Clinical Observations Access Service
Specification

April2001
Version 1.0

Copyright 1999, 3M

Copyright 1999, Care Data Systems, Inc.
Copyright 1999, CareFlow/Net, Inc.
Copyright 1999, HBO & Company
Copyright 1999, Philips Medical Systems
Copyright 1999, Protocol Systems, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF

TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7028r@dMG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm

Contents

Preface Vii
1. COAS OVEIVIEW. . . ot e e e e e e e e 1-1
1.1 Definition and Scope of Clinical Observations 1-1
1.2 PreviousWork 1-3
1.3 Information Model 1-3
14 Dynamic DISCOVErYot 1-4
1.5 ValueDomains. 1-4
1.6 Type Negotiation 1-4
1.7 XML USAQEeo 1-5
1.8 Roadmap for Extensions 1-5
1.9 Conformance Points. 1-5
1.9.1 Interface Conformance Classes 1-5
1.9.2 Data Structure Conformance Classes 1-7
1.9.3 Qualified Code Conformance Classes 1-7
2. COAS Information Model. 2-1
2.1 OVEIVIEW . . 2-1
2.2 Modeling Notation. 2-2
2.2.1 Modeling Definitions 2-2
2.3 Clinical Observations Model 2-3
2.3.1 Clinical Observations Model - Class Diagram . 2-3
2.3.2 Observation 2-4
2.3.3 CompositeObservation. 2-5
2.3.4 AtomicObservation. 2-6
2.3.5 ObservationReference. 2-6
2.3.6 ObservationQualifier 2-7
2.3.7 Observationvalue 2-12
24 EXamples e 2-26
2.4.1 ObservedSubject-Model................. 2-27
2.4.2 ObservedSubject - Example 2-28
2.4.3 LabUrineBattery -Example 2-31
2.4.4 LabUrineBattery - LabSegments 2-34
2.4.5 LabUrineBattery - LabSegment#1 -
LONICUrineSodium 2-36
2.4.6 LabUrineBattery - LabSegment#2 -
LONICUrineColor 2-39
2.4.7 LabUrineBattery - LabSegment#3 -
LOINCUrineColor 2-41
2.4.8 HealthRecordEntry - Model 2-43

Clinical Observations Access System, v1.0 April 2001 i

Contents

2.4.9 HealthRecordEntry - Example 2-44
3. DSObservationAccess Service, 3-1
3.1 OVEIVIBW . . o 3-1
3.2 MViewpointsS e 3-2
3.2.1 Navigable Relationships Viewpoint 3-2
3.2.2 Interface Inheritance Viewpoint 3-3
3.2.3 Componentization Viewpoint. 3-4
3.2.4 Full Component Viewpoint. 3-5
3.2.5 Local/Remote Observations Viewpoint 3-6
3.2.6 Local Observations Viewpoint 3-7
3.2.7 Remote Observations Viewpoint 3-8
3.2.8 Common Access Operations Viewpoint. 3-9
3.2.9 Simple Query Access Viewpoint 3-10
3.2.10 Browsing Access Viewpoint. 3-11
3.2.11 Asynchronous Access Viewpoint 3-12
3.2.12 Event Management Viewpoint 3-14
3.3 Data Type Definitions 3-15
3.31 IncludeFiles............ 3-16
3.3.2 External Typedefs....................... 3-16
3.3.3 Forward Declarations 3-17
3.3.4 AccessComponentData. 3-18
3.3.5 AsynchException....................... 3-19
3.3.6 ObservationData........................ 3-20
3.3.7 Observationld.......................... 3-21
3.3.8 NameValuePair......................... 3-22
3.3.9 Subscription 3-23
3.3.10 TimeStamp......... .. 3-23
3.3.11 TimeSpanciiiin 3-24
3.3.12 Constants e 3-25
3.3.13 Internal Typedefs 3-26
3.3.14 SeqUeNCES.t 3-27
3.3.15 Exceptions 3-27
3.4 Interface Specifications, 3-30
3.4.1 Foundational Observation-Oriented Interfaces. 3-30
3.4.2 ObservationRemote Interface. 3-31
3.4.3 AtomicObservationRemote Intacke 3-33
3.4.4 CompositeObservationRemote Interface 3-34
3.4.5 ObservationRemotelterator Interface 3-38
3.4.6 ObservedSubject Interface 3-38

ii Clinical Observations Access System, v1.0 April 2001

Contents

3.5 Query-Oriented Interface Specifications 3-42
3.5.1 BrowseAccessInterface 3-43
3.5.2 QueryAccessInterface 3-45
3.5.3 AsynchAccessInterface.................. 3-49
3.5.4 AsynchCallback Interface. 3-52
3.5.5 ConstraintLanguageAccess. 3-53
3.6 Event and Notification Interface Specifications. 3-53
3.6.1 EventSupplier Interface 3-53
3.6.2 EventConsumer Interface................. 3-55
3.6.3 SupplierAccess Interface 3-57
3.6.4 ConsumerAccess Interface 3-58
3.7 Utility Interface Specifications. 3-59
3.7.1 ObservationLoader Interface 3-59
3.7.2 AccessComponent Interface............... 3-60
3.7.3 ObservationDatalterator Interface 3-63
3.7.4 QualifiedCodelterator Interface 3-64
3.7.5 AbstractFactory Interface 3-64
3.7.6 AbstractManagedObject Interface 3-65
4. DSObservationValues. 4-1
4.1 OVEIVIEW . ot 4-1
4.2 Data Type Definitions 4-2
4.3 SuUpporting TYPeS .« v v v ot e e 4-2
4.4 TIMe TYPES. ottt e e 4-3
441 DateTime 4-3
442 TiMeSpan 4-3
4.5 Person Type i e 4-3
451 PersoNn. 4-3
4.6 Nolnformation Type......... 4-3
4.6.1 Nolnformation 4-4
47 TeXt TYPeS . ot e 4-4
471 PlainText........ i 4-4
4.7.2 UniversalResourceldtfier............... 4-5
4.7.3 PhysicalLocationDescription 4-5
4.8 Coded TYPeS. . .t vt 4-5
4.8.1 CodedElement 4-5
4.8.2 LooselyCodedElement................... 4-5
4.9 Multimedia TypesS. . . . o oo it 4-6
491 Multimedia........... 4-7

Clinical Observations Access System, v1.0 April 2001 iii

Contents

4.10 Simple Measurement Types., 4-7
4.10.1 NUMETIC . . v vt e e e e 4-8

4.10.2 RaNget 4-8

4.10.3 Ratio. 4-8

4.11 Complex Measurement Types, 4-8
4.11.1 CUIVE . e 4-9

5. DSObservationTimeSeriesouien... 5-1
5.1 OVeIVIEW . oo 5-1
5.2 Data Type Definitions 5-1
5.3 External Typedefs. 5-2
5.4 TiMe TYPeS. . vttt 5-2
5.5 Typedef, Enum, Union, and Sequence Types........... 5-3
5.6 lterator Typeso e 5-3
5.7 TimMeSeries 5-3
5.8 EXCEPLIONS i e 5-4
5.9 TimeSeriesRemote.......... i 5-4
6. DSObservationRelations. 6-1
6.1 OVEIVIEW . . .o 6-1
6.2 CEN Naming Convention. 6-2
6.3 Observation Type for Relations 6-2
6.4 RelationCodes......... i 6-2
6.4.1 Produce........... ... 6-2

6.4.2 Document......... 6-3

6.4.3 Report...... 6-3

6.4.4 Graphic......... 6-3

6.4.5 Identified/Incorporated. 6-3

6.4.6 Source/Derived............ 6-3

6.4.7 Compared/Reference 6-4

6.48 Recorded........... 6-4

6.49 Supersede.......... 6-4

6.4.10 Framework, 6-4

6.4.11 Phase i 6-4

6.4.12 NextPhase 6-5

6.4.13 Associate 6-5

6.4.14 Assigned/Setting. 6-5

6.4.15 Interpretation, 6-5

6.4.16 Progressc .. 6-5

6.4.17 CaUSE 6-6

iv Clinical Observations Access System, v1.0 April 2001

Contents

6.4.18 Co-eXists. 6-6
6.4.19 Evidence............. ..., 6-6
6.4.20 Triggerso 6-6
6.4.21 Goal 6-6
6.4.22 Motivation e 6-6
6.4.23 CONSEQUENCE. vttt e e 6-7
6.4.24 TOPIC. . ..ot e 6-7
6.4.25 Target........ ... 6-7
6.4.26 Provides Information 6-7
6.4.27 Circumstancesc.u ... 6-8
7. DSObservationQualifiers 7-1
7.1 OVeIVIEW . ot 7-1
7.2 HL7 Naming Convention. 7-2
7.3 Observation Type for Qualifiers. 7-2
7.4 QualiflerCodes 7-3
741 COAS-Specific. 7-3
7.4.2 HL7-Clinical Times 7-3
743 HL7-Roles 7-3
744 HL7-OBR(Request).................... 7-4
745 HL7-OBX(Reply)coiiii. .. 7-4
7.4.6 HL7-PV1 (PatientVisit)................. 7-5
8. Policies 8-1
8.1 OVeIVIEW . .t 8-2
8.2 SEARCH_DEPTH_POLICY 8-2
8.3 RETURN_DEPTH_POLICY....... 8-2
8.4 SEARCH_SYNONYMOUS_CODES POLICY........ 8-3
8.5 RETURN_OBSERVATION_VALUES POLICY........ 8-3
8.6 SHORTCIRCUIT_SEARCH_... POLICY............. 8-4
8.7 SEARCH_SYNONYMOUS_IDS POLICY 8-4
8.8 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY 8-5
8.9 RETURNL_ITEMS_IN_TIME_SPAN_POLICY......... 8-5
8.10 MATCHING_STRENGTH_POLICY 8-5
8.11 PARAM_CHECKING_POLICY 8-6
8.12 QUALIFIER_RETURN_POLICY 8-6
8.13 RELATIONS_RETURN_POLICY 8-7
8.14 RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY8-7
8.15 TIME_SERIES_..._ ALGORITHM_POLICY 8-7

Clinical Observati

ons Access System, v1.0 April 2001 v

Contents

Vi

8.16 TIME_SERIES_..._ PREFERENCE_POLICY..........

8.17 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY .
8.18 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY ..

Appendix A-Complete IDL,

Appendix B - Interoperation

Appendix C - Security Guidelines.

Appendix D - Usage Patterns.

Appendix E - Usage Scenarios.

Appendix F - Client Implementation Examples. F-1

Glossary

Clinical Observations Access System, v1.0 April 2001

8-8

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

Clinical Observation Access Service, v1.0 April 2001 Vii

Associated OMG Documents

viii

In addition to the CORBA Transportation specifications, the CORBA documentation
set includes the following:

Object Management Architecture Guidefines the OMG's technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and Specificaiitains
the architecture and specifications for the Object Request Broker.

CORBA Languages collection of language mapping specifications. See the
individual language mapping specifications.

CORBAservices: Common Object Services Specificatiaollection of OMG'’s
Object Services specifications.

CORBAfacilities: Common FacilitieSpecificationa collectionof OMG’s Common
Facility specifications.

CORBA ManufacturingContains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

CORBA HealthcareComprised of specifications that relate to the healthcare
industry and represents vendors, healthcare providers, payers, and end users.

CORBA FinanceTargets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

CORBA TelecomsComprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail i@iject Management
Architecture Guide

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

Clinical Observation Access Service, v1.0 April 2001

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:
* 3M
* AGFA
« Baptist Health Systems of South Florida (BHSSF)
e Care Data Systems, Inc.
e CareFlow/Net, Inc.
e CogniTech Corporation
¢ GE Medical Systems
¢ HBO & Company
¢ HealthMagic, Inc.
¢ Los Alamos National Labs (LANL)
¢ Philips Medical Systems
¢ Philips Research
* Protocol Systems, Inc.
« Sao Paulo Hospital das Clinicas
e Sunquest
e Theragraphics
* Universidade Federal de Sao Paulo
¢ University of Michigan Health Systems (UMHS)

COAS,v1.0 Acknowledgments April 2001

Clinical Observation Access Service, v1.0 April 2001

COAS Overview 1

Contents

This chapter contains the following topics.

Topic Page
“Definition and Scope of Clinical Observations” 1-1
“Previous Work” 1-3
“Information Model” 1-3
“Dynamic Discovery” 1-4
“Value Domains” 1-4
“Type Negotiation” 1-4
“XML Usage” 1-5
“Roadmap for Extensions” 1-5
“Conformance Points” 1-5

The Clinical Observations Access Service (COAS) is a set of interfaces and data
structures with which a server can supply clinical observations.

1.1 Definition and Scope of Clinical Observations

To determine the scope of a Clinical Observations Access Service we might start with
a definition of “clinical observations.” The 27th Edition of Dorland's lllustrated
Medical Dictionary defines “clinical” as,

Clinical Observation Access Service, v1.0 April 2001 1-1

“pertaining to a clinic or to the bedside; pertaining to or founded on actual
observation and treatment of patients, as distinguished from theoretical or basic
sciences.”

Webster's Ninth New Collegiate Dictionary defines “observation” as,

“2 b: a record obtained by the act of recognizing and noting a fact or occurrence
often involving measurement with instruments 3: a judgment on or inference from
what one has observed.”

The COAS specification included the following definition of “clinical observations,”

“any information that has been captured about a single patient’'s medical/physical
state and relevant context information.”

Webster's Dictionary includes the following definitions of “information,”

“2 a: (1) knowledge obtained from investigation, study, or instruction (2)
INTELLIGENCE, NEWS (3) FACTS, DATA.”

The COAS specification goes on to add,

“This [information] may be derived by instruments such as in the case of images,
vital signs, and lab results or it may be derived by a health professional via direct
examination of the patient and transcribed(sic). This term applies to information
that has been captured whether or not it has been reviewed by an appropriate
authority to confirm its applicability to the patient record.”

It is clear from the dictionary definitions of “observation” and “information” that the
common usage of “clinical observations” includes, not just raw measurements and
recordings, but also the knowledge and judgments obtained or inferred from them.
Based on these definitions and conclusions, the following working definition of
“clinical observations” is given, where the lists are intended to specifically include the
areas mentioned rather than excluding other related areas:

“any measurement, recording, or description of the anatomical, physiological,
pathological, or psychological state or history of a human being or any sample from
a human being, and any impressions, conclusions, or judgments made regarding that
individual within the context of the current delivery of healthcare.”

All observations share a few common features:
® They are made on a specific subject of care (e.g., patient, organ, population).

® They represent a snap-shot of that subject in time, either at a particular time, or over
some specified interval of time (time in this context includes the notion of both date
and time).

® They are made, or recorded, by an instrument or a healthcare professional in some
clinical context.

® They are given (either by the patient, the healthcare institution, or society) some
degree of confidentiality.

Observations can be quantitative, qualitative, and recordings. For example, vital signs
and clinical laboratory results, trends in measured values, impressions from a clinical
exam, correlation of several qualitative impressions, and images and manipulations of

Clinical Observation Access Service, v1.0 April 2001

1

images such as digital subtraction angiography. For the purposes of our information
model and the derived IDL, a clinical observation includes any clinically related item
that has the necessary context information to enable it to be queried from a COAS
server.

1.2 Previous Work

A number of the submitters and supporters of this specification have used CORBA for
various observation access mechanisms.

3M - Observations are an integral part of the 3M Care Innovation Suite
(http://www.mmm.com/market/healthcare/his/product/hems/menu.htm)

Care Data Systems - Observations are part of Care Data System'’s Integration and
Access Channels and the Care Data Repository products
(http://www.caredatasystems.com/quide/product-oy)htm

CareFlow|Net - Observations are part of the CareFlow|Net transcription system
(http://www.careflow.com/products.hjm

CERC - Observations are part of the Artemis project
(http://www.cerc.wvu.edu/nim/artemis.html)

HBO & Company - Observations are an integral part of the Clinical Information
Systems products (http://206.217.199.68/caci/corporate/prodport.nsfyhome

Los Alamos National Laboratory - Observations are a major component of the
TeleMed project (http://www.acl.lanl.gov/TeleMégd/

Philips Medical Systems - Observations are a major component of the MIRACLE
project.

Protocol Systems - An observation service (COBS) is the major component of the
Acuity Communications Option (ACO) vital signs server.

Sunquest - Observations are a central part of the Sunquest products
(http://www.sunquest.com/marketing/

Each of these projects brings different, complementary perspectives that have
contributed to the COAS specification.

1.3 Information Model

There are a number of information models that deal with observations data. Some are
associated with standards groups and are openly available. Others are the proprietary
property of individual companies. The following lists most of the openly available
information models that we know of that include observations data.

COAS,v1.0 Previous Work April 2001 1-3

HL7 - The version 3.0 project is taking the knowledge developed during the previous
HL7 standards and describing it in an information model
(http://www.mcis.duke.edu/standards/HL 7/data-model/HL 7/modelpag§.hifk is a
generalized model for healthcare that does include observations data. This model is
subject to change over the next year or two.

DICOM - The Structured Reporting document (supplement 23) of DICOM contains an
implied information model for clinical reports which contain observations data
(ftp://ftp.nema.org/MEDICAL/DICOM/SUPPS/sup23_fz.pdf)

UK NHS - The UK National Health Service has developed general information models
for healthcare, based on a model called COSMOS that contains observations data. See
http://smwww1.med.ic.ac.uk/dm/dmgm/ccpm?2ptl .cGacl
http://smwww1.med.ic.ac.uk/dm/dmgm/ccpm?2pt2.doc

European Consortia- The European Union has sponsored several projects whose
purpose has been to develop and validate information models of healthcare. These
include the GEHR and EHCR-SupA.

CEN-TC251 - The European Committee for Standardization Technical Committee 251
has developed several pre-standards that involve models of healthcare. In particular, the
CEN/TC251/N97-024 prestandard on “Healthcare Information System Architecture
(HISA).”

1.4 Dynamic Discovery

Clinical observations cover a very wide set of data types. Servers are likely to offer
widely different kinds of data, data formats supported, etc. COAS servers need to
expose to clients relevant context information, such as the patient population they deal
with, what kinds of observation types are supported, what kind of data formats are
supported, which interfaces are implemented, etc. We have made an effort to do this
via theAccessComponent interface. See Section 3.7.2, "“AccessComponent
Interface,” on page 3-60 for details. However, it is not clear whether this effort will be
sufficient to enable the discovery of all necessary capabilities.

1.5 Value Domains

The Lexicon Query Service (LQS) contains the ability to query for ValueDomains.
ValueDomains are the set of possible codes that can be used for a particular parameter
or field. It is expected the LQS ValueDomains can be used by COAS for publishing
meta information about the particular service implementation.

1.6 Type Negotiation

Servers may support multiple formats for the same type of information, such as images
in gif, tiff, and jpeg formats. COAS may need a way for clients to not only determine
what formats are supported, but also to select which one(s) they can handle.
Specifications for how this is to be accomplished has been left for future revisions of
the COAS.

Clinical Observation Access Service, v1.0 April 2001

1.7 XML Usage

The eXtended Markup Language (XML) is gaining wide interest and support as a
flexible format for describing highly structured information (documents).

COAS clients and servers may provide and use XML documents. XML is implicitly
supported as a text string, for returned observations. Also, a COAS server could be
easily designed to input an XML qualifier as a filter. See the client-implementation
example “Progress Note (XML)” on page F-5 for more details.

1.8 Roadmap for Extensions

The COAS needs to provide a basis for future CORBAmed standards for accessing
healthcare related information. The COAS specification provides a small number of
core definitions, but it is expected that future CORBAmed RFPs will develop
additional data definitions that can be used by COAS without extension of the
interface, as well as develop extensions to COAS.

At the time of submission, RFPs have been published for a Clinical Image Access
Service (CIAS) and a Report Management Service (RMS). These are expected to
utilize COAS and/or to extend it. Potential responders to the CIAS and RMS RFPs
have contributed to this COAS specification. This specification also includes
DsTimeSeries as an example, in the area of vital signs support, of an extension of the
data types and operation of COAS.

1.9 Conformance Points

This section describes the various conformance levels possible for a COAS compliant
provider of clinical observations.

There are three categories of conformance:

1. Interface conformance (i.e., conformance to one or more interfaces described in this
specification).

2. Data structure conformance (i.e., conformance to a mechanism for commiunicating
structures containing the values of observations).

3. Qualified code conformance (i.e., conformance to a naming convention for the use
of terms from other standards).

To be compliant with this specification, a server must have at least interface and data
structure conformance. Qualified code conformance is optional.

1.9.1 Interface Conformance Classes

The following taxonomy is defined for specific conformance classes of COAS
implementations. An implementation claiming conformance to any of these classes
must conform to all of the interfaces specified for that class. An implementation may

COAS,v1.0 XML Usage April 2001 1-5

claim conformance to multiple conformance classes as long as it is conformant to each
one it claims. For an implementation to be COAS compliant, it must conform to at
least one of the conformance classes in Table 1-1.

Each row in Table 1-1 includes the specification for a different conformance class. The
columns represent the interfaces on the AccessComponent. A star *’ in a column
indicates the conformance class in that row includes the interface of that column.

Table 1-1 Conformance Classes

Conformance Class Query | Browse | Constraint | Asynch | Supplier | Consumer | Observation
Access | Access | Access Access | Access Access Loader

Simple COAS *

Browse COAS * *

ConstraintLanguage COAS * *

Asynchronous COAS *

Supplier COAS *

Consumer COAS *

Loader COAS *

® ‘Simple COAS - This class provides the mechanisms to access observations with a
minimum of effort.

®* ‘Browse COAS - This conformance class adds the ability to make queries on the
results of previous queries, which enables the more interactive activity of browsing.

® ‘ConstraintLanguage COAS - This class adds, to the Simple COAS class, the
ability to use a constraint language in the construction of queries.

® ‘Asynchronous COAS - This conformance class is an alternative to the Simple
COAS class in that it provides the same access to observations, but it uses an
asynchronous connection between the client and server instead of the more common
synchronous connection.

® ‘Supplier COAS' - This class is an alternative to the Simple COAS class in that it
provides the same access to observations, but it is oriented towards providing access
to observations that may arrive in the future, and it uses a messaging
communication style to return the observations when they become available. The
client must implement the Consumer COAS class (below) to receive the
observations sent by the Supplier COAS class server.

® ‘Consumer COAS - This conformance class is the client side to the server
interfaces in the Supplier COAS class.

® ‘Loader COAS' - This class provides a mechanism whereby legacy systems can be
wrapped with a client COAS interface and can push their data into a COAS server.

1-6 Clinical Observation Access Service, v1.0 April 2001

1.9.2 Data Structure Conformance Classes

This specification was developed before the availability of compilers that support the
Object-By-Value (OBV) technology, yet it anticipates it by including a mechanism for
extensibility. These conformance classes specify the mechanism for communicating
observation values. At this time there is only one mechani§imngle Struct COAS’

This class indicates that a server uses the single strugbseevationDataStruct as

the explicit type returned/passed@hservationData . See Section 3.3.6,
“ObservationData,” on page 3-20.

It is expected that future standardization will add conformance points for other data
structuring used by servers. Note, these conformance classes are independent of the
interface conformance class implemented by a server.

1.9.3 Qualified Code Conformance Classes

This specification focuses on the mechanisms to communicate information between
server and client. Qualified codes represent the application specific terms, which may
be standardized by domain specific standardization bodies. This specification includes
rules for translating the term names from another standard into the qualified codes used
in this one.

*HL7 Inside COAS’ - this class indicates the usage of HL7 defined observation types
within a COAS server. Any server claiming conformance to this class must have
observations that correspond to at least some HL7 types as defined in the
DSObservationQualifiershapter (Chapter 7 of this specification). Furthermore, those
observation types must utilize the HL7 types as defined in this specification.

It is expected that future standardization will add conformance points for other domain
specific term standards. Note, these conformance classes are optional and independen
of the interface and data structure conformance class implemented by a server.

COAS,v1.0 Conformance Points April 2001 1-7

1-8

Clinical Observation Access Service, v1.0

April 2001

2.1 Overview

COAS Information Model 2

Contents

This chapter contains the following topics.

Topic Page
“Overview” 2-1
“Modeling Notation” 2-2
“Clinical Observations Model” 2-3
“Examples” 2-26

This chapter describes the Clinical Observation Access Service information model.
Throughout the development of this specification the model has undergone several
modifications. The final version depicts a model that is flexible and reusable without
adding flexibility that is unlikely to be used.

Several models were reviewed and used in determining the final model. Each model
contained things that were valuable in helping us understand the problem and ensuring
that we had a model that would accommodate the majority of needs.

Although this model is simplistic, it is also powerful enough to provide the

extensibility that is needed in the healthcare domain. There are many individuals
working on efforts to define and categorize healthcare information. However, there is
not a great deal of consensus at this time. Consequently, a model was needed that
could accommodate the efforts of these individuals as their work progresses and at the
same time make something available today to help in moving the healthcare
information technology forward. “Finding a simple solution takes time and effort,

which can be frustrating. People often react to a simple model by saying, “Oh yes,
that’s obvious” and thinking “So why did it take so long to come up with it?” But

Clinical Observations Access Service, v1.0 April 2001 2-1

simple models are always worth the effort. Not only do they make things easier to
build, but more importantly they make them easier to maintain and extend in the
future.”®

This model presumes that all entities within a healthcare domain can be modeled as
composite or atomic observations. The wobs$ervationhas been a long struggle from
the beginning because of the fact that it carried different connotations for various
groups and individuals. It is hoped that the reader will understand that the name is
merely a placeholder, no name is perfect.

2.2 Modeling Notation

The notation used in this chapter comes from attiwt implements the Unified
Modeling Language (UML3

2.2.1 Modeling Definitions

Many of the definitions given here will be used throughout this chapter.

Class Diagram
A class diagram is a picture for describing generic descriptions of possible systems.
Class diagrams and object diagrams are alternate representations of object models.
Class diagrams contain classes and object diagrams contain objects.

Collaboration Diagram
Collaboration diagrams show objects, their links, and their messages. They can also
contain simple class instances and class utility instances. Each collaboration
diagram provides a view of the interactions or structural relationships that occur
between objects and object-like entities in the current model.

Object Diagram
An object diagram shows the existence of objects and their relationships in the
logical design of a system. An object diagram may represent all or part of the object
structure of a system, and primarily illustrates the semantics of mechanisms in the
logical design. A single object diagram represents a snapshot in time of an
otherwise transitory event or configuration of objects.

1. Martin FowlerAnalysis Patterns Reusable Object Modglddison Wesley. 1997. P 2.
2. Rational Rogé 98, Rose Enterprise Edition 199&ittp://www.rational.corh
3. UML Notation Guide, Version 1.1. Rational Software, September 1997.

http://www.rational.com/uml/html/notation/

Clinical Observations Access Service, v1.0 April 2001

2.3 Clinical Observations Model

2.3.1 Clinical Observations Model - Class Diagram

ObservedSubject
1.*
+characterized by
0.*
+characterizes
HealthRecordEntry/|
0.1
+contain
O. .*
1+ +contained in 0.*
+composes Observation +referenced by R
<<Required>> observationType : QualifedCode ‘ = eV .|0n rence - -
<<Optional>> observationTime : TimeSpan |) ¢<<Required>> obsewvationRelrenceTy pe : QualiiedGode

\ 1.+ +references

F +qualified b

{disjoint/complete}
0.* 1.* 0.*
+composed of n +qualified by +qualifies
+qualifies ; ’
CompositeObservation AtomicObservation ObservationQualifer
g<<Required>> observationQualiferT ype : QualifedCode

1. . * 1 . *
+references +efrences
| ObservationValue

1.1 1.1
+referenced by +referenced by

Figure 2-1 COAS Class Diagram

This is a Class Diagram of Clinical Observations created to assist in the design of the
Clinical Observations Access Service (COAS). “The logical view of a system
describes the existence and meaning of the key abstractions that form the iesign.”

4. Grady BoochObject Oriented Design with ApplicatiorBenjamin Cummings. 1991.

COAS,v1.0 Clinical Observations Model April 2001 2-3

2-4

The HealthRecordEntry andObservedSubject are represented in the model to show
how they may fit into the overall design. Although they can both be supported by this
model, we do not explicitly include any specialized services for them. We believe that
this model, and the services derived from it, will accommodate them. They will be
discussed in the section on Examples.

The following sections document the class diagram. Each of the entities in the class
diagram will be discussed.

2.3.2 Observation

Observation

£<<Required>> observationType : QualiiedCode
£»<<Optional>> observationTime : TimeSpan

Figure 2-2 Observation

Observation is an abstract class containing attributes that are inherited when a
CompositeObservation is needed or when axtomicObservation is needed.

CompositeObservation andAtomicObservation both inherit from Observation.

Observation is complete and disjoint. Complete meaning no more subclassing can be
done off of Observation and disjoint meaning that instances may have only one of the
given subtypes as a type.

observationType:QualifiedCode

Description: This is @ualifiedCode that names the Observation. For
example, Cardiovascular Examination, Complete Blood
Count, Systolic Blood Pressure, etc. The type of this attribute
is denoted as QualifiedCode that comes from the
CORBAmed] Lexicon Query Servi&éLQS). This attribute
has been defined as a required attribute.

observationTime: TimeSpan

Description: Denotes the time when the observation reflects a
characteristic of the observed subject. (Please reference
Section 2.4.1, “ObservedSubject - Model,” on page 2-27.)
Although is has been defined as optional it is strongly
recommended that this attribute exist.

1. CORBAmed Lexicon Query Services, March 1998. OMG CORBAmed Document 98-03-22.
http://www.omg.org/docs/corbamed/98-03-22.rtf

Clinical Observations Access Service, v1.0 April 2001

2.3.3 CompositeObservation

1.*
+composes Observation
s#<<Required>> observationType : Qualified Code
¢<<Optional>> obsewationTime : TimeSpan
{disjoint/complete}
0..*
+composed of

CompositeObservati on

Figure 2-3 CompositeObservation

A CompositeObservation is a container for a set of Observations. Such a set may be a
Cardiovascular Examination, a Complete Blood Count, a LabUrineBattery, etc. A
CompositeObservation inherits the attributes of an Observation.

A CompositeObservation has no value associated with it, it is used to give some
semantic meaning to the contents that it encapsulates. For example, a Complete Blood
Count is aCompositeObservation that contains components which are
AtomicObservations such as White Blood Count, Red Blood Count, Hematocrit, etc.
The AtomicObservations Red Blood Count, etc. themselves have a value associated
with them but not Complete Blood Count. Complete Blood Count is merely used to
provide a name for the structure of information contained within it.

Relationships with Observation
® Zero or moreCompositeObservations are composed of one or more Observations.

® One or more Observations compose zero or nerepositeObservations

COAS,v1.0 Clinical Observations Model April 2001 2-5

2.3.4 AtomicObservation

Observation

s=<<Required>> observationType : QualifedCode
«#<<Optional>> observationTime : TimeSpan

/

{disjoint/complete}

AtomicObservation

1.*

+references
ObservationValue

1.1
+referenced by ‘
\

See ObservationValue class diagram for ﬁ

further details.

Figure 2-4 AtomicObservation

An AtomicObservation is a single object with an associated value. An
AtomicObservation inherits the attributes of an Observation.

Examples ofatomicObservations can be such things as While Blood Count,
UrineColor, Systolic Blood Pressure, etc.

Relationships with ObservationValue

® One or moreatomicObservations reference one and only o@bservationValue .

® One and only on®bservationvalue is referenced by one or more
AtomicObservations

2.3.5 ObservationReference

0.*

Observation

+referenced by

<<Required>> observationType : QualifiedCqde — —
£»<<Optional>> observationTime : TimeSpan 0.*

d ObservationReference

¢z<<Required>> observationRefrenceType : QualifedCode

2-6

+references

Figure 2-5 ObservationReference

Clinical Observations Access Service, v1.0 April 2001

ObservationReference is an associated class defining a relationship between
Observations. ThebservationReferenceType attribute denotes the type of
relationship and should come from a well-defined terminology system.

observationReferenceType:QualifiedCode

The observationReferenceType attribute is used to denote the type of relationship that
exists between two Observations.

Our intention has been to reference other coding schemes where possible as opposed t
creating our own. The CEN Pre-Standard PTB3s already started to create a list of
these (Table A.5) and could be used as a starting point.

Relationships with Observation
® Zero or more Observations are referenced by zero or more Observations.

® Zero or more Observations references zero or more Observations.

2.3.6 ObservationQualifier

Observation

si<<Required>> observationType : QualifedCqgde
¢2<<Optional>> observationTime : TimeSpan

1.*
+qualifed by

l..* 0“*
0..* +qudified by

+qudifes
+qudifies

ObservationQualifier
<<Required>> observationQualifierType : QualifedCode

1.*
+references
ObservationValue

1.1
‘ +referenced by
\

See ObservationValue class diagram for ﬁ

further details.

Figure 2-6 ObservationQualifier

5. European PreStandard PT27-N#igalth Care Informatics Electronic Health Care Record
Communication Part 2 - Domain Termlisers.3.0 of 1998-12-01.

COAS,v1.0 Clinical Observations Model April 2001 2-7

An ObservationQualifier is not capable of standing alone. The information represented
by the Observationvalue modifies the Observation being qualified. The following
tables outline some of the possibilities foservationQualifiers

Table 2-1 ObservationQualifiers

Dates Comments

Dates of documenting for such things as create, edit, attesting, storing in a
database, transcribing, etc.

dictation

transcribed

sign-off

attestation

recorded

Dates of awareness for such things as reporting by patient, observing by
professional, reading a message, etc.

results become available

Dates of (clinically for such things as sampling, observing, informing,
meaningful) events operating, etc.

observation

onset

procedure

projection

consultation

specimen drawn

lab processing times

verification

QA review

collection

Roles

originator

collector

legal authenticator

Clinical Observations Access Service, v1.0 April 2001

technician/tester

treater

transcriptionist

auditors

observer

observed subject

Modifier

body site [where observed]

subject/Objective

projection [in time]

hypothesis

Instance Status

outside alarm limits [high/low]

outside measurement range [high/lov

critical alarm [high/low]

completion status

QA status

preliminary/final status

normalcy

confidence

report status

active/inactive/remission

rejected/current

Context

source system

patient record categories

COAS, v1.0 Clinical Observations Model

—_

April 2001

2-9

2-10

facility/location [where]

equipment used

algorithm/formula used [Source data]

protocol/procedure/method

order number/requisition number

encounter number

encounter type

verifier

episode of care

accession number

specimen number

assessment plan case number

health record transaction

Types

allergen

reaction

prognosis

diagnosis

treatment related

pharmacy

expiration date

refills

dose/give rate

intervention type/time

Other

how it was collected

comments

coded comments

Clinical Observations Access Service, v1.0

April 2001

normal value

normal range

version

observer

rule out

severity

persistence/recurrence

onset (time?)

procedure time

observationQualifierType:QualifiedCode

Description: TheobservationQualifierType — attribute is aQualifiedCode
and should come from a well-defined terminology system| It
is used to identify the type of qualifier that is being used to
qualify the observation.

Relationships with Observation
® Zero or moreObservationQualifiers qualifies one or more Observations.

® One or more Observations are qualified by zero or nrvationQualifiers

Relationships with ObservationValue

® One or moreDbservationQualifiers references one and only one
ObservationValue .

® One and only on®bservationvalue is referenced by one or more
ObservationQualifiers

Relationships with ObservationQualifier

® Zero or moreObservationQualifiers qualifies one or mor®bservationQualifiers

® One or moreDbservationQualifiers are qualified by zero or more
ObservationQualifiers

COAS,v1.0 Clinical Observations Model April 2001 2-11

2.3.7 ObservationValue

ObservationValue

\
Y {disjoint/incomplete}

DateTime

Zi<<Required>> value : TimeStamp
£<<Optional>> relationalOperator : QualifiedCode
<<Optional>> accuracy : NumericValue
«3<<Optional>> accuracyContext : QualifiedCode
LooselyCodedElement &<<Optional>> accuracyUnit : QualifedCode
~<<Required>> text : String
< <Required>> coding Schemeld : C oding Schemel
O<<Required>> versionld : String I'T

CodedElement

~<<Required>> value : QualifiedCode
<—;><<Opti0na|>> printName : String

d

Measurement
¢#<<Optional>> units : QualifedCode

Curve

Z<<Required>> values : XYPairs

£3<<Optional>> xUnits : QualiiedCode PlainText

¢2<<Optional>> yUnits : QualiiedCode l<<Required>> value : String
¢#<<Optional>> language : QualifedCode

Multimedia

&<<Required>> header : MIME Header Nolnformation

<2<<Required>> reason : QualifiedCode

TechnologylnstanceLocator

s#<<Required>> protoca : QualiiedCode
¢z<<Required>> address : String

Figure 2-7 ObservationValue

This is a Class Diagram fabservationvalue .

An ObservationValue is a manifestation of forms of biological phenomenon. In this
model we have selected a subset of all possible values. We realize that our set is not
complete, yet we believe it to be disjoint. There are many efforts und®iway
determining what these values should and should not be within the arena of healthcare.
This model attempts to define those that are most importance at this time. Because
ObservationValue is an abstract type, the ability to exte@bservationvalue exists

and should assist as new or modifi@bkservationvalues are identified.

6. HL7 Version 3 Data Type Redesign Projeitp://aurora.rg.iupui.edu/v3dt/

2-12 Clinical Observations Access Service, v1.0 April 2001

CodedElement

CodedElement

#x<<Required>> value : QualifiedCode
£2<<Optional>> printName : String

Figure 2-8 CodedElement

The CodedElement provides a mechanism to allow for values that have been coded in
some form or another. Coded in the sense that they have a unique identifier. This
unique identifier can then be used to ask a terminology system specific questions about
the CodedElement , for example, its representation based on some context, or its
definition, etc.

value:QualifiedCode

Description: The value attribute isQualifiedCode and should come from
a well-defined terminology system.

printName:String

Description: TheprintName attribute is aString and can be used in

conjunction with the value attribute. It is used to provide
textual representation of the value, possibly overriding the
definition provided by an LQS.

js2)

v

LooselyCodedElement

LooselyCodedElement

~»<<Required>>text : String
~»<<Required>> codingSchemeld : CodingS chemeld
«<<Required>> versionid : String

Figure 2-9 LooselyCodedElement

There are times when a code that the user wants cannot be realized or found within a
terminology system (e.g., is not in the list of allowable values). In which case the
LooselyCodedElement can be used to send text instead. Such instances may occur
when there are incomplete lists of coded values or “starter sets” for a given domain, for
example, sex, marital status, race, ethnicity, order priorities, etc. The expectation is that
the value sent for this field is nearly always coded, but exceptions are allowed.

text: String

Description: The text attribute isString and is used when no
CodedElement from a terminology system can be
determined.

COAS,v1.0 Clinical Observations Model April 2001 2-13

codingSchemeld:CodingSchemeld

Description:

ThecodingSchemeld attribute is of typeCodingSchemeld

that comes from an LQS and is used to identify the coding

scheme where the text was intended.

versionld:String

Description:

Theversionld attribute is aString and is used to identify the

version of the coding scheme where the text was intended.

Curve

Curve

s:<<Required>> values : XYPairs
¢»<<Optional>> xUnits : QualifiedCode
£3<<Optional>> yUnits : QualifiedCode

Figure 2-10 Curve

Some observation values can be plotted graphically. Curve is used to assist in the

retrieval of such information. It is not the intention to fully identify all the necessary
attributes that may be needed for formalized plotting algorithms but rather to supply
enough information so that it is possible to plot information in a Cartesian coordinate..

values:XYPairs

Description:

ThexyPairs attribute allows for a sequence of x,y values.
Where the x represents those values to be plotted on the
axis and the y represents those values to be plotted on th
axis.

xUnits:QualifiedCode

Description:

Thexunits attribute denotes the x axis units. In healthcare
this is usually a time axis (i.e., milliseconds, seconds, or
minutes). This attribute is @QualifiedCode and should come
from a well-defined terminology system.

yUnits:QualifiedCode

Description:

TheyUnits attribute denotes the y axis units. This attribute
a QualifiedCode and should come from a well-defined
terminology system.

2-14 Clinical Observations Access Service, v1.0 April 2001

X_
ey

S

Application

Multimedia
Multimedia
gi<<Required>> header : MIMEHeader
{disjoint/incomplete}
Audio image Message Model Mu lti part Text Video

Figure 2-11 Multimedia

There exists a set of documents, collectively called the Multipurpose Internet Mail
Extensions, or MIME, that specify a standard for conveying various media types over
the Internet.

The MIME Content-Type header field and media type mechanism have been carefully
designed to be extensible, and it is expected that the set of media type/subtype pairs
and their associated parameters will grow significantly over time. To ensure that the set
of such values is developed in an orderly, well-specified, and public manner, the
MIME standard specifies a registration process that uses the Internet Assigned
Numbers Authority (IANAY as a central registry for MIME’s various areas of
extensibility.

With this in mind we have opted to utilize the MIME as the mechanism for retrieving
multimedia information. Rather than attempt to provide a description of each of the
media types (Application, Audio, Image, Message, Model, Multipart, Text, and Video)
it seems more reasonable to provide a reference to these. They can be found in the
RFC2048 document.

header:MIMEHeader

The MIME specifications define a number of header fields that are used to describe the
content of a MIME entity. These header fields occur in at least two contexts:

« As part of a regular message header.
¢ In a MIME body part header within a multipart construct.

The formal definition of these header fields is as follows:
« Entity-headers

7. The Internet Assigned Numbers Authotityp://www.iana.org/listinfo.html

8. http://www.rfc-editor.org/rfc.html

COAS,v1.0 Clinical Observations Model April 2001 2-15

2-16

« MIME-message-headers
* MIME-part-headers

The syntax of the various specific MIME header fields are described in the RFC2045
document.

The multimedia data itself follows immediately after the header fields that describe
that portion of the data. This data is often encoded such that it is correctly conveyed
via legacy internet mail servers which can only handle 7-bit ASCII characters.

TechnologylnstancelLocator

TechnologylnstanceLocator

Z1<<Required>> protocol : QualifedCode
g<<Required>> address : String

Figure 2-12 TechnologylnstanceLocator

A TechnologylnstanceLocatttis used to reference information that has some tie to a
technology that can perform some action. It is a generalization of the well-known
Universal Resource Locator, or Uniform Resource Locator (URL) concept.

protocol:QualifiedCode

Description: This is the protocol associated with the address. The protocol
indicates the technology to be used to interpret the address.
This attribute, as @ualifiedCode , should come from a well
defined terminology system.

The following denotes some current internet protocols:

Protocols
HTTP
FTP

9. http://www.rfc-editor.org/rfc.html
10. HL7 Version 3 Data Type Redesign Projeitp://aurora.rg.iupui.edu/v3dt/

Clinical Observations Access Service, v1.0 April 2001

address:String

Description: The address attribute contains some structured sequence of
characters that the protocol knows how to interpret. For
example, www.example.com

DateTime

DateTime

c:<<Required>> value : TimeStamp
£+<<Optional>> relationalOperator : QualiiedCode
#=<<Optional>> accuracy : NumericValue
£=<<Optional>> accuracyContext : QualiiedCodge
¢2<<Optional>> accuracyUnit : QualifedCode

Figure 2-13 DateTime

A DateTime is used to communicate when some event occurred or when some
observations was made, recorded, or verified.

value:TimeStamp

Description: The value attribute contains the actual date and time
information.

relationalOperator:QualifiedCode

Description: TherelationalOperator attribute is used to modify the
meaning of the value attribute. This attribute is a
QualifiedCode and should come from a well-defined
terminology system.

The basic relational operators are denoted as follows:

Symbolic Meaning
Representation

== Equal to

1= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

COAS,v1.0 Clinical Observations Model April 2001 2-17

The symbolic representation comes from the C language. The coding scheme may
denote the symbolic representation differently based on the context (may be a
programming language) but the meaning should be consistent with the foregoing. This
attribute can be used to denote that an observation was not at some time value by using
the not-equal-to meaning.

accuracy:NumericValue

Description: Theaccuracy attribute allows for a measure of uncertainty|to
be associated with theateTime value. For example, plus or
minus 2 days, where plus or minus is tteuracyContext
and days is thaccuracyUnit .

accuracyContext:QualifiedCode

Description: TheaccuracyContext attribute is aualifiedCode and should
come from a well-defined terminology system. The following
denotes possibleccuracyContext S:

¢ Plus or minus
¢ Within

accuracyUnit:QualifiedCode

Description: TheaccuracyUnit attribute is aQualifiedCode and should
come from a well-defined terminology system. The following
denotes possiblaccuracyUnit s.
* MilliSecond

* Second

e Minute

* Hour

* Day

* Month

* Year

Note —Accuracy , accuracyContext , andaccuracyUnit should be used together as a
set.

2-18 Clinical Observations Access Service, v1.0 April 2001

Measurement

Measurement
¢<<Optional>> units: QualifiedCode

r {digoint/incomplete}

Range TimeSeries
&<<Required>> lower : NumericValue &<<Required>> samplePeriod : TimeDelta
&<<Required>> upper : NumericValue &<<Required>> values: NumericValueSeq
&<<Optional>> lowerRelationalOperator : QualifiedCode &<<Required>> totalSize : NumericValue
¢#<<Optional>> upperRelationalOperator : QualifiedCode
&<<Optional>> logicalOperator : QualifiedCode

Ratio Numeric
&<<Required>> numerator : NumericValue o<<Requ|red>> valule ZNumenicvalue .
<<Required>> denominator : NumericValue ¢<<Optional>> relationalOperator : QualifiedCode
&<<Optional>> relationalOperator : QualifiedCode li<<Optional>> precidon : Numericvalue

¢<<Optional>> precison : NumericValue

Figure 2-14 Measurement

This is a Class Diagram for Measurement.

In this model we have identified a subset of all possible Measurements. We realize that
this is not complete, yet we believe it to be disjoint. Measurements can occur in a wide
variety of forms. We have concentrated on those that we believed were widely used.

unit:QualifiedCode

Description: This is the unit associated with the Range, Ratio, TimeSeries,
or Numeric. This attribute is @QualifiedCode and should
come from a well-defined terminology system.

Range

Range
<><<Required>> lower : NumericValue
<<Required>> upper : NumericValue
£#<<Optional>> lowerRelationalOperator : QualifiedCode
£<<Optional>> upperRelationalOperator : QualifiedCode
£#<<Optional>> logicalOperator : QualifiedCode

Figure 2-15 Range

COAS,v1.0 Clinical Observations Model April 2001 2-19

Range is used to associate two related values together with the ability to apply
relational and logical operators for combinatory expressions. For example, >= 1 &&
<= 5. It is assumed that the value in the lower attribute is less than or equal to the
value in the upper attribute.

lower:NumericValue

Description: This is the lower value of the range.

upper:NumericValue

Description: This is the upper value of the range.

lowerRelationalOperator:QualifiedCode

Description: This is the lower relational operator. This attribute is a
QualifiedCode and should come from a well-defined
terminology system.

The basic relational operators are denoted as follows:

Symbolic Meaning
Representation

== Equal to

1= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

The symbolic representation comes from the C language. The terminology system may
denote the symbolic representation differently based on some context (may be a
programming language) but the meaning should be consistent with the foregoing.

upperRelationalOperator:QualifiedCode

Description: This is the upper relational operator. This attribute is a
QualifiedCode and should come from a well-defined

terminology system. The representation and meaning are as
defined for thdowerRelationalOperator described above.

2-20 Clinical Observations Access Service, v1.0 April 2001

logicalOperator:QualifiedCode

Description: The logical operators allow for the ability to associate two
values logically. This attribute is@ualifiedCode and should
come from a well-defined terminology system.

The basic logical operators are denoted as follows:
&& And
|| Or

The symbolic representation comes from the C language. The terminology system may
denote the symbolic representation differently based on some context (may be a
programming language) but the meaning should be consistent with the foregoing.

Ratio

Ratio
ca<<Required>> numerator : NumericValue
c#<<Required>> denominator : NumericVal ue
#<<Optional>> relationalOperator : Qualified Code
c#<<Optional>> precison : NumericValue

Figure 2-16 Ratio

A ratio value contains a numerator quantity and a denominator quantity. Ratio can be
used when referring to clinical laboratory observations that are measured by serial
dilution methodst! Thus, the ability to express titers which occur in laboratory
medicine. A titer is the maximal dissolution at which an analyte can still be detected.
Typical values of titers are: “1:32", “1:64","1:128", etc. Powers of 1/2 or 1/10 are also
common. It should be noted that the ratio data type must not be used as a handy
representation of two related values. In particular, blood pressure values, commonly
reported as 120/80 mm Hg, are not ratios.

numerator:NumericValue

Description: This is the numerator value, the first number in the ratio!

11. Dr. Stanley M. Huff et all. Linking a Medical Vocabulary to a Clinical Data Model using
Abstract Syntax Notation 1.

COAS,v1.0 Clinical Observations Model April 2001 2-21

2-22

denominator:NumericValue

Description:

This is the denominator value, the second number in the
It must not be zero.

ratio.

relationalOperator:QualifiedCode

Description:

This is the relational operator. This attribute is a
QualifiedCode and should come from a well-defined
terminology system.

The basic relational operators are denoted as follows:

Symbolic Meaning
Representation

== Equal to

1= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

The symbolic representation comes from the C language. The terminology system may
denote the symbolic representation differently based on some context (may be a
programming language) but the meaning should be consistent with the foregoing.

precision:NumericValue

Description: The precision attribute is used to provide a level of precision
to the ratio. In this case the number of decimal places to|the
right of the decimal point. For whole number ratios, this
attribute is not required.

TimeSeries

TimeSeries

#<<Required>> samplePeiiod : TimeDelta
«#<<Required>> values: Num ericValue Seq
«#<<Required>> totalSize : NumericValue

Figure 2-17 TimeSeries

Clinical Observations Access Service, v1.0 April 2001

2

TimeSeries supports the retrieval of an array of values. Within healthcare, arrays of
values are typically samples over time, and so we have included an attribute for the

sample period.

samplePeriod:TimeDelta

Description:

ThesamplePeriod is used to denote the length in time
between the sampling of two sequential values. This is
denoted in seconds.

values:NumericValueSeq

Description:

This is a sequence of the scalar values of the actual

double or any.

recordings. These can be octet, short, long, long long, flaat,

totalSize:NumericValue

Description:

The total number of observations recorded, or the numb
values in the sequence.

er of

Numeric

Numeric

<#<<Required>> value : NumericValue
c#<<Optional>> relationalOperator : Qualified Code
«#<<Optional>> precison : NumericValue

Figure 2-18 Numeric

Numeric is used to communicate a single measurement or quantitative value.

value:NumericValue

Description:

This attribute contains the value itself.

relationalOperator: QualifiedCode

Description:

This is the relational operator. This attribute is a
QualifiedCode and should come from a well-defined
terminology system.

The basic relational operators are denoted as follows:

Symbolic Meaning
Representation

== Equal to

1= Not equal to
< Less than

COAS,v1.0 Clinical Observations Model April 2001 2-23

<= Less than or equal to
> Greater than
>= Greater than or equal to

The symbolic representation comes from the C language. The terminology system may
denote the symbolic representation differently based on some context (may be a
programming language) but the meaning should be consistent with the foregoing.

precision:NumericValue

Description: The precision attribute is used to provide a level of precision
to the value. In this case the number of decimals places to the
right of the decimal point. For whole numbers this attribute is

not required.

PlainText

PlainT ext

Z<<Required>> value : String
£»<<Optional>> language : QualiiedCode

Figure 2-19 PlainText

PlainText is used to communicate observation values as ideas in the form of writing.

value:String

Description: The value attribute is used to contain the text itself.

language:QualifiedCode

Description: The language attribute is used to denote the type of written
language used in conveying the value. This attribute is a
QualifiedCode and should come from a well-defined
terminology system.

The following denotes a subset of potential languages.
e English
e French
e German
« [talian
e Spanish

2-24 Clinical Observations Access Service, v1.0 April 2001

Nolnformation

Nolnformation
c1<<Required>> reason : QudiiedCode

Figure 2-20 Nolnformation

There are instances when it is appropriate to denote that information is unavailable or
missing. ANolnformation value can occur in place of any other value to express both
that specific information is missing and how or why it is missfg.

Reason:QualifiedCode

The reason attribute is used to denote why the information is missing or unavailable.
This attribute is &ualifiedCode and should come from a well-defined terminology
system.

The following represents a potential set of reasons:

Meaning Description

Unknown No information at all (i.e., nothing more is known about
the circumstances of missing information).

Asked but unknown| The person asked could not supply the information (why?)

Not available The person asked does have the information somewhere
but not available right now (e.g., | wrote down what th
doctor said last time, but | didn’t bring this piece of paper

11}

with me).

Not applicable An answer to “gestational age” for a patient who is not
pregnant.

Not asked The person who should collect that information forgot to
ask.

12. HL7 Version 3 Data Type Redesign Projeitp://aurora.rg.iupui.edu/v3dt/

COAS,v1.0 Clinical Observations Model April 2001 2-25

2.4 Examples

2-26

Observed
Subject

Observed

Subject

Report Pathology hisathiRecore
Repott — Entry .

Summary Discharge HealthRecord
Summary | [Entry T

l’\\llurse HealthRecord
otes Note - Entry —

Referral

HealthRecord

B
&
|

Letter Entry

’_Ij

Medication
List —

HealthRecord

.
)
=

Entry

Laboratory

Results LabUrine HealthRecord
Battery - Entry
etc etc. etc

Figure 2-21 Example Health Records

This is a Collaboration Diagram for an example of the health records of an observed
subject.

This diagram represents an example of how one might put together a representation of
medical information. This diagramming technique is known as a collaboration diagram
and is used to represent interactions. It provides a view of the interactions or structural
relationships that occur between objects and object-like entities in the current model.
In this case a®bservedSubject is considered a Person (patient) that has many links

to specific types of medical information categories. For example; reports, nurse notes,
and Laboratory Results. These categories themselves have links to specific instances of
that type of medical information. These specific instances of medical information have
links to specific information that gives meaning about that particular instance of
medical information.

Clinical Observations Access Service, v1.0 April 2001

2

So, following one set of links, we see that a Person (patient) has Laboratory Results,
which contains instances of LabUrineBatterys where each LabUrineBattery has a link

to a HealthRecordEntry.

Also, theObservedSubject (Person / patient) has links to anotla#rservedSubject |,
such as their parent, child, or spouse.

2.4.1 ObservedSubject - Model

0..*
+referenced by
Obs ervedSubjed] ObservedSubjectReference
«<<Required>> observedSubjectType : QualiiedCode] &<<Required>> observedSubjectReferenceType : QualifiedGode
0.*
1> +references
+qualifed by
1.* 0..*
0.* +oualifed by % +qualifes
+qualifies . :
ObservedSubjectQualifier
&<<Required>> obsenedSubectQualiferType : Qealfode
1.*
+references
ObservationValue

1.1
+referenced by

Figure 2-22 ObservedSubject - Model

As mentioned earlier, we have sgfservedSubject outside the scope of this
specification and therefore we only include this model as an informational reference.
Please notice the similarities with the Clinical Observations Model. The
ObservedSubject could merely be placed on top of the Clinical Observations Model.
In essence a®bservedSubject is aCompositeObservation

We focused on the patient when developing this specification but were aware of other
ObservedSubject s and modeled accordingly so as not to dismiss the notion of
ObservedSubject s other than a patient.

The following denotes potentia@bservedSubject s:
« Patient
¢ Family Unit
e Population Cohort
e Organ

COAS,v1.0 Examples April 2001 2-27

2.4.2 ObservedSubject - Example

ObservedSubject: CompositeObservation
observationType = Person

\
~_
\
Demographics:CompositeObservation

observation Type = Demograp hics

Insurance Comp ositeObservati on
observationType = Insurance

LaboratoryResults:CompositeObservations
observationType = Laboratory Results

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

HealthRecordEntry: CompositeObservation

observationType = HedthRecord Entry
observation Time = 19990104 0800

Figure 2-23 ObservedSubject - Example

This is an Object Diagram for one possible representation obagrvedSubject in a
healthcare information environment

ObservedSubject:CompositeObservation

Ob served Subject Comp osit eOb servation
observationType = Person

Figure 2-24 ObservedSubject:CompositeObservation

This instance of a®bservedSubject is typed as a Person (patient) and has a
CompositeObservation link of type Insurance, @ompositeObservation link of type
Demographic, and @ompositeObservation link of type LaboratoryResult . This
diagram is not meant to be normative but rather to show an example of what an
ObservedSubject of typePerson (patient) may have associated with it.

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
ObservedSubject . For example, Person, Organ, or Epiden

C.

2-28 Clinical Observations Access Service, v1.0 April 2001

Insurance:CompositeObservation

Insurance:C ompo sit eObservation
observationType = Insurance

Figure 2-25 Insurance:CompositeObservation

A Person (patient) in a healthcare information environment usually has a link to some
insurance information. This diagram does not fully exploit what a
CompositeObservation of type Insurance has as AsomicObservations or other
CompositeObservations . It is merely shown as a possible scenario.

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
CompositeObservation . In this casénsurance .

Demographics:CompositeObservation

Demographics:CompositeObservation
observationType = Demog raphics

Figure 2-26 Demographics:CompositeObservation

A Person (patient) in a healthcare information environment usually has a link to some
demographic information. This diagram does not fully exploit what a
CompositeObservation of type Demographic has as AsgmicObservation s or other
CompositeObservation s. It is merely shown as a possible scenario.

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
CompositeObservation . In this case Demographics.

LaboratoryResults:CompositeObservation

LaboratoryResults:CompositeObservations
observation Type = LaboratoryResults

Figure 2-27 LaboratoryResults:CompositeObservation

COAS,v1.0 Examples April 2001 2-29

A Person (patient) in a healthcare information environment usually has a link to some
LaboratoryResults information. In this example theboratoryResults has a link to a
CompositeObservation of type LabUrineBattery .

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
CompositeObservation . In this case.aboratoryResults .

LabUrineBattery:CompositeObservation

LabUrineBattery:CompositeObservation

observationType = LOINCUrineB attery
observationTime = 199812190700

Figure 2-28 LabUrineBattery:CompositeObservation

LaboratoryResults have links to Laboratory Tests. In this casealaUrineBattery has
been depicted.

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
CompositeObservation . In this case.ONICUrineBattery .

observationTime: TimeSpan

Description: Denotes the time when th&bUrineBattery became a
characteristic of the observed subject. In this case 1998
December 19 at 07:00 am.

HealthRecordEntry:CompositeObservation

HealthRecordEntry: CompositeObservation

obsewationType = HealthR ecordEntry
obsewvationTime = 199901040800

Figure 2-29 HealthRecordEntry:CompositeObservation

A HealthRecordEntry may be linked to a Laboratory Test. See the
“HealthRecordEntry - Example” on page 2-44 for a further description.

2-30 Clinical Observations Access Service, v1.0 April 2001

observationType:QualifiedCode

Description:

This is @ualifiedCode that provides the type of the
CompositeObservation . In this caseHealthRecordEntry .

observationTime: TimeSpan

Description:

Denotes the time when tHealthRecordEntry became a
characteristic of theabUrineBattery . In this case 1999
January 1, at 08:00 am.

2.4.3 LabUrineBattery - Example

ResultStatus: Cod edElement
value = Final

ResultStatus: AtomicObservation

observation Type = ResultStatus

Diagnosti cService: CodedElem ent
value = Urinalysis

Diagno sti cService: Ato micOb servation
observation Type = DiagnosticService

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

Figure 2-30 LabUrineBattery - Example

This is an Object Diagram for what might be a way to represent a

CompositeObservation
provides a set of universal names and ID codes for identifying laboratory and clinical

observations.

of type LONICLabUrineBattery . The LONIQ] 13 database

LabUrineBattery:CompositeObservation

LabUrineBattery:CompositeObservation

observationType = LOINCUrineB attery
observationTime = 199812190700

Figure 2-31 LabUrineBattery:CompositeObservation

13.http://www.mcis.duke.edu/standards/HL7/termcode/loinc.htm

COAS,v1.0 Examples April 2001

A Laboratory Test, in this caseLabUrineBattery , has been depicted. This example
shows twoAtomicObservations being linked to théabUrineBattery , a ResultStatus
and aDiagnosticService .

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
CompositeObservation . In this case.ONICUrineBattery .

observationTime: TimeSpan

Description: Denotes the time when thebUrineBattery became a
characteristic of the observed subject. In this case 1998
December 19, at 07:00am.

ResultStatus: AtomicObservation

ResultStatus: AtomicObservation
observationType = ResultStatus

Figure 2-32 ResultStatus:AtomicObservation

LaboratoryResults usually have an indicator to identify the status of the result.

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseResultStatus .

ResultStatus:CodedElement

ResultStatus:CodedElement
value = Final

Figure 2-33 ResultStatus:CodedElement

ResultStatus is anAtomicObservation and therefore has abbservationvalue linked
to it. In this case it is &odedElement and should come from a well defined
terminology system.

value:QualifiedCode

Description: The value for @odedElement is of typeQualifiedCode and
in this case has been identified as Final.

2-32 Clinical Observations Access Service, v1.0 April 2001

DiagnosticService:AtomicObservation

DiagnosticService:AtomicObservation
observationType = DiagnosticService

Figure 2-34 DiagnosticService:AtomicObservation

LaboratoryResults may have an indicator of the diagnostic service that performed the
laboratory test.

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseDiagnosticService .

DiagnosticService:CodedElement

DiagnosticService:CodedElement
value = Urinalysis

Figure 2-35 DiagnosticService:CodedElement

DiagnosticService is anAtomicObservation and therefore has abbservationvalue
linked to it. In this case it is @odedElement and should come from a well defined
terminology system.

value:QualifiedCode

Description: The value for @odedElement is of typeQualifiedCode and
in this case has been identified as Urinalysis.

COAS,v1.0 Examples April 2001 2-33

2.4.4 LabUrineBattery - LabSegments

ResultStatus:CodedElement DiagnosticService:CodedElement
gvalue = Final gavalue = Urinalysis
ResultStatus: AtomicObservation DiagnosticService:AtomicObservation
gpobservationType = ResultStatus gzobservationType = DiagnosticService

LabUrineBattery: CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

T~

LabSegment#1:CompositeObservation LabSegement#2:CompositeObservation LabSegment#3:CompositeObservation
observationType = LOINCUrineSodium observationType = LOINCUrineColor obsenationType = LOINC UrineColor

Figure 2-36 LabUrineBattery - LabSegments

This is an Object Diagram showing an extension to the previous
LONICLabUrineBattery example with the addition of three specific test results.

LabSegment#1:CompositeObservation

LabSegment#1:CompositeObservation
observationType = LOINCUrineSodium

Figure 2-37 LabSegment#1:CompositeObservation

A CompositeObservation of type LOINCUrineSodium .

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
CompositeObservation . In this case. OINCUrineSodium .

LabSegment#2:CompositeObservation

LabSegement#2:CompositeObservation
observationType = LOINCUrineColor

Figure 2-38 LabSegment#2:CompositeObservation

2-34 Clinical Observations Access Service, v1.0 April 2001

A CompositeObservation of type LOINCUrineColor .

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
CompositeObservation . In this case. OINCUrineSodium .

LabSegment#3:CompositeObservation

LabSegment#3:CompositeObservation
observationType = LOINCUrineColor

Figure 2-39 LabSegment#3:CompositeObservation

A CompositeObservation of type LOINCUrineColor .

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
CompositeObservation . In this case OINCUrineSodium .

COAS,v1.0 Examples April 2001 2-35

2.4.5 LabUrineBattery - LabSegment#1 - LONICUrineSodium

ResultStatus: CodedElement] DiagnosticSewice:CodedElement
& value =Find 7] value = Urinalysis
ResultStatus: AtomicObsenvation DiagnosticSevice:AtomcObservation|
O observationType = ResultStatus] observationType = DiagnosticService

LabUrineBattery: ConpositeObservation

observationType = LOINCUiineBattery
observationTime = 199812190700

LabSegment#1:ConpositeObservatiol
observationType = LOINCUiineSodium

NurmericMeasurement: AtorricObsewvation RangeMeasurenrent: AtomicObservation) AbnormelFlag: AomicObservation
4 observaionType = Measurment 4 ObservaionType=Range observationType = AbnomelFlag

{600 < Nuner|cMeasurement.value <100}

NunrericMeasurement:Nunrerig RangeMeasurnment:Range
value =423 & upper =600 AbnormelFlag: CodedElement|
units =nmol/L lower =100
¢) units =rmolL & value =Nomal

Figure 2-40 LabUrineBattery - LabSegment#1 - LOINCUrineSodium

This is an Object Diagram that shows an extension of the detail in one of the lab test
results, namely theONICLabUrineSodium

NumericMeasurement:AtomicObservation

NumericM easurement: AtomicObsewn aion
gpobsenationType = Measurment

Figure 2-41 NumericMeasurement:AtomicObservation

LOINCUrineSodium has aNumericMeasuremen t linked to it.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseMeasurement .

2-36 Clinical Observations Access Service, v1.0 April 2001

NumericMeasurement:Numeric

NumericMeasurement:Numeric

svalue = 423
gaunits = mmol/L

Figure 2-42 NumericMeasurement:Numeric

NumericMeasurement is anAtomicObservation and therefore has an
ObservationValue linked to it. In this case it is a numeric value.

value:NumericValue

Description: The value in this instance is 423.

units:QualifiedCode

Description: The units in this instance are mmol/L.

RangeMeasurement:AtomicObservation

RangeMeasurement: AtomicObservation
g0bservationType = Range

Figure 2-43 RangeMeasurement:AtomicObservation

LOINCUrineSodium has aRangeMeasurement linked to it.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseRange.

RangeMeasurement:Range

RangeMeasurment:Range
ssupper = 600
slower = 100
éunits = mmol/L

Figure 2-44 RangeMeasurement:Range

RangeMeasurement iS anAtomicObservation and therefore has abbservationvalue
linked to it. In this case it is a range.

COAS,v1.0 Examples April 2001 2-37

upper:NumericValue

Description: The upper value of the range is 600.

lower:NumericValue

Description: The lower value of the range is 100.

units:QualifiedCode

Description: The units in this instance are mmol/L.

AbnormalFlag:AtomicObservation

AbnormalFlag:AtomicObservation
obsewaionT ype = AbnomalFlag

Figure 2-45 AbnormalFlag:AtomicObservation

LOINCUrineSodium has amdbnormalFlag linked to it.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this casedbnormalFlag .

AbnormalFlag:CodedElement

AbnomalFlag:C oded Element
gvalue = Nomal

Figure 2-46 AbnormalFlag:CodedElement

AbnormalFlag is anAtomicObservation and therefore has abbservationValue
linked to it. In this case it is @odedElement and should come from a well defined
terminology system.

value:QualifiedCode

Description: The value for @odedElement is of typeQualifiedCode and
in this case has been identified as Normal.

2-38 Clinical Observations Access Service, v1.0 April 2001

2.4.6 LabUrineBattery - LabSegment#2 - LONICUrineColor

ResultStatus:CodedElement DiagnosticService:CodedElement
gvalue = Final gzvalue = Urinalysis

ResultStatus: AomicObsewvation DiagnosticService:AtomicObservation
gzobservationType = ResultStatus gzobservationType = DiagnosticService

LabUrineBattery:CompositeObservation
observationType = LOINCUrineBattery
observationTime = 199812190700

LabSegment#2:CompositeObservation
gzobservationType = LOINCUrineColor

S ARITIEC SHE AN AbnormalFlag:AtomicObservation

gobservationType = AbnormalFlag

{LabSegment#2CodedElement.value <> 'Clear' OR
LabSegment#2CodedElement.value <> 'Pale Yellow'}

Color:CodedElement AbnormalFlag:CodedElement
zvalue = Brown czvalue = Abnormal

‘QobservationType = Color

Figure 2-47 LabUrineBattery - LabSegment#2 - LOINCUrineColor

This is an Object Diagram for our example LabUrineBattery - LabSegment -
LOINCUrineColor.

Color:AtomicObservation

Color.AtomicObservation
gpobservationType = Color

Figure 2-48 Color:AtomicObservation

LOINCUrineSodium has a Color linked to it.

COAS,v1.0 Examples April 2001 2-39

2-40

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseColor.

Color:CodedElement

Coor:CodedElement
gvalue = Brown

Figure 2-49 Color:CodedElement

Color is anAtomicObservation and therefore has abbservationvalue linked to it. In
this case it is &odedElement and should come from a well defined terminology
system.

value:QualifiedCode

Description: The value for @odedElement is of typeQualifiedCode and
in this case has been identified as Brown.

AbnormalFlag:AtomicObservation

AbnormalFlag:AtomicObservation
gyobservationType = AbnormalFlag

Figure 2-50 AbnormalFlag:AtomicObservation

LOINCUrineSodium has aabnormalFlag linked to it.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this casedbnormalFlag .

AbnormalFlag:CodedElement

AbnomalFlag:C oded Element
gvalue = Abnormal

Figure 2-51 AbnormalFlag:CodedElement
AbnormalFlag is anAtomicObservation and therefore has abbservationValue

linked to it. In this case it is @odedElement and should come from a well defined
terminology system.

Clinical Observations Access Service, v1.0 April 2001

value:QualifiedCode

Description:

The value for @odedElement is of typeQualifiedCode and
in this case has been identified as Abnormal.

2.4.7 LabUrineBattery - LabSegment#3 - LOINCUrineColor

ResultStatus:CodedElement

gvalue = Final

Diagno sti cService: Cod edE lement

gvalue = Urinalysis

ResultStatus:AtomicObservation

DiagnosticService:AtomicObservation

g0bservationType = ResultStatus

gpobservationType = DiagnosticService

LabUrineBattery:CompositeObservation

observationType = LOINCUrineBattery
observationTime = 199812190700

LabSegm ent#3:CompositeCb servation

g0bservationType = LOINCUrineColor

Color:AtomicObservation

gzobservationType = Color

Color.CodedElement

gavalue = Bloody

AbnormalFlag:AtomicObservation
caobservationType = Abnomal Flag

{LabSegment#3CodedElement.value <> 'Clear’ OR
LabSegment#3CodedElement.value <> 'Pale Yellow'}

AbnormalFlag:CodedElement
gvalue = Abnormal

Figure 2-52 LabUrineBattery - LabSegment#3 - LOINCUrineColor

This is an Object Diagram for our example LabUrineBattery - LabSegment -

LOINCUrineColor.

COAS,v1.0 Examples April 2001 2-41

Color:AtomicObservation

Color.AtomicObservation
gpobservationType = Color

Figure 2-53 Color:AtomicObservation

LOINCUrineSodium has a Color linked to it.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseColor.

Color:CodedElement

Coor:CodedElement
gvalue = Bloody

Figure 2-54 Color:CodedElement

Color is anAtomicObservation and therefore has abbservationvalue linked to it. In
this case it is &odedElement and should come from a well defined terminology
system.

value:QualifiedCode

Description: The value for @odedElement is of typeQualifiedCode and
in this case has been identified as Bloody.

AbnormalFlag:AtomicObservation

AbnormalFlag:AtomicObservation
gpobservationType = AbnormalFlag

Figure 2-55 AbnormalFlag:AtomicObservation

LOINCUrineSodium has aabnormalFlag linked to it.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this casedbnormalFlag .

2-42 Clinical Observations Access Service, v1.0 April 2001

AbnormalFlag:CodedElement

AbnomalFlag:C oded Element
gvalue = Abnormal

Figure 2-56 AbnormalFlag:CodedElement

AbnormalFlag is anAtomicObservation and therefore has abbservationvalue
linked to it. In this case it is @odedElement and should come from a well defined
terminology system.

value:QualifiedCode

Description: The value for @odedElement is of typeQualifiedCode and
in this case has been identified as Abnormal.

2.4.8 HealthRecordEntry - Model

0.*
+references
HealthRecordEntry] HealthRecord Entry Reference
&<<Required>> healthRecordEntryType : QualiiedCode Zi<<Required>> healthRecordEntryReferenceType : QualifedCode
0.*
1 +referenced by
+qualified by
1> 0.*
o+ +qualified by +qualifies
+qualifies HealthRecordEntryQualifier
@<<Required>> healthRecordEntryQualifierType : QualifedCode
1.*
+references
ObservationValue
1.1
+referenced by

Figure 2-57 HealthRecordEntry - Possible Model

As mentioned early in this chapter, we haversstithRecordEntry outside the scope

of this specification and therefore we only include this example as an informational
reference. Please notice the similarities with the Clinical Observations Model. The
HealthRecordEntry could merely be placed on top of the Clinical Observations Model.
In essence #ealthRecordEntry is aCompositeObservation

COAS,v1.0 Examples April 2001 2-43

2.4.9 HealthRecordEntry - Example

AuthorizingClinician: AtomicObservation ——|

AuthorizingClinician: QualiiedPersonlid

observationType = AuthorizingClinician

localName = Dr. Authenticator

Auditor: AtomicObservation

Audtor:QudifedPesonld

observationType = Auditor

localName = Tom Audit

EncounterNumber:AtomicObservation

EncounteNumber.String

obsevaionType = EncounterNumber

value = 123456789

HealthRecordEntryld: AtomicObservation—

HealthRecordEntryld: QualiiedNameStrin

y

obsevaionType = HedthRecordEntryld

HealthRecordEntry: CompositeObservation

localName = OurHealthRecordId123

observation Type = HedthRecordEntry
observation Time = 199901040800

OriginatingSource:Atomi cObservetio

OriginatingSource:CodedElemen

observationType = OriginatingSource

value = Clinic#l

Originator: AtomicObservation

Originator: Qudified Personld

observationType = Originator

localName = Dr. First

Reason:AtomicObservation

Reason:CodedEHement

observationType = Reason

value = Urinary Tract Infection

Status:AtomicObservatio

Status:CodedElement

observationType = Status

value = Completed

Figure 2-58 HealthRecordEntry - Example

This is an example Object Diagram for a possalthRecordEntry .

HealthRecordEntry:CompositeObservation

HealthRecordEntry: CompositeObservation

obsewationType = HealthR ecordEntry
obsewvationTime = 199901040800

Figure 2-59 HealthRecordEntry:CompositeObservation

A HealthRecordEntry can be used to provide transactional information that is
associated with an Observation.

2-44 Clinical Observations Access Service, v1.0 April 2001

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
CompositeObservation . In this caseHealthRecordEntry .

observationTime: TimeSpan

Description: Denotes the time when tHealthRecordEntry became a
characteristic of the subject of care. In this case 1999 January
1, at 08:00 am.

AuthoringClinician:AtomicObservation

Authori zin gClinici an :Ato mi cOb servation
observationType = AuthorizingClinician

Figure 2-60 AuthoringClinician:AtomicObservation

The AuthoringClinician can be used to identify the responsible individual.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseuthoringClinician

AuthoringClinician:QualifiedPersonid

AuthorizingC linician: QualifedPersonld
localName = Dr. Authenticator

Figure 2-61 AuthoringClinician:QualifiedPersonlid

AuthoringClinician is anAtomicObservation and therefore has abbservationvalue
linked to it. In this case it is QualifiedPersonid and should come from some
Enterprise Master Patient Index. There are other attributes associated with a
QualifiedPersonlid other tharlocalName but not included in this example for brevity.
Further information can be attained from the CORBAmée®erson Identification
Servicé? (PIDS).

localName:String

Description: TheocalName is of typeString and in this case has been
identified as Dr. Authenticator.

COAS,v1.0 Examples April 2001 2-45

Auditor:AtomicObservation

Auditor:AtomicObservation
observationType = Auditor

Figure 2-62 Auditor:AtomicObservation

The Auditor can be used to identify the individual from the medical records
department that was responsible for finalizing this information.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseiuditor .

Auditor:QualifiedPersonld

Auditor:QualifedPersonid
localName = Tom Audit

Figure 2-63 AuthoringClinician:QualifiedPersonlid

AuthoringClinician is anAtomicObservation and therefore has abbservationvalue
linked to it. In this case it is QualifiedPersonid and should come from some
Enterprise Master Patient Index.

localName:String

Description: TheocalName is of typeString and in this case has been
identified as Tom Audit.

EncounterNumber:AtomicObservation

EncountefNumber. Ato micObservation
observationType = EncounterNumber

Figure 2-64 EncounterNumber:AtomicObservation

14. CORBAmed Person ldentification Services, March 1998. OMG CORBAmed Document
98-02-29 http://www.omg.org/docs/corbamed/98-02-29.rtf

2-46 Clinical Observations Access Service, v1.0 April 2001

2

TheEncounterNumber can be used as some unique system identifier for this particular
instance of information.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseEncounterNumber .

EncounterNumber:String

EncounterNumber: String
value = 123456789

Figure 2-65 EncounterNumber:String

EncounterNumber is anAtomicObservation and therefore has abbservationValue
linked to it. In this case it is @tring .

value:String

Description: The value is of typ&tring and in this case has been
identified as 123456789.

HealthRecordEntryld:AtomicObservation

HealthRecordEntryld: AtomicObservation
observationType = HealthRecordEntryd

Figure 2-66 HelathRecordEntryld:AtomicObservation

The HealthRecordEntryld can be used as some unique system identifier for the
HealthRecordEntry itself.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseHealthRecordEntryld .

HealthRecordEntryld:String

HealthRecordEntryld:QualiiedNameString
localName = OurHealthRecordld123

Figure 2-67 HealthRecordEntryld:String

COAS, v1.0 Examples April 2001 2-47

HealthRecordEntryld is anAtomicObservation and therefore has an
ObservationValue linked to it. In this case it is QualifiedNameString . There are
other attributes associated withQaalifiedNameString other tharocalName but not
included in this example for brevitQualifiedNameString is identified in the
CORBAmedl LQS.

localName:String

Description: The value is of typ&tring and in this case has been
identified as OurHealthRecordld123.

OriginatingSource:AtomicObservation

OriginatingSource:AtomicObservation
observationType = OriginatingSource

Figure 2-68 OriginatingSource:AtomicObservation

The OriginatingSource can be used to identify where this information originated from.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseOriginatingSource .

OriginatingSource:CodedElement

Originating Source:CodedElement
value = Clinic#1

Figure 2-69 OriginatingSource:CodedElement

OriginatingSource is anAtomicObservation and therefore has abbservationvValue
linked to it. In this case it is @odedElement .

value:QualifiedCode

Description: The value for @odedElement is of typeQualifiedCode and
in this case has been identified as Clinic#1.

Originator:AtomicObservation

Originator: AtomicObservation
observationTy pe = Originator

Figure 2-70 Originator:AtomicObservation

2-48 Clinical Observations Access Service, v1.0 April 2001

2

The Originator can be used to identify who was the originator of this information.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseriginator .

Originator:QualifiedPersonid

Originator:QualifiedPersonld
localName = Dr. First

Figure 2-71 Originator:QualifiedPersonld

Originator is amAtomicObservation and therefore has abbservationvalue linked to
it. In this case it is QualifiedPersonid and should come from some Enterprise Master
Patient Index.

localName:String

Description: TheocalName is of typeString and in this case has been
identified as Dr. First.

Reason:AtomicObservation

Reason:AtomicObservation
observationType = Reason

Figure 2-72 Reason:AtomicObservation

The Reason can be used to identify why this was necessary.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseReason.

Reason:CodedElement

Reason: CodedElement
value = Urinary Tract Infection

Figure 2-73 Reason:CodedElement

COAS,v1.0 Examples April 2001 2-49

Reason is amtomicObservation and therefore has abbservationValue linked to it.
In this case it is &odedElement .

value:QualifiedCode

Description: The value for @odedElement is of typeQualifiedCode and
in this case has been identified as Urinary Tract Infection.

Status:AtomicObservation

Status:AtomicObservation
observationType = Status

Figure 2-74 Status:AtomicObservation

The Status can be used to indicate the state of the information.

observationType: QualifiedCode

Description: This is @ualifiedCode that provides the type of the
AtomicObservation . In this caseStatus .

Status:CodedElement

Status:CodedElement
value = Completed

Figure 2-75 Status:CodedElement

Status is amtomicObservation and therefore has abbservationVvalue linked to it. In
this case it is &odedElement .

value:QualifiedCode

Description: The value for @odedElement is of typeQualifiedCode and
in this case has been identified as Completed.

2-50 Clinical Observations Access Service, v1.0 April 2001

DSObservationAccess Service 3

Contents

This chapter contains the following topics.

Topic Page
“Overview” 3-1
“Viewpoints” 3-2
“Data Type Definitions” 3-15
“Interface Specifications” 3-30
“Query-Oriented Interface Specifications” 3-42
“Event and Notification Interface Specifications” 3-53
“Utility Interface Specifications” 3-59

3.1 Overview

The DsObservationAccess service has many interfaces and definitions, and can be
viewed from several perspectives. Several viewpoints are first shown by UML
diagrams. Each viewpoint is chosen to describe one aspect of the entire service and its
types. These initial viewpoints are not complete descriptions, showing only relevant
information for a viewpoint while hiding irrelevant information.

After the viewpoints, all IDL types and interfaces are described in detail.

Clinical Observations Access Service, v1.0 April 2001 3-1

3.2 Viewpoints

This section provides an overview of theObservationAccess service. The service is
presented from several viewpoints which may include overlapping information. The
viewpoints are not meant to be orthogonal.

3.2.1 Navigable Relationships Viewpoint

Query Access J AccessComponent Observ ationLoader
- — - >\\
/// \\\\\\\
/// I
// \\\\\
BrowseAccess | SupplierAccess ConsumerAccess AsynchAccess
EventSupplier EventConsumer Asy nchCaIIback

ConstraintLanguageAccess

AbstractFactory

Observ edSubject AbstractManagedObject

/ \ Observ ationRemotelterator

\
/ \

AtomicObserv ationRemote ObservationRe mote Observ ationDatalterator

CompositeObservationRemote QualifiedCodelterator

Figure 3-1 Direct navigation between interfaces.

All interfaces defined in thesObservationAccess module are shown on the diagram
above. Iterators and abstract interfaces do not have direct navigation. Attributes and
operations are hidden in this diagram in order to focus in on the navigable
relationships.

Only direct navigation is shown. Some of the query interfaces have indirect
mechanisms to traverse to other interfaces as well. For example, a browse operation
could return references to @bservedSubject or ObservationRemote

The starting point in th®sObservationAccess service is theAccessComponent

interface. From there a client can traverse to the other core interfaces on the
component. This traversal capability is one of the basis for the componentization (See
Section 3.2.3, “Componentization Viewpoint,” on page 3-4).

Clinical Observations Access Service, v1.0 April 2001

3.2.2 Interface Inheritance Viewpoint

AccessComponent

Query Access

BrowseAccess

AsynchAccess

AvstractFactoy 4

CosNotify Comm: :Not ify Publish = CosNotify Comm:: StructuredPushConsumer

| CosNotify Comm:: StructuredPushSupplier

CosNotif yComm:: Notif y Subscribe

AbstractManagedObject

ObservationRenote

CompositeObservationRemote || Atamic Observ ationRemote

Figure 3-2

ConsumerAccess

| SupplierAccess

AsynchCallback

EventConsumer

| EventSupplier

—— ObservedSubject

QudifiedCodelterator

ObservationD at alterat or

Observ ationR emotelterator

Inheritance relationship between the varisObservationAccess

interfaces.

This diagram shows the inheritance relationship betweemgb@servationAccess

service interfaces. The attributes and operations are hidden in this diagram to focus in

on the inheritance relationships.

AccessComponent

is the superclass for componentization (See Section 3.2.3,

“Componentization Viewpoint,” on page 3-4).

COAS, v1.0

Viewpoints

April 2001 3-3

3-4

The four interfaces from th@osEvent module are part of the OMG Event Service.
The Event Service is not required for theObservationAccess

event system,
although its use is facilitated by the use of some common interfaces.
The AbstractManagedObject

interface contains a single operatiaone(), which
allows a client to indicate when it is done with an object. All subclasses of
AbstractManagedObject

are instantiated or activated according to client requests, with
their lifetime under server control. A well-behaved client will signal when it is done

with such a remote object, and a savvy server will keep some timer for cleanup after
ill-behaved clients or traumatic client termination.

The ObservationRemote object can have subtypes that are either composite or atomic
observations. See Section 3.2.5, “Local/Remote Observations Viewpoint,” on page 3-6
for more details.

3.2.3 Componentization Viewpoint

—__+Query_access

|\

| \

Hbronse access
|\
|

QueryAccess

BronseAccess
+asynch_access
o \
||\
|

AsynchAccess
‘\‘ \ Hevent_supgier
0 \
|

\ SupplierAccess
“‘ \ tevert_consumer
|

\ \ ConsumerAccess
\ \

“ +constraint_acc
‘ \
x y
|

ConstraintLanguageAccess
|

£SS

Figure 3-3 Simplified view ofObservationAccess::AccessComponent
subclasses.

and its

Clinical Observations Access Service, v1.0 April 2001

3

The base interfacaccessComponent includes a means for dynamic discovery of all
implemented components. Servers need implement only components which fit their
purpose, according to conformance level.

The components each inherit from thecessComponent , which in turn has
references to other components, so a client of one component can navigate from one to
another easily.

3.2.4 Full Component Viewpoint

AccesCompanent
g00as verdon : gting
&Pid_senice : IdentificationComponent
gterminology_senice : TerminologySenice
itrader_senice : TraderComponents
gnaming_senvice : NamingContext

+event_aonsumer

+observation loader
ObservationLoader

ConsumerAccess

1 Screate_consumex()
Sget_consumer by id)

.

Fget_components()
Vget supported_codes)
Pget_supported_qualifiers))

®l0ad_obenations))

“+Query_access i
| [®get_ supported polides)) revent_s.ppiier
QueyAces /@ Bget_default policies) N SuppieAces
Pget_type code for obsenvation type()
®oount_obsenations) Sare_iterators supported() Hoeate wppli
L observ . > supplier(
:get_onNatlor() Siget_curent time() Sget_supplier by id)
et observations() 0 Q = —
D et observations by time() Y <E
Peet_observations by qualifier) / \ OASE_ames
®oet_observations with_pdicy() +agnch access
% BronseAccess
AsnchAccess

Fget_observed sibject()

Fget_observed sibjects))
$get_observed sibject for obsarvation id)
Fget_observed sibjects for_obenation idg)
Soount_obsevations)

Woount_obenvations))
Vget_observation()
@get_obsenvations)

Pget_obsenvations by time()
Pget_obsenvations by qualifier()
Pget_obsenvations with_policy()
$ancel_get)

%get_observation()
Yget_observations)
%get_observations by time()

Yget_observations by qualifier)
%get_observations with policy()

+congrai nt_aa:esgl ’

CongraintLanguageAccess
&supported_languages: CongraintlanguageSeq

®get by congraint()

Figure 3-4 Full view of attributes and operations fAccessComponent and its subclasses.

The diagram above shows the components available AwxessComponent , and
their attributes and operations. Several of the components share operations with similar
names like §et_observation() " with similar semantics.

COAS,v1.0 Viewpoints April 2001 3-5

3-6

3.2.5 Local/Remote Observations Viewpoint

<<Sequence>> «l' nterface>> <<Interface>> <<Seguence>>
ObservationRemoteSeq ObservationRemotelterator Observ ationDatal terator ObservaionDataSeq
\
0.* 0.*
<<Interface>> <<Ty pedef>>
ObservationRenote ObservationData
/ \ 0.1

¢

<<Interface>>
CompositeObserv ationRemote

<<Interface>>
AtomicObserv ationRemote

0.1
\ /

<<Typedef>>

ObservationValue

Figure 3-5 Showing a comparison between observations accessed by reference (remote) and
observations accessed by value (local).

The DsObservationAccess service can support both reference and value access to
observations. This viewpoint shows a comparison between observations returned by
value QbservationData) and those returned by referen@bgervationRemote). In

both the local and remote flavors, only an “atomic” observation has an actual value,
while a “composite” observation is a collection of other observations.

The division of observations into composite or atomic observations is accomplished
differently for local access vs. remote access. The abstract interface
ObservationRemote has concrete subclasses, saOaservationRemote is either

atomic or composite, with no possible ambiguityOlfservationData was defined

using Object-By-Value (OBV), then the same subclassing mechanism would be used to
separate atomic from composite observations. However, because structs cannot be
subclassed in IDL, a struct based definition has the potential for ambiguity to exist
between atomic and composite observations. Although the potential for ambiguity
exists, there is a semantic requirement that @ddervationData be either atomic

(have a value) or composite (have a non-zero aggregation of other observations), but
not both at the same time.

See Section 3.2.7, “Remote Observations Viewpoint,” on page 3-8 for more detailed
information about remote (by reference) observations.

Clinical Observations Access Service, v1.0 April 2001

3

See Section 3.2.6, “Local Observations Viewpoint,” on page 3-7 for more detailed
information about local (by value) observations.

3.2.6 Local Observations Viewpoint

<<Sequence>>
ObservationDataStructSeq

0..*

ObservationData Struct
<zcode : QualifiedCodeStr
Lzcomposite : sequence<ObservationDataStruct>
<qualifiers : sequence<ObservationDataS truct>
<value : sequence<any,l>

B

<<Typedef>>
ObservationValue

Figure 3-6 Detail UML for ObservationDataStruct

ObservationDataStruct is the struct for passing “local” observations between client
and server by value withi@bservationDataStruct , defined as & ORBA::any . Since
DsObservationAccess does not use Objects-by-Value (OBV), and structs have no
polymorphism, the struct used for observations must encapsulate both composite
observations and atomic observations. A composite observation will have a non-zero
amount of items in theomposite attribute, and zero items in thelue attribute.
Conversely, an atomic local observation will have zero items ircdim@osite

attribute, and a single item in tivelue attribute.

Qualifiers modify all of the data “beneath” them in a hierarchy. For example, a
modifier of “Normalcy=abnormal” found in a composite observation would apply to all
the items in the composite. However, qualifiers found lower in a tree of data can
override modifiers found higher up in the tree, so a leaf observation could have a
modifier “Normalcy=normal” which applied to just that leaf, despite any qualifier
higher-up in the tree.

See Section 3.3.6, “ObservationData,” on page 3-20 for the more details.

COAS,v1.0 Viewpoints April 2001 3-7

3.2.7 Remote Observations Viewpoint

<<Interface>>
ObservationRemote

gobservation_code : QualifiedCode

%®get_observation_time()
%®get observed_subject()
®get_root_observation()
®get _path_from root()
®get_all_qualifiers()
®get_qualifiers()
®is_this_root()
®is_this_atomic()

7

<<Interface>> <<Interface>>
CompositeObservationRemote AtomicObservationRemote

%count_obsevations() %get_observation_data()
%get_observations_by_time() %get_observation_data_with_policy()
%get_observations_by_qualifier() 0.1
%get_observations_with_policy() v
%get_leaf_observations()
%get_leaf_observations_by_time()
%get_leaf_observations_by_qualifier() +observation_value
%get_leaf_observations_with_policy()
%get_leaf_observations_by_value_type() <<Typedef>>
%get_relations_toward_root() ObservationValue

%get_relations_away_from_root()

Figure 3-7 The operations and attributes fObservationRemote and its subclasses.

ObservationRemote encapsulates remote references for observations. A remote
observation is either a composite observation or an atomic observation. A composite
observation aggregates a set of observations, like a set of lab values, each of which is
an atomic observation, with a single data value.

See Section 3.2.10, “Browsing Access Viewpoint,” on page 3-11 for more information
about the remote browsing style of access.

See Section 3.4.2, “ObservationRemote Interface,” on page 3-31 for the interface
specification.

See Section 3.4.4, “CompositeObservationRemote Interface,” on page 3-34 for the type
specification.

See Section 3.4.3, “AtomicObservationRemote Interface,” on page 3-33 for the type
specification.

Clinical Observations Access Service, v1.0 April 2001

3.2.8 Common Access Operations Viewpoint

QueryAccess

BrowseAccess

ObservedSubject

#c ount_observ ations ()

®get observation()

®get observations()

®get observations_by _time()
®get observations_by _qualifier()
®get observations_with_policy (

AsynchAccess

count_observ ations()
get_observ ation()

®get_observ ations()
®get_observ ations_by _time()
Wget_observ ations_by _qualifier()
Wget_observ ations_with_policy ()
Wcancel_get()

Wget_observ ed_subject()
Sget_observ ed_subjects()
Wget_observed_subject_for_observation_id()

Wget_observ ed_subjects_for_observ ation_ids ()

®Wcount_observ ations()
Wget_observ ation()

®get_observ ations()
®get_observ ations_by _time()
Wget_observ ations_by _qualifier()
Wget_observ ations_with_policy ()

®count_obs ervations()
®get_observ ations_by _time()
Wget_observ ations_by _qualifier()
get_observ ations_with_policy ()
Wget_root_observ ations()
Wget_leaf_observ ations()
Wget_any _obser ation()
Wget_first_obs erv ation()
Wget_last_observation()
#Wget_candidate_observations()

Wget_exact_operation_ty pes()

CompositeObserv ationRem ote

®count_observations()

®get_observ ations _by _time()
®Wget_observ ations _by _qualifier()
®get_observations _with_policy ()
Wget_leaf_obs erv ations()
®get_leaf_obs erv ations_by _time()
®get_leaf_obs erv ations_by _qualif ier ()
®get_leaf_obs erv ations_with_policy ()
®Wget_leaf_obs erv ations_by _value_ty pe ()
®get_relations_toward_root ()
®get_relations_away _f rom _root()

Figure 3-8 Common Yet_*()” style operations on multiple interfaces.

This viewpoint shows that many interfaces have common operation hames. A similar
operation name implies similar semantics for the operation, though the return value

may be local QueryAccess), remote BrowseAccess), or arriving asynchronously
(AsynchAccess).

See the following for some of the different styles of access:

® Section 3.5.2, “QueryAccess Interface,” on page 3-45

® Section 3.2.10, “Browsing Access Viewpoint,” on page 3-11

® Section 3.2.11, “Asynchronous Access Viewpoint,” on page 3-12

COAS, v1.0

Viewpoints

April 2001

3-9

3.2.9 Simple Query Access Viewpoint

<<Interface>>
QueryAccess

<<Interface>> %count_obsenvations()
AccessComponent e — *get_obser\ation()
%get_obsenations()
%get_obsenations_by_time()
%get_obsenations_by qualifer()
%get_obsenations_with_policy()

Figure 3-9 TheQueryAccess interface is the simplest interface for query access.

QueryAccess is the most straightforward and fundamental of all the components. The
client passes a query to the server and receives a response synchronously, as a local
struct. The client blocks until the server returns the results or throws an exception.

QueryAccess has operations which provide a growing list of parameters for filtering
the observations known by the server.

See Section 3.5.2, “QueryAccess Interface,” on page 3-45 for a detailed specification
of the interface.

3-10 Clinical Observations Access Service, v1.0 April 2001

<<Interface>>
AccessComponent

<<Interface>>
AbstractManagedObject

\

|

<<Interface>>
ObservationRenvte

gobservation_code : QualifiedCode

®get_observation _time()
®get_observed_subject()
%get_root_observation()
®get_path_from root()
Yget all_qualifiers()
Yget_qualifiers()
%is_this_root()
is_this_atomic()

i

3.2.10 Browsing Access Viewpoint

<<Interface>>
BrowseAccess

%get_observed_subject()
%get_observed_subjects()
%get_observed_subject_for_observation_id()
%get_observed_subjects for_observation_ids()
%count_observations()

%get_observation()

%get_obsenvations)

%get_obsenvations by_time()
%get_obsenvations by _qualifier()
%get_obsenvations with_policy()

<<Interface>>
ObservedSubject

&observed_subject_id : ObsenedSubjectld

“count_observations)
%get_observations by _time()
%get_observations by _qualifier()
%get_observations with_policy()
%get_root_observations()
get_leaf_observations()
%get_any_observation()
“get_first_observati on()
%get_last_observation()
%get_candidate_obsenations()
“get_exact_obsenation_types)

<<Interface>>
CompositeObservationRemote

*count_observations()
*get_obsevations by_time()
%*get_obsevations by_qualifier()
*get_obsevations with_policy()
%get_leaf_observations()
%get_leaf_observations_by_time()
%get_leaf_observations_by_qualifier()
%get_leaf_observations_with_policy()
%get_leaf_observations_by_value_type()
$get_relations_toward root()
$get_relations away_from_root()

<<Interface>>
AtomicObservationRemote

%get_observation_data()
%get_observation_data_with_policy()

Figure 3-10 The main interfaces involved with browsing

BrowseAccess makes use of remote proxies to explore the servers store of
observations. A client can interactively access information a piece at a time. Each piece
of information retrieved has links to other pieces of information that the client may
access, with other queries possible based on the context of the previous requests. The
server is required to keep context on the references passed back for this navigational
convenience.

COAS,v1.0 Viewpoints April 2001 3-11

Interactive access may be useful when the client program displays the results and
capabilities to the user after each command. A minimum of information has to be
passed between the client and server with each action, although this mechanism adds
responsibility to the server to maintain the lifecycle of a potentially large number of
objects.

BrowseAccess has a number of operations that return object references to a remote
ObservedSubject or ObservationRemote .

See Section 3.5.1, “BrowseAccess Interface,” on page 3-43 for a detailed description of
this interface.

The ObservedSubject interface encapsulates the set of observations about one
observed subject, typically a person, though a subject could be a tissue sample or an
animal in a veterinary setting.

See Section 3.4.6, “ObservedSubject Interface,” on page 3-38 for a detailed description
of this interface.

3.2.11 Asynchronous Access Viewpoint

<<lInterface>>
AsynchAccess

®count_observations()
<<lInterface>> - “®get_observation()
AccessComponent 1 %®get_observations()
%®get_observations_by_time()
%®get_observations_by_qualifier()
%®get_observations_with_policy()
®cancel_get()

Figure 3-11 The interfaces dealing with asynchronous query invocations.

AsynchAccess allows a client to request information with the results delivered
asynchronously. This prevents the client from having to do a blocking call to the server
until the results can be returned. Asynchronous access may have various uses:

® Partial results: an asynchronous interface can return a result in pieces. This may be
useful for something like image sets, to show the first one while receiving the rest,
as well as for federation (send results back as they are received from various
sources).

® Single-threaded clients: A single-thread GUI client could, for example, tend to
repaint and user-click responsibilities while asynchronous requests are outstanding.

3-12 Clinical Observations Access Service, v1.0 April 2001

3

® Multiple requests: a client can post several simultaneous requests and process
results in the order they are received, rather than proceeding serially from one to the
next. Without this, results from a fast server could, in effect, wait on results from a
slow server.

® Query portability between servers: an asynchronous request can be passed from one
server to another, which responds directly to the client.

® Asynchronous model: for servers that get their data from asynchronous processes,
an asynchronous mechanism may be the best fit. For example, DICOM can involve
response times of millisecond to milli-decade (if the media is off-line), so a
DsObservationAccess server which provides this data may want to provide it
asynchronously, to match the source.

AsynchAccess affords asynchronous posting of results because the client passes in its
own object reference to axsynchCallback object. This points up some potential
drawbacks to asynchronous access:

®* Firewalls: a client behind a firewall may not be able to receive the callback.

® The client can no longer rely on TCP-level time-outs which bound a query duration
for a synchronous call. Instead, the client must take responsibility to track
outstanding requests and provide some ability to handle requests that fail because of
a network outage or some other traumatic termination.

® |If multiple requests are outstanding, the client must hold the sté¢etCallld)
requests in order to identify them when fulfilled.

® The client must be prepared for multiple, partial returns to a single request.

The AsynchAccess interface has operations similar to fQeeryAccess synchronous
interface, though instead of “real” return values, the operations all return a
ServerCallld value, which simply identifies the request from the server point of view.
AsynchAccess also has an operation to cancel an outstanding request. See
Section 3.5.3, “AsynchAccess Interface,” on page 3-49 for a detailed description of
these operations.

The AsynchCallback interface is implemented by the client to the

DsObservationAccess server. The server calls it back with the results, or with an
exception condition. See Section 3.5.4, “AsynchCallback Interface,” on page 3-52 for a
detailed description of the interface.

COAS,v1.0 Viewpoints April 2001 3-13

3-14

3.2.12 Event Management Viewpoint

CosEventComm::PushConsumer AbstractManagedObject CosEventComm::PushSupplier
%push() %done() %disconnect_push_supplier()
%disconnect_push_consumer() — — \
EventConsumer
geonnection_id : Connectionld Ev entSupplier

“%obtain_subscription_ty pes()

geonnection_id : Connectionld

®connect_structured_push_supplier, .
%get con;ectidusupﬁi:r(f ueplier(+my Consumer %obtain_offered_ty pes()

= = v Supli %connect_push_consumer()

’ my suppiier %get_connected_consumer()

+created_by |

|
| .
| +creations

®subscribe()
%describe_subscription()
%generate_test_event()

1.9
+created/ hv

+creations

ConsumerAc cess

SupplierAccess

%create_consumer()
%get_consumer_by_id()

AccessComponent <]7
— Screate_supplier()
%get_supplier_by _id()

AbstractFactory

&max_connections : Connectionld
geurrent_connections : ConnectionldSeq

Figure 3-12 The consumer and supplier interfaces involved with event management.

The DsObservationAccess service supports querying for observations that occur in

the future. This support is similar to asynchronous access in that a client (consumer)
registers an interest in particular observations, and the server (supplier) calls them back
with the information at some future time. However, the callback may happen
repeatedly since the interest in particular observations translates into a subscription that
lasts at least as long as the lifetime of HventSupplier . Servers may add value (not
required or specified herein) by offering a subscription qualifier for a persistent
subscription, which survives across client and/or server restarts.

ConsumerAccess andSupplierAccess are the components that manage the

registration to consume and supply future observations, respectively. The event

mechanism was designed to give flexibility in connecting up event endpoints, including

consideration to do the following:

® Facilitate the use of the OMG Notification Service or Event Service as an
intermediary channel.

Clinical Observations Access Service, v1.0 April 2001

3

® Allow consumer and supplier endpoints to connect themselves to one another,
without an intermediary channel.

® Allow the use of an external management application to connect consumer/supplier
endpoints and channels, without explicit custom-coding assistance from the
endpoints or channels for such an external management application.

The AbstractFactory interface contains two common attributes for connections
(maximum and current amount), which are needed by botlkdhsumerAccess and
SupplierAccess . See Section 3.7.5, “AbstractFactory Interface,” on page 3-64 for the
details.

The ConsumerAccess adds an operation to instantiate BwentConsumer and to

access any formerly-creat&entConsumer by its ID number, a uniqgue number
determined by th€onsumerAccess at instantiation. See Section 3.6.4,
“ConsumerAccess Interface,” on page 3-58 for a detailed description of this interface.

The SupplierAccess extends the capability of thebstractFactory just as did
ConsumerAccess . See Section 3.6.3, “SupplierAccess Interface,” on page 3-57 for a
detailed description of this interface.

The EventConsumer interface inherits from th€osEventComm::PushConsumer
interface to facilitate use with the OMGosEvent Service. See Section 3.6.2,
“EventConsumer Interface,” on page 3-55 for a detailed description of the interface.

The EventSupplier interface inherits from th€osEventComm::PushSupplier

interface to facilitate use with the OMGosEvent Service. TheEventSupplier

includes operations to establish a connection, and to begin a subscription to events. See
Section 3.6.1, “EventSupplier Interface,” on page 3-53 for a detailed description of the
interface.

3.3 Data Type Definitions

The following sections describe all the IDL for the data types used within the
DsObservationAccess module.

#ifndef _DS_OBSERVATION_ACCESS_IDL_
#define _DS_OBSERVATION_ACCESS_IDL_

module DsObservationAccess {

J

#endif / _DS_OBSERVATION_ACCESS_IDL_

The “Ds” prefix of DsObservationAccess stands for “Domain Service.” All OMG
specifications from a domain task force are expected to start with “Ds” to isolate a
particular name space from potential clashes.

COAS,v1.0 Data Type Definitions April 2001 3-15

3.3.1 Include Files

#include <CosNaming.idI>

#include <CosTrading.idl>

#include <TerminologyServices.idl>
#include <NamingAuthority.idl>
#include <PersonldService.idl>
#include <NamingAuthority.idl>
#include <CosEventComm.idl>
#include <CosEventChannelAdmin.idl>

#include <orb.idl>

3.3.2 External Typedefs

These definitions rename types from other standards. This section delineates all

DsObservationAccess

dependencies on other standards.

typedef PersonldService::QualifiedPersonld ObservedSubjectld;

Description:

Observed subjects are identified witQualifiedPersonid

from the PIDS standard. The qualification with a naming
authority is important, since there could be overlap in pati
identifiers at two locations.

ent

typedef TerminologyServices::QualifiedCode QualifiedCode;

Description:

AQualifiedCode has an embeddeadamingAuthority that
prevents collisions between common, local names.

typedef NamingAuthority::QualifiedNameStr QualifiedCodeStr;

Description:

QualifiedCodeStr has a one-to-one mapping with
QualifiedCode . The format for the contenst of
QualifiedNameStr is well defined. Strings must begin with
colon-delimited section containing one of the
NamingAuthority::RegistrationAuthority items: either
OTHER, ISO, DNS, IDL, or DCE. Following the
RegistrationAuthority is a domain, followed by a slash “/*,
and then the particular name (which can have additional
slashes as namespace dividers).

For example, th®ualifiedCodeStr
“DNS:omg.org/DsObservationAccess/ASYNC_OBSERVATI
ON_COUNT” has a registration authority of DNS (internet
domain name service), a domain of omg.org, and a name
within the DsObservationAccess hamespace.

Y

3-16 Clinical Observations Access Service, v1.0 April 2001

Description The NamingAuthority::translation_library interface is
(continued): designed to be implemented locally by servers to translate
betweenQualifiedName (we rename aQualifiedCode) and
QualifiedNameStr (we call thisQualifiedCodeStr).

typedef PersonldService::DomainName IdDomainName;

Description: Each COAS server will have one default PIDS domain, which
is identified by aDomainName .

typedef PersonldService::ldentificationComponent IdentificationComponent;

Description: The PIDS server is an instance of an
IdentificationComponent

typedef CosNaming::NamingContext NamingContext;

Description: The relevarntosNaming server is an instance of a
NamingContext .

typedef CosTrading::TraderComponents TraderComponents;

Description: The relevant Trader service is an instance of a
TraderComponents .

typedef TerminologyServices::TerminologyService TerminologyService;

Description: The relevariterminologyService is an instance of
TerminologyService .

typedef CosEventComm::PushConsumer PushConsumer;

Description: TheEventConsumer is a subclass of
CosEventComm::PushConsumer

typedef CosEventComm::PushSupplier PushSupplier;

Description: TheEventSupplier is a subclass of
CosEventComm::PushSupplier

typedef CORBA::TypeCode TypeCode;

Description: ATypeCode is a CORBA interface that is used to perform
introspection on all IDL-defined data types.

3.3.3 Forward Declarations

interface AbstractFactory;

interface AbstractManagedObject;
interface AccessComponent;

interface AsynchCallback;

interface AsynchAccess;

interface AtomicObservationRemote;
interface BrowseAccess;

interface CompositeObservationRemote;
interface ConsumerAccess;

COAS,v1.0 Data Type Definitions April 2001 3-17

interface ConstraintLanguageAccess;
interface EventConsumer,

interface EventSupplier;

interface ObservationDatalterator;
interface ObservationLoader;
interface ObservationRemote;
interface ObservationRemotelterator;
interface ObservedSubject;

interface QualifiedCodelterator;
interface QueryAccess;

interface SupplierAccess;

These forward declarations for interfaces facilitates the grouping of definitions without
concern for precedence, since all interfaces are declared here.

3.3.4 AccessComponentData

struct AccessComponentData {
QueryAccess query_access;
BrowseAccess browse_access;
AsynchAccess asynch_access;
ConstraintLanguageAccess constraint_access;
ObservationLoader observation_loader;
ConsumerAccess consumer_access;
SupplierAccess supplier_access;

h

AccessComponentData provides a means to supply references to all implemented
components viaccessComponent.get_components() . This is a convenience for

clients that have a single reference to a single component, and wish to use a different
component. Since different servers may have different levels of conformity, some will
implement a given component and others will not. If a component is not implemented
by the server, that attribute will be null.

For example, if a client has a reference ®r@avseAccess component, and now
wishes to use QueryAccess component, the client can ca#tt_components() on his
BrowseAccess component and examine theery access field. If query_access is
non-null, that component is implemented.

query_access

Description: HoldxQueryAccess reference if implemented by this serve

-

3-18 Clinical Observations Access Service, v1.0 April 2001

browse_access

Description: HoldsBrowseAccess reference if implemented by this
server.

asynch_access

Description: HoldsasynchAccess reference if implemented by this
server.

constraint_access

Description: Hold<ConstraintLanguageAccess reference if implemented
by this server.

observation_loader

Description: HoldObservationLoader reference if implemented by this
server.

consumer_access

Description: HoldsConsumerAccess reference if implemented by this
server.

supplier_access

Description: HoldssupplierAccess reference if implemented by this
server.

3.3.5 AsynchException
struct AsynchException {
QualifiedCodeStr exception_name;
string message;

J

AsynchException is a struct because the asynchronous callback mechanism cannot
employ the typical exception mechanism of CORBA synchronous call. Instead, a
request that results in an exception must be delivered tasimenCallback interface,
just as a regular result is delivered, with a struct.

exception_name

Description: The name of the exception resulting from the asynchronopus
request.

message

Description: A text description of the exception.

COAS,v1.0 Data Type Definitions April 2001 3-19

3.3.6 ObservationData

typedef any ObservationData;

struct ObservationDataStruct {
QualifiedCodeStr code;
sequence<ObservationDataStruct> composite;
sequence<ObservationDataStruct> qualifiers;
sequence<any,1> value;

J

ObservationData is the heart of the query mechanism. Observations are passed by
value via theCorba::any type, which enables extensibility by allowing the possibility
of using valuetype or other structured definitions for observations in the future or by
local agreement in specialized environments. In this specification a single structure,
ObservationDataStruct , is defined to contain all types of observations.

ObservationDataStruct encapsulates both composite and atomic observations, which is
accomplished by including attributes for both an aggregation and a single value. These
attributes,composite andvalue, are intended to be used in a mutually exclusive
manner. One of the two attributes should be a zero-length sequence. An Observation
must be a composite observation or an atomic observation, but not both.

code

Description: The name of the observation type, as qualified by the
NamingAuthority embedded in th@ualifiedCodeStr .

composite

Description: A sequence of observations which compose this observation.

The attributecomposite may have zero or more
ObservationDataStruct items. Thecomposite attribute must
have zero items if this observation has a non-zehe
attribute, which would make it an atomic, rather than
composite, observation.

Note that each of the aggregatebservationDataStruct
items may, in turn, include other observations in their
composite field, creating a “tree” of observations.

3-20 Clinical Observations Access Service, v1.0 April 2001

qualifiers

Description: A sequence of observations that modify the observation(s) in
thevalue or composite attribute. Qualifiers modify all of the
data “beneath” them in a hierarchy. For example, a modifier
of “Normalcy=abnormal” found in a composite observation
would apply to all the items in the composite. However,
gualifiers found lower in a tree of data can override modifiers

found higher up in the tree, so a leaf observation could have a
modifier “Normalcy=normal,” which applied to just that leaf
despite any qualifier higher-up in the tree.

value

Description: The payload for this observation. The payload must be empty
(zero items in sequence) if this observation is a composite
observation. The only reason thatue is a sequence is to
allow a zero-length sequence.

For an atomic observation, which has a payload, the contents
within value[0] , within theCorba::any , is a data type that
associates with the “code” field. For each code used for an
atomic observation, a single data type must be designated for
the return value.

3.3.6.1 ObservationQualifier

typedef ObservationData ObservationQualifier;

Description: This typedef shows that Qualifiers are simply other
observations.

3.3.7 Observationld

struct Observationld {
QualifiedCodeStr code;

string opaque;

J

An Observationld uniquely identifies a particular COAS observation within a server. It
is persistent over time, and can be stored by a client for use later. However, a client
may not create or modify abbservationid .

COAS,v1.0 Data Type Definitions April 2001 3-21

3-22

The client is responsible for remembering the server associated with a given
Observationlid . If the client connects to multiple servers, the client can, for example,
keep allObservationld s from a particular server in a single collection associated with
the server, or store abbservationld within some wrapping structure, which provided
fields for server identification as well.

There has been discussion of adding field®teervationld for a server name and
domain. Currently, there is no for provision for the globally identifying server names in
some federation of COAS servers, so it is not clear what would be appropriate for
server identification field(s).

One possibility for handlin®bservationld s within a federation of COAS servers can
be implemented as follows:

Assume a federation of COAS servers where a higher-level server named “Middle”
is a middleware conduit for some (static) group of lower-level COAS servers. All
gueries to Middle are routed to one of many lower-level COAS servers, and the
resulting information is passed back to the client, including qualifiers like
Observationld s. However, when supplying theS®servationid s to its client,

Middle must modify them slightly. Thebservationld s must allow Middle to
recognize the original source for the observation. To accomplish this, Middle can
prepend source-server information to the opaque string, followed by a clear
delimiter. Upon receipt of thebservationid from a client, Middle strips out this
source-server information, using it to pass back a reconstiosgtvationid to the
proper source server.

code

Description: The code for this observation. This is read-only for a client,
and can be used for grouping or separathgervationid S.

opaque

Description: Reserved for use by server.

3.3.8 NameValuePair

struct NameValuePair {
QualifiedCodeStr name;

any value;

Clinical Observations Access Service, v1.0 April 2001

A simple associate of name and value.

name
Description: The code for this pair.
value
Description: The value for this pair.

3.3.9 Subscription

struct Subscription {
sequence<ObservedSubjectld> who;
sequence<QualifiedCodeStr> what;
sequence<ObservationQualifier> qualifier;

sequence<NameValuePair> policy;

J

Subscription encapsulates all the parameters which make up a query for future data, as
needed for &upplierAccess component.

who

Description: The observed subject(s) of the subscription.

what

Description: The codes for the desired observation(s).

qualifier

Description: Any modifying observation(s) with which to filter.

policy

Description: Any policies that should override default policies of the
server.

3.3.10 TimeStamp

typedef string TimeStamp; // 1ISO 8601 representation, with restrictions

TimeStamp is a string representation of date and time, following the 1ISO 8601:1988
standard, with some restrictions and modifications. The string format is restricted to
the “extended” ISO 8601 format which includes delimiters, years must be specified
with century digits, and a wildcard character is added. A completeStamp format

is:

COAS,v1.0 Data Type Definitions April 2001 3-23

3-24

YYYY-MM-DDThh:mm:ss.dddTZD
(e.g., 1997-07-16T19:20:30.45+01:00) where:

YYYY = four-digit year (1582 minimum, 9999 maximum)

MM = two-digit month (01=January, etc.)

DD = two-digit day of month (01 through 31)

T = date/time separator

hh = two digits of hour (00 through 23; am/pm NOT allowed)

mm = two digits of minute (00 through 59)

ss =two digits of second (00 through 60; 60 indicates a positive leap second)

ddd = one or more digits for decimal fraction of a second (no limit on number of
digits)

TZD =time zone designator (Z to indicate UTC, or +hh:mm or -hh:mm from UTC)

Partial TimeStamp formats are allowed, which indicate “unknown” for items
omitted. For example, @meStamp consisting only of

1993-02-14

is interpreted as an unknown time on the 14th of February, 1993, while

13:10:30

is interpreted as an unknown date, with time of 13:10:30 in the server’s time zone
(absence of a time zone designator indicates local time).

TimeStamp allows a character outside the ISO 8601 specification, a wildcard for
individual TimeStamp elementsTIME_WILDCARD = “?” is provided in the constants
section. Use this character to indicate that a specific field should be treated as
“unknown” for TimeStamp s received from COAS (output), and as a “wildcard” for
TimeStamp parameters supplied to COAS (input).

For example, receiving “1999-??-02T22:00:00Z” as an outpoéStamp would be
equivalent to the concept of “2nd day of an unknown month in 1999, at 22:00:00
GMT". For an inputTimeStamp , this string would represent, for matching purposes,
“the 2nd day of any month in 1999, at 22:00:00 GMT".

The lower bound folfimeStamp is specified as “1582-10-15T00:00:00Z", the date
when the Gregorian calendar was put into effect, putting month and day calculations
on a firm basis.

3.3.11 TimeSpan

struct TimeSpan {
TimeStamp start_time;

TimeStamp stop_time;

Clinical Observations Access Service, v1.0 April 2001

TimeSpan encapsulates a duration of time with two boundiingeStamp s. The
semantics for interpreting the endpoints is INCLUSIVE. The endpoints are part of,
included in, the span of time. This span is defined for use in COAS instead of
employing the 1SO 8601 notation of <timestamp>/<timestamp> within one string.

start_time
Description: The starting time of the span.
stop_time
Description: The ending time of the span.

const string EARLIEST_TIME ="
const string LATEST_TIME ="9999-12-31T23:59:597";

3.3.12 Constants
‘1582-10-15T00:00:00Z™;
const string TIME_WILDCARD = “7

“on

const QualifiedCodeStr PARTIAL_RESULT =
“DNS:omg.org/DsObservationAccess/PARTIAL_RESULT”;

const QualifiedCodeStr COMPLETING_RESULT =
“DNS:omg.org/DsObservationAccess/COMPLETING_RESULT";

COMPLETING_RESULT andPARTIAL_RESULT are used by thasynchAccess
interface during a callback to indicate the status of the callback--completing a request,
or only partially completing a request.

const QualifiedCodeStr ASYNC_OBSERVATION_COUNT =
“DNS:omg.org/DsObservationAccess/ASYNC_OBSERVATION_COUNT?;
typedef unsigned long ASYNC_OBSERVATION_COUNT_type;

ASYNC_OBSERVATION_COUNT is an observation type, used solely to identify the
return value of the operatiofsynchAccess.count_observations() . It does not make
sense to use this code in a query, sicment_observations() explicitly names the
“what” part of the query parameters. Only the return value needs identification. The
value in that returne@bservationData is anunsigned long, and shown by the typedef
ASYNC_OBSERVATION_COUNT _type .

const QualifiedCodeStr EVENT_SOURCE_DOMAIN =
“DNS:omg.org/DsObservationAccess/EVENT_SOURCE_DOMAIN?;

const QualifiedCodeStr EVENT_SOURCE_SERVER_NAME =
“DNS:omg.org/DsObservationAccess/EVENT_SOURCE_SERVER_NAME”;

const QualifiedCodeStr EVENT_NAME =
“DNS:omg.org/DsObservationAccess/EVENT_NAME”;

const QualifiedCodeStr TEST_EVENT =
“DNS:omg.org/DsObservationAccess/TEST_EVENT";

typedef long TEST_EVENT _type;

EVENT_* constants apply to th&upplierAccess component:

EVENT_SOURCE_DOMAIN: the enterprise domain (likely a PIDS context) within
which the event originated.

COAS,v1.0 Data Type Definitions April 2001 3-25

EVENT_SOURCE_SERVER_NAME: the name of th®sObservationAccess service
that originated the event.

EVENT_NAME: this code is intended for use wheC@sNotification service is
employed. TheCosNoatification service allows filtering within the channel, based on
name-value pairs, so this code would be used to identify the name of the particular
event, with a value equal to tiqualifiedCodeStr of the event itself.

TEST_EVENT is the observation code used by gumplierAccess when responding to
SupplierAccess.generate_test_event() . The value returned in th@bservationData is
along, as shown by the typed@EST_EVENT _type.

const QualifiedCodeStr TRADER_1_0_CONSTRAINT_LANGUAGE =
“DNS:omg.org/DsObservationAccess/TRADER_1_0_CONSTRAINT_LANGUAGE”;

const QualifiedCodeStr OCL_1_1_CONSTRAINT_LANGUAGE =
“DNS:omg.org/DsObservationAccess/OCL_1_1 CONSTRAINT_LANGUAGE”;

TRADER_1_0_CONSTRAINT_LANGUAGE andOCL_1_1_CONSTRAINT_LANGUAGE
are two possible choices for the language use@dmgtraintLanguageAccess
However, the choice of constraint language is left to the implementation.

const QualifiedCodeStr COAS_OBSERVATION_ID =
“DNS:omg.org/DsObservationAccess/COAS_OBSERVATION_ID”;

typedef Observationld COAS_OBSERVATION_ID_type;

COAS_OBSERVATION_ID is the code for a qualifier, which provides a unique COAS
identifier for an observation. Any qualifier with this code will have, in its value
CORBA:any, a struct of typebservationid , as indicated by
COAS_OBSERVATION_ID_type . In other words, the one-to-one association between a
name-value pair are, in this instan@G®AS_OBSERVATION_ID andObservationld .

3.3.13 Internal Typedefs

typedef long Endpointid;

Description: Endpointld is used by the Event syste@onsumerAccess
and SupplierAccess , to identify event endpoints.

typedef string ConstraintExpression;

Description: ConstraintExpression is used to supply a constraint to
ConstraintLanguageAccess

typedef QualifiedCodeStr ConstraintLanguage;

Description: ConstraintLanguage is specified by the
ConstraintLanguageAccess , as a language supported by that
component.

typedef NameValuePair QueryPolicy;

Description: Each policy is a name-value pair.

3-26 Clinical Observations Access Service, v1.0 April 2001

typedef long ServerCallld;

Description: Within theasynchAccess , each call from a client is

identified by the server with ServerCallid , unique within the
lifetime of the server. This identifier can be used to cancel/the
request if necessary.

typedef long ClientCallld;

Description: A client to thésynchAccess should identify each of its
calls to a server with alientCallld , unique within all

outstanding requests. This identifier is returned to the client
with the result, so that the client can match up requests with
responses, should there be more than one call outstanding.

3.3.14 Sequences

typedef sequence<AtomicObservationRemote> AtomicObsRemoteSeq;
typedef sequence<ConstraintLanguage> ConstraintLanguageSeq;
typedef sequence<Endpointld> EndpointldSeq;

typedef sequence<ObservationData> ObservationDataSeq;

typedef sequence<ObservationDataStruct> ObservationDataStructSeq;
typedef sequence<Observationld> ObservationldSeq;

typedef sequence<ObservationQualifier> ObservationQualifierSeq;
typedef sequence<ObservationRemote> ObservationRemoteSeq;
typedef sequence<ObservedSubjectld> ObservedSubjectldSeq;
typedef sequence<ObservedSubject> ObservedSubjectSeq;

typedef sequence<QualifiedCodeStr> QualifiedCodeStrSeq;

typedef sequence<QueryPolicy> QueryPolicySeq;

typedef sequence<Subscription> SubscriptionSeq;

The above IDL defines the sequence data types fobstdservationAccess service.

3.3.15 Exceptions
exception DuplicateCodes {

QualifiedCodeStrSeq codes;

COAS,v1.0 Data Type Definitions April 2001 3-27

3-28

The DuplicateCodes exception is raised when the same code is passed multiple
times as a parameter to an operation. A complete list of distinct duplicated codes is
returned.

exception Duplicatelds {
ObservedSubjectldSeq ids;

J

The Duplicatelds exception is raised when the sa®igservedSubjectld is passed
multiple times as a parameter to an operation. A complete list of distinct duplicated ids
is returned.

exception DuplicateOids {
ObservationldSeq oids;

J

The DuplicateQids exception is raised when the saMieservationld is passed
multiple times as a parameter to an operation. A complete list of distinct duplicated
Observationlds is returned.

exception DuplicatePolicies {
QueryPolicySeq policies;

J

The DuplicatePolicies exception is raised when the saméeryPolicy is passed
multiple times as a parameter to an operation. A complete list of distinct duplicated
policies is returned.

exception DuplicateQualifiers {
ObservationQualifierSeq qualifiers;

J

The DuplicateQualifiers exception is raised when the same
ObservationQualifierData is passed multiple times as a parameter to an operation. A
complete list of distinct duplicated qualifiers is returned.

exception InvalidCodes {
QualifiedCodeStrSeq codes;

J

The InvalidCodes exception is raised when an unrecognized (unsupported)
QualifiedCodeStr is passed as a parameter to an operation. A complete list of invalid
codes is returned.

Clinical Observations Access Service, v1.0 April 2001

exception InvalidEndpointld {
EndpointldSeq endpoint_ids;

J

The InvalidEndpointld exception is raised when an invakddpointld is passed as a
parameter to an operation. Only active connections may be specified. A complete list
of invalid connection ids is returned.

exception InvalidConstraint {
string constraint;

J

The InvalidConstraint exception is raised when a constraint is passed as a parameter
to an operation and the server cannot parse the constraint in accordance with a
supported language. The invalid constraint is returned.

exception Invalidlds {
ObservedSubjectldSeq ids;

J

The Invalidlds exception is raised when @bservedSubjectld is passed as a
parameter to an operation when the server does not know about that ID. A complete
list of invalid ids is returned.

exception InvalidOids {
ObservationldSeq oids;

J

The InvalidOids exception is raised whenGbservationid is passed as a parameter to
an operation when the server does not know about that observation ID. A complete list
of invalid ids is returned.

exception InvalidPolicies {
QualifiedCodeStrSeq policies;

J

The InvalidPolicies exception is raised when an unrecognized (unsupported)
QueryPolicy is passed as a parameter to an operation. A complete list of invalid
policies is returned.

exception InvalidQualifiers {

QualifiedCodeStrSeq qualifiers;

COAS,v1.0 Data Type Definitions April 2001 3-29

The InvalidQualifiers exception is raised when an unrecognized (unsupported)
ObservationQualifierData is passed as a parameter to an operation. A complete list of
violating qualifiers is returned.

exception InvalidTimeSpan {
TimeSpan span;

J

The InvalidTimeSpan exception is raised when an invalitmeSpan is passed as a
parameter to an operation. The time span may be incorrectly specified, with a start
time greater than an ending time, or with unparsable items.

exception MaxConnectionsExceeded {

unsigned long max_connections;

J

The MaxConnectionsExceeded exception is raised when an event access object
(EventSupplier or EventConsumer) already has reached its maximum supported
number of connections, and a client tries to create another one. The maximum number
of connections is returned.

exception Notimplemented {

J

Notimplemented is raised when a particular COAS server does not implement a
particular operation. This exception allows a conformance class to have optional
operations. Any operation with this exception is optional.

exception NoSubscription {

J

The NoSubscription exception is raised trying to access subscription information on
a EventSupplier when no subscription has been set.

3.4 Interface Specifications

3-30

3.4.1 Foundational Observation-Oriented Interfaces

The description of th®sObservationAccess interfaces begins with those that map

most closely to the COAS Information Model (i.e., Observation-Oriented interfaces).
They support the successive refinement and interactive browsing styles of data retrieval
and data discovery.

Clinical Observations Access Service, v1.0 April 2001

3.4.2 ObservationRemote Interface

ObservationRemote
wobservation_code : QualifiedCode

®get_observation_time()
®get_observed_subject()
®get_root_observation()
%get_path_from_root()
®get_all_qualifiers()
®get_qualifiers()
%js_this_root()
%js_this_atomic()

AbstractManagedObject <]

Figure 3-13 ObservationRemote Interface

interface ObservationRemote : AbstractManagedObject {

readonly attribute QualifiedCodeStr observation_code;
TimeSpan get_observation_time ();
ObservedSubject get_observed_subject ();
ObservationRemote get_root_observation ();
ObservationData get_path_from_root ();
ObservationQualifierSeq get_all_qualifiers ();
ObservationQualifierSeq get_qualifiers (

in QualifiedCodeStrSeq qualifier_names)

raises (
InvalidCodes);

boolean is_this_root ();

boolean is_this_atomic ();

COAS,v1.0 Interface Specifications April 2001 3-31

observation_code

Description: The code which identifies this observation.

get_observation_time()

Description: Return th&imeSpan associated with this observation.

get_observed_subject()

Description: Return a reference to the subject associated with this
observation.

get_root_observation()

Description: Return the root observation within which this observation is
contained. If this observation is the root, returns reference to
self. Server has responsibility to keep a context of all remote
observations that are browsed, to keep track of their context.

get_path_from_root()

Description: Return the root observation asGiizervationData

containing the path elements to this observation. The
ObservationData returned contains the structure of the real
observation tree pruned of all observations that don’t lead to

this one.
get_all_qualifiers()
Description: Return all qualifiers.
get_qualifiers()
Description: Return the qualifier(s) specified by name in the input

parametenqualifier_names .

is_this_root()

Description: Returns true if this observation is a root observation.

is_this_atomic()

Description: Returns true if this observation is actually a subclass,
AtomicObservationRemote

3-32 Clinical Observations Access Service, v1.0 April 2001

3.4.3 AtomicObservationRemote Interface

<<Interface>>

ObservationRemote

-

—

<<Interface>>

AtomicObservationRemote

%get_observation_data()
%get_observation_data_with_policy()

Figure 3-14 AtomicObservationRemote Interface
interface AtomicObservationRemote : ObservationRemote {
ObservationData get_observation_data ();

ObservationData get_observation_data_with_policy (
in QueryPolicySeq policy);

get_observation_data(

Description: Returns the (locaf)bservationData item by value.

get_observation_data_with_policy()

Description: Returns the (locabbservationData item by value, according

to overriding policies provided.

COAS,v1.0 Interface Specifications April 2001

3-33

3.4.4 CompositeObservationRemote Interface

<<Interface>>
Com po siteObse rvation Rem ote

%count_observations()
%get_observations_by_tim e()
%get_observations_available()

<<Interface>> %get observations by _qualifier() <<S(_aquence>>
ObservationRemote < ——— %get observations with _policy() <) ObservationRemoteSeq
@ . +observations
get leaf _obsenations()

%get leaf_obsernvations by time 0

¥get leaf_observations by qual ifier()
%get leaf_observations with_policy()
%get leaf_observations by value_typ e()
%get_relations_toward_root()

¥get _relations_away_from_roo 1)

Figure 3-15 CompositeObservationRemote Interface

interface CompositeObservationRemote : ObservationRemote {

unsigned long count_observations (
in QueryPolicySeq search_depth_policy)
raises (
InvalidPolicies);

ObservationRemoteSeq get_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (

3-34 Clinical Observations Access Service, v1.0 April 2001

in QualifiedCodeStrSeq what,

in TimeSpan when,

in ObservationQualifierSeq qualifier,

in QueryPolicySeq policy,

in unsigned long max_sequence,

out ObservationRemotelterator the_rest)
raises (

InvalidCodes,

DuplicateCodes,

InvalidTimeSpan,

InvalidQualifiers,

DuplicateQualifiers,

InvalidPolicies,

DuplicatePolicies);

AtomicObsRemoteSeq get_leaf_observations ();

AtomicObsRemoteSeq get_leaf_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

AtomicObsRemoteSeq get_leaf _observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

AtomicObsRemoteSeq get_leaf _observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

COAS,v1.0 Interface Specifications April 2001 3-35

AtomicObsRemoteSeq get_leaf _observations_by_value_type (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QualifiedCodeStr value_type,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationDataSeq get_relations_toward_root (
in QualifiedCodeStrSeq relation_name);

ObservationDataSeq get_relations_away_from_root (
in QualifiedCodeStrSeq relation_name);

count_observations(

Description: Returns the number of observations held by this
CompositeObservationRemote , according to the provided
search-depth policy. Passing in a sequence of 0 policies
indicates the use of the default policy for this server.

get_observation*()

Description: These operations are similar to the operations of the same
name on th&ueryAccess interface, though returned as
references t@bservationRemote . However, observations
are matched and returned only within the “searchable” target
population of observations, associated by reference to this
CompositeObservationRemote , at a depth of search
according to the policgEARCH_DEPTH_POLICY. For
example, if the search-depth policy is
SEARCH_DEPTH_ONLY_ROOT, only this
CompositeObservationRemote ~ will be searched (matched
against). With a search-depth policy of
SEARCH_DEPTH_DEEPEST_POSSIBLE, the searchable
population of observations consists of all observations which
might be referenced by any of the directly held references, or
their references, and so on.

3-36 Clinical Observations Access Service, v1.0 April 2001

get_leaf_observations()

Description:

Returns a sequence of all leaf observations that occur u
this node in the observation tree. These leaf observations
by definition atomic (not composite), and the references
returned are t@tomicObservationRemote

nder
5 are

get_leaf_observations_by_time(

Description:

As above, matching for the given observation code and
span in addition to atomicity. Time spans with end times

ime

greater than the server’s current time are interpreted to mean

“up till the current time.” Indicate “all time previous to a
given time” with a time stamp that h&a\RLIEST_TIME as
the start time. Indicate “from a given time to now” with a
time stamp that hasATEST_TIME as the end time.
Therefore, a time span froBARLIEST_TIME to
LATEST_TIME is equivalent to a “don’t care” value. Note th
the “who” parameter is already part of the context of this
CompositeObservationRemote

get_leaf_observations_by_qualifier()

Description:

As above, matching for the given observation qualifiers i
addition.

>

get_leaf_observations_with_policy()

Description: As above, but overriding the default policies with the ones
provided.
get_relations_toward_root()

Description:

Return observations that are related to this observation i

direction toward of the root. This operation would be useful

after navigating down through a tree of observations, and
wishing to backtrack.

n the

get_relations_away_from_root()

Description:

Return observations that are related to this observation i
direction away from the root. This would be the normal

direction of exploration, from root out towards other related

observations.

n the

COAS,v1.0 Interface Specifications April 2001 3-37

3.4.5 ObservationRemotelterator Interface

interface ObservationRemotelterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
in unsigned long n,

out ObservationRemoteSeq observation_remote_seq);

max_left()

Description:

This operation returns the number of items still left on th
iterator.

next_n()

Description:

This operation returns the numbeDbéervationRemote
objects as an out parameter as is indicated by the passe
‘n’ parameter or the maximum left. Removes the returned
objects from the iterator before returning.

d in

3.4.6 ObservedSubject Interface

<<Interface>>
ObservedSubject

gobserved_subject_id : ObservedSubjectld

<<Interface>>

AbstractManagedObject <

%count_observ ations()
%get_observations_by _time()
%get_observations_by_qualifier()
%get_observations_with_policy ()
®get_root_observ ations()
%get_leaf_observations()
%get_any_observation()
%get_first_observation()
%get_last_observ ation()
%get_candidate_observ ations()
%get_exact_observation_ty pes()

Figure 3-16 ObservedSubiject Interface

3-38 Clinical Observations Access Service, v1.0 April 2001

interface ObservedSubject : AbstractManagedObject {
readonly attribute ObservedSubjectld observed_subject _id;

unsigned long count_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (

InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemoteSeq get_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,

COAS,v1.0 Interface Specifications April 2001 3-39

3-40

DuplicatePolicies);

ObservationRemoteSeq get_root_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

AtomicObsRemoteSeq get_leaf_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_any_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_first_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_last_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_candidate_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,

Clinical Observations Access Service, v1.0 April 2001

InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_exact_observation_types (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

observed_subject_id

Description: The ID of the observed subject.

count_observations()

Description: Return the number of observations that match the given
search parameters.

get_observations*()

Description: Analogous to th@ueryAccess interface, except that the
“who” is the current context'®bservedSubject . See
Section 3.5.2, “QueryAccess Interface,” on page 3-45 for
details.

get_leaf_observations()

Description: Return observations which are not composites, but rather the
final, “leaf’ nodes, with data. The server will match on any
observation within an observation tree and return object
references for each leaf observation in that tree. The server
returns a zero-length sequence if no observations match the
query.

get_any_observation()

Description: This does a query for the observation types and time span.
The server will match on any observation within an
observation tree and return an object reference for any one of
them. This is used when the client just needs a single
response to the query and it does not matter which of the
(potentially) multiple observations that match the query. The
server returns aull object reference if no observations match
the query.

COAS,v1.0 Interface Specifications April 2001 3-41

get_first_observation(), get_last_observation()

Description: This does a query for the observation types and time span for
observations with this observation subject. The server will
match on any observation within an observation tree and
return an object reference for the first/last one in the time
span. The server returnsall if no observations match the
query.

get_candidate_observations()

Description: This does a query for the observation types, time span and
qualifiers for observations with this observation subject. The
server uses its own matching engine to determine if a
particular observation matches close enough to the query
criteria. The results are returned with the ones matching pest
being returned first

get_exact_observation_types()

Description: This does a query for the observation types (codes) and|time
span for observations with this observation subject. This
operation only returns observations which have codes that
match exactly to one of the “what” values. This is a
convenience method for employing the policy
SEARCH_SYNONYMOUS_CODES_FALSE.

3.5 Query-Oriented Interface Specifications

The second set dfsObservationAccess interfaces to be discussed are those that are
more function oriented (i.e., Query-Oriented interfaces). They support the use of query
functionality for retrieval of a lot of data in a single request.

3-42 Clinical Observations Access Service, v1.0 April 2001

3.5.1 BrowseAccess Interface

<<Interface>>
BrowseAccess

%get_observed_subject()
%get_observed_subjects()

<<Interface>> B %get_observed_subject_for_observation_id()
AccessComponent \] *get_observed_subjects_for_observation_ids()
%count_observations()
%get_observation()
%get_observations()
%get_observations_by_time()
%get_observations_by_qualifier()
%get_observations_with_policy()

Figure 3-17 BrowseAccess Interface

interface BrowseAccess : AccessComponent {

ObservedSubject get_observed_subject (
in ObservedSubjectld who)
raises (
Invalidlds);

ObservedSubjectSeq get_observed_subjects (
in ObservedSubjectldSeq who)
raises (
Invalidids,
Duplicatelds);

ObservedSubject get_observed_subject_for_observation_id (
in Observationld observation_id)
raises (
InvalidOids);

ObservedSubjectSeq get_observed_subjects_for_observation_ids (
in ObservationldSeq observation_ids)
raises (
InvalidOids,
DuplicateOids);

unsigned long count_observations (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)
raises (

COAS,v1.0 Query-Oriented Interface Specifications April 2001 3-43

Invalidids,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemote get_observation (
in Observationld observation_id)
raises (
InvalidOids);

ObservationRemoteSeq get_observations (
in ObservationldSeq observation_ids)
raises (
InvalidOids,
DuplicateOids);

ObservationRemoteSeq get_observations_by_time (
in ObservedSubjectld who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
Invalidids,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by_qualifier (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
Invalidids,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,

3-44 Clinical Observations Access Service, v1.0 April 2001

in unsigned long max_sequence,

out ObservationRemotelterator the_rest)
raises (

Invalidids,

Duplicatelds,

InvalidCodes,

DuplicateCodes,

InvalidTimeSpan,

InvalidQualifiers,

DuplicateQualifiers,

InvalidPolicies,

DuplicatePolicies);

get_observed_subject(), get_observed_subjects()

Description: Return®bservedSubject for the ObservedSubjectid passed
in.

get_observed_subject_for_observation_id(),
get_subserved_subjects_for_observation_ids()

Description: Returns adbservedSubject(Seq) for the
Observationld(Seq) passed in. That is, the server determines
the subject that is associated with a given observation.

get_observation*()

Description: See Section 3.5.2, “QueryAccess Interface,” on page 3-45 for
a complete definition of these operations. The difference here
is that references tObservationRemote are returned instead
of (local) ObservationData .

3.5.2 QueryAccess Interface

<<lInterface>>
QueryAccess

<<Interface>> %count_obserations|()
AccessComponent | — %get_obsemnation()
%get_obsemnations()

%get_obserations_by_time()
%get_obsemwations_by_qualifier()
®get obsenations_with_policy()

Figure 3-18 QueryAccess Interface

COAS,v1.0 Query-Oriented Interface Specifications April 2001 3-45

interface QueryAccess : AccessComponent {

unsigned long count_observations (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (

Invalidids,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationData get_observation (
in Observationld observation_id)
raises (
InvalidOids);

ObservationDataSeq get_observations (
in ObservationldSeq observation_ids)
raises (
InvalidOids,
DuplicateOids);

ObservationDataSeq get_observations_by_time (
in ObservedSubjectld who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationDatalterator the_rest)
raises (
Invalidids,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationDataSeq get_observations_by_qualifier (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationDatalterator the_rest)
raises (
Invalidids,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,

3-46 Clinical Observations Access Service, v1.0 April 2001

InvalidQualifiers,
DuplicateQualifiers);

ObservationDataSeq get_observations_with_policy (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationDatalterator the_rest)

raises (

Invalidlds,

Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

count_observations()

Description:

Return the number of observations which match the given
search parameters.

get_observation(), get_observations()

Description:

Return the observation(s) corresponding to the passed in
Observationld (S).

get_observations_by_time()

Description:

Return all observations known by the server that match
criteria specified by the “who,” “what,” and “when”

parameters. A match is determined by the server’s matching
engine, in accordance with default policies.
In essence, the “who,” “what,” and “when” filter the database
of observations.

(continued)

COAS,v1.0 Query-Oriented Interface Specifications April 2001 3-47

Description: Time spans with end times greater than the server’s current
time are interpreted to mean “through now,” so indicate the
concept “from a given time through now” with a time stamp
which hasLATEST_TIME as the end time. Indicate the
concept of “all time previous to a given time” with a time
stamp which haEARLIEST_TIME as the start time.
Therefore, a time span froBARLIEST_TIME to
LATEST_TIME is equivalent to a “don’t care” for time, and
includes all time possible through now.

A wildcard for individual TimeStamp elements,
TIME_WILDCARD = “?”, is provided in the constants section.
Use this character to indicate that a specific field should pe
treated as a wildcard. For example, “1999-??-02T22:00:00Z"
would be equivalent to the concept of “the 2nd day of any
month in 1999, at 22:00:00 GMT".

Parsing for a wildcard is less efficient than a proper
timestamp, so use the constants mentioned above,
EARLIEST_TIME andLATEST_TIME, to indicate open-ended
searches in the past and searches which include the most
current information, rather thanTameStamp filled with
wildcard characters.

The “max_sequence” parameter indicates the maximum
number to be returned within tl@bservationDataSeq . A
client may choose to receive many or few items via the
synchronously returne@bservationDataSeq of
get_observation*() . If the server determines that more than
max_sequence observations meet the criteria for returning,
the remaining observations are returned via the iterator
“the_rest”.

Note —A server may not support iterators (See Section 3.7.2, “AccessComponent
Interface,” on page 3-60.), since iterators are remote objects and require the server to
keep state. In the cases where all observations fit in the sequence, and where iterators
are not supportedhe_rest will be null, and the returne®bservationDataSeq will

contain all the observations.

3-48 Clinical Observations Access Service, v1.0 April 2001

get_observations_by_qualifier()

Description: Return observations that match all parameters, including the
additional qualifiers. The qualifiers provided in the parameter
are for filtering the database, NOT to indicate what qualifiers
to return. Specify what qualifiers to return with
QUALIFIER_RETURN_POLICY.

get_observations_with_policy()

Description: Return observations that match all parameters, according to
the overriding policies specified in the “policy” parameter,

3.5.3 AsynchAccess Interface

<<Interface>>
AsynchAccess

®count_observations()

] ®get_observation()
AccessComponent %get_observations()
%get_observations_by_time()
®get_observations_by_qualifier()
®get_observations_with_policy()
®cancel get()

<<Interface>>

Figure 3-19 AsynchAccess Interface

interface AsynchAccess : AccessComponent {

ServerCallld count_observations (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observation (
in Observationld observation_id,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observations (

in ObservationldSeq observation_ids,
in ClientCallld client_call_id,

COAS,v1.0 Query-Oriented Interface Specifications April 2001 3-49

3-50

in AsynchCallback client_callback);

ServerCallld get_observations_by_time (
in ObservedSubjectld who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observations_by_qualifier (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observations_with_policy (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

void cancel_get (
in ServerCallld server_call_id);

J

The AsynchAccess component offers a means to make requests without blocking for

the result synchronously. However, it adds complexity to the client. In particular, the

client must instantiate a callback interface, register this CORBA object with the ORB,
and take responsibility for timing out a request.

In contrast, a synchronous CORBA call can time-out a request in a relatively automatic
fashion, with a timer in the TCP layer, typically set to 30 seconds or 1 minute, and
generally provided within an ORB. An asynchronous request has no such automatic
timer support in the ORB. A client must provide logic so that when a call does not
complete, for whatever reason, the client does the right thing.

Also, there is no implied timing dependency between finishing a request and getting a
reply. An asynchronous reply might begin before the request is completed. Clients
must be prepared for an answer callback before they begin a request. In particular, the
client_call_id should be ready for use at the callback implementation before the
request is made, to identify any response if multiple calls are outstanding.

Clinical Observations Access Service, v1.0 April 2001

count_observations()

Description:

Returns the number of observations that match the given
search parameters.

get_observation*()

Description:

The semantics fget_observation*() queries are the same as
Section 3.5.2, “QueryAccess Interface,” on page 3-45.
However, the results are delivered asynchronously.

In addition to the standargkt_observation*() parameters, the
client provides an object reference to AgynchCallback .
The server calls back to that object reference in order to
return the results of the query.

Also, aclient_call_id is provided by the client. The server
returns this value when it calls th@ynchCallback so that

the client can know which outstanding call is being returned
(assuming there are multiple outstanding calls for this client).

Therefore, the client should make certain that each ID is
unique within the scope of outstanding requests. For

implementation, a simple count of requests since instantiation

should be sufficient, if multiple calls can be outstanding at
one time. If the client does not make multiple outstanding
calls, theclient_call_id has no utility and a constant can be
used.

The ServerCallld returned fromget_observation*() is an ID
from the server for the request itself. The sole purpose ofi t
ServerCallld is for cancellation. This identifier distinguishes
the request uniquely within the server, among all requests
from all clients. Again, for implementation, a simple count|o
incoming calls should be sufficient.

cancel_get()

Description:

A client can notify the server to cancel a request that has
yet completed. For example, consider a web browser whe
the user clicks on the “stop” button. In COAS, the client
passes in th&erverCallld , which was previously returned
from theget_observation*() call. (Another alternative would

he

be to use ORB-specific calls to terminate the TCP connection,
but that is outside the scope of COAS, and may not allow|the

server to properly terminate processing.)

COAS,v1.0 Query-Oriented Interface Specifications April 2001 3-51

Note —The cancel_get() function is a courtesy to the server only. The server is NOT
responsible to actually stop the call. The call may complete, and the server may return
the result by calling th@synchCallback of the client. The client is responsible for
discarding the answer in this case. Another alternative would be to unregister the
AsynchCallback with the ORB.

3.5.4 AsynchCallback Interface

interface AsynchCallback {

void put_observations (
in ObservationDataSeq as_sequence,
in ObservationDatalterator as_iterator,
in ClientCallld client_call_id,
in QualifiedCodeStrSeq result_status);

void put_exception (
in ClientCallld client_call_id,
in AsynchException the_exception);

put_observations()

Description: Called byasynchAccess server to return the results from
asynchronous queries. The_sequence parameter contains
the observations up to the maximum number specified in|the
original call withmax_sequence . If there are more items
thanmax_sequence , the parameteds_iterator will have one
item, a reference to @bservationDatalterator , from which
the remaining observation items can be retrieved from the
server. Theas_iterator parameter will bewll if the returned
observations fit within thas_sequence parameter or the
server does not support iterators (see “AccessComponent
Interface” on page 3-60). Thesult_status parameter
supplies the client witlQualifiedCode s constructed from
constantsCOMPLETING_RESULT or PARTIAL_RESULT to
indicate the status of the callback--completing a request, |or
only partially completing a request.

U

put_exception()

Description: Called by thasynchAccess server to return an exception
condition.

3-52 Clinical Observations Access Service, v1.0 April 2001

3.5.5

ConstraintLanguageAccess

interface ConstraintLanguageAccess : AccessComponent {
readonly attribute ConstraintLanguageSeq supported_languages;

ObservationDataSeq get_by_constraint (
in ConstraintExpression constraint,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationDatalterator the_rest)
raises (
InvalidConstraint,
InvalidPolicies,
DuplicatePolicies);

supported_languages

Description: The sequence of constraint languages, which are valid for
constraint queries.

get_by_constraint()

Description: Parse the given constraint and return matching observatjons.
The policy parameter overrides any default policies. As with
otherget_*() calls, if more observations match the constrajnt
than indicated by thenax_sequence parameter, the
remaining observations are returned via the iterator.

3.6 Event and Notification Interface Specifications

This section discusses tibaObservationAccess interfaces that subclass various
interfaces inCosEvent . They support the notification of clients by one or more servers
when an observation of interest has “arrived.” They also send either the
ObservationData itself, or sufficient information to retrieve the observation using
anotherDsObservationAccess interface.

3.6.1 EventSupplier Interface

interface EventSupplier : AbstractManagedObject, PushSupplier {
readonly attribute Endpointld endpoint_id;
QualifiedCodeStrSeq obtain_offered_codes ();
void connect_push_consumer (

in PushConsumer push_consumer)
raises (

COAS,v1.0 Event and Notification Interface Specifications April 2001 3-53

CosEventChannelAdmin::AlreadyConnected);

PushConsumer get_connected_consumer ()
raises (
CosEventComm::Disconnected);

void subscribe (
in SubscriptionSeq subscriptions)
raises (
CosEventComm::Disconnected);

SubscriptionSeq describe_subscriptions ()
raises (
NoSubscription);

void generate_test_event (
in ClientCallld clientld)
raises (
CosEventComm::Disconnected);

J

The EventSupplier interface encapsulates all that is necessary to supply events. Each
supplier instance can be connected with exactlyEweatConsumer . A server

typically creates one or more suppliers for each client that wishes to receive events. A
typical client implements thEventConsumer interface, and connects this consumer
instance with arEventSupplier provided by the server’s

SupplierAccess.create_supplier()

endpoint_id

Description: When instantiated by tlsepplierAccess factory, an
EventSupplier receives an identifier from the factory. This
identifier may be used to relocate the supplier by the factory.

obtain_offered_codes()

Description: Returns a sequence of observation codes that this supplier can
supply.

connect_push_consumer()

Description: Establishes 1/2 of a connection, from the point of view of the
supplier. The analogous
EventConsumer.connect_push_supplier() must also be
called to complete the connection from the client’s point ¢
view. The supplier can cadlisconnect() on the consumer in
order to break the connection

-+

3-54 Clinical Observations Access Service, v1.0 April 2001

subscribe()

Description: Establish an ongoing request for observations.

* The query is for future observations (as opposed to past
observations).

* The time span is implied to be from the timgbscribe() is
called until this consumer is disconnected.

* The observations are returned within the
CosEventComm::push() operation inherited by
EventConsumer . The argument within thipush() operation is
a Corba::any . Within the Corba::any is anObservationData .

The call tosubscribe() begins a flow of events. Before the
first call to subscribe() , no events flow. Supplier and
consumer must be connected already, or exception
Disconnected is thrown. Any subsequent call to
subscribe() removes the previous subscription and begins a
new subscription.

describe_subscription()

Description: Returns the current subscription that has been set on the
supplier.

generate_test_event()

Description: Sends a test event to the consumer. This operation will be
called by a savvy client after an interval of inactivity, to
ascertain whether all is well in the event system and network.
Without this direct request for a test event, a client might
never know of network or event system problems.

The event resulting from this call will arrive, as with all events, Goeba::any .
Within the Corba::any will be anObservationData as follows:

ObservationDataStruct
code: TEST_EVENT // see constants
composite: [] /I empty
qualifiers: [] /I empty
value: Any { clientld } // Any containing a long, the value of the input parameter

In other words, a®bservationDataStruct with a predetermined codéEST_EVENT
from the constants section of this IDL, and with a payload of the given input parameter
clientld .

3.6.2 EventConsumer Interface

interface EventConsumer : AbstractManagedObject, PushConsumer {

readonly attribute Endpointld endpoint_id;

COAS,v1.0 Event and Notification Interface Specifications April 2001 3-55

SubscriptionSeq obtain_subscriptions ();

void connect_push_supplier (
in PushSupplier push_supplier)
raises (
CosEventChannelAdmin::AlreadyConnected);

PushSupplier get_connected_supplier ()
raises(
CosEventComm::Disconnected);

h

The EventConsumer interface encapsulates all that is necessary to receive events.
Each consumer instance can be connected with exactlgvameSupplier . A server
would itself create agventConsumer only when the server wished to receive events
itself. Typically, a client would NOT caltonsumerAccess.create_consumer() , but
rather implement th&ventConsumer interface directly. After instantiating one of
these “home grown” instances BfentConsumer , a typical client would connect this
consumer instance with @&ventSupplier provided by the server’s
SupplierAccess.create_supplier()

endpoint_id

Description: When instantiated by tllensumerAccess factory, an
EventConsumer receives an identifier from the factory. Th
identifier can be used to retrieve a reference to the
EventConsumer Via

ConsumerAccess.get_consumer_by_id()

Note that when th&ventConsumer interface is implemented
by a typical client (not ®sObservationAccess server), the
identifier is neither necessary nor relevant.

(7]

obtain_subscriptions()

Description: Returns a sequenceSubscriptions that this consumer
would like to obtain. This operation is useful in an application
management scenario. For example, a management
application can use this operation to know what subscriptions
to apply when connecting up a client and supplier without|the
explicit advance knowledge of this connection by those
endpoint. Also, this operation could be reused by a client
when subscribing, since it must have just such a list of
subscription folEventSupplier.subscribe()

3-56 Clinical Observations Access Service, v1.0 April 2001

connect_push_supplier()

Description: Establishes half a connection, from the point of view of the
consumer. The analogous
EventSupplier.connect_push_consumer() must also be
called to complete the connection from the server point of
view. The consumer can calisconnect() on the supplier in
order to break the connection.

get_connected_supplier()

Description: Returns a reference to the conneEtathtSupplier , or a
Disconnected exception if no connection has been
established yet.

3.6.3 SupplierAccess Interface

<<Interface>> <<Interface>>
AccessComponent < | SupplierAccess

| %create_supplier()
<<Interface>> L} —— %get_supplier_by _id()
AbstractFactory

Figure 3-20 SupplierAccess Interface

interface SupplierAccess : AbstractFactory, AccessComponent {

EventSupplier create_supplier ()
raises (
MaxConnectionsExceeded);

EventSupplier get_supplier_by_id (
in Endpointld endpoint_id)
raises (
InvalidEndpointld);

COAS,v1.0 Event and Notification Interface Specifications April 2001 3-57

create_supplier()

Description: Creates a neBventSupplier instance and returns it.

get_supplier_by_id()

Description: This operation returns an object reference to the
EventSupplier corresponding to the parameterdpoint_id .
A SupplierAccess is responsible to keep track of all the
EventSupplier s created, with theiEndpointid s.

3.6.4 ConsumerAccess Interface

<<Interface>>

<< >>
AccessComponent | Interface
f— ConsumerAccess

<<Interface>> | \/ %create_consumer()
AbstractFactory | %get_consumer_hy_id()

Figure 3-21 ConsumerAccess Interface

interface ConsumerAccess : AbstractFactory, AccessComponent {

EventConsumer create_consumer ()
raises (
MaxConnectionsExceeded);

EventConsumer get_consumer_by _id (
in Endpointld endpoint_id)
raises (
InvalidEndpointld);

3-58 Clinical Observations Access Service, v1.0 April 2001

create_consumer()

Description: Creates a nelwventConsumer instance. Each consumer
instance can be connected with exactly BmentSupplier . A
server would create a consumer only when the server wished
to receive events from another COAS server. A typical client
would NOT callcreate_consumer() , but instead implement
the EventConsumer interface, and connect this “home
grown” instance with atmEventSupplier provided by the
DsObservationAccess Server.

get_consumer_by_id()

Description: This operation returns a reference toEVentConsumer
corresponding to the parameterdpoint_id . To accomplish
this, theConsumerAccess factory should aggregate a
reference and abBndpointld for all theEventConsumer s that
it creates.

3.7 Utility Interface Specifications

The rest of thedsObservationAccess interfaces are described in this section.

3.7.1 ObservationLoader Interface

interface ObservationLoader : AccessComponent {

void load_observations (
in ObservationDataSeq observations);

load_observations()

Description: Load observations intoDaObservationAccess — Server.
Intended for use by legacy systems, which cannot be queried,
but can output some stream of data.

COAS,v1.0 Utility Interface Specifications April 2001 3-59

3.7.2 AccessComponent Interface

AccessComponent

«icoas_version : string

&pid_service : IdentificationComponent
oterminology_service : TerminologyS ervice
oitrader_service : TraderComponents
gnaming_service : NamingContext

@get_components()
®get_supported_codes()
> [®get_supported_qualifiers()
_— get_supported_pol icies() —

= Wget_default_policies() T
Sget_type_co de_for_observation_type()
Ware iterat ors_supported()
Wget_curent_time()

|
? \
) y .

ObservationLoader‘ ‘ ConsumerAccess ‘ ‘ SupplierAccess ‘ ‘ ConstraintLanguageAccess ‘ ‘ As;/nchAccess

Figure 3-22 AccessComponent Interface

interface AccessComponent {
readonly attribute string coas_version;
readonly attribute IdentificationComponent pid_service;
readonly attribute TerminologyService terminology_service;
readonly attribute TraderComponents trader_service;
readonly attribute NamingContext naming_service;
AccessComponentData get_components ();
QualifiedCodeStrSeq get_supported_codes (
in unsigned long max_sequence,
out QualifiedCodelterator the_rest);
QualifiedCodeStrSeq get_supported_qualifiers (
in QualifiedCodeStr code)
raises (
InvalidCodes,
Notimplemented);

QualifiedCodeStrSeq get_supported_policies ();

QueryPolicySeq get_default_policies ();

3-60 Clinical Observations Access Service, v1.0 April 2001

TypeCode get_type_code_for_observation_type (
in QualifiedCodeStr observation_type)
raises (
InvalidCodes,
Notimplemented);

boolean are_iterators_supported ();

TimeStamp get_current_time ();
h

AccessComponent is the superclass of all componemscessComponent allows
discovery of the context of OMG services that a given component may use, in the form
of references for pertinent services. These attributes maylhendicating that the

given service is lacking or unknown. Note that for each interface that provides the
AccessComponent operations, those interfaces return the same response to each
operation for a specific COAS server. So for example, a
QueryAccess.get_supported_codes() operation will return the same response as the
BrowseAccess.get_supported_codes() for the same COAS server.

coas_version

Description: Version of COAS specification supported by this
DsObservationAccess — server, starting with “1.0” for the firs
approved specification.

pid_service, terminology_service, trader_service, naming_service

Description: References to other OMG standard services, which comprise
the context of thi®DsObservationAccess server.

get_components()

Description: This operation returns ancessComponentData .
AccessComponentData contains references to all
implemented components as a convenience for clients that
have one reference to a component, and wish to use a
different component.

get_supported_codes()

Description: A complete list of query codes for which this server can
supply responses. Parameti@ax_sequence indicates the
number of codes that the client wishes to be returned withi
the immediately returned sequence. Paramhterest
contains an iterator for remaining items if and only if the
number of codes is greater thaax_sequence .

n

Note —A query code is synonymous withaalifiedCode from a terminology system
and denotes a type of observation, such as Complete Blood Cound, Systolic Blood
Pressure, etc.

COAS,v1.0 Utility Interface Specifications April 2001 3-61

get_supported_qualifiers()

Description:

A complete list of qualifiers that this server can match and
supply as returned qualifiers, with respect to the given
observation code. A server may be able to match/supply
different sets of qualifiers for different codes.

get_supported_polici

es()

Description:

A complete list of policies that this server can employ when
filtering on desired observations. The returned list is of codes
only.

get_default_policies()

Description:

The policies that are in effect unless overridden via
get_observations_with_policy() . The returned list is a list of
name-value pairs, both the name of the policy and its default
value.

get_type_code_for_observation_type()

Description:

With each observation that a COAS server supports there is a
corresponding structure to contain and communicate the
observation’s value. For simple observation values, this might
be one of the structures definedDeObservationvalue . For
more complex values, it might be a hierarchy of
DsObservationData structures.

The methodyet_type_code_for_observation_type() returns
the corresponding IDL TypeCode for each requested
observationQualifiedCode . However, a typical client may
have these correspondences hardwired, expecting a certa
IDL structure for a given observation code.

n

are_iterators_suppor

ted()

Description:

Returns a boolean describing whether this component can
return iteratoObservationDatalterator and iterators for som
of the data values iDsObservationValues . Iterators are
remote objects.

If a server does not support iterators, @lservationData
andObservationValue items are returned within sequences,
and all out-parameter iterators returned as null. In this case,
the input parametenax_sequence (present in many
operations, indicating the client’s preferred number of items
returned in the sequence) is ignored by the server as it returns

all observations within the sequence.

3-62 Clinical Observations Access Service, v1.0 April 2001

Description If a server supports iterators, the server will pay attention to
(continued): the max_sequence input parameter, and an iterator will be
instantiated and returned when the search for observations is
successful and the input parameateix_sequence is set to
less than the total number of observations found. Returning
an iterator requires the server to be stateful, since the iterator
is a remote object that must be instantiated and registered
with the ORB for some lifetime.
For example, an implementer expecting a very large and busy
set of clients may want to makeQaieryAccess component
which is stateless, and thus choose to return FALSE to
are_iterators_supported()

get_current_time()

Description: Return &imeStamp for the current time on the server. This
can be useful for a client that resides in another timezone or
has gquestionable date/time settings (like a PC). A client gan
base a query on the server’s time rather than the client’s time.

3.7.3 ObservationDatalterator Interface

interface ObservationDatalterator : AbstractManagedObiject {
unsigned long max_left ();
boolean next_n (

in unsigned long n,
out ObservationDataSeq observation_data_seq);

h

max_left()

Description: This operation returns the number of items still left on the
iterator.

next_n()

Description: This operation returns the numbepDb§ervationData
objects as an out parameter as is indicated by the passed in
‘n’ parameter or the maximum left. Removes the returned
objects from the iterator before returning.

COAS,v1.0 Utility Interface Specifications April 2001 3-63

3.7.4 QualifiedCodelterator Interface

interface QualifiedCodelterator : AbstractManagedObiject {

unsigned long max_left ();

boolean next_n (

in unsigned long n,
out QualifiedCodeStrSeq codes);

max_left()

Description:

This operation returns the number of items still left on the

iterator.

next_n()

Description:

This operation returns the numbeRa#ilifiedCodeStr
objects as an out parameter as is indicated by the passe

‘n’ parameter or the maximum left. Removes the returned

objects from the iterator before returning.

d in

3.7.5 AbstractFactory Interface

interface AbstractFactory {

readonly attribute long max_connections;

readonly attribute EndpointldSeq current_connections;

max_connections

Description:

This attribute indicates the maximum number of connect
the server will allow to be active at one time. Additional

event suppliers and consumers will not be created beyond
limit.

current_connections

Description:

This attribute contains a sequence of endpoint IDs for the

currently created event consumers or suppliers.

3-64 Clinical Observations Access Service, v1.0 April 2001

ons

this

3.7.6 AbstractManagedObject Interface

interface AbstractManagedObject {

void done ();

done()

Description: Clients calls this operation when they are done using an
object. This signals the server to deactivate or garbage callect
the object. However, a savvy server will enforce a timeout
after some amount of idle time for each managed object |n
order to cleanup after ill-behaved clients or traumatic client
termination.

COAS,v1.0 Utility Interface Specifications April 2001 3-65

3-66 Clinical Observations Access Service, v1.0 April 2001

4.1 Overview

DSObservation Values 4

Contents

This chapter contains the following topics.

Topic Page
“Overview” 4-1
“Data Type Definitions” 4-2
“Supporting Types” 4-2
“Time Types” 4-3
“Person Type” 4-3
“Nolnformation Type” 4-3
“Text Types” 4-4
“Coded Types” 4-5
“Multimedia Types” 4-6
“Simple Measurement Types” 4-7
“Complex Measurement Types” 4-8

The DsObservationvalue module defines the data containers for the Clinical
Observations Access Service (COAS) specificat@servationvalue types are
containers for the results of observing forms of biological phenomenon.

Clinical Observations Access Service, v1.0 April 2001 4-1

This IDL was based on the Information Model presented in Section 4.1, “Overview,”
on page 4-1. A subset of all possible data containers was selected, with the goal of
making them as simple as possible. This set is not complete, but is believed to be
disjoint.

If the Objects-by-Value (OBV) technology was used, many of the data types defined in
this module would have been sub-classes ablaservationvalue class. However,

OBV was not available to a sufficient degree during the finalization of this
specification. The submitters tried to preserve the notion of inheritance even in
defining the data containers stsucts , by using a commendstruct
name>:ObservationvValue to indicate this intended inheritance. A future revision of
COAS may replace theORBA::any in ObservationDataStruct with OBV.

4.2 Data Type Definitions

The following sections describe all the OMG IDL for the data types used within the
DsObservationvalue module. To indicate which data types are intended to be sub-
classes fromDbservationvalue , we have placed a comment immediately before those
definitions containing the syntaxéhild class>: ObservationVvalue ".

/I File: DsObservationValue.idl

#ifndef _DS_OBSERVATION_VALUE_IDL_
#define _DS_OBSERVATION_VALUE_IDL_

#include "DsObservationAccess.idl"
#pragma prefix "omg.org"

module DsObservationValue

{
J
#endif / _DS_OBSERVATION_VALUE_IDL_

The “Ds” prefix of DsObservationvalue stands for “Domain Service.” All OMG
services are expected to start with “Ds” to isolate a particular name space from
potential clashes.

4.3 Supporting Types

typedef TerminologyServices::ConceptCode ConceptCode;
typedef NamingAuthority::QualifiedNameStr QualifiedCodeStr;

typedef DsObservationAccess::AbstractManagedObject AbstractManagedObiject;

ConceptCode andQualifiedCodeStr are imported type definitions from the Lexicon
Query Service (LQS) and Person ldentification Service (PIDS) specifications.

Clinical Observations Access Service, v1.0 April 2001

4

AbstractManagedObject is an abstract interface that provides a convenience function
for a client to notify the server when they are done using some remote object.

4.4 Time Types

/l DateTime : ObservationValue;
typedef DsObservationAccess::TimeStamp DateTime;

/I TimeSpan : ObservationValue;
typedef DsObservationAccess:: TimeSpan TimeSpan;

These data types reuse the time definitions fim@bservationAccess . Descriptions
for them can be found in “DateTime” on page 4-3 and in Section 3.3.10, “TimeStamp,”
on page 3-23.

4.4.1 DateTime

A DateTime conveys a point in time, including the date.

4.4.2 TimeSpan

A TimeSpan conveys a period of time, with a beginning and end.

4.5 Person Type

/I Person : ObservationValue;
typedef DsObservationAccess::ObservedSubjectld Person;

This data type is reused frobsObservationAccess . A description for it can be found
in Section 3.3.2, “External Typedefs,” on page 3-16.

4.5.1 Person

A Person contains an ID from a PIDS. It can be used to identify an organ, patient,
healthcare provider, or population.

4.6 Nolnformation Type

/l NoInformation : ObservationValue;
struct Nolnformation {
QualifiedCodeStr reason;
string text_description;

J

const QualifiedCodeStr NO_INFORMATION =
"DNS:omg.org/DsObservationValue/NO_INFORMATION";

COAS,v1.0 Time Types April 2001 4-3

4-4

There are instances when it is appropriate to convey that information is unavailable or
missing. For further discussion and an example see “Nolnformation” on page 4-4.

4.6.1 Nolnformation

A Nolnformation Vvalue indicates both that specific information is missing and how or
why it is missing. It can occur in place of any other observation value.

reason

Description: Theeason attribute is used to denote why the information is
missing or unavailable. This attribute iQaalifiedCode and

should come from a well-defined terminology system.

text_description

Description: Thetext_description attribute contains a text string to be
displayed in support of the reason attribute.

NO_INFORMATION is aQualifiedCode to be used in an
AtomicObservation to indicate that the value it contains is
“Nolnformation.” This code is defined here because we
believe that this concept does not appear in existing standard
coding schemes. It is our intention for this code to fill the gap
until this concept appears in a standard coding scheme.

4.7 Text Types

/l PlainText : ObservationValue;
typedef string PlainText;

/I UniversalResourceldentifier : ObservationValue;
struct UniversalResourceldentifier {

ConceptCode protocol;

string address;

h
/I PhysicalLocationDescription : ObservationValue;

typedef string PhysicalLocationDescription;

Although there are several data types that use a string to carry the information, only
one communicates the observation directly. The others contain textual references or
pointers to the location or resource where the data can be accessed.

4.7.1 Plain Text

PlainText is used to communicate observation values as ideas in the form of writing. It
is expected that along with the text will be a qualifier that indicates the language in
which the text is written.

Clinical Observations Access Service, v1.0 April 2001

4.7.2 UniversalResourceldentifier

A UniversalResourceldentifier is used to reference information that has some tie to a
technology that can perform some action.

protocol

Description: This is the protocol associated with the address. The protocol
indicates the technology to be used to interpret the address.
For example, http.

address

Description: The address attribute contains some structured sequence of
characters that the protocol knows how to interpret. For
example, www.example.com.

4.7.3 PhysicalLocationDescription

A PhysicalLocationDescription is used to reference information or items that are not
located within some information space, but are instead located in some physical space

4.8 Coded Types

/I CodedElement : ObservationValue;
typedef TerminologyServices::QualifiedCodelnfo CodedElement;

/I LooselyCodedElement : ObservationValue;

struct LooselyCodedElement {
string text;
TerminologyServices::CodingSchemeld coding_scheme_id;
TerminologyServices::Versionld version_id;

J

The coded data types provide a mechanism to communicate observation values that
have been coded in some form or another. Further information can be found in the
“CodedElement” and “LooselyCodedElement” sections below.

4.8.1 CodedElement

A CodedElement is coded in the sense that it is a unique identifier. This unique
identifier can then be used to ask a terminology system specific questions about the
CodedElement . For example, its representation based on some context, or its
definition.

4.8.2 LooselyCodedElement

There are times when a code that the user wants cannot be realized or found within a
terminology system (e.g., is not in the list of allowable values). In which case the
LooselyCodedElement can be used to send text instead.

COAS,v1.0 Coded Types April 2001 4-5

4-6

text

Description:

Theext attribute is a String and is used when no
CodedElement from a terminology system can be
determined.

coding_scheme_id

Description:

Thecoding_scheme_id attribute is the id, from an LQS, that
is used to identify the coding scheme where the text was
intended.

version_id

Description:

Theversion_id attribute is used to identify the version of the
coding scheme where the text was intended.

4.9 Multimedia Types

typedef sequence<octet> Blob;

interface Multimedialterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (

in unsigned long n,
out Blob multimedia_part);

J

/I Multimedia : ObservationValue;

struct Multimedia {

string content_type;
string other_mime_header_fields;

Blob a_blob;

unsigned long long total_size;
Multimedialterator the_iterator;

J

We define a supporting data type and an interface for the Multimedia data type.

Blob

Description:

ABlob is just an opaque container for data, even more
opaque than &ORBA::any .

Multimedialterator

Description:

TheMultimedialterator is used to retrieve data in chunks.
Iterators in general are described in more detail in
Section 3.7.3, “ObservationDatalterator Interface,” on
page 3-63.

Clinical Observations Access Service, v1.0 April 2001

4.9.1 Multimedia

For the communication of observations such as images, audio or video recordings, or
large documents, the Multipurpose Internet Mail Extensions (MIME) standard is used.

content_type

)

Description: Thecontent_type is a structured attribute that identifies th
general media type (e.g., Application, Audio, Image,

Message, Model, Multipart, Text and Video, and the specific
format used).

other_mime_header_fields

Description: Theother_mime_header_fields contains the rest of the
MIME header. We have made this available so that clients|can
gain further information about what is contained in this data

value.

a_blob

Description: Thea_blob attribute contains the observation value itself.

total_size

Description: Theotal_size attribute contains the number of bytes of data
in the Blob.

the_iterator

Description: the_iterator may contain a reference to a multimedia iterator

when the Blob is larger than the client wants to receive at|one
time. It can be used to retrieve the rest of the Blob in chunks.

4.10 Simple Measurement Types

/I Numeric : ObservationValue;

struct Numeric {
QualifiedCodeStr units;
float value;

J

/I Range : ObservationValue;
struct Range {
QualifiedCodeStr units;
float lower;
float upper;

J

/I Ratio : ObservationValue;
struct Ratio {

float numerator;

float denominator;

COAS,v1.0 Simple Measurement Types April 2001 4-7

The simple measurement types are designed to contain single or paired numbers, that
is guantitative measurements or observations. The units associated whhimtédéc
andRange types areQualifiedCode s and should come from a well-defined

terminology system. All other attributes mentioned in the Measurement sections should
be attached to the relevasitbmicObservation as qualifiers.

4.10.1 Numeric

Numeric is used to communicate a single measurement or quantitative value.

4.10.2 Range

Range is used to associate two related values together. For example, 1<= X <= 5. Itis
assumed that the value in the lower attribute is less than or equal to the value in the
upper attribute.

4.10.3 Ratio

A Ratio value contains a numerator quantity and a denominator quantity, and is used in
those situations where the ratio is more easily understood than the equivalent real
number. It should be noted that the ratio data type must not be used as a handy
representation of two related values. In particular, blood pressure values, commonly
reported as 120/80 mm Hg, are not ratios!

4.11 Complex Measurement Types

4-8

struct XYPair {
float x;
float y;

b

typedef sequence<XYPair> XYPairSeq;
interface Curvelterator : AbstractManagedObiject {
unsigned long max_left ();

boolean next_n (
in unsigned long n,
out XYPairSeq curve_part);

J

/I Curve : ObservationValue;
struct Curve {
XYPairSeq xy_pairs;
QualifiedCodeStr x_units;
QualifiedCodeStr y_units;
unsigned long long total_size;
Curvelterator the_iterator;

Clinical Observations Access Service, v1.0 April 2001

4

In DsObservationvValue we define one data type that contains many measurements. To

support this data type several supporting methods must be defined.

XYPair, XYPairSeq

Description:

These are the low level data types for holding a vector of|data

pairs.

Curvelterator

Description:

TheCurvelterator , like all other iterators, is the mechanism
for retrieving the data in chunks.

4.11.1 Curve

Curve is a data type for retrieving paired measurements or values.

Xy_pairs

Description:

Thexy_pairs contains the data sequence.

X_units, y_units

Description: Thex_units andy_units areQualifiedCode and should come
from a well-defined terminology system. In healthcare, the
x_units is usually a time (e.g., milliseconds, seconds, or
minutes). They_units is often a quantitative measurement.

total_size

Description: Theotal_size attribute contains the total number of elements

in the curve.

the_iterator

Description:

the_iterator may contain a reference tcCarvelterator that
can be used to retrieve a very large curve data sequence
chunks.

n

COAS,v1.0 Complex Measurement Types April 2001 4-9

4-10 Clinical Observations Access Service, v1.0 April 2001

DSObservationTimeSeries 5

Contents

This chapter contains the following topics.

Topic Page
“Overview” 5-1
“Data Type Definitions” 5-1
“External Typedefs” 5-2
“Time Types” 5-2
“Typedef, Enum, Union, and Sequence Types” 5-3
“Iterator Types” 5-3
“TimeSeries” 5-3
“Exceptions” 5-4
“TimeSeriesRemote” 5-4

5.1 Overview

The DsObservationTimeSeries module defines an extension to the basic data types

and interfaces of thBsObservationAccess andDsObservationValue modules. The
TimeSeries data types and operations were designed to support the unique features and
needs of accessing vital sign waveforms.

5.2 Data Type Definitions

The following sections list all the IDL for the data types used within the
DsObservationTimeSeries module.

Clinical Observations Access Service, v1.0 April 2001 5-1

5-2

/l File: DsObservationTimeSeries.idl

#ifndef _DS_OBSERVATION_TIME_SERIES_IDL_
#define _DS_OBSERVATION_TIME_SERIES_IDL_

#include <DsObservationAccess.idl>

module DsObservationTimeSeries

{
h
#endif / _DS_OBSERVATION_TIME_SERIES_IDL_

Provides antifdef wrapper to preclude multiple inclusions.

5.3 External Typedefs

5.4 Time Types

typedef DsObservationAccess::AbstractManagedObject AbstractManagedObject;
typedef DsObservationAccess::NameValuePair NameValuePair;

typedef DsObservationAccess::QueryPolicy QueryPolicy;

typedef DsObservationAccess::QueryPolicySeq QueryPolicySeq;

typedef DsObservationAccess::ObservationQualifierSeq ObservationQualifierSeq;
typedef DsObservationAccess::QualifiedCodeStr QualifiedCodesStr;

typedef DsObservationAccess:: TimeStamp TimeStamp;

typedef DsObservationAccess::TimeSpan TimeSpan,;

Describes external dependencies.

/I TimeDelta : ObservationValue;

struct TimeDelta {
float delta; // calculated with constants below, NOT with calendaring
QualifiedCodeStr units;

k%

/I approximations for time deltas, NOT for calendaring

const float YEAR =31557600.0; // 60*60*24*365.25
const float MONTH = 2629800.0; // 60*60*24*365.25/12
const float DAY =86400.0; // 60*60*24

const float HOUR =3600.0; /1 60*60

const float MINUTE =60.0; /1 60

const float SECOND =1.0; /11

const float MILLISECOND = 0.001; // 1/1000

TimeDelta is intended for calculation with the time constants provided. For example,
an appropriate use dfmeDelta might be the time difference between the beginning of

an EKG session and the end of the session. This difference would be expressed as
seconds or milliseconds, with any necessary calculation (converting from minutes or
hours) via the constants provided. This is different than UTC calculations based on the
calendar. In particular, the number of seconds in a given calendar day or year may vary
since the spin of the earth varies, and UTC is kept in relative harmony with that spin.

Clinical Observations Access Service, v1.0 April 2001

5.5 Typedef, Enum, Union, and Sequence Types

typedef NameValuePair Filter;
typedef sequence<Filter> FilterSeq;

enum ValueSeqType { OtherSeqDataType, OctetType, ShortType,
LongType, LongLongType, FloatType, DoubleType
h

union ValueSeq switch (ValueSeqType) {
case OctetType :sequence< octet > octet_seq;
case ShortType :sequence< short > short_seq;
case LongType :sequence< long > long_seq;
case LongLongType : sequence< long long > long_long_seq;
case FloatType :sequence< float > float_seq;
case DoubleType : sequence< double > double_seq;
case OtherSegDataType : any the_any;

J

typedef sequence<QualifiedCodeStr,1> OptionalCodeSeq;
typedef sequence<float,1> OptionalFloatSeq;

5.6 lIterator Types

interface TimeSerieslterator : AbstractManagedObject {
unsigned long max_left ();

boolean next_n (
in unsigned long n,
out ValueSeq curve_part);

5.7 TimeSeries

/l TimeSeries : ObservationValue;
struct TimeSeries {
TimeDelta sample_period;
ValueSeq values;
QualifiedCodeStr value_units;
unsigned long long total_size; // number of items in values + remaining on
iterator
TimeSerieslterator the_iterator;

J

TimeSeries will include a non-null iterator if the number of items in the sequence
“values” is greater than the current policy
RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY. In other words, specify the
number of items desired in the sequence with this policy, and that will determine
whether an iterator is returned also.

COAS,v1.0 Typedef, Enum, Union, and Sequence Types April 2001 5-3

This policy is analogous to the parameter “max_sequence” in
QueryAccess.get_observations_by_time() and similar operations. The input
parameter “max_sequence” specifies the number of observations to return in a
sequence. But a single observation which containisnaSeries payload in its
ObservationDataStruct.value (CORBA::any) may have any number of items in the
TimeSeries.values (a sequenge The number of items desired by the client is specified
via theRETURN_MAX_SEQUENCE_FOR_VALUE_POLICY.

5.8 Exceptions

exception OutOfRange({};
exception Notimplemented{};
exception FilterNotSupported{};

exception NoValidVvalues{};

5.9 TimeSeriesRemote

struct TimeSeriesRemoteAttributes {
QualifiedCodeStr code;
QualifiedCodeStr units;
OptionalCodeSeq accuracy;
OptionalFloatSeq precision;
OptionalFloatSeq corner_frequency;
OptionalFloatSeq highest_frequency;
TimeSpan time_span;
TimeDelta time_delta;
unsigned long long total_size;
QualifiedCodeStrSeq supported_filters;
QueryPolicySeq supported_policies;

h

/I TimeSeriesRemote : ObservationValue;
interface TimeSeriesRemote : AbstractManagedObiject {

readonly attribute QualifiedCodeStr code;

readonly attribute QualifiedCodeStr units;

readonly attribute OptionalCodeSeq accuracy;
readonly attribute OptionalFloatSeq precision;

readonly attribute OptionalFloatSeq corner_frequency;
readonly attribute OptionalFloatSeq highest_frequency;
readonly attribute TimeSpan time_span;

readonly attribute TimeDelta time_delta;

readonly attribute unsigned long long total_size;
readonly attribute QualifiedCodeStrSeq supported_filters;
readonly attribute QueryPolicySeq supported_policies;
readonly attribute ValueSeqType default_value_type;

TimeSeriesRemoteAttributes get_attributes ();

5-4 Clinical Observations Access Service, v1.0 April 2001

float get_sample_number (
in unsigned long long index,
out ObservationQualifierSeq qualifiers)
raises (
OutOfRange);

float get_sample (
in TimeStamp time_stamp,
out ObservationQualifierSeq qualifiers)
raises (
OutOfRange);

TimeSeries get_snippet (
in TimeSpan time_span,
out ObservationQualifierSeq qualifiers)
raises (
OutOfRange);

float get_max (
in TimeSpan time_span)
raises (
OutOfRange,
NoValidValues);

float get_min (
in TimeSpan time_span)
raises (
OutOfRange,
NoValidValues);

float get_mean (
in TimeSpan time_span)
raises (
OutOfRange,
NoValidValues);

float get_median (
in TimeSpan time_span)
raises (
OutOfRange,
NoValidValues);

TimeSeries get_resampled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)
raises (
Notimplemented);

TimeSeries get_rescaled (
in TimeSpan time_span,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

COAS,v1.0 TimeSeriesRemote April 2001

5-5

J

raises (

Notimplemented);

TimeSeries get_resampled_rescaled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

raises (

Notimplemented);

TimeSeries get_filtered (
in TimeSpan time_span,
in FilterSeq filters,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)

raises (

Notimplemented,
FilterNotSupported);

(partial documentation follows)

get_attributes()

Description:

Returns the structure containing the attributes pertaining
the specificTimeSeriesRemote .

get_sample()

Description:

Return a single data point corresponding to the timestamp and

limiting qualifiers.

get_snippet()

Description: Gets a series of data points (i.e., a waveform snippet) that
correspond to the time period defined in the timespan.

get_max()

Description: Returns the numeric maximum data value in the defined
timespan.

get_min()

Description: Returns the numeric minimum data value in the defined
timespan.

get_mean()

Description: Returns the arithmetic mean or average data value of all the
individual data points included within the timespan specified.

get_median()

Description: Returns the median data value of all the individual data points

included within the timespan specified.

Clinical Observations Access Service, v1.0

April 2001

6.1 Overview

DSObservationRelations

Contents

This chapter contains the following topics.

Topic Page
“Overview” 6-1
“CEN Naming Convention” 6-2
“Observation Type for Relations” 6-2
“Relation Codes” 6-2

This section describes the relations that can exist between observations. In COAS, a
relation is modeled by a qualifying, composite observation that has a code describing
the relationship. This qualifying, composite observation links an observation and its

related observations.

For example, consider a relationship where Observation A is caused by a number of

other observations. In the graphic below, a linkditgservationDataStruct

structure,

Observation B, holds the identity of that relationship, along with the list of related

observations.

Clinical Observations Access Service, v1.0 April 2001

6-1

Figure 6-1 Observation B relates Observation A with other observations. A “IsCausedBy”
others.

A starter set of codes for relations is defined below. The relations indicated by these
codes are documented in the Comité Européen De Normalisation (CEN, European
Committee For Standardization) First Working Document of Electronic Healthcare,
Record Communication - Part 2: Domain Termlist, (CEN/TC 251/N98-116).

6.2 CEN Naming Convention

Code names from CEN/TC 251/N98-116 (table A.5) are created as follows:
® start with “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/".

® add relationship names from table A.5, translated as:
* replace “/” with “_".
 replace space with nothing, capitalizing next word.
* omit apostrophe, periods, parenthesis, and other punctuation.

6.3 Observation Type for Relations

Each observation code is associated with a particular IDL static type definition. All
relation codes refer to composite observations. Hence their observation type in COAS
is a composite observation, which is j@giservationData .

typedef DsObservationAccess::ObservationData RELATION_type;

6.4 Relation Codes

6.4.1 Produce

Relations that produce or are produced by healthcare activity.

const QualifiedCodeStr Produces =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Produces”;

const QualifiedCodeStr IsProducedBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsProducedBy";

6-2 Clinical Observations Access Service, v1.0 April 2001

6.4.2 Document
Relations that document or are documented by a healthcare activity.

const QualifiedCodeStr Documents =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Documents”;

const QualifiedCodeStr IsDocumentedBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsDocumentedBy";

6.4.3 Report
Relations that report or are reported by a healthcare activity.

const QualifiedCodeStr Reports =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Reports”;

const QualifiedCodeStr IsReportedBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsReportedBy";

6.4.4 Graphic
Relations that describe or are described by graphic properties of a graphic object.

const QualifiedCodeStr Describes =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Describes”;

const QualifiedCodeStr IsDescribedBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsDescribedBy";

6.4.5 Identified/Incorporated
Relations that are identified by or incorporates a graphic object within a study product.

const QualifiedCodeStr IsldentifiedWithin =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsldentifiedWithin";

const QualifiedCodeStr IsIncorporatedBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsIncorporatedBy";

6.4.6 Source/Derived

Relations that are sources for or are derived from a graphic property from a study
product.

const QualifiedCodeStr IsSourceFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsSourceFor";

const QualifiedCodeStr IsDerivedFrom =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsDerivedFrom";

COAS,v1.0 Relation Codes April 2001 6-3

6-4

6.4.7 Compared/Reference
Relations that are compared to or are reference for a situation.

const QualifiedCodeStr IsComparedTo =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsComparedTo";

const QualifiedCodeStr IsReferenceFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsReferenceFor";

6.4.8 Recorded
Relations that are recorded against a family history.

const QualifiedCodeStr IsRecordedAgainst =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsRecordedAgainst";

6.4.9 Supersede

Relations that supersede or are superseded by a clinical state.

The relation “supersede” must not be confused with mechanisms used to manage
different versions of a document. This link in fact refers to different judgements
performed at different times according to evolving evidence. For example, a change of
diagnosis after new evidence is discovered.

const QualifiedCodeStr Supersedes =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Supersedes”;

const QualifiedCodeStr IsSupersededBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsSupersededBy";

6.4.10 Framework
Relations that are a framework for or is framed in.a situation, or document.

const QualifiedCodeStr IsFrameworkFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsFrameworkFor";

const QualifiedCodeStr IsFramedBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsFramedBy";

6.4.11 Phase

Relations that have phases or are phases of a healthcare activity.

const QualifiedCodeStr HasPhase =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasPhase";

const QualifiedCodeStr IsPhaseOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsPhaseOf";

Clinical Observations Access Service, v1.0 April 2001

6.4.12 Next Phase
Relations that have a next phase or are a next phase in a healthcare activity.

const QualifiedCodeStr HasNextPhase =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasNextPhase";

const QualifiedCodeStr IsNextPhaseWRT =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsNextPhaseWRT";

6.4.13 Associate

Relations that are associated with a condition.

const QualifiedCodeStr IsAssociateTo =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsAssociateTo";

6.4.14 Assigned/Setting
Relations that are assigned to or are a setting for situation assigned to a problem.

const QualifiedCodeStr IsAssignedTo =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsAssignedTo";

const QualifiedCodeStr IsSettingFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsSettingFor";

6.4.15 Interpretation

Relations that are interpretations of or are interpreted as a condition of findings, or
reports.

const QualifiedCodeStr IsinterpretationOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsInterpretationOf";

const QualifiedCodeStr IsinterpretedAs =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsInterpretedAs";

6.4.16 Progress
Relations that have progress or are progress of a condition.

const QualifiedCodeStr HasProgress =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasProgress";

const QualifiedCodeStr IsProgressOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsProgressOf";

COAS,v1.0 Relation Codes April 2001 6-5

6-6

6.4.17 Cause

Relations that have causes or are causes of a condition.

const QualifiedCodeStr HasCause =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasCause”;

const QualifiedCodeStr IsCauseOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsCauseOf";

6.4.18 Co-exists

Relations that co-exist with a condition.

const QualifiedCodeStr CoExistsWith =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/CoExistsWith";

6.4.19 Evidence
Relations that have evidence for or are evidence of a diagnosis.

const QualifiedCodeStr HasEvidence =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasEvidence";

const QualifiedCodeStr IsEvidenceFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsEvidenceFor";

6.4.20 Triggers
Relations that trigger or are triggered by presence of a risk state.

const QualifiedCodeStr Triggers =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Triggers";

const QualifiedCodeStr IsTriggeredBy =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsTriggeredBy";

6.4.21 Goal
Relations that have goals or are goals of a healthcare activity.

const QualifiedCodeStr HasGoal =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasGoal";

const QualifiedCodeStr IsGoalOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsGoalOf";

6.4.22 Motivation

Relations that have motivation or are motivation for a healthcare activity.

Clinical Observations Access Service, v1.0 April 2001

const QualifiedCodeStr HasMotivation =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasMotivation";

const QualifiedCodeStr IsMotivationFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsMotivationFor";

6.4.23 Conseguence

Relations that have consequences or are consequences of a healthcare activity.

const QualifiedCodeStr HasConsequence =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasConsequence”;

const QualifiedCodeStr IsConsequenceOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsConsequenceOf";

6.4.24 Topic
Relations that have topics or are topics for informing.

const QualifiedCodeStr HasTopic =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasTopic";

const QualifiedCodeStr IsTopicFor =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsTopicFor";

6.4.25 Target
Relations that have targets or are targets for informing.

const QualifiedCodeStr HasTarget =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasTarget";

const QualifiedCodeStr IsTargetOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsTargetOf";

6.4.26 Provides Information
Relations that provide information about a condition.

const QualifiedCodeStr ProvidesinformationAbout =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/ProvidesIinformationAbout";

COAS,v1.0 Relation Codes April 2001 6-7

6-8

6.4.27 Circumstances
Relations that have circumstances or are circumstances for supporting an

const QualifiedCodeStr HasCircumstances =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasCircumstances”;

const QualifiedCodeStr IsCircumstanceOf =
"DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsCircumstanceOf";

Clinical Observations Access Service, v1.0 April 2001

activity.

DSObservationQualifiers !

Contents

This chapter contains the following topics.

Topic Page
“Overview” 7-1
“HL7 Naming Convention” 7-2
“Observation Type for Qualifiers” 7-2
“Qualifier Codes” 7-3

7.1 Overview

This chapter describes a set of codes defined for qualifiers. Qualifiers are observations
that can be used to modify and refine the meaning of other observations. For example,
Date_TimeOfTheObservation andOrderingProvider are common qualifiers. Along

with an observation like the amount of glucose in a blood sample, COAS clients will
often be interested in the time of the observation and the care provider who ordered it.

The codes below, mostly from HL7 v.2.3, provide a starter set of qualifiers. This set is
in no way intended to imply an exhaustive set. However, by use of the COAS naming
convention detailed below, the implication here is that all data definitions of HL7v2.3
are usable as observations and qualifiers.

Furthermore, definitions from the Comité Européen De Normalisation (CEN, European
Committee For Standardization) First Working Document of Electronic Healthcare,
Record Communication - Part 2: Domain Termlist, (CEN/TC 251/N98-116) are all
potential qualifiers and observations. See Section 6.2, “CEN Naming Convention,” on
page 6-2.

Clinical Observations Access Service, v1.0 April 2001 7-1

These codes are defined with qualifiers in mind, but the codes can be used as query
codes as well. For example, a COAS client might wish to query for all ordering
providers for a given patient over a given time span. In this case, the code
OrderingProvider would be used as the (query) observation code rather than in the list
of qualifiers regarding some other observation.

7.2 HL7 Naming Convention

Code names from HL7v2.3 are created as follows: based on HL7 v3.2 standard
distribution, appendix A. (APPA.doc), table A.6 DATA ELEMENT NAMES:

® start with “DNS:omg.org/DsObservationAccess/HL72.3/"

® add the HL7 segment, like OBX or PID, plus a slash

® add HL7 data element names taken from table A.6, translated as:
e replace “/" with “_"
e replace space with nothing, capitalizing next word
* omit apostrophe, periods, parenthesis, and other punctuation.

Most of the examples below are HL7 components with multiple subcomponents. To
identify individual subcomponents, additional slash(es) + subcomponent name(s) can
follow the component names. For example, in the OBR (result) segment, one particular
code,

const QualifiedCodeStr SpecimenSource =
"DNS:omg.org/DsObservationAcess/HL72.3/OBR/SpecimenSource”

SpecimenSource , iS @ composite. One subcomponenspécimenSource , the body
site, can be specified as

const QualifiedCodeStr SpecimenSourceBodySite =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/SpecimenSource/BodySite";

by appending the name “/BodySite” as shown. TlsgecimenSourceBodySite refers
to the specific subcomponent gpecimenSource .

7.3 Observation Type for Qualifiers

Each observation code is associated with a particular IDL static type definition. Most
of the examples below are HL7 components with multiple subcomponents. Hence their
observation type in COAS is a composite observation, which iOjustrvationData .

typedef DsObservationAccess::ObservationData COMPOSITE_OBSERVATION_type;

However, a small subcomponeBpecimenSourceBodySite , is listed in HL7
documentation as having type (CE), coded element. This would correspond to a
QualifiedCodeStr in COAS.

The association between code and data definition can be confirmed for a particular
server withAccessComponent.get_type_code_for_observation_type()

Clinical Observations Access Service, v1.0 April 2001

One way to indicate this association in static IDL is to list a cadde>, and
immediately following it, a typedef for a type with namende>_type . For example,

const QualifiedCodeStr SpecimenSourceBodySite =

"DNS:omg.org/DsObservationAccess/HL72.3/OBR/SpecimenSource/BodySite";
typedef QualifiedCodeStr SpecimenSourceBodySite_type;

7.4 Qualifier Codes

The following qualifiers are identified as a starter set.

7.4.1 COAS - Specific

const QualifiedCodeStr COAS_OBSERVATION_ID =
"DNS:omg.org/DsObservationAccess/COAS_OBSERVATION_ID";

7.4.2 HL7 - Clinical Times

const QualifiedCodeStr Date_TimeOfTheObservation =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/Date_TimeOfTheObservation";

const QualifiedCodeStr EventOnsetDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/PEO/EventOnsetDate_Time";

const QualifiedCodeStr OrderEffectiveDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/ORC/OrderEffectiveDate_Time";

const QualifiedCodeStr ProcedureDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/PR1/ProcedureDate_Time";

const QualifiedCodeStr RequestedDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/RequestedDate_Time";

const QualifiedCodeStr VerificationDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/IN1/VerificationDate_Time";

const QualifiedCodeStr ActionDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/GOL/ActionDate_Time";

const QualifiedCodeStr AttestationDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/DG 1/AttestationDate_Time";

const QualifiedCodeStr TranscriptionDate_Time =
"DNS:omg.org/DsObservationAccess/HL72.3/TXA/TranscriptionDate_Time";

7.4.3 HL7 - Roles

const QualifiedCodeStr PatientIDExternallD =
"DNS:omg.org/DsObservationAccess/HL72.3/PID/PatientIDExternallD";

COAS,v1.0 Qualifier Codes April 2001 7-3

const QualifiedCodeStr PatientIDInternallD =
"DNS:omg.org/DsObservationAccess/HL72.3/PID/PatientIDInternal ID";

const QualifiedCodeStr OrderingProvider =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/OrderingProvider";

const QualifiedCodeStr ProducerID =
"DNS:omg.org/DsObservationAccess/HL72.3/0BX/ProducerID";

const QualifiedCodeStr Collectorldentifier =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/Collectorldentifier”;

const QualifiedCodeStr ResponsibleObserver =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/ResponsibleObserver";

const QualifiedCodeStr Technician =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/Technician”;

const QualifiedCodeStr PrincipalResultinterpreter =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/PrincipalResultinterpreter";

7.4.4 HL7 - OBR (Request)

const QualifiedCodeStr SpecimenSource =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/SpecimenSource™;

const QualifiedCodeStr ReasonForStudy =
"DNS:omg.org/DsObservationAccess/HL72.3/OBR/ReasonForStudy";

const QualifiedCodeStr DiagnosticServiceSectionlID =
"DNS:omg.orgDsObservationAccess/HL72.3/OBR/DiagnosticServiceSectionID";

const QualifiedCodeStr SpecimenSourceBodySite =
"DNS:omg.orgDsObservationAccess/HL72.3/OBR/SpecimenSourceBodySite";

7.4.5 HL7 - OBX (Reply)

const QualifiedCodeStr AbnormalFlags =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/AbnormalFlags";

const QualifiedCodeStr ObservationMethod =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/ObservationMethod";

const QualifiedCodeStr Units =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/Units";

const QualifiedCodeStr ReferencesRange =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/ReferencesRange”;

const QualifiedCodeStr Observationldentifier =
"DNS:omg.org/DsObservationAccess/HL72.3/OBX/Observationldentifier”;

Clinical Observations Access Service, v1.0 April 2001

7.4.6 HL7 - PV1 (Patient Visit)

const QualifiedCodeStr PatientLocation =
"DNS:omg.org/DsObservationAccess/HL72.3/PV1/PatientLocation";

COAS,v1.0 Qualifier Codes April 2001

7-5

7-6

Clinical Observations Access Service, v1.0

April 2001

Policies

Contents

This chapter contains the following topics.

Topic Page
“Overview” 8-2
“SEARCH_DEPTH_POLICY” 8-2
“RETURN_DEPTH_POLICY” 8-2
“SEARCH_SYNONYMOUS_CODES_POLICY” 8-3
“RETURN_OBSERVATION_VALUES_POLICY” 8-3
“SHORTCIRCUIT_SEARCH_..._ POLICY” 8-4
“SEARCH_SYNONYMOUS_IDS_POLICY” 8-4
“SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY” 8-5
“RETURN_ITEMS_IN_TIME_SPAN_POLICY” 8-5
“MATCHING_STRENGTH_POLICY” 8-5
“PARAM_CHECKING_POLICY” 8-6
“QUALIFIER_RETURN_POLICY” 8-6
“RELATIONS_RETURN_POLICY” 8-7
“RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY[8-7
“TIME_SERIES_... ALGORITHM_POLICY”" 8-7
“TIME_SERIES_ ... PREFERENCE_POLICY” 8-7
“RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY" 8-8
“IGNORE_UNMATCHABLE_QUALIFIERS_POLICY” 8-8

Clinical Observations Access Service, v1.0 April 2001

8-2

8.1 Overview

Policies are name-value pairs, which instruct the server on how to search and return
observations. They consist of a policy name&(alifiedCodeStr) and a value (a
CORBA:any). Each policy has a typedef to define what is insideCtheBA::any .

8.2 SEARCH_DEPTH_POLICY

const QualifiedCodeStr SEARCH_DEPTH_POLICY =
"DNS:omg.org/DsObservationAccess/policy/SEARCH_DEPTH_POLICY?;
typedef short SearchDepthPolicyType;

const SearchDepthPolicyType SEARCH_DEPTH_ONLY_ROOT = 0x0;
const SearchDepthPolicyType SEARCH_DEPTH_DEEPEST_POSSIBLE = Ox7FFF;

SEARCH_DEPTH_POLICY indicates how many levels down an item hierarchy a server
is to look for a match to the input parameters. Only positive integers, including zero,
make sense:

®* 0 means just the root of the tree.

® 1 means to search the root and one level of items below the root.

® 2 means to search the root and two more levels down

®* 3 means to search the root and three more levels down

® SEARCH_DEPTH_DEEPEST_POSSIBLE means to search all levels for a match.

® Default = SEARCH_DEPTH_DEEPEST_POSSIBLE.

8.3 RETURN_DEPTH_POLICY

const QualifiedCodeStr RETURN_DEPTH_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_POLICY”;
typedef QualifiedCodeStr ReturnDepthPolicyType;

const ReturnDepthPolicyType RETURN_DEPTH_ROOT_ONLY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_ROOT_ONLY?”;

const ReturnDepthPolicyType RETURN_DEPTH_ALL =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_ALL”;

const ReturnDepthPolicyType RETURN_DEPTH_ALL_LEAVES =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_ALL_LEAVES”;

const ReturnDepthPolicyType RETURN_DEPTH_LEAVES_OF_MATCHED =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_LEAVES_OF_MATCHED?,

const ReturnDepthPolicyType RETURN_DEPTH_MATCHED_ONLY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_MATCHED_ONLY?”;

const ReturnDepthPolicyType RETURN_DEPTH_MATCHED_AND_DOWN =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_MATCHED_AND_DOWN?;

® RETURN_DEPTH_POLICY indicates which items in a potential tree of items that get
returned. After matching on certain items, these items may have various other
related items contained in their “composite” field, making up a “tree” of items from
the (matched) root item.

Clinical Observations Access Service, v1.0 April 2001

® ROOT_ONLY means that only the root item is returned.

® RETURN_ALL means the full item structure gets returned from the root, down to
and including the leaves.

® MATCHED_ONLY means to only return the item that was matched on, independent
of where it is in the tree.

® MATCHED_AND_DOWN means to return a tree of items starting with the one
matched, down to and including the leaf items.

® LEAVES_OF MATCHED means to only return the leaf items of the part of the tree
starting from the matched item on down but no Branchltems.

® ALL_LEAVES means to return all Leafltems in the whole tree that had a match,
starting from the root.

® Default = RETURN_DEPTH_MATCHED_AND_DOWN.

8.4 SEARCH_SYNONYMOUS CODES_POLICY

const QualifiedCodeStr SEARCH_SYNONYMOUS_CODES_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_CODES_POLICY™;
typedef QualifiedCodeStr SearchSynonymousCodesPolicyType;

const SearchSynonymousCodesPolicyType SEARCH_SYNONYMOUS_CODES_FALSE =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_CODES_FALSE?”;

const SearchSynonymousCodesPolicyType SEARCH_SYNONYMOUS_CODES_TRUE =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_CODES_TRUE";

® SEARCH_SYNONYMOUS_CODES_POLICY indicates to search for all possible
matches on a code, including any synonymous codes or subtype codes that the
server might know as a result of a Terminology (LQS) service or otherwise. For
example, if searching for all “blood-cell count” observations, both a red-blood-cell
count and white-blood-cell count would match, as subtypes.

® SEARCH_SYNONYMOUS_CODES_TRUE means all synonyms and subtypes are
considered matches too.

® SEARCH_SYNONYMOUS_CODES_FALSE means that only an exact match will be
returned. Thus, FALSE implies that the set of codes is treated as an XOR list.

® default = SEARCH_SYNONYMOUS_CODES_TRUE

8.5 RETURN_OBSERVATION_VALUES_POLICY

const QualifiedCodeStr RETURN_OBSERVATION_VALUES_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_OBSERVATION_VALUES_POLICY”;
typedef QualifiedCodeStr ReturnObservationValuesPolicyType;

const ReturnObservationValuesPolicyType RETURN_NO_OBSERVATION_VALUES =
“DNS:omg.org/DsObservationAccess/policy/RETURN_NO_OBSERVATION_VALUES”;

const ReturnObservationValuesPolicyType RETURN_OBSERVATION_VALUES =
“DNS:omg.org/DsObservationAccess/policy/RETURN_OBSERVATION_VALUES”;

COAS, v1.0 SEARCH_SYNONYMOUS_CODES_POLICY April 2001 8-3

® RETURN_OBSERVATION_VALUES_POLICY is useful when only contextual
(“meta”) information is desired. No values are returned, only qualifiers. That is,
ObservationDataStruct.value sequences are returned empty, even for atomic
observations. Use this policy when, for example, a value is large, and the network
traffic to download it to a client would be considerable. The client can display all
the context information from qualifiers (observation time, ordering provider, etc.) in
some list of observations, without downloading the actual item until a user clicks to
examine the actual data.

® default = RETURN_OBSERVATION_VALUES

8.6 SHORTCIRCUIT _SEARCH_... POLICY

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY”;

typedef boolean ShortcircuitSearchCodesOnSuccessPolicyType;

const ShortcircuitSearchCodesOnSuccessPolicyType
SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_FALSE = FALSE;

const ShortcircuitSearchCodesOnSuccessPolicyType
SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_TRUE = TRUE;

® SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY is employed only
when a sequence of query codes is passed in. If a successful match is found for one
of the codes, this policy indicates to discard the rest of the codes, short circuiting
the search for other codes. Such a policy might be useful in a situation where it is
not clear what qualified code will work for a given server, so that multiple codes are
used.

* default = SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_FALSE

8.7 SEARCH_SYNONYMOUS_IDS_POLICY

const QualifiedCodeStr SEARCH_SYNONYMOUS_IDS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_IDS_POLICY?”;
typedef boolean SearchSynonymousldsPolicyType;

const SearchSynonymousldsPolicyType SEARCH_SYNONYMOUS_IDS_FALSE = FALSE;
const SearchSynonymousldsPolicyType SEARCH_SYNONYMOUS_IDS_TRUE = TRUE;

® SEARCH_SYNONYMOUS_IDS_POLICY indicates whether or not to search for all
possible matches on an ID, including any synonyms that might be known by the
server via a PIDS translation or otherwise.

® default = SEARCH_SYNONYMOUS_IDS_TRUE

8-4 Clinical Observations Access Service, v1.0 April 2001

8.8 SHORTCIRCUIT _SEARCH_IDS_ON_SUCCESS_POLICY

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY =
"DNS:omg.org/DsObservationAccess/policy/
SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY";

typedef boolean ShortcircuitSearchldsOnSuccessPolicyType;

const ShortcircuitSearchldsOnSuccessPolicyType
SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_FALSE = FALSE;

const ShortcircuitSearchldsOnSuccessPolicyType
SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_TRUE = TRUE;

® SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY is used in a situation
where a sequence of subject IDs is passed in. If a successful match is found for one
of the Ids, the policy indicates to discard the rest of the Ids, short-circuit any further
searching for other codes. Such a policy might be useful in a situation where it is
not clear what Id will work for a given server.

* default = SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_FALSE

8.9 RETURN_ITEMS_IN_TIME_SPAN_POLICY

const QualifiedCodeStr RETURN_ITEMS_IN_TIME_SPAN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
RETURN_ITEMS_IN_TIME_SPAN_POLICY™;

typedef QualifiedCodeStr ReturnitemsIinTimeSpanPolicyType;

const ReturnltemsinTimeSpanPolicyType
RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY =
“DNS:omg.org/DsObservationAccess/policy/
RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY";

const ReturnltemsinTimeSpanPolicyType
RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY =
“DNS:omg.org/DsObservationAccess/policy/
RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY”;

const ReturnltemsinTimeSpanPolicyType
RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS =
“DNS:omg.org/DsObservationAccess/policy/
RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS”;

® RETURN_ITEMS_IN_TIME_SPAN_POLICY indicates whether to only return the first
or last matched items in a time span.

* default = RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS.

8.10 MATCHING_STRENGTH_POLICY

const QualifiedCodeStr MATCHING_STRENGTH_POLICY =
“DNS:omg.org/DsObservationAccess/policy/MATCHING_STRENGTH_POLICY?”;
typedef float MatchingStrengthPolicyType;

const MatchingStrengthPolicy Type MATCHING_STRENGTH_WEAKEST = 0.0;

COAS, v1.0 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY ABib2001

const MatchingStrengthPolicy Type MATCHING_STRENGTH_STRONGEST = 1.0;

® MATCHING_STRENGTH_POLICY indicates whether exact matches only are to be
returned, or if close (as determined by the server) matches are returned too. This
matching strength concept is similar to the P8 _candidates() operation.

® default = MATCHING_STRENGTH_STRONGEST.

8.11 PARAM_CHECKING_POLICY

const QualifiedCodeStr PARAM_CHECKING_POLICY =
“DNS:omg.org/DsObservationAccess/policy/PARAM_CHECKING_POLICY”;
typedef boolean ParamCheckingPolicyType;

const ParamCheckingPolicyType PARAM_CHECKING_FALSE = FALSE;
const ParamCheckingPolicyType PARAM_CHECKING_TRUE = TRUE;

® PARAM_CHECKING_POLICY allows a server to ignore parameters that it does not
recognize (IDs, codes, qualifier®meStamps , etc.) without throwing an exception.
Unknown items are ignored in matching algorithms. If this policy is true, the server
will raise an exception when unknown IDs or codes are passed in. For a more
narrowly-focused policy, see Section 8.18,
“IGNORE_UNMATCHABLE_QUALIFIERS_POLICY,” on page 8-8.

® default = PARAM_CHECKING_TRUE

8.12 QUALIFIER_RETURN_POLICY

8-6

const QualifiedCodeStr QUALIFIER_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_RETURN_POLICY?”;
typedef sequence<QualifiedCodeStr> QualifierReturnPolicy Type;

const QualifiedCodeStr QUALIFIER_RETURN_ALL =
“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_RETURN_ALL";

const QualifiedCodeStr QUALIFIER_RETURN_NONE =
“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_RETURN_NONE";

const QualifiedCodeStr QUALIFIER_NOT_TO_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
QUALIFIER_NOT_TO_RETURN_POLICY”;

typedef sequence<QualifiedCodeStr> QualifierNotToReturnPolicyType;

® QUALIFIER_RETURN_POLICY makes it possible for the client to indicate exactly
which qualifiers should be returned with tBeservationData . For a list of
gualifiers see Section 7.4, “Qualifier Codes,” on page 7-3. Note there is a great
difference between returning qualifiers, and filtering by qualifiers. The later
happens as a result of passing in qualifiers viggtheobservations_by_qualifier()
operation and similar operations. The former is accomplished with this policy.

® default = QUALIFIER_RETURN_NONE

Clinical Observations Access Service, v1.0 April 2001

8.13 RELATIONS_RETURN_POLICY

const QualifiedCodeStr RELATIONS_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RELATIONS_RETURN_POLICY?”;
typedef sequence<QualifiedCodeStr> RelationsReturnPolicy Type;

const QualifiedCodeStr RELATIONS_RETURN_ALL =
“DNS:omg.org/DsObservationAccess/policy/RELATIONS_RETURN_ALL";

const QualifiedCodeStr RELATIONS_RETURN_NONE =
“DNS:omg.org/DsObservationAccess/policy/RELATIONS_RETURN_NONE”;

const QualifiedCodeStr RELATIONS_NOT_TO_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
RELATIONS_NOT_TO_RETURN_POLICY?";

typedef sequence<QualifiedCodeStr> RelationsNotToReturnPolicy Type;

® RELATIONS_RETURN_POLICY makes it possible for the client to indicate exactly
which relations should be returned with thieservationData . For a list of relations
see Section 6.4, “Relation Codes,” on page 6-2.

® default = RELATIONS_RETURN_NONE

8.14 RETURN_MOST RECENT_N_OBSERVATIONS_POLICY

const QualifiedCodeStr RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY =
"DNS:omg.org/DsObservationAccess/policy/
RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY";

typedef unsigned long ReturnMostRecent_N_ObservationsPolicyType;

const ReturnMostRecent_N_ObservationsPolicyType
RETURN_MOST_RECENT_N_OBSERVATIONS_ALL = OxFFFFFFFF;

® RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY provides a means to
return items according to their temporal proximity to the current time of the server.
This policy overrides anyimeSpan provided as an input parameter.

* default = RETURN_MOST RECENT_N_OBSERVATIONS_ALL .

8.15 TIME_SERIES_... ALGORITHM_POLICY

const QualifiedCodeStr TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY”;

typedef sequence<QualifiedCodeStr> TimeSeriesRemoteResampleAlgorithmPolicyType;

8.16 TIME_SERIES_... PREFERENCE_POLICY

const QualifiedCodeStr TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY”;

typedef DsObservationTimeSeries::ValueSeqType
TimeSeriesRemoteReturnTypePreferencePolicyType;

COAS, v1.0 RELATIONS_RETURN_POLICY April 2001 8-7

8

8.17 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY

const QualifiedCodeStr RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY =
"DNS:omg.org/DsObservationAccess/policy/RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY";

typedef unsigned long ReturnMaxSequenceForValuePolicyType;

const ReturnMaxSequenceForValuePolicyType RETURN_MAX_SEQUENCE_FOR_VALUE_ALL =
OXFFFFFFFF;

®* RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY is used when an
ObservationValue can include an iterator. For example,
DsObservationValues::Multimedia includes an iterator field “the_rest”. A non-null
iterator is returned within the Multimedia struct only if the number of items in the
sequence “values” is greater than the current
RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY. In other words, specify the
number of items desired in the sequence with this policy, and that will determine
whether an iterator is returned also.

This policy is analogous to the parameter “max_sequence” in
QueryAccess.get_observations_by time() and similar operations. The input
parameter “max_sequence” specifies the number of observations to return in a
sequence. But a single observation which contaiMslémedia payload in its
ObservationDataStruct.value (a CORBA:any) may have any number of items in
the Multimedia.a_blob (a sequence). The number of items desired by the client is
specified via the(RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY.

* default = RETURN_MAX_SEQUENCE_FOR_VALUE_ALL

8.18 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY

const QualifiedCodeStr IGNORE_UNMATCHABLE_QUALIFIERS_POLICY =
"DNS:omg.org/DsObservationAccess/policy/IGNORE_UNMATCHABLE_QUALIFIERS_POLICY";

typedef boolean IgnoreUnmatchableQualifiersPolicy Type;

const IgnoreUnmatchableQualifiersPolicy Type IGNORE_UNMATCHABLE_QUALIFIERS_TRUE =
TRUE;

const IgnoreUnmatchableQualifiersPolicy Type IGNORE_UNMATCHABLE_QUALIFIERS_FALSE =
FALSE;

® |IGNORE_UNMATCHABLE_QUALIFIERS_POLICY applies to the searching rules in
a more specific manner th&®aRAM_CHECKING_POLICY. The latter turns off all
exceptions, but the user may wish to have parameter checking except for qualifiers.
HencelGNORE_UNMATCHABLE_QUALIFIERS_TRUE means that unknown or
inapplicable qualifiers will not be considered in the matching algorithm. Otherwise,
the introduction of an inapplicable qualifier would cause no matches to be found. A
client can tell what qualifiers are applicable for a given query code from the method
AccessComponent.get_supported_qualifiers()

® default = IGNORE_UNMATCHABLE_QUALIFIERS_FALSE

8-8 Clinical Observations Access Service, v1.0 April 2001

Complete IDL

A.1 DsObservationAccess

/I File: DsObservationAccess.idl

#ifndef _DS_OBSERVATION_ACCESS_IDL_
#define _DS_OBSERVATION_ACCESS_IDL_

#include <CosNaming.idI>

#include <CosTrading.idl>

#include <TerminologyServices.idl>
#include <NamingAuthority.idl>
#include <PersonldService.idl>
#include <CosEventComm.idl>
#include <CosEventChannelAdmin.idl>
#include <orb.idl>

#pragma prefix “omg.org”

module DsObservationAccess {

I
/I EXTERNAL TYPEDEFS
I

typedef PersonldService::QualifiedPersonld ObservedSubjectld;
typedef TerminologyServices::QualifiedCode QualifiedCode;
typedef NamingAuthority::QualifiedNameStr QualifiedCodeStr;
typedef PersonldService::DomainName IdDomainName;

typedef PersonldService::ldentificationComponent IdentificationComponent;
typedef CosNaming::NamingContext NamingContext;

typedef CosTrading::TraderComponents TraderComponents;
typedef TerminologyServices::TerminologyService TerminologyService;

Clinical Observations Access Service V1.0

A-1

typedef CosEventComm::PushConsumer PushConsumer;
typedef CosEventComm::PushSupplier PushSupplier;

typedef CORBA::TypeCode TypeCode;

I
/l FORWARD DECLARATIONS
1

interface AbstractFactory;

interface AbstractManagedObject;
interface AccessComponent;
interface AsynchCallback;

interface AsynchAccess;

interface AtomicObservationRemote;
interface BrowseAccess;

interface CompositeObservationRemote;
interface ConsumerAccess;

interface ConstraintLanguageAccess;
interface EventConsumer;

interface EventSupplier;

interface ObservationDatalterator;
interface ObservationLoader;
interface ObservationRemote;
interface ObservationRemotelterator;
interface ObservedSubject;

interface QualifiedCodelterator;
interface QueryAccess;

interface SupplierAccess;

i
/I STRUCTS
i

struct AccessComponentData {
QueryAccess query_access;
BrowseAccess browse_access;
AsynchAccess asynch_access;
ConstraintLanguageAccess constraint_access;
ObservationLoader observation_loader;
ConsumerAccess consumer_access;
SupplierAccess supplier_access;

J

struct AsynchException {
QualifiedCodeStr exception_name;
string message;

h

struct ObservationDataStruct {

QualifiedCodeStr code;
sequence<ObservationDataStruct> composite;

Clinical Observations Access Service V1.0

April 2001

sequence<ObservationDataStruct> qualifiers;
sequence<any,1> value;

J

typedef any ObservationData;
typedef ObservationData ObservationQualifier;

struct Observationld {
QualifiedCodeStr code;
string opaque;

J

struct NameValuePair {
QualifiedCodeStr name;
any value;

J

struct Subscription {
sequence<ObservedSubjectld> who;
sequence<QualifiedCodeStr> what;
sequence<ObservationQualifier> qualifier;
sequence<NameValuePair> policy;

h
typedef string TimeStamp; // 1ISO 8601 representation, with restrictions

struct TimeSpan {
TimeStamp start_time;
TimeStamp stop_time;

i
/l CONSTANTS
i

/I for TimeStamp fields

const string EARLIEST_TIME = “1582-10-15T00:00:00Z"; // beginning of Gregorian calendar
const string LATEST_TIME = “9999-12-31T23:59:59Z"; // max possible in ISO 8601 specification
const string TIME_WILDCARD = “?"; // replace individual digits

const QualifiedCodeStr PARTIAL_RESULT = “DNS:omg.org/DsObservationAccess/PARTIAL_RESULT";

const QualifiedCodeStr COMPLETING_RESULT = “DNS:omg.org/DsObservationAccess/COMPLETING_RESULT";

const QualifiedCodeStr ASYNC_OBSERVATION_COUNT =
“DNS:omg.org/DsObservationAccess/ASYNC_OBSERVATION_COUNT?";

typedef unsigned long ASYNC_OBSERVATION_COUNT _type;

const QualifiedCodeStr EVENT_SOURCE_DOMAIN =
“DNS:omg.org/DsObservationAccess/EVENT_SOURCE_DOMAIN”;

const QualifiedCodeStr EVENT_SOURCE_SERVER_NAME =
“DNS:omg.org/DsObservationAccess/EVENT_SOURCE_SERVER_NAME”;

const QualifiedCodeStr EVENT_NAME = “DNS:omg.org/DsObservationAccess/EVENT_NAME”;

const QualifiedCodeStr TEST_EVENT = “DNS:omg.org/DsObservationAccess/TEST_EVENT”;

typedef long TEST_EVENT_type;

COAS V1.0 April 2001

const QualifiedCodeStr TRADER_1_0_CONSTRAINT_LANGUAGE =

“DNS:omg.org/DsObservationAccess/TRADER_1_0_CONSTRAINT_LANGUAGE”;

const QualifiedCodeStr OCL_1_1_CONSTRAINT_LANGUAGE =

“DNS:omg.org/DsObservationAccess/OCL_1_1 CONSTRAINT_LANGUAGE";

const QualifiedCodeStr COAS_OBSERVATION_ID =
“DNS:omg.org/DsObservationAccess/COAS_OBSERVATION_ID”;
typedef Observationld COAS_OBSERVATION_ID_type;

Z TYPEDEFS

I

typedef long Endpointid;

typedef string ConstraintExpression;

typedef QualifiedCodeStr ConstraintLanguage;

typedef NameValuePair QueryPolicy;

typedef long ServerCallld;

typedef long ClientCallld;

il

/I SEQUENCES

I

typedef sequence<AtomicObservationRemote> AtomicObsRemoteSeq;
typedef sequence<ConstraintLanguage> ConstraintLanguageSeq;
typedef sequence<Endpointld> EndpointldSeq;

typedef sequence<ObservationData> ObservationDataSeq;
typedef sequence<ObservationDataStruct> ObservationDataStructSeq;
typedef sequence<Observationld> ObservationldSeq;

typedef sequence<ObservationQualifier> ObservationQualifierSeq;
typedef sequence<ObservationRemote> ObservationRemoteSeq;
typedef sequence<ObservedSubjectld> ObservedSubjectldSeq;
typedef sequence<ObservedSubject> ObservedSubjectSeq;

typedef sequence<QualifiedCodeStr> QualifiedCodeStrSeq;

typedef sequence<QueryPolicy> QueryPolicySeq;

Clinical Observations Access Service V1.0

April 2001

typedef sequence<Subscription> SubscriptionSeq;

I
/I EXCEPTIONS
1

exception DuplicateCodes {
QualifiedCodeStrSeq codes;

J

exception Duplicatelds {
ObservedSubjectldSeq ids;

J

exception DuplicateOids {
ObservationldSeq oids;

J

exception DuplicatePolicies {
QueryPolicySeq policies;
b

exception DuplicateQualifiers {
ObservationQualifierSeq qualifiers;

J

exception InvalidCodes {
QualifiedCodeStrSeq codes;

J

exception InvalidEndpointid {
EndpointldSeq endpoint_ids;
h

exception InvalidConstraint {
string constraint;

J

exception Invalidlds {
ObservedSubjectldSeq ids;
b

exception InvalidOids {
ObservationldSeq oids;

J

exception InvalidPolicies {
QualifiedCodeStrSeq policies;

b
exception InvalidQualifiers {

QualifiedCodeStrSeq qualifiers;
h

COAS V1.0 April 2001

A-5

exception InvalidTimeSpan {
TimeSpan span;

J

exception MaxConnectionsExceeded {
unsigned long max_connections;

h

exception Notimplemented {

J

exception NoSubscription {

J

1
/I INTERFACES
I

/Il ABSTRACT FACTORY INTERFACE

interface AbstractFactory {
readonly attribute long max_connections;
readonly attribute EndpointldSeq current_connections;

J
// ABSTRACT MANAGED OBJECT INTERFACE

interface AbstractManagedObject {
void done ();

J
I/l ACCESS COMPONENT INTERFACE

interface AccessComponent {
readonly attribute string coas_version;
readonly attribute IdentificationComponent pid_service;
readonly attribute TerminologyService terminology_service;
readonly attribute TraderComponents trader_service;
readonly attribute NamingContext naming_service;

AccessComponentData get_components ();

QualifiedCodeStrSeq get_supported_codes (
in unsigned long max_sequence,
out QualifiedCodelterator the_rest);

QualifiedCodeStrSeq get_supported_qualifiers (
in QualifiedCodeStr code)
raises (
InvalidCodes,
Notimplemented);

QualifiedCodeStrSeq get_supported_policies ();

Clinical Observations Access Service V1.0

April 2001

QueryPolicySeq get_default_policies ();

TypeCode get_type_code_for_observation_type (
in QualifiedCodeStr observation_type)
raises (
InvalidCodes,
Notimplemented);

boolean are_iterators_supported ();

TimeStamp get_current_time ();

h
/I ASYNCH ACCESS INTERFACE
interface AsynchAccess : AccessComponent {

ServerCallld count_observations (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observation (
in Observationld observation_id,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observations (
in ObservationldSeq observation_ids,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observations_by_time (
in ObservedSubjectld who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observations_by_qualifier (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
in ClientCallld client_call_id,
in AsynchCallback client_callback);

ServerCallld get_observations_with_policy (

COAS V1.0 April 2001

J

in ObservedSubjectldSeq who,

in QualifiedCodeStrSeq what,

in TimeSpan when,

in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,

in unsigned long max_sequence,

in ClientCallld client_call_id,

in AsynchCallback client_callback);

void cancel_get (
in ServerCallld server_call_id);

/l ASYNCH CALLBACK INTERFACE

interface AsynchCallback {

J

void put_observations (
in ObservationDataSeq as_sequence,
in ObservationDatalterator as_iterator,
in ClientCallld client_call_id,
in QualifiedCodeStrSeq result_status);

void put_exception (
in ClientCallld client_call_id,
in AsynchException the_exception);

/l OBSERVATION REMOTE INTERFACE

interface ObservationRemote : AbstractManagedObject {

J

readonly attribute QualifiedCodeStr observation_code;
TimeSpan get_observation_time ();
ObservedSubject get_observed_subject ();
ObservationRemote get_root_observation ();
ObservationData get_path_from_root ();
ObservationQualifierSeq get_all_qualifiers ();
ObservationQualifierSeq get_qualifiers (

in QualifiedCodeStrSeq qualifier_names)

raises (
InvalidCodes);

boolean is_this_root ();

boolean is_this_atomic ();

/I ATOMIC OBSERVATION REMOTE INTERFACE

Clinical Observations Access Service V1.0

April 2001

interface AtomicObservationRemote : ObservationRemote {
ObservationData get_observation_data ();

ObservationData get_observation_data_with_policy (
in QueryPolicySeq policy);
h

/l BROWSE ACCESS INTERFACE
interface BrowseAccess : AccessComponent {

ObservedSubject get_observed_subject (
in ObservedSubjectld who)
raises (
Invalidlds);

ObservedSubjectSeq get_observed_subjects (
in ObservedSubjectldSeq who)
raises (
Invalidids,
Duplicatelds);

ObservedSubject get_observed_subject_for_observation_id (
in Observationld observation_id)
raises (
InvalidOids);

ObservedSubjectSeq get_observed_subjects_for_observation_ids (
in ObservationldSeq observation_ids)
raises (
InvalidOids,
DuplicateOids);

unsigned long count_observations (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (

Invalidids,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemote get_observation (
in Observationld observation_id)
raises (
InvalidOids);

COAS V1.0 April 2001

A-9

A-10

ObservationRemoteSeq get_observations (

in ObservationldSeq observation_ids)

raises (

InvalidOids,
DuplicateQids);

ObservationRemoteSeq get_observations_by_time (

in ObservedSubjectld who,

in QualifiedCodeStrSeq what,

in TimeSpan when,

in unsigned long max_sequence,

out ObservationRemotelterator the_rest)

raises (

Invalidids,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by_qualifier (

in ObservedSubjectldSeq who,

in QualifiedCodeStrSeq what,

in TimeSpan when,

in ObservationQualifierSeq qualifier,

in unsigned long max_sequence,

out ObservationRemotelterator the_rest)

raises (

Invalidids,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (

in ObservedSubjectldSeq who,

in QualifiedCodeStrSeq what,

in TimeSpan when,

in ObservationQualifierSeq qualifier,

in QueryPolicySeq policy,

in unsigned long max_sequence,

out ObservationRemotelterator the_rest)

raises (

Invalidids,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

Clinical Observations Access Service V1.0

April 2001

/l COMPOSITE OBSERVATION REMOTE INTERFACE
interface CompositeObservationRemote : ObservationRemote {

unsigned long count_observations (
in QueryPolicySeq search_depth_policy)
raises (
InvalidPolicies);

ObservationRemoteSeq get_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

AtomicObsRemoteSeq get_leaf observations ();

AtomicObsRemoteSeq get_leaf_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)

COAS V1.0 April 2001 A-11

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

AtomicObsRemoteSeq get_leaf _observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

AtomicObsRemoteSeq get_leaf_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

AtomicObsRemoteSeq get_leaf _observations_by_value_type (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QualifiedCodeStr value_type,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationDataSeq get_relations_toward_root (
in QualifiedCodeStrSeq relation_name);

ObservationDataSeq get_relations_away_from_root (
in QualifiedCodeStrSeq relation_name);

A-12 Clinical Observations Access Service V1.0 April 2001

/Il CONSTRAINT LANGUAGE ACCESS INTERFACE

interface ConstraintLanguageAccess : AccessComponent {
readonly attribute ConstraintLanguageSeq supported_languages;

ObservationDataSeq get_by_constraint (
in ConstraintExpression constraint,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationDatalterator the_rest)
raises (
InvalidConstraint,
InvalidPolicies,
DuplicatePolicies);

h
/l CONSUMER ACCESS INTERFACE
interface ConsumerAccess : AbstractFactory, AccessComponent {

EventConsumer create_consumer ()
raises (
MaxConnectionsExceeded);

EventConsumer get_consumer_by _id (
in Endpointld endpoint_id)
raises (
InvalidEndpointld);

J
// EVENT CONSUMER INTERFACE

interface EventConsumer : AbstractManagedObject, PushConsumer {
readonly attribute Endpointld endpoint_id;

SubscriptionSeq obtain_subscriptions ();
void connect_push_supplier (
in PushSupplier push_supplier)
raises (
CosEventChannelAdmin::AlreadyConnected);
PushSupplier get_connected_supplier ()

raises (
CosEventComm::Disconnected);

J
// EVENT SUPPLIER INTERFACE

interface EventSupplier : AbstractManagedObject, PushSupplier {
readonly attribute Endpointld endpoint_id;

QualifiedCodeStrSeq obtain_offered_codes ();

void connect_push_consumer (

COAS V1.0 April 2001

A-13

in PushConsumer push_consumer)
raises (
CosEventChannelAdmin::AlreadyConnected);

PushConsumer get_connected_consumer ()
raises (
CosEventComm::Disconnected);

void subscribe (
in SubscriptionSeq subscriptions)
raises (
CosEventComm::Disconnected);

SubscriptionSeq describe_subscriptions ()
raises (
NoSubscription);
void generate_test_event (
in ClientCallld clientld)

raises (
CosEventComm::Disconnected);

h
// OBSERVATION DATA ITERATOR INTERFACE
interface ObservationDatalterator : AbstractManagedObject {
unsigned long max_left ();
boolean next_n (
in unsigned long n,

out ObservationDataSeq observation_data_seq);

h
/l OBSERVATION LOADER INTERFACE
interface ObservationLoader : AccessComponent {

void load_observations (
in ObservationDataSeq observations);

h
// OBSERVATION REMOTE INTERFACE
/Il This interface is defined after AsynchCallBack and before AtomicObservationRemote
// OBSERVATION REMOTE ITERATOR INTERFACE
interface ObservationRemotelterator : AbstractManagedObject {
unsigned long max_left ();
boolean next_n (

in unsigned long n,
out ObservationRemoteSeq observation_remote_seq);

A-14 Clinical Observations Access Service V1.0 April 2001

J
// OBSERVED SUBJECT INTERFACE

interface ObservedSubject : AbstractManagedObject {
readonly attribute ObservedSubjectld observed_subject_id;

unsigned long count_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (

InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemoteSeq get_observations_by_time (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_observations_by_qualifier (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_observations_with_policy (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,

COAS V1.0 April 2001

A-15

A-16

InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationRemoteSeq get_root_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

AtomicObsRemoteSeq get_leaf _observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_any_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_first_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemote get_last_observation (
in QualifiedCodeStrSeq what,
in TimeSpan when)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationRemoteSeq get_candidate_observations (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)

Clinical Observations Access Service V1.0

April 2001

raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationRemoteSeq get_exact_observation_types (
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationRemotelterator the_rest)
raises (
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

h

/I QUALIFIED CODE ITERATOR INTERFACE

interface QualifiedCodelterator : AbstractManagedObiject {
unsigned long max_left ();

boolean next_n (
in unsigned long n,
out QualifiedCodeStrSeq codes);
h

/I QUERY ACCESS INTERFACE
interface QueryAccess : AccessComponent {

unsigned long count_observations (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy)

raises (

Invalidids,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

ObservationData get_observation (
in Observationld observation_id)
raises (
InvalidOids);

COAS V1.0 April 2001

A-17

ObservationDataSeq get_observations (
in ObservationldSeq observation_ids)
raises (
InvalidOids,
DuplicateOids);

ObservationDataSeq get_observations_by_time (
in ObservedSubjectld who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in unsigned long max_sequence,
out ObservationDatalterator the_rest)
raises (
Invalidids,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan);

ObservationDataSeq get_observations_by_qualifier (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in unsigned long max_sequence,
out ObservationDatalterator the_rest)
raises (
Invalidids,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers);

ObservationDataSeq get_observations_with_policy (
in ObservedSubjectldSeq who,
in QualifiedCodeStrSeq what,
in TimeSpan when,
in ObservationQualifierSeq qualifier,
in QueryPolicySeq policy,
in unsigned long max_sequence,
out ObservationDatalterator the_rest)
raises (
Invalidids,
Duplicatelds,
InvalidCodes,
DuplicateCodes,
InvalidTimeSpan,
InvalidQualifiers,
DuplicateQualifiers,
InvalidPolicies,
DuplicatePolicies);

J

/l SUPPLIER ACCESS INTERFACE

A-18 Clinical Observations Access Service V1.0 April 2001

interface SupplierAccess : AbstractFactory, AccessComponent {
EventSupplier create_supplier ()
raises (
MaxConnectionsExceeded);
EventSupplier get_supplier_by_id (
in Endpointld endpoint_id)

raises (
InvalidEndpointld);

J

#endif / _DS_OBSERVATION_ACCESS_IDL_

A.2 DsObservationValue

/I File: DsObservationValue.idl

#ifndef _DS_OBSERVATION_VALUE_IDL_
#define _DS_OBSERVATION_VALUE_IDL_

#include “DsObservationAccess.idl”
#pragma prefix “omg.org”
module DsObservationValue

{

1
/I EXTERNAL TYPEDEFS
1

typedef TerminologyServices::ConceptCode ConceptCode;
typedef NamingAuthority::QualifiedNameStr QualifiedCodeStr;

typedef DsObservationAccess::AbstractManagedObject
AbstractManagedObiject;

/l DateTime : ObservationValue;
typedef DsObservationAccess:: TimeStamp DateTime;

/I TimeSpan : ObservationValue;
typedef DsObservationAccess:: TimeSpan TimeSpan;

/I Person : ObservationValue;

typedef DsObservationAccess::ObservedSubjectld Person;

Il
/I Nolnformation

COAS V1.0 April 2001 A-19

I

/l NoInformation : ObservationValue;
struct Nolnformation {
QualifiedCodeStr reason;
string text_description;
h
const QualifiedCodeStr NO_INFORMATION =
“DNS:omg.org/DsObservationValue/NO_INFORMATION";

I
/I Text Types
I

/l PlainText : ObservationValue;
typedef string PlainText;

/I UniversalResourceldentifier : ObservationValue;
struct UniversalResourceldentifier {

ConceptCode protocol;

string address;

J

/I PhysicalLocationDescription : ObservationValue;
typedef string PhysicalLocationDescription;

I
/I Coded Types
I

/I CodedElement : ObservationValue;
typedef TerminologyServices::QualifiedCodelnfo CodedElement;

/I LooselyCodedElement : ObservationValue;

struct LooselyCodedElement {
string text;
TerminologyServices::CodingSchemeld coding_scheme_id;
TerminologyServices::Versionld version_id;

Il
/I Multimedia
Il

typedef sequence<octet> Blob;
interface Multimedialterator : AbstractManagedObiject {
unsigned long max_left ();

boolean next_n (

A-20 Clinical Observations Access Service V1.0 April 2001

in unsigned long n,
out Blob multimedia_part);

J

/I Multimedia : ObservationValue;
struct Multimedia {
string content_type;
string other_mime_header_fields;
Blob a_blob;
unsigned long long total_size;
Multimedialterator the_iterator;

I
/l Measurements Types
I

/I Numeric : ObservationValue;

struct Numeric {
QualifiedCodeStr units;
float value;

J

/I Range : ObservationValue;
struct Range {
QualifiedCodeStr units;
float lower;
float upper;

J

/I Ratio : ObservationValue;
struct Ratio {

float numerator;

float denominator;

k%

struct XYPair {
float x;
float y;

k%

typedef sequence<XYPair> XYPairSeq;
interface Curvelterator : AbstractManagedObiject {
unsigned long max_left ();
boolean next_n (
in unsigned long n,

out XYPairSeq curve_part);
k%
/I Curve : ObservationValue;

struct Curve {
XYPairSeq xy_pairs;

COAS V1.0 April 2001 A-21

QualifiedCodeStr x_units;
QualifiedCodeStr y_units;
unsigned long long total_size;
Curvelterator the_iterator;

J

#endif// _DS_OBSERVATION_VALUE_IDL_

A.3 DsObservationTimeSeries

/I File: DsObservationTimeSeries.idl

#ifndef _DS_OBSERVATION_TIME_SERIES_IDL_
#define _DS_OBSERVATION_TIME_SERIES_IDL_

#include “DsObservationAccess.idl”

module DsObservationTimeSeries

{

1
/I EXTERNAL TYPEDEFS
1

typedef DsObservationAccess::AbstractManagedObject AbstractManagedObject;
typedef DsObservationAccess::NameValuePair NameValuePair;

typedef DsObservationAccess::QueryPolicy QueryPalicy;

typedef DsObservationAccess::QueryPolicySeq QueryPolicySeq;

typedef DsObservationAccess::ObservationQualifierSeq ObservationQualifierSeq;
typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;

typedef DsObservationAccess:: TimeStamp TimeStamp;

typedef DsObservationAccess:: TimeSpan TimeSpan;

typedef sequence < QualifiedCodeStr > QualifiedCodeStrSeq;
I

/I Time Types
I

/l TimeDelta : ObservationValue;

struct TimeDelta {
float delta; // calculated with constants below, NOT with calendaring
QualifiedCodeStr units;

J

/I approximations for time deltas, NOT for calendaring

/I all units here are seconds. Use scaling as necessary for units of TimeDelta
const float YEAR =31557600.0; // 60*60*24*365.25

const float MONTH =2629800.0; // 60*60*24*365.25/12

const float DAY =86400.0; // 60*60*24
const float HOUR =3600.0; // 60*60
const float MINUTE =60.0; //60

A-22 Clinical Observations Access Service V1.0 April 2001

const float SECOND =10; /1
const float MILLISECOND = 0.001; // 1/2000

typedef NameValuePair Filter;
typedef sequence < Filter > FilterSeq;

enum ValueSeqType {
OtherSeqDataType, OctetType, ShortType,

LongType, LongLongType, FloatType, DoubleType

h
union ValueSeq switch (ValueSeqType) {
case OctetType : sequence < octet > octet_seq;
case ShortType : sequence < short > short_seq;
case LongType : sequence < long > long_seq;
case LongLongType : sequence < long long > long_long_seq;
case FloatType : sequence < float > float_seq;

case DoubleType :sequence < double > double_seq;

case OtherSegDataType : any the_any;
h

typedef sequence < QualifiedCodeStr,1 > OptionalCodeSeq;

typedef sequence < float,1 > OptionalFloatSeq;

interface TimeSerieslterator : AbstractManagedObject {

unsigned long max_left ();

boolean next_n (
in unsigned long n,
out ValueSeq curve_part);

h

/l TimeSeries : ObservationValue;
struct TimeSeries {
TimeDelta sample_period;
ValueSeq values;
unsigned long long total_size;
TimeSerieslterator the_iterator;

h

exception OutOfRange { };

exception Notimplemented { };

exception FilterNotSupported { };

exception NoValidValues { };

struct TimeSeriesRemoteAttributes {
QualifiedCodeStr code;
QualifiedCodeStr units;
OptionalCodeSeq accuracy;

OptionalFloatSeq precision;
OptionalFloatSeq corner_frequency;

COAS V1.0 April 2001

A-23

OptionalFloatSeq highest_frequency;
TimeSpan time_span;
TimeDelta time_delta;
unsigned long long total_size;
QualifiedCodeStrSeq supported_filters;
QueryPolicySeq supported_policies;

h

/I TimeSeriesRemote : ObservationValue;

interface TimeSeriesRemote : AbstractManagedObiject {
readonly attribute QualifiedCodeStr code;
readonly attribute QualifiedCodeStr units;
readonly attribute OptionalCodeSeq accuracy;
readonly attribute OptionalFloatSeq precision;
readonly attribute OptionalFloatSeq corner_frequency;
readonly attribute OptionalFloatSeq highest_frequency;
readonly attribute TimeSpan time_span;
readonly attribute TimeDelta time_delta;
readonly attribute unsigned long long total_size;
readonly attribute QualifiedCodeStrSeq supported_filters;
readonly attribute QueryPolicySeq supported_policies;
readonly attribute ValueSeqType default_value_type;

TimeSeriesRemoteAttributes get_attributes ();

float get_sample_number (
in unsigned long long index,
out ObservationQualifierSeq qualifiers)
raises (
OutOfRange);

float get_sample (
in TimeStamp time_stamp,
out ObservationQualifierSeq qualifiers)
raises (
OutOfRange);

TimeSeries get_snippet (
in TimeSpan time_span,
out ObservationQualifierSeq qualifiers)
raises (
OutOfRange);

float get_max (
in TimeSpan time_span)
raises (
OutOfRange,
NoValidValues);

float get_min (
in TimeSpan time_span)
raises (
OutOfRange,
NoValidValues);

A-24 Clinical Observations Access Service V1.0 April 2001

float get_mean (
in TimeSpan time_span)
raises (
OutOfRange,
NoValidValues);

float get_median (
in TimeSpan time_span)
raises (
OutOfRange,
NoValidValues);

TimeSeries get_resampled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)
raises (
Notimplemented);

TimeSeries get_rescaled (
in TimeSpan time_span,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)
raises (
Notimplemented);

TimeSeries get_resampled_rescaled (
in TimeSpan time_span,
in TimeDelta sample_rate,
in float scale_factor,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)
raises (
Notimplemented);

TimeSeries get_filtered (
in TimeSpan time_span,
in FilterSeq filters,
in QueryPolicySeq policy,
out ObservationQualifierSeq qualifiers)
raises (
Notimplemented,
FilterNotSupported);

J

#endif// _DS_OBSERVATION_TIME_SERIES_IDL_

A.4 DsObservationRelations

/I file DsObservationRelations.idl

COAS V1.0 April 2001

A-25

A

#ifndef _DS_OBSERVATION_RELATIONS_IDL_
#define _DS_OBSERVATION_RELATIONS_IDL_

#pragma prefix “omg.org”
#include “DsObservationAccess.idl”
module DsObservationRelations {
typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;

/I all relations are collections of observations (composite observations)
typedef DsObservationAccess::ObservationData RELATION_type;

I/l from CEN/TC 251/N98-116, table A.5

/I CEN description names translated according to the following rules:
/lreplace “/" with “_”

/lreplace space with nothing, Capitalizing next word

/llreplace apostrophe, periods, etc. with nothing

/I produces /is produced by healthcare activity produces result, report, study product
const QualifiedCodeStr Produces = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Produces”;
const QualifiedCodeStr IsProducedBy =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsProducedBy”;

/l'is documented by /documents healthcare activity is documented by note (3.15)
const QualifiedCodeStr Documents =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Documents”;
const QualifiedCodeStr IsDocumentedBy =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsDocumentedBy”;

Ilis reported within /reports about property is reported within report (3.17)
const QualifiedCodeStr Reports = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Reports”;
const QualifiedCodeStr IsReportedBy =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsReportedBy”;

/ldescribes /is described by graphic property (3.22) describes graphic object (3.21)
const QualifiedCodeStr Describes = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Describes”;
const QualifiedCodeStr IsDescribedBy =
“DNS:omg.org/DsObservationAccess/relation/ CENTC251N98116/IsDescribedBy”;

/lis identified within /incorporates graphic object is identified within study product (3.20)
const QualifiedCodeStr IsldentifiedWithin =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsldentifiedWithin”;
const QualifiedCodeStr IsincorporatedBy =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsIncorporatedBy”;

/lis derived from /is source for graphic property is derived from study product
const QualifiedCodeStr IsSourceFor =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsSourceFor”;
const QualifiedCodeStr IsDerivedFrom =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsDerivedFrom”;

A-26 Clinical Observations Access Service V1.0 April 2001

/lis compared to /is reference for situation, document is compared to situation, document
const QualifiedCodeStr IsComparedTo =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsComparedTo”;
const QualifiedCodeStr IsReferenceFor =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsReferenceFor”;

/lis recorded against /is recorded against family history of x is recorded against no evidence of x (note 3)
const QualifiedCodeStr IsRecordedAgainst =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsRecordedAgainst”;

/Isuperseds /is superseded by clinical state superseds clinical state (note 4)
const QualifiedCodeStr Supersedes =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Supersedes”;
const QualifiedCodeStr IsSupersededBy =
“DNS:omg.org/DsObservationAccess/relation/ CENTC251N98116/IsSupersededBy”;

/lorganizational links

/lis framework for /is framed in contact is framework for situation, document
const QualifiedCodeStr IsFrameworkFor =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsFrameworkFor”;
const QualifiedCodeStr IsFramedBy =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsFramedBy”;

/lhas phase /is phase of healthcare activity has phase healthcare (sub)activity
const QualifiedCodeStr HasPhase = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasPhase”;
const QualifiedCodeStr IsPhaseOf = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsPhaseOf”;

/lis next phase wrt /has next phase healthcare activity is next phase wrt healthcare (sibling) activity
const QualifiedCodeStr HasNextPhase =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasNextPhase”;
const QualifiedCodeStr IsNextPhaseWRT =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsNextPhaseWRT";

/lis associate to /is associate to condition is associate to condition
const QualifiedCodeStr IsAssociateTo =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsAssociateTo”;

/lis assigned to /is setting for situation is assigned to problem
const QualifiedCodeStr IsAssignedTo =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsAssignedTo”;
const QualifiedCodeStr IsSettingFor =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsSettingFor”;

/lis interpretation of/ is interpreted as condition is interpretation of findings, report
const QualifiedCodeStr IsInterpretationOf =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsInterpretationOf”;
const QualifiedCodeStr IsinterpretedAs =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsInterpretedAs”;

/Ihas progress /is progress of condition has progress condition (e.g. convalescence)

COAS V1.0 April 2001 A-27

A

const QualifiedCodeStr HasProgress =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasProgress”;

const QualifiedCodeStr IsProgressOf =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsProgressOf”;

/lhas cause /is cause of condition has cause condition
const QualifiedCodeStr HasCause = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasCause”;
const QualifiedCodeStr IsCauseOf = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsCauseOf”;

/lco-exists with /co-exists with condition co-exist with condition
const QualifiedCodeStr CoExistsWith =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/CoExistsWith”;

/lis evidence for /has evidence finding is evidence for diagnosis
const QualifiedCodeStr HasEvidence =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasEvidence”;
const QualifiedCodeStr IsEvidenceFor =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsEvidenceFor”;

/ltriggers lis triggered by presence of prosthesis triggers risk state
const QualifiedCodeStr Triggers = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/Triggers”;
const QualifiedCodeStr IsTriggeredBy =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsTriggeredBy”;

/Ihas goal /is goal of healthcare activity has goal achievable situation
const QualifiedCodeStr HasGoal = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasGoal”;
const QualifiedCodeStr IsGoalOf = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsGoal Of”;

//lhas motivation /is motivation for healthcare activity has motivation current situation
const QualifiedCodeStr HasMotivation =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasMotivation”;
const QualifiedCodeStr IsMotivationFor =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsMotivationFor”;

/lhas consequence /is consequence of healthcare activity, event has consequence situation (e.g. outcome)
const QualifiedCodeStr HasConsequence =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasConsequence”;
const QualifiedCodeStr IsConsequenceOf =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsConsequenceOf”;

/[circumstantial links

/Ihas topic /is topic for informing has topic record component
const QualifiedCodeStr HasTopic = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasTopic”;
const QualifiedCodeStr IsTopicFor =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsTopicFor”;

/Ihas target /is target of informing has target person
const QualifiedCodeStr HasTarget = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasTarget”;
const QualifiedCodeStr IsTargetOf = “DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsTargetOf”;

/lprovides information about /is reported by person provides information about record component

A-28 Clinical Observations Access Service V1.0 April 2001

const QualifiedCodeStr ProvidesinformationAbout =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/ProvidesinformationAbout”;

//has circumstances /is circumstance for support activity has circumstance home circumstances
const QualifiedCodeStr HasCircumstances =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/HasCircumstances”;
const QualifiedCodeStr IsCircumstanceOf =
“DNS:omg.org/DsObservationAccess/relation/CENTC251N98116/IsCircumstanceOf”;

J

#endif // _DS_OBSERVATION_RELATIONS_IDL_

A.5 DsObservationQualifiers

/I file DsObservationQualifiers.idl

#ifndef _DS_OBSERVATION_QUALIFIERS_IDL_
#define _DS_OBSERVATION_QUALIFIERS_IDL_

#pragma prefix “omg.org”
#include “DsObservationAccess.idl”
module DsObservationQualifiers {

typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;
typedef DsObservationAccess:: TimeStamp TimeStamp;

const QualifiedCodeStr COAS_OBSERVATION_ID = “DNS:omg.org/DsObservationAccess/COAS_OBSERVATION_ID";

/I all the qualifiers listed here from HL7 are defined with
/l subcomponents in HL7 2.3, so they all have type ObservationData (composite observations)
typedef DsObservationAccess::ObservationData COMPOSITE_OBSERVATION_type;

/l naming convention:

/I start with “DNS:omg.org/DsObservationAccess/HL72.3/"

/I add the HL7 segment name, like OBX or PID, plus a slash

/I take HL7 data element names from HL7 v2.3 standard distribution,
/l appendix A, (APPA.doc), table A.6 DATA ELEMENT NAMES,

I translated according to the following rules:

Il replace “/" with “_”

I replace space with nothing, capitalizing next word

/I omit apostrophe, periods, parentheses, and other punctuation

/I to name subcomponents, additional slashes can follow the component names
/I see SpecimenSourceBodySite at bottom for example

/I see HL7 descriptions for composite returned by each of these data elements.
/l clinical times;

const QualifiedCodeStr Date_TimeOfTheObservation =
“DNS:omg.org/DsObservationAccess/HL72.3/OBX/Date_TimeOfTheObservation”;

COAS V1.0 April 2001 A-29

A

const QualifiedCodeStr EventOnsetDate_Time =
“DNS:omg.org/DsObservationAccess/HL72.3/PEO/EventOnsetDate_Time”;
const QualifiedCodeStr OrderEffectiveDate_Time =
“DNS:omg.org/DsObservationAccess/HL72.3/ORC/OrderEffectiveDate_Time”;
const QualifiedCodeStr ProcedureDate_Time =
“DNS:omg.org/DsObservationAccess/HL72.3/PR1/ProcedureDate_Time”;
const QualifiedCodeStr RequestedDate_Time =
“DNS:omg.org/DsObservationAccess/HL72.3/OBR/RequestedDate_Time”;
const QualifiedCodeStr VerificationDate_Time =
“DNS:omg.org/DsObservationAccess/HL72.3/IN1/VerificationDate_Time”;
const QualifiedCodeStr ActionDate_Time = “DNS:omg.org/DsObservationAccess/HL72.3/GOL/ActionDate_Time”;
const QualifiedCodeStr AttestationDate_Time =
“DNS:omg.org/DsObservationAccess/HL72.3/DG1/AttestationDate_Time”;
const QualifiedCodeStr TranscriptionDate_Time =
“DNS:omg.org/DsObservationAccess/HL72.3/TXA/TranscriptionDate_Time”;

/l roles

const QualifiedCodeStr PatientIDExternallD = “DNS:omg.org/DsObservationAccess/HL72.3/PID/PatientIDExternallD”;

const QualifiedCodeStr PatientIDInternallD = “DNS:omg.org/DsObservationAccess/HL72.3/PID/PatientIDinternallD”;

const QualifiedCodeStr OrderingProvider = “DNS:omg.org/DsObservationAccess/HL72.3/OBR/OrderingProvider”;

const QualifiedCodeStr ProducerID = “DNS:omg.org/DsObservationAccess/HL72.3/OBX/ProducerID”;

const QualifiedCodeStr Collectorldentifier = “DNS:omg.org/DsObservationAccess/HL72.3/OBR/Collectorldentifier”;

const QualifiedCodeStr ResponsibleObserver =
“DNS:omg.org/DsObservationAccess/HL72.3/0OBX/ResponsibleObserver”;

const QualifiedCodeStr Technician = “DNS:omg.org/DsObservationAccess/HL72.3/OBR/Technician”;

const QualifiedCodeStr PrincipalResultinterpreter =
“DNS:omg.org/DsObservationAccess/HL72.3/OBR/PrincipalResultinterpreter”;

// from OBR (orders)

const QualifiedCodeStr SpecimenSource = “DNS:omg.org/DsObservationAccess/HL72.3/OBR/SpecimenSource”;

const QualifiedCodeStr ReasonForStudy = “DNS:omg.org/DsObservationAccess/HL72.3/OBR/ReasonForStudy”;

const QualifiedCodeStr DiagnosticServiceSectionlD =
“DNS:omg.org/DsObservationAccess/HL72.3/OBR/DiagnosticServiceSectionID”;

Il from OBX (results)

const QualifiedCodeStr AbnormalFlags = “DNS:omg.org/DsObservationAccess/HL72.3/OBX/AbnormalFlags”;

const QualifiedCodeStr ObservationMethod =
“DNS:omg.org/DsObservationAccess/HL72.3/0BX/ObservationMethod”;

const QualifiedCodeStr Units = “DNS:omg.org/DsObservationAccess/HL72.3/OBX/Units”;

const QualifiedCodeStr ReferencesRange = “DNS:omg.org/DsObservationAccess/HL72.3/OBX/ReferencesRange”;

const QualifiedCodeStr Observationldentifier =
“DNS:omg.org/DsObservationAccess/HL72.3/OBX/Observationldentifier”;

/l from PV1
const QualifiedCodeStr PatientLocation = “DNS:omg.org/DsObservationAccess/HL72.3/PV1/PatientLocation”;
/I note that elements of HL7 composites can be individually identified with this COAS naming standard.

/l e.g. SpecimenSource is listed in the OBR definitions above, and one segment
/I of SpecimenSource, like Body Site, can have its own name.

A-30 Clinical Observations Access Service V1.0 April 2001

const QualifiedCodeStr SpecimenSourceBodySite =
“DNS:omg.org/DsObservationAccess/HL72.3/OBR/SpecimenSource/BodySite”;
typedef QualifiedCodeStr SpecimenSourceBodySite_type;

J

#endif // _DS_OBSERVATION_QUALIFIERS_IDL_

A.6 DsObservationPolicies

/I file DsObservationPolicies.idl

#ifndef _DS_OBSERVATION_POLICIES_IDL_
#define _DS_OBSERVATION_POLICIES_IDL_

#pragma prefix “omg.org”
#include “DsObservationTimeSeries.idl”
module DsObservationPolicies {

typedef DsObservationAccess::QualifiedCodeStr QualifiedCodeStr;
typedef DsObservationAccess::TimeStamp TimeStamp;

const QualifiedCodeStr SEARCH_DEPTH_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_DEPTH_POLICY?”;

typedef short SearchDepthPolicyType;
const SearchDepthPolicyType SEARCH_DEPTH_ONLY_ROOT = 0x0;
const SearchDepthPolicyType SEARCH_DEPTH_DEEPEST_POSSIBLE = Ox7FFF; // default

const QualifiedCodeStr RETURN_DEPTH_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_POLICY?”;

typedef QualifiedCodeStr ReturnDepthPolicyType;

const ReturnDepthPolicyType RETURN_DEPTH_ROOT_ONLY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_ROOT_ONLY";

const ReturnDepthPolicyType RETURN_DEPTH_ALL =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_ALL?";

const ReturnDepthPolicy Type RETURN_DEPTH_ALL_LEAVES =
“DNS:omg.org/DsObservationAccess/policy/ RETURN_DEPTH_ALL_LEAVES”;

const ReturnDepthPolicyType RETURN_DEPTH_LEAVES_OF_MATCHED =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_LEAVES_OF_MATCHED";

const ReturnDepthPolicy Type RETURN_DEPTH_MATCHED_ONLY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_MATCHED_ONLY”;

const ReturnDepthPolicyType RETURN_DEPTH_MATCHED_AND_DOWN =
“DNS:omg.org/DsObservationAccess/policy/RETURN_DEPTH_MATCHED_AND_DOWN?"; // default

const QualifiedCodeStr SEARCH_SYNONYMOUS_CODES_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_CODES_POLICY?”;

typedef QualifiedCodeStr SearchSynonymousCodesPolicyType;

const SearchSynonymousCodesPolicyType SEARCH_SYNONYMOUS_CODES_FALSE =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_CODES_FALSE";

const SearchSynonymousCodesPolicyType SEARCH_SYNONYMOUS_CODES_TRUE =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_CODES_TRUE”; // default

COAS V1.0 April 2001 A-31

const QualifiedCodeStr RETURN_OBSERVATION_VALUES_POLICY =
“DNS:omg.org/DsObservationAccess/policy/ RETURN_OBSERVATION_VALUES_POLICY™”;

typedef QualifiedCodeStr ReturnObservationValuesPolicyType;

const ReturnObservationValuesPolicyType RETURN_NO_OBSERVATION_VALUES =
“DNS:omg.org/DsObservationAccess/policy/RETURN_NO_OBSERVATION_VALUES”;

const ReturnObservationValuesPolicyType RETURN_OBSERVATION_VALUES =
“DNS:omg.org/DsObservationAccess/policy/RETURN_OBSERVATION_VALUES?”; // default

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_POLICY”;

typedef boolean ShortcircuitSearchCodesOnSuccessPolicyType;

const ShortcircuitSearchCodesOnSuccessPolicyType SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_FALSE
= FALSE; // default

const ShortcircuitSearchCodesOnSuccessPolicyType SHORTCIRCUIT_SEARCH_CODES_ON_SUCCESS_TRUE =
TRUE;

const QualifiedCodeStr SEARCH_SYNONYMOUS_IDS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SEARCH_SYNONYMOUS_IDS_POLICY”;

typedef boolean SearchSynonymousldsPolicyType;

const SearchSynonymousldsPolicyType SEARCH_SYNONYMOUS_IDS_FALSE = FALSE;

const SearchSynonymousldsPolicyType SEARCH_SYNONYMOUS_IDS_TRUE = TRUE; // default

const QualifiedCodeStr SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY™";

typedef boolean ShortcircuitSearchldsOnSuccessPolicyType;

const ShortcircuitSearchldsOnSuccessPolicyType SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_FALSE =
FALSE; // default

const ShortcircuitSearchldsOnSuccessPolicyType SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_TRUE = TRUE;

const QualifiedCodeStr RETURN_ITEMS_IN_TIME_SPAN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_ITEMS_IN_TIME_SPAN_POLICY”;

typedef QualifiedCodeStr ReturnltemsIinTimeSpanPolicyType;

const ReturnltemsInTimeSpanPolicyType RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_ITEMS_IN_TIME_SPAN_FIRST_ITEM_ONLY";

const ReturnltemsinTimeSpanPolicyType RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_ITEMS_IN_TIME_SPAN_LAST_ITEM_ONLY”;

const ReturnltemsinTimeSpanPolicyType RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS =
“DNS:omg.org/DsObservationAccess/policy/RETURN_ITEMS_IN_TIME_SPAN_ALL_ITEMS”; // default

const QualifiedCodeStr MATCHING_STRENGTH_POLICY =
“DNS:omg.org/DsObservationAccess/policy/MATCHING_STRENGTH_POLICY”;

typedef float MatchingStrengthPolicyType;

const MatchingStrengthPolicy Type MATCHING_STRENGTH_WEAKEST = 0.0;

const MatchingStrengthPolicy Type MATCHING_STRENGTH_STRONGEST = 1.0; // default

const QualifiedCodeStr PARAM_CHECKING_POLICY =
“DNS:omg.org/DsObservationAccess/policy/PARAM_CHECKING_POLICY?”;

typedef boolean ParamCheckingPolicyType;

const ParamCheckingPolicy Type PARAM_CHECKING_FALSE = FALSE;

const ParamCheckingPolicyType PARAM_CHECKING_TRUE = TRUE; // default

i

/I QUALIFIER_RETURN_POLICY: see DsObservationQualifiers.idl for list of qualifiers
/)

A-32 Clinical Observations Access Service V1.0 April 2001

const QualifiedCodeStr QUALIFIER_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_RETURN_POLICY”;

typedef sequence<QualifiedCodeStr> QualifierReturnPolicy Type;

/I two special codes for this policy;

const QualifiedCodeStr QUALIFIER_RETURN_ALL =
“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_RETURN_ALL";

const QualifiedCodeStr QUALIFIER_RETURN_NONE =
“DNS:omg.org/DsObservationAccess/policy/QUALIFIER_RETURN_NONE”; // default

const QualifiedCodeStr QUALIFIER_NOT_TO_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/ QUALIFIER_NOT_TO_RETURN_POLICY”;
typedef sequence<QualifiedCodeStr> QualifierNotToReturnPolicy Type;

I
/ RELATIONS_RETURN_POLICY: see DsObservationRelations.idl for list of relations
I

const QualifiedCodeStr RELATIONS_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RELATIONS_RETURN_POLICY”;

typedef sequence<QualifiedCodeStr> RelationsReturnPolicyType;

/I two special codes for this policy;

const QualifiedCodeStr RELATIONS_RETURN_ALL =
“DNS:omg.org/DsObservationAccess/policy/RELATIONS_RETURN_ALL”;

const QualifiedCodeStr RELATIONS_RETURN_NONE =
“DNS:omg.org/DsObservationAccess/policy/RELATIONS_RETURN_NONE?”"; // default

const QualifiedCodeStr RELATIONS_NOT_TO_RETURN_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RELATIONS_NOT_TO_RETURN_POLICY”;
typedef sequence<QualifiedCodeStr> RelationsNotToReturnPolicy Type;

const QualifiedCodeStr RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY”,;

typedef unsigned long ReturnMostRecent_N_ObservationsPolicyType;

const ReturnMostRecent_N_ObservationsPolicyType RETURN_MOST_RECENT_N_OBSERVATIONS_ALL =
OXFFFFFFFF; // default

const QualifiedCodeStr TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY =
“DNS:omg.org/DsObservationAccess/policy/TIME_SERIES_REMOTE_RESAMPLE_ALGORITHM_POLICY”;
typedef sequence<QualifiedCodeStr> TimeSeriesRemoteResampleAlgorithmPolicy Type;

const QualifiedCodeStr TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY =
“DNS:omg.org/DsObservationAccess/policy/
TIME_SERIES_REMOTE_RETURN_TYPE_PREFERENCE_POLICY?”;

typedef DsObservationTimeSeries::ValueSeqType TimeSeriesRemoteReturnTypePreferencePolicyType;

const QualifiedCodeStr RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY =
“DNS:omg.org/DsObservationAccess/policy/ RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY?”;

typedef unsigned long ReturnMaxSequenceForValuePolicyType;

const ReturnMaxSequenceForValuePolicyType RETURN_MAX_SEQUENCE_FOR_VALUE_ALL = OXFFFFFFFF; //
default

const QualifiedCodeStr IGNORE_UNMATCHABLE_QUALIFIERS_POLICY =
“DNS:omg.org/DsObservationAccess/policy/IGNORE_UNMATCHABLE_QUALIFIERS_POLICY”;

typedef boolean IgnoreUnmatchableQualifiersPolicy Type;

const IgnoreUnmatchableQualifiersPolicy Type IGNORE_UNMATCHABLE_QUALIFIERS_TRUE = TRUE;

COAS V1.0 April 2001 A-33

A

const IgnoreUnmatchableQualifiersPolicy Type IGNORE_UNMATCHABLE_QUALIFIERS_FALSE = FALSE; // default
h

#endif// _DS_OBSERVATION_POLICIES_IDL_

A-34 Clinical Observations Access Service V1.0 April 2001

Interoperation B

B.1 The TcSignalling Module

The Naming, Trader, PIDS and LQS Standards are considered building blocks and as
such are of great value to COAS, hence, the following information is supplied in order
to provide a level of understanding where each may play a role.

B.2 Naming/Trader

It is anticipated that the CORBA Naming and/or Trader Services may be used for
acquiring pertinent information about the capabilities of a COAS compliant service.
For these purposes attributes have been added to the AccessComponent Interface
definition to refer to these services if they are available. For the Naming Service the
naming_service attribute will define the Naming Context.

For thekind field in CosNaming:NameComponent the following will be used:

® ‘Query COAS - A COAS component that meets the conformance class of the
same name.

® ‘Browse COAS - A COAS component that meets the conformance class of the
same name.

® ‘ConstraintLanguage COAS - A COAS component that meets the conformance
class of the same name.

® ‘Asynchronous COAS - A COAS component that meets the conformance class of
the same name.

® ‘Supplier COAS - A COAS component that meets the conformance class of the
same name.

® ‘Consumer COAS - A COAS component that meets the conformance class of the
same name.

Clinical Observations Access Service V1.0 April 2001 B-1

B.3 PIDS

B.4 LQS

B-2

® ‘Loader COAS' - A COAS component that meets the conformance class of the
same name.

The following definitions are Service Types defined for COAS components for use by
the Trader Service.

Service AccessComponent {
Interface AccessComponent;
Mandatory readonly property StringSeq components_implemented;
Mandatory readonly property StringSeq conformance_classes;
Readonly attribute StringSeq pid_service;
Readonly attribute StringSeq terminology_service;
Readonly attribute StringSeq trader_service;
Readonly attribute StringSeq naming_service;
Readonly property String component_name;
Readonly property String coas_version;
Readonly property StringSeq supported_codes;
Readonly property StringSeq supported_qualifiers;
Readonly property StringSeq default_policies;
Readonly property StringSeq supported_policies;

The COAS specification has introduced the idea obbservedSubject , but has made

the distinction that it lies outside the scope of this specification in order to allow this
specification to be used in varying medical architectures. However, because an
ObservedSubject can be a person(patient) we recognized the value in utilizing the
PIDS specification in order to identify a person in an enterprise. We have an attribute
in the AccessComponent , calledpid_service, to refer to a PIDS service.

The COAS specification utilizes many of the concepts from the Lexicon Query Service
(LQS) specification in order to provide a more dynamic and extensible specification.
The COAS specification does not however mandate the use of any particular LQS but
recognizes that it provides all the necessary interfaces for a client or server to attain
information from coding schemes to assist in semantic interoperability at a coded level.
We have also introduced the idea of an LQS terminology service via the
AccessComponent interface attribute calle@rminology_service thereby providing a

link to terminology services.

Clinical Observations Access Service V1.0 April 2001

C.1 Overview

Security Guidelines C

The COAS interfaces may be used in many different environments with widely varying
security requirements that range from no security to extreme security. For this reason
the COAS interfaces do not expose any security information. COAS relies on the
underlying CORBA infrastructure and services which provides all the security
mechanisms needed without exposing it in the interfaces.

An attribute of security that of concern to many people is to maintain confidentiality of
certain (sensitive) information about them. For COAS this implies being able to filter
requests by:

®* who is accessing the information,
®* who the information is about,

* what information is being accessed.

Other common security concerns could be preventing unauthorized modification of
data, tapping into communications to acquire sensitive information, and causing loss of
service by over burdening a service.

CORBA Security provides robust mechanisms to address these and other concerns.
Some of the security properties it does deal with includes authentication, authorization,
encryption, audit trails, non-repudiation, etc. CORBA Security, in its default mode
allows these security concerns to be addressed without the client and server software
being aware of it. This is a powerful notion, allowing security policies to be created
and enforced after applications and systems have been created and installed.

Other CORBA and CORBA Security features provide mechanisms for applications to
extend these security capabilities. For example they can obtain credentials from the
ORB and implement filters that can look at specific data passed to and returned from
operations.

Clinical Observations Access Service V1.0 April 2001 C-1

It is a requirement of the COAS to provide confidentiality of information that is stored
about an individual. This requirement fuels the need for fine grained access control on
clinical observations that are associated with identifiable observed subjects.

C.2 Security Requirements

C-2

For the COAS to be secure in its possible dissemination of information it needs to
adhere to several requirements:

® The COAS needs to authenticate a client's principal identity, role, affiliation and
other security attributes.

® The COAS needs to transmit information confidentially and with integrity.

The first requirement states that the entire COAS interface implementations must be

able to identify a potential client. If it cannot authenticate a client, then the client may
be severely limited in the particular requests that the COAS can service. The CORBA
Security Service provides the mechanisms for a server to authenticate a client.

The second requirement provides for the confidentiality of the information. The client
must communicate with the COAS using not only encryption to protect data, but
sighature as well, so as not to have data tampered with during communication. There is
no sense in putting a Sensitivity level of “OwnerOnly” on an observation and have its
value transmitted to the owner in the clear. The CORBA Security Service provides
these capabilities, including SSL.

The problem is, How does one get CORBA to support this access policy model?

C.2.1 CORBA Security Overview

In an effort to keep the COAS interfaces security unaware, i.e. no extra visible security
relevant parameters in methods, access policies must be adhered to from behind the
interfaces. The CORBA security model offers several ways to apply security policies to
method invocations.

The CORBA Security Specification (CORBAsec) is not a cookbook for using CORBA
security in building applications. It is a specification of a general framework with
which ORB vendors and application vendors can build a multitude of different security
policy models. The CORBAsec also gives the interfaces which implementations of
applications can use to access those security services that are supplied with a secure
ORB.

A secure COAS implementation that can control access to specific observations must
be aware of the security services offered by the ORB. This caveat also means that a
client’'s ORB may have to know the kind of ORB and the security services that is used
by the COAS.

The CORBA security specification outlines a general security policy model. Although
the specification is vague about which approach should be taken, it is specific enough
to be able to choose from a couple of models that can be supported.

Clinical Observations Access Service V1.0 April 2001

C

The CORBA security model bases itself on credentials and security domains.
Credentials are data objects that contain attributes such as privileges, capabilities, and
sensitivity levels, amongst others. Security domains are mappings from credentials to
access rights. Credentials can be encrypted and signed to prevent tampering and to
achieve a level of trust between client and server. CORBA credentials get passed with
requests beneath the visible level of the interface. CORBA security services give the
clients and servers the ability to authenticate/verify credentials in order to implement
policies in the security domains.

Many different schemes, algorithms, services, and vendor implementations exist to
provide implementation of security policies, and many different implementations of
those schemes may be integrated into a CORBA compliant ORB. It is not the purpose
of this specification to dictate the specific implementation of an ORB or the security
services that should be used, but to outline the external requirements for the COAS
implementation. These requirements and guidelines aid in selecting a secure ORB and
the level of security functionality needed to implement the COAS access policy model.

C.2.2 Secure Interoperability Concerns

CORBA has built the communication bridge between distributed objects creating a
interoperable environment that spans heterogeneous platforms and implementations.
However, security adds another layer of complexity to the issue of interoperability.
ORB implementations are neither required to include security services nor required to
provide an interoperable mechanism of security services. However, a specification does
exist for the target object to advertise, via the IOR, the security services that it supports
and the services it requires from the client. Both the client and server ORBs must use
compatible mechanisms of the same security technology.

The CORBA Common Secure Interoperability (CSI) Specification defines 3 levels of
security functionality that ORBs may support. The levels are named, CSI Level 0, CSI
Level 1, and CSI Level 2. Each level has increasing degrees of security functionality.

The CSI Level 0 supports identity based policies only and provides mechanisms for
identity authentication and message protection with no privilege delegation. The CSI
Level 1 adds unrestricted delegation. The CSI Level 2 can implement the entire
CORBA Security Specification at Security Level 2.

Each CSI level is parameterized by mechanisms that can support the level of security
functionality, such as SPKM for CSI Level 0, GSS Kerberos for CSI Level 0 or CSI
Level 1, and CSI_ECMA for CSI Level 2. Future developments in security

functionality and mechanism are not restricted, and mechanisms can be added to each
level.

The ORB implementations may use different security technology with differing
capabilities and underlying mechanisms, such as SSL, DCE, Kerberos, Sesame, or
other standards. Choosing the ORB and its underlying security services will be critical
to protecting COAS, and it will influence the implementation of the access policy that
a secure COAS implementation must support.

COAS V1.0 April 2001 C-3

C.3 Trust Models

C-4

For example, an ORB that only supports SPKM (i.e, CSI Level 0) can only
authenticate clients and provide confidentiality and integrity of communication. It
cannot support definition and use of security attributes beyond an access ID. Support
for security attributes beyond an access ID require CSI Level 2. Therefore, using an
ORB that only provides CSI Level 0 will require the COAS to maintain its own
information on the credentials of clients.

Even if an ORB's security technology supports the definition of security attributes that
can be delivered to the COAS (i.e., CSI Level 2) there are still concerns involving the
trust between the client and the COAS.

The available trust models for the COAS are simplistic. Since the COAS is a
communications end point and is not required to make requests to other services on a
client's behalf, a delegation trust model is not needed. This simplifies the model and
eliminates an absolute need for a CSI Level 1 or CSI Level 2 secure ORB (although
they may use them).

There are two basic trust models for the COAS. If the COAS and its client are
implemented using CSI Level 0 or CSI Level 1 ORBs, only the first trust model can be
supported. If a CSI Level 2 ORB is used, both trust models can be supported. The trust
models are:

1. The client’s identity can and is trusted to be authenticated. However, the client is
unable or untrusted to deliver the valid credentials.

2. The client is trusted to deliver the correct credentials.

In the first model, the client ORB is required to authenticate its principal (the user) and
provide authentication information to the server ORB. The methods used to accomplish
principal authentication is specific to the mechanisms (e.g., DCE or Kerberos) that the
selected ORB supports. Management of those identities is also specific to the
mechanism. The server ORB must have a compatible mechanism that verifies the
authentication information and carries out mutual authentication of the client.

With this trust model, a secure COAS implementation must maintain and manage a
map of identities to privilege attributes. CSl Level 0, 1, and 2 ORBs are able to support
this trust model.

Even if the ORB has CSI Level 2 functionality, it may be a local policy that a COAS
does not trust the credentials brought forth from an authenticated client. In that case,
the COAS must maintain the map or use a default set of security attributes for requests
from clients it does not trust.

In the second model, the client ORB is required to authenticate its principal and
acquire its valid credentials. The methods used to accomplish principal authentication
and acquisition of privilege attributes are specific to the mechanism that the selected
ORB supports, such as DCE and Sesame. Management of those identities and
attributes are also mechanism specific. A secure COAS installation using this trust

Clinical Observations Access Service V1.0 April 2001

C

model must take a careful look at that management scheme and operation, evaluate it,
and decide to trust it. In such a scenario, the server ORB, which has CSI Level 2
functionality, automatically verifies the credentials on invocation.

A secure COAS built to the second model leaves management of identities and their
attributes to the security services policy management system used by the ORB. The
COAS may manage security attributes for the data itself.

A secure COAS built to the first model will have some scheme to manage trusted
identities and their credentials. There is no interface or plan in the COAS to specify
this kind of management.

C.4 CORBA Credentials

To adhere to the credential model that supports trait specific access policies, a set of
credentials must contain privilege attributes such as the identity of the client, the role
in which the client is actively represented, and the sensitivity level of information to
which the client is allowed access. It will be the responsibility of a COAS
implementation to advertise to potential client vendors the specifics of these attributes
and how to represent them externally. A client ORB needs to ascertain certain
credentials about the user and must pass them to the COAS. An external representation
of those credentials is needed so that credentials can be passed between client and
server within the CORBA security services. The CORB#urity module defines the
structure for this representation.

module Security {
const SecurityAttributeType Accessld = 2;
const SecurityAttributeType Role =5;

const SecurityAttributeType Clearance = 7;

struct SecAttribute {
AttributeType attribute_type;

Opaque defining_authority;
Opaque value;

3

typedef sequence<SecAttribute> AttributeList;

}

Listed above are the relevant pieces of the specification frorgeitgity module that
apply to externalizing credential information.

C.5 CORBA Security Domain Access Policy

In addition to a credential based scheme, CORBA defines security domains. The
purpose of this section is to explain and illustrate the use of the standard CORBA
security policy domain and the way in which it may be used to implement a security
policy for the COAS. This section offers a recommendation to a COAS implementor in
order to give a feel for the kinds of security policies a COAS implementation may need
to support. It should also guide the implementor in evaluating a secure ORB and
available security services.

COAS V1.0 April 2001 C-5

A security domain governs security (access) policy for objects that are managed within
that domain. In order to make scalable administration of security policy, these domains
map sets of security credentials to certain sets of rights. A right is a sort of an internal
security credential.

CORBA defines a standard set of rights that are granted to principals within a security
domain. A security domain administrator manages that map through the
SecurityAdministration ~module’sDomainAccessPolicy interface. Access decision

then can be based on a set of required rights and the rights granted to the client by the
domain access policy, by virtue of the client's credentials.

ORB security service vendors will supply a security policy management infrastructure
that implements the standard CORBA rights scheme. The COAS must use security
services that can place different required rights on the COAS interfaces. Some ORB
security services may allow a security domain to create special rights. However,
CORBA defines a standard set of rights: get, set, and manage. This right set will
suffice to handle the COAS.

In the model just described there is one security domain for all of the COAS
components. The CORBA rights families scheme within a single security policy
domain suffices to differentiate the security nature of the methods. More generally any
number of domain models can be used, such as a separate security domain for each
COAS component.

C.6 Request Content Based Policy

C-6

The CORBA standard domain access policy scheme only protects methods from
invocation at the target and without regard to content of the request. The COAS needs
a more fine grained access control in order to implement the content based access
policy required (e.g., access policies for different observations). The COAS
implementations must be made security aware to implement an access policy based on
the value of arguments in a request. There are multiple ways to implement this policy
using a secure CORBA implementation.

The CORBA Security Specification supplies two different schemes represented by an
interface hierarchy, which are Security Level 1 and Security Level 2 (these should not
be confused with CSI Levels 0, 1, and 2). These interfaces describe the level of
security functionality that is available to security aware implementations.

Security Level 1

For the COAS to take advantage of CORBA security in order to implement its access
policy model, the ORB must at least implement the CORBA Security Level 1
interfaces. A Security Level 1 compliant ORB supplies an interface to access the
attributes of the credentials received from the client.

Using theSecurityLevell interfaces, which is simplistic, gives the implementation of

the COAS interfaces the ability to examine the client's credentials and compare them to
the access control information that is managed as the access policy. However, the
implementation of the COAS must be security aware.

Clinical Observations Access Service V1.0 April 2001

module SecurityLevell {
Current get_current();

interface Current {
Security::AttributeList get_attributes(
in Security::Attribute TypeList attributes
)i
3
}

Using the Security Level 1 interfaces, each implementation of a COAS query interface
must call theget_attributes() function on theCurrent pseudo object, examine the
attributes, compare them to the access policy information, and make the access
decision. If a COAS implementation chooses to use the Healthcare Resource Access
Decision Facility, it constructs an appropriate resource name and operation name, and
passes them tResourceAccessDecision::access_allowed() along with the attributes
received fromCurrent::get_attributes() . Details on how COAS implementations must
use an HRAD Facility are provided in Section C.7, “Use of Healthcare Resource
Access Decision Facility”. In the latter case, a COAS does not need to examine the
attributes or implement any access decision logic. The COAS implementation should
enforce the access decision according to the semantics of the particular COAS
operation. It is the responsibility of the client's ORB to acquire the proper credentials
securely. It is the responsibility of the server's ORB to authenticate the credentials
received from the client, extract the security attributes from them, and make them
available to the implementation through theérrent::get_attributes() method.

Security Level 2

Using an ORB that supplies the Security Level 2 interfaces, the implementation can be
somewhat free of making the access control decision in the implementation of the
qguery interfaces. Having an implementation that is security unaware is attractive in
CORBA, because security policy decisions can be made underneath the functionality,
and they have the ability to be changed without retooling the application.

As with any framework, there are several ways in which to use the Security Level 2
interfaces. One approach could be to implement a replaceable security service for the
access decision. Security Level 2 describes a method in which security can be enforced
by the creation of an Access Decision object. AbeessDecision object would

interact with aDomainAccessPolicy object to get effective rights and compare those

to rights returned from threquiredRights interface.

Some secure ORB implementations may allow the installation of specialized Access
Decision objects to be used in conjunction with specialze@@ainAccessPolicy

objects. In the Security Level 2 interfaces, the specification implies access control only
on the invocation of a method and not the contents of the request.

module SecurityReplaceable {
interface AccessDecision {

boolean access_allowed (
in SecuirytLvel2::CredentialList red_list,

COAS V1.0 April 2001 C-7

C-8

in CORBA::Object target,
in CORBA::Identifier operation_name,
in CORBA::Identifier interface_name

)
b
}

Currently, theAccessDecision o0bject specified in th&ecurityReplaceable module

does not take the invocati®equest as an argument. It only makes an access decision
based on the credentials received from the client, the target object reference and
operation name, and the target’s interface name. This criteria is insufficient to
implement the content based access policy, if needed by a COAS implementation to be
automatically performed by the ORB.

Since the COAS requires access control on the contents of the method invocation (such
as asking for the value of the HomePhone trait), this scheme of replacing these
Security Level 2 components cannot be used. ORB security services that use the
standard CORBA domain access policy may use third party implementations for these
components. This standard domain access policy functionality gives the COAS a high
level of invocation protection that is orthogonal to the content based access policy.
Some COAS servers may need the standard domain access policy functionality in
addition to providing content based access policy. Therefore, another approach must be
taken.

A content based access policy can be implemented in a Security Level 2 ORB by using
an interceptor. A request level interceptor takesRéguest as an argument and
therefore, it can examine the content of the invocation arguments.

module CORBA {

interface Interceptor { ... };

interface RequestLevellnterceptor : Interceptor {
void client_invoke(inout Request request);
void target_invoke(inout Request request);

b
}

Installing an interceptor on an ORB is ORB implementation specific, and each ORB
vendor may have their own flavor of interceptors. The ORB calls the request level
interceptor just before the invocation gets passed to the server implementation by using
the target_invoke() operation. The interceptor uses the Dynamic Skeleton Interface
(DSI) to examine values of the arguments of the invocation and make access decisions.
These access decisions are also based on the credentials received from the client and
the access policy. The interceptor will deny access to the invocation by raising an
exception. The server's ORB will transmit this exception back to the client.

The use of the interceptor scheme frees the implementation of the COAS interfaces
from the implementation of the access decision policy. If the access policy model
changes, then the interceptor can be changed out without retooling the COAS
implementation.

Clinical Observations Access Service V1.0 April 2001

C

As awareness of the need for more powerful and flexible security policy management
grows, more tools to create, manage, and analyze policy will come into existence. A
COAS implementation relying on interceptors to implement its security policy may be
able, with relative ease, to switch to using more robust policy services as they become
developed.

C.7 Use of Healthcare Resource Access Decision Facility

Resource names used for obtaining access decisions from HRAD facility by COAS-
compliant services, should be created in a predefined manner:

COAS_HRAC_Resource_Name ::=
'IDL:omg.org/DsObservationAccess' +

{'ObservedSubjectld’, <ObservationData.observed_subject_id>} +
{'QualifiedCodesStr’, <Stringified ObservationData.observation_type>}+
{TimeSpan’, <Stringified ObservationData.observation_time>}+
[{‘'Observationld’, <ObservationData.observation_id>}]

Text below explains the expression above in English.

If a COAS-compliant service uses Healthcare Resource Access Decision facility
(HRAD), it shall:

1. Create HRAD resource names according to the following rules:

® The “resource_naming_authority” data membeRe$ourceName shall adhere to
the syntax of thélamingAuthority::AuthorityldStr ~ type. For the corresponding
datum element of typauthorityld , the value of authority shall be ‘IDL. The value
of naming_entity shall be ‘omg.org/DsObservationAccess.’

® The first element of theesourceName data member
resource_name_component_listmandatory. I1ts membeame_stringshall have a
value of ObservedSubjectld ', and the value ofalue_stringshall be the value of
the observed_subject_idata member of the corresponding datum element of type
ObservationData for the observation to be accessed.

® The second element of tiResourceName data member
resource_name_component_listmandatory. I1ts memberame_stringshall have a
value of QualifiedCodeStr ', and the value ofalue_stringshall be the stringified,
via TerminologyServices::TranslationLibrary.qualified_code_to_name_str() , value
of the observation_typelata member of the corresponding datum element of type
ObservationData for the observation to be accessed.

® The third element of thResourceName data member
resource_name_component_listmandatory. I1ts memberame_stringshall have a
value of TimeSpan', and the value of the correspondivegue_stringshall be the
value of theobservation_timelata member of the corresponding datum element of
type ObservationData for the observation to be accessed.

COAS V1.0 April 2001 C-9

® The fourth element of thResourceName data member
resource_name_component_listoptional. If it is provided, its data member
name_stringshall have a value oDbservationid '. The value of the corresponding
name_stringdata member shall be the value ofiservation_id ' of the
corresponding datum element of typbservationData for the observation to be
accessed.

2. Create HRAD operation name according to the following rules:

® When serving invocations of operations that semantically mean “get,” operation in
DfResourceAccessDecision::access_allowed() shall have value ‘read.

® When serving invocations of operations that semantically mean “set,” operation in

DfResourceAccessDecision::access_allowed() shall have value ‘write.

¢ Obtain security attributes of the invoking principal via
SecurityLevell::Current.get_attributes() (See Section C.6, “Request Content
Based Policy” or other means.

« Obtain resource access decision(s) by invoking edbe#ss_allowed() or
multiple_access_allowed() on DfResourceAccessDecision::AccessDecision
interface.

¢ Enforce the decision according to the semantics of the operation the COAS-
compliant service is serving.

It is not mandated by this specification how exceptions caught during an attempt
to invoke eitheraccess_allowed() or multiple_access_allowed() on
DfResourceAccessDecision::AccessDecision interface are handled by a COAS-
compliant service.

C-10 Clinical Observations Access Service V1.0 April 2001

Usage Patterns D

D.1 Overview

There are a variety of scenarios for which patient observation data may need to flow
between two systems or applications. A simple set of CORBA interfaces can be useful
by deploying them in these different scenarios without having to redefine the interfaces
for each scenario. Some of the factors determining how the interfaces may be used are:

® who initiates the conversation; is the connection temporary or permanent;
®* who knows when and what should be sent for which patients;

® s the data coming from a human or machine observer;

® s the time span relative to a single encounter vs. a whole life time record;
® s the data going into a CDR/EMR or coming out;

® will it be used as one central database or distributed data resources; etc.

The subsections below will investigate some scenarios. One of the biggest determinants
in these scenarios is who knows that a particular set of information needs to be passed
between two applications. As you will see below, each scenario has a particular
usefulness that depends on this issue.

Clinical Observations Access Service V1.0 April 2001 D-1

D

D.2 Consumer Initiated

D-2

Patient
Observation
Supplier

] data poll(who, what)
Query for Data data query(who, what,when)
@7register(who, what,when, where) ——

Register

CORBA Naming
Service

Reference resolve(supplier)

Patient
Observation
Consumer(s)

~

update(data) H Consume Data JJ

Figure D-1 Data consumer initiated push and pull interaction models

A supplier of patient observation data may need to allow clients to:
® poll for the current patient data (numeric vital signs and waveforms),
® query for data that has already been collected, and

® register for automatic updates at specified times or triggered by some other event.

The supplier may publish a reference to itself in a CORBA Naming Service for others
(possibly many others) to access.

The arrows with solid heads in the diagram above represent the direction of one system
calling another. The arrow with a wire head indicates the Patient Observation Supplier
is in the CORBA Naming Service. The Patient Observation Consumer goes to the
Naming Service (or any other valid mechanism) and gets an object reference to the
supplier. The consumer then initiates any querying to, and registering with, the
supplier. This mechanism would be used by an application that may come up with a
user interface that allows the clinician to query for data or ask to be
periodically/continuously updated.

The three interfaces are named with logical descriptions for what they do. See the
specific interface sections for the actual name of the interfaces and a full description of
their capabilities. Note that an observation supplier need only implement one or both
interfaces.

1. Query for Data - This represents a CORBA interface that allows a client
system/application to query for past patient observations or poll for the current
patient information. This is a simple mechanism from the consumer’s point of view

Clinical Observations Access Service V1.0 April 2001

D

since they only have to poll/query for data when they want it, although they must
determine when to ask for the data. The polling is also simple for the supplier, but
guerying requires the storage of data to have occurred. This mechanism is more
appropriate when the time that data is needed can not be predetermined.

. Register for Data - This CORBA interface allows the client to register its Consume

Data interface with the supplier of observation data to be updated with the indicated
data and times. This is more complicated from the consumer’s point of view since
they have to implement a CORBA object. On the other hand the consumer does not
have to deal with timers, etc. to determine when to poll for information. The
supplier does not need to keep a data base of patient data for this mechanism but,
they do need to keep a connection data base. This mechanism is best suited when
the data availability can not be predetermined, such as needing data when an alarm
or other event occurs.

. Consume Data - This is the CORBA interface for the call back from the registration

procedure that gets called with patient observation data.

The labels on the arrows contain pseudocode that specifies the kind of information that
must be passed in each invocation. The actual information passed and the interfaces

will be a lot more complicated than this simple picture in order to characterize the data
fully and manage the registration.

who - Patients for which data is wanted. This may be specified by identifying
patients by an identifier or by locations.

when - Times for which data is wanted. These could be specific times and/or events
of interest. This is implied to be the current time or most recent data during polling.

what - The kinds of data wanted. This could be vitals signs, waveforms, alarm
indications or other patient observations.

where - Where the data is going. This is implied for polling and queries since the
data is returned to the system initiating the call.

The simplest and most straight forward way to access data is by polling and querying.
The querying system only has to use the client side of CORBA. Registering for
automatic updates requires more work including creating a CORBA object that can be
called back. Most of the work for the registration capabilities is done by the service
side.

COAS V1.0 Consumer Initiated April 2001 D-3

D

D.3 Supplier Initiated

CORBA Naming
Service

resolve(consumer) Reference

Patient Patient
Observation Observation
Supplier(s) Consumer

\\K update(data) Consume Data
.

Figure D-2 Supplier initiated push interaction model.

A consumer (sink) of patient observation data may need to allow clients to send (push)
data to it. The consumer may publish a reference to itself in a CORBA Naming Service
for others (possibly many others) to access it.

The supplier of the observation data can look up the consuming application in the
CORBA Naming Service and send data to the consumer when the supplier deems
necessary. An example where this scenario would be valid is when a nursing
application or patient care management application needs to send nurse notes or
manually collected vital signs to the EMR/CDR.

D.4 Third Party Initiated

In many cases, a system supplying observation data and a system consuming
observation data do not know about each other. In these cases, a third party such as a
System Administrator will set up and configure the connection between the two
systems.

These are more useful ways when the two systems run in the background
(continuously). For example, an ancillary system may need to send data to a Clinical
Data Repository (CDR) or patient care management application on a periodic bases.
Another example would be registering a nurse call system with a monitoring system in
order to be notified of alarms of interest to that nurse.

D-4 Clinical Observations Access Service V1.0 April 2001

D

D.5 Push Style

Patient
Observation
Supplier

Register

for Data

In either of these cases, neither the supplier nor consumer know about each other. The
System Administrator (or some other third party) will need to set up the connection
between the two. The Patient Observation Consumer and Patient Observation Supplier
would need to be in the CORBA Naming Service or the System Administration
Application would need to get the object references through some other means.

CORBA Naming
Service

resolve(supplier/consumer)

-~

Reference System Reference
Administrator
Application
Patient
) Observation
register(who, what,when, where) Consumer(s)
update(data) H Consume Data J/

Figure D-3 Third party interactions to set up a push style connection

Figure D-3 shows a slightly more complicated mechanism for registering a consumer
with a data supplier. In this case, the consumer(s) need to implement the Consume
Data interface. This works when the consumer is a data sink such as a data base.

The supplier only needs to implement the Register for Data interface. This is more
complicated than just implementing the Query for Data interfaces since the supplier
has to manage the set of consumers and the data base of the patient data. The supplie
also has to monitor the timer and alarm events to know when the data should be sent to
the consumer.

COAS V1.0 Push Style April 2001 D-5

D

D.6 Pull Style

Patient
Observation
Supplier(s)

D-6

Ny data poll(who, what)
U Query for Data data query(who, what,when)
. J

CORBA Naming
Service

resolve(supplier/consumer)

Reference Reference

System
Administrator
Application

Patient
Observation

register(where) consumen

Register Supplier

Figure D-4 Third party interactions to set up a pull style connection.

Figure D-4 shows another mechanism for registering a consumer with a data supplier.
In this case, the consumer needs to implement the Register Supplier interface. The
supplier only need implement the Query for Data interface. In many cases, this would
be the simplest scenario for the supplier system to implement since it already has
stored the data in a data base and needs to implement the logic to retrieve the data an
return it to the caller.

This scenario adds a complication to the consumer since it now has to implement the
Register Supplier interfaces and manage a set of suppliers from which to receive data.

Clinical Observations Access Service V1.0 April 2001

D.7 Third Party Mediated

CORBA Naming
Service

resolve(supplier/consumer)

Reference Patient Reference
Management
Application
Patient Patient
Observation data poll(who, what) Observation
update(data
Supplier(s) data query(who, what,when) pdate(data) Consumer(s)

Query for Data Consume Data

- -

Figure D-5 Third party mediator to convert pull style supplier to a push style consumer

Figure D-5 shows a scenario where the supplier and consumer have selected (maybe by
necessity) to implement the simplest respective interfaces or at least non-compatible
interfaces since neither can initiate the connection. A third party application mediates
between the consumer and supplier. In some cases, this is a natural scenario since a
Patient Management Application may be taking raw data from an instrument. The
clinician would validate the data and then send the results to the CDR/EMR.

Another case may be an interface engine to bridge the two systems and the IT
department (system administrator) would configure the interface engine directly.

COAS V1.0 Third Party Mediated April 2001 D-7

Clinical Observations Access Service V1.0

April 2001

Usage Scenarios E

E.1 Vital Signs Service

E.1.1 Nursing Station Scenario

A Nurse is doing his charting on a Clinical Information System (CIS). The CIS collects
vital signs from the vital signs server (patient monitoring system) every minute.

The CIS polls the vital signs server every minute for the most representative vital signs
values (median filter) over the last minute. This data is cached up for 24 hours for
immediate access by the Nursing staff. Because this polling is done so often it is
important the calls are efficient. For example it should only require a single call to
acquire the data for all vital signs on all 16 patients in that unit.

The CIS also has the ability to show waveforms from the patient. Instead of storing the
high volume of waveform data for the 24 hours it only requests them when a Nurse
wants to view them.

The Nursing staff may sometimes want to see the very latest vital signs values, where
as the stored data on the CIS is only one value per minute, and at any time the last
value shown could be as much as 1 minute old. The CIS provides a function for the
Nurse to request the very latest data. The CIS polls the vital signs server but asks for
the very latest data available for each vital sign as long as it is no older then 15
seconds. The Nurse verifies these values with the monitoring system display and
enters them into the patient record with a simple button push.

E.1.2 Doctor’s Office Scenario

A Doctor has multiple patients admitted to a hospital and needs to make her rounds
every day. Before going to the hospital she wants to review the patients condition over
the last day.

Clinical Observations Access Service, v1.0 April 2001 E-1

A local application (or a web browser is used to download an applet which) connects
up to the hospital intranet and queries the vital signs server for a 24 hour trend on the
first patient. The trend is a sampling of the vital signs numerics (heart rate, blood
pressure, etc.) over the past 24 hours. Since the vital signs may be collected
continuously with changes on the order of every second or two (60*60*24=86400
samples per vital sign) it would take a long time to download. Instead the client
application asks for only one sample every 5 minutes (12*24=288 samples) since the
trend display area is only 288 pixels wide. A median filter is requested over each 5
minute period so that the most representative value is returned.

The Doctor notices a sudden drop in the blood pressure around 3:00 am and zooms in
around that time. The application changes to a 30-minute view and does another query
to the vital signs server. This time it asks for a trend over the 30 minutes with a
resolution of 5 seconds.

The Doctor wants to see what the ECG and blood pressure waveforms are doing during
this time, and so she changes views. The cursor was set at 3:05:20 am. When the
Doctor changed to the waveform view the application queried the vital signs server for
the waveforms around 3:05:20, requesting 20 seconds before through 20 seconds after
that point in time. It centers the waveform on the screen, which shows a window of 10
seconds for each waveform.

After scrolling through the waveform the Doctor notices a short arrhythmia starting at
3:05:43. The doctor uses the application to see when other arrhythmias might have
occurred through out the night, and sees a half dozen others.

She looks at a couple of them to make sure they really are problems and decides to put
this patient high on her list to visit first during her rounds.

E.1.3 Remote Monitoring Scenario

A hospital has installed monitors throughout the enterprise, but realizes that most
Nurses are not familiar with many of the difficulties that can be exposed with the
monitor. They implement a central monitoring group (scope techs) that provides this
functionality. Since there are so many monitors, they can not watch each one
continuously, as is usually done with monitor techs.

The scope tech's applications are registered with the vital signs servers to be notified
when alarms start and end. The application filters these alarms with a different
algorithm for each vital sign in order to reduce false alarms. The alarms that get
through the filter are displayed to the scope tech.

The application then polls the vital signs server for the waveforms (ECG, etc.) starting
at the beginning of the alarm event up to the present. This information is shown to the
scope tech immediately. The application also registers with the vital signs server to be
updated every second with the latest vital signs and the waveforms for the last second.
As this data arrives the application appends the waveforms to that already displayed in
a continuous manner.

Clinical Observations Access Service, v1.0 April 2001

E

It appears to the scope tech the data is being acquired and displayed continuously, but
the data is always one second behind. This small delay is acceptable for the job of the
scope tech. The delay is used so that only one packet of data is sent on the network pel
second, reducing the network bandwidth required.

E.1.4 Paging System Scenario

A hospital has a nurse paging system that is used for sending messages to nurses
through out the day, as well as notifying them of code situations they may need to
attend to immediately. They choose to connect the vital signs server to the paging
system so that life threatening alarms can cause the responsible Nurse to be paged.

The paging system is registered with the vital signs server to have critical data pushed
to it when certain events occur (life threatening arrythmias and apnea). Since there is
a possibility of false alarms, other clinical information needs to be passed to the paging
system as well so the Nurse can triage the severity of the alarm. A snap shot of the
waveform associated with the alarm (ECG or Respiration) is sent along with the latest
vital signs values. Some Nurses carry large screen pagers that can display this extra
data.

Due to the time criticality of the alarm, the data must be delivered to the Nurse
quickly. From the point of view of the vital signs server it is just delivering (pushing)
the requested data to a client at the times they registered interest in. It knows nothing
about the client, except that it can accept the pushed data.

E.1.5 Logging System Scenario

Due to potential legal actions, a hospital has implemented an enterprise wide logging
system of information that may be needed in case a law suit occurs. It does not have an
electronic medical record system so it prints these out on paper that gets put into the
patient's record.

The most critical information needed is when certain alarms occur, but information is
also captured periodically during a shift. The period is determined by what unit they
are on. The information collected includes an ECG snapshot of 7 seconds and certain
vital signs (heart rate, oxygen saturation, blood pressure, and respiration rate), if they
are available. Since the blood pressure is taking sporadically, only values within the
last 15 minutes are included. All other vital signs are taken continuously and are
included if a value exists within 5 seconds of the event.

There are several ways the logging system could get the information from the vital
signs server - by polling, querying and registering.

Since the vital signs server keeps all data for 24 hours, the logging system could query
for the information every 24 hours (or less). It could query for the times the alarms it
is interested in had occurred through out the day. It could then query for the required
vitals signs and ECG at these times and at the periodic times for that unit.

COAS V1.0 Vital Signs Service April 2001 E-3

E-4

The logging system could be registered with the vital signs server to send the required
vital signs and ECG at the periods in which data is logged for that unit. It could also
register to have the same information sent when the alarms of interest occur.

Alternatively the logging system could poll for the needed vital signs and ECG at the
periodic times assigned to that unit. At those same points in time it could query for
which of the important alarms had occurred since the last period and query for the vital
signs at those times.

Clinical Observations Access Service, v1.0 April 2001

ClientImplementation Examples F

Following are some examples of how a client might access observations via the
DsObservationAccess service. All codes, data, and clinical information are fabricated
for illustration purposes.

F.1 Lipid Panel

Consider an example where a COAS client requests a lab result, using the
QueryAccess component. The lab in question is a lipid panel for patientID “1234,”
with the sample drawn on the morning of 11 Mar 1999.

For this example, assume the following definitions. First, there are several observation
codes, one for a composite panel, and four individual measurements within the panel:

LIPID_PANEL// a battery of lipoproteins in blood sample
TRIGLYCERIDES
TOTAL_CHOLESTEROL
LOW_DENSITY_LIPOPROTEIN
HIGH_DENSITY_LIPOPROTEIN

LIPID_PANEL

Figure F-1 LIPID_PANEL is a composite observation with four elements.

Clinical Observations Access Service V1.0 April 2001 F-1

That is,LIPID_PANEL is anObservationData which contains other observations, so its
composite field has four items while itgalue field has zero length. Meanwhile, the
four contained observations are atomic observations. Eheiposite field is zero
length, while theiwalue field (a CORBA:any) is filled with a
DsObservationValue::Numeric ~ struct.

F.1.1 Qualifiers
Assume the following qualifier codes:

NORMAL_RANGE // range for this measurement/gender
NORMALCY /I flag for this measurement
OBSERVATION_TIME // time sample was drawn
RESULTS_AVAILABLE_TIME // time result entered into system

Figure F-2 NORMAL_RANGE is a qualifier which contains a Range struct within value.

Within the DsObservationValue::Range struct is a lower and upper bound. See
DsObservationValue descriptions for more information aboRénge.

Figure F-3 NORMALCY is a qualifier which contains QualifiedCodeStr within value.

The enumeration of qualified codes fdORMALCY might includeNORMAL,
ABNORMAL_HIGH , ABNORMAL_LOW, and potentially other codes.

Clinical Observations Access Service V1.0 April 2001

Figure F-4 OBSERVATION_TIME is a qualifier which contains a TimeSpan within value.

The observation time can be a precise point in time, indicatedThyespan with
start_time = stop_time.

(ditto for RESULTS_AVAILABLE_TIME)

Finally, assume one more code, a value for units.

mg_PER_dL // milligrams per deciliter

F.1.2 Request

The request might look something like the following, if we assume that a COAS object
has been located and referenced as “myCoasServer” in a java syntax.

I/l “who” parameter
ObservedSubjectld who = new ObservedSubjectld(
new Authorityld(RegistrationAuthority. DNS, "myHospital.org/pids"),"1234");

/I *what” parameter
String[] what = new String[1];
what[0] = LIPID_PANEL;

/l “when” parameter

TimeSpan when = new TimeSpan (
"1999-03-11T00:00:00",
"1999-03-11T11:59:00"

);

I/l “the_rest” parameter (a returned iterator, if # observations > max_sequence)
ObservationDatalteratorHolder() the_rest = new ObservationDatalteratorHolder();

ObservationData[] results = myCoasServer.get_observations_by_time(
who,
what,
when,
1000, // max_sequence, largest number of observations allowed in returned sequence
the_rest /l iterator for observations > max_sequence

COAS V1.0 Lipid Panel April 2001 F-3

F-4

F1.3 Result

The result returned by the COAS server could look something like the following,
depending on the default policies of the server. For this example, we assume the return
of qualifiersNORMAL_RANGE , NORMALCY, OBSERVATION_TIME, and
RESULTS_AVAILABLE_TIME . In other words, assume the default
QUALIFIER_RETURN_POLICY contains these codes and no others which apply to the
example observations.

In the example belowpbs:<code> indicates arDbservationData struct with<code>

in the code field, with the other three fields@ifservationData , composite, qualifiers,
and value, displayed in that order. Two brackets, “[]” indicate a sequence of length
zero.

Indentation implies hierarchy, with leftmost items containing rightmost items. Initial
capitals indicates BsObservationValue struct name, likeRange. These structs are
found within the “value” field in arDbservationData (the value field is a

CORBA:any).

Obs:LIPID_PANEL
composite:
Obs:TRIGLYCERIDES
composite: []
qualifiers:
Obs:NORMAL_RANGE
composite: []
qualifiers: []
value: Range { lower = 0, upper = 100}
Obs:NORMALCY
composite: []
qualifiers: []
value: QualifiedCode { ABNORMAL_HIGH }
value: Numeric { value = 150, units = mg_PER_dL }
Obs:TOTAL_CHOLESTEROL
composite: []
qualifiers:
Obs:NORMAL_RANGE
composite: []
qualifiers: []
value: Range { lower = 0, upper = 200 }
Obs:NORMALCY
composite: []
qualifiers: []
value: QualifiedCode { ABNORMAL_HIGH }
value: Numeric { value = 220, units = mg_PER_dL }
Obs:LOW_DENSITY_LIPOPROTEIN
composite: []
qualifiers:
Obs:NORMAL_RANGE
composite: []
qualifiers: []
value: Range { lower = 0, upper = 130}
Obs:NORMALCY
composite: []

Clinical Observations Access Service V1.0 April 2001

qualifiers: []
value: QualifiedCode { ABNORMAL_HIGH }
value: Numeric { value = 150, units = mg_PER_dL }
Obs:HIGH_DENSITY_LIPOPROTEIN

qualifiers:
Obs:OBSERVATION_TIME
value
TimeSpan
start_time = "1999-03-11T07:05:00-08"
stop_time ="1999-03-11T07:05:00-08"
Obs:RESULTS_AVAILABLE_TIME
value
TimeSpan
start_time = "1999-03-11T11:04:00-08"
stop_time ="1999-03-11T11:04:00-08"
value:]

F.2 Progress Note (XML)

Consider a COAS server which parses XML as an input qualifier, and returns XML
documents as output. Just as with the previous example, the standard operations of
QueryAccess are employed. The output is still a sequenc®ldervationData items,

with a single XML document as the string payload in the value field of an atomic
observation.

XML input XML output

q omommma |

Figure F-5 COAS server which parses incoming XML, and outputs XML.

This COAS server accepts XML input to create a template for matching. The example
below illustrates an input document with XML fields as follows: document.type =
“progress.note”, patient.id = “450023” and practitioner.id = “phys124”). The fields
within the input document are matched, returning complete records which have
matching information. Fields omitted from the input are considered “don’t care” for
matching purposes.

Since both the input (qualifier) is an XML Progress Note and the output is an XML
Progress Note, both input (qualifigdpservationData.code and output
ObservationData.code are the same?ROGRESS_NOTE.

COAS V1.0 Progress Note (XML) April 2001 F-5

For this Progress Note query example, assume the following full XML document
format as shown:

<?xml version="1.0"?>
<IDOCTYPE LevelOne SYSTEM "LevelOne.dtd"[]>
<?xml-stylesheet type="text/xsl|" href="himssdemo.xsl"?>
<LevelOne>
<header>
<document>
<document.creation.date>
1999-2-3T12:27:50
</document.creation.date>
<document.id>
<id.value>PRAAPN_CFN1999-02-03T12:27:51</id.value>
</document.id>
<document.originating.system>
<id.value>CFN</id.value>
<organization.name>
Sample HIMSS Hospital</organization.name>
</document.originating.system>
<document.originator.id>
<id.value>VJ342</id.value>
</document.originator.id>
<document.state value="original"/>
<document.title>
Progress Note</document.title>
<document.type value="progress.note"/>
</document>
<event>
<event.id>
<id.value></id.value>
</event.id>
<event.date>1999-2-3T12:27:51</event.date>
<event.location.id>
<id.value>4444444</id.value>
<facility>
<namespace.id>12345</namespace.id>
<local.header>
DEPARTMENT OF FAMILY PRACTICE
</local.header>
</facility>
</event.location.id>
</event>
<patient>
<patient.id>
<id.value>
P013
</id.value>
</patient.id>
<patient.name>
<family.name>Presnell</family.name>
<given.name>Tricia</given.name>
</patient.name>
<patient.date.of.birth>
1992-09-14 00:00:00.0
</patient.date.of.birth>
<patient.sex value="female"/>
<patient.address>
<street.address>
1944 Cone St. </street.address>

Clinical Observations Access Service V1.0 April 2001

<city>
</city> <state.or.province>
</state.or.province>
<zip.or.postal.code>
</zip.or.postal.code>
</patient.address>
</patient>
<practitioner>
<practitioner.id>
<id.value>
D3
</id.value>
<family.name>Ross </family.name>
<given.name>Mark </given.name>
</practitioner.id>
</practitioner>
</header>
<body>
<section>
<section.title>Subjective</section.title>
<paragraph>
7 y.o0. white female. Chief complaint: sore throat. Pt complains of the onset yes-
terday afternoon of a sore throat. Mother relates Pt had a fever to 104 F last night. She has been
treating with children's Tylenol since then, last dose 2 hours ago. No headache, no abdominal
pain. Nausea since yesterday evening, with vomiting after breakfast this morning. No cough, no
rhinorrhea, no hoarseness. No dysuria or diarrhea. There are no sick contacts.
</paragraph>
</section>
<section>
<section.title>Objective</section.title>
<paragraph>
T39.2C BP 110/60 left arm, sitting R 20 P 114 Allergies: None. General: ill
appearing 7 year old girl, non-toxic, good eye contact, responsive to questions. HEENT: Eyes:
EOMI, pupils are equal, round, reactive to light, sclera are non-injected, non-icteric Ears: tym-
panic membranes are pearly white bilaterally, with good cones of light, and good landmarks, no
otalgia. Nares: no discharge, turbinates non-inflamed, no muco-pus.. Mouth: There are no gin-
gival vesicular eruptions. Generalized swelling and erythema of the pharynx. Bilateral 3+ ton-
sils with moderate exudate. Scarce palatal petechiae
</paragraph>
</section>
<section>
<section.titte>Assessment</section.title>
<paragraph>
Acute Pharyngitis. R/O strep.
</paragraph>
</section>
<section>
<section.titte>Plan of Care</section.title>
</section>
<section><section.title>Labs</section.title>
<paragraph>
strep screen
</paragraph>
</section>
<section>
<section.titte>Rx</section.title>
<paragraph>
Penicillin 250mg, po, qid x 10 days
</paragraph>
<paragraph>
Tylenol prn fever

COAS V1.0 Progress Note (XML) April 2001 F-7

F-8

</paragraph>
<paragraph>
encourage po fluid
</paragraph>
<paragraph>
RTC in 7 days or soon as worsens.
</paragraph>
<paragraph>
Keep home from school, indoors until temp. less than 100 F for one full day.
</paragraph>
</section>
</body>
</LevelOne>

F.2.1 Request

/I assume
const QualifiedCodeStr PROGRESS_NOTE =
"DNS:/omg.org/Sample/ProgressNote";

I/l “who” parameter

ObservedSubjectld who = new ObservedSubjectld(
new Authorityld(RegistrationAuthority. DNS, "myHospital.org/pids"),
"450023"

);

I/l “what” parameter
String[] what = new String[1];
what[0] = PROGRESS_NOTE;

/I “when” parameter (don't care)

TimeSpan when = new TimeSpan(
EARLIEST_TIME,
LATEST_TIME

);

/I “the_rest” parameter (a returned iterator, if # observations > max_sequence)
ObservationDatalteratorHolder() the_rest = new ObservationDatalteratorHolder();

/l “qualifiers” parameter

/I the following XML string is displayed on separate lines for readability
/l assume that we have inputXML filled as
I

String inputXML =
<?xml version="1.0"?>
<IDOCTYPE LevelOne SYSTEM "LevelOne.dtd"[]>
<?xml-stylesheet type="text/xsl" href="himssdemo.xs|"?>
<LevelOne>
<header>

<document>

<document.type value="progress.note"/>
</document>

Clinical Observations Access Service V1.0 April 2001

<patient>
<patient.id>
<id.value>
450023
</id.value>
</patient.id>
</patient>
<practitioner>
<practitioner.id>
<id.value>
phys124
</id.value>
</practitioner.id>
</practitioner>
</header>
</LevelOne>

// put inputXML into an Any
CORBA.Any qualAny = orb.create_any();
qualAny.insert_string(inputXML);

ObservationData[] qualifiers = new ObservationData[1];
qualifiers[0] = new ObservationData(
PROGRESS_NOTE, /I same code for input qualifier as output--an XML doc
new ObservationData[0], // no composite members
new ObservationData[0], // no qualifiers of this qualifier
qualAny

);

/I “the_rest” parameter (a returned iterator, if # observations > max_sequence)
ObservationDatalteratorHolder() the_rest = new ObservationDatalteratorHolder();

ObservationData[] results = myCoasServer.get_observations_by_qualifier(
who,
what,
when,
qualifiers,
100, /l max_sequence, largest number of observations allowed in
returned sequence
the_rest /I iterator for observations > max_sequence

F2.2 Result

From the request example above, we have
ObservationData[] results

returning from the call. Assuming that just one record was returned, and that the
ObservationData was an atomic observation, the array of results would be unpacked as
follows:

COAS V1.0 Progress Note (XML) April 2001 F-9

String theXML_result = results[0].value[0].extract_string();
We know to unpack a string from til@®RBA::any because the code returned,

results[0].code

containsPROGRESS_NOTE, our requested observation code, which is associated with
exactly one return type, a string.

The content ofheXML_result would be along the lines of the first, full-length XML
sample given above.

F.3 Non-empiric Antibiotic Decision Support

F.3.1 Usage Scenario and Example

A patient is in the Intensive Care Unit (ICU) and has been treated empirically for a
pneumonia (i.e., given antibiotics without knowledge of the bacterial cause of the
pneumonia) with Ceftazadime. Since the inception of antibiotic therapy, the patient has
not improved. Laboratory results, which include the microbiology results (bacterium
and associated sensitivities to varied antibiotics), CBC, and serum creatinine, become
available.

The physician uses a web browser to run a user interface to an antibiotic decision
support system. The physician selects the patient. The patient’s demographic,
laboratory (microbiology, serum creatinine, and CBC), and vital statistics are accessed
from a centralized clinical data repository. If this data is not accessible, the physician
or a surrogate has the option to manually enter this data. In this example, the weight is
159 Ibs, the height is 72 inches, the age is 60, the sex is Male, and the serum creatinine
is 1.7.

The physician selects a formulary to be utilized by the decision support system. The
user hits the run button and the decision support is invoked on the server. The above
data is modeled in the following features. The server-side decision support system
accesses the above data to create a list of drug, sensitivity, dose, dosing interval, and
daily cost information for drugs in the formulary, where sensitivities are known.

These results are prioritized by sensitivity and cost.

The results of the decision support are presented to the user. In the given example, the
bacterium is the resistant Streptococcus Pneumonia, which is sensitive only to
Vancomycin. The output suggests to the physician that his treatment should include
one gram of Vancomycin every 24 hours.

F-10 Clinical Observations Access Service V1.0 April 2001

Laboratory Results: CompositeObserv ation Obs erv edSu bje ct: CompositeO bserv ation ClinicalNote:CompositeObserv ation
B observ ationTy pe = Laboratory Results B observ ationTy pe = Person [Zobserv ationTy pe = ClinicalNote
B¥observ ationTime = 199901300830
//
VitalSigns:CompositeObserv ation Demographics: CompositeObservation Sex:AtomicObserv ation
@observ ationTy pe = Measurement @observ ationTy pe = Demographics @observ ationTy pe = Sex
B¥observ ationTime = 199901300800 B¥observ ationTime = 198201300722

Sex:CodedElement
v alue = Male

DateOf Birth: AtomicObserv ation
B¥observ ationTy pe = DateOf Birth

DateOf Birth:DateTime
[E%v alue = 196710090330

Figure F-6 Antibiotic Decision Support System - Example

This is anObject Diagram for what might be a way to represent an Antibiotic Decision
Support Systems input information.

F.3.2 ObservedSubject:CompositeObservation

Observ edSubject: Com positeObservation
t%observationTy pe = Person

Figure F-7 ObservedSubject:CompositeObservation

This instance of a®bservedSubject is typed as a Person (patient) and has a
CompositeObservation link of type LaboratoryResults , a CompositeObservation

link of type ClinicalNote and aCompositeObservation link of type VitalSigns and a
CompositeObservation link of type Demographic . This diagram is not meant to be
normative but rather to show an example of whaOhservedSubject of typePerson
(patient) may have associated with it.

observationType:QualifiedCode

This is aQualifiedCode that provides the type of th@bservedSubject . For example,
Person, Organ, Epidemic, etc.

F.3.3 LaboratoryResults:CompositeObservation

Laboratory Results: CompositeObserv ation
@observ ationTy pe = Laboratory Results

Figure F-8 LaboratoryResults:CompositeObservation

COAS V1.0 Non-empiric Antibiotic Decision Support April 2001 F-11

A Person (patient) in a healthcare information environment usually has a link to some
LaboratoryResults information.

observationType:QualifiedCode

This is aQualifiedCode that provides the type of th@ompositeObservation . In this
caselLaboratoryResults .

F.4 LaboratoryResults:CompositeObservation

Laboratory Results:CompositeObserv ation

Q}Observ ationTy pe= LaboratoryResults

—

LabChem7:CompositeObserv ation LabCBC:C om posite Observ ation
Q}ObservationTy pe = LOINCChem7 t%observationTy pe = LOINCCBC
[E5observ ationTime = 199901300700

LabCreatinineClearance:CompositeObserv ation L abMic robiol ogy : Co mposit €O bserv ation

@observationTy pe = LOINCCreatinineClearance @obser\,aﬂonw pe = Microbiology
Eobserv ationTime = 199901300650

Figure F-9 LaboratoryResults:CompositeObservation

The LaboratoryResults has aCompositeObservation link of type LabChem?7,
LabCreatinineClearance , LabMicrobiology , and aLabCBC.

F-12 Clinical Observations Access Service V1.0 April 2001

F.4.1 LabChem7:CompositeObservation

LabChem7:CompositeObserv ation

Chem7ResultStatus: AtomicObserv ation

Chem7ResultStatus: CodedElement

%observ ationType = LOINCChem7

t%observ ationTy pe : ResultStatus

E5v alue = Final

E&observ ationTime = 199901300700

LabSerumCreatinine: CompositeObserv ation

SerumCreatinineAbnormalFlag: AtomicObserv ation

t%observ ationTy pe = LOINCSerumCreatinine

%o bservationType = Abnom alFlag

{8>=Serum CreatinineNumericMeas urem ent .v alue>=0}

Serum Creatinine Abnomal Flag:Coded Elem ent

&v alue = Normal

Serum CreatinineNumericMeasurement:Atomic Observ aion

SerumCreatinineRangeMeasurement: AtomicObserv ation

@observ ationTy pe = Measurement

t%obs ervationType =Range

SerumCreatinineNumericMeasurement:Numeric

Evalue = 4
Bunits = mg/d|

SerumCreatinineRangeMeasurement:Range

Eupper = 8
EXlower = 0

B5units = mg/di

In LOINC, the units for SerumCreatinine seem to

are mg/dl. Therefore, in practice, this would require
a conv ersion.

be in mmol/L. However, this example and its ranges

Figure F-10

COAS V1.0

LaboratoryResults:LabChem7

LaboratoryResults:CompositeObservation April 2001

F-13

F.4.2 LabCreatinineClearance:CompositeObservation

LabCreatinineClearance: CompositeObserv ation
@observationType = LOINCC reatinineC learance ——
Eobserv ationTime = 199901300650

CreatinineClearanceResultStatus:AtomicObserv ation

%observ ationTy pe = ResultStatus

CreatinineClearanceResultStatus:CodedElement
E&v alue = Final

CreatinineClearanceAbnormalFlag: AtomicObserv ation

@observ ationTy pe = AbnormalFlag

{200>=CreatinineClearanceNumericMeasurement.v alue>=12}
CreatinineClearanceNumericMeasurement:AtomicObserv ation ‘

t%observ ationTy pe = Measurement

CreatinineClearanceAbnormalFlag: CodedElement

E&5v alue = Normal

CreatinineClearanceNumericMeasurement:Numeric

E5v alue = 100
Bunits = mg/minute

CreatinineClearanceRangeMeasurement: AtomicObserv ation
For creatinine clearance, this EZobserv ationTy pe = Range

example assumes ml/minute. If
LOINC uses a different unit sy stem, it
may require conv ersion.

CreatinineClearanceRangeMeasurement:Range
Bupper = 200
E&lower = 12
Bunits = mg/minute

Figure F-11 LaboratoryResults:LabCreatinineClearance

F-14 Clinical Observations Access Service V1.0 April 2001

F.4.3 LabMicorbiology:CompositeObservation

We need to validate

the CodedElements
against ICD9,

LabMicrobiology : CompositeObserv ation

NCPDP, LOINC,

EfobservationTy pe = Microbiology

CultureAndSensitiv ity ResultStatus: AtomicObserv ation

HL7, and ASTM

B observationTy pe = ResultStatus

LabPenicillinasePresent: AtomicObserv ation

LabCultureAndSensitiv ity : CompositeObserv ation

@observalionType = PenicillinasePresent
EfobservationTime = 199901300755

@observationTy pe = CultureandSensitivity
EobservationTime = 199901300800

CultureAndSensitiv ity ResultStatus: CodedElement

&5vale = Fial

LabPenicillinasePresent: CodedElement
B5value = True

IndividualCultureAndSensitiv ity : AtomicObserv ation

@observ ationTy pe = IndividualSensitivity

BacteriumQualifier: Observ ationQualifier

B obsevatonQualf ierTy pe = BacteriumQualifiedC ode

StrepPneum:Observ ationValue

@observ ationValueTy pe = ICD9CodedElement
&5 alue = 1CD9Codef orStrepPneum

DrugQualifier: Observ ationQualif ier

B observatiorQualifiefTy pe = DrugQualifiedCode

Penicillin:Observationvalue

ESobservationValueTy pe = NCPDPCodedElement
&5value = NCPDPCodef orPenicillin

IndividualSensitivity : Observ ationValue

Bhvalue =S

@observationVaJueTy pe = SIRCodedElement

Figure F-12 LaboratoryResults:LabMicorobiology

COAS V1.0

LaboratoryResults:CompositeObservation

April 2001

F-15

F.4.4 LabCBC:CompositeObservation

LabCBC:CompositeObserv ation
iBobserv ationTy pe = LOINCCBC

TotalNumberof WhiteBloodCells:AtomicObserv ation

@observ ationTy pe = Measurement

WBCNume ricMeasurement: Numeric PercentagePoly sQualified: Observ ationQualifier
@value =15000 %observatior’Q ualifierTy pe = Measurement
Bunits = quantity

We would appreciate feedback from clinical domain and
vocabulary experts on this example and its mapping to
LOINC.

PercentagePoly s:Numeric

E5v alue = 75
EBunits = percent

Figure F-13 LaboratoryResults:LabCBC

F.5 ClinicalNote:CompositeObservation

ClinicalNote: Com positeObselv at ion
Q}ObservationTy pe = ClinicalNote
E5observ ationTime = 199901300830

Figure F-14 ClinicalNote:CompositeObservation

A Person (patient) in a healthcare information environment usually has a link to some
ClinicalNote information.

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
CompositeObservation . In this caseClinicalNote .

observationTime:TimeSpan

Description: This is &imeSpan that provides the time of the
CompositeObservation . In this case 199901300830.

F-16 Clinical Observations Access Service V1.0 April 2001

F.5.1 ClinicalNote:CompositeObservation

ClinicalNote:CompositeObserv ation

[@lobserv ationTy pe = ClinicalNote
[lobserv ationTime = 199901300830

Disease:AtomicObserv ation
[observationType = Disease

Diseas e:Obsew ationValue NosocomialQualifier:Observ ationQualifier DiseaselocationQualifier:Observ ationQualif ier
I:pbsen/ ationValueTy pe = ICD9Disease ll:pbserv ationQualifierTy pe = CodedElement ll;observ ationQualifierTy pe = LocationCode
llwalue =1CD9Code for Pneumonia

NosocomialAcquired:CodedElement HospitalXY ZDisease:Observ ationValue

EEvalue =true [EEobserv ationValueTy pe = CalcudosLocationCode
B8V alue = HospitalXy z

Figure F-15 ClinicalNote:CompositeObservation

F.6 VitalSigns:CompositeObservation

VitalSigns:C om positeObservation

Q}ObservationTy pe = Measurement
E5observationTime = 199901300800

Figure F-16 ClinicalNote:CompositeObservation

A Person (patient) in a healthcare information environment usually has a link to some
ClinicalNote information.

observationType:QualifiedCode

Description: This is @ualifiedCode that provides the type of the
CompositeObservation . In this caseMeasurement .

observationTime:TimeSpan

Description: This is &imeSpan that provides the time of the
CompositeObservation . In this case 199901300830.

COAS V1.0 VitalSigns:CompositeObservation April 2001 F-17

F.6.1 VitalSigns:CompositeObservation

VitalSigns: CompositeO bserv ation

%observ ationTy pe = Measurement
Eobserv ationTime = 199901300800

Height:Com positeObserv ation Weight:CompositeObserv ation Age:CompositeObserv ation
t%observationType = LOINCHeight @observationType = LOINCWeight @observationType = Age

+Calculated From

DateOf Birth:DateTime
B5v alue = 196710090330

Figure F-17 VitalSigns:CompositeObservation

F.6.2 Height:CompositeObservation

Height:CompositeObserv ation
Wobserv ationTy pe = LOINCHeight

HeightNumericMeasurement: AtomicObserv ation HeightRangeMeasurement:Atomic Observ ation HeightAbnormalFlag: AtomicObserv ation
ﬂ:pbserv ationTy pe = Measurement ﬂ:pbserv ationTy pe = Range ﬂ:pbserv ationTy pe = AbnormalFlag
HeightNumericMeas urem ent :N um eric HeightRangeMeasurement:Range {80>=HeightNumericMeasurement.v alue>=45}
@y alue = 70 [upper = 80 ‘
WEunits = inch @lower = 45 HeightAbnormalFlag:CodedElement
@units = inch B5value = Normal

If LOINC's representation of height are in metric, this would
require a conversion.

Figure F-18 Height:CompositeObservation

F-18 Clinical Observations Access Service V1.0 April 2001

F.6.3 Weight:CompositeObservation

Weight:CompositeObserv ation
[Eobserv ationTy pe = LOINCWeight

WeightNumericMeasurement: AtomicObserv ation

WeightRangeMeasurement: AtomicObserv ation

WeightAbnormalFlag: AtomicObserv ation

!o bservationTy pe = Measurement

[@observ ationTy pe = Range

[@Hobserv ationTy pe = AbnormalFlag

WeightNumericMeasurement:Numeric WeightRangeMeasurement:Range
BSvalue =170 EEupper = 350
BSunits = Ib EElower = 70
Eunits = Ib
If LOINC's weights are in metiic, this would
require a conv ersion.

Figure F-19 Weight:CompositeObservation

F.6.4 Age:CompositeObservation

Age :Com positeObs ervation
{ESobserv ationTy pe = Age

AgeNumericMeas urem ent:AtomicObs erv ation

{350>=WeightNumericMeasurement.v alue>=70}

WeightAbnormalFlag:CodedElement
[&8value = Normal

AgeRangeMeasurement:AtomicObserv ation

observ ationTy pe = Measurement

[E&observ ationTy pe = Range

AgeAbnormalFlag:AtomicObserv ation

E&observ ationTy pe = AbnormalFlag

AgeNumericMeasurement:Numeric

BSvalue = 45

BSunits = year

AgeRangeMeasurement:Range

{100>=AgeNumericMeasurement.v alue>=0}

ESlupper = 100

Elower =0

AgeAbnormalFlag:CodedElement

EHunits =year

B8 alue = Normal

Figure F-20 Age:CompositeObservation

COAS V1.0

VitalSigns:CompositeObservation

April 2001

F-19

F-20 Clinical Observations Access Service V1.0 April 2001

Glossary

List of Terms

The definitions below have special meaning for this specification. Either they started
from general definitions and were refined during the development of this specification;
or they are definitions of concepts from other OMG specifications, and were taken
directly from those specifications; or they were important acronyms used in this
specification. Terms appearing lmldface type are defined elsewhere within this
section.

Access The ability to retrieve or get, and the action of
retrieving, information aboutbservationsand the
observationsthemselves.

Blob Acronym for Binary Large Obiject; used in this
document to represent an opaque stringotdts that
is passed unchanged between gbever and the
client.!

Client Any system or application that accesses or requests
service from &DsObservationAccess server.

Coded Concept A local name consisting of a fixed sequence of
alphanumeric characters, that is used to designate| one
or more presentations, definitions, comments, or
instructions within acoding schemé

Coding Scheme A relation between a set obncept codesand a set of
presentationgdefinitions commentsand instructions
which serves to designate the intended meaning
behind the codes. See th@S specification for
definitions of the terms presentations, definitions,
comments and instructiors.

Clinical Observations Access Service V1.0 April 2001 Glossary -1

Context

The interrelated conditions in which something exi
or occurs.

Domain Name

The name of an ID Domain in which an ID has

meaning. That is, IDs are only relevant in a particular

ID Domain. Each ID Domain has a Domain Name

that is unique and different from all other ID Domalin

Namest

Encounter A meeting between two systems in which meaningful
transactions are passed and processed.

Event A noteworthy happening or activity.

LQS The OMG's Lexicon Query Service

Observation

An act of recognizing and noting a fact or occurrence

often involving measurement with instruments or a

judgement on or inference from what one has
observed or noted.

Observation Qualifier

One that satisfies requirements or meets a specifi
standard.

Observation Value

The fact, note, or result of asbservation.

PIDS

The OMG'’s Person ldentification Service

Policy

A definite course or method of action selected fron

among alternatives and in light of given conditions
guide and determine present and future decisions

=

Qualified Code

A qualified namewhich identifies a coded concept
within the context of @oding schemeA qualified
name consists of theoding schemeddentifier (the
naming authority) and aoncept code(the local
name)?

Relationship A state of affairs existing between two systems that
have dealings between each other.
Server A DsObservationAccess system that offers services

or performs actions on the behalf or interest of
requests made by@sObservationAccess client.

Subject of Care

A biological entity, patient, or population that is und
observation or measurement.

1. Person ldentification Service, OMG Formal Document formal/99-03-05.

2. Lexicon Query Service, OMG Formal Document formal/99-03-06.

Glossary -2 Clinical Observations Access Service V1.0 April 2001

Index

A
AbnormalFlag
AtomicObservation 2-38, 2-40, 2-42
CodedElement 2-38, 2-40, 2-43
AbstractFactory Interface 3-64
AbstractManagedObiject Interface 3-65
AccessComponent Interface 3-60
AccessComponentData 3-18
Assigned/Setting 6-5
Associate 6-5
AsynchAccess Interface 3-49
AsynchCallback Interface 3-52
AsynchException 3-19
Asynchronous Access Viewpoint 3-12
AtomicObservation 2-6
AtomicObservationRemote Interface 3-33
Auditor
AtomicObservation 2-46
QualifiedPersonid 2-46
AuthoringClinician
AtomicObservation 2-45
QualifiedPersonid 2-45

B
BrowseAccess Interface 3-43
Browsing Access Viewpoint 3-11

C
Cause 6-6
CEN Naming Convention 6-2
Circumstances 6-8
Class Diagram 2-2
clinical observations 1-1
Clinical Observations Model 2-3
ClinicalNote
CompositeObservation F-16
COAS - Specific 7-3
Coded Types 4-5
CodedElement 2-13
Co-exists 6-6
Collaboration Diagram 2-2
Color
AtomicObservation 2-39, 2-42
CodedElement 2-40, 2-42
Common Access Operations Viewpoint 3-9
Compared/Reference 6-4
Complex Measurement Types 4-8
Componentization Viewpoint 3-4
CompositeObservation 2-5
CompositeObservationRemote Interface 3-34
Conformance 1-5
Conformance classes 1-6
Consequence 6-7
Constants 3-25
ConstraintLanguageAccess 3-53
Consumer Initiated D-2
ConsumerAccess Interface 3-58
CORBA
contributors ix
documentation set viii
CORBA Credentials C-5

CORBA Security Domain Access Policy C-5
Curve 2-14

D

Data Type Definitions 4-2, 5-1

DateTime 2-17

Demographics
CompositeObservation 2-29

DiagnosticService
AtomicObservation 2-33
CodedElement 2-33

Doctor's Office Scenario E-1

Document 6-3

Dynamic discovery 1-4

E

EncounterNumber
AtomicObservation 2-46
String 2-47

Event and Natification Interface Specifications 3-53

Event Management Viewpoint 3-14
EventConsumer Interface 3-55
EventSupplier Interface 3-53
Evidence 6-6

Exceptions 3-27, 5-4

External Typedefs 3-16, 5-2

F

Foundational Observation-Oriented Interfaces 3-30

Framework 6-4
Full Component Viewpoint 3-5

G
Goal 6-6
Graphic 6-3

H

HealthRecordEntry
CompositeObservation 2-30, 2-44

HealthRecordEntry - Example 2-44

HealthRecordEntry - Model 2-43

HealthRecordEntryld
AtomicObservation 2-47
String 2-47

HL7 - Clinical Times 7-3

HL7 - OBR (Request) 7-4

HL7 - OBX (Reply) 7-4

HL7 - PV1 (Patient Visit) 7-5

HL7 - Roles 7-3

HL7 Naming Convention 7-2

|
Identified/Incorporated 6-3

IGNORE_UNMATCHABLE_QUALIFIERS_POLICY 8-8

Insurance

CompositeObservation 2-29
Interface Inheritance Viewpoint 3-3
Internal Typedefs 3-26
Interpretation 6-5
Iterator Types 5-3

Clinical Observations Access Service, v1.0 April 2001

Index-1

Index

L P
LaboratoryResults Paging System Scenario E-3
CompositeObservation 2-29, F-12 PARAM_CHECKING_POLICY 8-6
LabUrineBattery Person Type 4-3
CompositeObservation 2-30 Phase 6-4
LabUrineBattery - LabSegment#1 - LONICUrineSodium 2-36 PhysicalLocationDescription 4-5
LabUrineBattery - LabSegment#2 - LONICUrineColor 2-39 PlainText 2-24
LabUrineBattery - LabSegment#3 - LOINCUrineColor 2-41 Produce 6-2
LabUrineBattery - LabSegments 2-34 Progress 6-5
Lipid Panel F-1 Progress Note (XML) F-5
Local Observations Viewpoint 3-7 Provides Information 6-7
Local/Remote Observations Viewpoint 3-6 Pull Style D-6
Logging System Scenario E-3 Push Style D-5
LooselyCodedElement 2-13
Q
M QualifiedCodelterator Interface 3-64
MATCHING_STRENGTH_POLICY 8-5 Qualifier Codes 7-3
Measurement 2-19 QUALIFIER_RETURN_POLICY 8-6
Motivation 6-6 QueryAccess Interface 3-45
Multimedia 2-15 Query-Oriented Interface Specifications 3-42
Multimedia Types 4-6
R
N Range 2-19
NameValuePair 3-22 RangeMeasurement
Navigable Relationships Viewpoint 3-2 AtomicObservation 2-37
Next Phase 6-5 Range 2-37
Nolnformation 2-25 Reason
Nolnformation Type 4-3 AtomicObservation 2-49
Non-empiric Antibiotic Decision Support F-10 CodedElement 2-49
Numeric 2-23 Recorded 6-4
NumericMeasurement Relation Codes 6-2
AtomicObservation 2-36 RELATIONS_RETURN_POLICY 8-7
Numeric 2-37 Remote Monitoring Scenario E-2
Nursing Station Scenario E-1 Remote Observations Viewpoint 3-8
Report 6-3
o _ Request Content Based Policy C-6
Object Diagram 2-2 Resource Access Decision Facility C-9
Object Management Group Vvii ResultStatus
address of viil AtomicObservation 2-32
Observation 2-4 CodedElement 2-32
Observation Type for Qualifiers 7-2 RETURN DEPTH POLICY 8-2
Observation Type for Relations 6-2 RETURN_ITEMS_IN_TIME_SPAN_POLICY 8-5
ObservationData 3-20 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY 8-8
ObservationDatalterator Interface 3-63 RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY 8-7
Observationld 3-21 RETURN_OBSERVATION_VALUES_POLICY 8-3
ObservationLoader Interface 3-59
ObservationQualifier 2-7, 3-21 S
ObservationReference 2-6 SEARCH_DEPTH_POLICY 8-2
ObservationRemote Interface 3-31 SEARCH_SYNONYMOUS_CODES_POLICY 8-3
ObservationRemotelterator Interface 3-38 SEARCH_SYNONYMOUS_IDS_POLICY 8-4
ObservationValue 2-12 Secure Interoperability Concerns C-3
ObservedSubject Security Requirements C-2
CompositeObservation 2-28 Sequences 3-27
ObservedSubject - Model 2-27 SHORTCIRCUIT_SEARCH_..._POLICY 8-4
ObservedSubject Interface 3-38 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY 8-5
OriginatingSource Simple Measurement Types 4-7
AtomicObservation 2-48 Simple Query Access Viewpoint 3-10
CodedElement 2-48 Source/Derived 6-3
Originator Status
AtomicObservation 2-48 AtomicObservation 2-50
QualifiedPersonld 2-49 CodedElement 2-50

Index-2 Clinical Observations Access Service, v1.0 April 2001

Index

Subscription 3-23

Supersede 6-4

Supplier Initiated D-4
SupplierAccess Interface 3-57
Supporting Types 4-2

T
Target 6-7

TechnologylnstancelLocator 2-16

Text Types 4-4

Third Party Initiated D-4

Third Party Mediated D-7

Time Types 4-3, 5-2

TIME_SERIES_... ALGORITHM_POLICY 8-7
TIME_SERIES_... PREFERENCE_POLICY 8-7
TimeSeries 2-22, 5-3

TimeSeriesRemote 5-4

Clinical Observations Access Service, v1.0

TimeSpan 3-24

TimeStamp 3-23

Topic 6-7

Triggers 6-6

Trust Models C-4

Typedef, Enum, Union, and Sequence Types 5-3

U
UniversalResourceldentifier 4-5
Utility Interface Specifications 3-59

\Y

ValueDomains 1-4

Vital Signs Service E-1

VitalSigns
CompositeObservation F-17

April 2001

Index-3

Index

Index-4 Clinical Observations Access Service, v1.0 April 2001

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	COAS Overview
	1.1 Definition and Scope of Clinical Observations
	1.2 Previous Work
	1.3 Information Model
	1.4 Dynamic Discovery
	1.5 Value Domains
	1.6 Type Negotiation
	1.7 XML Usage
	1.8 Roadmap for Extensions
	1.9 Conformance Points
	1.9.1 Interface Conformance Classes
	1.9.2 Data Structure Conformance Classes
	1.9.3 Qualified Code Conformance Classes

	COAS Information Model
	2.1 Overview
	2.2 Modeling Notation
	2.2.1 Modeling Definitions

	2.3 Clinical Observations Model
	2.3.1 Clinical Observations Model - Class Diagram
	2.3.2 Observation
	2.3.3 CompositeObservation
	2.3.4 AtomicObservation
	2.3.5 ObservationReference
	2.3.6 ObservationQualifier
	2.3.7 ObservationValue

	2.4 Examples
	2.4.1 ObservedSubject - Model
	2.4.2 ObservedSubject - Example
	2.4.3 LabUrineBattery - Example
	2.4.4 LabUrineBattery - LabSegments
	2.4.5 LabUrineBattery - LabSegment#1 - LONICUrineSodium
	2.4.6 LabUrineBattery - LabSegment#2 - LONICUrineColor
	2.4.7 LabUrineBattery - LabSegment#3 - LOINCUrineColor
	2.4.8 HealthRecordEntry - Model
	2.4.9 HealthRecordEntry - Example

	DSObservationAccess Service
	3.1 Overview
	3.2 Viewpoints
	3.2.1 Navigable Relationships Viewpoint
	3.2.2 Interface Inheritance Viewpoint
	3.2.3 Componentization Viewpoint
	3.2.4 Full Component Viewpoint
	3.2.5 Local/Remote Observations Viewpoint
	3.2.6 Local Observations Viewpoint
	3.2.7 Remote Observations Viewpoint
	3.2.8 Common Access Operations Viewpoint
	3.2.9 Simple Query Access Viewpoint
	3.2.10 Browsing Access Viewpoint
	3.2.11 Asynchronous Access Viewpoint
	3.2.12 Event Management Viewpoint

	3.3 Data Type Definitions
	3.3.1 Include Files
	3.3.2 External Typedefs
	3.3.3 Forward Declarations
	3.3.4 AccessComponentData
	3.3.5 AsynchException
	3.3.6 ObservationData
	3.3.7 ObservationId
	3.3.8 NameValuePair
	3.3.9 Subscription
	3.3.10 TimeStamp
	3.3.11 TimeSpan
	3.3.12 Constants
	3.3.13 Internal Typedefs
	3.3.14 Sequences
	3.3.15 Exceptions

	3.4 Interface Specifications
	3.4.1 Foundational Observation-Oriented Interfaces
	3.4.2 ObservationRemote Interface
	3.4.3 AtomicObservationRemote Interface
	3.4.4 CompositeObservationRemote Interface
	3.4.5 ObservationRemoteIterator Interface
	3.4.6 ObservedSubject Interface

	3.5 Query-Oriented Interface Specifications
	3.5.1 BrowseAccess Interface
	3.5.2 QueryAccess Interface
	3.5.3 AsynchAccess Interface
	3.5.4 AsynchCallback Interface
	3.5.5 ConstraintLanguageAccess

	3.6 Event and Notification Interface Specifications
	3.6.1 EventSupplier Interface
	3.6.2 EventConsumer Interface
	3.6.3 SupplierAccess Interface
	3.6.4 ConsumerAccess Interface

	3.7 Utility Interface Specifications
	3.7.1 ObservationLoader Interface
	3.7.2 AccessComponent Interface
	3.7.3 ObservationDataIterator Interface
	3.7.4 QualifiedCodeIterator Interface
	3.7.5 AbstractFactory Interface
	3.7.6 AbstractManagedObject Interface

	DSObservation Values
	4.1 Overview
	4.2 Data Type Definitions
	4.3 Supporting Types
	4.4 Time Types
	4.4.1 DateTime
	4.4.2 TimeSpan

	4.5 Person Type
	4.5.1 Person

	4.6 NoInformation Type
	4.6.1 NoInformation

	4.7 Text Types
	4.7.1 Plain Text
	4.7.2 UniversalResourceIdentifier
	4.7.3 PhysicalLocationDescription

	4.8 Coded Types
	4.8.1 CodedElement
	4.8.2 LooselyCodedElement

	4.9 Multimedia Types
	4.9.1 Multimedia

	4.10 Simple Measurement Types
	4.10.1 Numeric
	4.10.2 Range
	4.10.3 Ratio

	4.11 Complex Measurement Types
	4.11.1 Curve

	DSObservationTimeSeries
	5.1 Overview
	5.2 Data Type Definitions
	5.3 External Typedefs
	5.4 Time Types
	5.5 Typedef, Enum, Union, and Sequence Types
	5.6 Iterator Types
	5.7 TimeSeries
	5.8 Exceptions
	5.9 TimeSeriesRemote

	DSObservationRelations
	6.1 Overview
	6.2 CEN Naming Convention
	6.3 Observation Type for Relations
	6.4 Relation Codes
	6.4.1 Produce
	6.4.2 Document
	6.4.3 Report
	6.4.4 Graphic
	6.4.5 Identified/Incorporated
	6.4.6 Source/Derived
	6.4.7 Compared/Reference
	6.4.8 Recorded
	6.4.9 Supersede
	6.4.10 Framework
	6.4.11 Phase
	6.4.12 Next Phase
	6.4.13 Associate
	6.4.14 Assigned/Setting
	6.4.15 Interpretation
	6.4.16 Progress
	6.4.17 Cause
	6.4.18 Co-exists
	6.4.19 Evidence
	6.4.20 Triggers
	6.4.21 Goal
	6.4.22 Motivation
	6.4.23 Consequence
	6.4.24 Topic
	6.4.25 Target
	6.4.26 Provides Information
	6.4.27 Circumstances

	DSObservationQualifiers
	7.1 Overview
	7.2 HL7 Naming Convention
	7.3 Observation Type for Qualifiers
	7.4 Qualifier Codes
	7.4.1 COAS - Specific
	7.4.2 HL7 - Clinical Times
	7.4.3 HL7 - Roles
	7.4.4 HL7 - OBR (Request)
	7.4.5 HL7 - OBX (Reply)
	7.4.6 HL7 - PV1 (Patient Visit)

	Policies
	8.1 Overview
	8.2 SEARCH_DEPTH_POLICY
	8.3 RETURN_DEPTH_POLICY
	8.4 SEARCH_SYNONYMOUS_CODES_POLICY
	8.5 RETURN_OBSERVATION_VALUES_POLICY
	8.6 SHORTCIRCUIT_SEARCH_..._POLICY
	8.7 SEARCH_SYNONYMOUS_IDS_POLICY
	8.8 SHORTCIRCUIT_SEARCH_IDS_ON_SUCCESS_POLICY
	8.9 RETURN_ITEMS_IN_TIME_SPAN_POLICY
	8.10 MATCHING_STRENGTH_POLICY
	8.11 PARAM_CHECKING_POLICY
	8.12 QUALIFIER_RETURN_POLICY
	8.13 RELATIONS_RETURN_POLICY
	8.14 RETURN_MOST_RECENT_N_OBSERVATIONS_POLICY
	8.15 TIME_SERIES_..._ALGORITHM_POLICY
	8.16 TIME_SERIES_..._PREFERENCE_POLICY
	8.17 RETURN_MAX_SEQUENCE_FOR_VALUE_POLICY
	8.18 IGNORE_UNMATCHABLE_QUALIFIERS_POLICY

	Complete IDL
	Interoperation
	Security Guidelines
	Usage Patterns
	Usage Scenarios
	Client Implementation Examples
	Glossary

