenceFor =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsReferenceFor”;

//is recorded against /is recorded against family history of x is recorded against no evidence of x (note 3)
const QualifiedCodeStr IsRecordedAgainst =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsRecordedAgainst”;

//superseds /is superseded by clinical state superseds clinical state (note 4)
const QualifiedCodeStr Supersedes =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Supersedes”;
const QualifiedCodeStr IsSupersededBy =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsSupersededBy”;

//organizational links

//is framework for /is framed in contact is framework for situation, document
const QualifiedCodeStr IsFrameworkFor =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsFrameworkFor”;
const QualifiedCodeStr IsFramedBy =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsFramedBy”;

//has phase /is phase of healthcare activity has phase healthcare (sub)activity
const QualifiedCodeStr HasPhase = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasPhase”;
const QualifiedCodeStr IsPhaseOf = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsPhaseOf”;

//is next phase wrt /has next phase healthcare activity is next phase wrt healthcare (sibling) activity
const QualifiedCodeStr HasNextPhase =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasNextPhase”;
const QualifiedCodeStr IsNextPhaseWRT =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsNextPhaseWRT”;

//is associate to /is associate to condition is associate to condition
const QualifiedCodeStr IsAssociateTo =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsAssociateTo”;

//is assigned to /is setting for situation is assigned to problem
const QualifiedCodeStr IsAssignedTo =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsAssignedTo”;
const QualifiedCodeStr IsSettingFor =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsSettingFor”;

//is interpretation of/ is interpreted as condition is interpretation of findings, report
const QualifiedCodeStr IsInterpretationOf =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsInterpretationOf”;
const QualifiedCodeStr IsInterpretedAs =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsInterpretedAs”;

//has progress /is progress of condition has progress condition (e.g. convalescence)
COAS V1.0 April 2001 A-27

A

const QualifiedCodeStr HasProgress =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasProgress”;

const QualifiedCodeStr IsProgressOf =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsProgressOf”;

//has cause /is cause of condition has cause condition
const QualifiedCodeStr HasCause = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasCause”;
const QualifiedCodeStr IsCauseOf = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsCauseOf”;

//co-exists with /co-exists with condition co-exist with condition
const QualifiedCodeStr CoExistsWith =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/CoExistsWith”;

//is evidence for /has evidence finding is evidence for diagnosis
const QualifiedCodeStr HasEvidence =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasEvidence”;
const QualifiedCodeStr IsEvidenceFor =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsEvidenceFor”;

//triggers /is triggered by presence of prosthesis triggers risk state
const QualifiedCodeStr Triggers = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Triggers”;
const QualifiedCodeStr IsTriggeredBy =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsTriggeredBy”;

//has goal /is goal of healthcare activity has goal achievable situation
const QualifiedCodeStr HasGoal = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasGoal”;
const QualifiedCodeStr IsGoalOf = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsGoalOf”;

//has motivation /is motivation for healthcare activity has motivation current situation
const QualifiedCodeStr HasMotivation =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasMotivation”;
const QualifiedCodeStr IsMotivationFor =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsMotivationFor”;

//has consequence /is consequence of healthcare activity, event has consequence situation (e.g. outcome)
const QualifiedCodeStr HasConsequence =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasConsequence”;
const QualifiedCodeStr IsConsequenceOf =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsConsequenceOf”;

//circumstantial links

//has topic /is topic for informing has topic record component
const QualifiedCodeStr HasTopic = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasTopic”;
const QualifiedCodeStr IsTopicFor =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsTopicFor”;

//has target /is target of informing has target person
const QualifiedCodeStr HasTarget = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasTarget”;
const QualifiedCodeStr IsTargetOf = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsTargetOf”;

//provides information about /is reported by person provides information about record component
A-28 Clinical Observations Access Service V1.0 April 2001

A

const QualifiedCodeStr ProvidesInformationAbout =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/ProvidesInformationAbout”;

//has circumstances /is circumstance for support activity has circumstance home circumstances
const QualifiedCodeStr HasCircumstances =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasCircumstances”;
const QualifiedCodeStr IsCircumstanceOf =

“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsCircumstanceOf”;

};

#endif // _DS_OBSERVATION_RELATIONS_IDL_

A.5 DsObservationQualifiers

// file DsObservationQualifiers.idl

#ifndef _DS_OBSERVATION_QUALIFIERS_IDL_
#define _DS_OBSERVATION_QUALIFIERS_IDL_

#pragma prefix “omg.org”

#include “DsObservationAccess.idl”

module DsObservationQualifiers {

typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;
typedef DsObservationAccess::TimeStamp TimeStamp;

const QualifiedCodeStr COAS_OBSERVATION_ID = “DNS:omg.org/DsObservationAccess/COAS_OBSERVATION_ID”;

// all the qualifiers listed here from HL7 are defined with
// subcomponents in HL7 2.3, so they all have type ObservationData (composite observations)

typedef DsObservationAccess::ObservationData COMPOSITE_OBSERVATION_type;

// naming convention:
// start with “DNS:omg.org/DsObservationAccess/HL72.3/”
// add the HL7 segment name, like OBX or PID, plus a slash
// take HL7 data element names from HL7 v2.3 standard distribution,
// appendix A, (APPA.doc), table A.6 DATA ELEMENT NAMES,
// translated according to the following rules:
// replace “/” with “_”
// replace space with nothing, capitalizing next word
// omit apostrophe, periods, parentheses, and other punctuation
// to name subcomponents, additional slashes can follow the component names
// see SpecimenSourceBodySite at bottom for example

// see HL7 descriptions for composite returned by each of these data elements.

// clinical times;

const QualifiedCodeStr Date_TimeOfTheObservation =
“DNS:omg.org/DsObservationAccess/HL72.3/OBX/Date_TimeOfTheObservation”;
COAS V1.0 April 2001 A-29

A

const QualifiedCodeStr EventOnsetDate_Time =
“DNS:omg.org/DsObservationAccess/HL72.3/PEO/EventOnsetDate_Time”;

const QualifiedCodeStr OrderEffectiveDate_Time =
“DNS:omg.org/DsObservationAccess/HL72.3/ORC/OrderEffectiveDate_Time”;

const QualifiedCodeStr ProcedureDate_Time =
“DNS:omg.org/DsObservationAccess/HL72.3/PR1/ProcedureDate_Time”;

const QualifiedCodeStr RequestedDate_Time =
“DNS:omg.org/DsObservationAccess/HL72.3/OBR/RequestedDate_Time”;

const QualifiedCodeStr VerificationDate_Time =
“DNS:omg.org/DsObservationAccess/HL72.3/IN1/VerificationDate_Time”;

const QualifiedCodeStr ActionDate_Time = “DNS:omg.org/DsObservationAccess/HL72.3/GOL/ActionDate_Time”;
const QualifiedCodeStr AttestationDate_Time =

“DNS:omg.org/DsObservationAccess/HL72.3/DG1/AttestationDate_Time”;
const QualifiedCodeStr TranscriptionDate_Time =

“DNS:omg.org/DsObservationAccess/HL72.3/TXA/TranscriptionDate_Time”;

// roles

const QualifiedCodeStr PatientIDExternalID = “DNS:omg.org/DsObservationAccess/HL72.3/PID/PatientIDExternalID”;
const QualifiedCodeStr PatientIDInternalID = “DNS:omg.org/DsObservationAccess/HL72.3/PID/PatientIDInternalID”;
const QualifiedCodeStr OrderingProvider = “DNS:omg.org/DsObservationAccess/HL72.3/OBR/OrderingProvider”;
const QualifiedCodeStr ProducerID = “DNS:omg.org/DsObservationAccess/HL72.3/OBX/ProducerID”;
const QualifiedCodeStr CollectorIdentifier = “DNS:omg.org/DsObservationAccess/HL72.3/OBR/CollectorIdentifier”;
const QualifiedCodeStr ResponsibleObserver =

“DNS:omg.org/DsObservationAccess/HL72.3/OBX/ResponsibleObserver”;
const QualifiedCodeStr Technician = “DNS:omg.org/DsObservationAccess/HL72.3/OBR/Technician”;
const QualifiedCodeStr PrincipalResultInterpreter =

“DNS:omg.org/DsObservationAccess/HL72.3/OBR/PrincipalResultInterpreter”;

// from OBR (orders)

const QualifiedCodeStr SpecimenSource = “DNS:omg.org/DsObservationAccess/HL72.3/OBR/SpecimenSource”;
const QualifiedCodeStr ReasonForStudy = “DNS:omg.org/DsObservationAccess/HL72.3/OBR/ReasonForStudy”;
const QualifiedCodeStr DiagnosticServiceSectionID =

“DNS:omg.org/DsObservationAccess/HL72.3/OBR/DiagnosticServiceSectionID”;

// from OBX (results)

const QualifiedCodeStr AbnormalFlags = “DNS:omg.org/DsObservationAccess/HL72.3/OBX/AbnormalFlags”;
const QualifiedCodeStr ObservationMethod =

“DNS:omg.org/DsObservationAccess/HL72.3/OBX/ObservationMethod”;
const QualifiedCodeStr Units = “DNS:omg.org/DsObservationAccess/HL72.3/OBX/Units”;
const QualifiedCodeStr ReferencesRange = “DNS:omg.org/DsObservationAccess/HL72.3/OBX/ReferencesRange”;
const QualifiedCodeStr ObservationIdentifier =

“DNS:omg.org/DsObservationAccess/HL72.3/OBX/ObservationIdentifier”;

// from PV1

const QualifiedCodeStr PatientLocation = “DNS:omg.org/DsObservationAccess/HL72.3/PV1/PatientLocation”;

// note that elements of HL7 composites can be individually identified with this COAS naming standard.
// e.g. SpecimenSource is listed in the OBR definitions above, and one segment
// of SpecimenSource, like Body Site, can have its own name.
A-30 Clinical Observations Access Service V1.0 April 2001

A

const QualifiedCodeStr SpecimenSourceBodySite =
“DNS:omg.org/DsObservationAccess/HL72.3/OBR/SpecimenSource/BodySite”;

typedef QualifiedCodeStr SpecimenSourceBodySite_type;

};

#endif // _DS_OBSERVATION_QUALIFIERS_IDL_

A.6 DsObservationPolicies

// file DsObservationPolicies.idl

#ifndef _DS_OBSERVATION_POLICIES_IDL_
#define _DS_OBSERVATION_POLICIES_IDL_

#pragma prefix “omg.org”

#include “DsObservationTimeSeries.idl”

module DsObservationPolicies {

typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;
typedef DsObservationAccess::TimeStamp TimeStamp;

const QualifiedCodeStr SEARCH_DEPTH_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_DEPTH_POLICY”;

typedef short SearchDepthPolicyType;
const SearchDepthPolicyType SEARCH_DEPTH_ONLY_ROOT = 0x0;
const SearchDepthPolicyType SEARCH_DEPTH_DEEPEST_POSSIBLE = 0x7FFF; // default

const QualifiedCodeStr RETURN_DEPTH_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_POLICY”;

typedef QualifiedCodeStr ReturnDepthPolicyType;
const ReturnDepthPolicyType RETURN_DEPTH_ROOT_ONLY =

“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_ROOT_ONLY”;
const ReturnDepthPolicyType RETURN_DEPTH_ALL =

“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_ALL”;
const ReturnDepthPolicyType RETURN_DEPTH_ALL_LEAVES =

“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_ALL_LEAVES”;
const ReturnDepthPolicyType RETURN_DEPTH_LEAVES_OF_MATCHED =

“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_LEAVES_OF_MATCHED”;
const ReturnDepthPolicyType RETURN_DEPTH_MATCHED_ONLY =

“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_MATCHED_ONLY”;
const ReturnDepthPolicyType RETURN_DEPTH_MATCHED_AND_DOWN =

“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_MATCHED_AND_DOWN”; // default

const QualifiedCodeStr SEARCH_SYNONYMOUS_CODES_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_CODES_POLICY”;

typedef QualifiedCodeStr SearchSynonymousCodesPolicyType;
const SearchSynonymousCodesPolicyType SEARCH_SYNONYMOUS_CODES_FALSE =

“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_CODES_FALSE”;
const SearchSynonymousCodesPolicyType SEARCH_SYNONYMOUS_CODES_TRUE =

“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_CODES_TRUE”; // default
COAS V1.0 April 2001 A-31

A

const QualifiedCodeStr RETURN_OBSERVATION_VALUES_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_OBSERVATION_VALUES_POLICY”;

typedef QualifiedCodeStr ReturnObservationValuesPolicyType;
const ReturnObservationValuesPolicyType RETURN_NO_OBSERVATION_VALUES =

“DNS:omg.org/DsObservationAccess/policy/RETURN_NO_OBSERVATION_VALUES”;
const ReturnObservationValuesPolicyType RETURN_OBSERVATION_VALUES =

“DNS:omg.org/DsObservationAccess/policy/RETURN_OBSERVATION_VALUES”; // default

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY”;

typedef boolean ShortcircuitSearchCodesOnSuccessPolicyType;
const ShortcircuitSearchCodesOnSuccessPolicyType SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_FALSE

= FALSE; // default
const ShortcircuitSearchCodesOnSuccessPolicyType SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_TRUE =

TRUE;

const QualifiedCodeStr SEARCH_SYNONYMOUS_IDS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_IDS_POLICY”;

typedef boolean SearchSynonymousIdsPolicyType;
const SearchSynonymousIdsPolicyType SEARCH_SYNONYMOUS_IDS_FALSE = FALSE;
const SearchSynonymousIdsPolicyType SEARCH_SYNONYMOUS_IDS_TRUE = TRUE; // default

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY”;

typedef boolean ShortcircuitSearchIdsOnSuccessPolicyType;
const ShortcircuitSearchIdsOnSuccessPolicyType SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_FALSE =

FALSE; // default
const ShortcircuitSearchIdsOnSuccessPolicyType SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_TRUE = TRUE;

const QualifiedCodeStr RETURN_ITEMS_IN_TIME_SPAN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_ITEMS_IN_TIME_SPAN_POLICY”;

typedef QualifiedCodeStr ReturnItemsInTimeSpanPolicyType;
const ReturnItemsInTimeSpanPolicyType RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY =

“DNS:omg.org/DsObservationAccess/policy/RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY”;
const ReturnItemsInTimeSpanPolicyType RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY =

“DNS:omg.org/DsObservationAccess/policy/RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY”;
const ReturnItemsInTimeSpanPolicyType RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS =

“DNS:omg.org/DsObservationAccess/policy/RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS”; // default

const QualifiedCodeStr MATCHING_STRENGTH_POLICY =
“DNS:omg.org/DsObservationAccess/policy/MATCHING_STRENGTH_POLICY”;

typedef float MatchingStrengthPolicyType;
const MatchingStrengthPolicyType MATCHING_STRENGTH_WEAKEST = 0.0;
const MatchingStrengthPolicyType MATCHING_STRENGTH_STRONGEST = 1.0; // default

const QualifiedCodeStr PARAM_CHECKING_POLICY =
“DNS:omg.org/DsObservationAccess/policy/PARAM_CHECKING_POLICY”;

typedef boolean ParamCheckingPolicyType;
const ParamCheckingPolicyType PARAM_CHECKING_FALSE = FALSE;
const ParamCheckingPolicyType PARAM_CHECKING_TRUE = TRUE; // default

//
// QUALIFIER_RETURN_POLICY: see DsObservationQualifiers.idl for list of qualifiers
//
A-32 Clinical Observations Access Service V1.0 April 2001

A

const QualifiedCodeStr QUALIFIER_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_RETURN_POLICY”;

typedef sequence<QualifiedCodeStr> QualifierReturnPolicyType;
// two special codes for this policy;
const QualifiedCodeStr QUALIFIER_RETURN_ALL =

“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_RETURN_ALL”;
const QualifiedCodeStr QUALIFIER_RETURN_NONE =

“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_RETURN_NONE”; // default

const QualifiedCodeStr QUALIFIER_NOT_TO_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_NOT_TO_RETURN_POLICY”;

typedef sequence<QualifiedCodeStr> QualifierNotToReturnPolicyType;

//
// RELATIONS_RETURN_POLICY: see DsObservationRelations.idl for list of relations
//

const QualifiedCodeStr RELATIONS_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RELATIONS_RETURN_POLICY”;

typedef sequence<QualifiedCodeStr> RelationsReturnPolicyType;
// two special codes for this policy;
const QualifiedCodeStr RELATIONS_RETURN_ALL =

“DNS:omg.org/DsObservationAccess/policy/RELATIONS_RETURN_ALL”;
const QualifiedCodeStr RELATIONS_RETURN_NONE =

“DNS:omg.org/DsObservationAccess/policy/RELATIONS_RETURN_NONE”; // default

const QualifiedCodeStr RELATIONS_NOT_TO_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RELATIONS_NOT_TO_RETURN_POLICY”;

typedef sequence<QualifiedCodeStr> RelationsNotToReturnPolicyType;

const QualifiedCodeStr RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY”;

typedef unsigned long ReturnMostRecent_N_ObservationsPolicyType;
const ReturnMostRecent_N_ObservationsPolicyType RETURN_MOST_RECENT_N_OBSERVATIONS_ALL =

0xFFFFFFFF; // default

const QualifiedCodeStr TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY =
“DNS:omg.org/DsObservationAccess/policy/TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY”;

typedef sequence<QualifiedCodeStr> TimeSeriesRemoteResampleAlgorithmPolicyType;

const QualifiedCodeStr TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY”;

typedef DsObservationTimeSeries::ValueSeqType TimeSeriesRemoteReturnTypePreferencePolicyType;

const QualifiedCodeStr RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY”;

typedef unsigned long ReturnMaxSequenceForValuePolicyType;
const ReturnMaxSequenceForValuePolicyType RETURN_MAX_SEQUENCE_FOR_VALUE_ALL = 0xFFFFFFFF; //

default

const QualifiedCodeStr IGNORE_UNMATCHABLE_QUALIFIERS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/IGNORE_UNMATCHABLE_QUALIFIERS_POLICY”;

typedef boolean IgnoreUnmatchableQualifiersPolicyType;
const IgnoreUnmatchableQualifiersPolicyType IGNORE_UNMATCHABLE_QUALIFIERS_TRUE = TRUE;
COAS V1.0 April 2001 A-33

A

const IgnoreUnmatchableQualifiersPolicyType IGNORE_UNMATCHABLE_QUALIFIERS_FALSE = FALSE; // default

};

#endif // _DS_OBSERVATION_POLICIES_IDL_
A-34 Clinical Observations Access Service V1.0 April 2001

 Interoperation B
d as
rder

e.
e

the

 of

e

he
B.1 The TcSignalling Module

The Naming, Trader, PIDS and LQS Standards are considered building blocks an
such are of great value to COAS, hence, the following information is supplied in o
to provide a level of understanding where each may play a role.

B.2 Naming/Trader

It is anticipated that the CORBA Naming and/or Trader Services may be used for
acquiring pertinent information about the capabilities of a COAS compliant servic
For these purposes attributes have been added to the AccessComponent Interfac
definition to refer to these services if they are available. For the Naming Service
naming_service attribute will define the Naming Context.

For the kind field in CosNaming:NameComponent the following will be used:

• ‘Query COAS’ - A COAS component that meets the conformance class of the
same name.

• ‘Browse COAS’ - A COAS component that meets the conformance class of the
same name.

• ‘ConstraintLanguage COAS’ - A COAS component that meets the conformance
class of the same name.

• ‘Asynchronous COAS’ - A COAS component that meets the conformance class
the same name.

• ‘Supplier COAS’ - A COAS component that meets the conformance class of th
same name.

• ‘Consumer COAS’ - A COAS component that meets the conformance class of t
same name.
Clinical Observations Access Service V1.0 April 2001 B-1

B

 by

his

bute

vice
on.
 but
ain
evel.
• ‘Loader COAS’ - A COAS component that meets the conformance class of the
same name.

The following definitions are Service Types defined for COAS components for use
the Trader Service.

Service AccessComponent {
Interface AccessComponent;
Mandatory readonly property StringSeq components_implemented;
Mandatory readonly property StringSeq conformance_classes;
Readonly attribute StringSeq pid_service;
Readonly attribute StringSeq terminology_service;
Readonly attribute StringSeq trader_service;
Readonly attribute StringSeq naming_service;
Readonly property String component_name;
Readonly property String coas_version;
Readonly property StringSeq supported_codes;
Readonly property StringSeq supported_qualifiers;
Readonly property StringSeq default_policies;
Readonly property StringSeq supported_policies;

};

B.3 PIDS

The COAS specification has introduced the idea of an ObservedSubject , but has made
the distinction that it lies outside the scope of this specification in order to allow t
specification to be used in varying medical architectures. However, because an
ObservedSubject can be a person(patient) we recognized the value in utilizing the
PIDS specification in order to identify a person in an enterprise. We have an attri
in the AccessComponent , called pid_service, to refer to a PIDS service.

B.4 LQS

The COAS specification utilizes many of the concepts from the Lexicon Query Ser
(LQS) specification in order to provide a more dynamic and extensible specificati
The COAS specification does not however mandate the use of any particular LQS
recognizes that it provides all the necessary interfaces for a client or server to att
information from coding schemes to assist in semantic interoperability at a coded l
We have also introduced the idea of an LQS terminology service via the
AccessComponent interface attribute called terminology_service thereby providing a
link to terminology services.
B-2 Clinical Observations Access Service V1.0 April 2001

 Security Guidelines C
ing
son

 of
ter

f
ss of

ns.
tion,

ware
d

 to
he
rom
C.1 Overview

The COAS interfaces may be used in many different environments with widely vary
security requirements that range from no security to extreme security. For this rea
the COAS interfaces do not expose any security information. COAS relies on the
underlying CORBA infrastructure and services which provides all the security
mechanisms needed without exposing it in the interfaces.

An attribute of security that of concern to many people is to maintain confidentiality
certain (sensitive) information about them. For COAS this implies being able to fil
requests by:

• who is accessing the information,

• who the information is about,

• what information is being accessed.

Other common security concerns could be preventing unauthorized modification o
data, tapping into communications to acquire sensitive information, and causing lo
service by over burdening a service.

CORBA Security provides robust mechanisms to address these and other concer
Some of the security properties it does deal with includes authentication, authoriza
encryption, audit trails, non-repudiation, etc. CORBA Security, in its default mode
allows these security concerns to be addressed without the client and server soft
being aware of it. This is a powerful notion, allowing security policies to be create
and enforced after applications and systems have been created and installed.

Other CORBA and CORBA Security features provide mechanisms for applications
extend these security capabilities. For example they can obtain credentials from t
ORB and implement filters that can look at specific data passed to and returned f
operations.
Clinical Observations Access Service V1.0 April 2001 C-1

C

ed
ol on

d

 be
ay

RBA

ent

ere is
 its

s

urity
 the
s to

BA

rity
f
cure

ust
at a
sed

gh
ough
It is a requirement of the COAS to provide confidentiality of information that is stor
about an individual. This requirement fuels the need for fine grained access contr
clinical observations that are associated with identifiable observed subjects.

C.2 Security Requirements

For the COAS to be secure in its possible dissemination of information it needs to
adhere to several requirements:

• The COAS needs to authenticate a client's principal identity, role, affiliation an
other security attributes.

• The COAS needs to transmit information confidentially and with integrity.

The first requirement states that the entire COAS interface implementations must
able to identify a potential client. If it cannot authenticate a client, then the client m
be severely limited in the particular requests that the COAS can service. The CO
Security Service provides the mechanisms for a server to authenticate a client.

The second requirement provides for the confidentiality of the information. The cli
must communicate with the COAS using not only encryption to protect data, but
signature as well, so as not to have data tampered with during communication. Th
no sense in putting a Sensitivity level of “OwnerOnly” on an observation and have
value transmitted to the owner in the clear. The CORBA Security Service provide
these capabilities, including SSL.

The problem is, How does one get CORBA to support this access policy model?

C.2.1 CORBA Security Overview

In an effort to keep the COAS interfaces security unaware, i.e. no extra visible sec
relevant parameters in methods, access policies must be adhered to from behind
interfaces. The CORBA security model offers several ways to apply security policie
method invocations.

The CORBA Security Specification (CORBAsec) is not a cookbook for using COR
security in building applications. It is a specification of a general framework with
which ORB vendors and application vendors can build a multitude of different secu
policy models. The CORBAsec also gives the interfaces which implementations o
applications can use to access those security services that are supplied with a se
ORB.

A secure COAS implementation that can control access to specific observations m
be aware of the security services offered by the ORB. This caveat also means th
client’s ORB may have to know the kind of ORB and the security services that is u
by the COAS.

The CORBA security specification outlines a general security policy model. Althou
the specification is vague about which approach should be taken, it is specific en
to be able to choose from a couple of models that can be supported.
C-2 Clinical Observations Access Service V1.0 April 2001

C

, and
ls to
 to
 with
the
ent

o
f
pose
ity
S
 and

del.

a
ns.

.
d to

 does
ports
t use

 of
CSI
lity.

for
SI

urity
I

 each

or
tical
hat
The CORBA security model bases itself on credentials and security domains.
Credentials are data objects that contain attributes such as privileges, capabilities
sensitivity levels, amongst others. Security domains are mappings from credentia
access rights. Credentials can be encrypted and signed to prevent tampering and
achieve a level of trust between client and server. CORBA credentials get passed
requests beneath the visible level of the interface. CORBA security services give
clients and servers the ability to authenticate/verify credentials in order to implem
policies in the security domains.

Many different schemes, algorithms, services, and vendor implementations exist t
provide implementation of security policies, and many different implementations o
those schemes may be integrated into a CORBA compliant ORB. It is not the pur
of this specification to dictate the specific implementation of an ORB or the secur
services that should be used, but to outline the external requirements for the COA
implementation. These requirements and guidelines aid in selecting a secure ORB
the level of security functionality needed to implement the COAS access policy mo

C.2.2 Secure Interoperability Concerns

CORBA has built the communication bridge between distributed objects creating
interoperable environment that spans heterogeneous platforms and implementatio
However, security adds another layer of complexity to the issue of interoperability
ORB implementations are neither required to include security services nor require
provide an interoperable mechanism of security services. However, a specification
exist for the target object to advertise, via the IOR, the security services that it sup
and the services it requires from the client. Both the client and server ORBs mus
compatible mechanisms of the same security technology.

The CORBA Common Secure Interoperability (CSI) Specification defines 3 levels
security functionality that ORBs may support. The levels are named, CSI Level 0,
Level 1, and CSI Level 2. Each level has increasing degrees of security functiona

The CSI Level 0 supports identity based policies only and provides mechanisms
identity authentication and message protection with no privilege delegation. The C
Level 1 adds unrestricted delegation. The CSI Level 2 can implement the entire
CORBA Security Specification at Security Level 2.

Each CSI level is parameterized by mechanisms that can support the level of sec
functionality, such as SPKM for CSI Level 0, GSS Kerberos for CSI Level 0 or CS
Level 1, and CSI_ECMA for CSI Level 2. Future developments in security
functionality and mechanism are not restricted, and mechanisms can be added to
level.

The ORB implementations may use different security technology with differing
capabilities and underlying mechanisms, such as SSL, DCE, Kerberos, Sesame,
other standards. Choosing the ORB and its underlying security services will be cri
to protecting COAS, and it will influence the implementation of the access policy t
a secure COAS implementation must support.
COAS V1.0 April 2001 C-3

C

port
an

that
 the

 on a
nd
gh

 be
 trust

 is

 and
plish
t the

 a
port

S
ase,
uests

tion
ted

t
For example, an ORB that only supports SPKM (i.e, CSI Level 0) can only
authenticate clients and provide confidentiality and integrity of communication. It
cannot support definition and use of security attributes beyond an access ID. Sup
for security attributes beyond an access ID require CSI Level 2. Therefore, using
ORB that only provides CSI Level 0 will require the COAS to maintain its own
information on the credentials of clients.

Even if an ORB's security technology supports the definition of security attributes
can be delivered to the COAS (i.e., CSI Level 2) there are still concerns involving
trust between the client and the COAS.

C.3 Trust Models

The available trust models for the COAS are simplistic. Since the COAS is a
communications end point and is not required to make requests to other services
client's behalf, a delegation trust model is not needed. This simplifies the model a
eliminates an absolute need for a CSI Level 1 or CSI Level 2 secure ORB (althou
they may use them).

There are two basic trust models for the COAS. If the COAS and its client are
implemented using CSI Level 0 or CSI Level 1 ORBs, only the first trust model can
supported. If a CSI Level 2 ORB is used, both trust models can be supported. The
models are:

1. The client’s identity can and is trusted to be authenticated. However, the client
unable or untrusted to deliver the valid credentials.

2. The client is trusted to deliver the correct credentials.

In the first model, the client ORB is required to authenticate its principal (the user)
provide authentication information to the server ORB. The methods used to accom
principal authentication is specific to the mechanisms (e.g., DCE or Kerberos) tha
selected ORB supports. Management of those identities is also specific to the
mechanism. The server ORB must have a compatible mechanism that verifies the
authentication information and carries out mutual authentication of the client.

With this trust model, a secure COAS implementation must maintain and manage
map of identities to privilege attributes. CSI Level 0, 1, and 2 ORBs are able to sup
this trust model.

Even if the ORB has CSI Level 2 functionality, it may be a local policy that a COA
does not trust the credentials brought forth from an authenticated client. In that c
the COAS must maintain the map or use a default set of security attributes for req
from clients it does not trust.

In the second model, the client ORB is required to authenticate its principal and
acquire its valid credentials. The methods used to accomplish principal authentica
and acquisition of privilege attributes are specific to the mechanism that the selec
ORB supports, such as DCE and Sesame. Management of those identities and
attributes are also mechanism specific. A secure COAS installation using this trus
C-4 Clinical Observations Access Service V1.0 April 2001

C

ate it,

eir
he

ify

t of
role
to

utes

tation
nd

rity
r in
eed
model must take a careful look at that management scheme and operation, evalu
and decide to trust it. In such a scenario, the server ORB, which has CSI Level 2
functionality, automatically verifies the credentials on invocation.

A secure COAS built to the second model leaves management of identities and th
attributes to the security services policy management system used by the ORB. T
COAS may manage security attributes for the data itself.

A secure COAS built to the first model will have some scheme to manage trusted
identities and their credentials. There is no interface or plan in the COAS to spec
this kind of management.

C.4 CORBA Credentials

To adhere to the credential model that supports trait specific access policies, a se
credentials must contain privilege attributes such as the identity of the client, the
in which the client is actively represented, and the sensitivity level of information
which the client is allowed access. It will be the responsibility of a COAS
implementation to advertise to potential client vendors the specifics of these attrib
and how to represent them externally. A client ORB needs to ascertain certain
credentials about the user and must pass them to the COAS. An external represen
of those credentials is needed so that credentials can be passed between client a
server within the CORBA security services. The CORBA Security module defines the
structure for this representation.

module Security {

 const SecurityAttributeType AccessId = 2;
 const SecurityAttributeType Role = 5;
 const SecurityAttributeType Clearance = 7;

 struct SecAttribute {
 AttributeType attribute_type;
 Opaque defining_authority;
 Opaque value;
 };
 typedef sequence<SecAttribute> AttributeList;
}

Listed above are the relevant pieces of the specification from the Security module that
apply to externalizing credential information.

C.5 CORBA Security Domain Access Policy

In addition to a credential based scheme, CORBA defines security domains. The
purpose of this section is to explain and illustrate the use of the standard CORBA
security policy domain and the way in which it may be used to implement a secu
policy for the COAS. This section offers a recommendation to a COAS implemento
order to give a feel for the kinds of security policies a COAS implementation may n
to support. It should also guide the implementor in evaluating a secure ORB and
available security services.
COAS V1.0 April 2001 C-5

C

ithin
ains
rnal

urity

by the

ture
ty
RB

 any
ach

eeds
ss

ed on
olicy

 an
 not

ess

f
m to

e
A security domain governs security (access) policy for objects that are managed w
that domain. In order to make scalable administration of security policy, these dom
map sets of security credentials to certain sets of rights. A right is a sort of an inte
security credential.

CORBA defines a standard set of rights that are granted to principals within a sec
domain. A security domain administrator manages that map through the
SecurityAdministration module’s DomainAccessPolicy interface. Access decision
then can be based on a set of required rights and the rights granted to the client
domain access policy, by virtue of the client's credentials.

ORB security service vendors will supply a security policy management infrastruc
that implements the standard CORBA rights scheme. The COAS must use securi
services that can place different required rights on the COAS interfaces. Some O
security services may allow a security domain to create special rights. However,
CORBA defines a standard set of rights: get, set, and manage. This right set will
suffice to handle the COAS.

In the model just described there is one security domain for all of the COAS
components. The CORBA rights families scheme within a single security policy
domain suffices to differentiate the security nature of the methods. More generally
number of domain models can be used, such as a separate security domain for e
COAS component.

C.6 Request Content Based Policy

The CORBA standard domain access policy scheme only protects methods from
invocation at the target and without regard to content of the request. The COAS n
a more fine grained access control in order to implement the content based acce
policy required (e.g., access policies for different observations). The COAS
implementations must be made security aware to implement an access policy bas
the value of arguments in a request. There are multiple ways to implement this p
using a secure CORBA implementation.

The CORBA Security Specification supplies two different schemes represented by
interface hierarchy, which are Security Level 1 and Security Level 2 (these should
be confused with CSI Levels 0, 1, and 2). These interfaces describe the level of
security functionality that is available to security aware implementations.

Security Level 1

For the COAS to take advantage of CORBA security in order to implement its acc
policy model, the ORB must at least implement the CORBA Security Level 1
interfaces. A Security Level 1 compliant ORB supplies an interface to access the
attributes of the credentials received from the client.

Using the SecurityLevel1 interfaces, which is simplistic, gives the implementation o
the COAS interfaces the ability to examine the client's credentials and compare the
the access control information that is managed as the access policy. However, th
implementation of the COAS must be security aware.
C-6 Clinical Observations Access Service V1.0 April 2001

C

face

ess
, and

t

he
uld

ials
s

n be

n
ality,

 2
r the
orced

e

ss

only
module SecurityLevel1 {

 Current get_current();

 interface Current {
 Security::AttributeList get_attributes(
 in Security::AttributeTypeList attributes
);
 };
}

Using the Security Level 1 interfaces, each implementation of a COAS query inter
must call the get_attributes() function on the Current pseudo object, examine the
attributes, compare them to the access policy information, and make the access
decision. If a COAS implementation chooses to use the Healthcare Resource Acc
Decision Facility, it constructs an appropriate resource name and operation name
passes them to ResourceAccessDecision::access_allowed() along with the attributes
received from Current::get_attributes() . Details on how COAS implementations mus
use an HRAD Facility are provided in Section C.7, “Use of Healthcare Resource
Access Decision Facility”. In the latter case, a COAS does not need to examine t
attributes or implement any access decision logic. The COAS implementation sho
enforce the access decision according to the semantics of the particular COAS
operation. It is the responsibility of the client’s ORB to acquire the proper credent
securely. It is the responsibility of the server's ORB to authenticate the credential
received from the client, extract the security attributes from them, and make them
available to the implementation through the Current::get_attributes() method.

Security Level 2

Using an ORB that supplies the Security Level 2 interfaces, the implementation ca
somewhat free of making the access control decision in the implementation of the
query interfaces. Having an implementation that is security unaware is attractive i
CORBA, because security policy decisions can be made underneath the function
and they have the ability to be changed without retooling the application.

As with any framework, there are several ways in which to use the Security Level
interfaces. One approach could be to implement a replaceable security service fo
access decision. Security Level 2 describes a method in which security can be enf
by the creation of an Access Decision object. The AccessDecision object would
interact with a DomainAccessPolicy object to get effective rights and compare thos
to rights returned from the RequiredRights interface.

Some secure ORB implementations may allow the installation of specialized Acce
Decision objects to be used in conjunction with specialized DomainAccessPolicy
objects. In the Security Level 2 interfaces, the specification implies access control
on the invocation of a method and not the contents of the request.

module SecurityReplaceable {

 interface AccessDecision {
 boolean access_allowed (
 in SecuirytLvel2::CredentialList red_list,
COAS V1.0 April 2001 C-7

C

ion

to be

(such

hese
high
y.

st be

sing

B
l
using

sions.
t and

es

 in CORBA::Object target,
 in CORBA::Identifier operation_name,
 in CORBA::Identifier interface_name
);
 };
}

Currently, the AccessDecision object specified in the SecurityReplaceable module
does not take the invocation Request as an argument. It only makes an access decis
based on the credentials received from the client, the target object reference and
operation name, and the target’s interface name. This criteria is insufficient to
implement the content based access policy, if needed by a COAS implementation
automatically performed by the ORB.

Since the COAS requires access control on the contents of the method invocation
as asking for the value of the HomePhone trait), this scheme of replacing these
Security Level 2 components cannot be used. ORB security services that use the
standard CORBA domain access policy may use third party implementations for t
components. This standard domain access policy functionality gives the COAS a
level of invocation protection that is orthogonal to the content based access polic
Some COAS servers may need the standard domain access policy functionality in
addition to providing content based access policy. Therefore, another approach mu
taken.

A content based access policy can be implemented in a Security Level 2 ORB by u
an interceptor. A request level interceptor takes the Request as an argument and
therefore, it can examine the content of the invocation arguments.

module CORBA {

 interface Interceptor { ... };
 interface RequestLevelInterceptor : Interceptor {
 void client_invoke(inout Request request);
 void target_invoke(inout Request request);
 };
}

Installing an interceptor on an ORB is ORB implementation specific, and each OR
vendor may have their own flavor of interceptors. The ORB calls the request leve
interceptor just before the invocation gets passed to the server implementation by
the target_invoke() operation. The interceptor uses the Dynamic Skeleton Interface
(DSI) to examine values of the arguments of the invocation and make access deci
These access decisions are also based on the credentials received from the clien
the access policy. The interceptor will deny access to the invocation by raising an
exception. The server’s ORB will transmit this exception back to the client.

The use of the interceptor scheme frees the implementation of the COAS interfac
from the implementation of the access decision policy. If the access policy model
changes, then the interceptor can be changed out without retooling the COAS
implementation.
C-8 Clinical Observations Access Service V1.0 April 2001

C

ent
. A
 be
ome

S-

e

e

of
As awareness of the need for more powerful and flexible security policy managem
grows, more tools to create, manage, and analyze policy will come into existence
COAS implementation relying on interceptors to implement its security policy may
able, with relative ease, to switch to using more robust policy services as they bec
developed.

C.7 Use of Healthcare Resource Access Decision Facility

Resource names used for obtaining access decisions from HRAD facility by COA
compliant services, should be created in a predefined manner:

COAS_HRAC_Resource_Name ::=
'IDL:omg.org/DsObservationAccess' +
{‘ObservedSubjectId’, <ObservationData.observed_subject_id> } +
{‘QualifiedCodeStr’, <Stringified ObservationData.observation_type>}+
{‘TimeSpan’, <Stringified ObservationData.observation_time>}+
[{‘ObservationId’, <ObservationData.observation_id>}]

Text below explains the expression above in English.

If a COAS-compliant service uses Healthcare Resource Access Decision facility
(HRAD), it shall:

1. Create HRAD resource names according to the following rules:

• The “resource_naming_authority” data member of ResourceName shall adhere to
the syntax of the NamingAuthority::AuthorityIdStr type. For the corresponding
datum element of type AuthorityId , the value of authority shall be ‘IDL.’ The value
of naming_entity shall be ‘omg.org/DsObservationAccess.’

• The first element of the ResourceName data member
resource_name_component_list is mandatory. Its member name_string shall have a
value of 'ObservedSubjectId ', and the value of value_string shall be the value of
the observed_subject_id data member of the corresponding datum element of typ
ObservationData for the observation to be accessed.

• The second element of the ResourceName data member
resource_name_component_list is mandatory. Its member name_string shall have a
value of 'QualifiedCodeStr ', and the value of value_string shall be the stringified,
via TerminologyServices::TranslationLibrary.qualified_code_to_name_str() , value
of the observation_type data member of the corresponding datum element of typ
ObservationData for the observation to be accessed.

• The third element of the ResourceName data member
resource_name_component_list is mandatory. Its member name_string shall have a
value of 'TimeSpan ', and the value of the corresponding value_string shall be the
value of the observation_time data member of the corresponding datum element
type ObservationData for the observation to be accessed.
COAS V1.0 April 2001 C-9

C

 in

 in

mpt

-

• The fourth element of the ResourceName data member
resource_name_component_list is optional. If it is provided, its data member
name_string shall have a value of ‘ObservationId ’. The value of the corresponding
name_string data member shall be the value of ‘observation_id ’ of the
corresponding datum element of type ObservationData for the observation to be
accessed.

2. Create HRAD operation name according to the following rules:

• When serving invocations of operations that semantically mean “get,” operation
DfResourceAccessDecision::access_allowed() shall have value ‘read.’

• When serving invocations of operations that semantically mean “set,” operation
DfResourceAccessDecision::access_allowed() shall have value ‘write.’

• Obtain security attributes of the invoking principal via
SecurityLevel1::Current.get_attributes() (See Section C.6, “Request Content
Based Policy” or other means.

• Obtain resource access decision(s) by invoking either access_allowed() or
multiple_access_allowed() on DfResourceAccessDecision::AccessDecision
interface.

• Enforce the decision according to the semantics of the operation the COAS-
compliant service is serving.

• It is not mandated by this specification how exceptions caught during an atte
to invoke either access_allowed() or multiple_access_allowed() on
DfResourceAccessDecision::AccessDecision interface are handled by a COAS
compliant service.
C-10 Clinical Observations Access Service V1.0 April 2001

 Usage Patterns D
low
seful
aces
d are:

nants
assed
D.1 Overview

There are a variety of scenarios for which patient observation data may need to f
between two systems or applications. A simple set of CORBA interfaces can be u
by deploying them in these different scenarios without having to redefine the interf
for each scenario. Some of the factors determining how the interfaces may be use

• who initiates the conversation; is the connection temporary or permanent;

• who knows when and what should be sent for which patients;

• is the data coming from a human or machine observer;

• is the time span relative to a single encounter vs. a whole life time record;

• is the data going into a CDR/EMR or coming out;

• will it be used as one central database or distributed data resources; etc.

The subsections below will investigate some scenarios. One of the biggest determi
in these scenarios is who knows that a particular set of information needs to be p
between two applications. As you will see below, each scenario has a particular
usefulness that depends on this issue.
Clinical Observations Access Service V1.0 April 2001 D-1

D

ent.

ers

stem
plier

he

h a

e
n of
oth

iew
D.2 Consumer Initiated

Figure D-1 Data consumer initiated push and pull interaction models

A supplier of patient observation data may need to allow clients to:

• poll for the current patient data (numeric vital signs and waveforms),

• query for data that has already been collected, and

• register for automatic updates at specified times or triggered by some other ev

The supplier may publish a reference to itself in a CORBA Naming Service for oth
(possibly many others) to access.

The arrows with solid heads in the diagram above represent the direction of one sy
calling another. The arrow with a wire head indicates the Patient Observation Sup
is in the CORBA Naming Service. The Patient Observation Consumer goes to the
Naming Service (or any other valid mechanism) and gets an object reference to t
supplier. The consumer then initiates any querying to, and registering with, the
supplier. This mechanism would be used by an application that may come up wit
user interface that allows the clinician to query for data or ask to be
periodically/continuously updated.

The three interfaces are named with logical descriptions for what they do. See th
specific interface sections for the actual name of the interfaces and a full descriptio
their capabilities. Note that an observation supplier need only implement one or b
interfaces.

1. Query for Data - This represents a CORBA interface that allows a client
system/application to query for past patient observations or poll for the current
patient information. This is a simple mechanism from the consumer’s point of v

Patient
Observation

Supplier

CORBA Naming
Service

Query for Data

Register for Data

Patient
Observation
Consumer(s)

Consume Data

data poll(who, what)
data query(who, what,when)

register(who, what,when, where)

update(data)

Reference resolve(supplier)
D-2 Clinical Observations Access Service V1.0 April 2001

D

st
 but
re

me
ated
nce
s not

 but,
hen

alarm

tion

 that
ces
data

ents
ling.

he

ying.

n be
e
since they only have to poll/query for data when they want it, although they mu
determine when to ask for the data. The polling is also simple for the supplier,
querying requires the storage of data to have occurred. This mechanism is mo
appropriate when the time that data is needed can not be predetermined.

2. Register for Data - This CORBA interface allows the client to register its Consu
Data interface with the supplier of observation data to be updated with the indic
data and times. This is more complicated from the consumer’s point of view si
they have to implement a CORBA object. On the other hand the consumer doe
have to deal with timers, etc. to determine when to poll for information. The
supplier does not need to keep a data base of patient data for this mechanism
they do need to keep a connection data base. This mechanism is best suited w
the data availability can not be predetermined, such as needing data when an
or other event occurs.

3. Consume Data - This is the CORBA interface for the call back from the registra
procedure that gets called with patient observation data.

The labels on the arrows contain pseudocode that specifies the kind of information
must be passed in each invocation. The actual information passed and the interfa
will be a lot more complicated than this simple picture in order to characterize the
fully and manage the registration.

• who - Patients for which data is wanted. This may be specified by identifying
patients by an identifier or by locations.

• when - Times for which data is wanted. These could be specific times and/or ev
of interest. This is implied to be the current time or most recent data during pol

• what - The kinds of data wanted. This could be vitals signs, waveforms, alarm
indications or other patient observations.

• where - Where the data is going. This is implied for polling and queries since t
data is returned to the system initiating the call.

The simplest and most straight forward way to access data is by polling and quer
The querying system only has to use the client side of CORBA. Registering for
automatic updates requires more work including creating a CORBA object that ca
called back. Most of the work for the registration capabilities is done by the servic
side.
COAS V1.0 Consumer Initiated April 2001 D-3

D

ush)
rvice

s

 as a

ical
es.

m in
D.3 Supplier Initiated

Figure D-2 Supplier initiated push interaction model.

A consumer (sink) of patient observation data may need to allow clients to send (p
data to it. The consumer may publish a reference to itself in a CORBA Naming Se
for others (possibly many others) to access it.

The supplier of the observation data can look up the consuming application in the
CORBA Naming Service and send data to the consumer when the supplier deem
necessary. An example where this scenario would be valid is when a nursing
application or patient care management application needs to send nurse notes or
manually collected vital signs to the EMR/CDR.

D.4 Third Party Initiated

In many cases, a system supplying observation data and a system consuming
observation data do not know about each other. In these cases, a third party such
System Administrator will set up and configure the connection between the two
systems.

These are more useful ways when the two systems run in the background
(continuously). For example, an ancillary system may need to send data to a Clin
Data Repository (CDR) or patient care management application on a periodic bas
Another example would be registering a nurse call system with a monitoring syste
order to be notified of alarms of interest to that nurse.

Patient
Observation
Supplier(s)

CORBA Naming
Service

Patient
Observation
Consumer

Consume Dataupdate(data)

Referenceresolve(consumer)
D-4 Clinical Observations Access Service V1.0 April 2001

D

r. The
n

pplier

mer
e
.

e
ier
upplier
ent to
In either of these cases, neither the supplier nor consumer know about each othe
System Administrator (or some other third party) will need to set up the connectio
between the two. The Patient Observation Consumer and Patient Observation Su
would need to be in the CORBA Naming Service or the System Administration
Application would need to get the object references through some other means.

D.5 Push Style

Figure D-3 Third party interactions to set up a push style connection

Figure D-3 shows a slightly more complicated mechanism for registering a consu
with a data supplier. In this case, the consumer(s) need to implement the Consum
Data interface. This works when the consumer is a data sink such as a data base

The supplier only needs to implement the Register for Data interface. This is mor
complicated than just implementing the Query for Data interfaces since the suppl
has to manage the set of consumers and the data base of the patient data. The s
also has to monitor the timer and alarm events to know when the data should be s
the consumer.

Patient
Observation

Supplier

CORBA Naming
Service

Register for Data

Patient
Observation
Consumer(s)

Consume Data

register(who, what,when, where)

update(data)

Reference

resolve(supplier/consumer)

System
Administrator

Application

Reference
COAS V1.0 Push Style April 2001 D-5

D

plier.
he
ould

ta and

t the
 data.
D.6 Pull Style

Figure D-4 Third party interactions to set up a pull style connection.

Figure D-4 shows another mechanism for registering a consumer with a data sup
In this case, the consumer needs to implement the Register Supplier interface. T
supplier only need implement the Query for Data interface. In many cases, this w
be the simplest scenario for the supplier system to implement since it already has
stored the data in a data base and needs to implement the logic to retrieve the da
return it to the caller.

This scenario adds a complication to the consumer since it now has to implemen
Register Supplier interfaces and manage a set of suppliers from which to receive

Patient
Observation
Supplier(s)

CORBA Naming
Service

Patient
Observation
Consumer

Reference

resolve(supplier/consumer)

System
Administrator

Application

Reference

Register Supplier

Query for Data

register(where)

data poll(who, what)
data query(who, what,when)
D-6 Clinical Observations Access Service V1.0 April 2001

D

be by
ible
ates
ce a

D.7 Third Party Mediated

Figure D-5 Third party mediator to convert pull style supplier to a push style consumer

Figure D-5 shows a scenario where the supplier and consumer have selected (may
necessity) to implement the simplest respective interfaces or at least non-compat
interfaces since neither can initiate the connection. A third party application medi
between the consumer and supplier. In some cases, this is a natural scenario sin
Patient Management Application may be taking raw data from an instrument. The
clinician would validate the data and then send the results to the CDR/EMR.

Another case may be an interface engine to bridge the two systems and the IT
department (system administrator) would configure the interface engine directly.

Patient
Observation
Supplier(s)

CORBA Naming
Service

Patient
Observation
Consumer(s)

Reference

resolve(supplier/consumer)

Patient
Management

Application

Reference

Consume DataQuery for Data

update(data)
data poll(who, what)

data query(who, what,when)
COAS V1.0 Third Party Mediated April 2001 D-7

D

D-8 Clinical Observations Access Service V1.0 April 2001

 Usage Scenarios E
cts

igns
r

 the
se

here
ast
he
s for

ds
 over
E.1 Vital Signs Service

E.1.1 Nursing Station Scenario

A Nurse is doing his charting on a Clinical Information System (CIS). The CIS colle
vital signs from the vital signs server (patient monitoring system) every minute.

The CIS polls the vital signs server every minute for the most representative vital s
values (median filter) over the last minute. This data is cached up for 24 hours fo
immediate access by the Nursing staff. Because this polling is done so often it is
important the calls are efficient. For example it should only require a single call to
acquire the data for all vital signs on all 16 patients in that unit.

The CIS also has the ability to show waveforms from the patient. Instead of storing
high volume of waveform data for the 24 hours it only requests them when a Nur
wants to view them.

The Nursing staff may sometimes want to see the very latest vital signs values, w
as the stored data on the CIS is only one value per minute, and at any time the l
value shown could be as much as 1 minute old. The CIS provides a function for t
Nurse to request the very latest data. The CIS polls the vital signs server but ask
the very latest data available for each vital sign as long as it is no older then 15
seconds. The Nurse verifies these values with the monitoring system display and
enters them into the patient record with a simple button push.

E.1.2 Doctor’s Office Scenario

A Doctor has multiple patients admitted to a hospital and needs to make her roun
every day. Before going to the hospital she wants to review the patients condition
the last day.
Clinical Observations Access Service, v1.0 April 2001 E-1

E

ects
n the

 the
 5

ms in
query

uring
the
r for
 after
f 10

g at
ve

to put

t

his

ified

rting
 the

to be
ond.
ed in
A local application (or a web browser is used to download an applet which) conn
up to the hospital intranet and queries the vital signs server for a 24 hour trend o
first patient. The trend is a sampling of the vital signs numerics (heart rate, blood
pressure, etc.) over the past 24 hours. Since the vital signs may be collected
continuously with changes on the order of every second or two (60*60*24=86400
samples per vital sign) it would take a long time to download. Instead the client
application asks for only one sample every 5 minutes (12*24=288 samples) since
trend display area is only 288 pixels wide. A median filter is requested over each
minute period so that the most representative value is returned.

The Doctor notices a sudden drop in the blood pressure around 3:00 am and zoo
around that time. The application changes to a 30-minute view and does another
to the vital signs server. This time it asks for a trend over the 30 minutes with a
resolution of 5 seconds.

The Doctor wants to see what the ECG and blood pressure waveforms are doing d
this time, and so she changes views. The cursor was set at 3:05:20 am. When
Doctor changed to the waveform view the application queried the vital signs serve
the waveforms around 3:05:20, requesting 20 seconds before through 20 seconds
that point in time. It centers the waveform on the screen, which shows a window o
seconds for each waveform.

After scrolling through the waveform the Doctor notices a short arrhythmia startin
3:05:43. The doctor uses the application to see when other arrhythmias might ha
occurred through out the night, and sees a half dozen others.

She looks at a couple of them to make sure they really are problems and decides
this patient high on her list to visit first during her rounds.

E.1.3 Remote Monitoring Scenario

A hospital has installed monitors throughout the enterprise, but realizes that mos
Nurses are not familiar with many of the difficulties that can be exposed with the
monitor. They implement a central monitoring group (scope techs) that provides t
functionality. Since there are so many monitors, they can not watch each one
continuously, as is usually done with monitor techs.

The scope tech's applications are registered with the vital signs servers to be not
when alarms start and end. The application filters these alarms with a different
algorithm for each vital sign in order to reduce false alarms. The alarms that get
through the filter are displayed to the scope tech.

The application then polls the vital signs server for the waveforms (ECG, etc.) sta
at the beginning of the alarm event up to the present. This information is shown to
scope tech immediately. The application also registers with the vital signs server
updated every second with the latest vital signs and the waveforms for the last sec
As this data arrives the application appends the waveforms to that already display
a continuous manner.
E-2 Clinical Observations Access Service, v1.0 April 2001

E

ly, but
f the
rk per

s
o
g
ed.

shed
re is
ging

the
test

xtra

g)
thing

ging
ve an
 the

n is
ey
ertain
they
the

al

uery
s it
ired
It appears to the scope tech the data is being acquired and displayed continuous
the data is always one second behind. This small delay is acceptable for the job o
scope tech. The delay is used so that only one packet of data is sent on the netwo
second, reducing the network bandwidth required.

E.1.4 Paging System Scenario

A hospital has a nurse paging system that is used for sending messages to nurse
through out the day, as well as notifying them of code situations they may need t
attend to immediately. They choose to connect the vital signs server to the pagin
system so that life threatening alarms can cause the responsible Nurse to be pag

The paging system is registered with the vital signs server to have critical data pu
to it when certain events occur (life threatening arrythmias and apnea). Since the
a possibility of false alarms, other clinical information needs to be passed to the pa
system as well so the Nurse can triage the severity of the alarm. A snap shot of
waveform associated with the alarm (ECG or Respiration) is sent along with the la
vital signs values. Some Nurses carry large screen pagers that can display this e
data.

Due to the time criticality of the alarm, the data must be delivered to the Nurse
quickly. From the point of view of the vital signs server it is just delivering (pushin
the requested data to a client at the times they registered interest in. It knows no
about the client, except that it can accept the pushed data.

E.1.5 Logging System Scenario

Due to potential legal actions, a hospital has implemented an enterprise wide log
system of information that may be needed in case a law suit occurs. It does not ha
electronic medical record system so it prints these out on paper that gets put into
patient's record.

The most critical information needed is when certain alarms occur, but informatio
also captured periodically during a shift. The period is determined by what unit th
are on. The information collected includes an ECG snapshot of 7 seconds and c
vital signs (heart rate, oxygen saturation, blood pressure, and respiration rate), if
are available. Since the blood pressure is taking sporadically, only values within
last 15 minutes are included. All other vital signs are taken continuously and are
included if a value exists within 5 seconds of the event.

There are several ways the logging system could get the information from the vit
signs server - by polling, querying and registering.

Since the vital signs server keeps all data for 24 hours, the logging system could q
for the information every 24 hours (or less). It could query for the times the alarm
is interested in had occurred through out the day. It could then query for the requ
vitals signs and ECG at these times and at the periodic times for that unit.
COAS V1.0 Vital Signs Service April 2001 E-3

E

uired
lso

 the
r

 vital
The logging system could be registered with the vital signs server to send the req
vital signs and ECG at the periods in which data is logged for that unit. It could a
register to have the same information sent when the alarms of interest occur.

Alternatively the logging system could poll for the needed vital signs and ECG at
periodic times assigned to that unit. At those same points in time it could query fo
which of the important alarms had occurred since the last period and query for the
signs at those times.
E-4 Clinical Observations Access Service, v1.0 April 2001

 Client Implementation Examples F
d

ation
anel:
Following are some examples of how a client might access observations via the
DsObservationAccess service. All codes, data, and clinical information are fabricate
for illustration purposes.

F.1 Lipid Panel

Consider an example where a COAS client requests a lab result, using the
QueryAccess component. The lab in question is a lipid panel for patientID “1234,”
with the sample drawn on the morning of 11 Mar 1999.

For this example, assume the following definitions. First, there are several observ
codes, one for a composite panel, and four individual measurements within the p

LIPID_PANEL// a battery of lipoproteins in blood sample
TRIGLYCERIDES
TOTAL_CHOLESTEROL
LOW_DENSITY_LIPOPROTEIN
HIGH_DENSITY_LIPOPROTEIN

Figure F-1 LIPID_PANEL is a composite observation with four elements.

L I P I D _ P A N E L

T R I G L Y C E R I D E S

T O T A L _ C H O L E S T E R O L

L O W _ D E N S I T Y _ L I P O P R O T E I N

H I G H _ D E N S I T Y _ L I P O P R O T E I N
Clinical Observations Access Service V1.0 April 2001 F-1

F

s
That is, LIPID_PANEL is an ObservationData which contains other observations, so it
composite field has four items while its value field has zero length. Meanwhile, the
four contained observations are atomic observations. Their composite field is zero
length, while their value field (a CORBA::any) is filled with a
DsObservationValue::Numeric struct.

F.1.1 Qualifiers

Assume the following qualifier codes:

NORMAL_RANGE // range for this measurement/gender
NORMALCY // flag for this measurement
OBSERVATION_TIME // time sample was drawn
RESULTS_AVAILABLE_TIME // time result entered into system

Figure F-2 NORMAL_RANGE is a qualifier which contains a Range struct within value.

Within the DsObservationValue::Range struct is a lower and upper bound. See
DsObservationValue descriptions for more information about Range .

Figure F-3 NORMALCY is a qualifier which contains a QualifiedCodeStr within value.

The enumeration of qualified codes for NORMALCY might include NORMAL ,
ABNORMAL_HIGH , ABNORMAL_LOW , and potentially other codes.

c o d e : N O R M A L _ R A N G E
c o m p o s i t e : []
q u a l i f i e r s : []
v a l u e : R a n g e { }

c o d e : N O R M A L C Y
c o m p o s i t e : []
q u a l i f i e r s : []
v a l u e : Q u a l i f i e d C o d e S t r { }
F-2 Clinical Observations Access Service V1.0 April 2001

F

ject
Figure F-4 OBSERVATION_TIME is a qualifier which contains a TimeSpan within value.

The observation time can be a precise point in time, indicated by a TimeSpan with
start_time = stop_time.

(ditto for RESULTS_AVAILABLE_TIME)

Finally, assume one more code, a value for units.

mg_PER_dL // milligrams per deciliter

F.1.2 Request

The request might look something like the following, if we assume that a COAS ob
has been located and referenced as “myCoasServer” in a java syntax.

// “who” parameter
ObservedSubjectId who = new ObservedSubjectId(

new AuthorityId(RegistrationAuthority.DNS, "myHospital.org/pids"),"1234");

// “what” parameter
String[] what = new String[1];
what[0] = LIPID_PANEL;

// “when” parameter
TimeSpan when = new TimeSpan (

"1999-03-11T00:00:00",
"1999-03-11T11:59:00"

);

// “the_rest” parameter (a returned iterator, if # observations > max_sequence)
ObservationDataIteratorHolder() the_rest = new ObservationDataIteratorHolder();

ObservationData[] results = myCoasServer.get_observations_by_time(
who,
what,
when,
1000, // max_sequence, largest number of observations allowed in returned sequence
the_rest // iterator for observations > max_sequence

);

c o d e : O B S E R V A T I O N _ T I M E
c o m p o s i te : []
q u a l i f i e r s : []
v a lu e : T i m e S p a n { }
COAS V1.0 Lipid Panel April 2001 F-3

F

return

he

h

l
F.1.3 Result

The result returned by the COAS server could look something like the following,
depending on the default policies of the server. For this example, we assume the
of qualifiers NORMAL_RANGE , NORMALCY, OBSERVATION_TIME , and
RESULTS_AVAILABLE_TIME . In other words, assume the default
QUALIFIER_RETURN_POLICY contains these codes and no others which apply to t
example observations.

In the example below, Obs:<code> indicates an ObservationData struct with <code>
in the code field, with the other three fields of ObservationData , composite, qualifiers,
and value, displayed in that order. Two brackets, “[]” indicate a sequence of lengt
zero.

Indentation implies hierarchy, with leftmost items containing rightmost items. Initia
capitals indicates a DsObservationValue struct name, like Range. These structs are
found within the “value” field in an ObservationData (the value field is a
CORBA::any).

 Obs:LIPID_PANEL
 composite:
 Obs:TRIGLYCERIDES
 composite: []
 qualifiers:
 Obs:NORMAL_RANGE
 composite: []
 qualifiers: []
 value: Range { lower = 0, upper = 100 }
 Obs:NORMALCY
 composite: []
 qualifiers: []
 value: QualifiedCode { ABNORMAL_HIGH }
 value: Numeric { value = 150, units = mg_PER_dL }
 Obs:TOTAL_CHOLESTEROL
 composite: []
 qualifiers:
 Obs:NORMAL_RANGE
 composite: []
 qualifiers: []
 value: Range { lower = 0, upper = 200 }
 Obs:NORMALCY
 composite: []
 qualifiers: []
 value: QualifiedCode { ABNORMAL_HIGH }
 value: Numeric { value = 220, units = mg_PER_dL }
 Obs:LOW_DENSITY_LIPOPROTEIN
 composite: []
 qualifiers:
 Obs:NORMAL_RANGE
 composite: []
 qualifiers: []
 value: Range { lower = 0, upper = 130 }
 Obs:NORMALCY
 composite: []
F-4 Clinical Observations Access Service V1.0 April 2001

F

L
 of

ple

r

L
 qualifiers: []
 value: QualifiedCode { ABNORMAL_HIGH }
 value: Numeric { value = 150, units = mg_PER_dL }
 Obs:HIGH_DENSITY_LIPOPROTEIN
 ...
 qualifiers:
 Obs:OBSERVATION_TIME
 value
 TimeSpan
 start_time = "1999-03-11T07:05:00-08"
 stop_time = "1999-03-11T07:05:00-08"
 Obs:RESULTS_AVAILABLE_TIME
 value
 TimeSpan
 start_time = "1999-03-11T11:04:00-08"
 stop_time = "1999-03-11T11:04:00-08"
 value: []

F.2 Progress Note (XML)

Consider a COAS server which parses XML as an input qualifier, and returns XM
documents as output. Just as with the previous example, the standard operations
QueryAccess are employed. The output is still a sequence of ObservationData items,
with a single XML document as the string payload in the value field of an atomic
observation.

Figure F-5 COAS server which parses incoming XML, and outputs XML.

This COAS server accepts XML input to create a template for matching. The exam
below illustrates an input document with XML fields as follows: document.type =
“progress.note”, patient.id = “450023” and practitioner.id = “phys124”). The fields
within the input document are matched, returning complete records which have
matching information. Fields omitted from the input are considered “don’t care” fo
matching purposes.

Since both the input (qualifier) is an XML Progress Note and the output is an XM
Progress Note, both input (qualifier) ObservationData.code and output
ObservationData.code are the same: PROGRESS_NOTE.

X M L in pu t X M L ou tpu t

C O A S parsing X M L
COAS V1.0 Progress Note (XML) April 2001 F-5

F

For this Progress Note query example, assume the following full XML document
format as shown:

<?xml version="1.0"?>
<!DOCTYPE LevelOne SYSTEM "LevelOne.dtd"[]>
<?xml-stylesheet type="text/xsl" href="himssdemo.xsl"?>
<LevelOne>
<header>

<document>
<document.creation.date>

1999-2-3T12:27:50
</document.creation.date>

 <document.id>
 <id.value>PRAAPN_CFN1999-02-03T12:27:51</id.value>
 </document.id>
 <document.originating.system>
 <id.value>CFN</id.value>

<organization.name>
Sample HIMSS Hospital</organization.name>

 </document.originating.system>
 <document.originator.id>
 <id.value>VJ342</id.value>
 </document.originator.id>
 <document.state value="original"/>

<document.title>
Progress Note</document.title>

 <document.type value="progress.note"/>
 </document>
 <event>

<event.id>
<id.value></id.value>

 </event.id>
 <event.date>1999-2-3T12:27:51</event.date>

<event.location.id>
<id.value>4444444</id.value>
<facility>

 <namespace.id>12345</namespace.id>
<local.header>

DEPARTMENT OF FAMILY PRACTICE
</local.header>

</facility>
</event.location.id>

 </event>
 <patient>

<patient.id>
<id.value>

P013
</id.value>

</patient.id>
<patient.name>

<family.name>Presnell</family.name>
<given.name>Tricia</given.name>

</patient.name>
<patient.date.of.birth>

1992-09-14 00:00:00.0
</patient.date.of.birth>
<patient.sex value="female"/>
<patient.address>

<street.address>
1944 Cone St. </street.address>
F-6 Clinical Observations Access Service V1.0 April 2001

F

<city>
</city> <state.or.province>
</state.or.province>
<zip.or.postal.code>
</zip.or.postal.code>

</patient.address>
</patient>
<practitioner>

<practitioner.id>
<id.value>

D3
</id.value>
<family.name>Ross </family.name>
<given.name>Mark </given.name>

</practitioner.id>
</practitioner>

</header>
<body>

<section>
<section.title>Subjective</section.title>
<paragraph>

7 y.o. white female. Chief complaint: sore throat. Pt complains of the onset yes-
terday afternoon of a sore throat. Mother relates Pt had a fever to 104 F last night. She has been
treating with children's Tylenol since then, last dose 2 hours ago. No headache, no abdominal
pain. Nausea since yesterday evening, with vomiting after breakfast this morning. No cough, no
rhinorrhea, no hoarseness. No dysuria or diarrhea. There are no sick contacts.

</paragraph>
</section>
<section>

<section.title>Objective</section.title>
<paragraph>

T 39.2C BP 110/60 left arm, sitting R 20 P 114 Allergies: None. General: ill
appearing 7 year old girl, non-toxic, good eye contact, responsive to questions. HEENT: Eyes:
EOMI, pupils are equal, round, reactive to light, sclera are non-injected, non-icteric Ears: tym-
panic membranes are pearly white bilaterally, with good cones of light, and good landmarks, no
otalgia. Nares: no discharge, turbinates non-inflamed, no muco-pus.. Mouth: There are no gin-
gival vesicular eruptions. Generalized swelling and erythema of the pharynx. Bilateral 3+ ton-
sils with moderate exudate. Scarce palatal petechiae

</paragraph>
</section>
<section>

<section.title>Assessment</section.title>
<paragraph>

Acute Pharyngitis. R/O strep.
</paragraph>

</section>
<section>

<section.title>Plan of Care</section.title>
</section>
<section><section.title>Labs</section.title>

<paragraph>
strep screen

</paragraph>
</section>
<section>

<section.title>Rx</section.title>
<paragraph>

Penicillin 250mg, po, qid x 10 days
</paragraph>
<paragraph>

Tylenol prn fever
COAS V1.0 Progress Note (XML) April 2001 F-7

F

</paragraph>
<paragraph>

encourage po fluid
</paragraph>
<paragraph>

RTC in 7 days or soon as worsens.
</paragraph>
<paragraph>

Keep home from school, indoors until temp. less than 100 F for one full day.
</paragraph>

</section>
</body>
</LevelOne>

F.2.1 Request

// assume
const QualifiedCodeStr PROGRESS_NOTE =

"DNS:/omg.org/Sample/ProgressNote";

// “who” parameter
ObservedSubjectId who = new ObservedSubjectId(

new AuthorityId(RegistrationAuthority.DNS, "myHospital.org/pids"),
"450023"

);

// “what” parameter
String[] what = new String[1];
what[0] = PROGRESS_NOTE;

// “when” parameter (don’t care)
TimeSpan when = new TimeSpan(

EARLIEST_TIME,
LATEST_TIME

);

// “the_rest” parameter (a returned iterator, if # observations > max_sequence)
ObservationDataIteratorHolder() the_rest = new ObservationDataIteratorHolder();

// “qualifiers” parameter

// the following XML string is displayed on separate lines for readability
// assume that we have inputXML filled as
//

String inputXML =
<?xml version="1.0"?>
<!DOCTYPE LevelOne SYSTEM "LevelOne.dtd"[]>
<?xml-stylesheet type="text/xsl" href="himssdemo.xsl"?>
<LevelOne>
<header>

<document>
 <document.type value="progress.note"/>
 </document>
F-8 Clinical Observations Access Service V1.0 April 2001

F

d as
 <patient>
<patient.id>

<id.value>
450023

</id.value>
</patient.id>

</patient>
<practitioner>

<practitioner.id>
<id.value>

phys124
</id.value>

</practitioner.id>
 </practitioner>
</header>
</LevelOne>

// put inputXML into an Any
CORBA.Any qualAny = orb.create_any();
qualAny.insert_string(inputXML);

ObservationData[] qualifiers = new ObservationData[1];
qualifiers[0] = new ObservationData(

PROGRESS_NOTE, // same code for input qualifier as output--an XML doc
new ObservationData[0], // no composite members
new ObservationData[0], // no qualifiers of this qualifier
qualAny

);

// “the_rest” parameter (a returned iterator, if # observations > max_sequence)
ObservationDataIteratorHolder() the_rest = new ObservationDataIteratorHolder();

ObservationData[] results = myCoasServer.get_observations_by_qualifier(
who,
what,
when,
qualifiers,
100, // max_sequence, largest number of observations allowed in

returned sequence
the_rest // iterator for observations > max_sequence

);

F.2.2 Result

From the request example above, we have

ObservationData[] results

returning from the call. Assuming that just one record was returned, and that the
ObservationData was an atomic observation, the array of results would be unpacke
follows:
COAS V1.0 Progress Note (XML) April 2001 F-9

F

ith

a

 has
m
ome

n

ssed
cian
ght is
tinine

he
ove

 and

le, the

de
String theXML_result = results[0].value[0].extract_string();

We know to unpack a string from the CORBA::any because the code returned,

results[0].code

contains PROGRESS_NOTE, our requested observation code, which is associated w
exactly one return type, a string.

The content of theXML_result would be along the lines of the first, full-length XML
sample given above.

F.3 Non-empiric Antibiotic Decision Support

F.3.1 Usage Scenario and Example

A patient is in the Intensive Care Unit (ICU) and has been treated empirically for
pneumonia (i.e., given antibiotics without knowledge of the bacterial cause of the
pneumonia) with Ceftazadime. Since the inception of antibiotic therapy, the patient
not improved. Laboratory results, which include the microbiology results (bacteriu
and associated sensitivities to varied antibiotics), CBC, and serum creatinine, bec
available.

The physician uses a web browser to run a user interface to an antibiotic decisio
support system. The physician selects the patient. The patient’s demographic,
laboratory (microbiology, serum creatinine, and CBC), and vital statistics are acce
from a centralized clinical data repository. If this data is not accessible, the physi
or a surrogate has the option to manually enter this data. In this example, the wei
159 lbs, the height is 72 inches, the age is 60, the sex is Male, and the serum crea
is 1.7.

The physician selects a formulary to be utilized by the decision support system. T
user hits the run button and the decision support is invoked on the server. The ab
data is modeled in the following features. The server-side decision support system
accesses the above data to create a list of drug, sensitivity, dose, dosing interval,
daily cost information for drugs in the formulary, where sensitivities are known.
These results are prioritized by sensitivity and cost.

The results of the decision support are presented to the user. In the given examp
bacterium is the resistant Streptococcus Pneumonia, which is sensitive only to
Vancomycin. The output suggests to the physician that his treatment should inclu
one gram of Vancomycin every 24 hours.
F-10 Clinical Observations Access Service V1.0 April 2001

F

n
Figure F-6 Antibiotic Decision Support System - Example

This is an Object Diagram for what might be a way to represent an Antibiotic Decisio
Support Systems input information.

F.3.2 ObservedSubject:CompositeObservation

Figure F-7 ObservedSubject:CompositeObservation

This instance of an ObservedSubject is typed as a Person (patient) and has a
CompositeObservation link of type LaboratoryResults , a CompositeObservation
link of type ClinicalNote and a CompositeObservation link of type VitalSigns and a
CompositeObservation link of type Demographic . This diagram is not meant to be
normative but rather to show an example of what an ObservedSubject of type Person
(patient) may have associated with it.

observationType:QualifiedCode

This is a QualifiedCode that provides the type of the ObservedSubject . For example,
Person, Organ, Epidemic, etc.

F.3.3 LaboratoryResults:CompositeObservation

Figure F-8 LaboratoryResults:CompositeObservation

DateOf Birth:DateTime

v alue = 196710090330

Sex:CodedElement

v alue = Male
DateOf Birth:AtomicObserv ation

observ ationTy pe = DateOf Birth

Sex:AtomicObserv ation

observ ationTy pe = Sex

Vit alSigns:Composi teObserv ation

observ ationTy pe = Measurement
observ ationTime = 199901300800

Demographics: Composit eObservation

observ ationTy pe = Demographics
observ ationTime = 198201300722

Laboratory Results:CompositeObserv ation

observ ationTy pe = Laboratory Results

ClinicalNote:CompositeObserv ation

observ ationTy pe = ClinicalNote
observ ationTime = 199901300830

Obs erv edSubject: Composit eObserv ation

observ ationTy pe = Person

Observ edSubject:Com positeObserv at ion

observ ationTy pe = Person

Laboratory Resul ts: CompositeObserv at ion

observ ationTy pe = Laboratory Results
COAS V1.0 Non-empiric Antibiotic Decision Support April 2001 F-11

F

me
A Person (patient) in a healthcare information environment usually has a link to so
LaboratoryResults information.

observationType:QualifiedCode

This is a QualifiedCode that provides the type of the CompositeObservation . In this
case LaboratoryResults .

F.4 LaboratoryResults:CompositeObservation

Figure F-9 LaboratoryResults:CompositeObservation

The LaboratoryResults has a CompositeObservation link of type LabChem7 ,
LabCreatinineClearance , LabMicrobiology , and a LabCBC .

LabChem7:CompositeObserv ation

observ ationTy pe = LOINCChem7
observ ationTime = 199901300700

LabCreatinineClearance:CompositeObserv ation

observ ationTy pe = LOINCCreatinineClearance
observ ationTime = 199901300650

LabCBC:C om posi teObserv a tion

observ ationTy pe = LOINCCBC

LabMic robiol ogy : Composit eObserv ation

observ ationTy pe = Microbiology

Laboratory Results:CompositeObserv ation

observ ationTy pe = Laborat ory R es ult s
F-12 Clinical Observations Access Service V1.0 April 2001

F

F.4.1 LabChem7:CompositeObservation

Figure F-10 LaboratoryResults:LabChem7

In LOINC, the units f or SerumCreatinine seem to
be in mmol/L. Howev er, this example and its ranges
are mg/dl. Theref ore, in practice, this would require
a conv ersion.

Chem7ResultStatus: CodedElement

v alue = Final

Chem7ResultStatus:AtomicObserv ation

observ ationTy pe : ResultStatus

SerumCreatinineRangeMeasurement:Range

upper = 8
lower = 0
units = mg/dl

SerumCreatinineNumericMeasurement:Numeric

v alue = 4
units = mg/dl

Serum Creat inineAbnormalFlag:CodedElem ent

v alue = Normal

LabChem7:CompositeObserv ation

observ ationTy pe = LOINCChem7
observ ationTime = 199901300700

SerumCreatinineRangeMeasurement:AtomicObserv ation

obs erv ationTy pe = Range

Serum CreatinineNumericMeasurement:At omic Obs erv at ion

observ ationTy pe = Measurement

SerumCreatinineAbnormalFlag:AtomicObserv ation

observ ationTy pe = Abnorm alFlag

{8>=Serum Creat inineNumericMeas urem ent .v alue>=0}

LabSerumCreatinine:CompositeObserv ation

observ ationTy pe = LOINCSerumCreatinine
COAS V1.0 LaboratoryResults:CompositeObservation April 2001 F-13

F

F.4.2 LabCreatinineClearance:CompositeObservation

Figure F-11 LaboratoryResults:LabCreatinineClearance

CreatinineClearanceNumericMeasurement:Numeric

v alue = 100
units = mg/minute

CreatinineClearanceResultStatus:CodedElement

v alue = Final

CreatinineClearanceAbnormalFlag:CodedElement

v alue = Normal

CreatinineClearanceRangeMeasurement:Range

upper = 200
lower = 12
units = mg/minute

CreatinineClearanceNumericMeasurement:AtomicObserv ation

observ ationTy pe = Measurement

CreatinineClearanceResultStatus:AtomicObserv ation

observ ationTy pe = ResultStatus

CreatinineClearanceAbnormalFlag:AtomicObserv ation

observ ationTy pe = AbnormalFlag

{200>=CreatinineClearanceNumericMeasurement.v alue>=12}

CreatinineClearanceRangeMeasurement:AtomicObserv ation

observ ationTy pe = Range

LabCreatinineClearance:CompositeObserv ation

observ ationTy pe = LOINCC reatinineC learance
observ ationTime = 199901300650

For creatinine clearance, this
example assumes ml/minute. If
LOINC uses a dif f erent unit sy stem, it
may require conv ersion.
F-14 Clinical Observations Access Service V1.0 April 2001

F

F.4.3 LabMicorbiology:CompositeObservation

Figure F-12 LaboratoryResults:LabMicorobiology

We need to validate
the CodedElements
against ICD9,
NCPDP, LOINC,
HL7, and ASTM.

StrepPneum:ObservationValue

observationValueType = ICD9CodedElement
value = ICD9Codef orStrepPneum

Penicillin:ObservationValue

observationValueType = NCPDPCodedElement
value = NCPDPCodef orPenicillin

IndividualSensitivity:ObservationValue

observationValueType = SIRCodedElement
value = S

BacteriumQualif ier:ObservationQualif ier

observationQualif ierType = BacteriumQualifiedCode

CultureAndSensitiv ityResultStatus:CodedElement

value = Final

CultureAndSensitiv ityResultStatus:AtomicObservation

observationType = ResultStatus

LabCultureAndSensitiv ity :CompositeObservation

observationType = CultureandSensitivity
observationTime = 199901300800

LabMicrobiology:CompositeObservation

observationType = Microbiology

LabPenicillinasePresent:CodedElement

value = True

LabPenicillinasePresent:AtomicObservation

observationType = PenicillinasePresent
observationTime = 199901300755

IndividualCultureAndSensitivity:AtomicObservation

observationType = IndividualSensitivity

DrugQualif ier:ObservationQualif ier

observationQualif ierType = DrugQualif iedCode
COAS V1.0 LaboratoryResults:CompositeObservation April 2001 F-15

F

me
F.4.4 LabCBC:CompositeObservation

Figure F-13 LaboratoryResults:LabCBC

F.5 ClinicalNote:CompositeObservation

Figure F-14 ClinicalNote:CompositeObservation

A Person (patient) in a healthcare information environment usually has a link to so
ClinicalNote information.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation . In this case ClinicalNote .

observationTime:TimeSpan

Description: This is a TimeSpan that provides the time of the
CompositeObservation . In this case 199901300830.

LabCBC:CompositeObserv ation

observ ationTy pe = LOIN CCBC

WBCNumericMeasurement: Numeric

v alue = 15000
units = quantity

TotalNumberof WhiteBloodCells:AtomicObserv ation

observ ationTy pe = Measurement

PercentagePoly s:Numeric

v alue = 75
units = percent

PercentagePoly sQualif ied: Observ ationQualif ier

observ ationQual if ierTy pe = Measurement

We would appreciate f eedback f rom clinical domain and
v ocabulary experts on this example and its mapping to
LOINC.

Cl in icalNote: Com positeObserv at ion

observ ationTy pe = ClinicalNote
observ ationTime = 199901300830
F-16 Clinical Observations Access Service V1.0 April 2001

F

me
F.5.1 ClinicalNote:CompositeObservation

Figure F-15 ClinicalNote:CompositeObservation

F.6 VitalSigns:CompositeObservation

Figure F-16 ClinicalNote:CompositeObservation

A Person (patient) in a healthcare information environment usually has a link to so
ClinicalNote information.

observationType:QualifiedCode

Description: This is a QualifiedCode that provides the type of the
CompositeObservation . In this case Measurement .

observationTime:TimeSpan

Description: This is a TimeSpan that provides the time of the
CompositeObservation . In this case 199901300830.

NosocomialAcquired:CodedElement

v alue = true

ClinicalNote:CompositeObserv ation

observ ationTy pe = ClinicalNote
observ ationTime = 199901300830

NosocomialQualif ier:Observ ationQualif ier

observ ationQualif ierTy pe = CodedElement
Diseas e:Observ at ionValue

observ ationValueTy pe = ICD9Disease
v alue = ICD9Code f or Pneumonia

Disease:AtomicObserv ation

observ ati onTy pe = Disease

HospitalXYZDisease:Observ ationValue

observ ationValueTy pe = CalcudosLocationCode
v alue = HospitalXYZ

DiseaseLocationQualif ier:Observ ationQualif ier

observ ationQualif ierTy pe = LocationCode

Vita lSigns:C om posi teObserv at ion

observ ationTy pe = Measurement
observ ationTime = 199901300800
COAS V1.0 VitalSigns:CompositeObservation April 2001 F-17

F

F.6.1 VitalSigns:CompositeObservation

Figure F-17 VitalSigns:CompositeObservation

F.6.2 Height:CompositeObservation

Figure F-18 Height:CompositeObservation

Heigh t:Com positeObserv at ion

observ ationTy pe = LOINCHeight

Weight:CompositeObserv ation

observ ationTy pe = LOINCWeight

Vita lSigns: Composit eObserv ati on

observ ationTy pe = Measurement
observ ationTime = 199901300800

DateOf Birth:DateTime

v alue = 196710090330

Age:CompositeObserv ation

observ ationTy pe = Age

+Calculated From

He igh tNumericMeas urem ent :N um eric

v alue = 70
units = inch

HeightRangeMeasurement:Range

upper = 80
lower = 45
units = inch

HeightNumericMeasurement:AtomicObserv ation

observ ationTy pe = Measurement

HeightRangeMeasurement:AtomicObserv ation

observ ationTy pe = Range

Height:CompositeObserv ation

observ ationTy pe = LOINCHeight

HeightAbnormalFlag:CodedElement

v alue = Normal

HeightAbnormalFlag:AtomicObserv ation

observ ationTy pe = AbnormalFlag

{80>=HeightNumericMeasurement.v alue>=45}

I f LOINC's representation of height are in metric , this would
r equire a conv ers ion.
F-18 Clinical Observations Access Service V1.0 April 2001

F

F.6.3 Weight:CompositeObservation

Figure F-19 Weight:CompositeObservation

F.6.4 Age:CompositeObservation

Figure F-20 Age:CompositeObservation

WeightAbnormalFlag:CodedElement

v alue = Normal

WeightNumericMeasurement:Numeric

v alue = 170
units = lb

WeightRangeMeasurement:Range

upper = 350
lower = 70
units = lb

WeightAbnormalFlag:AtomicObserv ation

observ ationTy pe = AbnormalFlag

{350>=WeightNumericMeasurement.v alue>=70}

WeightNumericMeasurement:AtomicObserv ation

observationTy pe = Measurement

WeightRangeMeasurement:AtomicObserv ation

observ ationTy pe = Range

Weight:CompositeObserv ation

observ ationTy pe = LOINCWeight

I f LOIN C's weights are in met ric, th is would
require a c onv ers ion.

AgeNumericMeasurement:Numeric

v alue = 45
units = y ear

AgeRangeMeasurement:Range

upper = 100
lower = 0
units = y ear

AgeNumeri cMeas urem ent:AtomicObs erv at ion

observ ationTy pe = Measurement

AgeRangeMeasurement:AtomicObserv ation

observ ationTy pe = Range

Age:Com positeObs erv ation

observ ationTy pe = Age

AgeAbnormalFlag:CodedElement

v alue = Normal

AgeAbnormalFlag:AtomicObserv ation

observ ationTy pe = AbnormalFlag

{100>=AgeNumericMeasurement.v alue>=0}
COAS V1.0 VitalSigns:CompositeObservation April 2001 F-19

F

F-20 Clinical Observations Access Service V1.0 April 2001

Glossary
ted
ion;
n

List of Terms

The definitions below have special meaning for this specification. Either they star
from general definitions and were refined during the development of this specificat
or they are definitions of concepts from other OMG specifications, and were take
directly from those specifications; or they were important acronyms used in this
specification. Terms appearing in boldface type are defined elsewhere within this
section.

Access The ability to retrieve or get, and the action of
retrieving, information about observations and the
observations themselves.

Blob Acronym for Binary Large Object; used in this
document to represent an opaque string of octets that
is passed unchanged between the server and the
client.1

Client Any system or application that accesses or requests
service from a DsObservationAccess server.

Coded Concept A local name, consisting of a fixed sequence of
alphanumeric characters, that is used to designate one
or more presentations, definitions, comments, or
instructions within a coding scheme.2

Coding Scheme A relation between a set of concept codes and a set of
presentations, definitions, comments, and instructions,
which serves to designate the intended meaning
behind the codes. See the LQS specification for
definitions of the terms presentations, definitions,
comments and instructions.2
Clinical Observations Access Service V1.0 April 2001 Glossary -1

Context The interrelated conditions in which something exists
or occurs.

Domain Name The name of an ID Domain in which an ID has
meaning. That is, IDs are only relevant in a particular
ID Domain. Each ID Domain has a Domain Name
that is unique and different from all other ID Domain
Names.1

Encounter A meeting between two systems in which meaningful
transactions are passed and processed.

Event A noteworthy happening or activity.

LQS The OMG’s Lexicon Query Service

Observation An act of recognizing and noting a fact or occurrence
often involving measurement with instruments or a
judgement on or inference from what one has
observed or noted.

Observation Qualifier One that satisfies requirements or meets a specified
standard.

Observation Value The fact, note, or result of an observation.

PIDS The OMG’s Person Identification Service

Policy A definite course or method of action selected from
among alternatives and in light of given conditions to
guide and determine present and future decisions.

Qualified Code A qualified name which identifies a coded concept
within the context of a coding scheme. A qualified
name consists of the coding scheme identifier (the
naming authority) and a concept code (the local
name).2

Relationship A state of affairs existing between two systems that
have dealings between each other.

Server A DsObservationAccess system that offers services
or performs actions on the behalf or interest of
requests made by a DsObservationAccess client.

Subject of Care A biological entity, patient, or population that is under
observation or measurement.

1. Person Identification Service, OMG Formal Document formal/99-03-05.

2. Lexicon Query Service, OMG Formal Document formal/99-03-06.
Glossary -2 Clinical Observations Access Service V1.0 April 2001

Index
A
AbnormalFlag

AtomicObservation 2-38, 2-40, 2-42
CodedElement 2-38, 2-40, 2-43

AbstractFactory Interface 3-64
AbstractManagedObject Interface 3-65
AccessComponent Interface 3-60
AccessComponentData 3-18
Assigned/Setting 6-5
Associate 6-5
AsynchAccess Interface 3-49
AsynchCallback Interface 3-52
AsynchException 3-19
Asynchronous Access Viewpoint 3-12
AtomicObservation 2-6
AtomicObservationRemote Interface 3-33
Auditor

AtomicObservation 2-46
QualifiedPersonId 2-46

AuthoringClinician
AtomicObservation 2-45
QualifiedPersonId 2-45

B
BrowseAccess Interface 3-43
Browsing Access Viewpoint 3-11

C
Cause 6-6
CEN Naming Convention 6-2
Circumstances 6-8
Class Diagram 2-2
clinical observations 1-1
Clinical Observations Model 2-3
ClinicalNote

CompositeObservation F-16
COAS - Specific 7-3
Coded Types 4-5
CodedElement 2-13
Co-exists 6-6
Collaboration Diagram 2-2
Color

AtomicObservation 2-39, 2-42
CodedElement 2-40, 2-42

Common Access Operations Viewpoint 3-9
Compared/Reference 6-4
Complex Measurement Types 4-8
Componentization Viewpoint 3-4
CompositeObservation 2-5
CompositeObservationRemote Interface 3-34
Conformance 1-5
Conformance classes 1-6
Consequence 6-7
Constants 3-25
ConstraintLanguageAccess 3-53
Consumer Initiated D-2
ConsumerAccess Interface 3-58
CORBA

contributors ix
documentation set viii

CORBA Credentials C-5

CORBA Security Domain Access Policy C-5
Curve 2-14

D
Data Type Definitions 4-2, 5-1
DateTime 2-17
Demographics

CompositeObservation 2-29
DiagnosticService

AtomicObservation 2-33
CodedElement 2-33

Doctor’s Office Scenario E-1
Document 6-3
Dynamic discovery 1-4

E
EncounterNumber

AtomicObservation 2-46
String 2-47

Event and Notification Interface Specifications 3-53
Event Management Viewpoint 3-14
EventConsumer Interface 3-55
EventSupplier Interface 3-53
Evidence 6-6
Exceptions 3-27, 5-4
External Typedefs 3-16, 5-2

F
Foundational Observation-Oriented Interfaces 3-30
Framework 6-4
Full Component Viewpoint 3-5

G
Goal 6-6
Graphic 6-3

H
HealthRecordEntry

CompositeObservation 2-30, 2-44
HealthRecordEntry - Example 2-44
HealthRecordEntry - Model 2-43
HealthRecordEntryId

AtomicObservation 2-47
String 2-47

HL7 - Clinical Times 7-3
HL7 - OBR (Request) 7-4
HL7 - OBX (Reply) 7-4
HL7 - PV1 (Patient Visit) 7-5
HL7 - Roles 7-3
HL7 Naming Convention 7-2

I
Identified/Incorporated 6-3
IGNORE_UNMATCHABLE_QUALIFIERS_POLICY 8-8
Insurance

CompositeObservation 2-29
Interface Inheritance Viewpoint 3-3
Internal Typedefs 3-26
Interpretation 6-5
Iterator Types 5-3
 Clinical Observations Access Service, v1.0 April 2001 Index-1

Index
L
LaboratoryResults

CompositeObservation 2-29, F-12
LabUrineBattery

CompositeObservation 2-30
LabUrineBattery - LabSegment#1 - LONICUrineSodium 2-36
LabUrineBattery - LabSegment#2 - LONICUrineColor 2-39
LabUrineBattery - LabSegment#3 - LOINCUrineColor 2-41
LabUrineBattery - LabSegments 2-34
Lipid Panel F-1
Local Observations Viewpoint 3-7
Local/Remote Observations Viewpoint 3-6
Logging System Scenario E-3
LooselyCodedElement 2-13

M
MATCHING_STRENGTH_POLICY 8-5
Measurement 2-19
Motivation 6-6
Multimedia 2-15
Multimedia Types 4-6

N
NameValuePair 3-22
Navigable Relationships Viewpoint 3-2
Next Phase 6-5
NoInformation 2-25
NoInformation Type 4-3
Non-empiric Antibiotic Decision Support F-10
Numeric 2-23
NumericMeasurement

AtomicObservation 2-36
Numeric 2-37

Nursing Station Scenario E-1

O
Object Diagram 2-2
Object Management Group vii

address of viii
Observation 2-4
Observation Type for Qualifiers 7-2
Observation Type for Relations 6-2
ObservationData 3-20
ObservationDataIterator Interface 3-63
ObservationId 3-21
ObservationLoader Interface 3-59
ObservationQualifier 2-7, 3-21
ObservationReference 2-6
ObservationRemote Interface 3-31
ObservationRemoteIterator Interface 3-38
ObservationValue 2-12
ObservedSubject

CompositeObservation 2-28
ObservedSubject - Model 2-27
ObservedSubject Interface 3-38
OriginatingSource

AtomicObservation 2-48
CodedElement 2-48

Originator
AtomicObservation 2-48
QualifiedPersonId 2-49

P
Paging System Scenario E-3
PARAM_CHECKING_POLICY 8-6
Person Type 4-3
Phase 6-4
PhysicalLocationDescription 4-5
PlainText 2-24
Produce 6-2
Progress 6-5
Progress Note (XML) F-5
Provides Information 6-7
Pull Style D-6
Push Style D-5

Q
QualifiedCodeIterator Interface 3-64
Qualifier Codes 7-3
QUALIFIER_RETURN_POLICY 8-6
QueryAccess Interface 3-45
Query-Oriented Interface Specifications 3-42

R
Range 2-19
RangeMeasurement

AtomicObservation 2-37
Range 2-37

Reason
AtomicObservation 2-49
CodedElement 2-49

Recorded 6-4
Relation Codes 6-2
RELATIONS_RETURN_POLICY 8-7
Remote Monitoring Scenario E-2
Remote Observations Viewpoint 3-8
Report 6-3
Request Content Based Policy C-6
Resource Access Decision Facility C-9
ResultStatus

AtomicObservation 2-32
CodedElement 2-32

RETURN_DEPTH_POLICY 8-2
RETURN_ITEMS_IN_TIME_SPAN_POLICY 8-5
RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY 8-8
RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY 8-7
RETURN_OBSERVATION_VALUES_POLICY 8-3

S
SEARCH_DEPTH_POLICY 8-2
SEARCH_SYNONYMOUS_CODES_POLICY 8-3
SEARCH_SYNONYMOUS_IDS_POLICY 8-4
Secure Interoperability Concerns C-3
Security Requirements C-2
Sequences 3-27
SHORTCIRCUIT_SEARCH_..._POLICY 8-4
SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY 8-5
Simple Measurement Types 4-7
Simple Query Access Viewpoint 3-10
Source/Derived 6-3
Status

AtomicObservation 2-50
CodedElement 2-50
Index-2 Clinical Observations Access Service, v1.0 April 2001

Index
Subscription 3-23
Supersede 6-4
Supplier Initiated D-4
SupplierAccess Interface 3-57
Supporting Types 4-2

T
Target 6-7
TechnologyInstanceLocator 2-16
Text Types 4-4
Third Party Initiated D-4
Third Party Mediated D-7
Time Types 4-3, 5-2
TIME_SERIES_..._ALGORITHM_POLICY 8-7
TIME_SERIES_..._PREFERENCE_POLICY 8-7
TimeSeries 2-22, 5-3
TimeSeriesRemote 5-4

TimeSpan 3-24
TimeStamp 3-23
Topic 6-7
Triggers 6-6
Trust Models C-4
Typedef, Enum, Union, and Sequence Types 5-3

U
UniversalResourceIdentifier 4-5
Utility Interface Specifications 3-59

V
ValueDomains 1-4
Vital Signs Service E-1
VitalSigns

CompositeObservation F-17
 Clinical Observations Access Service, v1.0 April 2001 Index-3

Index
Index-4 Clinical Observations Access Service, v1.0 April 2001

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	COAS Overview
	1.1 Definition and Scope of Clinical Observations
	1.2 Previous Work
	1.3 Information Model
	1.4 Dynamic Discovery
	1.5 Value Domains
	1.6 Type Negotiation
	1.7 XML Usage
	1.8 Roadmap for Extensions
	1.9 Conformance Points
	1.9.1 Interface Conformance Classes
	1.9.2 Data Structure Conformance Classes
	1.9.3 Qualified Code Conformance Classes

	COAS Information Model
	2.1 Overview
	2.2 Modeling Notation
	2.2.1 Modeling Definitions

	2.3 Clinical Observations Model
	2.3.1 Clinical Observations Model - Class Diagram
	2.3.2 Observation
	2.3.3 CompositeObservation
	2.3.4 AtomicObservation
	2.3.5 ObservationReference
	2.3.6 ObservationQualifier
	2.3.7 ObservationValue

	2.4 Examples
	2.4.1 ObservedSubject - Model
	2.4.2 ObservedSubject - Example
	2.4.3 LabUrineBattery - Example
	2.4.4 LabUrineBattery - LabSegments
	2.4.5 LabUrineBattery - LabSegment#1 - LONICUrineSodium
	2.4.6 LabUrineBattery - LabSegment#2 - LONICUrineColor
	2.4.7 LabUrineBattery - LabSegment#3 - LOINCUrineColor
	2.4.8 HealthRecordEntry - Model
	2.4.9 HealthRecordEntry - Example

	DSObservationAccess Service
	3.1 Overview
	3.2 Viewpoints
	3.2.1 Navigable Relationships Viewpoint
	3.2.2 Interface Inheritance Viewpoint
	3.2.3 Componentization Viewpoint
	3.2.4 Full Component Viewpoint
	3.2.5 Local/Remote Observations Viewpoint
	3.2.6 Local Observations Viewpoint
	3.2.7 Remote Observations Viewpoint
	3.2.8 Common Access Operations Viewpoint
	3.2.9 Simple Query Access Viewpoint
	3.2.10 Browsing Access Viewpoint
	3.2.11 Asynchronous Access Viewpoint
	3.2.12 Event Management Viewpoint

	3.3 Data Type Definitions
	3.3.1 Include Files
	3.3.2 External Typedefs
	3.3.3 Forward Declarations
	3.3.4 AccessComponentData
	3.3.5 AsynchException
	3.3.6 ObservationData
	3.3.7 ObservationId
	3.3.8 NameValuePair
	3.3.9 Subscription
	3.3.10 TimeStamp
	3.3.11 TimeSpan
	3.3.12 Constants
	3.3.13 Internal Typedefs
	3.3.14 Sequences
	3.3.15 Exceptions

	3.4 Interface Specifications
	3.4.1 Foundational Observation-Oriented Interfaces
	3.4.2 ObservationRemote Interface
	3.4.3 AtomicObservationRemote Interface
	3.4.4 CompositeObservationRemote Interface
	3.4.5 ObservationRemoteIterator Interface
	3.4.6 ObservedSubject Interface

	3.5 Query-Oriented Interface Specifications
	3.5.1 BrowseAccess Interface
	3.5.2 QueryAccess Interface
	3.5.3 AsynchAccess Interface
	3.5.4 AsynchCallback Interface
	3.5.5 ConstraintLanguageAccess

	3.6 Event and Notification Interface Specifications
	3.6.1 EventSupplier Interface
	3.6.2 EventConsumer Interface
	3.6.3 SupplierAccess Interface
	3.6.4 ConsumerAccess Interface

	3.7 Utility Interface Specifications
	3.7.1 ObservationLoader Interface
	3.7.2 AccessComponent Interface
	3.7.3 ObservationDataIterator Interface
	3.7.4 QualifiedCodeIterator Interface
	3.7.5 AbstractFactory Interface
	3.7.6 AbstractManagedObject Interface

	DSObservation Values
	4.1 Overview
	4.2 Data Type Definitions
	4.3 Supporting Types
	4.4 Time Types
	4.4.1 DateTime
	4.4.2 TimeSpan

	4.5 Person Type
	4.5.1 Person

	4.6 NoInformation Type
	4.6.1 NoInformation

	4.7 Text Types
	4.7.1 Plain Text
	4.7.2 UniversalResourceIdentifier
	4.7.3 PhysicalLocationDescription

	4.8 Coded Types
	4.8.1 CodedElement
	4.8.2 LooselyCodedElement

	4.9 Multimedia Types
	4.9.1 Multimedia

	4.10 Simple Measurement Types
	4.10.1 Numeric
	4.10.2 Range
	4.10.3 Ratio

	4.11 Complex Measurement Types
	4.11.1 Curve

	DSObservationTimeSeries
	5.1 Overview
	5.2 Data Type Definitions
	5.3 External Typedefs
	5.4 Time Types
	5.5 Typedef, Enum, Union, and Sequence Types
	5.6 Iterator Types
	5.7 TimeSeries
	5.8 Exceptions
	5.9 TimeSeriesRemote

	DSObservationRelations
	6.1 Overview
	6.2 CEN Naming Convention
	6.3 Observation Type for Relations
	6.4 Relation Codes
	6.4.1 Produce
	6.4.2 Document
	6.4.3 Report
	6.4.4 Graphic
	6.4.5 Identified/Incorporated
	6.4.6 Source/Derived
	6.4.7 Compared/Reference
	6.4.8 Recorded
	6.4.9 Supersede
	6.4.10 Framework
	6.4.11 Phase
	6.4.12 Next Phase
	6.4.13 Associate
	6.4.14 Assigned/Setting
	6.4.15 Interpretation
	6.4.16 Progress
	6.4.17 Cause
	6.4.18 Co-exists
	6.4.19 Evidence
	6.4.20 Triggers
	6.4.21 Goal
	6.4.22 Motivation
	6.4.23 Consequence
	6.4.24 Topic
	6.4.25 Target
	6.4.26 Provides Information
	6.4.27 Circumstances

	DSObservationQualifiers
	7.1 Overview
	7.2 HL7 Naming Convention
	7.3 Observation Type for Qualifiers
	7.4 Qualifier Codes
	7.4.1 COAS - Specific
	7.4.2 HL7 - Clinical Times
	7.4.3 HL7 - Roles
	7.4.4 HL7 - OBR (Request)
	7.4.5 HL7 - OBX (Reply)
	7.4.6 HL7 - PV1 (Patient Visit)

	Policies
	8.1 Overview
	8.2 SEARCH_DEPTH_POLICY
	8.3 RETURN_DEPTH_POLICY
	8.4 SEARCH_SYNONYMOUS_CODES_POLICY
	8.5 RETURN_OBSERVATION_VALUES_POLICY
	8.6 SHORTCIRCUIT_SEARCH_..._POLICY
	8.7 SEARCH_SYNONYMOUS_IDS_POLICY
	8.8 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY
	8.9 RETURN_ITEMS_IN_TIME_SPAN_POLICY
	8.10 MATCHING_STRENGTH_POLICY
	8.11 PARAM_CHECKING_POLICY
	8.12 QUALIFIER_RETURN_POLICY
	8.13 RELATIONS_RETURN_POLICY
	8.14 RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY
	8.15 TIME_SERIES_..._ALGORITHM_POLICY
	8.16 TIME_SERIES_..._PREFERENCE_POLICY
	8.17 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY
	8.18 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY

	Complete IDL
	Interoperation
	Security Guidelines
	Usage Patterns
	Usage Scenarios
	Client Implementation Examples
	Glossary

