
ObjectCollectionSpecification

August 2002
Version 1.0.1 - Editorial update and changes due to Issue # 4984

formal/02-08-03

AnAdoptedSpecificationof theObjectManagementGroup, Inc.

Copyright © 1995 Hewlett-Packard Corporation
Copyright © 1995 International Business Machines Corporation
Copyright © 2002, Object Management Group, Inc.
Copyright © 1995 Rogue Wave Software, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

August 2002 Collection Service, v1.0.1 i

Contents

Preface . vii

1. Service Description . 1-1

1.1 Overview . 1-1

1.2 Service Structure . 1-2
1.2.1 Combined Property Collections 1-3
1.2.2 Iterators. 1-5
1.2.3 Function Interfaces . 1-7
1.2.4 List of Interfaces Defined 1-8

1.3 Combined Collections . 1-10
1.3.1 Combined Collections Usage Samples 1-10

1.4 Restricted Access Collections . 1-14
1.4.1 Restricted Access Collections Usage Samples 1-14

2. Modules and Interfaces . 2-1

2.1 The CosCollection Module. 2-2
2.1.1 Interface Hierarchies. 2-2
2.1.2 Exceptions and Type Definitions 2-6

2.2 The Collection Interface . 2-8
2.2.1 Type checking information 2-9
2.2.2 Adding elements . 2-9
2.2.3 Retrieving Elements . 2-12
2.2.4 Inquiring Collection Information 2-13
2.2.5 Creating Iterators . 2-14

2.3 The OrderedCollection Interface 2-15
2.3.1 Removing Elements . 2-16

ii Collection Service, v1.0.1 August 2002

Contents

2.3.2 Retrieving Elements . 2-17
2.3.3 Creating Iterators . 2-18

2.4 The SequentialCollection Interface 2-18
2.4.1 Adding Elements . 2-19
2.4.2 Re-ordering Elements . 2-24

2.5 The SortedCollection Interface. 2-24

2.6 The EqualityCollection Interface . 2-24
2.6.1 Testing Element Containment. 2-25
2.6.2 Adding Elements . 2-26
2.6.3 Locating Elements . 2-27
2.6.4 Removing Elements . 2-28
2.6.5 Inquiring Collection Information 2-29

2.7 The KeyCollection Interface. 2-29
2.7.1 Type Checking Information 2-31
2.7.2 Testing Containment . 2-31
2.7.3 Adding Elements . 2-31
2.7.4 Removing Elements . 2-33
2.7.5 Replacing Elements . 2-34
2.7.6 Computing Keys . 2-35
2.7.7 Locating Elements . 2-35
2.7.8 Inquiring Collection Information 2-37

2.8 The EqualityKeyCollection Interface 2-37

2.9 The KeySortedCollection Interface 2-37
2.9.1 Locating Elements . 2-38

2.10 The EqualitySortedCollection Interface 2-39
2.10.1 Locating Elements . 2-40

2.11 The EqualityKeySortedCollection Interface. 2-42

2.12 The EqualitySequentialCollection Interface. 2-42
2.12.1 Locating Elements . 2-42

2.13 The KeySet Interface . 2-44

2.14 The KeyBag Interface. 2-44

2.15 The Map Interface . 2-44
2.15.1 Set Theoretical Operations 2-45
2.15.2 Testing Equality . 2-47

2.16 The Relation Interface . 2-48

2.17 The Set Interface . 2-48

2.18 The Bag Interface . 2-48

2.19 The KeySortedSet Interface . 2-48

August 2002 Collection Service, v1.0.1 iii

Contents

2.20 The KeySortedBag Interface . 2-49

2.21 The SortedMap Interface . 2-49

2.22 The SortedRelation Interface . 2-50

2.23 The SortedSet Interface . 2-50

2.24 The SortedBag Interface. 2-50

2.25 The Sequence Interface . 2-50

2.26 The EqualitySequence Interface. 2-50

2.27 The Heap Interface . 2-51

2.28 Abstract RestrictedAccessCollection Interface. 2-51
2.28.1 The RestrictedAccessCollection Interface 2-51

2.29 Concrete Restricted Access Collection Interfaces 2-52
2.29.1 The Queue Interface . 2-52
2.29.2 The Dequeue Interface 2-53
2.29.3 The Stack Interface . 2-53
2.29.4 Adding Elements . 2-54
2.29.5 Retrieving Elements . 2-55
2.29.6 The PriorityQueue Interface 2-55
2.29.7 Adding Elements . 2-55
2.29.8 Removing Elements . 2-56

2.30 Collection Factory Interfaces . 2-56
2.30.1 The CollectionFactory and

CollectionFactories Interfaces 2-57
2.30.2 The RACollectionFactory

and RACollectionFactories Interfaces 2-60
2.30.3 The KeySetFactory Interface 2-61
2.30.4 The KeyBagFactory Interface 2-61
2.30.5 The MapFactory Interface. 2-61
2.30.6 The RelationFactory Interface 2-62
2.30.7 The SetFactory Interface. 2-62
2.30.8 The BagFactory Interface 2-63
2.30.9 The KeySortedSetFactory Interface 2-63
2.30.10 The KeySortedBagFactory Interface. 2-64
2.30.11 The SortedMapFactory Interface 2-64
2.30.12 The SortedRelationFactory Interface 2-64
2.30.13 The SortedSetFactory Interface 2-65
2.30.14 The SortedBagFactory Interface 2-65
2.30.15 The SequenceFactory Interface. 2-66
2.30.16 The EqualitySequence Factory Interface 2-66
2.30.17 The HeapFactory Interface 2-67

iv Collection Service, v1.0.1 August 2002

Contents

2.30.18 The QueueFactory Interface 2-67
2.30.19 The StackFactory Interface 2-67
2.30.20 The DequeFactory Interface 2-68
2.30.21 The PriorityQueueFactory Interface 2-68

2.31 Iterator Interfaces . 2-68
2.31.1 Iterators as Pointer Abstraction. 2-68
2.31.2 Iterators and Support for Generic

Programming . 2-69
2.31.3 Iterators and Performance. 2-70
2.31.4 The Managed Iterator Model 2-70
2.31.5 The Iterator Interface . 2-71
2.31.6 The OrderedIterator Interface 2-83
2.31.7 The SequentialIterator Interface 2-91
2.31.8 The KeyIterator Interface 2-93
2.31.9 The EqualityIterator Interface. 2-95
2.31.10 The EqualityKeyIterator Interface 2-96
2.31.11 The SortedIterator Interface 2-96
2.31.12 The KeySortedIterator Interface 2-96
2.31.13 The EqualitySortedIterator Interface 2-99
2.31.14 The EqualityKeySortedIterator Interface 2-101
2.31.15 The EqualitySequentialIterator Interface 2-101

2.32 Function Interfaces. 2-103
2.32.1 The Operations Interface 2-103
2.32.2 Element Type Specific Operations 2-104

2.33 The Command and Comparator Interface. 2-107
2.33.1 The Command Interface 2-107
2.33.2 The Comparator Interface. 2-107

Appendix A - OMG OBject Query Service A-1

Appendix B - Relationship to Other Standards B-1

Appendix C - References. C-1

August 2002 Object Collection Service, v1.0.1 v

Preface

About This Document

Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available athttp://www.omg.org/.

The Open Group

The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.

vi Object Collection Service, v1.0.1 August 2002

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

• Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating certification
programs and has extensive experience developing and facilitating industry adoption of
test suites used to validate conformance to an open standard or specification. The Open
Group portfolio of test suites includes tests for CORBA, the Single UNIX
Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX Realtime,
Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are essential
for proper development and maintenance of standards-based products, ensuring
conformance of products to industry-standard APIs, applications portability, and
interoperability. In-depth testing identifies defects at the earliest possible point in the
development cycle, saving costs in development and quality assurance.

More information is available athttp://www.opengroup.org/ .

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guidedefines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specificationcontains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services: Common Object Services Specificationcontains specifications
for OMG’s Object Services.

• CORBA Facilities: Common Facilities Specificationincludes OMG’s Common
Facility specifications.

• CORBA Domain Technologies

August 2002 Collection Service, v1.0.1: Service Design Principles vii

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented
interfaces between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry
and represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services
and accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
so forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

OMG collects information for each book in the documentation set by issuing Requests
for Information, Requests for Proposals, and Requests for Comment and, with its
membership, evaluating the responses. Specifications are adopted as standards only
when representatives of the OMG membership accept them as such by vote.

OMG formal documents are available from our web site in PostScript and PDF format.
You can contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

viii Object Collection Service, v1.0.1 August 2002

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use of
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the HP-
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10).

Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as they
need to be. Individual services are by themselves relatively simple yet they can, by
virtue of their structuring as objects, be combined together in interesting and powerful
ways.

For example, the event and life cycle services, plus a future relationship service, may
play together to support graphs of objects. Object graphs commonly occur in the real
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the client
object nor, in general, on the type of data passed in requests. For example, the event
channel interfaces accept event data of any type. Clients of the service can dynamically
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces that
can be accessed locally or remotely and which can have local library or remote server
styles of implementations. This allows considerable flexibility as regards the location
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approaches
depending on the quality of service required in a particular environment. For example,
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interfaces
to the event channel are the same for all implementations and all clients. Because rules
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other components.

August 2002 Collection Service, v1.0.1: Service Design Principles ix

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide different
views for different kinds of clients of the service. For example, the Event Service is
composed ofPushConsumer, PullSupplierandEventChannelinterfaces. This
simplifies the way in which a particular client uses a service.

A particular service implementation can support the constituent interfaces as a single
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference to
communicate with each distinct service function. Conceptually, these “internal” objects
conspireto provide the complete service.

As an example, in the Event Service an event channel can provide bothPushConsumer
andEventChannelinterfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implements
either thePushConsumerandEventChannelinterface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interfaces
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Using
the event service again as an example, when an event consumer is connected with an
event channel, a new object is created that supports thePullSupplierinterface. An
object reference to this object is returned to the event consumer which can then request
events by invoking the appropriate operation on the new “supplier” object. Because
each client uses a different object reference to interact with the event channel, the
event channel can keep track of and manage multiple simultaneous clients. An event
channel as a collection of objects conspiring to manage multiple simultaneous
consumer clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that a
client object is required to support to enable a service tocall backto it to invoke some
operation. The callback may be, for example, to pass back data asynchronously to a
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operation
invocation (object reference) mechanisms.

x Object Collection Service, v1.0.1 August 2002

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some context.
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique within
its scope but should not make any other assumption.

Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These services
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured as
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated to be
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptional
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate iteration
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a parameter
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client code
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clients
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

August 2002 Collection Service, v1.0.1: Acknowledgments xi

Typographical Conventions

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear initalics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments

The following companies submitted parts of theCollection Servicespecification:

• Hewlett-Packard Company

• International Business Machines Corporation

• Rogue Wave Software, Inc.

xii Object Collection Service, v1.0.1 August 2002

August 2002 Object Collection Service, v1.0.1 1-1

ServiceDescription 1

Contents

This chapter contains the following sections.

1.1 Overview

Collections support the grouping of objects and support operations for the
manipulation of the objects as a group. Common collection types are queues, sets,
bags, maps, etc. Collection types differ in the “nature of grouping” exposed to the user.
“Nature of grouping” is reflected in the operations supported for the manipulation of
objects as members of a group. Collections, for example, can be ordered and thus
support access to an element at position ”i” while other collections may support
associative access to elements via a key. Collections may guarantee the uniqueness of
elements while others allow multiple occurrences of elements. A user chooses a
collection type that matches the application requirements based on manipulation
capabilities.

Collections are foundation classes used in a broad range of applications; therefore, they
have to meet the general requirement to be able to collect elements of arbitrary type.
On the other hand, a collection instance usually is a homogenous collection in the
sense that all elements collected are of the same type, or support the same single
interface.

Section Title Page

“Overview” 1-1

“Service Structure” 1-2

“Combined Collections” 1-10

“Restricted Access Collections” 1-14

1-2 Object Collection Service, v1.0.1 August 2002

1

Sometimes you may not want to do something to all elements in a collection, but only
treat an individual object or traverse a collection explicitly (not implicitly via a
collection operation). To enable this, a pointer abstraction often called an iterator is
supported with collections. For example, an iterator points to an element in a collection
and processes the element pointed to. Iterators can be moved and used to visit elements
of a collection in an application defined manner. There can be many iterators pointing
to elements of the same collection instance.

Normally, when operating on all elements of a collection, you want to pass user-
defined information to the collection implementation about what to do with the
individual elements or which elements are to be processed. To enable this, function
interfaces are used. A collection implementation can rely on and use the defined
function interface. A user has to specialize and implement these interfaces to pass the
user-defined information to the implementation. A function interface can be used to
pass element type specific information such as how to compare elements or pass a
“program” to be applied to all elements.

1.2 Service Structure

The purpose of an Object Collection Service is to provide a uniform way to
create and manipulate the most common collections generically. The Object Service
defines three categories of interfaces to serve this purpose.

1. Collection interfacesandcollection factories. A client chooses a collection
interface which offers grouping properties that match the client’s needs. A client
creates a collection instance of the chosen interface using a collection factory. When
creating a collection, a client has to pass element type specific information such as
how to compare elements, how to test element equality, or the type checking
desired. A client uses collections to manipulate elements as a group. When a
collection is no longer used it may be destroyed - this includes removing the
elements collected, destroying element type specific information passed, and the
iterators pointing to this collection.

2. Iterator interfaces. A client creates an iterator using the collection for which it is
created as factory. A client uses an iterator to traverse the collection in an
application defined manner, process elements pointed to, mark ranges, etc. When a
client no longer uses an iterator, it destroys the iterator.

3. Function interfaces. A client creates user-defined specializations of these
interfaces using user-defined factories. Instances are passed to a collection
implementation when the collection is created (element type specific information)
or as a parameter of an operation (for example, code to be executed for each
element of the collection). Instances of function interfaces are used by a collection
implementation rather than by a client.

August 2002 Collection Service, v1.0.1: Service Structure 1-3

1

1.2.1 Combined Property Collections

The Object Collection Service (or simply Collection Service) defined in this
specification aims at being a complete and differentiated offering of interfaces
supporting the grouping of objects. It enables a user to make a choice when following
the rule “pay only for what you use.” With this goal in mind, a very systematic
approach was chosen.

Groups, or collections of objects, support operations and exhibit specific behaviors that
are mainly related to the nature of the collection rather than the type of objects they
collect.

“Nature of the collection” can be expressed in terms of well defined properties.

1.2.1.1 Ordering of elements

A previousor next relationship exists between the elements of anordered collection
which is exposed in the interface.

Ordering can be sequential or sorted. A sequential ordering can be explicitly
manipulated; however, a sorted ordering is to be maintained implicitly based on a sort
criteria to be defined and passed to the implementation by the user.

1.2.1.2 Access by key

A key collectionallows associative access to elements via akey.A key can be
computed from an element value via a user-defined key operation. Furthermore, key
collections require key equality to be defined.

1.2.1.3 Element equality

An equality collectionexploits the property that a test for element equality is defined
(i.e., it can be tested whether an element is equal to another in terms of a user-defined
element equality operation). This enables a test on containment, for example.

1.2.1.4 Uniqueness of entries

A collection with uniqueentries allows exactly one occurrence of an element key
value, notmultiple occurrences.

1-4 Object Collection Service, v1.0.1 August 2002

1

Meaningful combinations of these basic properties define “collections of differing
nature of grouping.” Table 1-1 provides an overview of meaningful combinations. The
listed combinations are described in more detail in the following section.

Properties are mapped to interfaces - each interface assembling operations that exploit
these properties. These interfaces are combined via multiple inheritance and form an
abstract interface hierarchy.Abstract means that no instance of such a class can be
instantiated, an attempt to do so may raise an exception at run-time. Leaves of this
hierarchy represent concrete interfaces listed in the table above and can be instantiated
by a user. They form a complete and differentiated offering of collection interfaces.

1.2.1.5 Restricted Access Collections

Common data structures based on these properties sometimes restrict access such as
queues, stacks, or priority queues. They can be considered as restricted access variants
of Sequence or KeySortedBag. These interfaces form their own hierarchy ofrestricted
access interfaces. They are not incorporated into the hierarchy of combined properties
because a user of restricted access interfaces should not be bothered with inherited
operations which cannot be used in these interfaces. Nevertheless, to support several
“views” on an interface, a restricted users view of a queue and an unrestricted system
administrators view to the same queue instance, the restricted access collections are
defined in a way that allows combining them with the combined properties collections
via multiple inheritance.

All collections are unbounded (there is no explicit bound set) and controlled by the
collections; however, it depends on the quality of service delivered whether there are
“natural” limits such as the size of the paging space.

Table 1-1 Interfaces derived from combinations of collection properties

Unordered

Ordered

Sorted
Sequen-

tial

Unique Multiple Unique Multiple Multiple

Key (Key
equality
must be

specified)

Element
Equality

Map Relation
Sorted
Map

Sorted
Relation

No Element
Equality

KeySet KeyBag
Key Sorted

Set
Key

SortedBag

No Key

Element
Equality

Set Bag SortedSet Sorted Bag
Equality
Sequence

No Element
Equality

Heap Sequence

August 2002 Collection Service, v1.0.1: Service Structure 1-5

1

1.2.1.6 Collection Factories

For each concrete collection interface specified in this specification there is one
corresponding collection factory defined. Each such factory offers a typed create
operation for the creation of collection instances supporting the respective collection
interface.

Additionally, a generic extensible factory is specified to enable the usage of many
implementation variants for the same collection interface. This extensible generic
factory allows the registration of implementation variants and their user-controlled
selection at collection creation time.

Information to be passed to a collection at creation time is the element and key type
specific information that a collection implementation relies on. That is, one passes the
information how to compare element keys, how to test equality of element keys, type
checking relevant information, etc. Which type of information needs to be passed
depends on the respective collection interface.

1.2.2 Iterators

Iterators, as defined in this specification, are more than just simple “pointing devices.”

1.2.2.1 Iterator hierarchy

The service defines a hierarchy of iterators which parallels the collection hierarchy.

The top level iterator is generic in the sense that it allows iteration over all collections,
independent of the collection type because it is supported by all collection types. The
ordered iterator adds some capabilities useful for all kinds of ordered collections.
Iterators further down in the hierarchy add operations exploiting the capabilities of the
corresponding collection type Not. Each iterator type is supported by each collection
type. For example, a KeyIterator is supported only by collection interfaces derived
from KeyCollection.

Iterators are tightly intertwined with collections. An iterator cannot exit independently
of a collection (i.e., the iterator life time cannot exceed that of the collection for which
it is created). A collection is the factory forits iterators. An iterator is created for a
given collection and can be used for this, and only this, collection.

1.2.2.2 Generic and iterator centric programming

Iterators on the one hand are pointer abstractions in the sense of simple pointing
devices. They offer the basic capabilities you can expect from a pointer abstraction.
One can reset an iterator to a start position for iteration and move or position it in
different ways depending on the iterator type.

There are essentially two reasons to embellish an iterator with more capabilities.

1-6 Object Collection Service, v1.0.1 August 2002

1

1. To support the processing of very large collections to allow for delayed instantiation
or incremental query evaluation in case of very large query results. These are
scenarios where the collection itself may never exist as instantiated main memory
collection but is processed in “fine grains” via an iterator passed to a client.

2. To enrich the iterator with more capabilities is to strengthen the support for the
generic programming model as introduced with ANSI STL to the C++ world.

One can retrieve, replace, remove, and add elements via an iterator. One can test
iterators for equality, compare ordered iterators, clone an iterator, assign iterators, and
destroy them. Furthermore, an iterator can have a const designation which is set when
created. A const iterator can be used for access only.

The reverse iterator semantics is supported. No extra interfaces are specified to support
this but a reverse designation is set at creation time. An ordered iterator for which the
reverse designation is set reinterprets the operations of a given iterator type to work in
reverse.

1.2.2.3 Iterators and performance

To reduce network traffic, combined operations and bulk operations are offered.

• Combined operations are combinations of simple iterator operations often used in
loops.

• Bulk operations support retrieving, replacing, and adding many elements within one
operation.

1.2.2.4 Managed Iterators

All iterators are managed in the sense that iterators never become undefined; therefore,
they do not lead to undefined behavior. Common behavior of iterators in class libraries
today is that iterators become undefined when the collection content is changed. For
example, if an element is added the side effect on iterators of the collection is
unknown. Iterators do not “know” whether they are still pointing to the same element
as before, still pointing to an element at all, or pointing “outside” the collection. One
cannot even test the state. This is considered unacceptable behavior in a distributed
environment.

The iterator model used in this specification is a managed iterator. Managed iterators
are “robust” to modifications of the collection. A managed iterator is always in one of
the following defined testable states:

• valid (pointing to an element of the collection)

• invalid (pointing to nothing; comparable to a NULL pointer)

• in-between(not pointing to an element, but still "remembering" enough state to be
valid for most operations on it).

A valid managed iterator remains valid as long as the element it points to remains in
the collection. As soon as the element is removed, the according managed iterator
enters a so-calledin-betweenstate. Thein-betweenstate can be viewed as a vacuum

August 2002 Collection Service, v1.0.1: Service Structure 1-7

1

within the collection. There is nothing the managed iterator can point to. Nevertheless,
managed iterators remember the next (and for ordered collection, also the previous)
element in iteration order. It is possible to continue using the managed iterator (in a
set_to_next_element() for example) without resetting it first.

1.2.3 Function Interfaces

The Object Collection service specifies function interfaces used to pass user-defined
information to the collection implementation (either at creation time or as parameters
of operations). The most important is theOperations interface discussed in more
detail below.

1.2.3.1 Collectible Elements and Type Safety

Collections are foundation classes used in a broad range of applications. They have to
be able to collect elements of arbitrary type and support keys of arbitrary type.
Instances of collections are usually homogenous collections in the sense that all
elements have the same element type.

Because there is no template support in CORBA IDL today, the requirement
“collecting elements of arbitrary type” is met by defining the element type and the key
type as a CORBA any. In doing so, compile time type checking for element and key
type is impossible.

As collections are often used as homogenous collections, dynamic type checking is
enabled by passing relevant information to the collection at creation time. This is done
by specialization of the function interface Operations. This interface defines attributes
element_type andkey_type as well as defines operationscheck_element_type()
andcheck_key_type() which have to be implemented by the user. Implementations
may range from “no type checking at all,” “type code match,” “checking an interface to
be supported,” up to “checking constraints in addition to a simple type code checking.”
Using theOperations interface allows user-defined customization of the dynamic
type checking.

1.2.3.2 Collectible Elements and the Operations Interface

The function interfaceOperations is used to pass a number of other user-defined
element type specific information to the collection implementation.

The type checking of relevant information is one sample.

Depending on the properties represented by a collection interface, a respective
implementation relies on some element type specific or key type specific information
passed to it. For example, one has to pass the information “element comparison” to
implement aSortedSet or “key equality” to guarantee uniqueness of keys in a
KeySet . TheOperations interface is used to pass this information.

1-8 Object Collection Service, v1.0.1 August 2002

1

The third use of this interface is to pass element or key type specific information that
the different categories of implementations rely on. For example, tree-like
implementations for aKeySet rely on the “key comparison” information and hashing
based implementations rely on the information how to hash key values. This
information is passed via theOperations interface.

A user has to customize theOperations interface and to implement the appropriate
operations dependent on the collection interface to be used. An instance of the
specializedOperations interface is passed at collection creation time to the collection
implementation.

1.2.3.3 Collectible Elements of Key Collections

Key collections offer associative access to collection elements via a key. A key is
computed from the element value and is user-defined element type specific information
to be passed to a collection. TheOperations interface has an operationkey() which
returns the user-defined key of a given element.

For a specific element type, a user has to implement the element type specifickey()
operation in an interface derived fromOperations . The key type is a CORBAany.
Again this is designed to accommodate generality. Computable keys reflect the data
base view on elements of key collections as “keyed elements” where a key is a
component of a tuple or is “composed” from several components of a tuple.

1.2.4 List of Interfaces Defined

The Object Collection service offers the following interfaces:

1.2.4.1 Abstract interfaces representing collection properties and their
combinations

• Collection

• OrderedCollection

• KeyCollection

• EqualityCollection

• SortedCollection

• SequentialCollection

• EqualitySequentialCollection

• EqualityKeyCollection

• KeySortedCollection

• EqualitySortedCollection

• EqualityKeySortedCollection

August 2002 Collection Service, v1.0.1: Service Structure 1-9

1

1.2.4.2 Concrete collections and their factories

• CollectionFactory, CollectionFactories

• KeySet, KeySetFactory

• KeyBag, KeyBagFactory

• Map, MapFactory

• Relation, RelationFactory

• Set, SetFactory

• Bag, BagFactory

• KeySortedSet, KeySortedSetFactory

• KeySortedBag, KeySortedBagFactory

• SortedMap, SortedMapFactory

• SortedRelation, SortedRelationFactory

• SortedSet, SortedSetFactory

• SortedBag, SortedBagFactory

• Sequence, SequenceFactory

• EqualitySequence, EqualitySequenceFactory

• Heap, HeapFactory

1.2.4.3 Restricted access collections and their factories

• RestrictedAccessCollection, RACollectionFactory

• Stack, StackFactory

• Queue, QueueFactory

• Deque, DequeFactory

• PriorityQueue, PriorityFactory

1.2.4.4 Iterator interfaces

• Iterator

• OrderedIterator

• SequentialIterator

• SortedIterator

• KeyIterator

• EqualityIterator

• EqualityKeyIterator

1-10 Object Collection Service, v1.0.1 August 2002

1

• KeySortedIterator

• EqualitySortedIterator

• EqualitySequentialIterator

• EqualityKeySortedIterator

1.2.4.5 Function interfaces

• Operations

• Command

• Comparator

1.3 Combined Collections

The overview introducedpropertiesand listed the meaningful combinations of these
properties that result in consistently defined collection interfaces forming a
differentiated offering. In the following sections, the semantics of each combination
will be described in more detail and demonstrated by an example.

1.3.1 Combined Collections Usage Samples

1.3.1.1 Bag, SortedBag

A Bag is an unordered collection of zero or more elements with no key. Multiple
elements are supported. As element equality is supported, operations which require the
capability “test of element equality” (e.g., test on containment) can be offered.

Example: The implementation of a text file compression algorithm. The algorithm finds
the most frequently occurring words in sample files. During compression, the words
with a high frequency are replaced by a code (for example, an escape character
followed by a one character code). During re-installation of files, codes are replaced by
the respective words.

Several types of collections may be used in this context. A Bag can be used during the
analysis of the sample text files to collect isolated words. After the analysis phase you
may ask for the number of occurrences for each word to construct a structure with the
255 words with the highest word counts. A Bag offers an operation for this, you do not
have to “count by hand,” which is less efficient. To find the 255 words with the highest
word count, a SortedRelation is the appropriate structure (see Section 1.3.1.7,
“Relation, SortedRelation,” on page 1-13). Finally, a Map may be used to maintain a
mapping of words to codes and vice versa. (See Section 1.3.1.6, “Map, SortedMap,” on
page 1-12).

A SortedBag (as compared to a Bag) exposes and maintains a sorted order of the
elements based on a user-defined element comparison. Maintained elements in a sorted
order makes sense when printing or displaying the collection content in sorted order.

August 2002 Collection Service, v1.0.1: Combined Collections 1-11

1

1.3.1.2 EqualitySequence

An EqualitySequence is an ordered collection of elements with no key. There is a first
and a last element. Each element, except the last one, has a next element and each
element, except the first one, has a previous element. As element equality is supported,
all operations that rely on the capability “test on element equality” can be offered, for
example, locating an element or test for containment.

Example: An application that arranges wagons to a train. The order of the wagons is
important. The trailcar has to be the first wagon, the first class wagons are arranged
right behind the trailcar, the restaurant has to be arranged right after the first class and
before the second class wagons, and so on. To check whether the wagon has the correct
capacity, you may want to ask: “How many open-plan carriages are in the train?” or
“Is there a bistro in the train already?”

1.3.1.3 Heap

A Heap is an unordered collection of zero or more elements without a key. Multiple
elements are supported. No element equality is supported.

Example: A “trash can” on a desktop which memorizes all objects moved to the
trashcan as long as it is not emptied. Whenever you move an object to the trashcan it is
added to the heap. Sometimes you move an object accidentally to the trashcan. In that
case, you iterate in some order through the trashcan to find the object - not using a test
on element equality. When you find it, you remove it from the trashcan. Sometimes
you empty the trashcan and remove all objects from the trashcan.

1.3.1.4 KeyBag, KeySortedBag

A KeyBag is an unordered collection of zero or more elements that have a key.
Multiple keys are supported. As no element equality is assumed, operations such as
“test on collection equality” or “set theoretical operation” are not offered.

A KeySortedBag is sorted by key. In addition to the operations supported for a
KeyBag, all operations related to ordering are offered. For example, operations
exploiting the ordering such as “set_to_previous / set_to_next” and “access via
position” are supported.

A license server maintaining floating licenses on a network may be implemented using
a KeyBag to maintain the licenses in use. The key may be the LicenseId and additional
element data may be, for example, the user who requested the license. As usual, more
than one floating license is available per product; therefore, many licenses for the same
product may be in use. A LicenseId may occur more than once. A user may request a
license multiple times, it may also occur that the same LicenseId with the same user
occurs multiple times. If a user of the product requests and receives the license, the
LicenseId, together with the request data, is added to the licenses in use. If the license
is released, it is deleted from the Bag of licenses in use. Sometimes you may want to
ask for the number of licenses of a product in use, that is ask for the number of the
licenses in use with a given LicenseId.

1-12 Object Collection Service, v1.0.1 August 2002

1

Access to licenses in use is via the key LicenseId. This sample application does not
require operations such as testing two collections for equality or set theoretical
operations on collections. It is not exploiting element equality; therefore, it can use a
KeyBag instead of a Relation (which would force the user to define element equality).

If you want to list the licenses in use with the users holding the licenses sorted by
LicenseId, you could make use of a KeySortedBag instead of a KeyBag.

1.3.1.5 KeySet, KeySortedSet

A KeySet is an unordered collection of zero or more elements that have a key. Keys
must be unique. Defined element equality is not assumed; therefore, operations and
semantics which require the capability “element equality test" are not offered.

A KeySortedSet is sorted by key. In addition to the operations supported for a KeySet,
all operations related to ordering are offered. For example, operations exploiting the
ordering, such as “set_to_previous / set_to_next” and “access via position” are
supported.

Example: A program that keeps track of cancelled credit card numbers and the
individuals to whom they are issued. Each card number occurs only once and the
collection is sorted by card number. When a merchant enters a customer’s card number
into the point-of-sales terminal, the collection is checked to determine whether the card
number is listed in the collection of cancelled cards. If it is found, the name of the
individual is shown and the merchant is given directions for contacting the card
company. If the card number is not found, the transaction can proceed because the card
is valid. A list of cancelled cards is printed out each month, sorted by card number, and
distributed to all merchants who do not have an automatic point-of-sale terminal
installed.

1.3.1.6 Map, SortedMap

A Map is an unordered collection of zero or more elements that have a key. Keys must
be unique. As defined, element equality is assumed access via the element value and
all operations which need to test on element equality, such as a test on containment for
an element, test for equality, and set theoretical operations can be offered for maps.

A SortedMap is sorted by key. In addition to the operations supported for a Map, all
operations related to ordering are offered. For example, operations exploiting the
ordering like “set_to_previous / set_to_next” and “access via position” are supported.

Example: Maintaining nicknames for your mailing facility. The key is the nickname.
Mailing information includes address, first name, last name, etc. Nicknames are
unique; therefore, adding a nickname/mailing inforation entry with a nickname that is
already available should fail, if the mailing information to be added is different from
the available information. If it is exactly the same information, it should just be
ignored. You may define more than one nickname for the same person; therefore, the
same element data may be stored with different keys. If you want to update address

August 2002 Collection Service, v1.0.1: Combined Collections 1-13

1

information for a given nickname, use thereplace_element_with_key() operation.
To create a new nickname file from two existing files, use a union operation which
assumes element equality to be defined.

1.3.1.7 Relation, SortedRelation

A Relation is an unordered collection of zero or more elements with a key. Multiple
keys are supported. As defined element equality is assumed, test for equality of two
collections is offered as well as the set theoretical operations.

A SortedRelation is sorted by key. In addition to the operations supported for a
Relation, all operations related to ordering are offered. For example, operations that
exploit ordering such as “set_to_previous / set_to_next” and “access via position” are
supported.

A SortedRelation may be used in the text file compression algorithm mentioned
previously in the Bag, Sorted Bag example to find the 255 words with the highest
frequency. The key is the word count and the additional element data is the word. As
words may have equal counts, multiple keys have to be supported. The ordering with
respect to the key is used to find the 255 highest keys.

1.3.1.8 Set, SortedSet

A set is an unordered collection of zero or more elements without a key. Element
equality is supported; therefore, operations that require the capability “test on element
equality” such as intersection or union can be offered.

A SortedSet is sorted with respect to a user-defined element comparison. In addition to
the operations supported for a Set, all operations related to ordering are offered. For
example, operations that exploit ordering such as “set_to_previous / set_to_next” and
“access via position” are supported.

Example: A program that creates a packing list for a box of free samples to be sent to
a warehouse customer. The program searches a database of in-stock merchandise, and
selects ten items at random whose price is below a threshold level. Each item is added
to the set. The set does not allow an item to be added if it already is present in the
collection; this ensures that a customer does not get two samples of a single product.

1.3.1.9 Sequence

A Sequence is an ordered collection of elements without a key. There is a first and a
last element. Each element (except the last one) has a next element and each element
(except the first one) has a previous element. No element equality is supported;
therefore, multiples may occur and access to elements via the element value is not
possible. Access to elements is possible via position/index.

1-14 Object Collection Service, v1.0.1 August 2002

1

Example: A music editor. The Sequence is used to maintain tokens representing the
recognized notes. The order of the notes is obviously important for further processing
of the melody. A note may occur more than once. During editing, notes are accessed
by position and are removed, added, or replaced at a given position. To print the result,
you may iterate over the sequence and print note by note.

A Sequence may also be used to represent how a book is constructed from diverse
documents. It is obvious that ordering is important. It may be the case that a specific
document is used multiple times within the same book (for example, a specific
graphic). Reading the book, you may want to access a specific document by position.

1.4 Restricted Access Collections

1.4.1 Restricted Access Collections Usage Samples

1.4.1.1 Deque

A double ended queue may be considered as a sequence with restricted access. It is an
ordered collection of elements without a key and no element equality. As there is no
element equality, an element value may occur multiple times. There is a first and a last
element. You can only add an element as first or last element and only remove the first
or the last element from the Deque.

A Deque may be used in the implementation of a pattern matching algorithm where
patterns are expressed as regular expressions. Such an algorithm can be described as a
non-deterministic finite state machine constructed from the regular expression. The
implementation of the regular-pattern matching machine may use a deque to keep track
of the states under consideration. Processing a null state requires a stack-like data
structure - one of two things to be done is postponed and put at the front of the not
being postponed forever list. Processing the other states requires a queue-like data
structure, since you do not want to examine a state for the next given character until
you are finished with the current character. Combining the two characteristics results in
a Deque.

1.4.1.2 PriorityQueue

A PriorityQueue may be considered as a KeySortedBag with restricted access. It is an
ordered collection with zero or more elements. Multiple key values are supported. As
no element equality is defined, multiple element values may occur. Access to elements
is via key only and sorting is maintained by key. Accessing a PriorityQueue is
restricted. You can add an element relative to the ordering relation defined for keys and
remove only the first element (e.g., the one with highest priority).

PriorityQueues may be used for implementing a printer queue. A print job’s priority
may depend on the number of pages, time of queuing, and other characteristics. This
priority is the key of the print job. When a user adds a print job it is added relative to
its priority. The printer daemon always removes the job with the highest priority from
the queue.

August 2002 Collection Service, v1.0.1: Restricted Access Collections 1-15

1

PriorityQueues also may be used as special queues in workflow management to
prioritize work items.

1.4.1.3 Queue

A queue may be considered as a sequence with restricted access. It is an ordered
collection of elements with no key and no element equality. There is a first and a last
element. You can only add (enque) an element as last element and only remove (deque)
the first element from the Queue. That is, a queue exposes FIFO behavior.

You would use a queue in tree traversal to implement a breadth first search algorithm.

Queues may be used for the implementation of all kinds of buffered communication
where it is important that the receiving side handles messages in the same order as they
were sent. Queues may be used in workflow management environments where queues
collect messages waiting for processing.

1.4.1.4 Stack

A Stack may be considered as a sequence with restricted access. It is an ordered
collection of elements with no key and no element equality. There is a first and a last
element. You can only add (push) an element as last element (at the top) and only
remove (pop) the last element from the Stack (from the top). That is, a Stack exposes
LIFO behavior. The classical application for a stack is the simulation of a calculator
with Reverse Polish Notation. The calculator engine may get an arithmetic expression.
Parsing the expression operands are pushed on to the stack. When an operator is
encountered, the appropriate number of operands is popped off the stack, the operation
performed, and the result pushed on the stack.

A Stack also may be used in the implementation of a window manager to maintain the
order in which the windows are superimposed.

1-16 Object Collection Service, v1.0.1 August 2002

1

August 2002 Object Collection Service, v1.0.1 2-1

Modulesand Interfaces 2

Note – Changes due to Issue # 4984 appear in magenta. Editorial changes are in
Green.

Contents

This chapter contains the following sections.

Section Title Page

“The CosCollection Module” 2-2

Section I - Abstract Collection Interfaces

“The Collection Interface” 2-8

“The OrderedCollection Interface” 2-15

“The SequentialCollection Interface” 2-18

“The SortedCollection Interface” 2-24

“The EqualityCollection Interface” 2-24

“The KeyCollection Interface” 2-29

“The EqualityKeyCollection Interface” 2-37

“The KeySortedCollection Interface” 2-37

“The EqualitySortedCollection Interface” 2-39

“The EqualityKeySortedCollection Interface” 2-42

“The EqualitySequentialCollection Interface” 2-42

Section II - Concrete Collections Interfaces

2-2 Object Collection Service, v1.0.1 August 2002

2

2.1 The CosCollection Module

2.1.1 Interface Hierarchies

2.1.1.1 Collection Interface Hierarchies

The collection interfaces of the Collection Services are organized in two separate
hierarchies, as shown in Figure 2-1 on page 2-4 and Figure 2-2 on page 2-4. The inner
nodes of the hierarchy may be thought of as abstract views. They represent the basic
properties and their combinations. Leaf nodes may be thought of as concrete interfaces

“The KeySet Interface” 2-44

“The KeyBag Interface” 2-44

“The Map Interface” 2-44

“The Relation Interface” 2-48

“The Set Interface” 2-48

“The Bag Interface” 2-48

“The KeySortedSet Interface” 2-48

“The KeySortedBag Interface” 2-49

“The SortedMap Interface” 2-49

“The SortedRelation Interface” 2-50

“The SortedSet Interface” 2-50

“The SortedBag Interface” 2-50

“The Sequence Interface” 2-50

“The EqualitySequence Interface” 2-50

“The Heap Interface” 2-51

Section III - Restricted Access Collection Interfaces

“Abstract RestrictedAccessCollection Interface” 2-51

“Concrete Restricted Access Collection Interfaces” 2-52

“Collection Factory Interfaces” 2-56

“Iterator Interfaces” 2-68

“Function Interfaces” 2-103

“The Command and Comparator Interface” 2-107

Section Title Page

August 2002 Collection Service, v1.0.1: The CosCollection Module 2-3

2

for which implementations are provided and from which instances can be created via a
collection factory. The organization of the interfaces as a hierarchy enables reuse and
the polymorphic usage of the collections from typed languages such as C++.

Each abstract view is defined in terms of operations and their behavior. The most
abstract view of a collection is a container without any ordering or any specific
element or key properties. This view allows adding elements to and iterating over the
collection.

In addition to the common collection operations, collections whose elements define
equality or key equality provide operations for locating and retrieving elements by a
given element or key value.

Ordered collections provide the notion of well-defined explicit positioning of elements,
either by element key ordering relation or by positional element access.

Sorted collections provide no further operations, but introduce a new semantics;
namely, that their elements are sorted by element or key value. These properties are
combined through multiple inheritance.

The fourth property, uniqueness/multiplicity of elements and keys, is not represented
by a separate abstract view for combination with other properties. This was done to
reduce the complexity of the hierarchy. Instead, operations related to multiplicity are
provided in the base interface from which the interface specializations with
multiplicity are derived.

2-4 Object Collection Service, v1.0.1 August 2002

2

Figure 2-1 Collections Interfaces Hierarchy

The restricted access collections form their own hierarchy as shown in Figure 2-2. This
abstract view defines the operations that all restricted access collections have in
common.

Figure 2-2 Restricted Access Collections Interface Hierarchy

Collection

Equality
Collection

Sorted
Collection

Ordered
Collection

Sequential
Collection

Equality
Key

Collection

EqualityKey Sorted
 Collection

Sorted
Collection

Equality
Key Sorted
Collection

Key Set Map

Key Bag Relation

Set

Bag

Key Sorted
Set

KeySorted
Bag

Sorted

Sorted
Relation

Sorted Set

Sorted Bag
Equality

Sequence

HeapSequenceMap

Key
Collection

Equality
Sequential
 Collection

Stack QueuePriority
Queue

Restricted

Collection

Deque

Access

August 2002 Collection Service, v1.0.1: The CosCollection Module 2-5

2

2.1.1.2 Iterator Hierarchy

The iterator interface hierarchy parallels the Collection interface hierarchy shown in
Figure 2-3. The defined interfaces support the fine-grain processing of very large
collections via an iterator only and support a generic programming model similar to
what was introduced with ANSI STL to the C++ world. Concepts like constness of
iterators, reverse iterators, bulk and combined operations are offered to strengthen the
support for the generic programming model.

Figure 2-3 Iterator Interface Hierarchy

The top levelIterator interface represents a generic iterator that can be used for
iteration over and manipulation of all collections independent of their type. The top
level iterator allows you to add, retrieve, replace, and remove elements. There are
operations to clone, assign, and test iterators for equality. There are tests on the iterator
state and you can check whether an iterator isconst, created for a given collection, or
created for the same collection as another iterator.

The OrderedIterator interface adds those operations which are useful on collections
with an explicit notion of ordering (all those collections inheriting from the
OrderedCollection interface). An ordered iterator can be moved forward and
backward, set to a position, and its position can be computed. Only ordered iterators
can be used with “reverse” semantics. TheSequentialIterator is used with
sequentially ordered collections where it is possible to add elements at a user-defined
position so that the iterator offers the capability to add elements relative to its position.

Iterator

Equality
Iterator

Sorted
Iterator

Ordered
Iterator

Sequential

Equality
Key

Iterator

EqualityKey Sorted Sorted
Iterator

Equality
Key Sorted

Key
Iterator

Equality
Sequential
 Iterator

Iterator

Iterator

Iterator

2-6 Object Collection Service, v1.0.1 August 2002

2

The KeyIterator andEqualityIterator interface add operations for positioning an
iterator by key or element value. The sorted versions of these interfaces add respective
backward movements and the capability to define lower and upper bounds in sorted
collections.

An iterator is always created for a collection using the collection as iterator factory.
Each iterator type is supported by each collection type. The Iterators and the
Collections that are supported by all interfaces derived from those collections are listed
in Table 2-1.

Table 2-1 Iterators and Collections

2.1.2 Exceptions and Type Definitions

The following exceptions are used by the subsequently defined interfaces.

module CosCollection {

// Type definitions

typedef sequence<any> AnySequence;
typedef string Istring;
struct NVPair {

Istring name;
any value;};

typedef sequence<NVPair> ParameterList;

// Exceptions
exception EmptyCollection{};
exception PositionInvalid{};

Supported by all interfaces derived from:

Iterator Collection

OrderedIterator OrderedCollection

SequentialIterator SequentialCollection

EqualitySequentialIterator EqualitySequentialCollection

KeyIterator KeyCollection

EqualityIterator EqualityCollection

EqualityKeyIterator EqualityKeyCollection

SortedIterator SortedCollection

KeySortedIterator KeySortedCollection

EqualitySortedIterator EqualitySortedCollection

EqualityKeySortedIterator EqualityKeySortedCollection

August 2002 Collection Service, v1.0.1: The CosCollection Module 2-7

2

enum IteratorInvalidReason {is_invalid,
is_not_for_collection,
is_const};

exception IteratorInvalid {IteratorInvalidReason why;};
exception IteratorInBetween{};
enum ElementInvalidReason {element_type_invalid,

positioning_property_invalid, element_exists};

exception ElementInvalid {ElementInvalidReason why;};
exception KeyInvalid {};
exception ParameterInvalid {unsigned long which; Istring why;};

AnySequence

A type definition for a sequence of values of type any used in bulk operations.

Istring

A type definition used as place holder for a future IDL internationalized string data
type.

ParameterList

A sequence of name-value pairs of type NVPair and used as a generic parameter list in
a generic collection creation operation.

EmptyCollection

Raised when an operation to remove an element is invoked on an empty collection.

PositionInvalid

Raised when an operation on an ordered collection passes a position out of the allowed
range, that is less than 1 or greater than the number of elements in the collections.

IteratorInvalid

Raised when an operation uses an iterator pointing to nothing, that is, using aninvalid
iterator (in_valid) or when an operation uses an iterator which was not created for the
collection (is_not_for_collection) or if one tries to modify a collection via an
iterator that is created with const designation (is_const).

IteratorInBetween

Raised when an operation uses an iterator in a way that does not allow the statein-
betweensuch as all “..._at” operations.

2-8 Object Collection Service, v1.0.1 August 2002

2

ElementInvalid

Raised when one of the operations passes an element that is for one of several reasons
invalid. It is raised

• when the element is not of the expected element type (element_type_invalid).

• if one tries to replace an element by another element changing the positioning
property (positioning_property_invalid).

• when an element is added to a Map and the key already exists (element_exists).

KeyInvalid

Raised when one of the operations passes a key that is not of the expected type.

ParameterInvalid

Raised when a parameter passed to the generic collection creation operation of the
genericCollectionFactory is invalid.

Section I - Abstract Collection Interfaces

The following “abstract views” on collections combine the properties “key access,”
“element equality,” and “ordering relationship” on elements.

2.2 The Collection Interface

TheCollection interface represents the most abstract view of a collection. Operations
defined in this top level interface can be supported by all collection interfaces in the
hierarchy. Each concrete collection interface offers the appropriate operation semantics
dependent on the collection properties. It defines operations for:

• adding elements

• removing elements

• replacing elements

• retrieving elements

• inquiring collection information

• creating iterators

// Collection
interface Iterator;
interface Command;

interface Collection {

// element type information
readonly attribute CORBA::TypeCode element_type;

August 2002 Collection Service, v1.0.1: The Collection Interface 2-9

2

// adding elements
boolean add_element (in any element) raises (ElementInvalid);
boolean add_element_set_iterator (in any element, in Iterator where)

raises (IteratorInvalid, ElementInvalid);
void add_all_from (in Collection collector) raises (ElementInvalid);

// removing elements
void remove_element_at (in Iterator where)

raises (IteratorInvalid, IteratorInBetween);
unsigned long remove_all ();

// replacing elements
void replace_element_at (in Iterator where, in any element)

raises(IteratorInvalid, IteratorInBetween, ElementInvalid);

// retrieving elements
boolean retrieve_element_at (in Iterator where, out any element)

raises (IteratorInvalid, IteratorInBetween);

// iterating over the collection
boolean all_elements_do (in Command what) ;

// inquiring collection information
unsigned long number_of_elements ();
boolean is_empty ();

// destroying collection
void destroy();

// creating iterators
Iterator create_iterator (in boolean read_only);

};

2.2.1 Type checking information

readonly attribute CORBA::TypeCode element_type;

Specifies the element type expected in the collection. See Section 2.32.1, “The
Operations Interface,” on page 2-103.

2.2.2 Adding elements

boolean add_element (in any element) raises (ElementInvalid);

Description

Adds an element to the collection. The exact semantics of the add operations depends
on the properties of the concrete interface derived from the Collection that the
collection is an instance of.

2-10 Object Collection Service, v1.0.1 August 2002

2

If the collection supports unique elements or keys and the element or key is already
contained in the collection, adding is ignored. In sequential collections, the element is
always added as last element. In sorted collections, the element is added at a position
determined by the element or key value.

If the collection is a Map and contains an element with the same key as the given
element, then this element has to be equal to the given element; otherwise, the
exceptionElementInvalid is raised.

Return value

Returns true if the element is added.

Exceptions

The element must be of the expected type; otherwise, the exceptionElementInvalid
is raised.

Side effects

All iterators keep their state.

boolean add_element_set_iterator(in any element, in Iterator where)
raises (IteratorInvalid, ElementInvalid);

Description

Adds an element to the collection and sets the iterator to the added element. The exact
semantics of the add operations depends on the properties of the concrete interface
derived from the Collection that the collection is an instance of.

If the collection supports unique elements or keys and the element or key is already
contained in the collection, adding is ignored and the iterator is just set to the element
or key already contained. In sequential collections, the element is always added as last
element. In sorted collections, the element is added at a position determined by the
element or key value.

If the collection is a Map and contains an element with the same key as the given
element, then this element has to be equal to the given element; otherwise, the
exceptionElementInvalid is raised.

Return value

Returns true if the element is added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

August 2002 Collection Service, v1.0.1: The Collection Interface 2-11

2

Side effects

All other iterators keep their state.

void add_all_from (in Collection elements) raises (ElementInvalid);

Adds all elements of the given collection to this collection. The elements are added in
the iteration order of the given collection and consistent with the semantics of the add
operation. Essentially, this operation is a sequence of add operations.

Removing elements

void remove_element_at (in Iterator where) raises(IteratorInvalid);

Description

Removes the element pointed to by the given iterator. The given iterator is set toin-
between.

Exceptions

The iterator must belong to the collection and must point to an element of the
collection; otherwise, the exceptionIteratorInvalid is raised.

Side effects

Iterators pointing to the removed element goin-between. Iterators which do not point
to the removed element keep their state.

unsigned long void remove_all();

Description

Removes all elements from the collection.

Return value

Returns the number of elements removed.

Side effects

Iterators pointing to removed elements goin-between. All other iterators keep their
state.

2-12 Object Collection Service, v1.0.1 August 2002

2

Replacing elements

void replace_element_at (in Iterator where, in any element)
raises (IteratorInvalid, IteratorInBetween, ElementInvalid)

Description

Replaces the element pointed to by the iterator by the given element. The given
element must have the same positioning property as the replaced element.

• For collections organized according to element properties such as ordering
relation, the replace operation must not change this element property.

• For key collections, the new key must be equal to the key replaced.

• For non-key collections with element equality, the new element must be equal to
the replaced element as defined by the element equality relation.

Sequential collections have a user-defined positioning property and heaps do not have
positioning properties. Element values in sequences and heaps can be replaced freely.

Exceptions

The given element must not change the positioning property; otherwise, the exception
ElementInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and must point to an element of the
collection; otherwise, the exceptionIteratorInvalid or IteratorInBetween is raised.

2.2.3 Retrieving Elements

boolean retrieve_element_at (in Iterator where, out any element)
raises (IteratorInvalid, IteratorInBetween);

Description

Retrieves the element pointed to by the given iterator and returns it via the output
parameter element.

Return value

Returns true if an element is retrieved.

Exceptions

The given iterator must belong to the collection and must point to an element of the
collection; otherwise, the exceptionIteratorInvalid or IteratorInBetween is raised.

August 2002 Collection Service, v1.0.1: The Collection Interface 2-13

2

Note –Whether a copy of the element is returned or the element itself depends on the
element type represented by the any. If it is an object, a reference to the object in the
collection is returned. If the element type is a non-object type, a copy of the element is
returned. In case of element type object, do not manipulate the element or the key of
the element in the collection in a way that changes the positioning property of the
element.

Iterating over a collection

boolean all_elements_do (in Command what);

Description

Calls thedo_on() operation of the given Command for each element of the collection
until the do_on() operation returns false. The elements are visited in iteration order
(see Section 2.33, “The Command and Comparator Interface,” on page 2-107).

• The do_on() operation must not remove elements from or add elements to the
collection.

• The do_on() operation must not manipulate the element in the collection in a
way that changes the positioning property of the element.

Return value

Returns true if thedo_on() operation returns true for each element it is applied to.

2.2.4 Inquiring Collection Information

The collection operations do have preconditions which when violated raise exceptions.
There are operations for testing those preconditions to enable the user to avoid raising
exceptions.

 unsigned long number_of_elements ();

Return value

Returns the number of elements contained in the collection.

boolean is_empty ();

Return value

Returns true if the collection is empty.

2-14 Object Collection Service, v1.0.1 August 2002

2

Destroying a collection

void destroy();

Description

Destroys the collection. This includes:

• removing all elements from the collection

• destroying all iterators created for this collection

• destroying the instance of Operations passed at creation time to the collection
implementation.

Note – Removing elements in case of objects means removing object references, not
destroying the collected objects.

Object references to iterators of the collections become invalid.

2.2.5 Creating Iterators

Iterator create_iterator (in boolean read_only);

Creates and returns an iterator instance for this collection. The type of iterator that is
created depends on the interface type of this collection.

The following table describes the type of iterator that is created for the type of concrete
collection.

Table 2-2 Collection interfaces and the iterator interfaces supported

Ordered Collection Interfaces Supported Iterator Interface

Bag EqualityIterator

yes SortedBag EqualitySortedIterator

yes EqualitySequence EqualitySequentialIterator

Heap Iterator

KeyBag KeyIterator

yes KeySortedBag KeySortedIterator

KeySet KeyIterator

yes KeySortedSet KeySortedIterator

Map EqualityKeyIterator

yes SortedMap EqualityKeySortedIterator

Relation EqualityKeyIterator

yes Sequence SequentialIterator

August 2002 Collection Service, v1.0.1: The OrderedCollection Interface 2-15

2

After creation, the iterator is initialized with the stateinvalid, that is, “pointing to
nothing.”

If the given parameter read_only is true, the iterator is created with const designation
(i.e., a trial to modify the collection content via this iterator is rejected and raises the
exception IteratorInvalid).

Note – Collections serve as factories fortheir iterator instances. An iterator is created
in the same address space as the collection for which it is created. An iterator instance
can only point to elements of the collection for which it was created.

2.3 The OrderedCollection Interface

interface OrderedIterator;
// OrderedCollection

interface OrderedCollection: Collection {

// removing elements
void remove_element_at_position (in unsigned long position)

raises (PositionInvalid);
void remove_first_element () raises (EmptyCollection);
void remove_last_element () raises (EmptyCollection);

// retrieving elements
boolean retrieve_element_at_position (

in unsigned long position,
out any element)

raises (PositionInvalid);
boolean retrieve_first_element (out any element)

raises (EmptyCollection);
boolean retrieve_last_element (out any element)

raises (EmptyCollection);

// creating iterators
OrderedIterator create_ordered_iterator(

in boolean read_only,
in boolean reverse_iteration);

};

yes SortedRelation EqualityKeySortedIterator

Set EqualityIterator

yes SortedSet EqualitySortedIterator

Table 2-2 Collection interfaces and the iterator interfaces supported

yes Sequence SequentialIterator

2-16 Object Collection Service, v1.0.1 August 2002

2

Ordered collections expose the ordering of elements in their interfaces. Elements can
be accessed at a position and forward and backward movements are possible (i.e.,
ordered collection can support ordered iterators). Ordering can be implicitly defined
via the ordering relationship of the elements or keys (as in sorted collections) or
ordering can be user-controlled (as in sequential collections).

In addition to those inherited from theCollection Interface, which all ordered
collections have in common, theOrderedCollection interface provides operations for

• removing elements,

• retrieving elements, and

• creating ordered iterators.

2.3.1 Removing Elements

void remove_element_at_position (in unsigned long position)
raises (PositionInvalid);

Description

Removes the element from the collection at a given position. The first element of the
collection has position 1.

Exceptions

The value of "position" must be a valid position in the collection; otherwise, the
exceptionPositionInvalid is raised. A position is valid if it is greater than or equal to
1 and less than or equal tonumber_of_elements() .

Side effects

All iterators pointing to the removed element goin-between. Iterators that do not point
to the removed element keep their state.

void remove_first_element () raises (EmptyCollection);

Description

Removes the first element from the collection.

Exceptions

The collection must not be empty; otherwise, the exception EmptyCollection is raised.

Side effects

All iterators pointing to the removed element goin-between. Iterators that do not point
to the removed element keep their state.

August 2002 Collection Service, v1.0.1: The OrderedCollection Interface 2-17

2

void remove_last_element () raises (EmptyCollection);

Description

Removes the last element from the collection.

Exceptions

The collection must not be empty; otherwise, the exceptionEmptyCollection is
raised.

Side effects

All iterators pointing to the removed element goin-between. Iterators that do not point
to the removed element keep their state.

2.3.2 Retrieving Elements

booleanretrieve_element_at_position(inunsignedlongposition,outanyelement)
raises (PositionInvalid);

Description

Retrieves the element at the given position in the collection and returns it via the
output parameterelement.Position 1 specifies the first element.

Return value

Returns true if an element is retrieved.

Exceptions

The value of "position" must be a valid position in the collection; otherwise, the
exceptionPositionInvalid is raised.

boolean retrieve_first_element (out any element) raises (EmptyCollection);

Description

Retrieves the first element in the collection and returns it via the output parameter
element.

Return value

Returnstrue if an element is retrieved.

Exceptions

The collection must not be empty; otherwise, the exceptionEmptyCollection is
raised.

2-18 Object Collection Service, v1.0.1 August 2002

2

boolean retrieve_last_element (out any element) raises (EmptyCollection);

Description

Retrieves the last element in the collection and returns it via the output parameter
element.

Return value

Returns true if an element is retrieved.

Exceptions

The collection must not be empty; otherwise, the exceptionEmptyCollection is
raised.

2.3.3 Creating Iterators

OrderedIterator create_ordered_iterator (in boolean read_only, in boolean
reverse_iteration);

Description

Creates and returns an ordered iterator instance for this collection.

Which type of ordered iterator actually is created depends on the interface type of this
collection. Table 2-1 on page 2-6 describes which type of ordered iterator is created for
which type of concrete ordered collection.

After creation, the iterator is initialized with the state invalid, that is, “pointing to
nothing.”

Exceptions

If the given parameter read_only is true, the iterator is created with const designation
(i.e., a trial to modify the collection content via this iterator is rejected and raises the
exceptionIteratorInvalid).

Side effects

If the given parameter reverse_iteration is true, the iterator is created with reverse
iteration semantics. Only ordered iterators can be created with reverse semantics.

2.4 The SequentialCollection Interface

interface Comparator;
interface SequentialCollection: OrderedCollection {

// adding elements
void add_element_as_first (in any element) raises (ElementInvalid);

August 2002 Collection Service, v1.0.1: The SequentialCollection Interface 2-19

2

void add_element_as_first_set_iterator (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

void add_element_as_last (in any element) raises (ElementInvalid);
void add_element_as_last_set_iterator (in any element, in Iterator where)

raises (ElementInvalid, IteratorInvalid);

void add_element_as_next (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

void add_element_as_previous (in any element, in Iterator where)
raises (ElementInvalid,IteratorInvalid);

void add_element_at_position (in unsigned long position, in any element)
raises(PositionInvalid, ElementInvalid);

void add_element_at_position_set_iterator (
in unsigned long position,
in any element,
in Iterator where)

raises (PositionInvalid, ElementInvalid, IteratorInvalid);

// replacing elements
void replace_element_at_position (in unsigned long position, in any element)

raises (PositionInvalid, ElementInvalid);
void replace_first_element (in any element)

raises (ElementInvalid, EmptyCollection);
void replace_last_element (in any element)

raises (ElementInvalid, EmptyCollection);

// reordering elements
void sort (in Comparator comparison);
void reverse();

};

Sequential collections expose user-controlled sequential ordering. Determine where
elements are added by comparing to sorted collections where the “where an element is
added“ is determined implicitly by the defined element or key comparison.

The SequentialCollection interface adds all those operations to the
OrderedCollection interface. Section 2.4, “The SequentialCollection Interface,” on
page 2-18 describes operators that are unique for positional element access for

• adding elements,

• replacing elements, and

• re-ordering elements.

2.4.1 Adding Elements

void add_element_as_first (in any element) raises (ElementInvalid);

Description

Adds the element to the collection as the first element in sequential order.

2-20 Object Collection Service, v1.0.1 August 2002

2

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_first_set_iterator (in any element, in Iterator where)
raises (ElementInvalid,IteratorInvalid);

Description

Adds the element to the collection as the first element in sequential order and sets the
iterator to the added element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_last (in any element) raises (ElementInvalid);

Description

Adds the element to the collection as the last element in sequential order.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_last_set_iterator (in any element, in Iterator where)
 raises (ElementInvalid,IteratorInvalid);

Description

Adds the element to the collection as the last element in sequential order. Sets the
iterator to the added element.

August 2002 Collection Service, v1.0.1: The SequentialCollection Interface 2-21

2

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All other iterators keep their state.

void add_element_as_next(in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

Description

Adds the element to the collection after the element pointed to by the given iterator.
Sets the iterator to the added element. If the iterator is in the statein-between, the
element is added before the iterator’s “potential next” element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and be valid; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

void add_element_as_previous (in any element, in Iterator where)
raises (IteratorInvalid, ElementInvalid);

Description

Adds the element to the collection as the element previous to the element pointed to by
the given iterator. Sets the iterator to the added element. If the iterator is in the statein-
between,the element is added after the iterator’s “potential previous” element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and must be valid; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

2-22 Object Collection Service, v1.0.1 August 2002

2

void add_element_at_position (in unsigned long position, in any element)
 raises(PositionInvalid, ElementInvalid);

Description

Adds the element at the given position to the collection. If an element exists at the
given position, the new element is added as the element preceding the existing element.

Exceptions

The position must be valid (i.e., greater than or equal to 1 and less than or equal to
number_of_elements() +1); otherwise, the exceptionPositionInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

void add_element_at_position_set_iterator (
in unsigned long position,
in any element,
in Iterator where)

raises (PositionInvalid, ElementInvalid IteratorInvalid);

Description

Adds the element at the given position to the collection and sets the iterator to the
added element. If an element exists at the given position, the new element is added as
the element preceding the existing element.

Exceptions

The position must be valid (i.e., greater than or equal to 1 and less than or equal to
number_of_elements() +1); otherwise, the exceptionPositionInvalid is raised.

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection; otherwise, the exceptionIteratorInvalid is
raised.

Side effects

All iterators keep their state.

Replacing elements

void replace_element_at_position (
in unsigned long position,

August 2002 Collection Service, v1.0.1: The SequentialCollection Interface 2-23

2

in any element)
raises (PositionInvalid, ElementInvalid);

Description

Replaces the element at a given position with the given element. The given position
must be valid (i.e., greater than or equal to 1 and less than or equal to
number_of_elements()).

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

void replace_first_element (in any element)
raises (ElementInvalid, EmptyCollection);

Description

Replaces the first element with the given element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The collection must not be empty; otherwise, the exceptionEmptyCollection is
raised.

void replace_last_element (in any element)
raises (ElementInvalid, EmptyCollection);

Description

Replaces the last element with the given element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The collection must not be empty; otherwise, the exceptionEmptyCollection is
raised.

2-24 Object Collection Service, v1.0.1 August 2002

2

2.4.2 Re-ordering Elements

void sort (in Comparator comparison);

Description

Sorts the collection so that the elements occur in ascending order. The relation of two
elements is defined by the “compare” method, which a user provides when
implementing an interface derived from Comparator. See Section 2.33, “The Command
and Comparator Interface,” on page 2-107.

Side effects

All iterators in the statein-betweengo invalid.

All other iterators keep their state.

void reverse ();

Description

Orders elements in reverse order.

Side effects

All iterators in the statein-betweengo invalid.

All other iterators keep their state.

2.5 The SortedCollection Interface

interface SortedCollection: OrderedCollection{};

Sorted collections currently do not provide further operations but define a more
specific behavior; namely, that the elements or their keys are sorted with respect to a
user-defined element or key compare. See Section 2.3, “The OrderedCollection
Interface,” on page 2-15.

2.6 The EqualityCollection Interface

interface EqualityCollection: Collection {

// testing element containment
boolean contains_element (in any element) raises(ElementInvalid);
boolean contains_all_from (in Collection collector) raises(ElementInvalid);

// adding elements
boolean locate_or_add_element (in any element) raises (ElementInvalid);
boolean locate_or_add_element_set_iterator (in any element, in Iterator where)

raises (ElementInvalid, IteratorInvalid);

August 2002 Collection Service, v1.0.1: The EqualityCollection Interface 2-25

2

// locating elements
boolean locate_element (in any element, in Iterator where)

raises (ElementInvalid, IteratorInvalid);
boolean locate_next_element (in any element, in Iterator where)

raises (ElementInvalid, IteratorInvalid);
boolean locate_next_different_element (in Iterator where)

raises (IteratorInvalid, IteratorInBetween);

// removing elements
boolean remove_element (in any element) raises (ElementInvalid);
unsigned long remove_all_occurrences (in any element) raises (ElementInvalid);

// inquiring collection information
unsigned long number_of_different_elements ();
unsigned long number_of_occurrences (in any element) raises(ElementInvalid);

};

Collections whose elements define equality introduce operations which exploit the
defined element equality. These operations are for finding elements by element value
(and adding if not found), for testing containment of a given element, and inquiring the
collection about how many elements of a given value were collected.

2.6.1 Testing Element Containment

boolean contains_element (in any element) raises (ElementInvalid);

Return value

Returns true if the collection contains an element equal to the given element.

Exceptions

The given elements must be of the expected type; otherwise, the exception
ElementInvalid is raised.

boolean contains_all_from (in Collection collector) raises (ElementInvalid);

Return value

Returns true if all the elements of the given collection are contained in the collection.
The definition of containment is given in “contains_element.”

Exceptions

The elements in the given collection must be of the expected type; otherwise, the
exceptionElementInvalid is raised.

2-26 Object Collection Service, v1.0.1 August 2002

2

2.6.2 Adding Elements

boolean locate_or_add_element (in any element) raises (ElementInvalid);

Description

Locates an element in the collection that is equal to the given element. If no such
element is found, the element is added as described in add.

Return value

Returns true if the element was found.

Returns false if the element had to be added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

boolean locate_or_add_element_set_iterator (
in any element,
in Iterator where)

raises (ElementInvalid, IteratorInvalid);

Description

Locates an element in the collection that is equal to the given element. If no such
element is found, the element is added as described in add. The iterator is set to the
found or added element.

Return value

Returns true if the element was found.

Returns false if the element had to be added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All other iterators keep their state.

August 2002 Collection Service, v1.0.1: The EqualityCollection Interface 2-27

2

2.6.3 Locating Elements

boolean locate_element (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

Description

Locates an element in the collection that is equal to the given element. Sets the iterator
to point to the element in the collection, or invalidates the iterator if no such element
exists. If the collection contains several such elements, the first element in iteration
order is located.

Return value

Returns true if an element is found.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection; otherwise, the exceptionIteratorInvalid is
raised.

Side effects

All iterators keep their state.

boolean locate_next_element (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

Description

Locates the next element in iteration order in the collection that is equal to the given
element, starting at the element next to the one pointed to by the given iterator. Sets the
iterator to point to the located element. The iterator is invalidated if the end of the
collection is reached and no more occurrences of the given element are left to be
visited. If the iterator is in the statein-between,locating is started at the iterator’s
“potential next” element.

Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The iterator must belong to the collection and must be valid; otherwise, the exception
IteratorInvalid is raised.

2-28 Object Collection Service, v1.0.1 August 2002

2

boolean locate_next_different_element (in Iterator where)
raises (IteratorInvalid, IteratorInBetween);

Description

Locates the next element in iteration order that is different from the element pointed to
by the given iterator. If no more elements are left to be visited, the given iterator will
no longer be valid.

Return value

Returns true if the next different element was found.

Exception

The iterator must belong to the collection and point to an element of the collection;
otherwise, the exceptionIteratorInvalid or IteratorInBetween is raised.

2.6.4 Removing Elements

boolean remove_element (in any element) raises (ElementInvalid);

Description

Removes an element in the collection that is equal to the given element. If no such
element exists, the collection remains unchanged. In collections with non-unique
elements, an arbitrary occurrence of the given element will be removed.

Return value

Returns true if an element was removed.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

If an element was removed, all iterators pointing to this element goin-between.

All other iterators keep their state.

unsigned long remove_all_occurrences (in any element)
raises (ElementInvalid);

Description

Removes all elements from the collection that are equal to the given element and
returns the number of elements removed.

August 2002 Collection Service, v1.0.1: The KeyCollection Interface 2-29

2

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators pointing to elements removed goin-between.

All iterators keep their state.

2.6.5 Inquiring Collection Information

unsigned long number_of_different_elements ();

Return value

Returns the number of different elements in the collection.

unsigned long number_of_occurrences (in any element)
raises (ElementInvalid);

Return value

Returns the number of occurrences of the given element in the collection.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

2.7 The KeyCollection Interface

interface KeyCollection: Collection {

// Key type information
readonly attribute CORBA::TypeCode key_type;

// testing containment
boolean contains_element_with_key (in any _key)

raises(KeyInvalid);
boolean contains_all_keys_from (in KeyCollection collector)

raises(KeyInvalid);

// adding elements
boolean locate_or_add_element_with_key (in any element)

raises(ElementInvalid);
boolean locate_or_add_element_with_key_set_iterator (

in any element,
in Iterator where)

raises (ElementInvalid, IteratorInvalid);

2-30 Object Collection Service, v1.0.1 August 2002

2

// adding or replacing elements
boolean add_or_replace_element_with_key (in any element)

raises(ElementInvalid);
boolean add_or_replace_element_with_key_set_iterator (

in any element,
in Iterator where)

raises (ElementInvalid, IteratorInvalid);

// removing elements
boolean remove_element_with_key(in any _key)

raises(KeyInvalid);
unsigned long remove_all_elements_with_key (

in any _key)
raises(KeyInvalid);

// replacing elements
boolean replace_element_with_key (in any element)

raises(ElementInvalid);
boolean replace_element_with_key_set_iterator (

in any element,
in Iterator where)

raises (ElementInvalid, IteratorInvalid);

// retrieving elements
boolean retrieve_element_with_key (in any _key, out any element)

raises (KeyInvalid);
// computing the keys
void _key (in any element, out any _key)

raises (ElementInvalid);
void keys (in AnySequence elements, out AnySequence keys)

raises (ElementInvalid);

// locating elements
boolean locate_element_with_key (in any _key, in Iterator where)

raises (KeyInvalid, IteratorInvalid);
boolean locate_next_element_with_key (in any _key, in Iterator where)

raises (KeyInvalid, IteratorInvalid);
boolean locate_next_element_with_different_key (in Iterator where)

raises (IteratorInBetween, IteratorInvalid);

// inquiring collection information
unsigned long number_of_different_keys ();
unsigned long number_of_elements_with_key (in any _key)

raises(KeyInvalid);
};

A KeyCollection is a collection which offers associative access to its elements via a
key. All elements of such a collection are keyed elements (i.e., they do have a key
which is computed from the element value). How to compute the key from an element
value is user-defined. A user specializes theOperations interface and implements the
operation _key() as desired (see Section 2.32.1, “The Operations Interface,” on
page 2-103). This information is passed to the collection at creation time.

August 2002 Collection Service, v1.0.1: The KeyCollection Interface 2-31

2

2.7.1 Type Checking Information

readonly attribute CORBA::TypeCode key_type;

Specifies the key type expected in the collection. See Section 2.32.1, “The Operations
Interface,” on page 2-103.

2.7.2 Testing Containment

boolean contains_element_with_key (in any _key) raises (KeyInvalid);

Return value

Returns true if the collection contains an element with the same key as the given key.

Exceptions

The given key has to be of the expected type; otherwise, the exception KeyInvalid is
raised.

boolean contains_all_keys_from (in KeyCollection collector)
raises(KeyInvalid);

Return value

Returns true if all of the keys of the given collection are contained in the collection.

Exceptions

The keys of the given collection have to be of the expected type of this collection;
otherwise, the exception KeyInvalid is raised.

2.7.3 Adding Elements

boolean locate_or_add_element_with_key (in any element)
raises(ElementInvalid);

Description

Locates an element with the same key as the key in the given element. If no such
element exists the element is added; otherwise, the collection remains unchanged.

Return value

Returns true if the element is located.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

2-32 Object Collection Service, v1.0.1 August 2002

2

Side effects

All iterators keep their state.

boolean locate_or_add_element_with_key_set_iterator (
in any element,
in Iterator where)

raises (ElementInvalid, IteratorInvalid);

Description

Locates an element with the same key as the key in the given element and sets the
iterator to the located elements (see locate_element_with_key()). If no such element
exists, the element is added and the iterator is set to the element added.

Return value

Returns true if the element is located.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

boolean add_or_replace_element_with_key (in any element)
raises (ElementInvalid);

Description

If the collection contains an element with the key equal to the key in the given element,
the element is replaced with the given element; otherwise, the given element is added
to the collection.

Return value

Returns true if the element was added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All iterators keep their state.

August 2002 Collection Service, v1.0.1: The KeyCollection Interface 2-33

2

boolean add_or_replace_element_with_key_set_iterator (
in any element,
in Iterator where)

raises (ElementInvalid, IteratorInvalid);

Description

If the collection contains an element with the key equal to the key in the given element,
the iterator is set to that element and the element is replaced with the given element;
otherwise, the given element is added to the collection, and the iterator set to the added
element.

Return value

Returns true if the element was added.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

Side effects

All iterators keep their state.

2.7.4 Removing Elements

boolean remove_element_with_key (in any _key) raises (KeyInvalid);

Description

Removes an element from the collection with the same key as the given key. If no such
element exists, the collection remains unchanged. In collections with non-unique
elements, an arbitrary occurrence of such an element will be removed.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

Side effects

If an element was removed, all iterators pointing to the element goin-between.

All other iterators keep their state.

2-34 Object Collection Service, v1.0.1 August 2002

2

unsigned long remove_all_elements_with_key (in any _key)
raises(KeyInvalid);

Description

Removes all elements from the collection with the same key as the given key.

Exceptions

The given key must be of the expected type; otherwise, the exceptionKeyInvalid is
raised.

Side effects

Iterators pointing to elements removed goin-between.

All other iterators keep their state.

2.7.5 Replacing Elements

boolean replace_element_with_key (in any element) raises (ElementInvalid);

Description

Replaces an element with the same key as the given element by the given element. If
no such element exists, the collection remains unchanged. In collections with non-
unique elements, an arbitrary occurrence of such an element will be replaced.

Return value

Returns true if an element was replaced.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

boolean replace_element_with_key_set_iterator (
in any element,
in Iterator where)

raises (ElementInvalid, IteratorInvalid);

Description

Replaces an element with the same key as the given element by the given element, and
sets the iterator to this element. If no such element exists, the iterator is invalidated and
the collection remains unchanged. In collections with non-unique elements, an
arbitrary occurrence of such an element will be replaced.

Return value

Returns true if an element was replaced.

August 2002 Collection Service, v1.0.1: The KeyCollection Interface 2-35

2

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

2.7.6 Computing Keys

void _key (in any element, out any _key) raises(ElementInvalid);

Description

Computes the key of the given element and returns it via the output parameter key.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

void keys (in Any Sequence elements, out Any Sequence keys)
raises(ElementInvalid);

Description

Computes the keys of the given elements and returns them via the output parameter
keys.

Exceptions

The given elements must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

An implementation may rely on the key operation of a user supplied interface derived
from Operations. An instance of this interface is passed to a collection at creation time
and can be used in the collection implementation.

2.7.7 Locating Elements

boolean locate_element_with_key (in any _key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

Description

Locates an element in the collection with the same key as the given key. Sets the
iterator to point to the element in the collection, or invalidates the iterator if no such
element exists.

2-36 Object Collection Service, v1.0.1 August 2002

2

If the collection contains several such elements, the first element in iteration order is
located.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exceptionKeyInvalid is
raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_next_element_with_key (in any _key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

Description

Locates the next element in iteration order with the key equal to the given key, starting
at the element next to the one pointed to by the given iterator. Sets the iterator to point
to the element in the collection. The given iterator is invalidated if the end of the
collection is reached and no more occurrences of such an element are left to be visited.
If the iterator is in thein-betweenstate, locating starts at the iterator’s “potential next”
element.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exceptionKeyInvalid is
raised.

The given iterator must belong to the collection and must be valid; otherwise, the
exceptionIteratorInvalid is raised.

boolean locate_next_element_with_different_key (in Iterator where)
raises(IteratorInvalid, IteratorInBetween)

Description

Locates the next element in the collection in iteration order with a key different from
the key of the element pointed to by the given iterator. If no such element exists, the
given iterator is no longer valid.

Return value

Returns true if an element was found.

August 2002 Collection Service, v1.0.1: The EqualityKeyCollection Interface 2-37

2

Exceptions

The given iterator must belong to the collection and must point to an element;
otherwise, the exceptionIteratorInvalid respectivelyIteratorInBetween is raised.

2.7.8 Inquiring Collection Information

unsigned long number_of_different_keys ();

Return value

Returns the number of different keys in the collection.

unsigned long number_of_elements_with_key (in any _key)
raises(KeyInvalid);

Return value

Returns the number elements with key specified.

Exceptions

The key must be of the expected type; otherwise, the exceptionKeyInvalid is raised.

2.8 The EqualityKeyCollection Interface

interface EqualityKeyCollection : EqualityCollection, KeyCollection{};

Description

This interface combines the interfaces representing the properties “key access” and
“element equality.” See Section 2.6, “The EqualityCollection Interface,” on page 2-24
and Section 2.7, “The KeyCollection Interface,” on page 2-29.

2.9 The KeySortedCollection Interface

interface KeySortedCollection : KeyCollection, SortedCollection {

// locating elements
boolean locate_first_element_with_key (in any _key, in Iterator where)

raises (KeyInvalid, IteratorInvalid);
boolean locate_last_element_with_key(in any _key, in Iterator where)

raises (KeyInvalid, IteratorInvalid);
boolean locate_previous_element_with_key (in any _key, in Iterator where)

raises (KeyInvalid, IteratorInvalid);
boolean locate_previous_element_with_different_key(in Iterator where)

raises (IteratorInBetween, IteratorInvalid);
};

2-38 Object Collection Service, v1.0.1 August 2002

2

This interface combines the interfaces representing the properties “key access” and
“ordering.” See Section 2.7, “The KeyCollection Interface,” on page 2-29 and
Section 2.5, “The SortedCollection Interface,” on page 2-24.

2.9.1 Locating Elements

boolean locate_first_element_with_key (in any _key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection with the same key as the
given key. Sets the iterator to the located element, or invalidates the iterator if no such
element exists.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exceptionKeyInvalid is
raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_last_element_with_key(in any _key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

Description

Locates the last element in iteration order in the collection with the same key as the
given key. Sets the given iterator to the located element, or invalidates the iterator if no
such element exists.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

August 2002 Collection Service, v1.0.1: The EqualitySortedCollection Interface 2-39

2

boolean locate_previous_element_with_key (in any _key, in Iterator where)
raises (KeyInvalid, IteratorInvalid);

Description

Locates the previous element in iteration order with a key equal to the given key,
beginning at the element previous to the one specified by the given iterator and moving
in reverse iteration order through the elements. Sets the iterator to the located element
or invalidates the iterator if no such element exists. If the iterator is in the statein-
between,locating begins at the iterator’s “potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exception KeyInvalid is
raised.

The given iterator must belong to the collection and be valid; otherwise, the exception
IteratorInvalid is raised.

boolean locate_previous_element_with_different_key(in Iterator where)
raises (IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a key different from the key of the
element pointed to, beginning at the element previous to the one pointed to and moving
in reverse iteration order through the elements. Sets the iterator to the located element,
or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The given key must be of the expected type; otherwise, the exceptionKeyInvalid is
raised.

The given iterator must point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

2.10 The EqualitySortedCollection Interface

This interface combines the interfaces representing the properties “element equality”
and “ordering.” See Section 2.6, “The EqualityCollection Interface,” on page 2-24 and
Section 2.5, “The SortedCollection Interface,” on page 2-24. It adds those methods
which exploit the combination of both properties.

2-40 Object Collection Service, v1.0.1 August 2002

2

interface EqualitySortedCollection : EqualityCollection, SortedCollection {

// locating elements
boolean locate_first_element (in any element, in Iterator where)

raises (ElementInvalid, IteratorInvalid);
boolean locate_last_element (in any element, in Iterator where)

raises (ElementInvalid, IteratorInvalid);
boolean locate_previous_element (in any element, in Iterator where)

raises (ElementInvalid, IteratorInvalid);
boolean locate_previous_different_element (in Iterator where)

raises (IteratorInvalid);
};

2.10.1 Locating Elements

boolean locate_first_element (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection that is equal to the given
element. Sets the iterator to the located element or invalidates the iterator if no such
element exists.

Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_last_element (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

Description

Locates the last element in iteration order in the collection that is equal to the given
element. Sets the iterator to the located element or invalidates the iterator if no such
element exists.

Return value

Returns true if an element was found.

August 2002 Collection Service, v1.0.1: The EqualitySortedCollection Interface 2-41

2

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_previous_element (in any element, in Iterator where)
raises (ElementInvalid, IteratorInvalid);

Description

Locates the previous element in iteration order that is equal to the given element,
beginning at the element previous to the one specified by the given iterator and moving
in reverse iteration order through the elements. Sets the iterator to the located element,
or invalidates the iterator if no such element exists. If the iterator is in the statein-
between,the search begins at the iterator’s “potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The given element must be of the expected type otherwise the exception
ElementInvalid is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

boolean locate_previous_different_element (in Iterator where)
raises (IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a value different from the element
pointed to, beginning at the element previous to the one pointed to and moving in
reverse iteration order through the elements. Sets the iterator to the located element or
invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The given iterator must point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

2-42 Object Collection Service, v1.0.1 August 2002

2

2.11 The EqualityKeySortedCollection Interface

interface EqualityKeySortedCollection: EqualityCollection, KeyCollection,
SortedCollection {};

This interface combines the interface representing the properties “element equality,”
“key access,” and “ordering.”

2.12 The EqualitySequentialCollection Interface

This interface combines the interface representing the properties “element equality”
and “(sequential) ordering” and offers additional operations which exploit this
combination.

interface EqualitySequentialCollection: EqualityCollection,
SequentialCollection
{

// locating elements
boolean locate_first_element_with_value (in any element, in Iterator where)

raises (ElementInvalid, IteratorInvalid);
boolean locate_last_element_with_value (in any element, in Iterator where)

 raises (ElementInvalid, IteratorInvalid);
boolean locate_previous_element_with_value (in any element, in Iterator where)

 raises (ElementInvalid, IteratorInvalid);
};

2.12.1 Locating Elements

boolean locate_first_element_with_value (in any element, in Iterator where)
 raises (ElementInvalid, IteratorInvalid);

Description

Locates the first element in iteration order in the collection that is equal to the given
element. Sets the iterator to the located element or invalidates the iterator if no such
element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exceptionElementInvalid
is raised.

The given iterator must belong to the collection; otherwise, the exception
IteratorInvalid is raised.

August 2002 Collection Service, v1.0.1: The EqualitySequentialCollection Interface 2-43

2

boolean locate_last_element_with_value (in any element, in Iterator where)
 raises (ElementInvalid, IteratorInvalid);

Description

Locates the last element in iteration order in the collection that is equal to the given
element. Sets the iterator to the located element or invalidates the iterator if no such
element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exceptionElementInvalid
is raised.

The iterator must belong to the collection; otherwise, the exceptionIteratorInvalid is
raised.

boolean locate_previous_element_with_value (
in any element,
in Iterator where)

raises (ElementInvalid, IteratorInvalid);

Description

Locates the previous element in iteration order that is equal to the given element,
beginning at the element previous to the one specified by the given iterator and moving
in reverse iteration order through the elements. Sets the iterator to the located element
or invalidates the iterator if no such element exists. If the iterator is in the statein-
between,locating begins at the iterators “potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exceptionElementInvalid
is raised.

The iterator must belong to the collection and be valid; otherwise, the exception
IteratorInvalid is raised.

Section II - Concrete Collections Interfaces

The previously listed “abstract views” on collections combine the properties “key
access,” “element equality,” and “ordering relationship” on elements. The subsequent
interfaces add “uniqueness” support for “multiples.” To reduce the complexity of the
hierarchy, this fourth property is not represented by a separate interface.

2-44 Object Collection Service, v1.0.1 August 2002

2

2.13 The KeySet Interface

interface KeySet: KeyCollection {};

The KeySet offers an interface representing the property “key access” with the
semantics of “unique keys required.” See Section 2.7, “The KeyCollection Interface,”
on page 2-29.

2.14 The KeyBag Interface

interface KeyBag: KeyCollection {};

TheKeyBag offers the interface representing the property “key access” with multiple
keys allowed. See Section 2.7, “The KeyCollection Interface,” on page 2-29.

2.15 The Map Interface

interface Map : EqualityKeyCollection {

// set theoretical operations
void difference_with (in Map collector)

raises (ElementInvalid);
void add_difference (in Map collector1, in Map collector2)

raises (ElementInvalid);
void intersection_with (in Map collector)

raises (ElementInvalid);
void add_intersection (in Map collector1, in Map collector2)

raises (ElementInvalid);
void union_with (in Map collector)

raises (ElementInvalid);
void add_union (in Map collector1, in Map collector2)

raises (ElementInvalid);

// testing equality
boolean equal (in Map collector)

raises (ElementInvalid);
boolean not_equal (in Map collector)

raises(ElementInvalid);
};

The Map offers the interface representing the combination of the properties “element
equality testable” and “key access” and supports the semantics “unique keys required”
(which implies unique elements). See Section 2.8, “The EqualityKeyCollection
Interface,” on page 2-37.

With element equality defined, a test on equality for collections of the same type is
possible as well as a meaningful definition of the set theoretical operations.

August 2002 Collection Service, v1.0.1: The Map Interface 2-45

2

2.15.1 Set Theoretical Operations

void difference_with (in Map collector) raises(ElementInvalid);

Description

Makes this collection the difference between this collection and the given collection.
The difference of A and B (A minus B) is the set of elements that are contained in A
but not in B.

The same operation is defined for other collections, too. The following rule applies for
collections with multiple elements: If collection P contains the element X m times and
collection Q contains the element X n times, the difference of P and Q contains the
element X m-n times if “m > n,” and zero times if “m <= n.”

Exceptions

Elements of the given collection must have the expected type of this collection;
otherwise, the exceptionElementInvalid is raised.

Side effects

Valid iterators pointing to removed elements goin-between. All other iterators keep
their state.

void add_difference (in Map collector1, in Map collector2)
raises (ElementInvalid);

Description

Creates the difference between the two given collections and adds the difference to this
collection.

Exceptions

Elements of the given collections must be of the expected type in this collection;
otherwise, the exception ElementInvalid is raised.

Side effects

Adding the difference takes place one by one so the semantics for add applies here for
raised exceptions and iterator state.

void intersection_with (in Map collector) raises (ElementInvalid);

Description

Makes this collection the intersection of this collection and the given collection. The
intersection of A and B is the set of elements that is contained in both A and B.

2-46 Object Collection Service, v1.0.1 August 2002

2

The same operation is defined for other collections, too. The following rule applies for
collections with multiple elements: If collection P contains the element X m times and
collection Q contains the element X n times, the intersection of P and Q contains the
element X “MIN(m,n)” times.

Exceptions

Elements of the given collection must have the expected type of this collection;
otherwise, the exceptionElementInvalid is raised.

Side effects

Valid iterators of this collection pointing to removed elements goin-between.

All other iterators keep their state.

void add_intersection (in Map collector1, in Map collector2)
raises (ElementInvalid);

Description

Creates the intersection of the two given collections and adds the intersection to this
collection.

Exceptions

Elements of the given collections must have the expected type of this collection;
otherwise, the exceptionElementInvalid is raised.

Side effects

Adding the intersection takes place one by one so the semantics for add apply here for
raised exceptions and iterator state.

void union_with (in Map collector) raises (ElementInvalid);

Description

Makes this collection the union of this collection and the given collection. The union
of A and B are the elements that are members of A or B or both.

The same operation is defined for other collections, too. The following rule applies for
collections with multiple elements: If collection P contains the element X m times and
collection Q contains the element X n times, the union of P and Q contains the element
X m+n times.

Exceptions

Elements of the given collection must have the expected type of this collection;
otherwise, the exceptionElementInvalid is raised.

August 2002 Collection Service, v1.0.1: The Map Interface 2-47

2

Side effects

Adding takes place one by one so the semantics for add applies here for raised
exceptions and iterator state.

void add_union (in Map collector1, in Map collector2)
raises (ElementInvalid);

Description

Creates the union of the two given collections and adds the union to the collection.

Exceptions

Elements of the given collections must have the expected type of this collection;
otherwise, the exceptionElementInvalid is raised.

Side effects

Adding the intersection takes place one by one; therefore, the semantics for add
applies here for validity of iterators and raised exceptions.

2.15.2 Testing Equality

boolean equal (in Map collector) raises(ElementInvalid);

Return value

Returns true if the given collection is equal to the collection.

This operation is defined for other collections, too. Two collections are equal if the
number of elements in each collection is the same and if the following conditions
(depending on the collection properties) are fulfilled.

• Collections with unique elements: If the collections have unique elements, any
element that occurs in one collection must occur in the other collections, too.

• Collections with non-unique elements: If an element has n occurrences in one
collection, it must have exactly n occurrences in the other collection.

• Sequential collections: They are sequential collections if they are
lexicographically equal based on element equality defined for the elements of the
sequential collection.

Exceptions

Elements of the given collections must have the expected type of this collection;
otherwise, the exceptionElementInvalid is raised.

boolean not_equal (in Map collector) raises (ElementInvalid);

Return value

Returnstrue if the given collection is not equal to this collection.

2-48 Object Collection Service, v1.0.1 August 2002

2

2.16 The Relation Interface

interface Relation : EqualityKeyCollection {
// equal, not_equal, and the set-theoretical operations as defined for Map
};

The Relation interface offers the interface representing the combination of the
properties “element equality testable” and “key access” and supports the semantics
“multiple elements allowed.” See Section 2.8, “The EqualityKeyCollection Interface,”
on page 2-37. For a definition of the set-theoretical operation see Section 2.15, “The
Map Interface,” on page 2-44.

2.17 The Set Interface

interface Set : EqualityCollection {
// equal, not_equal, and the set theoretical operations as defined for Map
};

The Set offers the interface representing the property “element equality testable” with
the semantics of “unique elements required.” See Section 2.6, “The EqualityCollection
Interface,” on page 2-24.

2.18 The Bag Interface

interface Bag : EqualityCollection {
// equal, not_equal, and the set theoretical operations as defined for Map
};

TheBag offers the interface representing the property “element equality testable” with
the semantics of “multiples allowed.” See Section 2.6, “The EqualityCollection
Interface,” on page 2-24.

2.19 The KeySortedSet Interface

interface KeySortedSet : KeySortedCollection {
long compare (in KeySortedSet collector, in Comparator comparison);
};

The KeySortedSet offers the sorted variant ofKeySet . See Section 2.9, “The
KeySortedCollection Interface,” on page 2-37.

The sorted variant ofKeySet introduces a new operation compare which can be
supported only when there is “ordering.” This operation takes an instance of a user-
definedComparator as given parameter. See Section 2.33, “The Command and
Comparator Interface,” on page 2-107.

TheComparator defines the comparison to be used for the elements in the context of
this compare operation. Comparison on twoKeySortedSets then is a lexicographical
comparison based on this element comparison.

August 2002 Collection Service, v1.0.1: The KeySortedBag Interface 2-49

2

long compare (in KeySortedSet collector, in Comparator comparison)
raises (ElementInvalid);

Description

Compares this collection with the given collection. Comparison yields:

• <0 if this collection is less than the given collection,

• 0 if the collection is equal to the given collection, and

• >0 if the collection is greater than the given collection.

Comparison is defined by the first pair of corresponding elements, in both collections,
that are not equal. If such a pair exists, the collection with the greater element is the
greater one. If such a pair does not exist, the collection with more elements is the
greater one.

The compare operation of the user’s comparator (interface derived from
Comparator) must return a result according to the following rules:

>0 if (element1 > element2)

0 if (element1 = element2)

<0 if (element1 < element2)

Return value

Returns the result of the collection comparison.

2.20 The KeySortedBag Interface

interface KeySortedBag : KeySortedCollection {
long compare (in KeySortedBag collector, in Comparator comparison);
};

The KeySortedBag is the sorted variant of theKeyBag . See Section 2.9, “The
KeySortedCollection Interface,” on page 2-37. The additional operation compare is
offered. See Section 2.19, “The KeySortedSet Interface,” on page 2-48.

2.21 The SortedMap Interface

interface SortedMap : EqualityKeySortedCollection {
// equal, not_equal, and the set theoretical operations
long compare (in SortedMap collector, in Comparator comparison);
};

The SortedMap interface is the sorted variant of a Map. See Section 2.11, “The
EqualityKeySortedCollection Interface,” on page 2-42. The additional operation
compare is offered. See Section 2.19, “The KeySortedSet Interface,” on page 2-48.

2-50 Object Collection Service, v1.0.1 August 2002

2

2.22 The SortedRelation Interface

interface SortedRelation : EqualityKeySortedCollection {
// equal, not_equal, and the set theoretical operations
long compare (in SortedRelation collector, in Comparator comparison);
};

The SortedRelation interface is the sorted variant of a Relation. See Section 2.10,
“The EqualitySortedCollection Interface,” on page 2-39. The additional operation
compareis offered. See Section 2.19, “The KeySortedSet Interface,” on page 2-48.

2.23 The SortedSet Interface

interface SortedSet : EqualitySortedCollection {
// equal, not_equal, and the set theoretical operations
long compare (in SortedSet collector, in Comparator comparison);
};

The SortedSet interface is the sorted variant of a Set. The additional operation
compare is offered. See Section 2.19, “The KeySortedSet Interface,” on page 2-48.

2.24 The SortedBag Interface

interface SortedBag: EqualitySortedCollection {
// equal, not_equal, and the set theoretical operations
long compare (in SortedBag collector, in Comparator comparison);
};

The SortedBag interface is the sorted variant of a Bag. See Section 2.10, “The
EqualitySortedCollection Interface,” on page 2-39. The additional operationcompare
is offered. See Section 2.19, “The KeySortedSet Interface,” on page 2-48.

2.25 The Sequence Interface

interface Sequence : SequentialCollection {
// Comparison
long compare (in Sequence collector, in Comparator comparison);
};

TheSequence supports the interface representing the property “sequential ordering.”
This property enables the definition of comparison on two Sequences; therefore, the
operation compare is offered. See Section 2.4, “The SequentialCollection Interface,” on
page 2-18.

2.26 The EqualitySequence Interface

interface EqualitySequence : EqualitySequentialCollection {
// test on equality

August 2002 Collection Service, v1.0.1: The Heap Interface 2-51

2

boolean equal (in EqualitySequence collector);
boolean not_equal (in EqualitySequence collector);

// comparison
long compare (in EqualitySequence collector, in Comparator comparison);

};

The EqualitySequence supports the combination of the properties “sequential
ordering” and “element equality testable.” See Section 2.12, “The
EqualitySequentialCollection Interface,” on page 2-42. This allows the operations
equal , not_equal , andcompare .

2.27 The Heap Interface

interface Heap : Collection {};

The Heap does not support any property at all. It just delivers the basic Collection
interface. See Section 2.2, “The Collection Interface,” on page 2-8.

Section III - Restricted Access Collection Interfaces

Common data structures, such as a stack, may restrict access to the elements of a
collection. The restricted access collections support these data structures. Stack,
Queue, and Dequeue are essentially restricted access Sequences.PriorityQueue is
essentially a restricted accessKeySortedBag . For convenience, these interfaces offer
the commonly used operation names such as push, pop, etc. rather thanadd_element ,
remove_element_at . Although the restricted access collections form their own
hierarchy, the naming was formed in a way that allows mixing-in with the hierarchy of
the combined property collections.

This may be useful to support several views on the same instance of a collection. For
example, a “user view” to a job queue with restricted access of aPriorityQueue and
an “administrator view” to the same print job queue with the full capabilities of a
KeySortedBag .

2.28 Abstract RestrictedAccessCollection Interface

2.28.1 The RestrictedAccessCollection Interface

// Restricted Access Collections
interface RestrictedAccessCollection {

// getting information on collection state
boolean unfilled ();
unsigned long size ();

// removing elements
void purge ();

};

2-52 Object Collection Service, v1.0.1 August 2002

2

boolean unfilled ();

Return value

Returnstrue if the collection is empty.

unsigned long size ();

Return value

Returns the number of elements in the collection.

void purge ();

Description

Removes all elements from the collection. See Section 2.2, “The Collection Interface,”
on page 2-8.

2.29 Concrete Restricted Access Collection Interfaces

2.29.1 The Queue Interface

interface Queue : RestrictedAccessCollection {

// adding elements
void enqueue (in any element) raises (ElementInvalid);

// removing elements
void dequeue () raises (EmptyCollection);
boolean element_dequeue (out any element) raises (EmptyCollection);

};

A Queue may be considered as a restricted access Sequence. Elements are added at
the end of the queue only and removed from the beginning of the queue. FIFO
behavior is delivered.

Adding elements

void enqueue (in any element) raises (ElementInvalid);

Description

Adds the element as last element to the Queue.

Exceptions

The given element must be the expected type; otherwise, the exception
ElementInvalid is raised.

August 2002 Collection Service, v1.0.1: Concrete Restricted Access Collection Interfaces 2-53

2

Removing elements

void dequeue () raises (EmptyCollection);

Description

Removes the first element from the queue.

Exceptions

The queue must not be empty; otherwise, the exceptionEmptyCollection is raised.

boolean element_dequeue(out any element) raises (EmptyCollection);

Description

Retrieves the first element in the queue, returns it via the output parameter element,
and removes it from the queue.

Return value

Returns true if an element was retrieved.

Exceptions

The queue must not be empty; otherwise, the exceptionEmptyCollection is raised.

2.29.2 The Dequeue Interface

interface Deque : RestrictedAccessCollection {

// adding elements
void enqueue_as_first (in any element) raises (ElementInvalid);
void enqueue_as_last (in any element) raises(ElementInvalid);

// removing elements
void dequeue_first () raises (EmptyCollection);
boolean element_dequeue_first (out any element) raises (EmptyCollection);
void dequeue_last () raises (EmptyCollection);
boolean element_dequeue_last (out any element) raises (EmptyCollection);

};

The Dequeue may be considered as a restricted accessSequence . Adding and
removing elements is only allowed at both ends of the double-ended queue. The
semantics of theDequeue operation is comparable to the operations described for the
Queue interface. See Section 2.29.1, “The Queue Interface,” on page 2-52.

2.29.3 The Stack Interface

interface Stack: RestrictedAccessCollection {

// adding elements

2-54 Object Collection Service, v1.0.1 August 2002

2

void push (in any element) raises (ElementInvalid);

// removing and retrieving elements
void pop () raises (EmptyCollection);
boolean element_pop (out any element) raises (EmptyCollection);
boolean top (out any element) raises (EmptyCollection);

};

TheStack may be considered as a restricted accessSequence . Adding and removing
elements is only allowed at the end of the queue. LIFO behavior is delivered.

2.29.4 Adding Elements

void push (in any element) raises (ElementInvalid);

Description

Adds the element to the stack as the last element.

Exceptions

The given element must be of the expected type; otherwise, the exception
ElementInvalid is raised.

2.29.4.1 Removing Elements

void pop () raises (EmptyCollection);

Description

Removes the last element from the stack.

Exceptions

The stack must not be empty; otherwise, the exceptionEmptyCollection is raised.

boolean element_pop (out any element) raises (EmptyCollection);

Description

Retrieves the last element from the stack and returns it via the output parameter
element and removes it from the stack.

Return value

Returns true if an element is retrieved.

Exceptions

The stack must not be empty; otherwise, the exceptionEmptyCollection is raised.

August 2002 Collection Service, v1.0.1: Concrete Restricted Access Collection Interfaces 2-55

2

2.29.5 Retrieving Elements

boolean top (out any element) raises (EmptyCollection);

Description

Retrieves the last element from the stack and returns it via the output parameter
element.

Return value

Returns true if an element is retrieved.

Exceptions

The stack must not be empty; otherwise, the exceptionEmptyCollection is raised.

2.29.6 The PriorityQueue Interface

interface PriorityQueue: RestrictedAccessCollection {

// adding elements
void enqueue (in any element) raises (ElementInvalid);

// removing elements
void dequeue () raises (EmptyCollection);
boolean element_dequeue (out any element) raises (EmptyCollection);

};

The PriorityQueue may be considered as a restricted accessKeySortedBag . The
interface is identical to that of an ordinaryQueue , with a slightly different semantics
for adding elements.

2.29.7 Adding Elements

void enqueue (in any element) raises (ElementInvalid);

Description

Adds the element to the priority queue at a position determined by the ordering
relation provided for the key type.

Exceptions

The Element must be the expected type; otherwise, the exceptionElementInvalid is
raised.

2-56 Object Collection Service, v1.0.1 August 2002

2

2.29.8 Removing Elements

void dequeue () raises (EmptyCollection);

Description

Removes the first element from the collection.

Exceptions

The priority queue must be not be empty; otherwise, the exceptionEmptyCollection
is raised.

boolean element_dequeue (out any element) raises (EmptyCollection);

Description

Retrieves the first element in the priority queue and returns it via the output parameter
element, removes it from the priority queue, and returns the copy to the user.

Return value

Returns true if an element is retrieved.

Exceptions

The priority queue must not be empty; otherwise, the exceptionEmptyCollection is
raised.

2.30 Collection Factory Interfaces

There is one collection factory defined per concrete collection interface which offers a
typed operation for the creation of collection instances supporting the respective
collection interface as its principal interface.

The information passed to a collection implementation at creation time is:

1. Element type specific information required to implement the correct semantics. For
example, to implement Set semantics one has to pass the information how to test the
equality of elements.

2. Element type specific information that can be exploited by the specific
implementation variants. For example, a hashtable implementation of a Set would
exploit the information how the hash value for collected elements is computed.

This element type specific information is passed to the collection implementation
via an instance of a user-defined specialization of the Operations interface.

3. An implementation hint about the expected number of elements collected. An array
based implementation may use this hint as an estimate for the initial size of the
implementation array.

August 2002 Collection Service, v1.0.1: Collection Factory Interfaces 2-57

2

To enable the support for, and a user-controlled selection of implementation variants,
there is a generic extensible factory defined. This allows for registration of
implementation variants and their user-defined selection at creation time.

2.30.1 The CollectionFactory and CollectionFactories Interfaces

interface Operations;
interface CollectionFactory {
Collection generic_create (in ParameterList parameters)

raises (ParameterInvalid);
};

CollectionFactory defines a generic collection creation operation which enables
extensibility and supports the creation of collection instances with the very basic
capabilities.

Collection generic_create (in ParameterList parameters)
raises (ParameterInvalid);

Returns a new collection instance which supports the interfaceCollection and does
not offer any type checking. A sequence of name-value pairs is passed to the create
operation. The only processed parameter in the given list is “expected_size,” of type
“unsigned long.”

This parameter is optional and gives an estimate of the expected number of elements to
be collected.

Note – All collection interface specific factories defined in this specification inherit
from the interfaceCollectionFactory to enable their registration with the extensible
genericCollectionFactories factory specified below.

interface CollectionFactories : CollectionFactory {
boolean add_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface, in CollectionFactory _factory);
boolean remove_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface);

};

The interfaceCollectionFactories specifies a generic extensible collection creation
capability. It maintains a registry of collection factories. Thecreate operation of the
CollectionFactories does not create collection instances itself, but passes the
requests through to an appropriate factory registered with it and passes the result
through to the caller. Note that only factories derived fromCollectionFactory can be
registered withCollectionFactories .

boolean add_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface, in CollectionFactory _factory);

Registers the factory with three pieces of information:

2-58 Object Collection Service, v1.0.1 August 2002

2

1. collection_interface specifies the collection interface (directly or indirectly
derived fromCollection) supported by the given factory. That is, a collection
instance created via the given factory has to support the given interface
collection_interface .

2. impl_interface specifies the implementation interface (directly or indirectly
derived from the interface specified incollection_interface) supported by the
registered factory. Collection instances created via this factory are instances of this
implementation interface.

3. impl_category specifies a named group of equivalent implementation interfaces to
which the implementation interface supported by the registered factory belongs. A
group of implementation interfaces of a given collection interface are equivalent if
they:

• rely on the same user-defined implementation support, that is, the same operations
defined in the user-defined specialization of theOperations interface.

• are based on essentially the same data structure and deliver comparable
performance characteristics.

The following table listsexamplesof implementation categories (representing common
implementations).

Table 2-3 Implementation Category Examples

Implementation
Category Description

ArrayBased User-defined implementation specific operations do not have
to be defined. The basic data structure used is an array.

LinkedListBased User-defined implementation specific operations do not have
to be defined. The basic data structure used is a simple
linked list.

SkipListsBased A compare operation has to be defined for the key element
values that depend on whether or not the collection is a
KeyCollection derived from KeyCollection. The basic data
structure are skip lists.

HashTableBased A hash-function has to be defined for key element values
that depend on whether or not the interface implemented is a
KeyCollection derived from KeyCollection. The basic data
structure is a hashtable based on the hash-function defined.

AVLTreeBased A compare operation has to be defined for the key element
values that depend on whether or not the collection is a
KeyCollection derived from KeyCollection. The basic data
structure is an AVL tree.

BStarTreeBased A compare operation has to be defined for key values. The
basic data structure is a B*tree.

August 2002 Collection Service, v1.0.1: Collection Factory Interfaces 2-59

2

The operation does not check the validity of the registration request in the sense that it
checks any of the restrictions on the parameters described above, but just registers the
given information with the factory. It is the responsibility of the user to ensure that the
registration is valid.

The entry is added if there is not already a factory registered with the same three
pieces of information; otherwise, the registration is ignored. Returns true if the factory
is added.

boolean remove_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface)

Description

Removes the factory registered with the given three pieces of information from the
registry.

Return value

Returns true if an entry with that name exists and is removed.

create (ParameterList parameters) raises (ParameterInvalid)

The create operation of theCollectionFactories interface does not create instances
itself, but passes through creation requests to factories registered with it. The factory is
passed a sequence of name-value pairs of which the only mandatory one is
collection_interface of type Istring .

“collection_interface” of type Istring A string which specifies the name of the
collection interface (directly or indirectly
derived from Collection) the collection
instance created has to support.

This name-value pair corresponds to the
collection_interface parameter of the
add_factory() operation.

The following name-value pairs are optional:

“ impl_category”of type Istring A string which denotes the desired
implementation category. This name-value pair
corresponds to theimpl_category parameter
of the add_factory() operation.

“ impl_interface” of type Istring A string which specifies a desired
implementation interface. This name-value pair
corresponds to theimpl_interface parameter
of the add_factory() operation.

2-60 Object Collection Service, v1.0.1 August 2002

2

If one or both of these name-value pairs are given, it is searched for a best matching
entry in the factory registry and the request is passed through to the respective factory.
“Best matching” means that if an implementation interface is given, it is searched for a
factory supporting an exact matching implementation interface first. If no factory
supporting the desired implementation interface is registered, it is searched for a
factory supporting an implementation interface of the same implementation category.

If none of the two name-value pairs are given, the request is passed to a factory
registered as default factory for a givencollection_interface . For each concrete
collection interface specified in this specification, there is one collection specific
factory defined that serves as default factory and is assumed to be registered with
CollectionFactories .

There must be a name-value pair with namecollection_interface given and a factory
must be registered forcollection_interface ; otherwise, the exception
ParameterInvalid is raised.

If a desired implementation interface and/or an implementation category is given, a
factory with matching characteristics must be registered; otherwise, the exception
ParameterInvalid is raised.

For factories specified for each concrete collection interface in this specification, the
following additional name-value pairs are relevant.

Those parameters are not processed by the create operation ofCollectionFactories
itself, but just passed through to a registered factory.

2.30.2 The RACollectionFactory and RACollectionFactories Interfaces

interface RACollectionFactory {
RestrictedAccessCollection generic_create (in ParameterList parameters)

raises (ParameterInvalid);
};

The interfaceRACollectionFactory corresponds to the interface
CollectionFactory , but defines an abstract interface.

interface RACollectionFactories : RACollectionFactory {
boolean add_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface, in RACollectionFactory _factory);
boolean remove_factory (in Istring collection_interface, in Istring
impl_category, in Istring impl_interface);

};

operations of type Operations An instance of a user-defined specialization of
Operations which specifies element- and/or key-
type specific operations.

expected_size of type unsigned long is an unsigned long and gives an estimate about
the expected number of elements to be collected.

August 2002 Collection Service, v1.0.1: Collection Factory Interfaces 2-61

2

The interfaceRACollectionFactories corresponds to theCollectionFactories
interface. It enables the registration and deregistration of collections with restricted
access as well as control over the implementation choice for a given restricted access
collection at creation time.

2.30.3 The KeySetFactory Interface

interface KeySetFactory : CollectionFactory {
KeySet create (in Operations ops, in unsigned long expected_size);

};

KeySet create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance ofKeySet . The given instance ofOperations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

2.30.4 The KeyBagFactory Interface

interface KeyBagFactory : CollectionFactory {
KeyBag create (in Operations ops, in unsigned long expected_size);

};

KeyBag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance ofKeyBag . The given instance ofOperations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

2.30.5 The MapFactory Interface

interface MapFactory : CollectionFactory {
Map create (in Operations ops, in unsigned long expected_size);

Table 2-4 Required element and key-type specific user-defined information for
KeySetFactory. []- implied by key_compare.

KeySet

equal compare hash key key_equal key_compare key_hash

x [x] x

Table 2-5 Required element and key-type specific user-defined information for
KeyBagFactory. []- implied by key_compare.

KeyBag

equal compare hash key key_equal key_compare key_hash

x [x] x

2-62 Object Collection Service, v1.0.1 August 2002

2

};

Map create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance ofMap. The given instance ofOperations passes
user-defined element and key-type specific information to the collection
implementation.

The following table defines the requirements for the element key operations to be
implemented.

2.30.6 The RelationFactory Interface

interface RelationFactory : CollectionFactory {
Relation create (in Operations ops, in unsigned long expected_size);

};

Relation create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance ofRelation . The given instance ofOperations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

2.30.7 The SetFactory Interface

interface SetFactory : CollectionFactory {
Set create (in Operations ops, in unsigned long expected_size);

};

Set create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance ofSet. The given instance ofOperations passes user-
defined element and key-type specific information to the collection implementation.

Table 2-6 Required element and key-type specific user-defined information for
MapFactory. []- implied by key_compare.

Map

equal compare hash key key_equal key_compare key_hash

x x [x] x

Table 2-7 Required element and key-type specific user-defined information for
RelationFactory.[]- implied by key_compare.

Relation

equal compare hash key key_equal key_compare key_hash

x x [x] x

August 2002 Collection Service, v1.0.1: Collection Factory Interfaces 2-63

2

The following table defines the requirements for the element key operations to be
implemented.

2.30.8 The BagFactory Interface

interface BagFactory {
Bag create (in Operations ops, in unsigned long expected_size);

};

Bag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance ofBag . The given instance ofOperations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

2.30.9 The KeySortedSetFactory Interface

interface KeySortedSetFactory {
KeySortedSet create (in Operations ops, in unsigned long expected_size);

};

KeySortedSet create (in Operations ops, in unsigned long expected_size)

Creates and returns an instance ofKeySortedSet . The given instance ofOperations
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

Table 2-8 Required element and key-type specific user-defined information for SetFactory.[]-
implied by compare.

Set

equal compare hash key key_equal key_compare key_hash

[x] x

Table 2-9 Required element and key-type specific user-defined information for
BagFactory.[]- implied by compare.

Bag

equal compare hash key key_equal key_compare key_hash

[x] x

Table 2-10 Required element and key-type specific user-defined information for
KeySortedSetFactory.[]- implied by key_compare.

KeySortedSet

equal compare hash key key_equal key_compare key_hash

x [x] x

2-64 Object Collection Service, v1.0.1 August 2002

2

2.30.10 The KeySortedBagFactory Interface

interface KeySortedBagFactory : CollectionFactory {
KeySortedBag create (in Operations ops, in unsigned long expected_size);

};

KeySortedBag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance ofKeySortedBag . The given instance of
Operations passes user-defined element and key-type specific information to the
collection implementation.

The following table defines the requirements for the element key operations to be
implemented.

2.30.11 The SortedMapFactory Interface

interface SortedMapFactory : CollectionFactory {
SortedMap create (in Operations ops, in unsigned long expected_size);

};

SortedMap create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance ofSortedMap . The given instance ofOperations
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

2.30.12 The SortedRelationFactory Interface

interface SortedRelationFactory : CollectionFactory {
SortedRelation create (in Operations ops, in unsigned long expected_size);

};

Table 2-11 Required element and key-type specific user-defined information for
KeySortedBagFactory.[]- implied by key_compare.

KeySortedBag

equal compare hash key

key_equal key_compar
e

key_hash

x [x] x

Table 2-12 Required element and key-type specific user-defined information for
SortedMapFactory.[]- implied by key_compare.

SortedMap

equal compare hash key key_equal key_compare key_hash

x x [x] x

August 2002 Collection Service, v1.0.1: Collection Factory Interfaces 2-65

2

SortedRelation create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance ofSortedRelation . The given instance of
Operations passes user-defined element and key-type specific information to the
collection implementation. The following table defines the requirements for the
element key operations to be implemented.

2.30.13 The SortedSetFactory Interface

interface SortedSetFactory : CollectionFactory {
SortedSet create (in Operations ops, in unsigned long expected_size);

};

SortedSet create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance ofSortedSet . The given instance ofOperations
passes user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

2.30.14 The SortedBagFactory Interface

interface SortedBagFactory {
SortedBag create (in Operations ops, in unsigned long expected_size);

};

SortedBag create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance ofSortedBag . The given instance ofOperations
passes user-defined element and key-type specific information to the collection
implementation.

Table 2-13 Required element and key-type specific user-defined information for
SortedRelationFactory.[]- implied by key_compare.

SortedRelation

equal compare hash key key_equal key_compare key_hash

x x [x] x

Table 2-14 Required element and key-type specific user-defined information for
SortedSetFactory. []- implied by compare.

SortedSet

equal compare hash key key_equal key_compare key_hash

[x] x

2-66 Object Collection Service, v1.0.1 August 2002

2

The following table defines the requirements for the element key operations to be
implemented.

2.30.15 The SequenceFactory Interface

interface SequenceFactory : CollectionFactory {
Sequence create (in Operations ops, in unsigned long expected_size);

};

Sequence create (in Operations ops, in unsigned long expected_size);

Creates and returns an instance ofSequence . No requirements on the element
respectively key operations to be implemented is specified for aSequence .
Nevertheless one still has to pass an instance ofOperations as type checking
information has to be passed to the collection implementation.

Note – As theSequence interface represents array as well as linked list
implementation of sequentially ordered collections, a service provider should offer at
least two implementations to meet the performance requirements of the two most
common access patterns. That is, a service provider should offer an array based
implementation and a linked list based implementation.

2.30.16 The EqualitySequence Factory Interface

interface EqualitySequenceFactory : CollectionFactory {
EqualitySequence create (in Operations ops, in unsigned long expected_size);

};

EqualitySequence create (in Operations ops, in unsigned long
expected_size);

Creates and returns an instance ofEqualitySequence . The given instance of
Operations passes user-defined element and key-type specific information to the
collection implementation. The following table defines the requirements for the
element key operations to be implemented.

Table 2-15 Required element and key-type specific user-defined information for
SortedBagFactory. []- implied by compare.

SortedBag

equal compare hash key key_equal key_compare key_hash

[x] x

August 2002 Collection Service, v1.0.1: Collection Factory Interfaces 2-67

2

Note – As theEqualitySequence interface represents array as well as linked list
implementations of sequentially ordered collections, a service provider should offer at
least two implementations to meet the performance requirements of the two most
common access patterns. That is, a service provider should offer an array based
implementation and a linked list based implementation.

2.30.17 The HeapFactory Interface

interface HeapFactory : CollectionFactory {
Heap create (in Operations ops, in unsigned long expected_size);

};

Heap create (in Operations ops, in unsigned long expected_size);

Returns an instance of aHeap. No requirements for the element key operations to be
implemented is specified for aHeap. Nevertheless, one still has to pass an instance of
Operations as type checking information must pass to the collection implementation.

2.30.18 The QueueFactory Interface

interface QueueFactory : RACollectionFactory {
Queue create (in Operations ops, in unsigned long expected_size);

};

Queue create (in Operations ops, in unsigned long expected_size);

Returns an instance of aQueue . No requirements for the element key operations to be
implemented is specified for aQueue . Nevertheless, one still has to pass an instance
of Operations as type checking information must pass to the collection
implementation.

2.30.19 The StackFactory Interface

interface StackFactory : RACollectionFactory {
Stack create (in Operations ops, in unsigned long expected_size);

};

Table 2-16 Required element and key-type specific user-defined information for
EqualitySequenceFactory.

Equality
Sequence

equal compare hash key key_equal key_compare key_hash

x

2-68 Object Collection Service, v1.0.1 August 2002

2

Stack create (in Operations ops, in unsigned long expected_size);

Returns an instance of aStack . No requirements for the element key operations to be
implemented is specified for aStack . Nevertheless, one still has to pass an instance of
Operations as type checking information must pass to the collection implementation.

2.30.20 The DequeFactory Interface

interface DequeFactory : RACollectionFactory {
Deque create (in Operations ops, in unsigned long expected_size);

};

Deque create (in Operations ops, in unsigned long expected_size);

Returns an instance of aDeque . No requirements on the element key operations to be
implemented is specified for aDeque . Nevertheless, one still has to pass an instance
of Operations as type checking information must pass to the collection
implementation.

2.30.21 The PriorityQueueFactory Interface

interface PriorityQueueFactory : RACollectionFactory {
PriorityQueue create (in Operations ops, in unsigned long expected_size);

};

PriorityQueue create (in Operations ops, in unsigned long expected_size);

Returns an instance of aPriorityQueue . The given instance ofOperations passes
user-defined element and key-type specific information to the collection
implementation. The following table defines the requirements for the element key
operations to be implemented.

2.31 Iterator Interfaces

2.31.1 Iterators as Pointer Abstraction

An iteratoris in a first approximation of a pointer abstraction. It is a movable pointer
to elements of a collection. Iterators are tightly intertwined with collections. An
iterator cannot exist independently of a collection (i.e., the iterator life time cannot

Table 2-17 Required element and key-type specific user-defined information for
PriorityQueueFactory. [] - implied by key_compare.

PriorityQueue

equal compare hash key key_equal key_compare key_hash

x [x] x

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-69

2

exceed that of the collection for which it is created). A collection is the factory forits
iterators. An iterator is created for a given collection and can be used for this and only
this collection.

The iterators specified in this specification form an interface hierarchy which parallels
the collection interface hierarchy. The supported iterator movements reflect the
capabilities of the corresponding collection type.

The top level Iterator interface defines a generic iterator usable for iteration over all
types of collections. It can be set to a start position for iteration and moved via a series
of forward movements through the collection visiting each element exactly once.

The OrderedIterator is supported by ordered collections only. It “knows about
ordering;” therefore, it can be moved in forward and backward direction.

The KeyIterator exploits the capabilities of key collections. It can be moved to an
element with a given key value, advanced to the next element with the same key value,
or advanced to the next element with a different key value in iteration order.

The KeySortedIterator is created for key collections sorted by key. The iterator can
be advanced to the previous element with the same key value or the previous element
with a different key value.

TheEqualityIterator exploits the capabilities of equality collections. It can be moved
to an element with a given value, advanced to the next element with the same element
value, or advanced to the next element with a different element value in iteration order.

The EqualitySortedIterator is created for equality collections sorted by element
value. The iterator can be advanced to the previous element with the same value or the
previous element with a different value.

2.31.2 Iterators and Support for Generic Programming

Iterators go far beyond being simple “pointing devices.” There are essentially two
reasons to extend the capabilities of iterators.

1. To support the processing of very large collections which allows for delayed
instantiation or incremental query evaluation in case of very large query results.
These are scenarios where the collection itself may never exist as instantiated main
memory collection but is processed in “finer grains” via an iterator passed to a
client.

2. To enrich the iterator with more capabilities strengthens the support for the generic
programming model, as introduced with ANSI STL to the C++ world.

You can retrieve, replace, remove, and add elements via an iterator. You can test
iterators for equality, compare ordered iterators, clone an iterator, assign iterators, and
destroy them. Furthermore an iterator can have a const designation which is set when
created. A const iterator can be used for access only.

2-70 Object Collection Service, v1.0.1 August 2002

2

The reverse iterator semantics is supported. No extra interfaces are specified to support
this, but a reverse designation is set at creation time. An ordered iterator for which the
reverse designation is set reinterprets the operations of a given iterator type to work in
reverse.

2.31.3 Iterators and Performance

To reduce network traffic,combinedoperations andbatchor bulk operations are
offered.

Combinedoperations are combinations of simple iterator operations often used in
loops. These combinations support generic algorithms. For example, a typical
combination is “test whether range end is reached; if notretrieve_element , advance
iterator to next element.”

Batchor bulk operations support the retrieval, replacement, addition, and removal of
many elements within one operation. In these operations, the “many elements” are
always passed as a CORBA::sequence of elements.

2.31.4 The Managed Iterator Model

All iterators are managed. The real benefit of being managed is that these iterators
never become undefined. Note that “undefined” is different from “invalid.” While
“invalid” is a testable state and means the iterator points to nothing, “undefined” means
you do not know where the iterator points to and cannot inquiry it. Changing the
contents of a collection by adding or deleting elements would cause an unmanaged
iterator to become “undefined.” The iterator may still point to the same element, but it
may also point to another element or even “outside” the collection. As you do not
know the iterator state and cannot inquiry which state the iterator has, you are forced
to newly position the unmanaged iterator, for example, via aset_to_first_element() .

This kind of behavior, common in collection class libraries today, seems unacceptable
in a distributed multi-user environment. Assume one client removes and adds elements
from a collection with side effects on the unmanaged iterators of another client. The
other client is not able to test whether there have been side effects on its unmanaged
iterators, but would only notice them indirectly when observing strange behavior of the
application.

Managed iterators are intimately related to the collection they belong to, and thus, can
be informed about the changes taking place within the collection. They are always in a
defined state which allows them to be used even though elements have been added or
removed from the collection. An iterator may be in the stateinvalid, that is pointing to
nothing. Before it can be used it has to be set to a valid position. An iterator in the
statevalid may either point to an element (and be valid for all operations on it) or it
may be in the statein-between, that is, not pointing to an element but still
“remembering" enough state to be valid for most operations on it.

A valid managed iterator remains valid as long as the element it points to remains in
the collection. As soon as the element is removed, the according managed iterator
enters a so-calledin-betweenstate. Thein-betweenstate can be viewed as a vacuum

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-71

2

within the collection. There is nothing the managed iterator can point to. Nevertheless,
managed iterators remember the next (and for ordered collection, also the previous)
element in iteration order. It is possible to continue using the managed iterator (in a
set_to_next_element() for example) without resetting it first.

There are some limitations. Once a managed iterator no longer points to an element, it
remembers the iteration order in which the element stood before it was deleted.
However, it does not remember the element itself. Thus, there are some operations
which cannot be performed even though a managed iterator is used.

Consider an iteration over a Bag, for example. If you iterate over all different elements
with the iterator operationset_to_next_different_element() , then removing the
element the iterator points to leads to an undefined behavior of the collection later on.
By removing the element, the iterator becomesin-between. The
set_to_next_different_element() operation then has no chance to find the next
different element as the collection does not know what is different in terms of the
current iterator state. Likewise, for a managed iterator in the statein-betweenall
operations ending with “..._at” are not defined. The reason is simple: There is no
element at the iterator’s position - nothing to retrieve, to replace, or to remove in it.
This situation is handled by raising an exceptionIteratorInvalid.

Additionally, all operations that (potentially) destroy the iteration order of a collection
invalidate the corresponding managed iterators that have been in the statein-between
before the operation was invoked. These are thesort() and thereverse() operations.

2.31.5 The Iterator Interface

// Iterators

interface Iterator {

// moving iterators
boolean set_to_first_element ();
boolean set_to_next_element() raises (IteratorInvalid);
boolean set_to_next_nth_element (in unsigned long n)

raises (IteratorInvalid);

// retrieving elements
boolean retrieve_element (out any element)

raises (IteratorInvalid, IteratorInBetween);
boolean retrieve_element_set_to_next (out any element, out boolean more)

raises (IteratorInvalid, IteratorInBetween);
boolean retrieve_next_n_elements (

in unsigned long n,
out AnySequence result,
out boolean more)

raises (IteratorInvalid, IteratorInBetween);
boolean not_equal_retrieve_element_set_to_next (

in Iterator test,
out any element)

raises (IteratorInvalid, IteratorInBetween);

2-72 Object Collection Service, v1.0.1 August 2002

2

// removing elements
void remove_element()

raises (IteratorInvalid, IteratorInBetween);
boolean remove_element_set_to_next()

raises (IteratorInvalid, IteratorInBetween);
boolean remove_next_n_elements (

in unsigned long n,
out unsigned long actual_number)

raises (IteratorInvalid, IteratorInBetween);
boolean not_equal_remove_element_set_to_next (in Iterator test)

raises (IteratorInvalid, IteratorInBetween);

// replacing elements
void replace_element (in any element)

raises (IteratorInvalid, IteratorInBetween, ElementInvalid);
boolean replace_element_set_to_next (in any element)

raises(IteratorInvalid, IteratorInBetween, ElementInvalid);
boolean replace_next_n_elements (

in AnySequence elements,
out unsigned long actual_number)

raises (IteratorInvalid, IteratorInBetween, ElementInvalid);
boolean not_equal_replace_element_set_to_next (

in Iterator test,
in any element)

raises(IteratorInvalid,IteratorInBetween, ElementInvalid);

// adding elements
boolean add_element_set_iterator (in any element)

raises (ElementInvalid);
boolean add_n_elements_set_iterator (

in AnySequence elements,
out unsigned long actual_number)

raises (ElementInvalid);

// setting iterator state
void invalidate ();
// testing iterators
boolean is_valid ();
boolean is_in_between ();
boolean is_for(in Collection collector);
boolean is_const ();
boolean is_equal (in Iterator test)

raises (IteratorInvalid);

// cloning, assigning, destroying an iterators
Iterator clone ();
void assign (in Iterator from_where)

raises (IteratorInvalid);
void destroy ();

};

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-73

2

2.31.5.1 Moving iterators

boolean set_to_first_element ();

Description

The iterator is set to the first element in iteration order of the collection it belongs to.
If the collection is empty, that is, if no first element exists, the iterator is invalidated.

Return value

Returns true if the collection it belongs to is not empty.

boolean set_to_next_element () raises (IteratorInvalid);

Description

Sets the iterator to the next element in the collection in iteration order or invalidates
the iterator if no more elements are to be visited. If the iterator is in the statein-
between,the iterator is set to its “potential next” element.

Return value

Returns true if there is a next element.

Exceptions

The iterator must be valid; otherwise, the exceptionIteratorInvalid is raised.

boolean set_to_next_nth_element (in unsigned long n)
raises (IteratorInvalid);

Description

Sets the iterator to the elementn movements away in collection iteration order or
invalidates the iterator if there is no such element. If the iterator is in the statein-
betweenthe movement to the “potential next” element is the first of then movements.

Return value

Returns true if there is such an element.

Exceptions

The iterator must be valid; otherwise, the exceptionIteratorInvalid is raised.

2-74 Object Collection Service, v1.0.1 August 2002

2

2.31.5.2 Retrieving elements

boolean retrieve_element (out any element)
raises (IteratorInvalid, IteratorInBetween);

Description

Retrieves the element pointed and returns it via the output parameter element.

Return value

Returns true if an element was retrieved.

Exceptions

The iterator must point to an element of the collection; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

Note –Whether a copy of the element is returned or the element itself depends on the
element type represented by the any. If it is an object, a reference to the object in the
collection is returned. If the element type is a non-object type, a copy of the element is
returned. In case of element type object, do not manipulate the element or the key of
the element in the collection in a way that changes the positioning property of the
element.

boolean retrieve_element_set_to_next (out any element)
raises (IteratorInvalid, IteratorInBetween);

Description

Retrieves the element pointed to and returns it via the output parameter element. The
iterator is moved to the next element in iteration order. If there is a next element more
is set to true. If there are no more next elements, the iterator is invalidated and more is
set to false.

Return value

Returns true if an element was retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean retrieve_next_n_elements (
in unsigned long n,
out AnySequence result,

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-75

2

out boolean more)
raises (IteratorInvalid, IteratorInBetween);

Description

Retrieves at most the next n elements in iteration order of the iterator’s collection and
returns them as sequence of anys via the output parameter result. Counting starts with
the element the iterator points to. The iterator is moved behind the last element
retrieved. If there is an element behind the last element retrieved, more is set to true. If
there are no more elements behind the last element retrieved or there are less than n
elements for retrieval, the iterator is invalidated and more is set to false. If the value of
n is 0, all elements in the collection are retrieved until the end is reached.

Return value

Returns true if at least one element is retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean not_equal_retrieve_element_set_to_next (
in Iterator test,
out any element)

raises (IteratorInvalid, IteratorInBetween);

Description

Compares the given iterator test with this iterator.

• If they are not equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is moved to the next
element, and true is returned.

• If they are equal, the element pointed to by this iterator is retrieved and returned
via the output parameter element, the iterator is not moved to the next element,
and false is returned.

Return value

Returns true if this iterator is not equal to the test iterator at the beginning of the
operation.

Exceptions

The iterator and the given iterator test each must be valid and point to an element;
otherwise, the exceptionIteratorInvalid or IteratorInBetween is raised.

2-76 Object Collection Service, v1.0.1 August 2002

2

2.31.5.3 Removing elements

void remove_element () raises (IteratorInvalid, IteratorInBetween);

Description

Removes the element pointed to by this iterator and sets the iteratorin-between.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the
exceptionIteratorInvalid or IteratorInBetween is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element goin-between.

All other iterators keep their state.

boolean remove_element_set_to_next() (IteratorInvalid, IteratorInBetween);

Description

Removes the element pointed to by this iterator and moves the iterator to the next
element.

Return value

Returns true if a next element exists.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the
exceptionIteratorInvalid is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element goin-between.

All other iterators keep their state.

boolean remove_next_n_elements (
in unsigned long n,

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-77

2

out unsigned long actual_number)
raises (IteratorInvalid, IteratorInBetween);

Description

Removes at most the next n elements in iteration order of the iterator’s collection.
Counting starts with the element the iterator points to. The iterator is moved to the next
element behind the last element removed. If there are no more elements behind the last
element removed or there are less than n elements for removal, the iterator is
invalidated. If the value of n is 0, all elements in the collection are removed until the
end is reached. The output parameter actual_number is set to the actual number of
elements removed. If the value of n is 0, all elements in the collection are removed
until the end is reached.

Return value

Returns true if the iterator is not invalidated.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements goin-between.

All other iterators keep their state.

boolean not_equal_remove_element_set_to_next(in iterator test)
(IteratorInvalid, IteratorInBetween);

Description

Compares this iterator with the given iterator test. If they are not equal the element this
iterators points to is removed and the iterator is set to the next element, and true is
returned. If they are equal the element pointed to is removed, the iterator is setin-
between, and false is returned.

Return value

Returns true if this iterator and the given iterator test are not equal when the operations
starts.

Exception

This iterator and the given iterator test must be valid otherwise the exception
IteratorInvalid or IteratorInBetween is raised.

2-78 Object Collection Service, v1.0.1 August 2002

2

This iterator and the given iterator test must not have a const designation; otherwise,
the exceptionIteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements goin-between.

All other iterators keep their state.

2.31.5.4 Replacing elements

void replace_element (in any element)
raises (IteratorInvalid, IteratorInBetween, ElementInvalid);

Description

Replaces the element pointed to by the given element.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, theElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced element;
otherwise, the exceptionElementInvalid is raised.

For positioning properties, see Section 2.2, “The Collection Interface,” on page 2-8.

boolean replace_element_set_to_next(in any element)
raises (IteratorInvalid, IteratorInBetween, ElementInvalid);

Description

Replaces the element pointed to by this iterator by the given element and sets the
iterator to the next element. If there are no more elements, the iterator is invalidated.

Return value

Returns true if there is a next element.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-79

2

The element must be of the expected element type; otherwise, theElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced element;
otherwise, the exceptionElementInvalid is raised.

For positioning properties, see Section 2.2, “The Collection Interface,” on page 2-8.

boolean replace_next_n_elements(
in AnySequence elements,
out unsigned long actual_number)

raises (IteratorInvalid, IteratorInBetween, ElementInvalid);

Description

Replaces at most as many elements in iteration order as given in elements by the given
elements. Counting starts with the element the iterator points to. If there are less
elements in the collection left to be replaced than the given number of elements as
many elements as possible are replaced and the actual number of elements replaced is
returned via the output parameteractual_number .

The iterator is moved to the next element behind the last element replaced. If there are
no more elements behind the last element replaced or the number of elements in the
collection to be replaced is less than the number given elements, the iterator is
invalidated.

Return value

Returns true if there is another element behind the last element replaced.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The elements given must be of the expected type; otherwise, the exception
ElementInvalid is raised.

For each element the positioning property of the replaced element must be the same as
that of the element replacing it; otherwise, the exceptionElementInvalid is raised.

For positioning property see Section 2.2, “The Collection Interface,” on page 2-8.

boolean not_equal_replace_element_set_to_next (
in Iterator test,
in any element)

raises (IteratorInvalid,IteratorInBetween, ElementInvalid);

2-80 Object Collection Service, v1.0.1 August 2002

2

Description

Compares this iterator and the given iterator test. If they are not equal, the element
pointed to by this iterator is replaced by the given element, the iterator is set to the next
element, and true is returned. If they are equal, the element pointed to by this iterator
is replaced by the given element, the iterator is not set to the next element, and false is
returned.

Return value

Returns true if this iterator and the given iterator test are not equal before the
operations starts.

Exceptions

This iterator and the given iterator must be valid and point to an element each;
otherwise, the exceptionIteratorInvalid or IteratorInBetween is raised.

This iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, theElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced element;
otherwise, the exceptionElementInvalid is raised.

For positioning property, see Section 2.2, “The Collection Interface,” on page 2-8.

2.31.5.5 Adding elements

boolean add_element_set_iterator (in any element) (ElementInvalid);

Description

Adds an element to the collection that this iterator points to and sets the iterator to the
added element. The exact semantics depends on the properties of the collection for
which this iterator is created.

If the collection supports unique elements or keys and the element or key is already
contained in the collection, adding is ignored and the iterator is just set to the element
or key already contained. In sequential collections, the element is always added as last
element. In sorted collections, the element is added at a position determined by the
element or key value.

Return value

Returns true if the element was added. The element to be added must be of the
expected type; otherwise, the exceptionElementInvalid is raised.

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-81

2

Exceptions

If the collection is a Map and contains an element with the same key as the given
element, then this element has to be equal to the given element; otherwise, the
exceptionElementInvalid is raised.

Side effects

All other iterators keep their state.

void add_n_elements_set_iterator (in AnySequence elements, out unsigned
long actual_number) (ElementInvalid);

Description

Adds the given elements to the collection that this iterator points to. The elements are
added in the order of the input sequence of elements and the delivered semantics is
consistent with the semantics of theadd_element_set_iterator operation. It is
essentially a sequence ofadd_element_set_iterator operations. The output
parameteractual_number is set to the number of elements added.

Setting iterator state

void invalidate ();

Description

Sets the iterator to the stateinvalid, that is, “pointing to nothing.” You may also say
that the iterator, in some sense, is set to “NULL.”

2.31.5.6 Testing iterators

Whenever there is a precondition for an iterator operation to be checked, there is a test
operation provided that enables the user to avoid raising an exception.

boolean is_valid ();

Return value

Returns true if the Iterator isvalid, that is points to an element of the collection or is in
the statein-between.

boolean is_for (in Collection collector);

Return value

Returns true if this iterator can operate on the given collection.

2-82 Object Collection Service, v1.0.1 August 2002

2

boolean is_const ();

Return value

Returns true if this iterator is created with “const” designation.

boolean is_in_between ();

Return value

Returns true if the iterator is in the statein-between.

boolean is_equal (in Iterator test) raises (IteratorInvalid);

Return value

Returns true if the given iterator points to the identical element as this iterator.

Exceptions

The given iterator must belong to the same collection as the iterator; otherwise, the
exceptionIteratorInvalid is raised.

2.31.5.7 Cloning, Assigning, Destroying Iterators

Iterator clone();

Description

Creates a copy of this iterator.

void assign (in Iterator from_where) raises (IteratorInvalid)

Description

Assigns the given iterator to this iterator.

Exceptions

The given iterator must be created for the same collection as this iterator; otherwise,
the exceptionIteratorInvalid is raised.

void destroy();

Description

Destroys this iterator.

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-83

2

2.31.6 The OrderedIterator Interface

interface OrderedIterator: Iterator {

// moving iterators
boolean set_to_last_element ();
boolean set_to_previous_element() raises (IteratorInvalid);
boolean set_to_nth_previous_element(in unsigned long n)

raises (IteratorInvalid);

void set_to_position (in unsigned long position) raises (PositionInvalid);

// computing iterator position
unsigned long position () raises (IteratorInvalid);

// retrieving elements
boolean retrieve_element_set_to_previous(out any element, out boolean more)

raises (IteratorInvalid, IteratorInBetween);
boolean retrieve_previous_n_elements (

in unsigned long n,
out AnySequence result,
out boolean more)

raises (IteratorInvalid, IteratorInBetween);
boolean not_equal_retrieve_element_set_to_previous (

in Iterator test,
out any element)

raises (IteratorInvalid, IteratorInBetween);

// removing elements
boolean remove_element_set_to_previous()

raises (IteratorInvalid, IteratorInBetween);
boolean remove_previous_n_elements (

in unsigned long n,
out unsigned long actual_number)

raises (IteratorInvalid, IteratorInBetween);
boolean not_equal_remove_element_set_to_previous(in Iterator test)

raises (IteratorInvalid, IteratorInBetween);

// replacing elements
boolean replace_element_set_to_previous(in any element)

raises (IteratorInvalid, IteratorInBetween, ElementInvalid);
boolean replace_previous_n_elements(

in AnySequence elements,
out unsigned long actual_number)

raises (IteratorInvalid, IteratorInBetween, ElementInvalid);
boolean not_equal_replace_element_set_to_previous (

in Iterator test,
in any element)

raises (IteratorInvalid,IteratorInBetween, ElementInvalid);

// testing iterators
boolean is_first ();
boolean is_last ();

2-84 Object Collection Service, v1.0.1 August 2002

2

boolean is_for_same (in Iterator test);
boolean is_reverse ();

};

2.31.6.1 Moving iterators

boolean set_to_last_element();

Description

Sets the iterator to the last element of the collection in iteration order. If the collection
is empty (if no last element exists) the given iterator is invalidated.

Return value

Returns true if the collection is not empty.

boolean set_to_previous_element() raises (IteratorInvalid);

Description

Sets the iterator to the previous element in iteration order, or invalidates the iterator if
no such element exists. If the iterator is in the statein-between,the iterator is set to its
“potential previous” element.

Return value

Returns true if a previous element exists.

Exceptions

The iterator must be valid; otherwise, the exceptionIteratorInvalid is raised.

boolean set_to_nth_previous_element (in unsigned long n)
raises (IteratorInvalid);

Description

Sets the iterator to the elementn movements away in reverse collection iteration order
or invalidates the iterator if there is no such element. If the iterator is in the statein-
between, the movement to the “potential previous” element is the first of then
movements.

Return value

Returns true if there is such an element.

Exceptions

The iterator must be valid; otherwise, the exceptionIteratorInvalid is raised.

void set_to_position (in unsigned long position) raises (PositionInvalid);

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-85

2

Description

Sets the iterator to the element at the given position. Position 1 specifies the first
element.

Exceptions

Position must be a valid position (i.e., greater than or equal to 1 and less than or equal
to number_of_elements()); otherwise, the exceptionPositionInvalid is raised.

2.31.6.2 Computing iterator position

unsigned long position () raises (IteratorInvalid, IteratorInBetween);

Description

Determines and returns the current position of the iterator. Position 1 specifies the first
element.

Exceptions

The iterator must be pointing to an element of the collection; otherwise, the exception
IteratorInvalid respectivelyIteratorInBetween is raised.

2.31.6.3 Retrieving elements

boolean retrieve_element_set_to_previous (out any element, out boolean
more)

raises (IteratorInvalid, IteratorInBetween);

Description

Retrieves the element pointed to and returns it via the output parameter element. The
iterator is set to the previous element in iteration order. If there is a previous element,
more is set to true. If there are no more previous elements, the iterator is invalidated
and more is set to false.

Return value

Returns true if an element was returned.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean retrieve_previous_n_elements(
in unsigned long n,
out AnySequence result,
out boolean more)

raises (IteratorInvalid, IteratorInBetween);

2-86 Object Collection Service, v1.0.1 August 2002

2

Description

Retrieves at most the n previous elements in iteration order of this iterator’s collection
and returns them as sequence of anys via the output parameter result. Counting starts
with the element the iterator is pointing to. The iterator is moved to the element before
the last element retrieved.

• If there is an element before the last element retrieved, more is set to true.

• If there are no more elements before the last element retrieved or there are less
thann elements for retrieval, the iterator is invalidated and more is set to false.

• If the value of n is 0, all elements in the collection are retrieved until the end is
reached.

Return value

Returns true if at least one element is retrieved.

Exceptions

The iterator must be valid and pointing to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean not_equal_retrieve_element_set_to_previous (
in Iterator test,
out any element)

raises (IteratorInvalid, IteratorInBetween);

Description

Compares the given iterator test with this iterator.

• If they are not equal, the element pointed to by this iterator is retrieved and
returned via the output parameter element, the iterator is moved to the previous
element, and true is returned.

• If they are equal, the element pointed to by this iterator is retrieved and returned
via the output parameter element, the iterator is not moved to the previous
element, and false is returned.

Return value

Returns true if this iterator is not equal to the test iterator at the beginning of the
operation.

Exceptions

The iterator and the given iterator test each must be valid and point to an element;
otherwise, the exceptionIteratorInvalid or IteratorInBetween is raised.

2.31.6.4 Replacing elements

boolean replace_element_set_to_previous(in any element)
raises (IteratorInvalid, IteratorInBetween, ElementInvalid);

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-87

2

Description

Replaces the element pointed to by this iterator by the given element and sets the
iterator to the previous element. If there are no previous elements, the iterator is
invalidated.

Return value

Returns true if there is a previous element.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be the expected element type; otherwise, theElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced element;
otherwise, the exceptionElementInvalid is raised.

For positioning properties, see Section 2.2, “The Collection Interface,” on page 2-8.

boolean replace_previous_n_elements(
in AnySequence elements,
out unsigned long actual_number)

raises (IteratorInvalid, IteratorInBetween, ElementInvalid);

Description

At most, replaces as many elements in reverse iteration order as given inelements.
Counting starts with the element the iterator points to. If there are less elements in the
collection left to be replaced than the given number of elements as many elements as
possible are replaced and the actual number of elements replaced is returned via the
output parameteractual_number .

The iterator is moved to the element before the last element replaced. If there are no
more elements before the last element replaced or the number of elements in the
collection to be replaced is less than the number of given elements, the iterator is
invalidated.

Return value

Returns true if there is an element before the last element replaced.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

2-88 Object Collection Service, v1.0.1 August 2002

2

The elements given must be of the expected type; otherwise, the exception
ElementInvalid is raised.

For each element the positioning property of the replaced element must be the same as
that of the element replacing it; otherwise, the exceptionElementInvalid is raised.

For positioning property, see Section 2.2, “The Collection Interface,” on page 2-8.

boolean not_equal_replace_element_set_to_previous (
in Iterator test,
in any element)

raises (IteratorInvalid,IteratorInBetween, ElementInvalid);

Description

Compares this iterator and the given iteratortest.
• If they are not equal, the element pointed to by this iterator is replaced by the

given element, the iterator is set to the previous element, andtrue is returned.

• If they are equal, the element pointed to by this iterator is replaced by the given
element, the iterator is not set to the previous element, andfalseis returned.

Return value

Returns true if this iterator and the given iterator test are not equal before the
operations starts.

Exceptions

This iterator and the given iterator each must be valid and point to an element;
otherwise, the exceptionIteratorInvalid or IteratorInBetween is raised.

This iterator must not have a const designation; otherwise, the exception
IteratorInvalid is raised.

The element must be of the expected element type; otherwise, theElementInvalid
exception is raised.

The given element must have the same positioning property as the replaced element;
otherwise, the exceptionElementInvalid is raised.

For positioning property, see Section 2.2, “The Collection Interface,” on page 2-8.

2.31.6.5 Removing elements

boolean remove_element_set_to_previous()
raises (IteratorInvalid, IteratorInBetween);

Description

Removes the element pointed to by this iterator and moves the iterator to the previous
element.

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-89

2

Return value

Returns true if a previous element exists.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the
exceptionIteratorInvalid is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element goin-between.

All other iterators keep their state.

boolean remove_previous_n_elements (
in unsigned long n,
out unsigned long actual_number)

raises (IteratorInvalid, IteratorInBetween);

Description

Removes at most the previousn elements in reverse iteration order of the iterator’s
collection. Counting starts with the element the iterator points to. The iterator is moved
to the element before the last element removed.

• If there are no more elements before the last element removed or there are less
than n elements for removal, the iterator is invalidated.

• If the value of n is 0, all elements in the collection are removed until the
beginning is reached. The output parameteractual_number is set to the actual
number of elements removed.

Return value

Returns true if the iterator is not invalidated.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

The iterator must not have the const designation; otherwise, the exception
IteratorInvalid is raised.

Side effects

Other valid iterators pointing to removed elements goin-between.

All other iterators keep their state.

2-90 Object Collection Service, v1.0.1 August 2002

2

boolean not_equal_remove_element_set_to_previous(in Iterator test)
raises (IteratorInvalid, IteratorInBetween);

Description

Compares this iterator with the given iterator test.

• If they are not equal, the element this iterator points to is removed, the iterator is
set to the previous element, and true is returned.

• If they are equal, the element pointed to is removed, the iterator is setin-between,
and false is returned.

Return value

Returns true if this iterator and the given iterator test are equal when the operation
starts.

Exceptions

This iterator and the given iterator test must be valid; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

This iterator and the given iterator test must not have a const designation; otherwise,
the exceptionIteratorInvalid is raised.

Side effects

Other valid iterators pointing to the removed element goin-between.

All other iterators keep their state.

2.31.6.6 Testing iterators

boolean is_first ();

Return value

Returns true if the iterator points to the first element of the collection it belongs to.

boolean is_last ();

Return value

Returns true if the iterator points to the last element of the collection it belongs to.

boolean is_for_same (in Iterator test);

Return value

Returns true if the given iterator is for the same collection as this.

boolean is_reverse();

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-91

2

Return value

Returns true if the iterator is created with “reverse” designation.

2.31.7 The SequentialIterator Interface

interface SequentialIterator : OrderedIterator {
// adding elements
boolean add_element_as_next_set_iterator (in any element)

raises(IteratorInvalid, ElementInvalid);
void add_n_elements_as_next_set_iterator(in AnySequence elements)

raises(IteratorInvalid, ElementInvalid);

boolean add_element_as_previous_set_iterator(in any element)
raises(IteratorInvalid, ElementInvalid);

void add_n_elements_as_previous_set_iterator(in AnySequence elements)
raises(IteratorInvalid, ElementInvalid);

};

2.31.7.1 Adding elements

boolean add_element_as_next_set_iterator (in any element)
raises(IteratorInvalid, ElementInvalid);

Description

Adds the element to the collection that this iterator points to (in iteration order) behind
the element this iterator points to and sets the iterator to the element added. If the
iterator is in the statein-between, the element is added before the “potential next”
element.

Return value

Returns true if the element is added.

Exceptions

The iterator must be valid; otherwise, the exceptionIteratorInvalid is raised.

The element added must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All other iterators keep their state.

void add_n_elements_as_next_set_iterator(in AnySequence elements)
raises(IteratorInvalid, ElementInvalid);

2-92 Object Collection Service, v1.0.1 August 2002

2

Description

Adds the given elements to the collection that this iterator points to behind the element
the iterator points to. The behavior is the same as n times calling the operation
add_element_as_next_set_iterator() .

If the iterator is in the statein-between, the elements are added before the “potential
next” element.

The elements are added in the order given in the input sequence.

boolean add_element_as_previous_set_iterator(in any element)
raises(IteratorInvalid, ElementInvalid)

Description

Adds the element to the collection that this iterator points to (in iteration order) before
the element that this iterator points to and sets the iterator to the element added. If the
iterator is in the statein-between, the element is added after the “potential previous”
element.

Return value

Returns true if the element is added.

Exceptions

The iterator must be valid; otherwise, the exceptionIteratorInvalid is raised.

The element added must be of the expected type; otherwise, the exception
ElementInvalid is raised.

Side effects

All other iterators keep their state.

void add_n_elements_as_previous_set_iterator(in AnySequence elements)
 raises(IteratorInvalid, ElementInvalid);

Description

Adds the given elements to the collection that this iterator points to previous to the
element the iterator points to. The behavior is the same as n times calling the operation
add_element_as_previous_set_to_next() .

If the iterator is in the statein-between, the elements are added behind the “potential
previous” element.

The elements are added in the reverse order given in the input sequence.

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-93

2

2.31.8 The KeyIterator Interface

interface KeyIterator : Iterator {
// moving the iterators
boolean set_to_element_with_key (in any _key) raises(KeyInvalid);
boolean set_to_next_element_with_key (in any _key)

raises(IteratorInvalid, KeyInvalid);
boolean set_to_next_element_with_different_key()

raises (IteratorInBetween, IteratorInvalid);

// retrieving the keys
boolean retrieve_key (out any _key) raises (IteratorInBetween, IteratorInvalid);
boolean retrieve_next_n_keys (out AnySequence keys)

raises (IteratorInBetween, IteratorInvalid);
};

2.31.8.1 Moving iterators

boolean set_to_element_with_key (in any _key) raises (KeyInvalid);

Description

Locates an element in the collection with the same key as the given key. Sets the
iterator to the element located or invalidates the iterator if no such element exists.

If the collection contains several such elements, the first element in iteration order is
located.

Return value

Returns true if an element was found.

Exceptions

The key must be of the expected type; otherwise, the exceptionKeyInvalid is raised.

boolean set_to_next_element_with_key (in any _key)
raises (IteratorInvalid, KeyInvalid);

Description

Locates the next element in iteration order with the same key value as the given key,
starting search at the element next to the one pointed to by the iterator. Sets the iterator
to the element located.

• If there is no such element, the iterator is invalidated.

• If the iterator is in the statein-between, locating starts at the iterator’s “potential
next” element.

Return value

Returns true if an element was found.

2-94 Object Collection Service, v1.0.1 August 2002

2

Exceptions

The iterator must be valid; otherwise, the exception IteratorInvalid is raised.

The key must be of the expected type; otherwise, the exceptionKeyInvalid is raised.

boolean set_to_next_element_with_different_key ()
raises (IteratorInBetween, IteratorInvalid)

Description

Locates the next element in iteration order with a key different from the key of the
element pointed to by the iterator, starting the search with the element next to the one
pointed to by the iterator. Sets the iterator to the located element.

If no such element exists, the iterator is invalidated.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInBetween respectivelyIteratorInvalid is raised.

2.31.8.2 Retrieving keys

boolean _key (out any _key) raises(IteratorInvalid,IteratorInBetween);

Description

Retrieves the key of the element this iterator points to and returns it via the output
parameter key.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

boolean retrieve_next_n_keys (in unsigned long n, out AnySequence keys)
raises(IteratorInvalid, IteratorInbetween)

Description

Retrieves the keys of at most the next n elements in iteration order, sets the iterators to
the element behind the last element from which a key is retrieved, and returns them via
the output parameter keys. Counting starts with the element this iterator points to.

• If there is no element behind the last element from which a key is retrieved or
there are less thenn elements to retrieve keys from the iterator is invalidated.

• If the value ofn is 0, the keys of all elements in the collection are retrieved until
the end is reached.

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-95

2

Return value

Returns true if at least one key is retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

2.31.9 The EqualityIterator Interface

interface EqualityIterator : Iterator {
// moving the iterators
boolean set_to_element_with_value(in any element) raises(ElementInvalid);
boolean set_to_next_element_with_value(in any element)

raises(IteratorInvalid, ElementInvalid);
boolean set_to_next_element_with_different_value()

raises (IteratorInBetween, IteratorInvalid);
};

2.31.9.1 Moving iterators

boolean set_to_element_with_value (in any element)
raises(ElementInvalid);

Description

Locates an element in the collection that is equal to the given element. Sets the iterator
to the located element or invalidates the iterator if no such element exists. If the
collection contains several such elements, the first element in iteration order is located.

Return value

Returns true if an element is found.

Exceptions

The element must be of the expected type; otherwise, the expectedElementInvalid is
raised.

boolean set_to_next_element_with_value(in any element)
raises (IteratorInvalid, ElementInvalid);

Description

Locates the next element in iteration order in the collection that is equal to the given
element, starting at the element next to the one pointed to by the iterator. Sets the
iterator to the located element in the collection.

• If there is no such element, the iterator is invalidated.

• If the iterator is in the statein-between, locating is started at the iterator’s
“potential next” element.

2-96 Object Collection Service, v1.0.1 August 2002

2

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exceptionIteratorInvalid is raised.

The element must be of the expected type; otherwise, the exceptionElementInvalid
is raised.

boolean set_to_next_different_element ()
raises (IteratorInvalid, IteratorInBetween);

Description

Locates the next element in iteration order that is different from the element pointed to.
Sets the iterator to the located element, or if no such element exists, the iterator is
invalidated.

Return value

Returns true if the next different element was found.

Exceptions

The iterator must be valid and point to an element of the collection; otherwise, the
exceptionIteratorInvalid or IteratorInBetween is raised.

2.31.10 The EqualityKeyIterator Interface

interface EqualityKeyIterator : EqualityIterator, KeyIterator {};

This interface just combines the two interfaces EqualityIterator (see Section 2.31.9,
“The EqualityIterator Interface,” on page 2-95) and KeyIterator (see Section 2.31.8,
“The KeyIterator Interface,” on page 2-93).

2.31.11 The SortedIterator Interface

interface SortedIterator : OrderedIterator {};

This interface does not add any new operations but new semantics to the operations.

2.31.12 The KeySortedIterator Interface

// enumeration type for specifying ranges
enum LowerBoundStyle {equal_lo, greater, greater_or_equal};
enum UpperBoundStyle {equal_up, less, less_or_equal};
interface KeySortedIterator : KeyIterator, SortedIterator
{

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-97

2

// moving the iterators
boolean set_to_first_element_with_key (in any _key, in LowerBoundStyle style)

raises(KeyInvalid);
boolean set_to_last_element_with_key (in any _key, in UpperBoundStyle style)

raises (KeyInvalid);
boolean set_to_previous_element_with_key (in any _key)

raises(IteratorInvalid, KeyInvalid);
boolean set_to_previous_element_with_different_key()

raises (IteratorInBetween, IteratorInvalid);

// retrieving keys
boolean retrieve_previous_n_keys(out AnySequence keys)

raises (IteratorInBetween, IteratorInvalid);
};

2.31.12.1 Moving iterators

boolean set_to_first_element_with_key (
in any _key,
in LowerBoundStyle style)

raises (KeyInvalid);

Description

Locates the first element in iteration order in the collection with key:

• equal to the given key, if style is equal_lo

• greater or equal to the given key, if style is greater_or_equal

• greater than the given key, if style is greater

Sets the iterator to the located element, or invalidates the iterator if no such element
exists.

Return value

Returns true if an element was found.

Exceptions

The key must be of the expected type; otherwise, the exceptionKeyInvalid is raised.

boolean set_to_last_element_with_key(in any _key, in UpperBoundStyle
style);

Description

Locates the last element in iteration order in the collection with key:

• equal to the given key, if style is equal_up

• less or equal to the given key, if style is less_or_equal

• less than the given key, if style is less

2-98 Object Collection Service, v1.0.1 August 2002

2

Sets the iterator to the located element, or invalidates the iterator if no such element
exists.

Return value

Returns true if an element was found.

Exceptions

The key must be of the expected type; otherwise, the exceptionKeyInvalid is raised.

boolean set_to_previous_element_with_key (in any _key)
raises(IteratorInvalid, KeyInvalid);

Description

Locates the previous element in iteration order with a key equal to the given key,
beginning at the element previous to the one pointed to and moving in reverse iteration
order through the elements. Sets the iterator to the located element, or invalidates the
iterator if no such element exists. If the iterator is in the statein-between, the search
begins at the iterator’s “potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exceptionIteratorInvalid is raised.

The key must be of the expected type; otherwise, the exceptionKeyInvalid is raised.

boolean set_to_previous_element_with_different_key()
raises (IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a key different from the key of the
element pointed to, beginning search at the element previous to the one pointed to and
moving in reverse iteration order through the elements. Sets the iterator to the located
element, or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-99

2

2.31.12.2 Retrieving keys

boolean retrieve_previous_n_keys (
in unsigned long n,
out AnySequence keys)

raises(IteratorInvalid, IteratorInbetween)

Description

Retrieves the keys of at most the previous n elements in iteration order, sets the
iterators to the element before the last element from which a key is retrieved, and
returns them via the output parameter keys. Counting starts with the element this
iterator points to.

• If there is no element previous the one from which the nth key is retrieved or if
there are less than n elements to retrieve keys from, the iterator is invalidated.

• If the value of n is 0, the keys of all elements in the collection are retrieved until
the beginning is reached.

Return value

Returns true if at least one key is retrieved.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInvalid or IteratorInBetween is raised.

2.31.13 The EqualitySortedIterator Interface

interface EqualitySortedIterator : EqualityIterator, SortedIterator {
// moving the iterator
boolean set_to_first_element_with_value (

in any element,
in LowerBoundStyle style)

raises (ElementInvalid);
boolean set_to_last_element_with_value (

in any element,
in UpperBoundStyle style)

raises (ElementInvalid);

boolean set_to_previous_element_with_value (in any elementally)
raises (IteratorInvalid, ElementInvalid);

boolean set_to_previous_element_with_different_value()
raises (IteratorInBetween, IteratorInvalid);

};

2.31.13.1 Moving iterators

boolean set_to_first_element_with_value (
in any element,

2-100 Object Collection Service, v1.0.1 August 2002

2

in LowerBoundStyle style)
raises(ElementInvalid);

Description

Locates the first element in iteration order in the collection with value:

• equal to the given element value, if style is equal_lo

• greater or equal to the given element value, if style is greater_or_equal

• greater than the given element value, if style is greater

Sets the iterator to the located element, or invalidates the iterator if no such element
exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exceptionElementInvalid
is raised.

boolean set_to_last_element_with_value(
in any element,
in UpperBoundStyle style)

raises (ElementInvalid);

Description

Locates the last element in iteration order in the collection with value:

• equal to the given element value, if style is equal_up

• less or equal to the given element value, if style is less_or_equal

• less than the given element value, if style is less

Sets the iterator to the located element, or invalidates the iterator if no such element
exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exceptionElementInvalid
is raised.

boolean set_to_previous_element_with_value(in any element)
raises(IteratorInvalid, ElementInvalid);

August 2002 Collection Service, v1.0.1: Iterator Interfaces 2-101

2

Description

Locates the previous element in iteration order with a value equal to the given element
value, beginning search at the element previous to the one pointed to and moving in
reverse iteration order through the elements. Sets the iterator to the located element, or
invalidates the iterator if no such element exists. If the iterator is in the statein-
between, the search begins at the iterator’s “potential previous” element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exceptionIteratorInvalid is raised.

The element must be of the expected type; otherwise, the exceptionElementInvalid
is raised.

boolean set_to_previous_element_with_different_value()
raises (IteratorInBetween, IteratorInvalid);

Description

Locates the previous element in iteration order with a value different from the value of
the element pointed to, beginning search at the element previous to the one pointed to
and moving in reverse iteration order through the elements. Sets the iterator to the
located element, or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid and point to an element; otherwise, the exception
IteratorInBetween or IteratorInvalid is raised.

2.31.14 The EqualityKeySortedIterator Interface

interface EqualityKeySortedIterator: EqualitySortedIterator,
KeySortedIterator {};

This interface combines the interfacesKeySortedIterator and
EqualitySortedIterator . This interface does not add any new operations, but new
semantics.

2.31.15 The EqualitySequentialIterator Interface

interface EqualitySequentialIterator : EqualityIterator, SequentialIterator {
// locating elements

2-102 Object Collection Service, v1.0.1 August 2002

2

boolean set_to_first_element_with_value (in any element)
raises (ElementInvalid);

boolean set_to_last_element_with_value (in any element)
raises (ElementInvalid);

boolean set_to_previous_element_with_value (in any element)
raises (ElementInvalid);

};

2.31.15.1 Moving Iterators

boolean set_to__first_element_with_value (in any element)
raises(ElementInvalid);

Description

Sets the iterator to the first element in iteration order in the collection that is equal to
the given element or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exceptionElementInvalid
is raised.

boolean set_to_last_element (in any element) raises(ElementInvalid);

Description

Sets the iterator to the last element in iteration order in the collection that is equal to
the given element or invalidates the iterator if no such element exists.

Return value

Returns true if an element was found.

Exceptions

The element must be of the expected type; otherwise, the exceptionElementInvalid
is raised.

boolean set_to_previous_element_with_value (in any element)
raises (IteratorInvalid, ElementInvalid);

August 2002 Collection Service, v1.0.1: Function Interfaces 2-103

2

Description

Sets the iterator to the previous element in iteration order that is equal to the given
element, beginning search at the element previous to the one specified by the iterator
and moving in reverse iteration order through the elements. Sets the iterator to the
located element or invalidates the iterator if no such element exists. If the iterator is in
the statein-between, search starts at the “potential precious” element.

Return value

Returns true if an element was found.

Exceptions

The iterator must be valid; otherwise, the exceptionIteratorInvalid is raised.

The element must be of the expected type; otherwise, the exceptionElementInvalid
is raised.

2.32 Function Interfaces

2.32.1 The Operations Interface

Interface Operations {

// element type specific information
readonly attribute CORBA::TypeCode element_type;
boolean check_element_type (in any element);
boolean equal (in any element1, in any element2);
long compare (in any element1, in any element2);
unsigned long hash (in any element, in unsigned long value);

// key retrieval
any _key (in any element);

// key type specific information
readonly attribute CORBA::TypeCode key_type;
boolean check_key_type (in any _key);
boolean key_equal (in any key1, in any key2);
long key_compare (in any key1, in any key2);
unsigned long key_hash (in any thisKey, in unsigned long value);

// destroying
void destroy();

};

The function interfaceOperations is used to pass a number of other user-defined
element type specific information to the collection implementation.

The first kind of element type specific information passed is used for typechecking.
There are attributes specifying the element and key type expected in a given collection.
In addition to the type information there are two typechecking operations which allow

2-104 Object Collection Service, v1.0.1 August 2002

2

customizing the typechecking in a user-defined manner. The “default semantics” of
these operations is a simple check on whether the type code of the given element or
key exactly matches the type code specified in the element key type attribute.

Dependent on the properties as represented by a collection interface the respective
implementation relies on some element type specific or key type specific information
to be passed to it. For example one has to pass the information “element comparison”
to implementation of aSortedSet or “key equality” to the implementation of a
KeySet to guarantee uniqueness of keys. To pass this information, theOperations
interface is used.

The third use of this interface is to pass element or key type specific information
relevant for different categories of implementations. (Performing) implementations of
associative collections essentially can be partitioned into the categories comparison-
based or hashing-based. An AVL-tree implementation for aKeySet (for example) is
key-comparison-based; therefore, it relies on key comparison defined and a hash table
implementation ofKeySet hashing-based (which relies on the information how a hash
key values). Passing this information is the third kind of usage of theOperations
interface.

The operations defined in theOperations interface are in summary:

• element type checking and key type checking

• element equality and the ordering relationship on elements

• key equality and ordering relationship on keys

• key access

• hash information on elements and keys

In order to pass this information to the collection, a user has to derive and implement
an interface from the interfaceOperations . Which operations you have to implement
depends on the collection interface and the implementation category you want to use.
An instance of this interface is passed to a collection at creation time and then can be
used by the implementation.

Ownership for anOperations instance is passed to the collection at creation time.
That is, the same instance ofOperations respectively a derived interface cannot be
used in another collection instance. The collection is responsible for destroying the
Operations instance when the collection is destroyed.

Operations only defines an abstract interface. Specialization and implementation are
part of the application development as is the definition and implementation of
respective factories and are not listed in this specification.

2.32.2 Element Type Specific Operations

readonly attribute CORBA::TypeCode element_type;

August 2002 Collection Service, v1.0.1: Function Interfaces 2-105

2

Description

Specifies the type of the element to be collected.

boolean check_element_type (in any element);

Description

A collection implementation may rely on this operation being defined to use it for its
type checking. A default implementation may be a simple test whether the type code of
the given element exactly matcheselement_type . For object references, sometimes a
check on equality of the type codes is not desired but a check on whether the type of
the given element is a specialization of theelement_type .

Return value

Returns true if the given element passed the user-defined element type-checking.

boolean equal (in any element1, in any element2);

Return value

Returns true if element1 is equal to element2 with respect to the user-defined semantics
of element equality.

Note – If case compare is defined, the equal operation has to be consistently defined
(i.e., is implied by the defined element comparison).

long compare (in any element1, in any element2);

Return value

Returns a value less than zero if element1 < element2, zero if the values are equal, and
a value greater than zero if element1 > element2 with respect to the user-defined
ordering relationship on elements.

unsigned long hash (in any element, in unsigned long value);

Return value

Returns a user-defined hash value for the given element. The given value specifies the
size of the hashtable. This information can be used for the implementation of more or
less sophisticated hash functions. Computed hash values have to be less than value.

Note – The definition of the hash function has to be consistent with the defined
element equality (i.e., if two elements are equal with respect to the user-defined
element equality they have to be hashed to the same hash value).

2-106 Object Collection Service, v1.0.1 August 2002

2

2.32.2.1 Computing the key

any _key (in any element);

Description

Computes the (user-defined) key of the given element.

Key type specific information

readonly attribute CORBA::TypeCode key_type;

Description

Specifies the type of the key of the elements to be collected.

boolean check_key_type (in any _key);

Return value

Returns true if the given key passed the user-defined element type-checking.

boolean key_equal (in any key1, in any key2);

Return value

Returns true if key1 is equal to key2 with respect to the user-defined semantics of key
equality.

Note – If casekey_compare is defined, thekey_equal operation has to be
consistently defined (i.e., is implied by the defined key comparison). When both key
and element equality are defined, the definitions have to be consistent in the sense that
element equality has to imply key equality.

key_compare (in any key1, in any key2);

Return value

Returns a value less than zero if key1 < key2, zero if the values are equal, and a value
greater than zero if key1 > key2 with respect to the user-defined ordering relationship
on keys.

unsigned long key_hash (in any _key, in unsigned long value);

Return value

Returns a user defined hash value for the given key. The given value specifies the size
of the hashtable. This information can be used for the implementation of more or less
sophisticated hash functions. Computed hash values have to be less than value.

August 2002 Collection Service, v1.0.1: The Command and Comparator Interface 2-107

2

Note – The definition of the hash function has to be consistent with the defined key
equality (i.e., if two elements are equal with respected to the user defined element
equality they have to be hashed to the same hash value).

2.32.2.2 Destroying the Operations instance

void destroy();

Destroys the operations instance.

2.33 The Command and Comparator Interface

Command andComparator are auxiliary interfaces.

A collection service provider may either provide the interfaces only or a default
implementation that raises an exception whenever an operation of these interfaces is
called. In either case, a user is forced to provide his/her implementation of either the
interfaces or a derived interface to make use of them in the operations
all_elements_do , andsort .

2.33.1 The Command Interface

An instance of an interface derived from Command is passed to the operation
all_elements_do to be applied to all elements of the collection.

interface Command {
boolean do_on (in any element);

};

2.33.2 The Comparator Interface

An instance of a user defined interface derived fromComparatoris passed to the
operation sort as sorting criteria.

interface Comparator {
long compare (in any element1, in any element2);

};

The compare operation of the user’s comparator (interface derived from
Comparator) must return a result according to the following rules:

>0 if (element1 > element2)

0 if (element1 = element2)

<0 if (element1 < element2)

2-108 Object Collection Service, v1.0.1 August 2002

2

August 2002 Object Collection Service, v1.0.1 A-1

OMG Object Query Service A

A.1 Object Query Service Differences

A.1.1 Identification and Justification of Differences

The relationship between the Object Collection Service (OCS) and the Object Query
Service (OQS) is two-fold. The Object Query Service uses collections asquery result
and as scope of query evaluation.

The get_result operation ofCosQuery::Query for example and the evaluate
operation ofCosQuery::QueryEvaluator may return a collection as result or may
return an iterator to the query result.

There may be aQueryEvaluator implementation that takes a collection instance
passed as input parameter to evaluate a query on this collection which specifies the
scope of evaluation. The query evaluator implementation relies on the Collection
interface and the generic Iterator being supported by the collection passed.

A CosQuery::QueryableCollection is a special case of query evaluator which
allows a collection to serve directly as the scope to which a query may be applied. As
QueryableCollection is derived from Collection a respective instance can serve to
collect a query result to which further query evaluation is applied.

Both usages of collections - as query result and as scope of evaluation - rely on the fact
that a minimum collection interface representing a generic aggregation capability is
supported as a common root for all collections. Further, they rely on a generic iterator
that can be used on collections independent of their type.

Summarizing, Object Query Service essentially depends on a generic collection service
matching some minimal requirements. As Object Query Service was defined when
there was not yet any Object Collection Service specification available a generic
collection service was defined as part of the Query Service specification.

The CosQueryCollection module defines three interfaces:

A-2 Object Collection Service, v1.0.1 August 2002

• CollectionFactory: provides a generic creation capability

• Collection: defines a generic aggregation capability

• Iterator: offers a minimal interface to traverse a collection.

Those interfaces specify the minimal requirements of OQS to a generic collection
service. The following discusses whether it is possible to replace
CosQueryCollection module by respective interfaces in theCosCollection module
as defined in this specification. Differences are identified and justified.

In anticipation of the details given in the next paragraph we can summarize:

• The CosCollection::Collection top level collection interface matches the
CosQueryCollection::Collection interface except for minor differences.
Collections as defined in theCosCollection module can be used with Query
Service.

• The CosCollection::Collection top level collection interface proposes an
operation which one may consider as an overlap with the Object Query Service
function. The operationall_elements_do which can be considered a special case
of query evaluation.

• The CosCollection::Iterator top level iterator interface is consistent with
CosQueryCollection::Iterator interface in the sense that operations defined in
CosQueryCollecton::Iterator are supported inCosCollection::Iterator . In
addition a managed iterator semantics is defined which is reflected in the specified
side effects on iterators for modifying collection operations. This differs from the
iterator semantics defined in the Object Query Service specification but is
considered a requirement in a distributed environment.

• There are a number of operations in theCosCollection::Iterator interface you do
not find in theCosQueryCollection::Iterator interface. They are defined in the
CosCollection::Iterator interface to provide support for performing distributed
processing of very large collections and to support the generic programming model
as introduced with ANSI STL to the C++ world.

• The restricted access collections which are part of this proposal do not inherit from
the top levelCosCollection::Collection interface. They cannot be used with
Object Query Service as they are. But this is in the inherent nature of the restricted
access semantics of these collections and is not considered to be a problem.
Nevertheless, the interfaces of the restricted access collections allow combining
them with the collections of the combined property collections hierarchy via
multiple inheritance to enable usage of restricted access collections within the
Object Query Service. In doing so, the restricted access collections lose the
guarantee for restricted access, but only support interfaces offering the commonly
used operation names for convenience.

• The CosQueryCollection::CollectionFactory defines the exact same interface
asCosCollection::CollectionFactory .

Replacing the interfaces defined in the Object Query ServiceCosQuery::Collection
module by the respective interface defined in this specification, the Object Collection
Service enables the following inheritance relationship:

August 2002 Object Collection Service, v1.0.1 A-3

Figure A-1 Inheritance Relationships

A detailed comparison of the interfaces is given in the following sections and is
outlined along theCosQueryCollection module definitions.

CosQueryCollection Module Detailed Comparison

Exception Definitions

The following mapping of exceptions holds true:

• CosQueryCollection::ElementInvalid maps toCosCollection::ElementInvalid

• CosQueryCollection::IteratorInvalid maps toCosCollection::IteratorInvalid (with
IteratorInvalidReason not_for_collection)

• CosQueryCollection::PositionInvalid maps toCosCollection::IteratorInvalid
(with IteratorInvalidReason is_invalid) andCosCollection::IteratorInBetween.

Type Definitions

There are a number of type definitions in theCosQueryCollection module for the
mapping of SQL data types and for defining the type Record. These types are Object
Query Service specific; therefore, they are not part of the Object Collection Service
defined in this specification. Object Query Service may move these definitions to the
CosQuery module.

OCS

Collection

OQS
Queryable
Collection

OCS Collection

Any

Any
Queryable

OCS Collection

A-4 Object Collection Service, v1.0.1 August 2002

CollectionFactory Interface

The CosQueryCollection::CollectionFactory interface defines the same interface
asCosCollection::CollectionFactory and with it the same generic creation
capability.

While the generic create operations ofCosQueryCollection::CollectionFactory do
not raise any exceptions, the respective operation in the
CosCollection::CollectionFactory raises exceptionParameterInvalid.

Collection Interface

TheCosQueryCollection::Collection interface defines a basic collection interface,
without restricting specializations to any particular type such as equality collections or
ordered collections.

Collection Element Type

The element type of Object Query Service collections is a CORBA any to meet the
general requirement that collections have to be able to collect elements of arbitrary
type. The same holds true for the proposed Object Collection Service defined in this
specification.

Using the CORBA any as element type implies the loss of compile time type checking.
The Object Collection Service as defined here-in considers support for run-time type
checking as important; therefore, it offers respective support. In the interface
Collection this is reflected by introducing a read-only attribute “element_type” of type
TypeCode which enables a client to inquiry the element type expected.

This differs from Object Query Service collections which do not define any type
checking specific support.

Collection Attributes

The following attribute is defined in the OQS Collection interface:

cardinality

This read-only attribute maps to the operation number_of_elements() in
CosCollection::Collection. This is semantically equivalent. The name of the operation
was chosen consistently with the overall naming scheme of the Collection Service.

Collection Operations

The following operations are defined in the Object Query ServiceCollection
interface.

void add_element (in any element) raises (ElementInvalid)

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

boolean add_element(in any element) raises (ElementInvalid)

August 2002 Object Collection Service, v1.0.1 A-5

void add_all_elements (in Collection elements) raises (ElementInvalid)

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

void add_all_from (in Collection collector) raises (ElementInvalid).

void insert_element_at (in any element, in Iterator where)
raises (IteratorInvalid, ElementInvalid)

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

boolean add_element_set_iterator(in any element, in Iterator where)
raises (IteratorInvalid, ElementInvalid).

void replace_element_at (in any element, in Iterator where)
raises (IteratorInvalid, PositionInvalid, ElementInvalid);

This operations maps to

void replace_element_at (in Iterator where, in any element)
raises (IteratorInvalid, IteratorInBetween,ElementInvalid).

void remove_element_at (in Iterator where)
raises (IteratorInvalid, PositionInvalid)

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

void remove_element_at (in Iterator where)
raises (IteratorInvalid, IteratorInBetween).

void remove_all_elements ()

This operation maps - except for side effects on iterators due to managed iterator
semantics - to

unsigned long remove_all ().

any retrieve_element_at (in Iterator where)
raises (IteratorInvalid, PositionInvalid)

This operation maps to

boolean retrieve_element_at (in Iterator where, out any element)
raises (IteratorInvalid, IteratorInBetween).

Iterator create_iterator ()

This operation maps to

Iterator create_iterator (in boolean read_only).

A-6 Object Collection Service, v1.0.1 August 2002

The parameter “read_only“ parameter is used to support const iterators. This is
introduced to support the iterator centric ANSI STL like programming model.

Where different operation names are used in the Object Collection Service defined
here-in this is done to maintain consistency with the Collection Service overall naming
scheme.

Side effects to iterators specified differ from those specified in the Query Service
collection module as the Object Collection Service defined here-in specifies a managed
iterator model which we consider necessary in a distributed environment. For more
details in the managed iterator semantics see Section 2.31, “Iterator Interfaces,” on
page 2-68.

The top-levelCosCollection::Collection interface proposes all the methods defined
in CosQueryCollection::Collection . There are some few additional operations
defined inCosCollection::Collection :

boolean is_empty()

This operation is provided as there are collection operations with the precondition that
the collection must not be empty. To avoid an exception, the user should have the
capability to test whether the collection is empty.

void destroy()

This operation is defined for destroying a collection instance without having to support
the completeLifeCycleObject interface.

void all_elements_do(in Command command)

This operation is added for convenience; however, it seems to be an overlap with OQS
functionality. This frequently used trivial query should be part of the collection service
itself. A typical usage of this operation may be, for example, iterating over the
collection to print all element values. Note that the Command functionality is very
restricted to enable an efficient implementation. That is, the command is not allowed to
change the positioning property of the element applied to and must not remove the
element.

Iterator Interface

The CosQueryCollection::Iterator corresponds toCosCollection::Iterator .
CosCollection::Iterator is supported for all collection interfaces of the Object
Collection Service derived from Collection. The Object Collection Service iterator
interfaces defined in this specification are designed to support an iterator centric and
generic programming model as introduced with ANSI STL. This implies very powerful
iterators which go far beyond simple pointing devices as one needs to be able to
retrieve, add, remove elements from/to a collection via an iterator. In addition iterator
interfaces are enriched with bulk and combined operations to enable an efficient
processing of collections in distributed scenarios. Subsequently, the
CosCollection::Iterator is much more powerful than the
CosQueryCollection::Iterator .

August 2002 Object Collection Service, v1.0.1 A-7

Iterator Operations

The following operations are defined in theCosQueryCollection::Iterator interface:

any next () raises (IteratorInvalid, PositionInvalid)

This operation maps to

boolean retrieve_element_set_to_next (out any element)
raises (IteratorInvalid, IteratorInBetween)

void reset ()

This operation maps to

boolean set_to_first_element() of the Object Collection Service Iterator
interface.

boolean more ()

This operation maps to

boolean is_valid() && ! is_inbetween()

Due to the support for iterator centric and generic programming there are number of
additional operations in theCosCollection::Iterator interface:

• set_to_next_element , set_to_next_nth_element

• retrieve_element, retrieve_next_n_elements ,
not_equal_retrieve_element_set_to_next

• remove_element, remove_element_set_to_next ,
remove_next_n_elements , not_equal_remove_element_set_to_next

• replace_element, replace_element_set_to_next ,
replace_next_n_elements , not_equal_replace_element_set_to_next

• add_element_set_iterator , add_n_elements_set_iterator

• invalidate

• is_in_between, is_for , is_const , is_equal

• clone , assign , destroy

Most of the operations can be implemented as combinations of other basic iterator
operations so that the burden put on Object Query Service providers who implement
such an interface should not be too high.

A.2 Other OMG Object Services Defining Collections

There are several object services that define collections, that is Naming Service,
Property Service, and the OMG RFC "System Management: Common Management
Facility, Volume 1" submission, for example.

A-8 Object Collection Service, v1.0.1 August 2002

These services define very application specific collections. The Naming Service for
example defines the interface NamingContext or the Property Service an interface
PropertySet . Both are very application specific collections and may be implemented
using the Object Collection Service probably wrappering an appropriate Object
Collection Service collection rather than specializing one of those collection interfaces.

The collections defined in the System Management RFC form a generic collection
service. But the service defines collection members that need to maintain back
references to collections in which they are contained to avoid dangling references in
collections. This was considered as inappropriate heavyweight for a general object
collection service. The collections in the System Management RFC may use Object
Collection Service collections for their implementation up to some extent even reuse
interfaces.

A.3 OMG Persistent Object Services

Collections as persistent objects in the sense defined by the Persistent Object Service

• may support theCosPersistencePO::PO interface. This interface enables a client
being aware of the persistent state to explicitly control the PO’s relationship with its
persistent data (connect/disconnect/store/restore)

• may support theCosPersistence::SD interface which allows objects to
synchronize their transient and persistent data

• have to support one of protocols used to get persistent data in and out of an object,
like DA, ODMG, or DDO.

Support for these interfaces does not affect the collection interface.

Persistentqueryablecollections may request index support for collections. “Indexing
of collections” enables to exploit underlying indices for efficient query evaluation. We
do not consider “indexed collections” as part of the Object Collection Service but think
that indexing support can be achieved via composing collections defined in the Object
Collection Service proposed.

A.4 OMG Object Concurrency Service

Any implementation of the Object Collection Service probably will have to implement
concurrency support. But we did not define any explicit concurrency support in the
collection interfaces as part of the Object Collection Service because we consider that
as an implementation issue that can be solved by specialization. This also would allow
to reuse the respective interfaces of the Object Concurrency Service rather than
introducing a collection specific support for concurrency.

August 2002 Object Collection Service, v1.0.1 B-1

Relationship to Other Standards B

B.1 ANSI Standard Template Library

The ISO/ANSI C++ standard, as defined by ANSI X3J16 and OSI WG21, contains
three sections defining the Containers library, the Iterators library and the Algorithms
library, which form the main part of theStandardTemplateL ibrary. Each section
describes in detail the class structure, mandatory methods and performance
requirements.

B.1.1 Containers

The standard describes two kinds of container template classes, sequence containers
and so called associative containers. There is no inheritance structure relating the
container classes.

Sequence containersorganize the elements of a collection in astrictly linear
arrangement. The following sequence containers are defined

• vector: Is a generalization of the concept of an ordinary C++ array the size of which
can be dynamically changed. It’s an indexed data structure, which allows fast, that
is, constant time random access to its elements. Insertion and deletion of an element
at the end of a vector can be done in constant time. Insertion and deletion of an
element in the middle of the data structure may take linear time.

• deque: Like a vector it is an indexed structure of varying size, allowing fast, that is,
constant time random access to its elements. In addition to what a vector offers a
deque also offers constant time insertion and deletion of an element at the
beginning.

• list: Is a sequence of varying size. Insertion and deletion of an element at any
position can be done in constant time. But only linear-time access to an element at
an arbitrary position is offered.

B-2 Object Collection Service, v1.0.1 August 2002

Associative containersprovide the capability for fast, O(log n), retrieval of elements
from the collections by “contents,” that is, key value. The following associative
containers are provided:

• set: Is a collection of unique elements which supports fast access, O(log n), to
elements by element value.

• multiset: Allows multiple occurrences of the same element and supports fast access,
O(log n), to elements by value.

• map: Is a collection of (key, value) pairs which supports unique keys.It is an
indexed data structure which offers fast, O(log n), access to values by key.

• multimap: Is a collection of (key, value) pairs which allows multiple occurrences of
the same key.

Container adapters are the well known containers with restricted access, that is:

• stack

• queue

• priority_queue

As roughly sketched ANSI STL specifies performance requirements for container
operations. Those enforce up to some extent the kind of implementation. If you look at
the performance requirements for vector, deque and list they correspond to array and
list like implementations.

This differs from what the here-in discussed Object Collection Service proposes. The
collection classes vector, deque, and list all map to the same interface Sequence. The
different performance profiles are delivered via the implementation choice.

B.1.2 Algorithms

Different from other container libraries ANSI STL containers offer a very limited set
of operations at the containers themselves. Instead, all higher level operations like
union, find, sort, and so on are offered as so called generic algorithms. A generic
algorithm is a global template function that operates on all containers - supporting the
appropriate type of iterator. There are approximately 50 algorithms offered in ANSI
STL.

There are:

• non-mutating sequence algorithms

• mutating sequence algorithms

• sorting and related algorithms

• generalized numeric algorithms

The basic concept here is the separation of data structures and algorithms. Instead of
implementing an algorithm for each container in the library you provide a generic one
operating on all containers.

August 2002 Collection Service, v1.0.1 B-3

If one implements a new container and ensures that an appropriate iterator type is
supported one gets the respective algorithms “for free”. One may also implement new
generic algorithms working on iterators only which will apply to all containers
supporting the iterator type.

In addition, because the algorithms are coded as C++ global template functions,
reduction of library and executable size is achieved (selective binding).

B.1.3 Iterators

The key concept in ANSI STL that enables flexibility of STL are Iterator classes.
Iterator classes in ANSI STL are C++ pointer abstractions. They allow iteration over
the elements of a container.

Their design ensures, that all template algorithms work not only on containers in the
library but also on built-in C++ data type array. Algorithms work on iterators rather
then on the containers themselves. An algorithms does not even “know” whether it is
working with an ordinary C++ pointer or an iterator created for a container of the
library.

There are:

• input iterator, output iterator

• forward iterator

• bidirectional iterator

• random access iterator

• const, reverse, insert iterators

B.1.4 Consideration on choice

The collection class concept as defined by the ANSI standard is designed for optimal,
local use within programs written in C++. In some sense they are extensions of the
language and heavily exploit C++ language features. No considerations, of course, are
given to distribution of objects or language neutrality.

Some of the advantages clearly visible in a local C++ environment cannot be carried
over into a distributed and language neutral environment. Some of them are even
counterproductive.

In summary, the following list of issues are the reason why the ANSI collection class
standard has not been considered as a basis for this proposal:

• Aiming with its design at high performance and small code size of C++ applications
ANSI STL seems to have avoided inheritance and virtual functions. As no
inheritance is defined, polymorphic use of the defined collection classes is not
possible.

• The ANSI STL programming model of generic programming is very C++ specific
one. ANSI STL containers, iterators, and algorithms are designed as C++ language
extension. Containers are smooths extensions of the built-in data type array and

B-4 Object Collection Service, v1.0.1 August 2002

iterators are smooth extensions of ordinary C++ pointers. Container in the library
are processed by generic algorithms via iterators in the same way as C++ arrays via
ordinary pointers. Rather then subclassing and adding operations to a container one
extends a container by writing a new generic algorithm. This is a programming
model just introduced to the C++ world with ANSI STL and for sure not the
programming model Smalltalk programmers are used to.

• As a consequence of the separation of data structures and algorithms containers in
ANSI STL up to some extent expose implementation. As an
example consider the two sequential containers list and vector. The
algorithms sort and merge are methods of the list container. vector
on the other hand can support efficient random access and therefore use the generic
algorithms sort and merge. Subsequently you do not find them as methods in the
vector interface. This requires rework of clients when server implementations
changes from list to vector or deque because of changing access patterns.

• The IDL concept has no notion of global (template) functions. The only conceivable
way to organize the algorithms is by collecting them in artificial algorithm object(s).
The selective binding advantage is lost in a CORBA environment and careful
placement of the algorithm object(s) near the collection must be exercised.

• In the ANSI STL approach the reliance on generic programming as algorithms is
substantial. We believe that this concept is not scalable. It is difficult to imagine a
generic sort in a CORBA environment is effective without the knowledge of
underlying data structures. Each access to a container has to go via an iterator
mediated somehow by the underlying request broker, which is not a satisfactory
situation.Object Collection Services will be used in an wide variety of
environments, ranging from simple telephone lists up to complex large stores using
multiple indices, exhibiting persistent behavior and concurrently accessed via
Object Query Service. We do not believe that generic algorithms scale up in such
environments.

B.1.5 ODMG-93

Release 1.1 of the ODMG specification defines a set of collection templates and an
iterator template class.

An abstract base class Collection<T> is defined from which all concrete collections
classes are derived. The concrete collection classes supported are Set<T>, Bag<T>,
List<T>, Varray<T>. In addition an Iterator class Iterator<T> is defined for iteration
over the elements of the collection.

Set and Bag are unordered collections and Bag allows multiples. List is an ordered
collection that allows multiples. The Varray<T> is a one dimensional array of varying
length.

Collection<T> offers the test empty() and allows to ask for the current number of
elements, cardinality(). Further the tests is_ordered() and allows_duplicates() are
offered.There is a test on whether an element is contained in a given collection.
Operations for insertion, insert_element(), and removal, remove_element() are
provided. Last not least there is a remove_all() operation.

August 2002 Collection Service, v1.0.1 B-5

Each of the derived classes provides an operator== and an operator!= and an operation
create_iterator().

A Set<T> is derived from Collection<T> and offers in addition operations
is_subset_off(), is_proper_subset_of(), is_superset_of(), or is proper_superset_of() a
suite of set-theoretical operations to form the union, difference, intersection of two
sets.

A Bag<T> offers the same interface as Set<T> but allows multiples.

A List<T> offers specific operations to retrieve or remove the first respectively last
element in the list or to insert an element as first respectively last element. Retrieving,
removing, and replacing an element at a given position is supported. Inserting an
element before or after a given position is possible.

Varray<T> exposes the characteristics of a one dimensional array of varying length.
An array can be explicitly re-sized. The operator[] is supported. The operations to find,
remove, retrieve, and replace an element at a given position are supported.

An instance Iterator<T> is created to iterate over a given collection.The operator= and
operator == are defined. There is a reset() operation moving an iterator to the
beginning of the collection. There is an operation advance() and overloaded the
operator++ to move the iterator to the next element. Retrieving and replacing the
element currently “pointed to” is possible. A check on whether iteration is not yet
finished is offered, not_done().For convenience in iteration there is an operation next(),
combining “check end of iteration, retrieval of an element, and moving to the next
element”.

ODMG-93 structure is very similar to the Object Collections Service. ODMG-93 Set
<T> and Bag<T> correspond very well to Set and Bag as defined herein. List<T>
maps one-to-one to an EqualitySequence. A Varray<T> maps to an EqualitySequence
too. That the interfaces List<T> and Varray <T> map to the same interface in the
Object Collection Service reflects that List<T> and Varray<T> somehow expose the
underlying kind of implementation structure assumed - namely a list like structure
respectively a table-like structure. In the Object Collection Service, the different kinds
of implementation of a sequence-like interface are not reflected in the interface, but
only in the delivered performance profile. This is the reason why List<T> and
Varrary<T> map to the same interface EqualitySequence. The Iterator interface maps
to the top level Iterator interface of the iterator hierarchy of the Object Collection
Service.

In summary, the Object Collection Service is a superset of the ODMG-93 collections
and iterators.

B-6 Object Collection Service, v1.0.1 August 2002

August 2002 Object Collection Service, v1.0.1 C-1

References C

OMG, CORBAservices: Common Object Services Specification, Volume 1, March
1996.

C-2 Object Collection Service, v1.0.1 August 2002

Index

August 2002 Collection Service, v1.0.1 Index-1

A
Abstract interface hierarchy 1-4
Abstract RestrictedAccessCollection Interface 2-51
Access by key 1-3
ANSI Standard Template Library B-1

B
Bag Interface 2-48
Bag, SortedBag 1-10
BagFactory Interface 2-63

C
callback interface

described ix
Collectible elements and the operations interface 1-7
Collectible elements and type safety 1-7
Collectible elements of key collections 1-8
Collection factories 1-2, 1-5
Collection Factory Interfaces 2-56
Collection Interface 2-8
Collection Interface Hierarchies 2-2
Collection interfaces 1-2
CollectionFactory and CollectionFactories Interfaces 2-57
Collections 1-1
Combined Collections 1-10
Command and Comparator Interface 2-107
Common collection types 1-1
compound object viii
concepts of vii
Concrete Restricted Access Collection Interfaces 2-52
Consolidated OMG IDL A-1
CORBA vii

contributors xi
documentation set vi

CORBA OMG IDL based Specification of the Trading
Function A-1

Creating iterators 2-14

D
Deque 1-14
DequeFactory Interface 2-68
Dequeue Interface 2-53
Destroying a collection 2-14

E
Equality collection 1-3
EqualityCollection Interface 2-24
EqualityIterator Interface 2-95
EqualityKeyCollection Interface 2-37
EqualityKeyIterator Interface 2-96
EqualityKeySortedCollection Interface 2-42
EqualityKeySortedIterator Interface 2-101
EqualitySequence 1-11
EqualitySequence Factory Interface 2-66
EqualitySequence Interface 2-50
EqualitySequentialCollection Interface 2-42
EqualitySequentialIterator Interface 2-101
EqualitySortedCollection Interface 2-39
EqualitySortedIterator Interface 2-99
event channel viii, ix
EventChannel interface ix
exceptions

described x
Exceptions and Type Definitions 2-6

F
Function Interfaces 1-2, 2-103

G
global identifier x

H
Heap 1-11
Heap Interface 2-51
HeapFactory Interface 2-67

I
Interface Hierarchies 2-2
interface inheritance.see subtyping
Iterating over a collection 2-13
Iterator Hierarchy 2-5
Iterator Interfaces 1-2, 2-68
Iterators 1-5
Iterators and performance 1-6, 2-70
Iterators and support for generic programming 2-69
Iterators as pointer abstraction 2-68

K
Key collection 1-3
Key collections 1-8
KeyBag Interface 2-44
KeyBag, KeySortedBag 1-11
KeyBagFactory Interface 2-61
KeyIterator Interface 2-93
KeySet Interface 2-44
KeySet, KeySortedSet 1-12
KeySetFactory Interface 2-61
KeySortedBag Interface 2-49
KeySortedBagFactory Interface 2-64
KeySortedCollection Interface 2-37
KeySortedIterator Interface 2-96
KeySortedSet Interface 2-48
KeySortedSetFactory Interface 2-63

M
Managed Iterator Model 2-70
Managed iterators 1-6
Map Interface 2-44
Map, SortedMap 1-12
MapFactory Interface 2-61

O
Object Management Group v

address of vii
ODMG-93 B-4
OMG IDL viii
Operations Interface 1-7, 2-103
Ordering of elements 1-3

P
PriorityQueue 1-14
PriorityQueue Interface 2-55
PriorityQueueFactory Interface 2-68
PullSupplier interface ix

Index

Index-2 Collection Service, v1.0.1 August 2002

PushConsumer interface ix

Q
quality of service viii
Queue 1-15
Queue Interface 2-52
QueueFactory Interface 2-67

R
RACollectionFactory and RACollectionFactories Interfaces 2-60
Relation Interface 2-48
Relation, SortedRelation 1-13
RelationFactory Interface 2-62
Restricted Access Collection Interfaces 2-51
Restricted Access Collections 1-4, 1-14
RestrictedAccessCollection Interface 2-51

S
Sequence 1-13
Sequence Interface 2-50
SequenceFactory Interface 2-66
SequentialCollection Interface 2-18
Set, SortedSet 1-13

SetFactory Interface 2-62
SortedBag Interface 2-50
SortedCollection Interface 2-24
SortedIterator Interface 2-96
SortedMap Interface 2-49
SortedMapFactory Interface 2-64
SortedRelation Interface 2-50
SortedRelationFactory Interface 2-64
SortedSet Interface 2-50
SortedSetFactory Interface 2-65
Stack 1-15
Stack Interface 2-53
StackFactory Interface 2-67
subtyping vii, x

T
Type checking information 2-9
Type Definitions 2-6
Type safety 1-7

U
Unique entries (collections) 1-3

August 12, 2002 1

Collection Service, v1.0.1
Reference Sheet

This is an editorial update of the Collection Service that includes changes to Chapter 2 - Modules and
Interfaces. You will find specific changes marked with change bars and colored text.

This version supercedes formal/00-06-13.

Reason for this editorial update: Issue # 4984. Change all occurrences of the IDL identifier “key” to
“_key”. Also change all occurrences of the IDL identifier “factory” to “_factory”.

2 August 13, 2002

